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Welcome!
My name is John Buglear. I hope you find this book useful. It is based on

my experience of teaching quantitative parts of business and hospitality

courses.

To be honest with you most of my students were not too thrilled when

they realised that they had to learn more ‘Maths’ especially if they had

struggled with numerical subjects at school. They felt like they had been

dreaming of being on holiday and woke up to find themselves at the dentist’s.

Happily the vast majority succeeded and many went on to take specialist

quantitative modules later in their course. The moral of this is, try to leave

any ‘baggage’ you may be carrying about school maths behind you. This is

not Mathematics as you have known it. This is Statistics. It is about making

numbers talk and how to listen to what they are telling you. Every business

involves numbers of many kinds. If you can deal with them it will give you an

important edge in your future career.

Before I became a lecturer I worked in the electronics, engineering and

travel industries. On the basis of this I can tell you that the techniques and

tools in this book are used by real people doing real jobs. But don’t just take

my word for it. Let me introduce my friend Warwick Best. Warwick is one of

my colleagues at Nottingham Trent University. He literally got into lecturing

by accident, in fact a car accident. For most of his adult life Warwick worked

in the hospitality industry. He started in the army catering corps, which is

one of the biggest hospitality organisations in the UK. Following that he was

the proprietor of successful clubs, pubs, restaurants and a hotel as well as

a limousine hire business. After the accident he couldn’t stay in business.

Instead he went to university as a mature student, became a lecturer and now

teaches hospitality management.

As Warwick would be the first to admit, he is not an expert in Statistics,

but he was a successful entrepreneur (I like to think of him as our very own

Alan Sugar or Donald Trump!) and knows how crucial understanding

numbers is for success in business. This is why I have asked Warwick to say

something about how important the topics covered in each chapter are.

These are the ‘Why do I need to know about this? Warwick the Hospitality

entrepreneur says.’ sections that open the chapters.
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Welcome!xii
At the end of each chapter, except the very last one which is about final

year project work, there are ‘Test yourself’ questions, rated ‘easy’, ‘moderate’

and ‘hard’. These are based on Warwick’s business enterprises. The fully

worked solutions of these are at the back of the book so that you can check

your answers. There are more questions to try on the website that accom-

panies the book, which is at www.elsevierdirect.com/9781856179478.

Much of the statistical work you will probably do will involve using

a computer. To help you do this we have included Excel ‘Recipe Cards’ which

show you how to carry out statistical analysis in Excel.



A Word to Tutors
This book is designed to support first and second year quantitative and

statistical modules on higher education courses. The contents and approach

are based on my extensive experience of teaching quantitative modules at

Nottingham Business School and its partner institutions.

Building from refreshment of basic quantitative skills in the first chapter

the sequence of topics runs from descriptive statistics through probability

and probability distributions to inferential statistics. The concluding chapter

provides guidance on statistical work for final year projects and dissertations.

Throughout the text there are instructions, ‘Recipe Cards’ for using Excel to

perform statistical analysis.

Rather like an iceberg much of the extent to which the text can help you

module is not immediately visible. There is an accompanying website at

www.elsevierdirect.com/9781856179478 that contains a wealth of material

that can help you design and deliver your module. The contents include:

- Model objectives and learning outcomes;

- Suggested sequences of delivery;

- Powerpoint lecture slides;

- Review questions with fully worked solutions;

- More Recipe card instructions;

- Sources of data on the Internet that are suitable for student work that

involves data capture; and

- References for texts that offer more extensive coverage of particular

topic.
xiii
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CHAPTER 1

Numbers in Business: The
Basics

Why do I need to know about this? Warwick the Hospitality
entrepreneur says.

‘In my view you simply can’t be successful in business without being
able to deal with numbers. You need to be able to deal with data about

sales, stock, employees and accounts. If you are not confident with
numbers you need to learn, and the best place is at college. When I

dealt with people who could not cope well with numbers I knew that I
had an advantage; most of the time I felt I could exploit their lack of

understanding to my advantage.’

Chapter Objectives

This chapter will help you to:

- understand why the ability to deal with numbers is important;

- see how this book can help you develop that ability; and

- prepare effectively to study Statistics.

CONTENTS

Introduction

How this Book is
Organized

Taking the First Steps

Technological Support

1



1.1 INTRODUCTION

This book is about analysing numbers. But why should analysing numbers

matter to someone studying business? How relevant can it be for someone

planning to build a business career?

To understand this, and to appreciate why the study of numbers is built

into your course, think about the world of business. It is a world of rapidly

evolving organizations producing and selling a huge range of products and

services in a fluctuating environment.

How do organizations cope with this degree of change? The answer, in

some cases, is that they don’t. Many prominent companies that dominated

their sectors a generation ago no longer exist. They became history because

they failed to respond to changing markets. Others survived and some small

operations thrived, becoming market leaders within the lifetimes of their

founders.

Although luck and the good fortune of happening to be in the right

marketplace with the right product may have played a part, to succeed in

a changing environment an organization needs to recognize the changes and

anticipate the consequences for its operations. How can it do that? By

constantly studying its markets and monitoring its operations. This means

counting and measuring key factors, in other words gathering numerical

facts, or statistics.

In every organization there is a flow of numbers which are either delib-

erately collected or arise from the regular interactions with customers,

suppliers and other significant organizations. These figures alone cannot tell

the organization what is going on in the market or how it is performing. One

of the responsibilities of management is to ensure that such figures are used,

which means they have to be processed and analysed. The patterns that

emerge from this analysis provide information that enables managers to

understand the situation they face and base their decisions on that

understanding.

The ability to analyse figures and interpret the results is therefore a key

management skill. Look at recruitment advertisements for management

posts and you will see that employers attach great importance to ‘numerical

skills’ and ‘problem solving’.

If you want to build a successful management career these are skills

that you have to acquire sooner or later. Your course will provide you with

the opportunity of developing them. Make the most of that opportunity

and you will have a cutting-edge skill that will pay dividends for you in the

future.
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1.2 HOW THIS BOOK IS ORGANIZED

This book will help you deal with the numerical parts of your course. How

you use it depends on how you approach the study of numbers you are about

to start. It can be a crutch to help you limp through what may seem like an

unwelcome revisit to the sums of schooldays, although it is better to think of

it as a springboard that will help you to accumulate a key investment for your

future – the skill of numeracy.

This book cannot decide your attitude to studying numbers, but it can

influence it. The attitude you take is something for you to develop, but

whether this book is to be a crutch or a springboard for you, it is intended to

be a guide which will provide support for the numerical work you will

undertake during your course.

The first five chapters of the book (including this one) deal with topics

that you are likely to meet early in your course. They deal largely with

descriptive techniques, methods that will enable you to arrange or analyse

data in a way that helps to describe the issue you are studying.

Chapters 6–9 cover topics that you may well meet at a later stage of your

course. They deal with inferential techniques, methods that enable you to

make inferences or draw conclusions about an issue in general based on the

study of a comparatively modest amount of data.

The final chapter is designed to help you to tackle numerical aspects of

the final-year project or dissertation you will probably be asked to write.

The book will introduce you to a variety of analytical techniques that

together constitute a ‘toolkit’ of methods that can be used to investigate

situations and help solve problems. Like any other toolkit, the key to using it

properly is to know not only what each tool does, but to know how and when

to use it. The book will help you develop this ability by illustrating the

application of the methods described using business contexts.

Each technique will be explained and demonstrated. Calculations are

described in words before symbols are used to represent the process.

Being able to apply a technique, to produce the correct result from

a calculation, is important, especially if you find ‘learning by doing’ useful,

but it is by no means the end of the story. It is even more important to be able

to interpret the results that the technique has enabled you to produce and to

communicate the meaning of those results. In your future career you may

have to apply techniques of analysis but you are much more likely to need to

explain results, and perhaps to judge whether appropriate techniques have

been used to produce them. The book therefore provides you with not only

a description of each technique and an illustration of its use, but also

How this Book is Organized 3



a discussion of the types of results you could get, and what each of them

means.

Within Chapters 1–9 there are Excel Recipe Cards which provide

instructions for using Excel to perform the techniques featured in the chapter

and include screenshots showing how you carry out the instructions. At the

end of Chapters 1–9 there are three review questions based on Warwick’s

business enterprises that you can use to confirm your understanding of the

methods and ideas featured in the chapter. These are rated ‘Easy’, Moderate’

and ‘Hard’. You will find the fully worked solutions to them in Appendix 2 on

pages 323–342. There are many more questions for you to try on the book’s

companion website at www.elsevierdirect.com/9781856179478.

1.3 TAKING THE FIRST STEPS

There are two key preliminary tasks that are worth investing a little time and

effort on getting to grips with from the very beginning. The first is to

understand some key words which may be completely new to you, or whose

meanings in the context of this subject are unfamiliar to you. The second is

to review the basic arithmetical operations that are involved in the methods

demonstrated further on in the book. Being clear about these basics from the

start will mean you avoid unnecessary confusion later on.

You will find that the key words below are used many times in this book.

They are the first terms in a technical vocabulary that will become familiar to

you as you proceed. As with other subjects you study or interests that you

have outside college, there are specialist words and phrases to comprehend,

but once you have grasped their meaning you will get used to using them as

a matter of course.

1.3.1 The Key words you need to know

- Data: A plural noun (the singular form is datum) which means a set of

known or given things, facts. Note that data can be numerical (e.g. age

of people) or non-numerical (e.g. gender of people).

- statistics: Without a capital letter, i.e. in its lower-case form, this

means a set of numerical data or figures that have been collected

systematically.

- Statistics: With a capital letter this is a proper noun that means the

set of methods and theories that can be used to arrange, analyse and

interpret statistics.

CHAPTER 1 : Numbers in Business: The Basics4



- Variable: A quantity that varies, the opposite of a constant. For

example, the number of meals served in a café per day is a variable,

whereas the number of hours in a day is a constant. In the expressions

that we will use to summarize methods a capital letter, usually X or Y,

will be used to represent a variable.

- Value: A specific amount that it is possible for a variable to be. For

example, the number of meals served in a cafe per day could be 45 or

63 or 91. These are all possible values of the variable ‘number of

meals served’.

- Observation or observed value: A value of a variable that has actually

occurred, i.e. been counted or measured. For example, if 58 meals are

served on a particular day that is an observation or observed value of

the variable ‘number of meals served’.

- x, X: An observation is represented by the lower case of the letter used

to represent the variable; for instance ‘x’ represents a single observed

value of the variable ‘X’. A small numerical suffix is added to

distinguish particular observations in a set; for example if X is the

number of meals served in a café per day x1 would represent number

of meals served on the first day, x2 the number served on the second

day and so on.

- Random: This adjective refers to something that occurs in an

unplanned way. A random variable is a variable whose observed

values arise by chance. The number of room bookings a hotel receives

during a month is a variable that is random, whereas the number of

days in a month is a variable that is not random, i.e. its observed

values are predetermined.

- Distribution: The pattern exhibited by the observed values of

a variable when they are arranged in order of magnitude. A theoretical

distribution is one that has been deduced, rather than compiled from

observed values.

- Population: In general usage this means the total number of persons

residing in a defined area at a given time. In Statistics a population is

the complete set of things we want to investigate. These may be human

such as all the people who have visited a theme park, or inanimate such

as all the package holidays sold by a tour operator.

- Sample: A subset of the population, that is, a smaller number of items

picked from the population. A random sample is a sample whose
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components have been chosen in a random way, that is, on the basis

that any single item in the population has no more or less chance

than any other to be included in the sample.

1.3.2 The basic numerical skills you need

Addition and subtraction

Addition, represented by the plus sign ‘þ’, is the process of putting two or

more numbers together to make a sum or total. As long as the numbers being

added together are positive, i.e. more than zero, the resulting total grows as

more numbers are added.

Because Statistics often involves combining observations, the arithmet-

ical process of addition is a process you will come across in the context of

several techniques dealt with later in the book.

Although you are probably already familiar with addition, you may not

have encountered the symbol called ‘sigma’, which is used in Statistics to

represent it. Sigma is the capital letter S from the Greek alphabet, written as

‘S’. It is the letter s because s is the first letter of the word ‘sum’. It is a Greek

letter because at the time that much of the theory that makes up the subject

of Statistics as we know it today was developed, the so-called ‘classical’

languages of the ancient world were taught in schools and universities. The

Greek language, with its specific alphabet, therefore provided the pioneers of

Statistics, and other disciplines such as Physics, with a ready source of

distinctive symbols.

The symbol S (sigma) stands for ‘the sum of’ when it is used in statistical

expressions, for example,

Sx means ‘the sum of a set of observed values of the variable X 0:

Example 1.1

A member of staff working at the drive-through window of a fast food restaurant conducts

four operations in the course of serving a customer. If these tasks take 10, 12, 7 and

8 seconds, what is the total time that will elapse between the time a customer arrives at the

order point and the time their meal is ready?

You can get the answer by adding together the times taken for the four operations.

Total time ¼ 10þ 12þ 7þ 8 ¼ 37seconds

CHAPTER 1 : Numbers in Business: The Basics6



Sometimes it is necessary to specify precisely which observed values of X

are to be added together. To show this, the letter i is used to count the

observations, for example,

X4

i¼1

xi means the sum of the first to the fourth observations

of the variable X

The expression ‘i¼ 1’ below the sigma tells us to start the addition with

the first observed value of X and the ‘4’ above the sigma sign tells us to finish

the addition with the fourth observed value.

If it is necessary to indicate that all of a set of observations should be

added together and the exact number of observations is not known, we use

the letter ‘n ’ to represent the last observation in the set, so:

Xn

i¼1

xi means the sum of the first observation ðx1Þ to the last observation

ðxnÞ of the variable X

As you proceed with your study of the subject, you will find that the letter

‘n ’ is used generally in Statistics to represent the number of observations in

a set.

At first these symbols may appear strange to you, but it is worth learning

to recognize and use them as they are very useful shorthand forms, which

will save you time and space in future work.

Subtraction, represented by the minus sign ‘–’, is the process of sub-

tracting or ‘taking away’ one or more numbers from another. As long as the

numbers being subtracted are positive, i.e. more than zero, the result reduces

as more numbers are subtracted.

Example 1.2

In the situation described in Example 1.1, we could show that the total time taken to serve

a customer (which we could represent by ‘T ’) is the sum of the time taken for the four tasks

(represented by t1, t2, t3 and t4) to be performed by using the expression:

T ¼
X4

i ¼ 1

ti ¼ t1 þ t2 þ t3 þ t4 ¼ 10þ 12þ 7þ 8 ¼ 37
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An alternative approach to this operation is to add the stoppages first and

then subtract the total stoppages from the gross pay. This would be repre-

sented in the following way:

Take-home pay ¼ £300� ð£42þ £13þ £52Þ ¼ £193

The round brackets dictate that the operation shown within them must

be carried out first. They are used to indicate priority.

You may well find addition and subtraction fairly easy, but there are cases

where they are not so straightforward; first, when negative numbers are

involved, and second, when the operation involves numbers measured in

awkward units, e.g. minutes and hours.

Addition and subtraction may give you some difficulty if negative numbers

are involved. If a negative number is added to a total, it reduces the total.

You can see that round brackets have been used, both to highlight the fact

that there is a negative number in the sequence and to indicate that it must

be dealt with first. This means deciding how to tackle the apparently

contradictory ‘þ�’ sequence of symbols. In fact the minus sign overrides the

plus sign, so adding a negative number is the same as subtracting a number.

The arithmetical expression used to find the total amount in Example 1.4

has exactly the same result as the following expression, which combines

addition and subtraction:

Example 1.3

The gross weekly pay of a tour guide is £300. If £42 tax, £13 National Insurance, and £52

accommodation charge are deducted from her gross pay, what is her weekly take-home

pay?

You can get the answer by subtracting the stoppages from the gross wage:

Take-home pay ¼ £300� £42� £13� £52 ¼ £193

Example 1.4

A hotel guest is charged £60 for his room, £25 for a meal, and £8 for minibar items. He

has a promotional voucher entitling him to a discount of £10 on his bill. What is the total

amount that he should be charged?

The answer can be shown as:

Total amount ¼ £60þ £25þ £8þ ð�£10Þ ¼ £83

Total amount ¼ £60þ £25þ £8� £10 ¼ £83
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But what do you do if you have to subtract a negative number? In fact

subtracting a negative number produces the same result as adding a positive

number.

You get exactly the same result if you simply add the amount concerned, £10.

You may find it helpful to imagine the two minus signs ‘cancelling each

other out’ to leave you with an addition. Alternatively it may help to think

that taking away a negative is always positive.

Addition and subtraction involving time is something many people find

difficult because time is measured in hours made up of 60 minutes, and

minutes made up of 60 seconds, rather than nice, neat numerical parcels of

ten. The use of the 24-hour clock on top of all this seems to faze many

people completely.

The answer may not be satisfactory in this form. To convert it into hours

and minutes we need to find how many units of 60 minutes there are in

144 minutes. The answer is two, so the total journey time is 2 hours (120 of

the total number of minutes) and 24 minutes (the number of minutes left

over when 120 is subtracted from 144).

Example 1.5

The sharp-eyed manager of the hotel in Example 1.4 spots that the promotional voucher is

out of date. How will this alter the total amount he should be charged?

The discount would have to be subtracted from the previous total, so now:

Total amount ¼ £83� ð�£10Þ ¼ £93

Example 1.6

A business traveller drives for 12 minutes to reach her local railway station where she

boards a train that takes 33 minutes to reach one city terminus. It takes her 24 minutes by

metro to reach another city terminus, where she boards another train. After a journey that

takes 1 hour 5 minutes to reach her station, she takes a 10-minute taxi ride to her

destination. What is the total journey time?

To get the answer we can express all the times mentioned, including the figure for the

second train journey, in minutes.

Total journey time ¼ 12þ 33þ 24þ 65þ 10 ¼ 144
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But what if the traveller started her journey later than expected, at

11:45 am, what time would she arrive? This is a little more complicated

because the departure time and total journey time are measured in both

hours and minutes. To find the answer we can start by adding the hours:

11þ 2 ¼ 13

Then add the minutes together:

45þ 24 ¼ 69

Since this amount of minutes is longer than an hour, we have to express

it in hours and minutes, and add the result to the sum of the hours:

69 minutes ¼ 1 hour and 9 minutes

13þ 1 ¼ 14 hoursþ 9 minutes ¼ 14 :09; or 2 :09 pm

Multiplication and division

Multiplication, or ‘times-ing’, represented either by the asterisk ‘*’ or the

‘times’ sign ‘x’, is the process of multiplying two or more numbers together.

The result is called the product. If a number is multiplied by another number

greater than one, the product will be greater than the original number.

Example 1.7

If the traveller described in Example 1.6 begins her journey at 11am, what time will she

arrive at her destination, and how would this time be expressed using the 24-hour clock?

To get the answer, work in hours first, then minutes:

Arrival time ¼ 11þ 2 hours ¼ 1 pmþ 24 minutes ¼ 1 :24 pm

To express this using the 24-hour clock, add 12 to the number of hours, because the

arrival time is after midday:

Arrival time ¼ 1:24þ 12 ¼ 13 :24

Example 1.8

A holiday letting agency receives an inquiry about a property in England from a Swiss

client. The rent is £240 per week. What is the rent in Swiss francs if the exchange rate is

1.80 francs to the pound?

You can get the answer by multiplying the total number of pounds by the exchange rate:

Rent in francs ¼ £240 � 1:80 ¼ 432
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In this case the number of francs is greater than the number of pounds;

the product represents a numerical increase. But if you multiply a number

by another number that is less than one, you will get a product that is lower

than your first number.

If you have to multiply a positive number by a negative number, the

product will be negative. However if you multiply two negative numbers

together, the product will be positive:

3 � ð�2Þ ¼ �6 but ð�3Þ � ð�2Þ ¼ 6

Division, or finding how many times one amount ‘goes into’ another, is

the process of dividing one number by another. It is represented either by the

forward slash ‘/’ or the sign ‘O’. If you divide a number by another number

that is greater than one, the result will be smaller than the original number.

Something to note in Example 1.10 is that although we can get a very

precise result, in this case specified to three places of numbers after the

decimal point, in the situation described the figure would be rounded up to

the nearest whole of bottles, 14.

If you divide a number by another number that is less than one, the result

will be larger than the original number.

Example 1.9

A business traveller returning from Oslo to the UK has 3200 Norwegian krone that she

wishes to change into pounds. If the rate available at a bureau de change is £0.09 per

krone, how many pounds will she get for her krone?

To get the answer, multiply the total number of krone by the exchange rate:

Pounds she can buy ¼ Kr3200 � 0:09 ¼ £288

Example 1.10

The 48 guests attending a function are to be offered a glass of wine on arrival. If the

contents of one bottle of wine will fill three and a half glasses, how many bottles will be

required?

We can obtain the answer by dividing the number of guests by the number of glassfuls per

bottle.

Number of bottles ¼ 48=3:5 ¼ 13:714
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Squaring and square rooting

Squaring, or taking the square of a number, is the process of multiplying

a number by itself. The process is represented by the number with a super-

script showing the number two, for example the square of three, or three

squared would be written 32, which tells us to multiply three by three.

If the number you want to square is more than one, the result will be

larger than the number itself, for instance the square of three is nine.

However, if the number you want to square is less than one, the result will

be smaller than the number itself; for example the square of a half is

a quarter.

Squaring a positive number will always give you a positive result. But

because multiplying one negative number by another always gives you

a positive product, squaring a negative number will always give you a positive

result as well.

So : 32 ¼ 9 and ð�3Þ2 ¼ 9

The fact that we always get a positive result when we square a negative

number is worth remembering because it plays a vital role in several statis-

tical techniques that you will meet.

Example 1.11

A visitor to Britain sees a sign saying ‘City Centre 7 miles’. She asks you how far that is in

kilometres.

A kilometre is equivalent to 0.6214 of a mile, so to reply to her question you need to find

how many times 0.6214 will ‘go’ into 7, that is you must divide 7 by 0.6214:

Kilometres to the city centre ¼ 7=0:6214 ¼ 11:2649

Example 1.12

The floor covering of the dance space in a live music venue has to be replaced. If the

dance floor is 4.2 m long by 4.2 m wide, how much new floor covering will be needed?

To find an area multiply the length by the width. In this case because the area is

a square, that is, the length and width are the same, we need only take the square

of 4.2:

Floor area ¼ 4:22 ¼ 17:64 sq m
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Square rooting, or taking the square root of a number, is the process of

working out what number squared would produce a particular number. It is

represented by the radical or ‘tick’ sign, O, so the square root of 9 would be

shown as O9. The result of O9 is 3 because the number 3 multiplied by

itself gives you 9. You should bear in mind that the result of O9 could be –3, as

the square of –3 is also 9. You will find that in most business contexts the

positive root is the only viable one.

Fractions, proportions and percentages

Fractions, proportions and percentages sound very different, but they are

really only different ways of doing the same thing: expressing a part of

something in relation to the whole. If, for example, printing costs amount to

£0.70 out of the total cost of a £3.50 leisure magazine, this could be

explained as either:

printing costs constitute one-fifth of the total cost

or printing costs constitute 0.2 of the total cost

or printing costs constitute 20% of the total cost.

One-fifth is the fraction, 0.2 is the proportion, and 20% is the

percentage. They are different ways of saying the same thing because there

are five fifths in one, five lots of 0.2 in one, and five lots of 20% in 100%.

You should bear in mind that each of them is a number less than one,

including the percentage, which doesn’t look as if it is less than one.

It is easier to use percentages if you understand that the literal meaning of

‘percent’ is per hundred. (The word ‘cent’ originally meant one hundred;

a Roman centurion was an officer in the Roman army in charge of one

hundred men.) This will help especially when you have to perform arith-

metical operations using percentages.

Example 1.13

A new ornamental garden featuring a square lawn area is to be laid out at a UK conference

centre. If there are 170 sq m of turf available, what will the dimensions of the lawn be?

You can find the answer by taking the square root of 170:

Lawn length=width ¼
ffiffiffiffiffiffiffiffi
170
p

¼ 13:0384

The lawn would be approximately 13 m long by 13 m wide.
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A note about precedence

Often you will find that the arithmetical operations we have looked at so far

are combined. An expression may, for instance, involve addition, multipli-

cation and squaring. If this is the case it is important that you conduct the

operations in a specific order, with some operations preceding others. This

order of precedence can be summarized as:

- First carry out any operations in brackets.

- Then do any squaring and square rooting.

- Then division and multiplication.

- Finally, addition and subtraction.

In your previous studies you may have met this sequence summarised

as ‘BODMAS’, which stands for Brackets, powers Of (which includes

squaring and square rooting), Division, Multiplication, Addition, and

Subtraction.

Example 1.14

The proprietor of a souvenir shop located in the old part of a famous European city makes

a deal with a tour guide. In return for the tour guide escorting parties of tourists to the shop

the proprietor will give the tour guide 40% of the profit the shop makes from the money the

tourists spend. If the profit margin on the souvenirs is 60% and the first group of tourists

spends V735, how much money will the tour guide get?

The shop receives a profit of 60% of V735, and should receive 40% of the 60% of V735,

so

Guide0s share ¼ 40=100 � 60=100 � V735 ¼ V176:40

Note that the percentages appear in the expression as amounts per hundred. They could

equally well have been shown as proportions:

Guide0s share ¼ 0:40 � 0:60 � V735 ¼ £176:40

Example 1.15

A contractor wants to put in an estimate for laying a lawn area 13 m by 13 m at the

conference centre in Example 1.13. The cost of turf is £4.20 per sq m. He estimates

the job will take 2 days. Labour costs will be £100 per day and equipment hire will cost

£60 per day. He adds a margin of 15% to the total cost to cover overheads and profit. Work

out his estimate.
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Rounding and Approximation

You may find it easy to manipulate figures in your head, or you may find such

a skill impossible and marvel at those who possess it. The truth is that

anyone can learn how to carry out mental arithmetic, the tricks are to round

the numbers involved so that they are easier to deal with, and to use

approximation to get a ballpark result which can be refined with a little more

effort.

People who find it easy to work out numerical problems in their head

often use rounding and approximation intuitively, that is without thinking

about it. In fact you may already round certain numbers as a matter of

course. If someone asks how old you are, you would say ‘18’ or ‘21’ as

appropriate, you wouldn’t say ‘18 years, 3 months and 10 days’ or ‘21.63

years’. Automatically you round down to the nearest completed year of

your age. If you want to check how much money you have you probably

look at the notes and large denomination coins in your purse or wallet and

make an approximation. Only if you are particularly concerned about how

much there is, or have time on your hands, are you likely to count every

penny.

Rounding and approximation are therefore not entirely new concepts to

you. If you can apply them systematically in your numerical work you will

develop a skill which will give you a better ‘feel’ for numbers, enable you to

spot mistakes and think numerically ‘on your feet’.

The total cost is 132 � 4:20þ 2 � 100þ 2 � 60

Applying the margin 1:15 � ð132 � 4:20þ 2 � 100þ 2 � 60Þ

Start inside the brackets, squaring:

Estimate ¼ 1:15 � ð169 � 4:20þ 2 � 100þ 2 � 60Þ

Then multiply:

Estimate ¼ 1:15 � ð709:80þ 200þ 120Þ

Then add:

Estimate ¼ 1:15 � ð1029:80Þ

Finally the multiplication outside the brackets:

Estimate ¼ £1184:27:
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Significant figures and decimal places

Generally rounding is used to produce informative figures when complete

accuracy is unnecessary. The convention is that figures below five are

rounded down and figures of five and over are rounded up. The extent of

rounding is described as the number of significant figures.

Example 1.16

You walk into a fast food restaurant, which is so empty that there is a member of staff

waiting to take your order. You know what you want but you don’t know how much it will

cost. As you give your order your eyes take in the prices of the items you want: one burger

£3.49, another burger £3.69, one portion of fries £1.89, one cold drink £1.79, one hot

drink £1.59. You want to work out roughly how much it will be so you can decide whether

to count up your change or get out a note.

If you want a really quick answer, round up each item to the nearest pound:

Approximate total cost ¼ £4þ £4þ £2þ £2þ £2 ¼ £14

Because we have rounded every figure up, this result will be an overestimate, so we can

be certain that the total cost will be no more than this, but it is a rather crude estimate.

You could get a more accurate approximation if you rounded each figure to the nearest ten

pence:

Approximate total cost ¼ £3:50þ £3:70þ £1:90þ £1:80þ £1:60 ¼ £12:50

Each of the five figures used here is rounded up by one penny, so you can get the exact

total by taking five pence away from £12.50, which comes to £12.45.

Example 1.17

367, 527 people visit an exhibition. Round this figure so that it is expressed to:

(a) five significant figures;

(b) four significant figures; and

(c) three significant figures.

(a) 367, 530 the 7 is rounded up, so 27 becomes 30;

(b) 367, 500 the 3 is rounded down, so 530 becomes 500; and

(c) 368, 000 the 5 is rounded up, so 7500 becomes 8000.
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If rounding is applied to numbers with figures after the decimal point, the

degree of rounding is described as the number of decimal places.

Note that in Example 1.18 zeros have not been written to the right of the

last specific or significant figure, whereas zeros were included in the answers

to Example 1.17. The reason is that in Example 1.17 the zeros preserve the

magnitude of the figures.

1.4 TECHNOLOGICAL SUPPORT

Although the subject of Statistics is about numbers, the amount of time you

will spend actually performing calculations during your study of the subject

can be minimized by using readily available technology, specifically a suitable

calculator and appropriate computer software.

If you do not already have a calculator you really need to get one. It is an

essential tool for the numerical aspects of your course, and probably some of

the not so numerical parts of it as well. For statistical work the calculator

you have must have a square root function, and it really is worth spending

a little more money to get one with statistical functions. Sometimes such

calculators are described as having a ‘statistical mode’ or a ‘SD’ (Standard

Deviation) mode. Whatever it is called by the manufacturer, if you have

a calculator that can perform statistical operations it will assist you

immensely.

When you have your calculator the first thing that you should do is to

make sure you don’t lose the instructions. Your calculator is

Example 1.18

Zubirot cereal contains 1.6358 g of fat per 100 g. Express this figure to:

(a) three decimal places;

(b) two decimal places; and

(c) one decimal place.

(a) 1.636 grams;

(b) 1.64 grams; and

(c) 1.6 grams.
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a sophisticated scientific instrument that can do much more for you than

you might imagine, but you can only find out how if you have the

instructions. As a safeguard it is a good idea to keep a photocopy of them

in a safe place.

You will most likely have access to a computer, perhaps at home but

almost certainly at your place of study. Because today computers are used

so widely to send messages and to access Internet facilities, it is easy to

forget that computers were originally developed as machines to process

data.

The computers we have today still possess that capability. With the right

software the machine you use should become an invaluable aid to you in

carrying out statistical work. It will do most of the laborious calculations for

you, leaving you free to concentrate on learning how to understand and

interpret the results.

This reflects how you are likely to be involved in using Statistics later in

your career; it is your perception and interpretation of results that will be

important, rather than whether you can compete with a computer to do

the calculations. Of course, it is important to be able to understand how

the computer has arrived at the results, but let the machine do the hard work

for you.

So, what is the right software? There are two types of software that can

help you with statistical tasks: spreadsheet and statistical packages.

Spreadsheet packages such as Excel are intended primarily for accounting

work and offer a more limited range of statistical functions, but nonetheless

can perform the majority of methods you will probably need to use. Excel is

more widely available which is why instructions for using it are featured

throughout this book.

Statistical packages such as Minitab and SPSS offer a full range of

statistical functions and can carry out just about all the techniques you

are likely to meet during your studies. Guidance on using both Minitab

and SPSS is available on the book’s companion website, www.

elsevierdirect.com/9781856179478

Although these two types of package offer different ranges of functions

and different styles of output, they are similar in many respects. The data

storage layouts in statistical packages look like spreadsheets; numbers are

usually stored in the rows and columns of a ‘spreadsheet’ in Excel, a ‘work-

sheet’ in Minitab, and the ‘Data View’ in SPSS. The key difference is that

operations in Excel are based on cells whereas in statistical packages they are

based on columns.
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To sum the set of data in

Example 1.16

(3.49, 3.69, 1.89, 1.79, 1.59):

Enter the first value, 3.49 in cell A1

then press Enter.

Excel Recipe Card – Data entry

and summation

Enter the next value, 3.69 in cell A2,

press Enter, and so on until all the

values are stored in Cells A1 to A5

and the cursor is resting in cell A6.

Click on the Autosum button

(labelled Σ) located among the 

toolbars at the top of the screen.

The message ‘=SUM(A1:A5)’ will

appear in cell A6 and in the

Formula Bar, which is to the right of

the  symbol in the row above

the column headings.

Press the Enter key to get the sum

of the figures, 12.45 in cell A6.
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If you have time, learn to use a statistical package as well as the statistical

functions of Excel. In the course of your career the software you use will

evolve and you will need to adapt to it, so why not get used to learning how to

use a variety of software while you are studying?

If you have to choose between a spreadsheet and a statistical package, it

may help to consider some of the pros and cons of each.

The advantages of a spreadsheet are:

- They are straightforward to use.

- Basic calculations and diagrams can be produced quickly and easily.

- They are useful for other work such as accounting and human

resource planning.

The disadvantages of a spreadsheet are:

- They can perform a more limited range of statistical tasks.

- The control you have over the composition of some output,

particularly diagrams, tends to be limited and tricky to manage.

The advantages of a statistical package are:

- They offer a comprehensive range of statistical operations.

- The methods they use and the output they produce are statistically

meticulous.

The disadvantages of a statistical package are:

- They can be more difficult to learn to use.

- Transferring output into other software may not be straightforward.

Because computer software is continually being upgraded and improved,

the disadvantages are being reduced and the advantages extended, so check

the latest available versions before making your decision.

Whatever package you use for your statistical work, don’t expect to know

how to use all its functions straight away. It is worth investing some time in

learning how to get the best out of the software you use.

Any package should have a help facility; use it to search for advice. It is

a complete online user manual available at your fingertips! You will find

that what you regard as awesome when you begin will very soon become

familiar.
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Test yourself questions based on Warwick’s business enterprises

Fully worked solutions to these questions are on page 323. You can find more questions

on the topics covered in this chapter at the accompanying website www.elsevierdirect.

com/9781856179478.

1.1 (Easy)

A bill presented to a customer in Warwick’s restaurant shows the following items:

Wine £8.95;

Starters £4.65;

Main Course £9.50;

Desserts £7.20; and

Liqueurs £6.35.

If the variable X is defined as the cost per bill item,

(a) Calculate
Pn

i¼1
xi, the total amount taken of the bill.

(b) Calculate
P4

i¼2
xi, and explain what the answer means.

1.2 (Moderate)

Ray Vonman, a barman at Warwick’s club wants to make 5 litres of punch for

a private function. The recipe he intends to use requires three parts vodka to one

part vermouth to one part lime cordial to three parts orange juice to two parts

lemonade. He already has; a half-full 75 cl bottle of vodka, a full 75 cl bottle of

vermouth, a three-quarters full litre bottle of lime cordial, two unopened one-litre

cartons of orange juice, and a half-full one-litre bottle of lemonade. What, if any,

further supplies will he need to obtain?

1.3 (Hard)

A plumber charges a fixed £50 call-out fee for any job. In addition to this, materials

are supplied to the customer at the cost to the plumber plus 40% and labour is

charged at £30 per hour. During the refitting of Warwick’s hotel a pipe bursts. What

is the total cost of the repair job if it takes three hours, requires materials that cost

the plumber £15 and is subject to value-added tax at 17.5%?
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CHAPTER 2

Presenting Data

Why do I need to know about this? Warwick the Hospitality
entrepreneur says.

‘You have probably heard the saying ‘a picture is worth a thousand
words’. This is so true when it comes to understanding and

communicating sets of data. I was always more comfortable using
charts and graphs in my work. You simply can’t grasp the meaning of
a large set of figures, but when they are put in the form of diagrams
they ‘talk’ to you. Whenever I had to look at how well my businesses
were performing I always preferred to use diagrams to get the whole

story. They showed me not only the general picture but any
anomalies that I needed to look into.’

Chapter Objectives

This chapter will help you to:

- recognize different types of data;

- produce a variety of statistical diagrams;

- interpret basic statistical diagrams;

- know which diagrams are suitable for which types of data.

CONTENTS
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Displaying
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23



2.1 INTRODUCTION

This chapter is about using diagrams and charts to present or display data.

The pictorial techniques you will meet are widely used in business docu-

ments and being able to understand what they mean is an important skill.

When you apply these techniques you will be presenting data in visual

forms that will reveal patterns and sequences. You will be taking the first

steps in transforming data (sometimes people talk of data as ‘meaningless’)

into information, which is something that informs. You will be bringing

meaning to the apparently meaningless.

There are many different diagrams and charts that can be used to do this,

so it is important to know when to use them. Deciding which type of diagram

to use from such a wide selection is not always straightforward, but picking

the right one depends on the type of data you have. In the same way that

a fork is an invaluable tool if you are eating spaghetti, but completely useless

for consuming soup; a particular statistical diagram may be appropriate for

some types of data and entirely inappropriate for others.

2.2 TYPES OF DATA

The word data means a set of known facts. There are different types of data

because there are different ways in which facts are gathered. Some data arise

because specific things have characteristics that been categorized, whereas

other data arise as a result of things being counted, or measured on some sort

of scale.

The first important distinction to make is between qualitative data and

quantitative data. Qualitative data consist of categories or types of a char-

acteristic or attribute. These categories form the basis of the analysis of

qualitative data. In Example 2.1 the socio-economic definitions, social class

A, B, C1 and so on, would be qualitative data, whereas the numbers of

houses or amount of income would be quantitative data. Quantitative data

Example 2.1

Holders of a certain type of credit card are described as ‘wealthy’.

To verify this we could use socio-economic definitions of class to categorize each card-

holder, or we could count the number of homes owned by each cardholder or we could

measure the income of each cardholder.
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are based on counting or measuring. The numerical scale used to produce

the figures forms the basis of the analysis of quantitative data.

The second important distinction to make is between the two different

types of quantitative data: discrete and continuous. Discrete data are quan-

titative data that can take only a limited number of values because they are

produced by counting in distinct or ‘discrete’ steps, or measuring against

a scale made up of distinct steps.

There are three types of discrete data that you will meet as follows:

(1) Data that can only take certain values because other values simply

cannot occur, for example the number of t-shirts sold by a clothing

retailer in a day. There could be 12 sold one day and 7 on another, but

selling 9.3 t-shirts in a day is not possible because there is no such

thing as 0.3 of a t-shirt.

(2) Data that take only certain values because those are the ones that

have been established by long-standing custom and practice, for

example pubs in the UK sell draught beer in whole and half pints. You

could try asking for three-quarters of a pint, but the bar staff would no

doubt insist that you purchase the smaller or larger quantity.

(3) Data that only take certain values because the people who have

provided the data or the analysis have decided, for convenience, to

round values that don’t have to be discrete. This is what you are

doing when you give your age to the last full year. Similarly, the

temperatures given in weather reports are rounded to the nearest

degree, and the distances on road signs are usually rounded to the

nearest mile or kilometre. Such data are discrete by convention

rather than by definition. They are really continuous data.

Discrete data often but not always consist of whole number values. The

number of visitors to a website will always be a whole number, but UK shoe

sizes include half sizes. In other cases, like the UK sizes of women’s clothing,

only some whole numbers occur.

The important thing to remember about discrete data is that there are

gaps between the values that can occur, which is why they are sometimes

referred to as discontinuous data. In contrast, continuous data consist of

numerical values that are not restricted to specific numbers. Such data are

called continuous because there are no gaps between feasible values. This is

because measuring on a continuous scale such as distance or temperature

yields continuous data.

The precision of continuous data is limited only by how exactly the

quantities are measured. For instance, we measure both the length of bus
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journeys and athletic performances using the scale of time. In the first case

a clock or a wristwatch is sufficiently accurate, but in the second case we

would use a stopwatch or an even more sophisticated timing device.

Further on you will find the terms discrete variable and continuous

variable. A discrete variable has discrete values whereas a continuous

variable has continuous values.

In most of your early statistical work you will probably be analysing data

that consist of observed values of a single variable. However, you may need to

analyse data that consist of observed values of two variables in order to find

out if there is a connection between them. For instance, we might want to

ascertain whether taxi fares are related to distance travelled.

In dealing with a single variable we apply univariate analysis, whereas in

dealing with two variables we apply bivariate analysis. The prefixes uni- and

bi- in these words convey the same meaning, as they do in other words like

unilateral and bilateral.

2.3 DISPLAYING QUALITATIVE DATA

Arranging and displaying qualitative data is quite straightforward as long as

the number of categories of the characteristic being studied is relatively

small. Even if there are a large number of categories, the task can be made

easier by merging categories.

The easiest way you can present a set of qualitative data is to tabulate it,

to arrange it in the form of a summary table. As well as being a useful way of

Example 2.2

A motor magazine provides descriptions of cars that contain the following data:

Type of car – hatchback/estate/MPV/off-road performance;

Number of doors;

Fuel type – petrol/diesel;

CO2 emission rate in grams per kilometre.

Which data will be qualitative and which will be quantitative?

The type of car and fuel type are qualitative; the number of doors and the CO2 emission

rate are quantitative.

Which quantitative data will be discrete and which will be continuous?

The numbers of doors are discrete; the CO2 emission rates are continuous.
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displaying qualitative data, compiling such a table is an essential preliminary

task if you want to draw a diagram to portray the data.

A summary table consists of two parts: a list of categories of the char-

acteristic; and the number of things that fall into each category, known as the

frequency of the category.

In Example 2.3 the outlet types are qualitative data. The ‘Other’ category,

which might contain several different types of outlet, such as hypermarkets

and market stalls, has been created in order to keep the summary table to

manageable proportions.

Notice that for each category, the number of outlets as a percentage of

the total, the relative frequency of the category, is listed on the right-hand

side. This is to make it easier to communicate the contents; saying 38.5%

of the outlets were shoe shops is more effective than saying 15/39ths of

them were shoe shops, although they are two different ways of saying the

same thing.

You may want to use a summary table to present more than one

attribute. Such a two-way tabulation is also known as a contingency table

because it enables us to look for connections between the attributes, in

other words to find out whether one attribute is associated with or

contingent upon another.

Example 2.3

Suppose we want to find out how many retail outlets in a city sell trainers.

We might survey the streets or surf the web in order to compile a list of outlets, but the list

itself may be too crude a form in which to present our results.

By listing the types of outlet and the number of each type of outlet we find we can

construct a summary table:

The Number of Outlets Selling Trainers by Type of Outlet

Type of Outlet Frequency Relative Frequency (%)

Shoe shops 15 38.5

Sports shops 8 20.5

Department stores 6 15.4

Other 10 25.6

Total number of outlets 39 100.0
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Summary tables are perfectly adequate means of presenting qualitative

data but it is possible to show this type of data in a more dramatic, visual way

using a diagram.

A diagram is usually a much more effective way of communicating

data because it is easier for the eye to digest than a table. This will be

important when you have to include data in a report or presentation

because you want your audience to focus their attention on what you

are saying. They can do that more easily if they don’t have to work

too hard to understand the form in which you have presented your

data.

There are three types of diagram that you can use to show qualitative

data: pictographs, pie charts and bar charts. They are listed here in order

of increasing sophistication.

2.3.1 Pictographs

A pictograph is no more than a simple adjustment of a summary table. The

categories of the attribute are listed as they are in a summary table, but we

use symbols to represent the number of things in each category. The symbols

used are thematically linked to the nature of the data.

Example 2.4

Four large retailers each operate their own loyalty scheme. Customers can apply for

loyalty cards and receive points when they present them whilst making purchases.

These points are accumulated and can subsequently be used to obtain gifts or

discounts.

A survey of usage levels of loyalty cards provided the information in the following table:

Number of Transactions by Loyalty Card Use

Transactions

Retailer With Card Without Card Total

Alimental 236 705 941

Brogues 294 439 733

Comestible 145 759 904

Dinewell 191 436 627

Total 866 2339 3205

CHAPTER 2 : Presenting Data28



A pictograph like Figure 2.1 can be an effective way of presenting a simple

set of qualitative data. The symbols are a straightforward way of representing

the number of things in each category and have the extra advantage of

emphasizing the context of the data.

Unfortunately pictographs have several drawbacks that are likely to deter

you from using them. Unless you are artistically gifted and can create

appropriate images by hand, you will probably have to rely on computer

software to produce them for you. Creating a pictograph by computer can be

a laborious process. Spreadsheet and statistical packages cannot produce

a pictograph for you directly from data, so symbols have to be grafted

alongside text in a word-processing package.

You need to choose the symbol you use carefully. It should be easy to

associate with the context of the data and not so elaborate that the symbols

Example 2.5

The table below shows the number of flights to different categories of destination

departing from an airport in a six-hour period.

Number of Departures by Type of Destination

Type of Destination Departures

Domestic 2

Short-haul 3

Long-haul 1

Show this set of data in the form of a pictograph.

Type of Destination Departures 

Domestic 

Short-haul

Long-haul

Each aircraft symbol represents one flight.

FIGURE 2.1 Pictograph of the number of departures by type of destination
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themselves become the centre of attention rather than the data they are

supposed to represent.

You may occasionally spot a pictograph used in academic and business

documents; you are more likely to see them used on television and in

newspapers. Sadly, the computer graphics software at the disposal of

reporters and editors is much more sophisticated than any that you are likely

to have access to during your studies!

2.3.2 Pie charts

The second way of displaying qualitative data is much more commonly used

than the pictograph, the pie chart.

A pie chart, like a pictograph is designed to show how many things belong

to each category of an attribute. It does this by representing the entire set of

data as a circle or ‘pie’ and dividing the circle into segments or ‘slices’. Each

segment represents a category, and the size of the segment reflects the

number of things in the category. An example of a pie chart is shown in

Figure 2.2.

Example 2.6

Present the data from Example 2.3 in the form of a pie chart.

Shoe shops 
Sports shops 
Department stores 
Other 

FIGURE 2.2 Number of outlets selling trainers by type of outlet
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Enter the categories and

frequencies data from Example 2.3

in the spreadsheet.

Excel Recipe Card – Pie charts

Click and drag the cursor over the

frequencies data.

Select Chart from the Insert menu. 

In the Chart Wizard choose Pie as

the Chart type: and take the default

sub-type.

Displaying Qualitative Data 31



Excel offers a choice of pie chart variations, three-dimensional effects and

exploded slices to emphasize a particular segment. You can use these options,

but don’t overdo it. Remember that the pattern of the data is what you want

to convey not your ability to use every possible gimmick the software offers.

Pie charts are so widely used and understood that it is very tempting

to regard them as an almost universal means of displaying qualitative data.

In many cases they are appropriate and effective, but in some situations they

are not.

Because a pie chart shows how different components make up a whole,

using one when we cannot or do not want to show the whole is inappropriate.

In Example 2.6 it may be tempting to present the chart without the ‘Other’

category, but if we left it out we would not be presenting the whole.

One reason that people find pie charts easy to grasp is that the analogy of

cutting up a pie is quite an obvious one. As long as the pie chart looks like

a pie it works. However, if we construct a pie chart that has too many

categories it can look more like a bicycle wheel than a pie, and confuses

rather than clarifies the situation. If you have a lot of categories to present,

say more than 10, either merge some of the categories in order to reduce the

Click Next > to view the diagram in

the command window. 

Click Finish and it will appear in the

spreadsheet. 
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number of segments in the pie chart or consider another way of presenting

your data.

2.3.3 Bar charts

A third way of presenting qualitative data is to display it in the form of a bar

chart. Like pie charts, bar charts are widely used, straightforward to interpret

and can be constructed using a spreadsheet or statistical package. However,

because there are several different varieties of bar charts, they are more

flexible tools. By using a bar chart we can portray a two- (or even three-) way

tabulation in a single diagram.

The basic function of a bar chart is the same as the function of a pie chart,

and for that matter a pictograph: to show the number or frequency of things

in each of a succession of categories of an attribute. It does this by repre-

senting the frequencies as a series of bars. The height of each bar is in direct

proportion to the frequency of the category; the taller the bar that represents

a category, the more things there are in that category.

The type of bar chart shown in Figure 2.3 is called a simple bar chart

because it represents only one attribute. If we had two attributes to display we

might use a more sophisticated type of bar chart such as a stacked bar chart.

Example 2.7

Produce a bar chart to show the data from Example 2.3.
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FIGURE 2.3 Number of outlets selling trainers by type of outlet
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Store the categories and frequencies

from Example 2.3 in two columns of

the spreadsheet. 

Excel Recipe Card – Bar charts 

Click and drag the cursor over the

data in both these columns.

Select Chart from the Insert menu.

In the Chart Wizard window, choose

Column as the Chart type: and take

the default sub-type.

CHAPTER 2 : Presenting Data34



Click Next > to view the graph in

the command window then Finish

to put it in the spreadsheet.

Example 2.8

Produce a stacked bar chart to portray the data from Example 2.4.
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FIGURE 2.4 Number of transactions by loyalty card use
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Enter the data from Example 2.4.

Put the retailers in one column, the

transactions with cards in a second

and those without cards in a third.

Excel Recipe Card – Stacked bar

charts

Click and drag the cursor over the

data in these columns.

Select Chart from the Insert menu. 

Select Column from Chart Wizard

and the Stacked Column chart

subtype.Click Next > to view the

graph in the command window.
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To the right of the diagram in the

Chart Wizard window the categories

are ‘Series 2’ and ‘Series 1’. 

Change these to ‘With card’ and

‘Without card’. Click on the Series

tab and type ‘With card’ in the

‘Name:’ space to the right of

‘Series 1’.  

Click Series 2 under Series and

name ‘Series 2’ ‘Without card’. 
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The type of bar chart depicted in Figure 2.4 is known as a stacked bar

chart as it is based on stacking the components of each bar on top of one

another. It is also known as a component bar chart because it shows how

each bar is made up of its component parts.

A stacked bar chart is particularly useful if you want to emphasize the

relative proportions of each category, in other words to show the balance within

the categories of one attribute (in the case of Example 2.8, the retailer) between

the categories of another attribute (card usage). If you want to emphasize the

absolute differences between the categories of one attribute within the cate-

gories of another you may prefer to use an alternative form of bar chart that is

designed to portray a two-way tabulation, the clustered bar chart.

Click Finish to put the diagram in

the spreadsheet. 

Example 2.9

Produce a clustered bar chart to show the data from Example 2.4.
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FIGURE 2.5 Number of transactions by loyalty card use
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Enter the data from Example 2.4.

Put the retailers in one column, the

transactions with cards in a second

and those without cards in a third. 

Excel Recipe Card – Clustered

bar charts

Click and drag the cursor over the

data in these columns.

Select Chart from the Insert menu.

Select Column from Chart Wizard

and the Clustered Column chart

subtype. Click Next > to view the

graph in the command window.
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Click the Series tab at the top of 

the chart window. 

Name ‘Series 1’ ‘With cards’ 

and ‘Series 2’ ‘Without cards’.  

Click Finish and the chart will 

appear in the spreadsheet. 
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The type of bar chart shown in Figure 2.5 is called a clustered bar chart

because it uses a group or cluster of bars to show the composition of each

category of one characteristic by categories of a second characteristic. For

instance, in Figure 2.5 the bars for Alimental show how transactions in

Alimental are composed of purchases made with and purchases made

without loyalty cards.

2.4 DISPLAYING QUANTITATIVE DATA

Quantitative data differ from qualitative data so the methods used to present

quantitative data are rather different. However, the most appropriate ways of

presenting some types of quantitative data are the same ones used to present

qualitative data.

This applies to the analysis of a discrete quantitative variable that has

a very few feasible values. You simply treat the values as you would the

categories of a characteristic. As a first step, tabulate the data to show how

often each value occurs. When quantitative data are tabulated the resulting

table is called a frequency distribution because it demonstrates how

frequently each value in the distribution occurs. Once you have compiled

the frequency distribution you can use it to construct a bar chart or pie

chart.
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2.4.1 Grouped frequency distributions

We can present the data in Example 2.10 in the form of a bar chart or a pie

chart purely because there are only a very limited number of values so that

a bar can represent each value. Unfortunately this is not always the case,

even with discrete quantitative data.

For instance, if Example 2.10 included properties from small studio flats to

huge mansions then the number of bedrooms might go from one to 20 or so. If

you try to use a simple bar chart to represent such a wide range, the bar chart

would contain far too many bars to be of much use in communicating the data.

Example 2.10

The ‘Accommodation to Let’ section of a property market website contains details of 20

houses available to rent. The numbers of bedrooms in these properties are:

2 3 5 2 4 2 4 4 4 3 2 5 3 2 3 4 4 3 2 4

These figures could be first tabulated and then presented in the form of the simple bar

chart in Figure 2.6.

Number of Bedrooms Number of Houses

2 6

3 5

4 7

5 2

0 
1 
2 
3 
4 
5 
6 
7 
8 

2 3 4 5 
Number of bedrooms 

N
u

m
b

e
r
 
o

f
 
h

o
u

s
e
s
 

FIGURE 2.6 Number of houses by number of bedrooms
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To get around this problem we can group the data into fewer categories or

classes by compiling a grouped frequency distribution, which shows the

frequency of observations in each class. Once the data are arranged in this

way we can use a relatively simple diagram to portray it.

In order to compile a grouped frequency distribution you will need to

exercise a little judgement because there are many sets of classes that could

be used for a specific set of data. To help you, there are three rules:

(1) Don’t use classes that overlap.

(2) Don’t leave gaps between classes.

(3) The first class must begin low enough to include the lowest

observation and the last class must finish high enough to include

the highest observation.

In Example 2.11 it would be wrong to use the classes 0–20, 20–40, 40–60

and so on because values on the very edge of the classes like 20 and 40, which

may very well occur, could be put into either one, or even both, of two classes.

Although there are numerical gaps between the classes that have been used

in Example 2.11, they are not real gaps because no feasible value could fall

into them. The first class finishes on 19 and the second begins on 20, but

since the number of messages sent is a discrete variable a value like 19.6,

Example 2.11

The numbers of e-mail messages sent by 22 office workers are:

50 14 25 8 10 33 52 12 45 15 7

5 98 13 31 52 6 75 17 22 12 64

Produce a grouped frequency distribution to present this set of data.

Number of Messages Sent Frequency

0–19 11

20–39 4

40–59 4

60–79 2

80–99 1
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which would fall into the gap, simply will not occur. Since there are no

observed values lower than zero or higher than 99, the third rule is satisfied.

We could sum up these rules by saying that anyone looking at a grouped

frequency distribution should be in no doubt where each feasible value

belongs. Every piece of data must have one and only one place for it to be. To

avoid any ambiguity whatsoever, you may like to use the phrase ‘and under’

between the beginning and end of each class. The classes in Example 2.11

could be rewritten as:

0 and under 20

20 and under 40, and so on

It is especially important to apply these rules when you are dealing with

continuous quantitative data. Unless you decide to use ‘and under’ or

a similar style of words such as ‘and up to’, it is vital that the beginning

and end of each class are specified to at least the same degree of precision as

the data.

When you construct a grouped frequency distribution you will also need

to decide how many classes to use and how wide they are. These are related

issues: the fewer the number of classes, the wider each one needs to be. It is

Example 2.12

Spot-checks of the amount of nail varnish in bottles labelled as containing 10 ml have

produced the following figures (in millilitres):

10.30 10.05 10.06 9.82 10.09 9.85 9.98 9.97 10.28 10.01 9.92 10.03

10.17 9.95 10.23 9.92 10.05 10.11 10.02 10.06 10.21 10.04 10.12 9.99

10.19 9.89 10.05 10.11 10.00 9.92

Arrange these figures in a grouped frequency distribution.

Nail Varnish (ml) Frequency

9.80–9.89 3

9.90–9.99 7

10.00–10.09 11

10.10–10.19 5

10.20–10.29 3

10.30–10.39 1
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a question of balance. You should avoid having a very few very wide classes

because they will only convey a crude impression of the distribution. On the

other hand, if you have very many narrow classes you will be conveying too

much detail. So, what is too few and what is too many? As a starting point,

take the square root of the number of observations in the set of data. In

Example 2.12 there are 30 observations. The square root of 30 is 5.48, which

we round up to 6 or down to 5 because we can only have whole numbers of

classes.

Once you have some idea of the number of classes, the width of the

classes has to be decided. When you come to producing a diagram to

represent a grouped frequency distribution, it is very useful, although not

essential if all the classes have the same width.

The set of classes you use must cover all the observations from lowest to

highest, so to help you decide the width of classes, subtract the lowest

observation from the highest observation to give you the difference between

the two, known as the range of values. Divide this by the number of classes

you want to have and the result will be the minimum class width you must

use. In Example 2.11 the range is 93 (98 minus 5) which, when divided by 5

gives 18.6. So if we want a set of five classes of equal width to cover the range

from 5 to 98, each class must be at least 18.6 wide.

This number, 18.6, is not very ‘neat’, so to make the grouped frequency

distribution easier to digest we can round it up. The obvious number to take is

20 and 5 classes 20 units wide will cover the range. In fact because these classes

will combine to cover a range of 100 and the range of our data is only 93, we have

some flexibility when it comes to deciding where the first class should start.

The first class must begin at or below the lowest observation in the set, in

Example 2.11 this means it must start at 5 or below. Because 5 is a ‘neat’

round number it would make a perfectly acceptable start for our first class,

which would then be ‘5–24’, the second class would be ‘25–44’ and so on. But

what if the first observed value was 3 or 7? Starting a set of classes with such

a value would result in a grouped frequency distribution that would look

rather ungainly. If we start the classes at a round number lower than the

lowest value in the distribution, zero in Example 2.11, we can guarantee that

the resulting set of classes will have ‘neat’ beginnings and ends.

2.4.2 Histograms

The best-known way of displaying a grouped frequency distribution is the

histogram. This is a special type of bar chart where each bar or block repre-

sents the frequency of a class of values rather than the frequency of a single

value. Figure 2.7 is a histogram displaying the data from Example 2.11.
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Enter the data from Example 2.11

into one column and the set of ‘Bin

Ranges’, the highest values in each

of the classes in Example 2.11, in

the next. (‘Bin’ is synonymous with

class because putting observations

into classes is equivalent to sorting

objects into different bins.)

Excel Recipe Card – 

Histograms part 1: 

Frequency distributions

Select Data Analysis from the

Tools menu. (If you cannot find Data

Analysis click Add-Ins in the Tools

menu to check that it is available.)
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Click Histogram in the list of 

techniques in the command window 

then click OK. 

Specify the location of the data in 

Input Range. 

Specify the location of the Bin 

Ranges, which are the upper limits 

of the classes used in Example 2.11 

then click OK.  

The bins and their frequencies 

appear in a new Sheet. 
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Enter the classes in the third column,

highlight the Frequency figures then

open the Chart Wizard and take the

Clustered Column Chart type.

Excel Recipe Card – Histograms

part 2

Click Next and the initial version of

the graph appears. 
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FIGURE 2.7 Histogram of e-mail messages sent by 22 office workers
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Click the Series tab and put the

locations of the classes in the

Category (X) axis labels space.

Click Next.

In the next window type in titles for

the Category (X) axis and the

Value (Y) axis.

Click the Gridlines tab and untick

Major Gridlines under Value (Y)

axis.
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Click the Legend tab and untick

Show legend then click Finish.

To remove the gaps between the

blocks, right click on one of the

blocks and choose Format Data

Series from the menu that appears.

In the Format Data Series window

click the Options tab and reduce the

Gap width to 0. Click OK to put the

amended graph in the spreadsheet. 
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Producing an effective histogram is often a matter of trial and error. You

can use different bin ranges in Excel to experiment and find the balance

which best enables you to present the data.

A histogram is a visual tool that displays the pattern or distribution of

observed values of a variable. The larger the size of the block that represents

a class, the greater the number of values that has occurred in that class.

Because the connection between the size of each block, specifically its area

and the frequency of the class is the key feature of the diagram the scale along

the vertical or ‘Y’ axis must start at zero.

As long as the classes are of the same width it is simply the height of the

block that reflects the frequency of observed values in the class. If the classes

have different widths it is important to ensure that the areas of the blocks are

proportional to the frequencies of the classes.

Example 2.13

The ages of savers opening accounts at a bank are given in the grouped frequency

distribution below. Produce a histogram to depict this distribution.

