John Buglear

Statistics with Excel for
business, hospitality and tourism

Second Edition

Stats Means Business

This page intentionally left blank

Stats Means Business
 2nd Edition

John Buglear

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Butterworth-Heinemann is an imprint of Elsevier

Butterworth-Heinemann is an imprint of Elsevier
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB UK
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
First edition 2001
Reprinted 2002, 2003, 2004, 2005, 2006, 2007
Second edition 2010

Copyright © 2010 Elsevier Ltd. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science \& Technology Rights Department in Oxford, UK: phone (+44)(0) 1865843830 ; fax: $(+44)(0) 1865$ 853333; email: permissions @ elsevier.com. Alternatively visit the Science and Technology Books website at www. elsevierdirect.com/rights for further details

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress
ISBN: 978-1-85617-947-8

For information on all Butterworth-Heinemann visit our website at elsevierdirect.com

Printed and bound in Great Britain
1011121310987654321

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER $\underset{\substack{\text { BOOK AID } \\ \text { International }}}{\substack{\text { Babre Foundation }}}$

Contents

WELCOME xi
A WORD TO TUTORS xiii
ACKNOWLEDGEMENTS xv
1 Numbers in Business: The Basics 1
1.1 Introduction 2
1.2 How this Book is Organized 3
1.3 Taking the First Steps 4
1.3.1 The Key words you need to know 4
1.3.2 The basic numerical skills you need 6
1.4 Technological Support 17
Excel Recipe Card - Data entry and summation 19
Test yourself questions. 21
2 Presenting Data 23
2.1 Introduction 24
2.2 Types of Data 24
2.3 Displaying Qualitative Data 26
2.3.1 Pictographs 28
2.3.2 Pie charts 30
Excel Recipe Card - Pie charts. 31
2.3.3 Bar charts 33
Excel Recipe Card - Bar charts 34
Excel Recipe Card - Stacked bar charts 36
Excel Recipe Card - Clustered bar charts 39
2.4 Displaying Quantitative Data 41
2.4.1 Grouped frequency distributions 42
2.4.2 Histograms 45
Excel Recipe Card - Histograms part 1: Frequency distributions 46
Excel Recipe Card - Histograms part 2 48
2.4.3 Cumulative frequency graphs 52
2.4.4 Stem and leaf displays 56
2.4.5 Presenting two quantitative variables 62
Excel Recipe Card - Scatter diagrams 63
2.4.6 Presenting time series data 66
Excel Recipe Card - Times series charts 68
Test yourself questions 71
3 Summarizing Values of a Single Variable 73
3.1 Introduction 74
3.2 Measures of Location 74
3.2.1 The mode 75
3.2.2 The median 76
3.2.3 The arithmetic mean 77
Excel Recipe Card - Averages 78
3.2.4 Choosing which measure of location to use 80
3.2.5 Finding measures of location from classified data 84
3.3 Measures of Spread 90
3.3.1 The range 90
3.3.2 Quartiles and the semi-interquartile range 92
3.3.3 The standard deviation 96
Excel Recipe Card - Measures of spread 99
Excel Recipe Card - Quartiles 100
3.3.4 Finding measures of spread from classified data 103
3.4 Measuring Quality and Consistency 106
Test yourself questions 107
4 Summarizing Bivariate Data 109
4.1 Introduction 110
4.2 Correlation and Regression 110
4.2.1 Correlation analysis 111
Excel Recipe Card - Correlation coefficients 115
4.2.2 The Coefficient of determination 120
4.2.3 Simple linear regression analysis 121
Excel Recipe Card - Simple linear regression 126
Excel Recipe Card - Fitted line plots 127
Excel Recipe Card - Embellishing fitted line plots 129
4.3 Summarizing Data Collected Over Time 132
4.3.1 Index numbers 133
4.3.2 Basic time series analysis 137
Excel Recipe Card - Time series charts with trend lines 146
Test yourself questions 149
5 Assessing Risk 151
5.1 Introduction 152
5.2 Measuring Probability 153
5.3 Different Types of Probabilities 156
5.4 The Rules of Probability 159
5.4.1 The addition rule 159
5.4.2 The multiplication rule 162
5.4.3 Bayes' rule 165
5.4.4 Applying the rules of probability 167
5.5 Probability Trees 169
Test yourself questions 171
6 Putting Probability to Work 173
6.1 Introduction 174
6.2 Simple Probability Distributions 174
6.3 The Binomial Distribution 179
Excel Recipe Card - The binomial distribution 181
6.4 The Poisson Distribution 184
Excel Recipe Card - The Poisson distribution 185
6.5 Expectation 187
6.6 Decision Trees 189
Test yourself questions. 192
7 Modelling Populations 193
7.1 Introduction 194
7.2 The Normal Distribution 194
Excel Recipe Card - The normal distribution 197
7.3 The Standard Normal Distribution 200
7.3.1 Using the standard normal distribution 210
7.4 Sampling Distributions 213
7.4.1 Estimating the standard error 216
7.5 The t Distribution 217
Excel Recipe Card - The t distribution 219
7.6 Choosing the Correct Model for a Sampling Distribution 220
Test yourself questions 221
8 Statistical Decision Making 223
8.1 Introduction 224
8.2 Estimation 224
8.2.1 Determining sample size 232
8.2.2 Estimating without σ 233
8.2.3 Estimating with small samples 234
Excel Recipe Card - Confidence intervals for the population mean 235
8.3 Estimating Population Proportions 235
8.3.1 Determining sample size 237
8.4 Hypothesis Testing 238
8.4.1 Hypothesis testing without σ 248
8.4.2 Hypothesis testing with small samples 249
8.5 Testing Hypotheses About Two Population Means 250
8.5.1 Large independent samples 251
8.5.2 Small independent samples 253
Excel Recipe Card - Hypothesis tests for differences between population means 254
8.5.3 Paired samples 255
Excel Recipe Card - Paired t tests 257
8.6 Testing Hypotheses About Population Proportions 258
8.7 A Hypothesis Test for the Population Median 259
Test yourself questions 262
9 Statistical Decision Making with Bivariate Data 263
9.1 Introduction 264
9.2 Contingency Tests 264
Excel Recipe Card - Contingency tests 272
9.3 Testing and Estimating with Quantitative Bivariate Data 273
9.3.1 Testing correlation coefficients 273
9.3.2 Testing regression models 274
Excel Recipe Card - Hypothesis tests for regression model coefficients 280
9.3.3 Constructing interval predictions 282
9.3.4 When simple linear models won't do the job 286
Excel Recipe Card - Residual plots 288
Test yourself questions 290
10 Managing Statistical Research 293
10.1 Introduction 294
10.2 Secondary Data 296
10.3 Primary Data 298
10.3.1 Selecting your sample 299
Excel Recipe Card - Random number generation 300
10.3.2 Choosing the size of your sample 303
10.3.3 Methods of collecting primary data 304
10.4 Presenting Your Analysis 309
APPENDIX 1 STATISTICAL TABLES 315
APPENDIX 2 ANSWERS TO TEST YOURSELF QUESTIONS 323
REFERENCES 343
INDEX 345

This page intentionally left blank

Welcome!

My name is John Buglear. I hope you find this book useful. It is based on my experience of teaching quantitative parts of business and hospitality courses.

To be honest with you most of my students were not too thrilled when they realised that they had to learn more 'Maths' especially if they had struggled with numerical subjects at school. They felt like they had been dreaming of being on holiday and woke up to find themselves at the dentist's. Happily the vast majority succeeded and many went on to take specialist quantitative modules later in their course. The moral of this is, try to leave any 'baggage' you may be carrying about school maths behind you. This is not Mathematics as you have known it. This is Statistics. It is about making numbers talk and how to listen to what they are telling you. Every business involves numbers of many kinds. If you can deal with them it will give you an important edge in your future career.

Before I became a lecturer I worked in the electronics, engineering and travel industries. On the basis of this I can tell you that the techniques and tools in this book are used by real people doing real jobs. But don't just take my word for it. Let me introduce my friend Warwick Best. Warwick is one of my colleagues at Nottingham Trent University. He literally got into lecturing by accident, in fact a car accident. For most of his adult life Warwick worked in the hospitality industry. He started in the army catering corps, which is one of the biggest hospitality organisations in the UK. Following that he was the proprietor of successful clubs, pubs, restaurants and a hotel as well as a limousine hire business. After the accident he couldn't stay in business. Instead he went to university as a mature student, became a lecturer and now teaches hospitality management.

As Warwick would be the first to admit, he is not an expert in Statistics, but he was a successful entrepreneur (I like to think of him as our very own Alan Sugar or Donald Trump!) and knows how crucial understanding numbers is for success in business. This is why I have asked Warwick to say something about how important the topics covered in each chapter are. These are the 'Why do I need to know about this? Warwick the Hospitality entrepreneur says...' sections that open the chapters.

At the end of each chapter, except the very last one which is about final year project work, there are 'Test yourself' questions, rated 'easy', 'moderate' and 'hard'. These are based on Warwick's business enterprises. The fully worked solutions of these are at the back of the book so that you can check your answers. There are more questions to try on the website that accompanies the book, which is at www.elsevierdirect.com/9781856179478.

Much of the statistical work you will probably do will involve using a computer. To help you do this we have included Excel 'Recipe Cards' which show you how to carry out statistical analysis in Excel.

A Word to Tutors

This book is designed to support first and second year quantitative and statistical modules on higher education courses. The contents and approach are based on my extensive experience of teaching quantitative modules at Nottingham Business School and its partner institutions.

Building from refreshment of basic quantitative skills in the first chapter the sequence of topics runs from descriptive statistics through probability and probability distributions to inferential statistics. The concluding chapter provides guidance on statistical work for final year projects and dissertations. Throughout the text there are instructions, 'Recipe Cards' for using Excel to perform statistical analysis.

Rather like an iceberg much of the extent to which the text can help you module is not immediately visible. There is an accompanying website at www.elsevierdirect.com/9781856179478 that contains a wealth of material that can help you design and deliver your module. The contents include:

■ Model objectives and learning outcomes;

- Suggested sequences of delivery;
- Powerpoint lecture slides;

Review questions with fully worked solutions;

- More Recipe card instructions;

Sources of data on the Internet that are suitable for student work that involves data capture; and

References for texts that offer more extensive coverage of particular topic.

This page intentionally left blank

Acknowledgements

I would like to thank Allison for her creative insights and critical assessment, Tom and Max for their patience, and my valued colleagues Jan Lincoln and Hristo Nikolov for the immense part they have played in shaping my thinking about the teaching of quantitative methods. I would also like to thank all the staff at Elsevier, past and present, without whose considerable efforts this work would not have been published.

This page intentionally left blank

Numbers in Business: The Basics

Why do I need to know about this? Warwick the Hospitality
entrepreneur says...
'In my view you simply can't be successful in business without being able to deal with numbers. You need to be able to deal with data about sales, stock, employees and accounts. If you are not confident with numbers you need to learn, and the best place is at college. When I dealt with people who could not cope well with numbers I knew that I had an advantage; most of the time I felt I could exploit their lack of understanding to my advantage.'

CONTENTS

Introduction
How this Book is Organized

Taking the First Steps Technological Support

Chapter Objectives

This chapter will help you to:

- understand why the ability to deal with numbers is important;

■ see how this book can help you develop that ability; and

- prepare effectively to study Statistics.

2 CHAPTER 1: Numbers in Business: The Basics

1.1 INTRODUCTION

This book is about analysing numbers. But why should analysing numbers matter to someone studying business? How relevant can it be for someone planning to build a business career?

To understand this, and to appreciate why the study of numbers is built into your course, think about the world of business. It is a world of rapidly evolving organizations producing and selling a huge range of products and services in a fluctuating environment.

How do organizations cope with this degree of change? The answer, in some cases, is that they don't. Many prominent companies that dominated their sectors a generation ago no longer exist. They became history because they failed to respond to changing markets. Others survived and some small operations thrived, becoming market leaders within the lifetimes of their founders.

Although luck and the good fortune of happening to be in the right marketplace with the right product may have played a part, to succeed in a changing environment an organization needs to recognize the changes and anticipate the consequences for its operations. How can it do that? By constantly studying its markets and monitoring its operations. This means counting and measuring key factors, in other words gathering numerical facts, or statistics.

In every organization there is a flow of numbers which are either deliberately collected or arise from the regular interactions with customers, suppliers and other significant organizations. These figures alone cannot tell the organization what is going on in the market or how it is performing. One of the responsibilities of management is to ensure that such figures are used, which means they have to be processed and analysed. The patterns that emerge from this analysis provide information that enables managers to understand the situation they face and base their decisions on that understanding.

The ability to analyse figures and interpret the results is therefore a key management skill. Look at recruitment advertisements for management posts and you will see that employers attach great importance to 'numerical skills' and 'problem solving'.

If you want to build a successful management career these are skills that you have to acquire sooner or later. Your course will provide you with the opportunity of developing them. Make the most of that opportunity and you will have a cutting-edge skill that will pay dividends for you in the future.

1.2 HOW THIS BOOK IS ORGANIZED

This book will help you deal with the numerical parts of your course. How you use it depends on how you approach the study of numbers you are about to start. It can be a crutch to help you limp through what may seem like an unwelcome revisit to the sums of schooldays, although it is better to think of it as a springboard that will help you to accumulate a key investment for your future - the skill of numeracy.

This book cannot decide your attitude to studying numbers, but it can influence it. The attitude you take is something for you to develop, but whether this book is to be a crutch or a springboard for you, it is intended to be a guide which will provide support for the numerical work you will undertake during your course.

The first five chapters of the book (including this one) deal with topics that you are likely to meet early in your course. They deal largely with descriptive techniques, methods that will enable you to arrange or analyse data in a way that helps to describe the issue you are studying.

Chapters 6-9 cover topics that you may well meet at a later stage of your course. They deal with inferential techniques, methods that enable you to make inferences or draw conclusions about an issue in general based on the study of a comparatively modest amount of data.

The final chapter is designed to help you to tackle numerical aspects of the final-year project or dissertation you will probably be asked to write.

The book will introduce you to a variety of analytical techniques that together constitute a 'toolkit' of methods that can be used to investigate situations and help solve problems. Like any other toolkit, the key to using it properly is to know not only what each tool does, but to know how and when to use it. The book will help you develop this ability by illustrating the application of the methods described using business contexts.

Each technique will be explained and demonstrated. Calculations are described in words before symbols are used to represent the process.

Being able to apply a technique, to produce the correct result from a calculation, is important, especially if you find 'learning by doing' useful, but it is by no means the end of the story. It is even more important to be able to interpret the results that the technique has enabled you to produce and to communicate the meaning of those results. In your future career you may have to apply techniques of analysis but you are much more likely to need to explain results, and perhaps to judge whether appropriate techniques have been used to produce them. The book therefore provides you with not only a description of each technique and an illustration of its use, but also
a discussion of the types of results you could get, and what each of them means.

Within Chapters 1-9 there are Excel Recipe Cards which provide instructions for using Excel to perform the techniques featured in the chapter and include screenshots showing how you carry out the instructions. At the end of Chapters 1-9 there are three review questions based on Warwick's business enterprises that you can use to confirm your understanding of the methods and ideas featured in the chapter. These are rated 'Easy', Moderate' and 'Hard'. You will find the fully worked solutions to them in Appendix 2 on pages 323-342. There are many more questions for you to try on the book's companion website at www.elsevierdirect.com/9781856179478.

1.3 TAKING THE FIRST STEPS

There are two key preliminary tasks that are worth investing a little time and effort on getting to grips with from the very beginning. The first is to understand some key words which may be completely new to you, or whose meanings in the context of this subject are unfamiliar to you. The second is to review the basic arithmetical operations that are involved in the methods demonstrated further on in the book. Being clear about these basics from the start will mean you avoid unnecessary confusion later on.

You will find that the key words below are used many times in this book. They are the first terms in a technical vocabulary that will become familiar to you as you proceed. As with other subjects you study or interests that you have outside college, there are specialist words and phrases to comprehend, but once you have grasped their meaning you will get used to using them as a matter of course.

1.3.1 The Key words you need to know

- Data: A plural noun (the singular form is datum) which means a set of known or given things, facts. Note that data can be numerical (e.g. age of people) or non-numerical (e.g. gender of people).
■ statistics: Without a capital letter, i.e. in its lower-case form, this means a set of numerical data or figures that have been collected systematically.
- Statistics: With a capital letter this is a proper noun that means the set of methods and theories that can be used to arrange, analyse and interpret statistics.
- Variable: A quantity that varies, the opposite of a constant. For example, the number of meals served in a café per day is a variable, whereas the number of hours in a day is a constant. In the expressions that we will use to summarize methods a capital letter, usually X or Y, will be used to represent a variable.

■ Value: A specific amount that it is possible for a variable to be. For example, the number of meals served in a cafe per day could be 45 or 63 or 91 . These are all possible values of the variable 'number of meals served'.

Observation or observed value: A value of a variable that has actually occurred, i.e. been counted or measured. For example, if 58 meals are served on a particular day that is an observation or observed value of the variable 'number of meals served'.

- x, X : An observation is represented by the lower case of the letter used to represent the variable; for instance ' x ' represents a single observed value of the variable ' X '. A small numerical suffix is added to distinguish particular observations in a set; for example if X is the number of meals served in a café per day x_{1} would represent number of meals served on the first day, x_{2} the number served on the second day and so on.

■ Random: This adjective refers to something that occurs in an unplanned way. A random variable is a variable whose observed values arise by chance. The number of room bookings a hotel receives during a month is a variable that is random, whereas the number of days in a month is a variable that is not random, i.e. its observed values are predetermined.

- Distribution: The pattern exhibited by the observed values of a variable when they are arranged in order of magnitude. A theoretical distribution is one that has been deduced, rather than compiled from observed values.

■ Population: In general usage this means the total number of persons residing in a defined area at a given time. In Statistics a population is the complete set of things we want to investigate. These may be human such as all the people who have visited a theme park, or inanimate such as all the package holidays sold by a tour operator.

- Sample: A subset of the population, that is, a smaller number of items picked from the population. A random sample is a sample whose
components have been chosen in a random way, that is, on the basis that any single item in the population has no more or less chance than any other to be included in the sample.

1.3.2 The basic numerical skills you need

Addition and subtraction

Addition, represented by the plus sign ' + ', is the process of putting two or more numbers together to make a sum or total. As long as the numbers being added together are positive, i.e. more than zero, the resulting total grows as more numbers are added.

Example 1.1

A member of staff working at the drive-through window of a fast food restaurant conducts four operations in the course of serving a customer. If these tasks take 10, 12, 7 and 8 seconds, what is the total time that will elapse between the time a customer arrives at the order point and the time their meal is ready?
You can get the answer by adding together the times taken for the four operations.
Total time $=10+12+7+8=37$ seconds

Because Statistics often involves combining observations, the arithmetical process of addition is a process you will come across in the context of several techniques dealt with later in the book.

Although you are probably already familiar with addition, you may not have encountered the symbol called 'sigma', which is used in Statistics to represent it. Sigma is the capital letter S from the Greek alphabet, written as ' Σ '. It is the letter s because s is the first letter of the word 'sum'. It is a Greek letter because at the time that much of the theory that makes up the subject of Statistics as we know it today was developed, the so-called 'classical' languages of the ancient world were taught in schools and universities. The Greek language, with its specific alphabet, therefore provided the pioneers of Statistics, and other disciplines such as Physics, with a ready source of distinctive symbols.

The symbol Σ (sigma) stands for 'the sum of' when it is used in statistical expressions, for example,
Σx means 'the sum of a set of observed values of the variable X^{\prime}.

Sometimes it is necessary to specify precisely which observed values of X are to be added together. To show this, the letter i is used to count the observations, for example,

$$
\begin{aligned}
& \sum_{i=1}^{4} x_{i} \text { means the sum of the first to the fourth observations } \\
& \text { of the variable } X
\end{aligned}
$$

The expression ' $i=1$ ' below the sigma tells us to start the addition with the first observed value of X and the ' 4 ' above the sigma sign tells us to finish the addition with the fourth observed value.

Example 1.2

In the situation described in Example 1.1, we could show that the total time taken to serve a customer (which we could represent by ' T ') is the sum of the time taken for the four tasks (represented by t_{1}, t_{2}, t_{3} and t_{4}) to be performed by using the expression:

$$
T=\sum_{i=1}^{4} t_{i}=t_{1}+t_{2}+t_{3}+t_{4}=10+12+7+8=37
$$

If it is necessary to indicate that all of a set of observations should be added together and the exact number of observations is not known, we use the letter ' n ' to represent the last observation in the set, so:
$\sum_{i=1}^{n} x_{i}$ means the sum of the first observation $\left(x_{1}\right)$ to the last observation $\left(x_{n}\right)$ of the variable X

As you proceed with your study of the subject, you will find that the letter ' n ' is used generally in Statistics to represent the number of observations in a set.

At first these symbols may appear strange to you, but it is worth learning to recognize and use them as they are very useful shorthand forms, which will save you time and space in future work.

Subtraction, represented by the minus sign ' - ', is the process of subtracting or 'taking away' one or more numbers from another. As long as the numbers being subtracted are positive, i.e. more than zero, the result reduces as more numbers are subtracted.

Example 1.3

The gross weekly pay of a tour guide is $£ 300$. If $£ 42$ tax, $£ 13$ National Insurance, and $£ 52$ accommodation charge are deducted from her gross pay, what is her weekly take-home pay?
You can get the answer by subtracting the stoppages from the gross wage:
Take-home pay $=£ 300-£ 42-£ 13-£ 52=£ 193$

An alternative approach to this operation is to add the stoppages first and then subtract the total stoppages from the gross pay. This would be represented in the following way:

Take-home pay $=£ 300-(£ 42+£ 13+£ 52)=£ 193$
The round brackets dictate that the operation shown within them must be carried out first. They are used to indicate priority.

You may well find addition and subtraction fairly easy, but there are cases where they are not so straightforward; first, when negative numbers are involved, and second, when the operation involves numbers measured in awkward units, e.g. minutes and hours.

Addition and subtraction may give you some difficulty if negative numbers are involved. If a negative number is added to a total, it reduces the total.

Example 1.4

A hotel guest is charged $£ 60$ for his room, $£ 25$ for a meal, and $£ 8$ for minibar items. He has a promotional voucher entitling him to a discount of $£ 10$ on his bill. What is the total amount that he should be charged?
The answer can be shown as:

$$
\text { Total amount }=£ 60+£ 25+£ 8+(-£ 10)=£ 83
$$

You can see that round brackets have been used, both to highlight the fact that there is a negative number in the sequence and to indicate that it must be dealt with first. This means deciding how to tackle the apparently contradictory ' +- ' sequence of symbols. In fact the minus sign overrides the plus sign, so adding a negative number is the same as subtracting a number. The arithmetical expression used to find the total amount in Example 1.4 has exactly the same result as the following expression, which combines addition and subtraction:

$$
\text { Total amount }=£ 60+£ 25+£ 8-£ 10=£ 83
$$

But what do you do if you have to subtract a negative number? In fact subtracting a negative number produces the same result as adding a positive number.

Example 1.5

The sharp-eyed manager of the hotel in Example 1.4 spots that the promotional voucher is out of date. How will this alter the total amount he should be charged?
The discount would have to be subtracted from the previous total, so now:
Total amount $=£ 83-(-£ 10)=£ 93$

You get exactly the same result if you simply add the amount concerned, $£ 10$.
You may find it helpful to imagine the two minus signs 'cancelling each other out' to leave you with an addition. Alternatively it may help to think that taking away a negative is always positive.

Addition and subtraction involving time is something many people find difficult because time is measured in hours made up of 60 minutes, and minutes made up of 60 seconds, rather than nice, neat numerical parcels of ten. The use of the 24 -hour clock on top of all this seems to faze many people completely.

Example 1.6

A business traveller drives for 12 minutes to reach her local railway station where she boards a train that takes 33 minutes to reach one city terminus. It takes her 24 minutes by metro to reach another city terminus, where she boards another train. After a journey that takes 1 hour 5 minutes to reach her station, she takes a 10 -minute taxi ride to her destination. What is the total journey time?
To get the answer we can express all the times mentioned, including the figure for the second train journey, in minutes.

Total journey time $=12+33+24+65+10=144$

The answer may not be satisfactory in this form. To convert it into hours and minutes we need to find how many units of 60 minutes there are in 144 minutes. The answer is two, so the total journey time is 2 hours (120 of the total number of minutes) and 24 minutes (the number of minutes left over when 120 is subtracted from 144).

Example 1.7

If the traveller described in Example 1.6 begins her journey at 11am, what time will she arrive at her destination, and how would this time be expressed using the 24 -hour clock? To get the answer, work in hours first, then minutes:

$$
\text { Arrival time }=11+2 \text { hours }=1 \mathrm{pm}+24 \text { minutes }=1: 24 \mathrm{pm}
$$

To express this using the 24 -hour clock, add 12 to the number of hours, because the arrival time is after midday:

$$
\text { Arrival time }=1.24+12=13: 24
$$

But what if the traveller started her journey later than expected, at 11:45 am, what time would she arrive? This is a little more complicated because the departure time and total journey time are measured in both hours and minutes. To find the answer we can start by adding the hours:

$$
11+2=13
$$

Then add the minutes together:

$$
45+24=69
$$

Since this amount of minutes is longer than an hour, we have to express it in hours and minutes, and add the result to the sum of the hours:

69 minutes $=1$ hour and 9 minutes

$$
13+1=14 \text { hours }+9 \text { minutes }=14: 09, \text { or } 2: 09 \mathrm{pm}
$$

Multiplication and division

Multiplication, or 'times-ing', represented either by the asterisk ' $*$ ' or the 'times' sign ' x ', is the process of multiplying two or more numbers together. The result is called the product. If a number is multiplied by another number greater than one, the product will be greater than the original number.

Example 1.8

A holiday letting agency receives an inquiry about a property in England from a Swiss client. The rent is $£ 240$ per week. What is the rent in Swiss francs if the exchange rate is 1.80 francs to the pound?

You can get the answer by multiplying the total number of pounds by the exchange rate:
Rent in francs $=£ 240 * 1.80=432$

In this case the number of francs is greater than the number of pounds; the product represents a numerical increase. But if you multiply a number by another number that is less than one, you will get a product that is lower than your first number.

Example 1.9

A business traveller returning from Oslo to the UK has 3200 Norwegian krone that she wishes to change into pounds. If the rate available at a bureau de change is $£ 0.09$ per krone, how many pounds will she get for her krone?
To get the answer, multiply the total number of krone by the exchange rate:
Pounds she can buy $=\mathrm{Kr} 3200 * 0.09=£ 288$

If you have to multiply a positive number by a negative number, the product will be negative. However if you multiply two negative numbers together, the product will be positive:

$$
3 *(-2)=-6 \text { but }(-3) *(-2)=6
$$

Division, or finding how many times one amount 'goes into' another, is the process of dividing one number by another. It is represented either by the forward slash ' $/$ ' or the sign ' \div '. If you divide a number by another number that is greater than one, the result will be smaller than the original number.

Example 1.10

The 48 guests attending a function are to be offered a glass of wine on arrival. If the contents of one bottle of wine will fill three and a half glasses, how many bottles will be required?
We can obtain the answer by dividing the number of guests by the number of glassfuls per bottle.

Number of bottles $=48 / 3.5=13.714$

Something to note in Example 1.10 is that although we can get a very precise result, in this case specified to three places of numbers after the decimal point, in the situation described the figure would be rounded up to the nearest whole of bottles, 14 .

If you divide a number by another number that is less than one, the result will be larger than the original number.

Example 1.11

A visitor to Britain sees a sign saying 'City Centre 7 miles'. She asks you how far that is in kilometres.
A kilometre is equivalent to 0.6214 of a mile, so to reply to her question you need to find how many times 0.6214 will 'go' into 7 , that is you must divide 7 by 0.6214 :

Kilometres to the city centre $=7 / 0.6214=11.2649$

Squaring and square rooting

Squaring, or taking the square of a number, is the process of multiplying a number by itself. The process is represented by the number with a superscript showing the number two, for example the square of three, or three squared would be written 3^{2}, which tells us to multiply three by three.

If the number you want to square is more than one, the result will be larger than the number itself, for instance the square of three is nine. However, if the number you want to square is less than one, the result will be smaller than the number itself; for example the square of a half is a quarter.

Example 1.12

The floor covering of the dance space in a live music venue has to be replaced. If the dance floor is 4.2 m long by 4.2 m wide, how much new floor covering will be needed? To find an area multiply the length by the width. In this case because the area is a square, that is, the length and width are the same, we need only take the square of 4.2:

Floor area $=4.2^{2}=17.64 \mathrm{sqm}$

Squaring a positive number will always give you a positive result. But because multiplying one negative number by another always gives you a positive product, squaring a negative number will always give you a positive result as well.

So : $3^{2}=9$ and $(-3)^{2}=9$
The fact that we always get a positive result when we square a negative number is worth remembering because it plays a vital role in several statistical techniques that you will meet.

Square rooting, or taking the square root of a number, is the process of working out what number squared would produce a particular number. It is represented by the radical or 'tick' sign, $\sqrt{ }$, so the square root of 9 would be shown as $\sqrt{ } 9$. The result of $\sqrt{ } 9$ is 3 because the number 3 multiplied by itself gives you 9 . You should bear in mind that the result of $\sqrt{ } 9$ could be -3 , as the square of -3 is also 9 . You will find that in most business contexts the positive root is the only viable one.

Example 1.13

A new ornamental garden featuring a square lawn area is to be laid out at a UK conference centre. If there are 170 sq m of turf available, what will the dimensions of the lawn be? You can find the answer by taking the square root of 170 :

Lawn length/width $=\sqrt{170}=13.0384$
The lawn would be approximately 13 m long by 13 m wide.

Fractions, proportions and percentages

Fractions, proportions and percentages sound very different, but they are really only different ways of doing the same thing: expressing a part of something in relation to the whole. If, for example, printing costs amount to $£ 0.70$ out of the total cost of a $£ 3.50$ leisure magazine, this could be explained as either:
printing costs constitute one-fifth of the total cost
or printing costs constitute 0.2 of the total cost
or printing costs constitute 20% of the total cost.
One-fifth is the fraction, 0.2 is the proportion, and 20% is the percentage. They are different ways of saying the same thing because there are five fifths in one, five lots of 0.2 in one, and five lots of 20% in 100%. You should bear in mind that each of them is a number less than one, including the percentage, which doesn't look as if it is less than one.

It is easier to use percentages if you understand that the literal meaning of 'percent' is per hundred. (The word 'cent' originally meant one hundred; a Roman centurion was an officer in the Roman army in charge of one hundred men.) This will help especially when you have to perform arithmetical operations using percentages.

14 CHAPTER 1: Numbers in Business: The Basics

Example 1.14

The proprietor of a souvenir shop located in the old part of a famous European city makes a deal with a tour guide. In return for the tour guide escorting parties of tourists to the shop the proprietor will give the tour guide 40% of the profit the shop makes from the money the tourists spend. If the profit margin on the souvenirs is 60% and the first group of tourists spends $€ 735$, how much money will the tour guide get?
The shop receives a profit of 60% of $€ 735$, and should receive 40% of the 60% of $€ 735$, so

$$
\text { Guide's share }=40 / 100 * 60 / 100 * € 735=€ 176.40
$$

Note that the percentages appear in the expression as amounts per hundred. They could equally well have been shown as proportions:

Guide's share $=0.40 * 0.60 * € 735=£ 176.40$

A note about precedence

Often you will find that the arithmetical operations we have looked at so far are combined. An expression may, for instance, involve addition, multiplication and squaring. If this is the case it is important that you conduct the operations in a specific order, with some operations preceding others. This order of precedence can be summarized as:

- First carry out any operations in brackets.

■ Then do any squaring and square rooting.

- Then division and multiplication.

■ Finally, addition and subtraction.
In your previous studies you may have met this sequence summarised as 'BODMAS', which stands for Brackets, powers Of (which includes squaring and square rooting), Division, Multiplication, Addition, and Subtraction.

Example 1.15

A contractor wants to put in an estimate for laying a lawn area 13 m by 13 m at the conference centre in Example 1.13. The cost of turf is $£ 4.20$ per sq m. He estimates the job will take 2 days. Labour costs will be $£ 100$ per day and equipment hire will cost $£ 60$ per day. He adds a margin of 15% to the total cost to cover overheads and profit. Work out his estimate.

```
The total cost is }1\mp@subsup{3}{}{2}*4.20+2*100+2*6
Applying the margin 1.15* (13 * * 4.20+2* 100 + 2*60)
Start inside the brackets, squaring:
    Estimate = 1.15 * (169*4.20 + 2* 100 + 2* 60)
```

Then multiply:
Estimate $=1.15 *(709.80+200+120)$

Then add:

```
Estimate = 1.15 * (1029.80)
```

Finally the multiplication outside the brackets:

```
Estimate = £1184.27.
```


Rounding and Approximation

You may find it easy to manipulate figures in your head, or you may find such a skill impossible and marvel at those who possess it. The truth is that anyone can learn how to carry out mental arithmetic, the tricks are to round the numbers involved so that they are easier to deal with, and to use approximation to get a ballpark result which can be refined with a little more effort.

People who find it easy to work out numerical problems in their head often use rounding and approximation intuitively, that is without thinking about it. In fact you may already round certain numbers as a matter of course. If someone asks how old you are, you would say ' 18 ' or ' 21 ' as appropriate, you wouldn't say ' 18 years, 3 months and 10 days' or ' 21.63 years'. Automatically you round down to the nearest completed year of your age. If you want to check how much money you have you probably look at the notes and large denomination coins in your purse or wallet and make an approximation. Only if you are particularly concerned about how much there is, or have time on your hands, are you likely to count every penny.

Rounding and approximation are therefore not entirely new concepts to you. If you can apply them systematically in your numerical work you will develop a skill which will give you a better 'feel' for numbers, enable you to spot mistakes and think numerically 'on your feet'.

Example 1.16

You walk into a fast food restaurant, which is so empty that there is a member of staff waiting to take your order. You know what you want but you don't know how much it will cost. As you give your order your eyes take in the prices of the items you want: one burger $£ 3.49$, another burger $£ 3.69$, one portion of fries $£ 1.89$, one cold drink $£ 1.79$, one hot drink $£ 1.59$. You want to work out roughly how much it will be so you can decide whether to count up your change or get out a note.
If you want a really quick answer, round up each item to the nearest pound:
Approximate total cost $=£ 4+£ 4+£ 2+£ 2+£ 2=£ 14$
Because we have rounded every figure up, this result will be an overestimate, so we can be certain that the total cost will be no more than this, but it is a rather crude estimate. You could get a more accurate approximation if you rounded each figure to the nearest ten pence:

Approximate total cost $=£ 3.50+£ 3.70+£ 1.90+£ 1.80+£ 1.60=£ 12.50$
Each of the five figures used here is rounded up by one penny, so you can get the exact total by taking five pence away from $£ 12.50$, which comes to $£ 12.45$.

Significant figures and decimal places

Generally rounding is used to produce informative figures when complete accuracy is unnecessary. The convention is that figures below five are rounded down and figures of five and over are rounded up. The extent of rounding is described as the number of significant figures.

Example 1.17

367,527 people visit an exhibition. Round this figure so that it is expressed to:
(a) five significant figures;
(b) four significant figures; and
(c) three significant figures.
(a) 367,530 the 7 is rounded up, so 27 becomes 30 ;
(b) 367,500 the 3 is rounded down, so 530 becomes 500 ; and
(c) 368,000 the 5 is rounded up, so 7500 becomes 8000 .

If rounding is applied to numbers with figures after the decimal point, the degree of rounding is described as the number of decimal places.

Example 1.18

Zubirot cereal contains 1.6358 g of fat per 100 g . Express this figure to:
(a) three decimal places;
(b) two decimal places; and
(c) one decimal place.
(a) 1.636 grams;
(b) 1.64 grams; and
(c) 1.6 grams.

Note that in Example 1.18 zeros have not been written to the right of the last specific or significant figure, whereas zeros were included in the answers to Example 1.17. The reason is that in Example 1.17 the zeros preserve the magnitude of the figures.

1.4 TECHNOLOGICAL SUPPORT

Although the subject of Statistics is about numbers, the amount of time you will spend actually performing calculations during your study of the subject can be minimized by using readily available technology, specifically a suitable calculator and appropriate computer software.

If you do not already have a calculator you really need to get one. It is an essential tool for the numerical aspects of your course, and probably some of the not so numerical parts of it as well. For statistical work the calculator you have must have a square root function, and it really is worth spending a little more money to get one with statistical functions. Sometimes such calculators are described as having a 'statistical mode' or a 'SD' (Standard Deviation) mode. Whatever it is called by the manufacturer, if you have a calculator that can perform statistical operations it will assist you immensely.

When you have your calculator the first thing that you should do is to make sure you don't lose the instructions. Your calculator is
a sophisticated scientific instrument that can do much more for you than you might imagine, but you can only find out how if you have the instructions. As a safeguard it is a good idea to keep a photocopy of them in a safe place.

You will most likely have access to a computer, perhaps at home but almost certainly at your place of study. Because today computers are used so widely to send messages and to access Internet facilities, it is easy to forget that computers were originally developed as machines to process data.

The computers we have today still possess that capability. With the right software the machine you use should become an invaluable aid to you in carrying out statistical work. It will do most of the laborious calculations for you, leaving you free to concentrate on learning how to understand and interpret the results.

This reflects how you are likely to be involved in using Statistics later in your career; it is your perception and interpretation of results that will be important, rather than whether you can compete with a computer to do the calculations. Of course, it is important to be able to understand how the computer has arrived at the results, but let the machine do the hard work for you.

So, what is the right software? There are two types of software that can help you with statistical tasks: spreadsheet and statistical packages.

Spreadsheet packages such as Excel are intended primarily for accounting work and offer a more limited range of statistical functions, but nonetheless can perform the majority of methods you will probably need to use. Excel is more widely available which is why instructions for using it are featured throughout this book.

Statistical packages such as Minitab and SPSS offer a full range of statistical functions and can carry out just about all the techniques you are likely to meet during your studies. Guidance on using both Minitab and SPSS is available on the book's companion website, www. elsevierdirect.com/9781856179478

Although these two types of package offer different ranges of functions and different styles of output, they are similar in many respects. The data storage layouts in statistical packages look like spreadsheets; numbers are usually stored in the rows and columns of a 'spreadsheet' in Excel, a 'worksheet' in Minitab, and the 'Data View' in SPSS. The key difference is that operations in Excel are based on cells whereas in statistical packages they are based on columns.

Excel Recipe Card - Data entry and summation

To sum the set of data in
Example 1.16
(3.49, 3.69, 1.89, 1.79, 1.59):

Enter the first value, 3.49 in cell A1 then press Enter.

Enter the next value, 3.69 in cell A2, press Enter, and so on until all the values are stored in Cells A1 to A5 and the cursor is resting in cell A6.

Click on the Autosum button (labelled Σ) located among the toolbars at the top of the screen. The message $\left.\begin{array}{c} \\ =S U M \\ (A 1: A 5)\end{array}\right)$ will appear in cell A6 and in the Formula Bar, which is to the right of the f_{x} symbol in the row above the column headings.

Press the Enter key to get the sum of the figures, 12.45 in cell A6.

Is Microsoft Excel - Book1

I Microsoft Excel - Book1

! ${ }_{\text {1 }}^{\text {d }}$	Edit			Io	ta				
	6								
	A	B	C	D	E	F	G	H	1
1	3.49								
2	3.69								
3	1.89								
4	1.79								
5	1.59								
6									
7									
8									
9									
10									

I Microsoft Excel - Book1

X Microsoft Excel - Book1									
[迤] Eile Edit View Insert Format Iools Data Window Help									
! \% 月 ¢									
A7 - f $\mathrm{A}^{\text {a }}$									
	A	B	C	D	E	F	G	H	1
1	3.49								
2	3.69								
3	1.89								
4	1.79								
5	1.59								
6	12.45								
7									
8									
9									
10									
11									

If you have time, learn to use a statistical package as well as the statistical functions of Excel. In the course of your career the software you use will evolve and you will need to adapt to it, so why not get used to learning how to use a variety of software while you are studying?

If you have to choose between a spreadsheet and a statistical package, it may help to consider some of the pros and cons of each.

The advantages of a spreadsheet are:

- They are straightforward to use.
- Basic calculations and diagrams can be produced quickly and easily.
- They are useful for other work such as accounting and human resource planning.

The disadvantages of a spreadsheet are:

- They can perform a more limited range of statistical tasks.
- The control you have over the composition of some output, particularly diagrams, tends to be limited and tricky to manage.

The advantages of a statistical package are:

- They offer a comprehensive range of statistical operations.
- The methods they use and the output they produce are statistically meticulous.

The disadvantages of a statistical package are:

- They can be more difficult to learn to use.
- Transferring output into other software may not be straightforward.

Because computer software is continually being upgraded and improved, the disadvantages are being reduced and the advantages extended, so check the latest available versions before making your decision.

Whatever package you use for your statistical work, don't expect to know how to use all its functions straight away. It is worth investing some time in learning how to get the best out of the software you use.

Any package should have a help facility; use it to search for advice. It is a complete online user manual available at your fingertips! You will find that what you regard as awesome when you begin will very soon become familiar.

Test yourself questions based on Warwick's business enterprises

Fully worked solutions to these questions are on page 323. You can find more questions on the topics covered in this chapter at the accompanying website www.elsevierdirect. com/9781856179478.

1.1 (Easy)

A bill presented to a customer in Warwick's restaurant shows the following items:

Wine £8.95;

Starters £4.65;
Main Course £9.50;
Desserts $£ 7.20$; and
Liqueurs £6.35.
If the variable X is defined as the cost per bill item,
(a) Calculate $\sum_{i=1}^{n} x_{i}$, the total amount taken of the bill.
(b) Calculate $\sum_{i=2}^{4} x_{i}$, and explain what the answer means.

1.2 (Moderate)

Ray Vonman, a barman at Warwick's club wants to make 5 litres of punch for a private function. The recipe he intends to use requires three parts vodka to one part vermouth to one part lime cordial to three parts orange juice to two parts lemonade. He already has; a half-full 75 cl bottle of vodka, a full 75 cl bottle of vermouth, a three-quarters full litre bottle of lime cordial, two unopened one-litre cartons of orange juice, and a half-full one-litre bottle of lemonade. What, if any, further supplies will he need to obtain?

1.3 (Hard)

A plumber charges a fixed $£ 50$ call-out fee for any job. In addition to this, materials are supplied to the customer at the cost to the plumber plus 40% and labour is charged at $£ 30$ per hour. During the refitting of Warwick's hotel a pipe bursts. What is the total cost of the repair job if it takes three hours, requires materials that cost the plumber $£ 15$ and is subject to value-added tax at 17.5% ?

This page intentionally left blank

Presenting Data

Why do I need to know about this? Warwick the Hospitality entrepreneur says...
'You have probably heard the saying 'a picture is worth a thousand words'. This is so true when it comes to understanding and communicating sets of data. I was always more comfortable using charts and graphs in my work. You simply can't grasp the meaning of a large set of figures, but when they are put in the form of diagrams they 'talk' to you. Whenever I had to look at how well my businesses were performing I always preferred to use diagrams to get the whole story. They showed me not only the general picture but any anomalies that I needed to look into.'

CONTENTS

Introduction
Types of Data
Displaying Qualitative Data
Displaying
Quantitative Data

Chapter Objectives

This chapter will help you to:

- recognize different types of data;
- produce a variety of statistical diagrams;
- interpret basic statistical diagrams;
- know which diagrams are suitable for which types of data.

2.1 INTRODUCTION

This chapter is about using diagrams and charts to present or display data. The pictorial techniques you will meet are widely used in business documents and being able to understand what they mean is an important skill.

When you apply these techniques you will be presenting data in visual forms that will reveal patterns and sequences. You will be taking the first steps in transforming data (sometimes people talk of data as 'meaningless') into information, which is something that informs. You will be bringing meaning to the apparently meaningless.

There are many different diagrams and charts that can be used to do this, so it is important to know when to use them. Deciding which type of diagram to use from such a wide selection is not always straightforward, but picking the right one depends on the type of data you have. In the same way that a fork is an invaluable tool if you are eating spaghetti, but completely useless for consuming soup; a particular statistical diagram may be appropriate for some types of data and entirely inappropriate for others.