Age Range Frequency

Under 15 0

15 to 24 5

25 to 44 22

45 to 64 19

Over 64 7

Here not only do the classes have different widths, but the first and last do not have

a numerical beginning and end, they are ‘open-ended’. Before we can plot a histogram we

must ‘close’ them. For the first class this is straightforward, we can express it as ‘0 to 14’.

The last class is problematic: if we knew the age of the oldest saver that could be the upper

limit of the class, but as we don’t we must select an arbitrary yet plausible class end. To

reflect the style of other classes we could use ‘65 to 84’.

To ensure that the areas of the histogram blocks are proportional to the class frequencies

when the class widths are unequal, we must plot frequency density along the vertical axis.

The frequency density of a class is its frequency divided by its width. The frequency of the

‘15 to 24’ class in Example 2.13 is 5 and the width is 10, so its frequency density is 5/10,

0.5. The frequency density of the ‘25 to 44’ class is 22/20, 1.1, and so on. In Figure 2.8 the

effect of this is to increase the height of the block representing the ‘15 to 24’ class, as it is

narrower. The class is half the width of the classes to its right, so the height of the block is

doubled.

Continued
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The pattern of the distribution shown in Figure 2.8 is broadly balanced or

symmetrical. There are two large blocks in the middle and smaller blocks to

the left and right of the ‘bulge’. From this we would conclude that the

majority of observed values occur towards the middle of the age range, with

only a few relatively young and old customers.

In contrast, if you look back at Figure 2.7, the histogram showing the

numbers of e-mail messages sent, you will see an asymmetrical or skewed

pattern. The block on the left-hand side is the largest and the size of the

blocks gets smaller to the right of it. It could be more accurately described as

right or positively skewed. From Figure 2.7 we would conclude that the

majority of office workers send a relatively small number of e-mail

messages and only a few office workers send a large number of e-mail

messages.

2.4.3 Cumulative frequency graphs

Another method of presenting data arranged in a grouped frequency distri-

bution is the cumulative frequency graph. This diagram portrays the way in

which the data accumulate through the distribution from the first to the last

class in the grouped frequency distribution. It uses the same horizontal axis
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FIGURE 2.8 Histogram of ages of savers opening accounts
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as you would employ to produce a histogram to present the same data, but

the vertical axis begins at zero and must go far enough to cover the total

frequency of the distribution.

To plot a cumulative frequency graph you must begin by finding the

cumulative frequency of each class in the grouped frequency distribution.

The cumulative frequency of a class is the frequency of the class itself added

to the cumulative or combined frequency of all the preceding classes. The

cumulative frequency of the first class is simply the frequency of the first

class because it has no preceding classes. The cumulative frequency of

the second class is the frequency of the second class added to the frequency of

the first class. The cumulative frequency of the third class is the frequency

of the third class added to the cumulative frequency of the second class,

and so on.

Notice that the cumulative frequency of the last class is 22, the total

frequency of values in the distribution. This should always be the case. Once

we have included the values in the final class in the cumulative total we

should have included every value.

The cumulative frequency figures represent the number of values that

have been accumulated by the end of a class. A cumulative frequency graph is

a series of single points that represent the cumulative frequency of each class

plotted above the end of the class. The final step is to connect the points with

straight lines.

Example 2.14

Find the cumulative frequencies of each class in the grouped frequency distribution in

Example 2.11.

Number of Messages Sent Frequency Cumulative Frequency

0–19 11 11

20–39 4 15

40–59 4 19

60–79 2 21

80–99 1 22

Displaying Quantitative Data 53



If you look carefully at Figure 2.9 you will see that the line begins at zero

on the horizontal axis, which is the beginning of the first class, and zero on

the vertical axis. This is a logical starting point. It signifies that no values

have been accumulated before the beginning of the first class.

The line in Figure 2.9 climbs steeply at the beginning then flattens off.

The steep climb represents the concentration of values in the first class,

which contains half of the values in the distribution. The flatter sections to

the right represent the very few values in the later classes.

Example 2.16

Plot a cumulative frequency graph for the data in Example 2.12.

Nail Varnish (ml) Frequency Cumulative Frequency

9.80–9.89 3 3

9.90–9.99 7 10

10.00–10.09 11 21

10.10–10.19 5 26

10.20–10.29 3 29

10.30–10.39 1 30

Example 2.15

Produce a cumulative frequency graph using the cumulative frequencies from Example

2.14.
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FIGURE 2.9 Cumulative frequency graph of e-mail messages sent by 22 office

workers
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The line in Figure 2.10 starts with a gentle slope then rises more steeply

before finishing with a gentle slope. This signifies that the first classes

contain few values, the middle classes contain many values and the final

classes contain few values. This is a symmetrical distribution, whereas the

distribution depicted in Figure 2.9 is a skewed distribution.

It may be more convenient to plot a cumulative relative frequency graph,

in which the points represent the proportions of the total number of values

that occur in and prior to each class. Figure 2.11 below, based on the data in

Example 2.17 illustrates this type of graph. It is particularly useful if the total

number of values in the distribution is an awkward number or if you want to

compare cumulative frequencies of two or more distributions.
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FIGURE 2.10 Cumulative frequency graph of contents of nail varnish bottles

Example 2.17

The payments made by 119 customers at a petrol station are summarized in the following

grouped frequency distribution. Plot a cumulative relative frequency graph.

Payment (£) Frequency Relative Frequency

Cumulative Relative

Frequency

0.00–19.99 15 15/119¼ 0.126 0.126

20.00–39.99 37 37/119¼ 0.311 0.437

40.00–59.99 41 41/119¼ 0.344 0.781

60.00–79.99 22 22/119¼ 0.185 0.966

80.00–99.99 4 4/119¼ 0.034 1.000

Continued
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You will find further discussion of cumulative frequency graphs in the

next chapter because they offer an easy way of finding the approximate values

of medians, quartiles and other order statistics.

2.4.4 Stem and leaf displays

Histograms are effective and widely used devices for presenting quantitative

data. Until relatively recently they could be described as unrivalled. However,

there is an alternative way of presenting quantitative data in visual form, the

stem and leaf display. This is one of a number of newer techniques known

collectively as Exploratory Data Analysis (EDA). If you want to know more

about the field of EDA the books by Tukey (1977) and Velleman and Hoaglin

(1981) provide a thorough introduction.

The role of a stem and leaf display is the same as the role of a histogram,

namely to show the pattern of a distribution. But unlike a histogram a stem

and leaf display is constructed using the data themselves as building blocks.

This means that as well as showing the pattern of a distribution it is also

a list of the observations that make up that distribution. It is a very useful

tool for making an initial investigation of a set of data as it portrays the shape

of the distribution, identifies unusual observations and enables you to assess

the suitability of different types of average.
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FIGURE 2.11 Cumulative relative frequency graph of cash payments at a petrol

station
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The basis of a stem and leaf display is the structure of numbers, the fact

that a number is made up of units, tens, hundreds and so on. For instance,

the number 45 is composed of two digits, the 4 tens and the 5 units. Using

the analogy of a plant, the stem of the number 45 is the number on the left-

hand side, 4 (the number of tens) and the leaf is the number on the right-

hand side, 5 (the number of units). A stem on a plant can have different

leaves; in the same way the numerical stem 4 can have different numerical

leaves. The number 48 has the same stem as the number 45, but a different

leaf, 8.

To produce a stem and leaf display for a set of data we have to list the set of

stem digits that appear in the data and then record each observation by

putting its leaf digit alongside its stem digit. Once we have done this for every

observed value in the set of data the result is a series of ‘stem lines’ each of

which consists of a stem digit and the leaf digits of all the observations

sharing that particular stem. The final stage in the process is to arrange the

leaf digits on each stem line in order of magnitude.

Example 2.18

The audience figures for the 26 programmes in a TV series (in millions) are:

4.0 3.8 4.2 2.9 2.5 3.5 2.6 3.6 5.0 3.5 4.9 2.9 3.3

4.8 1.0 3.2 5.1 2.4 3.7 4.2 3.5 3.8 3.6 2.3 3.9 2.1

Produce a stem and leaf display for this set of data.

Every number consists of two digits: millions and tenths of millions. The millions are the

stem digits and the tenths of millions are the leaf digits. The lowest value is 1.0 and the

highest is 5.1 so the first stem line will be for the stem digit 1, and the last one for the stem

digit 5. The first stem line will have one leaf digit, the 0 from 1.0. The second stem line, for

the stem digit 2, will have six leaf digits, the 9 from 2.9, the 5 from 2.5 and so on.

Stem Leaves

1 0

2 9 5 6 9 4 3 1

3 8 5 6 5 3 2 7 5 8 6 9

4 0 2 9 8 2

5 0 1

This is a stem and leaf display, but it is not yet finished. We need to rearrange the leaf digits

so that they are listed from the smallest to the largest.

Continued
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The message ‘leaf unit¼ 0.1 million’ that has been added to the final

version of the stem and leaf display in Example 2.18 has the same role as the

scale on the horizontal or ‘X’ axis of a histogram; it specifies the order of

magnitude of the data. Without the message you might look at the display,

see that the highest value in the distribution has the stem digit 5 and the leaf

digit 1, but the number could be 0.51, 5.1, 51, 510, 5100 or any other

number that consists of a 5 followed by a 1. It is only when you know that the

leaf digits are tenths of millions in this display that you can be sure the stem

digit 5 and the leaf digit 1 represent the number 5.1 million.

Although the stem and leaf display may look a little odd at first it is a tool

that is well worth learning to use because of two clear advantages that it

enjoys over a histogram: particular values can be highlighted and two

distributions can be shown in one display. A histogram can’t do the former

because it consists of blocks rather than data. It is possible to plot a histo-

gram showing two distributions but the result is cumbersome and you would

do better to plot two separate histograms.

Stem Leaves

1 0

2 1 3 4 5 6 9 9

3 2 3 4 5 5 6 6 7 8 8 9

4 0 2 2 8 9

5 0 1

Leaf unit¼ 0.1 million

Example 2.19

The scheduled time of transmission of five of the programmes whose audiences are listed

in Example 2.18 was changed at short notice. The sizes of the audiences for these five

programmes are shown in bold type.

4.0 3.8 4.2 2.9 2.5 3.5 2.6 3.6 5.0 3.5 4.9 2.9 3.3

4.8 1.0 3.2 5.1 2.4 3.7 4.2 3.5 3.8 3.6 2.3 3.9 2.1

The same means of distinguishing the audiences of the programmes that were

rescheduled can be incorporated into the stem and leaf display by putting the leaf digits

representing the audiences of those programmes in bold type.
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You can see from the display in Example 2.19 that the rescheduled

programmes tended to attract lower audiences.

To show two distributions in one stem and leaf display you simply list the

leaf digits for one distribution to the left of the list of stem digits and the leaf

digits for the other distribution to the right of the stem digits.

By looking at the display in Example 2.20 you can see that the

programmes in the second series appear to be attracting higher audiences

than the programmes in the first series.

You can modify stem and leaf displays to reduce long rows of leaf digits by

stretching the stems. It is like using smaller classes in a grouped frequency

distribution.

Stem Leaves

1 0

2 1 3 4 5 6 9 9

3 2 3 4 5 5 6 6 7 8 8 9

4 0 2 2 8 9

5 0 1

Leaf unit¼ 0.1 million

Example 2.20

The audiences (in millions) for the 26 programmes in the second series of the TV show in

Example 2.18 are:

3.6 4.4 2.8 4.5 3.5 3.7 5.7 3.8 4.4 5.8 3.4 2.8 3.6

4.1 3.8 2.9 5.7 2.5 3.6 5.1 5.5 3.6 5.2 3.3 4.2 3.8

Produce a stem and leaf display to show this set of data and the data in Example 2.18.

First Series Stem Second Series

0 1

9 9 6 5 4 3 1 2 5 8 8 9

9 8 8 7 6 6 5 5 4 3 2 3 3 4 5 6 6 6 6 7 8 8 8

9 8 2 2 0 4 1 2 4 4 5

1 0 5 1 2 5 7 7 8

Leaf unit¼ 0.1 million
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In Example 2.21 the stem and leaf display contains two stem lines for

each stem digit, except 2. The first stem line for a stem digit contains leaf

units 0 to 4 inclusive. The second stem line contains leaf units 5 to 9

inclusive. There is only one stem line for stem digit 2 because the stem digit 2

has no leaf digits less than 5.

The data we have used so far to construct stem and leaf displays have

consisted of two-digit numbers, which makes it fairly easy, the left-hand digit is

the stem and the right-hand digit is the leaf. But what if we are dealing with

more complex figures? In the same way as we can experiment with different

classes to produce a suitable histogram, we can try rounding, dividing stem

lines, having longer stems or longer leaves to produce a suitable stem and leaf

display. Just as we can have too many or too few classes in a histogram, we can

have too many or too few stem lines in a stem and leaf display. We need to

construct thedisplay so that it is an effectivewayof presenting the data we have.

Example 2.21

Produce a stem and leaf display for the audience figures for the second TV series in

Example 2.20.

Stem Leaves

2 5 8 8 9

3 3 4

3 5 6 6 6 6 7 8 8 8

4 1 2 4 4

4 5

5 1 2

5 5 7 7 8

Leaf unit¼ 0.1 million

Example 2.22

The prices in pounds of 16 different mountain bikes are:

448 423 284 377 502 459 278 268

374 344 256 228 380 286 219 352

Produce a stem and leaf display to show this set of data.

There are a number of ways to approach this task. You could try longer, two-digit

stems and one-digit leaves, so 448 will have a stem of 44 and a leaf of 8. This implies

Continued
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You can see by looking at the stem and leaf display in Example 2.22 that

there are many cheaper but few expensive bikes. This is another example of

a positively skewed distribution.

Although a stem and leaf display is essentially an alternative to a histo-

gram, it can be used instead of a grouped frequency distribution as a way of

sorting the data before plotting a histogram such as Figure 2.12.

that your list of stem lines will begin with 21 (the stem of 219, the lowest value) and end

with 50 (the stem of 502, the highest value). You would end up with a very long list of stem

lines (30) with only 16 leaf digits scattered among them.

Alternatively you might try one-digit stems and longer, two-digit leaves, so 448 will have

a stem of 4 and a leaf of 48. This is much more promising.

Stem Leaves

2 19 28 56 68 78 84 86

3 44 52 74 77 80

4 23 48 59

5 02

Leaf unit¼ £1.0

Example 2.23

Produce a histogram to portray the data in Example 2.22.

To do this we can use each stem line in the stem and leaf display as a class, which will be

represented as a block in the histogram. The first stem line could be expressed as the

class 200–299 and so on.
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FIGURE 2.12 Histogram of prices of mountain bikes
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2.4.5 Presenting two quantitative variables

The techniques for presenting quantitative data that you have met so far in

this chapter have one thing in common; they are all designed to portray the

observed values of a single variable. They are sometimes described as tools of

univariate analysis.

But what if we want to present the observed values of two variables in one

diagram in order to illustrate a connection (or may be a lack of connection)

between them? In that case we need to use another type of graph, the scatter

diagram, which is a tool of bivariate, that is, two-variable analysis. The word

scatter is used because the intention of the diagram is to show how the

observed values of one variable are distributed or scattered in relation to the

observed values of another variable.

A set of bivariate data consists of two sets of observed values, a pair of

values for each item or thing or person that has been studied. A scatter

diagram is constructed by plotting a point for every pair of observed

values in the set of data. The first value in the pair is plotted against one

axis, the second value against the other axis. The result is a scatter of

points that will form some pattern if there is a connection between the

variables.

Typically when we plot a scatter diagram we do so because we have

a specific theory about the possible connection between the two variables. We

may believe that one variable depends in some way on the other variable. If

this is the case we refer to one of the variables as the dependent variable

whose values we think depend on the values of the other, which is called the

independent variable. The dependent variable is known as the Y variable and

its observed values are plotted against the Y, or vertical, axis. The indepen-

dent variable is known as the X variable and its values are plotted against the

X, or horizontal, axis.

Example 2.24

The midday temperature (in degree Celsius) and the amount of barbecue fuel (in kilo-

grams) sold at a convenience store on 13 days are:

Temperature (�C) 15 17 18 18 19 20 21 22 24 25 27 27 28

Fuel Sold (kg) 10 15 25 20 45 50 40 85 130 135 170 195 180

Produce a scatter diagram to portray this set of data.

Continued
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In Figure 2.13 you can see 13 points in the diagram, one for each of the

13 days in the set of data. Each point represents both the temperature and the

amount of barbecue fuel sold for a particular day. The position of the point

along the vertical, or Y, axis tells you the sales level for the day and the position

of the point along the horizontal, or X, axis tells you the temperature on that

day. So, for instance, the point on the bottom-left of the diagram represents the

day when the temperature was 15 �C and the sales level was 10 kg.

The diagram shows us that there appears to be a clear connection between

the temperature and the barbecue fuel sold. The sales level seems to be higher

on days when the temperature is higher. This type of relationship, in which

the values of one variable increase as the values of the other variable increase

is a direct relationship, whereas a relationship in which the values of one

variable decrease as the values of the other increase is an inverse relationship.
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FIGURE 2.13 A scatter diagram of temperature and barbecue fuel sold

Enter the data from Example 2.24

into two columns and highlight them.

Excel Recipe Card – Scatter

diagrams
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Select Chart from the Insert menu,

XY(Scatter) as the Chart type in

the Chart Wizard window and take

the default sub-type. Click Next.

The diagram appears. Click Next.  
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Add axis titles. 

Remove the gridlines and legend by

clicking the appropriate tabs and

altering the settings.

Click Finish and the completed

scatter diagram will appear

in the sheet.
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2.4.6 Presenting time series data

Sometimes we go about presenting two variables in a rather different way. This

is when we need to present a time series, which is a set of bivariate data in

which one of the variables is time. A time series is a set of data that consists of

observations collected over a period, usually at regular intervals. Businesses of

all kinds collect this sort of data as a matter of course, for instance weekly sales,

monthly output, annual profit, so presenting time series data is important.

The scatter is to the right of the

diagram because the horizontal 

scale starts at zero. 

To change this put the cursor exactly

on the horizontal axis. After a pause

Value (X) axis appears. When it

does, right click and a small menu

appears.Select Format Axis.

In the new window click the

Scale tab.Untick Minimum and

replace ‘0’ with ‘14’. Click OK.

The diagram now resembles

Figure 2.13.
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The type of graph used to portray time series data is a time series chart. It

is similar in style to a scatter diagram in that each point represents a pair of

observed values of two variables plotted against a pair of axes.

However, there are some key differences. In a time series chart the time

variable is always plotted on the horizontal, or X, axis which represents the

passage of time from left (the first observation) to right (the last observation).

The points that represent the data are usually joined up to emphasize the

flow of time, whereas in a scatter diagram they are never joined up. The scale

of the vertical, or Y, axis should begin at zero so that the fluctuations over

time are not overemphasized, whereas the scales on the axes of a scatter

diagram do not need to start at zero.

You can see from Figure 2.14 that in general this company has undergone

a dramatic growth in its number of employees over this period. In other

words, there has been a strong upward trend, or basic movement. Plots of

other time series might show a more fluctuating pattern, perhaps with

seasonal variations, that is, a recurrent pattern within each year, or cyclical

variations, that is, recurrent variations over periods of years.

Example 2.25

The numbers of employees of a computer games company over 9 years were:

Year 2001 2002 2003 2004 2005 2006 2007 2008 2009

Employees 7 15 38 112 149 371 371 508 422

Produce a time series chart to show this set of data.
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FIGURE 2.14 Employees of a computer games company
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You can tell by looking at Figure 2.15 that this pharmacy sells far more

cold and flu remedies in the autumn and winter months (quarters 1 and 4)

than it does in the spring and summer months (quarters 2 and 3), and that

this pattern occurs in both years.

Example 2.26

The sales (in units) of cold and flu remedies in a pharmacy over 2 years were:

Year

Quarter

1 2 3 4

1 6375 2791 2964 8483

2 6941 2309 3128 9037

Produce a time series plot to show these data.
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FIGURE 2.15 Sales of cold and flu remedies

Enter the Year and Employees data

from Example 2.25 into two columns 

and highlight the Employees figures.

Excel Recipe Card – Time series  

charts 
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Select Chart from the Insert menu,

Line as the Chart type: and take the

default sub-type. Click Next.

Click the Series tab. 

Put the cell locations of the years as the

Category (X) axis labels. Click Next.
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On the Titles page of the next window

enter appropriate axis titles.

To remove the gridlines and legend,

click the appropriate tabs and alter the

settings.

Click Finish and your diagram should

look like Figure 2.45.
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Test yourself questions from Warwick’s business enterprises

Fully worked solutions to these questions are on pages 324–326. You can find more

questions on the topics covered in this chapter at the accompanying website www.

elsevierdirect.com/9781856179478.

2.1 (Easy)

Warwick’s limousine business receives three types of booking: corporate; special

occasions such as weddings; and party. The numbers of booking of each type in the

four seasons of 1 year are given in the following table.

Season

Number of Bookings

Corporate Special Occasion Party

Winter 38 11 23

Spring 35 44 20

Summer 23 47 25

Autumn 49 17 38

(a) Find the total number of bookings for each season and plot a bar chart to

represent them.

(b) Plot a clustered bar chart to represent the seasonal figures by type of booking.

(c) Plot a stacked bar chart to represent the seasonal figures by type of booking.

2.2 (Moderate)

The numbers of bottles of champagne sold on each of a random sample of 37 nights

at Warwick’s club were:

6 14 22 17 15 12 18 11 23 10 13 17 8

25 13 0 13 20 18 13 16 15 0 15 14

15 9 7 14 17 13 3 15 7 23 10 15

(a) Present these data in the form of a grouped frequency distribution.

(b) Plot a histogram of the distribution.

(c) Plot a cumulative frequency chart of the distribution.

2.3 (Hard)

(a) The sizes of the bills (to the nearest pound) presented to 22 customers visiting

Warwick’s restaurant one evening were:

Compile a stem and leaf display of these data.

Continued
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34 43 44 22 73 69 48 67 33 56 67

27 78 60 63 32 67 41 65 48 48 77

(b) The sizes of the bills (to the nearest pound) presented to 17 customers visiting

the restaurant at lunchtime were:

Compile a stem and leaf display to show these figures and the set of data in part

(a). List the leaf digits for the lunchtime customers’ bills to the left of the stem

digits and the leaf digits for the data in part (a) to the right.

28 50 44 32 31 55 21 36 24

18 29 24 35 42 32 27 48

(c) Compare the two distributions.
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CHAPTER 3

Summarizing Values
of a Single Variable

Why do I need to know about this? Warwick the Hospitality
entrepreneur says.

‘In running my businesses I always seemed to be working with
numbers of one sort and another. Often when I was dealing with

clients or suppliers these numbers really mattered but there is no way
that I could remember all the sales figures, for instance. If I was

talking to someone on the phone about them I would use an average
to give them an idea of generally how big (or small) the figures were
and quote the range to convey the span of them. In this way I could

summarize what were often large sets of data, which was very
convenient.’

Chapter Objectives

This chapter will help you to:

- understand why summarizing data is important;

- distinguish between location and spread;

- use various methods of summarizing data;

- interpret the different ways of summarizing data;

- know when to use the different ways of summarizing data; and

- appreciate the role of summary techniques in monitoring quality.

CONTENTS

Introduction

Measures of Location

Measures of Spread

Measuring Quality and
Consistency

73



3.1 INTRODUCTION

This chapter is about using figures known as summary measures to repre-

sent or summarize quantitative data. Because they are used to describe sets of

data they are also called descriptive measures. These summary measures are

very effective and widely used methods of communicating the essence or gist

of a set of observations in just one or two figures, particularly when it is

important to compare two or more distributions. Knowing how to interpret

them and when to use them will help you become a much more effective

communicator and user of statistical information.

There are two basic ways of summarizing a set of data. The first is to use

a figure to give some idea of what the values within a set of data are like. This

is the idea of an average, something you are probably familiar with; you may

have achieved an average mark, you may be of average build etc.

The word average suggests a ‘middle’ or ‘typical’ level. An average is

a representative figure that summarizes a whole set of numbers in a single

figure. There are two other names for averages that you will meet. The first is

measures of location, used because averages tell us where the data are

positioned or located on the numerical scale, so they measure the location of

the data. The second is measures of central tendency, used because averages

provide us with some idea of the centre or middle of a set of data.

The second basic way of summarizing a set of data is to measure how

widely the figures are spread out or dispersed. Summary measures that do

this are therefore known as measures of spread or measures of dispersion.

They are single figures that tell us how broadly a set of observations is

scattered.

These two types of summary measures, measures of location and

measures of spread, are not alternatives; they are complementary to each

other. That is, we don’t use either a measure of location or a measure of

spread to summarize a set of data. Typically we use both a measure of loca-

tion and a measure of spread to convey an overall impression of a set of data,

in the same way that suspects in a police drama on television might be

described by both their height and their weight.

3.2 MEASURES OF LOCATION

There are various averages, or measures of location, that you can use to

summarize or describe a set of data. The simplest both to apply and to

interpret is the mode.
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3.2.1 The mode

The mode, or modal value, is the most frequently occurring value in a set of

observations. You can find the mode of a set of data by simply inspecting the

observations.

If you want an average to represent a set of data that consists of a small

number of discrete values in which one value is clearly the most frequent, then

the mode is a perfectly good way of describing the data. Looking at the data in

Example 3.1 you can see that using the mode, and describing these workers as

having an average age of 17, would give a useful impression of the data.

The mode is much less suitable if the data we want to summarize consist

of a larger number of different values, especially if there is more than one

value that occurs the same number of times.

The data in Example 3.2 are bimodal; that is, it has two modes. If another

person aged 32 joined the workforce there would be three modes. The more

modes there are, the less useful the mode is to use. Ideally we want a single

figure as a measure of location to represent a set of data.

If you want to summarize a set of continuous data, using the mode is even

more inappropriate; usually continuous data consist of different values so

every value would be a mode because it occurs as often as every other value. If

two or more observations take exactly the same value it is a fluke.

Example 3.1
The ages of 15 staff working at a fast food restaurant are:

17 18 21 18 16 19 17 28 16 20 18 17 17 19 17

What is the mode?

The value 17 occurs more often (5 times) than any other value, so 17 is the mode.

Example 3.2
The ages of 18 staff working at a motorway service station restaurant are:

39 1733 44 22 39 45 40 37 31

33 39 28 32 32 31 31 37 42

What is the mode?

The values 31 and 39 each occur three times.
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3.2.2 The median

Whereas you can only use the mode for some types of data, the second

type of average or measure of location, the median, can be used for any set

of data.

The median is the middle observation in a set of data. We find the median

by first arranging the data in order of magnitude, that is, listed in order from

the lowest to the highest values. Such a list is called an array. Each obser-

vation in an array may be represented by the letter ‘x’ and the position of the

observation in the array is put in round brackets, for instance x(3) would be

the third observation in the array and x(n) would be the last.

You can find the exact position of the median in an array by taking the

number of observations, represented by the letter n, adding one and then

dividing by two.

Median position ¼ ðnþ 1Þ=2
In Example 3:3 there are 15 observations; that is; n ¼ 15; so :

Median position ¼ ð15þ 1Þ=2 ¼ 16=2 ¼ 8

The median is in the 8th position in the array, in other words the 8th

highest value, 18. The median age of these workers is 18.

Example 3.3
Find the median of the data in Example 3.1.

Array

16 16 17 17 17 17 17 18 18 18 19 19 20 21 28

Since there are 15 observations, the middle one is the 8th, the first 18, which is shown in

bold type. There are seven observations to the left of it in the array, and seven observations

to the right of it.

Example 3.4
Find the median of the data in Example 3.2.

Array

17 22 28 31 31 31 32 32 33 37 37 39 39 39 40 42 44 45

Continued
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When we are dealing with an odd number of observations there will be

a median, that is, a value in the middle. However, if there are an even number

of observations in a set of data there will be no single middle value, we always

have to split the difference between the middle pair of observations.

3.2.3 The arithmetic mean

Although you have probably come across averages before, and you may

already be familiar with the mode and the median, neither of them is likely to

be the first thing to come to mind if someone asked you how to find the

average of a set of data. Faced with such a request you might well say

something about adding the observations together and then dividing by the

number of observations there are.

This is what many people think of as ‘the average’, although actually it is

one of several averages. We have already dealt with two of them, the mode

and the median. This third average, or measure of location, is called the

mean or more specifically the arithmetic mean in order to distinguish it from

other types of mean. Like the median, the arithmetic mean can be used with

any set of quantitative data.

The procedure for finding the arithmetic mean involves calculation so

you may find it more laborious than finding the mode, which only involves

inspecting data, or finding the median, which only involves arranging data.

You have to first get the sum of the observations and then divide by n, the

number of observations in the set of data.

Arithmetic mean ¼
X

x=n

The symbol x is used here to represent an observed value of the vari-

able X, so Sx represents the sum of the observed values of the variable X.

The arithmetic mean of a sample is represented by the symbol x, ‘x-bar’.

In this case there are 18 observations, that is, n¼ 18, so:

Median position ¼ ð18þ 1Þ=2 ¼ 9:5th

Although we can find a ninth observation and a tenth observation there is clearly no 9.5th

observation. The median position of 9.5th means that the median lies halfway between the

ninth and tenth observations, 33 and 37, which appear in bold type in the array. To find the

halfway mark between these observations, add them together and divide by two.

Median ¼ ð33þ 37Þ=2 ¼ 35

The median age of this group of workers is 35.
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The arithmetic mean of a population is represented by the Greek letter

m, ‘mu’.

The mean is one of several statistical measures you will meet which

have two different symbols, one of which is Greek, to represent them. The

Greek symbol is always used to denote the measure for the population.

Rarely do we have the time and resources to calculate a measure for

a whole population, so almost invariably the ones we do calculate are for

a sample.

Example 3.5
The temperatures in degrees Celsius in Miami on 23 days selected at random were:

26 22 22 26 26 23 23 19 26 22 26 26

28 27 32 31 18 29 27 30 33 28 27

Find the mean temperature:

The sum
P

x ¼ 26þ 22þ 22þ $$$þ 28þ 27 ¼ 597

The arithmetic mean
P

x=n ¼ 597=23 ¼ 25:957 ðto 3 decimal placesÞ

Enter the data from Example 3.5

into a column.

Excel Recipe Card – Averages
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Select Data Analysis from the

Tools menu. (If you cannot find

Data Analysis click Add-Ins in the

Tools menu to check that it is

available.)

Choose Descriptive Statistics from 

Data Analysis menu and click OK. 

In the Descriptive Statistics 

window check that the cursor is in 

the space to the left of Input Range  

then click and drag over the data. 

Next, tick Summary statistics. 

Click OK. 

Continued

Measures of Location 79



3.2.4 Choosing which measure of location to use

The whole point of using a measure of location is that it should convey an

impression of a distribution in a single figure. If we need to communicate this

to an audience it won’t help if we quote the mode, median and mean and then

invite our audience to please themselves which one to pick. It is important to

use the right sort of average.

Picking which average to use might depend on a number of factors:

- The type of data we are dealing with.

- Whether the average needs to be easy to find.

- The shape of the distribution.

- Whether the average will be the basis for further work on the data.

As far as the type of data is concerned, unless you are dealing with fairly

simple discrete data the mode is redundant. If you do have such data to

analyse the mode may be worth considering particularly if it is important that

your measure of location is a feasible value for the variable to take.

A table appears in a new worksheet.  

The mean, median and mode are 

given in the third, fifth and sixth rows 

respectively. 

Example 3.6
The numbers of days that 16 employees were absent through illness were:

1 1 6 0 2 1 1 4 0 2 4 1 4 3 2 1

Find the mode, median and mean for this set of data.

The modal value is 1, which occurs six times.
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In Example 3.6 it is only the mode that has a value that is both feasible

and actually occurs, 1. Although the value of the median, 1.5 may be feasible

if the employer recorded half-day absences, it is not one of the observed

values. The value of the mean, 2.0625 is too precise to be feasible and

therefore cannot be one of the observed values.

The only other reason you might prefer to use the mode rather than the

other measures of location, assuming that you are dealing with discrete

data made up of a relatively few different values, is that it is the easiest of

the measures of location to find. All you need to do is to look at the data

and count how many times the values occur. Often with the sort of simple

data that the mode suits it is pretty obvious which value occurs most

frequently and there is no need to count the frequency of each value.

There are more reasons for not using the mode than there are for using

the mode. First, it is not appropriate for some types of data. Second, there is

no guarantee that there is only one mode; there may be two or more in

a single distribution. Third, only the observations that have the modal value

‘count’, the rest of the observations in the distribution are not taken into

account at all. In contrast, when we calculate a mean we add all the values in

the distribution together; none of them are excluded.

In many cases you will find that the choice of average boils down to either

the median or the mean. The shape of the distribution is a factor that could

well influence your choice. With a distribution that has a skewed rather than

a symmetrical shape, the median is likely to be the more realistic and reliable

measure of location to use.

Array

0 0 1 1 1 1 1 1 2 2 2 3 4 4 4 6

The median position is: ð16þ 1Þ=2 ¼ 8:5th position;

The median is: ð8th valueþ 9th valueÞ=2 ¼ ð1þ 2Þ=2 ¼ 1:5

The arithmetic mean ¼ ð0þ 0þ 1þ 1þ $$$$$$$$þ 4þ 6Þ=16 ¼ 32=16 ¼ 2

Example 3.7
Produce a histogram to display the data from Example 3.6 and comment on the shape of

the distribution.

The distribution of absences in Figure 3.1 is positively skewed, with the majority of the

observations occurring to the left of the distribution.

Continued
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The median and mean for the data in Example 3.6 were 1.5 and 2.0625

respectively. There is quite a difference between them, especially when you

consider that the difference between the lowest and highest values in the

distribution is only 6. The difference between the median and the mean

arises because the distribution is skewed.

When you find a median you concentrate on the middle of the distribu-

tion, you are not concerned with the observations to either side of the middle,

so the pattern of the distribution at either end of the distribution does not

have any effect on the median. In Example 3.6 it would not matter if the

highest value in the distribution were 66 rather than 6, the median would

still be 1.5. The value of the median is determined by how many observations

lie to the left and right of it, not the values of those observations.

The mean, on the other hand, depends on all the values in the distribu-

tion, from the lowest to the highest, which must be added together in order to

calculate it. If the highest value in the distribution were 66 rather than 6 it

would make a considerable difference to the value of the mean (in fact it

would increase to 5.8125).

Because calculating the mean involves adding all the observations

together the value of the mean is sensitive to unusual values or outliers. Every

observation is equal in the sense that it contributes 1 to the value of n, the

number of observations. However, if an observation is much lower than the

rest, when it is added into the sum of the values it will contribute relatively

little to the sum and make the value of the mean lower. If an observation is

much higher than the rest, it will contribute disproportionately more to the

sum and make the value of the mean higher.
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FIGURE 3.1 Histogram of the data from Example 3.6, days absent through illness

CHAPTER 3 : Summarizing Values of a Single Variable82



In Example 3.8 only one value was changed yet the mean drops from

2.0625 to 1.8125.

In a skewed distribution there are unusual values so if you use a mean to

represent a skewed distribution you should bear in mind that it will be dis-

torted by the relatively extreme values or outliers in the distribution. This is

why the median for the data in Example 3.6 was 1.5 and the mean was

2.0625. The higher values in the distribution, the ‘6’ and the ‘4’s, have in

effect pulled the mean away from the median.

So, should you use the median or the mean to represent a skewed distri-

bution? The answer is that the median is the more representative of the two.

Look carefully at the values of the median and mean in relation to the figures in

Example 3.6. The median, 1.5, is by definition in the middle of the distribution

with eight observations below it and eight observations above it. In contrast the

mean, 2.0625, has eleven observations below it and only five above it.

If you are dealing with a symmetrical distribution you will find that the mean

is not susceptible to distortion because by definition there is roughly as much

numerical ‘ballast’ to one side of the distribution as there is to the other. The

mean and median of a symmetrical distribution will therefore be close together.

Example 3.8
One of the observed values in the data in Example 3.6 has been recorded wrongly. The figure

‘6’ should have been ‘2’. How does this affect the values of the mode, median and mean?

The mode is unaffected, the value ‘1’ still occurs more frequently than the other values.

The median is unaffected because the 8th and 9th values will still be ‘1’ and ‘2’ respectively.

The mean will be affected because the sum of the observations will reduce by 4 to 29, so

the mean is 29/16¼ 1.8125.

Example 3.9
Produce a histogram to portray the data in Example 3.5. Find the median and compare it

to the mean.
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FIGURE 3.2 Histogram of the data from Example 3.5, Miami temperatures in �C
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Figure 3.2 shows a much more symmetrical distribution than we saw in

Figure 3.1. This symmetry has resulted in the mean and the median being

close together.

There is one further factor to consider when you need to choose

a measure of location, and that is whether you will be using the result as the

basis for further statistical work. If this is the case use the mean since it has

a more extensive role in statistical analysis as a representative measure than

the median.

You will find that choosing the right measure of location is not always

straightforward. The conclusions from the discussion in this section are:

- In all other cases use a mean. Use a mode only if your data are discrete

and have only one mode.

- It is better to use a median if your data are skewed.

- In all other cases use a mean.

3.2.5 Finding measures of location from classified data

You may find yourself in a situation where you would like to use

a measure of location to represent a distribution but you only have the

data in some classified form, perhaps a frequency distribution or

a diagram. May be the original data have been mislaid or discarded, or

you want to develop work initiated by someone else and the original data

are simply not available to you.

If the data are classified in the form of a stem and leaf display, finding

a measure of location from it is no problem since the display is also a list

of the observed values in the distribution. Each observation is listed, but

in a detached form so all you have to do is to put the stems and their

leaves back together again to get the original data from which they were

derived.

There are 23 observations so the median is the (23þ 1)/2¼ 12th observation.

Array

18 19 22 22 22 23 23 26 26 26 26 26 26 27 27

27 28 28 29 30 31 32 33

The median is 26, which also happens to be the mode and is close to the mean, 25.957.
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You can find the mode of a distribution from its stem and leaf display by

looking for the most frequently occurring leaf digits grouped together on

a stem line. Finding the median involves counting down (or up) to the middle

value. To get the mean you would have to reassemble each observation in

order to add them up.

In Example 3.10 we can get the same values for the mode, median and

mean as we would obtain from the original data because the stem and leaf

display is constructed from the parts of the original data. Even if the stem and

leaf display were made up of rounded versions of the original data we would

get very close approximations of the real values of the measures of location.

Finding these measures of location from a stem and leaf display is rela-

tively straightforward. It is therefore a very useful way of deciding which

measure is the most appropriate for a set of data.

Example 3.10
Construct a stem and leaf display to show the data in Example 3.5. Use the display to find

the mode, median and mean of the distribution.

Stem-and-leaf of temperature n ¼ 23
Leaf unit ¼ 1:0

1 8 9

2 2 2 2 3 3

2 6 6 6 6 6 6 7 7 7 8 8 9

3 0 1 2 3

The modal value is 26, the leaf digit ‘6’ appears six times on the lower of the two stem lines

for the stem digit ‘2’.

We know from the calculation (23þ 1)/2¼ 12 that the median is the 12th observation,

which is also 26. To find it we can count from the top. The two leaf digits on the first stem

line, which represent the observed values ‘18’ and ‘19’, are the 1st and 2nd observed

values in the distribution in order of magnitude. The five leaf digits on the next stem line,

the first of the two stem lines for the stem digit ‘2’, are the 3rd to the 7th observed values in

order of magnitude. The first leaf digit on the third stem line, the second of the two for the

stem digit ‘2’, is the 8th observed value, so if we count a further four values along that stem

line we come to the 12th observation, the median value. The leaf digit that represents the

median value in the display is shown in bold type.

To get the mean we have to put the observed values back together again and add 18, 19,

22, 22 etc. to get the sum of the values, 597, which when divided by 23, the number of

values, is 25.957, the mean (to three decimal places).
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But what if you didn’t have a stem and leaf display to work with? If you

had a frequency distribution that gave the frequency of every value in the

distribution, or a bar chart that depicted the frequency distribution, you could

still find the measures of location.

Example 3.11
Use Figure 3.1 to find the mode, median and mean of the distribution of days absence

through illness.

Figure 3.1 shows the frequency with which each number of days absence occurs, in the

form of a bar. By checking the height of the bar against the vertical axis we can tell exactly

how many times that number of days absence has occurred. We can put that information

in the form of a frequency distribution:

Number of days absent Frequency

0 2

1 6

2 3

3 1

4 3

5 0

6 1

We can see that the value ‘1’ has occurred six times, more than any other level of absence,

so the mode is 1.

The median position is (16þ 1)/2¼ 8.5th. To find the median we have to find the 8th and

9th values and split the difference. We can find these observations by counting down the

observations in each category, in the same way as we can with a stem and leaf display. The

first row in the table contains two ‘0’s, the 1st and 2nd observations in the distribution in

order of magnitude. The second row contains the 3rd to the 8th observations, so the 8th

observation is a ‘1’. The third row contains the 9th to the 11th observations, so the 9th

observation is a ‘2’. The median is therefore halfway between the 8th value, 1, and the

9th value, 2, which is 1.5.

To find the mean from the frequency distribution we could add each number of days

absence into the sum the same number of times as its frequency. We add two ‘0’s, six

‘1’s and so on. There is a much more direct way of doing this involving multiplication,

which is after all collective addition. We simply take each sales level and multiply it by

its frequency, then add the products of this process together. If we use the letter ‘x’ to

represent sales, and the letter ‘f ’ to represent frequency we can describe this proce-

dure as Sfx. Another way of representing n, the number of observations, is Sf, the sum

of the frequencies, so the procedure for calculating the mean can be represented as

Sfx/Sf.

Continued

CHAPTER 3 : Summarizing Values of a Single Variable86



You can see that the results obtained in Example 3.11 are exactly the

same as those found in Example 3.6 from the original data. This is possible

because every value in the distribution is itself a category in the frequency

distribution so we can tell exactly how many times it occurs.

But suppose you need to find measures of location for a distribution that is

only available to you in the form of a grouped frequency distribution? The cate-

gories are not individual values but classes of values. We can’t tell from it exactly

how many times each value occurs, only the number of values there are in each

class. From such limited information we can find measures of location but they

will be approximations of the true values that we would get from the original data.

Because the data used to construct grouped frequency distributions

usually include many different values, hence the need to divide them into

classes, finding an approximate value for the mode is a rather arbitrary

exercise. It is almost always sufficient to identify the modal class, which is

the class that contains most observations.

Number of days absent (Sx) Frequency (f) fx

0 2 0

1 6 6

2 3 6

3 1 3

4 3 12

5 0 0

6 1 6

Sf¼ 16 Sfx¼ 33

The mean ¼ Sfx=Sf ¼ 33=16 ¼ 2:0625

Example 3.12
Use Figure 3.2 to find the modal class, median and mean of the temperatures in Miami.

The grouped frequency distribution used to construct Figure 3.2 was:

Temperature (�C) Frequency

16 and under 20 2

20 and under 24 5

24 and under 28 9

28 and under 32 5

32 and under 36 2

Continued
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The modal class is ‘24 and under 28’ because it contains more values, nine, than any

other class.

To find a value for the median we first need to locate the class that contains the median

value. There are 23 observations in the distribution so the median is the (23þ 1)/2¼ 12th

value in order of magnitude. Clearly the median value does not belong to the first class, ‘16

and under 20’, which contains only the 1st and 2nd observed values, the lowest pair in the

distribution. Neither does it belong to the second class, which contains the 3rd to the 7th

values. The median is in the third class, which contains the 8th to the 16th values. But

which one of the nine observations in the class is the median value? We know that the

median will be the fifth observation in the median class but if we only have the grouped

frequency we simply don’t know what that observation is. All we know is that it is at least 24

because that is where the median class begins so all nine observations in it are no lower

than 24

We can approximate the median by assuming that all nine observations in the median

class are distributed evenly through it. If that were the case the median would be 5/9ths

the way along the median class. So to get an approximate value for the median:

Begin at the start of the median class 24

Add 5/9ths of the width of the median class 5/9 * 4 2.22

26.22

This is close to the real value we obtained from the original data, 26.

To obtain an approximate value for the mean from the grouped frequency distribution we

apply the same frequency-based approach as we used in Example 3.11, but again we

have to get around the problem of not knowing the exact values of the observations in

a class.

In the absence of this knowledge we assume that all the observations in a class take, on

average, the value in the middle of the class, known as the class midpoint. The set of class

midpoints are then used as the values of the variables, x, that are contained in the

distribution. So, for the purposes of calculating Sfx/Sf, the observation in the first class is

assumed to have the value 18, that is the halfway mark or midpoint of the first class, ‘16

and under 20’ and so on.

Temperature (�C) Midpoint (x) Frequency (f) fx

16 and under 20 18 2 36

20 and under 24 22 5 110

24 and under 28 26 9 234

28 and under 32 30 5 150

32 and under 36 34 2 68

Sf¼ 23 Sfx¼ 598

The approximate value of the mean¼ Sfx/Sf¼ 598/23¼ 26, which is very close to the

actual value, 25.957 (to three decimal places).
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There is an alternative method that you can use to find the approximate

value of the median from data presented in the form of a grouped frequency

distribution. It is possible to estimate the value of the median from

a cumulative frequency graph or a cumulative relative frequency graph of the

distribution. These graphs are described in section 2.4.3 of Chapter 2.

To obtain a value for the median, plot the graph and find the point along

the vertical axis that represents half the total frequency. Draw a horizontal

line from that point to the line that represents the cumulative frequency and

then draw a vertical line down from that point to the horizontal axis. The

point at which your vertical line meets the horizontal axis is the approximate

value of the median.

Example 3.13
Draw a cumulative relative frequency graph to represent the grouped frequency distri-

bution in Example 3.12 and use it to find the approximate value of the median

temperature.

Cost Frequency Cumulative frequency

Cumulative relative

frequency

16 and under 20 2 2 0.08

20 and under 24 5 7 0.30

24 and under 28 9 16 0.70

28 and under 32 5 21 0.92

32 and under 36 2 23 1.00
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FIGURE 3.3 Cumulative relative frequency plot of the data from Example 3.5,

temperatures in Miami showing the approximate median
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3.3 MEASURES OF SPREAD

Just as there are several measures of location you can use to convey the

central tendency of a distribution, there are several measures of spread you

can use to convey the dispersion of a distribution. They are typically used

alongside measures of location in order to give an overall impression of

a distribution; where its middle is and how widely scattered the observations

are around the middle. Indeed the two most important measures of spread

are closely linked to the median and the mean.

3.3.1 The range

The simplest measure of spread is the range. The range of a distribution is

the difference between the lowest and the highest observations in the

distribution, that is:

Range ¼ highest observed value� lowest observed value

¼ xðnÞ � xð1Þ

where x is the observed value and the bracketed n indicates the nth or

highest value and the bracketed 1 the first or lowest value.

The range is very easy to use and understand, and is often a perfectly

adequate method of measuring dispersion. However, it is not a reliable way of

assessing spread because it is based on only two observations. If, for instance, you

were asked to compare the spread in two different sets of data you may find that

the ranges are very similar but the observations are spread out very differently.

The starting point of the horizontal dotted line in the graph in Figure 3.3 is ‘0.5’ on the

vertical axis, midway on the cumulative relative frequency scale. At the point where the

horizontal dotted line meets the cumulative relative frequency line, the vertical dotted line

has been drawn down to the horizontal axis. The point where this vertical dotted line

reaches the horizontal axis is about 26, which is the estimate of the median. The graph

suggests that half of the values in the distribution are accumulated below 26 and half are

accumulated above 26.

If you look back to Example 3.9 you will find that the actual median is 26.

Example 3.14
Two travel agencies each employ 9 people. The number of years’ experience in the travel

industry that the employees of these companies have is:

Agency A 0 4 4 5 7 8 10 11 15

Agency B 0 0 4 4 7 10 10 14 15
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Although the ranges for the distributions in Example 3.14 are identical,

the distributions show different levels of dispersion. The figures for Agency B

are more widely spread or dispersed than the figures for Agency A.

Find the range of each set of data and compare them. Plot a histogram for each set of

data.

Range ðAÞ ¼ 15� 0 ¼ 15

Range ðBÞ ¼ 15� 0 ¼ 15

The ranges are exactly the same, but this does not necessarily mean that the observations

in the two distributions are spread out in exactly the same way.

If you compare Figure 3.4 and Figure 3.5 you can see that the distribution of experience of

the staff at Agency A has a much more pronounced centre whereas the distribution of

experience of staff at Agency B has much more pronounced ends.
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FIGURE 3.4 Experience of employees at Agency A
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FIGURE 3.5 Experience of employees at Agency B
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3.3.2 Quartiles and the semi-interquartile range

The second measure of dispersion at our disposal is the semi-interquartile

range, or SIQR for short. It is based on quartiles, which are related to the

median.

One way of looking at the median, or middle observation, of a distribution

is to regard it as the point which separates the distribution into two equal

halves, one consisting of the lower half of the observations and the other

consisting of the upper half of the observations. The median, in effect, cuts

the distribution into two.

If the median is a single cut that divides a distribution into two, the

quartiles are a set of three separate points in a distribution that divide it into

four equal quarters. The first, or lower quartile, known as Q1, is the point that

separates the lowest quarter of the observations in a distribution from the rest.

The second quartile is the median itself; it separates the lower two quarters

(i.e. the lower half) of the observations in the distribution from the upper two

quarters (i.e. the upper half). The third, or upper quartile, known as Q3,

separates the highest quarter of observations in the distribution from the rest.

The median and the quartiles are known as order statistics because their

values are determined by using the order or sequence of observations in

a distribution. You may come across other order statistics such as deciles,

which divide a distribution into tenths, and percentiles, which divide

a distribution into hundredths.

You can find the quartiles of a distribution from an array or a stem and leaf

display of the observations in the distribution. The quartile position is

halfway between the end of the distribution and the median, so it can

be defined in relation to the median position, which is (nþ 1)/2, where n is the

number of observations. To find the approximate position of the quartiles take

the median position, round it down to the nearest whole number if it is not

already a whole number, add one and divide by two, that is:

Quartile position ¼ ðmedian positionþ 1Þ=2
Once you know the quartile position you can find the lower quartile by

counting up to the quartile position from the lowest observation and the

upper quartile by counting down to the quartile position from the highest

observation.

Example 3.15
The temperatures in degrees Celsius in Moscow on 23 days selected at random were:

�7 �10 �14 �3 �4 �2 0 �1 �2 10 �6 �4

4 21 19 24 5 8 13 11 21 25 28
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If the upper quartile separates off the top quarter of the distribution and

the lower quartile separates off the bottom quarter, the difference between the

lower and upper quartiles is the range or span of the middle half of the

observations in the distribution. This is called the interquartile range, which

is the range between the quartiles. The semi-interquartile range (SIQR) is, as

its name suggests, half the interquartile range, i.e.:

SIQR ¼ ðQ3 � Q1Þ=2
where Q3 is the third, or upper quartile and Q1 is the first, or lower quartile.

The semi-interquartile range is a measure of spread. The larger the value

of the SIQR, the more dispersed are the observations in the distribution.

Find the median and upper and lower quartiles for this distribution.

Array �14 �10 �10 �7 �6 �4 �4 �3 �2 �2 0 1 4 5 8

11 13 19 21 21 24 25 28

The median position¼ (23þ 1)/2¼ 12th position, so the median value is the value ‘1’.

This suggests that half the time the temperature in Moscow is below one degree, and half

the time it is above one degree.

The quartile position¼ (12þ 1)/2¼ 6.5th position, that is midway between the 6th and

7th observations.

The lower quartile is halfway between the observations 6th and 7th from the lowest, which

are both �4, so the lower quartile is �4. This suggests that 25% of the time the

temperature in Moscow is below �4 �C.

The upper quartile is halfway between the observations 6th and 7th from the highest,

which are 19 and 13 respectively. The upper quartile is midway between these values, i.e.

16. This suggests that 25% of the time the temperature in Moscow is above 16 �C.

Example 3.16
Find the semi-interquartile range for the data in Example 3.15.

The lower quartile temperature is �4 and the upper quartile temperature is 16.

SIQR ¼ ð16 �ð�4ÞÞ=2 ¼ ð16þ 4Þ=2 ¼ 20=2 ¼ 10:

Example 3.17
Find the SIQR of the data in Example 3.5 and compare this to the SIQR of the data in

Example 3.15.

Array 18 19 22 22 22 23 23 26 26 26 26 26

26 27 27 27 28 28 29 30 31 32 33

Continued
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There is a diagram called a box plot, which you might find a very useful

way of displaying order statistics. In a box plot the middle half of the values in

a distribution is represented by a box, which has the lower quartile at one end

and the upper quartile at the other. A line inside the box represents the

median. The top and bottom quarters are represented by straight lines called

‘whiskers’ protruding from each end of the box. A box plot is a particularly

useful way of comparing distributions.

There are 23 observations, so the median position is the (23þ 1)/2¼ 12th position.

The quartile position is the (12þ 1)/2¼ 6.5th position.

Q1 ¼ ð23þ 23Þ=2 ¼ 23 Q3 ¼ ð28þ 28Þ=2 ¼ 28

SIQR ¼ ð28� 23Þ=2 ¼ 5=2 ¼ 2:5

The SIQR for the data from Miami (2.5) is far lower than the SIQR for the data from

Moscow (10) indicating that there is more variation in the temperature in Moscow.

Example 3.18
Produce box plots for the temperature data from Miami and Moscow.

Look carefully at the box plot to the right in Figure 3.6, which represents the temperatures

in Moscow. The letter (a) indicates the position of the lowest observation, (b) indicates the

position of the lower quartile, (c) is the median, (d) is the upper quartile and (e) is the

highest value.
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FIGURE 3.6 Box plots of temperatures in �C from Miami and Moscow
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In Figure 3.6 the diagram representing the temperatures in Miami sits far

higher than the diagram representing the temperatures in Moscow, empha-

sizing the higher temperatures in Miami. The Miami box is also more compact

than the Moscow box, which reflects the greater variation in temperatures in

Moscow. The fact that the median line in the Moscow box is positioned low

down within the box suggests that the middle half of the distribution is skewed.

The quarter of observations between the median and the upper quartile are

more widely spread than the quarter of observations between the median and

the lower quartile. In contrast, the median line in the box that represents the

temperatures in Miami is high up within the box. This shows that for the

Miami data the spread of values between the median and the upper quartile is

less than the spread of values between the median and the lower quartile.

A box plot is particularly useful for identifying outliers, observed values

that seem detached from the rest of the distribution. If you have outliers in

a distribution it is important to check first that they have not been written

down wrongly and second, assuming that they are accurately recorded, what

reasons might explain such unusual observations.

Example 3.19
If the lowest value in the set of temperatures in Miami was wrongly recorded as 18 �C but

was actually 8 �C, how does the box plot change?

In Figure 3.7 the lowest observation, 8, is now represented with a small asterisk to

emphasize its relative isolation from the rest of the observations.
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FIGURE 3.7 Box plot of amended temperature data from Miami in �C
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Quartiles and the SIQR are useful ways of measuring spread, and together

with the median they are often the best way of summarizing skewed distri-

butions. However, like the range, they focus on a very few observations in

a distribution. So it is possible that the SIQR, like the range, cannot always

detect differences in dispersion.

3.3.3 The standard deviation

In order to avoid the shortcomings of the range and the SIQR we have to turn

to a measure of spread that is based on every observation rather than just

a few. That measure, the most important measure of spread in Statistics, is

known as the standard deviation.

As the name suggests, the standard deviation is based on the idea of

measuring the typical, or standard, amount of deviation, or difference, in

a set of observations. But deviation from what? In fact it is deviation from the

arithmetic mean.

We find the standard deviation by first calculating the mean and then

finding how far each observation is from it.

Example 3.20
Find the SIQR for each of the two sets of data in Example 3.14.

There are nine observations in each distribution, so the median position is (9þ 1)/2¼ 5th

in both cases. The quartile position is (5þ 1)/2¼ 3rd position.

Agency A 0 4 4 5 7 8 10 11 15

Agency B 0 0 4 4 7 10 10 14 15

In both cases the lower quartile is 4 and the upper quartile is 10, giving an SIQR of 3 for

each distribution. Despite the identical SIQR results, Figures 3.4 and 3.5 clearly show that

these distributions are not spread out in the same way.

Example 3.21
Six bars sell the following number of boxes of tortilla chips in a particular week

2 5 6 4 3 4

The mean; x ¼ 24=6 ¼ 4

Observation (x) Mean ðxÞ Deviation ðx� xÞ

2 4 –2

5 4 1

6 4 2

4 4 0

3 4 –1

4 4 0
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To get a single measure of spread from deviation figures like those in

Example 3.21 it would be very convenient to add up the deviations and divide

the sum of the deviations by the number of them to get a sort of ‘average’

deviation. Unfortunately, as you will find out if you try it with the deviations

in Example 3.21, it doesn’t work because the deviations add up to zero.

This will always happen because the mean is, in effect, the centre of gravity

of a distribution. In the same way that the centre of gravity of an object has as

much weight to one side as it does to the other, the mean has as much

numerical ‘weight’ below it as it has above it. The result is that the deviations

between the mean and the observations that are lower than the mean, which

are always negative, cancel out the deviations between the mean and the

observations that are higher than the mean, which are always positive. You can

see in Example 3.21 that the negative deviations (–1 and –2) would be cancelled

out by the positive deviations (1 and 2) if we added all the deviations together.

To get round this problem we square the deviations before adding them

up, since any number squared is positive. The sum of the squared deviations,P
ðx � xÞ2, is the basis of the standard deviation.

Now we have a way of measuring total deviation, it would be convenient

to simply divide by the number of deviations that have been added together,

which is the same as n, the number of observations. However, we actually

divide the sum of the squared deviations by one less than n instead of n itself

for reasons related to the statistical concept of degrees of freedom.

Any set of data starts off with the same number of degrees of freedom as it

has observations, n. The implication is that if you wanted to specify all the

figures in the set of data yourself you can do so freely. However, once you have

found the mean you could only specify one less than the number of figures

Example 3.22
Find the sum of the squared deviations,

P
ðx� xÞ2, from the mean for the data in Example

3.21.

Observation (x) Mean (x) Deviation (x–x) Squared deviation (x–x)2

2 4 –2 4

5 4 1 1

6 4 2 4

4 4 0 0

3 4 –1 1

4 4 0 0

S(x–x)2¼ 4þ 1þ 4þ 0þ 1þ 0¼ 10
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freely. The last one would have to be the only figure that combines with the

ones you have specified to keep the mean the same, so you have ‘lost’ a degree

of freedom. For instance, if we know that the mean of a set of three figures is

5, and we suggest that 2 and 7 are the first two figures in the set, the third

value has to be 6 in order that the mean is still 5. Choose any other value for

third figure and the mean will be different.

When we calculate a standard deviation we are using the mean, so we lose

one degree of freedom. Therefore the procedure that we use to calculate the

standard deviation, s, of a sample involves dividing the sum of squared

deviations by (n – 1). The only exception is the rare occasion when we need to

calculate the population standard deviation, s (the lower case of the Greek

letter s), in which case the sum of squared deviations is divided by n.

In later work you will find that a sample standard deviation can be used as

an estimate of a population standard deviation. This can save time and money,

but it can only be done if the sample standard deviation is calculated properly.

The final part of the procedure you follow to obtain a sample standard

deviation is to take the square root of the sum of squared deviations divided

by (n – 1). You have to do this to get a figure that is in the same units as your

original data. For instance, the squared deviation figures in Example 3.22 are

in ‘boxes of chips squared’. It is much more useful to have a figure measured

in boxes of chips.

We can sum up the procedure that is used to obtain a sample standard

deviation in the following expression:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðx� xÞ2

ðn� 1Þ

s

The expression for the population standard deviation is

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðx� mÞ2=n

q

If you use either of these expressions to calculate the standard deviation

of a set of data with many observations you will find the experience labo-

rious. It is really a task that should be carried out with the aid of a calculator

with statistical functions or computer software.

Example 3.23
Calculate the standard deviation for the data in Example 3.21.