2.2 TYPES OF DATA

The word data means a set of known facts. There are different types of data because there are different ways in which facts are gathered. Some data arise because specific things have characteristics that been categorized, whereas other data arise as a result of things being counted, or measured on some sort of scale.

Example 2.1

Holders of a certain type of credit card are described as 'wealthy'.
To verify this we could use socio-economic definitions of class to categorize each cardholder, or we could count the number of homes owned by each cardholder or we could measure the income of each cardholder.

The first important distinction to make is between qualitative data and quantitative data. Qualitative data consist of categories or types of a characteristic or attribute. These categories form the basis of the analysis of qualitative data. In Example 2.1 the socio-economic definitions, social class $\mathrm{A}, \mathrm{B}, \mathrm{C} 1$ and so on, would be qualitative data, whereas the numbers of houses or amount of income would be quantitative data. Quantitative data
are based on counting or measuring. The numerical scale used to produce the figures forms the basis of the analysis of quantitative data.

The second important distinction to make is between the two different types of quantitative data: discrete and continuous. Discrete data are quantitative data that can take only a limited number of values because they are produced by counting in distinct or 'discrete' steps, or measuring against a scale made up of distinct steps.

There are three types of discrete data that you will meet as follows:
(1) Data that can only take certain values because other values simply cannot occur, for example the number of t-shirts sold by a clothing retailer in a day. There could be 12 sold one day and 7 on another, but selling 9.3 t -shirts in a day is not possible because there is no such thing as 0.3 of a t-shirt.
(2) Data that take only certain values because those are the ones that have been established by long-standing custom and practice, for example pubs in the UK sell draught beer in whole and half pints. You could try asking for three-quarters of a pint, but the bar staff would no doubt insist that you purchase the smaller or larger quantity.
(3) Data that only take certain values because the people who have provided the data or the analysis have decided, for convenience, to round values that don't have to be discrete. This is what you are doing when you give your age to the last full year. Similarly, the temperatures given in weather reports are rounded to the nearest degree, and the distances on road signs are usually rounded to the nearest mile or kilometre. Such data are discrete by convention rather than by definition. They are really continuous data.

Discrete data often but not always consist of whole number values. The number of visitors to a website will always be a whole number, but UK shoe sizes include half sizes. In other cases, like the UK sizes of women's clothing, only some whole numbers occur.

The important thing to remember about discrete data is that there are gaps between the values that can occur, which is why they are sometimes referred to as discontinuous data. In contrast, continuous data consist of numerical values that are not restricted to specific numbers. Such data are called continuous because there are no gaps between feasible values. This is because measuring on a continuous scale such as distance or temperature yields continuous data.

The precision of continuous data is limited only by how exactly the quantities are measured. For instance, we measure both the length of bus
journeys and athletic performances using the scale of time. In the first case a clock or a wristwatch is sufficiently accurate, but in the second case we would use a stopwatch or an even more sophisticated timing device.

Further on you will find the terms discrete variable and continuous variable. A discrete variable has discrete values whereas a continuous variable has continuous values.

Example 2.2

A motor magazine provides descriptions of cars that contain the following data:
Type of car - hatchback/estate/MPV/off-road performance;
Number of doors;
Fuel type - petrol/diesel;
CO_{2} emission rate in grams per kilometre.
Which data will be qualitative and which will be quantitative?
The type of car and fuel type are qualitative; the number of doors and the CO_{2} emission rate are quantitative.
Which quantitative data will be discrete and which will be continuous?
The numbers of doors are discrete; the CO_{2} emission rates are continuous.

In most of your early statistical work you will probably be analysing data that consist of observed values of a single variable. However, you may need to analyse data that consist of observed values of two variables in order to find out if there is a connection between them. For instance, we might want to ascertain whether taxi fares are related to distance travelled.

In dealing with a single variable we apply univariate analysis, whereas in dealing with two variables we apply bivariate analysis. The prefixes uni- and bi- in these words convey the same meaning, as they do in other words like unilateral and bilateral.

2.3 DISPLAYING QUALITATIVE DATA

Arranging and displaying qualitative data is quite straightforward as long as the number of categories of the characteristic being studied is relatively small. Even if there are a large number of categories, the task can be made easier by merging categories.

The easiest way you can present a set of qualitative data is to tabulate it, to arrange it in the form of a summary table. As well as being a useful way of
displaying qualitative data, compiling such a table is an essential preliminary task if you want to draw a diagram to portray the data.

A summary table consists of two parts: a list of categories of the characteristic; and the number of things that fall into each category, known as the frequency of the category.

Example 2.3

Suppose we want to find out how many retail outlets in a city sell trainers.
We might survey the streets or surf the web in order to compile a list of outlets, but the list itself may be too crude a form in which to present our results.
By listing the types of outlet and the number of each type of outlet we find we can construct a summary table:

The Number of Outlets Selling Trainers by Type of Outlet

Type of Outlet	Frequency	Relative Frequency (\%)
Shoe shops	15	38.5
Sports shops	8	20.5
Department stores	6	15.4
Other	10	25.6
Total number of outlets	39	100.0

In Example 2.3 the outlet types are qualitative data. The 'Other' category, which might contain several different types of outlet, such as hypermarkets and market stalls, has been created in order to keep the summary table to manageable proportions.

Notice that for each category, the number of outlets as a percentage of the total, the relative frequency of the category, is listed on the right-hand side. This is to make it easier to communicate the contents; saying 38.5% of the outlets were shoe shops is more effective than saying $15 / 39$ ths of them were shoe shops, although they are two different ways of saying the same thing.

You may want to use a summary table to present more than one attribute. Such a two-way tabulation is also known as a contingency table because it enables us to look for connections between the attributes, in other words to find out whether one attribute is associated with or contingent upon another.

Example 2.4

Four large retailers each operate their own loyalty scheme. Customers can apply for loyalty cards and receive points when they present them whilst making purchases. These points are accumulated and can subsequently be used to obtain gifts or discounts.
A survey of usage levels of loyalty cards provided the information in the following table:
Number of Transactions by Loyalty Card Use

	Transactions		
Retailer	With Card	Without Card	Total
Alimental	236	705	941
Brogues	294	439	733
Comestible	145	759	904
Dinewell	191	436	627
Total	866	2339	3205

Summary tables are perfectly adequate means of presenting qualitative data but it is possible to show this type of data in a more dramatic, visual way using a diagram.

A diagram is usually a much more effective way of communicating data because it is easier for the eye to digest than a table. This will be important when you have to include data in a report or presentation because you want your audience to focus their attention on what you are saying. They can do that more easily if they don't have to work too hard to understand the form in which you have presented your data.

There are three types of diagram that you can use to show qualitative data: pictographs, pie charts and bar charts. They are listed here in order of increasing sophistication.

2.3.1 Pictographs

A pictograph is no more than a simple adjustment of a summary table. The categories of the attribute are listed as they are in a summary table, but we use symbols to represent the number of things in each category. The symbols used are thematically linked to the nature of the data.

Example 2.5

The table below shows the number of flights to different categories of destination departing from an airport in a six-hour period.

Number of Departures by Type of Destination

Type of Destination	Departures
Domestic	2
Short-haul	3
Long-haul	1

Show this set of data in the form of a pictograph.

Type of Destination

Departures

Domestic

Short-haul
者
Long-haul

Each aircraft symbol represents one flight.
FIGURE 2.1 Pictograph of the number of departures by type of destination

A pictograph like Figure 2.1 can be an effective way of presenting a simple set of qualitative data. The symbols are a straightforward way of representing the number of things in each category and have the extra advantage of emphasizing the context of the data.

Unfortunately pictographs have several drawbacks that are likely to deter you from using them. Unless you are artistically gifted and can create appropriate images by hand, you will probably have to rely on computer software to produce them for you. Creating a pictograph by computer can be a laborious process. Spreadsheet and statistical packages cannot produce a pictograph for you directly from data, so symbols have to be grafted alongside text in a word-processing package.

You need to choose the symbol you use carefully. It should be easy to associate with the context of the data and not so elaborate that the symbols
themselves become the centre of attention rather than the data they are supposed to represent.

You may occasionally spot a pictograph used in academic and business documents; you are more likely to see them used on television and in newspapers. Sadly, the computer graphics software at the disposal of reporters and editors is much more sophisticated than any that you are likely to have access to during your studies!

2.3.2 Pie charts

The second way of displaying qualitative data is much more commonly used than the pictograph, the pie chart.

A pie chart, like a pictograph is designed to show how many things belong to each category of an attribute. It does this by representing the entire set of data as a circle or 'pie' and dividing the circle into segments or 'slices'. Each segment represents a category, and the size of the segment reflects the number of things in the category. An example of a pie chart is shown in Figure 2.2.

Example 2.6

Present the data from Example 2.3 in the form of a pie chart.

FIGURE 2.2
Number of outlets selling trainers by type of outlet

Excel Recipe Card - Pie charts

Enter the categories and frequencies data from Example 2.3 in the spreadsheet.

Click and drag the cursor over the frequencies data.

Select Chart from the Insert menu.

In the Chart Wizard choose Pie as the Chart type: and take the default sub-type.

Click Finish and it will appear in the spreadsheet.

Excel offers a choice of pie chart variations, three-dimensional effects and exploded slices to emphasize a particular segment. You can use these options, but don't overdo it. Remember that the pattern of the data is what you want to convey not your ability to use every possible gimmick the software offers.

Pie charts are so widely used and understood that it is very tempting to regard them as an almost universal means of displaying qualitative data. In many cases they are appropriate and effective, but in some situations they are not.

Because a pie chart shows how different components make up a whole, using one when we cannot or do not want to show the whole is inappropriate. In Example 2.6 it may be tempting to present the chart without the 'Other' category, but if we left it out we would not be presenting the whole.

One reason that people find pie charts easy to grasp is that the analogy of cutting up a pie is quite an obvious one. As long as the pie chart looks like a pie it works. However, if we construct a pie chart that has too many categories it can look more like a bicycle wheel than a pie, and confuses rather than clarifies the situation. If you have a lot of categories to present, say more than 10 , either merge some of the categories in order to reduce the
number of segments in the pie chart or consider another way of presenting your data.

2.3.3 Bar charts

A third way of presenting qualitative data is to display it in the form of a bar chart. Like pie charts, bar charts are widely used, straightforward to interpret and can be constructed using a spreadsheet or statistical package. However, because there are several different varieties of bar charts, they are more flexible tools. By using a bar chart we can portray a two- (or even three-) way tabulation in a single diagram.

The basic function of a bar chart is the same as the function of a pie chart, and for that matter a pictograph: to show the number or frequency of things in each of a succession of categories of an attribute. It does this by representing the frequencies as a series of bars. The height of each bar is in direct proportion to the frequency of the category; the taller the bar that represents a category, the more things there are in that category.

Example 2.7
Produce a bar chart to show the data from Example 2.3.

FIGURE 2.3 Number of outlets selling trainers by type of outlet

The type of bar chart shown in Figure 2.3 is called a simple bar chart because it represents only one attribute. If we had two attributes to display we might use a more sophisticated type of bar chart such as a stacked bar chart.

Excel Recipe Card - Bar charts

Store the categories and frequencies from Example 2.3 in two columns of the spreadsheet.

Click and drag the cursor over the data in both these columns.

Select Chart from the Insert menu.

区 Microsoft Excel-Book1										
1迆 Eile Edit Yiew		Inset Formet Iools Dats Window Help								
		Cells... Bows Solumns Workheet			- f19. 0 - 185					
	A2 ${ }^{\text {a }}$									
	A				D	E	F	G	H	1
1	Type of outlet									
2	Shoe shops									
3	Sports shops		Chart_							
4	Department stores		Symbol...							
5	Other									
6			Page greak							
7		Es	Eunction-							
8			Name	,						
9										
10		\square	Comment							
11			gicture	,						
12										
13		\%	Diagram...							
14			Object.							
15		9	Hyperlink.	Ctriok						
16 16										

In the Chart Wizard window, choose Column as the Chart type: and take

Click Next > to view the graph in the command window then Finish to put it in the spreadsheet.

Example 2.8

Produce a stacked bar chart to portray the data from Example 2.4.

FIGURE 2.4 Number of transactions by loyalty card use

Excel Recipe Card - Stacked bar charts
Enter the data from Example 2.4.
Put the retailers in one column, the transactions with cards in a second and those without cards in a third.

Click and drag the cursor over the data in these columns.

Select Chart from the Insert menu.

To the right of the diagram in the Chart Wizard window the categories are 'Series 2' and 'Series 1'

Change these to 'With card' and 'Without card'. Click on the Series tab and type 'With card' in the 'Name:' space to the right of 'Series 1'.

Click Series 2 under Series and name 'Series 2' 'Without card'.

Click Finish to put the diagram in the spreadsheet.

The type of bar chart depicted in Figure 2.4 is known as a stacked bar chart as it is based on stacking the components of each bar on top of one another. It is also known as a component bar chart because it shows how each bar is made up of its component parts.

A stacked bar chart is particularly useful if you want to emphasize the relative proportions of each category, in other words to show the balance within the categories of one attribute (in the case of Example 2.8, the retailer) between the categories of another attribute (card usage). If you want to emphasize the absolute differences between the categories of one attribute within the categories of another you may prefer to use an alternative form of bar chart that is designed to portray a two-way tabulation, the clustered bar chart.

Example 2.9

Produce a clustered bar chart to show the data from Example 2.4.

FIGURE 2.5 Number of transactions by loyalty card use

Excel Recipe Card - Clustered

bar charts

Enter the data from Example 2.4.
Put the retailers in one column, the transactions with cards in a second and those without cards in a third.

Select Chart from the Insert menu.

Click the Series tab at the top of the chart window.

Name 'Series 1 ' 'With cards' and 'Series 2' 'Without cards'.

Click Finish and the chart will appear in the spreadsheet.

The type of bar chart shown in Figure 2.5 is called a clustered bar chart because it uses a group or cluster of bars to show the composition of each category of one characteristic by categories of a second characteristic. For instance, in Figure 2.5 the bars for Alimental show how transactions in Alimental are composed of purchases made with and purchases made without loyalty cards.

2.4 DISPLAYING QUANTITATIVE DATA

Quantitative data differ from qualitative data so the methods used to present quantitative data are rather different. However, the most appropriate ways of presenting some types of quantitative data are the same ones used to present qualitative data.

This applies to the analysis of a discrete quantitative variable that has a very few feasible values. You simply treat the values as you would the categories of a characteristic. As a first step, tabulate the data to show how often each value occurs. When quantitative data are tabulated the resulting table is called a frequency distribution because it demonstrates how frequently each value in the distribution occurs. Once you have compiled the frequency distribution you can use it to construct a bar chart or pie chart.

Example 2.10

The 'Accommodation to Let' section of a property market website contains details of 20 houses available to rent. The numbers of bedrooms in these properties are:

| 2 | 3 | 5 | 2 | 4 | 2 | 4 | 4 | 4 | 3 | 2 | 5 | 3 | 2 | 3 | 4 | 4 | 3 | 2 | 4 |
| :--- |

These figures could be first tabulated and then presented in the form of the simple bar chart in Figure 2.6.

FIGURE 2.6 Number of houses by number of bedrooms

2.4.1 Grouped frequency distributions

We can present the data in Example 2.10 in the form of a bar chart or a pie chart purely because there are only a very limited number of values so that a bar can represent each value. Unfortunately this is not always the case, even with discrete quantitative data.

For instance, if Example 2.10 included properties from small studio flats to huge mansions then the number of bedrooms might go from one to 20 or so. If you try to use a simple bar chart to represent such a wide range, the bar chart would contain far too many bars to be of much use in communicating the data.

To get around this problem we can group the data into fewer categories or classes by compiling a grouped frequency distribution, which shows the frequency of observations in each class. Once the data are arranged in this way we can use a relatively simple diagram to portray it.

Example 2.11
The numbers of e-mail messages sent by 22 office workers are:

50	14	25	8	10	33	52	12	45	15	7
5	98	13	31	52	6	75	17	22	12	64

Produce a grouped frequency distribution to present this set of data.

Number of Messages Sent	Frequency
$0-19$	11
$20-39$	4
$40-59$	4
$60-79$	2
$80-99$	1

In order to compile a grouped frequency distribution you will need to exercise a little judgement because there are many sets of classes that could be used for a specific set of data. To help you, there are three rules:
(1) Don't use classes that overlap.
(2) Don't leave gaps between classes.
(3) The first class must begin low enough to include the lowest observation and the last class must finish high enough to include the highest observation.

In Example 2.11 it would be wrong to use the classes 0-20, 20-40, 40-60 and so on because values on the very edge of the classes like 20 and 40 , which may very well occur, could be put into either one, or even both, of two classes. Although there are numerical gaps between the classes that have been used in Example 2.11, they are not real gaps because no feasible value could fall into them. The first class finishes on 19 and the second begins on 20, but since the number of messages sent is a discrete variable a value like 19.6,
which would fall into the gap, simply will not occur. Since there are no observed values lower than zero or higher than 99 , the third rule is satisfied.

We could sum up these rules by saying that anyone looking at a grouped frequency distribution should be in no doubt where each feasible value belongs. Every piece of data must have one and only one place for it to be. To avoid any ambiguity whatsoever, you may like to use the phrase 'and under' between the beginning and end of each class. The classes in Example 2.11 could be rewritten as:

0 and under 20

20 and under 40, and so on

It is especially important to apply these rules when you are dealing with continuous quantitative data. Unless you decide to use 'and under' or a similar style of words such as 'and up to', it is vital that the beginning and end of each class are specified to at least the same degree of precision as the data.

Example 2.12

Spot-checks of the amount of nail varnish in bottles labelled as containing 10 ml have produced the following figures (in millilitres):

10.30	10.05	10.06	9.82	10.09	9.85	9.98	9.97	10.28	10.01	9.92	10.03
10.17	9.95	10.23	9.92	10.05	10.11	10.02	10.06	10.21	10.04	10.12	9.99
10.19	9.89	10.05	10.11	10.00	9.92						

Arrange these figures in a grouped frequency distribution.

Nail Varnish (ml)	Frequency
$9.80-9.89$	3
$9.90-9.99$	7
$10.00-10.09$	11
$10.10-10.19$	5
$10.20-10.29$	3
$10.30-10.39$	1

When you construct a grouped frequency distribution you will also need to decide how many classes to use and how wide they are. These are related issues: the fewer the number of classes, the wider each one needs to be. It is
a question of balance. You should avoid having a very few very wide classes because they will only convey a crude impression of the distribution. On the other hand, if you have very many narrow classes you will be conveying too much detail. So, what is too few and what is too many? As a starting point, take the square root of the number of observations in the set of data. In Example 2.12 there are 30 observations. The square root of 30 is 5.48 , which we round up to 6 or down to 5 because we can only have whole numbers of classes.

Once you have some idea of the number of classes, the width of the classes has to be decided. When you come to producing a diagram to represent a grouped frequency distribution, it is very useful, although not essential if all the classes have the same width.

The set of classes you use must cover all the observations from lowest to highest, so to help you decide the width of classes, subtract the lowest observation from the highest observation to give you the difference between the two, known as the range of values. Divide this by the number of classes you want to have and the result will be the minimum class width you must use. In Example 2.11 the range is 93 (98 minus 5) which, when divided by 5 gives 18.6. So if we want a set of five classes of equal width to cover the range from 5 to 98 , each class must be at least 18.6 wide.

This number, 18.6, is not very 'neat', so to make the grouped frequency distribution easier to digest we can round it up. The obvious number to take is 20 and 5 classes 20 units wide will cover the range. In fact because these classes will combine to cover a range of 100 and the range of our data is only 93 , we have some flexibility when it comes to deciding where the first class should start.

The first class must begin at or below the lowest observation in the set, in Example 2.11 this means it must start at 5 or below. Because 5 is a 'neat' round number it would make a perfectly acceptable start for our first class, which would then be ' $5-24$ ', the second class would be ' $25-44$ ' and so on. But what if the first observed value was 3 or 7 ? Starting a set of classes with such a value would result in a grouped frequency distribution that would look rather ungainly. If we start the classes at a round number lower than the lowest value in the distribution, zero in Example 2.11, we can guarantee that the resulting set of classes will have 'neat' beginnings and ends.

2.4.2 Histograms

The best-known way of displaying a grouped frequency distribution is the histogram. This is a special type of bar chart where each bar or block represents the frequency of a class of values rather than the frequency of a single value. Figure 2.7 is a histogram displaying the data from Example 2.11.

Excel Recipe Card Histograms part 1: Frequency distributions

Enter the data from Example 2.11 into one column and the set of 'Bin Ranges', the highest values in each of the classes in Example 2.11, in the next. ('Bin' is synonymous with class because putting observations into classes is equivalent to sorting objects into different bins.)

Select Data Analysis from the
Tools menu. (If you cannot find Data Analysis click Add-Ins in the Tools menu to check that it is available.)

Click Histogram in the list of techniques in the command window then click OK.

Specify the location of the data in Input Range.

Specify the location of the Bin Ranges, which are the upper limits of the classes used in Example 2.11 then click OK.

The bins and their frequencies appear in a new Sheet.

3 Microsoft Excel - Book1
(질 Eile Edit View Insert Formst Iools Data Window Help

A1		- \& Bin							
	A	B	C	D	E	F	G	H	1
1	Bin	Frequency							
2	19	11							
3	39	4							
4	59	4							
5	79	2							
6	99	1							
7	More	0							
8									
9									

FIGURE 2.7 Histogram of e-mail messages sent by 22 office workers

Excel Recipe Card - Histograms

part 2
Enter the classes in the third column, highlight the Frequency figures then open the Chart Wizard and take the Clustered Column Chart type.

Click Next and the initial version of the graph appears.

Click the Series tab and put the locations of the classes in the Category (X) axis labels space. Click Next.

In the next window type in titles for the Category (\mathbf{X}) axis and the Value (Y) axis.

Click the Gridlines tab and untick Major Gridlines under Value (Y) axis.

Click the Legend tab and untick Show legend then click Finish.

To remove the gaps between the blocks, right click on one of the blocks and choose Format Data Series from the menu that appears.

In the Format Data Series window click the Options tab and reduce the Gap width to 0 . Click OK to put the amended graph in the spreadsheet.

Producing an effective histogram is often a matter of trial and error. You can use different bin ranges in Excel to experiment and find the balance which best enables you to present the data.

A histogram is a visual tool that displays the pattern or distribution of observed values of a variable. The larger the size of the block that represents a class, the greater the number of values that has occurred in that class. Because the connection between the size of each block, specifically its area and the frequency of the class is the key feature of the diagram the scale along the vertical or ' Y ' axis must start at zero.

As long as the classes are of the same width it is simply the height of the block that reflects the frequency of observed values in the class. If the classes have different widths it is important to ensure that the areas of the blocks are proportional to the frequencies of the classes.

Example 2.13

The ages of savers opening accounts at a bank are given in the grouped frequency distribution below. Produce a histogram to depict this distribution.

Age Range	Frequency
Under 15	0
15 to 24	5
25 to 44	22
45 to 64	19
Over 64	7

Here not only do the classes have different widths, but the first and last do not have a numerical beginning and end, they are 'open-ended'. Before we can plot a histogram we must 'close' them. For the first class this is straightforward, we can express it as ' 0 to 14 '. The last class is problematic: if we knew the age of the oldest saver that could be the upper limit of the class, but as we don't we must select an arbitrary yet plausible class end. To reflect the style of other classes we could use ' 65 to 84 '.
To ensure that the areas of the histogram blocks are proportional to the class frequencies when the class widths are unequal, we must plot frequency density along the vertical axis. The frequency density of a class is its frequency divided by its width. The frequency of the ' 15 to 24 ' class in Example 2.13 is 5 and the width is 10 , so its frequency density is $5 / 10$, 0.5 . The frequency density of the ' 25 to 44 ' class is $22 / 20,1.1$, and so on. In Figure 2.8 the effect of this is to increase the height of the block representing the ' 15 to 24 ' class, as it is narrower. The class is halfthe width of the classes to its right, so the height of the block is doubled.

FIGURE 2.8 Histogram of ages of savers opening accounts

The pattern of the distribution shown in Figure 2.8 is broadly balanced or symmetrical. There are two large blocks in the middle and smaller blocks to the left and right of the 'bulge'. From this we would conclude that the majority of observed values occur towards the middle of the age range, with only a few relatively young and old customers.

In contrast, if you look back at Figure 2.7, the histogram showing the numbers of e-mail messages sent, you will see an asymmetrical or skewed pattern. The block on the left-hand side is the largest and the size of the blocks gets smaller to the right of it. It could be more accurately described as right or positively skewed. From Figure 2.7 we would conclude that the majority of office workers send a relatively small number of e-mail messages and only a few office workers send a large number of e-mail messages.

2.4.3 Cumulative frequency graphs

Another method of presenting data arranged in a grouped frequency distribution is the cumulative frequency graph. This diagram portrays the way in which the data accumulate through the distribution from the first to the last class in the grouped frequency distribution. It uses the same horizontal axis
as you would employ to produce a histogram to present the same data, but the vertical axis begins at zero and must go far enough to cover the total frequency of the distribution.

To plot a cumulative frequency graph you must begin by finding the cumulative frequency of each class in the grouped frequency distribution. The cumulative frequency of a class is the frequency of the class itself added to the cumulative or combined frequency of all the preceding classes. The cumulative frequency of the first class is simply the frequency of the first class because it has no preceding classes. The cumulative frequency of the second class is the frequency of the second class added to the frequency of the first class. The cumulative frequency of the third class is the frequency of the third class added to the cumulative frequency of the second class, and so on.

Example 2.14

Find the cumulative frequencies of each class in the grouped frequency distribution in Example 2.11.

Number of Messages Sent	Frequency	Cumulative Frequency
$0-19$	11	11
$20-39$	4	15
$40-59$	4	19
$60-79$	2	21
$80-99$	1	22

Notice that the cumulative frequency of the last class is 22 , the total frequency of values in the distribution. This should always be the case. Once we have included the values in the final class in the cumulative total we should have included every value.

The cumulative frequency figures represent the number of values that have been accumulated by the end of a class. A cumulative frequency graph is a series of single points that represent the cumulative frequency of each class plotted above the end of the class. The final step is to connect the points with straight lines.

Example 2.15

Produce a cumulative frequency graph using the cumulative frequencies from Example 2.14.

FIGURE 2.9 Cumulative frequency graph of e-mail messages sent by 22 office workers

If you look carefully at Figure 2.9 you will see that the line begins at zero on the horizontal axis, which is the beginning of the first class, and zero on the vertical axis. This is a logical starting point. It signifies that no values have been accumulated before the beginning of the first class.

The line in Figure 2.9 climbs steeply at the beginning then flattens off. The steep climb represents the concentration of values in the first class, which contains half of the values in the distribution. The flatter sections to the right represent the very few values in the later classes.

Example 2.16

Plot a cumulative frequency graph for the data in Example 2.12.

Nail Varnish (ml)	Frequency	Cumulative Frequency
$9.80-9.89$	3	3
$9.90-9.99$	7	10
$10.00-10.09$	11	21
$10.10-10.19$	5	26
$10.20-10.29$	3	29
$10.30-10.39$	1	30

FIGURE 2.10 Cumulative frequency graph of contents of nail varnish bottles

The line in Figure 2.10 starts with a gentle slope then rises more steeply before finishing with a gentle slope. This signifies that the first classes contain few values, the middle classes contain many values and the final classes contain few values. This is a symmetrical distribution, whereas the distribution depicted in Figure 2.9 is a skewed distribution.

It may be more convenient to plot a cumulative relative frequency graph, in which the points represent the proportions of the total number of values that occur in and prior to each class. Figure 2.11 below, based on the data in Example 2.17 illustrates this type of graph. It is particularly useful if the total number of values in the distribution is an awkward number or if you want to compare cumulative frequencies of two or more distributions.

Example 2.17

The payments made by 119 customers at a petrol station are summarized in the following grouped frequency distribution. Plot a cumulative relative frequency graph.

			Cumulative Relative
Payment $(£)$	Frequency	Relative Frequency	Frequency
$0.00-19.99$	15	$15 / 119=0.126$	0.126
$20.00-39.99$	37	$37 / 119=0.311$	0.437
$40.00-59.99$	41	$41 / 119=0.344$	0.781
$60.00-79.99$	22	$22 / 119=0.185$	0.966
$80.00-99.99$	4	$4 / 119=0.034$	1.000

FIGURE 2.11 Cumulative relative frequency graph of cash payments at a petrol station

You will find further discussion of cumulative frequency graphs in the next chapter because they offer an easy way of finding the approximate values of medians, quartiles and other order statistics.

2.4.4 Stem and leaf displays

Histograms are effective and widely used devices for presenting quantitative data. Until relatively recently they could be described as unrivalled. However, there is an alternative way of presenting quantitative data in visual form, the stem and leaf display. This is one of a number of newer techniques known collectively as Exploratory Data Analysis (EDA). If you want to know more about the field of EDA the books by Tukey (1977) and Velleman and Hoaglin (1981) provide a thorough introduction.

The role of a stem and leaf display is the same as the role of a histogram, namely to show the pattern of a distribution. But unlike a histogram a stem and leaf display is constructed using the data themselves as building blocks. This means that as well as showing the pattern of a distribution it is also a list of the observations that make up that distribution. It is a very useful tool for making an initial investigation of a set of data as it portrays the shape of the distribution, identifies unusual observations and enables you to assess the suitability of different types of average.

The basis of a stem and leaf display is the structure of numbers, the fact that a number is made up of units, tens, hundreds and so on. For instance, the number 45 is composed of two digits, the 4 tens and the 5 units. Using the analogy of a plant, the stem of the number 45 is the number on the lefthand side, 4 (the number of tens) and the leaf is the number on the righthand side, 5 (the number of units). A stem on a plant can have different leaves; in the same way the numerical stem 4 can have different numerical leaves. The number 48 has the same stem as the number 45 , but a different leaf, 8.

To produce a stem and leaf display for a set of data we have to list the set of stem digits that appear in the data and then record each observation by putting its leaf digit alongside its stem digit. Once we have done this for every observed value in the set of data the result is a series of 'stem lines' each of which consists of a stem digit and the leaf digits of all the observations sharing that particular stem. The final stage in the process is to arrange the leaf digits on each stem line in order of magnitude.

Example 2.18

The audience figures for the 26 programmes in a TV series (in millions) are:

4.0	3.8	4.2	2.9	2.5	3.5	2.6	3.6	5.0	3.5	4.9	2.9	3.3
4.8	1.0	3.2	5.1	2.4	3.7	4.2	3.5	3.8	3.6	2.3	3.9	2.1

Produce a stem and leaf display for this set of data.
Every number consists of two digits: millions and tenths of millions. The millions are the stem digits and the tenths of millions are the leaf digits. The lowest value is 1.0 and the highest is 5.1 so the first stem line will be for the stem digit 1 , and the last one for the stem digit 5. The first stem line will have one leaf digit, the 0 from 1.0. The second stem line, for the stem digit 2, will have six leaf digits, the 9 from 2.9, the 5 from 2.5 and so on.

Stem	Leaves
1	0
2	9569431
3	85653275869
4	02982
5	01

This is a stem and leaf display, but it is not yet finished. We need to rearrange the leaf digits so that they are listed from the smallest to the largest.

Stem	Leaves
1	0
2	1345699
3	23455667889
4	02289
5	01
Leaf unit $=0.1$ million	

The message 'leaf unit $=0.1$ million' that has been added to the final version of the stem and leaf display in Example 2.18 has the same role as the scale on the horizontal or ' X ' axis of a histogram; it specifies the order of magnitude of the data. Without the message you might look at the display, see that the highest value in the distribution has the stem digit 5 and the leaf digit 1, but the number could be $0.51,5.1,51,510,5100$ or any other number that consists of a 5 followed by a 1 . It is only when you know that the leaf digits are tenths of millions in this display that you can be sure the stem digit 5 and the leaf digit 1 represent the number 5.1 million.

Although the stem and leaf display may look a little odd at first it is a tool that is well worth learning to use because of two clear advantages that it enjoys over a histogram: particular values can be highlighted and two distributions can be shown in one display. A histogram can't do the former because it consists of blocks rather than data. It is possible to plot a histogram showing two distributions but the result is cumbersome and you would do better to plot two separate histograms.

Example 2.19

The scheduled time of transmission of five of the programmes whose audiences are listed in Example 2.18 was changed at short notice. The sizes of the audiences for these five programmes are shown in bold type.

4.0	3.8	4.2	2.9	$\mathbf{2 . 5}$	3.5	$\mathbf{2 . 6}$	3.6	5.0	3.5	4.9	2.9	$\mathbf{3 . 3}$
4.8	$\mathbf{1 . 0}$	3.2	5.1	2.4	3.7	4.2	3.5	3.8	3.6	$\mathbf{2 . 3}$	3.9	2.1

The same means of distinguishing the audiences of the programmes that were rescheduled can be incorporated into the stem and leaf display by putting the leaf digits representing the audiences of those programmes in bold type.

Stem	Leaves
1	$\mathbf{0}$
2	1345699
3	$2 \mathbf{3} 455667889$
4	02289
5	01
Leaf unit $=0.1$ million	

You can see from the display in Example 2.19 that the rescheduled programmes tended to attract lower audiences.

To show two distributions in one stem and leaf display you simply list the leaf digits for one distribution to the left of the list of stem digits and the leaf digits for the other distribution to the right of the stem digits.

Example 2.20

The audiences (in millions) for the 26 programmes in the second series of the TV show in Example 2.18 are:

3.6	4.4	2.8	4.5	3.5	3.7	5.7	3.8	4.4	5.8	3.4	2.8	3.6
4.1	3.8	2.9	5.7	2.5	3.6	5.1	5.5	3.6	5.2	3.3	4.2	3.8

Produce a stem and leaf display to show this set of data and the data in Example 2.18.

First Series	Stem	Second Series
9965431	2	
98876655432	3	34566667888
98220	4	12445
10	5	125778
Leaf unit $=0.1$ million		

By looking at the display in Example 2.20 you can see that the programmes in the second series appear to be attracting higher audiences than the programmes in the first series.

You can modify stem and leaf displays to reduce long rows of leaf digits by stretching the stems. It is like using smaller classes in a grouped frequency distribution.

Example 2.21

Produce a stem and leaf display for the audience figures for the second TV series in Example 2.20.

Stem	Leaves
2	5889
3	34
3	566667888
4	1244
4	5
5	12
5	5778
Leaf unit $=0.1$ million	

In Example 2.21 the stem and leaf display contains two stem lines for each stem digit, except 2 . The first stem line for a stem digit contains leaf units 0 to 4 inclusive. The second stem line contains leaf units 5 to 9 inclusive. There is only one stem line for stem digit 2 because the stem digit 2 has no leaf digits less than 5.

The data we have used so far to construct stem and leaf displays have consisted of two-digit numbers, which makes it fairly easy, the left-hand digit is the stem and the right-hand digit is the leaf. But what if we are dealing with more complex figures? In the same way as we can experiment with different classes to produce a suitable histogram, we can try rounding, dividing stem lines, having longer stems or longer leaves to produce a suitable stem and leaf display. Just as we can have too many or too few classes in a histogram, we can have too many or too few stem lines in a stem and leaf display. We need to construct the display so that it is an effective way of presenting the data we have.

Example 2.22

The prices in pounds of 16 different mountain bikes are:

448	423	284	377	502	459	278	268
374	344	256	228	380	286	219	352

Produce a stem and leaf display to show this set of data.
There are a number of ways to approach this task. You could try longer, two-digit stems and one-digit leaves, so 448 will have a stem of 44 and a leaf of 8 . This implies
that your list of stem lines will begin with 21 (the stem of 219, the lowest value) and end with 50 (the stem of 502 , the highest value). You would end up with a very long list of stem lines (30) with only 16 leaf digits scattered among them.
Alternatively you might try one-digit stems and longer, two-digit leaves, so 448 will have a stem of 4 and a leaf of 48 . This is much more promising.

Stem	Leaves
2	19285668788486
3	4452747780
4	234859
5	02
Leaf unit $=£ 1.0$	

You can see by looking at the stem and leaf display in Example 2.22 that there are many cheaper but few expensive bikes. This is another example of a positively skewed distribution.

Although a stem and leaf display is essentially an alternative to a histogram, it can be used instead of a grouped frequency distribution as a way of sorting the data before plotting a histogram such as Figure 2.12.

Example 2.23

Produce a histogram to portray the data in Example 2.22.
To do this we can use each stem line in the stem and leaf display as a class, which will be represented as a block in the histogram. The first stem line could be expressed as the class 200-299 and so on.

FIGURE 2.12
Histogram of prices of mountain bikes

2.4.5 Presenting two quantitative variables

The techniques for presenting quantitative data that you have met so far in this chapter have one thing in common; they are all designed to portray the observed values of a single variable. They are sometimes described as tools of univariate analysis.

But what if we want to present the observed values of two variables in one diagram in order to illustrate a connection (or may be a lack of connection) between them? In that case we need to use another type of graph, the scatter diagram, which is a tool of bivariate, that is, two-variable analysis. The word scatter is used because the intention of the diagram is to show how the observed values of one variable are distributed or scattered in relation to the observed values of another variable.

A set of bivariate data consists of two sets of observed values, a pair of values for each item or thing or person that has been studied. A scatter diagram is constructed by plotting a point for every pair of observed values in the set of data. The first value in the pair is plotted against one axis, the second value against the other axis. The result is a scatter of points that will form some pattern if there is a connection between the variables.

Typically when we plot a scatter diagram we do so because we have a specific theory about the possible connection between the two variables. We may believe that one variable depends in some way on the other variable. If this is the case we refer to one of the variables as the dependent variable whose values we think depend on the values of the other, which is called the independent variable. The dependent variable is known as the Y variable and its observed values are plotted against the Y, or vertical, axis. The independent variable is known as the X variable and its values are plotted against the X , or horizontal, axis.

Example 2.24

The midday temperature (in degree Celsius) and the amount of barbecue fuel (in kilograms) sold at a convenience store on 13 days are:

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	15	17	18	18	19	20	21	22	24	25	27	27	28
Fuel Sold (kg)	10	15	25	20	45	50	40	85	130	135	170	195	180

Produce a scatter diagram to portray this set of data.

FIGURE 2.13 A scatter diagram of temperature and barbecue fuel sold

In Figure 2.13 you can see 13 points in the diagram, one for each of the 13 days in the set of data. Each point represents both the temperature and the amount of barbecue fuel sold for a particular day. The position of the point along the vertical, or Y, axis tells you the sales level for the day and the position of the point along the horizontal, or X , axis tells you the temperature on that day. So, for instance, the point on the bottom-left of the diagram represents the day when the temperature was $15{ }^{\circ} \mathrm{C}$ and the sales level was 10 kg .

The diagram shows us that there appears to be a clear connection between the temperature and the barbecue fuel sold. The sales level seems to be higher on days when the temperature is higher. This type of relationship, in which the values of one variable increase as the values of the other variable increase is a direct relationship, whereas a relationship in which the values of one variable decrease as the values of the other increase is an inverse relationship.

Excel Recipe Card - Scatter diagrams

Enter the data from Example 2.24 into two columns and highlight them.

64 CHAPTER 2: Presenting Data

Select Chart from the Insert menu, $X Y$ (Scatter) as the Chart type in the Chart Wizard window and take the default sub-type. Click Next.

The diagram appears. Click Next.

Remove the gridlines and legend by clicking the appropriate tabs and altering the settings.

Click Finish and the completed scatter diagram will appear in the sheet.

The scatter is to the right of the diagram because the horizontal scale starts at zero.

To change this put the cursor exactly on the horizontal axis. After a pause Value (X) axis appears. When it does, right click and a small menu appears. Select Format Axis.

In the new window click the

 Scale tab.Untick Minimum and replace '0' with '14'. Click OK. The diagram now resembles Figure 2.13.

2.4.6 Presenting time series data

Sometimes we go about presenting two variables in a rather different way. This is when we need to present a time series, which is a set of bivariate data in which one of the variables is time. A time series is a set of data that consists of observations collected over a period, usually at regular intervals. Businesses of all kinds collect this sort of data as a matter of course, for instance weekly sales, monthly output, annual profit, so presenting time series data is important.

The type of graph used to portray time series data is a time series chart. It is similar in style to a scatter diagram in that each point represents a pair of observed values of two variables plotted against a pair of axes.

However, there are some key differences. In a time series chart the time variable is always plotted on the horizontal, or X , axis which represents the passage of time from left (the first observation) to right (the last observation). The points that represent the data are usually joined up to emphasize the flow of time, whereas in a scatter diagram they are never joined up. The scale of the vertical, or Y, axis should begin at zero so that the fluctuations over time are not overemphasized, whereas the scales on the axes of a scatter diagram do not need to start at zero.

Example 2.25
The numbers of employees of a computer games company over 9 years were:

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009
Employees	7	15	38	112	149	371	371	508	422

Produce a time series chart to show this set of data.

FIGURE 2.14 Employees of a computer games company

You can see from Figure 2.14 that in general this company has undergone a dramatic growth in its number of employees over this period. In other words, there has been a strong upward trend, or basic movement. Plots of other time series might show a more fluctuating pattern, perhaps with seasonal variations, that is, a recurrent pattern within each year, or cyclical variations, that is, recurrent variations over periods of years.

Example 2.26

The sales (in units) of cold and flu remedies in a pharmacy over 2 years were:

	Quarter			
Year	1	2	3	4
1	6375	2791	2964	8483
2	6941	2309	3128	9037

Produce a time series plot to show these data.

FIGURE 2.15 Sales of cold and flu remedies

You can tell by looking at Figure 2.15 that this pharmacy sells far more cold and flu remedies in the autumn and winter months (quarters 1 and 4) than it does in the spring and summer months (quarters 2 and 3), and that this pattern occurs in both years.

Excel Recipe Card - Time series charts

Enter the Year and Employees data from Example 2.25 into two columns and highlight the Employees figures.

Select Chart from the Insert menu, Line as the Chart type: and take the default sub-type. Click Next.

Click the Series tab.

Put the cell locations of the years as the Category (X) axis labels. Click Next.

On the Titles page of the next window enter appropriate axis titles.
lick the appropriate tabs and alter th click the appropriate tabs and alter the settings.

Click Finish and your diagram should look like Figure 2.45.

Test yourself questions from Warwick's business enterprises

Fully worked solutions to these questions are on pages 324-326. You can find more questions on the topics covered in this chapter at the accompanying website www. elsevierdirect.com/9781856179478.

2.1 (Easy)

Warwick's limousine business receives three types of booking: corporate; special occasions such as weddings; and party. The numbers of booking of each type in the four seasons of 1 year are given in the following table.

	Number of Bookings		
Season	Corporate	Special Occasion	Party
Winter	38	11	23
Spring	35	44	20
Summer	23	47	25
Autumn	49	17	38

(a) Find the total number of bookings for each season and plot a bar chart to represent them.
(b) Plot a clustered bar chart to represent the seasonal figures by type of booking.
(c) Plot a stacked bar chart to represent the seasonal figures by type of booking.

2.2 (Moderate)

The numbers of bottles of champagne sold on each of a random sample of 37 nights at Warwick's club were:

6	14	22	17	15	12	18	11	23	10	13	17	8
25	13	0	13	20	18	13	16	15	0	15	14	
15	9	7	14	17	13	3	15	7	23	10	15	

(a) Present these data in the form of a grouped frequency distribution.
(b) Plot a histogram of the distribution.
(c) Plot a cumulative frequency chart of the distribution.

2.3 (Hard)

(a) The sizes of the bills (to the nearest pound) presented to 22 customers visiting Warwick's restaurant one evening were:
Compile a stem and leaf display of these data.

72 CHAPTER 2: Presenting Data

Summarizing Values of a Single Variable

Why do I need to know about this? Warwick the Hospitality entrepreneur says...

'In running my businesses I always seemed to be working with numbers of one sort and another. Often when I was dealing with clients or suppliers these numbers really mattered but there is no way that I could remember all the sales figures, for instance. If I was talking to someone on the phone about them I would use an average to give them an idea of generally how big (or small) the figures were and quote the range to convey the span of them. In this way I could summarize what were often large sets of data, which was very convenient.'

Chapter Objectives

This chapter will help you to:

- understand why summarizing data is important;
- distinguish between location and spread;

■ use various methods of summarizing data;

- interpret the different ways of summarizing data;
- know when to use the different ways of summarizing data; and
- appreciate the role of summary techniques in monitoring quality.