The sum of squared deviations is 10 and the number of observations is 6, so the standard

deviation of this sample is:

s ¼
ffiffiffiffiffiffiffiffiffiffiffi
10=5

p
¼

ffiffiffi
2
p
¼ 1:414 to three decimal places
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Select Data Analysis from the 

Tools menu. (If you cannot 

find Data Analysis click Add-Ins 

in the Tools menu to check 

that it is available.) 

Choose Descriptive Statistics 

from the menu and click OK. 

Enter the cell locations of the 

data alongside Input Range: and 

tick Summary statistics. Click OK.  

Enter the data from 

Example 3.21 into a column. 

Excel Recipe Card – Measures 

of spread 
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The output includes the standard 

deviation and the range. (In this 

screenshot the first column is 

widened to show the full titles 

of the measures.) 

Enter the data from Example 3.21

into a column.

Excel Recipe Card – Quartiles

Put the cursor in an empty cell.

Type =QUARTILE(in the formula

bar, labeled     towards the top

of the screen and QUARTILE-

(array,quart) appears.

Click and drag over the data.
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Type a comma then 1, then close

the bracket.

Press Enter and the first, or lower 

quartile appears in the cell.  

To get the third, or upper quartile 

position the cursor in another empty 

cell and put ‘=QUARTILE(A1:A6,3)’ 

in the formula bar, then press Enter. 
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In later statistical work you may encounter something called a variance.

The variance is the square of the standard deviation. The expression for

the variance looks like the expression for the standard deviation and in fact

the only difference is that finding the variance does not involve taking

a square root.

The sample variance; s2 ¼ Sðx�xÞ2=n �1

The population variance; s2 ¼ Sðx�mÞ2=n

The standard deviation is widely used with the mean to provide an overall

summary or description of a distribution. Indeed for many distributions the

mean and the standard deviation are the key defining characteristics or

parameters of the distribution.

One of the reasons it has become such an important measure of spread is

that it is a reliable way of detecting dispersion.

Example 3.24
Find the mean and the standard deviation of the data from Example 3.14 and compare the

results for the two agencies.

Agency A Mean¼ (0þ 4þ 4þ 5þ 7þ 8þ 10þ 11þ 15)/9¼ 7.11

Experience (x) Mean (x) (x–x) (x–x)2

0 7.11 –7.11 50.55

4 7.11 –3.11 9.67

4 7.11 –3.11 9.67

5 7.11 –2.11 4.45

7 7.11 –0.11 0.01

8 7.11 0.89 0.79

10 7.11 2.89 8.35

11 7.11 3.89 15.13

15 7.11 7.89 62.25

S(x–x)2¼ 160.87

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðx � xÞ2=ðn � 1Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
160:87=ð9� 1Þ

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
160:87=8

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
20:11
p

¼ 4:48 to two decimal places

Agency B Mean ¼ ð0þ 0þ 4þ 4þ 7þ 10þ 10þ 14þ 15Þ=9 ¼ 7:11

Continued
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The mean and standard deviation can be used to approximate the overall

spread of observations in a distribution. Typically nearly all the observations

will lie between the point three standard deviations below the mean and the

point three standard deviations above the mean. Another way of saying this

is to say that almost the entire distribution is located within three standard

deviations of the mean. Another rule of thumb is that 90% or so of a distri-

bution will be within two standard deviations of the mean.

In further work you will find that the mean and the standard deviation

can be used to define the positions of values in a distribution. For instance, if

we have a distribution that has a mean of 4 and a standard deviation of 2 we

could describe the value ‘8’ as being two standard deviations above the mean.

The value ‘1’ could be described as being one and a half standard deviations

below the mean.

3.3.4 Finding measures of spread from classified data

You may need to determine measures of spread for data that is already

classified. The ease of doing this and the accuracy of the results depend in

part on the type of data and the form in which it is presented.

If you have a frequency distribution that shows the number of times each

one of a small number of discrete values occurs then you will be able to

Experience (x) Mean (x) (x–x) (x–x)2

0 7.11 –7.11 50.55

0 7.11 –7.11 50.55

4 7.11 –3.11 9.67

4 7.11 –3.11 9.67

7 7.11 –0.11 0.01

10 7.11 2.89 8.35

10 7.11 2.89 8.35

14 7.11 6.89 47.47

15 7.11 7.89 62.25

S(x–x)2¼ 246.87

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðx � xÞ2=ðn � 1Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
246:87=9� 1

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
246:87=8

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
30:86
p

¼ 5:56 to two decimal places

The means are the same, 7.11, but the standard deviation for Agency B is higher than the

standard deviation for Agency A; 5.56 compared to 4.48. The difference between the stan-

dard deviations reflects the contrasting spread that we could see in Figures 3.4 and 3.5.
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identify all the values in the distribution and carry out the appropriate

calculations. Similarly, if you have data in the form of a stem and leaf display

you should be able to identify at least the approximate values of the data. In

either case the results you obtain should be identical or at least very close to

the real values.

If the data you have is in the form of a grouped frequency distribution

then it is possible to find measures of spread, but these will be approxima-

tions. Here we will consider how to find an approximate value of a standard

deviation from a grouped frequency distribution and how to find approximate

values for quartiles, and hence the semi-interquartile range, from a cumula-

tive relative frequency graph.

A grouped frequency distribution shows how many observed values in the

distribution fall into a series of classes. It does not show the actual values of

the data. Since calculating a standard deviation does usually require the

actual values we have to find some way of representing the actual values

based on the classes to which they belong. In fact the midpoint of each class

is used as the approximate value of every value in the class. This is the same

approach as we used to find the mean from a grouped frequency distribution

in section 3.2.5 of this chapter.

The approximate value of the standard deviation is:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðSfÞ � 1

�
Sfx2 � ðSfxÞ2

Sf

�s

where f represents the frequency of a class and x its midpoint.

Example 3.25
Find the approximate value of the standard deviation of the data represented in the

grouped frequency distribution in Example 3.12.

Temperature (�C) Midpoint (x) Frequency (f) fx x2 fx2

16 and under 20 18 2 36 324 648

20 and under 24 22 5 110 484 2420

24 and under 28 26 9 234 676 6084

28 and under 32 30 5 150 900 4500

32 and under 36 34 2 68 1156 2312

Sf¼ 23 Sfx¼ 598 Sfx2¼ 15964

Continued
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You can find the approximate values of the quartiles of a distribution from

a cumulative frequency graph or a cumulative relative frequency graph by

employing the same approach as we used to find the approximate value of the

median in section 3.2.5 of this chapter. The difference is that to approximate

the quartiles we start from points one-quarter and three-quarters the way up

the vertical scale.

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð23�1Þ � ½15964�ð598Þ2=23�

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=22 � ½15964�ð357604=23Þ�

p

¼
ffiffiffiffiffiffiffiffiffiffiffi
1=22

p
� ½15964�15548�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=22 � 416

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18:909
p

¼ 4:349 to three decimal places

You may like to work out the actual standard deviation using the original data from

Example 3.5. You should find that it is 3.843 to three decimal places.

Example 3.26
Use the cumulative relative frequency graph used in Example 3.13 to estimate the values

of the lower and upper quartiles for the distribution and produce an approximate value of

the semi-interquartile range.
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FIGURE 3.8 Cumulative relative frequency graph of the data from Example 3.5,

temperatures in Miami and the approximate Quartiles

Continued
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3.4 MEASURING QUALITY AND CONSISTENCY

In business enhancing product quality is important. This is often inter-

preted to mean increasing the consistency of the product, or to put it

another way, reducing the variation of the product. Measures of spread like

the standard deviation and the variance are important factors in product

quality because they measure variation. Increasing consistency may mean

implementing changes that reduce standard deviations or variances.

Monitoring quality may involve comparing current performance with

previous performance, which is described using a mean and standard

deviation.

One well-established way of monitoring quality is the control chart,

which is based on the distribution of the variable being measured to assess

quality. Such a chart consists of a horizontal line representing the mean of

the variable, which is the performance target, and lines three standard

deviations above and below the mean, which are the control limits. As

products are produced or services delivered they are measured and the

observations plotted on the chart. If a plotted point lies beyond either of the

control limits, the process is considered to be out of control and we need to

take corrective action or shut it down.

In Figure 3.8 the approximate value of the lower quartile is the point where the vertical

dotted line to the left meets the horizontal axis, at about 23. The approximate value of

the upper quartile is the point where the vertical dotted line to the right meets the

horizontal axis, at about 29. The semi-interquartile range is half the difference between

these two, 3.

If you look back at Example 3.17 you will see that the true values of the lower and upper

quartiles are 23 and 28 respectively, and that the semi-interquartile range is 2.5.

Example 3.27
A sandwich bar offers to serve customers in three minutes. Long experience has shown

that the mean service time is 2.8 min and the standard deviation is 0.15 min. Construct

a control chart using these figures and use it to assess the following sequence of

replacement times achieved by a trainee:

2.5 3.2 2.9 3 2.7 3.1 2.4 3.2 2.7 3.2 2.6 3.0 3.1 3.2 3.5
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In practice control charts are rather more complicated than in Example

3.27 because the monitoring process involves taking samples rather than

individual values, but the role of the standard deviation is essentially the same.

For a good introduction to statistical quality control, see Montgomery (2004).

Figure 3.9 shows that the service times are erratic but within the upper and lower control

limits (LCL and UCL respectively) until the last observation, which suggests the process is

going out of control, perhaps because the trainee is tiring.
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FIGURE 3.9 Control chart for Sandwich Bar Service Times

Test yourself questions from Warwick’s business enterprises

Fully worked solutions to these questions are on pages 327–328. You can find more

questions on the topics covered in this chapter at the accompanying website www.

elsevierdirect.com/9781856179478

3.1 (Easy)

The amount of the gratuity, to the nearest £, left by each of a sample of 25 customers

in Warwick’s restaurant were:

3 5 2 0 4 3 0 1 1 7 1 4 1

2 9 4 1 4 1 5 5 2 3 1 1

(a) Find the mode and median of this distribution.
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(b) Calculate the mean of the distribution and compare it to the mode and median.

What can you conclude about the shape of the distribution from this comparison?

(c) Produce a histogram to represent the distribution and confirm your conclusions in (b).

3.2 (Moderate)

The times taken in minutes by two housekeepers to clean and restock six rooms in

Warwick’s hotel were:

Housekeeper A: 39.0 31.8 35.5 33.4 26.6 30.0

Housekeeper B: 36.6 26.3 33.2 27.1 26.7 27.1

Calculate the mean and standard deviation for each set of data and use them to

compare the performance of the two housekeepers.

3.3 (Hard)

The number of people visiting Warwick’s club on each of a sample of 25 live music

nights and the number of people visiting the club on each of a sample of 25 disco

nights were recorded and the following comparative boxplot produced to portray the

two distributions.
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Study the diagram and say whether each of the statements beneath it is true or false.

(a) The largest number of clubbers was on a live music night.

(b) The range of the disco distribution is larger.

(c) There is one outlier, the lowest number of clubbers on a disco night.

(d) The middle half of the live music distribution is more symmetrically distributed.

(e) The largest number of clubbers on a disco night is less than the first quartile of

the live music distribution.

(f) The upper quartile of the number of clubbers on live music nights is about 660.

(g) The median of the disco distribution is about 400.
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CHAPTER 4

Summarizing Bivariate Data

Why do I need to know about this? Warwick the Hospitality
entrepreneur says.

‘This is all about making connections and these are often important.
When I priced the meals in my restaurants I was always aware of the
connection between price and demand. If my prices were too high I
would not sell as many meals. It seems obvious, but there is more to

it. What I wanted to know was exactly how strong was the
connection between price and demand, and how many fewer meals

would I sell if I set my prices at a particular level. This is where
correlation and regression can help.

Other important connections involve time. I needed to know how
costs of my supplies had gone up, which is where index numbers

come in. I had to know how much business we were doing month by
month, and how we were likely to do next month. This is what time

series analysis is all about.’

Chapter Objectives

This chapter will help you to:

- understand why summarizing bivariate data is important;

- investigate the connection between two variables;

- measure changes over time;

- adjust figures for the effects of inflation;

- analyse time series; and

- predict future values of time series.

CONTENTS

Introduction

Correlation and
Regression

Summarizing Data
Collected Over Time
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4.1 INTRODUCTION

Thischapter isabout techniquesthatyoucanuse tostudytherelationshipbetween

two variables. The type of data that these techniques are intended to analyse is

called bivariate data because they consist of observed values of two variables. The

techniques themselves make up what is known as bivariate analysis.

Bivariate analysis is of great importance to business. The results of this

sort of analysis have influenced many aspects of business significantly. When

the connection between smoking and health problems was established it

transformed the tobacco industry. The analysis of survival rates of micro-

organisms and temperature is crucial to the setting of appropriate refrigera-

tion levels by food retailers. Marketing strategies of many organizations are

often based on the analysis of consumer expenditure in relation to age or

income. Sometimes time itself is an important variable; for instance, the

timing of the promotion of patent medicines is based on analysing the

incidence of illnesses such as colds over time.

The chapter will introduce you to some of the techniques that organi-

sations use to summarize bivariate data. The first set of techniques you will

meet, correlation and regression, are general techniques that can be used

with any quantitative bivariate data. The second set of techniques, which

consists of price indices and basic time series analysis, are designed to

summarize sets of bivariate data in which one of the variables is time.

4.2 CORRELATION AND REGRESSION

Suppose you have a set of bivariate data that consists of observations of

one variable, X, and the associated observations of another variable, Y, and

you want to see if X and Y are related. For instance, the Y variable could

be sales of ice cream per day and the X variable the daily temperature,

and you want to investigate the connection between temperature and ice

cream sales. Correlation analysis enables us to assess whether there is

a connection between the two variables and, if so, how strong that

connection is.

If correlation analysis tells us there is a connection we can use regression

analysis to identify the exact form of the relationship. It is essential to know

this if you want to use the relationship to make predictions, for instance if we

want to predict the demand for ice cream when the daily temperature is at

a particular level.

The assumption that underpins bivariate analysis is that one variable

depends on the other. The letter Y is used to represent the dependent variable,
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the one whose values are believed to depend on the other variable. This other

variable, represented by the letter X, is called the independent variable. The Y

or dependent variable is sometimes known as the response because it is

believed to respond to changes in the value of the X. The X or independent

variable is also known as the predictor because it might help us to predict the

values of Y.

4.2.1 Correlation analysis

Correlation analysis is a way of investigating whether two variables are

correlated, or connected with each other. We can study this to some extent by

using a scatter diagram to portray the data, but such a diagram can only give

us a visual ‘feel’ for the association between two variables, it doesn’t actually

measure the strength of the connection. So, although a scatter diagram is the

thing you should begin with to carry out bivariate analysis, you need to

calculate a correlation coefficient, the Pearson correlation coefficient to be

precise, if you want an accurate way of assessing how closely the variables are

related.

The correlation coefficient is similar to the standard deviation in that it is

based on the idea of dispersion or spread. The comparison isn’t complete

because bivariate data are spread out in two dimensions; if you look at

a scatter diagram you will see that the points representing the data are

scattered both vertically and horizontally.

The letter r is used to represent the correlation coefficient of sample data.

Its Greek counterpart, the letter r (‘rho’), is used to represent the correlation

coefficient of population data. As is the case with other summary measures it

is exceedingly unlikely that you will ever have to find the value of a pop-

ulation correlation coefficient because of the cost and practical difficulty of

studying entire populations.

The correlation coefficient is a ratio; it compares the coordinated scatter

to the total scatter. The coordinated scatter is the extent to which the

observed values of one variable, X, vary in coordination with the observed

values of a second variable, Y. We use the covariance of the values of X and Y,

CovXY, to measure the degree of coordinated scatter.

To calculate the covariance you have to multiply the amount that each x

deviates from the mean of the X values, x, by the amount that its corre-

sponding y deviates from the mean of the Y values, y. That is, for every pair of

x and y observations you calculate:

ðx� xÞðy � yÞ
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The result will be positive whenever the x and y values are both

bigger than their means, because we will be multiplying two positive

deviations together. It will also be positive if both the x and y values are

smaller than their means, because both deviations will be negative and

the result of multiplying them together will be positive. The result will

only be negative if one of the deviations is positive and the other

negative.

The covariance is the total of the products from this process divided by n,

the number of pairs of observations, minus one. We have to divide by n�1

because the use of the means in arriving at the deviations results in the loss of

a degree of freedom.

Covxy ¼ Sðx� xÞðy � yÞ=ðn� 1Þ

The covariance is positive if values of X below x tend to be associated

with values of Y below y, and values of X above x tend to be associated with

values of Y above y. In other words, if high x values occur with high y

values and low x values occur with low y values we will have a positive

covariance. This suggests that there is a positive or direct relationship

between X and Y, that is, if X goes up we would expect Y to go up as well,

and vice versa. If you compared the income of a sample of consumers with

their expenditure on clothing you would expect to find a positive

relationship.

The covariance is negative if values of X below x are associated with

values of Y above y, and vice versa. The low values of X occur with the high

values of Y, and the high values of X occur with the low values of Y. This is

a negative or inverse relationship. If you compared the prices of articles of

clothing with demand for them you might expect to find an inverse

relationship.

Example 4.1

A shop sells six brands of light showerproof jacket. The prices in pounds and the numbers

sold in a week are:

Price 18 20 25 27 28 32

Number Sold 8 6 5 2 2 1

Plot a scatter diagram and calculate the covariance.

Continued

CHAPTER 4 : Summarizing Bivariate Data112



In Figure 4.1 Number sold has been plotted on the Y, or vertical, axis and Price has been

plotted on the X, or horizontal, axis. We are assuming that Number sold depends on Price

rather than the other way round.

To calculate the covariance we need to calculate deviations from the mean for every x and

y value.

x ¼ ð18þ 20þ 25þ 27þ 28þ 32Þ=6 ¼ 150=5 ¼ 25

y ¼ ð8þ 6þ 5þ 2þ 2þ 1Þ=6 ¼ 24=6 ¼ 4

Price (x) x ðx � xÞ Number Sold (y) y ðy � yÞ ðx � xÞðy � yÞ

18 25 �7 8 4 4 �28

20 25 �5 6 4 2 �10

25 25 0 5 4 1 0

27 25 2 2 4 �2 �4

28 25 3 2 4 �2 �6

32 25 7 1 4 �3 �21P
ðx � xÞðy � yÞ ¼ �69

Covariance ¼ Sðx � xÞðy � yÞ=ðn � 1Þ ¼ �69=5 ¼ �13:8
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FIGURE 4.1 Prices of jackets and numbers sold
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The other ingredient necessary to obtain a correlation coefficient is some

measure of total scatter, some way of assessing the horizontal and vertical

dispersion. We can do this by taking the standard deviation of the X values,

which measures the horizontal spread, and multiplying by the standard

deviation of the Y values, which measures the vertical spread.

The correlation coefficient, r, is the covariance of the X and Y values

divided by the product of the two standard deviations.

r ¼ CovXY=ðSx � SyÞ

There are two things to note about r at this stage:

- It can be either positive or negative because the covariance can be

negative or positive.

- It cannot be larger than 1 or �1 because the coordinated scatter,

measured by the covariance, cannot be larger than the total scatter,

measured by the product of the standard deviations.

As you can see calculating a correlation coefficient, even for a fairly simple

set of data, is quite laborious so generally we use computer software to do it.

Example 4.2

Calculate the correlation coefficient for the data in Example 4.1.

We need to calculate the sample standard deviations for X and Y.

Price (x) x ðx � xÞ ðx � xÞ2 Number sold (y) y ðy � yÞ ðy � yÞ2

18 25 �7 49 8 4 4 16

20 25 �5 25 6 4 2 4

25 25 0 0 5 4 1 1

27 25 2 4 2 4 �2 4

28 25 3 9 2 4 �2 4

32 25 7 49 1 4 �3 9

136 38

From Example 4.1: Covariance¼�13.8

Sample standard deviation of X : Sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðx � xÞ2=ðn � 1Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
136=5

p

¼ 5:22 to two decimal places

Sample standard deviation of Y : Sy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðy � yÞ2=ðn � 1Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffi
38=5

p

¼ 2:76 to two decimal places

Correlation coefficient : r ¼ ð�13:8Þ=ð5:22 * 2:76Þ ¼ ð�13:8Þ=14:41

¼ �0:96 to two decimal places

CHAPTER 4 : Summarizing Bivariate Data114



Store the data from Example 4.1

in two columns.

Excel Recipe Card – Correlation 

coefficients

Select Data Analysis from the

Tools menu.  (If you cannot find

Data Analysis click Add-Ins in

the Tools menu to check that

it is available.)

Choose Correlation from the list

of Analysis Tools then click OK.

Continued
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What should we conclude from the analysis of the data in Example 4.1?

The scatter diagram in Figure 4.1 shows that the points representing the data

lie almost along a straight line, in other words there is a pronounced linear

pattern. The diagram also shows that this linear pattern goes from the top-

left of the diagram to the bottom-right, suggesting that fewer of the more

expensive garments are sold. This means there is an inverse relationship

between the numbers sold and price.

What does the correlation coefficient in Example 4.2 tell us? The fact that it

is negative, �0.96, confirms that the relationship between the numbers sold

and price is indeed an inverse one. The fact that it is very close to the maximum

possible negative value that a correlation coefficient can take,�1 indicates that

there is a strong association between the variables.

The correlation coefficient measures linear correlation, the extent to

which there is a straight-line relationship between the variables. Every

correlation coefficient will lie somewhere on the scale of possible values,

which is between �1 and þ1 inclusive.

A correlation coefficient ofþ1 tells us that there is a perfect positive linear

association between the variables. If we plotted a scatter diagram of data that

have such a relationship we would expect to find all the points lying in the

Specify the cell locations of your 

data under Input Range: then 

click OK.  

The table that appears in the new 

sheet contains the correlation 

coefficient for data to five decimal 

places (-0.95982). The other figures, 

in each case 1, are coefficients 

measuring how correlated each 

variable is with itself, which is by 

definition completely.     
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form of an upward-sloping straight line. You can see this sort of pattern in

Figure 4.2. A correlation coefficient of �1 means we have perfect negative

correlation, which is illustrated in Figure 4.3.

In practice you are unlikely to come across a correlation coefficient of þ1

or �1, but you may well meet correlation coefficients that are positive and

fairly close to þ1 or negative and fairly close to �1. Such values reflect good

positive and good negative correlation respectively. Figure 4.4 shows a set of
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FIGURE 4.2 Perfect positive correlation
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FIGURE 4.3 Perfect negative correlation
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data with a correlation coefficient of þ0.9. You can see that although the

points do not form a perfect straight line they form a pattern that is clearly

linear and upward sloping.

Figure 4.5 portrays bivariate data that have a correlation coefficient of

�0.9. In this case you can see a clear downward linear pattern.

The closer your correlation coefficient is to þ1 the better the positive

correlation. The closer it is to �1, the better the negative correlation. It

follows that the nearer a correlation coefficient is to zero, the weaker the
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FIGURE 4.4 Good positive correlation
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FIGURE 4.5 Good negative correlation
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connection between the two variables. Figure 4.6 shows a sample of obser-

vations of two variables with a correlation coefficient of�0.1, which provides

little evidence for any correlation.

It is important to bear in mind that the correlation coefficient assesses the

strength of linear relationships between two variables. It is quite possible to

find a low or even zero correlation coefficient yet the scatter diagram shows

a strong connection. This happens when the relationship between the two

variables does not assume a linear form. Figure 4.7 shows that a clear
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FIGURE 4.6 Negligible correlation
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FIGURE 4.7 A non-linear relationship
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non-linear relationship exists between the variables yet the correlation

coefficient for the data it portrays is zero.

The things to remember about the sample correlation coefficient, r, are as

follows:

- It measures the strength of the connection or association between

observed values of two variables.

- It can take any value from �1 to þ1 inclusive.

- If it is positive it means there is a direct or upward-sloping relationship.

- If it is negative it means there is an inverse or downward-sloping

relationship.

- The further it is from zero, the stronger the association.

- It only measures the strength of linear relationships.

4.2.2 The Coefficient of determination

The square of the correlation coefficient is also used as a way of assessing the

connection between variables. Although it is the square of r, the symbol used

to represent it is actually R2. It is called the coefficient of determination

because it can help you to measure how much the values of one variable are

decided or determined by the values of another.

As we saw, the correlation coefficient is based on the standard deviation.

Similarly, the square of the correlation coefficient is based on the square of

the standard deviation, the variance.

Like the correlation coefficient, the coefficient of determination is a ratio;

the ratio of the amount of the variance that can be explained by the rela-

tionship between the variables to the total variance in the data. Because it is

a ratio it cannot exceed one and because it is a square it is always a positive

value. For convenience it is often expressed as a percentage.

Example 4.3

Calculate the coefficient of determination, R2, for the data in Example 4.1.

The correlation coefficient for the data was �0.96. The square of �0.96 is 0.92 (to two

decimal places) or 92%. This is the value of R2. It means that 92% of the variation in the

numbers of jackets sold can be explained by the variation in the prices.

CHAPTER 4 : Summarizing Bivariate Data120



You may find R2 an easier way to communicate the strength of the rela-

tionship between two variables. Its only disadvantage compared to the

correlation coefficient is that the figure itself does not convey whether the

association is positive or negative. However, there are other ways of showing

this, including the scatter diagram.

4.2.3 Simple linear regression analysis

Measuring correlation tells you how strong the linear relationship between

two variables might be but it doesn’t say exactly what that relationship is. If

we need to know the way in which two variables are related we use the other

aspect of bivariate analysis, regression analysis.

The simplest form of this technique, simple linear regression (which is often

abbreviated to SLR), enables us to find the straight line most appropriate for

representing the connection between two sets of observed values. Because the

line that we ‘fit’ to our data can be used to represent the relationship it is rather

like an average in two dimensions, it summarizes the link between the variables.

Simple linear regression is called simple because it analyses two variables,

it is called linear because it is about finding a straight line, but why is it called

regression, which actually means going backwards? The answer is that the

technique was first developed by the genetics pioneer Francis Galton, who

wanted a way of representing how the weights of sweet pea seeds were con-

strained or ‘regressed’ by the weight of their parent seeds.

In later workyoumayencounter multiple regression,which isused toanalyse

relationships between more than two variables, andnon-linear regression,which

is used to analyse relationships that do not have a straight-line pattern.

You might ask why it is necessary to have a technique to fit a line to a set

of data. It would be quite easy to look at a scatter diagram like Figure 4.1, lay

a ruler close to the points and draw a line to represent the relationship

between the variables. This is known as fitting a line ‘by eye’ and is a perfectly

acceptable way of getting a quick approximation particularly in a case like

Figure 4.1 where there are few points forming a clear linear pattern.

The trouble with fitting a line by eye is that it is inconsistent and unre-

liable. It is inconsistent because the position of the line depends on the

judgement of the person drawing the line; different people will produce

different lines for the same data.

For any set of bivariate data there is one line that is the most appropriate,

the so-called ‘best-fit’ line. There is no guarantee that fitting a line by eye will

produce the best-fit line, so fitting a line by eye is unreliable.

We need a reliable, consistent way of finding the line that best fits a set of

plotted points, which is what simple linear regression analysis is. It is

Correlation and Regression 121



a technique that finds the line of best fit, the line that travels as closely as

possible to the plotted points. It finds the two defining characteristics of that

line, its intercept, or starting point, and its slope, or rate of increase or

decrease. These are illustrated in Figure 4.8.

We can use these defining characteristics to compose the equation of the

line of best fit, which represents the line using symbols. The equation

enables us to plot the line itself.

Simple linear regression is based on the idea of minimizing the differ-

ences between a line and the points it is intended to represent. Since all the

points matter, it is the sum of these differences that needs to be minimized.

In other words, the best-fit line is the line that results in a lower sum of

differences than any other line would for that set of data.

The task for simple linear regression is a little more complicated because the

difference between a point and the line is positive if the point is above the line,

and negative if the point is below the line. If we were to add up these differences

we would find that the negative and positive differences cancel each other out.

This means the sum of the differences is not a reliable way of judging how

well a line fits a set of points. To get around this problem, simple linear

regression is based on the squares of the differences because they will always

be positive. This is illustrated in Example 4.4.

Example 4.4

The sales of ice cream in a shop (in kilos) and the midday temperatures (in degrees

Celsius) for 3 days were:

Sales (Y) 4 3 6

Temperature (X) 15 20 25

Figures 4.9 and 4.10 show possible lines of best fit for these data, but which of the two

lines best fits the data?

Slope (b)

Intercept (a)

FIGURE 4.8 The intercept and slope of a line
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The deviations between the points and the line in Figure 4.9 are, from left to right, þ1.5,

�1.5 and 0. The total deviation is:

þ1:5þ ð�1:5Þ þ 0 ¼ 0
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FIGURE 4.9 Sales and temperature

7 

6 

5 

4 

3 

2 

1 

0 

10 20 30 
Temperature

S
a
l
e
s
 

FIGURE 4.10 Sales and temperature

Continued
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The best-fit line that simple linear regression finds for us is the line that

takes the path which results in there being the least possible sum of squared

differences between the points and the line. For this reason the technique is

sometimes referred to as least squares regression.

As you might imagine, for any given set of data there are many lines from

which the best-fit line could be chosen. To pick the right one we could plot

each of them in turn and measure the differences using a ruler. Fortunately,

such a laborious procedure is not necessary; simple linear regression uses

calculus, the area of mathematics that is partly about finding minimum or

maximum values, to find the intercept and slope of the line of best fit directly

from the data.

The procedure involves using two expressions to find first the slope and

then the intercept. Since simple linear regression is almost always used to

find the line of best fit from a set of sample data the letters used to represent

the intercept and the slope are a and b, respectively. The equivalent Greek

letters, a and b, are used to represent the intercept and slope of the population

line of best fit.

According to simple linear regression analysis the slope of the line of best

fit is:

b ¼ Sxy � ðSx � SyÞ=n
Sx2 � ðSxÞ2=n

and the intercept is:

a ¼ ðSy � bSxÞ=n

The deviations between the points and the line in Figure 4.10 are, from left to right, þ1,

�1 and þ1. The total deviation is:

þ1þ ð�1Þ þ 1 ¼ 1

The fact that the total deviation is smaller for Figure 4.9 suggests that its line is the better

fit. But if we take the sum of the squared deviations the conclusion is different.

Total squared deviation in Figure 4.9 ¼ 1:52 þ ð�1:5Þ2 þ 02 ¼ 2:25þ 2:25þ 0 ¼ 4:5

Total squared deviation in Figure 4.10 ¼ 12 þ ð�1Þ2 þ 12 ¼ 1þ 1þ 1 ¼ 3

This apparent contradiction has arisen because the large deviations in Figure 4.9 cancel

each other out when we add them together.
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These results can then be combined to give the equation of the line of

best fit, which is known as the regression equation:

Y ¼ aþ bX

The expressions for getting the slope and intercept of the line of best fit

look daunting, but this need not worry you. If you have to find a best-fit line

you can use a statistical or a spreadsheet package, or even a calculator with

a good statistical facility to do the hard work for you. The expressions are

quoted here, and used in Example 4.5 below merely to show you how the

procedure works.

This is a laborious procedure, even with a relatively simple set of data so

in practice we use a computer package to find and plot the equation of the line

of best fit.

Example 4.5

Find the equation of the line of best fit for the data in Example 4.1.

We need to find four summations; the sum of the x values, the sum of the y values, the

sum of the x squared values and the sum of the products of each pair of x and y values

multiplied together. We also need to know n, the number of pairs of observations.

Price (x) x2 Number Sold (y) xy

18 324 8 144

20 400 6 120

25 625 5 125

27 729 2 54

28 784 2 56

32 1024 1 32

Sx¼ 150 Sx2¼ 3886 Sy¼ 24 Sxy¼ 531 n¼ 6

b ¼ Sxy � ðSx � SyÞ=n
Sx2 � ðSxÞ2=n

¼ 531� ð150 � 24Þ=6
3886� ð150Þ2=6

¼ 531� 3600=6

3886� 22500=6

¼ 531� 600

3886� 3750
¼ �69

136
¼ —0:507 to three decimal places

a ¼ ðSy � bSxÞ=n ¼ ð24� ð�0:507Þ150Þ=6 ¼ ð24þ 76:103Þ=6

¼ 100:103=6 ¼ 16:684 to three decimal places

The equation of the line of best fit is therefore Number sold ¼ 16:684� 0:507 Price
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Store the data from Example 4.1

in two columns of the spreadsheet.

Excel Recipe Card – Simple

linear regression

Select Data Analysis from the

Tools menu.

Choose Regression from the list 

of Analysis Tools then click OK. 
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Specify the cell locations of the 

number sold in the space to the 

right of Input Y Range and the cell 

locations of the prices in the space 

to the right of Input X Range. 

Click OK. 

The output has the intercept and 

slope of the regression line in the 

column headed Coefficient to the 

bottom left which has the Intercept, 

16.68382 in the first row and the 

slope, -0.50735 labelled X variable 

in the second. These are the results 

obtained in Example 4.5, but given 

more precisely. They are the 

components of the regression 

equation: 

 

Number sold = 16.68382 – 0.50735 

Price 

Follow the first three steps of the

Simple linear regression recipe

card.

In the Regression window specify

the cell locations of the numbers

sold in the space to the right of

Input Y Range and the cell locations

of the prices in the space to the right

of Input X Range. Tick the box

beside Line Fit Plots then click OK.

Excel Recipe Card – Fitted line

plots

Continued
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The Line Fit Plot appears to the

right of the regression output.

Enlarge the diagram and right click

on one of the Predicted Y points.

In the menu that appears choose

Format Data Series. 

In the next window select Automatic 

under Line and None under Marker 

then click OK.   
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Change the titles by right clicking on

the diagram. Choose Chart Options

from the menu that appears. 

Excel Recipe Card – 

Embellishing fitted line plots

Continued
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To embellish the diagram type in

chart and axis titles in the Chart

Options window. 

Click the Legend tab, untick Show 

Legend then click OK.   

To stretch the horizontal scale, put 

the cursor on the horizontal axis, 

right click and choose Format Axis 

from the menu. 

CHAPTER 4 : Summarizing Bivariate Data130



The equation of the line of best fit is also known as the regression

equation. It is the regression ‘model’ that represents how the two variables

are connected based on the sample evidence in Example 4.1. It is the best

linear model that can be found for that set of data.

We can use the equation to predict values of Y that should occur with

values of X. These are known as expected values of Y because they are what

the line leads us to expect to be associated with the X values. The symbol ŷ, ‘y-

hat’, is used to represent a value of Y that is predicted using the regression

equation, so that we can distinguish it from an actual y value.

That is, the regression equation Y ¼ aþ bX can be used to predict an

individual y value that is expected to occur with an observed x value:

by ¼ aþ bx

In the Format Axis window click the 

Scale tab, untick the box to the left 

of Minimum under Auto and type in 

a figure less than the lowest price 

e.g. 15.  
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4.3 SUMMARIZING DATA COLLECTED OVER TIME

Data collected over time, known as time series, are very important for

monitoring business performance and developing business strategies. For

instance, such data can reveal trends in consumer expenditure and taste that

companies need to follow.

Businesses use information based on data collected by other agencies over

time to help them understand and evaluate the environment in which they

operate. Perhaps the most important and widespread example of this is the

use of index numbers to monitor general trends in prices and costs. For

Example 4.6

Use the regression equation for the data from Example 4.1, shown in Figure 4.11, to find

how many new jackets the shop can expect to sell if they are priced at £23.50.

The regressionequation tellsus that theNumbersold is16.684 less0.507 times thePrice, that is

Number sold ¼ 16:684� 0:507 Price

If we put the figure ‘23.5’ where the word ‘Price’ appears in the equation we can work out

what, according to the equation, the Number sold should be.

Number sold ðif price is 23:5Þ ¼ 16:6838� 0:507353 ð23:5Þ
¼ 16:6838� 11:9228

¼ 4:761 to three decimal places

This suggests that the number sold will be 5, as jackets sales must be in whole numbers.
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FIGURE 4.11 Fitted line plot of jackets and numbers sold
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instance, in the UK the Retail Price Index (RPI) is used as a benchmark figure

in the context of wage bargaining, and share price indices like the FTSE100,

Dow Jones and Nikkei indices are reference points for financial decisions that

companies make.

Businesses also produce a variety of data that are collected over time in

order to understand and communicate their progress. For instance, every

company report contains charts and tables showing data that demonstrate

its development over the period of a year: sales, profits, number of

employees, etc.

4.3.1 Index numbers

Most businesses attach a great deal of importance to changes in the costs

of things they buy and the prices of things they sell. During periods of

high inflation these changes are more dramatic, in periods of low inflation they

are modest. Over recent decades, when the level of inflation has fluctuated so

much, companies have got used to tracking general price and cost movements

carefully. To help them do this they have turned to index numbers.

Index numbers can be used to represent movements of many things

over time in a series of single figures. A simple index number is the value

of something at one point in time, maybe the current value, in relation to

its value at another point in time, the base period, multiplied by 100

to give a percentage (although the percent sign is not usually written

alongside it).

Simple price index ¼ Current price

Base period price
�100¼ pc

p0
�100

In this expression, pc is the price in the current year and p0 the price in

the base year (i.e., period 0).

Example 4.7

Full exhaust systems cost a garage proprietor £156 each in 2009. They cost £125 in 2006.

Calculate a simple price index to represent the change in price over the period.

Simple price index ¼ Current price

Base period price
� 100¼ pc

p0
�100

¼ 156

125
� 100 ¼ 124:8

This tells us that the price of an exhaust system has increased by 24.8% over this period.
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Businesses usually buy and sell more than a single item so this type of

index number is of limited use. Of much greater importance are aggregate

indices that summarize price movements of many items in a single

figure.

We can calculate a simple aggregate price index for a combination of goods

by taking the sum of the prices for the goods in the current period and

dividing it by the sum of the prices of the same goods in the base period.

That is:

Simple aggregate price index¼
P

pcP
p0
�100

The result we obtained in Example 4.8 may well be more useful because it

is an overall figure that includes all the commodities. However, it does not

differentiate between prices of items that may be purchased in greater

quantity than other items, which implies that their prices are of much

greater significance.

In a simple aggregate price index each price is given equal prominence,

you can see in Example 4.8 that each price appears once in the expression. Its

numerical ‘clout’ depends simply on whether it is a large or small price. In

Example 4.8 the result, 125.3, is close to the value of the simple price index

of the exhaust system calculated in Example 4.7, 124.8. This is because the

exhaust system happens to have the largest price in the set of items.

Example 4.8

The garage proprietor in Example 4.7 regularly buys exhaust systems, car batteries and

tyres. The prices of these items in 2007 and 2010 were:

2007 2010

Exhaust system £125 £156

Battery £25 £35

Tyre £28 £32

Calculate a simple aggregate price index to compare the prices in 2010 to the prices in

2007. Simple aggregate price index:
P

pcP
p0
� 100 ¼ ð156þ 35þ 32Þ

ð125þ 25þ 28Þ � 100 ¼ 223

178
� 100

¼ 125:3 to one decimal place

This result indicates that prices paid by the garage proprietor increased by 25.3% from

2007 to 2010.
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In practice the importance of the price of an item is a reflection of the

quantity that is bought as well as the price itself. To measure changes in

movements of prices in a more realistic way we need to weight each price in

proportion to the quantity purchased. We can then calculate a weighted

aggregate price index.

There are two ways we can do this. The first is to use the quantity figure

from the base period, represented by the symbol q0, to weight the price of

each item. This type of index is known as the Laspeyre price index. To

calculate it we need to work out the total cost of the base period quantities at

current prices, divide that by the total cost of the base period quantities at

base period prices, and multiply the result by 100:

Laspeyres price index¼
P

q0pcP
q0p0

�100

The Laspeyre technique uses quantities that are historical. The advan-

tage of this is that such figures are usually readily available. The disadvan-

tage is that they may not accurately reflect the quantities used in the current

period.

The alternative approach, which is more useful when quantities used

have changed considerably, is to use quantity figures from the current

period, represented by the symbol qc. This type of index is known as the

Paasche price index. To calculate it you work out the total cost of the

current period quantities at current prices, divide that by the total cost of

Example 4.9

The garage records show that in 2007, 50 exhaust systems, 400 batteries and 1000 tyres

were purchased. Use these figures and the price figures from Example 4.8 to produce

a Laspeyre price index to compare the prices of 2010 to those of 2007.

P
q0pcP
q0p0

� 100¼ ð50 � 156Þ þ ð400 � 35Þ þ ð1000 � 32Þ
ð50 � 125Þ þ ð400 � 25Þ þ ð1000 � 28Þ �100

¼ 53800

44250
� 100

¼ 121:6 to one decimal place

This suggests that the prices have increased by 21.6% between 2006 and 2009.

The result is lower than the figure obtained in Example 4.9, 125.3, because the exhaust

system price has the lowest weighting and tyres, which have the lowest price change, have

the highest weighting.
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the current period quantities at base period prices, and multiply the result

by 100:

Paasche price index ¼
P

qcpcP
qcp0

� 100

The advantage of using a Paasche price index is that the quantity figures

used are more up to date and therefore realistic. But it is not always possible

to get current period quantity figures, particularly when there is a wide range

of items and a large number of organizations or consumers that buy them.

The other disadvantage of using the Paasche price index is that new

quantity figures must be available for each period we want to compare with

the base period. If the garage proprietor wants a Paasche price index for prices

in 2011 compared to 2007 you could not provide one until you know both the

quantities and the prices used in 2011. In contrast, to calculate a Laspeyre

price index for 2011 you only need to know the prices in 2011 because you

would use quantities from 2007.

If you look carefully at Examples 4.9 and 4.10 you will see that whichever

index is used the same quantity figures weight the prices from the different

years. This is an important point; they are price indices and they compare

prices over the time period, not quantities.

Organizations tend to use index numbers that have already been

compiled rather than construct their own. Probably the most common use of

index numbers that you will meet is in the adjustment of financial amounts

to take into account changes in price levels.

A sum of money in one period is not necessarily the same as the same

amount in another period because its purchasing power changes. This means

Example 4.10

In 2010 the garage purchased 50 exhaust systems, 600 batteries and 750 tyres. Use

these figures and the price figures from Example 4.8 to produce a Paasche price index to

compare the prices of 2010 to those of 2007.

P
qcpcP
qcp0

� 100 ¼ ð50 � 156Þ þ ð600 � 35Þ þ ð750 � 32Þ � 100

ð50 � 125Þ þ ð600 � 25Þ þ ð750 � 28Þ

¼ 52800

42250
� 100 ¼ 125:0 to one decimal place

This result suggests that the prices have increased by 25.0% between 2007 and 2010.

The figure is higher than the result in Example 4.9 because there is a greater weighting on

the battery price, which has changed most, and a lower weighting on the tyre price, which

has changed least.
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that if we want to compare an amount from one period with an amount from

another period we have to make some adjustment for price changes. The

most common way of doing this in the UK is to use the Retail Price Index

(RPI), an index the UK Office for National Statistics (ONS) calculates to

monitor price changes, changes in the cost of living.

4.3.2 Basic time series analysis

Organizations collect time series data, which are data made up of observa-

tions taken at regular intervals, as a matter of course. Look at the operations

of any organization and you will usually find figures such as daily receipts,

weekly staff absences and monthly payroll. If you look at the reports it

produces to present its performance you will find more time series data such

as quarterly turnover and annual profit.

Sometimes each observed value of a time series is only looked at when it

is collected. But often organizations need to look at the sequence that is

unfolding as more observed values are collected. This can help them review

Example 4.11

The annual salary of the manager of a sports goods store changed in the following way

between 2006 and 2009. Use the RPI figures for those years to see whether the increases

in her salary have kept up with the cost of living.

2006 2007 2008 2009

Salary (£000) 34 36 38 40

RPI (1987¼ 100) 198.1 206.6 214.8 212.6

(Source: ‘Retail Price Index’, ONS. Crown Copyright. Reproduced with the permission of HMSO

and the Queen’s Printer for Scotland.)

We can ‘deflate’ the figures for 2007, 2008 and 2009 so that they are expressed in ‘2006

pounds’ by multiplying each of them by the ratio between the RPI for 2006 and the RPI for

the year concerned.

Adjusted 2007 salary ¼ 36 � 198:1=206:6

¼ 34:519 to three decimal places; i:e: £34; 519

Adjusted 2008 salary ¼ 38 � 198:1=214:8

¼ 35:046 to three decimal places; i:e: £35;046

Adjusted 2009 salary ¼ 40 � 198:1=212:6

¼ 37:272 to three decimal places; i:e: £37;272

These results suggest that her salary has increased more than the cost of living throughout

the period.
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their performance over the period covered by the time series and it can help

them predict future values of the time series.

It is possible to do both of these things using a time series chart, a graph

that shows the progression of observations in a time series. You can look for

an overall movement, a trend, and recurrent fluctuations around the trend.

This is a good way to get a ‘feel’ for the way the time series is behaving, but

to analyse a time series properly we need to use a more systematic approach.

One way of doing this is called decomposition, which involves breaking down

or decomposing the series into different parts. This approach is suitable for

time series data that has a repeated pattern, which includes many time series

that occur in business.

The decomposition approach assumes that a time series is made up, or

composed, of three types of parts, or components. These are as follows:

- A trend, an underlying long-term movement in the series.

- A recurrent component, which may be daily, weekly, monthly,

seasonal or cyclical.

- An error, the amount that isn’t part of either the trend or recurrent

components.

The type of recurrent component we find in a time series depends on

how regularly the data are collected. We would expect to find daily

components in data collected each day, weekly components in data

collected each week and so on. Seasonal components are usually a feature of

data collected quarterly, whereas cyclical components, patterns that recur

over many years, crop up in data collected annually.

It is possible that a time series includes more than one recurrent

component, for instance weekly figures may exhibit a regular monthly fluc-

tuation as well as a weekly one. However, usually the decomposition of a time

series involves looking for the trend and just one recurrent component.

Example 4.12

The revenue (in pounds) from newspaper sales at a new service station for the morning,

afternoon and evening periods of the first 3 days of operation are:

Morning Afternoon Evening

Day 1 320 92 218

Day 2 341 101 224

Day 3 359 116 272

Construct a time series chart and examine it for evidence of a trend and a recurrent

component for parts of the day.
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The first stage we take in decomposing a time series is to try to separate

out the trend. We can do this by calculating a set of moving averages for the

series. Moving averages are sequential, they are averages calculated from

sequences of values in a time series.

A moving average (MA) is the mean of one of each time period in the time

series. For the data in Example 4.12 each moving average will be the mean of

one morning figure, one afternoon figure and one evening figure. Because in

this case the moving average is calculated from three observations it is called

a three-point moving average.

The first moving average in the set will be the mean of the figures for

the first day. The second moving average is the mean of the figures from

the afternoon and evening of the first day and the morning of the second

day. The result will still be the mean of three figures, one from each part

of the day. We continue doing this, dropping the first value of the

sequence out and replacing it with a new figure until we reach the end of

the series.

If you look carefully at Figure 4.12 you can see that there is a gradual upward drift in the

points that represent the time series. This suggests that the trend is that the revenue from

newspaper sales is increasing.

You can also see that within the figures for each day there is considerable variation. The

points for the mornings tend to peak whilst the figures for the afternoons tend to dip.
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FIGURE 4.12 Newspaper sales revenue over 3 days
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If you count the number of moving averages in Example 4.13 you will find

there are only seven, two less than the number of observations in the time

series. This is because each moving average summarizes three observations

that come from different points in time.

Like any other average, we can think of a moving average as being in the

middle of the set of data from which it has been derived. In the case of moving

averages we think of them as belonging to the middle of the period covered by

the observations that we used to calculate it. The first moving average

therefore belongs to the afternoon of the first day because that is the middle of

the three parts of the day whose observed values were used to calculate it.

If the first moving average belongs to the first afternoon, we don’t have

a moving average that belongs to the first morning. Similarly, the last moving

average belongs to the last afternoon and we have no moving average for the

last evening.

The process of positioning the moving averages in line with the middle of

the observations they summarize is called centring.

Example 4.13

Calculate moving averages for the data in Example 4.12.

The first MA ¼ ð320þ 92þ 218Þ=3 ¼ 630=3 ¼ 210

The second MA ¼ ð92þ 218þ 341Þ=3 ¼ 651=3 ¼ 217

The third MA ¼ ð218þ 341þ 101Þ=3 ¼ 660=3 ¼ 220

and so on.

The complete set of moving averages is:

210 217 220 222 228 233 249

Example 4.14

Centre the moving averages in Example 4.13.

Day Time Revenue Moving Average

1 am 320

1 pm 92 210

1 eve 218 217

2 am 341 220

2 pm 101 222

2 eve 224 228

3 am 359 233

3 pm 116 249

3 eve 272

CHAPTER 4 : Summarizing Bivariate Data140



The process of centring is a little more complicated if you have a time

series with a periodicity of four, that is, where each larger time period is split

into four periods as in quarterly data. To centre the moving averages for

quarterly data you have to split the difference between two moving averages

because the moving averages you calculate are ‘out of phase’ with the time

series observations.

Continued

Example 4.15

Calculate and centre the moving averages for the data below. They are the sales of

beachwear (in £000s) in a UK department store over 2 years.

Winter Spring Summer Autumn

Year 1 14.2 31.8 33.0 6.9

Year 2 15.3 34.7 36.2 7.3

Moving averages for these figures will be four-point moving averages.

First MA ¼ ð14:2þ 31:8þ 33:0þ 6:9Þ=4 ¼ 85:9=4 ¼ 21:475

Second MA ¼ ð31:8þ 33:0þ 6:9þ 15:3Þ=4 ¼ 87:0=4 ¼ 21:75

and so on.

Year Quarter Sales Moving Average

1 Winter 14.2

1 Spring 31.8
21.475

1 Summer 33.0
21.750

1 Autumn 6.9
22.475

2 Winter 15.3
23.275

2 Spring 34.7
23.375

2 Summer 36.2

2 Autumn 7.3

The moving averages straddle two quarters because the middle of four periods is between

two of them. To centre them, that is, to bring them in line with the series itself, we have to

split the difference between pairs of them.

The centred four-point MA for the Summer of Year 1 ¼ ð21:475þ 21:750Þ=2
¼ 21:6125
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Centring moving averages is important because the moving averages are

the figures that we need to use as estimates of the trend at particular points in

time. We want to be able to compare them directly with observations in order

to separate out other components of the time series.

The procedure we adopt to separate the components of a time series

depends on how we assume they are combined in the observations. The

simplest case is to assume that the components are added together, that is,

each observation, y, is the sum of a set of components:

y ¼ Trend component ðTÞ þ Recurrent component ðRÞ
þ Error component ðEÞ

This is called the additive model of a time series. You may also come across

the multiplicative model. If you want to analyse a time series which you assume

is additive, you have to subtract the components from each other to decompose

it. If you assume it is multiplicative, you have to divide to decompose it.

We begin the process of decomposing a time series assumed to be additive

by subtracting the centred moving averages, the estimated trend values, from

the observations they sit alongside. What we are left with are deviations from

the trend, a set of figures that contains only the recurrent and error

components, that is,

The centred four-point MA for the Autumn of Year 1 ¼ ð21:750þ 22:475Þ=2
¼ 22:1125

and so on.

Year Quarter Sales Moving Average Centred Moving Average

1 Winter 14.2

1 Spring 31.8
21.475

1 Summer 33.0
21.750

21.6125

1 Autumn 6.9
22.475

22.1125

2 Winter 15.3
23.275

22.8750

2 Spring 34.7
23.375

23.3250

2 Summer 36.2

2 Autumn 7.3

ðy � TÞ ¼ Rþ E
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The next stage is to arrange these y� T results by the parts of the day

and calculate the mean of the deviations from the trend for each part of the

day. These will be our estimates for the recurrent component for each part of

the day, the differences we expect between the trend and the observed value

in each part of the day.

Example 4.16

Subtract the centred moving averages in Example 4.13 from the observations in

Example 4.12.

Day Time Revenue (y) Moving Average (T) y� T

1 am 320

1 pm 92 210 �118

1 eve 218 217 1

2 am 341 220 121

2 pm 101 222 �121

2 eve 224 228 �4

3 am 359 233 126

3 pm 116 249 �133

3 eve 272

Example 4.17

Find the estimates for the recurrent daily components from the figures in Example 4.16.

What do they tell us about the pattern of newspaper sales?

Morning Afternoon Evening

Day 1 y� T �118 1

Day 2 y� T 121 �121 �4

Day 3 y� T 126 �133

The estimated components for the parts of the day are:

In mornings ð121þ 126Þ=2 ¼ 123:5

In afternoons ðð�118Þ þ ð�121Þ þ ð�133ÞÞ=3 ¼ �124:0

In evenings ð1þ ð�4ÞÞ=2 ¼ �1:5

These three figures (123.5, �124.0 and �1.5) add up to�2. Because they are variations

around the trend they really should add up to zero, otherwise when they are used together

they suggest a deviation from the trend. To overcome this problem, we simply divide the

Continued
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We can take the analysis a stage further by subtracting the recurrent

components, R, from the y� T figures to isolate the error components, E:

E ¼ y � T � R

The error terms enable us to review the performance over the period. A

large negative error component suggests that we have underperformed in that

period and might lead us to investigate reasons that may explain why. A large

positive error component suggests that we have performed better than

expected and we would look for reasons to explain the success. This type of

evaluation should enable us to improve the performance because we can

total by 3, as there are three recurrent components, and add this amount to each

component. After this modification the components should add up to zero:

Adjusted morning component ¼ 123:5þ 0:667 ¼ 124:167

Adjusted afternoon component ¼ �124:0þ 0:667 ¼ �123:333

Adjusted evening component ¼ �1:5þ 0:667 ¼ �0:833
0:001

The adjusted components do not add up to precisely zero because two adjusted

components have been rounded down and one rounded up. Nevertheless the results sum

to very nearly zero.

These components suggest that newspaper sales are regularly higher in mornings, lower

in the afternoons and almost the same as the trend in the evenings.

Example 4.18

Find the error components for the data in Example 4.12 using the table produced in

Example 4.16 and the recurrent components from Example 4.17.

Day Time Revenue (y) Moving Average (T) y� T R E¼ (y� T)�R

1 am 320

1 pm 92 210 �118 �123.333 5.333

1 eve 218 217 1 �0.833 1.833

2 am 341 220 121 124.167 �3.167

2 pm 101 222 �121 �123.333 2.333

2 eve 224 228 �4 �0.833 �3.167

3 am 359 233 126 124.167 1.833

3 pm 116 249 �133 �123.333 �9.667

3 eve 272
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tackle the factors that lead us to underperform and build on the factors that

lead us to perform well.

Occasionally, the analysis of a time series results in a very large error

component that reflects the influence of some unusual and unexpected

external influence such as a fuel shortage or a sudden rise in exchange

rates. You can usually spot the impact of such factors by looking for

prominent peaks or troughs, sometimes called spikes when the series is

plotted.

The error components in Example 4.18 suggest that newspaper sales in

the morning of the second day were disappointing compared to the

morning sales on the third day. Perhaps, copies of a particular paper did not

arrive on the second day. The evening sales on the second day were

disappointing compared to the evening sales on the first day. The afternoon

sales were good on the first day, reasonable on the second but poor on the

third.

As well as using the results of decomposition to review performance we

can use them to construct forecasts for future periods. There are two stages

in doing this. The first is to project the trend into the periods we want to

predict, and the second is to add the appropriate recurrent components to

the trend projections. We can represent the process as:

by ¼ T þ R

where by is the estimated future value, and T and R are the trend and

recurrent components, respectively. You can see there is no error

component. The error components are, by definition, unpredictable.

You could produce trend projections by plotting the centred moving

averages and fitting a line to them by eye, then simply continuing the line

into the future periods you want to predict. However, a much better way

is to use regression analysis to get the equation of the line that best fits

the moving averages and using the equation to project the trend. The

regression equation in this context is called the trend line equation.

Example 4.19

Find a trend line equation for the moving averages in Example 4.14 and use the equation

to predict the trend values on day 4 and construct forecasts for day 4 by adding the

recurrent components from Example 4.17.

We have to use numbers for the regression analysis so we cannot use the names of the

parts of the day. Instead we number the periods, starting with period 1 for the morning of

day 1, period 2 for the afternoon of day 1 and so on.
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Forecasts like the ones we have obtained in Example 4.19 can be used as

the basis for setting budgets, for assessing future order levels and so forth. In

practice computer software would be used to derive them.

Store the time period and revenue

data from Example 4.12 in two

columns in chronological order

and highlight both columns.

Excel Recipe Card – Time series

charts with trend lines

MA 210 217 220 222 228 233 249

Period 2 3 4 5 6 7 8

Using regression analysis the trend line equation is:

Trend ¼ 197:54þ 5:61 Period

Day 4 will consist of periods 10 to 12.

Forecast trend at period 10 ðam day 4Þ ¼ 197:54þ 5:61 ð10Þ ¼ 253:64

Forecast trend at period 11 ðpm day 4Þ ¼ 197:54þ 5:61 ð11Þ ¼ 259:25

Forecast trend at period 12 ðeve day 4Þ ¼ 197:54þ 5:61 ð12Þ ¼ 264:86

Adding the appropriate recurrent components gives the forecast values for day 4:

Forecast for period 10 ðam day 4Þ ¼ 253:64þ 124:167

¼ 377:807 round to £377:81

Forecast for period 11 ðpm day 4Þ ¼ 259:25þ ð�123:333Þ
¼ 135:917 round to £135:92

Forecast for period 12 ðeve day 4Þ ¼ 264:86þ ð�0:833Þ
¼ 264:027 round to £264:03
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Select Chart from the Insert menu. 

Select Line as the Chart Type and 

Line with markers, the default 

selection as the chart sub-type 

then click Next.  

The initial chart appears in the next 

window. Click Finish.  

Continued
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In this section we have concentrated on using one technique, decompo-

sition to analyse time series data. Time series analysis is a large field that

contains a variety of techniques. If you want to read more about it, Chatfield

(2003) is a useful introductory text.

Right click on the line connecting the

points in the chart and a menu will

appear. Choose Add Trendline.

From the selection of lines under

Type choose Linear. Click OK to

put the chart in the spreadsheet.
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Test yourself questions from warwick’s business enterprises

Fully worked solutions to these questions are on pages 328–333. You can find more

questions on the topics covered in this chapter at the accompanying website www.

elsevierdirect.com/9781856179478.

4.1 (Easy)

(a) The following pairs of variables occurred in Warwick’s businesses. Consider in

each case whether the relationship would produce a positive or a negative

correlation coefficient.

(i) The price of hotel rooms and the demand for them.

(ii) The amount of gas or electricity used in a restaurant kitchen and the

number of hot meals served.

(iii) The temperature and the sales of beer.

(iv) The age of adults and the number of times they go clubbing.

(v) The number of customers in pubs and the size of the pub car parks.

(vi) The income people have and the amount they spend on eating out.

(b) To make pizzas in his restaurant Warwick purchases cheese, pepperoni and

tomato paste. The prices of these ingredients in 2006, 2008 and 2010 were:

Year

Ingredient 2006 2008 2010

Cheese (per kg) £1.95 £2.65 £2.85

Pepperoni (per kg) £2.55 £2.87 £3.15

Tomato paste (per litre) £0.60 £1.10 £1.35

(i) Calculate a simple aggregate price index for the prices in 2008 and 2010

using 2006 as the base period.

(ii) What additional information would you need in order to calculate

a weighted aggregate price index to measure these price changes?

4.2 (Moderate)

(a) A consumer organization has used mystery guests to rate 10 hotels in a town

where Warwick has a hotel. The cost per room and the score (out of 100)

awarded to them by the mystery guests are:

Price (£) 95 69 18 32 27 70 49 35 50 29

Score 74 63 28 33 37 58 38 43 50 31

Continued

Summarizing Data Collected Over Time 149



(i) Plot a scatter diagram to portray the data taking score as the dependent

variable.

(ii) Determine the correlation coefficient and assess its value.

(b) The amounts of the pizza ingredients used in Warwick’s restaurant in 2006 and

2010 were:

Cheese (kg) Pepperoni (kg) Tomato Paste (litre)

2006 490 150 315

2010 575 135 220

(i) Use these figures and the price data from question 4.1 (b) to work out

values of the Laspeyres and Paasche indices for the prices in 2010 in

relation to the prices in 2006.