CONTENTS

Introduction
Measures of Location
Measures of Spread
Measuring Quality and Consistency

3.1 INTRODUCTION

This chapter is about using figures known as summary measures to represent or summarize quantitative data. Because they are used to describe sets of data they are also called descriptive measures. These summary measures are very effective and widely used methods of communicating the essence or gist of a set of observations in just one or two figures, particularly when it is important to compare two or more distributions. Knowing how to interpret them and when to use them will help you become a much more effective communicator and user of statistical information.

There are two basic ways of summarizing a set of data. The first is to use a figure to give some idea of what the values within a set of data are like. This is the idea of an average, something you are probably familiar with; you may have achieved an average mark, you may be of average build etc.

The word average suggests a 'middle' or 'typical' level. An average is a representative figure that summarizes a whole set of numbers in a single figure. There are two other names for averages that you will meet. The first is measures of location, used because averages tell us where the data are positioned or located on the numerical scale, so they measure the location of the data. The second is measures of central tendency, used because averages provide us with some idea of the centre or middle of a set of data.

The second basic way of summarizing a set of data is to measure how widely the figures are spread out or dispersed. Summary measures that do this are therefore known as measures of spread or measures of dispersion. They are single figures that tell us how broadly a set of observations is scattered.

These two types of summary measures, measures of location and measures of spread, are not alternatives; they are complementary to each other. That is, we don't use either a measure of location or a measure of spread to summarize a set of data. Typically we use both a measure of location and a measure of spread to convey an overall impression of a set of data, in the same way that suspects in a police drama on television might be described by both their height and their weight.

3.2 MEASURES OF LOCATION

There are various averages, or measures of location, that you can use to summarize or describe a set of data. The simplest both to apply and to interpret is the mode.

3.2.1 The mode

The mode, or modal value, is the most frequently occurring value in a set of observations. You can find the mode of a set of data by simply inspecting the observations.

Example 3.1

The ages of 15 staff working at a fast food restaurant are:

17	18	21	18	16	19	17	28	16	20	18	17	17	19	17

What is the mode?
The value 17 occurs more often (5 times) than any other value, so 17 is the mode.

If you want an average to represent a set of data that consists of a small number of discrete values in which one value is clearly the most frequent, then the mode is a perfectly good way of describing the data. Looking at the data in Example 3.1 you can see that using the mode, and describing these workers as having an average age of 17 , would give a useful impression of the data.

The mode is much less suitable if the data we want to summarize consist of a larger number of different values, especially if there is more than one value that occurs the same number of times.

Example 3.2

The ages of 18 staff working at a motorway service station restaurant are:

39	1733	44	22	39	45	40	37	31
33	39	28	32	32	31	31	37	42

What is the mode?
The values 31 and 39 each occur three times.

The data in Example 3.2 are bimodal; that is, it has two modes. If another person aged 32 joined the workforce there would be three modes. The more modes there are, the less useful the mode is to use. Ideally we want a single figure as a measure of location to represent a set of data.

If you want to summarize a set of continuous data, using the mode is even more inappropriate; usually continuous data consist of different values so every value would be a mode because it occurs as often as every other value. If two or more observations take exactly the same value it is a fluke.

3.2.2 The median

Whereas you can only use the mode for some types of data, the second type of average or measure of location, the median, can be used for any set of data.

The median is the middle observation in a set of data. We find the median by first arranging the data in order of magnitude, that is, listed in order from the lowest to the highest values. Such a list is called an array. Each observation in an array may be represented by the letter ' x ' and the position of the observation in the array is put in round brackets, for instance $x_{(3)}$ would be the third observation in the array and $x_{(n)}$ would be the last.

Example 3.3

Find the median of the data in Example 3.1.
Array

16	16	17	17	17	17	17	18	18	18	19	19	20	21	28

Since there are 15 observations, the middle one is the 8th, the first 18 , which is shown in bold type. There are seven observations to the left of it in the array, and seven observations to the right of it.

You can find the exact position of the median in an array by taking the number of observations, represented by the letter n, adding one and then dividing by two.

Median position $=(\mathrm{n}+1) / 2$
In Example 3.3 there are 15 observations, that is, $\mathrm{n}=15$, so :
Median position $=(15+1) / 2=16 / 2=8$
The median is in the 8th position in the array, in other words the 8th highest value, 18. The median age of these workers is 18 .

Example 3.4

Find the median of the data in Example 3.2.
Array

17	22	28	31	31	31	32	32	33	37	37	39	39	39	40	42	44	45

In this case there are 18 observations, that is, $n=18$, so:
Median position $=(18+1) / 2=9.5$ th
Although we can find a ninth observation and a tenth observation there is clearly no 9.5th observation. The median position of 9.5 th means that the median lies halfway between the ninth and tenth observations, 33 and 37 , which appear in bold type in the array. To find the halfway mark between these observations, add them together and divide by two.

$$
\text { Median }=(33+37) / 2=35
$$

The median age of this group of workers is 35 .

When we are dealing with an odd number of observations there will be a median, that is, a value in the middle. However, if there are an even number of observations in a set of data there will be no single middle value, we always have to split the difference between the middle pair of observations.

3.2.3 The arithmetic mean

Although you have probably come across averages before, and you may already be familiar with the mode and the median, neither of them is likely to be the first thing to come to mind if someone asked you how to find the average of a set of data. Faced with such a request you might well say something about adding the observations together and then dividing by the number of observations there are.

This is what many people think of as 'the average', although actually it is one of several averages. We have already dealt with two of them, the mode and the median. This third average, or measure of location, is called the mean or more specifically the arithmetic mean in order to distinguish it from other types of mean. Like the median, the arithmetic mean can be used with any set of quantitative data.

The procedure for finding the arithmetic mean involves calculation so you may find it more laborious than finding the mode, which only involves inspecting data, or finding the median, which only involves arranging data. You have to first get the sum of the observations and then divide by n, the number of observations in the set of data.

Arithmetic mean $=\sum x / n$
The symbol x is used here to represent an observed value of the variable X, so Σx represents the sum of the observed values of the variable X. The arithmetic mean of a sample is represented by the symbol \bar{x}, ' x-bar'.

The arithmetic mean of a population is represented by the Greek letter μ, 'mu'.

The mean is one of several statistical measures you will meet which have two different symbols, one of which is Greek, to represent them. The Greek symbol is always used to denote the measure for the population. Rarely do we have the time and resources to calculate a measure for a whole population, so almost invariably the ones we do calculate are for a sample.

Example 3.5

The temperatures in degrees Celsius in Miami on 23 days selected at random were:

26	22	22	26	26	23	23	19	26	22	26	26
28	27	32	31	18	29	27	30	33	28	27	

Find the mean temperature:
The sum $\sum x=26+22+22+\cdots+28+27=597$
The arithmetic mean $\sum x / n=597 / 23=25.957$ (to 3 decimal places)

Excel Recipe Card - Averages
Enter the data from Example 3.5 into a column.

Select Data Analysis from the Tools menu. (If you cannot find Data Analysis click Add-Ins in the Tools menu to check that it is available.)

Choose Descriptive Statistics from Data Analysis menu and click OK.

Continued

A table appears in a new worksheet. The mean, median and mode are given in the third, fifth and sixth rows respectively.

2 Microsoft Excel - Book1									
[区ᄌ]] Eile Edit View Insert Formst Iools Data Window Help									
A1 * f) Column1									
	A	B	C	D	E	F	G	H	1
1	Column 1								
2									
3	Mean	25.95652							
4	Standard E	0.801378							
5	Median	26							
6	Mode	26							
7	Standard [3.843273							
8	Sample Va	14.77075							
9	Kurtosis	-0.15181							
10	Skewness	-0.23206							
11	Range	15							
12	Minimum	18							
13	Maximum	33							
14	Sum	597							
15	Count	23							
16									

3.2.4 Choosing which measure of location to use

The whole point of using a measure of location is that it should convey an impression of a distribution in a single figure. If we need to communicate this to an audience it won't help if we quote the mode, median and mean and then invite our audience to please themselves which one to pick. It is important to use the right sort of average.

Picking which average to use might depend on a number of factors:

- The type of data we are dealing with.

■ Whether the average needs to be easy to find.

- The shape of the distribution.

■ Whether the average will be the basis for further work on the data.
As far as the type of data is concerned, unless you are dealing with fairly simple discrete data the mode is redundant. If you do have such data to analyse the mode may be worth considering particularly if it is important that your measure of location is a feasible value for the variable to take.

Example 3.6

The numbers of days that 16 employees were absent through illness were:

1	1	6	0	2	1	1	4	0	2	4	1	4	3	2	1

Find the mode, median and mean for this set of data.
The modal value is 1 , which occurs six times.

Array

0	0	1	1	1	1	1	1	2	2	2	3	4	4	4	6

The median position is: $(16+1) / 2=8.5$ th position,
The median is: $(8$ th value +9 th value $) / 2=(1+2) / 2=1.5$
The arithmetic mean $=(0+0+1+1+\cdots \cdots \cdots+4+6) / 16=32 / 16=2$

In Example 3.6 it is only the mode that has a value that is both feasible and actually occurs, 1 . Although the value of the median, 1.5 may be feasible if the employer recorded half-day absences, it is not one of the observed values. The value of the mean, 2.0625 is too precise to be feasible and therefore cannot be one of the observed values.

The only other reason you might prefer to use the mode rather than the other measures of location, assuming that you are dealing with discrete data made up of a relatively few different values, is that it is the easiest of the measures of location to find. All you need to do is to look at the data and count how many times the values occur. Often with the sort of simple data that the mode suits it is pretty obvious which value occurs most frequently and there is no need to count the frequency of each value.

There are more reasons for not using the mode than there are for using the mode. First, it is not appropriate for some types of data. Second, there is no guarantee that there is only one mode; there may be two or more in a single distribution. Third, only the observations that have the modal value 'count', the rest of the observations in the distribution are not taken into account at all. In contrast, when we calculate a mean we add all the values in the distribution together; none of them are excluded.

In many cases you will find that the choice of average boils down to either the median or the mean. The shape of the distribution is a factor that could well influence your choice. With a distribution that has a skewed rather than a symmetrical shape, the median is likely to be the more realistic and reliable measure of location to use.

Example 3.7

Produce a histogram to display the data from Example 3.6 and comment on the shape of the distribution.
The distribution of absences in Figure 3.1 is positively skewed, with the majority of the observations occurring to the left of the distribution.

FIGURE 3.1 Histogram of the data from Example 3.6, days absent through illness

The median and mean for the data in Example 3.6 were 1.5 and 2.0625 respectively. There is quite a difference between them, especially when you consider that the difference between the lowest and highest values in the distribution is only 6 . The difference between the median and the mean arises because the distribution is skewed.

When you find a median you concentrate on the middle of the distribution, you are not concerned with the observations to either side of the middle, so the pattern of the distribution at either end of the distribution does not have any effect on the median. In Example 3.6 it would not matter if the highest value in the distribution were 66 rather than 6 , the median would still be 1.5 . The value of the median is determined by how many observations lie to the left and right of it, not the values of those observations.

The mean, on the other hand, depends on all the values in the distribution, from the lowest to the highest, which must be added together in order to calculate it. If the highest value in the distribution were 66 rather than 6 it would make a considerable difference to the value of the mean (in fact it would increase to 5.8125).

Because calculating the mean involves adding all the observations together the value of the mean is sensitive to unusual values or outliers. Every observation is equal in the sense that it contributes 1 to the value of n, the number of observations. However, if an observation is much lower than the rest, when it is added into the sum of the values it will contribute relatively little to the sum and make the value of the mean lower. If an observation is much higher than the rest, it will contribute disproportionately more to the sum and make the value of the mean higher.

Example 3.8

One of the observed values in the data in Example 3.6 has been recorded wrongly. The figure ' 6 ' should have been ' 2 '. How does this affect the values of the mode, median and mean? The mode is unaffected, the value ' 1 ' still occurs more frequently than the other values. The median is unaffected because the 8th and 9th values will still be ' 1 ' and ' 2 ' respectively. The mean will be affected because the sum of the observations will reduce by 4 to 29 , so the mean is $29 / 16=1.8125$.

In Example 3.8 only one value was changed yet the mean drops from 2.0625 to 1.8125 .

In a skewed distribution there are unusual values so if you use a mean to represent a skewed distribution you should bear in mind that it will be distorted by the relatively extreme values or outliers in the distribution. This is why the median for the data in Example 3.6 was 1.5 and the mean was 2.0625. The higher values in the distribution, the ' 6 ' and the ' 4 's, have in effect pulled the mean away from the median.

So, should you use the median or the mean to represent a skewed distribution? The answer is that the median is the more representative of the two. Look carefully at the values of the median and mean in relation to the figures in Example 3.6. The median, 1.5 , is by definition in the middle of the distribution with eight observations below it and eight observations above it. In contrast the mean, 2.0625, has eleven observations below it and only five above it.

If you are dealing with a symmetrical distribution you will find that the mean is not susceptible to distortion because by definition there is roughly as much numerical 'ballast' to one side of the distribution as there is to the other. The mean and median of a symmetrical distribution will therefore be close together.

Example 3.9

Produce a histogram to portray the data in Example 3.5. Find the median and compare it to the mean.

FIGURE 3.2 Histogram of the data from Example 3.5, Miami temperatures in ${ }^{\circ} \mathrm{C}$

There are 23 observations so the median is the $(23+1) / 2=12$ th observation.
Array

18	19	22	22	22	23	23	26	26	26	26	26	26	27	27
27	28	28	29	30	31	32	33							

The median is 26 , which also happens to be the mode and is close to the mean, 25.957.

Figure 3.2 shows a much more symmetrical distribution than we saw in Figure 3.1. This symmetry has resulted in the mean and the median being close together.

There is one further factor to consider when you need to choose a measure of location, and that is whether you will be using the result as the basis for further statistical work. If this is the case use the mean since it has a more extensive role in statistical analysis as a representative measure than the median.

You will find that choosing the right measure of location is not always straightforward. The conclusions from the discussion in this section are:

■ In all other cases use a mean. Use a mode only if your data are discrete and have only one mode.

■ It is better to use a median if your data are skewed.
■ In all other cases use a mean.

3.2.5 Finding measures of location from classified data

You may find yourself in a situation where you would like to use a measure of location to represent a distribution but you only have the data in some classified form, perhaps a frequency distribution or a diagram. May be the original data have been mislaid or discarded, or you want to develop work initiated by someone else and the original data are simply not available to you.

If the data are classified in the form of a stem and leaf display, finding a measure of location from it is no problem since the display is also a list of the observed values in the distribution. Each observation is listed, but in a detached form so all you have to do is to put the stems and their leaves back together again to get the original data from which they were derived.

You can find the mode of a distribution from its stem and leaf display by looking for the most frequently occurring leaf digits grouped together on a stem line. Finding the median involves counting down (or up) to the middle value. To get the mean you would have to reassemble each observation in order to add them up.

Example 3.10

Construct a stem and leaf display to show the data in Example 3.5. Use the display to find the mode, median and mean of the distribution.

Stem-and-leaf of temperature $n=23$ Leaf unit $=1.0$

1	89
2	22233
2	666666777889
3	0123

The modal value is 26 , the leaf digit ' 6 ' appears six times on the lower of the two stem lines for the stem digit ' 2 '.
We know from the calculation $(23+1) / 2=12$ that the median is the 12 th observation, which is also 26 . To find it we can count from the top. The two leaf digits on the first stem line, which represent the observed values ' 18 ' and ' 19 ', are the 1 st and 2 nd observed values in the distribution in order of magnitude. The five leaf digits on the next stem line, the first of the two stem lines for the stem digit ' 2 ', are the 3rd to the 7th observed values in order of magnitude. The first leaf digit on the third stem line, the second of the two for the stem digit ' 2 ', is the 8th observed value, so if we count a further four values along that stem line we come to the 12 th observation, the median value. The leaf digit that represents the median value in the display is shown in bold type.
To get the mean we have to put the observed values back together again and add 18, 19, 22,22 etc. to get the sum of the values, 597 , which when divided by 23 , the number of values, is 25.957 , the mean (to three decimal places).

In Example 3.10 we can get the same values for the mode, median and mean as we would obtain from the original data because the stem and leaf display is constructed from the parts of the original data. Even if the stem and leaf display were made up of rounded versions of the original data we would get very close approximations of the real values of the measures of location.

Finding these measures of location from a stem and leaf display is relatively straightforward. It is therefore a very useful way of deciding which measure is the most appropriate for a set of data.

But what if you didn't have a stem and leaf display to work with? If you had a frequency distribution that gave the frequency of every value in the distribution, or a bar chart that depicted the frequency distribution, you could still find the measures of location.

Example 3.11

Use Figure 3.1 to find the mode, median and mean of the distribution of days absence through illness.
Figure 3.1 shows the frequency with which each number of days absence occurs, in the form of a bar. By checking the height of the bar against the vertical axis we can tell exactly how many times that number of days absence has occurred. We can put that information in the form of a frequency distribution:

Number of days absent	Frequency
0	2
1	6
2	3
3	1
4	3
5	0
6	1

We can see that the value ' 1 ' has occurred six times, more than any other level of absence, so the mode is 1 .
The median position is $(16+1) / 2=8.5$ th. To find the median we have to find the 8 th and 9th values and split the difference. We can find these observations by counting down the observations in each category, in the same way as we can with a stem and leaf display. The first row in the table contains two '0's, the 1st and 2nd observations in the distribution in order of magnitude. The second row contains the 3rd to the 8th observations, so the 8th observation is a ' 1 '. The third row contains the 9th to the 11 th observations, so the 9 th observation is a ' 2 '. The median is therefore halfway between the 8th value, 1 , and the 9th value, 2 , which is 1.5 .
To find the mean from the frequency distribution we could add each number of days absence into the sum the same number of times as its frequency. We add two '0's, six ' 1 's and so on. There is a much more direct way of doing this involving multiplication, which is after all collective addition. We simply take each sales level and multiply it by its frequency, then add the products of this process together. If we use the letter ' x ' to represent sales, and the letter ' f ' to represent frequency we can describe this procedure as $\Sigma f x$. Another way of representing n, the number of observations, is Σf, the sum of the frequencies, so the procedure for calculating the mean can be represented as $\Sigma f x / \Sigma f$.

Number of days absent (Σx)	Frequency (f)	$f x$
0	2	0
1	6	6
2	3	6
3	1	3
4	3	12
5	0	0
6	1	6
	$\Sigma f=16$	$\Sigma f x=33$

The mean $=\Sigma f x / \Sigma f=33 / 16=2.0625$

You can see that the results obtained in Example 3.11 are exactly the same as those found in Example 3.6 from the original data. This is possible because every value in the distribution is itself a category in the frequency distribution so we can tell exactly how many times it occurs.

But suppose you need to find measures of location for a distribution that is only available to you in the form of a grouped frequency distribution? The categories are not individual values but classes of values. We can't tell from it exactly how many times each value occurs, only the number of values there are in each class. From such limited information we can find measures of location but they will be approximations of the true values that we would get from the original data.

Because the data used to construct grouped frequency distributions usually include many different values, hence the need to divide them into classes, finding an approximate value for the mode is a rather arbitrary exercise. It is almost always sufficient to identify the modal class, which is the class that contains most observations.

Example 3.12

Use Figure 3.2 to find the modal class, median and mean of the temperatures in Miami. The grouped frequency distribution used to construct Figure 3.2 was:

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Frequency
16 and under 20	2
20 and under 24	5
24 and under 28	9
28 and under 32	5
32 and under 36	2

The modal class is ' 24 and under 28 ' because it contains more values, nine, than any other class.
To find a value for the median we first need to locate the class that contains the median value. There are 23 observations in the distribution so the median is the $(23+1) / 2=12$ th value in order of magnitude. Clearly the median value does not belong to the first class, ' 16 and under 20^{\prime}, which contains only the 1st and 2 nd observed values, the lowest pair in the distribution. Neither does it belong to the second class, which contains the 3rd to the 7th values. The median is in the third class, which contains the 8th to the 16th values. But which one of the nine observations in the class is the median value? We know that the median will be the fifth observation in the median class but if we only have the grouped frequency we simply don't know what that observation is. All we know is that it is at least 24 because that is where the median class begins so all nine observations in it are no lower than 24
We can approximate the median by assuming that all nine observations in the median class are distributed evenly through it. If that were the case the median would be $5 / 9$ ths the way along the median class. So to get an approximate value for the median:

Begin at the start of the median class	24
Add $5 / 9$ ths of the width of the median class $5 / 9 * 4$	2.22
	26.22

This is close to the real value we obtained from the original data, 26.
To obtain an approximate value for the mean from the grouped frequency distribution we apply the same frequency-based approach as we used in Example 3.11, but again we have to get around the problem of not knowing the exact values of the observations in a class.
In the absence of this knowledge we assume that all the observations in a class take, on average, the value in the middle of the class, known as the class midpoint. The set of class midpoints are then used as the values of the variables, x, that are contained in the distribution. So, for the purposes of calculating $\Sigma f x / \Sigma f$, the observation in the first class is assumed to have the value 18 , that is the halfway mark or midpoint of the first class, ' 16 and under 20^{\prime} and so on.

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Midpoint (x)	Frequency (f)	$f x$
16 and under 20	18	2	36
20 and under 24	22	5	110
24 and under 28	26	9	234
28 and under 32	30	5	150
32 and under 36	34	2	68
		$\Sigma f=23$	$\Sigma f x=598$

The approximate value of the mean $=\Sigma f x / \Sigma f=598 / 23=26$, which is very close to the actual value, 25.957 (to three decimal places).

There is an alternative method that you can use to find the approximate value of the median from data presented in the form of a grouped frequency distribution. It is possible to estimate the value of the median from a cumulative frequency graph or a cumulative relative frequency graph of the distribution. These graphs are described in section 2.4.3 of Chapter 2.

To obtain a value for the median, plot the graph and find the point along the vertical axis that represents half the total frequency. Draw a horizontal line from that point to the line that represents the cumulative frequency and then draw a vertical line down from that point to the horizontal axis. The point at which your vertical line meets the horizontal axis is the approximate value of the median.

Example 3.13

Draw a cumulative relative frequency graph to represent the grouped frequency distribution in Example 3.12 and use it to find the approximate value of the median temperature.

Cost	Frequency	Cumulative frequency	Cumulative relative frequency
16 and under 20	2	2	0.08
20 and under 24	5	7	0.30
24 and under 28	9	16	0.70
28 and under 32	5	21	0.92
32 and under 36	2	23	1.00

FIGURE 3.3 Cumulative relative frequency plot of the data from Example 3.5, temperatures in Miami showing the approximate median

The starting point of the horizontal dotted line in the graph in Figure 3.3 is ' 0.5 ' on the vertical axis, midway on the cumulative relative frequency scale. At the point where the horizontal dotted line meets the cumulative relative frequency line, the vertical dotted line has been drawn down to the horizontal axis. The point where this vertical dotted line reaches the horizontal axis is about 26 , which is the estimate of the median. The graph suggests that half of the values in the distribution are accumulated below 26 and half are accumulated above 26.
If you look back to Example 3.9 you will find that the actual median is 26 .

3.3 MEASURES OF SPREAD

Just as there are several measures of location you can use to convey the central tendency of a distribution, there are several measures of spread you can use to convey the dispersion of a distribution. They are typically used alongside measures of location in order to give an overall impression of a distribution; where its middle is and how widely scattered the observations are around the middle. Indeed the two most important measures of spread are closely linked to the median and the mean.

3.3.1 The range

The simplest measure of spread is the range. The range of a distribution is the difference between the lowest and the highest observations in the distribution, that is:

$$
\begin{aligned}
\text { Range } & =\text { highest observed value }- \text { lowest observed value } \\
& =x_{(n)}-x_{(1)}
\end{aligned}
$$

where x is the observed value and the bracketed n indicates the nth or highest value and the bracketed 1 the first or lowest value.

The range is very easy to use and understand, and is often a perfectly adequate method of measuring dispersion. However, it is not a reliable way of assessing spread because it is based on only two observations. If, for instance, you were asked to compare the spread in two different sets of data you may find that the ranges are very similar but the observations are spread out very differently.

Example 3.14

Two travel agencies each employ 9 people. The number of years' experience in the travel industry that the employees of these companies have is:

Agency	A	0	4	4	5	7	8	10	11	15
Agency	B	0	0	4	4	7	10	10	14	15

Find the range of each set of data and compare them. Plot a histogram for each set of data.

$$
\begin{aligned}
& \text { Range }(A)=15-0=15 \\
& \text { Range }(B)=15-0=15
\end{aligned}
$$

The ranges are exactly the same, but this does not necessarily mean that the observations in the two distributions are spread out in exactly the same way.
If you compare Figure 3.4 and Figure 3.5 you can see that the distribution of experience of the staff at Agency A has a much more pronounced centre whereas the distribution of experience of staff at Agency B has much more pronounced ends.

FIGURE 3.4 Experience of employees at Agency A

FIGURE 3.5 Experience of employees at Agency B

Although the ranges for the distributions in Example 3.14 are identical, the distributions show different levels of dispersion. The figures for Agency B are more widely spread or dispersed than the figures for Agency A.

3.3.2 Quartiles and the semi-interquartile range

The second measure of dispersion at our disposal is the semi-interquartile range, or SIQR for short. It is based on quartiles, which are related to the median.

One way of looking at the median, or middle observation, of a distribution is to regard it as the point which separates the distribution into two equal halves, one consisting of the lower half of the observations and the other consisting of the upper half of the observations. The median, in effect, cuts the distribution into two.

If the median is a single cut that divides a distribution into two, the quartiles are a set of three separate points in a distribution that divide it into four equal quarters. The first, or lower quartile, known as Q1, is the point that separates the lowest quarter of the observations in a distribution from the rest. The second quartile is the median itself; it separates the lower two quarters (i.e. the lower half) of the observations in the distribution from the upper two quarters (i.e. the upper half). The third, or upper quartile, known as Q3, separates the highest quarter of observations in the distribution from the rest.

The median and the quartiles are known as order statistics because their values are determined by using the order or sequence of observations in a distribution. You may come across other order statistics such as deciles, which divide a distribution into tenths, and percentiles, which divide a distribution into hundredths.

You can find the quartiles of a distribution from an array or a stem and leaf display of the observations in the distribution. The quartile position is halfway between the end of the distribution and the median, so it can be defined in relation to the median position, which is $(n+1) / 2$, where n is the number of observations. To find the approximate position of the quartiles take the median position, round it down to the nearest whole number if it is not already a whole number, add one and divide by two, that is:

Quartile position $=($ median position +1$) / 2$
Once you know the quartile position you can find the lower quartile by counting up to the quartile position from the lowest observation and the upper quartile by counting down to the quartile position from the highest observation.

Example 3.15

The temperatures in degrees Celsius in Moscow on 23 days selected at random were:

-7	-10	-14	-3	-4	-2	0	-1	-2	10	-6	-4
4	21	19	24	5	8	13	11	21	25	28	

Find the median and upper and lower quartiles for this distribution.

Array	-14	-10	-10	-7	-6	-4	-4	-3	-2	-2	0	1	4	5	8
	11	13	19	21	21	24	25	28							

The median position $=(23+1) / 2=12$ th position, so the median value is the value ' 1 '. This suggests that half the time the temperature in Moscow is below one degree, and half the time it is above one degree.
The quartile position $=(12+1) / 2=6.5$ th position, that is midway between the 6th and 7th observations.
The lower quartile is halfway between the observations 6th and 7th from the lowest, which are both -4 , so the lower quartile is -4 . This suggests that 25% of the time the temperature in Moscow is below $-4^{\circ} \mathrm{C}$.
The upper quartile is halfway between the observations 6th and 7th from the highest, which are 19 and 13 respectively. The upper quartile is midway between these values, i.e.
16. This suggests that 25% of the time the temperature in Moscow is above $16^{\circ} \mathrm{C}$.

If the upper quartile separates off the top quarter of the distribution and the lower quartile separates off the bottom quarter, the difference between the lower and upper quartiles is the range or span of the middle half of the observations in the distribution. This is called the interquartile range, which is the range between the quartiles. The semi-interquartile range (SIQR) is, as its name suggests, half the interquartile range, i.e.:

$$
\mathrm{SIQR}=(\mathrm{Q} 3-\mathrm{Q} 1) / 2
$$

where Q3 is the third, or upper quartile and Q1 is the first, or lower quartile.

Example 3.16

Find the semi-interquartile range for the data in Example 3.15.
The lower quartile temperature is -4 and the upper quartile temperature is 16 .

$$
\operatorname{SIQR}=(16-(-4)) / 2=(16+4) / 2=20 / 2=10
$$

The semi-interquartile range is a measure of spread. The larger the value of the SIQR, the more dispersed are the observations in the distribution.

Example 3.17

Find the SIQR of the data in Example 3.5 and compare this to the SIQR of the data in Example 3.15.

Array	18	19	22	22	22	23	23	26	26	26	26	$\mathbf{2 6}$
	26	27	27	27	28	28	29	30	31	32	33	

There are 23 observations, so the median position is the $(23+1) / 2=12$ th position.
The quartile position is the $(12+1) / 2=6.5$ th position.

$$
\begin{aligned}
& \text { Q1 }=(23+23) / 2=23 \text { Q3 }=(28+28) / 2=28 \\
& \text { SIQR }=(28-23) / 2=5 / 2=2.5
\end{aligned}
$$

The SIQR for the data from Miami (2.5) is far lower than the SIQR for the data from Moscow (10) indicating that there is more variation in the temperature in Moscow.

There is a diagram called a box plot, which you might find a very useful way of displaying order statistics. In a box plot the middle half of the values in a distribution is represented by a box, which has the lower quartile at one end and the upper quartile at the other. A line inside the box represents the median. The top and bottom quarters are represented by straight lines called 'whiskers' protruding from each end of the box. A box plot is a particularly useful way of comparing distributions.

Example 3.18

Produce box plots for the temperature data from Miami and Moscow.

FIGURE 3.6 Box plots of temperatures in ${ }^{\circ} \mathrm{C}$ from Miami and Moscow
Look carefully at the box plot to the right in Figure 3.6, which represents the temperatures in Moscow. The letter (a) indicates the position of the lowest observation, (b) indicates the position of the lower quartile, (c) is the median, (d) is the upper quartile and (e) is the highest value.

In Figure 3.6 the diagram representing the temperatures in Miami sits far higher than the diagram representing the temperatures in Moscow, emphasizing the higher temperatures in Miami. The Miami box is also more compact than the Moscow box, which reflects the greater variation in temperatures in Moscow. The fact that the median line in the Moscow box is positioned low down within the box suggests that the middle half of the distribution is skewed. The quarter of observations between the median and the upper quartile are more widely spread than the quarter of observations between the median and the lower quartile. In contrast, the median line in the box that represents the temperatures in Miami is high up within the box. This shows that for the Miami data the spread of values between the median and the upper quartile is less than the spread of values between the median and the lower quartile.

A box plot is particularly useful for identifying outliers, observed values that seem detached from the rest of the distribution. If you have outliers in a distribution it is important to check first that they have not been written down wrongly and second, assuming that they are accurately recorded, what reasons might explain such unusual observations.

Example 3.19

If the lowest value in the set of temperatures in Miami was wrongly recorded as $18^{\circ} \mathrm{C}$ but was actually $8^{\circ} \mathrm{C}$, how does the box plot change?

FIGURE 3.7 Box plot of amended temperature data from Miami in ${ }^{\circ} \mathrm{C}$
In Figure 3.7 the lowest observation, 8, is now represented with a small asterisk to emphasize its relative isolation from the rest of the observations.

Quartiles and the SIQR are useful ways of measuring spread, and together with the median they are often the best way of summarizing skewed distributions. However, like the range, they focus on a very few observations in a distribution. So it is possible that the SIQR, like the range, cannot always detect differences in dispersion.

Example 3.20

Find the SIQR for each of the two sets of data in Example 3.14.
There are nine observations in each distribution, so the median position is $(9+1) / 2=5$ th
in both cases. The quartile position is $(5+1) / 2=3$ rd position.

Agency	A	0	4	4	5	7	8	10	11	15
Agency	B	0	0	4	4	7	10	10	14	15

In both cases the lower quartile is 4 and the upper quartile is 10 , giving an SIQR of 3 for each distribution. Despite the identical SIQR results, Figures 3.4 and 3.5 clearly show that these distributions are not spread out in the same way.

3.3.3 The standard deviation

In order to avoid the shortcomings of the range and the SIQR we have to turn to a measure of spread that is based on every observation rather than just a few. That measure, the most important measure of spread in Statistics, is known as the standard deviation.

As the name suggests, the standard deviation is based on the idea of measuring the typical, or standard, amount of deviation, or difference, in a set of observations. But deviation from what? In fact it is deviation from the arithmetic mean.

We find the standard deviation by first calculating the mean and then finding how far each observation is from it.

Example 3.21

Six bars sell the following number of boxes of tortilla chips in a particular week

2	5	6	4	3	4

The mean, $\bar{x}=24 / 6=4$

Observation (x)	Mean (\bar{x})	Deviation $(x-\bar{x})$
2	4	-2
5	4	1
6	4	2
4	4	0
3	4	-1
4	4	0

To get a single measure of spread from deviation figures like those in Example 3.21 it would be very convenient to add up the deviations and divide the sum of the deviations by the number of them to get a sort of 'average' deviation. Unfortunately, as you will find out if you try it with the deviations in Example 3.21, it doesn't work because the deviations add up to zero.

This will always happen because the mean is, in effect, the centre of gravity of a distribution. In the same way that the centre of gravity of an object has as much weight to one side as it does to the other, the mean has as much numerical 'weight' below it as it has above it. The result is that the deviations between the mean and the observations that are lower than the mean, which are always negative, cancel out the deviations between the mean and the observations that are higher than the mean, which are always positive. You can see in Example 3.21 that the negative deviations (-1 and -2) would be cancelled out by the positive deviations (1 and 2) if we added all the deviations together.

To get round this problem we square the deviations before adding them up, since any number squared is positive. The sum of the squared deviations, $\sum(x-\bar{x})^{2}$, is the basis of the standard deviation.

Example 3.22

Find the sum of the squared deviations, $\sum(x-\bar{x})^{2}$, from the mean for the data in Example 3.21 .

Observation (x)	Mean (\bar{x})	Deviation $(x-\bar{x})$	Squared deviation $(x-\bar{x})^{2}$
2	4	-2	4
5	4	1	1
6	4	2	4
4	4	0	0
3	4	-1	1
4	4	0	0
$\Sigma(x-\bar{x})^{2}=4+1+4+0+1+0=10$			

Now we have a way of measuring total deviation, it would be convenient to simply divide by the number of deviations that have been added together, which is the same as n, the number of observations. However, we actually divide the sum of the squared deviations by one less than n instead of n itself for reasons related to the statistical concept of degrees of freedom.

Any set of data starts off with the same number of degrees of freedom as it has observations, n. The implication is that if you wanted to specify all the figures in the set of data yourself you can do so freely. However, once you have found the mean you could only specify one less than the number of figures
freely. The last one would have to be the only figure that combines with the ones you have specified to keep the mean the same, so you have 'lost' a degree of freedom. For instance, if we know that the mean of a set of three figures is 5, and we suggest that 2 and 7 are the first two figures in the set, the third value has to be 6 in order that the mean is still 5 . Choose any other value for third figure and the mean will be different.

When we calculate a standard deviation we are using the mean, so we lose one degree of freedom. Therefore the procedure that we use to calculate the standard deviation, s, of a sample involves dividing the sum of squared deviations by $(n-1)$. The only exception is the rare occasion when we need to calculate the population standard deviation, σ (the lower case of the Greek letter s), in which case the sum of squared deviations is divided by n.

In later work you will find that a sample standard deviation can be used as an estimate of a population standard deviation. This can save time and money, but it can only be done if the sample standard deviation is calculated properly.

The final part of the procedure you follow to obtain a sample standard deviation is to take the square root of the sum of squared deviations divided by $(n-1)$. You have to do this to get a figure that is in the same units as your original data. For instance, the squared deviation figures in Example 3.22 are in 'boxes of chips squared'. It is much more useful to have a figure measured in boxes of chips.

We can sum up the procedure that is used to obtain a sample standard deviation in the following expression:

$$
s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{(n-1)}}
$$

Example 3.23

Calculate the standard deviation for the data in Example 3.21.
The sum of squared deviations is 10 and the number of observations is 6 , so the standard deviation of this sample is:

$$
s=\sqrt{10 / 5}=\sqrt{2}=1.414 \text { to three decimal places }
$$

The expression for the population standard deviation is

$$
\sigma=\sqrt{\Sigma(x-\mu)^{2} / n}
$$

If you use either of these expressions to calculate the standard deviation of a set of data with many observations you will find the experience laborious. It is really a task that should be carried out with the aid of a calculator with statistical functions or computer software.

Excel Recipe Card－Measures of spread

Enter the data from Example 3.21 into a column．

23 Microsoft Excel－Book1									
［込］Elle Edit Yiew Insert Format Iools Data Window Help									
吅日									
$A 8 \rightarrow f r_{x}$									
	A	B	C	D	E	F	G	H	1
1	Boxes								
2	2								
3	5								
4	6								
5	4								
6	3								
7	4								
8									
9									
10									

Select Data Analysis from the Tools menu．（If you cannot find Data Analysis click Add－Ins in the Tools menu to check that it is available．）

Choose Descriptive Statistics from the menu and click OK．

Enter the cell locations of the data alongside Input Range：and tick Summary statistics．Click OK．

The output includes the standard deviation and the range. (In this screenshot the first column is widened to show the full titles of the measures.)

Excel Recipe Card - Quartiles
Enter the data from Example 3.21 into a column.

Put the cursor in an empty cell. Type =QUARTILE(in the formula bar, labeled f_{x} towards the top of the screen and QUARTILE(array,quart) appears.

Click and drag over the data.

Type a comma then 1, then close the bracket.

Press Enter and the first, or lower quartile appears in the cell.

צ Microsoft Excel - Book1
饱 File Edit View Insert Format Iools Data Window He

To get the third, or upper quartile position the cursor in another empty cell and put '=QUARTILE(A1:A6,3)' in the formula bar, then press Enter.

§ Microsoft Excel - Book1
(ख) File Edit View Insert Format Iools Data Window He

In later statistical work you may encounter something called a variance. The variance is the square of the standard deviation. The expression for the variance looks like the expression for the standard deviation and in fact the only difference is that finding the variance does not involve taking a square root.

The sample variance, $s^{2}=\Sigma(\mathrm{x}-\overline{\mathrm{x}})^{2} / n-1$
The population variance, $\sigma^{2}=\Sigma(x-\mu)^{2} / n$

The standard deviation is widely used with the mean to provide an overall summary or description of a distribution. Indeed for many distributions the mean and the standard deviation are the key defining characteristics or parameters of the distribution.

One of the reasons it has become such an important measure of spread is that it is a reliable way of detecting dispersion.

Example 3.24

Find the mean and the standard deviation of the data from Example 3.14 and compare the results for the two agencies.
Agency A Mean $=(0+4+4+5+7+8+10+11+15) / 9=7.11$

Experience (x)	Mean (\bar{x})	$(x-\bar{x})$	$(x-\bar{x})^{2}$
0	7.11	-7.11	50.55
4	7.11	-3.11	9.67
4	7.11	-3.11	9.67
5	7.11	-2.11	4.45
7	7.11	-0.11	0.01
8	7.11	0.89	0.79
10	7.11	2.89	8.35
11	7.11	3.89	15.13
15	7.11	7.89	62.25
			$\Sigma(x-\bar{x})^{2}=160.87$

$$
\begin{gathered}
\qquad \begin{array}{c}
s=\sqrt{\Sigma(x-\bar{x})^{2} /(n-1)}=\sqrt{160.87 /(9-1)} \\
=\sqrt{160.87 / 8}=\sqrt{20.11}=4.48 \text { to two decimal places } \\
\text { Agency B Mean }=(0+0+4+4+7+10+10+14+15) / 9=7.11
\end{array}
\end{gathered}
$$

Experience (x)	Mean (\bar{x})	$(x-\bar{x})$	$(x-\bar{x})^{2}$
0	7.11	-7.11	50.55
0	7.11	-7.11	50.55
4	7.11	-3.11	9.67
4	7.11	-3.11	9.67
7	7.11	-0.11	0.01
10	7.11	2.89	8.35
10	7.11	2.89	8.35
14	7.11	6.89	47.47
15	7.11	7.89	62.25
			$\Sigma(x-\bar{x})^{2}=246.87$

$$
\begin{aligned}
s & =\sqrt{\Sigma(x-\bar{x})^{2} /(n-1)}=\sqrt{246.87 / 9-1} \\
& =\sqrt{246.87 / 8}=\sqrt{30.86}=5.56 \text { to two decimal places }
\end{aligned}
$$

The means are the same, 7.11, but the standard deviation for Agency B is higher than the standard deviation for Agency A; 5.56 compared to 4.48 . The difference between the standard deviations reflects the contrasting spread that we could see in Figures 3.4 and 3.5.

The mean and standard deviation can be used to approximate the overall spread of observations in a distribution. Typically nearly all the observations will lie between the point three standard deviations below the mean and the point three standard deviations above the mean. Another way of saying this is to say that almost the entire distribution is located within three standard deviations of the mean. Another rule of thumb is that 90% or so of a distribution will be within two standard deviations of the mean.

In further work you will find that the mean and the standard deviation can be used to define the positions of values in a distribution. For instance, if we have a distribution that has a mean of 4 and a standard deviation of 2 we could describe the value ' 8 ' as being two standard deviations above the mean. The value ' 1 ' could be described as being one and a half standard deviations below the mean.

3.3.4 Finding measures of spread from classified data

You may need to determine measures of spread for data that is already classified. The ease of doing this and the accuracy of the results depend in part on the type of data and the form in which it is presented.

If you have a frequency distribution that shows the number of times each one of a small number of discrete values occurs then you will be able to
identify all the values in the distribution and carry out the appropriate calculations. Similarly, if you have data in the form of a stem and leaf display you should be able to identify at least the approximate values of the data. In either case the results you obtain should be identical or at least very close to the real values.

If the data you have is in the form of a grouped frequency distribution then it is possible to find measures of spread, but these will be approximations. Here we will consider how to find an approximate value of a standard deviation from a grouped frequency distribution and how to find approximate values for quartiles, and hence the semi-interquartile range, from a cumulative relative frequency graph.

A grouped frequency distribution shows how many observed values in the distribution fall into a series of classes. It does not show the actual values of the data. Since calculating a standard deviation does usually require the actual values we have to find some way of representing the actual values based on the classes to which they belong. In fact the midpoint of each class is used as the approximate value of every value in the class. This is the same approach as we used to find the mean from a grouped frequency distribution in section 3.2.5 of this chapter.

The approximate value of the standard deviation is:

$$
s=\sqrt{\frac{1}{(\Sigma f)-1}\left[\Sigma f x^{2}-\frac{(\Sigma f x)^{2}}{\Sigma f}\right]}
$$

where f represents the frequency of a class and x its midpoint.

Example 3.25

Find the approximate value of the standard deviation of the data represented in the grouped frequency distribution in Example 3.12.

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Midpoint (x)	Frequency (f)	fx	x^{2}	fx^{2}
16 and under 20	18	2	36	324	648
20 and under 24	22	5	110	484	2420
24 and under 28	26	9	234	676	6084
28 and under 32	30	5	150	900	4500
32 and under 36	34	2	68	1156	2312
		$\Sigma f=23$	$\Sigma f x=598$		$\Sigma f x^{2}=15964$

$$
\begin{aligned}
\mathrm{s} & =\sqrt{1 /(23-1) *\left[15964-(598)^{2} / 23\right]} \\
& =\sqrt{1 / 22 *[15964-(357604 / 23)]} \\
& =\sqrt{1 / 22 *[15964-15548]} \\
& =\sqrt{1 / 22 * 416} \\
& =\sqrt{18.909} \\
& =4.349 \text { to three decimal places }
\end{aligned}
$$

You may like to work out the actual standard deviation using the original data from Example 3.5. You should find that it is 3.843 to three decimal places.

You can find the approximate values of the quartiles of a distribution from a cumulative frequency graph or a cumulative relative frequency graph by employing the same approach as we used to find the approximate value of the median in section 3.2.5 of this chapter. The difference is that to approximate the quartiles we start from points one-quarter and three-quarters the way up the vertical scale.