(ii) Compare the Laspeyres and Paasche figures and explain why they differ.

4.3 (Hard)

(a) For the data in question 4.2 (a)

(i) Find the equation of the line of best fit using simple linear regression.

(ii) Plot the line of best fit on the scatter diagram you produced for 4.2 (a).

(iii) Use the regression equation from (i) to predict the score that a mystery

guest would give Warwick’s hotel if the price of a room there were £60.

(b) Sales of alcoholic beverages at Warwick’s beer tent at a summer music festival

during the first 3 days of the event were:

Day Morning Afternoon Evening

1 204 450 939

2 261 459 1056

3 315 522 1113

(i) Plot a graph to display the time series.

(ii) Calculate three-point moving averages for the series.

(iii) Determine the recurrent components for each part of the day.

(iv) Find estimates for the values of the trend in day 4 using regression

analysis.

(v) Compile forecasts for the sales that can be expected on each part of day 4.
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CHAPTER 5

Assessing Risk

Why do I need to know about this? Warwick the Hospitality
entrepreneur says.

‘John/The author will probably shoot me for saying this, but
actually you don’t need to know absolutely everything about

probability. Having said that, you really have to know something
about it. I think of probability as the language of risk, and

because taking and controlling risks is basically what business is
all about, you need to be able to speak that language.’

Chapter Objectives

This chapter will help you to:

- understand why probability is important;

- appreciate how chance and risk can be measured;

- identify different types of probability; and

- analyse the chances of sequences and combinations.
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5.1 INTRODUCTION

This chapter is intended to introduce you to the subject of probability, the

branch of mathematics that is about finding out how likely real events or

theoretical results are to happen. The subject originated in gambling, in

particular the efforts of two seventeenth-century mathematical pioneers,

Fermat and Pascal, to calculate the odds of certain results in dice games.

Probability may well have remained a historical curiosity within the field

of mathematics that was little known outside casinos and race tracks if it

were not for the fact that it has proved to be invaluable in fields as varied as

psychology, economics, physical science, market research and medicine. In

these and other fields, probability offers a way of analysing chance and

allowing for risk when we are investigating a problem or trying to make

a decision.

Probability makes the difference between facing uncertainty and coping

with risk. Uncertainty is a situation where we know that it is possible that

things could turn out in different ways but we simply don’t know how likely

each result is. Risk, on the other hand, is when we know there are different

results but we also have some idea of how likely each one is to occur.

Businesses operate in conditions that are far from certain. Economic

circumstances change, customer bases shift, employees move to other jobs.

New product development and investment ventures are typically something

of a gamble.

As well as these examples of what we might call normal commercial risk,

there is the added peril of unforeseen risk. A developing market may be torn

apart by war, demand for certain food products may be undermined by

contamination, there may be an accident that disrupts transport, etc.

The topics that you will meet in this chapter will help you to understand

how organizations can measure and assess the risks they have to deal with.

But there is a second reason why probability is a very important part of your

studies; because of the role it plays in future statistical work.

Almost all the statistical research that you are likely to come across at

college and in your future career, whether it is intended to investigate

consumer behaviour, employee attitudes, product quality, or whatever, will

have one important thing in common; it will involve the collection and

analysis of sample data.

In nearly every case both the people who commission the research and

those who carry it out want to know about an entire population. They may

want to know the opinions of all customers, the attitudes of all employees,

the characteristics of all products, but it would be far too expensive or

CHAPTER 5 : Assessing Risk152



time-consuming or simply impractical to study every item in a population.

The only alternative is to study a sample and use the results to gain some

insight into the population.

This can work very well, but only if we have a sample that is random

and we take account of the risks associated with sampling. A sample is

a random sample only if every item in the population has the same chance

of being included in the sample as every other item in the population. If

a sample is not random it is of very little use in helping us to understand

a population.

Taking samples involves risk because we can take different random

samples from a single population. These samples will be composed of

different items from the population and produce different results. Some

samples will produce results very similar to those that we would get from the

population itself if we had the opportunity to do so. Other samples will

produce results that are not typical of the population as a whole.

To use sample results effectively we need to know how likely they are to be

close to the population results even though we don’t actually know what the

population results are. Assessing this involves the use of probability.

5.2 MEASURING PROBABILITY

A probability, usually represented by a capital P, is a measure of the likelihood

of a particular result or outcome. It is a number on a scale that runs from zero

to one inclusive, although it can be expressed as a percentage.

If there is a probability of zero that an outcome will occur it means there is

literally no chance that it will happen. At the other end of the scale, if there is

a probability of one that something will happen, it means that it is absolutely

certain to occur. A probability of one half, midway between these extremes

means that a result is equally likely to occur as not to occur. Sometimes this

is described as a 50-50 chance.

So how do we decide what the probability of something happening is?

The answer is that there are three distinct approaches that can be used to

attach a probability to a particular outcome. We can describe these as the

judgemental, experimental and theoretical approaches to identifying

probabilities.

The judgemental approach means rating the chance of something

happening on the basis of opinion alone. Usually the something is relatively

uncommon, which rules out the use of the experimental approach, and

doesn’t occur within a context of definable possibilities, which rules out the
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use of the theoretical approach. The opinion on which the probability is

based is usually from someone with relevant expertise.

You will often find judgemental probabilities in assessments of political

stability and economic conditions, perhaps concerning investment prospects

or currency fluctuations. You could, of course, use the judgemental approach

to gauging the probability of any outcome even when there are more

sophisticated means available. For instance, some people assess the chance

that a horse wins a race solely on their opinion of the name of the horse when

they could investigate the horse’s record.

If you did investigate the horse’s record you would be using an experi-

mental approach, looking into the results of the previous occasions when

what we might call the ‘experiment’, in this case the horse entering a race,

was conducted. You could work out the number of times the horse has won

a race as a proportion of the total number of races it has entered. This is the

relative frequency of wins, which can be used to estimate the probability that

the horse wins its next race.

A relative frequency based on a limited number of experiments can only

be an estimate of the probability because it approximates the real proba-

bility, which is the relative frequency based on an infinite number of

experiments.

Of course, Example 5.1 is a simplified version of what horse racing

analysts actually do. They would probably consider ground conditions, other

horses in the race and so on, but essentially they base their assessment of

a horse’s chances on the experimental approach to setting probabilities.

There are other situations when we want to establish the probability of

a certain result of some process and we could use the experimental approach.

Example 5.1

The horse ‘Starikon’ has entered 16 races and won five of them. What is the probability

that it will win its next race?

The relative frequency of wins is the number of wins, five, divided by the total number of

races, 16:

Relative frequency ¼ 5=16 ¼ 0:3125 or 31:25%

We can conclude therefore that on the basis of its record, the probability that the horse

wins its next race:

PðStarikon wins its next raceÞ ¼ 0:3125

In other words a little less than a one-third or a one in three chance.
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Perhaps we could consult the results of previous ‘experiments’, or conduct

some ourselves.

The results we found would provide a suitable relative frequency figure for

us to use as the probability, but we need not go to the trouble of using the

experimental approach if we can deduce the probability using the theoretical

approach. You can do this if there are a constant, limited and identifiable

number of possible outcomes, one of which must occur whenever the process

takes place.

There are many examples of this in gambling, including those where the

number of possible outcomes is very large indeed, such as bingo and lotteries.

However, even then the number of outcomes is finite, the possible outcomes

remain the same whenever the process takes place and they could all be

identified if we had the time and patience to do it.

Probabilities of specific results in bingo and lotteries can be deduced

because the same number of balls and type of machine are used each

time. In contrast, probabilities of horses winning races can’t be deduced

because different horses enter each race, the lengths of races vary and

so on.

Gambling is a rich source of illustrations of the use of probabilities

because it is about games of chance. However, it is by no means the

only field where you will find probabilities. Whenever you buy insurance

you are buying a product whose price has been decided on the basis of

the rigorous and extensive use of the experimental approach to find

probabilities.

Example 5.2

A ‘Wheel of Fortune’ machine in an amusement arcade has 36 segments. Ten of the

segments would give the player a cash prize. What is the probability that you win a cash

prize if you play the game?

To answer this we could build a wheel of the same type, spin it thousands of times and

work out what proportion of the results would have given us a cash prize. Alternatively we

could question people who have played the game previously and find out what proportion

of them won a cash prize. These are two ways of finding the probability experimentally.

It is far simpler to use the theoretical approach. Ten outcomes out of a possible 36 would

give us a cash prize so:

Pðcash prizeÞ ¼ 10=36 ¼ 0:2778 or 27:78%

This assumes that the wheel is fair, in other words that each outcome is as likely to occur

as any other outcome.
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5.3 DIFFERENT TYPES OF PROBABILITIES

So far the probabilities that you have met in this chapter have been what are

known as simple probabilities. Simple probabilities are probabilities of single

outcomes. In Example 5.1 we wanted to know the chance of the horse

winning its next race. The probability that the horse wins its next two races is

a compound probability.

A compound probability is the probability of a compound or combined

outcome. In Example 5.2 winning a cash prize is a simple outcome, but

winning cash or a non-cash prize, like a cuddly toy, is a compound outcome.

To illustrate the different types of compound probability we can apply the

experimental approach to bivariate data. This means estimating compound

probabilities by finding appropriate relative frequencies from data that have

been tabulated by categories of attributes, or classes of values of variables.

If we want to use a table such as in Example 5.3 to find compound

probabilities we must use figures from the cells within the table, rather than

the column and row totals, to produce relative frequencies.

Example 5.3

A survey of the type of goods purchased and methods of payment of 500 customers at

a service station produced the following results:

Payment Sandwiches Magazines Fuel Total

Cash 87 189 15 291

Debit card 11 5 62 78

Credit card 4 12 115 131

Total 102 206 192 500

What is the probability that a customer will pay by credit card?

What is the probability that a customer will purchase fuel?

These are both simple probabilities because they each relate to only one variable, method

of payment in the first case, type of goods purchased in the second.

The total’s column on the right of the table tells us that in all 131 of the 500 customers paid

by credit card.

PðPayment by credit cardÞ ¼ 131=500 ¼ 0:262; or 26:2%;

which is the relative frequency of credit card payment:

Similarly, by using the total’s row along the bottom of the table,

P (Customer purchases fuel)¼ 192/500¼ 0.384, or 38.4%,

which is the relative frequency of fuel purchases.
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It is rather laborious to write descriptions of the outcomes in full so they

are normally abbreviated; we could use ‘S’ to represent the purchase of

sandwiches, ‘M’ for the purchase of magazines and ‘F’ for the purchase of

fuel. Likewise we could use ‘Ca’ for cash payment, ‘Cr’ for credit card

payment and ‘D’ for debit card payment. So we can express the probability in

Example 5.4 in a more convenient way.

PðCustomer purchases sandwiches and pays cashÞ ¼ PðS and CaÞ
¼ 0:174

The type of compound probability in Example 5.4, which includes the word

‘and’, measures the chance of the intersection of two outcomes. The relative

frequency we have used as the probability is based on the number of people who

are in two specific categories of the ‘type of goods purchased’ and ‘method of

payment’ characteristics. It is the number of people who are at the ‘crossroads’

or intersection between the ‘purchases sandwiches’ and the ‘cash’ categories.

Finding the probability of an intersection of two outcomes is quite

straightforward if we are assessing it by applying the experimental approach

to bivariate data. In other situations, for instance where we only have simple

probabilities to go on, we need to use the multiplication rule of probability,

which we will discuss later in the chapter.

There is a second type of compound probability, which measures the

probability that one out of two or more alternative outcomes occurs. This

type of compound probability includes the word ‘or’ in the description of the

outcomes involved.

Example 5.4

What is the probability that a customer in the service station in Example 5.3 purchases

sandwiches and pays by cash?

The number of customers in the survey who purchased sandwiches with cash was 87, so:

PðCustomer purchases sandwiches and pays cashÞ ¼ 87=500

¼ 0:174 or 17:4%

Example 5.5

Use the data in Example 5.3 to find the probability that a customer purchases fuel or pays

by debit card.

The probability that one (and by implication, both) of these outcomes occurs is based on

the relative frequency of all the people who are in one or other category. This implies that we

should add the number of customers who purchased fuel to the number of customers who

paid by debit card, and divide the result by the total number of customers in the survey.

Number of customers who purchased fuel ¼ 15þ 62þ 115 ¼ 192

Continued
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The type of compound probability in Example 5.5 measures the chance of

a union of two outcomes. The relative frequency we have used as the prob-

ability is based on the combined number of people who are in two specific

categories of the ‘type of goods purchased’ and ‘method of payment’ char-

acteristics. It is the number of customers who are in the union or ‘merger’

between the ‘purchases fuel’ and the ‘debit card’ categories. To get a proba-

bility of a union of outcomes from other probabilities, rather than by applying

the experimental approach to bivariate data, we use the addition rule of

probability. You will find this discussed later in the chapter.

The third type of compound probability is the conditional probability.

Such a probability measures the chance that one outcome occurs given that,

or on condition that, another outcome has already occurred.

Number of customers who paid by debit card ¼ 11þ 5þ 62 ¼ 78

If you look carefully you will see that the number 62 appears in both of these expressions.

If we use the sum of the number of customers who purchased fuel and the number of

customers who paid by debit card to get our relative frequency figure we will double count

the 62 customers who purchased fuel and paid by debit card. This means the probability

we get will be too big.

The problem arises because we have added the 62 customers who purchased fuel (F) and

paid by debit card (D) twice, so to correct this we have to subtract the same number once.

PðF or DÞ ¼ ð15þ 62þ 115Þ þ ð11þ 5þ 62Þ � 62

500
¼ 192þ 78� 62

500

¼ 208=500 ¼ 0:416 or 41:6%

Example 5.6

Use the data in Example 5.3 to find the probability that a customer who has purchased

magazines (M) pays by cash (Ca).

Another way of describing this is as the probability that a customer pays by cash given that

he or she has purchased magazines. It is represented as

PðCajMÞ

where the ‘j’ symbol stands for ‘given that’.

We find this probability by taking the number of people who paid cash and purchased

magazines as a proportion of the total number of people who purchased magazines.

PðCajMÞ ¼ 189=206 ¼ 0:9175 or 91:75%

This is a proportion of a subset of the 500 customers in the sample. The majority of them,

the 294 people who did not purchase magazines, are excluded because they didn’t meet

the condition on which the probability is based, i.e. purchasing magazines.
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It is always possible to identify compound probabilities directly from the

sort of bivariate data in Example 5.3 by the experimental approach. But what

if we don’t have this sort of data? Perhaps we have some probabilities that

have been obtained judgementally or theoretically and we want to use them

to find compound probabilities. Perhaps there are some probabilities that

have been obtained experimentally but the data is not at our disposal. This is

where the rules of probability can help us out.

5.4 THE RULES OF PROBABILITY

In situations where we do not have recourse to appropriate experimental data

there are other ways of finding compound probabilities. These are the two

rules of probability: the addition rule and the multiplication rule.

5.4.1 The addition rule

The addition rule of probability specifies the procedure for finding the

probability of a union of outcomes, that is, a compound probability defined

using the word ‘or’.

According to the addition rule the compound probability of one or both of

two outcomes, which we’ll call A and B for convenience, is the simple

probability that A occurs added to the simple probability that B occurs. From

this total we subtract the compound probability of the intersection of A

and B, the probability that both A and B occur. That is:

PðA or BÞ ¼ PðAÞ þ PðBÞ � PðA and BÞ

Example 5.7

Use the addition rule to calculate the probability that a customer coming into the service

station in Example 5.3 purchases fuel (F) or pays by debit card (D).

Applying the addition rule:

PðF or DÞ ¼ PðFÞ þ PðDÞ � PðF and DÞ

The simple probability that a customer purchases fuel : P ðFÞ¼ 192=500

The simple probability that a customer pays by debit card : P ðDÞ¼ 78=500

The probability that a customer purchases fuel and pays by debit card:

P ðF and DÞ ¼ 62=500

So;P ðF or DÞ¼ 192=500 þ 78=500 � 62=500

¼ 192þ 78� 62

500
¼ 208=500 ¼ 0:416 or 41:6%
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If you compare this answer to the answer we obtained in Example 5.5

you will see they are exactly the same. In this case the addition rule is

an alternative means of getting to the same result. In some ways it is

more convenient because it is based on row and column totals of the

table in Example 5.3 rather than numbers from different cells within the

table.

The addition rule may seem rather odd because it is called the addition

rule yet it includes a subtraction. It may help to explain it if we represent the

situation in the form of a Venn diagram; the sort of diagram used in part of

mathematics called set theory.

In a Venn diagram the complete set of outcomes that could occur, known

as the sample space, is represented by a rectangle. Within the rectangle,

circles are used to represent sets of outcomes.

In Figure 5.1 the circle on the left represents the purchasing fuel

outcome, and the circle on the right represents the payment by debit card

outcome. The combined area of both circles represents the probability that

a customer purchases fuel or pays by debit card. The area of overlap

represents the probability that a customer purchases fuel and pays by debit

card.

By definition the area of overlap is part of both circles. If you simply add

the areas of the two circles together to try to get the combined area of both

circles, you will include the area of overlap twice. If you subtract it once from

the sum of the areas of the two circles you will only have counted it once and

the answer you get will be the correct one.

The addition rule would be simpler if there were no overlap; in other

words there is no chance that the two outcomes can occur together. This is

where the outcomes are mutually exclusive, which means that if one of them

Fuel Debit Card

Fuel

and 

Debit

Card

FIGURE 5.1 A Venn diagram to illustrate Example 5.7
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happens the possibility of the other happening is excluded, or ruled out. The

probability that both of two mutually exclusive outcomes occur is zero; it is

simply impossible.

In this case we can alter the addition rule:

PðA or BÞ ¼ PðAÞ þ PðBÞ � PðA and BÞ
to PðA or BÞ ¼ PðAÞ þ PðBÞ
because PðA and BÞ ¼ 0

If you read Example 5.8 carefully you can see that although the three

choices of types of house are mutually exclusive, they do not constitute all

the alternative outcomes. That is, they are not collectively exhaustive. As

well as choosing one of the three types of house each prospective homebuyer

has a fourth choice, to decline to express a preference. If you subtract the

number of prospective homebuyers expressing a preference from the total

number of prospective homebuyers you will find that 45 of the prospective

homebuyers have not chosen one of the types of houses.

A footnote to the addition rule is that if we have a set of mutually

exclusive and collectively exhaustive outcomes their probabilities must

add up to one. A probability of one means certainty, which reflects the

fact that in a situation where there are a set of mutually exclusive and

collectively exhaustive outcomes, one and only one of them is certain to

occur.

Example 5.8

One weekend a total of 178 prospective homebuyers visit a new housing development.

They are offered a choice of three different types of houses: the 2-bedroom ‘Ambience’,

the 3-bedroom ‘Bermuda’ or the 4-bedroom ‘Casa’. When invited to select the one type of

house they would most like, 43 chose the ‘Ambience’, 61 the ‘Bermuda’ and 29 the ‘Casa’.

What is the probability that a prospective homebuyer from this group has chosen the

‘Bermuda’ or the ‘Casa’?

We can assume that the choices are mutually exclusive because each prospective

homebuyer was asked to choose only one type of house. We can therefore use the simpler

form of the addition rule.

For convenience we’ll use the letter A for ‘Ambience’, B for ‘Bermuda’ and C for ‘Casa’.

PðB or CÞ ¼ PðBÞ þ PðCÞ
¼ 61=178 þ 29=178

¼ 90=178

¼ 0:5056 or 50:56%
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This footnote to the addition rule can be used to derive probabilities of

one of a set of mutually exclusive and collectively exhaustive outcomes if we

know the probabilities of all of the other outcomes.

5.4.2 The multiplication rule

The multiplication rule of probability specifies the procedure for finding the

probability of an intersection of outcomes, that is, a compound probability

defined using the word ‘and’.

According to the multiplication rule the compound probability that two

outcomes both occur is the simple probability that the first one occurs

multiplied by the conditional probability that the second outcome occurs,

given that the first outcome has already happened. That is:

PðA and BÞ ¼ PðAÞ � PðBjAÞ
The multiplication rule is what bookmakers use to work out odds for

‘accumulator’ bets, that is, bets that a sequence of outcomes, like several

Example 5.9

What is the probability that one of the prospective homebuyers in Example 5.8 chooses

the ‘Ambience’ or the ‘Bermuda’ or the ‘Casa’ or expresses no preference? For conve-

nience we’ll use the letter N to represent ‘No preference’.

The probability that a prospective homebuyer picks ‘Ambience0 ¼ PðAÞ¼ 43=178

The probability that a prospective homebuyer picks ‘Bermuda0 ¼ PðBÞ¼ 61=178

The probability that a prospective homebuyer picks ‘Casa0 ¼ PðCÞ¼ 29=178

The probability that a prospective homebuyer makes no choice ¼ PðNÞ¼ 45=178

PðA or B or C or NÞ ¼ 43þ 61þ 29þ 45

178
¼ 178=178 ¼ 1

Example 5.10

Deduce the probability that a prospective homebuyer in Example 5.8 expresses no

preference using the simple probabilities of the other outcomes.

PðProspective homebuyer makes no choiceÞ ¼ 1 � PðAÞ � PðBÞ � PðCÞ
¼ 1 � 43=178 � 61=178 � 29=178

¼ 1 � 0:2416 � 0:3427 � 0:1629

¼ 1 � 0:7472

¼ 0:2528 or 25:28%

The result we obtained in Example 5.10, 0.2528, is the decimal equivalent of the figure

of 45/178 that we used for the probability of no preference, P(N) in Example 5.9.
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specific horses winning races, occurs. To win the bet the first horse must win

the first race; the second horse must win the second race and so on. The odds

of this sort of thing happening are often something like 500 to one. The

numbers, like 500, are large because they are obtained by multiplication.

The multiplication rule can look more complex than it actually is because

it includes a conditional probability. We use a conditional probability for the

second outcome because the chances of it occurring could be influenced by

the first outcome. This is called dependency; in other words one outcome is

dependent on the other.

A useful way of telling whether two outcomes are dependent is to compare

the conditional probability of one outcome given that the other has

happened, with the simple probability that it happens. If the two figures are

different the outcomes are dependent.

Example 5.11

Use the multiplication rule to calculate the probability that a customer at the service

station in Example 5.3 purchases sandwiches and pays by cash.

We’ll use S to represent for the purchase of sandwiches and Ca for payment by cash.

PðS and CaÞ ¼ PðSÞ � PðCajSÞ

From the table in Example 5.3:

PðSÞ ¼ 102=500 is the relative frequency of customers purchasing sandwiches and

PðCa j SÞ ¼ 87=102 is the relative frequency of customers purchasing

sandwiches who pay by cash:

So

PðS and Ca Þ ¼ 102=500 � 87=102

¼ 0:204 � 0:853

¼ 0:174 or 17:4%

If you compare this answer to the answer we obtained in Example 5.4 you will see that they

are exactly the same.

Example 5.12

A promotional stall in a shopping centre offers passers-by the opportunity to taste bison

meat. A total of 200 people try the product and 122 of them stated that they liked it. Of

these, 45 said they would buy the product. Overall 59 of the 200 passers-by said they

would buy the product.

Continued
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The multiplication rule can be rearranged to provide us with a way of

finding a conditional probability. That is,

if PðA and BÞ ¼ PðAÞ � PðBjAÞ
When we divide both sides by PðAÞ we get

PðA and BÞ=PðAÞ ¼ PðBjAÞ
Swapping the two sides of the expression over, we get

PðBjAÞ ¼ PðA and BÞ=PðAÞ

If there had been no difference between the two probabilities in Example

5.12 there would be no dependency; that is, the outcomes would be

independent.

In situations where outcomes are independent, the conditional proba-

bilities of the outcomes are the same as their simple probabilities. This

means we can simplify the multiplication rule when we are dealing with

independent outcomes. We can replace the conditional probability of the

Example 5.13

What is the probability that a customer at the service station in Example 5.3 pays by cash

given that he or she has purchased magazines?

We’ll use M for the purchase of magazines and Ca for cash.

PðCaj MÞ ¼ PðCa and MÞ=PðMÞ

From the table in Example 5.3

PðCa and MÞ ¼ 189=500 ¼ 0:378

and PðMÞ ¼ 206=500 ¼ 0:412

so PðCajMÞ ¼ 0:378=0:412 ¼ 0:9175 or 91:75%

This is the same as the answer we obtained in Example 5.6.

Are liking the product and expressing the intention to buy it dependent? We’ll use L to

represent liking the product and B to represent buying it.

The simple probability that a passer-by expresses an intention to buy, P (B) is 59/200 or

29.5%.

The conditional probability that a passer-by expresses an intention to buy given that he or

she liked the product, P (B j L) is 45/122 or 36.9%.

You can see that there is a difference between P (B) and P (Bj L), which suggests that

the expression of an intention to buy is dependent on liking the product.
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second outcome given that the first outcome has occurred with the simple

probability that the second outcome occurs. That is, instead of

PðA and BÞ¼ PðAÞ � PðBjAÞ
we can use PðA and BÞ¼ PðAÞ � PðBÞ
because PðBÞ ¼ PðBjAÞ:

5.4.3 Bayes’ rule

In the previous section we looked at how the multiplication rule, which enables

us to find the compound probability that both of two outcomes occur, could be

rearranged to provide a definition of the conditional probability that the second

outcome occurs given that the first outcome had already occurred. That is:

if PðA and BÞ ¼ PðAÞ ) PðBjAÞ
then PðBjAÞ ¼ PðA and BÞ=PðAÞ

In this context we normally assume that outcome A occurs before

outcome B, for instance the probability that a person succumbs to a lung

disease, given that they have smoked tobacco.

Thanks to the work of the eighteenth-century clergyman and mathe-

matician Thomas Bayes we can develop this further to say that:

PðB and AÞ ¼ PðBÞ ) PðAjBÞ
so PðAjBÞ ¼ PðB and AÞ=PðBÞ

This means that we can find the probability that outcome A happened

given that we know outcome B has subsequently happened. This is known as

Example 5.14

What is the probability that a player who plays the Wheel of Fortune in Example 5.2 twice

wins cash prizes both times?

Ten of the 36 segments give a cash prize, so the probability of a cash prize in any one

game is 10/36.

The probability that a player gets a cash prize in their second game given that they have

won a cash prize in their first game is also 10/36. The outcomes are independent; in other

words the result of the second game is not influenced by the result of the first. (If this is not

clear because you feel there is a connection, you might ask yourself how the Wheel of

Fortune remembers what it did the first time!)

We’ll use the letter C to represent a cash prize. The first cash prize the player wins can

then be represented as C1, and the second as C2.

PðC1 and C2Þ¼ PðCÞ � PðCÞ ¼ 10=36 � 10=36 ¼ 0:077 or 7:7%
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a posterior or ‘after-the-event’ probability. In contrast, the simple probability

that outcome A happens is a prior, or ‘before-the-event’ probability.

The compound probability that both A and B occur is the same whether

it is described as the probability of A and B or the probability of B and A.

That is:

PðA and BÞ ¼ PðB and AÞ

The multiplication rule tells us that:

PðA and BÞ ¼ PðAÞ ) PðBjAÞ

We can therefore express the conditional probability that A has occurred

given that we know B has subsequently occurred as:

PðAjBÞ ¼ PðAÞ � PðBjAÞ
PðBÞ

This definition of the posterior probability of an outcome is known as

Bayes’ rule or Bayes’ theorem.

Example 5.15

A financial services ombudsman is investigating the mis-selling of pension schemes some

years previously. Some buyers of these pension schemes were sold the schemes on the

basis of misleading information, and would have been better off had they made alternative

arrangements.

The pension schemes being investigated were provided by one company but actually sold

by two brokers, Copilka, who sold 80% of the schemes, and Denarius who sold 20% of the

schemes. Some of the pension schemes sold by these brokers were appropriate for the

customers who bought them, but the ombudsman has established that 30% of the

schemes sold by Copilka and 40% of the schemes sold by Denarius have turned out to be

inappropriate for the customers who bought them.

The ombudsman wishes to apportion liability for compensation for mis-sold pension

scheme between the two brokers and wants to do so, on the basis of the following:

(a) If a pension scheme was mis-sold what was the probability that it was sold by

Copilka?

(b) If a pension scheme was mis-sold what was the probability that it was sold by

Denarius?

We will use M to represent a pension scheme that was mis-sold, C to denote that a pension

scheme was sold by Copilka, and D to denote that a pension scheme was sold by

Denarius.

The first probability that the ombudsman needs to know is P (C j M).

CHAPTER 5 : Assessing Risk166



5.4.4 Applying the rules of probability

Although we have dealt separately with different types of probability, rules of

probability and so on, when it comes to applying them to solve problems

involving sequences of outcomes you may well have to use them together.

Using Bayes’ rule:

PðCjMÞ ¼ PðCÞ � PðMjCÞ
PðMÞ

We know that the probability that a pension scheme was sold by Copilka, P (C), is 0.8. We

also know that the probability that a pension scheme was mis-sold given that it was sold by

Copilka, P (M j C) is 0.3. The only other probability that we need in order to apply Bayes’

rule in this case is P (M), the probability that a pension scheme was mis-sold.

A pension scheme that was mis-sold must have been sold by either Copilka or Denarius.

The probability that a pension scheme was mis-sold must therefore be the sum of the

probability that a pension scheme was mis-sold and it was sold by Copilka and the

probability that a pension scheme was mis-sold and it was sold by Denarius. That is:

PðMÞ ¼ PðC and MÞ þ PðD and MÞ

Although we do not know these compound probabilities we can derive them by applying

the multiplication rule:

PðC and MÞ ¼ PðCÞ � PðMjCÞ ¼ 0:8 � 0:3 ¼ 0:24

The probability that a pension scheme was sold by Denarius, P (D), is 0.2, and the

probability that a pension scheme was mis-sold given that it was sold by Denarius,

P (M j D), is 0.4, so:

PðD and MÞ ¼ PðDÞ � PðMjDÞ ¼ 0:2 � 0:4 ¼ 0:08
so PðMÞ ¼ 0:24 þ 0:08 ¼ 0:32

We can now work out the first of the two probabilities that the ombudsman needs; the

probability that if a pension scheme was mis-sold it was sold by Copilka, P (C j M):

PðCjMÞ ¼ PðCÞ � PðMjCÞ
PðMÞ ¼ 0:8 � 0:3

0:32
¼ 0:24

0:32
¼ 0:75

A mis-sold pension scheme must have been sold by Denarius if it was not sold by

Copilka, they are mutually exclusive and collectively exhaustive outcomes. This means

that we can deduce that the probability that if a pension scheme was mis-sold it was

sold by Denarius, P (DjM) is one less P (CjM). That is:

PðDjMÞ ¼ 1 � 0:75 ¼ 0:25

On the basis of these results the ombudsman should apportion 75% of the liability for

compensation to Copilka and 25% of the liability for compensation to Denarius.
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You may like to look at Example 5.16, which brings together many of the

topics that you have met in this chapter to solve an apparently straightfor-

ward problem.

Example 5.16

Twenty-five graduates join a company at the same time. During their induction and

training programme friendships are established and they decide that when one of them

has a birthday they will all dine at a restaurant chosen by the person whose birthday is

being celebrated. One of the graduates asks what will happen if two or more of them share

a birthday. In response another graduate says that it won’t happen because there are only

25 of them and 365 days in the year.

What is the probability that there will be at least one clash of birthdays in a year?

This is quite a complex question because of the sheer variety of ways in which there could

conceivably be a clash of birthdays. We could have a clash on 1 January, 2 January and so

on. Maybe three graduates could share the same birthday? It would be extremely difficult

and tedious to work out all these probabilities separately.

In fact we don’t need to. One of the phrases you met during the discussion of the addition

rule was ‘mutually exclusive and collectively exhaustive’. Such outcomes rule each other

out and have probabilities that add up to one. We can make use of this here.

We have two outcomes: either some birthdays clash or none do. They are mutually

exclusive because it is impossible to have both clashes and no clashes. They are

collectively exhaustive because we must have either one or more clashes or no clashes.

This makes things easier. We want the probability of clashes, but to get that we would

have to analyse many different combinations of outcomes and put their probabilities

together. Instead we can work out the probability that there are no clashes and take it

away from one. This is easier because there is only one probability to work out.

What is the probability that there are no clashes?

Imagine if there was just one graduate and we introduced the others one at a time. This

one graduate can have a birthday on any day because at this stage there are no other

graduates whose birthdays could clash with theirs.

The probability that the second graduate has a birthday on another day is 364/365 because

one day is already ‘occupied’ by the birthday of the first graduate, leaving 364 ‘free’ days.

The probability that the third graduate has a birthday on a different day to the other two

graduates assuming that the first two graduates’ birthdays don’t clash is 363/365. This is

the conditional probability that the third graduate’s birthday misses those of the first and

second graduates, given that the birthdays of the first and second graduates don’t clash.

The number 363 appears because that is the number of ‘free’ days that remain, if the

birthdays of the first two graduates don’t clash.

Continuing the process, the probability that the fourth graduate’s birthday doesn’t clash

with those of the first three, assuming they are on different days, is 362/365. The prob-

ability that the fifth graduate’s birthday doesn’t clash with those of the first four is 361/365,

and so on.
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5.5 PROBABILITY TREES

If you have to investigate the probabilities of sequences of several outcomes it

can be difficult to work out the different combinations of outcomes in your

head. It helps if you write down all the different variations, and you may find

a Venn diagram a useful way of arranging them in order to work out proba-

bilities of certain types of combinations. But perhaps the best way of sorting

out this kind of problem is to use a probability tree.

Probability trees, which are sometimes simply called tree diagrams,

represent the different sequences of outcomes in the style of a tree that

‘grows’ from left to right. Each branch of the tree leads to a particular

outcome. At the end of each branch, on the right-hand side of the diagram,

we put the combination of outcomes that the sequence of branches repre-

sents and, using the multiplication rule, the probability that the sequence of

outcomes happens.

Eventually we reach the probability that the twenty-fifth graduate’s birthday doesn’t clash

with those of the other twenty-four, which is 341/365.

The probabilities that we now have are probabilities that the birthdays of specific gradu-

ates don’t clash with those of other specific graduates. What we want is the probability that

there are no clashes at all. To get this we have to put these probabilities together. But how?

Should we multiply or add?

The answer is that we multiply them together. We want the probability that the second

graduate’s birthday misses that of the first graduate and the third graduate’s birthday

misses those of the first two and so on.

So Pðno clashesÞ ¼ 364=365 ) 363=365 ) 362=365 ) ,,, ) 342=365 ) 341=365

¼ 0:4252 or 42:52%

This is the probability that there are no clashes, but we wanted to find the probability that

there is at least one clash. For this we use the addition rule. It is certain that there is either

at least one clash or no clash. That is:

Pðat least one clashÞ þ Pðno clashÞ ¼ 1

So Pðat least one clashÞ ¼ 1 � Pðno clashÞ
¼ 1 � 0:4252 ¼ 0:5748 or 57:48%

Example 5.17

Three friends start Higher Education courses at the same time in the same institution.

Angela is studying Accounting, Bashir is studying Business and Charlie is studying

Computing. Seventy percent of students who begin the Accounting course complete it

Continued
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successfully, 80% of students who begin the Business course complete it successfully,

and 60% of students who begin the Computing course complete it successfully. Construct

a tree diagram and use it to work out:

- The probability that all three friends successfully complete their courses.

- The probability that two of the friends successfully complete their courses.

- The probability that only one of the friends successfully completes their course.

We will use A to represent Angela, B for Bashir and C for Charlie. To indicate someone

failing their course we will use the appropriate letter followed by ’, so A0 represents the

outcome that Angela fails her course, whereas A alone represents the outcome that

Angela completes her course successfully.

The completion rate suggests the probability that Angela passes the Accounting course is

0.7, and given that the ‘pass’ and ‘fail’ outcomes are mutually exclusive and collectively

exhaustive, the probability she fails is 0.3. The probability that Bashir passes the Business

course is 0.8, and the probability that he fails is 0.2. The probability that Charlie passes the

Computing course is 0.6 and the probability that he fails is 0.4.

The probability that all three pass, that is P (ABC), is the probability at the top on the right-

hand side, 0.336 or 33.6%.

The probability that two of the friends pass is the probability that one of three sequences,

either ABC0 or AB0C or A0BC occurs. Since these combinations are mutually exclusive we

can apply the simpler form of the addition rule:

PðABC0 or AB0C or A0BCÞ ¼ 0:224 þ 0:084 þ 0:144
¼ 0:452 or 45:2%

Outcomes Probability 

C ABC 0.7 ∗ 08 ∗ 0.6 = 0.336

B C′ ABC′ 0.7 ∗ 0.8 ∗ 0.4 = 0.224

A B′ C AB′C 0.7 ∗ 0.2 ∗ 0.6 = 0.084

C′ AB′C′ 0.7 ∗ 0.2 ∗ 0.4 = 0.056

C A′BC 0.3 ∗ 0.8 ∗ 0.6 = 0.144

A′ B C′ A′BC′ 0.3 ∗ 0.8 ∗ 0.4 = 0.096

B′ C A′B′C 0.3 ∗ 0.2 ∗ 0.6 = 0.036

C′ A′B′C′ 0.3 ∗ 0.2 ∗ 0.4 = 0.024
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A tree diagram should include all possible sequences. One way you can

check that it does is to add up the probabilities on the right-hand side.

Because these outcomes are mutually exclusive and collectively exhaustive

their probabilities should add up to one. We can check that this is the case in

Example 5.17.

0:336þ 0:224þ 0:084þ 0:056þ 0:144þ 0:096þ 0:036þ 0:024 ¼ 1

The probability that only one of the friends passes is the probability that either AB0C0 or

A0BC0 or A0B0C occurs. These combinations are also mutually exclusive so again we can

apply the simpler form of the addition rule:

PðAB0C0 or A0BC0 or A0B0CÞ ¼ 0:056þ 0:096þ 0:036 ¼ 0:188 or 18:8%

Test yourself questions from Warwick’s business enterprises

Fully worked solutions to these questions are on pages 333–334. You can find more

questions on the topics covered in this chapter at the accompanying website www.

elsevierdirect.com/9781856179478.

5.1 (Easy)

(a) Out of the 347 groups of diners having evening meals at Warwick’s restaurant

1 week, 259 order wine. Estimate the probability that a group of customers

orders wine with their meal.

(b) The same week there are 216 groups of diners who have lunch at the

restaurant. Of these, 93 order wine with their meal. Estimate the probability that

a group of lunchtime customers orders wine.

(c) Compare your answers to (a) and (b), and comment on the difference.

5.2 (Moderate)

One of Warwick’s pubs has been refurbished in the style of a sports bar. He asked

100 regular customers, of which 50 were female and 50 male, if they liked the new

design. The responses, tabulated by gender, were:

Females Males

Yes 17 28

Not sure 21 13

No 12 9
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(a) If one of these 100 respondents was selected at random, what is

(i) the probability they said No?

(ii) the probability they are Male and said Yes?

(iii) the probability they are Female or were Not sure about the new design?

(iv) the probability that if a Male were selected he said No?

(v) the probability that if a Female were selected she said No?

(b) Compare the answers to (a)(iv) and (a)(v) with the answer to (a)(i). Does gender

influence whether an individual likes the new design?

5.3 (Hard)

Thursday, Friday and Saturday are the busiest nights at Warwick’s pub. Police

records show that on 12 of the last 50 Thursdays, 15 of the last 50 Fridays, and 16

of the last 50 Saturdays they were summoned to deal with a disturbance at the pub.

Find the probability that over the next Thursday, Friday and Saturday nights there

will be:

(a) No trouble

(b) Trouble on Thursday only

(c) Trouble on one night only

(d) Trouble on Friday and Saturday only

(e) Trouble on two nights only

Assume that events on any one night are independent of events on any other night.

You may find it useful to construct a tree diagram to represent the possible

sequences of events.
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CHAPTER 6

Putting Probability to Work

Why do I need to know about this? Warwick the Hospitality
entrepreneur says.

‘Probability really helps in addressing business problems. A good
example would be ordering a large consignment of tableware. You’d

need to know whether any items were chipped or cracked. The
supplier might say that 99% were perfect but how do we check this?
It would take far too long to look at every piece but if we looked at
a small number of them and counted the ones that were imperfect
we could use the binomial probability distribution to tell whether to

accept or reject the consignment.’

Chapter Objectives

This chapter will help you to:

- understand and use probability distributions;

- analyse discrete random variables;

- find and interpret summary measures of probability distributions; and

- apply probability in the analysis of business decisions.

CONTENTS
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Expectation
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6.1 INTRODUCTION

The early parts of this chapter are intended to show you how we can model

or represent the chances of different combinations of outcomes using the

same sort of approach as we use to arrange data into frequency distributions.

The later sections are designed to illustrate how probability can be used in

making decisions, especially when there are several stages in the decision

process, such as investment in new capacity.

6.2 SIMPLE PROBABILITY DISTRIBUTIONS

In Chapter 2 we looked at how we could present data in the form of a frequency

distribution. This involved listing categories of values that occurred in the

set of data and finding out how many observed values fell into each category,

in other words the frequency of each category of values in the set of data.

The results of this process enabled us to see how the observations were

distributed over the range of the data, hence the term frequency distribution.

A probability distribution is very similar to a frequency distribution. Like

a frequency distribution, a probability distribution has a series of categories,

but instead of categories of values it has categories of types of outcomes. The

other difference is that each category has a probability instead of a frequency.

In the same way as a frequency distribution tells us how frequently each

type of value occurs, a probability distribution tells us how probable each type

of outcome is.

In Chapter 2 we saw how a histogram could be used to portray a frequency

distribution. We can use a similar type of diagram to portray a probability

distribution.

In Chapter 3 we used summary measures including the mean and stan-

dard deviation to summarize distributions of data. We can use the mean and

standard deviation to summarize distributions of probabilities.

Just as we need the set of data to construct a frequency distribution, we

need to identify the set of compound outcomes in order to create a probability

distribution. We also need the probabilities of the simple outcomes that make

up the combinations of outcomes.

Example 6.1

The Sales Director of a large organization requires all members of sales staff to attend

a team-building event at an outward-bound centre. Teams of three staff will be selected by

drawing names out of a hat. If there are equal numbers of females and males employed in
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In Example 6.1 the probability distribution presents the number of females

as a variable, X, whose values are represented as x. The variable X is a discrete

random variable. It is discrete because it can only take a limited set of values. It

is random because the values occur as the result of a random process.

the sales force, what are the chances that a team of three includes zero, one, two and

three females?

Because there are equal numbers of females and males the probability that a female is

selected is 0.5 and the probability that a male is selected is also 0.5.

The probability that a team includes no females is the probability that a sequence of three

males is selected.

PðMMMÞ ¼ 0:5 � 0:5 � 0:5 ¼ 0:125

The probability that one female is selected in a team of three is a little more complicated

because we have to take into account the fact that the female could be the first or the

second or the third person to be selected.

So;Pð1 FemaleÞ ¼ PðFMM or MFM or MMFÞ

Because these three sequences are mutually exclusive, according to the addition rule:

Pð1 FemaleÞ ¼ PðFMMÞ þ PðMFMÞ þ PðMMFÞ

Since the probability that a female is selected is the same as the probability that a male is

selected each of these three ways of getting one female will have the same probability.

That is:

PðFMMÞ ¼ PðMFMÞ ¼ PðMMFÞ ¼ 0:5 � 0:5 � 0:5 ¼ 0:125

So;Pð1 FemaleÞ ¼ 0:125þ 0:125þ 0:125 ¼ 0:375

We get the same answer for the probability that two females are selected:

Pð2 FemalesÞ ¼ PðFFM or FMF or MFFÞ
¼ PðFFMÞ þ PðFMFÞ þ PðMFFÞ
¼ 0:125þ 0:125þ 0:125 ¼ 0:375

Finally Pð3 FemalesÞ ¼ 0:5 � 0:5 � 0:5 ¼ 0:125

We can bring these results together and present them in the form of a probability

distribution.

Number of Females (x) P (x)

0 0.125

1 0.375

2 0.375

3 0.125
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The symbol ‘P (x)’ represents the probability that the variable X takes

a particular value, x. For instance, we can represent the probability that

the number of females is one, as:

PðX ¼ 1Þ ¼ 0:375

Figure 6.1 shows the probability distribution we compiled in Example 6.1

in graphical form.

We can find summary measures to represent this distribution, in the same

way as we could use summary measures to represent distributions of data.

However, we don’t have a set of data to use to get our summary measures.

Instead we have to use the probabilities to ‘weight’ the values of X, just as we

would use frequencies to obtain the mean from a frequency distribution.

You can get the mean of a probability distribution by multiplying each x

value by its probability and then adding up the results:

m ¼ SxPðxÞ

Notice that we use the Greek symbol m here to represent the mean of the

distribution. The mean of a probability distribution is a population mean

because we are dealing with a distribution that represents the probabilities of

all possible values of the variable.

Once we have found the mean we can proceed to find the variance and

standard deviation. We can obtain the variance, s2, by squaring each x value,

multiplying the square of it by its probability and adding the results. From

this sum we subtract the square of the mean:

s2 ¼ Sx2PðxÞ � m2

0

0.1

0.2

0.3

0.4

0.5

4321
x

P
(
x
)

FIGURE 6.1 The probability distribution of X, the number of females
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You can get the standard deviation, s by taking the square root of the

variance.

Again you can see that we are using a Greek letter to represent the vari-

ance and the standard deviation because they are population measures.

The mean of a probability distribution is sometimes referred to as the

expected value of the distribution. Unlike the mean of a set of data, which is

based on what the observed values of a variable actually were, the mean of

a probability distribution tells us what the values of the variable are likely, or

expected to be.

We may need to know the probability that a discrete random variable

takes a particular value or a lower value. This is known as a cumulative

probability because in order to get it we have to add up or accumulate other

probabilities. You can calculate cumulative probabilities directly from

a probability distribution.

Example 6.2

Calculate the mean and the standard deviation for the probability distribution in

Example 6.1.

x P (x) x P (x) x2 x2 P (x)

0 0.125 0 0 0

1 0.375 0.375 1 0.375

2 0.375 0.375 4 1.500

3 0.125 0.375 9 1.125

1.500 3.000

The mean, m, is 1.5, the total of the x P (x) column.

The variance, s2, is 3, the total of the x2 P (x) column minus the square of the mean:

s2 ¼ 3� 1:52 ¼ 3� 2:25 ¼ 0:75

The standard deviation:

s ¼
ffiffiffiffiffi
s2

p
¼

ffiffiffiffiffiffiffiffiffiffi
0:75
p

¼ 0:866 to three decimal places:

Example 6.3

Calculate a set of cumulative probabilities from the probability distribution in Example 6.1.

Suppose we want the probability that X, the number of females is two or less than two.

Another way of saying this is the probability that X is less than or equal to two. We can use

Continued
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The cumulative probabilities like those we worked out in Example 6.3 are

perfectly adequate if we want the probability that a variable takes a particular

value or a lower one, but what if we need to know the probability that

a variable is higher than a particular value?

We can use the same cumulative probabilities if we manipulate them

using our knowledge of the addition rule of probability. If, for instance, we

want to know the probability that a variable is more than two, we can find it

by taking the probability that it is two or less away from 1.

P ðX > 2Þ ¼ 1� P ðX � 2Þ

the symbol ‘�’ to represent ‘less than or equal to’, so we are looking for P (X� 2). It may

help you to recognize this symbol if you remember that the small end of the ‘<’ part is

pointing at the X and the large end at the 2, implying that X is smaller than 2.

We can find the cumulative probabilities for each value of X by taking the probability that X

takes that value and adding the probability that X takes a lesser value. You can see these

cumulative probabilities in the right-hand side column of the following table.

Number of Females (x) P (x) P (X� x)

0 0.125 0.125

1 0.375 0.500

2 0.375 0.875

3 0.125 1.000

The cumulative probability that X is zero or less, P (X� 0) is the probability that X is zero,

0.125, plus the probability that X is less than zero. Since it is impossible for X to be less

than zero we do not have to add anything to 0.125.

The second cumulative probability, the probability that X is one or less, P (X� 1), is the

probability that X is one, 0.375, plus the probability that X is less than one, in other words

that it is zero, 0.125. Adding these two probabilities together gives us 0.5.

The third cumulative probability is the probability that X is two or less, P (X� 2). We obtain

this by adding the probability that X is two, 0.375, to the probability that X is less than two,

in other words that it is one or less. This is the previous cumulative probability, 0.5. If we

add this to the 0.375 we get 0.875.

The fourth and final cumulative probability is the probability that X is three or less. Since

we know that X can’t be more than three (there are only three members in a team), it is

certain to be three or less, so the cumulative probability is 1. We would get the same result

arithmetically if we add the probability that X is three, 0.125, to the cumulative probability

that X is less than three, in other words that it is two or less, 0.875.
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We can do this because the two outcomes (X being greater than two and X

being less than or equal to two) are mutually exclusive and collectively

exhaustive. One and only one of them must occur. There are no other

possibilities so it is certain that one of them happens.

In the expression P (X> 2), which represents the probability that X is

greater than two, we use the symbol ‘>’ to represent ‘greater than’. It may

help you to recognize this symbol if you remember that the larger end of it is

pointing to the X and the smaller end is pointing to the 2, implying than X is

bigger than 2.

Although the situation described in Example 6.1, picking teams of just

three people, was quite simple, the approach we used to obtain the probability

distribution was rather laborious. Imagine that you had to use the same

approach to produce a probability distribution if there were five or six

members of a team instead of just three. We had to be careful enough in

identifying the three different ways of selecting two females in a team of

three. Listing the different ways two females could be selected in a team of

five is far more tedious.

Fortunately, there are methods of analysing such situations that do not

involve strenuous mental gymnastics. These involve using a type of proba-

bility distribution known as the binomial distribution.

6.3 THE BINOMIAL DISTRIBUTION

The binomial distribution is the first of a series of ‘model’ statistical distri-

butions that you will meet in this chapter and the two that follow it. The

distribution was first derived theoretically but is widely used in dealing with

practical situations. It is particularly useful because it enables you not only to

answer a specific question but also to explore the consequences of altering the

situation without actually doing so.

You can use the binomial distribution to solve problems that have what is

called a binomial structure. These types of problems arise in situations where

a series of finite, or limited number of, ‘experiments’ or ‘trials’ takes place

repeatedly. Each trial has the same two mutually exclusive and collectively

exhaustive outcomes, as the bi in the word binomial might suggest. These

two outcomes are referred to as ‘success’ and ‘failure’.

To analyse a problem using the binomial distribution you have to know

the probability of each outcome and it must be the same for every trial. In

other words, the results of the trials must be independent of each other.

Words like ‘experiment’ and ‘trial’ are used to describe binomial situa-

tions because of the origins and widespread use of the binomial distribution

The Binomial Distribution 179



in science. Although the distribution has become widely used in many other

fields, these scientific terms have stuck.

The situation in Example 6.1 has a binomial structure. Selecting a team

of three is in effect conducting a series of three trials. In each trial, which in

this case is each time a name is selected from the hat, there can be only one of

two outcomes; either a female or a male is picked.

In practice we would use computer software or printed tables such as

those in Table 1 in Appendix 1 (pages 315–6) to apply the binomial

distribution. These have been produced using an equation, called the

binomial equation, which you will see below. You won’t need to remember

it, and you shouldn’t need to use it. We will look at it here purely to show

how it works.

We will use the symbol X to represent the number of ‘successes’ in

a certain number of trials, n. X can be described as a binomial random

variable. The probability of success in any one trial is represented by the

letter p.

The probability that there are x successes in n trials is:

P ðX ¼ xÞ ¼ n!

x! ðn� xÞ! � pxð1� pÞn�x

You will see that an exclamation mark is used several times in the

equation. It represents a factorial, that is, a number multiplied by one less

than itself then multiplied by two less itself and so on until we get to

one. For instance, four factorial, 4!, is four times three times two times one,

4 * 3 * 2 * 1, which comes to 24.

Example 6.4

Use the binomial equation to find the first two probabilities in the probability distribution

for Example 6.1.

We will begin by identifying the number of trials to insert in the binomial equation.

Selecting a team of three involves conducting three ‘trials’, so n¼ 3.

The variable X is the number of females selected in a team of three. We need to find the

probabilities that X is 0, 1, 2 and 3, so these will be the x values.

If we define ‘success’ as selecting a female, p the probability of success in any one trial

is 0.5.

We can now put these numbers into the equation. We will start by working out the

probability that no females are selected in a team of three, that is, X¼ 0.

PðX ¼ 0Þ ¼ 3!

0! ð3� 0Þ! � 0:50ð1� 0:5Þ3�0

Continued
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Finding binomial probabilities using software or using printed tables

means we don’t need to undertake laborious calculations to obtain the figures

we are looking for. We can use software or printed tables to help us analyse far

more complex problems than Example 6.1. We will use tables to analyse the

problem in Example 6.5 below, but it is well worth learning how to produce

tables using software because space restrictions mean that printed tables only

contain a limited number of binomial distributions.

This expression can be simplified considerably. Any number raised to the power zero is

one, so 0.50¼ 1. Conveniently zero factorial, 0 ! is also one. We can also clear up some of

the subtractions.

PðX ¼ 0Þ ¼ 3!

1 ð3Þ! � 1ð0:5Þ3

¼ 3 � 2 � 1

3 � 2 � 1
� ð0:5 � 0:5 � 0:5Þ ¼ 1 � 0:125 ¼ 0:125

If you look back at Example 6.1 you will find that this is the same as the first figure in the

probability distribution. The figure below it, 0.375 is the probability that one female is

selected in a team of three, that is X¼ 1. Using the binomial equation:

PðX ¼ 1Þ ¼ 3!

1! ð3�1Þ! � 0:51ð1�0:5Þ3�1

¼ 6

1 ð2 � 1Þ � 0:5ð0:25Þ ¼ 3 � 0:125 ¼ 0:375

You may like to try using this approach for P (X¼ 2) and P (X¼ 3) as well.

Move the cursor to an empty cell.  

For the probability that one female 

is picked in a team of three in 

Example 6.1 

type =BINOMDIST(1,3,0.5,FALSE) 

in the Formula Bar, the long  

horizontal space near the top of the 

screen with the symbol   to the  

left of it.  

Excel Recipe Card – The 

binomial distribution 

The general form of this command is =BINOMDIST(x,n,p,cumulative), where the numbers you put in for

x, n and p depend on the problem. Putting FALSE for cumulative denotes that we don’t want a cumulative

probability,TRUE denotes that we do. 

Press Enter to produce the

probability in the cell. 
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Example 6.5

Malenky Aviation operates commuter flights using aircraft that can take 10 passengers.

During each flight passengers are given a hot drink and a ‘Snack Pack’ that contains

a meat sandwich and a cake. The company is aware that some of their passengers may be

vegetarians and therefore every flight is stocked with one vegetarian Snack Pack that

contains a cheese sandwich in addition to 10 that contain meat.

If 10% of the population is vegetarian, what is the probability that on a fully booked flight

there will be at least one vegetarian passenger who will not get a vegetarian Snack Pack?

This problem has a binomial structure. We will define the variable X as the number of

vegetarians on a fully booked flight. Each passenger is a ‘trial’ that can be a ‘success’,

a vegetarian, or a ‘failure’, a non-vegetarian. The probability of ‘success’, in this case the

probability that a passenger is a vegetarian, is 0.1. There are 10 passengers on a fully

booked flight, so the number of trials, n is 10.

The appropriate probability distribution for this problem is the binomial distribution with

n¼ 10 and p¼ 0.1. Table 1 on pages 315–6 contains the following information about the

distribution:

For 10 Trials (n¼ 10) p¼ 0.1

P (x) P (X� x)

x¼ 0 0.349 0.349

x¼ 1 0.387 0.736

x¼ 2 0.194 0.930

x¼ 3 0.057 0.987

x¼ 4 0.011 0.998

x¼ 5 0.001 1.000

x¼ 6 0.000 1.000

x¼ 7 0.000 1.000

x¼ 8 0.000 1.000

x¼ 9 0.000 1.000

x¼ 10 0.000 1.000

The column headed P (x) provides the probabilities that a specific number of ‘successes’,

x occurs, e.g., the probability of three ‘successes’ in 10 trials, P (3), is 0.057. The column

headed P (X¼ x) provides the probability that x or fewer ‘successes’ occur, e.g., the

probability that there are three or fewer ‘successes’, P (X� 3), is 0.987.

If there is only one vegetarian passenger they can be given the single vegetarian Snack

Pack available on the plane. It is only when there is more than one vegetarian passenger

that at least one of them will be dissatisfied with their Snack Pack. So we need the

probability that there is more than one vegetarian passenger, which is the probability that X

is greater than one, P (X> 1). We could get it by adding up all the probabilities in the P (x )

column except the first and second ones; the probability that X is zero, P (0) and the

Continued
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The binomial distribution is called a discrete probability distribution

because it describes the behaviour of some discrete random variables, bino-

mial variables. These variables concern the number of times things happen

in the course of a finite number of trials.

probability that X is one, P (1). However, it is easier to take the probability of one or fewer,

P (X� 1) away from one. That is:

PðX > 1Þ ¼ 1� PðX ¼ 1Þ ¼ 1� 0:736 ¼ 0:254 or 25:4%

We can show the binomial distribution we used in Example 6.5 in graphical form.

In Figure 6.2 the block above 0 represents the probability that X¼ 0, P (0), 0.349. The

other blocks combined represent the probability that X is larger than 0, P (X> 0), 0.651.

It is quite easy to find the mean and variance of a binomial distribution. The mean, m, is

simply the number of trials multiplied by the probability of success, that is, m¼ np. The

variance is the number of trials multiplied by the probability of success times one minus

the probability of success, s2¼ np (1� p).

0

0.1

0.2

0.3

0.4

0.5

109876543210
x

P
(
X

=
x
)

FIGURE 6.2 The binomial distribution for n¼ 10 and p¼ 0.1

Example 6.6

Calculate the mean, variance and standard deviation of the binomial distribution in

Example 6.5.

In Example 6.5 the number of trials, n, was 10, and the probability of success, p, was 0.1.

The mean : m ¼ np ¼ 10 � 0:1 ¼ 1:0

The variance : s2 ¼ npð1� pÞ ¼ 10 � 0:1ð1� 0:1Þ ¼ 1:0 � 0:9 ¼ 0:9

The standard deviation : s ¼
ffiffiffiffiffi
s2
p

¼
ffiffiffiffiffiffiffi
0:9
p

¼ 0:949 to three decimal places
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The binomial distribution enables us to analyse situations where

a specific number of trials occur. But what if we need to analyse how many

things happen over a period of time? For this sort of situation we use another

type of discrete probability distribution known as the Poisson distribution.

6.4 THE POISSON DISTRIBUTION

Some types of business problem involve the analysis of incidents that are

unpredictable. Usually they are things that can happen over a period of time

such as the number of telephone calls coming through to an office. However,

it could be a number of things over an area such as the number of stains in

a carpet.

The Poisson distribution describes the behaviour of variables like the

number of calls per hour or the number of stains per square metre. It enables

us to find the probability that a specific number of incidents happen over

a particular period or area.

Using the Poisson distribution is quite straightforward. In fact you may

find it easier than using the binomial distribution because we need to know

fewer things about the situation. To identify which binomial distribution to

use we had to specify the number of trials and the probability of success,

these were the two defining characteristics, or parameters of the binomial

distribution. In contrast, the Poisson distribution is a single parameter

distribution, the one parameter being the mean.

If we have the mean of the variable we are investigating we can obtain the

probabilities of the Poisson distribution using computer software or printed

tables such as those in Table 2 on pages 316–7.

Example 6.7

The first aid tent at a music festival can deal with no more than three people requiring

treatment in any one hour. The mean number of people requiring treatment is two per

hour. What is the probability that they will not be able to deal with all the people requiring

treatment in an hour?

The variable X in this case is the number of people per hour who require treatment. We

can use the Poisson distribution to investigate the problem because it involves a discrete

number of occurrences, or incidents over a period of time. The mean of X is 2.

The first aid facility can deal with three people an hour, so the probability that there are

more people requiring treatment than they can handle is the probability that X is more than

3, P (X> 3).

The appropriate distribution is the Poisson distribution with a mean of 2. Table 2 on pages

316–7 contains the following information about the distribution:
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m¼ 2.0

P (x) P (X� x)

x¼ 0 0.135 0.135

x¼ 1 0.271 0.406

x¼ 2 0.271 0.677

x¼ 3 0.180 0.857

x¼ 4 0.090 0.947

x¼ 5 0.036 0.983

x¼ 6 0.012 0.995

x¼ 7 0.003 0.999

x¼ 8 0.001 1.000

The column headed P (x) provides the probabilities that a specific number of incidents, x,

occurs, e.g., the probability of four incidents, P (4), is 0.090. The column headed P (X� x)

provides the probability that x or fewer incidents occur, e.g., the probability that there are

four or fewer incidents, P (X� 4), is 0.947.

To obtain the probability that more than three people require treatment at the first aid tent,

P (X> 3), we can subtract the probabilities that X is 3 or fewer, P (X� 3), which is the

probability that the number of people requiring treatment in an hour can be dealt with,

from one.

P ðX > 3Þ ¼ 1� P ðX � 3Þ ¼ 1� 0:857 ¼ 0:143 or 14:3%

Move the cursor to an empty cell.

For the probability that three or

fewer people require treatment in

an hour in Example 6.7

type =POISSON(3,2,TRUE)

in the Formula Bar. 

Excel Recipe Card – The 

Poisson distribution

Press Enter to produce the

probability in the cell.

The general form of this command is =POISSON(x,mean,cumulative), where the numbers you put in

for x and mean depend on the problem. Putting TRUE for cumulative means we want a cumulative

probability, FALSE means we don’t. 
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If we had to produce the Poisson probabilities in Example 6.7 without the

aid of computer software or printed tables we could calculate them using the

formula for the distribution. You won’t have to remember it, and probably

won’t need to use it, but it may help your understanding if you know where

the figures come from.

The probability that the number of incidents, X, takes a particular value,

x, is:

PðX ¼ xÞ ¼ e�mmx

x!

In this expression you can see the letter e, which represents a mathe-

matical constant known as Euler’s number. The value of this, to four places

of decimals, is 2.7183, so we can put this in the formula.

PðX ¼ xÞ ¼ 2:7183�mmx

x!

The symbol m represents the mean of the distribution and x is the value of

X whose probability we want to know. In Example 6.7 the mean is 2, so the

probability that there are no people requiring treatment, in other words the

probability that X is zero, is:

PðX ¼ 0Þ ¼ 2:7183�mm0

0!
¼ 2:7183�2 �20

1

To work this out you need to know that if you raise any number (in this

case 2, the value of m) to the power zero the answer is one. So:

PðX ¼ 0Þ ¼ 2:7183�2 �20

1
¼ 2:7183�2 �1

1

The first part of the expression, 2.7183�2, becomes 1/2.71832. Any

number raised to a negative power is a reciprocal, which is one divided by the

number, for instance 2�2 is 1/22, which is 1/4. So:

P ðX ¼ 0Þ ¼ 1=2:71832 ¼ 0:135 to three decimal places

If you look back to the extract from Table 2 in Example 6.7 you can check

that this is the correct figure. The figure below P (0), 0.135, in the extract

from Table 2 is P (1), 0.271, which can be calculated as follows:

PðX ¼ 1Þ ¼ 2:7183�mm1

1!
¼ 2:7183�2 �2

1
¼ 2=2:71832 ¼ 0:271

Figure 6.3 shows the Poisson distribution used in Example 6.7 in

graphical form.
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6.5 EXPECTATION

Earlier in the chapter we referred to the mean of a probability distribution as

the expected value of the distribution because it can be used as a guide to

what we could expect or predict that the values will be like. In fact one of the

most important uses of probabilities is to make predictions. The production

of predicted or expected values is called expectation.

A probability assesses the chance of a certain outcome in general. To

use it to make predictions we have to apply it to something specific. If the

probability refers to a process that is repeated, we can predict how many

times the outcome will occur if the process happens a specific number of

times by multiplying the probability by the number of times the process

happens.

Example 6.8

In Example 6.1 the probability that a team of three members of the sales force chosen at

random contained one female was 0.375. If there were enough sales staff for 200 teams,

how many teams will contain exactly one female?

Selecting these teams is a process that is to be repeated 200 times so we can work out

how many teams include one female by multiplying the probability that a team contains

one female, 0.375, by the number of times the process is repeated, 200.

Expected number of teams with one female ¼ 0:375 � 200 ¼ 75

So we would expect 75 of the teams to contain one female.

0 

0.1 

0.2 

0.3 

8 7 6 5 4 3 2 1 0 
x

P
(
X

=
x
)

FIGURE 6.3 The Poisson Distribution for m¼ 2.0
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The result we obtained in Example 6.8 is a prediction, and like any

prediction it won’t always be true. We shouldn’t therefore interpret the result

as meaning that every time 200 teams are selected at random there will be

exactly 75 teams that contain one female.

What the result in Example 6.8 does mean is that if 200 teams were to be

selected at random many times over, in the long run we would expect that the

average number of teams that contain one female will be 75.

Expectation also allows us to predict incidences over time. To do this you

multiply the probability that a certain number of incidences occur over

a period of time by the time you want your prediction to cover.

In some situations the outcomes are associated with specific financial

results. In these cases the probabilities can be applied to the monetary

consequences of the outcomes to produce a prediction of the amount of

money that the process will generate. These types of prediction are called

expected monetary values (EMVs).

Example 6.9

In Example 6.7 we found the probability that the number of people requiring treatment at

the first aid tent was more than three in any hour was 0.143. If the music festival lasts

10 hours, in how many hours will there be more than three people seeking treatment?

We can obtain the answer by multiplying the probability of more than three people

requiring treatment in an hour by the number of hours the music festival lasts.

Expected hours with more than three people requiring treatment ¼ 0:143 � 10

¼ 1:43

Since the first aid tent can only treat three people an hour, we would expect them to have

to summon help during 1 or 2 hours of the music festival.

Example 6.10

A rail operating company incurs extra costs if its long-distance trains are late. Passengers

are given a voucher to put towards the cost of a future journey if the delay is between

30 minutes and 2 hours. If the train is more than 2 hours late the company refunds the

cost of the ticket for every passenger. The cost of issuing vouchers costs the company

£ 5000. The cost of refunding all the fares costs the company £ 60,000.

Continued
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6.6 DECISION TREES

EMVs play an important part in models that can be used to analyse business

situations involving a number of stages of outcomes and decisions. These

models are called decision trees.

As their name might suggest, decision trees depict the different sequences

of outcomes and decisions in the style of a tree spreading from left to right.

Each branch of the tree represents an outcome or a decision. The junctions,

or points at which branches separate, are called nodes. If the branches that

stem from a node represent outcomes, the node is called a chance node and

depicted using a small circle. If the branches represent different decisions

that could be made at that point, the node is a decision node and depicted

using a small square.

All the paths in a decision tree should lead to a specific monetary result

that may be positive (an income or a profit) or negative (a cost or a loss). The

probability that each outcome occurs is written at the end of the branch that

represents the outcome. We use the probabilities and the monetary results to

work out the EMV of each possible decision. We write the EMV of a decision

alongside the branch that represents it. The final task is to select the decision

or series of decisions if there is more than one stage of decision-making,

which yields the highest EMV.

The probability that a train is between 30 minutes and 2 hours late is 10% and the prob-

ability a train is more than 2 hours late is 2%. What is the EMV of the operating company’s

extra costs?

To answer this we need to take the probability of each of the three possible outcomes (less

than 30 minutes late, 30 minutes to 2 hours late, more than 2 hours late) and multiply them

by their respective costs (£ 0, £ 5000 and £ 60,000). The EMV is the sum of these results.

EMV ¼ ð0:88 � 0Þ þ ð0:1 � 5000Þ þ ð0:02 � 60000Þ
¼ 0þ 500þ 1200 ¼ 1700

The company can therefore expect that extra costs will amount to £ 1700 per journey.

Example 6.11

A retail grocery company is interested in opening a new supermarket in a disused cinema

on the outskirts of a major town. Because of local opposition to the proposal there is only

a 65% chance that planning permission will be granted. If planning permission is obtained

there is an 80% chance that a major competitor will build a rival establishment close

enough to seriously affect the prospects of the supermarket.

Continued
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Financial planners at the company say that the venture would make a profit of £ 20 m in its

first 5 years of operation if the rival establishment is not built and a loss of £ 4 m over the

5 years if the rival establishment is built.

Assuming that the company takes all investment decisions on the basis of financial

prospects over the first 5 years of any venture, should they proceed with their plan?

We can begin by distinguishing between the decisions the company can take and the

outcomes they could face. The decisions are to open the supermarket or not to open the

supermarket. The outcomes are whether they get planning permission or not, and

whether the rival establishment is built or not.

Although granting planning permission and building the rival establishment are decisions,

they are decisions taken by people outside the company. As far as the company is con-

cerned they are outcomes and they do not have direct control over them.

In the diagram we will use the abbreviations as follows:

- ‘O’ for opening the supermarket and ‘No O’ for not opening it

- ‘PP’ for planning permission and ‘No PP’ for no planning permission

- ‘RE’ for a rival establishment and ‘No RE’ for no rival establishment

We can start with the EMV of the ‘No open’ decision. If they decide not to open the

supermarket the monetary result is certain to be zero.

If they decide to open the supermarket there is a probability of 0.35 that they fail to get

planning permission and hence obtain a monetary result of zero. The probability that they

make a loss of £ 4m is the probability that they get planning permission and that the rival

establishment is built. The probability that they make a profit of £ 20m is the probability

that they get planning permission and that the rival establishment is not built.

The EMV of opening the supermarket is the sum of these probabilities multiplied by their

respective monetary results.

EMV ðOpenÞ ¼ ð0:35 � 0Þ þ ð0:65 � 0:8 � ð�4; 000; 000ÞÞ
þ ð0:65 � 0:2 � 20; 000; 000Þ

¼ 0þ ð�2; 080; 000Þ þ 2; 600; 000 ¼ 520; 000

Since the EMV of opening the supermarket, £ 520,000, is greater than the EMV of not

opening it, £ 0, they should open the supermarket.

Monetary result 

RE 0.8 – £4,000,000 

O PP 0.65 

N o RE        £2 0 ,000,000  

No PP 0.35 £0  

No O £0  
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Although decision trees can be useful approaches for weighing up

decisions, they do have some shortcomings as techniques for taking

decisions.

Their first weakness is that they are only as good as the information that

you put into them. If the probabilities and monetary figures are not reliable

then the conclusion is also unreliable. This is an important issue when, as in

Example 6.11, the figures are speculative assessments of future events over

a considerable period of time.

The second shortcoming is that they take no account of the attitude that

the people making the decision have towards risk. For instance, if the retail

grocery company in Example 6.11 has high profits and is cash-rich it might

be prepared to accept the risk of a loss more readily than if it has low profits

and a liquidity problem.

The third drawback is that it is difficult to introduce factors that are non-

quantifiable or difficult to quantify into the process. For instance, the location

where the company in Example 6.11 wants to open the supermarket may be

in an area where recruiting part-time staff for peak periods is easier than in

a city centre location.

Despite these weaknesses decision trees can help to investigate deci-

sions and their consequences, especially when we are interested in the

effects of altering some of the figures to see whether the conclusion

changes.

Example 6.12

The rival company in Example 6.11 publishes financial results that show an improvement

in profits. As a result the retail grocery company that wants to open the supermarket now

puts the probability that a rival establishment will be built at 0.9. Should the company

change its mind about opening the supermarket?

We need to put the new probability that there is no rival establishment, 0.1, into the

expression for the EMV of the decision to open the supermarket.

EMV ðOpenÞ ¼ ð0:35 � 0Þ þ ð0:65 � 0:9 � ð�4; 000; 000ÞÞ
þ ð0:65 � 0:1 � 20; 000; 000Þ

¼ 0þ ð�2; 340; 000Þ þ 1; 300; 000 ¼ �1; 040; 000

The EMV of opening the supermarket is now negative, �£ 1,040,000, which means it is

lower than the EMV of not opening the supermarket, £ 0. In this case they should not open

the supermarket.
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Test yourself questions from Warwick’s business enterprises

Fully worked solutions to these questions are on pages 334–336. You can find more

questions on the topics covered in this chapter at the accompanying website www.

elsevierdirect.com/9781856179478.

6.1 (Easy)

‘Fast’ Gary and Mickey ‘the Mule’ import alcoholic beverages from Brno into the UK.

They offer Warwick a consignment of packs of bottled beers to sell in his restaurant.

Each pack contains 10 bottles. The price for the consignment is low because due to

problems at the bottling plant 20% of the bottles have no labels. What is the

probability that in a pack from this consignment:

(a) No bottles are without labels?

(b) Three or fewer bottles are without labels?

(c) More than one bottle is without a label?

(d) Less than five bottles are without labels?

(e) The majority of bottles are without labels?

6.2 (Moderate)

The mean number of violent incidents at Warwick’s city centre bar is 14 per week. As

a result of illness the doorman will be off for a day.

(a) What is the probability that the day passes without any violent incidents?

(b) What is the probability that the day passes with no more than one violent incident?

(c) If his doctor says the doorman needs 2 days off work, what is the probability that

these 2 days pass without any violent incidents?

(d) What is the probability that these 2 days pass with more than one violent incident?

6.3 (Hard)

Eagraville United are the last lower-division football club in the quarter-finals of

a major cup competition. The other teams are all prominent clubs with large

numbers of supporters. The club manager has asked Warwick to provide catering for

the event. He has to place the order for perishable goods to sell at the game before

the draw for the next stage of the competition takes place. He can place a small or

a large order. If he places a large order and the game is played at Eagraville he

anticipates a profit of £10,000. If he places a small order and the game is played at

Eagraville he anticipates a profit of £3000. If a large order is placed and the game is

played elsewhere he estimates a loss of £2500. If a small order is placed and the

game is played elsewhere he estimates a loss of £1000. There is a 50% chance that

Eagraville will get a home game in the draw, but if they do they expect that the larger

club will apply for the fixture to be relocated because of the modest size of the

Eagraville ground. The probability that such an application will succeed is 0.4. Use

a decision tree to represent the situation and use it to recommend whether Warwick

should place a large or a small order.
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CHAPTER 7

Modelling Populations

Why do I need to know about this? Warwick the Hospitality
entrepreneur says.

‘You can’t get away from the fact that a lot of the time in business you
are dealing with samples. Samples of the customers you could have

attracted, samples of the employees you could have appointed,
samples of the goods that you could have been supplied with. Every

sample comes from a population. To know what you can find out
from studying the sample you have to have some idea of the

population it comes from and how the samples taken from it are
likely to vary.’

Chapter Objectives

This chapter will help you to:

- use continuous probability distributions;

- analyse continuous random variables; and

- understand how sample results vary.

CONTENTS
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7.1 INTRODUCTION

In the last chapter we looked at how two different types of theoretical

probability distributions, the binomial and Poisson distributions, can be

used to model or simulate the behaviour of discrete random variables. These

types of variables can only have a limited or finite number of values, typi-

cally only whole numbers like the number of defective products in a pack or

the number of telephone calls received over a period of time.

Discrete random variables are not the only type of random variable. You

will also come across continuous random variables, variables whose possible

values are not confined to a limited range. In the same way as we used

discrete probability distributions to help us investigate the behaviour of

discrete random variables we use continuous probability distributions to help

us investigate the behaviour of continuous random variables. Continuous

probability distributions can also be used to investigate the behaviour of

discrete variables that can have many different values.

The most important continuous probability distribution in Statistics is

the normal distribution. As the name suggests, this distribution represents

the pattern of many ‘typical’ or ‘normal’ variables.

However, the normal distribution has a very special place in Statistics

because as well as helping us to investigate variables that behave in the

way that the normal distribution portrays, it is used to model the way in

which results from random samples vary. This is of great importance

when we want to use sample results to make predictions about entire

populations.

7.2 THE NORMAL DISTRIBUTION

Just as there are different versions of the binomial distribution that describe

the patterns of values of binomial variables, and different versions of the

Poisson distribution that describe the behaviour of Poisson variables, there

are different versions of the normal distribution that display the patterns of

values of normal variables.

Each version of the binomial distribution is defined by n, the number of

trials and p, the probability of success in any one trial. Each version of the

Poisson distribution is defined by its mean. In the same way, each version of

the normal distribution is identified by two defining characteristics or

parameters; the mean and the standard deviation.
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The normal distribution has three distinguishing features:

- It is unimodal; there is a single peak.

- It is symmetrical; one side is the mirror image of the other.

- It is asymptotic; it tails off gradually on each side but the line

representing the distribution never quite meets the horizontal axis.

Because the normal distribution is a symmetrical distribution with

a single peak, the mean, median and mode all coincide at the middle of the

distribution. For this reason we only need to use the mean as a measure of

location for the normal distribution. Since the average we use is the mean,

the measure of spread that we use for the normal distribution is the standard

deviation.

The normal distribution is sometimes described as bell-shaped.

Figure 7.1 illustrates the shape of the normal distribution. It takes the form of

a smooth curve. This is because it represents the probabilities that

a continuous variable takes values right across the range of the distribution.

If you look back at the diagrams used to represent the discrete probability

distribution in Figure 6.1 in Chapter 6 you will see that it is a bar chart that

consists of separate blocks. Each distinct block represents the probability that

the discrete random variable in question takes one of its distinct values.

Because the variable can only take discrete, or distinct, values we can repre-

sent behaviour with a diagram consisting of discrete, or distinct, sections.

If we want to use a diagram like Figure 6.1 to find the probability that the

discrete variable it describes takes a specific value, we could measure the
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FIGURE 7.1 The normal distribution
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height of the block against the vertical axis. In contrast, using the smooth or

continuous curve in Figure 7.1 to find the probability that the continuous

variable it describes takes a particular value is not so easy.

To start with, we need to specify a range rather than a single value. For

instance, we would have to talk about the probability that the variable X is

between 3.500 and 4.499 rather than the probability that X is 4. This proba-

bility would be represented in a diagram by that part of the area below the curve

that lies between the points 3.500 and 4.499 on the horizontal axis, as

a proportion of the total area below the curve. Because this sort of thing is very

difficult to measure even approximately on a graph, using the normal distri-

bution inevitably involves computer software or printed tables of probabilities.

In Chapter 6 we saw how we could produce tables of binomial or Poisson

probabilities using software as long as we could specify the necessary

parameters. We could use the software to produce probabilities for any

binomial or Poisson distribution. We can also use the software to produce

probabilities for any normal distribution.

Example 7.1

According to a bank, the time taken by its customers to use cash dispensing machines (X)

is normally distributed with a mean of 18 seconds and a standard deviation of 3 seconds.

What is the probability that a customer selected at random takes less than 13 seconds?

The shaded area in Figure 7.2 represents the cumulative probability that the time that

customers take to use cash dispensing machines is less than 13 seconds i.e. P(X < 13).
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FIGURE 7.2 The distribution of times taken to use cash dispensers in Example 7.1
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The result from the Excel analysis for Example 7.1 can be interpreted to

mean that 4.78 percent of customers take less than 13 seconds.

Example 7.2

Find the probabilities that customers of the bank in Example 7.1 take:

(a) Less than 12 seconds;

(b) Less than 15 seconds;

(c) Less than 18 seconds;

(d) Less than 21 seconds;

(e) Less than 24 seconds;

to use the cash dispensing machines.

Using the Excel NORMDIST facility you should get the following figures.

Normal with mean ¼ 18:0 and standard deviation ¼ 3:0

x P (X< x)

12.0 0.0228

15.0 0.1587

18.0 0.5000

21.0 0.8413

24.0 0.9772

In this output X represents the variable ‘time taken by customers’ and x represents

a specific period of time taken by customers.

Move the cursor to an empty cell. 

For the cumulative probability for 

Example 7.1 type 

=NORMDIST(13,18,3,TRUE) in 

the Formula Bar. 

Excel Recipe Card – The normal 

distribution 

Press Enter to produce the 

probability in the cell.  

The general form of the command is =NORMDIST(x,mean,standard deviation, TRUE) where x is the

value whose probability you want, and the mean and standard deviation are the parameters of the normal

distribution to which x belongs. TRUE denotes that we want a cumulative probability, FALSE denotes

that we don’t.
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You can see from the table in Example 7.2 that the probability that

a customer takes less than the mean, 18 seconds, is 0.5, or 50%. This is not

too surprising because the mean of the normal distribution is the figure right

in the middle of a symmetrical distribution. We would expect one half of the

values in the distribution to be below it and the other half above it. The

probability that any one value is below the mean is therefore exactly the same

as the probability that it is above the mean, 0.5.

If the probability that a customer takes less than 18 seconds is 0.5 and

the probability that a customer takes more than 18 seconds is 0.5, what is

the probability that a customer takes exactly 18 seconds? In theory the

probability that a continuous variable has a precise value is infinitely small.

The probability that X, the time that customers take, is precisely 18 seconds,

that is, 18.000000 . is, for all practical purposes zero. If we are more specific

about what we mean by ‘18 seconds’, which is probably ‘18 seconds to the

nearest second’, it is clear that we don’t mean the probability that X is exactly

18, we mean the probability that X is between 17.5 and 18.5.

An implication of the last point is that there is no tangible difference

between the probability that X is less than an amount, and the probability

that X is less than or equal to that amount.

The other values in Example 7.2 have been chosen because they are one

or two standard deviations away from the mean. As a rule of thumb roughly

two-thirds of the normal distribution is between one standard deviation

below the mean and one standard deviation above the mean and about 95%

of the distribution is within two standard deviations of the mean. Over 99%

of the distribution is within three standard deviations of the mean.

Example 7.3

Use the list of probabilities in Example 7.2 to find the proportion of customers that take:

(a) Between 15 and 21 seconds;

(b) Between 12 and 24 seconds;

to use the cash dispensers.

According to the table the probability that X, the time taken by customers, is below

21 seconds is 0.8413, or 84.13%. The probability that X is below 15 seconds is 0.1587, or

15.87%. To find the probability that X is less than 21 seconds and more than 15 seconds

we have to subtract the probability that it is less than 15 seconds from the probability that it

is less than 21 seconds.

Pð21 > X > 15Þ ¼ PðX < 21Þ � PðX < 15Þ
¼ 0:8413� 0:1587 ¼ 0:6826; or 68:26%

This is illustrated in Figure 7.3.

Continued
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Similarly we can get the probability that X is less than 24 seconds and more than

12 seconds by subtracting the probability that X is less than 12 seconds from the prob-

ability that it is less than 24 seconds.

Pð24 > X > 12Þ ¼ PðX < 24Þ � PðX < 12Þ
¼ 0:9772� 0:0228 ¼ 0:9544; or 95:44%

This is illustrated in Figure 7.4.

0.0 

0.1 

0.2 

0.3 

0.4 

P 
(X

 =
 x
)

x
9 12 15 18 21 24 27 

FIGURE 7.3 Example 7.3: P(21> X> 15)
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FIGURE 7.4 Example 7.3: P(24> X> 12)
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When we looked at the binomial and Poisson distributions in Chapter 6 we

saw how it was possible to calculateprobabilities in these distributionsusing the

appropriate formulae. In fact in the days before the sort of software we now have

became available, if you needed to use a binomial or a Poisson distribution you

would consult published tables. However because of the sheer number of

version of the distributions the one that you wanted may not have appeared in

the tables. In such a situation you had to work out the probabilities yourself.

Calculating the probabilities that make up discrete distributions is tedious

but not impossible, especially if the number of outcomes involved is quite

small. The nature of the variables concerned, viz. the fact that they can only

take a limited number of values, restricts the number of calculations involved.

In contrast, calculating the probabilities in continuous distributions can be

daunting. The variables, being continuous, can have an infinite number of

different values and the distribution consists of a smooth curve rather than

a collection of detached blocks. This makes the mathematics involved very

much more difficult and puts the task beyond the capabilities of many people.

Because it was so difficult to calculate normal distribution probabilities,

published tables were the only viable means of using the normal distribution

before computers were available to do the work. However, the number of

versions of the normal distribution is literally infinite, so it was impossible to

publish tables for all of them.

The solution to this problem was the production of tables describing

a benchmark normal distribution known as the Standard Normal Distribu-

tion. The advantage of this was that you could analyse any normal distribution

by comparing points in it with equivalent points in the Standard Normal

Distribution. Once you had these equivalent points you could use published

Standard Normal Distribution tables to assist you with your analysis.

Although modern software means that the Standard Normal Distribution is

no longer indispensable, it is important that you know something about it. Not

only is it useful in case you do not have access to appropriate software, but more

importantly, thereare many aspects of further statistical workyou will meet that

are easier to understand if you know about the Standard Normal Distribution.

7.3 THE STANDARD NORMAL DISTRIBUTION

The Standard Normal Distribution describes the behaviour of the variable Z,

which is normally distributed with a mean of zero and a standard deviation of

one. Z is sometimes known as the Standard Normal Variable and the Stan-

dard Normal Distribution is known as the Z Distribution. The distribution is

shown in Figure 7.5.
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If you look carefully at Figure 7.5 you will see that the bulk of the

distribution is quite close to the mean, 0. The tails on either side get closer to

the horizontal axis as we get further away from the mean, but they never

meet the horizontal axis. They are what are called asymptotic.

As you can see from Figure 7.5 half of the Standard Normal Distribution

is to the left of zero, and half to the right. This means that half of the z values

that make up the distribution are negative and half are positive.

Table 3 on pages 317–320 provides a detailed breakdown of the Standard

Normal Distribution. You can use it to find the probability that Z, the

Standard Normal Variable, is more than a certain value, z, or less than z. In

order to show you how this can be done, a section of Table 3 is printed below:

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859

0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451

0.7 0.2420 0.2389 0.2358 0.2327 0.2297 0.2266 0.2236 0.2206 0.2177 0.2148

0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867

0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
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FIGURE 7.5 The standard normal distribution
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Suppose you need to find the probability that the Standard Normal Vari-

able, Z, is greater than 0.72, P(Z> 0.72). Begin by looking for the value of z,

0.72, to just one decimal place, i.e. 0.7, among the values listed in the column

headed z on the left-hand side. Once you have found 0.7 under z, look along

the row to the right until you reach the figure in the column headed 0.02. The

figure in the 0.7 row and the 0.02 column is the proportion of the distribution

that lies to the right of 0.72, 0.2358. This area represents the probability that

Z is greater than 0.72, so P(Z> 0.72) is 0.2358 or 23.58%.

If you want the probability that Z is less than 1.08, P(Z< 1.08) look first

for 1.0 in the z column and then proceed to the right until the figure in the

column headed 0.08, 0.1401. This is the area to the right of 1.08 and

represents the probability that Z is more than 1.08. To get the probability that

Z is less than 1.08, subtract 0.1401 from 1:

PðZ < 1:08Þ ¼ 1� PðZ > 1:08Þ ¼ 1� 0:1401
¼ 0:8599 or 85:99%

In Example 7.4 you will find a further demonstration of the use of Table 3.

Example 7.4

Use Table 3 on pages 317–320 to find the following:

(a) The probability that Z is greater than 0.7, P(Z> 0.7).

(b) The probability that Z is less than 0.7, P(Z< 0.7).

(c) The probability that Z is greater than 2.27, P(Z> 2.27).

(d) The probability that Z is greater than �1.35, P(Z>�1.35).

(e) The probability that Z is less than �1.35, P(Z<�1.35).

(f) The probability that Z is greater than 0.41 and less than 2.74, P(0.41< Z< 2.74).

(g) The probability that Z is less than�0.82 and more than�1.98, P(�1.98< Z<�0.82).

(h) The probability that Z is less than 1.53 and more than�0.69, P(�0.69< Z< 1.53).

Until you are used to deal with the Standard Normal Distribution you may find it helpful to

make a small sketch of the distribution and identify on the sketch the z value(s) of interest

and the area that represents the probability you want.

(a) The probability that Z is greater than 0.7, P(Z> 0.7).

The value of Z in this case is not specified to two places of decimals, so we take the figure

to the immediate right of 0.7 in Table 3, in the column headed 0.00, which is 0.2420. This

is the probability that Z is greater than 0.7. We could also say that 24.20% of z values are

greater than 0.7.

This is represented by the area shown in Figure 7.6.

Continued
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(b) The probability that Z is less than 0.7, P(Z< 0.7).

The answer to (a) tells us that 24.20% of z values are bigger than 0.7. This implies that

75.80% of z values are less than 0.7, so the answer is 1� 0.2420 which is 0.7580.

This is represented by the area shown in Figure 7.7.
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FIGURE 7.6 Example 7.4 (a): P(Z> 0.7)
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FIGURE 7.7 Example 7.4 (b): P(Z< 0.7)
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(c) The probability that Z is greater than 2.27, P(Z> 2.27).

The figure in the row to the right of 2.2 and in the column headed 0.07 in Table 3 is

0.0116. This means that 1.16% of z values are bigger than 2.27. The probability that Z is

bigger than 2.27 is therefore 0.0116.

This is represented by the area shown in Figure 7.8

(d) The probability that Z is greater than �1.35, P(Z>�1.35).

The figure in the row to the right of 2.2 and in the column headed 0.07 in Table 3 is

0.0116. This means that 1.16% of z values are bigger than 2.27. The probability that Z is

bigger than 2.27 is therefore 0.0116.

Figure 7.9 depicts this area.

(e) The probability that Z is less than �1.35, P(Z<�1.35).

From (d) we know that the probability that Z is greater than �1.35 is 0.9115, so the

probability that Z is less than �1.35 (by which we mean �1.4, �1.5 and so on) is

1 � 0.9115, which is 0.0885.

This is shown in Figure 7.10.

(f) The probability that Z is greater than 0.41 and less than 2.74, P (0.41< Z< 2.74).

The probability that Z is greater than 0.41, P(Z> 0.41), is shown in Table 3 in the row

for 0.4 and the column headed 0.01, 0.3409. You will find the probability that Z is

greater than 2.74 in the row for 2.7 and the column headed 0.04, 0.0031. We can

obtain the probability that Z is more than 0.41 and less than 2.74 by taking the

0.0

0.1

0.2

0.3

0.4
P

 
(
Z

 
=

 
z
)

z

−3 −2 −1 0 1 2 3

FIGURE 7.8 Example 7.4 (c): P(Z> 2.27)
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probability that Z is more than 2.74 away from the probability that Z is more than

0.41, that is:

Pð0:41 < Z < 2:74Þ ¼ PðZ > 0:41Þ � PðZ > 2:74Þ
¼ 0:3409� 0:0031 ¼ 0:3378

This probability is shown in Figure 7.11.
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FIGURE 7.10 Example 7.4 (e): P(Z<�1.35)
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Another way of expressing this is to say that if 34.09% of the area is to the right of 0.41 and

0.31% of the area is to the right of 2.74, then the difference between these two

percentages, 33.78% is the area between 0.41 and 2.74.

(g) The probability that Z is greater than �1.98 and less than �0.82,

P(�1.98< Z<�0.82).

From Table 3 we can establish by looking for figure in the �1.9 row and the 0.08 column

that the probability that Z is more than �1.98, P(Z>�1.98), is 0.9761. The probability

that Z is more than �0.82, P(Z>�0.82) is the figure in the �0.8 row and the 0.02

column, 0.7939. The probability that Z is between�1.98 and�0.82 is the probability that

Z is more than �1.98 minus the probability that Z is more than 0.82. That is:

Pð � 1:98 < Z < �0:82Þ ¼ PðZ > �1:98Þ � PðZ > �0:82Þ
¼ 0:9761� 0:7939 ¼ 0:1822

This is illustrated in Figure 7.12.

(h) The probability that Z is greater than �0.69 and less than 1.53,

P (�0.69< Z< 1.53).

The probability that Z is greater than �0.69, P(Z>�0.69), is in the �0.6 row and

the 0.09 column of Table 3, 0.7549. P(Z> 1.53) is in the row for 1.5 and the column

headed 0.03, 0.0630. The probability that Z is between �0.69 and 1.53 is the probability

that Z is greater than �0.69 minus the probability that Z is greater than 1.53:

Pð� 0:69 < Z < 1:53Þ ¼ PðZ > �0:69Þ � PðZ > 1:53Þ
¼ 0:7549� 0:0630 ¼ 0:6919

This is depicted in Figure 7.13.
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FIGURE 7.11 Example 7.4 (f): P (0.41< Z< 2.74)
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Sometimes we need to use the Standard Normal Distribution in a rather

different way. Instead of starting with a value of Z and finding a probability,

we may have a probability and need to know the value of Z associated with it.
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FIGURE 7.12 Example 7.4 (g): P(–1.98< Z<�0.82)
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FIGURE 7.13 Example 7.4 (h): P(�0.69< Z< 1.53)
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Example 7.5

Use Table 3 on pages 317–320 to find the specific value of Z, which we will call za, so the

area to the right of za, the probability that Z is greater than za, P (Z> za), is:

(a) 0.4207

(b) 0.0505

(c) 0.0250

(a) If you look carefully down the list of probabilities in Table 3, you will see that 0.4207

appears to the right of the z value 0.2, so in this case the value of za is 0.2. The

probability that Z is greater than 0.2, P (Z> 0.2) is 0.4207.

This is shown in Figure 7.14.

(b) To find the value of Z that has an area of 0.0505 to the right of it you will have to look

further down Table 3. The figure 0.0505 appears in the row for 1.6 and the column

headed 0.04, 0.0505 is the probability that Z is more than 1.64,

P (Z> 1.64).

This is shown in Figure 7.15.

(c) The value of Z that has an area of 0.0250, or 2.5% of the distribution, to the right of it

is 1.96 because the figure 0.0250 is in the row for 1.9 and the column headed

0.06 in Table 3. So 0.0250 is the probability that Z is more than 1.96, P (Z> 1.96).

This is illustrated in Figure 7.16.
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FIGURE 7.14 Example 7.5 (a): 0.4207¼ P(Z> 0.2)
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The symbol we used in Example 7.5 to represent the value of Z we wanted

to find, za, is a symbol that you will come across in later work. The a in this

symbol represents the area of the distribution beyond za, in other words the

probability that z is beyond za.

PðZ > zaÞ ¼ a
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FIGURE 7.15 Example 7.5 (b): 0.0505 ¼ P(Z> 1.64)
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FIGURE 7.16 Example 7.5 (c): 0.0250¼ P(Z> 1.96)
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In Example 7.5 (c), a is 0.0250 and za is 1.96, that is P (Z> 1.96)¼ 0.0250.

1.96 is the value of Z and 0.0250 or 2.5% is the area of the distribution beyond

1.96. As you can see from Figure 7.16 this is a small area in the right-hand tail

of the distribution. Such an area is therefore called a tail area.

Sometimes it is convenient to represent a particular value of Z by the

letter z followed by the tail area beyond it in the distribution in the form of

a suffix. For instance, the z value 1.96 could be written as z0.0250 because

there is a tail of 0.0250 of the distribution beyond 1.96. We might say that the

z value 1.96 ‘cuts off’ a tail area of 0.0250 from the rest of the distribution.

In later work you will find that particular z values are often referred to in

this style because it is the area of the tail that leads us to use a particular z

value and we may want to emphasize the fact. Values of Z that cut off tails of

5%, 21
2%, 1% and 1

2% crop up in the topics we will look at in the next chapter.

The z values that cut off these tail areas, 1.64, 1.96, 2.33 and 2.58 are

frequently referred to as z0.05, z0.025, z0.01 and z 0.005 respectively.

7.3.1 Using the Standard Normal Distribution

To use the Standard Normal Distribution to analyse other versions of the

normal distribution we need to be able to express any value of the normal

distribution that we want to investigate as a value of Z, which is known as

finding its z-equivalent or z score.

The z-equivalent of a particular value, x of a normal variable, X, is the differ-

ence between x and the mean of X, m, divided by the standard deviation of X, s.

z ¼ x�m

s
Because we are dividing the difference between the value, x, and the mean

of the distribution it belongs to, m, by the standard deviation of the distri-

bution, s, to get it, the z-equivalent of a value is really just the number of

standard deviations the value is away from the mean.

Once we have found the z-equivalent of a value in a normal distribution

we can refer to the Standard Normal Distribution table, Table 3 on pages

317–320, to assess probabilities associated with it.

Example 7.6

A UK pub offers a ‘10 oz Steak Special’ (10 oz, or 10 ounces is about 284 grams). If the

steaks they use for these meals have uncooked weights that are Normally distributed with

a mean of 9.8 ounces and a standard deviation of 0.5 ounces, what is the probability that

a customer will get:

(a) A steak that has an uncooked weight of more than 10 ounces?

(b) A steak that has an uncooked weight of more than 9.5 ounces?

(c) A steak that has an uncooked weight of less than 10.5 ounces?

Continued

CHAPTER 7 : Modelling Populations210



(a) If X represents the uncooked weights of the steaks, we want to find P (X> 10). This is

shown in Figure 7.17.

The z-equivalent of x ¼ 10 is

z ¼ 10� 9:8

0:5
¼ 0:4

So the probability that X is more than 10 is equivalent to the probability that Z is more than

0.4. From Table 3 on pages 317–320:

PðZ > 0:4Þ ¼ 0:3446 or 34:46%

(b) The z-equivalent of 9.5 is

z ¼ 9:5� 9:8

0:5
¼ �0:6

So the probability that X is more than 9.5 is equivalent to the probability that Z is more

than �0.6. From Table 3:

PðZ > �0:6Þ ¼ 0:7257 or 72:57%

(c) The z-equivalent of 10.5 is

z ¼ 10:5� 9:8

0:5
¼ 1:4

The probability that X is less than 10.5 is the same as the probability that Z is less than 1.4.

According to Table 3 the probability that Z is more than 1.4 is 0.0808, so the probability

that Z is less than 1.4 is 1� 0.0808 which is 0.9192, or 91.92%.

0.0
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FIGURE 7.17 Example 7.6 (a): P(X> 10)
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In some situations you may need to find a specific point in the normal

distribution that cuts off a particular tail area. To do this, you first have to select

the value of Z that cuts off the same area in the Standard Normal Distribution.

Once you have established this z value, find the point that number of standard

deviations away from the mean. If the z value is positive, add that number of

standard deviations to the mean, if it is negative, take them away.

The normal distribution is an important statistical distribution because it

enables us to investigate the very many continuous variables that occur in

business and many other fields, whose values are distributed in a normal

pattern. What makes the normal distribution especially important is that it

also enables us to understand how samples results vary. This is because

many sampling distributions have a normal pattern.

Example 7.7

In the population of uncooked steaks in Example 7.6, what is:

(a) The minimum weight of the heaviest 20% of steaks?

(b) The maximum weight of the lightest 10% of steaks?

To answer (a), begin by looking at the probabilities in Table 3. Look down the table

until you come to the figure closest to 0.2, 0.2005. This figure is in the row for 0.8

and the column headed 0.04, which means that the value of Z that cuts off a 20% tail

on the right-hand side of the distribution is 0.84. In other words P (Z> 0.84) is

0.2005. If 20% of the Standard Normal Distribution lies to the right of 0.84, 20% of

any normal distribution, including the one representing the distribution of uncooked

weights of steaks in Example 7.6, lies to the right of a point 0.84 standard deviations

above the mean. The mean of the distribution of uncooked weights of steaks is

9.8 ounces and the standard deviation is 0.5 ounces, so 20% of uncooked steaks

weigh more than:

9:8þ ð0:84 � 0:5Þ ¼ 10:22 ounces

We can conclude that the heaviest 20% of the steaks weigh more than 10.22 ounces.

The figure for (b), the maximum weight of the lightest 10% of steaks, is also the

minimum weight of the heaviest 90% of steaks. From Table 3 the value of Z that cuts off

90% of the area to the right of it is �1.28. If 90% of the Standard Normal Distribution is

above �1.28 then 10% is below it. This means that the lowest 10% of any normal

distribution is 1.28 standard deviations below the mean, so the lightest 10% of steaks

will weigh less than:

9:8� ð1:28 � 0:5Þ ¼ 9:16 ounces
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7.4 SAMPLING DISTRIBUTIONS

Sampling distributions are distributions that show how sample results vary;

they portray the ‘populations’ of sample results. Such distributions play

a crucial role in statistical work because they enable us to use data from

a random sample to make predictions or judgements about a population.

There are considerable advantages in doing this especially when the pop-

ulation is too large to be accessible, or if investigating the population is too

expensive or time-consuming.

A sample is a subset of a population; it consists of some observations

taken from the population. A random sample is a sample that consists of

values taken at random from the population.

You can take many different random samples from the same population,

even samples that consist of the same number of observations. Unless the

population is very small the number of samples that you could take from it is

infinitesimal. A ‘parent’ population can produce an infinite number of

‘offspring’ samples.

These samples will have different means, standard deviations and so on.

If we want to use say a sample mean to predict the value of the population

mean we will be using something that varies, the sample mean, to predict

something that is fixed, the population mean.

To do this effectively we have to know how the sample means vary from

one sample to another. We have to regard each sample mean as an obser-

vation, x, of the variable, X, and consider how they are distributed. What is

more we need to relate the distribution of sample means to the parameters of

the population the samples come from so that we can use sample statistics to

predict population measures. The distribution of sample means is called

a sampling distribution.

We will start looking at this by taking the simplest case, in which we

assume that the parent population is normally distributed. If this is the case,

what will the sampling distributions of means of samples taken from the

population be like?

If you took all possible random samples consisting of n observations from

a population that is normal, with a mean m and a standard deviation s, and

analysed them you would find that the means of all these samples would

themselves be normally distributed.

You would also find that the mean of the distribution of all these different

sample means is exactly the same as the population mean, m, and that the

standard deviation of all these sample means is the population standard

deviation divided by the square root of the size of the samples, s/On.
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So the sample means of all the samples size n that can be taken from

a normal population with a mean m and a standard deviation s are distributed

normally with a mean of m and a standard deviation of s/On. In other words

the sample means are distributed around the same mean as the population

itself but with a smaller spread.

We know that the sample means will be less spread out than the pop-

ulation because n will be more than one, so s/On will be less than s. For

instance, if there are four observations in each sample, s/On will be s/2, which

tells us that the sampling distribution of means of samples, which have four

observations in them will have half the spread of the population distribution.

The larger the size of the samples, the less the spread in the values of their

means, for instance if the samples each consist of 100 observations the

standard deviation of the sampling distribution will be s/10, just a tenth of

the population distribution. This is an important point. In taking samples we

are ‘averaging out’ the differences between the values in the population. The

larger the samples, the more this happens. For this reason it is better to use

larger samples to make predictions about a population.

Next time you see an opinion poll look for the number of people that the

pollsters have canvassed. It will probably be at least one thousand. The

results of an opinion poll are a product that the polling organization wants to

sell to media companies. In order to do this they have to persuade them that

their poll results are likely to be reliable. They won’t be able to do this if they

only ask a very few people for their opinions!

The standard deviation of a sampling distribution, s/On, is also known as

the standard error of the sampling distribution because it helps us anticipate

the error we will have to deal with if we use a sample mean to predict the

value of the population mean.

If we know the mean and standard deviation of the parent population

distribution we can find the probabilities of different sample means by using

software or the Standard Normal Distribution.

Example 7.8

Agroupof four friendsvisit thepub inExample7.6andeachof themordersaSteakSpecial.What

is theprobability that themeanuncookedweightof thesteaks theyorder ismore than10 ounces?

The uncooked weights of the steaks in the pub in Example 7.6 are normally distributed

with a mean of 9.8 ounces and a standard deviation of 0.5 ounces.

Imagine we took every possible sample of four steaks from the population of steaks at the

disposal of the pub (which we will assume is infinite) and calculated the mean weight of

each sample. We would find that the sampling distribution of all these means has a mean

of 9.8 and a standard error of 0:5=O4, which is 0.25
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The procedure weused in Example 7.8 can beapplied whether weare dealing

with small samples or with very much larger samples. As long as the population

the samples come from is normal we can be sure that the sampling distribution

will be distributed normally with a mean of m and a standard deviation of s/On.

But what if the population is not normal? There are many distributions

that are not normal, such as distributions of wealth of individuals or distri-

butions of waiting times.

Fortunately, according to a mathematical finding known as the Central

Limit Theorem, as long as n is large (which is usually interpreted to mean 30

or more) the sampling distribution of sample means will be normal in shape

and have a mean of m and a standard deviation of s/On. This is true whatever

the shape of the population distribution.

The probability that one sample of four steaks has a mean of more than 10 is the probability

that a normal variable with a mean of 9.8 and a standard deviation of 0.25 is greater than 10.

The z-equivalent of the value 10 in the sampling distribution is:

z ¼ x�m

s=
ffiffiffi
n
p ¼ 10� 9:8

0:5=
ffiffiffi
4
p ¼ 0:2

0:25
¼ 0:8

From Table 3 on pages 317–320 we find that the probability that Z is more than 0.8 is

0.2119 or 21.19%.

We can conclude that there is a little more than a one in five chance that four steaks

chosen at random have a mean uncooked weight of more than 10 ounces. You might like

to compare this with the result in Example 7.6 (a), which suggests than the chance that

a single steak has an uncooked weight of more than 10 ounces is 34.46%.

Example 7.9

The times that passengers at a busy railway station have to wait to buy tickets during the

rush hour follow a skewed distribution with a mean of 2 minutes 46 seconds and a stan-

dard deviation of 1 minute 20 seconds. What is the probability that a random sample of

100 passengers will, on average have to wait more than 3 minutes?

The sample size, 100, is larger than 30 so the sampling distribution of the sample means

will have a normal shape. It will have a mean of 2 minutes 46 seconds, or 166 seconds,

and a standard error of 80/O100.

PðX > 180 secondsÞ ¼ PðZ >
180� 166

80=O100

¼ PðZ > 14=8Þ
¼ PðZ > 1:75Þ

From Table 3 the probability that Z is more than 1.75 is 0.0401. So the probability that

a random sample of 100 passengers will have to wait on average more than 3 minutes is

4.01%, or a little more that a one in twenty-five chance.
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If the samples taken from a population that is not normal consist of fewer

than 30 observations then the Central Limit Theorem does not apply. The

sampling distributions of means of small samples taken from such pop-

ulations don’t form a normal distribution.

7.4.1 Estimating the Standard Error

The main reason for being interested in sampling distributions is to help us

use samples to assess populations because studying the whole population is

not possible or practicable. Typically we will be using a sample, which we do

know about, to investigate a population, which we don’t know about. We will

have a sample mean and we will want to use it to assess the likely value of the

population mean.

So far we have measured sampling distributions using the mean and the

standard deviation of the population, m and s. But if we need to find out about

the population using a sample, how can we possibly know the values of m and s?

The answer is that in practice typically we don’t. In the case of the pop-

ulation mean, m, this doesn’t matter because usually it is the thing we are

trying to assess. But without the population standard deviation, s, we do

need an alternative approach to measureg the spread of a sampling

distribution.

Because we will have a sample, the obvious answer is to use the sample

standard deviation, s, in place of the population standard deviation, s. So we

estimate the standard error of the sampling distribution using s/On instead

of s/On.

This is fine as long as the sample concerned is large, in practice that n,

the sample size, is at least 30. If we are dealing with a large sample we can

use s/On as an approximation of s/On. The means of samples consisting of n

observations will be normally distributed with a mean of m and an approx-

imate standard error of s/On. The Central Limit Theorem allows us to do

this even if the population the sample comes from is not itself normal in

shape.

Example 7.10

The mean volume of draught beer served in pint glasses in a particular pub is known

to be 0.564 litres. A consumer organization takes a random sample of 64 pints of

draught beer and finds that the standard deviation of this sample is 0.025 litres. What

is the probability that the mean volume of the sample will be more than a pint

(0.568 litres)?
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As s/On is not the real standard error it is referred to as the estimated

standard error, but because the standard deviation of a large sample will be

reasonably close to the population standard deviation the estimated standard

error will be close to the actual standard error.

7.5 THE t DISTRIBUTION

In section 7.4.1 we looked at how you can analyse sampling distributions

using the sample standard deviation, s, in the likely event that you do not

know the population standard deviation, s. As long as the sample size, n is

30 or more the estimated standard error will be a sufficiently consistent

measure of the spread of the sampling distribution, whatever the shape of the

parent population.

If, however, the sample size, n, is less than 30 the estimated standard

error is not so close to the actual standard error, and the smaller the sample

size, the greater will be the difference between the two. In this situation it is

possible to analyse the sampling distribution using the estimated standard

error as long as the population the sample comes from is normal, but we have

to use a modified normal distribution in order to do it.

This modified normal distribution is known as the t distribution. The

development of the distribution in the early twentieth century by an execu-

tive of the Guinness Brewery, William S. Gosset was a real breakthrough in

Statistics because it made it possible to investigate populations using small

sample results. Small samples are generally much cheaper and quicker to

gather than large sample so t distributions transformed the way in which

people used Statistics.

A t distribution is basically a normal distribution that is more spread out.

The difference between the two is illustrated in Figure 7.18 The greater

The population mean, m, in this case is 0.564 and the sample standard deviation, s, is

0.025. We want the probability that X is more than 0.568, P (X > 0.568). The z-equivalent

of 0.568 is:

z ¼ x � m

s=On
¼ 0:568� 0:564

0:025=O64
¼ 0:004

0:003125
¼ 1:28

So PðX > 0:568Þ ¼ PðZ > 1:28Þ

If you look at Table 3 you will find that the probability that Z is greater than 1.28 is 0.1003,

so the probability that the sample mean is more than a pint is 0.1003 or 10.03%.
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spread is to compensate for the greater variation in sample standard devia-

tions between small samples than between large samples.

The smaller the sample size the more compensation is needed, so there is

more than one ‘standard’ t distribution. Which one should be used in

a particular context depends on the number of degrees of freedom, repre-

sented by the symbol n (nu, the Greek letter n), which is the sample size

minus one, n� 1.

To work out the probability that the mean of a small sample taken from

a normal population is more, or less than a certain amount we first need to

find its t-equivalent, or t value. The procedure is very similar to the way we

work out a z-equivalent:

t ¼ x� m

s=On

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3

FIGURE 7.18 The Standard Normal Distribution (solid line) and the t distribution

(dotted line)

Example 7.11

A customer visiting the pub in Example 7.10 purchases nine pints of real ale. The volumes

of the pints served are known to be normally distributed with a mean of 0.564 litres and

the standard deviation of the volumes of the nine pints bought by the customer is

0.048 litres. What is the probability that the mean volume of the nine pints is more than

a pint (0.568 litres)?
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The t value that led to the result we obtained in Example 7.11 could be

written as t0.4044,8 because it is the value of t that cuts off a tail area of 40.44%

in the t distribution that has 8 degrees of freedom. In the same way, t0.05,15

represents the t value that cuts off a tail area of 5% in the t distribution that

has 15 degrees of freedom.

You will find that the way t distributions are used in further work depends

on tail areas. For this reason, and also because there are ‘standard’ t distri-

butions for the different degrees of freedom, printed tables do not provide full

details of t distributions in the same way that Standard Normal Distribution

The population mean, m, is 0.564 and the sample standard deviation, s, is 0.048. We

want the probability that X is more than 0.568, P (X > 0.568). The t value equivalent to

0.568 is:

t ¼ x � m

s=On
¼ 0:568� 0:564

0:048=O9
¼ 0:004

0:016
¼ 0:25

So PðX > 0:568Þ ¼ Pðt > 0:25Þ

You can find the probability that t is more than 0.25 using computer software.

Move the cursor to an empty cell. 

For P (t > 0.25) in Example 7.11 type 

=TDIST(0.25,8,1) in the Formula Bar. 

The figure 8 is the number of degrees 

of freedom, one less than the sample 

size, 9. 

Excel Recipe Card – The t 

distribution 

Press Enter to produce the result, 

0.404444. This means that in 

Example 7.11 the probability that 

the mean volume of nine ‘pints’ is 

more than a pint is approximately 

40.44%. 

The general form of the command is =TDIST(x,degrees of freedom, tails), where x is the t value you are

interested in and ‘tails’ can be either one or two. If you simply want the probability that t is bigger than a

certain value specify one tail. 
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tables give full details of the Standard Normal Distribution. Table 4 on pages

320–321 gives selected values of t from t distributions with different degrees

of freedom for the most commonly used tail areas.

7.6 CHOOSING THE CORRECT MODEL FOR

A SAMPLING DISTRIBUTION

The normal distribution and the t distribution are both models that you can

use to model sampling distributions, but how can you be sure that you use

the right one? This section is intended to provide a brief guide to make the

choice.

The first question to ask is whether the samples whose results make up the

samplingdistributionaredrawnfromapopulationthat isdistributednormally? In

other words is the parent population normal? If the answer is yes then it is always

possible to model the sampling distribution. If the answer is no then it is only

possible to model the sampling distribution if the sample size, n is 30 or more.

The second question is whether the population standard deviation, s is

known. If the answer to this is yes then as long as the parent population is

normal the sampling distribution can be modelled whatever the sample size.

If the answer is no the sampling distribution can be modelled using the

normal distribution only if the sample size is 30 or more. In the absence of

Example 7.12

Use Table 4 to find:

(a) t with four degrees of freedom that cuts off a tail area of 0.10, t0.10,4;

(b) t with four degrees of freedom that cuts off a tail area of 0.10, t0.10,4;

(c) t with 17 degrees of freedom that cuts off a tail area of 0.025, t0.025,17; and

(d) t with 100 degrees of freedom that cuts off a tail area of 0.005, t0.005,100.

From Table 4:

(a) You will find t0.10,4 in the row for 4 degrees of freedom and the column headed 0.10,

1.533. This means that the probability that t, with 4 degrees of freedom, is greater

than 1.533 is 0.10 or 10%.

(b) t0.01,10 is the figure in the row for 10 degrees of freedom and the column headed

0.01, 2.764.

(c) t0.025,17 is in the row for 17 degrees of freedom and the 0.025 column, 2.110.

(d) t0.005,100 is in the row for 100 degrees of freedom and the 0.005 column, 2.626.
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the population standard deviation, you have to use the sample standard

deviation to approximate the standard error.

Finally, what if the parent population is normal, the population standard

deviation is not known, and the sample size is less than 30? In these

circumstances you should use the t distribution and approximate the standard

error using the sample standard deviation. Note that if the parent population is

not normal and the sample size is less than 30 neither the normal distribution

nor the t distribution can be used to model the sampling distribution, and this

is true whether or not the population standard deviation is known.

Test yourself questions from Warwick’s business enterprises*
Fully worked solutions to these questions are on pages 336–337. You can find more

questions on the topics covered in this chapter at the accompanying website www.

elsevierdirect.com/9781856179478.

7.1 (Easy)

Find the areas of the Standard Normal Distribution that represent the following

probabilities:

(a) P (Z> 1.44)

(b) P (Z>�0.29)

(c) P (Z< 2.06)

(d) P (Z<�1.73)

(e) P (0.52< Z< 1.99)

(f) P (�2.31< Z<�1.08)

(g) P (�0.97< Z< 0.65)

7.2 (Moderate)

The lean meat content of the sausages that Warwick buys for his restaurant is

normally distributed with a mean of 62% and a standard deviation of 2.5%. What is

the probability that a sausage has a lean meat content of

(a) more than 65%

(b) less than 55%

(c) between 60% and 66%

Continued

* With the exception of question 7.1 which is intended to help you navigate Table 3 on

pages 317–320.
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7.3 (Hard)

Freshly cut flowers are displayed in the reception area of Warwick’s hotel, which is

open 7 days a week. The hotel manager orders a total of 40 blooms. According to the

florist these flowers last on average 5.4 days before wilting, with a standard deviation

of 1.3 days.

(a) What is the probability that a sample of 40 blooms will last on average more than

6 days?

(b) What is the probability that a sample of 40 blooms will last on average more than

5 days?

(c) How often should the reception officer buy bunches of 40 blooms in order to

ensure that there is no more than a 5% chance that on average the flowers will

wilt before replacement?
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CHAPTER 8

Statistical Decision Making

Why do I need to know about this? Warwick the Hospitality
entrepreneur says.

‘How do you tell whether your customers are satisfied, or whether
the goods you buy are up to standard? You can’t ask every customer
every day or look at every item that you buy. The only thing you can

do is to make estimates and judgements using the samples of
customer or goods. If you know how to use the information you get
from samples properly you are more likely to make better decisions

in business.’

This chapter will help you to:

- use sample results to make predictions about populations;

- test hypotheses about populations; and

- decide how large samples need to be.

CONTENTS

Introduction
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Estimating Population
Proportions

Hypothesis Testing

Testing Hypotheses
About Two Population
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8.1 INTRODUCTION

Businesses often use statistical analysis in order to help them study and solve

problems. In almost every case the data they use in this analysis will be

sample data. Usually it is too expensive, or too time-consuming or simply

impossible to obtain population data.

So if there is a problem of customer dissatisfaction they will study data

from a sample of customers, not all customers. If there is a problem with

product quality they will study a sample of the products, not all of them. If

a large organization has a problem with staff training they will study the

experiences of a sample of their staff rather than all of them.

Of course they will analyse the sample data in order to draw general

conclusions about the population from their analysis. As long as the samples

they use are random samples, in other words they consist of observed values

chosen at random from the population it is quite possible to do this.

The use of sample data in drawing conclusions, or making deductions,

about populations is known as statistical inference from the word infer which

means to deduce or conclude. It is also referred to as statistical decision

making, which reflects the fact that this sort of analysis helps organizations

and individuals to take decisions.

In the last chapter we looked at sampling distributions. These distribu-

tions are the theoretical foundations on which statistical inference is built

because they connect the behaviour of sample results to the distribution of

the population the samples came from. Now we will consider the procedures

involved in statistical inference.

There are two types of statistical inference technique that you will

encounter in this chapter. The first is estimation: the use of sample data to

predict population measures like means and proportions. The second is

hypothesis testing; the use of sample data to verify or refute claims made

about population measures.

Collecting sample data can be time-consuming and expensive so in

practice organizations don’t like to gather more data than they need, but, on

the other hand, they don’t want to end up with too little in case they haven’t

enough for the sort of conclusive results they need. You will find a discussion

of this aspect of planning statistical research in this chapter.

8.2 ESTIMATION

Statistical estimation is the use of sample measures such as means or

proportions to predict the values of their population counterparts. The
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easiest way of doing this is to simply take the sample measure and use it as it

stands as a prediction of the population equivalent. So we could take the

mean of a sample and use it as our estimate of the population mean. This

type of prediction is called point estimation. It is widely used to get a ‘feel’ for

the population value and it is a perfectly valid use of the sample result.

The main shortcoming of point estimation is given away by its name; it is

a single point, a single shot at estimating one number using another. It is

a crude way of estimating a population measure because not only is it

uncertain whether it will be a good estimate, in other words close to the

measure we want it to estimate, but we have no idea of the chance that it is

a good estimate.

The best way of using sample information to predict population measures

is to use what is known as interval estimation, which is the preparation of

a range or interval as the estimate. The aim is to be able to say how likely it is

that the interval we construct is accurate, in other words how confident we

are that the interval does include within it the population measure. Because

the probability that the interval includes the population measure, or the

confidence we should have in the interval estimate, is an important issue,

interval estimates are often called confidence intervals.

Before we look at how interval estimates are constructed and why they

work, it will be helpful if we reiterate some key features of sampling distri-

butions from Chapter 7. For convenience we will concentrate on sample

means for the time being. The important points are:

- A sampling distribution of sample means shows how all the means of

the different samples of a particular size, n, are distributed.

- Sampling distributions that describe the behaviour of means of

samples bigger than 30 are always approximately normal.

- The mean of a sampling distribution is the population mean, m.

- The standard deviation of a sampling distribution, called the standard

error, is the population standard deviation divided by the square root

of the sample size, s/On.

The sampling distributions that are normal in shape have the same

features as all versions of the normal distribution. One of these features is

that if we take a point two standard deviations to the left of the mean and

a second point two standard deviations to the right of the mean, the area

between the two points is roughly 95% of the distribution.

To be more precise, if these points were 1.96 standard deviations below

and above the mean the area between them would be exactly 95% of the

Estimation 225



distribution. In other words 95% of the observations in the distribution are

within 1.96 standard deviations from the mean.

This is also true for normal sampling distributions. Ninety-five percent of

the sample means in a sampling distribution that is normal will be between

1.96 standard errors below and 1.96 standard errors above the mean. You can

see this illustrated in Figure 8.1.