Example 3.26

Use the cumulative relative frequency graph used in Example 3.13 to estimate the values of the lower and upper quartiles for the distribution and produce an approximate value of the semi-interquartile range.

FIGURE 3.8 Cumulative relative frequency graph of the data from Example 3.5, temperatures in Miami and the approximate Quartiles

In Figure 3.8 the approximate value of the lower quartile is the point where the vertical dotted line to the left meets the horizontal axis, at about 23. The approximate value of the upper quartile is the point where the vertical dotted line to the right meets the horizontal axis, at about 29. The semi-interquartile range is half the difference between these two, 3.
If you look back at Example 3.17 you will see that the true values of the lower and upper quartiles are 23 and 28 respectively, and that the semi-interquartile range is 2.5 .

3.4 MEASURING QUALITY AND CONSISTENCY

In business enhancing product quality is important. This is often interpreted to mean increasing the consistency of the product, or to put it another way, reducing the variation of the product. Measures of spread like the standard deviation and the variance are important factors in product quality because they measure variation. Increasing consistency may mean implementing changes that reduce standard deviations or variances. Monitoring quality may involve comparing current performance with previous performance, which is described using a mean and standard deviation.

One well-established way of monitoring quality is the control chart, which is based on the distribution of the variable being measured to assess quality. Such a chart consists of a horizontal line representing the mean of the variable, which is the performance target, and lines three standard deviations above and below the mean, which are the control limits. As products are produced or services delivered they are measured and the observations plotted on the chart. If a plotted point lies beyond either of the control limits, the process is considered to be out of control and we need to take corrective action or shut it down.

Example 3.27

A sandwich bar offers to serve customers in three minutes. Long experience has shown that the mean service time is 2.8 min and the standard deviation is 0.15 min . Construct a control chart using these figures and use it to assess the following sequence of replacement times achieved by a trainee:

FIGURE 3.9 Control chart for Sandwich Bar Service Times
Figure 3.9 shows that the service times are erratic but within the upper and lower control limits (LCL and UCL respectively) until the last observation, which suggests the process is going out of control, perhaps because the trainee is tiring.

In practice control charts are rather more complicated than in Example 3.27 because the monitoring process involves taking samples rather than individual values, but the role of the standard deviation is essentially the same. For a good introduction to statistical quality control, see Montgomery (2004).

Test yourself questions from Warwick's business enterprises
Fully worked solutions to these questions are on pages 327-328. You can find more questions on the topics covered in this chapter at the accompanying website www. elsevierdirect.com/9781856179478

3.1 (Easy)

The amount of the gratuity, to the nearest $£$, left by each of a sample of 25 customers in Warwick's restaurant were:

3	5	2	0	4	3	0	1	1	7	1	4	1
2	9	4	1	4	1	5	5	2	3	1	1	

(a) Find the mode and median of this distribution.
(b) Calculate the mean of the distribution and compare it to the mode and median. What can you conclude about the shape of the distribution from this comparison?
(c) Produce a histogram to represent the distribution and confirm your conclusions in (b).

3.2 (Moderate)

The times taken in minutes by two housekeepers to clean and restock six rooms in Warwick's hotel were:

Housekeeper A:	39.0	31.8	35.5	33.4	26.6	30.0
Housekeeper B:	36.6	26.3	33.2	27.1	26.7	27.1

Calculate the mean and standard deviation for each set of data and use them to compare the performance of the two housekeepers.

3.3 (Hard)

The number of people visiting Warwick's club on each of a sample of 25 live music nights and the number of people visiting the club on each of a sample of 25 disco nights were recorded and the following comparative boxplot produced to portray the two distributions.

Study the diagram and say whether each of the statements beneath it is true or false.
(a) The largest number of clubbers was on a live music night.
(b) The range of the disco distribution is larger.
(c) There is one outlier, the lowest number of clubbers on a disco night.
(d) The middle half of the live music distribution is more symmetrically distributed.
(e) The largest number of clubbers on a disco night is less than the first quartile of the live music distribution.
(f) The upper quartile of the number of clubbers on live music nights is about 660.
(g) The median of the disco distribution is about 400 .

Summarizing Bivariate Data

Why do I need to know about this? Warwick the Hospitality entrepreneur says...
'This is all about making connections and these are often important. When I priced the meals in my restaurants I was always aware of the connection between price and demand. If my prices were too high I would not sell as many meals. It seems obvious, but there is more to it. What I wanted to know was exactly how strong was the connection between price and demand, and how many fewer meals would I sell if I set my prices at a particular level. This is where correlation and regression can help.
Other important connections involve time. I needed to know how costs of my supplies had gone up, which is where index numbers come in. I had to know how much business we were doing month by month, and how we were likely to do next month. This is what time series analysis is all about.'

Chapter Objectives

This chapter will help you to:

- understand why summarizing bivariate data is important;
- investigate the connection between two variables;
- measure changes over time;
- adjust figures for the effects of inflation;
- analyse time series; and
- predict future values of time series.

4.1 INTRODUCTION

This chapter is about techniques that you can use to study the relationship between two variables. The type of data that these techniques are intended to analyse is called bivariate data because they consist of observed values of two variables. The techniques themselves make up what is known as bivariate analysis.

Bivariate analysis is of great importance to business. The results of this sort of analysis have influenced many aspects of business significantly. When the connection between smoking and health problems was established it transformed the tobacco industry. The analysis of survival rates of microorganisms and temperature is crucial to the setting of appropriate refrigeration levels by food retailers. Marketing strategies of many organizations are often based on the analysis of consumer expenditure in relation to age or income. Sometimes time itself is an important variable; for instance, the timing of the promotion of patent medicines is based on analysing the incidence of illnesses such as colds over time.

The chapter will introduce you to some of the techniques that organisations use to summarize bivariate data. The first set of techniques you will meet, correlation and regression, are general techniques that can be used with any quantitative bivariate data. The second set of techniques, which consists of price indices and basic time series analysis, are designed to summarize sets of bivariate data in which one of the variables is time.

4.2 CORRELATION AND REGRESSION

Suppose you have a set of bivariate data that consists of observations of one variable, X, and the associated observations of another variable, Y, and you want to see if X and Y are related. For instance, the Y variable could be sales of ice cream per day and the X variable the daily temperature, and you want to investigate the connection between temperature and ice cream sales. Correlation analysis enables us to assess whether there is a connection between the two variables and, if so, how strong that connection is.

If correlation analysis tells us there is a connection we can use regression analysis to identify the exact form of the relationship. It is essential to know this if you want to use the relationship to make predictions, for instance if we want to predict the demand for ice cream when the daily temperature is at a particular level.

The assumption that underpins bivariate analysis is that one variable depends on the other. The letter Y is used to represent the dependent variable,
the one whose values are believed to depend on the other variable. This other variable, represented by the letter X, is called the independent variable. The Y or dependent variable is sometimes known as the response because it is believed to respond to changes in the value of the X. The X or independent variable is also known as the predictor because it might help us to predict the values of Y.

4.2.1 Correlation analysis

Correlation analysis is a way of investigating whether two variables are correlated, or connected with each other. We can study this to some extent by using a scatter diagram to portray the data, but such a diagram can only give us a visual 'feel' for the association between two variables, it doesn't actually measure the strength of the connection. So, although a scatter diagram is the thing you should begin with to carry out bivariate analysis, you need to calculate a correlation coefficient, the Pearson correlation coefficient to be precise, if you want an accurate way of assessing how closely the variables are related.

The correlation coefficient is similar to the standard deviation in that it is based on the idea of dispersion or spread. The comparison isn't complete because bivariate data are spread out in two dimensions; if you look at a scatter diagram you will see that the points representing the data are scattered both vertically and horizontally.

The letter r is used to represent the correlation coefficient of sample data. Its Greek counterpart, the letter ρ ('rho'), is used to represent the correlation coefficient of population data. As is the case with other summary measures it is exceedingly unlikely that you will ever have to find the value of a population correlation coefficient because of the cost and practical difficulty of studying entire populations.

The correlation coefficient is a ratio; it compares the coordinated scatter to the total scatter. The coordinated scatter is the extent to which the observed values of one variable, X, vary in coordination with the observed values of a second variable, Y. We use the covariance of the values of X and Y, $\mathrm{Cov}_{X Y}$, to measure the degree of coordinated scatter.

To calculate the covariance you have to multiply the amount that each x deviates from the mean of the X values, \bar{x}, by the amount that its corresponding y deviates from the mean of the Y values, \bar{y}. That is, for every pair of x and y observations you calculate:

$$
(x-\bar{x})(y-\bar{y})
$$

The result will be positive whenever the x and y values are both bigger than their means, because we will be multiplying two positive deviations together. It will also be positive if both the x and y values are smaller than their means, because both deviations will be negative and the result of multiplying them together will be positive. The result will only be negative if one of the deviations is positive and the other negative.

The covariance is the total of the products from this process divided by n, the number of pairs of observations, minus one. We have to divide by $n-1$ because the use of the means in arriving at the deviations results in the loss of a degree of freedom.

$$
\operatorname{Cov}_{x y}=\Sigma(x-\bar{x})(y-\bar{y}) /(n-1)
$$

The covariance is positive if values of X below \bar{X} tend to be associated with values of Y below \bar{y}, and values of X above \bar{x} tend to be associated with values of Y above \bar{y}. In other words, if high x values occur with high y values and low x values occur with low y values we will have a positive covariance. This suggests that there is a positive or direct relationship between X and Y, that is, if X goes up we would expect Y to go up as well, and vice versa. If you compared the income of a sample of consumers with their expenditure on clothing you would expect to find a positive relationship.

The covariance is negative if values of X below \bar{X} are associated with values of Y above \bar{y}, and vice versa. The low values of X occur with the high values of Y, and the high values of X occur with the low values of Y. This is a negative or inverse relationship. If you compared the prices of articles of clothing with demand for them you might expect to find an inverse relationship.

Example 4.1

A shop sells six brands of light showerproof jacket. The prices in pounds and the numbers sold in a week are:

Price	18	20	25	27	28	32
Number Sold	8	6	5	2	2	1

Plot a scatter diagram and calculate the covariance.

FIGURE 4.1 Prices of jackets and numbers sold
In Figure 4.1 Number sold has been plotted on the Y , or vertical, axis and Price has been plotted on the X , or horizontal, axis. We are assuming that Number sold depends on Price rather than the other way round.
To calculate the covariance we need to calculate deviations from the mean for every x and y value.

$$
\begin{aligned}
& \bar{x}=(18+20+25+27+28+32) / 6=150 / 5=25 \\
& \bar{y}=(8+6+5+2+2+1) / 6=24 / 6=4
\end{aligned}
$$

Price (x)	\bar{x}	$(x-\bar{x})$	Number Sold (y)	\bar{y}	$(y-\bar{y})$	$(x-\bar{x})(y-\bar{y})$	
18	25	-7	8	4	4	-28	
20	25	-5	6	4	2	-10	
25	25	0	5	4	1	0	
27	25	2	2	4	-2	-4	
28	25	3	2	4	-2	-6	
32	25	7	1	4	-3	-21	
			$\sum(x-\bar{x})(y-\bar{y})=-69$				

Covariance $=\Sigma(x-\bar{x})(y-\bar{y}) /(n-1)=-69 / 5=-13.8$

The other ingredient necessary to obtain a correlation coefficient is some measure of total scatter, some way of assessing the horizontal and vertical dispersion. We can do this by taking the standard deviation of the X values, which measures the horizontal spread, and multiplying by the standard deviation of the Y values, which measures the vertical spread.

The correlation coefficient, r, is the covariance of the X and Y values divided by the product of the two standard deviations.

$$
r=\operatorname{Cov}_{X Y} /\left(S_{X} * S_{Y}\right)
$$

There are two things to note about r at this stage:
■ It can be either positive or negative because the covariance can be negative or positive.

■ It cannot be larger than 1 or -1 because the coordinated scatter, measured by the covariance, cannot be larger than the total scatter, measured by the product of the standard deviations.

Example 4.2

Calculate the correlation coefficient for the data in Example 4.1.
We need to calculate the sample standard deviations for X and Y.

Price (x)	\bar{x}	$(x-\bar{x})$	$(x-\bar{x})^{2}$	Number sold (y)	\bar{y}	$(y-\bar{y})$	$(y-\bar{y})^{2}$
18	25	-7	49	8	4	4	16
20	25	-5	25	6	4	2	4
25	25	0	0	5	4	1	1
27	25	2	4	2	4	-2	4
28	25	3	9	2	4	-2	4
32	25	7	$\underline{49}$	1	4	-3	9

From Example 4.1: Covariance $=-13.8$
Sample standard deviation of $X: S_{x}=\sqrt{\Sigma(x-\bar{x})^{2} /(n-1)}=\sqrt{136 / 5}$

$$
=5.22 \text { to two decimal places }
$$

Sample standard deviation of $Y: S_{y}=\sqrt{\Sigma(y-\bar{y})^{2} /(n-1)}=\sqrt{38 / 5}$
$=2.76$ to two decimal places

$$
\text { Correlation coefficient : } \begin{aligned}
r & =(-13.8) /(5.22 * 2.76)=(-13.8) / 14.41 \\
& =-0.96 \text { to two decimal places }
\end{aligned}
$$

As you can see calculating a correlation coefficient, even for a fairly simple set of data, is quite laborious so generally we use computer software to do it.

Excel Recipe Card - Correlation coefficients
Store the data from Example 4.1 in two columns.

Select Data Analysis from the
Tools menu. (If you cannot find Data Analysis click Add-Ins in the Tools menu to check that it is available.)

Choose Correlation from the list of Analysis Tools then click OK.
 data under Input Range: then click OK.

The table that appears in the new sheet contains the correlation coefficient for data to five decimal places (-0.95982). The other figures, in each case 1, are coefficients measuring how correlated each variable is with itself, which is by definition completely.

区 Microsoft Excel - Book1						
(区)] File Edit View Ins			sert Format	Iools Data		Window
$\mathrm{A} 1 \xrightarrow{ } \rightarrow$						
	A	B	C	D	E	F
1	Column 1 Column 2					
2	Column 1	1				
3	Column 2	-0.95982	1			
4						
5						
6						
7						
8						

What should we conclude from the analysis of the data in Example 4.1? The scatter diagram in Figure 4.1 shows that the points representing the data lie almost along a straight line, in other words there is a pronounced linear pattern. The diagram also shows that this linear pattern goes from the topleft of the diagram to the bottom-right, suggesting that fewer of the more expensive garments are sold. This means there is an inverse relationship between the numbers sold and price.

What does the correlation coefficient in Example 4.2 tell us? The fact that it is negative, -0.96 , confirms that the relationship between the numbers sold and price is indeed an inverse one. The fact that it is very close to the maximum possible negative value that a correlation coefficient can take, -1 indicates that there is a strong association between the variables.

The correlation coefficient measures linear correlation, the extent to which there is a straight-line relationship between the variables. Every correlation coefficient will lie somewhere on the scale of possible values, which is between -1 and +1 inclusive.

A correlation coefficient of +1 tells us that there is a perfect positive linear association between the variables. If we plotted a scatter diagram of data that have such a relationship we would expect to find all the points lying in the

FIGURE 4.2 Perfect positive correlation
form of an upward-sloping straight line. You can see this sort of pattern in Figure 4.2. A correlation coefficient of -1 means we have perfect negative correlation, which is illustrated in Figure 4.3.

In practice you are unlikely to come across a correlation coefficient of +1 or -1 , but you may well meet correlation coefficients that are positive and fairly close to +1 or negative and fairly close to -1 . Such values reflect good positive and good negative correlation respectively. Figure 4.4 shows a set of

FIGURE 4.3 Perfect negative correlation

FIGURE 4.4 Good positive correlation
data with a correlation coefficient of +0.9 . You can see that although the points do not form a perfect straight line they form a pattern that is clearly linear and upward sloping.

Figure 4.5 portrays bivariate data that have a correlation coefficient of -0.9 . In this case you can see a clear downward linear pattern.

The closer your correlation coefficient is to +1 the better the positive correlation. The closer it is to -1 , the better the negative correlation. It follows that the nearer a correlation coefficient is to zero, the weaker the

FIGURE 4.5 Good negative correlation

FIGURE 4.6 Negligible correlation
connection between the two variables. Figure 4.6 shows a sample of observations of two variables with a correlation coefficient of -0.1 , which provides little evidence for any correlation.

It is important to bear in mind that the correlation coefficient assesses the strength of linear relationships between two variables. It is quite possible to find a low or even zero correlation coefficient yet the scatter diagram shows a strong connection. This happens when the relationship between the two variables does not assume a linear form. Figure 4.7 shows that a clear

FIGURE 4.7 A non-linear relationship
non-linear relationship exists between the variables yet the correlation coefficient for the data it portrays is zero.

The things to remember about the sample correlation coefficient, r, are as follows:

■ It measures the strength of the connection or association between observed values of two variables.

- It can take any value from -1 to +1 inclusive.

■ If it is positive it means there is a direct or upward-sloping relationship.
■ If it is negative it means there is an inverse or downward-sloping relationship.

■ The further it is from zero, the stronger the association.
■ It only measures the strength of linear relationships.

4.2.2 The Coefficient of determination

The square of the correlation coefficient is also used as a way of assessing the connection between variables. Although it is the square of r, the symbol used to represent it is actually R^{2}. It is called the coefficient of determination because it can help you to measure how much the values of one variable are decided or determined by the values of another.

As we saw, the correlation coefficient is based on the standard deviation. Similarly, the square of the correlation coefficient is based on the square of the standard deviation, the variance.

Like the correlation coefficient, the coefficient of determination is a ratio; the ratio of the amount of the variance that can be explained by the relationship between the variables to the total variance in the data. Because it is a ratio it cannot exceed one and because it is a square it is always a positive value. For convenience it is often expressed as a percentage.

Example 4.3

Calculate the coefficient of determination, R^{2}, for the data in Example 4.1.
The correlation coefficient for the data was -0.96 . The square of -0.96 is 0.92 (to two decimal places) or 92%. This is the value of R^{2}. It means that 92% of the variation in the numbers of jackets sold can be explained by the variation in the prices.

You may find R^{2} an easier way to communicate the strength of the relationship between two variables. Its only disadvantage compared to the correlation coefficient is that the figure itself does not convey whether the association is positive or negative. However, there are other ways of showing this, including the scatter diagram.

4.2.3 Simple linear regression analysis

Measuring correlation tells you how strong the linear relationship between two variables might be but it doesn't say exactly what that relationship is. If we need to know the way in which two variables are related we use the other aspect of bivariate analysis, regression analysis.

The simplest form of this technique, simple linear regression (which is often abbreviated to SLR), enables us to find the straight line most appropriate for representing the connection between two sets of observed values. Because the line that we 'fit' to our data can be used to represent the relationship it is rather like an average in two dimensions, it summarizes the link between the variables.

Simple linear regression is called simple because it analyses two variables, it is called linear because it is about finding a straight line, but why is it called regression, which actually means going backwards? The answer is that the technique was first developed by the genetics pioneer Francis Galton, who wanted a way of representing how the weights of sweet pea seeds were constrained or 'regressed' by the weight of their parent seeds.

In later work you may encounter multiple regression, which is used to analyse relationships between more than two variables, and non-linear regression, which is used to analyse relationships that do not have a straight-line pattern.

You might ask why it is necessary to have a technique to fit a line to a set of data. It would be quite easy to look at a scatter diagram like Figure 4.1, lay a ruler close to the points and draw a line to represent the relationship between the variables. This is known as fitting a line 'by eye' and is a perfectly acceptable way of getting a quick approximation particularly in a case like Figure 4.1 where there are few points forming a clear linear pattern.

The trouble with fitting a line by eye is that it is inconsistent and unreliable. It is inconsistent because the position of the line depends on the judgement of the person drawing the line; different people will produce different lines for the same data.

For any set of bivariate data there is one line that is the most appropriate, the so-called 'best-fit' line. There is no guarantee that fitting a line by eye will produce the best-fit line, so fitting a line by eye is unreliable.

We need a reliable, consistent way of finding the line that best fits a set of plotted points, which is what simple linear regression analysis is. It is

FIGURE 4.8 The intercept and slope of a line
a technique that finds the line of best fit, the line that travels as closely as possible to the plotted points. It finds the two defining characteristics of that line, its intercept, or starting point, and its slope, or rate of increase or decrease. These are illustrated in Figure 4.8.

We can use these defining characteristics to compose the equation of the line of best fit, which represents the line using symbols. The equation enables us to plot the line itself.

Simple linear regression is based on the idea of minimizing the differences between a line and the points it is intended to represent. Since all the points matter, it is the sum of these differences that needs to be minimized. In other words, the best-fit line is the line that results in a lower sum of differences than any other line would for that set of data.

The task for simple linear regression is a little more complicated because the difference between a point and the line is positive if the point is above the line, and negative if the point is below the line. If we were to add up these differences we would find that the negative and positive differences cancel each other out.

This means the sum of the differences is not a reliable way of judging how well a line fits a set of points. To get around this problem, simple linear regression is based on the squares of the differences because they will always be positive. This is illustrated in Example 4.4.

Example 4.4

The sales of ice cream in a shop (in kilos) and the midday temperatures (in degrees Celsius) for 3 days were:

Sales (y)	4	3	6
Temperature (X)	15	20	25

Figures 4.9 and 4.10 show possible lines of best fit for these data, but which of the two lines best fits the data?

FIGURE 4.9 Sales and temperature

FIGURE 4.10 Sales and temperature

The deviations between the points and the line in Figure 4.9 are, from left to right, +1.5 , -1.5 and 0 . The total deviation is:

$$
+1.5+(-1.5)+0=0
$$

The deviations between the points and the line in Figure 4.10 are, from left to right, +1 , -1 and +1 . The total deviation is:

$$
+1+(-1)+1=1
$$

The fact that the total deviation is smaller for Figure 4.9 suggests that its line is the better fit. But if we take the sum of the squared deviations the conclusion is different.

Total squared deviation in Figure $4.9=1.5^{2}+(-1.5)^{2}+0^{2}=2.25+2.25+0=4.5$
Total squared deviation in Figure $4.10=1^{2}+(-1)^{2}+1^{2}=1+1+1=3$
This apparent contradiction has arisen because the large deviations in Figure 4.9 cancel each other out when we add them together.

The best-fit line that simple linear regression finds for us is the line that takes the path which results in there being the least possible sum of squared differences between the points and the line. For this reason the technique is sometimes referred to as least squares regression.

As you might imagine, for any given set of data there are many lines from which the best-fit line could be chosen. To pick the right one we could plot each of them in turn and measure the differences using a ruler. Fortunately, such a laborious procedure is not necessary; simple linear regression uses calculus, the area of mathematics that is partly about finding minimum or maximum values, to find the intercept and slope of the line of best fit directly from the data.

The procedure involves using two expressions to find first the slope and then the intercept. Since simple linear regression is almost always used to find the line of best fit from a set of sample data the letters used to represent the intercept and the slope are a and b, respectively. The equivalent Greek letters, α and β, are used to represent the intercept and slope of the population line of best fit.

According to simple linear regression analysis the slope of the line of best fit is:

$$
b=\frac{\Sigma x y-(\Sigma x * \Sigma y) / n}{\Sigma x^{2}-(\Sigma x)^{2} / n}
$$

and the intercept is:

$$
a=(\Sigma y-b \Sigma x) / n
$$

These results can then be combined to give the equation of the line of best fit, which is known as the regression equation:

$$
Y=a+b X
$$

The expressions for getting the slope and intercept of the line of best fit look daunting, but this need not worry you. If you have to find a best-fit line you can use a statistical or a spreadsheet package, or even a calculator with a good statistical facility to do the hard work for you. The expressions are quoted here, and used in Example 4.5 below merely to show you how the procedure works.

Example 4.5

Find the equation of the line of best fit for the data in Example 4.1.
We need to find four summations; the sum of the x values, the sum of the y values, the sum of the x squared values and the sum of the products of each pair of x and y values multiplied together. We also need to know n, the number of pairs of observations.

Price (x)	x^{2}	Number Sold (y)	$x y$
18	324	8	144
20	400	6	120
25	625	5	125
27	729	2	54
28	784	2	56
32	1024	1	32
$\Sigma x=150$	$\Sigma x^{2}=3886$	$\Sigma y=24$	$\Sigma x y=531$

$$
\begin{aligned}
& b= \frac{\Sigma x y-(\Sigma x * \Sigma y) / n}{\Sigma x^{2}-(\Sigma x)^{2} / n}=\frac{531-(150 * 24) / 6}{3886-(150)^{2} / 6}=\frac{531-3600 / 6}{3886-22500 / 6} \\
&= \frac{531-600}{3886-3750}=\frac{-69}{136}=-0.507 \text { to three decimal places } \\
& \begin{array}{c}
a= \\
(\Sigma y-b \Sigma x) / n=(24-(-0.507) 150) / 6=(24+76.103) / 6 \\
\\
\quad=100.103 / 6=16.684 \text { to three decimal places }
\end{array}
\end{aligned}
$$

The equation of the line of best fit is therefore Number sold $=16.684-0.507$ Price

This is a laborious procedure, even with a relatively simple set of data so in practice we use a computer package to find and plot the equation of the line of best fit.

Excel Recipe Card－Simple

 linear regressionStore the data from Example 4.1 in two columns of the spreadsheet．

Select Data Analysis from the Tools menu．

Choose Regression from the list of Analysis Tools then click OK．

3 Microsoft Excel－Book1
四 Eile Edit Yiew Insert Fgrmat Iools Data Window Help
口及月

B8		$8{ }^{\text {f }}$							
	A		c	D	E	F	G	H	1
1	Price	Number sold							
2	18	8							
3	20	6							
4	25	5							
5	27	2							
6	28	2							
7	32	1							
8									
9									
10									

Specify the cell locations of the number sold in the space to the right of Input Y Range and the cell locations of the prices in the space to the right of Input \boldsymbol{X} Range. Click OK.

The output has the intercept and slope of the regression line in the column headed Coefficient to the bottom left which has the Intercept, 16.68382 in the first row and the slope, -0.50735 labelled \boldsymbol{X} variable in the second. These are the results obtained in Example 4.5, but given more precisely. They are the components of the regression equation:

Number sold $=16.68382-0.50735$ Price

Excel Recipe Card - Fitted line plots

Follow the first three steps of the Simple linear regression recipe card.
In the Regression window specify the cell locations of the numbers sold in the space to the right of Input Y Range and the cell locations of the prices in the space to the right of Input X Range. Tick the box beside Line Fit Plots then click OK.

The Line Fit Plot appears to the right of the regression output

Enlarge the diagram and right click on one of the Predicted Y points. In the menu that appears choose Format Data Series.

Excel Recipe Card -

Embellishing fitted line plots
Change the titles by right clicking on the diagram. Choose Chart Options from the menu that appears.

Continued

To embellish the diagram type in chart and axis titles in the Chart Options window.

Click the Legend tab, untick Show Legend then click OK.

To stretch the horizontal scale, put the cursor on the horizontal axis, right click and choose Format Axis from the menu.

In the Format Axis window click the Scale tab, untick the box to the left of Minimum under Auto and type in a figure less than the lowest price e.g. 15.

The equation of the line of best fit is also known as the regression equation. It is the regression 'model' that represents how the two variables are connected based on the sample evidence in Example 4.1. It is the best linear model that can be found for that set of data.

We can use the equation to predict values of Y that should occur with values of X. These are known as expected values of Y because they are what the line leads us to expect to be associated with the X values. The symbol \hat{y}, ' y hat', is used to represent a value of Y that is predicted using the regression equation, so that we can distinguish it from an actual y value.

That is, the regression equation $Y=a+b X$ can be used to predict an individual y value that is expected to occur with an observed x value:

$$
\widehat{y}=a+b x
$$

Example 4.6

Use the regression equation for the data from Example 4.1, shown in Figure 4.11, to find how many new jackets the shop can expect to sell if they are priced at $£ 23.50$.

FIGURE 4.11 Fitted line plot of jackets and numbers sold
The regression equation tells us that the Number sold is 16.684 less 0.507 times the Price, that is
Number sold $=16.684-0.507$ Price
If we put the figure '23.5' where the word 'Price' appears in the equation we can work out what, according to the equation, the Number sold should be.

$$
\begin{aligned}
\text { Number sold (if price is } 23.5) & =16.6838-0.507353(23.5) \\
& =16.6838-11.9228 \\
& =4.761 \text { to three decimal places }
\end{aligned}
$$

This suggests that the number sold will be 5 , as jackets sales must be in whole numbers.

4.3 SUMMARIZING DATA COLLECTED OVER TIME

Data collected over time, known as time series, are very important for monitoring business performance and developing business strategies. For instance, such data can reveal trends in consumer expenditure and taste that companies need to follow.

Businesses use information based on data collected by other agencies over time to help them understand and evaluate the environment in which they operate. Perhaps the most important and widespread example of this is the use of index numbers to monitor general trends in prices and costs. For
instance, in the UK the Retail Price Index (RPI) is used as a benchmark figure in the context of wage bargaining, and share price indices like the FTSE100, Dow Jones and Nikkei indices are reference points for financial decisions that companies make.

Businesses also produce a variety of data that are collected over time in order to understand and communicate their progress. For instance, every company report contains charts and tables showing data that demonstrate its development over the period of a year: sales, profits, number of employees, etc.

4.3.1 Index numbers

Most businesses attach a great deal of importance to changes in the costs of things they buy and the prices of things they sell. During periods of high inflation these changes are more dramatic, in periods of low inflation they are modest. Over recent decades, when the level of inflation has fluctuated so much, companies have got used to tracking general price and cost movements carefully. To help them do this they have turned to index numbers.

Index numbers can be used to represent movements of many things over time in a series of single figures. A simple index number is the value of something at one point in time, maybe the current value, in relation to its value at another point in time, the base period, multiplied by 100 to give a percentage (although the percent sign is not usually written alongside it).

Simple price index $=\frac{\text { Current price }}{\text { Base period price }} * 100=\frac{p_{c}}{p_{0}} * 100$
In this expression, p_{c} is the price in the current year and p_{0} the price in the base year (i.e., period 0).

Example 4.7

Full exhaust systems cost a garage proprietor $£ 156$ each in 2009 . They cost $£ 125$ in 2006. Calculate a simple price index to represent the change in price over the period.

$$
\begin{aligned}
\text { Simple price index } & =\frac{\text { Current price }}{\text { Base period price }} * 100=\frac{p_{c}}{p_{0}} * 100 \\
& =\frac{156}{125} * 100=124.8
\end{aligned}
$$

This tells us that the price of an exhaust system has increased by 24.8% over this period.

Businesses usually buy and sell more than a single item so this type of index number is of limited use. Of much greater importance are aggregate indices that summarize price movements of many items in a single figure.

We can calculate a simple aggregate price index for a combination of goods by taking the sum of the prices for the goods in the current period and dividing it by the sum of the prices of the same goods in the base period. That is:

Simple aggregate price index $=\frac{\sum p_{c}}{\sum p_{0}} * 100$

Example 4.8

The garage proprietor in Example 4.7 regularly buys exhaust systems, car batteries and tyres. The prices of these items in 2007 and 2010 were:

	2007	2010
Exhaust system	$£ 125$	$£ 156$
Battery	$£ 25$	$£ 35$
Tyre	$£ 28$	$£ 32$

Calculate a simple aggregate price index to compare the prices in 2010 to the prices in 2007. Simple aggregate price index:

$$
\begin{aligned}
\frac{\sum p_{c}}{\sum p_{0}} * 100 & =\frac{(156+35+32)}{(125+25+28)} * 100=\frac{223}{178} * 100 \\
& =125.3 \text { to one decimal place }
\end{aligned}
$$

This result indicates that prices paid by the garage proprietor increased by 25.3% from 2007 to 2010.

The result we obtained in Example 4.8 may well be more useful because it is an overall figure that includes all the commodities. However, it does not differentiate between prices of items that may be purchased in greater quantity than other items, which implies that their prices are of much greater significance.

In a simple aggregate price index each price is given equal prominence, you can see in Example 4.8 that each price appears once in the expression. Its numerical 'clout' depends simply on whether it is a large or small price. In Example 4.8 the result, 125.3, is close to the value of the simple price index of the exhaust system calculated in Example 4.7, 124.8. This is because the exhaust system happens to have the largest price in the set of items.

In practice the importance of the price of an item is a reflection of the quantity that is bought as well as the price itself. To measure changes in movements of prices in a more realistic way we need to weight each price in proportion to the quantity purchased. We can then calculate a weighted aggregate price index.

There are two ways we can do this. The first is to use the quantity figure from the base period, represented by the symbol q_{0}, to weight the price of each item. This type of index is known as the Laspeyre price index. To calculate it we need to work out the total cost of the base period quantities at current prices, divide that by the total cost of the base period quantities at base period prices, and multiply the result by 100 :

Laspeyres price index $=\frac{\sum q_{0} p_{c}}{\sum q_{0} p_{0}} * 100$

Example 4.9

The garage records show that in 2007, 50 exhaust systems, 400 batteries and 1000 tyres were purchased. Use these figures and the price figures from Example 4.8 to produce a Laspeyre price index to compare the prices of 2010 to those of 2007.

$$
\begin{aligned}
\frac{\sum q_{0} p_{c}}{\sum q_{0} p_{0}} * 100 & =\frac{(50 * 156)+(400 * 35)+(1000 * 32)}{(50 * 125)+(400 * 25)+(1000 * 28)} * 100 \\
& =\frac{53800}{44250} * 100 \\
& =121.6 \text { to one decimal place }
\end{aligned}
$$

This suggests that the prices have increased by 21.6% between 2006 and 2009.
The result is lower than the figure obtained in Example 4.9, 125.3, because the exhaust system price has the lowest weighting and tyres, which have the lowest price change, have the highest weighting.

The Laspeyre technique uses quantities that are historical. The advantage of this is that such figures are usually readily available. The disadvantage is that they may not accurately reflect the quantities used in the current period.

The alternative approach, which is more useful when quantities used have changed considerably, is to use quantity figures from the current period, represented by the symbol q_{c}. This type of index is known as the Paasche price index. To calculate it you work out the total cost of the current period quantities at current prices, divide that by the total cost of
the current period quantities at base period prices, and multiply the result by 100 :

Paasche price index $=\frac{\sum q_{c} p_{c}}{\sum q_{c} p_{0}} * 100$

Example 4.10

In 2010 the garage purchased 50 exhaust systems, 600 batteries and 750 tyres. Use these figures and the price figures from Example 4.8 to produce a Paasche price index to compare the prices of 2010 to those of 2007.

$$
\begin{aligned}
\frac{\sum q_{c} p_{c}}{\sum q_{c} p_{0}} * 100 & =\frac{(50 * 156)+(600 * 35)+(750 * 32) * 100}{(50 * 125)+(600 * 25)+(750 * 28)} \\
& =\frac{52800}{42250} * 100=125.0 \text { to one decimal place }
\end{aligned}
$$

This result suggests that the prices have increased by 25.0% between 2007 and 2010. The figure is higher than the result in Example 4.9 because there is a greater weighting on the battery price, which has changed most, and a lower weighting on the tyre price, which has changed least.

The advantage of using a Paasche price index is that the quantity figures used are more up to date and therefore realistic. But it is not always possible to get current period quantity figures, particularly when there is a wide range of items and a large number of organizations or consumers that buy them.

The other disadvantage of using the Paasche price index is that new quantity figures must be available for each period we want to compare with the base period. If the garage proprietor wants a Paasche price index for prices in 2011 compared to 2007 you could not provide one until you know both the quantities and the prices used in 2011. In contrast, to calculate a Laspeyre price index for 2011 you only need to know the prices in 2011 because you would use quantities from 2007.

If you look carefully at Examples 4.9 and 4.10 you will see that whichever index is used the same quantity figures weight the prices from the different years. This is an important point; they are price indices and they compare prices over the time period, not quantities.

Organizations tend to use index numbers that have already been compiled rather than construct their own. Probably the most common use of index numbers that you will meet is in the adjustment of financial amounts to take into account changes in price levels.

A sum of money in one period is not necessarily the same as the same amount in another period because its purchasing power changes. This means
that if we want to compare an amount from one period with an amount from another period we have to make some adjustment for price changes. The most common way of doing this in the UK is to use the Retail Price Index (RPI), an index the UK Office for National Statistics (ONS) calculates to monitor price changes, changes in the cost of living.

Example 4.11

The annual salary of the manager of a sports goods store changed in the following way between 2006 and 2009. Use the RPI figures for those years to see whether the increases in her salary have kept up with the cost of living.

	2006	2007	2008	2009
Salary $(£ 000)$	34	36	38	40
RPI $(1987=100)$	198.1	206.6	214.8	212.6

(Source: 'Retail Price Index', ONS. Crown Copyright. Reproduced with the permission of HMSO and the Queen's Printer for Scotland.)
We can 'deflate' the figures for 2007, 2008 and 2009 so that they are expressed in '2006 pounds' by multiplying each of them by the ratio between the RPI for 2006 and the RPI for the year concerned.

$$
\begin{aligned}
\text { Adjusted } 2007 \text { salary } & =36 * 198.1 / 206.6 \\
& =34.519 \text { to three decimal places, i.e. } £ 34,519 \\
\text { Adjusted } 2008 \text { salary } & =38 * 198.1 / 214.8 \\
& =35.046 \text { to three decimal places, i.e. } £ 35,046 \\
\text { Adjusted } 2009 \text { salary } & =40 * 198.1 / 212.6 \\
& =37.272 \text { to three decimal places, i.e. } £ 37,272
\end{aligned}
$$

These results suggest that her salary has increased more than the cost of living throughout the period.

4.3.2 Basic time series analysis

Organizations collect time series data, which are data made up of observations taken at regular intervals, as a matter of course. Look at the operations of any organization and you will usually find figures such as daily receipts, weekly staff absences and monthly payroll. If you look at the reports it produces to present its performance you will find more time series data such as quarterly turnover and annual profit.

Sometimes each observed value of a time series is only looked at when it is collected. But often organizations need to look at the sequence that is unfolding as more observed values are collected. This can help them review
their performance over the period covered by the time series and it can help them predict future values of the time series.

It is possible to do both of these things using a time series chart, a graph that shows the progression of observations in a time series. You can look for an overall movement, a trend, and recurrent fluctuations around the trend.

This is a good way to get a 'feel' for the way the time series is behaving, but to analyse a time series properly we need to use a more systematic approach. One way of doing this is called decomposition, which involves breaking down or decomposing the series into different parts. This approach is suitable for time series data that has a repeated pattern, which includes many time series that occur in business.

The decomposition approach assumes that a time series is made up, or composed, of three types of parts, or components. These are as follows:

■ A trend, an underlying long-term movement in the series.
■ A recurrent component, which may be daily, weekly, monthly, seasonal or cyclical.

■ An error, the amount that isn't part of either the trend or recurrent components.

The type of recurrent component we find in a time series depends on how regularly the data are collected. We would expect to find daily components in data collected each day, weekly components in data collected each week and so on. Seasonal components are usually a feature of data collected quarterly, whereas cyclical components, patterns that recur over many years, crop up in data collected annually.

It is possible that a time series includes more than one recurrent component, for instance weekly figures may exhibit a regular monthly fluctuation as well as a weekly one. However, usually the decomposition of a time series involves looking for the trend and just one recurrent component.

Example 4.12

The revenue (in pounds) from newspaper sales at a new service station for the morning, afternoon and evening periods of the first 3 days of operation are:

	Morning	Afternoon	Evening
Day 1	320	92	218
Day 2	341	101	224
Day 3	359	116	272

Construct a time series chart and examine it for evidence of a trend and a recurrent component for parts of the day.

FIGURE 4.12 Newspaper sales revenue over 3 days

If you look carefully at Figure 4.12 you can see that there is a gradual upward drift in the points that represent the time series. This suggests that the trend is that the revenue from newspaper sales is increasing.
You can also see that within the figures for each day there is considerable variation. The points for the mornings tend to peak whilst the figures for the afternoons tend to dip.

The first stage we take in decomposing a time series is to try to separate out the trend. We can do this by calculating a set of moving averages for the series. Moving averages are sequential, they are averages calculated from sequences of values in a time series.

A moving average (MA) is the mean of one of each time period in the time series. For the data in Example 4.12 each moving average will be the mean of one morning figure, one afternoon figure and one evening figure. Because in this case the moving average is calculated from three observations it is called a three-point moving average.

The first moving average in the set will be the mean of the figures for the first day. The second moving average is the mean of the figures from the afternoon and evening of the first day and the morning of the second day. The result will still be the mean of three figures, one from each part of the day. We continue doing this, dropping the first value of the sequence out and replacing it with a new figure until we reach the end of the series.

Example 4.13

Calculate moving averages for the data in Example 4.12.
The first MA $=(320+92+218) / 3=630 / 3=210$
The second $M A=(92+218+341) / 3=651 / 3=217$
The third MA $=(218+341+101) / 3=660 / 3=220$
and so on.
The complete set of moving averages is:

210	217	220	222	228	233	249

If you count the number of moving averages in Example 4.13 you will find there are only seven, two less than the number of observations in the time series. This is because each moving average summarizes three observations that come from different points in time.

Like any other average, we can think of a moving average as being in the middle of the set of data from which it has been derived. In the case of moving averages we think of them as belonging to the middle of the period covered by the observations that we used to calculate it. The first moving average therefore belongs to the afternoon of the first day because that is the middle of the three parts of the day whose observed values were used to calculate it.

If the first moving average belongs to the first afternoon, we don't have a moving average that belongs to the first morning. Similarly, the last moving average belongs to the last afternoon and we have no moving average for the last evening.

The process of positioning the moving averages in line with the middle of the observations they summarize is called centring.

Example 4.14

Centre the moving averages in Example 4.13.

Day	Time	Revenue	Moving Average
1	am	320	
1	pm	92	210
1	eve	218	217
2	am	341	220
2	pm	101	222
2	eve	224	228
3	am	359	233
3	pm	116	249
3	eve	272	

The process of centring is a little more complicated if you have a time series with a periodicity of four, that is, where each larger time period is split into four periods as in quarterly data. To centre the moving averages for quarterly data you have to split the difference between two moving averages because the moving averages you calculate are 'out of phase' with the time series observations.

Example 4.15

Calculate and centre the moving averages for the data below. They are the sales of beachwear (in $£ 000$ s) in a UK department store over 2 years.

	Winter	Spring	Summer	Autumn
Year 1	14.2	31.8	33.0	6.9
Year 2	15.3	34.7	36.2	7.3

Moving averages for these figures will be four-point moving averages.

$$
\begin{aligned}
& \text { First MA }=(14.2+31.8+33.0+6.9) / 4=85.9 / 4=21.475 \\
& \text { Second } M A=(31.8+33.0+6.9+15.3) / 4=87.0 / 4=21.75
\end{aligned}
$$ and so on.

Year	Quarter	Sales	Moving Average
1	Winter	14.2	
1	Spring	31.8	
1	Summer	33.0	21.475
1	Autumn	6.9	21.750
2	Winter	15.3	22.475
2	Spring	34.7	23.275
2	Summer	36.2	23.375
2	Autumn	7.3	

The moving averages straddle two quarters because the middle of four periods is between two of them. To centre them, that is, to bring them in line with the series itself, we have to split the difference between pairs of them.

$$
\begin{aligned}
\text { The centred four-point MA for the Summer of Year } \begin{aligned}
1 & =(21.475+21.750) / 2 \\
& =21.6125
\end{aligned}, ~=~
\end{aligned}
$$

The centred four-point MA for the Autumn of Year $1=(21.750+22.475) / 2$

$$
=22.1125
$$

and so on.					
Year	Quarter	Sales	Moving Average	Centred Moving Average	
1	Winter	14.2			
1	Spring	31.8			
1	Summer	33.0	21.475	21.6125	
1	Autumn	6.9	21.750	22.1125	
2	Winter	15.3	22.475	22.8750	
2	Spring	34.7	23.275	23.3250	
2	Summer	36.2			
2	Autumn	7.3			

Centring moving averages is important because the moving averages are the figures that we need to use as estimates of the trend at particular points in time. We want to be able to compare them directly with observations in order to separate out other components of the time series.