The limits of this range, or interval, are:

m� 1:96=
ffiffiffi
n
p

on the left-hand side

and

mþ 1:96=
ffiffiffi
n
p

on the right-hand side:

The largest possible distance between any of the middle 95% of sample

means and the population mean, m, is 1.96 standard errors, 1.96 sOn. It

follows that the probability that any one-sample mean is within 1.96 stan-

dard errors of the mean is:

Pðm� 1:96s=
ffiffiffi
n
p

< X < mþ 1:96s=
ffiffiffi
n
p
Þ ¼ 0:95

The sampling distribution allows us to predict values of sample means

like this using the population mean. But in practice we wouldn’t be interested

in doing this because we wouldn’t know the value of the population mean;

typically the population mean is the thing we want to find out about using

a sample mean rather than the other way round. What makes a sampling

FIGURE 8.1 Ninety-five percent of the area of a sampling distribution.
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distribution so useful is that we can use it to predict a population measure

using sample results.

As we have seen, adding and subtracting 1.96 standard errors to and from

the population mean creates a range that encompasses 95% of the sample

means in the distribution. But what would happen if, instead of adding and

subtracting this amount to the population mean, we add and subtract this

amount to and from every sample mean in the distribution?

In doing this we would create a range around every sample mean. In 95%

of cases, the ranges based on the 95% of sample means that are closest to the

population mean (those nearest the middle of the distribution), the range

would encompass the population mean itself. In the other 5% of cases, those

means furthest away from the population mean (those most distant from the

middle of the distribution), the range we create would not encompass the

population mean.

So, suppose we take the mean of a large sample and create a range around

it by adding 1.96 standard errors to get an upper figure, and subtracting 1.96

standard errors to get a lower figure. In 95% of cases the range between the

upper and lower figures will encompass the mean of the population. Such

a range is called a 95% confidence interval or a 95% interval estimate because

it is an interval, or range that we are 95% confident, or certain includes the

population mean.

Example 8.1

The total bill sizes of shoppers at a UK supermarket have a mean of £50 and a standard

deviation of £12.75. A group of researchers, who do not know that the population mean

bill size is £50, finds the total bill sizes of a random sample of 100 shoppers.

The sampling distribution that the mean of their sample belongs to is shown in Figure 8.2.

The standard error of this distribution is 12.75/O100 ¼ 1.275.

Ninety-five percent of the sample means in this distribution will be between 1.96 standard

errors below the mean, which is:

50� ð1:96 � 1:275Þ ¼ 47:50 to two decimal places

and 1.96 standard errors above the mean, which is:

50þ ð1:96 � 1:275Þ ¼ 52:50 to two decimal places:

This is shown in Figure 8.3.

Suppose the researchers calculate the mean of their sample and it is £49.25, a figure

inside the range 47.50–52.50 that encompasses the 95% of sample means that are

within 1.96 standard errors of the population mean. If they add and subtract the same

Continued

Estimation 227



number of standard errors to and from their sample mean they would construct the

following interval:

49:25� ð1:96 � 1:275Þ ¼ 49:25� 2:50

¼ £46:75 to £51:75 to two decimal places:

This interval does include the population mean, £50.

FIGURE 8.2 The sampling distribution in Example 8.1.

FIGURE 8.3 The middle 95% of the sampling distribution in Example 8.1.
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If the researchers in Example 8.1 took many samples and created an

interval based on each one by adding and subtracting 1.96 standard errors

they would find that only occasionally would the interval not include the

population mean.

How often will the researchers in Example 8.1 produce an interval that

does not include the population mean? The answer is every time they have

a sample mean that is among the lowest 2½% or the highest 2½% of sample

means. If their sample mean is among the lowest 2½% the interval they

produce will be too low, as in Example 8.2. If the sample mean is amongst the

highest 2½% the interval will be too high.

As long as the sample mean is among the 95% of the distribution between

the lowest 2½% and the highest 2½%, the interval they produce will include

the population mean, in other words it will be an accurate estimate of the

population mean.

Of course when we do carry out this sort of research we don’t actually

know what the mean of the population is, so we don’t know which sample

Notice the symbol ‘�’ in the expression we have just used. It means we have to carry out

two operations: we have to both add and subtract the amount that follows it. The addition

produces the higher figure, in this case 51.75, and the subtraction produces the lower

figure, 46.75.

Imagine they take another random sample of 100 shoppers and find that the mean

expenditure of this second sample is a little higher, but still within the central 95% of the

sampling distribution, say £51.87. If they add and subtract 1.96 standard errors to and

from this second mean:

51:87� ð1:96 � 1:275Þ ¼ 51:87� 2:50

¼ 49:37 to 54:37 to two decimal places:

This interval also includes the population mean.

Example 8.2

The researchers in Example 8.1 take a random sample that yields a mean of £47.13.

Calculate a 95% confidence interval using this sample mean.

47:13� ð1:96 � 1:275Þ ¼ 47:13� 2:50

¼ £44:63 to £49:63 to two decimal places:

This interval does not include the population mean of £50.
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means are among the 95% that will give us accurate estimates and which are

amongst the 5% that will give us inaccurate estimates. The important point

is that if we have a sample mean and we create an interval in this way, 95% of

the time the interval will be accurate. To put it another way, on average 19 out

of every 20 samples will produce an accurate estimate, and 1 out of 20 will

not. That is why the interval is called a 95% interval estimate or a 95%

confidence interval.

We can express the procedure for finding an interval estimate for

a population measure as taking a sample result and adding and sub-

tracting an error. This error reflects the uncertainties involved in using

sample information to predict population measures.

Population measure estimate ¼ sample result � error

The error is made up of two parts, the standard error and the number of

standard errors. The number of standard errors depends on how confident we

want to be in our estimation.

Suppose you want to estimate the mean of a normal population. If you

know the population standard deviation, s, and you want to be (100 � a)%

confident that your interval is accurate, then:

Estimate of m ¼ x� ðza=2 � s=
ffiffiffi
n
p
Þ

The letter ‘z’ appears because we are dealing with sampling distribu-

tions that are normal, so we can use the Standard Normal Distribution,

the Z distribution, to model them. You have to choose which z value to

use on the basis of how sure you want or need to be that your estimate is

accurate.

If you want to be 95% confident in your estimate, that is (100 � a)% ¼
95%, then a is 5% and a/2 is 2½% or 0.025. To produce your estimate you

would use z0.025, 1.96, the z value that cuts off a 2½% tail in the Standard

Normal Distribution. This means that a point 1.96 standard deviations (or

standard errors in the case of sampling distributions) away from the mean of

any version of the normal distribution will cut off a tail area of 2½% of the

distribution. So:

95% interval estimate of m ¼ x� ð1:96 � s=
ffiffiffi
n
p
Þ

This is the procedure we used in Example 8.1.

The most commonly used level of confidence in interval is probably 95%,

but what if you wanted to construct an interval based on a higher level of

confidence, say 99%? A 99% level of confidence means we want 99% of the

sample means in the sampling distribution to provide accurate estimates.
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To obtain a 99% confidence interval the only adjustment we make is the z

value that we use. If (100 � a)% ¼ 99%, then a is 1% and a/2 is ½% or 0.005.

To produce your estimate you would use z0.005, 2.576, the z value that cuts

off a ½% tail in the Standard Normal Distribution.

99% interval estimate of m ¼ m ¼ x� ð2:576 � s=
ffiffiffi
n
p
Þ

The most commonly used confidence levels and the z values you need to

construct them are given in Table 8.1

Notice that the confidence interval in Example 8.3 includes the pop-

ulation mean, £50, unlike the 95% interval estimate produced in Example

8.2 using the same sample mean, £47.13. This is because this sample mean,

£47.13, is not among the 95% closest to the population mean, but it is among

the 99% closest to the population mean.

Changing the level of confidence to 99% has meant the interval is accu-

rate, but it is also wider. The 95% interval estimate was £44.63–£49.63,

a width of £5.00. The 99% interval estimate is £43.85–£50.41, a width of

£6.56.

You can obtain the z values necessary for other levels of confidence by

looking for the appropriate values of a/2 in the body of Table 3 on pages 317–

320 and finding the z values associated with them.

Table 8.1 Selected Levels of Confidence and Associated z Values

Level of Confidence (100 � a) % a/2 Z a/2

90% 0.05 1.645

95% 0.025 1.960

99% 0.005 2.576

Example 8.3

Use the sample result in Example 8.2, £47.13, to produce a 99% confidence interval for

the population mean.

From Table 8.1 the z value that cuts off a 0.005 tail area is 2.576, so the 99% confidence

interval is:

47:13� ð2:576 � 1:275Þ ¼ 47:13� 3:28

¼ £43:85 to £50:41 to two decimal places
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8.2.1 Determining sample size

All other things being equal, if we want to be more confident that our interval

is accurate we have to accept that the interval will be wider, in other words

less precise. If we want to be more confident and retain the same degree of

precision, the only thing we can do is to take a larger sample.

In the examples we have looked at so far the size of the sample was

already decided. But what if, before starting a sample investigation you

wanted to ensure that you had a big enough sample to enable you to produce

a precise enough estimate with a certain level of confidence? To see how to do

this, we need to start with the expression we have used for the error of

a confidence interval:

Error ¼ za=2 � s=
ffiffiffi
n
p

Until now we have assumed that we know the three elements to the right of

the equals sign and so we can work out the error. But what if we wanted to set

the error and find the necessary sample size, n? We can change the expression

for the error around so that it provides a definition of the sample size:

Error ¼ za=2 � s=
ffiffiffi
n
p

Exchange error and
ffiffiffi
n
p

:
ffiffiffi
n
p
¼ za=2 � s=error

So n ¼ ðza=2 � s=errorÞ2

This means that as long as you know the degree of precision you need (the

error), the level of confidence (to find za/2), and the population standard

deviation (s), you can find out what sample size you need to use.

Example 8.4

Use the sample result in Example 8.2, £47.13, to produce a 98% confidence interval for

the population mean.

From Table 3 the z value that cuts off a tail area of 0.01 is 2.33, so the 98% confidence

interval is:

47:13� ð2:33 � 1:275Þ ¼ 47:13� 2:97

¼ £44:16 to £50:10 to two decimal places:

Example 8.5

If the researchers in Example 8.1 want to construct 99% confidence intervals that are £5

wide, what sample size should they use?

If the estimates are to be £5 wide that means they will have to be produced by adding and

subtracting £2.50 to and from the sample mean. In other words the error will be 2.5. If the

level of confidence is to be 99% then the error will be 2.576 standard errors.

Continued
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8.2.2 Estimating without s

Example 8.1 is artificial because we assumed that we knew the population

mean, m. This helped to explain how and why interval estimation works. In

practice we wouldn’t know the population mean, and neither would we know

the population standard deviation, s.

Practical interval estimation is based on sample results alone, but it is

very similar to the procedure we explored in Example 8.1. The main differ-

ence is that we have to use a sample standard deviation, s, to produce an

estimate for the standard error of the sampling distribution the sample

belongs to. Otherwise, as long as the sample concerned is quite large, which

we can define as containing 30 or more observations, we can follow exactly

the same procedure as before.

That is; instead of : estimate of m ¼ x� ðza=2 � s=
ffiffiffi
n
p
Þ

we use : estimate of m ¼ x� ðza=2 � s=
ffiffiffi
n
p
Þ

If ð100� aÞ% ¼ 99%; za=2 ¼ 2:576: We know from Example 8:1 s ¼ 12:75; so :

n ¼ ð2:576 � 12:75=2:50Þ2

n ¼ ð13:1376Þ2 ¼ 172:6 to one decimal place:

Round this up to 173 because when determining sample size it is always better to play

safe and round the calculated sample size up to the next whole number.

We can conclude that if the researchers want 99% interval estimates that are £5 wide they

would have to take a sample of 173 bills.

Example 8.6

The mean weight of the cabin baggage checked in by a random sample of 40 passengers

at an international airport departure terminal was 3.47 kg. The sample standard deviation

was 0.82 kg. Construct a 90% confidence interval for the mean weight of cabin baggage

checked in by passengers at the terminal.

In this case a is 10%, so a/2 is 5% or 0.05 and according to Table 8.1 z0.05 is 1.645.

90% interval estimate of m ¼ x � ð1:645 � s
ffiffiffi
n
p
Þ

¼ 3:47� ð1:645 � 0:82=
ffiffiffiffiffiffi
40
p
Þ

¼ 3:47� ð1:645 � 0:82=6:32Þ ¼ 3:47� 0:213

¼ 3:257 to 3:683 kg to three decimal places:
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In Example 8.6 we are not told whether the population that the sample

comes from is normal or not. This doesn’t matter because the sample size is

over 30. In fact given that airlines tend to restrict cabin baggage to 5 kg per

passenger the distribution in this case would probably be skewed.

8.2.3 Estimating with small samples

If we want to produce an interval estimate based on a smaller sample, one

with less than 30 observations in it, and we don’t know the population

standard deviation, s, we have to be much more careful. First, for the

procedures we will consider in this section to be valid, the population that the

sample comes from must be normal. Second, because the sample standard

deviation of a small sample is not a reliable enough estimate of the pop-

ulation standard deviation to enable us to use the Z distribution, we must use

the appropriate version of the t distribution to find out how many standard

errors are to be added and subtracted.

Instead of: estimate of m ¼ x� ðZa=2 � s=
ffiffiffi
n
p
Þ

we use : estimate of m ¼ x� ðta=2;v � s=
ffiffiffi
n
p
Þ

The number of degrees of freedom, v, which is the sample size less than

one (n � 1), determines the t distribution you use. You will be able to find the

values you need to produce confidence intervals in Table 4 on pages 320–321.

You may recall from Chapter 7 that t distributions are essentially

modifications of the Z distribution. If you compare the figures in the bottom

row of the 0.05, 0.025 and 0.005 columns of Table 4 with the z values in

Table 8.1, that is, 1.645, 1.960 and 2.576, you can see that they are the same.

If, however, you compare these z values with the equivalent t values in the top

row of Table 4, the ones from the t distribution with just one degree of

freedom, which we would have to use for samples of only 2, you can see that

the differences are substantial.

Example 8.7

A random sample of 15 employees of a call centre was taken and each employee took

a competency test. The mean of the scores achieved by these employees was 56.3 with

a standard deviation of 7.1. Results of this test have been found to be normally distributed

in the past. Construct a 95% confidence interval for the mean test score of all the

employees of the call centre.

Continued
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8.3 ESTIMATING POPULATION PROPORTIONS

Although so far we have concentrated on how to estimate population means,

these are not the only population measures that can be estimated. You will

probably also come across estimates of population proportions, indeed

almost certainly you already have done.

Here a is 5% so a/2 is 2½% or 0.025 and the number of degrees of freedom, v is n� 1, 14.

Estimate of m ¼ x � ðta=2;v � s=
ffiffiffi
n
p
Þ

95% estimate of ms ¼ x � ðt0:025;14 � s=
ffiffiffi
n
p
Þ

From Table 4, t0.025,14 is 2.145, so:

95% estimate of m ¼ 56:3� ð2:145 � 7:1=
ffiffiffiffiffiffi
15
p
Þ ¼ 56:3� 3:93

¼ 52:37% to 60:23% to two decimal places

Move the cursor to an empty cell. 

For the error used in Example 8.6 

type =CONFIDENCE(0.10,0.82,40) 

in the Formula Bar. 

 

Press Enter to obtain the error to six 

places of decimals, 0.213261, which 

you can add to and subtract from the 

sample mean to obtain the interval 

estimate.. 

The general form is =CONFIDENCE(alpha, standard deviation,size). Alpha is 100% less the level of

confidence expressed as a proportion, standard deviation is the population standard deviation, and 

size is the sample size. If the sample size is at least 30, you can use the sample standard deviation as 

the population standard deviation. Note that this command should only be used with a small sample if 

you know σ, the population standard deviation. If you don’t know σ, find the appropriate t value and 

sample measures using the other Excel tools and assemble the interval yourself.

Excel Recipe Card – Confidence 

intervals for the population mean 
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If you have ever seen an opinion poll, perhaps about voting intentions or

a specific issue you have seen an estimate of a population proportion. To

produce the opinion poll result that you read in a newspaper or see on TV

some organization has interviewed a sample of people and used the sample

results to predict the voting intentions of the entire population.

In many ways estimating a population proportion is very similar to the

estimation we have already considered. To start with you need a sample from

which you calculate the sample measure around which your estimate will be

constructed. To this you add and subtract an error based on the standard error

of the relevant sampling distribution and how confident you want to be that

your estimate is accurate.

We have to adjust our approach because of the different nature of the data.

When we estimate proportions we are usually dealing with qualitative vari-

ables. The values of these variables are characteristics, for instance people

voting for party A or party B. If there are only two possible characteristics, or

we decide to use only two categories in our analysis, the variable will have

a binomial distribution.

As you will see, this is convenient as it means we only have to deal with

one sample result, the sample proportion, but it also means that we cannot

produce reliable estimates from small samples, those consisting of less than

30 observations. This is because the distribution of the population that the

sample comes from must be normal if we are to use the t distribution, the

device we have previously used to overcome the extra uncertainty involved in

small-sample estimation.

The sampling distribution of sample proportions is approximately

normal in shape if the samples involved are large, that is, more than 30, as

long as the sample proportion is not too small or too large. In practice

because we do not know the sample proportion before taking the sample it

is best to use a sample size of over 100. If the sample is any smaller we

cannot depend on the sampling distribution of sample proportions being

normal.

Provided that you have a large sample, you can construct an interval

estimate for the population proportion, p (pi, the Greek letter p), by taking

the sample proportion, p, and adding and subtracting an error. The sample

proportion is the number of items in the sample that possess the charac-

teristic of interest, x, divided by the total number of items in the sample, n.

Sample proportion p ¼ x=n

The error that you add to and subtract from the sample proportion is the

z value appropriate for the level of confidence you want to use multiplied by
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the estimate standard error of the sampling distribution of sample propor-

tions. The estimated standard error is based on the sample proportion.

Estimated standard error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

p

n

So the interval estimate of n ¼ p� Za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

p

n

8.3.1 Determining sample size

If you know how confident you want to be that your interval estimate is

accurate and you need your estimate to have a certain precision, in other

words the error has to be a particular amount, you can work out the sample

size you will need to use.

The precision of the test depends on the estimated standard error of the

sample proportions, Op(1 � p)/n. The value of this depends on the value of p,

the sample proportion. Clearly you cannot know this until the sample data

have been collected yet you cannot collect the sample data until you have

decided what sample size to use. It is therefore necessary to make a prior

assumption about the value of the sample proportion.

To be on the safe side we will assume the worst-case scenario, which is

that the value of p will be the one that produces the highest value of p(1 � p).

The higher the value of p(1 � p), the wider the interval will be, for a given

Example 8.8

A study of a sample of 110 supermarkets reveals that 31 offer trolleys suitable for

shoppers with limited mobility. Construct a 95% interval estimate of the proportion of all

supermarkets that have these trolleys.

p ¼ 31=110 ¼ 0:28 to two decimal places

ð100� aÞ% ¼ 95%; so za=2 ¼ 1:96

The interval estimate of p is:

¼ 0:28� 1:96 � 0:28ð1� 0:28Þ
110

¼ 0:28� 1:96 � 0:28ð1� 0:72Þ
110

¼ 0:28� 1:96 � 0:043 ¼ 0:28� 0:084

¼ 0:196 to 0:364 to three decimal places

These results suggest that we can be 95% confident that the proportion of supermarkets

with suitable trolleys for shoppers with limited mobility will be between 19.6% and 36.4%.
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sample size. We need to avoid the situation where p(1 � p) turns out to be

larger than we have assumed it is.

What is the largest value of p(1 � p)? If you work out p(1 � p) when p is

0.1, you will find it is 0.09. If p is 0.2p(1 � p) rises to 0.16. As you increase

the value of p you will find that it keeps going up until p is 0.5, when p(1� p)

is 0.25, then it goes down again. So p ¼ 0.5 is the worst-case scenario.

The error in an interval estimate of a population proportion is:

Error ¼ za=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

p

n

If p is 0.5, in other words we assume the largest possible value of p(1 � p):

Error ¼ za=2 �
0:5ð1� 0:5Þ

n
¼ za=2 �

0:5 � 0:5

n
¼ za=2 �

0:5ffiffiffi
n
p

This last expression can be rearranged:

If error ¼ za=2 �
0:5ffiffiffi

n
p

then
ffiffiffi
n
p
¼

za=2 � 0:5

error

and n ¼ ½za=2=ð2)errorÞ�2

8.4 HYPOTHESIS TESTING

Usually when we make predictions or estimates about population measures

we have no idea of the actual value of the measure we are trying to estimate.

Example 8.9

How many supermarkets would have to be included in the sample in Example 8.8 if the

confidence interval of the proportion of establishments with trolleys suitable for shoppers

with limited mobility has to be within 0.05 of the actual population proportion with a 95%

degree of confidence?

For the error to be 0.05:

n ¼ ½1:96=ð2 � 0:05Þ�2 ¼ 19:62 ¼ 384:16

This has to be rounded up to 385 to be on the safe side so a random sample of 385

supermarkets would have to be used.
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Indeed the purpose of estimation using sample results is to tell us what the

actual value is likely to be.

Sometimes we use sample results to deal with a different situation. This

is where the population measure is claimed to be a particular value and we

want to see whether the claim is correct. Such a claim is known as

a hypothesis, and the use of sample results to investigate whether it is true is

called hypothesis testing. To begin with, we will concentrate on testing

hypotheses about population means using a single sample. Later in this

chapter you will find hypothesis tests for comparing the means of two

samples, hypothesis testing of population proportions, and a way of testing

hypotheses about population medians.

The procedure used in hypothesis testing begins with a formal statement

of the claim being made for the population measure. This is known as the

null hypothesis because it is the starting point in the investigation, and is

represented by the symbol H0, ‘aitch-nought’.

We could find that a null hypothesis turns out to be wrong, in which case

we should reject it in favour of an alternative hypothesis, represented by the

symbol H1, ‘aitch-one’. The alternative hypothesis is the collection of

explanations that contradict the claim made in the null hypothesis.

A null hypothesis may specify a single value for the population measure,

in which case we would expect the alternative hypothesis to consist of all

other values both below and above it. Because of this ‘dual’ nature of the

alternative hypothesis, the procedure to investigate such a null hypothesis is

known as a two-sided test.

In other cases the null hypothesis might specify a minimum or

a maximum value, in which case the alternative hypothesis consists of all

values below, or all values above, respectively. The procedure we use in these

cases is called a one-sided test. Table 8.2 lists the three combinations of

hypotheses.

The type of null hypothesis that should be used depends on the context of

the investigation and the perspective of the investigator.

Table 8.2 Types of Hypotheses

Null Hypothesis Alternative Hypothesis Type of Test

H0: m ¼ m0 H1: m s m0 (not equal) Two-sided

H0: m � m0 H1: m > m0 (greater than) One-sided

H0: m � m0 H1: m < m0 (less than) One-sided

In this table m0 is used to represent the value of the population mean, m, that is to be tested.
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Once we have established the form of the hypotheses we can test them

using the sample evidence at our disposal. We have to decide whether the

sample evidence is compatible with the null hypothesis, in which case we

cannot reject it. If the sample evidence contradicts the null hypothesis we

reject it in favour of the alternative hypothesis.

To guide us in making this decision we need a decision rule that we can

apply to our sample evidence. The decision rule is based on the assumption

that the null hypothesis is true.

If the population mean really does take the value that the null hypothesis

specifies, then as long as we know the value of the population standard

deviation, s, and the size of our sample, n, we can identify the sampling

distribution to which our sample belongs.

Example 8.10

A bus company promotes a ‘one-hour’ tour of a city. Suggest suitable null and alternative

hypotheses for an investigation by:

(a) A passenger who wants to know how long the journey will take.

(b) A journalist from a consumer magazine who wants to see whether passengers are

being cheated.

In the first case we might assume that the passenger is as concerned about the tour taking

too much time as too little time. It follows that appropriate hypotheses would be that the

population mean of the times of the tours is either equal to one hour or not.

ðaÞ H0: m ¼ 60 minutes H1: ms60 minutes

In the second case we can assume that the investigation is more focused. The journalist is

more concerned that the trips might not take the full hour rather than taking longer than an

hour, so appropriate hypotheses would be that the population mean tour time is either one

hour or more, or it is less than an hour.

ðbÞ H0: m � 60 minutes H1: m < 60 minutes

Example 8.11

The standard deviation of the bus tours in Example 8.10 is known to be 6 minutes. If the

duration of a random sample of 50 tours is to be recorded in order to investigate the

operation, what can we deduce about the sampling distribution the mean of the sample

belongs to?

The null hypotheses in both sections of Example 8.10 specified a population mean, m, of

60 minutes. If this is true the mean of the sampling distribution, the distribution of means

of samples consisting of 50 observations, will be 60. The population standard deviation,

Continued
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The next stage is to compare our sample mean with the sampling

distribution it is supposed to come from if H0 is true. If it seems to belong to

the sampling distribution, in other words it is not too far away from the

centre of the distribution, we can regard the null hypothesis as plausible. If,

on the other hand, the sample mean is located on one of the extremes of the

sampling distribution we might regard the null hypothesis as suspect.

We can make this comparison by working out the z-equivalent of the

sample mean and using it to find out the probability that a sample mean like

the one we have comes from the sampling distribution that is based on the

null hypothesis being true. Because we are using a z-equivalent, this type of

hypothesis test is sometimes called a z test.

Once we know how likely it is that our sample mean belongs to the

sampling distribution implied by the null hypothesis, we can make a judge-

ment about the null hypothesis. We have to distinguish between ‘acceptable’

sample results, those that are compatible with the null hypothesis, and

‘unacceptable’ sample results, those that conflict with the null hypothesis.

s, is 6 so the standard error of the sampling distribution, s/On, is 6/O50, 0.85 minutes to

two decimal places.

We can conclude that the sample mean of our sample will belong to a sampling distri-

bution with a mean of 60 and a standard error of 0.85, if H0 is true.

Example 8.12

The mean of the random sample in Example 8.11 is 58.13 minutes. What is the z-

equivalent of this sample mean, assuming it belongs to a sampling distribution with

a mean of 60 and a standard error of 0.85? Use the z-equivalent to find the probability that

a sample mean of 58.13 or less comes from such a sampling distribution.

z ¼ ðx � mÞ
s=

ffiffiffi
n
p ¼ 58:13� 60

0:85
¼ �2:20

Using Table 3:

PðZ < �2:20Þ ¼ 0:0139

This means PðX < 58:13Þ ¼ 0:0139 or 1:39%

This is shown in Figure 8.4.

Hypothesis Testing 241



If the probability that a sample mean comes from the sampling distribu-

tion that H0 implies is quite high then it would be ‘acceptable’. If it were quite

low it would be ‘unacceptable’. In Example 8.12 the probability that the

sample mean or a lower one comes from the sampling distributions that H0

suggests is only 1.39%, a low figure, so we may consider it to be ‘unacceptable’.

But what exactly are ‘quite high’ and ‘quite low’ probabilities? When you

get used to hypothesis testing you may well develop an intuitive ‘feel’ for

what the appropriate dividing line is in a given situation, but until then you

will need to apply a decision rule.

In many practical applications this type of testing is a way of establishing

that goods and services meet standards agreed between a supplier and

a customer, or between a head office and local management. In these

circumstances it is important that a decision rule that defines acceptable

sample test results is agreed between the parties involved.

A decision rule should define how low the likelihood of a sample mean

has to be before we consider it ‘unacceptable’. ‘Unacceptable’ sample results

are often described as significant, in the sense that they are significantly

different to what the null hypothesis suggests they should be. The decision

rule specifies what is called the level of significance, a.

If we say that we will use a 5% level of significance in our testing we are

saying that if there is less than a 5% chance that a sample mean belongs to

the sampling distribution based on H0 then we will consider it ‘unacceptable’.

This is a little misleading because it is really the null hypothesis that we

FIGURE 8.4 The sampling distribution in Example 8.12.
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would have found to be unacceptable in the light of the sample evidence. So if

our sample result is ‘unacceptable’ we should reject the null hypothesis.

A 5% level of significance means that if the chance that the sort of sample

mean our investigation produces does come from the sampling distribution H0

implies is less than 1 in 20, then it is such an unlikely result we believe that the

sample evidence disproves the null hypothesis. Another way of putting it is to say

that if our sample mean is among the 5% least likely to come from the sampling

distribution that it should belong to if H0 were true then we will reject H0.

The implication of rejecting H0 is that the sample mean we have actually

belongs to a different sampling distribution, because it is very unlikely to

belong to the one that H0 implies. It is very unlikely, but not impossible. The

sort of sample mean that our decision rule says is significant, or ‘unaccept-

able’, could, just possibly, belong to the sampling distribution H0 implies. In

that case the decision to reject H0 would be wrong. The level of significance

we specify in a decision rule is therefore the risk we are prepared to take that

we wrongly reject H0.

When we apply our decision rule we need to take into account the type of

null hypothesis we are dealing with. If it suggests that the population mean

equals a particular figure we should conduct a two-sided test in order to

assess it. That is, if the sample mean we produce is either too high or too low,

then we should reject H0.

In two-sided tests there are two types of ‘unacceptable’, or significant

sample result. Because of this if we use a 5% level of significance, the 5%

least likely sample means that would lead us to reject the null hypothesis

will consist of the lowest 2½% of sample means and the highest 2½% of

sample means. If therefore the probability that the sample mean we have

belongs to the sampling distribution were less than 2½%, or 0.025, we would

reject H0. But because the test is two-sided we would say that we reject it at

the 5% level.

These lowest and highest extremes of the sampling distribution are called

the rejection regions, since we reject the null hypothesis if our sample mean

is located in one of those parts of the distribution. Another way of applying

the decision rule is to use the z values that cut off the tails on the Standard

Normal Distribution equivalent to the rejection regions as benchmarks that

we compare with the z-equivalent of the sample mean. In this context the z-

equivalent of the sample mean is called the test statistic and the Z values that

mark off the limits of the rejection regions are called the critical values of Z.

In a two-sided, or two-tail, test using a 5% level of significance the

rejection regions of the furthest 2½% on the left and right sides of the

sampling distribution are the same as the areas of the Standard Normal

Distribution beyond the critical z values, �1.96 and þ1.96, respectively.
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If the z-equivalent of our sample mean, the test statistic, is either less than

�1.96 or greater than þ1.96, we should reject H0. This is illustrated in

Figure 8.5.

If the null hypothesis suggests that the population mean is less than or

equal to a particular figure we conduct a one-sided, or one-tail, test. If we do

this using a 5% level of significance we reject the null hypothesis if our
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FIGURE 8.5 Rejection regions for a two-tail test at the 5% level of significance.

Example 8.13

Test the hypothesis that the population mean duration of the bus tours in Example 8.10 is

60 minutes, H0: m ¼ 60. Use the sample mean given in Example 8.12 and apply a 5%

level of significance.

H0: m ¼ 60 minutes H1: ms60 minutes

The level of significance; a ¼ 0:05

From Example 8.12 we know that the probability that a sample mean of 58.13 or less

belongs to a sampling distribution with a mean of 60 and a standard error of 0.85 is 0.0139

or 1.39%. Since this is less than 2½% we can reject the null hypothesis at the 5% level.

Alternatively we can compare the test statistic, the z-equivalent of the sample mean,

�2.20, to the critical values of Z that cut off 2½% tails of the Standard Normal Distribution,

�1.96 and þ1.96. Because it is less than �1.96, we reject the null hypothesis; our

sample evidence suggests that on average the tours take less than 60 min.
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sample mean is among the highest 5% of samples in the sampling distri-

bution that H0 implies.

Since the null hypothesis includes the possibility that the population

mean is lower than a particular value, a very low sample mean is compatible

with the null hypothesis. It is only if the sample mean is very high that we

would reject H0.

The decision rule in this case means that if the probability that the

sample mean comes from the sampling distribution implied by H0 is less

than 5% or 0.05 and the sample mean is higher than the population mean

specified in H0, then we reject H0. Alternatively we could say that if the test

statistic, the z-equivalent of our sample mean, is higher than 1.645, the z

value that cuts off a tail of 5% on the right-hand side of the Standard Normal

Distribution, we will reject H0. This is illustrated in Figure 8.6.

If the null hypothesis states that the population mean is greater than or

equal to a particular value, we would also conduct a one-tail test. But this

time we would reject the null hypothesis if our sample mean were among the

lowest 5% of samples in the sampling distribution that H0 implies.

If the null hypothesis includes the possibility that the population mean is

higher than a particular value, a very high sample mean is compatible with

the null hypothesis. It is only if the sample mean is very low that we would

reject H0.

The decision rule is that if the probability that the sample mean comes

from the sampling distribution implied by H0 is less than 5% or 0.05 and the

sample mean is lower than the population mean specified in H0, then we
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FIGURE 8.6 Rejection region for a one-tail test of a ‘less than or equal’ null hypothesis

at the 5% level of significance.
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reject H0. Alternatively we could say that if the test statistic were less than

�1.645, the z value that cuts off a tail of 5% on the left-hand side of the

Standard Normal Distribution, we would reject H0. This is illustrated in

Figure 8.7.

In the same way that you can use different levels of confidence in esti-

mation, you can use different levels of significance in hypothesis testing. The

most commonly used levels of significance are 10%, 5%, 1% and 0.1%. Note

Example 8.14

Use the sample mean in Example 8.12 to test the hypothesis that the tours in Example

8.10 take at least 60 minutes, H0: m � 60, at the 5% level of significance.

H0: m � 60 minutes H1: m < 60 minutes

The level of significance; a ¼ 0:05

The sample mean is 58.13 and in Example 8.12 we found that the probability that this or

a lower sample mean comes from a sampling distribution with a mean of 60 and a stan-

dard error of 0.85 was 0.0139 or 1.39%. This is less than 5%, the level of significance so

we reject the null hypothesis.

If we compare the test statistic,�2.20, with the z value that cuts off the 5% tail on the left-

hand side of the Standard Normal Distribution,�1.645 we can see that�2.20 is clearly in

the rejection region because it is less than�1.645. We therefore reject the null hypothesis

at the 5% level of significance.
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FIGURE 8.7 Rejection region for a one-tail test of a ‘greater than or equal’ null

hypothesis at the 5% level of significance.
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that the lower the level of significance the more rigorous the test. In

circumstances where it is important that the result of a hypothesis test is

robust, such as testing pharmaceutical products, it would be appropriate to

use the 0.1% level of significance.

The level of significance you use determines the size of the rejection

region and the critical value of Z. Once you have decided which level of

significance to use you can obtain the critical value by looking for the

appropriate values of a (for a one-tail test) or a/2 (for a two-tail test) in the

body of Table 3 on pages 317–320 and finding the z values associated with

them. Alternatively you can find the probability that the sample result occurs

if the null hypothesis is true by working out its z-equivalent and then

referring to Table 3 to find the critical value.

Note that in Example 8.15 the sample size, 15 is quite small but we do

not need to alter the procedure used because the population standard devi-

ation is known and the population the sample comes from is normal, which

means that the sampling distribution for means of sample size 15 will also be

normal.

A sample result that leads to the rejection of a null hypothesis is referred

to as significant. If the sample result allows us to reject a null hypothesis at

Example 8.15

According to the label on packets of mixed nuts there should be 25 g of cashew nuts in

every packet. The standard deviation of the weight of cashew nuts per packet is known to

be 2.2 g and the weights are normally distributed.

The mean weight of cashew nuts in a random sample of 15 packets is 23.5. Test the

hypothesis that the information on the label is valid using a 1% level of confidence.

H0: m ¼ 25 g H1: ms25 g

Level of significance; a ¼ 0:05

z ¼ ðx � mÞ
s=

ffiffiffi
n
p ¼ 23:5� 25

2:2
ffiffiffiffiffiffi
15
p ¼ �1:5

0:568
¼ �2:64 to two decimal places

According to Table 3 the value of Z that cuts off a tail area of 0.005, z0.005, is between

2.57 and 2.58, so we will use �2.575 and þ2.575 as the critical values for this test.

The test statistic, �2.64, is beyond �2.575 on the left-hand side of the distribution

and so falls in the rejection region. We should reject H0 at the 1% level of significance.

Alternatively we can use Table 3 to find that P (Z < �2.64) ¼ 1 � 0.9959 ¼ 0.0041. This

means that the probability of a sample mean is less than 23.5, P (X< 23.5), is 0.0041.

Because this is less than 0.005 (half of a; this is a two-tail test), reject H0 at the 1% level of

significance.
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an exacting level of significance like 1% such as in Example 8.15 we can refer

to the sample result as highly significant.

You may find that at first the most difficult thing about hypothesis testing

is the decision rule, and in particular making sure you use the appropriate

critical value. It may help if you remember the connection between the type

of null hypothesis and the critical value.

- If you are testing H0: m ¼ m0, reject it if the test statistic is below �za/2

or above za/2.

- If you are testing H0: m � m0, reject it if the test statistic is above za.

- If you are testing H0: m � m0, reject it if the test statistic is below �za.

8.4.1 Hypothesis testing without s

In the hypothesis testing we have looked at so far we have assumed that we

know the population standard deviation, s. This could be the case, particu-

larly if you are trying to find out whether a change had an effect by comparing

sample data collected after the change with a previous situation was well

established and known. Perhaps a brewery wants to know if the refurbish-

ment of a pub has a significant effect on trade. In such a case the brewery

records are likely to be comprehensive and they could be used to calculate the

population standard deviation of the turnover per week. You could then use

this figure to calculate the standard error of the sampling distribution that

would provide the context for the test.

However, in the majority of cases we are unlikely to know the population

standard deviation. In these situations the sample size is the first key factor. If

our sample evidence comes from a sample that consists of 30 or more

observations the sample standard deviation will be sufficiently close to the

population standard deviation to allow us to use a z test; that is, to base our

decision rule on the Standard Normal Distribution. We simply use the sample

standard deviation in place of the population distribution and calculate the

estimated standard error, that is instead of s/On we would use s/On.

Example 8.16

A hair products company claims that a hair colouring treatment it produces lasts for an

average of 45 days before fading. The company wants to check that its claim is valid. The

hair of a random sample of 40 customers who had applied the treatment was monitored

and the time that elapsed until the colouring faded was recorded. The mean time it took for

the hair colouring to fade on these customers was 46.1 days with a standard deviation of

Continued
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8.4.2 Hypothesis testing with small samples

Suppose we want to test a hypothesis using the mean of a sample that

consists of less than 30 observations and we don’t know the population

standard deviation. We can do this but we have to be reasonably sure that the

population that the sample comes from is normal.

The sample standard deviation from a small sample will not be close

enough to the population standard deviation to allow us to simply substitute

s for s as we could do with larger samples. This means we have to use t

distributions for benchmarks in comparing sample results with sampling

distributions that null hypotheses imply. Because a t distribution is used you

will find that hypothesis tests based on small samples are called t tests.

2.9 days. Do these results support the claim that the mean time the colouring lasts is 45

days? Use a 10% level of significance.

We can assume that the company wants to ensure that the colouring lasts neither too short

nor too long a period, so we will use a two-tail test.

H0: m ¼ 45 H1: ms45

Level of significance; a ¼ 0:1

If m ¼ 45, the means of samples size 40 will form a sampling distribution that has a mean

of 45 and an estimated standard error of 2.9/O40. The test statistic is:

z ¼ 46:1� 45

2:9=
ffiffiffiffiffiffi
40
p ¼ 1:1

0:459
¼ 2:40 to two decimal places

According to Table 3 the probability that Z is more than 2.40 is 0.0082 or 0.82%.

If we apply a 10% level of significance, this probability must be less than 0.05, or 5% in

order to reject H0. In this case we can reject H0.

The z values that cut off tails of 5% are �1.645 and þ1.645. H0 should be rejected

because the test statistic is outside these values.

Example 8.17

On average 74.9 units of a branded alco-pop drink are sold at a city-centre pub each

week. Sales are normally distributed. The manager puts on a special promotion to boost

sales of the product. During the five weeks following the promotion the mean sales were

82.4 units per week with a standard deviation of 7.3 units. Test the hypothesis that the

promotion has improved sales using a 5% level of significance.

Continued

Hypothesis Testing 249



8.5 TESTING HYPOTHESES ABOUT TWO POPULATION

MEANS

In the previous section we looked at tests of the population mean based on

a single sample mean. In this section we will consider tests designed to assess

the difference between two population means. In businesses these tests are

used to investigate whether, for instance, the introduction a new logo

improves sales.

To use these tests you need to have a sample from each of the two pop-

ulations. For the tests to be valid the samples must be random, but they can

be independent or dependent.

Independent samples are selected from each population separately. If we

selected a random sample of customers of one domestic gas supplier and

a random sample of customers from a rival gas supplier the samples would be

independent.

Dependent samples consist of matched or paired values. If we selected

a sample of athletes and compared their pulse rates before and after an

exercise routine the samples would be paired or dependent.

The choice of independent or dependent samples depends on the context

of the test. Unless there is a good reason for using paired data such as in the

case of the athletes where using the same athletes before and after the

exercise makes sense, use independent samples. We will begin by looking at

tests for use with independent samples and deal with paired samples later in

the section.

We are only interested in proving that sales have improved, so we need to conduct a one-

tail test. The null hypothesis assumes that the sales have not improved; the alternative

hypothesis assumes that they have.

H0: m � 74:9 H1: m > 74:9

Level of significance; a ¼ 0:05

The test statistic is t ¼ ðx � mÞ
s
ffiffiffi
n
p ¼ 82:4� 74:9

7:3
ffiffiffi
5
p ¼ 7:5

3:26

¼ 2:30 to two decimal places

According to Table 4 on pages 320–321, t0.05,4 is 2.132, which means that the top 5% of

values in a t distribution with four degrees of freedom will be greater than 2.132. Our test

statistic is larger so we can conclude that there has been a significant increase in sales and

H0 should be rejected in favour of H1.
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As with single sample tests the size of the samples is important because it

determines the nature of the sampling distribution. In this section we will

assume that the population standard deviations are not known.

8.5.1 Large independent samples

The null hypothesis you have to use in comparing population means is based

on the difference between the means of the two populations, m1 � m2. The

possible combinations of null and alternative hypotheses are shown in

Table 8.3.

The hypotheses listed in Table 8.3 all assume that the focus of the test is

that there is no difference between the population means. This is very

common but the same formats can be used to test whether the difference

between two population means is a non-zero constant e:g: H0 : m1 � m2 ¼ 6.

If both samples contain 30 or more items the difference between their

means, x1 � x2, belongs to the sampling distribution of X1—X2. This

sampling distribution is normally distributed with a mean of m1 � m2, and

a standard error of:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1

n1
þ s2

2

n2

s

where s1 and s2 are the standard deviations of the first and second pop-

ulations, respectively, and n1 and n2 are the sizes of the samples from the first

and second populations, respectively.

We are assuming that the population standard deviations are not

known, in which case the estimated standard error of the sampling distri-

bution is:

Table 8.3 Types of Hypotheses for Comparing Population Means

Null Hypothesis Alternative Hypothesis Type of Test

H0: m1 � m2 ¼ 0 H1: m1 � m2 s 0 Two-sided

H0: m1 � m2 � 0 H1: m1 � m2 > 0 One-sided

H0: m1 � m2 � 0 H1: m1 � m2 < 0 One-sided

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1
þ s2

2

n2

s
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where s1 and s2 are the standard deviations of the first and second samples,

respectively.

The test statistic is:

z ¼ ðx1 � x2Þðm1 � m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1
þ s2

2

n2

s

If the null hypothesis suggests that the difference between the population

means is zero, we can simplify this to:

z ¼ x1 � x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1
þ s2

2

n2

s

Once we have calculated the test statistic we need to compare it with the

appropriate critical value from the Standard Normal Distribution.

Notice that in Example 8.18 we have not said anything about the distri-

butions of response times. The Central Limit Theorem allows us to use the

same two-sample z test whatever the shape of the populations from which the

samples were drawn as long as the size of both samples is 30 or more.

Example 8.18

The mean and standard deviation of the times that it took for the ‘Action’ breakdown

recovery service to assist a random sample of 47 motorists were 51 minutes and

7 minutes. The mean and standard deviations of the response times recorded by the rival

‘Bistry’ service in assisting a random sample of 39 motorists were 49 minutes and

5 minutes. Test the hypothesis that there is no difference between the mean response

times of the two breakdown services. Use a 5% level of significance.

H0: m1 � m2 ¼ 0 H1: m1 � m2s0

Test statistic; z ¼ 51� 49ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72

47
þ 52

39

r ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49

47
þ 25

39

r ¼ 2=1:298

¼ 1:54 to two decimal places

This is a two-tail test using a 5% level of confidence so the critical values are �z0025.

Unless the test statistic is below �1.96 or above �1.96 the null hypothesis cannot be

rejected. The test statistic, 1.54, is within �1.96 so we cannot reject H0; the population

mean response times of the two breakdown services could be equal.
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8.5.2 Small independent samples

If the size of the samples you want to use to compare population means is

small, less than 30, you can only follow the procedure outlined in the

previous section if both populations are normal and both population stan-

dard deviations known. In the absence of the latter it is possible to test the

difference between two population means using small independent samples

but only under certain circumstances.

If both populations are normal and their standard deviations can be

assumed to be the same, that is s1 ¼ s2, we can conduct a two-sample t test.

We use the sample standard deviations to produce a pooled estimate of the

standard error of the sampling distribution of X1—X2, sp.

sp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1Þs2

1 þ ðn2 � 1Þs2
2

n1 þ n2 � 2

s

The test statistic is t ¼ x1 � x2

sp �
1

n1
þ 1

n2

We then compare the test statistic to the appropriate critical value from

the t distribution. The number of degrees of freedom for this test is n1 þ
n2 � 2; one degree of freedom is lost for each of the sample means.

Example 8.19

A cereal manufacturer produces packets of ‘own-brand’ muesli for a supermarket chain

using the same production line as they use for their own premium brand. The mean and

standard deviation of the oat content per 100 g of a random sample of 14 ‘own-brand’

packets are 34.9 g and 1.4 g. The mean and standard deviation of the oat content of

a random sample of 17 premium brand packets are 33.4 g and 1.1 g. Test the hypothesis

that the mean oat content of the premium brand is no greater than the mean oat content of

the ‘own-brand’ muesli using a 1% level of significance. Oat content is normally distrib-

uted in both brands.

We will define m1 as the population mean of the ‘own-brand’ and m2 as the population

mean of the premium product.

H0: m1 � m2 � 0 H1: m1 � m2 > 0

First we need the pooled estimate of the standard error:

sp ¼
ð14� 1Þ1:42 � ð17� 1Þ1:12

14þ 17� 2
¼ ð13 � 1:96Þ � ð16 � 1:21Þ

29

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð25:48þ 19:36Þ=29

p
¼ 1:243 to three decimal places

Continued
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Now we can calculate the test statistic:

t ¼ 34:9� 33:4

1:243 � 1

14
þ 1

17

¼ 1:5

1:243 � 0:361
¼ 3:344 to three places

This is a one-tail test so the null hypothesis will only be rejected if the test statistic exceeds

the critical value. From Table 4 on pages 320–321, t0.01,29 is 2.462. Since the test statistic

is greater than the critical value we can reject the null hypothesis at the 1% level. The

difference between the sample means is very significant.

Enter the following hotel double

room rack rates (£) sample data

into two columns.

Town A: 55  70  60  65  80  62  50

Town B: 76  66  68  85  70  80

Excel Recipe Card –  

Hypothesis tests for  

differences between 

population means 

Move the cursor to an empty cell and

type =TTEST( in the Formula bar. As

you do so the prompt TTEST(array1,

array2,tails,type) appears below the

Formula bar.

Click and drag over the first column 

of data to make them array1. 

CHAPTER 8 : Statistical Decision Making254



8.5.3 Paired samples

If you want to test the difference between population means using

dependent or paired samples the nature of the data enables you to test the

mean of the differences between all the paired values in the population, md.

This approach contrasts with the methods described in the earlier parts of

this section where we have tested the difference between population

means, m1 � m2.

The procedure involved in testing hypotheses using paired samples is very

similar to the one-sample hypothesis testing we discussed in Section 8.3. We

have to assume that the differences between the paired values are normally

distributed with a mean of md, and a standard deviation of sd. The sampling

distribution of sample mean differences will consequently be normally

distributed with a mean of md and a standard error of sd/On, where n is the

number of differences in the sample. Since we assume that sd is unknown we

have to use the estimated standard error sd/On, where sd is the standard

deviation of the sample differences.

Typically samples of paired data tend to be small so the benchmark

distribution for the test is the t distribution. The test is therefore called

the paired t test. Table 8.4 lists the three possible combinations of

hypotheses.

Type a comma then click and drag 

over the second column of data to 

make them array2. Type a comma 

then 2 for both tails and type to 

specify a two-tailed test with 

assumed equal variance. 

Press Enter to produce the 

probability that the sample results 

occur if the null hypothesis of no 

difference between the population  

means is true, 0.046804. 
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The test statistic is:

t ¼ xd � md0

sd=On

where xd is the mean of the sample differences.

We then compare the test statistic with the appropriate critical value from

the t distribution with n � 1 degrees of freedom.

Table 8.4 Types of Hypotheses for the Mean of the Population of Differences

Null Hypothesis Alternative Hypothesis Type of test

H0: md ¼ md0 H1: md s md0 (not equal) Two-sided

H0: md � md0 H1: md > md0 (greater than) One-sided

H0: md � md0 H1: md < md 0 (less than) One-sided

In this table md0 represents the value of the population mean that is to be tested.

Example 8.20

A Business School claims that on average people who take their MBA programme will

enhance their annual salary by at least £8000. Each of a random sample of 12 graduates

of the programme was asked for their annual salary prior to beginning the programme and

their current annual salary. Use the sample data to test whether the mean difference in

annual earnings is £8000 or more using a 10% level of significance.

H0: md � 8:00 H1: md < 8:00 ð£000Þ

To conduct the test we first need to find the mean and standard deviation of the salary

differences in the sample.

Graduate 1 2 3 4 5 6 7 8 9 10 11 12

Prior salary (£000) 32 39 39 33 43 30 36 31 35 37 37 39

Current salary (£000) 41 48 50 39 51 35 39 36 41 47 51 46

Salary difference (£000) 9 9 11 6 8 5 3 5 6 10 14 7

The mean and standard deviation of the sample differences are 7.75 and 3.05, to two

decimal places. The test statistic is:

t ¼ 7:75� 8:00

3:05=O12
¼ �0:25

0:88
¼ �0:28 to two places

From Table 4 on pages 320–321, t0.10,11 is 1.363. The alternative hypothesis is that the

population mean salary difference is less than £8000 so the critical value is �1.363.

Continued
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A sample mean that produces a test statistic less than this would lead us to reject the null

hypothesis. In this case, although the sample mean is less than £8000, the test statistic,

�0.28, is not less than the critical value and the null hypothesis cannot be rejected. The

population mean of the salary differences could well be £8000.

Excel conducts these tests on 

sample data so enter the following 

employee performance ratings, 

assessed before and after training, 

into two columns. 

Before: 58  47  62  53  58  65 

After:   71  56  67  56  63  74  

Enter the Before data in one column 

and the After data into another. 

 

Excel Recipe Card – Paired t  

tests 

Move the cursor to an empty cell 

and type =TTEST( in the 

Formula bar.As you do this the 

prompt TTEST (array1,array2,tails, 

type) appears below the Formula bar. 

Make the first column of data array1 

and the second array2. Type 1 for 

tails so that a one-tailed test is 

conducted and 1 for type to signify 

a paired test. 

Press Enter to produce the 

probability that the sample results 

occur if the null hypothesis of no 

difference between the population 

means is true, 0.002247.  
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8.6 TESTING HYPOTHESES ABOUT POPULATION

PROPORTIONS

In many respects the procedure we use to test hypotheses about population

proportions is similar to the way we test other types of hypothesis. We begin

with a null hypothesis that specifies a population proportion to be tested,

which we represent by the symbol p0 (the Greek letter pi, p, is the symbol for

the population proportion). If the null hypothesis is one of the ‘equal to’ types

we conduct a two-tail test. If it is ‘less than’ or ‘greater than’, we conduct

a one-tail test. The three possible combinations of hypotheses are listed in

Table 8.5.

We calculate the test statistic from the sample proportion, represented by

the symbol p, which comes from the sample data that we want to use to test

the hypothesis. We assume that the sample proportion belongs to a sampling

distribution that has a mean of p0 and a standard error of:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ

n

r

Notice that we use the proportion from the null hypothesis to calculate

the standard error, not the sample proportion.

The test statistic is:

z ¼ p� p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ=n

p

Sample proportions are distributed normally if they come from large

samples. As long as the sample size is large, preferably over 100, we can use

the Standard Normal Distribution as the benchmark for the test; in other

words it will be a z test.

As we have done before we use a decision rule that specifies a level of

significance in order to assess the validity of the null hypothesis.

Table 8.5 Types of Hypotheses for the Population Proportion

Null Hypothesis Alternative Hypothesis Type of test

H0: p ¼ p0 H1: p s p0 (‘not equal’) Two-sided

H0: p � p0 H1: p > p0 (‘greater than’) One-sided

H0: p � p0 H1: p < p0 (‘less than’) One-sided

In this table p0 represents the value of the population proportion that is to be tested.

CHAPTER 8 : Statistical Decision Making258



8.7 A HYPOTHESIS TEST FOR THE POPULATION

MEDIAN

For most of this chapter we have concentrated on testing population means.

When sample sizes are large this is a generally applicable way of assessing

the central tendency of populations. But as we have seen, it is not so

straightforward when using small samples, samples that contain less than

30 items.

If you want to test a hypothesis about a mean using a small sample you

have to be able to assume that the population that the sample comes from is

normal. In many situations this is not a reasonable assumption; patterns of

wealth and income, for instance, form a skewed distribution.

Example 8.21

In her annual report the general manager of a car rental business observes that

commercial bookings constituted a proportion of 0.32 of the bookings received over the

previous year. Out of a random sample of 146 bookings received for the current year, 40

are commercial bookings. Test the hypothesis that the proportion of commercial bookings

in the current year is at least as high as the proportion received last year using a 5% level of

significance.

We are interested in proving that the proportion is no lower than it was, so we will use

a one-tail test. The hypotheses are:

H0: p0 � 0:32 H1: p0 < 0:32

Level of significance; a ¼ 0:05

The sample proportion; p ¼ 40=146 ¼ 0:274

The test statistic; z ¼ p � p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ=n

p ¼ 0:274� 0:32ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:32ð1� 0:32Þ=146

p

¼ �0:046=0:039 ¼ �1:19

From Table 3 on pages 317–320, the probability that Z is �1.19 or less is 0.117, or

11.7%. Since this is more than 5% we cannot reject the null hypothesis.

Another way of assessing the test statistic is to compare it with the z value that cuts off

a tail of 5% on the left-hand side of the distribution, �1.645. Because the test statistic

is not less than this, the sample result is not significant. We can conclude that,

although the sample proportion is lower than the proportion last year, it is not signifi-

cantly lower.
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When a distribution is skewed the sampling distributions for small

samples based on it will also be skewed. You may recall that in the course of

the discussion about averages in Chapter 3 we concluded that the median

was a more effective measure of location to use with skewed distributions. In

this section we will look at a test for the population median known as the sign

test, which can be used with small samples drawn from non-normal

populations.

The idea at the heart of the sign test is quite a simple one. The definition

of the median is that it is the midway point in the population. Exactly one

half of the values in the population are above the median and the other half

are below it. This means that the probability a randomly selected value is less

than the median is 1
2 and the probability it is more than the median is 1

2. If we

have a random sample the values in it will be either above or below the

median. The total number of values in the sample that are above and below

the median can therefore be modelled using the binomial distribution, with

say ‘success’ being defined as a value above the median, and p, the probability

of success, being 0.5.

You start with null and alternative hypotheses much the same as those we

have already looked at, except that they involve the population median. As

before, the null hypothesis must identify the specific value of the population

median to be tested. You then have to allocate a plus to each value in the

sample that is above the median and a minus to each value that is below the

median. In the unlikely event that your sample contains a value exactly the

same as the null hypothesis population median, you can allocate a sign on

the basis of the toss of a coin.

Once every value has been assigned a plus or minus, you then count up

the number of plus signs and the number of minus signs. Finally use the

appropriate binomial distribution to define the rejection region in keeping

with the desired level of significance.

Example 8.22

The times taken to serve customers in a shop follow a skewed distribution. The service

times, in minutes, for a random sample of 10 customers were:

2 6 1 4 2 5 1 1 3 2

Test the hypothesis that the population median service time is 2.5 minutes using a 5%

level of significance.

H0: median ¼ 2:5 H1: medians2:5

Continued
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The sign test is one of a wide range of tests that can be applied in a broader

range of contexts than the more traditional or classical methods we looked at

earlier in this chapter. These tests are known as non-parametric tests because

they are not generally based on the parameters used in the classical methods,

the mean and the standard deviation. They are also referred to as distribu-

tion-free methods because they do not depend on assumptions about the

population distribution.

Non-parametric methods are simpler to use and more widely applicable

than classical methods, but they are not as efficient. Typically a non-para-

metric test requires more data than a classical test for the same degree of

rigour. We have only considered one of the many non-parametric tests that

are available. You can find out more about them in Sprent and Smeeton

(2007).

First we allocate signs to each value, minus for a value below 2.5 and plus for a value

above 2.5.

2 6 1 4 2 5 1 1 3 2

� þ � þ � þ � � þ �

We have four plus signs and six minus signs. Table 1 on pages 315–316 contains the

probabilities for the binomial distribution for n ¼ 10 and p ¼ 0.5.

This is a two-tail test using a 5% level of significance so there are two parts of the rejection

region, each with a tail area of 0.025. We will reject the null hypothesis if there are too

many pluses (too many values above the suggested population median) or too few. But

what are too many or too few?

We are dealing with discrete distributions so the tail areas will be approximate. From Table

1 we can see that the probability of 0 or 1 successes (in this context values above the

median, pluses) is 0.011, and we can work out that the probability of nine or ten

successes is also 0.011. This means that if the population median really were 2.5, the

probability of getting zero, one, nine or ten pluses is 0.022 or 2.2%. These numbers of

pluses constitute the rejection region. As long as there are between two and eight pluses

inclusive, we cannot reject the null hypothesis.

In this case there are four pluses so we cannot reject H0, the median could be 2.5.

Note that in effect we have used a 2.2% level of significance in this test. It is as near as

we can get to 5% without exceeding it. If we were to include two and eight in our rejection

region the effective level of significance would be 11% (Table 1 gives the probability of

0, 1 or 2 successes as 0.055).
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Test yourself questions from Warwick’s business enterprises

Fully worked solutions to these questions are on pages 337–338. You can find more

questions on the topics covered in this chapter at the accompanying website www.

elsevierdirect.com/9781856179478.

8.1 (Easy)

The waiting times of each of a random sample of 45 people calling taxis from

Warwick’s hotel have been recorded. The mean waiting time was 7.3 min with

a standard deviation of 3.2 min.

(a) Construct a 95% confidence interval for the mean waiting time.

(b) Construct a 99% confidence interval for the mean waiting time.

8.2 (Moderate)

The alcohol content of bottles of an imported brand of flavoured vodka Warwick

serves in his pub is presumed to follow a normal distribution with a standard

deviation of 0.83%. The mean alcohol content of a random sample of 12 bottles is

64.6%. Test the validity of the claim made by the supplier that the average alcohol

content is at least 65%. Use a 5% level of significance.

8.3 (Hard)

The interval between each of a random sample of 28 guests at Warwick’s hotel

ordering a room service hot meal and its delivery taken for the room service delivery

of hot meals was timed. The mean interval was 31.7 min with a standard deviation of

4.1 min. After making changes to the room service menu, the delivery interval of

each of a random sample of 24 room service hot meals was recorded. The mean

interval of this second sample was 29.5 min with a standard deviation of 3.2 min.

Assuming that the populations of intervals both before and after the menu changes

are normally distributed, test the hypothesis that the menu changes have resulted in

no reduction in the population mean delivery interval using a 5% level of significance

and a pooled estimate of the standard error.
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CHAPTER 9

Statistical Decision Making
with Bivariate Data

Why do I need to know about this? Warwick the Hospitality
entrepreneur says.