The procedure we adopt to separate the components of a time series depends on how we assume they are combined in the observations. The simplest case is to assume that the components are added together, that is, each observation, y, is the sum of a set of components:

$$
\begin{aligned}
y= & \text { Trend component }(T)+\text { Recurrent component }(R) \\
& + \text { Error component }(E)
\end{aligned}
$$

This is called the additive model of a time series. You may also come across the multiplicative model. If you want to analyse a time series which you assume is additive, you have to subtract the components from each other to decompose it. If you assume it is multiplicative, you have to divide to decompose it.

We begin the process of decomposing a time series assumed to be additive by subtracting the centred moving averages, the estimated trend values, from the observations they sit alongside. What we are left with are deviations from the trend, a set of figures that contains only the recurrent and error components, that is,

$$
(y-T)=R+E
$$

Example 4.16
Subtract the centred moving averages in Example 4.13 from the observations in Example 4.12.

Day	Time	Revenue (y)	Moving Average (T)	$y-T$
1	am	320		
1	pm	92	210	-118
1	eve	218	217	1
2	am	341	220	121
2	pm	101	222	-121
2	eve	224	228	-4
3	am	359	233	126
3	pm	116	249	-133
3	eve	272		

The next stage is to arrange these $y-T$ results by the parts of the day and calculate the mean of the deviations from the trend for each part of the day. These will be our estimates for the recurrent component for each part of the day, the differences we expect between the trend and the observed value in each part of the day.

Example 4.17

Find the estimates for the recurrent daily components from the figures in Example 4.16. What do they tell us about the pattern of newspaper sales?

		Morning	Afternoon	Evening
Day 1	$y-T$		-118	1
Day 2	$y-T$	121	-121	-4
Day 3	$y-T$	126	-133	

The estimated components for the parts of the day are:
In mornings $(121+126) / 2=123.5$
In afternoons $((-118)+(-121)+(-133)) / 3=-124.0$
In evenings $(1+(-4)) / 2=-1.5$
These three figures ($123.5,-124.0$ and -1.5) add up to -2 . Because they are variations around the trend they really should add up to zero, otherwise when they are used together they suggest a deviation from the trend. To overcome this problem, we simply divide the
total by 3, as there are three recurrent components, and add this amount to each component. After this modification the components should add up to zero:

$$
\begin{aligned}
& \text { Adjusted morning component }=123.5+0.667=124.167 \\
& \text { Adjusted afternoon component }=-124.0+0.667=-123.333 \\
& \text { Adjusted evening component }=-1.5+0.667=\frac{-0.833}{0.001}
\end{aligned}
$$

The adjusted components do not add up to precisely zero because two adjusted components have been rounded down and one rounded up. Nevertheless the results sum to very nearly zero.
These components suggest that newspaper sales are regularly higher in mornings, lower in the afternoons and almost the same as the trend in the evenings.

We can take the analysis a stage further by subtracting the recurrent components, R, from the $y-T$ figures to isolate the error components, E :

$$
E=y-T-R
$$

Example 4.18

Find the error components for the data in Example 4.12 using the table produced in Example 4.16 and the recurrent components from Example 4.17.

Day	Time	Revenue (y)	Moving Average (T)	$y-T$	R	$E=(y-T)-R$
1	am	320				
1	pm	92	210	-118	-123.333	5.333
1	eve	218	217	1	-0.833	1.833
2	am	341	220	121	124.167	-3.167
2	pm	101	222	-121	-123.333	2.333
2	eve	224	228	-4	-0.833	-3.167
3	am	359	233	126	124.167	1.833
3	pm	116	249	-133	-123.333	-9.667
3	eve	272				

The error terms enable us to review the performance over the period. A large negative error component suggests that we have underperformed in that period and might lead us to investigate reasons that may explain why. A large positive error component suggests that we have performed better than expected and we would look for reasons to explain the success. This type of evaluation should enable us to improve the performance because we can
tackle the factors that lead us to underperform and build on the factors that lead us to perform well.

Occasionally, the analysis of a time series results in a very large error component that reflects the influence of some unusual and unexpected external influence such as a fuel shortage or a sudden rise in exchange rates. You can usually spot the impact of such factors by looking for prominent peaks or troughs, sometimes called spikes when the series is plotted.

The error components in Example 4.18 suggest that newspaper sales in the morning of the second day were disappointing compared to the morning sales on the third day. Perhaps, copies of a particular paper did not arrive on the second day. The evening sales on the second day were disappointing compared to the evening sales on the first day. The afternoon sales were good on the first day, reasonable on the second but poor on the third.

As well as using the results of decomposition to review performance we can use them to construct forecasts for future periods. There are two stages in doing this. The first is to project the trend into the periods we want to predict, and the second is to add the appropriate recurrent components to the trend projections. We can represent the process as:

$$
\widehat{y}=T+R
$$

where \hat{y} is the estimated future value, and T and R are the trend and recurrent components, respectively. You can see there is no error component. The error components are, by definition, unpredictable.

You could produce trend projections by plotting the centred moving averages and fitting a line to them by eye, then simply continuing the line into the future periods you want to predict. However, a much better way is to use regression analysis to get the equation of the line that best fits the moving averages and using the equation to project the trend. The regression equation in this context is called the trend line equation.

Example 4.19

Find a trend line equation for the moving averages in Example 4.14 and use the equation to predict the trend values on day 4 and construct forecasts for day 4 by adding the recurrent components from Example 4.17.
We have to use numbers for the regression analysis so we cannot use the names of the parts of the day. Instead we number the periods, starting with period 1 for the morning of day 1 , period 2 for the afternoon of day 1 and so on.

MA	210	217	220	222	228	233	249
Period	2	3	4	5	6	7	8

Using regression analysis the trend line equation is:
Trend $=197.54+5.61$ Period

Day 4 will consist of periods 10 to 12 .
Forecast trend at period $10(a m$ day 4$)=197.54+5.61(10)=253.64$
Forecast trend at period $11(\mathrm{pm}$ day 4$)=197.54+5.61(11)=259.25$
Forecast trend at period $12($ eve day 4$)=197.54+5.61(12)=264.86$
Adding the appropriate recurrent components gives the forecast values for day 4:

$$
\text { Forecast for period } \begin{aligned}
10(\text { am day } 4) & =253.64+124.167 \\
& =377.807 \text { round to } £ 377.81
\end{aligned}
$$

Forecast for period $11(\mathrm{pm}$ day 4$)=259.25+(-123.333)$
$=135.917$ round to $£ 135.92$
Forecast for period 12 (eve day 4$)=264.86+(-0.833)$

$$
=264.027 \text { round to } £ 264.03
$$

Forecasts like the ones we have obtained in Example 4.19 can be used as the basis for setting budgets, for assessing future order levels and so forth. In practice computer software would be used to derive them.

Excel Recipe Card - Time series charts with trend lines

Store the time period and revenue data from Example 4.12 in two columns in chronological order and highlight both columns.

3 Microsoft Excel - Book1									
泡 Eile Edit View Insert Fgrmat Iools Data Window Help									
A1 * Period									
	A	B	C	D	E	F	G	H	
1	Period	Revenue							
2	Day 1 am	320							
3	Day 1 pm	92							
4	Day 1 eve	218							
5	Day 2 am	341							
6	Day 2 pm	101							
7	Day 2 eve	224							
8	Day 3 am	359							
9	Day 3 pm	116							
10	Day 3 eve	272							
11									
12									

Select Chart from the Insert menu.

Select Line as the Chart Type and Line with markers, the default selection as the chart sub-type then click Next

Right click on the line connecting the points in the chart and a menu will appear. Choose Add Trendline.

From the selection of lines under Type choose Linear. Click OK to put the chart in the spreadsheet.

In this section we have concentrated on using one technique, decomposition to analyse time series data. Time series analysis is a large field that contains a variety of techniques. If you want to read more about it, Chatfield (2003) is a useful introductory text.

Test yourself questions from warwick's business enterprises

Fully worked solutions to these questions are on pages 328-333. You can find more questions on the topics covered in this chapter at the accompanying website www. elsevierdirect.com/9781856179478.

4.1 (Easy)

(a) The following pairs of variables occurred in Warwick's businesses. Consider in each case whether the relationship would produce a positive or a negative correlation coefficient.
(i) The price of hotel rooms and the demand for them.
(ii) The amount of gas or electricity used in a restaurant kitchen and the number of hot meals served.
(iii) The temperature and the sales of beer.
(iv) The age of adults and the number of times they go clubbing.
(v) The number of customers in pubs and the size of the pub car parks.
(vi) The income people have and the amount they spend on eating out.
(b) To make pizzas in his restaurant Warwick purchases cheese, pepperoni and tomato paste. The prices of these ingredients in 2006, 2008 and 2010 were:

	Year		
Ingredient	2006	2008	2010
Cheese (per kg)	$£ 1.95$	$£ 2.65$	$£ 2.85$
Pepperoni (per kg)	$£ 2.55$	$£ 2.87$	$£ 3.15$
Tomato paste (per litre)	$£ 0.60$	$£ 1.10$	$£ 1.35$

(i) Calculate a simple aggregate price index for the prices in 2008 and 2010 using 2006 as the base period.
(ii) What additional information would you need in order to calculate a weighted aggregate price index to measure these price changes?

4.2 (Moderate)

(a) A consumer organization has used mystery guests to rate 10 hotels in a town where Warwick has a hotel. The cost per room and the score (out of 100) awarded to them by the mystery guests are:

Price (£)	95	69	18	32	27	70	49	35	50	29
Score	74	63	28	33	37	58	38	43	50	31

(i) Plot a scatter diagram to portray the data taking score as the dependent variable.
(ii) Determine the correlation coefficient and assess its value.
(b) The amounts of the pizza ingredients used in Warwick's restaurant in 2006 and 2010 were:

	Cheese (kg)	Pepperoni (kg)	Tomato Paste (litre)
2006	490	150	315
2010	575	135	220

(i) Use these figures and the price data from question 4.1 (b) to work out values of the Laspeyres and Paasche indices for the prices in 2010 in relation to the prices in 2006.
(ii) Compare the Laspeyres and Paasche figures and explain why they differ.

4.3 (Hard)

(a) For the data in question 4.2 (a)
(i) Find the equation of the line of best fit using simple linear regression.
(ii) Plot the line of best fit on the scatter diagram you produced for 4.2 (a).
(iii) Use the regression equation from (i) to predict the score that a mystery guest would give Warwick's hotel if the price of a room there were $£ 60$.
(b) Sales of alcoholic beverages at Warwick's beer tent at a summer music festival during the first 3 days of the event were:

Day	Morning	Afternoon	Evening
1	204	450	939
2	261	459	1056
3	315	522	1113

(i) Plot a graph to display the time series.
(ii) Calculate three-point moving averages for the series.
(iii) Determine the recurrent components for each part of the day.
(iv) Find estimates for the values of the trend in day 4 using regression analysis.
(v) Compile forecasts for the sales that can be expected on each part of day 4 .

Assessing Risk

Why do I need to know about this? Warwick the Hospitality entrepreneur says...
'John/The author will probably shoot me for saying this, but actually you don't need to know absolutely everything about probability. Having said that, you really have to know something about it. I think of probability as the language of risk, and because taking and controlling risks is basically what business is all about, you need to be able to speak that language.'

CONTENTS

Introduction
Measuring Probability
Different Types of Probabilities
The Rules of Probability
Probability Trees

Chapter Objectives

This chapter will help you to:

- understand why probability is important;
- appreciate how chance and risk can be measured;
- identify different types of probability; and
- analyse the chances of sequences and combinations.

5.1 INTRODUCTION

This chapter is intended to introduce you to the subject of probability, the branch of mathematics that is about finding out how likely real events or theoretical results are to happen. The subject originated in gambling, in particular the efforts of two seventeenth-century mathematical pioneers, Fermat and Pascal, to calculate the odds of certain results in dice games.

Probability may well have remained a historical curiosity within the field of mathematics that was little known outside casinos and race tracks if it were not for the fact that it has proved to be invaluable in fields as varied as psychology, economics, physical science, market research and medicine. In these and other fields, probability offers a way of analysing chance and allowing for risk when we are investigating a problem or trying to make a decision.

Probability makes the difference between facing uncertainty and coping with risk. Uncertainty is a situation where we know that it is possible that things could turn out in different ways but we simply don't know how likely each result is. Risk, on the other hand, is when we know there are different results but we also have some idea of how likely each one is to occur.

Businesses operate in conditions that are far from certain. Economic circumstances change, customer bases shift, employees move to other jobs. New product development and investment ventures are typically something of a gamble.

As well as these examples of what we might call normal commercial risk, there is the added peril of unforeseen risk. A developing market may be torn apart by war, demand for certain food products may be undermined by contamination, there may be an accident that disrupts transport, etc.

The topics that you will meet in this chapter will help you to understand how organizations can measure and assess the risks they have to deal with. But there is a second reason why probability is a very important part of your studies; because of the role it plays in future statistical work.

Almost all the statistical research that you are likely to come across at college and in your future career, whether it is intended to investigate consumer behaviour, employee attitudes, product quality, or whatever, will have one important thing in common; it will involve the collection and analysis of sample data.

In nearly every case both the people who commission the research and those who carry it out want to know about an entire population. They may want to know the opinions of all customers, the attitudes of all employees, the characteristics of all products, but it would be far too expensive or
time-consuming or simply impractical to study every item in a population. The only alternative is to study a sample and use the results to gain some insight into the population.

This can work very well, but only if we have a sample that is random and we take account of the risks associated with sampling. A sample is a random sample only if every item in the population has the same chance of being included in the sample as every other item in the population. If a sample is not random it is of very little use in helping us to understand a population.

Taking samples involves risk because we can take different random samples from a single population. These samples will be composed of different items from the population and produce different results. Some samples will produce results very similar to those that we would get from the population itself if we had the opportunity to do so. Other samples will produce results that are not typical of the population as a whole.

To use sample results effectively we need to know how likely they are to be close to the population results even though we don't actually know what the population results are. Assessing this involves the use of probability.

5.2 MEASURING PROBABILITY

A probability, usually represented by a capital P, is a measure of the likelihood of a particular result or outcome. It is a number on a scale that runs from zero to one inclusive, although it can be expressed as a percentage.

If there is a probability of zero that an outcome will occur it means there is literally no chance that it will happen. At the other end of the scale, if there is a probability of one that something will happen, it means that it is absolutely certain to occur. A probability of one half, midway between these extremes means that a result is equally likely to occur as not to occur. Sometimes this is described as a 50-50 chance.

So how do we decide what the probability of something happening is? The answer is that there are three distinct approaches that can be used to attach a probability to a particular outcome. We can describe these as the judgemental, experimental and theoretical approaches to identifying probabilities.

The judgemental approach means rating the chance of something happening on the basis of opinion alone. Usually the something is relatively uncommon, which rules out the use of the experimental approach, and doesn't occur within a context of definable possibilities, which rules out the
use of the theoretical approach. The opinion on which the probability is based is usually from someone with relevant expertise.

You will often find judgemental probabilities in assessments of political stability and economic conditions, perhaps concerning investment prospects or currency fluctuations. You could, of course, use the judgemental approach to gauging the probability of any outcome even when there are more sophisticated means available. For instance, some people assess the chance that a horse wins a race solely on their opinion of the name of the horse when they could investigate the horse's record.

If you did investigate the horse's record you would be using an experimental approach, looking into the results of the previous occasions when what we might call the 'experiment', in this case the horse entering a race, was conducted. You could work out the number of times the horse has won a race as a proportion of the total number of races it has entered. This is the relative frequency of wins, which can be used to estimate the probability that the horse wins its next race.

A relative frequency based on a limited number of experiments can only be an estimate of the probability because it approximates the real probability, which is the relative frequency based on an infinite number of experiments.

Example 5.1

The horse 'Starikon' has entered 16 races and won five of them. What is the probability that it will win its next race?
The relative frequency of wins is the number of wins, five, divided by the total number of races, 16:

Relative frequency $=5 / 16=0.3125$ or 31.25%
We can conclude therefore that on the basis of its record, the probability that the horse wins its next race:
$P($ Starikon wins its next race $)=0.3125$
In other words a little less than a one-third or a one in three chance.

Of course, Example 5.1 is a simplified version of what horse racing analysts actually do. They would probably consider ground conditions, other horses in the race and so on, but essentially they base their assessment of a horse's chances on the experimental approach to setting probabilities.

There are other situations when we want to establish the probability of a certain result of some process and we could use the experimental approach.

Perhaps we could consult the results of previous 'experiments', or conduct some ourselves.

The results we found would provide a suitable relative frequency figure for us to use as the probability, but we need not go to the trouble of using the experimental approach if we can deduce the probability using the theoretical approach. You can do this if there are a constant, limited and identifiable number of possible outcomes, one of which must occur whenever the process takes place.

There are many examples of this in gambling, including those where the number of possible outcomes is very large indeed, such as bingo and lotteries. However, even then the number of outcomes is finite, the possible outcomes remain the same whenever the process takes place and they could all be identified if we had the time and patience to do it.

Probabilities of specific results in bingo and lotteries can be deduced because the same number of balls and type of machine are used each time. In contrast, probabilities of horses winning races can't be deduced because different horses enter each race, the lengths of races vary and so on.

Example 5.2

A 'Wheel of Fortune' machine in an amusement arcade has 36 segments. Ten of the segments would give the player a cash prize. What is the probability that you win a cash prize if you play the game?
To answer this we could build a wheel of the same type, spin it thousands of times and work out what proportion of the results would have given us a cash prize. Alternatively we could question people who have played the game previously and find out what proportion of them won a cash prize. These are two ways of finding the probability experimentally. It is far simpler to use the theoretical approach. Ten outcomes out of a possible 36 would give us a cash prize so:
$P($ cash prize $)=10 / 36=0.2778$ or 27.78%
This assumes that the wheel is fair, in other words that each outcome is as likely to occur as any other outcome.

Gambling is a rich source of illustrations of the use of probabilities because it is about games of chance. However, it is by no means the only field where you will find probabilities. Whenever you buy insurance you are buying a product whose price has been decided on the basis of the rigorous and extensive use of the experimental approach to find probabilities.

5.3 DIFFERENT TYPES OF PROBABILITIES

So far the probabilities that you have met in this chapter have been what are known as simple probabilities. Simple probabilities are probabilities of single outcomes. In Example 5.1 we wanted to know the chance of the horse winning its next race. The probability that the horse wins its next two races is a compound probability.

A compound probability is the probability of a compound or combined outcome. In Example 5.2 winning a cash prize is a simple outcome, but winning cash or a non-cash prize, like a cuddly toy, is a compound outcome.

To illustrate the different types of compound probability we can apply the experimental approach to bivariate data. This means estimating compound probabilities by finding appropriate relative frequencies from data that have been tabulated by categories of attributes, or classes of values of variables.

Example 5.3

A survey of the type of goods purchased and methods of payment of 500 customers at a service station produced the following results:

Payment	Sandwiches	Magazines	Fuel	Total
Cash	87	189	15	291
Debit card	11	5	62	78
Credit card	4	12	115	131
Total	102	206	192	500

What is the probability that a customer will pay by credit card?
What is the probability that a customer will purchase fuel?
These are both simple probabilities because they each relate to only one variable, method of payment in the first case, type of goods purchased in the second.
The total's column on the right of the table tells us that in all 131 of the 500 customers paid by credit card.
$P($ Payment by credit card $)=131 / 500=0.262$, or 26.2%, which is the relative frequency of credit card payment.

Similarly, by using the total's row along the bottom of the table,
$P($ Customer purchases fuel $)=192 / 500=0.384$, or 38.4%, which is the relative frequency of fuel purchases.

If we want to use a table such as in Example 5.3 to find compound probabilities we must use figures from the cells within the table, rather than the column and row totals, to produce relative frequencies.

Example 5.4

What is the probability that a customer in the service station in Example 5.3 purchases sandwiches and pays by cash?
The number of customers in the survey who purchased sandwiches with cash was 87, so:

```
\(P(\) Customer purchases sandwiches and pays cash \()=87 / 500\)
    \(=0.174\) or \(17.4 \%\)
```

It is rather laborious to write descriptions of the outcomes in full so they are normally abbreviated; we could use 'S' to represent the purchase of sandwiches, ' M ' for the purchase of magazines and ' F ' for the purchase of fuel. Likewise we could use ' Ca^{\prime} for cash payment, ' Cr^{\prime} for credit card payment and ' D ' for debit card payment. So we can express the probability in Example 5.4 in a more convenient way.
$P($ Customer purchases sandwiches and pays cash $)=P(\mathrm{~S}$ and Ca$)$

$$
=0.174
$$

The type of compound probability in Example 5.4, which includes the word 'and', measures the chance of the intersection of two outcomes. The relative frequency we have used as the probability is based on the number of people who are in two specific categories of the 'type of goods purchased' and 'method of payment' characteristics. It is the number of people who are at the 'crossroads' or intersection between the 'purchases sandwiches' and the 'cash' categories.

Finding the probability of an intersection of two outcomes is quite straightforward if we are assessing it by applying the experimental approach to bivariate data. In other situations, for instance where we only have simple probabilities to go on, we need to use the multiplication rule of probability, which we will discuss later in the chapter.

There is a second type of compound probability, which measures the probability that one out of two or more alternative outcomes occurs. This type of compound probability includes the word 'or' in the description of the outcomes involved.

Example 5.5

Use the data in Example 5.3 to find the probability that a customer purchases fuel or pays by debit card.
The probability that one (and by implication, both) of these outcomes occurs is based on the relative frequency of all the people who are in one or other category. This implies that we should add the number of customers who purchased fuel to the number of customers who paid by debit card, and divide the result by the total number of customers in the survey.

Number of customers who purchased fuel $=15+62+115=192$

Number of customers who paid by debit card $=11+5+62=78$ If you look carefully you will see that the number 62 appears in both of these expressions. If we use the sum of the number of customers who purchased fuel and the number of customers who paid by debit card to get our relative frequency figure we will double count the 62 customers who purchased fuel and paid by debit card. This means the probability we get will be too big.
The problem arises because we have added the 62 customers who purchased fuel (F) and paid by debit card (D) twice, so to correct this we have to subtract the same number once.

$$
\begin{aligned}
P(\text { F or } D) & =\frac{(15+62+115)+(11+5+62)-62}{500}=\frac{192+78-62}{500} \\
& =208 / 500=0.416 \text { or } 41.6 \%
\end{aligned}
$$

The type of compound probability in Example 5.5 measures the chance of a union of two outcomes. The relative frequency we have used as the probability is based on the combined number of people who are in two specific categories of the 'type of goods purchased' and 'method of payment' characteristics. It is the number of customers who are in the union or 'merger' between the 'purchases fuel' and the 'debit card' categories. To get a probability of a union of outcomes from other probabilities, rather than by applying the experimental approach to bivariate data, we use the addition rule of probability. You will find this discussed later in the chapter.

The third type of compound probability is the conditional probability. Such a probability measures the chance that one outcome occurs given that, or on condition that, another outcome has already occurred.

Example 5.6

Use the data in Example 5.3 to find the probability that a customer who has purchased magazines (M) pays by cash (Ca).
Another way of describing this is as the probability that a customer pays by cash given that he or she has purchased magazines. It is represented as

$$
P(\mathrm{Ca} \mid \mathrm{M})
$$

where the '|' symbol stands for 'given that'.
We find this probability by taking the number of people who paid cash and purchased magazines as a proportion of the total number of people who purchased magazines.

$$
P(\mathrm{Ca} \mid \mathrm{M})=189 / 206=0.9175 \text { or } 91.75 \%
$$

This is a proportion of a subset of the 500 customers in the sample. The majority of them, the 294 people who did not purchase magazines, are excluded because they didn't meet the condition on which the probability is based, i.e. purchasing magazines.

It is always possible to identify compound probabilities directly from the sort of bivariate data in Example 5.3 by the experimental approach. But what if we don't have this sort of data? Perhaps we have some probabilities that have been obtained judgementally or theoretically and we want to use them to find compound probabilities. Perhaps there are some probabilities that have been obtained experimentally but the data is not at our disposal. This is where the rules of probability can help us out.

5.4 THE RULES OF PROBABILITY

In situations where we do not have recourse to appropriate experimental data there are other ways of finding compound probabilities. These are the two rules of probability: the addition rule and the multiplication rule.

5.4.1 The addition rule

The addition rule of probability specifies the procedure for finding the probability of a union of outcomes, that is, a compound probability defined using the word 'or'.

According to the addition rule the compound probability of one or both of two outcomes, which we'll call A and B for convenience, is the simple probability that A occurs added to the simple probability that B occurs. From this total we subtract the compound probability of the intersection of A and B, the probability that both A and B occur. That is:

$$
P(\mathrm{~A} \text { or } \mathrm{B})=P(\mathrm{~A})+P(\mathrm{~B})-P(\mathrm{~A} \text { and } \mathrm{B})
$$

Example 5.7

Use the addition rule to calculate the probability that a customer coming into the service station in Example 5.3 purchases fuel (F) or pays by debit card (D).
Applying the addition rule:
$P(\mathrm{~F}$ or D$)=P(\mathrm{~F})+P(\mathrm{D})-P(\mathrm{~F}$ and D$)$
The simple probability that a customer purchases fuel : $P(F)=192 / 500$
The simple probability that a customer pays by debit card : $P(D)=78 / 500$
The probability that a customer purchases fuel and pays by debit card:

$$
\begin{aligned}
P(F \text { and } D) & =62 / 500 \\
\text { So, } P(F \text { or } D) & =192 / 500+78 / 500-62 / 500 \\
& =\frac{192+78-62}{500}=208 / 500=0.416 \text { or } 41.6 \%
\end{aligned}
$$

If you compare this answer to the answer we obtained in Example 5.5 you will see they are exactly the same. In this case the addition rule is an alternative means of getting to the same result. In some ways it is more convenient because it is based on row and column totals of the table in Example 5.3 rather than numbers from different cells within the table.

The addition rule may seem rather odd because it is called the addition rule yet it includes a subtraction. It may help to explain it if we represent the situation in the form of a Venn diagram; the sort of diagram used in part of mathematics called set theory.

In a Venn diagram the complete set of outcomes that could occur, known as the sample space, is represented by a rectangle. Within the rectangle, circles are used to represent sets of outcomes.

In Figure 5.1 the circle on the left represents the purchasing fuel outcome, and the circle on the right represents the payment by debit card outcome. The combined area of both circles represents the probability that a customer purchases fuel or pays by debit card. The area of overlap represents the probability that a customer purchases fuel and pays by debit card.

By definition the area of overlap is part of both circles. If you simply add the areas of the two circles together to try to get the combined area of both circles, you will include the area of overlap twice. If you subtract it once from the sum of the areas of the two circles you will only have counted it once and the answer you get will be the correct one.

The addition rule would be simpler if there were no overlap; in other words there is no chance that the two outcomes can occur together. This is where the outcomes are mutually exclusive, which means that if one of them

[^0]happens the possibility of the other happening is excluded, or ruled out. The probability that both of two mutually exclusive outcomes occur is zero; it is simply impossible.

In this case we can alter the addition rule:

$$
\begin{aligned}
& P(\mathrm{~A} \text { or } \mathrm{B})=P(\mathrm{~A})+P(\mathrm{~B})-P(\mathrm{~A} \text { and } \mathrm{B}) \\
& \text { to } P(\mathrm{~A} \text { or } \mathrm{B})=P(\mathrm{~A})+P(\mathrm{~B}) \\
& \text { because } P(\mathrm{~A} \text { and } \mathrm{B})=0
\end{aligned}
$$

Example 5.8

One weekend a total of 178 prospective homebuyers visit a new housing development. They are offered a choice of three different types of houses: the 2-bedroom 'Ambience', the 3-bedroom 'Bermuda' or the 4-bedroom 'Casa'. When invited to select the one type of house they would most like, 43 chose the 'Ambience', 61 the 'Bermuda' and 29 the 'Casa'. What is the probability that a prospective homebuyer from this group has chosen the 'Bermuda' or the 'Casa'?
We can assume that the choices are mutually exclusive because each prospective homebuyer was asked to choose only one type of house. We can therefore use the simpler form of the addition rule.
For convenience we'll use the letter A for 'Ambience', B for 'Bermuda' and C for 'Casa'.

$$
\begin{aligned}
P(B \text { or } C) & =P(B)+P(C) \\
& =61 / 178+29 / 178 \\
& =90 / 178 \\
& =0.5056 \text { or } 50.56 \%
\end{aligned}
$$

If you read Example 5.8 carefully you can see that although the three choices of types of house are mutually exclusive, they do not constitute all the alternative outcomes. That is, they are not collectively exhaustive. As well as choosing one of the three types of house each prospective homebuyer has a fourth choice, to decline to express a preference. If you subtract the number of prospective homebuyers expressing a preference from the total number of prospective homebuyers you will find that 45 of the prospective homebuyers have not chosen one of the types of houses.

A footnote to the addition rule is that if we have a set of mutually exclusive and collectively exhaustive outcomes their probabilities must add up to one. A probability of one means certainty, which reflects the fact that in a situation where there are a set of mutually exclusive and collectively exhaustive outcomes, one and only one of them is certain to occur.

Example 5.9

What is the probability that one of the prospective homebuyers in Example 5.8 chooses the 'Ambience' or the 'Bermuda' or the 'Casa' or expresses no preference? For convenience we'll use the letter N to represent 'No preference'.

The probability that a prospective homebuyer picks 'Ambience' $=P(A)=43 / 178$
The probability that a prospective homebuyer picks 'Bermuda' $=P(B)=61 / 178$
The probability that a prospective homebuyer picks 'Casa' $=P(\mathrm{C})=29 / 178$ The probability that a prospective homebuyer makes no choice $=P(N)=45 / 178$

$$
P(A \text { or } B \text { or } C \text { or } N)=\frac{43+61+29+45}{178}=178 / 178=1
$$

This footnote to the addition rule can be used to derive probabilities of one of a set of mutually exclusive and collectively exhaustive outcomes if we know the probabilities of all of the other outcomes.

Example 5.10

Deduce the probability that a prospective homebuyer in Example 5.8 expresses no preference using the simple probabilities of the other outcomes.

$$
\begin{aligned}
P(\text { Prospective homebuyer makes no choice }) & =1-P(\mathrm{~A})-P(\mathrm{~B})-P(\mathrm{C}) \\
& =1-43 / 178-61 / 178-29 / 178 \\
& =1-0.2416-0.3427-0.1629 \\
& =1-0.7472 \\
& =0.2528 \text { or } 25.28 \%
\end{aligned}
$$

The result we obtained in Example 5.10, 0.2528 , is the decimal equivalent of the figure of $45 / 178$ that we used for the probability of no preference, $P(N)$ in Example 5.9.

5.4.2 The multiplication rule

The multiplication rule of probability specifies the procedure for finding the probability of an intersection of outcomes, that is, a compound probability defined using the word 'and'.

According to the multiplication rule the compound probability that two outcomes both occur is the simple probability that the first one occurs multiplied by the conditional probability that the second outcome occurs, given that the first outcome has already happened. That is:

$P(\mathrm{~A}$ and B$)=P(\mathrm{~A}) * P(\mathrm{~B} \mid \mathrm{A})$

The multiplication rule is what bookmakers use to work out odds for 'accumulator' bets, that is, bets that a sequence of outcomes, like several
specific horses winning races, occurs. To win the bet the first horse must win the first race; the second horse must win the second race and so on. The odds of this sort of thing happening are often something like 500 to one. The numbers, like 500, are large because they are obtained by multiplication.

Example 5.11

Use the multiplication rule to calculate the probability that a customer at the service station in Example 5.3 purchases sandwiches and pays by cash.
We'll use S to represent for the purchase of sandwiches and Ca for payment by cash.
$P(\mathrm{~S}$ and Ca$)=P(\mathrm{~S}) * P(\mathrm{Ca} \mid \mathrm{S})$
From the table in Example 5.3:
$P(S)=102 / 500$ is the relative frequency of customers purchasing sandwiches and
$P(\mathrm{Ca} \mid \mathrm{S})=87 / 102$ is the relative frequency of customers purchasing sandwiches who pay by cash.

So
$P(S$ and Ca$)=102 / 500 * 87 / 102$

$$
=0.204 * 0.853
$$

$$
=0.174 \text { or } 17.4 \%
$$

If you compare this answer to the answer we obtained in Example 5.4 you will see that they are exactly the same.

The multiplication rule can look more complex than it actually is because it includes a conditional probability. We use a conditional probability for the second outcome because the chances of it occurring could be influenced by the first outcome. This is called dependency; in other words one outcome is dependent on the other.

A useful way of telling whether two outcomes are dependent is to compare the conditional probability of one outcome given that the other has happened, with the simple probability that it happens. If the two figures are different the outcomes are dependent.

Example 5.12

A promotional stall in a shopping centre offers passers-by the opportunity to taste bison meat. A total of 200 people try the product and 122 of them stated that they liked it. Of these, 45 said they would buy the product. Overall 59 of the 200 passers-by said they would buy the product.

Are liking the product and expressing the intention to buy it dependent? We'll use L to represent liking the product and B to represent buying it.
The simple probability that a passer-by expresses an intention to buy, $P(B)$ is 59/200 or 29.5\%.

The conditional probability that a passer-by expresses an intention to buy given that he or she liked the product, $P(\mathrm{~B} \mid \mathrm{L})$ is $45 / 122$ or 36.9%.
You can see that there is a difference between $P(\mathrm{~B})$ and $P(\mathrm{~B} \mid \mathrm{L})$, which suggests that the expression of an intention to buy is dependent on liking the product.

The multiplication rule can be rearranged to provide us with a way of finding a conditional probability. That is,

$$
\text { if } P(\mathrm{~A} \text { and } \mathrm{B})=P(\mathrm{~A}) * P(\mathrm{~B} \mid \mathrm{A})
$$

When we divide both sides by $P(\mathrm{~A})$ we get

$$
P(\mathrm{~A} \text { and } \mathrm{B}) / P(\mathrm{~A})=P(\mathrm{~B} \mid \mathrm{A})
$$

Swapping the two sides of the expression over, we get

$$
P(\mathrm{~B} \mid \mathrm{A})=P(\mathrm{~A} \text { and } \mathrm{B}) / P(\mathrm{~A})
$$

Example 5.13

What is the probability that a customer at the service station in Example 5.3 pays by cash given that he or she has purchased magazines?
We'll use M for the purchase of magazines and Ca for cash.
$P(\mathrm{Ca} \mid \mathrm{M})=P(\mathrm{Ca}$ and M$) / P(\mathrm{M})$
From the table in Example 5.3
$P(\mathrm{Ca}$ and M$)=189 / 500=0.378$
and $P(\mathrm{M})=206 / 500=0.412$
so $P(\mathrm{Ca} \mid \mathrm{M})=0.378 / 0.412=0.9175$ or 91.75%
This is the same as the answer we obtained in Example 5.6.

If there had been no difference between the two probabilities in Example 5.12 there would be no dependency; that is, the outcomes would be independent.

In situations where outcomes are independent, the conditional probabilities of the outcomes are the same as their simple probabilities. This means we can simplify the multiplication rule when we are dealing with independent outcomes. We can replace the conditional probability of the
second outcome given that the first outcome has occurred with the simple probability that the second outcome occurs. That is, instead of

$$
P(\mathrm{~A} \text { and } \mathrm{B})=P(\mathrm{~A}) * P(\mathrm{~B} \mid \mathrm{A})
$$

we can use $P(\mathrm{~A}$ and B$)=P(\mathrm{~A}) * P(\mathrm{~B})$
because $P(\mathrm{~B})=P(\mathrm{~B} \mid \mathrm{A})$.

Example 5.14

What is the probability that a player who plays the Wheel of Fortune in Example 5.2 twice wins cash prizes both times?
Ten of the 36 segments give a cash prize, so the probability of a cash prize in any one game is $10 / 36$.
The probability that a player gets a cash prize in their second game given that they have won a cash prize in their first game is also $10 / 36$. The outcomes are independent; in other words the result of the second game is not influenced by the result of the first. (If this is not clear because you feel there is a connection, you might ask yourself how the Wheel of Fortune remembers what it did the first time!)
We'll use the letter C to represent a cash prize. The first cash prize the player wins can then be represented as C_{1}, and the second as C_{2}.

$$
P\left(\mathrm{C}_{1} \text { and } \mathrm{C}_{2}\right)=P(\mathrm{C}) * P(\mathrm{C})=10 / 36 * 10 / 36=0.077 \text { or } 7.7 \%
$$

5.4.3 Bayes' rule

In the previous section we looked at how the multiplication rule, which enables us to find the compound probability that both of two outcomes occur, could be rearranged to provide a definition of the conditional probability that the second outcome occurs given that the first outcome had already occurred. That is:

$$
\begin{aligned}
& \text { if } P(\mathrm{~A} \text { and } \mathrm{B})=P(\mathrm{~A}) * P(\mathrm{~B} \mid \mathrm{A}) \\
& \text { then } P(\mathrm{~B} \mid \mathrm{A})=P(\mathrm{~A} \text { and } \mathrm{B}) / P(\mathrm{~A})
\end{aligned}
$$

In this context we normally assume that outcome A occurs before outcome B, for instance the probability that a person succumbs to a lung disease, given that they have smoked tobacco.

Thanks to the work of the eighteenth-century clergyman and mathematician Thomas Bayes we can develop this further to say that:

$$
\begin{aligned}
& P(\mathrm{~B} \text { and } \mathrm{A})=P(\mathrm{~B}) * P(\mathrm{~A} \mid \mathrm{B}) \\
& \text { so } P(\mathrm{~A} \mid \mathrm{B})=P(\mathrm{~B} \text { and } \mathrm{A}) / P(\mathrm{~B})
\end{aligned}
$$

This means that we can find the probability that outcome A happened given that we know outcome B has subsequently happened. This is known as
a posterior or 'after-the-event' probability. In contrast, the simple probability that outcome A happens is a prior, or 'before-the-event' probability.

The compound probability that both A and B occur is the same whether it is described as the probability of A and B or the probability of B and A . That is:
$P(\mathrm{~A}$ and B$)=P(\mathrm{~B}$ and A$)$
The multiplication rule tells us that:
$P(\mathrm{~A}$ and B$)=P(\mathrm{~A}) * P(\mathrm{~B} \mid \mathrm{A})$
We can therefore express the conditional probability that A has occurred given that we know B has subsequently occurred as:

$$
P(\mathrm{~A} \mid \mathrm{B})=\frac{P(\mathrm{~A}) * P(\mathrm{~B} \mid \mathrm{A})}{P(\mathrm{~B})}
$$

This definition of the posterior probability of an outcome is known as Bayes' rule or Bayes' theorem.

Example 5.15

A financial services ombudsman is investigating the mis-selling of pension schemes some years previously. Some buyers of these pension schemes were sold the schemes on the basis of misleading information, and would have been better off had they made alternative arrangements.
The pension schemes being investigated were provided by one company but actually sold by two brokers, Copilka, who sold 80% of the schemes, and Denarius who sold 20% of the schemes. Some of the pension schemes sold by these brokers were appropriate for the customers who bought them, but the ombudsman has established that 30% of the schemes sold by Copilka and 40% of the schemes sold by Denarius have turned out to be inappropriate for the customers who bought them.
The ombudsman wishes to apportion liability for compensation for mis-sold pension scheme between the two brokers and wants to do so, on the basis of the following:
(a) If a pension scheme was mis-sold what was the probability that it was sold by Copilka?
(b) If a pension scheme was mis-sold what was the probability that it was sold by Denarius?

We will use M to represent a pension scheme that was mis-sold, C to denote that a pension scheme was sold by Copilka, and D to denote that a pension scheme was sold by Denarius.
The first probability that the ombudsman needs to know is $P(\mathrm{C} \mid \mathrm{M})$.

Using Bayes' rule:

$$
P(\mathrm{C} \mid \mathrm{M})=\frac{P(\mathrm{C}) * P(\mathrm{M} \mid \mathrm{C})}{P(\mathrm{M})}
$$

We know that the probability that a pension scheme was sold by Copilka, $P(\mathrm{C})$, is 0.8 . We also know that the probability that a pension scheme was mis-sold given that it was sold by Copilka, $P(\mathrm{M} \mid \mathrm{C})$ is 0.3 . The only other probability that we need in order to apply Bayes' rule in this case is $P(\mathrm{M})$, the probability that a pension scheme was mis-sold.
A pension scheme that was mis-sold must have been sold by either Copilka or Denarius. The probability that a pension scheme was mis-sold must therefore be the sum of the probability that a pension scheme was mis-sold and it was sold by Copilka and the probability that a pension scheme was mis-sold and it was sold by Denarius. That is:

$$
P(\mathrm{M})=P(\mathrm{C} \text { and } \mathrm{M})+P(\mathrm{D} \text { and } \mathrm{M})
$$

Although we do not know these compound probabilities we can derive them by applying the multiplication rule:

$$
P(\mathrm{C} \text { and } \mathrm{M})=P(\mathrm{C}) * P(\mathrm{M} \mid \mathrm{C})=0.8 * 0.3=0.24
$$

The probability that a pension scheme was sold by Denarius, $P(D)$, is 0.2 , and the probability that a pension scheme was mis-sold given that it was sold by Denarius, $P(\mathrm{M} \mid \mathrm{D})$, is 0.4 , so:

$$
\begin{aligned}
& P(\mathrm{D} \text { and } \mathrm{M})=P(\mathrm{D}) * P(\mathrm{M} \mid \mathrm{D})=0.2 * 0.4=0.08 \\
& \text { so } P(\mathrm{M})=0.24+0.08=0.32
\end{aligned}
$$

We can now work out the first of the two probabilities that the ombudsman needs; the probability that if a pension scheme was mis-sold it was sold by Copilka, $P(\mathrm{C} \mid \mathrm{M})$:

$$
P(\mathrm{C} \mid \mathrm{M})=\frac{P(C) * P(M \mid C)}{P(M)}=\frac{0.8 * 0.3}{0.32}=\frac{0.24}{0.32}=0.75
$$

A mis-sold pension scheme must have been sold by Denarius if it was not sold by Copilka, they are mutually exclusive and collectively exhaustive outcomes. This means that we can deduce that the probability that if a pension scheme was mis-sold it was sold by Denarius, $P(\mathrm{D} \mid \mathrm{M})$ is one less $P(\mathrm{C} \mid \mathrm{M})$. That is:

$$
P(\mathrm{D} \mid \mathrm{M})=1-0.75=0.25
$$

On the basis of these results the ombudsman should apportion 75% of the liability for compensation to Copilka and 25% of the liability for compensation to Denarius.

5.4.4 Applying the rules of probability

Although we have dealt separately with different types of probability, rules of probability and so on, when it comes to applying them to solve problems involving sequences of outcomes you may well have to use them together.

You may like to look at Example 5.16, which brings together many of the topics that you have met in this chapter to solve an apparently straightforward problem.

Example 5.16

Twenty-five graduates join a company at the same time. During their induction and training programme friendships are established and they decide that when one of them has a birthday they will all dine at a restaurant chosen by the person whose birthday is being celebrated. One of the graduates asks what will happen if two or more of them share a birthday. In response another graduate says that it won't happen because there are only 25 of them and 365 days in the year.
What is the probability that there will be at least one clash of birthdays in a year? This is quite a complex question because of the sheer variety of ways in which there could conceivably be a clash of birthdays. We could have a clash on 1 January, 2 January and so on. Maybe three graduates could share the same birthday? It would be extremely difficult and tedious to work out all these probabilities separately.
In fact we don't need to. One of the phrases you met during the discussion of the addition rule was 'mutually exclusive and collectively exhaustive'. Such outcomes rule each other out and have probabilities that add up to one. We can make use of this here.
We have two outcomes: either some birthdays clash or none do. They are mutually exclusive because it is impossible to have both clashes and no clashes. They are collectively exhaustive because we must have either one or more clashes or no clashes. This makes things easier. We want the probability of clashes, but to get that we would have to analyse many different combinations of outcomes and put their probabilities together. Instead we can work out the probability that there are no clashes and take it away from one. This is easier because there is only one probability to work out.
What is the probability that there are no clashes?
Imagine if there was just one graduate and we introduced the others one at a time. This one graduate can have a birthday on any day because at this stage there are no other graduates whose birthdays could clash with theirs.
The probability that the second graduate has a birthday on another day is 364/365 because one day is already 'occupied' by the birthday of the first graduate, leaving 364 'free' days. The probability that the third graduate has a birthday on a different day to the other two graduates assuming that the first two graduates' birthdays don't clash is 363/365. This is the conditional probability that the third graduate's birthday misses those of the first and second graduates, given that the birthdays of the first and second graduates don't clash. The number 363 appears because that is the number of 'free' days that remain, if the birthdays of the first two graduates don't clash.
Continuing the process, the probability that the fourth graduate's birthday doesn't clash with those of the first three, assuming they are on different days, is $362 / 365$. The probability that the fifth graduate's birthday doesn't clash with those of the first four is $361 / 365$, and so on.

Eventually we reach the probability that the twenty-fifth graduate's birthday doesn't clash with those of the other twenty-four, which is $341 / 365$.
The probabilities that we now have are probabilities that the birthdays of specific graduates don't clash with those of other specific graduates. What we want is the probability that there are no clashes at all. To get this we have to put these probabilities together. But how? Should we multiply or add?
The answer is that we multiply them together. We want the probability that the second graduate's birthday misses that of the first graduate and the third graduate's birthday misses those of the first two and so on.

$$
\text { So } \begin{aligned}
P(\text { no clashes }) & =364 / 365 * 363 / 365 * 362 / 365 * \cdots * 342 / 365 * 341 / 365 \\
& =0.4252 \text { or } 42.52 \%
\end{aligned}
$$

This is the probability that there are no clashes, but we wanted to find the probability that there is at least one clash. For this we use the addition rule. It is certain that there is either at least one clash or no clash. That is:

$$
\begin{aligned}
P(\text { at least one clash }) & +P(\text { no clash })=1 \\
\text { So } P(\text { at least one clash }) & =1-P(\text { no clash }) \\
& =1-0.4252=0.5748 \text { or } 57.48 \%
\end{aligned}
$$

5.5 PROBABILITY TREES

If you have to investigate the probabilities of sequences of several outcomes it can be difficult to work out the different combinations of outcomes in your head. It helps if you write down all the different variations, and you may find a Venn diagram a useful way of arranging them in order to work out probabilities of certain types of combinations. But perhaps the best way of sorting out this kind of problem is to use a probability tree.

Probability trees, which are sometimes simply called tree diagrams, represent the different sequences of outcomes in the style of a tree that 'grows' from left to right. Each branch of the tree leads to a particular outcome. At the end of each branch, on the right-hand side of the diagram, we put the combination of outcomes that the sequence of branches represents and, using the multiplication rule, the probability that the sequence of outcomes happens.

Example 5.17

Three friends start Higher Education courses at the same time in the same institution. Angela is studying Accounting, Bashir is studying Business and Charlie is studying Computing. Seventy percent of students who begin the Accounting course complete it
successfully, 80% of students who begin the Business course complete it successfully, and 60% of students who begin the Computing course complete it successfully. Construct a tree diagram and use it to work out:

- The probability that all three friends successfully complete their courses.
- The probability that two of the friends successfully complete their courses.
- The probability that only one of the friends successfully completes their course.

We will use A to represent Angela, B for Bashir and C for Charlie. To indicate someone failing their course we will use the appropriate letter followed by ', so A^{\prime} represents the outcome that Angela fails her course, whereas A alone represents the outcome that Angela completes her course successfully.
The completion rate suggests the probability that Angela passes the Accounting course is 0.7 , and given that the 'pass' and 'fail' outcomes are mutually exclusive and collectively exhaustive, the probability she fails is 0.3 . The probability that Bashir passes the Business course is 0.8 , and the probability that he fails is 0.2 . The probability that Charlie passes the Computing course is 0.6 and the probability that he fails is 0.4 .

Outcomes Probability

ABC
$0.7 * 08 * 0.6=0.336$
$A B C^{\prime}$
$0.7 * 0.8 * 0.4=0.224$
$A^{\prime}{ }^{\prime} C$
$A B^{\prime} C^{\prime}$
$A^{\prime} B C$
$A^{\prime} B C^{\prime}$
$A^{\prime} B^{\prime} C$
$A^{\prime} B^{\prime} C^{\prime}$
$0.7 * 0.2 * 0.6=0.084$
$0.7 * 0.2 * 0.4=0.056$
$0.3 * 0.8 * 0.6=0.144$
$0.3 * 0.8 * 0.4=0.096$
$0.3 * 0.2 * 0.6=0.036$
$0.3 * 0.2 * 0.4=0.024$

The probability that all three pass, that is $P(A B C)$, is the probability at the top on the righthand side, 0.336 or 33.6%.
The probability that two of the friends pass is the probability that one of three sequences, either $A B C^{\prime}$ or $A B^{\prime} C$ or $A^{\prime} B C$ occurs. Since these combinations are mutually exclusive we can apply the simpler form of the addition rule:

$$
\begin{aligned}
P\left(\mathrm{ABC}^{\prime} \text { or } \mathrm{AB}^{\prime} \mathrm{C} \text { or } \mathrm{A}^{\prime} \mathrm{BC}\right) & =0.224+0.084+0.144 \\
& =0.452 \text { or } 45.2 \%
\end{aligned}
$$

The probability that only one of the friends passes is the probability that either $\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$ or $A^{\prime} B C^{\prime}$ or $A^{\prime} B^{\prime} C$ occurs. These combinations are also mutually exclusive so again we can apply the simpler form of the addition rule:
$P\left(\mathrm{AB}^{\prime} \mathrm{C}^{\prime}\right.$ or $\mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ or $\left.\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}\right)=0.056+0.096+0.036=0.188$ or 18.8%

A tree diagram should include all possible sequences. One way you can check that it does is to add up the probabilities on the right-hand side. Because these outcomes are mutually exclusive and collectively exhaustive their probabilities should add up to one. We can check that this is the case in Example 5.17.

$$
0.336+0.224+0.084+0.056+0.144+0.096+0.036+0.024=1
$$

Test yourself questions from Warwick's business enterprises

Fully worked solutions to these questions are on pages 333-334. You can find more questions on the topics covered in this chapter at the accompanying website www. elsevierdirect.com/9781856179478.

5.1 (Easy)

(a) Out of the 347 groups of diners having evening meals at Warwick's restaurant 1 week, 259 order wine. Estimate the probability that a group of customers orders wine with their meal.
(b) The same week there are 216 groups of diners who have lunch at the restaurant. Of these, 93 order wine with their meal. Estimate the probability that a group of lunchtime customers orders wine.
(c) Compare your answers to (a) and (b), and comment on the difference.

5.2 (Moderate)

One of Warwick's pubs has been refurbished in the style of a sports bar. He asked 100 regular customers, of which 50 were female and 50 male, if they liked the new design. The responses, tabulated by gender, were:

	Females	Males
Yes	17	28
Not sure	21	13
No	12	9

(a) If one of these 100 respondents was selected at random, what is
(i) the probability they said No?
(ii) the probability they are Male and said Yes?
(iii) the probability they are Female or were Not sure about the new design?
(iv) the probability that if a Male were selected he said No?
(v) the probability that if a Female were selected she said No?
(b) Compare the answers to (a)(iv) and (a)(v) with the answer to (a)(i). Does gender influence whether an individual likes the new design?

5.3 (Hard)

Thursday, Friday and Saturday are the busiest nights at Warwick's pub. Police records show that on 12 of the last 50 Thursdays, 15 of the last 50 Fridays, and 16 of the last 50 Saturdays they were summoned to deal with a disturbance at the pub. Find the probability that over the next Thursday, Friday and Saturday nights there will be:
(a) No trouble
(b) Trouble on Thursday only
(c) Trouble on one night only
(d) Trouble on Friday and Saturday only
(e) Trouble on two nights only

Assume that events on any one night are independent of events on any other night. You may find it useful to construct a tree diagram to represent the possible sequences of events.

Putting Probability to Work

Why do I need to know about this? Warwick the Hospitality entrepreneur says...

'Probability really helps in addressing business problems. A good example would be ordering a large consignment of tableware. You'd need to know whether any items were chipped or cracked. The supplier might say that 99% were perfect but how do we check this? It would take far too long to look at every piece but if we looked at a small number of them and counted the ones that were imperfect we could use the binomial probability distribution to tell whether to accept or reject the consignment.'

CONTENTS

Introduction
Simple Probability Distributions

The Binomial
Distribution
The Poisson
Distribution
Expectation
Decision Trees

Chapter Objectives

This chapter will help you to:
■ understand and use probability distributions;

- analyse discrete random variables;

■ find and interpret summary measures of probability distributions; and
■ apply probability in the analysis of business decisions.

6.1 INTRODUCTION

The early parts of this chapter are intended to show you how we can model or represent the chances of different combinations of outcomes using the same sort of approach as we use to arrange data into frequency distributions. The later sections are designed to illustrate how probability can be used in making decisions, especially when there are several stages in the decision process, such as investment in new capacity.

6.2 SIMPLE PROBABILITY DISTRIBUTIONS

In Chapter 2 we looked at how we could present data in the form of a frequency distribution. This involved listing categories of values that occurred in the set of data and finding out how many observed values fell into each category, in other words the frequency of each category of values in the set of data. The results of this process enabled us to see how the observations were distributed over the range of the data, hence the term frequency distribution.

A probability distribution is very similar to a frequency distribution. Like a frequency distribution, a probability distribution has a series of categories, but instead of categories of values it has categories of types of outcomes. The other difference is that each category has a probability instead of a frequency.

In the same way as a frequency distribution tells us how frequently each type of value occurs, a probability distribution tells us how probable each type of outcome is.

In Chapter 2 we saw how a histogram could be used to portray a frequency distribution. We can use a similar type of diagram to portray a probability distribution.

In Chapter 3 we used summary measures including the mean and standard deviation to summarize distributions of data. We can use the mean and standard deviation to summarize distributions of probabilities.

Just as we need the set of data to construct a frequency distribution, we need to identify the set of compound outcomes in order to create a probability distribution. We also need the probabilities of the simple outcomes that make up the combinations of outcomes.

Example 6.1

The Sales Director of a large organization requires all members of sales staff to attend a team-building event at an outward-bound centre. Teams of three staff will be selected by drawing names out of a hat. If there are equal numbers of females and males employed in
the sales force, what are the chances that a team of three includes zero, one, two and three females?
Because there are equal numbers of females and males the probability that a female is selected is 0.5 and the probability that a male is selected is also 0.5 .
The probability that a team includes no females is the probability that a sequence of three males is selected.

$$
P(\mathrm{MMM})=0.5 * 0.5 * 0.5=0.125
$$

The probability that one female is selected in a team of three is a little more complicated because we have to take into account the fact that the female could be the first or the second or the third person to be selected.

$$
\text { So, } P(1 \text { Female })=P(\mathrm{FMM} \text { or MFM or MMF })
$$

Because these three sequences are mutually exclusive, according to the addition rule:

$$
P(1 \text { Female })=P(\mathrm{FMM})+P(\mathrm{MFM})+P(\mathrm{MMF})
$$

Since the probability that a female is selected is the same as the probability that a male is selected each of these three ways of getting one female will have the same probability. That is:

$$
\begin{aligned}
& P(\text { FMM })=P(\text { MFM })=P(\text { MMF })=0.5 * 0.5 * 0.5=0.125 \\
& \text { So, } P(1 \text { Female })=0.125+0.125+0.125=0.375
\end{aligned}
$$

We get the same answer for the probability that two females are selected:

$$
\begin{aligned}
P(2 \text { Females }) & =P(\text { FFM or FMF or MFF }) \\
& =P(\mathrm{FFM})+P(\mathrm{FMF})+P(\mathrm{MFF}) \\
& =0.125+0.125+0.125=0.375
\end{aligned}
$$

Finally $P(3$ Females $)=0.5 * 0.5 * 0.5=0.125$
We can bring these results together and present them in the form of a probability distribution.

Number of Females (x)	$P(x)$
0	0.125
1	0.375
2	0.375
3	0.125

In Example 6.1 the probability distribution presents the number of females as a variable, X, whose values are represented as x. The variable X is a discrete random variable. It is discrete because it can only take a limited set of values. It is random because the values occur as the result of a random process.

The symbol ' $P(x)$ ' represents the probability that the variable X takes a particular value, x. For instance, we can represent the probability that the number of females is one, as:

$$
P(X=1)=0.375
$$

Figure 6.1 shows the probability distribution we compiled in Example 6.1 in graphical form.

FIGURE 6.1 The probability distribution of X , the number of females
We can find summary measures to represent this distribution, in the same way as we could use summary measures to represent distributions of data. However, we don't have a set of data to use to get our summary measures. Instead we have to use the probabilities to 'weight' the values of X, just as we would use frequencies to obtain the mean from a frequency distribution.

You can get the mean of a probability distribution by multiplying each x value by its probability and then adding up the results:

$$
\mu=\Sigma x P(x)
$$

Notice that we use the Greek symbol μ here to represent the mean of the distribution. The mean of a probability distribution is a population mean because we are dealing with a distribution that represents the probabilities of all possible values of the variable.

Once we have found the mean we can proceed to find the variance and standard deviation. We can obtain the variance, σ^{2}, by squaring each x value, multiplying the square of it by its probability and adding the results. From this sum we subtract the square of the mean:

$$
\sigma^{2}=\Sigma x^{2} P(x)-\mu^{2}
$$

You can get the standard deviation, σ by taking the square root of the variance.

Again you can see that we are using a Greek letter to represent the variance and the standard deviation because they are population measures.

Example 6.2

Calculate the mean and the standard deviation for the probability distribution in Example 6.1.

x	$P(x)$	$x P(x)$	x^{2}	$x^{2} P(x)$
0	0.125	0	0	0
1	0.375	0.375	1	0.375
2	0.375	0.375	4	1.500
3	0.125	$\underline{0.375}$	9	$\underline{1.125}$

The mean, μ, is 1.5 , the total of the $\times P(x)$ column.
The variance, σ^{2}, is 3 , the total of the $x^{2} P(x)$ column minus the square of the mean:

$$
\sigma^{2}=3-1.5^{2}=3-2.25=0.75
$$

The standard deviation:

$$
\sigma=\sqrt{\sigma^{2}}=\sqrt{0.75}=0.866 \text { to three decimal places. }
$$

The mean of a probability distribution is sometimes referred to as the expected value of the distribution. Unlike the mean of a set of data, which is based on what the observed values of a variable actually were, the mean of a probability distribution tells us what the values of the variable are likely, or expected to be.

We may need to know the probability that a discrete random variable takes a particular value or a lower value. This is known as a cumulative probability because in order to get it we have to add up or accumulate other probabilities. You can calculate cumulative probabilities directly from a probability distribution.

Example 6.3

Calculate a set of cumulative probabilities from the probability distribution in Example 6.1. Suppose we want the probability that X, the number of females is two or less than two. Another way of saying this is the probability that X is less than or equal to two. We can use
the symbol ' \leq ' to represent 'less than or equal to', so we are looking for $P(X \leq 2)$. It may help you to recognize this symbol if you remember that the small end of the ' $<$ ' part is pointing at the X and the large end at the 2 , implying that X is smaller than 2 .
We can find the cumulative probabilities for each value of X by taking the probability that X takes that value and adding the probability that X takes a lesser value. You can see these cumulative probabilities in the right-hand side column of the following table.

Number of Females (x)	$P(x)$	$P(X \leq x)$
0	0.125	0.125
1	0.375	0.500
2	0.375	0.875
3	0.125	1.000

The cumulative probability that X is zero or less, $P(X \leq 0)$ is the probability that X is zero, 0.125 , plus the probability that X is less than zero. Since it is impossible for X to be less than zero we do not have to add anything to 0.125 .
The second cumulative probability, the probability that X is one or less, $P(X \leq 1)$, is the probability that X is one, 0.375 , plus the probability that X is less than one, in other words that it is zero, 0.125 . Adding these two probabilities together gives us 0.5 .
The third cumulative probability is the probability that X is two or less, $P(X \leq 2)$. We obtain this by adding the probability that X is two, 0.375 , to the probability that X is less than two, in other words that it is one or less. This is the previous cumulative probability, 0.5 . If we add this to the 0.375 we get 0.875 .
The fourth and final cumulative probability is the probability that X is three or less. Since we know that X can't be more than three (there are only three members in a team), it is certain to be three or less, so the cumulative probability is 1 . We would get the same result arithmetically if we add the probability that X is three, 0.125 , to the cumulative probability that X is less than three, in other words that it is two or less, 0.875 .

The cumulative probabilities like those we worked out in Example 6.3 are perfectly adequate if we want the probability that a variable takes a particular value or a lower one, but what if we need to know the probability that a variable is higher than a particular value?

We can use the same cumulative probabilities if we manipulate them using our knowledge of the addition rule of probability. If, for instance, we want to know the probability that a variable is more than two, we can find it by taking the probability that it is two or less away from 1.

$$
P(X>2)=1-P(X \leq 2)
$$

We can do this because the two outcomes (X being greater than two and X being less than or equal to two) are mutually exclusive and collectively exhaustive. One and only one of them must occur. There are no other possibilities so it is certain that one of them happens.

In the expression $P(X>2)$, which represents the probability that X is greater than two, we use the symbol ' $>$ ' to represent 'greater than'. It may help you to recognize this symbol if you remember that the larger end of it is pointing to the X and the smaller end is pointing to the 2, implying than X is bigger than 2.

Although the situation described in Example 6.1, picking teams of just three people, was quite simple, the approach we used to obtain the probability distribution was rather laborious. Imagine that you had to use the same approach to produce a probability distribution if there were five or six members of a team instead of just three. We had to be careful enough in identifying the three different ways of selecting two females in a team of three. Listing the different ways two females could be selected in a team of five is far more tedious.

Fortunately, there are methods of analysing such situations that do not involve strenuous mental gymnastics. These involve using a type of probability distribution known as the binomial distribution.

6.3 THE BINOMIAL DISTRIBUTION

The binomial distribution is the first of a series of 'model' statistical distributions that you will meet in this chapter and the two that follow it. The distribution was first derived theoretically but is widely used in dealing with practical situations. It is particularly useful because it enables you not only to answer a specific question but also to explore the consequences of altering the situation without actually doing so.

You can use the binomial distribution to solve problems that have what is called a binomial structure. These types of problems arise in situations where a series of finite, or limited number of, 'experiments' or 'trials' takes place repeatedly. Each trial has the same two mutually exclusive and collectively exhaustive outcomes, as the $b i$ in the word binomial might suggest. These two outcomes are referred to as 'success' and 'failure'.

To analyse a problem using the binomial distribution you have to know the probability of each outcome and it must be the same for every trial. In other words, the results of the trials must be independent of each other.

Words like 'experiment' and 'trial' are used to describe binomial situations because of the origins and widespread use of the binomial distribution
in science. Although the distribution has become widely used in many other fields, these scientific terms have stuck.

The situation in Example 6.1 has a binomial structure. Selecting a team of three is in effect conducting a series of three trials. In each trial, which in this case is each time a name is selected from the hat, there can be only one of two outcomes; either a female or a male is picked.

In practice we would use computer software or printed tables such as those in Table 1 in Appendix 1 (pages 315-6) to apply the binomial distribution. These have been produced using an equation, called the binomial equation, which you will see below. You won't need to remember it, and you shouldn't need to use it. We will look at it here purely to show how it works.

We will use the symbol X to represent the number of 'successes' in a certain number of trials, $n . X$ can be described as a binomial random variable. The probability of success in any one trial is represented by the letter p.

The probability that there are x successes in n trials is:

$$
P(X=x)=\frac{n!}{x!(n-x)!} * p^{x}(1-p)^{n-x}
$$

You will see that an exclamation mark is used several times in the equation. It represents a factorial, that is, a number multiplied by one less than itself then multiplied by two less itself and so on until we get to one. For instance, four factorial, 4 !, is four times three times two times one, $4 * 3 * 2 * 1$, which comes to 24 .

Example 6.4

Use the binomial equation to find the first two probabilities in the probability distribution for Example 6.1.
We will begin by identifying the number of trials to insert in the binomial equation.
Selecting a team of three involves conducting three 'trials', so $n=3$.
The variable X is the number of females selected in a team of three. We need to find the probabilities that X is $0,1,2$ and 3 , so these will be the x values.
If we define 'success' as selecting a female, p the probability of success in any one trial is 0.5 .

We can now put these numbers into the equation. We will start by working out the probability that no females are selected in a team of three, that is, $X=0$.

$$
P(X=0)=\frac{3!}{0!(3-0)!} * 0.5^{0}(1-0.5)^{3-0}
$$

This expression can be simplified considerably. Any number raised to the power zero is one, so $0.5^{\circ}=1$. Conveniently zero factorial, 0 ! is also one. We can also clear up some of the subtractions.

$$
\begin{aligned}
P(X=0) & =\frac{3!}{1(3)!} * 1(0.5)^{3} \\
& =\frac{3 * 2 * 1}{3 * 2 * 1} *(0.5 * 0.5 * 0.5)=1 * 0.125=0.125
\end{aligned}
$$

If you look back at Example 6.1 you will find that this is the same as the first figure in the probability distribution. The figure below it, 0.375 is the probability that one female is selected in a team of three, that is $X=1$. Using the binomial equation:

$$
\begin{aligned}
P(X=1) & =\frac{3!}{1!(3-1)!} * 0.5^{1}(1-0.5)^{3-1} \\
& =\frac{6}{1(2 * 1)} * 0.5(0.25)=3 * 0.125=0.375
\end{aligned}
$$

You may like to try using this approach for $P(X=2)$ and $P(X=3)$ as well.

Finding binomial probabilities using software or using printed tables means we don't need to undertake laborious calculations to obtain the figures we are looking for. We can use software or printed tables to help us analyse far more complex problems than Example 6.1. We will use tables to analyse the problem in Example 6.5 below, but it is well worth learning how to produce tables using software because space restrictions mean that printed tables only contain a limited number of binomial distributions.

Excel Recipe Card - The binomial distribution

Move the cursor to an empty cell. For the probability that one female is picked in a team of three in Example 6.1 type =BINOMDIST(1,3,0.5,FALSE) in the Formula Bar, the long horizontal space near the top of the screen with the symbol f_{x} to the left of it.

The general form of this command is =BINOMDIST(x,n,p,cumulative), where the numbers you put in for x, n and p depend on the problem. Putting FALSE for cumulative denotes that we don't want a cumulative probability, TRUE denotes that we do.

Example 6.5

Malenky Aviation operates commuter flights using aircraft that can take 10 passengers. During each flight passengers are given a hot drink and a 'Snack Pack' that contains a meat sandwich and a cake. The company is aware that some of their passengers may be vegetarians and therefore every flight is stocked with one vegetarian Snack Pack that contains a cheese sandwich in addition to 10 that contain meat.
If 10% of the population is vegetarian, what is the probability that on a fully booked flight there will be at least one vegetarian passenger who will not get a vegetarian Snack Pack? This problem has a binomial structure. We will define the variable X as the number of vegetarians on a fully booked flight. Each passenger is a 'trial' that can be a 'success', a vegetarian, or a 'failure', a non-vegetarian. The probability of 'success', in this case the probability that a passenger is a vegetarian, is 0.1 . There are 10 passengers on a fully booked flight, so the number of trials, n is 10 .
The appropriate probability distribution for this problem is the binomial distribution with $n=10$ and $p=0.1$. Table 1 on pages 315-6 contains the following information about the distribution:

For 10 Trials $(n=10) p=0.1$		
	$P(x)$	$P(X \leq x)$
$x=0$	0.349	0.349
$x=1$	0.387	0.736
$x=2$	0.194	0.930
$x=3$	0.057	0.987
$x=4$	0.011	0.998
$x=5$	0.001	1.000
$x=6$	0.000	1.000
$x=7$	0.000	1.000
$x=8$	0.000	1.000
$x=9$	0.000	1.000
$x=10$	0.000	1.000

The column headed $P(x)$ provides the probabilities that a specific number of 'successes', x occurs, e.g., the probability of three 'successes' in 10 trials, $P(3)$, is 0.057 . The column headed $P(X=x)$ provides the probability that x or fewer 'successes' occur, e.g., the probability that there are three or fewer 'successes', $P(X \leq 3)$, is 0.987 .
If there is only one vegetarian passenger they can be given the single vegetarian Snack Pack available on the plane. It is only when there is more than one vegetarian passenger that at least one of them will be dissatisfied with their Snack Pack. So we need the probability that there is more than one vegetarian passenger, which is the probability that X is greater than one, $P(X>1)$. We could get it by adding up all the probabilities in the $P(x)$ column except the first and second ones; the probability that X is zero, $P(0)$ and the
probability that X is one, $P(1)$. However, it is easier to take the probability of one or fewer, $P(X \leq 1)$ away from one. That is:

$$
P(X>1)=1-P(X=1)=1-0.736=0.254 \text { or } 25.4 \%
$$

We can show the binomial distribution we used in Example 6.5 in graphical form.

FIGURE 6.2 The binomial distribution for $\mathrm{n}=10$ and $\mathrm{p}=0.1$
In Figure 6.2 the block above 0 represents the probability that $X=0, P(0), 0.349$. The other blocks combined represent the probability that X is larger than $0, P(X>0), 0.651$. It is quite easy to find the mean and variance of a binomial distribution. The mean, μ, is simply the number of trials multiplied by the probability of success, that is, $\mu=n p$. The variance is the number of trials multiplied by the probability of success times one minus the probability of success, $\sigma^{2}=n p(1-p)$.

Example 6.6

Calculate the mean, variance and standard deviation of the binomial distribution in Example 6.5.
In Example 6.5 the number of trials, n, was 10 , and the probability of success, p, was 0.1 .
The mean : $\mu=n p=10 * 0.1=1.0$
The variance : $\sigma^{2}=n p(1-p)=10 * 0.1(1-0.1)=1.0 * 0.9=0.9$
The standard deviation : $\sigma=\sqrt{\sigma^{2}}=\sqrt{0.9}=0.949$ to three decimal places

The binomial distribution is called a discrete probability distribution because it describes the behaviour of some discrete random variables, binomial variables. These variables concern the number of times things happen in the course of a finite number of trials.

The binomial distribution enables us to analyse situations where a specific number of trials occur. But what if we need to analyse how many things happen over a period of time? For this sort of situation we use another type of discrete probability distribution known as the Poisson distribution.

6.4 THE POISSON DISTRIBUTION

Some types of business problem involve the analysis of incidents that are unpredictable. Usually they are things that can happen over a period of time such as the number of telephone calls coming through to an office. However, it could be a number of things over an area such as the number of stains in a carpet.

The Poisson distribution describes the behaviour of variables like the number of calls per hour or the number of stains per square metre. It enables us to find the probability that a specific number of incidents happen over a particular period or area.

Using the Poisson distribution is quite straightforward. In fact you may find it easier than using the binomial distribution because we need to know fewer things about the situation. To identify which binomial distribution to use we had to specify the number of trials and the probability of success, these were the two defining characteristics, or parameters of the binomial distribution. In contrast, the Poisson distribution is a single parameter distribution, the one parameter being the mean.

If we have the mean of the variable we are investigating we can obtain the probabilities of the Poisson distribution using computer software or printed tables such as those in Table 2 on pages 316-7.

Example 6.7

The first aid tent at a music festival can deal with no more than three people requiring treatment in any one hour. The mean number of people requiring treatment is two per hour. What is the probability that they will not be able to deal with all the people requiring treatment in an hour?
The variable X in this case is the number of people per hour who require treatment. We can use the Poisson distribution to investigate the problem because it involves a discrete number of occurrences, or incidents over a period of time. The mean of X is 2 .
The first aid facility can deal with three people an hour, so the probability that there are more people requiring treatment than they can handle is the probability that X is more than 3, $P(X>3)$.
The appropriate distribution is the Poisson distribution with a mean of 2 . Table 2 on pages 316-7 contains the following information about the distribution:

$\mu=2.0$		
	$P(x)$	$P(X \leq x)$
$x=0$	0.135	0.135
$x=1$	0.271	0.406
$x=2$	0.271	0.677
$x=3$	0.180	0.857
$x=4$	0.090	0.947
$x=5$	0.036	0.983
$x=6$	0.012	0.995
$x=7$	0.003	0.999
$x=8$	0.001	1.000

The column headed $P(x)$ provides the probabilities that a specific number of incidents, x, occurs, e.g., the probability of four incidents, $P(4)$, is 0.090 . The column headed $P(X \leq x)$ provides the probability that x or fewer incidents occur, e.g., the probability that there are four or fewer incidents, $P(X \leq 4)$, is 0.947 .
To obtain the probability that more than three people require treatment at the first aid tent, $P(X>3)$, we can subtract the probabilities that X is 3 or fewer, $P(X \leq 3)$, which is the probability that the number of people requiring treatment in an hour can be dealt with, from one.

$$
P(X>3)=1-P(X \leq 3)=1-0.857=0.143 \text { or } 14.3 \%
$$

Excel Recipe Card - The

Poisson distribution

Move the cursor to an empty cell. For the probability that three or fewer people require treatment in an hour in Example 6.7 type $=$ POISSON(3,2,TRUE) in the Formula Bar.

Press Enter to produce the probability in the cell.

The general form of this command is =POISSON(\mathbf{x}, mean,cumulative), where the numbers you put in for x and mean depend on the problem. Putting TRUE for cumulative means we want a cumulative probability, FALSE means we don't.

If we had to produce the Poisson probabilities in Example 6.7 without the aid of computer software or printed tables we could calculate them using the formula for the distribution. You won't have to remember it, and probably won't need to use it, but it may help your understanding if you know where the figures come from.

The probability that the number of incidents, X, takes a particular value, x, is:

$$
P(X=x)=\frac{e^{-\mu} \mu^{x}}{x!}
$$

In this expression you can see the letter e, which represents a mathematical constant known as Euler's number. The value of this, to four places of decimals, is 2.7183, so we can put this in the formula.

$$
P(X=x)=\frac{2.7183^{-\mu} \mu^{x}}{x!}
$$

The symbol μ represents the mean of the distribution and x is the value of X whose probability we want to know. In Example 6.7 the mean is 2, so the probability that there are no people requiring treatment, in other words the probability that X is zero, is:

$$
P(X=0)=\frac{2.7183^{-\mu} \mu^{0}}{0!}=\frac{2.7183^{-2} * 2^{0}}{1}
$$

To work this out you need to know that if you raise any number (in this case 2 , the value of μ) to the power zero the answer is one. So:

$$
P(X=0)=\frac{2.7183^{-2} * 2^{0}}{1}=\frac{2.7183^{-2} * 1}{1}
$$

The first part of the expression, 2.7183^{-2}, becomes $1 / 2.7183^{2}$. Any number raised to a negative power is a reciprocal, which is one divided by the number, for instance 2^{-2} is $1 / 2^{2}$, which is $1 / 4$. So:

$$
P(X=0)=1 / 2.7183^{2}=0.135 \text { to three decimal places }
$$

If you look back to the extract from Table 2 in Example 6.7 you can check that this is the correct figure. The figure below $P(0), 0.135$, in the extract from Table 2 is $P(1), 0.271$, which can be calculated as follows:

$$
P(X=1)=\frac{2.7183^{-\mu} \mu^{1}}{1!}=\frac{2.7183^{-2} * 2}{1}=2 / 2.7183^{2}=0.271
$$

Figure 6.3 shows the Poisson distribution used in Example 6.7 in graphical form.

FIGURE 6.3 The Poisson Distribution for $\mu=2.0$

6.5 EXPECTATION

Earlier in the chapter we referred to the mean of a probability distribution as the expected value of the distribution because it can be used as a guide to what we could expect or predict that the values will be like. In fact one of the most important uses of probabilities is to make predictions. The production of predicted or expected values is called expectation.

A probability assesses the chance of a certain outcome in general. To use it to make predictions we have to apply it to something specific. If the probability refers to a process that is repeated, we can predict how many times the outcome will occur if the process happens a specific number of times by multiplying the probability by the number of times the process happens.

Example 6.8

In Example 6.1 the probability that a team of three members of the sales force chosen at random contained one female was 0.375 . If there were enough sales staff for 200 teams, how many teams will contain exactly one female?
Selecting these teams is a process that is to be repeated 200 times so we can work out how many teams include one female by multiplying the probability that a team contains one female, 0.375 , by the number of times the process is repeated, 200.

Expected number of teams with one female $=0.375 * 200=75$
So we would expect 75 of the teams to contain one female.

The result we obtained in Example 6.8 is a prediction, and like any prediction it won't always be true. We shouldn't therefore interpret the result as meaning that every time 200 teams are selected at random there will be exactly 75 teams that contain one female.

What the result in Example 6.8 does mean is that if 200 teams were to be selected at random many times over, in the long run we would expect that the average number of teams that contain one female will be 75 .

Expectation also allows us to predict incidences over time. To do this you multiply the probability that a certain number of incidences occur over a period of time by the time you want your prediction to cover.

Example 6.9

In Example 6.7 we found the probability that the number of people requiring treatment at the first aid tent was more than three in any hour was 0.143 . If the music festival lasts 10 hours, in how many hours will there be more than three people seeking treatment? We can obtain the answer by multiplying the probability of more than three people requiring treatment in an hour by the number of hours the music festival lasts.

Expected hours with more than three people requiring treatment $=0.143 * 10$

$$
=1.43
$$

Since the first aid tent can only treat three people an hour, we would expect them to have to summon help during 1 or 2 hours of the music festival.

In some situations the outcomes are associated with specific financial results. In these cases the probabilities can be applied to the monetary consequences of the outcomes to produce a prediction of the amount of money that the process will generate. These types of prediction are called expected monetary values (EMVs).

Example 6.10

A rail operating company incurs extra costs if its long-distance trains are late. Passengers are given a voucher to put towards the cost of a future journey if the delay is between 30 minutes and 2 hours. If the train is more than 2 hours late the company refunds the cost of the ticket for every passenger. The cost of issuing vouchers costs the company $£ 5000$. The cost of refunding all the fares costs the company $£ 60,000$.

The probability that a train is between 30 minutes and 2 hours late is 10% and the probability a train is more than 2 hours late is 2%. What is the EMV of the operating company's extra costs?
To answer this we need to take the probability of each of the three possible outcomes (less than 30 minutes late, 30 minutes to 2 hours late, more than 2 hours late) and multiply them by their respective costs ($£ 0, £ 5000$ and $£ 60,000$). The EMV is the sum of these results.

$$
\begin{aligned}
\mathrm{EMV} & =(0.88 * 0)+(0.1 * 5000)+(0.02 * 60000) \\
& =0+500+1200=1700
\end{aligned}
$$

The company can therefore expect that extra costs will amount to $£ 1700$ per journey.

6.6 DECISION TREES

EMVs play an important part in models that can be used to analyse business situations involving a number of stages of outcomes and decisions. These models are called decision trees.

As their name might suggest, decision trees depict the different sequences of outcomes and decisions in the style of a tree spreading from left to right. Each branch of the tree represents an outcome or a decision. The junctions, or points at which branches separate, are called nodes. If the branches that stem from a node represent outcomes, the node is called a chance node and depicted using a small circle. If the branches represent different decisions that could be made at that point, the node is a decision node and depicted using a small square.

All the paths in a decision tree should lead to a specific monetary result that may be positive (an income or a profit) or negative (a cost or a loss). The probability that each outcome occurs is written at the end of the branch that represents the outcome. We use the probabilities and the monetary results to work out the EMV of each possible decision. We write the EMV of a decision alongside the branch that represents it. The final task is to select the decision or series of decisions if there is more than one stage of decision-making, which yields the highest EMV.

Example 6.11

A retail grocery company is interested in opening a new supermarket in a disused cinema on the outskirts of a major town. Because of local opposition to the proposal there is only a 65% chance that planning permission will be granted. If planning permission is obtained there is an 80% chance that a major competitor will build a rival establishment close enough to seriously affect the prospects of the supermarket.

Financial planners at the company say that the venture would make a profit of $£ 20 \mathrm{~m}$ in its first 5 years of operation if the rival establishment is not built and a loss of $£ 4 \mathrm{~m}$ over the 5 years if the rival establishment is built.
Assuming that the company takes all investment decisions on the basis of financial prospects over the first 5 years of any venture, should they proceed with their plan? We can begin by distinguishing between the decisions the company can take and the outcomes they could face. The decisions are to open the supermarket or not to open the supermarket. The outcomes are whether they get planning permission or not, and whether the rival establishment is built or not.
Although granting planning permission and building the rival establishment are decisions, they are decisions taken by people outside the company. As far as the company is concerned they are outcomes and they do not have direct control over them. In the diagram we will use the abbreviations as follows:

- 'O' for opening the supermarket and 'No O' for not opening it
- 'PP' for planning permission and 'No PP' for no planning permission
- 'RE' for a rival establishment and 'No RE' for no rival establishment

We can start with the EMV of the 'No open' decision. If they decide not to open the supermarket the monetary result is certain to be zero.
If they decide to open the supermarket there is a probability of 0.35 that they fail to get planning permission and hence obtain a monetary result of zero. The probability that they make a loss of $£ 4 \mathrm{~m}$ is the probability that they get planning permission and that the rival establishment is built. The probability that they make a profit of $£ 20 \mathrm{~m}$ is the probability that they get planning permission and that the rival establishment is not built.
The EMV of opening the supermarket is the sum of these probabilities multiplied by their respective monetary results.

$$
\begin{aligned}
\text { EMV }(\text { Open })= & (0.35 * 0)+(0.65 * 0.8 *(-4,000,000)) \\
& +(0.65 * 0.2 * 20,000,000) \\
= & 0+(-2,080,000)+2,600,000=520,000
\end{aligned}
$$

Since the EMV of opening the supermarket, $£ 520,000$, is greater than the EMV of not opening it, $£ 0$, they should open the supermarket.

Although decision trees can be useful approaches for weighing up decisions, they do have some shortcomings as techniques for taking decisions.

Their first weakness is that they are only as good as the information that you put into them. If the probabilities and monetary figures are not reliable then the conclusion is also unreliable. This is an important issue when, as in Example 6.11, the figures are speculative assessments of future events over a considerable period of time.

The second shortcoming is that they take no account of the attitude that the people making the decision have towards risk. For instance, if the retail grocery company in Example 6.11 has high profits and is cash-rich it might be prepared to accept the risk of a loss more readily than if it has low profits and a liquidity problem.

The third drawback is that it is difficult to introduce factors that are nonquantifiable or difficult to quantify into the process. For instance, the location where the company in Example 6.11 wants to open the supermarket may be in an area where recruiting part-time staff for peak periods is easier than in a city centre location.

Despite these weaknesses decision trees can help to investigate decisions and their consequences, especially when we are interested in the effects of altering some of the figures to see whether the conclusion changes.

Example 6.12

The rival company in Example 6.11 publishes financial results that show an improvement in profits. As a result the retail grocery company that wants to open the supermarket now puts the probability that a rival establishment will be built at 0.9 . Should the company change its mind about opening the supermarket?
We need to put the new probability that there is no rival establishment, 0.1 , into the expression for the EMV of the decision to open the supermarket.

$$
\begin{aligned}
\operatorname{EMV}(\text { Open })= & (0.35 * 0)+(0.65 * 0.9 *(-4,000,000)) \\
& +(0.65 * 0.1 * 20,000,000) \\
= & 0+(-2,340,000)+1,300,000=-1,040,000
\end{aligned}
$$

The EMV of opening the supermarket is now negative, $-£ 1,040,000$, which means it is lower than the EMV of not opening the supermarket, $£ 0$. In this case they should not open the supermarket.

Test yourself questions from Warwick's business enterprises

Fully worked solutions to these questions are on pages 334-336. You can find more questions on the topics covered in this chapter at the accompanying website www. elsevierdirect.com/9781856179478.

6.1 (Easy)

'Fast' Gary and Mickey 'the Mule' import alcoholic beverages from Brno into the UK. They offer Warwick a consignment of packs of bottled beers to sell in his restaurant. Each pack contains 10 bottles. The price for the consignment is low because due to problems at the bottling plant 20% of the bottles have no labels. What is the probability that in a pack from this consignment:
(a) No bottles are without labels?
(b) Three or fewer bottles are without labels?
(c) More than one bottle is without a label?
(d) Less than five bottles are without labels?
(e) The majority of bottles are without labels?

6.2 (Moderate)

The mean number of violent incidents at Warwick's city centre bar is 14 per week. As a result of illness the doorman will be off for a day.
(a) What is the probability that the day passes without any violent incidents?
(b) What is the probability that the day passes with no more than one violent incident?
(c) If his doctor says the doorman needs 2 days off work, what is the probability that these 2 days pass without any violent incidents?
(d) What is the probability that these 2 days pass with more than one violent incident?

6.3 (Hard)

Eagraville United are the last lower-division football club in the quarter-finals of a major cup competition. The other teams are all prominent clubs with large numbers of supporters. The club manager has asked Warwick to provide catering for the event. He has to place the order for perishable goods to sell at the game before the draw for the next stage of the competition takes place. He can place a small or a large order. If he places a large order and the game is played at Eagraville he anticipates a profit of $£ 10,000$. If he places a small order and the game is played at Eagraville he anticipates a profit of $£ 3000$. If a large order is placed and the game is played elsewhere he estimates a loss of $£ 2500$. If a small order is placed and the game is played elsewhere he estimates a loss of $£ 1000$. There is a 50% chance that Eagraville will get a home game in the draw, but if they do they expect that the larger club will apply for the fixture to be relocated because of the modest size of the Eagraville ground. The probability that such an application will succeed is 0.4 . Use a decision tree to represent the situation and use it to recommend whether Warwick should place a large or a small order.

Modelling Populations

Why do I need to know about this? Warwick the Hospitality entrepreneur says...
'You can't get away from the fact that a lot of the time in business you are dealing with samples. Samples of the customers you could have attracted, samples of the employees you could have appointed, samples of the goods that you could have been supplied with. Every sample comes from a population. To know what you can find out from studying the sample you have to have some idea of the population it comes from and how the samples taken from it are likely to vary.'

CONTENTS

Introduction
The Normal Distribution

The Standard Normal Distribution

Sampling Distributions
The t Distribution
Choosing the Correct
Model for a
Sampling Distribution

Chapter Objectives

This chapter will help you to:

- use continuous probability distributions;
- analyse continuous random variables; and
understand how sample results vary.

7.1 INTRODUCTION

In the last chapter we looked at how two different types of theoretical probability distributions, the binomial and Poisson distributions, can be used to model or simulate the behaviour of discrete random variables. These types of variables can only have a limited or finite number of values, typically only whole numbers like the number of defective products in a pack or the number of telephone calls received over a period of time.

Discrete random variables are not the only type of random variable. You will also come across continuous random variables, variables whose possible values are not confined to a limited range. In the same way as we used discrete probability distributions to help us investigate the behaviour of discrete random variables we use continuous probability distributions to help us investigate the behaviour of continuous random variables. Continuous probability distributions can also be used to investigate the behaviour of discrete variables that can have many different values.

The most important continuous probability distribution in Statistics is the normal distribution. As the name suggests, this distribution represents the pattern of many 'typical' or 'normal' variables.

However, the normal distribution has a very special place in Statistics because as well as helping us to investigate variables that behave in the way that the normal distribution portrays, it is used to model the way in which results from random samples vary. This is of great importance when we want to use sample results to make predictions about entire populations.

7.2 THE NORMAL DISTRIBUTION

Just as there are different versions of the binomial distribution that describe the patterns of values of binomial variables, and different versions of the Poisson distribution that describe the behaviour of Poisson variables, there are different versions of the normal distribution that display the patterns of values of normal variables.

Each version of the binomial distribution is defined by n, the number of trials and p, the probability of success in any one trial. Each version of the Poisson distribution is defined by its mean. In the same way, each version of the normal distribution is identified by two defining characteristics or parameters; the mean and the standard deviation.

The normal distribution has three distinguishing features:
■ It is unimodal; there is a single peak.

- It is symmetrical; one side is the mirror image of the other.

■ It is asymptotic; it tails off gradually on each side but the line representing the distribution never quite meets the horizontal axis.
Because the normal distribution is a symmetrical distribution with a single peak, the mean, median and mode all coincide at the middle of the distribution. For this reason we only need to use the mean as a measure of location for the normal distribution. Since the average we use is the mean, the measure of spread that we use for the normal distribution is the standard deviation.

The normal distribution is sometimes described as bell-shaped. Figure 7.1 illustrates the shape of the normal distribution. It takes the form of a smooth curve. This is because it represents the probabilities that a continuous variable takes values right across the range of the distribution.