‘This chapter is all about finding connections between things and
establishing just how important, or significant these connections are.
For me one important connection was between the prices I charged
and how many customers I attracted. Was it worth cutting prices to
get more customers? How could I find out? Try it on a few occasions
and see. When I did this I was using these few occasions to decide

what to do on all occasions, in other words I was testing the
connection between prices and sales in a sample so that I could make

a judgement about a population.’

Chapter Objectives

This chapter will help you to:

- analyse the connection between variables;

- test bivariate models; and

- use bivariate models to make sophisticated predictions.

CONTENTS

Introduction

Contingency Tests

Testing and
Estimating with
Quantitative Bivariate
Data
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9.1 INTRODUCTION

The purpose of this chapter is to introduce you to methods of statistical

inference, or statistical decision making, that enable us to draw conclusions

about connections between variables in populations based on sample data.

The sample data we will be using are described as bivariate data because they

consist of observed values of two variables. This sort of data is usually

collected in order to establish whether there is a connection between the two

variables, and if so, what sort of connection it is.

Many organizations use this type of analysis to study consumer behav-

iour, patterns of costs and revenues and other aspects of their operations.

Sometimes the results of such analysis have far-reaching consequences. For

example, if you look at a tobacco product you will see a health warning

prominently displayed. It is there because some years ago researchers used

these types of statistical methods to establish that there was a connection

between tobacco consumption and certain medical conditions.

We shall consider two types of statistical decision-making techniques. The

first, tests of association or contingency, are designed to investigate connec-

tions between qualitative variables, or characteristics. The second are tests

that enable us to investigate connections between quantitative variables. The

latter usually take the form of bivariate models, and we shall also be looking at

how we can use such models to produce confidence intervals for predictions.

9.2 CONTINGENCY TESTS

These tests are used primarily with qualitative data, which are data that

consist of different categories of attributes or characteristics. They can help

us to determine whether one characteristic is associated with, or contingent

upon another characteristic. They are also suitable for use with quantitative

data as long as it is discrete data which can take only a very few values, or the

data are sorted into relatively few categories.

If you conduct a questionnaire survey, or have to analyse the results of

questionnaire research, you may well want to find out from the data how

different characteristics are related to each other. For instance, you may want

to look into the possible connection between the socio-economic class of

respondents and the newspapers they buy. You would need to conduct

a contingency test in order to ascertain whether a connection you might find

in your sample results is strong enough to enable you to conclude that there

is a connection in the population at large, in other words to see if the sample

results are significant.
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Contingency tests are conducted in the same way as the hypothesis tests

we looked at in the Chapter 8. We begin with a null hypothesis, H0, which in

contingency analysis says that there is no association between the charac-

teristics, whereas the alternative hypothesis, H1, says that there is an asso-

ciation between them.

The next stage is to analyse the sample results that we want to use to

decide which hypothesis is the more plausible. We can start by putting the

data into a contingency table.

To test the hypotheses the sample results must be combined to produce

a measure of contingency, a test statistic that we can compare to a benchmark

distribution. The test statistic that we use is known as chi-square after the

Greek letter chi, c2.

The value of chi-square is calculated by comparing the sample results,

which are referred to as the Observed frequencies and are represented by the

letter O, to the results that we would expect if the null hypothesis were true.

These values, which we have to work out, are known as the Expected

frequencies and are represented by the letter E.

Example 9.1

In a survey about television each of a random sample of 100 respondents were asked if

they thought there was too much or not enough sport on television. Of the 40 men in the

sample, 15 said too much. Of the 60 women in the sample, 35 said too much. Is there

a significant connection between gender and attitude to the amount of sport on television?

The first stage is to specify suitable hypotheses.

H0: There is no association. H1: There is association.

We begin the analysis of the sample results by arranging them in a contingency table.

Men Women Total

Too much sport 15 35 50

Not enough sport 25 25 50

Total 40 60 100

Continued

Example 9.2

Find the results that we would expect to see in the contingency table in Example 9.1 if

there is no association between gender and attitude to the amount of sport on television.

We can deduce the figures we would expect to see. We know from the totals that the

respondents are split equally between the 50 who think there is too much sport and the 50
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If you look at the table you will see that each group, men and women, has

been divided equally between the opposing viewpoints. These figures are the

expected figures we need to use in calculating the test statistic. Notice that,

although the figures within the table are different, the row and column totals

are unchanged.

If you prefer a more formal way of finding expected frequencies you can

multiply the row total by the column total and divide the product by the

overall total. So to find how many men in Example 9.2 we would expect to say

there is too much sport on television, assuming there is no association, we

would multiply the total number saying there is too much sport on television

by the total number of men and divide the result by 100, the total number of

respondents in the sample. That is:

Expected frequency ¼ row total � column total

Overall total
¼ 50 � 40

100
¼ 20

Once we have the expected frequencies we can compare them to the

observed frequencies, the actual sample results, by putting them together in

a single table.

who think there is not enough. If there is no association between the attitudes that people

have towards the amount of sport on television and gender we would anticipate that both

men and women would be evenly split on the issue. In other words, if gender makes no

difference to whether people think there is too much sport on television we would expect

the same proportion of men as women to say so, and the same proportion of men as

women to say there is not enough.

The contingency table would look like this:

Men Women Total

Too much sport 20 30 50

Not enough sport 20 30 50

Total 40 60 100

Example 9.3

Produce a contingency table that shows the observed frequencies from Example 9.1

alongside the expected frequencies from Example 9.2. Compare the two sets of

frequencies.

In the table below the expected frequencies are shown in parentheses.

Continued
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The conclusions from Example 9.3 suggest that there is some association

in the sample results but is the association strong enough to be significant, in

other words does the evidence point to association in the entire population?

To find out we need to calculate the test statistic, c2.

To do this we subtract each expected frequency from its corresponding

observed frequency and then square the result. We will be adding these

differences between observed and expected frequencies, so we have to square

them otherwise the positive and negative differences will cancel each other

out and the test statistic will be of no use. We then divide each squared

difference by its expected frequency. This is to standardize the test statistic, in

other words to enable us to compare it to the standard c2 distribution. Finally

we add together the standardized squared differences, one for each section or

cell of the contingency table. The total we get is the value of the test statistic,

c2, for the sample results.

The procedure can be represented using the following formula:

c2 ¼
X
ðO� EÞ2=E

Men Women Total

Too much sport 15(20) 35(30) 50

Not enough sport 25(20) 25(30) 50

Total 40 60 100

Fewer men than we would expect if there were no association state that there is too much sport

and more women than we would expect if there were no association state there is too much.

Example 9.4

Find the value of c2 for the sample data in Example 9.1.

We can work from the contingency table produced in Example 9.3.

Men Women

Too much sport 15(20) 35(30)

Not enough sport 25(20) 25(30)

We will start with men who say there is too much sport on television. The observed

frequency, O, is 15 and the expected frequency, E, is 20, so:

ðO � E Þ2=E ¼ ð15� 20Þ2=20 ¼ 25=20 ¼ 1:25

Continued
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Does the test statistic in Example 9.4 suggest that there is association

between gender and attitude to the amount of sport on television among the

whole population? We can only establish this by comparing the test statistic

to a suitable benchmark distribution.

The type of distribution we will use to assess the test statistic is the chi-

square distribution, and the procedure is often referred to as a chi-square test.

This distribution describes the behaviour of the measure of contingency that

we have used, whereas the Standard Normal and t distributions do not. The

shape of the chi-square distribution is shown in Figure 9.1.

Next we will consider the women who say there is too much sport on television.

ðO � E Þ2=E ¼ ð35� 30Þ2=30 ¼ 25=30 ¼ 0:833 to three decimal places

Next the men who say there is not enough sport on television.

ðO � E Þ2=E ¼ ð25� 20Þ2=20 ¼ 1:25

Last the women who say there is not enough sport on television.

ðO � E Þ2=E ¼ ð25� 30Þ2=30 ¼ 0:833 to three decimal places

The test statistic, c2, is the sum of these four results, which is:

c2 ¼ 1:25þ 0:833þ 1:25þ 0:833 ¼ 4:167 to three decimal places

P(
= 

   
)

2

2
2

FIGURE 9.1 The chi-square distribution
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There are in fact many different versions of the chi-square distribution.

The one we use depends on the number of degrees of freedom we have in our

sample results. We can work this out by taking the number of rows in the

contingency table, subtracting one, and then multiplying by the number of

columns in our contingency table minus one. If we use r to represent the

number of rows and c to represent the number of columns:

Degrees of freedom ¼ ðr� 1Þ � ðc� 1Þ

The contingency table in Example 9.4 has two rows and two columns, so

the benchmark chi-square distribution is the one that has one degree of

freedom. This describes the pattern of chi-square values we would get if we

took all the samples we possibly could from a population that had no asso-

ciation between two characteristics, each of which had only two categories,

and calculated a chi-square value from each set of sample results.

We need to use the appropriate chi-square distribution to find how likely

the test statistic is to arise if there is no association between the character-

istics in the population. Using a decision rule that specifies a level of

significance we will then be able to arrive at our conclusion.

Table 5 on page 322 provides information about chi-square distributions,

with up to 10 degrees of freedom. In Table 5 the figure in the first row, the row

for 1 degree of freedom, and the column headed 0.10 is 2.706. This means

that 10% of the distribution is to the right of 2.706. If we wanted to test the

null hypothesis of no association at a 10% level of significance, then the test

statistic from our sample results would need to be larger than 2.706 in order

to reject the null hypothesis.

Table 5 also shows that 5% of the distribution is to the right of 3.841. If the

test statistic is more than this we can reject the null hypothesis at the 5% level

of significance. In order to reject the null hypothesis at the 1% level the test

statistic would have to be larger than 6.635.

Notice that the larger our test statistic is, the stronger the evidence of

association will be. Rejecting the null hypothesis at 1% is far more

conclusive than rejecting it at 10%. This is not surprising because the test

statistic, c2, is based on differences between the actual, or observed,

frequencies and those we would expect if there were no association. If there

were association then we would anticipate large differences between

observed and expected frequencies. If there were no association we would

expect small differences.

The test statistic in Example 9.4 was 4.167, which is large enough (larger

than 3.841) to enable us to reject the null hypothesis at the 5% level of

significance. The sample results suggest that there is association between

gender and their attitude to the amount of sport on television.
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The set of data we have used to illustrate chi-square tests for association is

quite a simple one. In practice we are likely to have more rows and/or columns.

Even in the example, we might have had another category of response, perhaps

the view that the amount of sport on television is just right, to cope with.

Although the table is more elaborate the procedure you have to follow is

essentially the same. However, there are some important points to remember.

The first is that more rows and columns mean more degrees of freedom,

so you must use the correct version of the c2 distribution. The second

concerns the amount of data. Like other types of statistical testing, all other

things being equal, the more data we have the firmer our conclusions will be.

We should have enough data to ensure that none of the expected frequencies

is less than 5; otherwise our results may not be dependable. If any expected

frequencies are less than 1, the results of the test will be useless.

If one or more expected frequencies are too low there are two possible

solutions. The first is to obtain more data. The second is to merge categories

so that there are fewer rows and columns. If you are managing the data

collection process yourself you can avoid the problem by planning the

research carefully, an issue we will consider in Chapter 10.

Example 9.5

In a survey a random sample of 135 motorists were each asked about themselves and the

cars they drove. Some of the results are summarized in the contingency table below.

Car Type Performance Sports Superminis Family Car Total

Drivers 40 or over 4 26 12 28 70

Drivers under 40 3 24 18 20 65

Total 7 50 30 48 135

Use these sample results to test for association between age category and type of car

using a 5% level of significance.

H0: There is no association. H1: There is association.

To test the null hypothesis we need to find the expected frequencies for each cell, but

when we calculate the expected frequencies for the number of drivers who drive

a performance car we find that for both categories of staff these figures are less than 5.

Expected number of drivers 40 or over in Performance cars

¼ ð70 � 7Þ=135 ¼ 3:63 to two decimal places

Expected number of drivers under 40 in Performance cars

¼ ð65 � 7Þ=135 ¼ 3:37 to two decimal places

Continued
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These low expected frequencies would weaken the test. We can overcome this by merging

the performance and sports categories.

Performance/Sports Superminis Family Car Total

Drivers 40 or over 30 12 28 70

Drivers under 40 27 18 20 65

Total 57 30 48 135

The expected values are now (to two decimal places):

Expected number of drivers 40 or over in Performance=Sports cars

¼ ð70 � 57Þ=135 ¼ 29:56

Expected number of drivers under 40 in Performance=Sports cars

¼ ð65 � 57Þ=135 ¼ 27:44

Expected number of drivers 40 or over in superminis ¼ ð70 � 30Þ=135 ¼ 15:56

Expected number of drivers under 40 in superminis ¼ ð65 � 30Þ=135 ¼ 14:44

Expected number of drivers 40 or over in family cars ¼ ð70 � 48Þ=135 ¼ 24:88

Expected number of drivers under 40 in family cars ¼ ð65 � 48Þ=135 ¼ 23:12

These can now be included in the contingency table.

Performance/Sports Superminis Family Cars Total

Drivers 40 or over 30 (29.56) 12 (15.56) 28 (24.89) 70

Drivers under 40 27 (27.44) 18 (14.44) 20 (23.11) 65

Total 57 30 48 135

The test statistic:

c2 ¼ ½ð30� 29:56Þ2=29:56� þ ½ð12� 15:56Þ2=15:56� þ ½ð28� 24:89Þ2=24:89�
þ ½ð27� 27:44Þ2=27:44� þ ½ð18� 14:44Þ2=14:44� þ ½ð20� 23:11Þ2=23:11�

¼ 0:007þ 0:814þ 0:389þ 0:007þ 0:878þ 0:419 ¼ 2:514

The degrees of freedom ¼ ðrows� 1Þ � ðcolumns� 1Þ
¼ ð2� 1Þ � ð3� 1Þ ¼ 2

According to Table 5, the value of c2 that cuts off a 5% area in the right-hand side of the c2

distribution that has two degrees of freedom is 5.991. This is the critical value of c2. Since

the test statistic, 2.514, is less than the critical value we cannot reject the null hypothesis.

The evidence suggests that there is no significant association between driver age category

and type of vehicle driven. However, it is worth noting that the largest two of the six

components of the test statistic, 0.814 and 0.878, both relate to superminis. Fewer drivers

40 or over and more drivers under 40 drive this type of car than we would expect.
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Enter the observed and expected 

values from Example 9.3 in the 

spreadsheet. 

Excel Recipe Card – 

Contingency tests 

Make sure the cursor is in an empty 

cell and type =CHITEST( in the 

Formula bar. As you do so the 

prompt=CHITEST(actual_range, 

expected range) appears under 

the Formula bar.  

Make the cell locations of the 

observed values (the upper four 

cells) the actual range and the cell 

locations of the expected values 

(the lower four cells) the expected 

range then close the bracket. 

Press Enter to produce the 

probability that the test statistic, or 

a larger one, occurs if the null  

hypothesis is true, 0.041227. Since 

this is less than 0.05 we reject the 

null hypothesis of no association at 

the 5% level. There does seem to be 

some association between gender 

and preference. 
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9.3 TESTING AND ESTIMATING WITH QUANTITATIVE

BIVARIATE DATA

The analysis of quantitative bivariate that we looked at in Chapter 4 con-

sisted of two related techniques, correlation and regression. Correlation

analysis, which is about the calculation and evaluation of the correlation

coefficient, enables us to tell whether there is a connection between the

observed values of two variables. Regression analysis, which is about fitting

lines of best fit, enables us to find the equation of the line that is most

appropriate for the data, the regression model.

In this section we will consider how the results from applying correlation

and regression to sample data can be used to test hypotheses and make

estimates for the population to which the sample data belong.

9.3.1 Testing correlation coefficients

The Pearson sample correlation coefficient, represented by the letter r,

measures the extent of the linear association between sample values of two

variables, X and Y. You can find the correlation coefficient of a set of bivariate

data using computer software, or the formula:

r ¼ CovXY

ðsX � sY Þ
where

CovXY ¼
P
ðx� xÞðy � yÞ
ðn� 1Þ

and sX and sY are the standard deviations of the x and y values

respectively.

If we select a random sample from populations of X and Y that are both

normally distributed, the correlation coefficient calculated from the sample

data will be a legitimate estimate of the population correlation coefficient,

represented by the Greek r, the letter rho, r. In fact the main reason for

calculating the sample correlation coefficient is to find out if there is any

evidence of linear association between the X and Y populations.

The value of the sample correlation coefficient alone is some help

inassessingcorrelationbetween the populations,but a more thoroughapproach

is to test the null hypothesis that the population correlation coefficient is zero,

H0:r ¼ 0

The alternative hypothesis we use depends on what we would like to

prove. If we are interested in demonstrating that there is significant corre-

lation in the population, then we should use:

H1:rs0
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If we want to show that there is significant positive correlation in the

population then:

H1:r > 0

If we want to show that there is significant negative correlation in the

population then:

H1: r < 0

If we adopt the first of these versions of the alternative hypothesis, H1:

r s 0, we need to use a two-tail test, if we use one of the other forms we need

to conduct a one-tail test. In practice it is more usual to test for either positive

or negative correlation rather than for both.

Once we have established the nature of our alternative hypothesis we

need to calculate the test statistic from our sample data.

The test statistic : t ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffi
n� 2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

where r is the sample correlation coefficient and n is the number of pairs of

observations in the sample.

As long as the populations of X and Y are normal the test statistic

will belong to a t distribution with n�2 degrees of freedom and a mean

of zero, if there is no linear association between the populations of X

and Y.

Example 9.6

A shopkeeper believes that the temperature outside and the number of cans of soft drinks

sold are connected. She noted the maximum daytime temperature (in degree Celsius) and

the soft drinks sales on 10 working days chosen at random.

Temperature Sales

14 19

11 29

17 47

8 12

20 45

13 41

24 67

3 10

16 28

5 21

CHAPTER 9 : Statistical Decision Making with Bivariate Data274



9.3.2 Testing regression models

The second technique used to analyse quantitative bivariate data is simple

linear regression analysis, the method we used in Chapter 4 to find the

equation of the line of best fit between two variables, X and Y. Such a line has

two distinguishing features, its intercept and its slope. In the standard

formula we used for the line the intercept was represented by the letter a and

the slope by the letter b:

Y ¼ aþ bX

The line that this equation describes is the best way of representing the

connection between the dependent variable, Y, and the independent variable,

X. In practice it is almost always the result of a sample investigation that is

intended to shed light on the connection between the populations of X and

Y. That is why we have used ordinary rather than Greek letters in the

equation.

The results of such a sample investigation can provide an understanding

of the relationship between the populations. The intercept and slope of the

line of best fit for the sample are point or single-figure estimates for the

intercept and slope of the line of best fit for the populations, which are rep-

resented by the Greek equivalents of a and b, a and b:

The correlation coefficient for this sample is 0.871 to three decimal places. Test the

hypothesis that there is no correlation between temperature and sales against the alter-

native that there is positive correlation. Use a 5% level of significance.

The test statistic,

t ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffi
n � 2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p ¼ 0:871 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:8712
p ¼ 0:871 �

ffiffiffi
8
p

ffiffiffiffiffiffiffiffiffiffi
0:24
p ¼ 0:871 � 2:83

0:49
¼ 5:02

We need to compare this test statistic to the t distribution that has n�2, which in this

case is 8, degrees of freedom. According to Table 4 on page XXX, the value of t with

8 degrees of freedom that cuts off the 5% tail on the right-hand side of the distri-

bution, t0.05,8, is 1.860. Since the test statistic is clearly larger than 1.860 we can

reject the null hypothesis at the 5% level of significance. The sample evidence

strongly suggests that there is positive correlation between temperature and sales in

the population.

Y ¼ aþ bX
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The intercept and slope from the analysis of the sample can be used

to test hypotheses about the equivalent figures for the populations.

Typically we use null hypotheses that suggest that the population values

are zero:

H0 : a ¼ 0 for the intercept

and

H0 : b ¼ 0 for the slope:

If the population intercept is zero, the population line of best fit will be

represented by the equation Y¼ 0þ bX, and the line will begin at the origin of

the graph, that is where both X and Yare zero. You can see this type of line in

Figure 9.2.

If we wanted to see whether the population intercept is likely to be zero,

we would test the null hypothesis H0: a¼ 0 against the alternative

hypothesis:

H1 : a s 0

When you use regression analysis you will find that investigating the

value of the intercept is rarely important. Occasionally it is of interest,

for instance, if we are looking at the connection between an organ-

ization’s levels of operational activity and its total costs at different

periods of time the intercept of the line of best fit reflects the organ-

ization’s fixed costs.

Typically we are much more interested in evaluating the slope of the line

of best fit. The slope is pivotal; it tells us how the dependent variable

responds to changes in the independent variable. For this reason you will

Y

0
0 X

FIGURE 9.2 Line with zero intercept, Y¼ 0þ bX
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find that the slope is also known as the coefficient of the independent

variable.

If the population slope turns out to be zero, it would tell us that the

dependent variable does not respond to the independent variable. The

implication of this is that our independent variable is of no use in explaining

how our dependent variable behaves and there would be no point in using it

to make predictions of our dependent variable.

If the slope of the line of best fit is zero, the equation of the line would be

Y¼ aþ 0X, and the line would be perfectly horizontal. You can see this

illustrated in Figure 9.3.

The line in Figure 9.3 shows that whatever the value of X, whether it

is a small one to the left of the horizontal axis or a large one to the right

of the horizontal axis, the value of Y remains the same. The size of the x

value has no impact whatsoever on Y, and the regression model is

useless.

We usually want to use regression analysis to find useful rather than

useless models; regression models that help us to understand and anticipate

the behaviour of dependent variables. So in order to demonstrate that

a model is valid, it is important that we test the null hypothesis that the slope

is zero. Hopefully the sample evidence will enable us to reject the null

hypothesis in favour of the alternative, that the slope is not zero, and we can

proceed to use our model.

The test statistic we shall use to test the hypothesis is:

t ¼ b� 0

Sb

Y

0
0 X

FIGURE 9.3 Line with zero slope, Y¼ aþ 0X
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where b is the sample slope, 0 is the population slope suggested by the null

hypothesis, and sb is the estimated standard error of the sampling distri-

bution of the sample slopes.

To calculate the estimated standard error, sb, divide s2, the variance of the

sample residuals, the parts of the y values that the line of best fit does not

explain, by the sum of the squared deviations between the x values and their

mean, x. Then take the square root. That is:

sb ¼
ffiffiffiffiffi
s2
p

Sðx� xÞ2

Once we have the test statistic we can assess it by comparing it to the t

distribution with n�2 degrees of freedom, two fewer than the number of pairs

of x and y values in our sample data.

Example 9.7

The equation of the line of best fit for the sample data in Example 9.6 is:

Sales ¼ 0:74þ 2:38 Temperature

Test the hypothesis that the population slope is zero using a 5% level of significance.

H0 : b ¼ 0 H1 : b s 0

To find the test statistic we first need to calculate the standard deviation of the residuals.

We can identify the residuals by taking each x value, putting it into the equation of the line

of best fit and then working out what value of Y should, according to the model be

associated with it. The difference between the y value that the equation says should be

associated with the x value and the y value that is actually associated with the x value is the

residual.

To illustrate this, we will look at the first pair of values in our sample data, a day when the

temperature was 14 �C and 19 cans of soft drink were sold. If we insert the temperature

into the equation of the line of best fit we can use the equation to estimate the number of

cans that ‘should’ have been sold on that day:

Sales ¼ 0:74þ ð2:38 � 14Þ ¼ 34:06

The residual is the difference between the actual sales level, 19, and this estimate, that is:

Residual ¼ 19� 34:06 ¼ �15:06

The standard deviation of the residuals is based on the squared residuals. The residuals

and their squares are given in the table below.

Continued
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Temperature Sales Residuals Squared Residuals

14 19 �15.06 226.80

11 29 2.10 4.39

17 47 5.82 33.91

8 12 �7.77 60.35

20 45 �3.31 10.98

13 41 9.34 87.20

24 67 9.17 84.12

3 10 2.13 4.52

16 28 �10.80 116.61

5 21 8.37 70.02

698.90

We find the standard deviation of the residuals by taking the square root of the sum of the

squared residuals divided by n, the number of residuals, minus two (We have to subtract

two because we have ‘lost’ two degrees of freedom in using the intercept and slope to

calculate the residuals).

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
698:90=n � 2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
698:90=8

p
¼ 9:347 to three decimal places

To get the estimated standard error we divide the square of this by the sum of squared

differences between the temperature figures and their mean then take the square root.

Temperature (x) x x� x ðx� xÞ2

14 13.1 0.9 0.81

11 13.1 �2.1 4.41

17 13.1 3.9 15.21

8 13.1 �5.1 26.01

20 13.1 6.9 47.61

13 13.1 �0.1 0.01

24 13.1 10.9 118.81

3 13.1 �10.1 102.01

16 13.1 2.9 8.41

5 13.1 �8.1 65.61

388.90

The estimated standard error is:

sb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2=Sðx � xÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:3472=388:90

q
¼ 0:4738

and the test statistic t¼ (b�0)/sb¼ 2.38/0.4738¼ 5.02 to two decimal places

Continued
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The implication of the result in Example 9.7 is that the model, repre-

sented by the equation is sufficiently sound to enable the temperature vari-

able to be used to predict sales.

If you compare the test statistic for the sample slope in Example 9.7 with

the test statistic for the sample correlation coefficient in Example 9.6, you

will see that they are both 5.02. This is no coincidence; the two tests are

equivalent. The slope represents the form of the association between the

variables, whereas the correlation coefficient measures its strength. We use

the same data in the same sort of way to test the rigour of each of them.

The calculations we had to employ in Example 9.7 are quite laborious, but

they should enable you to see how the data are used to produce the conclu-

sion. However, you should seldom, if ever, have to work through this sort of

calculation yourself. Regression analysis is a statistical technique that is very

widely used which means that just about every spreadsheet and statistical

package will be able to do this sort of work for you.

From Table 4 on pages 320–321 the t value with 8 degrees of freedom that cuts off a tail

area of 21
2%, t8,0.025 is 2.306. If the null hypothesis is true and the population slope is

zero only 21
2% of test statistics will be more than 2.306 and only 21

2% will be less than

�2.306. The level of significance is 5% so our decision rule is therefore to reject the null

hypothesis if the test statistic is outside �2.306. Since the test statistic in this case is

5.02 we should reject H0 and conclude that the evidence suggests that the population

slope is not zero.

Enter the data from Example 9.6 

into two worksheet columns. 

Excel Recipe Card – Hypothesis 

tests for regression model 

coefficients  
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Select Data Analysis from the 

Tools menu. 

Choose Regression from the 

submenu and click OK. 

Provide the cell locations of the

Sales values as the Input Y

Range: and the cell locations of

the Temperatures as the Input X

Range: then click OK.
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9.3.3 Constructing interval predictions

When we use a regression model to make a prediction, as we had to do in

Example 9.7 to obtain the residuals we have a single figure that is the value of

Y that the model suggests should be associated with the value of X that we

specify.

The problem with all single-figure predictions is that we simply have no

idea of how likely they are to be accurate. It is far better to have an interval

that we know, with a certain amount of confidence, will be accurate.

In the lowest section of the output

the figures in the Coefficients

column are the intercept and slope

of the regression line.

The Standard Error column

contains the estimated standard

errors of the sample intercept

(the upper figure) and the sample

slope (the lower figure).

The t Stat column contains the

test statistics based on the sample

intercept and the sample slope. 

The figures in the P-value column

allow us to assess the hypotheses

that the population intercept and

slope are zero. The upper one is the

probability that we obtain a sample

intercept of 0.738236 or more if the

population intercept is zero. This is

0.917115, indicating a strong

possibility that the population

intercept is zero.

The lower P-value, 0.001026, is the

probability that the sample slope is

2.378761 or more if the population

slope is zero. Since this is below the

level of significance, 5% or 0.05, reject

the null hypothesis of a zero slope.

Example 9.8

Use the regression model in Example 9.7 to predict the level of sales that will be achieved

on a day when the temperature is 22 �C.

If temperature¼ 22, according to the regression equation:

Sales ¼ 0:74þ 2:38ð22Þ ¼ 53:1:

Since the number of cans sold is a discrete variable, in practice we would round this to

53 cans.
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Before we look at how we can produce such intervals, we need to clarify

exactly what we want to find. The figure we produced in Example 9.8 we

described as a prediction of sales on a day when the temperature is 22 �C. In

fact it can also be used as an estimate of the mean level of sales that occur on

days when the temperature is 22 �C. Because it is a single figure it is a point

estimate of the sales levels on such days.

We can construct an interval estimate or confidence interval of the mean

level of sales on days when the temperature is at a particular level by taking

the point estimate and adding and subtracting an error. The error is the

product of the standard error of the sampling distribution of the point esti-

mates and a figure from the appropriate t distribution. The t distribution we

use should have n�2 degrees of freedom, n being the number of pairs of data

in our sample, and the t value we select from it is based on the level of

confidence we want to have that our interval will be accurate.

We can express this procedure using the formula:

Confidence interval ¼ by � ta=2;n�2 � s �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ ðx0 � xÞ2
P
ðx� xÞ2

s

where by is the point estimate of the mean of the y values associated with

x0 and s is the standard deviation of the sample residuals.

Example 9.9

Construct a 95% confidence interval for the mean sales of soft drinks that the shopkeeper

in Example 9.6 can expect on days when the temperature is 22 �C.

From Example 9.8 we know that the point estimate for the mean by is 53.1 cans. We will

use the original, unrounded figure because the mean, unlike sales on a particular day

does not have to be discrete. We also know from Example 9.8 that the standard deviation

of the sample residuals, s is 9.347, x is 13.1 and Sðx � xÞ2 is 388.90.

The t value we need is 2.306, the value that cuts off a tail of 21
2% in the t distribution that

has 10�2, 8, degrees of freedom. The value of x0, the temperature on the days whose

mean sales figure we want to estimate, is 22.

Confidence interval ¼ by � ta=2;n�2 � s �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ ðx0 � xÞ2
P
ðx � xÞ2

vuut

¼ 53:1� 2:306 � 9:347

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1=10þ ð22� 13:1Þ2=338:90�

q

¼ 53:1� 2:306 � 9:347
ffiffiffiffiffiffiffiffiffiffiffiffi
0:304
p

¼ 53:1� 2:306 � 5:15

¼ 53:1� 11:87 ¼ 41:23 to 64:97 to two decimal places
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The confidence interval we produced in Example 9.9 is a reliable guide to

what the mean sales are on days when the temperature is 22 �C. This is

because, although this level of temperature is not among the temperature

values in our sample data, it is within the range of the temperatures in our

sample data, which is from a minimum of 3 �C to a maximum of 24 �C.

If we produce a confidence interval for the mean of the y values associated

with an x value outside the range of x values in the sample it will be both wide

and unreliable.

The confidence interval we produced in Example 9.10 is of no real use to

us because the temperature on which it is based, 35 �C, is beyond the range of

temperatures in our sample. Confidence intervals produced from regression

lines will be wider when they are based on x values further away from the

mean of the x values. You can see this in Figure 9.4.

If we want to produce a prediction of an individual value rather than an

estimate of a mean of a set of values, with a given level of confidence, we can

do so by producing what is called a prediction interval. This is to distinguish

this type of forecast from a confidence interval, which is a term reserved for

estimates of population measures.

The procedure we use to produce prediction intervals is very similar to the

one we have used to produce confidence intervals for means of values of

dependent variables. It is represented by the formula:

Prediction interval ¼ by � ta=2;n�2 � s �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1

n
þ ðx0 � xÞ2
P
ðx� xÞ2

s

If you look carefully you can see that the difference between this and the

formula for a confidence interval is that we have added one to the expression

under the square root sign. The effect of this will be to widen the interval

Example 9.10

Construct a 95% confidence interval for the mean sales of cans of soft drinks in Example

9.6 on days when the temperature is 35 �C.

The point estimate for the mean; by ¼ 0:74þ 2:38 ð35Þ ¼ 84:04

Confidence interval ¼ by � ta=2;n�2 � s �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ ðx0 � xÞ2
P
ðx � xÞ2

vuut

¼ 84:04� 2:306 � 9:347

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1=10þ ð35� 13:1Þ2=338:90�

q

¼ 84:04� 2:306 � 9:347
ffiffiffiffiffiffiffiffiffiffi
1:33
p

¼ 84:04� 2:306 � 10:79

¼ 84:04� 24:88 ¼ 59:16 to 108:92 to two decimal places

CHAPTER 9 : Statistical Decision Making with Bivariate Data284



considerably. This is to reflect the fact that individual values vary more than

statistical measures like means, which are based on sets of values.

If you compare the prediction interval in Example 9.11 to the confidence

interval in Example 9.9 you will see that the prediction interval is much

wider, although the level of confidence involved, 95%, is the same.

Just like confidence intervals produced using regression models, prediction

intervals aremore dependable if they are based on x values nearer the mean of the

x values. Prediction intervals based on x values that are well outside the range

that we have in our sample are of no use.
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FIGURE 9.4 Ninety-five percent confidence intervals for the data in Example 9.6

Example 9.11

Construct a 95% prediction interval for the sales of cans of soft drinks in Example 9.6 on

a day when the temperature is 22 �C.

Prediction interval ¼ by � ta=2;n�2 � s �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1

n
þ ðx0 � xÞ2
P
ðx � xÞ2

vuut

¼ 53:1� 2:306 � 9:347

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 1

10
þ ð22� 13:1Þ2=338:90

�s

¼ 53:1� 2:306 � 9:347
ffiffiffiffiffiffiffiffiffiffiffiffi
1:304
p

¼ 53:1� 2:306 � 10:67

¼ 53:1� 24:60 ¼ 28:50 to 77:70 to two decimal places
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The usefulness of the estimates that you produce from a regression model

depends to a large extent on the size of the sample that you have. The larger the

sample onwhich your regression model is based, themore precise and confident

your predictions and estimates will be.

As we have seen, the width of the intervals increases the further the x value

is away from the mean of the x values, and estimates and predictions based on

x values outside the range of x values in our sample are useless. So, if you want

to construct intervals based on specific values of x, try to ensure that these

values are within the range of x values in your sample.

9.3.4 When simple linear models won’t do the job

So far we have concentrated on the simple linear regression model. Although

it is used extensively and is the appropriate model in very many cases, some

sets of bivariate data show patterns that cannot be represented adequately by

a simple linear model. If you use such data to test hypotheses about the

slopes of linear models you will probably find that the slopes are not signif-

icant. This may be because the relationship between the variables is non-

linear and therefore the best-fit model will be some form of curve.

Example 9.12

A retail analyst wants to investigate the efficiency of the operations of a large supermarket

chain. She has taken a random sample of 22 of their stores and produced the following

plot of the weekly sales per square foot of selling area (in pounds) against the sales area of

the store (in 000s ft2).
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FIGURE 9.5 Sales per square foot and sales area
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It is clear from Figure 9.5 that the relationship between the two variables

does not appear to take the form of a straight line. In these circumstances to

fit a line you would have to look to the methods of non-linear regression. The

sheer variety of non-linear models means that it is not possible to discuss

them here. For a thorough discussion of them try Bates and Watts (2007) or

Seber and Wild (2003). Non-linear models themselves can look daunting but

in essence using them typically involves transforming the data so that the

simple linear regression technique can be applied; in effect you ‘straighten’

the data to use the straight-line model.

The simple linear regression model you produce for a set of data may not

be effective because the true relationship is non-linear. But it might be that

the two variables that you are trying to relate are not the whole story; perhaps

there are other factors that should be taken into account. One way of looking

into this is to use the residual plots.

There is no apparent systematic pattern to the scatter in Figure 9.6 so we

would conclude that there is no case for looking for another variable to

include in the model; the simple linear model appears to be suitable.

Example 9.13

Produce a plot of the residuals against fits for the best-fit simple linear regression model

for the temperature and sales data in Example 9.6.

FIGURE 9.6 A residual plot for the model in Example 9.6
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Enter the data from Example 9.6 into 

two worksheet columns. 

Excel Recipe Card – Residual  

plots 

Select Data Analysis from the 

Tools menu.  

Choose Regression from the 

submenu and click OK. 
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Make the Sales values the Input Y 

Range and the Temperatures the 

Input X Range. Tick Residual Plots 

and click OK. 

The graph that appears in the output 

is the plot of the residuals against the 

x values. Examine it for patterns of 

variation that indicate the influence 

of factors not included in the model. 

The residuals themselves are in the 

right hand side column under 

RESIDUAL OUTPUT. 

Example 9.14

Produce a plot of the residuals against fits for the best-fit simple linear regression model

for the supermarket data in Example 9.12.

FIGURE 9.7 A residual plot for the model in Example 9.12

Testing and Estimating with Quantitative Bivariate Data 289



In Figure 9.7 there is clearly a pattern of variation in the residuals. It

appears that the stores with smaller sales areas and the stores with larger

sales areas seem to have higher sales rates than medium-sized stores. If this

company has modern smaller stores in prime city-centre locations that

perform well and modern large stores on new retail parks that also perform

well, yet also had stores that were constructed in the 1970s in locations

where the income of the local population has fallen, then it is clear that other

factors such as the age of the store should be included. We should consider

regressing the sales variable not just against one variable, the sales area, but

another variable as well. The appropriate technique for this is multiple

regression, a technique that is outside the scope of this book, but covered in

Dielman (2000) and Draper and Smith (1998).

Test yourself questions based on Warwick’s business enterprises

Fully worked solutions to these questions are on pages 338–342. You can find more

questions on the topics covered in this chapter at the accompanying website www.

elsevierdirect.com/9781856179478.

9.1 (Easy)

A random sample of male beer drinkers in Warwick’s pub were each asked if they

preferred bottled or draught beer. They were also asked to indicate their age. The

results were collated and the following table produced:

Age Prefer Bottled Beer Prefer Draught Beer

Under 30 11 4

30–45 24 10

Over 45 15 16

Test the hypothesis that there is no association between preference and age:

(a) At the 5% level of significance.

(b) At the 1% level of significance.

9.2 (Moderate)

Warwick is interested in the factors that are associated with how often couples take

evening meals in restaurants. He has found a selection of small-scale studies

published in academic journals, each of which provides a correlation coefficient (r)

for the correlation between the frequency of eating out and an explanatory variable.

The results from these studies are given below. All samples can be assumed to be

random.

Continued
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Explanatory

variable r

Sample

size (n)

Study 1 Ease of access to favourite restaurants 0.314 26

Study 2 Family size �0.692 21

Study 3 Household income 0.480 31

Study 4 Mean age of the couple 0.755 16

Study 5 Variability of household income �0.173 52

In each case conduct an appropriate one-sided hypothesis test about the population

correlation coefficient, r, using a 5% level of significance. Comment on the results.

9.3 (Hard)

A DJ stages ‘disco classics’ on an occasional basis at Warwick’s club. Teams of

casual employees hand out ‘discount’ ticket cards at colleges and music venues to

advertise these events. The number of cards handed out before each of the 10

events staged so far, and the audience they attracted are given below.

Number of cards 3750 4100 4500 4750 4800 5250 4600 4800 4320

Audience 925 1000 1150 1200 1100 1680 1480 1370 860

(a) Find the least squares regression equation and test the hypothesis, at the 5%

level of significance, that the population slope is zero.

(b) Construct a 95% confidence interval for the mean number of people attracted

to an event when 4400 cards have been distributed.

(c) Construct a 95% prediction interval for the mean number of people attracted to

an event when 4400 cards have been distributed and compare this to your

answer for (b).
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CHAPTER 10

Managing Statistical
Research

Why do I need to know about this? Warwick the Hospitality
entrepreneur says .

‘In my academic work I spend a lot of time supervising and marking
student projects. Often the very best projects are those that are built
on statistical research, but it has to be done properly so if you want to
base your project on statistical research take note of the advice here.’

Chapter Objectives

This chapter will help you to:

- plan statistical work for a project;

- consider different means of obtaining data;

- undertake sample surveys; and

- present your results effectively.

CONTENTS

Introduction

Secondary Data

Primary Data

Presenting Your
Analysis
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10.1 INTRODUCTION

When you reach the final stage of your course, or possibly earlier, you will

probably be told that one of the course requirements is that you produce

a final-year project or dissertation. This typically means that you have to

identify a project idea, write a project proposal, undertake research to

investigate your project idea and then produce a substantial written docu-

ment that delivers your findings.

You may see this as a daunting task, particularly when you are trying to

think of ideas for a project, but if you approach it positively and manage the

task well you can get a great deal out of it. A good final-year project could

improve the grade of the qualification that you receive. It could also be

a useful document to show potential employers as an example of your work.

Your project is probably the first, if not the only time during you course

when your tutors offer you the opportunity to study what you like. The parts

of your course that you have done so far have probably consisted of studying

things that somebody else has decided you should do. Your project is

different; it is ‘your baby’.

It is very hard to produce a good project if you are not committed to it, so it

is worth putting time and effort into thinking up three or four possible ideas

at a very early stage. But how can you generate project ideas? It may help if

you ask yourself a series of questions:

1. About your course: Which parts of it have you enjoyed most? What

are your academic strengths?

2. What are your interests outside your current studies arising perhaps

from previous study, hobbies or past work experience?

3. What resources can you access? These might be personal, your own

contacts or those you can access through family or friends, or

inanimate such as access to databases.

Make a list of your responses to these questions. Look at them in relation

to each other; perhaps there are some interesting combinations? Figure 10.1

presents a model of how the ideas you explore might be mapped out. The

ideal project for you may well be one that lies in the three-way overlap

between the circles representing course, interests and resources.

You may have enjoyed Marketing as a subject, you may have worked in

a catering facility at a football ground on a part-time basis, and you may have

a strong interest in football. If all this is true then perhaps a project that looks

into how football clubs market food and beverages at their grounds is

a possibility?
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If you have thought about your responses and no project ideas come to

mind, try talking through your responses with somebody else, perhaps

a friend or a tutor. It doesn’t matter too much if that person is not involved

with your course, simply explaining your thinking to somebody else may

prompt some excellent project ideas.

Once you have established at least one viable project idea you will probably

have to shape your outline ideas into a formal proposal and carry out some sort

of literature survey. A good proposal will identify specific propositions and

hypotheses that your project is intended to investigate. A good literature survey

will find what published material is available in your college library or elec-

tronically on the subject you have chosen. This is important because it will

influence the nature and direction of the research you will undertake.

At this stage you need to consider the data that you will need for your

investigation. Perhaps the data are available from published or electronic

sources, if not, you will have to consider how you can obtain it yourself. In

fact you will probably find that some of the data you need are already avail-

able but other data will need to be collected.

Data that are already available, perhaps in a publication on the Internet or in

a library, are there because somebody else collected and analysed it. As far as you

are concerned it is secondary data, in other words ‘second-hand’. Whoever has

produced it did so to fulfil their requirements rather than yours, so be careful.

As we shall see later on in this chapter when you collect data yourself, that

is, when you gather primary or first-hand data, you will have to decide what

to ask, who to ask, and so on. These are issues that require careful thought.

Course

ResourcesInterests

FIGURE 10.1 A project selection model
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Whether the data you analyse in your work are primary or secondary, you

will have to consider how to present the analysis in your final document.

This is something we will consider in the last section of the chapter.

10.2 SECONDARY DATA

If you use secondary data it is the person or agency that collected the data that

has decided how the data were collected. You have had no say in the matter.

You also have had no say in the way in which the data are presented to you. It

may be that the secondary data that you have found are exactly what you

require for your investigation, and it could be already presented in a form that

will suit your purposes. But you need to look into both of these issues carefully.

There are a number of questions you should consider about the collection

of secondary data. First, exactly when was it collected? Published results are

by definition historic, they relate to the past. This is inevitable because

publication takes time. The data may be fairly recent if it is on a website or in

a journal, but may be much older if it is in a book.

If you are researching a field that has changed relatively little since the

publication of the secondary data that you have found then data published

some time ago may still be useful.

However, if your field of research is rapidly changing then old secondary

data are likely to be of limited value to you. If you decide to use it you will

have to caution your readers about its validity as a reflection of the current

situation and explain how what has happened since the data were collected

might have reduced its usefulness.

If you want to use the data as the basis of a comparison between then and

now, the age of the data is what makes it useful. You will of course need to

make sure that if you collect data as part of your investigation of the current

situation, you generate data that can be compared to the secondary data. This

means you will have to ask or measure the same sort of things about the same

sort of sample.

A second issue that you need to look at is how the secondary data were

collected. Unless the results are about a small population, it is sample data. So,

how large was the sample? How were the people or items in the sample selected?

Was it a random or at least representative sample of the population it came from?

If the population consisted of things, how were the items in the sample

measured or counted? If the population consisted of people, how were they

asked for the data they provided?

You will probably have to study the source in which you found the

secondary data very carefully to find the answers to these questions. Look for
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a section called ‘Methodology’, which should explain the methods used to

gather the data. Look through any footnotes or notes at the end of the source

for information about how the data were collected, any difficulties the

researchers had, and any warnings they give about the validity of their results.

You may be fortunate in finding secondary data that are sufficiently up to

date and collected properly. If this is the case the next thing you have to think

about is the way in which the secondary data is presented in the secondary

source.

The author or authors who prepared the secondary source may have

included their original data in their publication, perhaps in an appendix, so

check the source carefully. If the original data are included you will be able to

consider various ways in which you can present their data in your report. You

can decide which form of presentation will be most appropriate for your

discussion of the data.

However, it is more likely that the researchers who collected the original

data have not included it in their published results. This is almost inevitable

if the study they undertook was a large one. The data will probably be pre-

sented in the form of statistical measures and diagrams. You may find that

although the forms of presentation that have been used in the secondary

source may not be the ones that you would have chosen, they are ones that

will be appropriate for your discussion.

If the form of presentation used in the published source will not be

appropriate for your report consider alternative ways of presenting the data

that can be based on the form in which it is published. If the secondary source

contains a grouped frequency distribution, you can produce a histogram or an

approximation of the mean from it. If they have used a contingency table, you

can produce a bar chart, and so on.

But you may not be able to present the data in the form you would like

using the forms that appear in the secondary source. This may be a problem

if you are trying to compare two or more studies from different points in time

or locations.

If you really would like to present the data in forms that cannot be based

on the data as it is published, then it might be worth contacting the authors

of the study directly to ask whether you can get access to the original data. If

this seems rude remember that the secondary source you have found has

been produced by people who have probably spent considerable time and

effort in carrying out their research and are quite justifiably proud of it. They

would probably welcome any inquiry about their work, particularly from

somebody like you who is undertaking their own research and may well

introduce their work to a new audience. Authors of published articles often

provide details of the place they work or an e-mail address so that interested
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readers can contact them. At the very worst they can only turn down your

request or ignore it.

It is also worth contacting authors of secondary sources if you have any

questions about their research, or if they know of any follow-up work that has

been done on it. However, you must give them time to respond to your

request. Perhaps they have changed jobs, or are simply too busy to reply

to you right away. Try to contact them at least a month or two before the-

latest time you would need to have their response in order to make use of it.

When you prepare your project report for submission you must make sure

that you acknowledge the sources of all secondary data that you use, even if the

form in which it is presented in your report is your own work. There is nothing

at all wrong with quoting data or text from other publications in your report as

long as you cite the reference, in other words indicate clearly using a recognized

style such as the Harvard system where it came from.

10.3 PRIMARY DATA

Often the main difficulty in using secondary data for a project is that it may

not fit your requirements. It may not be the data that you would like to have

to support the arguments and discussion that you want to develop in your

work. You can get around this by collecting primary data. The advantage of

doing this is that the data will be up to date and it should be exactly what you

want for your project. The disadvantage is that collecting primary data

requires careful thought, detailed planning and plenty of time.

You will have to decide if you are going to collect primary data as early as

possible. You should try to identify your data requirements at the same stage

as you produce your literature survey. Successful primary data collection is

very difficult to do successfully in a short period of time.

After you have identified your data requirements you will need to address

two questions: first, from whom can you get the data and second, how will

you be able to get it?

If you require data that you yourself can collect by undertaking experiments

in a particular place such as a laboratory, or by making direct observations then

the first of these questions is answered. You will next need to consider the

second question. This means you will have to identify the method of investi-

gation or the means of observation, define the population, decide how large the

sample you will study needs to be and how you will select it.

However, much research in the business sphere involves getting data

from individuals or organizations. If this is true in your case then define the

types of people or organizations carefully. If the number of people or
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organizations that fit your definition is quite small then you might carry out

a survey of the whole population. This situation is rare, so you will probably

have to take a sample from the population.

10.3.1 Selecting Your Sample

The approach you take to select a sample depends on whether you can list all

the things, people or organizations that make up the population you want to

investigate. Such a list is called a sampling frame. If you can do this, which is

possible if you are looking, for instance, at quoted companies in the UK, then

there are a number of ways in which you can select your sample.

If you want to select a random sample, you could number each item listed

on your sampling frame. One way of picking your random sample is called

the lottery method. Put one numbered ticket for each entry on the list into

some sort of receptacle, traditionally a hat, and blindly pick the same number

of tickets from the hat as the number of items that you want in your sample.

You could write numbers on pieces of paper but it is much easier to buy a set

of raffle tickets.

An alternative way of getting a random sample is to use random numbers.

These are not, as the name may suggest, numbers that just come into your

head, which would not be random, but sequences of numbers generated at

random using computer software.

The way you use the random number depends on how many elements

there are in your sampling frame. If there are less than 10, take a sequence of

random numbers and use them one at a time to pick your sample. If there are

up to a hundred in your sampling frame, use the random numbers two at

a time. If you have up to a thousand, use them three at a time and so on.

Example 10.1

A sampling frame identifies 68 restaurants that offer Slavonic cuisine. We want to study

a random sample of 10 of these restaurants. The following sequence of 26 random

numbers has been produced to help us select a sample:

15030 61249 01802 91561 93175 1

The sampling frame consists of less than 100 entries so we take the random numbers two

at a time:

15 03 06 12 49 01 80 29 15 61 93 17 51

The first pair is 15, so the first restaurant in our sample will be the one that appears 15th in

the sampling frame. The second pair is 03, so we pick the third restaurant on the list. As

Continued
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Select Data Analysis from the Tools 

menu.  

Excel Recipe Card –Random  

number generation 

Choose Random Number 

Generation from the sub-menu 

then click OK. 

Type 1 as the Number of Variables: 

and, following Example 10.1, 26 as 

the Number of Random Numbers. 

Choose Uniform from the 

Distribution: menu and take the 

default values, 0 and 1 of the 

Parameters. Type in any number as 

the Random Seed: and click OK. 

we continue we find that the seventh pair of number is 80, which means that the seventh

restaurant we should select is the one that appears 80th on the list. As we only have 68

restaurants on the list we ignore the 80 and use the next pair, 29, to select our seventh

restaurant. This means the next pair, 15, should be used to select the eighth restaurant.

But we have already picked the 15th restaurant, so again we take the next pair of numbers

instead of 61.
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In general, random sampling is the best way of selecting your sample

because it means you will be able to use statistical decision-making tech-

niques to generalize from your results. However, you may need to modify the

approach in order to make sure that a balanced sample is produced. This is

important when the population is composed of clearly divided categories and

you want to ensure that each category is represented in your sample. Such

categories are called strata and the method we use to take a sample from such

a population is called stratified sampling.

To use stratified sampling you need to identify how many elements in the

population belong to each category. You have to work out the proportion of

the population that you want to have in your sample and apply this

proportion to the number of elements in each category to find out how many

need to be selected from each category. You can then use random sampling to

make the selection from each category.

Example 10.2

A contract catering company has 500 employees. Of these, 200 are based at Aberdeen,

180 at Barnet and 120 at Canterbury. We want to select a sample of 100 of the employees.

The sample will consist of 20% of the company employees so we will select a random

sample of 20% of the employees at each site. To make up our sample we will select

a random sample of 20% of the employees at Aberdeen, 20% from Barnet and 20% from

Canterbury. The 40 we choose from Aberdeen, with the 36 from Barnet and the 24 from

Canterbury will give us the sample of 100.

From each number that appears 

take the first two digits after the 

decimal point as the random number. 
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Using stratified sampling is particularly useful if you want to perform

contingency analysis on your data. It should enable you to avoid having too

few data in some categories and not being able to get valid test results.

The methods of sampling that we have looked at so far assume that it is

possible to compile a list of elements in the population, a sampling frame. But

what if this is not possible? Perhaps the population is very large or it is not

possible to identify all of the elements in it.

If you can’t produce a sampling frame you could use cluster sampling to

select a sample. This is a good approach to take if the population is finite. For

instance, you may want to study a sample of ‘Do-It-Yourself’ shops in the UK.

There are many of these, but not so many that we could describe the number

of them as infinite. Constructing a sampling frame may be difficult if they are

not all listed in a readily available source.

To apply cluster sampling to produce a sample in such circumstances

would mean dividing the UK into areas and selecting a small random sample

of areas. Sub-divide these areas into smaller areas and select a small random

sample of each of them. Keep going until you have a suitable number of small

areas. You then study every element in each of the small areas you have

selected.

Using cluster sampling is easier if you use existing ways in which the

areas are divided to make your selections. The way in which the UK is

divided up on maps and between different telephone directories and post-

codes can provide useful frameworks for cluster sampling.

You should be wary of using cluster sampling if your method of data

collection entails visiting each person or organization or location in your

sample. The expense of making visits to a selection of far-flung areas may be

prohibitive. You can reduce the prospect of this somewhat by excluding areas

that you could not feasibly visit.

If you need to select a sample from a very large population, such as the

general public, then the construction of a sampling frame is just not feasible.

For instance, suppose you want to interview a sample of 100 people in the UK

to find out about their attitude to computer games. You could find the most

recent electoral roll of the UK population, use it as a sampling frame and

select from it a random sample of 100 people, but this would be a huge task.

It would be much more feasible to take a clipboard and ask 100 people that

you approach on the street. However, if you do this you should try to ensure that

the sample you select is balanced. If you want to research the relationship

between gender and attitudes to computer games then you will not be able to do

so effectively if your sample consists of 99 men and 1 woman. If you want to

contrast the opinions of school students with those of others you won’tbe able to

do so if you conduct your interviews on a working day during a school term.
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To make sure that you get a balanced sample from this sort of investi-

gation use quota sampling. Suppose you want to make sure that a sample of

100 people is balanced by gender and whether or not the respondents are

school students. You might decide to interview a quota of 25 male school

students, a quota of 25 female school students, a quota of 25 adult males and

a quota of 25 adult females. This would mean that once you have interviewed

the 25th male school student you don’t bother interviewing any more male

school students and so on.

10.3.2 Choosing the Size of Your Sample

As well as deciding how you will select your sample you need to decide how

large it should be. Basically the larger the sample, the better, but also the

larger the sample, the more time and resources will be required to collect the

data. There are two issues that you have to consider. The first is how large

a data set you will need in order to use the techniques you would like to use to

analyse it. The second issue is the proportion of inquiries that will be

successful, the response rate.

Although we can say that the larger the sample, the better, we should

add that the larger the sample, the less the marginal advantage of a large

sample tends to be. For instance, a sample that consists of 30 elements

means we will be able to use the Standard Normal Distribution in any

statistical decision-making based on the sample data and the sample

doesn’t have to come from a normal population. So having a sample that

consists of at least 30 elements is to our advantage. The extra advantage

of having a sample much larger than 30, for instance 100, is not so

great, in fact so little that it may be difficult to justify the extra time

involved.

If you need to produce inference results to a particular degree of precision

and level of confidence then you must calculate the minimum sample

size you should use. Sections 8.2.1 and 8.3.1 in Chapter 8 illustrate how this

is done.

If you plan to carry out contingency analysis on your sample data to test

for association between characteristics, then you have to take into account

the number of categories in each of the characteristics. Suppose you want to

ask a sample of respondents from five different geographical regions their

opinion of five different types of leisure activity, then the contingency table

you will be using for your results will have five rows and five columns,

making 25 cells in all. If your sample consists of 100 respondents then the

sample data will be spread around these cells far too thinly. If you cannot

reduce the number of categories you will have to increase the sample size as
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well as use cluster sampling to ensure that your results are substantial

enough to make your conclusions reasonably sound.

You should also consider that the sample size is not necessarily the same

as the number of people or organizations that you will need to approach for

data. The reason is that some of them will be disinclined or unable to respond

to your request. The proportion of responses that are successful is the

response rate.

The response rate you achieve will depend partly on the method you use

to collect your data and there are a number of things that you can do to make

the response rate higher. We will look at these in the next section. However,

when you are planning your data collection you need to build a figure for the

response rate into your calculations.

Response rates vary widely, but in most investigations like the one you are

undertaking a response rate of more than 40%, which means that more than

40% of requests made are successful, would be considered very good. A

response rate of less than 20%, on the other hand, would be considered poor.

To make sure that you get enough responses to satisfy your sample size

requirements multiply the sample size you need by a factor of three, or even

four if your request will be difficult for your respondents to fulfil. This means

that if, for the purposes of your analysis you need a sample of 30, then you

should approach a sample of 90, or even 120.

10.3.3 Methods of Collecting Primary Data

If the primary data that you require will be collected as a result of experiments

you will be carrying out in laboratory-style conditions, planning the process

of collection involves allocating your time and making sure you have access

to the appropriate facilities when you need to use them. The process of

collection is under your control. You should allow sufficient time for con-

ducting the experiments and, if you are wise some extra margin of time in

case something goes wrong. Even if things go badly wrong there is every

chance that you will be able to reschedule your other work in order to

complete your research in time to be able to use the data.

Although there are areas of research in the field of business that do

involve this sort of work, for instance research into workplace ergonomics, it

is much more likely that your project will involve seeking information from

other people or organizations. If your project involves collecting data from

others your planning needs to take into account that you do not control their

actions. You will have to consider how and when to make your request very

carefully and allow time in your schedule for the organizations or people who

will be asked for data to make their response.
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You must start by being absolutely clear about the information you want

from them. If you do not understand this, how can you expect them to

understand your request? Probably the least effective approach that you could

make is to write to them, tell them what your project is about and ask them if

they can supply you with any relevant information. At the very best they will

send you a leaflet about their business that will probably be of little value to

you. Most likely they will not respond to your request at all. After all, if you

don’t take the trouble to be clear about your information needs why should

they take the trouble to help you?

So, you have to be absolutely clear about what you want to know, who will

be able to give you the information you need, and how you plan to ask them

for it. You will have to be precise about your requirements, make sure you are

approaching the right people and ask them for what you need in such a way

that they will find it as easy as possible to help you. You may decide to use

a questionnaire to do this.

If your respondents are individuals, make sure that you have the correct

name and e-mail or postal address for every one of them. If your respondents

are people who hold certain types of posts within organizations, make sure

you have the correct name, job title and address for every one of them.

Getting these details right will improve your response rate. The fastest way

that anything you send gets binned is if it isn’t directed to a named

individual.

If you use the post to distribute your questionnaire your request for

information should be made in the form of a business letter. It must be word-

processed and you should use appropriate opening and closing formalities,

after all you are not writing to a friend. The letter should explain clearly to the

recipient who you are, what research you are undertaking, and how they can

help you. The final paragraph should thank them in anticipation of their help.

You may prefer to distribute your questionnaire electronically. The

advantage is that it is usually quicker and cheaper. The disadvantage is that

the recipient can dismiss it as yet another piece of junk e-mail and delete it.

To reduce the risk of this happening it is even more important to express the

request in a suitably polite and formal style, and to ensure that your ques-

tionnaire is as concise as possible.

The decision about distribution mode is not always easy. If your

respondents are easily accessible by e-mail, perhaps because they all work for

the same organization or use the same online social network, and use the

facility on a regular basis then electronic distribution may be better. An added

advantage is that you can use questionnaire design software to produce your

research instrument and dispatch it easily. On the other hand if the

respondents you want to reach are older or not all users of an organizational
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or social network, it is probably better to use direct or postal means of

delivering the questionnaire. You may find the articles by Sax, Gilmartin and

Bryant (2003) and Burkey and Kuechler (2003) of use when considering

electronic distribution.