If you look back at the diagrams used to represent the discrete probability distribution in Figure 6.1 in Chapter 6 you will see that it is a bar chart that consists of separate blocks. Each distinct block represents the probability that the discrete random variable in question takes one of its distinct values. Because the variable can only take discrete, or distinct, values we can represent behaviour with a diagram consisting of discrete, or distinct, sections.

If we want to use a diagram like Figure 6.1 to find the probability that the discrete variable it describes takes a specific value, we could measure the

FIGURE 7.1 The normal distribution
height of the block against the vertical axis. In contrast, using the smooth or continuous curve in Figure 7.1 to find the probability that the continuous variable it describes takes a particular value is not so easy.

To start with, we need to specify a range rather than a single value. For instance, we would have to talk about the probability that the variable X is between 3.500 and 4.499 rather than the probability that X is 4 . This probability would be represented in a diagram by that part of the area below the curve that lies between the points 3.500 and 4.499 on the horizontal axis, as a proportion of the total area below the curve. Because this sort of thing is very difficult to measure even approximately on a graph, using the normal distribution inevitably involves computer software or printed tables of probabilities.

In Chapter 6 we saw how we could produce tables of binomial or Poisson probabilities using software as long as we could specify the necessary parameters. We could use the software to produce probabilities for any binomial or Poisson distribution. We can also use the software to produce probabilities for any normal distribution.

Example 7.1

According to a bank, the time taken by its customers to use cash dispensing machines (X) is normally distributed with a mean of 18 seconds and a standard deviation of 3 seconds. What is the probability that a customer selected at random takes less than 13 seconds? The shaded area in Figure 7.2 represents the cumulative probability that the time that customers take to use cash dispensing machines is less than 13 seconds i.e. $P(X<13)$.

FIGURE 7.2 The distribution of times taken to use cash dispensers in Example 7.1

Excel Recipe Card - The normal distribution

Move the cursor to an empty cell. For the cumulative probability for Example 7.1 type
=NORMDIST(13,18,3,TRUE) in the Formula Bar.

Press Enter to produce the probability in the cell.

3 Microsoft Excel - Book1									
(5]) Eile Edit View Insert Fgrmat Iools Data Window Help									
SUM $\quad \times \times$ ¢ $=$ NORMDIST(13,18,3,TRUE)									
	A	B	C	D	E	F	G	H	
1)RMDIST(1)								
2 ,									
3									
4									
5									
6									
7									

The general form of the command is =NORMDIST(x,mean,standard deviation, TRUE) where x is the value whose probability you want, and the mean and standard deviation are the parameters of the normal distribution to which x belongs. TRUE denotes that we want a cumulative probability, FALSE denotes that we don't.

The result from the Excel analysis for Example 7.1 can be interpreted to mean that 4.78 percent of customers take less than 13 seconds.

Example 7.2

Find the probabilities that customers of the bank in Example 7.1 take:
(a) Less than 12 seconds;
(b) Less than 15 seconds;
(c) Less than 18 seconds;
(d) Less than 21 seconds;
(e) Less than 24 seconds;
to use the cash dispensing machines.
Using the Excel NORMDIST facility you should get the following figures.
Normal with mean $=18.0$ and standard deviation $=3.0$

x	$P(X<x)$
12.0	0.0228
15.0	0.1587
18.0	0.5000
21.0	0.8413
24.0	0.9772

In this output X represents the variable 'time taken by customers' and x represents a specific period of time taken by customers.

You can see from the table in Example 7.2 that the probability that a customer takes less than the mean, 18 seconds, is 0.5 , or 50%. This is not too surprising because the mean of the normal distribution is the figure right in the middle of a symmetrical distribution. We would expect one half of the values in the distribution to be below it and the other half above it. The probability that any one value is below the mean is therefore exactly the same as the probability that it is above the mean, 0.5 .

If the probability that a customer takes less than 18 seconds is 0.5 and the probability that a customer takes more than 18 seconds is 0.5 , what is the probability that a customer takes exactly 18 seconds? In theory the probability that a continuous variable has a precise value is infinitely small. The probability that X, the time that customers take, is precisely 18 seconds, that is, $18.000000 \ldots$ is, for all practical purposes zero. If we are more specific about what we mean by ' 18 seconds', which is probably ' 18 seconds to the nearest second', it is clear that we don't mean the probability that X is exactly 18 , we mean the probability that X is between 17.5 and 18.5 .

An implication of the last point is that there is no tangible difference between the probability that X is less than an amount, and the probability that X is less than or equal to that amount.

The other values in Example 7.2 have been chosen because they are one or two standard deviations away from the mean. As a rule of thumb roughly two-thirds of the normal distribution is between one standard deviation below the mean and one standard deviation above the mean and about 95% of the distribution is within two standard deviations of the mean. Over 99% of the distribution is within three standard deviations of the mean.

Example 7.3

Use the list of probabilities in Example 7.2 to find the proportion of customers that take:
(a) Between 15 and 21 seconds;
(b) Between 12 and 24 seconds;
to use the cash dispensers.
According to the table the probability that X, the time taken by customers, is below 21 seconds is 0.8413 , or 84.13%. The probability that X is below 15 seconds is 0.1587 , or 15.87%. To find the probability that X is less than 21 seconds and more than 15 seconds we have to subtract the probability that it is less than 15 seconds from the probability that it is less than 21 seconds.

$$
\begin{aligned}
P(21>X>15) & =P(X<21)-P(X<15) \\
& =0.8413-0.1587=0.6826, \text { or } 68.26 \%
\end{aligned}
$$

This is illustrated in Figure 7.3.

FIGURE 7.3 Example 7.3: $\mathrm{P}(21>\mathrm{X}>15)$
Similarly we can get the probability that X is less than 24 seconds and more than 12 seconds by subtracting the probability that X is less than 12 seconds from the probability that it is less than 24 seconds.

$$
\begin{aligned}
P(24>X>12) & =P(X<24)-P(X<12) \\
& =0.9772-0.0228=0.9544, \text { or } 95.44 \%
\end{aligned}
$$

This is illustrated in Figure 7.4.

FIGURE 7.4
Example 7.3: $\mathrm{P}(24>\mathrm{X}>12)$

When we looked at the binomial and Poisson distributions in Chapter 6 we saw how it was possible to calculate probabilities in these distributions using the appropriate formulae. In fact in the days before the sort of software we now have became available, if you needed to use a binomial or a Poisson distribution you would consult published tables. However because of the sheer number of version of the distributions the one that you wanted may not have appeared in the tables. In such a situation you had to work out the probabilities yourself.

Calculating the probabilities that make up discrete distributions is tedious but not impossible, especially if the number of outcomes involved is quite small. The nature of the variables concerned, viz. the fact that they can only take a limited number of values, restricts the number of calculations involved.

In contrast, calculating the probabilities in continuous distributions can be daunting. The variables, being continuous, can have an infinite number of different values and the distribution consists of a smooth curve rather than a collection of detached blocks. This makes the mathematics involved very much more difficult and puts the task beyond the capabilities of many people.

Because it was so difficult to calculate normal distribution probabilities, published tables were the only viable means of using the normal distribution before computers were available to do the work. However, the number of versions of the normal distribution is literally infinite, so it was impossible to publish tables for all of them.

The solution to this problem was the production of tables describing a benchmark normal distribution known as the Standard Normal Distribution. The advantage of this was that you could analyse any normal distribution by comparing points in it with equivalent points in the Standard Normal Distribution. Once you had these equivalent points you could use published Standard Normal Distribution tables to assist you with your analysis.

Although modern software means that the Standard Normal Distribution is no longer indispensable, it is important that you know something about it. Not only is it useful in case you do not have access to appropriate software, but more importantly, there are many aspects of further statistical work you will meet that are easier to understand if you know about the Standard Normal Distribution.

7.3 THE STANDARD NORMAL DISTRIBUTION

The Standard Normal Distribution describes the behaviour of the variable Z, which is normally distributed with a mean of zero and a standard deviation of one. Z is sometimes known as the Standard Normal Variable and the Standard Normal Distribution is known as the Z Distribution. The distribution is shown in Figure 7.5.

FIGURE 7.5 The standard normal distribution

If you look carefully at Figure 7.5 you will see that the bulk of the distribution is quite close to the mean, 0 . The tails on either side get closer to the horizontal axis as we get further away from the mean, but they never meet the horizontal axis. They are what are called asymptotic.

As you can see from Figure 7.5 half of the Standard Normal Distribution is to the left of zero, and half to the right. This means that half of the z values that make up the distribution are negative and half are positive.

Table 3 on pages 317-320 provides a detailed breakdown of the Standard Normal Distribution. You can use it to find the probability that Z, the Standard Normal Variable, is more than a certain value, z, or less than z. In order to show you how this can be done, a section of Table 3 is printed below:

\boldsymbol{z}	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 6}$	$\mathbf{0 . 0 7}$	$\mathbf{0 . 0 8}$	$\mathbf{0 . 0 9}$
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7	0.2420	0.2389	0.2358	0.2327	0.2297	0.2266	0.2236	0.2206	0.2177	0.2148
0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379

Suppose you need to find the probability that the Standard Normal Variable, Z, is greater than $0.72, P(Z>0.72)$. Begin by looking for the value of z, 0.72 , to just one decimal place, i.e. 0.7 , among the values listed in the column headed z on the left-hand side. Once you have found 0.7 under z, look along the row to the right until you reach the figure in the column headed 0.02 . The figure in the 0.7 row and the 0.02 column is the proportion of the distribution that lies to the right of $0.72,0.2358$. This area represents the probability that Z is greater than 0.72 , so $P(Z>0.72)$ is 0.2358 or 23.58%.

If you want the probability that Z is less than $1.08, P(Z<1.08)$ look first for 1.0 in the z column and then proceed to the right until the figure in the column headed $0.08,0.1401$. This is the area to the right of 1.08 and represents the probability that Z is more than 1.08. To get the probability that Z is less than 1.08 , subtract 0.1401 from 1 :

$$
\begin{aligned}
P(Z<1.08) & =1-P(Z>1.08)=1-0.1401 \\
& =0.8599 \text { or } 85.99 \%
\end{aligned}
$$

In Example 7.4 you will find a further demonstration of the use of Table 3.

Example 7.4

Use Table 3 on pages 317-320 to find the following:
(a) The probability that Z is greater than $0.7, P(Z>0.7)$.
(b) The probability that Z is less than $0.7, P(Z<0.7)$.
(c) The probability that Z is greater than 2.27, $P(Z>2.27)$.
(d) The probability that Z is greater than $-1.35, P(Z>-1.35)$.
(e) The probability that Z is less than $-1.35, P(Z<-1.35)$.
(f) The probability that Z is greater than 0.41 and less than $2.74, P(0.41<Z<2.74)$.
(g) The probability that Z is less than -0.82 and more than $-1.98, P(-1.98<Z<-0.82)$.
(h) The probability that Z is less than 1.53 and more than $-0.69, P(-0.69<Z<1.53)$.

Until you are used to deal with the Standard Normal Distribution you may find it helpful to make a small sketch of the distribution and identify on the sketch the z value(s) of interest and the area that represents the probability you want.
(a) The probability that Z is greater than $0.7, P(Z>0.7)$.

The value of Z in this case is not specified to two places of decimals, so we take the figure to the immediate right of 0.7 in Table 3, in the column headed 0.00 , which is 0.2420 . This is the probability that Z is greater than 0.7 . We could also say that 24.20% of z values are greater than 0.7.
This is represented by the area shown in Figure 7.6.

FIGURE 7.6 Example 7.4 (a): $\mathrm{P}(Z>0.7)$
(b) The probability that Z is less than $0.7, P(Z<0.7)$.

The answer to (a) tells us that 24.20% of z values are bigger than 0.7 . This implies that 75.80% of z values are less than 0.7 , so the answer is $1-0.2420$ which is 0.7580 .
This is represented by the area shown in Figure 7.7.

FIGURE 7.7 Example 7.4 (b): $\mathrm{P}(\mathrm{Z}<0.7)$
(c) The probability that Z is greater than $2.27, P(Z>2.27)$.

The figure in the row to the right of 2.2 and in the column headed 0.07 in Table 3 is 0.0116 . This means that 1.16% of z values are bigger than 2.27 . The probability that Z is bigger than 2.27 is therefore 0.0116 .
This is represented by the area shown in Figure 7.8

FIGURE 7.8 Example 7.4 (c): $\mathrm{P}(Z>2.27)$
(d) The probability that Z is greater than $-1.35, P(Z>-1.35)$.

The figure in the row to the right of 2.2 and in the column headed 0.07 in Table 3 is 0.0116 . This means that 1.16% of z values are bigger than 2.27 . The probability that Z is bigger than 2.27 is therefore 0.0116 .
Figure 7.9 depicts this area.
(e) The probability that Z is less than $-1.35, P(Z<-1.35)$.

From (d) we know that the probability that Z is greater than -1.35 is 0.9115 , so the probability that Z is less than -1.35 (by which we mean $-1.4,-1.5$ and so on) is $1-0.9115$, which is 0.0885 .
This is shown in Figure 7.10.
(f) The probability that Z is greater than 0.41 and less than $2.74, P(0.41<Z<2.74)$.

The probability that Z is greater than $0.41, P(Z>0.41)$, is shown in Table 3 in the row for 0.4 and the column headed $0.01,0.3409$. You will find the probability that Z is greater than 2.74 in the row for 2.7 and the column headed $0.04,0.0031$. We can obtain the probability that Z is more than 0.41 and less than 2.74 by taking the

FIGURE 7.9 Example 7.4 (d): $\mathrm{P}(Z>-1.35)$

FIGURE 7.10 Example 7.4 (e): $\mathrm{P}(\mathrm{Z}<-1.35)$
probability that Z is more than 2.74 away from the probability that Z is more than 0.41 , that is:

$$
\begin{aligned}
P(0.41<Z<2.74) & =P(Z>0.41)-P(Z>2.74) \\
& =0.3409-0.0031=0.3378
\end{aligned}
$$

This probability is shown in Figure 7.11.

FIGURE 7.11 Example 7.4 (f): $\mathrm{P}(0.41<\mathrm{Z}<2.74)$

Another way of expressing this is to say that if 34.09% of the area is to the right of 0.41 and 0.31% of the area is to the right of 2.74 , then the difference between these two percentages, 33.78% is the area between 0.41 and 2.74 .
(g) The probability that Z is greater than -1.98 and less than -0.82 ,

$$
P(-1.98<Z<-0.82) .
$$

From Table 3 we can establish by looking for figure in the -1.9 row and the 0.08 column that the probability that Z is more than $-1.98, P(Z>-1.98)$, is 0.9761 . The probability that Z is more than $-0.82, P(Z>-0.82)$ is the figure in the -0.8 row and the 0.02 column, 0.7939 . The probability that Z is between -1.98 and -0.82 is the probability that Z is more than -1.98 minus the probability that Z is more than 0.82 . That is:

$$
\begin{aligned}
P(-1.98<Z<-0.82) & =P(Z>-1.98)-P(Z>-0.82) \\
& =0.9761-0.7939=0.1822
\end{aligned}
$$

This is illustrated in Figure 7.12.
(h) The probability that Z is greater than -0.69 and less than 1.53 ,

$$
P(-0.69<Z<1.53) .
$$

The probability that Z is greater than $-0.69, P(Z>-0.69)$, is in the -0.6 row and the 0.09 column of Table 3, 0.7549. $P(Z>1.53)$ is in the row for 1.5 and the column headed $0.03,0.0630$. The probability that Z is between -0.69 and 1.53 is the probability that Z is greater than -0.69 minus the probability that Z is greater than 1.53 :

$$
\begin{aligned}
P(-0.69<Z<1.53) & =P(Z>-0.69)-P(Z>1.53) \\
& =0.7549-0.0630=0.6919
\end{aligned}
$$

This is depicted in Figure 7.13.

FIGURE 7.12 Example 7.4 (g): $\mathrm{P}(-1.98<\mathrm{Z}<-0.82)$

FIGURE 7.13 Example 7.4 (h): $\mathrm{P}(-0.69<\mathrm{Z}<1.53)$

Sometimes we need to use the Standard Normal Distribution in a rather different way. Instead of starting with a value of Z and finding a probability, we may have a probability and need to know the value of Z associated with it.

Example 7.5

Use Table 3 on pages 317-320 to find the specific value of Z, which we will call z_{α}, so the area to the right of z_{α}, the probability that Z is greater than $z_{\alpha}, P\left(Z>z_{\alpha}\right)$, is:
(a) 0.4207
(b) 0.0505
(c) 0.0250
(a) If you look carefully down the list of probabilities in Table 3, you will see that 0.4207 appears to the right of the z value 0.2 , so in this case the value of z_{α} is 0.2 . The probability that Z is greater than $0.2, P(Z>0.2)$ is 0.4207 .

This is shown in Figure 7.14.
(b) To find the value of Z that has an area of 0.0505 to the right of it you will have to look further down Table 3. The figure 0.0505 appears in the row for 1.6 and the column headed $0.04,0.0505$ is the probability that Z is more than 1.64 , $P(Z>1.64)$.

This is shown in Figure 7.15.
(c) The value of Z that has an area of 0.0250 , or 2.5% of the distribution, to the right of it is 1.96 because the figure 0.0250 is in the row for 1.9 and the column headed 0.06 in Table 3. So 0.0250 is the probability that Z is more than $1.96, P(Z>1.96)$.

This is illustrated in Figure 7.16.

FIGURE 7.14 Example 7.5 (a): $0.4207=P(Z>0.2)$

FIGURE 7.15 Example 7.5 (b): $0.0505=P(Z>1.64)$

FIGURE 7.16 Example 7.5 (c): $0.0250=P(Z>1.96)$

The symbol we used in Example 7.5 to represent the value of Z we wanted to find, z_{α}, is a symbol that you will come across in later work. The α in this symbol represents the area of the distribution beyond z_{α}, in other words the probability that z is beyond z_{α}.

$$
P\left(Z>z_{\alpha}\right)=\alpha
$$

In Example $7.5(\mathrm{c}), \alpha$ is 0.0250 and z_{α} is 1.96 , that is $P(\mathrm{Z}>1.96)=0.0250$. 1.96 is the value of Z and 0.0250 or 2.5% is the area of the distribution beyond 1.96. As you can see from Figure 7.16 this is a small area in the right-hand tail of the distribution. Such an area is therefore called a tail area.

Sometimes it is convenient to represent a particular value of Z by the letter z followed by the tail area beyond it in the distribution in the form of a suffix. For instance, the z value 1.96 could be written as $z_{0.0250}$ because there is a tail of 0.0250 of the distribution beyond 1.96. We might say that the z value 1.96 'cuts off' a tail area of 0.0250 from the rest of the distribution.

In later work you will find that particular z values are often referred to in this style because it is the area of the tail that leads us to use a particular z value and we may want to emphasize the fact. Values of Z that cut off tails of $5 \%, 2 \frac{1}{2} \%, 1 \%$ and $\frac{1}{2} \%$ crop up in the topics we will look at in the next chapter. The z values that cut off these tail areas, $1.64,1.96,2.33$ and 2.58 are frequently referred to as $z_{0.05}, z_{0.025}, z_{0.01}$ and $z_{0.005}$ respectively.

7.3.1 Using the Standard Normal Distribution

To use the Standard Normal Distribution to analyse other versions of the normal distribution we need to be able to express any value of the normal distribution that we want to investigate as a value of Z, which is known as finding its z-equivalent or z score.

The z-equivalent of a particular value, x of a normal variable, X, is the difference between x and the mean of X, μ, divided by the standard deviation of X, σ.

$$
z=\frac{x-\mu}{\sigma}
$$

Because we are dividing the difference between the value, x, and the mean of the distribution it belongs to, μ, by the standard deviation of the distribution, σ, to get it, the z-equivalent of a value is really just the number of standard deviations the value is away from the mean.

Once we have found the z-equivalent of a value in a normal distribution we can refer to the Standard Normal Distribution table, Table 3 on pages 317-320, to assess probabilities associated with it.

Example 7.6

A UK pub offers a '10 oz Steak Special' (10 oz, or 10 ounces is about 284 grams). If the steaks they use for these meals have uncooked weights that are Normally distributed with a mean of 9.8 ounces and a standard deviation of 0.5 ounces, what is the probability that a customer will get:
(a) A steak that has an uncooked weight of more than 10 ounces?
(b) A steak that has an uncooked weight of more than 9.5 ounces?
(c) A steak that has an uncooked weight of less than 10.5 ounces?
(a) If X represents the uncooked weights of the steaks, we want to find $P(X>10)$. This is shown in Figure 7.17.
The z-equivalent of $x=10$ is

$$
z=\frac{10-9.8}{0.5}=0.4
$$

So the probability that X is more than 10 is equivalent to the probability that Z is more than 0.4. From Table 3 on pages 317-320:

$$
P(Z>0.4)=0.3446 \text { or } 34.46 \%
$$

(b) The z-equivalent of 9.5 is

$$
z=\frac{9.5-9.8}{0.5}=-0.6
$$

So the probability that X is more than 9.5 is equivalent to the probability that Z is more than -0.6. From Table 3:

$$
P(Z>-0.6)=0.7257 \text { or } 72.57 \%
$$

(c) The z-equivalent of 10.5 is

$$
z=\frac{10.5-9.8}{0.5}=1.4
$$

FIGURE 7.17 Example 7.6 (a): $P(X>10)$

The probability that X is less than 10.5 is the same as the probability that Z is less than 1.4. According to Table 3 the probability that Z is more than 1.4 is 0.0808 , so the probability that Z is less than 1.4 is $1-0.0808$ which is 0.9192 , or 91.92%.

In some situations you may need to find a specific point in the normal distribution that cuts off a particular tail area. To do this, you first have to select the value of Z that cuts off the same area in the Standard Normal Distribution. Once you have established this z value, find the point that number of standard deviations away from the mean. If the z value is positive, add that number of standard deviations to the mean, if it is negative, take them away.

Example 7.7

In the population of uncooked steaks in Example 7.6, what is:
(a) The minimum weight of the heaviest 20% of steaks?
(b) The maximum weight of the lightest 10% of steaks?

To answer (a), begin by looking at the probabilities in Table 3. Look down the table until you come to the figure closest to $0.2,0.2005$. This figure is in the row for 0.8 and the column headed 0.04 , which means that the value of Z that cuts off a 20% tail on the right-hand side of the distribution is 0.84 . In other words $P(Z>0.84)$ is 0.2005 . If 20% of the Standard Normal Distribution lies to the right of $0.84,20 \%$ of any normal distribution, including the one representing the distribution of uncooked weights of steaks in Example 7.6, lies to the right of a point 0.84 standard deviations above the mean. The mean of the distribution of uncooked weights of steaks is 9.8 ounces and the standard deviation is 0.5 ounces, so 20% of uncooked steaks weigh more than:

$$
9.8+(0.84 * 0.5)=10.22 \text { ounces }
$$

We can conclude that the heaviest 20% of the steaks weigh more than 10.22 ounces. The figure for (b), the maximum weight of the lightest 10% of steaks, is also the minimum weight of the heaviest 90% of steaks. From Table 3 the value of Z that cuts off 90% of the area to the right of it is -1.28 . If 90% of the Standard Normal Distribution is above -1.28 then 10% is below it. This means that the lowest 10% of any normal distribution is 1.28 standard deviations below the mean, so the lightest 10% of steaks will weigh less than:
$9.8-(1.28 * 0.5)=9.16$ ounces

The normal distribution is an important statistical distribution because it enables us to investigate the very many continuous variables that occur in business and many other fields, whose values are distributed in a normal pattern. What makes the normal distribution especially important is that it also enables us to understand how samples results vary. This is because many sampling distributions have a normal pattern.

7.4 SAMPLING DISTRIBUTIONS

Sampling distributions are distributions that show how sample results vary; they portray the 'populations' of sample results. Such distributions play a crucial role in statistical work because they enable us to use data from a random sample to make predictions or judgements about a population. There are considerable advantages in doing this especially when the population is too large to be accessible, or if investigating the population is too expensive or time-consuming.

A sample is a subset of a population; it consists of some observations taken from the population. A random sample is a sample that consists of values taken at random from the population.

You can take many different random samples from the same population, even samples that consist of the same number of observations. Unless the population is very small the number of samples that you could take from it is infinitesimal. A 'parent' population can produce an infinite number of 'offspring' samples.

These samples will have different means, standard deviations and so on. If we want to use say a sample mean to predict the value of the population mean we will be using something that varies, the sample mean, to predict something that is fixed, the population mean.

To do this effectively we have to know how the sample means vary from one sample to another. We have to regard each sample mean as an observation, \bar{X}, of the variable, \bar{X}, and consider how they are distributed. What is more we need to relate the distribution of sample means to the parameters of the population the samples come from so that we can use sample statistics to predict population measures. The distribution of sample means is called a sampling distribution.

We will start looking at this by taking the simplest case, in which we assume that the parent population is normally distributed. If this is the case, what will the sampling distributions of means of samples taken from the population be like?

If you took all possible random samples consisting of n observations from a population that is normal, with a mean μ and a standard deviation σ, and analysed them you would find that the means of all these samples would themselves be normally distributed.

You would also find that the mean of the distribution of all these different sample means is exactly the same as the population mean, μ, and that the standard deviation of all these sample means is the population standard deviation divided by the square root of the size of the samples, $\sigma / \sqrt{ } n$.

So the sample means of all the samples size n that can be taken from a normal population with a mean μ and a standard deviation σ are distributed normally with a mean of μ and a standard deviation of $\sigma / \sqrt{ } n$. In other words the sample means are distributed around the same mean as the population itself but with a smaller spread.

We know that the sample means will be less spread out than the population because n will be more than one, so $\sigma / \sqrt{ } n$ will be less than σ. For instance, if there are four observations in each sample, $\sigma / \sqrt{ } n$ will be $\sigma / 2$, which tells us that the sampling distribution of means of samples, which have four observations in them will have half the spread of the population distribution.

The larger the size of the samples, the less the spread in the values of their means, for instance if the samples each consist of 100 observations the standard deviation of the sampling distribution will be $\sigma / 10$, just a tenth of the population distribution. This is an important point. In taking samples we are 'averaging out' the differences between the values in the population. The larger the samples, the more this happens. For this reason it is better to use larger samples to make predictions about a population.

Next time you see an opinion poll look for the number of people that the pollsters have canvassed. It will probably be at least one thousand. The results of an opinion poll are a product that the polling organization wants to sell to media companies. In order to do this they have to persuade them that their poll results are likely to be reliable. They won't be able to do this if they only ask a very few people for their opinions!

The standard deviation of a sampling distribution, $\sigma / \sqrt{ } n$, is also known as the standard error of the sampling distribution because it helps us anticipate the error we will have to deal with if we use a sample mean to predict the value of the population mean.

If we know the mean and standard deviation of the parent population distribution we can find the probabilities of different sample means by using software or the Standard Normal Distribution.

> Example 7.8
> A group of four friends visit the pub in Example 7.6 and each of them orders a Steak Special. What is the probability that the mean uncooked weight of the steaks they order is more than 10 ounces? The uncooked weights of the steaks in the pub in Example 7.6 are normally distributed with a mean of 9.8 ounces and a standard deviation of 0.5 ounces.
> Imagine we took every possible sample of four steaks from the population of steaks at the disposal of the pub (which we will assume is infinite) and calculated the mean weight of each sample. We would find that the sampling distribution of all these means has a mean of 9.8 and a standard error of $0.5 / \sqrt{ } 4$, which is 0.25

The probability that one sample of four steaks has a mean of more than 10 is the probability that a normal variable with a mean of 9.8 and a standard deviation of 0.25 is greater than 10 . The z-equivalent of the value 10 in the sampling distribution is:

$$
z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}=\frac{10-9.8}{0.5 / \sqrt{4}}=\frac{0.2}{0.25}=0.8
$$

From Table 3 on pages 317-320 we find that the probability that Z is more than 0.8 is 0.2119 or 21.19%.

We can conclude that there is a little more than a one in five chance that four steaks chosen at random have a mean uncooked weight of more than 10 ounces. You might like to compare this with the result in Example 7.6 (a), which suggests than the chance that a single steak has an uncooked weight of more than 10 ounces is 34.46%.

The procedure we used in Example 7.8 can be applied whether we are dealing with small samples or with very much larger samples. As long as the population the samples come from is normal we can be sure that the sampling distribution will be distributed normally with a mean of μ and a standard deviation of $\sigma / \sqrt{ } n$.

But what if the population is not normal? There are many distributions that are not normal, such as distributions of wealth of individuals or distributions of waiting times.

Fortunately, according to a mathematical finding known as the Central Limit Theorem, as long as n is large (which is usually interpreted to mean 30 or more) the sampling distribution of sample means will be normal in shape and have a mean of μ and a standard deviation of $\sigma / \sqrt{ } n$. This is true whatever the shape of the population distribution.

Example 7.9

The times that passengers at a busy railway station have to wait to buy tickets during the rush hour follow a skewed distribution with a mean of 2 minutes 46 seconds and a standard deviation of 1 minute 20 seconds. What is the probability that a random sample of 100 passengers will, on average have to wait more than 3 minutes?
The sample size, 100 , is larger than 30 so the sampling distribution of the sample means will have a normal shape. It will have a mean of 2 minutes 46 seconds, or 166 seconds, and a standard error of $80 / \sqrt{ } 100$.

$$
\begin{aligned}
P(\bar{X}>180 \text { seconds }) & =P\left(Z>\frac{180-166}{80 / \sqrt{ } 100}\right. \\
& =P(Z>14 / 8) \\
& =P(Z>1.75)
\end{aligned}
$$

From Table 3 the probability that Z is more than 1.75 is 0.0401 . So the probability that a random sample of 100 passengers will have to wait on average more than 3 minutes is 4.01%, or a little more that a one in twenty-five chance.

If the samples taken from a population that is not normal consist of fewer than 30 observations then the Central Limit Theorem does not apply. The sampling distributions of means of small samples taken from such populations don't form a normal distribution.

7.4.1 Estimating the Standard Error

The main reason for being interested in sampling distributions is to help us use samples to assess populations because studying the whole population is not possible or practicable. Typically we will be using a sample, which we do know about, to investigate a population, which we don't know about. We will have a sample mean and we will want to use it to assess the likely value of the population mean.

So far we have measured sampling distributions using the mean and the standard deviation of the population, μ and σ. But if we need to find out about the population using a sample, how can we possibly know the values of μ and σ ?

The answer is that in practice typically we don't. In the case of the population mean, μ, this doesn't matter because usually it is the thing we are trying to assess. But without the population standard deviation, σ, we do need an alternative approach to measureg the spread of a sampling distribution.

Because we will have a sample, the obvious answer is to use the sample standard deviation, s, in place of the population standard deviation, σ. So we estimate the standard error of the sampling distribution using $\mathrm{s} / \sqrt{ } n$ instead of $\sigma / \sqrt{ } n$.

This is fine as long as the sample concerned is large, in practice that n, the sample size, is at least 30 . If we are dealing with a large sample we can use $s / \sqrt{ } n$ as an approximation of $\sigma / \sqrt{ } n$. The means of samples consisting of n observations will be normally distributed with a mean of μ and an approximate standard error of $s / \sqrt{ } n$. The Central Limit Theorem allows us to do this even if the population the sample comes from is not itself normal in shape.

Example 7.10

The mean volume of draught beer served in pint glasses in a particular pub is known to be 0.564 litres. A consumer organization takes a random sample of 64 pints of draught beer and finds that the standard deviation of this sample is 0.025 litres. What is the probability that the mean volume of the sample will be more than a pint (0.568 litres)?

The population mean, μ, in this case is 0.564 and the sample standard deviation, s, is 0.025 . We want the probability that \bar{X} is more than $0.568, P(\bar{X}>0.568)$. The z-equivalent of 0.568 is:

$$
z=\frac{\bar{x}-\mu}{s / \sqrt{ } n}=\frac{0.568-0.564}{0.025 / \sqrt{ } 64}=\frac{0.004}{0.003125}=1.28
$$

So $P(\bar{X}>0.568)=P(Z>1.28)$
If you look at Table 3 you will find that the probability that Z is greater than 1.28 is 0.1003 , so the probability that the sample mean is more than a pint is 0.1003 or 10.03%.

As $s / \sqrt{ } n$ is not the real standard error it is referred to as the estimated standard error, but because the standard deviation of a large sample will be reasonably close to the population standard deviation the estimated standard error will be close to the actual standard error.

7.5 THE t DISTRIBUTION

In section 7.4.1 we looked at how you can analyse sampling distributions using the sample standard deviation, s, in the likely event that you do not know the population standard deviation, σ. As long as the sample size, n is 30 or more the estimated standard error will be a sufficiently consistent measure of the spread of the sampling distribution, whatever the shape of the parent population.

If, however, the sample size, n, is less than 30 the estimated standard error is not so close to the actual standard error, and the smaller the sample size, the greater will be the difference between the two. In this situation it is possible to analyse the sampling distribution using the estimated standard error as long as the population the sample comes from is normal, but we have to use a modified normal distribution in order to do it.

This modified normal distribution is known as the t distribution. The development of the distribution in the early twentieth century by an executive of the Guinness Brewery, William S. Gosset was a real breakthrough in Statistics because it made it possible to investigate populations using small sample results. Small samples are generally much cheaper and quicker to gather than large sample so t distributions transformed the way in which people used Statistics.

A t distribution is basically a normal distribution that is more spread out. The difference between the two is illustrated in Figure 7.18 The greater

FIGURE 7.18 The Standard Normal Distribution (solid line) and the t distribution (dotted line)
spread is to compensate for the greater variation in sample standard deviations between small samples than between large samples.

The smaller the sample size the more compensation is needed, so there is more than one 'standard' t distribution. Which one should be used in a particular context depends on the number of degrees of freedom, represented by the symbol $\nu(\mathrm{nu}$, the Greek letter $n)$, which is the sample size minus one, $n-1$.

To work out the probability that the mean of a small sample taken from a normal population is more, or less than a certain amount we first need to find its t-equivalent, or t value. The procedure is very similar to the way we work out a z-equivalent:

$$
t=\frac{\bar{x}-\mu}{s / \sqrt{ } n}
$$

Example 7.11

A customer visiting the pub in Example 7.10 purchases nine pints of real ale. The volumes of the pints served are known to be normally distributed with a mean of 0.564 litres and the standard deviation of the volumes of the nine pints bought by the customer is 0.048 litres. What is the probability that the mean volume of the nine pints is more than a pint (0.568 litres)?

The population mean, μ, is 0.564 and the sample standard deviation, s, is 0.048 . We want the probability that \bar{X} is more than $0.568, P(\bar{X}>0.568)$. The t value equivalent to 0.568 is:

$$
\begin{aligned}
& t=\frac{\bar{x}-\mu}{s / \sqrt{ } n}=\frac{0.568-0.564}{0.048 / \sqrt{ } 9}=\frac{0.004}{0.016}=0.25 \\
& \text { So } P(\bar{X}>0.568)=P(t>0.25)
\end{aligned}
$$

You can find the probability that t is more than 0.25 using computer software.

Excel Recipe Card - The t distribution

Move the cursor to an empty cell. For $P(t>0.25)$ in Example 7.11 type $=$ TDIST($0.25,8,1$) in the Formula Bar. The figure 8 is the number of degrees of freedom, one less than the sample size, 9.

Press Enter to produce the result, 0.404444 . This means that in Example 7.11 the probability that the mean volume of nine 'pints' is more than a pint is approximately 40.44\%.

The general form of the command is =TDIST(x,degrees of freedom, tails), where x is the t value you are interested in and 'tails' can be either one or two. If you simply want the probability that t is bigger than a certain value specify one tail.

The t value that led to the result we obtained in Example 7.11 could be written as $t_{0.4044,8}$ because it is the value of t that cuts off a tail area of 40.44% in the t distribution that has 8 degrees of freedom. In the same way, $t_{0.05,15}$ represents the t value that cuts off a tail area of 5% in the t distribution that has 15 degrees of freedom.

You will find that the way t distributions are used in further work depends on tail areas. For this reason, and also because there are 'standard' t distributions for the different degrees of freedom, printed tables do not provide full details of t distributions in the same way that Standard Normal Distribution
tables give full details of the Standard Normal Distribution. Table 4 on pages 320-321 gives selected values of t from t distributions with different degrees of freedom for the most commonly used tail areas.

Example 7.12

Use Table 4 to find:
(a) t with four degrees of freedom that cuts off a tail area of $0.10, t_{0.10,4}$;
(b) t with four degrees of freedom that cuts off a tail area of $0.10, t_{0.10,4 ;}$
(c) t with 17 degrees of freedom that cuts off a tail area of $0.025, t_{0.025,17}$; and
(d) t with 100 degrees of freedom that cuts off a tail area of $0.005, t_{0.005,100}$.

From Table 4:
(a) You will find $t_{0.10,4}$ in the row for 4 degrees of freedom and the column headed 0.10 , 1.533. This means that the probability that t, with 4 degrees of freedom, is greater than 1.533 is 0.10 or 10%.
(b) $t_{0.01,10}$ is the figure in the row for 10 degrees of freedom and the column headed 0.01, 2.764.
(c) $t_{0.025,17}$ is in the row for 17 degrees of freedom and the 0.025 column, 2.110 .
(d) $t_{0.005,100}$ is in the row for 100 degrees of freedom and the 0.005 column, 2.626.

7.6 CHOOSING THE CORRECT MODEL FOR A SAMPLING DISTRIBUTION

The normal distribution and the t distribution are both models that you can use to model sampling distributions, but how can you be sure that you use the right one? This section is intended to provide a brief guide to make the choice.

The first question to ask is whether the samples whose results make up the sampling distribution are drawn from a population that is distributed normally? In other words is the parent population normal? If the answer is yes then it is always possible to model the sampling distribution. If the answer is no then it is only possible to model the sampling distribution if the sample size, n is 30 or more.

The second question is whether the population standard deviation, σ is known. If the answer to this is yes then as long as the parent population is normal the sampling distribution can be modelled whatever the sample size. If the answer is no the sampling distribution can be modelled using the normal distribution only if the sample size is 30 or more. In the absence of
the population standard deviation, you have to use the sample standard deviation to approximate the standard error.

Finally, what if the parent population is normal, the population standard deviation is not known, and the sample size is less than 30? In these circumstances you should use the t distribution and approximate the standard error using the sample standard deviation. Note that if the parent population is not normal and the sample size is less than 30 neither the normal distribution nor the t distribution can be used to model the sampling distribution, and this is true whether or not the population standard deviation is known.

Test yourself questions from Warwick's business enterprises*

Fully worked solutions to these questions are on pages 336-337. You can find more questions on the topics covered in this chapter at the accompanying website www. elsevierdirect.com/9781856179478.
7.1 (Easy)

Find the areas of the Standard Normal Distribution that represent the following probabilities:
(a) $P(Z>1.44)$
(b) $P(Z>-0.29)$
(c) $P(Z<2.06)$
(d) $P(Z<-1.73)$
(e) $P(0.52<Z<1.99)$
(f) $P(-2.31<Z<-1.08)$
(g) $P(-0.97<Z<0.65)$

7.2 (Moderate)

The lean meat content of the sausages that Warwick buys for his restaurant is normally distributed with a mean of 62% and a standard deviation of 2.5%. What is the probability that a sausage has a lean meat content of
(a) more than 65%
(b) less than 55\%
(c) between 60% and 66%

[^1]
7.3 (Hard)

Freshly cut flowers are displayed in the reception area of Warwick's hotel, which is open 7 days a week. The hotel manager orders a total of 40 blooms. According to the florist these flowers last on average 5.4 days before wilting, with a standard deviation of 1.3 days.
(a) What is the probability that a sample of 40 blooms will last on average more than 6 days?
(b) What is the probability that a sample of 40 blooms will last on average more than 5 days?
(c) How often should the reception officer buy bunches of 40 blooms in order to ensure that there is no more than a 5% chance that on average the flowers will wilt before replacement?

CHAPTER 8

Statistical Decision Making

Why do I need to know about this? Warwick the Hospitality entrepreneur says...
'How do you tell whether your customers are satisfied, or whether the goods you buy are up to standard? You can't ask every customer every day or look at every item that you buy. The only thing you can do is to make estimates and judgements using the samples of customer or goods. If you know how to use the information you get from samples properly you are more likely to make better decisions in business.'

This chapter will help you to:

- use sample results to make predictions about populations;
- test hypotheses about populations; and
- decide how large samples need to be.

CONTENTS

Introduction
Estimation
Estimating Population
Proportions
Hypothesis Testing
Testing Hypotheses
About Two Population Means

Testing Hypotheses
About Population
Proportions
A Hypothesis Test For the Population Median

8.1 INTRODUCTION

Businesses often use statistical analysis in order to help them study and solve problems. In almost every case the data they use in this analysis will be sample data. Usually it is too expensive, or too time-consuming or simply impossible to obtain population data.

So if there is a problem of customer dissatisfaction they will study data from a sample of customers, not all customers. If there is a problem with product quality they will study a sample of the products, not all of them. If a large organization has a problem with staff training they will study the experiences of a sample of their staff rather than all of them.

Of course they will analyse the sample data in order to draw general conclusions about the population from their analysis. As long as the samples they use are random samples, in other words they consist of observed values chosen at random from the population it is quite possible to do this.

The use of sample data in drawing conclusions, or making deductions, about populations is known as statistical inference from the word infer which means to deduce or conclude. It is also referred to as statistical decision making, which reflects the fact that this sort of analysis helps organizations and individuals to take decisions.

In the last chapter we looked at sampling distributions. These distributions are the theoretical foundations on which statistical inference is built because they connect the behaviour of sample results to the distribution of the population the samples came from. Now we will consider the procedures involved in statistical inference.

There are two types of statistical inference technique that you will encounter in this chapter. The first is estimation: the use of sample data to predict population measures like means and proportions. The second is hypothesis testing; the use of sample data to verify or refute claims made about population measures.

Collecting sample data can be time-consuming and expensive so in practice organizations don't like to gather more data than they need, but, on the other hand, they don't want to end up with too little in case they haven't enough for the sort of conclusive results they need. You will find a discussion of this aspect of planning statistical research in this chapter.

8.2 ESTIMATION

Statistical estimation is the use of sample measures such as means or proportions to predict the values of their population counterparts. The
easiest way of doing this is to simply take the sample measure and use it as it stands as a prediction of the population equivalent. So we could take the mean of a sample and use it as our estimate of the population mean. This type of prediction is called point estimation. It is widely used to get a 'feel' for the population value and it is a perfectly valid use of the sample result.

The main shortcoming of point estimation is given away by its name; it is a single point, a single shot at estimating one number using another. It is a crude way of estimating a population measure because not only is it uncertain whether it will be a good estimate, in other words close to the measure we want it to estimate, but we have no idea of the chance that it is a good estimate.

The best way of using sample information to predict population measures is to use what is known as interval estimation, which is the preparation of a range or interval as the estimate. The aim is to be able to say how likely it is that the interval we construct is accurate, in other words how confident we are that the interval does include within it the population measure. Because the probability that the interval includes the population measure, or the confidence we should have in the interval estimate, is an important issue, interval estimates are often called confidence intervals.

Before we look at how interval estimates are constructed and why they work, it will be helpful if we reiterate some key features of sampling distributions from Chapter 7. For convenience we will concentrate on sample means for the time being. The important points are:

- A sampling distribution of sample means shows how all the means of the different samples of a particular size, n, are distributed.
- Sampling distributions that describe the behaviour of means of samples bigger than 30 are always approximately normal.
- The mean of a sampling distribution is the population mean, μ.
- The standard deviation of a sampling distribution, called the standard error, is the population standard deviation divided by the square root of the sample size, $\sigma / \sqrt{ } n$.

The sampling distributions that are normal in shape have the same features as all versions of the normal distribution. One of these features is that if we take a point two standard deviations to the left of the mean and a second point two standard deviations to the right of the mean, the area between the two points is roughly 95% of the distribution.

To be more precise, if these points were 1.96 standard deviations below and above the mean the area between them would be exactly 95% of the
distribution. In other words 95% of the observations in the distribution are within 1.96 standard deviations from the mean.

This is also true for normal sampling distributions. Ninety-five percent of the sample means in a sampling distribution that is normal will be between 1.96 standard errors below and 1.96 standard errors above the mean. You can see this illustrated in Figure 8.1.