What you ask your respondents to do depends on the depth and breadth of

the information that you are seeking. If you only want one or two pieces of

data, then simply ask for this in your letter, making sure that you are as

precise as possible about your requirements. For instance, if you want a figure

relating to a particular year or location, then say so.

If you need information in depth, such as opinion and comment on

particular issues, then consider requesting an interview with each of your

respondents. If you decide to do this, ask for an interview in your letter and

explain in the letter what sort of issues you would like to ask them about. To

make it easy to compare the results from the different respondents, conduct

structured interviews, interviews that consist of the same framework of

primary and supplementary questions.

If you need a broad range of information, then you will probably have to

design and use a questionnaire. This is a standard document that consists of

a series of questions and spaces for the respondent to provide written responses.

Before you start compiling a questionnaire, make sure that it is the most

appropriate method of collecting the data you need. Good questionnaire

research is not easy to conduct, so explore all other ways of assembling the

data you need first.

Unfortunately, there are many final-year students who have launched

themselves straight into collecting data using questionnaires without

thinking things through. One student studying the effectiveness of special

hospitality events in boosting sales sent a questionnaire to every member of

the Marketing Department of a multinational IT company. She asked each

respondent to say how many new sales leads had come from special events

over the previous year. The Administrative Officer in the Marketing

Department had this information at her fingertips. In that case one well-

directed letter would have produced better results more quickly than the 50

or so questionnaires the student sent out.

However, if you want responses to many precise questions from many

respondents, then a questionnaire is probably the best way of getting them. If

you do it properly, questionnaire research will give you the data you need at

relatively little expense. But done badly, questionnaire research can result in

poor response rates and inappropriate data.

So, how can we undertake questionnaire research to maximize the

chances of good results? The key is to design the questionnaire carefully and

to test it before sending it out to all the respondents in your sample. If you
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make the effort to produce a questionnaire that is straightforward for your

respondents to complete, you will get a higher response rate.

You should send the questionnaire out with the letter requesting help

from your respondents. If you do not send it out with an accompanying letter,

perhaps because you will be distributing it personally, insert a message

thanking your respondents for their help at the top of the questionnaire. If

you want your respondents to return the completed questionnaires by post,

you can improve the chances of them doing so by enclosing a self-addressed

envelope with the questionnaire.

You may also be able to improve the chances of getting a good response

rate if you offer ‘lures’ for respondents who return completed questionnaires

such as entry into a raffle for a prize, or a copy of your results when they are

available. The effectiveness of these depends largely on the respondents you

are targeting. The raffle prize is probably a better bet if you are contacting

individuals, whereas your results may be more useful when your respondents

have a specific type of role within organizations and may well have

a specialist interest in your field of research.

Aim to restrict the length of the questionnaire so that it should take no

more than 15 min to complete. This will make the task of completing it less

onerous for your respondents and make it easier for you to collate the results

at a later stage.

The sequence in which you pose the questions needs careful thought. You

may want to know some details about the respondents, such as the time they

have worked in their current post, or their qualifications. It is probably best to

ask these sorts of questions first, because they will be easy for your respon-

dents to answer, and once they have started filling in your questionnaire they

are likely to finish it.

Sometimes researchers will put questions that seek personal information

at the very end of the questionnaire. They do this because they are concerned

that putting requests for personal information first makes the questionnaire

seem too intrusive and respondents will be wary about completing it. This is

a matter of judgement. Unless the questions you use to request personal

information are invasive, it is probably better to put them first.

Arrange the questions that you want to put in your questionnaire in

a logical sequence. Avoid jumping from one topic to another. You may find it

useful to arrange the questionnaire in sections, with each section containing

a set of questions about a particular topic or theme.

Design the questions so that they will be easy for your respondents to

answer and so that the answers will be easy for you to collate. Avoid open-

ended questions like ‘What do you think about Internet marketing?’ Many

respondents will be deterred from answering questions like this because they
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feel they have to write a sentence or a paragraph to respond to them. You will

find the responses difficult to analyse because there will probably be no

obvious way of segregating and arranging them. At best you will be able to put

them into broad categories of response.

You will find the results far easier to analyse if you build the categories

into the questions. In some cases these categories are obvious, such as female

and male for gender. In other cases you may need to establish the categories

yourself, for instance types of qualification.

If you want to find what opinions your respondents have, you might use

rating scales. One way of doing this is to make a statement and invite your

respondents to express the strength of their agreement or disagreement with

the statement using a numerical scale. For instance, we might ask respon-

dents to give their assessment of the statement,

‘Internet marketing is vital for the future of our business.’

We could ask them to indicate their opinion by giving us a rating on

a scale of 1 to 5, where 1 is strong agreement with the statement and 5 is

strong disagreement with the statement.

The data we get from questions that use rating scales are often described

as ‘soft’, to suggest that it is likely to be a little vague or erratic. The adjectives

‘firm’ or ‘hard’, on the other hand, describe data that is clear and consistent.

The reason that data collected by means of rating scales is probably soft is

that the scales are subject to the interpretation of the respondents. Different

respondents will have different perceptions of concepts like ‘strong agreement’.

Two people may have identical viewpoints but one may consider it to be ‘strong

agreement’ and put a ‘1’ whereas the other may consider it ‘general agreement’

and put a ‘2’. We would not have the same difficulty with a question like ‘how

many children do you have?’ which would generate hard data.

It is better to ask questions that will provide hard data if you can. For

instance, instead of the request for an opinion on a statement about Internet

marketing, it would be better to ask if the organization uses the Internet in its

marketing activities, how much business has been generated through it, and

so on.

There are a number of specialist texts on questionnaire design. For more

guidance on the subject try Oppenheim (2000) or Saris and Gallhofer (2007).

When you have designed your questionnaire it is absolutely vital that you

try it out before you send it out to your respondents. You need to make sure

that somebody who is reading it for the first time will understand it

completely and be able to respond to the questions asked. This is something

you simply cannot do yourself. You have written and designed it, so of course

it makes sense to you, but the key question is, will it make sense to the people

that you want to complete it?
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Try to test or ‘pilot’ your questionnaire by asking a number of people to

complete it. Ideally these people should be the same sort of people as the

respondents in your sample, the same sort of age, occupation etc. If you can’t

find such people then ask friends.

Whoever you get to test the questionnaire for you, talk to them about it

after they have completed it. You need to know which questions were difficult

to understand, which ones difficult to answer, was the sequence right and so

on. If necessary, modify the questionnaire in the light of their criticisms.

Then test it again, preferably on different people. Keep testing it until it is as

easy for respondents to use as possible, yet will still enable you to get the

information you need.

Testing a questionnaire can be a tedious and annoying process, not least

because you are convinced that your questionnaire is something that even

a compete idiot can understand. The point is that it is not your assessment of

the questionnaire that matters. It is whether the respondents who can

provide you with the information you want will understand it; if they can’t

then the whole exercise will be a waste of time. So, be patient and learn from

the people who test your questionnaire. Their advice can improve your

response rate and the quality of information you get.

10.4 PRESENTING YOUR ANALYSIS

When you have completed you investigations and analysed your results you

will need to think about how you will incorporate your analysis into your

report. The key editorial questions that you have to address are what to

include, how to present it and where to put it. You will have to think about

these issues when you plan the structure of your final document.

If you have collected primary data you will need to explain how you

collected it. You should do this in a section called ‘Methodology’ that ought to

be located among the early sections of the report, probably after the intro-

ductory sections. Your reader should be able to find out from your method-

ology section how you selected your sample, and what process you used to

gather your data.

You shouldn’t need to include the raw data in your report. Your reader is

unlikely to want to comb through letters, completed questionnaires or record

sheets. However, it may be wise to put a single example in an appendix, and

make reference to that appendix in the methodology section, to help your

reader understand how the data were collected.

Unless you have a very modest amount of data use a suitable computer

package to produce your analysis. If you have a set of completed paper
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questionnaires make sure you number each one of them before you store data

from them in the package. Put the data from questionnaire number one into

row one of the worksheet or spreadsheet and so on. If you do this you will find

it much easier to rectify any mistakes that you make when you enter your

data. You will also find it convenient if you need to check specific responses

when you come to examine the analysis.

The results that you do eventually include in your report should be those

that have proved to be useful. There may be data that you tried to collect, but

were unable to. Perhaps your respondents simply didn’t have the informa-

tion; perhaps they supplied the wrong data. For a variety of reasons collecting

primary data can produce disappointment.

If part of your data collection activity has not borne fruit, there’s not a lot

you can do about it. Don’t be tempted to include inappropriate data purely

because you have collected it. The results you include in the report should be

the ones that have a part to play within your report, not ones for which you

have to create an artificial role.

You may well need to discuss the reasons for the failure of part of your

quest for information in your report, particularly if it relates to an important

aspect of your project. Others could use your work and you will be making

a valid contribution to knowledge if your unfortunate experience is some-

thing they can learn from.

The structural plan of your final report should help you decide what results

you will need to include, but you will also have to decide how to present them.

You need to remember that your reader will be looking at your final report

without experiencing the process of carrying out the project. You will have to

introduce the results to them gradually, starting with the more basic forms of

presentation before showing them more elaborate types of analysis.

In the early parts of the discussion of your results you should explain the

composition of your sample. You can do this effectively by using simple

tables and diagrams. Further on you may want to show what your respon-

dents said in response to the questions you asked them. Again there is scope

here for using simple tables and diagrams. If the results you are reporting

consist of quantitative data, use summary measures to give your reader an

overview of them.

Later on in your report you will probably want to explore connections

between the characteristics of your respondents, or the organizations they

work for and the facts or opinions they have provided. Here you can make use

of bivariate techniques: contingency tables for qualitative data, and scatter

diagrams, regression and correlation for quantitative data.

The techniques we have referred to so far in this section are

descriptive methods, techniques we can use to show or describe data.
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Look back at the first few chapters of this book for more information

about them.

At the heart of most good projects is at least one proposition or hypothesis

that the project is designed to evaluate. You should be able to put your

hypothesis to the test by using statistical decision-making techniques, the

methods of statistical inference that feature in the later chapters of this book.

These techniques will enable you to make judgements about the population

from which your sample is drawn using your sample results.

For instance, suppose the proposition that your project is intended to

assess is that successful clothing retailers use Internet marketing. You could

use a contingency test to test for association between whether or not clothing

retailers use Internet marketing and whether or not they recorded an increase

in turnover in their most recent accounts. If your proposition is that hours

worked in the road haulage industry exceed those specified in working time

regulations you could test the hypothesis using data from a random sample of

haulage contractors.

If you want to produce estimates or test hypotheses and your sample

results come from a small population you may have to make a small

adjustment when you calculate the estimated standard error. You need to

multiply it by the finite population correction factor. If we use n to represent

the size of the sample and N to represent the size of the population, we can

express the correction factor as:

ðN � nÞ
N

The adjustment is important if the sample constitutes a large proportion

of a population as in Example 10.3. However, if the sample constitutes less

than 5% of the population it is not necessary to make the adjustment.

Example 10.3

A random sample of 40 car dealers is taken from the 160 dealers franchised to a particular

manufacturer. The standard deviation of the number of cars sold per month by these

40 dealers is 25. Calculate the estimated standard error using the appropriate finite

population correction factor.

Estimated standard error¼ sffiffiffi
n
p � ðN � nÞ

N

¼ 25ffiffiffiffiffiffi
40
p � ð160 � 40Þ

160
¼ 3:953 � 0:75 ¼ 2:965
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Once you have decided which analysis to include in your final report and

the form in which you will present it, you must consider exactly where the

various tables, diagrams and numerical results will be located within your

report. You will have gone to a lot of trouble to collect your data and analyse it

so it is worth making sure that you use it in the most effective way.

Your guiding principle should be to make it as easy as possible for your

readers to find the pieces of your analysis that you want them to consult. If

the piece of analysis is a diagram or a table you have two options: you can

insert it within the text of your report or you can put it in an appendix. If the

piece of analysis is a numerical result you have a third option; you can weave

it into the text itself.

In order to decide where to put a piece of analysis, consider how important

it is that your readers look at it. If it is something that readers must see in

order to follow your discussion, then it really should be inserted within the

text. Avoid full-page inserts and make sure that the analysis is positioned as

closely as possible to the section of the text that first refers to it. It will be very

frustrating for your readers if they have to comb through the whole report to

look for something that you refer to pages away from it. Every insert you place

within the text must be labelled, for instance ‘Figure 1’ or ‘Table 3’, and you

should always refer to it using the label, ‘e.g. is shown in Figure 1’.

If you have some analysis that you consider your readers may want to

refer to, but don’t need to look at, put it in an appendix. Make sure that the

appendix is numbered, and that you use the appendix number whenever you

refer to the analysis in it. Arrange your appendices so that the first one that

readers find referred to in your text is Appendix 1, and so on. Don’t be

tempted to use appendices as a ‘dustbin’ for every piece of analysis that you

have produced, whether you refer to it or not. Any analysis that you do not

refer to directly will be superfluous as far as your readers are concerned and

may distract them from what you want them to concentrate on.

Single numerical results such as means and standard deviations can be

reported directly as part of your text. However, you may want to draw your

readers’ attention to the way in which it has been produced. If so, you can put

the derivation of the result in an appendix and refer your readers to it. This is

a particularly good idea if you have had to adjust the procedure that your

readers would expect you to use to produce such a result, for instance if you

have to use the finite population correction factor that we looked at in

Example 10.3.

Allow yourself time in your schedule to read through your final report

carefully before submitting it. Make sure that all your inserts are labelled, all

your appendices numbered, and all your sources acknowledged. If you have

time ask a friend to read through in case there are any mistakes that you have
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overlooked. Ask them how easy it was to find the inserts and appendices

when they were referred to them.

Checking the draft and the final version can be tedious and time-

consuming, but it is time and effort well spent. When your tutors read it in

order to assess it you want to make sure that the version they read is as

polished and professional as possible.
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Appendix 1

Statistical Tables

Table 1 Binomial Probabilities and Cumulative Binomial Probabilities

You can use this table to solve problems involving a series of n trials each of which can result in ‘success’ or ‘failure’. Begin

by finding the section of the table for the appropriate values of n (the number of trials) and p (the probability of success in

any one trial). You can then use the table in three ways:

1 To find the probability that there are exactly x ‘successes’ in n trials look for the entry in P (x) column and the

row for x.

2 To find the probability that there are x or fewer ‘successes’ in n trials look for the entry in P (X� x) column and the

row for x.

3 To find the probability that there are more than x ‘successes’ in n trials, P (X> x), look for the entry in the P (X� x)

column and the row for x. Subtract the figure you find from one. The result, 1� P (X� x) is P (X> x).

Example

The probability of success in a trial is 0.4 and there are 5 trials. The probability that there are exactly 2 successes, P (2), is

0.346. The probability that there are two or fewer successes, P (X � 2) is 0.683. The probability that there are more than

two successes, P (X> 2) is 1� 0.683, 0.317.

For 5 trials (n¼ 5)

p¼ 0.1 p¼ 0.2 p¼ 0.3 p¼ 0.4 p¼ 0.5

P (x) P (X� x) P (x) P (X� x) P (x) P (X� x) P (x) P (X� x) P (x) P (X� x)

x: 0 0.590 0.590 0.328 0.328 0.168 0.168 0.078 0.078 0.031 0.031

x: 1 0.328 0.919 0.410 0.737 0.360 0.528 0.259 0.337 0.156 0.187

x: 2 0.073 0.991 0.205 0.942 0.309 0.837 0.346 0.683 0.313 0.500

x: 3 0.008 1.000 0.051 0.993 0.132 0.969 0.230 0.913 0.313 0.813

x: 4 0.000 1.000 0.006 1.000 0.028 0.998 0.077 0.990 0.156 0.969

x: 5 0.000 1.000 0.000 1.000 0.002 1.000 0.010 1.000 0.031 1.000

Continued
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Table 2 Poisson Probabilities and Cumulative Poisson Probabilities

You can use this table to solve problems involving the number of incidents, x, that occurs during a period of time or over an

area. Begin by finding the section of the table for the mean number of incidents per unit of time or space, m. You can then

use the table in three ways:

1 To find the probability that there are exactly x incidents occur look for the entry in the P (x) column and the row

for x.

2 To find the probability that there are x or fewer incidents look for the entry in the P (X� x) column and the row

for x.

3 To find the probability that there are more than x incidents, P (X> x), look for the entry in the P (X� x) column

and the row for x. Subtract the figure you find from one. The result, 1� P (X� x) is P (X> x).

Example

The mean number of incidents is 5. The probability that there are exactly 3 incidents, P (3), is 0.140. The probability that

there are three or fewer incidents, P (X� 3), is 0.265. The probability that there are more than three incidents, P (X> 3), is

1� 0.265, 0.735.

Continued

Table 1 Binomial Probabilities and Cumulative Binomial Probabilitiesdcont’d

For 10 trials (n¼ 10)

p¼ 0.1 p¼ 0.2 p¼ 0.3 p¼ 0.4 p¼ 0.5

P (x) P (X� x) P (x) P (X� x) P (x) P (X� x) P (x) P (X� x) P (x) P (X� x)

x: 0 0.349 0.349 0.107 0.107 0.028 0.028 0.006 0.006 0.001 0.001

x: 1 0.387 0.736 0.268 0.376 0.121 0.149 0.040 0.046 0.010 0.011

x: 2 0.194 0.930 0.302 0.678 0.233 0.383 0.121 0.167 0.044 0.055

x: 3 0.057 0.987 0.201 0.879 0.267 0.650 0.215 0.382 0.117 0.172

x: 4 0.011 0.998 0.088 0.967 0.200 0.850 0.251 0.633 0.205 0.377

x: 5 0.001 1.000 0.026 0.994 0.103 0.953 0.201 0.834 0.246 0.623

x: 6 0.000 1.000 0.006 0.999 0.037 0.989 0.111 0.945 0.205 0.828

x: 7 0.000 1.000 0.001 1.000 0.009 0.998 0.042 0.988 0.117 0.945

x: 8 0.000 1.000 0.000 1.000 0.001 1.000 0.011 0.998 0.044 0.989

x: 9 0.000 1.000 0.000 1.000 0.000 1.000 0.002 1.000 0.010 0.999

x: 10 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.001 1.000
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Table 3 Cumulative Probabilities of the Standard Normal Distribution

This table describes the pattern of variation of the standard normal variable, Z, which has a mean m, of 0 and a standard

deviation, s, of 1. You can use this table to find proportions of the area of the distribution that lie either to the right or to the

left of a particular value of Z, z.

To find the proportion of the area to the right of z, which represents the probability that Z is greater than z, P (Z> z), find the

row for the value of z to the first decimal place and then look across the columns until you reach the column associated

with the second figure after the decimal place.

Example 1

The probability that Z is greater than�1.62 is in the row for�1.6 and in the column labelled 0.02. P (Z> –1.62)¼ 0.9474.

Example 2

The probability that Z is greater than 0.57 is in the row for 0.5 and in the column labelled 0.07. P (Z> 0.57)¼ 0.2843.

Continued

Table 2 Poisson Probabilities and Cumulative Poisson Probabilitiesdcont’d

m¼ 1.0 m¼ 2.0 m¼ 3.0 m¼ 4.0 m¼ 5.0

P (x) P (X� x) P (x) P (X� x) P (x) P (X� x) P (x) P (X� x) P (x) P (X� x) P (x)

x: 0 0.368 0.368 0.135 0.135 0.050 0.050 0.018 0.018 0.007 0.007

x: 1 0.368 0.736 0.271 0.406 0.149 0.199 0.073 0.092 0.034 0.040

x: 2 0.184 0.920 0.271 0.677 0.224 0.423 0.147 0.238 0.084 0.125

x: 3 0.061 0.981 0.180 0.857 0.224 0.647 0.195 0.433 0.140 0.265

x: 4 0.015 0.996 0.090 0.947 0.168 0.815 0.195 0.629 0.175 0.440

x: 5 0.003 0.999 0.036 0.983 0.101 0.916 0.156 0.785 0.175 0.616

x: 6 0.001 1.000 0.012 0.995 0.50 0.966 0.104 0.889 0.146 0.762

x: 7 0.000 1.000 0.003 0.999 0.022 0.988 0.060 0.949 0.104 0.867

x: 8 0.000 1.000 0.001 1.000 0.008 0.996 0.030 0.979 0.065 0.932

x: 9 0.000 1.000 0.000 1.000 0.003 0.999 0.013 0.992 0.036 0.968

x: 10 0.000 1.000 0.000 1.000 1.000 1.000 0.005 0.997 0.018 0.986

x: 11 0.000 1.000 0.000 1.000 0.000 1.000 0.002 0.999 0.008 0.995

x: 12 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.003 0.998

x: 13 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.001 0.999

x: 14 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000

x: 15 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000
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Table 3 Cumulative Probabilities of the Standard Normal Distributiondcont’d

To find the proportion of the area to the left of z, which represents the probability that Z is less than z, P (Z< z), find the row

for the value of z to the first decimal place and then look across the columns until you reach the column associated with the

second figure after the decimal place. Subtract the figure from 1.

Example 3

To obtain the probability that Z is less than �0.85, first find the figure in the row for �0.8 and in the column labelled 0.05.

This is P (Z>�0.85), 0.8023. P (Z<�0.85)¼ 1� 0.8023¼ 0.1977.

Example 4

To obtain the probability that Z is less than 2.10, first find the figure in the row for 2.1 and in the column labelled 0.00. This

is P (Z> 2.1), 0.0179. P (Z< 2.1)¼ 1� 0.0179¼ 0.9821.

Note that the probability that Z is greater than a z value is�3.0 or less is 0.999 or more, and the probability that Z is greater

than a z value is 3.0 or more is 0.001 or less.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

�2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

�2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

�2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

�2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

�2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

�2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

�2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

�2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

�2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

�2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

�1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

�1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

�1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

�1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

�1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

�1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

�1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

�1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

Continued
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Table 3 Cumulative Probabilities of the Standard Normal Distributiondcont’d

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

�1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

�1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

�0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

�0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

�0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852

�0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

�0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

�0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

�0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

�0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

�0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

�0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859

0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451

0.7 0.2420 0.2389 0.2358 0.2327 0.2297 0.2266 0.2236 0.2206 0.2177 0.2148

0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867

0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170

1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985

1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823

1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455

Continued
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Table 4 Selected Points of the t Distribution

This table provides values of the t distribution, with different numbers of degrees of freedom, which cut off certain tail areas

to the right of the distribution, ta,v. To use it you will need to know the number of degrees of freedom, v, and the size of the

tail area, a. Find the row for the number of degrees of freedom and then look to the right along the row until you come to the

figure in the column for the appropriate tail area.

Example

The value in the t distribution with 7 degrees of freedom that cuts off a tail area of 0.05, t0 05,7, is in the row for 7 degrees of

freedom and the column headed 0.05, 1.895.

Note that as the number of degrees of freedom increases, the t distribution becomes more like the Standard Normal

Distribution. Look at the bottom row of this table and you will see a row of t values that are from the t distribution that has an

infinite (N) number of degrees of freedom. This ‘extreme’ t distribution is the Standard Normal Distribution, and the figures

along the bottom row here can also be found in Table 3, e.g. look up the z value 1.96 in Table 3 and you will see the

probability that Z is more than 1.96 is 0.025. In this table, 1.96 is listed as the value of t with infinite degrees of freedom that

cuts off a tail area of 0.025.

v 0.10 0.05 0.025 0.01 0.005

1 3.078 6.314 12.706 31.821 63.657

2 1.886 2.920 4.303 6.965 9.925

3 1.638 2.353 3.182 4.541 5.841

Continued

Table 3 Cumulative Probabilities of the Standard Normal Distributiondcont’d

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367

1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294

1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143

2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110

2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084

2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036

2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026

2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019

2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
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Table 4 Selected Points of the t Distributiondcont’d

v 0.10 0.05 0.025 0.01 0.005

4 1.533 2.132 2.776 3.747 4.604

5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707

7 1.415 1.895 2.365 2.998 3.499

8 1.397 1.860 2.306 2.896 3.355

9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106

12 1.356 1.782 2.179 2.681 3.055

13 1.350 1.771 2.160 2.650 3.012

14 1.345 1.761 2.145 2.624 2.977

15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921

17 1.333 1.740 2.110 2.567 2.898

18 1.330 1.734 2.101 2.552 2.878

19 1.328 1.729 2.093 2.539 2.861

20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831

22 1.321 1.717 2.074 2.508 2.819

23 1.319 1.714 2.069 2.500 2.807

24 1.318 1.711 2.064 2.492 2.797

25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779

27 1.314 1.703 2.052 2.473 2.771

28 1.313 1.701 2.048 2.467 2.763

29 1.311 1.699 2.045 2.462 2.756

30 1.310 1.697 2.042 2.457 2.750

50 1.299 1.676 2.009 2.403 2.678

100 1.290 1.660 1.984 2.364 2.626

N 1.282 1.645 1.960 2.326 2.576
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Table 5 Selected Points of the c2 Distribution

This table provides values of the c2 distribution, with different numbers of degrees of freedom, which cut off certain tail

areas to the right of the distribution, c2
a,v. To use it you will need to know the number of degrees of freedom, v, and the size

of the tail area, a. Find the row for the number of degrees of freedom and then look to the right along the row until you come

to the figure in the column for the appropriate tail area.

Example

The value in the c2 distribution with 3 degrees of freedom that cuts off a tail area of 0.05, c2
0.05,3 is in the row for 3 degrees

of freedom and the column headed 0.05, 7.815.

v 0.10 0.05 0.01

1 2.706 3.841 6.635

2 4.605 5.991 9.210

3 6.251 7.815 11.345

4 7.779 9.488 13.277

5 9.236 11.070 15.086

6 10.645 12.592 16.812

7 12.017 14.067 18.475

8 13.362 15.507 20.090

9 14.684 16.919 21.666

10 15.987 18.307 23.209
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Appendix 2

Answers to Test Yourself Questions
Based on Warwick’s Business
Enterprises

All numerical answers are precise or accurate to at least three decimal places

(d.p.) unless stated otherwise.

CHAPTER 1

1.1 (a) £8.95 þ £4.65 þ £9.50 þ £7.20 þ £6.35 ¼ £36.65

(b) £4.65 þ £9.50 þ £7.20 ¼ £21.35, the total cost of the food items

1.2

1.3 [£50 þ (£15 * 0.4) þ (£30 * 3)] * 1.175

¼ [£50 þ £6 þ £90] * 1.175 ¼ £146 * 1.175 ¼ £171.55

Item Required (R) Available (A) Shortfall (R�A)

Vodka 1.5 l 0.375 l 1.125 l

Vermouth 0.5 l 0.75 l None

Lime cordial 0.5 l 0.75 l None

Orange juice 1.5 l 2 l None

Lemonade 1 l 0.5 l 0.5 l
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CHAPTER 2

2.1 (a) Winter 72, Spring 99, Summer 95, Autumn 104

(b)
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(c)

2.2 (a)

(b)
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Corporate

Class Frequency

0 to 4 3

5 to 9 5

10 to 14 12

15 to 19 12

20 to 24 4

25 to 29 1
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(c)

2.3 (a)

(b)

(c) Lunchtime bills tend to be smaller and less varied.

0
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Number of bottles
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Stem Leaves (Leaf digit ¼ £1)

2 2 7

3 2 3 4

4 1 3 4 8 8 8

5 6

6 0 3 5 7 7 7 9

7 3 7 8

Leaves (lunchtime) Stem Leaves (evening)

8 1

9 8 7 4 4 1 2 2 7

6 5 2 2 1 3 2 3 4

8 4 2 4 1 3 4 8 8 8

5 0 5 6

6 0 3 5 7 7 7 9

7 3 7 8
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CHAPTER 3

3.1 (a) Array:

0 0 1 1 1 1 1 1 1 1 2 2 2 3 3 3 4 4 4

4 5 5 5 7 9

Mode ¼ 1 ðmost frequent valueÞ;
Median ¼ 2 ð25þ 1=2 ¼ 13th valueÞ

ðbÞ Mean ¼ S x=n ¼ 70=25 ¼ 2:8

The distribution is probably positively skewed since the mean is higher

than the median.

(c)

3.2 A: Mean ¼ (39.0 þ 31.8 þ 35.5 þ 33.4 þ 26.6 þ 30.0)/6

¼ 186.30/6 ¼ 32.72 to 2 d.p.

0
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5
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8
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0 1 2 3 4 5 6 7 8 9
Tip (£)

F
r
e
q

u
e
n

c
y

x x x�x ðx�xÞ2

39.0 32.72 6.28 39.4384

31.8 32.72 �0.92 0.8464

35.5 32.72 2.78 7.7284

33.4 32.72 0.68 0.4624

26.6 32.72 �6.12 37.4544

30.0 32.72 �2.72 7.3984

93.3284
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Standard deviation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
93:3284=ð6� 1Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
93:3284=5

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18:66568
p

¼ 4:320 to 3 d:p:

B: Mean ¼ (36.6 þ 26.3 þ 33.2 þ 27.1 þ 26.7 þ 27.1)/6 ¼ 177/6 ¼ 29.5

Standard deviation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
93:7=ð6� 1Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
93:7=5

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
18:74
p

¼ 4:329 to 3 d:p:

B has on average lower times but with a similar spread to those of A.

3.3 (a) True (b) False (c) False (d) True (e) False (f) False (g) True

CHAPTER 4

4.1 (a) (i) Negative (ii) Positive (iii) Positive (iv) Negative (v) Positive

(vi) Positive

(b) (i) 2008:

2:65 þ 2:87 þ 1:10

1:95 þ 2:55 þ 0:60
� 100 ¼ 6:62

5:10
� 100 ¼ 129:804

2010:

2:85 þ 3:15 þ 1:35

1:95 þ 2:55 þ 0:60
� 100 ¼ 7:35

5:10
� 100 ¼ 144:118

x x x�x ðx�xÞ2

36.6 29.5 7.1 50.41

26.3 29.5 �3.2 10.24

33.2 29.5 3.7 13.69

27.1 29.5 �2.4 5.76

26.7 29.5 �2.8 7.84

27.1 29.5 �2.4 5.76

93.70
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(ii) The amounts of the ingredients purchased.

4.2 (a)

x ðMean PriceÞ¼ ð95þ69þ18þ32þ27þ70þ49þ35þ50 þ 29Þ=10

¼ 474=10 ¼ 47:4

y ðMean ScoreÞ¼ ð74þ63þ28þ33þ37þ58þ38þ43þ50þ31Þ=10

¼ 455=10 ¼ 45:5

Sðx� xÞðy � yÞ ¼ 3195

covariance ¼ Sðx�xÞðy�yÞ=ðn�1Þ ¼ 3195=9 ¼ 355
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0 20 40 60 80 100
Price (£)

S
c
o

r
e

Price (x) ðx�xÞ Score (y) ðy�yÞ ðx�xÞðy�yÞ

95 47.6 74 28.5 1356.6

69 21.6 63 17.5 378.0

18 �29.4 28 �17.5 514.5

32 �15.4 33 �12.5 192.5

27 �20.4 37 �8.5 173.4

70 22.6 58 12.5 282.5

49 1.6 38 �7.5 �12.0

35 �12.4 43 �2.5 31.0

50 2.6 50 4.5 11.7

29 �18.4 31 �14.5 266.8
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P
ðx� xÞ2 ¼ 5262:4

P
ðy � yÞ2 ¼ 2102:5

Sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5262:4=9

p
¼ 24:181

Sy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2102:5=9

p
¼ 15:284

r ¼ covariance=ðSx � SyÞ ¼ 355=ð24:181 � 15:284Þ ¼ 0:961

High positive correlation.

4.2 (b) (i) Laspeyres (2010)

¼ ð2:85 � 490Þ þ ð3:15 � 150Þ þ ð1:35 � 315Þ
ð1:95 � 490Þ þ ð2:55 � 150Þ þ ð0:60 � 315Þ � 100

¼ 1396:5 þ 472:5 þ 425:25

955:5 þ 382:5 þ 189
� 100

¼ 2294:25

1527
� 100 ¼ 150:246

Paasche ð2010Þ ¼ ð2:85 � 575Þ þ ð3:15 � 135Þ þ ð1:35 � 220Þ
ð1:95 � 575Þ þ ð2:55 � 135Þ þ ð0:60 � 220Þ � 100

¼ 1638:75 þ 425:25 þ 297

1121:25 þ 344:25 þ 132
� 100

¼ 2361

1597:5
� 100 ¼ 147:793

(ii) Paasche is lower because tomato paste, which has the highest price

rise, is weighted with a lower quantity.

ðx� xÞ2 ðy� yÞ2

2265.76 812.25

466.56 306.25

864.36 306.25

237.16 156.25

416.16 72.25

510.76 156.25

2.56 56.25

153.76 6.25

6.76 20.25

338.56 210.25
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4.3 (a) (i)
P

x ¼ 474
P

y ¼ 455

Price (x) x2 Score (y) y2 xy

95 9025 74 5476 7030

69 4761 63 3969 4347

18 324 28 784 504

32 1024 33 1089 1056

27 729 37 1369 999

70 4900 58 3364 4060

49 2401 38 1444 1862

35 1225 43 1849 1505

50 2500 50 2500 2500

29 841 31 961 899

27730 22805 24762

b ¼ 24762 � ð474 � 455Þ=10

27730 � ð474Þ2=10
¼ 24762 � 21567

27730 � 22467:6
¼ 3195

5262:4

¼ 0:607

a ¼ ðSy � bSxÞÞ=n ¼ ð455� ð0:607Þ474Þ=10

¼ ð455 � 287:718Þ=10¼ 16:728

Score ¼ 16:728þ 0:607 Price

(ii)

(iii) Score ¼ 16.728 þ 0.607 * 60 ¼ 53.148
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(b) (i)

(ii)

(iii)

Morning Afternoon Evening

�81 389

�292 �133 446

�316 �128

Sum �608 �342 835

Mean �304 �114 417.5 (Sum to 0.5)

Component �303.833 �113.833 417.667

0
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Day 1
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a
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e
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Day 1
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Day 2
am

Day 2
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Day 2
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Day 3
am

Day 3
pm

Day 3
eve

Sales (Y) 3pt MA (T) Y�T

204

450 531 �81

939 550 389

261 553 �292

459 592 �133

1056 610 446

315 631 �316

522 650 �128

1113
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(iv)

Trend line : Sales ¼ 485:286þ 20:571 t ðusing ExcelÞ
Day 4 am sales ¼ 485:286þ 20:571 � 10 ¼ 690:996
Day 4 pm sales ¼ 485:286þ 20:571 � 11 ¼ 711:567
Day 4 evening sales ¼ 485:286þ 20:571 � 12 ¼ 732:138

(v)

Forecasts : Day 4 am sales ¼ 690:996� 303:833 ¼ 387:163
Day 4 am sales ¼ 711:567 � 113:833 ¼ 597:734
Day 4 evening sales ¼ 732:138þ 417:667 ¼ 1149:805

CHAPTER 5

5.1

(a) 259/347 ¼ 0.746

(b) 93/216 ¼ 0.431

(c) Much higher probability that evening diners order wine.

5.2 (a) (i) (12 þ 9)/100 ¼ 0.21

(ii) 28/100 ¼ 0.28

(iii) (17 þ 21 þ 12 þ 13)/100 ¼ 0.63

(iv) 9/50 ¼ 0.18

(v) 12/50 ¼ 0.24

(b) The probability that males don’t like the new design (0.18) is lower

than the simple probability that customers don’t like the new design

(0.21). The probability that females don’t like the new design (0.24)

is higher than the simple probability that customers don’t like the

new design (0.21). Gender does influence opinion.

5.3 Let Trepresent no trouble on Thursday and T’ represent trouble on

Thursday. Similarly F and F’, S and S’ represent no trouble and trouble

respectively on Friday and Saturday.

ðaÞ P ðNo troubleÞ ¼ P ðTFSÞ ¼ P ðTÞ � P ðFÞ � P ðSÞ
¼ 38=50 � 35=50 � 34=50

¼ 0:76 � 0:70 � 0:68 ¼ 0:362
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ðbÞ P ðTrouble on Thursday onlyÞ ¼ P ðT0FSÞ ¼ P ðT0Þ � P ðFÞ � P ðSÞ
¼ 12=50 � 35=50 � 34=50

¼ 0:24 � 0:70 � 0:68 ¼ 0:114

ðcÞ P ðTrouble on one night onlyÞ ¼ P ðT0FSÞ þ P ðTF0SÞ þ P ðTFS0Þ
¼ ½P ðT0Þ � P ðFÞ � P ðSÞ�
þ ½P ðTÞ � P ðF0Þ � P ðSÞ�
þ ½P ðTÞ � P ðFÞ � P ðS0Þ�

¼ ½0:24 � 0:70 � 0:68�
þ ½0:76 � 0:30 � 0:68�
þ ½0:76 � 0:70 � 0:32�

¼ 0:114 þ 0:155 þ 0:170 ¼ 0:439

ðdÞ P ðTrouble on Friday and Saturday ¼ P ðTF0S0Þ
¼ 0:76 � 0:3 � 0:32 ¼ 0:073

ðeÞ P ðTrouble on two nights onlyÞ ¼ P ðT0F0SÞþP ðT0FS0ÞþP ðTF0S0Þ
¼ ½P ðT0Þ � P ðF0Þ � P ðSÞ�
þ ½P ðT0Þ � P ðFÞ � P ðS0Þ�
þ ½P ðTÞ � P ðF0Þ � P ðS0Þ�

¼ ½0:24 � 0:30 � 0:68�
þ ½0:24 � 0:70 � 0:32�
þ ½0:76 � 0:30 � 0:32�

¼ 0:049þ0:054þ0:073 ¼ 0:176

CHAPTER 6

6.1

Binomial distribution: n = 10, p = 0.2 Use Table 1 on pages 315–6.

(a) P ðNone without labelsÞ ¼ PðX ¼ 0Þ ¼ 0:107

(b) P ð3 or fewer without labelsÞ ¼ P ðX � 3Þ ¼ 0:879

(c) P ðMore than one without a labelÞ ¼ P ðX > 1Þ ¼ 1 � P ðX � 1Þ
¼ 1� 0:376 ¼ 0:624

(d) P ðLess than 5 without labelsÞ ¼ P ðX < 5Þ ¼ P ðX � 4Þ ¼ 0:967

(e) P ðMajority without labelsÞ ¼ P ðX > 5Þ ¼ 1 � P ðX � 5Þ
¼ 1 � 0:994 ¼ 0:006
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6.2 Poisson distribution: m¼ 14/week ¼ 2/day. Use Table 2 on pages 316–7.

(a) P (1 day without incident) ¼ P (X ¼ 0) ¼ 0.135

(b) P (1 day with 0 or 1 incidents) ¼ P (X � 1) ¼ 0.406

(c) Define m ¼ 4/two days.

(d) P ð2 days without incidentsÞ ¼ P ðX ¼ 0Þ ¼ 0:018

P ð2 days with more than one incidentÞ ¼ P ðX > 1Þ ¼ 1 � P ðX < 1Þ
¼ 1 � 0:092 ¼ 0:908

EMV ðLarge orderÞ ¼ ½P ðHomeÞ � P ðPlay at EagravilleÞ � £10;000�
þ ½P ðHomeÞ � P ðPlay elsewhereÞ � ð�£2;500Þ�
þ ½P ðAwayÞ � ð�£2;500Þ�
¼ ½0:5 � 0:6 � £10;000� þ ½0:5 � 0:4 � ð�£2;500Þ�
þ ½0:5 � ð�£2;500Þ�
¼ £3;000� £500� £1;250 ¼ £1;250

Large
order 

Small
order 

Home
(P = 0.5)

Home
(P = 0.5) 

Away (P = 0.5) 

Away (P = 0.5) 

Relocated (P = 0.4) 

Not relocated (P = 0.6)

Relocated (P =0.4)

Not relocated (P = 0.6) 

-£2500

-£2500

£10000

-£1000 

£3000 

-£1000 
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EMV ðSmall orderÞ ¼ ½P ðHome gameÞ � P ðPlay at EagravilleÞ � £3;000�
þ ½P ðHome gameÞ � PðPlay elsewhereÞ � ð�£1;000Þ�
þ ½P ðAwayÞ � ð�£1;000Þ�
¼ ½0:5 � 0:6 � £3;000�þ ½0:5 � 0:4 � ð�£1;000Þ�
þ ½0:5 � ð�£1;000Þ�
¼ £900�£200�£500 ¼ £200

Place a large order.

CHAPTER 7

7.1 Standard Normal Distribution. Use Table 3 on pages 317–320.

(a) 0.0749 (Table 3 - row for 1.4, column headed 0.04)

(b) 0.6141 (Table 3 - row for �0.2, column headed 0.09)

(c) 1 � P (Z > 2.06) ¼ 1 � 0.0197 ¼ 0.9803

(d) 1 � P (Z > �1.73) ¼ 1 � 0.9582 ¼ 0.0418

(e) P (Z > 0.52) – P (Z > 1.99) ¼ 0.3015 � 0.0233 ¼ 0.2782

(f) P (Z > �2.31) � P (Z > �1.08) ¼ 0.9896 � 0.8599 ¼ 0.1297

(g) P (Z > �0.97) � P (Z > 0.65) ¼ 0.8340 � 0.2578 ¼ 0.5762

7.2 m ¼ 62, s ¼ 2.5. Use Table 3 on pages 317–320.

(a) P (X >
65� 62

2:5
¼ P (Z > 1.2) ¼ 0.1151

(b) P ðX <
55� 62

2:5
Þ ¼ P ðZ < �2:8Þ

¼ 1� P ðZ > �2:8Þ ¼ 1 � 0:9974 ¼ 0:0026

(c) P

�
60� 62

2:5
< X <

66� 62

2:5

�
¼ P ð�0:8 < Z < 1:6Þ

¼ P ðZ > � 0:8Þ � P ðZ > 1 :6Þ¼ 0:7881 � 0:0548 ¼ 0:7333
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7.3 m ¼ 5.4, s/
ffiffiffi
n
p
¼ 1.3/

ffiffiffiffiffiffi
40
p

¼ 0.206. Use Table 3 on pages 317–320.

ðaÞ P ðX > 6Þ ¼ P

�
Z >

6 � 5:4

0:206

�
¼ P ðZ > 2:91Þ ¼ 0:0018

ðbÞ P ðX > 5Þ ¼ P

�
Z >

5 � 5:4

0:206

�
¼ P ðZ > �1:94Þ ¼ 0:9738

ðcÞ P ðZ < � 1:645Þ ¼ 0:05
X ¼ 5:4 � 1:645 � 0:206 ¼ 5:061 days

Buy every 5 days

CHAPTER 8

8.1 X ¼ 7.3, s ¼ 3.2, n ¼ 45. Use the Z distribution as although s is not

known, n > 30.

(a) a ¼ 5%; za=2 ¼ z0:025 ¼ 1:960

95%CI ¼ 7:3� 1:96 � 3:2=
ffiffiffiffiffiffi
45
p

¼ 7:3� 1:96 � 0:477

¼ 7:3� 0:935 ¼ 6:365 to 8:235 min

ðbÞ a ¼ 1%; za=2 ¼ z0:005 ¼ 2:576

95% CI ¼ 7:3� 2:576 � 3:2=
ffiffiffiffiffiffi
45
p

¼ 7:3� 2:576 � 0:477

¼ 7:3� 1:229 ¼ 6:071 to 8:529 min

8.2 H0: m � 65 H1: m < 65 a ¼ 0:05. One-sided test.

X ¼ 64:6; n ¼ 12; s ¼ 0:83 Use the Z distribution as although

n is < 30; s is known:

Test statistic ¼ 64:6 � 65

0:83=
ffiffiffiffiffiffi
12
p ¼ �0:4

0:240
¼ �1:669

Critical value ¼ �z 0.05 ¼ �1.645.

Reject H0 as the test statistic is less than the critical value. The mean

alcohol level appears to be below that specified by the supplier.
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8.3 H0: m BEFORE � m AFTER � 0 H1: m BEFORE � m AFTER > 0

One-sided test:

x1 ¼ 31.7, s1 ¼ 4.1 n1 ¼ 28 x2 ¼ 29.5, s2 ¼ 3.2, n2 ¼ 24

The pooled estimate of the standard error,

sp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð28 � 1Þ 4:12 þ ð24 � 1Þ 3:22

28 þ 24 � 2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð27 � 16:81Þ þ ð23 � 10:24Þ

50

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð453:87 þ 235:52Þ=50

p
¼ 3:713

The test statistic,

t ¼ 31:7� 29:5

3:713 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

28
þ 1

24

r

¼ �2:2

3:713 � 0:278
¼ �2:130

Critical value ¼ �t0.05, 50 ¼ �1.676. Reject H0, the population mean

delivery time seems to be reduced.

CHAPTER 9

9.1

Bottled Draught Total

< 30 11 4 15

30�45 24 10 34

> 45 15 16 31

Total 50 30 80
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Expected frequencies:

15 � 50

80
¼ 9:375

15 � 30

80
¼ 5:625

34 � 50

80
¼ 21:25

34 � 30

80
¼ 12:75

31 � 50

80
¼ 19:375

31 � 30

80
¼ 11:625

Test statistic ¼ ð11� 9:375Þ2

9:375
þ ð4 � 5:625Þ2

5:625

þ ð24 � 21:25Þ2

21:25
þ ð10 � 12:754Þ2

12:75

þ ð15 � 19:375Þ2

19:375
þð16 � 11:625Þ2

11:625

¼ 0:282 þ 0:469 þ 0:356 þ 0:593 þ 0:988 þ 1:647 ¼ 4:335

Degrees of freedom, v ¼ (3�1) * (2�1) ¼ 2 a ¼ 0.01

Critical value, c2
0.05,2 ¼ 5.991

Test statistic < critical value, so don’t reject H0.

9.2 One-sided tests

In studies 1, 3 and 4 H0: r ¼ 0 H1: r > 0 a ¼ 0.05

In studies 2 and 5 H0: r ¼ 0 H1: r < 0 a ¼ 0.05

Study 1: H0: r ¼ 0 H1: r > 0 a ¼ 0.05

r ¼ 0.314 n ¼ 26 degrees of freedom, v ¼ n � 2 ¼ 24

Test statistic ¼ 0:314 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð26� 2Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � 0:3142Þ

p ¼ 0:314 �
ffiffiffiffiffiffi
24
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:901
p

¼ 0:314 � 4:899

0:949
¼ 1:621

Critical value, t0.05,24 ¼ 1.711. Don’t reject H0. The correlation is not

significant.

Study 2: H0: r ¼ 0 H1: r < 0 a ¼ 0.05

r ¼ �0.692 n ¼ 21 degrees of freedom, v ¼ n � 2 ¼ 19
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Test statistic ¼ �0:692 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð21� 2Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � ð�0:69Þ2

q ¼ �0:692 �
ffiffiffiffiffiffi
19
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:521
p

¼ �0:692 � 4:359

0:722
¼ �4:178

Critical value, �t0.05,19 ¼ �1.729. Reject H0. The correlation is

significant.

Study 3: H0: r ¼ 0 H1: r > 0 a ¼ 0.05

r ¼ 0.480 n ¼ 31 degrees of freedom, v ¼ n � 2 ¼ 29

Test statistic ¼ 0:480 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð31� 2Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � 0:4802Þ

p ¼ 0:480 �
ffiffiffiffiffiffi
29
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:770
p

¼ 0:480 � 5:385

0:877
¼ 2:947

Critical value, t0.05,29 ¼ 1.699. Reject H0. The correlation is significant.

Study 4: H0: r ¼ 0 H1: r > 0 a ¼ 0.05

r ¼ 0.755 n ¼ 16 degrees of freedom, v ¼ n�2 ¼ 14

Test statistic ¼ 0:755 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð16� 2Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � 0:7552Þ

p ¼ 0:755 �
ffiffiffiffiffiffi
14
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:430
p

¼ 0:755 � 3:742

0:656
¼ 4:307

Critical value, t0.05,14 ¼ 1.671. Reject H0. The correlation is significant.

Study 5: H0: r ¼ 0 H1: r < 0 a ¼ 0.05

r ¼ �0.173 n ¼ 52 degrees of freedom, v ¼ n�2 ¼ 50

Test statistic ¼ �0:173 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð52� 2Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � ð�0:1732Þ

p ¼ �0:173 �
ffiffiffiffiffiffi
50
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:970
p

¼ �0:173 � 7:071

0:985
¼ �1:242

Critical value, �t0.05,50 ¼ �1.676. Don’t reject H0. The correlation is not

significant.

9.3 (a) The regression equation is

Audience ¼ �1018 þ 0.487 Cards

H0: b ¼ 0 Alternative hypothesis, H1: b s 0
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Cards (x) Audience (y) Residuals Squared residuals

3750 925 114.544 13120

4100 1000 18.924 358

4500 1150 –26.070 680

4750 1200 –97.941 9593

4800 1100 –222.316 49424

5250 1680 138.316 19131

4600 1480 255.181 65118

4800 1370 47.684 2274

4320 860 –228.323 52131

211829

Standard deviation of the residuals, s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
211829=7

p
¼ 173:958

Cards (x) x ðx � xÞ ðx � xÞ2

3750 4541.1 –791.1 625839

4100 4541.1 – 441.1 194569

4500 4541.1 – 41.1 1689

4750 4541.1 208.9 43639

4800 4541.1 258.9 67029

5250 4541.1 708.9 502539

4800 4541.1 258.9 67029

4320 4541.1 – 221.1 48885

1554689

Estimated standard error, sb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
173:9582=1554689

q
¼ 0:140

Test statistic; t ¼ 0:487� 0

0:140
¼ 3:479

This is higher than t0.025,7, 2.365, so reject H0.

(b) by ¼ �1018 þ 0.487 (4400) ¼ 1124.8

95% CI ¼ 1124:8 � 2:365 � 173:958

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1=9 þ ð4400 � 454:111Þ2Þ=1554689�

q

¼ 1124:8 � 2:365 � 173:958 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=9 þ 0:0128Þ

p

¼ 1124:8 � 2:365 � 173:958 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:124
p

¼ 1124:8 � 2:365 � 173:958 � 0:352
¼ 1124:8 � 2:365 � 61:237
¼ 1124:8 � 144:825 ¼ 979:975 to 1269:625
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(c) 95% PI ¼ 1124:8 � 2:365 �173:958

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1 þ 1=9 þ ð4400 � 454:111Þ2Þ=1554689�

q

¼ 1124:8� 2:365 � 173:958 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 1=9 þ 0:0128Þ

p

¼ 1124:8 � 2:365 � 173:958 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1:124
p

¼ 1124:8 � 2:365 � 173:958 � 1:060
¼ 1124:8 � 2:365 � 184:428
¼ 1124:8 � 436:173 ¼ 688:627 to 1560:973

This is much wider than the confidence interval in (b).
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Index
Addition, 6–7
involving time, 9–10

Addition rule of probability,
157–162

Additive model of time series,
142–146

Alternative hypothesis, 239
Approximation, 15–16
Arithmetic mean, 77–88, 96, 103
Array, 76
Association:

in qualitative data, see
Contingency analysis

in quantitative data, see
Correlation

Averages, 74–90

Bar charts, 33–41
clustered bar charts, 38–41
component bar charts, 38
simple bar charts, 33–5
stacked bar charts, 33, 35–8

Bayes’ rule, 165–7
Best-fit line, see Regression
Binomial distribution, 179–184,

260–1
Bivariate analysis, definition of, 26,

62
Bivariate data, definition of, 110,

264
BODMAS, 14–15
Boxplots, 94–5

Calculators, 17–18
Central Limit Theorem, 215–6,

253
Chi-square distribution, 265,

267–272
Cluster sampling, 302
Coefficient of determination,

120–121
Computer software, 18–20
Confidence intervals, see
Estimation, interval
estimation

Contingency analysis, 25, 264–272
contingency table, 27, 265
contingency tests, 264–272

Continuous data, 25–7
Continuous probability

distributions, 194
Continuous variable, 26
Control charts (quality

management), 106–7
Correlation, 110–120

negative correlation,
116–118–120

population correlation coefficient
(r), 111, 273–5

positive correlation, 116–8, 120
sample correlation coefficient (r),

111–120
Covariance, 111–4, 273
Cumulative frequency, 52–3, 89
Cumulative frequency graph,

52–56, 89, 105
Cumulative relative frequency

graph, 55–6, 89–90, 105–6
Cyclical variation in time series,

67, 138

Data, definition of, 4, 24
Deciles, 92
Decimal places, 17
Decision trees, 189–191
Degrees of freedom, 97–8, 218,

253, 269
Dependency, 163
Dependent samples, 250
Dependent variable, 62, 110–1
Descriptive statistics, definition of, 3
Direct relationship, 63, 112
Discontuous data, 25
Discrete data, 25
Discrete probability distribution, 183
Discrete variable, 26
Discrete random variable, 175
Distribution, definition of, 5
Distribution-free methods, 261
Division, 11–12

EMVs (Expected Monetary Values),
188–191

Estimated standard error, 217
Estimation, 224–8

interval estimation, 225–238, 282–6
point estimation, 225
population mean, 227–235
population proportion, 235–238
setting sample size, 232–3, 237–8
using regression models, 283–6
using small samples, 234–5

Excel computer software, 18
averages, 78–80
bar charts, 34–5
binomial distribution, 181
chi-square test, 272
clustered bar charts, 39–41
confidence intervals for the

population mean, 235
contingency tests, 272
correlation coeffficients, 115–6
data entry, 19
estimation of the population

mean, 235
fitted line plots, 127–131
frequency distributions, 46–7
histograms, 46–7, 48–50
hypothesis testing, difference

between population means,
254–5

mean, 78–80
measures of spread, 99–100
median, 78–80
mode, 78–80
normal distribution, 197
345



Index346
Excel computer software (continued )
paired t tests, 257
pie charts, 31–2
Poisson distribution, 185
quartiles, 100–101
random number generation, 300–1
range, 99–100
regression, 126–7, 280–2
residual plots, 288–9
scatter diagrams, 63–6
stacked bar charts, 36–8
standard deviation, 99–100
summation, 19
t distribution, 219
time series analysis, 146–8
time series charts, 68–70

Expectation, 187–191
Expected monetary values,

188–191
Expected value, 177
Exploratory Data Analysis, 56

Factorial, 180
Finite population correction factor,

311
Fractions, 13
Frequency density, 51–2
Frequency distribution, 41–2,

86–7, 103–4

Grouped frequency distribution,
42–45, 87–89, 104–5

Histograms, 45–52
produced from a stem and leaf

display, 62
Hypothesis testing, 224, 238–261

critical values, 243, 247
decision rule, 240, 248
difference between population

means, 250–5
mean of population differences,

255–7
one-sided test, 239
one tail test, 244
population correlation coefficient,

273–5
population mean, 238–250
population medians, 259–261
population proportions, 258–9
regression model intercept,

275–276, 280–282
regression model slope,
275–282

rejection regions, 239–247
significance levels, 242–7
test statistic, 243
two-sided test, 239
two tail test, 243
using a small sample, 249–250

Independent samples, 250
Independent variable, 62, 111
Index numbers, see Price indices
Inference, see Estimation,

Hypothesis testing
Inferential statistics, definition of, 3
Inflation, adjusting for, 136–7
Intercept of a regression line, 122,

124–127
Interquartile range, 93
Interval estimates, see Estimation
Inverse relationship, 63, 112, 116

Key words, 4–6

Least squares regression, 124
Levels of significance, 242–7
Linear association, see Correlation
Line of best fit, see Regression

Mean, 77–88, 96, 103
Mean of a probability distribution,

176–7, 183
Measures of central tendency

(averages), 74–90
Measures of dispersion, 74, 90–107
Measures of location (averages),

74–90
Measures of spread, 74, 90–107
Median, 76–7, 80–90, 92–6
Minitab computer software, 18
Modal class, 87–8
Mode, 75, 80, 84–87
Moving averages, see Time series
Multiplication, 10–11
Multiplication rule of probability,

157, 162–5

Non-parametric tests, 261
Normal distribution, 194–216,

220–1
Null hypothesis, 239
Observation, definition of, 5
Order statistics, 92
Outliers, 82, 95

Paired sample, 255
Paired t test, 255–7
Parameters of a probability

distribution, 184
Percentages, 13–14
Percentiles, 92
Pictographs, 28–30
Pie charts, 30–33
Poisson distribution, 184–7
Pooled estimate of the standard

error, 253
Population, definition of, 5
Precedence of arithmetical

operations, 13–14
Prediction intervals, 284–5
Predictor (independent variable),

111
Price indices, 132–7

adjusting for inflation, 136–7
Laspeyre, 135–6
Paasche, 135–6
simple, 133–4
simple aggregate, 134

Primary data, 295, 298
Probability, 152–171

addition rule, 157–162
Bayes’ rule, 165–7
collectively exhaustive outcomes,

161–2, 171
compound probability, 156–9
conditional probability, 158,

162–7
dependency, 163–5
experimental approach, 154–5
judgmental approach, 153–4
multiplication rule, 157, 162–5
mutually exclusive outcomes,

160–2, 171
simple probability, 156
theoretical approach, 155
tree diagram, 169–171

Probability distributions,
174–178

binomial, 179–184

mean, 183
standard deviation, 183
variance, 183

cumulative probability, 177–9
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normal, 194–216, 220–1
Poisson, 184–7
simple, 174–9

expected value, 177
mean, 176–7
standard deviation, 176–7
variance, 176–7

Proportions, 13–14

Qualitative data, 24
Quality, 106
Quantitative data, 24
Quartiles, 92–96
Questionnaire research, 265,

305–9
Quota sampling, 303

r (sample correlation coefficient),
111–120, 273–5

R-squared, 120–121
Random, definition of, 5
Random sample, 5–6, 153
Random sampling, 299–301
Range, 90–1, 96
Regression, 110, 121–132,

275–290
confidence intervals, 283–4
equation, 125
hypothesis testing, 275–282
intercept, 275–276, 280–282
slope, 275–282

multiple, 121, 290
non-linear, 121, 286–7
prediction, 131–132, 282–286
prediction intervals, 284–5
residuals, 278–9, 287–290
residual plots, 287–290
simple linear, 121–132

Relative frequency, 27, 154–5
Response (dependent variable), 111
Response rate, 304
Retail Price Index, 137
Risk, 152
Rounding, 15–16
R-squared, 120–121
Sample, definition of, 5–6
Sampling distributions, 212–221,

225
Sampling frame, 299, 302
Sampling methods, 299-302

cluster sampling, 302
quota sampling, 303
random sampling, 299–301
sample size, 303–4
stratified sampling, 301–2

Scatter diagrams, 62–6, 111–3
Seasonal variation in time series,

67–8, 138, 141–2
Secondary data, 295–8
Semi-interquartile range (SIQR),

92–4, 96, 105–6
Sigma sign (

P
), 6–7

Sign test, 260–1
Significance, 242–7
Significant figures, expressing to,

16
Skewed distributions, 52, 81–83,

95–6
Slope of a regression line, 122,

124–127
SPSS computer software, 18
Square rooting, 13
Squaring, 12
Standard deviation, 96–100,

102–7, 114
population, 98
sample, 98–100, 102–7, 114

Standard error, 214, 225
Standard Normal Distribution,

200–12, 214
Statistics, definition of, 4
Stem and leaf displays, 46–52,

84–5, 104
to compare two distributions, 59

Stratified sampling, 301–2
Structured interviews, 306
Subtraction, 7–9
Summary measures, 74
Symmetrical distributions, 52, 81,

83–4
t distribution, 217–221
t tests, 249
Tabulation, 26–8
Time series, definition of, 66
Time series analysis, 137–148

additive model, 142–146
cyclical variation, 67, 138
decomposition model, 138–146
error component, 138,

142, 144–5
moving averages, 139–144
multiplicative model, 142
periodicity, 141
preditions, 145–6
seasonal variation, 67–8, 138,

141–2
trend, 67, 138–9, 142–6
trend line equation, 145–6

Time series charts, 66–70
Trend, see Time series analysis

Uncertainty, 152
Univariate analysis, definition of,

26, 62

Value, definition of, 5
Variable, definition of, 5
Variance, 102, 106

population variance, 102
sample variance, 102

X axis, 62
X variable in bivariate analysis, 62,

110–1

Y axis, 62
Y variable in bivariate analysis, 62,

110–1

Z distribution, 200–212, 214
z equivalent, 210
z score, 210
z test, 241
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