The limits of this range, or interval, are:
$\mu-1.96 / \sqrt{n}$ on the left-hand side
and

$$
\mu+1.96 / \sqrt{n} \text { on the right-hand side. }
$$

The largest possible distance between any of the middle 95% of sample means and the population mean, μ, is 1.96 standard errors, $1.96 \sigma \sqrt{ } n$. It follows that the probability that any one-sample mean is within 1.96 standard errors of the mean is:

$$
P(\mu-1.96 \sigma / \sqrt{n}<\bar{X}<\mu+1.96 \sigma / \sqrt{n})=0.95
$$

The sampling distribution allows us to predict values of sample means like this using the population mean. But in practice we wouldn't be interested in doing this because we wouldn't know the value of the population mean; typically the population mean is the thing we want to find out about using a sample mean rather than the other way round. What makes a sampling

FIGURE 8.1 Ninety-five percent of the area of a sampling distribution.
distribution so useful is that we can use it to predict a population measure using sample results.

As we have seen, adding and subtracting 1.96 standard errors to and from the population mean creates a range that encompasses 95% of the sample means in the distribution. But what would happen if, instead of adding and subtracting this amount to the population mean, we add and subtract this amount to and from every sample mean in the distribution?

In doing this we would create a range around every sample mean. In 95% of cases, the ranges based on the 95% of sample means that are closest to the population mean (those nearest the middle of the distribution), the range would encompass the population mean itself. In the other 5% of cases, those means furthest away from the population mean (those most distant from the middle of the distribution), the range we create would not encompass the population mean.

So, suppose we take the mean of a large sample and create a range around it by adding 1.96 standard errors to get an upper figure, and subtracting 1.96 standard errors to get a lower figure. In 95% of cases the range between the upper and lower figures will encompass the mean of the population. Such a range is called a 95% confidence interval or a 95% interval estimate because it is an interval, or range that we are 95% confident, or certain includes the population mean.

Example 8.1

The total bill sizes of shoppers at a UK supermarket have a mean of $£ 50$ and a standard deviation of $£ 12.75$. A group of researchers, who do not know that the population mean bill size is $£ 50$, finds the total bill sizes of a random sample of 100 shoppers.
The sampling distribution that the mean of their sample belongs to is shown in Figure 8.2. The standard error of this distribution is $12.75 / \sqrt{ } 100=1.275$.
Ninety-five percent of the sample means in this distribution will be between 1.96 standard errors below the mean, which is:
$50-(1.96 * 1.275)=47.50$ to two decimal places
and 1.96 standard errors above the mean, which is:
$50+(1.96 * 1.275)=52.50$ to two decimal places.
This is shown in Figure 8.3.
Suppose the researchers calculate the mean of their sample and it is $£ 49.25$, a figure inside the range 47.50-52.50 that encompasses the 95% of sample means that are within 1.96 standard errors of the population mean. If they add and subtract the same

FIGURE 8.2 The sampling distribution in Example 8.1.

FIGURE 8.3 The middle 95\% of the sampling distribution in Example 8.1.
number of standard errors to and from their sample mean they would construct the following interval:

$$
\begin{aligned}
49.25 \pm(1.96 * 1.275) & =49.25 \pm 2.50 \\
& =£ 46.75 \text { to } £ 51.75 \text { to two decimal places. }
\end{aligned}
$$

This interval does include the population mean, $£ 50$.

Notice the symbol ' \pm ' in the expression we have just used. It means we have to carry out two operations: we have to both add and subtract the amount that follows it. The addition produces the higher figure, in this case 51.75 , and the subtraction produces the lower figure, 46.75.
Imagine they take another random sample of 100 shoppers and find that the mean expenditure of this second sample is a little higher, but still within the central 95% of the sampling distribution, say $£ 51.87$. If they add and subtract 1.96 standard errors to and from this second mean:

$$
\begin{aligned}
51.87 \pm(1.96 * 1.275) & =51.87 \pm 2.50 \\
& =49.37 \text { to } 54.37 \text { to two decimal places. }
\end{aligned}
$$

This interval also includes the population mean.

If the researchers in Example 8.1 took many samples and created an interval based on each one by adding and subtracting 1.96 standard errors they would find that only occasionally would the interval not include the population mean.

Example 8.2

The researchers in Example 8.1 take a random sample that yields a mean of $£ 47.13$. Calculate a 95% confidence interval using this sample mean.

$$
\begin{aligned}
47.13 \pm(1.96 * 1.275) & =47.13 \pm 2.50 \\
& =£ 44.63 \text { to } £ 49.63 \text { to two decimal places. }
\end{aligned}
$$

This interval does not include the population mean of $£ 50$.

How often will the researchers in Example 8.1 produce an interval that does not include the population mean? The answer is every time they have a sample mean that is among the lowest $2 \frac{1}{2} \%$ or the highest $2 \frac{1}{2} \%$ of sample means. If their sample mean is among the lowest $2 \frac{1}{2} \%$ the interval they produce will be too low, as in Example 8.2. If the sample mean is amongst the highest $2 \frac{1}{2} \%$ the interval will be too high.

As long as the sample mean is among the 95% of the distribution between the lowest $2 \frac{1}{2} \%$ and the highest $21 / 2 \%$, the interval they produce will include the population mean, in other words it will be an accurate estimate of the population mean.

Of course when we do carry out this sort of research we don't actually know what the mean of the population is, so we don't know which sample
means are among the 95% that will give us accurate estimates and which are amongst the 5% that will give us inaccurate estimates. The important point is that if we have a sample mean and we create an interval in this way, 95% of the time the interval will be accurate. To put it another way, on average 19 out of every 20 samples will produce an accurate estimate, and 1 out of 20 will not. That is why the interval is called a 95% interval estimate or a 95% confidence interval.

We can express the procedure for finding an interval estimate for a population measure as taking a sample result and adding and subtracting an error. This error reflects the uncertainties involved in using sample information to predict population measures.

Population measure estimate $=$ sample result \pm error
The error is made up of two parts, the standard error and the number of standard errors. The number of standard errors depends on how confident we want to be in our estimation.

Suppose you want to estimate the mean of a normal population. If you know the population standard deviation, σ, and you want to be $(100-\alpha) \%$ confident that your interval is accurate, then:

Estimate of $\mu=\bar{x} \pm\left(z_{\alpha / 2} * \sigma / \sqrt{n}\right)$
The letter ' z ' appears because we are dealing with sampling distributions that are normal, so we can use the Standard Normal Distribution, the Z distribution, to model them. You have to choose which z value to use on the basis of how sure you want or need to be that your estimate is accurate.

If you want to be 95% confident in your estimate, that is $(100-\alpha) \%=$ 95%, then α is 5% and $\alpha / 2$ is $2 \frac{1}{2} \%$ or 0.025 . To produce your estimate you would use $z_{0.025}, 1.96$, the z value that cuts off a $21 / 2 \%$ tail in the Standard Normal Distribution. This means that a point 1.96 standard deviations (or standard errors in the case of sampling distributions) away from the mean of any version of the normal distribution will cut off a tail area of $2 \frac{1}{2} \%$ of the distribution. So:
95% interval estimate of $\mu=\bar{x} \pm(1.96 * \sigma / \sqrt{n})$
This is the procedure we used in Example 8.1.
The most commonly used level of confidence in interval is probably 95%, but what if you wanted to construct an interval based on a higher level of confidence, say 99% ? A 99% level of confidence means we want 99% of the sample means in the sampling distribution to provide accurate estimates.

To obtain a 99% confidence interval the only adjustment we make is the z value that we use. If $(100-\alpha) \%=99 \%$, then α is 1% and $\alpha / 2$ is $1 / 2 \%$ or 0.005 . To produce your estimate you would use $z_{0.005}, 2.576$, the z value that cuts off a $1 / 2 \%$ tail in the Standard Normal Distribution.
99% interval estimate of $\mu=\mu=\bar{x} \pm(2.576 * \sigma / \sqrt{n})$
The most commonly used confidence levels and the z values you need to construct them are given in Table 8.1

| Table 8.1 | Selected Levels of Confidence and Associated z Values | |
| :--- | :--- | :--- | :--- |
| Level of Confidence $(\mathbf{1 0 0}-\boldsymbol{\alpha}) \%$ | $\boldsymbol{\alpha} \mathbf{/ 2}$ | $\mathbf{Z} \boldsymbol{\alpha} / \mathbf{2}$ |
| 90% | 0.05 | 1.645 |
| 95% | 0.025 | 1.960 |
| 99% | 0.005 | 2.576 |

Example 8.3

Use the sample result in Example 8.2, £47.13, to produce a 99\% confidence interval for the population mean.
From Table 8.1 the z value that cuts off a 0.005 tail area is 2.576 , so the 99% confidence interval is:

$$
\begin{aligned}
47.13 \pm(2.576 * 1.275) & =47.13 \pm 3.28 \\
& =£ 43.85 \text { to } £ 50.41 \text { to two decimal places }
\end{aligned}
$$

Notice that the confidence interval in Example 8.3 includes the population mean, $£ 50$, unlike the 95% interval estimate produced in Example 8.2 using the same sample mean, $£ 47.13$. This is because this sample mean, $£ 47.13$, is not among the 95% closest to the population mean, but it is among the 99% closest to the population mean.

Changing the level of confidence to 99% has meant the interval is accurate, but it is also wider. The 95% interval estimate was $£ 44.63-£ 49.63$, a width of $£ 5.00$. The 99% interval estimate is $£ 43.85$ - $£ 50.41$, a width of £6.56.

You can obtain the z values necessary for other levels of confidence by looking for the appropriate values of $\alpha / 2$ in the body of Table 3 on pages 317320 and finding the z values associated with them.

Example 8.4

Use the sample result in Example 8.2, £47.13, to produce a 98\% confidence interval for the population mean.
From Table 3 the z value that cuts off a tail area of 0.01 is 2.33 , so the 98% confidence interval is:

$$
\begin{aligned}
47.13 \pm(2.33 * 1.275) & =47.13 \pm 2.97 \\
& =£ 44.16 \text { to } £ 50.10 \text { to two decimal places. }
\end{aligned}
$$

8.2.1 Determining sample size

All other things being equal, if we want to be more confident that our interval is accurate we have to accept that the interval will be wider, in other words less precise. If we want to be more confident and retain the same degree of precision, the only thing we can do is to take a larger sample.

In the examples we have looked at so far the size of the sample was already decided. But what if, before starting a sample investigation you wanted to ensure that you had a big enough sample to enable you to produce a precise enough estimate with a certain level of confidence? To see how to do this, we need to start with the expression we have used for the error of a confidence interval:

$$
\text { Error }=z_{\alpha / 2} * \sigma / \sqrt{n}
$$

Until now we have assumed that we know the three elements to the right of the equals sign and so we can work out the error. But what if we wanted to set the error and find the necessary sample size, n ? We can change the expression for the error around so that it provides a definition of the sample size:

Error $=z_{\alpha / 2} * \sigma / \sqrt{n}$
Exchange error and $\sqrt{n}: \quad \sqrt{n}=z_{\alpha / 2} * \sigma /$ error
So $n=\left(z_{\alpha / 2} * \sigma / \text { error }\right)^{2}$
This means that as long as you know the degree of precision you need (the error), the level of confidence (to find $z_{\alpha / 2}$), and the population standard deviation (σ), you can find out what sample size you need to use.

Example 8.5

If the researchers in Example 8.1 want to construct 99% confidence intervals that are $£ 5$ wide, what sample size should they use?
If the estimates are to be $£ 5$ wide that means they will have to be produced by adding and subtracting $£ 2.50$ to and from the sample mean. In other words the error will be 2.5 . If the level of confidence is to be 99% then the error will be 2.576 standard errors.

$$
\begin{aligned}
& \text { If }(100-\alpha) \%=99 \%, z_{\alpha / 2}=2.576 \text {. We know from Example } 8.1 \sigma=12.75 \text {, so : } \\
& \quad n=(2.576 * 12.75 / 2.50)^{2} \\
& \quad n=(13.1376)^{2}=172.6 \text { to one decimal place. }
\end{aligned}
$$

Round this up to 173 because when determining sample size it is always better to play safe and round the calculated sample size up to the next whole number.
We can conclude that if the researchers want 99% interval estimates that are $£ 5$ wide they would have to take a sample of 173 bills.

8.2.2 Estimating without σ

Example 8.1 is artificial because we assumed that we knew the population mean, μ. This helped to explain how and why interval estimation works. In practice we wouldn't know the population mean, and neither would we know the population standard deviation, σ.

Practical interval estimation is based on sample results alone, but it is very similar to the procedure we explored in Example 8.1. The main difference is that we have to use a sample standard deviation, s, to produce an estimate for the standard error of the sampling distribution the sample belongs to. Otherwise, as long as the sample concerned is quite large, which we can define as containing 30 or more observations, we can follow exactly the same procedure as before.

That is, instead of: estimate of $\mu=\bar{x} \pm\left(z_{\alpha / 2} * \sigma / \sqrt{n}\right)$
we use: estimate of $\mu=\bar{x} \pm\left(z_{\alpha / 2} * \mathbf{s} / \sqrt{n}\right)$

Example 8.6

The mean weight of the cabin baggage checked in by a random sample of 40 passengers at an international airport departure terminal was 3.47 kg . The sample standard deviation was 0.82 kg . Construct a 90% confidence interval for the mean weight of cabin baggage checked in by passengers at the terminal.
In this case α is 10%, so $\alpha / 2$ is 5% or 0.05 and according to Table $8.1 z_{0.05}$ is 1.645 .

$$
\begin{aligned}
90 \% \text { interval estimate of } \mu & =\bar{x} \pm(1.645 * s \sqrt{n}) \\
& =3.47 \pm(1.645 * 0.82 / \sqrt{40}) \\
& =3.47 \pm(1.645 * 0.82 / 6.32)=3.47 \pm 0.213 \\
& =3.257 \text { to } 3.683 \mathrm{~kg} \text { to three decimal places. }
\end{aligned}
$$

In Example 8.6 we are not told whether the population that the sample comes from is normal or not. This doesn't matter because the sample size is over 30. In fact given that airlines tend to restrict cabin baggage to 5 kg per passenger the distribution in this case would probably be skewed.

8.2.3 Estimating with small samples

If we want to produce an interval estimate based on a smaller sample, one with less than 30 observations in it, and we don't know the population standard deviation, σ, we have to be much more careful. First, for the procedures we will consider in this section to be valid, the population that the sample comes from must be normal. Second, because the sample standard deviation of a small sample is not a reliable enough estimate of the population standard deviation to enable us to use the Z distribution, we must use the appropriate version of the t distribution to find out how many standard errors are to be added and subtracted.

```
Instead of: estimate of \(\mu=\bar{x} \pm\left(Z_{\alpha / 2} * \sigma / \sqrt{n}\right)\)
we use: estimate of \(\mu=\bar{x} \pm\left(t_{\alpha / 2, V} * s / \sqrt{n}\right)\)
```

The number of degrees of freedom, v, which is the sample size less than one ($n-1$), determines the t distribution you use. You will be able to find the values you need to produce confidence intervals in Table 4 on pages 320-321.

You may recall from Chapter 7 that t distributions are essentially modifications of the Z distribution. If you compare the figures in the bottom row of the $0.05,0.025$ and 0.005 columns of Table 4 with the z values in Table 8.1, that is, $1.645,1.960$ and 2.576 , you can see that they are the same. If, however, you compare these z values with the equivalent t values in the top row of Table 4, the ones from the t distribution with just one degree of freedom, which we would have to use for samples of only 2 , you can see that the differences are substantial.

Example 8.7

A random sample of 15 employees of a call centre was taken and each employee took a competency test. The mean of the scores achieved by these employees was 56.3 with a standard deviation of 7.1. Results of this test have been found to be normally distributed in the past. Construct a 95% confidence interval for the mean test score of all the employees of the call centre.

Here α is 5% so $\alpha / 2$ is $2 \frac{1}{2} \%$ or 0.025 and the number of degrees of freedom, v is $n-1,14$.
Estimate of $\mu=\bar{x} \pm\left(t_{\alpha / 2, v} * s / \sqrt{n}\right)$
95% estimate of $\mu s=\bar{x} \pm\left(t_{0.025,14} * s / \sqrt{n}\right)$

From Table 4, $t_{0.025,14}$ is 2.145 , so:

$$
\begin{aligned}
95 \% \text { estimate of } \mu & =56.3 \pm(2.145 * 7.1 / \sqrt{15})=56.3 \pm 3.93 \\
& =52.37 \% \text { to } 60.23 \% \text { to two decimal places }
\end{aligned}
$$

Excel Recipe Card - Confidence intervals for the population mean

Move the cursor to an empty cell. For the error used in Example 8.6 type $=$ CONFIDENCE $(0.10,0.82,40)$ in the Formula Bar.

Press Enter to obtain the error to six places of decimals, 0.213261, which you can add to and subtract from the sample mean to obtain the interval estimate..

The general form is =CONFIDENCE(alpha, standard deviation,size). Alpha is 100% less the level of confidence expressed as a proportion, standard deviation is the population standard deviation, and size is the sample size. If the sample size is at least 30, you can use the sample standard deviation as the population standard deviation. Note that this command should only be used with a small sample if you know σ, the population standard deviation. If you don't know σ, find the appropriate t value and sample measures using the other Excel tools and assemble the interval yourself.

8.3 ESTIMATING POPULATION PROPORTIONS

Although so far we have concentrated on how to estimate population means, these are not the only population measures that can be estimated. You will probably also come across estimates of population proportions, indeed almost certainly you already have done.

If you have ever seen an opinion poll, perhaps about voting intentions or a specific issue you have seen an estimate of a population proportion. To produce the opinion poll result that you read in a newspaper or see on TV some organization has interviewed a sample of people and used the sample results to predict the voting intentions of the entire population.

In many ways estimating a population proportion is very similar to the estimation we have already considered. To start with you need a sample from which you calculate the sample measure around which your estimate will be constructed. To this you add and subtract an error based on the standard error of the relevant sampling distribution and how confident you want to be that your estimate is accurate.

We have to adjust our approach because of the different nature of the data. When we estimate proportions we are usually dealing with qualitative variables. The values of these variables are characteristics, for instance people voting for party A or party B. If there are only two possible characteristics, or we decide to use only two categories in our analysis, the variable will have a binomial distribution.

As you will see, this is convenient as it means we only have to deal with one sample result, the sample proportion, but it also means that we cannot produce reliable estimates from small samples, those consisting of less than 30 observations. This is because the distribution of the population that the sample comes from must be normal if we are to use the t distribution, the device we have previously used to overcome the extra uncertainty involved in small-sample estimation.

The sampling distribution of sample proportions is approximately normal in shape if the samples involved are large, that is, more than 30, as long as the sample proportion is not too small or too large. In practice because we do not know the sample proportion before taking the sample it is best to use a sample size of over 100. If the sample is any smaller we cannot depend on the sampling distribution of sample proportions being normal.

Provided that you have a large sample, you can construct an interval estimate for the population proportion, π (pi, the Greek letter p), by taking the sample proportion, p, and adding and subtracting an error. The sample proportion is the number of items in the sample that possess the characteristic of interest, x, divided by the total number of items in the sample, n.

Sample proportion $p=x / n$
The error that you add to and subtract from the sample proportion is the z value appropriate for the level of confidence you want to use multiplied by
the estimate standard error of the sampling distribution of sample proportions. The estimated standard error is based on the sample proportion.

Estimated standard error $=\frac{\sqrt{p(1-p)}}{n}$
So the interval estimate of $n=p \pm Z_{\alpha / 2} \frac{\sqrt{p(1-p)}}{n}$

Example 8.8

A study of a sample of 110 supermarkets reveals that 31 offer trolleys suitable for shoppers with limited mobility. Construct a 95% interval estimate of the proportion of all supermarkets that have these trolleys.
$p=31 / 110=0.28$ to two decimal places
$(100-\alpha) \%=95 \%$, so $z_{\alpha / 2}=1.96$

The interval estimate of π is:

$$
\begin{aligned}
& =0.28 \pm 1.96 * \frac{0.28(1-0.28)}{110} \\
& =0.28 \pm 1.96 * \frac{0.28(1-0.72)}{110} \\
& =0.28 \pm 1.96 * 0.043=0.28 \pm 0.084 \\
& =0.196 \text { to } 0.364 \text { to three decimal places }
\end{aligned}
$$

These results suggest that we can be 95\% confident that the proportion of supermarkets with suitable trolleys for shoppers with limited mobility will be between 19.6% and 36.4%.

8.3.1 Determining sample size

If you know how confident you want to be that your interval estimate is accurate and you need your estimate to have a certain precision, in other words the error has to be a particular amount, you can work out the sample size you will need to use.

The precision of the test depends on the estimated standard error of the sample proportions, $\sqrt{ } p(1-p) / n$. The value of this depends on the value of p, the sample proportion. Clearly you cannot know this until the sample data have been collected yet you cannot collect the sample data until you have decided what sample size to use. It is therefore necessary to make a prior assumption about the value of the sample proportion.

To be on the safe side we will assume the worst-case scenario, which is that the value of p will be the one that produces the highest value of $p(1-p)$. The higher the value of $p(1-p)$, the wider the interval will be, for a given
sample size. We need to avoid the situation where $p(1-p)$ turns out to be larger than we have assumed it is.

What is the largest value of $p(1-p)$? If you work out $p(1-p)$ when p is 0.1 , you will find it is 0.09 . If p is $0.2 p(1-p)$ rises to 0.16 . As you increase the value of p you will find that it keeps going up until p is 0.5 , when $p(1-p)$ is 0.25 , then it goes down again. So $p=0.5$ is the worst-case scenario. The error in an interval estimate of a population proportion is:

$$
\text { Error }=z_{\alpha / 2} * \frac{\sqrt{p(1-p)}}{n}
$$

If p is 0.5 , in other words we assume the largest possible value of $p(1-p)$:

$$
\text { Error }=z_{\alpha / 2} * \frac{0.5(1-0.5)}{n}=z_{\alpha / 2} * \frac{0.5 * 0.5}{n}=z_{\alpha / 2} * \frac{0.5}{\sqrt{n}}
$$

This last expression can be rearranged:
If \quad error $=z_{\alpha / 2} * \frac{0.5}{\sqrt{n}}$
then $\quad \sqrt{n}=\frac{z_{\alpha / 2} * 0.5}{\text { error }}$
and

$$
n=\left[z_{\alpha / 2} /(2 * \text { error })\right]^{2}
$$

Example 8.9

How many supermarkets would have to be included in the sample in Example 8.8 if the confidence interval of the proportion of establishments with trolleys suitable for shoppers with limited mobility has to be within 0.05 of the actual population proportion with a 95% degree of confidence?
For the error to be 0.05:

$$
n=[1.96 /(2 * 0.05)]^{2}=19.6^{2}=384.16
$$

This has to be rounded up to 385 to be on the safe side so a random sample of 385 supermarkets would have to be used.

8.4 HYPOTHESIS TESTING

Usually when we make predictions or estimates about population measures we have no idea of the actual value of the measure we are trying to estimate.

Indeed the purpose of estimation using sample results is to tell us what the actual value is likely to be.

Sometimes we use sample results to deal with a different situation. This is where the population measure is claimed to be a particular value and we want to see whether the claim is correct. Such a claim is known as a hypothesis, and the use of sample results to investigate whether it is true is called hypothesis testing. To begin with, we will concentrate on testing hypotheses about population means using a single sample. Later in this chapter you will find hypothesis tests for comparing the means of two samples, hypothesis testing of population proportions, and a way of testing hypotheses about population medians.

The procedure used in hypothesis testing begins with a formal statement of the claim being made for the population measure. This is known as the null hypothesis because it is the starting point in the investigation, and is represented by the symbol H_{0}, 'aitch-nought'.

We could find that a null hypothesis turns out to be wrong, in which case we should reject it in favour of an alternative hypothesis, represented by the symbol H_{1}, 'aitch-one'. The alternative hypothesis is the collection of explanations that contradict the claim made in the null hypothesis.

A null hypothesis may specify a single value for the population measure, in which case we would expect the alternative hypothesis to consist of all other values both below and above it. Because of this 'dual' nature of the alternative hypothesis, the procedure to investigate such a null hypothesis is known as a two-sided test.

In other cases the null hypothesis might specify a minimum or a maximum value, in which case the alternative hypothesis consists of all values below, or all values above, respectively. The procedure we use in these cases is called a one-sided test. Table 8.2 lists the three combinations of hypotheses.

The type of null hypothesis that should be used depends on the context of the investigation and the perspective of the investigator.

Table 8.2 Types of Hypotheses

Null Hypothesis	Alternative Hypothesis	Type of Test
$\mathrm{H}_{0}: \mu=\mu_{0}$	$\mathrm{H}_{1}: \mu \neq \mu_{0}$ (not equal)	Two-sided
$\mathrm{H}_{0}: \mu \leq \mu_{0}$	$\mathrm{H}_{1}: \mu>\mu_{0}$ (greater than)	One-sided
$\mathrm{H}_{0}: \mu \geq \mu_{0}$	$\mathrm{H}_{1}: \mu<\mu_{0}$ (less than)	One-sided

In this table μ_{o} is used to represent the value of the population mean, μ, that is to be tested.

Example 8.10

A bus company promotes a 'one-hour' tour of a city. Suggest suitable null and alternative hypotheses for an investigation by:
(a) A passenger who wants to know how long the journey will take.
(b) A journalist from a consumer magazine who wants to see whether passengers are being cheated.

In the first case we might assume that the passenger is as concerned about the tour taking too much time as too little time. It follows that appropriate hypotheses would be that the population mean of the times of the tours is either equal to one hour or not.
(a) $H_{0}: \mu=60$ minutes $H_{1}: \mu \neq 60$ minutes

In the second case we can assume that the investigation is more focused. The journalist is more concerned that the trips might not take the full hour rather than taking longer than an hour, so appropriate hypotheses would be that the population mean tour time is either one hour or more, or it is less than an hour.
(b) $H_{0}: \mu \geq 60$ minutes $H_{1}: \mu<60$ minutes

Once we have established the form of the hypotheses we can test them using the sample evidence at our disposal. We have to decide whether the sample evidence is compatible with the null hypothesis, in which case we cannot reject it. If the sample evidence contradicts the null hypothesis we reject it in favour of the alternative hypothesis.

To guide us in making this decision we need a decision rule that we can apply to our sample evidence. The decision rule is based on the assumption that the null hypothesis is true.

If the population mean really does take the value that the null hypothesis specifies, then as long as we know the value of the population standard deviation, σ, and the size of our sample, n, we can identify the sampling distribution to which our sample belongs.

Example 8.11

The standard deviation of the bus tours in Example 8.10 is known to be 6 minutes. If the duration of a random sample of 50 tours is to be recorded in order to investigate the operation, what can we deduce about the sampling distribution the mean of the sample belongs to?
The null hypotheses in both sections of Example 8.10 specified a population mean, μ, of 60 minutes. If this is true the mean of the sampling distribution, the distribution of means of samples consisting of 50 observations, will be 60 . The population standard deviation,
σ, is 6 so the standard error of the sampling distribution, $\sigma / \sqrt{ } n$, is $6 / \sqrt{ } 50,0.85$ minutes to two decimal places.
We can conclude that the sample mean of our sample will belong to a sampling distribution with a mean of 60 and a standard error of 0.85 , if H_{0} is true.

The next stage is to compare our sample mean with the sampling distribution it is supposed to come from if H_{0} is true. If it seems to belong to the sampling distribution, in other words it is not too far away from the centre of the distribution, we can regard the null hypothesis as plausible. If, on the other hand, the sample mean is located on one of the extremes of the sampling distribution we might regard the null hypothesis as suspect.

We can make this comparison by working out the z-equivalent of the sample mean and using it to find out the probability that a sample mean like the one we have comes from the sampling distribution that is based on the null hypothesis being true. Because we are using a z-equivalent, this type of hypothesis test is sometimes called a z test.

Example 8.12

The mean of the random sample in Example 8.11 is 58.13 minutes. What is the z equivalent of this sample mean, assuming it belongs to a sampling distribution with a mean of 60 and a standard error of 0.85 ? Use the z-equivalent to find the probability that a sample mean of 58.13 or less comes from such a sampling distribution.

$$
z=\frac{(\bar{x}-\mu)}{\sigma / \sqrt{n}}=\frac{58.13-60}{0.85}=-2.20
$$

Using Table 3:

$$
P(Z<-2.20)=0.0139
$$

This means $P(\bar{X}<58.13)=0.0139$ or 1.39%
This is shown in Figure 8.4.

Once we know how likely it is that our sample mean belongs to the sampling distribution implied by the null hypothesis, we can make a judgement about the null hypothesis. We have to distinguish between 'acceptable' sample results, those that are compatible with the null hypothesis, and 'unacceptable' sample results, those that conflict with the null hypothesis.

FIGURE 8.4 The sampling distribution in Example 8.12.

If the probability that a sample mean comes from the sampling distribution that H_{0} implies is quite high then it would be 'acceptable'. If it were quite low it would be 'unacceptable'. In Example 8.12 the probability that the sample mean or a lower one comes from the sampling distributions that H_{0} suggests is only 1.39%, a low figure, so we may consider it to be 'unacceptable'.

But what exactly are 'quite high' and 'quite low' probabilities? When you get used to hypothesis testing you may well develop an intuitive 'feel' for what the appropriate dividing line is in a given situation, but until then you will need to apply a decision rule.

In many practical applications this type of testing is a way of establishing that goods and services meet standards agreed between a supplier and a customer, or between a head office and local management. In these circumstances it is important that a decision rule that defines acceptable sample test results is agreed between the parties involved.

A decision rule should define how low the likelihood of a sample mean has to be before we consider it 'unacceptable'. 'Unacceptable' sample results are often described as significant, in the sense that they are significantly different to what the null hypothesis suggests they should be. The decision rule specifies what is called the level of significance, α.

If we say that we will use a 5% level of significance in our testing we are saying that if there is less than a 5% chance that a sample mean belongs to the sampling distribution based on H_{0} then we will consider it 'unacceptable'. This is a little misleading because it is really the null hypothesis that we
would have found to be unacceptable in the light of the sample evidence. So if our sample result is 'unacceptable' we should reject the null hypothesis.

A 5\% level of significance means that if the chance that the sort of sample mean our investigation produces does come from the sampling distribution H_{0} implies is less than 1 in 20, then it is such an unlikely result we believe that the sample evidence disproves the null hypothesis. Another way of putting it is to say that if our sample mean is among the 5% least likely to come from the sampling distribution that it should belong to if H_{0} were true then we will reject H_{0}.

The implication of rejecting H_{0} is that the sample mean we have actually belongs to a different sampling distribution, because it is very unlikely to belong to the one that H_{0} implies. It is very unlikely, but not impossible. The sort of sample mean that our decision rule says is significant, or 'unacceptable', could, just possibly, belong to the sampling distribution H_{0} implies. In that case the decision to reject H_{0} would be wrong. The level of significance we specify in a decision rule is therefore the risk we are prepared to take that we wrongly reject H_{0}.

When we apply our decision rule we need to take into account the type of null hypothesis we are dealing with. If it suggests that the population mean equals a particular figure we should conduct a two-sided test in order to assess it. That is, if the sample mean we produce is either too high or too low, then we should reject H_{0}.

In two-sided tests there are two types of 'unacceptable', or significant sample result. Because of this if we use a 5% level of significance, the 5% least likely sample means that would lead us to reject the null hypothesis will consist of the lowest $2 \frac{1}{2} \%$ of sample means and the highest $2 \frac{1}{2} \%$ of sample means. If therefore the probability that the sample mean we have belongs to the sampling distribution were less than $2 \frac{1}{2} \%$, or 0.025 , we would reject H_{0}. But because the test is two-sided we would say that we reject it at the 5\% level.

These lowest and highest extremes of the sampling distribution are called the rejection regions, since we reject the null hypothesis if our sample mean is located in one of those parts of the distribution. Another way of applying the decision rule is to use the z values that cut off the tails on the Standard Normal Distribution equivalent to the rejection regions as benchmarks that we compare with the z-equivalent of the sample mean. In this context the z equivalent of the sample mean is called the test statistic and the Z values that mark off the limits of the rejection regions are called the critical values of Z.

In a two-sided, or two-tail, test using a 5% level of significance the rejection regions of the furthest $2 \frac{1}{2} \%$ on the left and right sides of the sampling distribution are the same as the areas of the Standard Normal Distribution beyond the critical z values, -1.96 and +1.96 , respectively.

FIGURE 8.5 Rejection regions for a two-tail test at the 5\% level of significance.

If the z-equivalent of our sample mean, the test statistic, is either less than -1.96 or greater than +1.96 , we should reject H_{0}. This is illustrated in Figure 8.5.

Example 8.13

Test the hypothesis that the population mean duration of the bus tours in Example 8.10 is 60 minutes, $H_{0}: \mu=60$. Use the sample mean given in Example 8.12 and apply a 5\% level of significance.
$H_{0}: \mu=60$ minutes $H_{1}: \mu \neq 60$ minutes
The level of significance, $\alpha=0.05$

From Example 8.12 we know that the probability that a sample mean of 58.13 or less belongs to a sampling distribution with a mean of 60 and a standard error of 0.85 is 0.0139 or 1.39%. Since this is less than $2 \frac{1}{2} \%$ we can reject the null hypothesis at the 5% level. Alternatively we can compare the test statistic, the z-equivalent of the sample mean, -2.20 , to the critical values of Z that cut off $2 \frac{1}{2} \%$ tails of the Standard Normal Distribution, -1.96 and +1.96 . Because it is less than -1.96 , we reject the null hypothesis; our sample evidence suggests that on average the tours take less than 60 min .

If the null hypothesis suggests that the population mean is less than or equal to a particular figure we conduct a one-sided, or one-tail, test. If we do this using a 5% level of significance we reject the null hypothesis if our
sample mean is among the highest 5% of samples in the sampling distribution that H_{0} implies.

Since the null hypothesis includes the possibility that the population mean is lower than a particular value, a very low sample mean is compatible with the null hypothesis. It is only if the sample mean is very high that we would reject H_{0}.

The decision rule in this case means that if the probability that the sample mean comes from the sampling distribution implied by H_{0} is less than 5% or 0.05 and the sample mean is higher than the population mean specified in H_{0}, then we reject H_{0}. Alternatively we could say that if the test statistic, the z-equivalent of our sample mean, is higher than 1.645, the z value that cuts off a tail of 5% on the right-hand side of the Standard Normal Distribution, we will reject H_{0}. This is illustrated in Figure 8.6.

If the null hypothesis states that the population mean is greater than or equal to a particular value, we would also conduct a one-tail test. But this time we would reject the null hypothesis if our sample mean were among the lowest 5% of samples in the sampling distribution that H_{0} implies.

If the null hypothesis includes the possibility that the population mean is higher than a particular value, a very high sample mean is compatible with the null hypothesis. It is only if the sample mean is very low that we would reject H_{0}.

The decision rule is that if the probability that the sample mean comes from the sampling distribution implied by H_{0} is less than 5% or 0.05 and the sample mean is lower than the population mean specified in H_{0}, then we

FIGURE 8.6 Rejection region for a one-tail test of a 'less than or equal' null hypothesis at the 5\% level of significance.

FIGURE 8.7 Rejection region for a one-tail test of a 'greater than or equal' null hypothesis at the 5% level of significance.
reject H_{0}. Alternatively we could say that if the test statistic were less than -1.645 , the z value that cuts off a tail of 5% on the left-hand side of the Standard Normal Distribution, we would reject H_{0}. This is illustrated in Figure 8.7.

Example 8.14

Use the sample mean in Example 8.12 to test the hypothesis that the tours in Example 8.10 take at least 60 minutes, $H_{0}: \mu \geq 60$, at the 5% level of significance.
$H_{0}: \mu \geq 60$ minutes $H_{1}: \mu<60$ minutes
The level of significance, $\alpha=0.05$
The sample mean is 58.13 and in Example 8.12 we found that the probability that this or a lower sample mean comes from a sampling distribution with a mean of 60 and a standard error of 0.85 was 0.0139 or 1.39%. This is less than 5%, the level of significance so we reject the null hypothesis.
If we compare the test statistic, -2.20 , with the z value that cuts off the 5% tail on the lefthand side of the Standard Normal Distribution, -1.645 we can see that -2.20 is clearly in the rejection region because it is less than -1.645 . We therefore reject the null hypothesis at the 5% level of significance.

In the same way that you can use different levels of confidence in estimation, you can use different levels of significance in hypothesis testing. The most commonly used levels of significance are $10 \%, 5 \%, 1 \%$ and 0.1%. Note
that the lower the level of significance the more rigorous the test. In circumstances where it is important that the result of a hypothesis test is robust, such as testing pharmaceutical products, it would be appropriate to use the 0.1% level of significance.

The level of significance you use determines the size of the rejection region and the critical value of Z. Once you have decided which level of significance to use you can obtain the critical value by looking for the appropriate values of α (for a one-tail test) or $\alpha / 2$ (for a two-tail test) in the body of Table 3 on pages 317-320 and finding the z values associated with them. Alternatively you can find the probability that the sample result occurs if the null hypothesis is true by working out its z-equivalent and then referring to Table 3 to find the critical value.

Example 8.15

According to the label on packets of mixed nuts there should be 25 g of cashew nuts in every packet. The standard deviation of the weight of cashew nuts per packet is known to be 2.2 g and the weights are normally distributed.
The mean weight of cashew nuts in a random sample of 15 packets is 23.5 . Test the hypothesis that the information on the label is valid using a 1% level of confidence.

$$
H_{0}: \mu=25 \mathrm{~g} \quad H_{1}: \mu \neq 25 \mathrm{~g}
$$

Level of significance, $\alpha=0.05$

$$
z=\frac{(\bar{x}-\mu)}{\sigma / \sqrt{n}}=\frac{23.5-25}{2.2 \sqrt{15}}=\frac{-1.5}{0.568}=-2.64 \text { to two decimal places }
$$

According to Table 3 the value of Z that cuts off a tail area of $0.005, z_{0.005}$, is between 2.57 and 2.58 , so we will use -2.575 and +2.575 as the critical values for this test. The test statistic, -2.64 , is beyond -2.575 on the left-hand side of the distribution and so falls in the rejection region. We should reject H_{0} at the 1% level of significance. Alternatively we can use Table 3 to find that $P(Z<-2.64)=1-0.9959=0.0041$. This means that the probability of a sample mean is less than $23.5, P(\bar{X}<23.5)$, is 0.0041 . Because this is less than 0.005 (half of α; this is a two-tail test), reject H_{0} at the 1% level of significance.

Note that in Example 8.15 the sample size, 15 is quite small but we do not need to alter the procedure used because the population standard deviation is known and the population the sample comes from is normal, which means that the sampling distribution for means of sample size 15 will also be normal.

A sample result that leads to the rejection of a null hypothesis is referred to as significant. If the sample result allows us to reject a null hypothesis at
an exacting level of significance like 1% such as in Example 8.15 we can refer to the sample result as highly significant.

You may find that at first the most difficult thing about hypothesis testing is the decision rule, and in particular making sure you use the appropriate critical value. It may help if you remember the connection between the type of null hypothesis and the critical value.

■ If you are testing $H_{0}: \mu=\mu_{0}$, reject it if the test statistic is below $-z_{\alpha / 2}$ or above $z_{\alpha / 2}$.

■ If you are testing $H_{0}: \mu \leq \mu_{0}$, reject it if the test statistic is above z_{α}.
■ If you are testing $H_{0}: \mu \geq \mu_{0}$, reject it if the test statistic is below $-z_{\alpha}$.

8.4.1 Hypothesis testing without σ

In the hypothesis testing we have looked at so far we have assumed that we know the population standard deviation, σ. This could be the case, particularly if you are trying to find out whether a change had an effect by comparing sample data collected after the change with a previous situation was well established and known. Perhaps a brewery wants to know if the refurbishment of a pub has a significant effect on trade. In such a case the brewery records are likely to be comprehensive and they could be used to calculate the population standard deviation of the turnover per week. You could then use this figure to calculate the standard error of the sampling distribution that would provide the context for the test.

However, in the majority of cases we are unlikely to know the population standard deviation. In these situations the sample size is the first key factor. If our sample evidence comes from a sample that consists of 30 or more observations the sample standard deviation will be sufficiently close to the population standard deviation to allow us to use a z test; that is, to base our decision rule on the Standard Normal Distribution. We simply use the sample standard deviation in place of the population distribution and calculate the estimated standard error, that is instead of $\sigma / \sqrt{ } n$ we would use $s / \sqrt{ } n$.

Example 8.16

A hair products company claims that a hair colouring treatment it produces lasts for an average of 45 days before fading. The company wants to check that its claim is valid. The hair of a random sample of 40 customers who had applied the treatment was monitored and the time that elapsed until the colouring faded was recorded. The mean time it took for the hair colouring to fade on these customers was 46.1 days with a standard deviation of
2.9 days. Do these results support the claim that the mean time the colouring lasts is 45 days? Use a 10% level of significance.
We can assume that the company wants to ensure that the colouring lasts neither too short nor too long a period, so we will use a two-tail test.
$H_{0}: \mu=45 \quad H_{1}: \mu \neq 45$
Level of significance, $\alpha=0.1$
If $\mu=45$, the means of samples size 40 will form a sampling distribution that has a mean of 45 and an estimated standard error of $2.9 / \sqrt{ } 40$. The test statistic is:

$$
z=\frac{46.1-45}{2.9 / \sqrt{40}}=\frac{1.1}{0.459}=2.40 \text { to two decimal places }
$$

According to Table 3 the probability that Z is more than 2.40 is 0.0082 or 0.82%. If we apply a 10% level of significance, this probability must be less than 0.05 , or 5% in order to reject H_{0}. In this case we can reject H_{0}.
The z values that cut off tails of 5% are -1.645 and +1.645 . H_{0} should be rejected because the test statistic is outside these values.

8.4.2 Hypothesis testing with small samples

Suppose we want to test a hypothesis using the mean of a sample that consists of less than 30 observations and we don't know the population standard deviation. We can do this but we have to be reasonably sure that the population that the sample comes from is normal.

The sample standard deviation from a small sample will not be close enough to the population standard deviation to allow us to simply substitute s for σ as we could do with larger samples. This means we have to use t distributions for benchmarks in comparing sample results with sampling distributions that null hypotheses imply. Because a t distribution is used you will find that hypothesis tests based on small samples are called t tests.

Example 8.17

On average 74.9 units of a branded alco-pop drink are sold at a city-centre pub each week. Sales are normally distributed. The manager puts on a special promotion to boost sales of the product. During the five weeks following the promotion the mean sales were 82.4 units per week with a standard deviation of 7.3 units. Test the hypothesis that the promotion has improved sales using a 5% level of significance.

We are only interested in proving that sales have improved, so we need to conduct a onetail test. The null hypothesis assumes that the sales have not improved; the alternative hypothesis assumes that they have.
$H_{0}: \mu \leq 74.9 \quad H_{1}: \mu>74.9$
Level of significance, $\alpha=0.05$
The test statistic is $t=\frac{(\bar{x}-\mu)}{s \sqrt{n}}=\frac{82.4-74.9}{7.3 \sqrt{5}}=\frac{7.5}{3.26}$
$=2.30$ to two decimal places

According to Table 4 on pages $320-321, t_{0.05,4}$ is 2.132 , which means that the top 5% of values in a t distribution with four degrees of freedom will be greater than 2.132. Our test statistic is larger so we can conclude that there has been a significant increase in sales and H_{0} should be rejected in favour of H_{1}.

8.5 TESTING HYPOTHESES ABOUT TWO POPULATION MEANS

In the previous section we looked at tests of the population mean based on a single sample mean. In this section we will consider tests designed to assess the difference between two population means. In businesses these tests are used to investigate whether, for instance, the introduction a new logo improves sales.

To use these tests you need to have a sample from each of the two populations. For the tests to be valid the samples must be random, but they can be independent or dependent.

Independent samples are selected from each population separately. If we selected a random sample of customers of one domestic gas supplier and a random sample of customers from a rival gas supplier the samples would be independent.

Dependent samples consist of matched or paired values. If we selected a sample of athletes and compared their pulse rates before and after an exercise routine the samples would be paired or dependent.

The choice of independent or dependent samples depends on the context of the test. Unless there is a good reason for using paired data such as in the case of the athletes where using the same athletes before and after the exercise makes sense, use independent samples. We will begin by looking at tests for use with independent samples and deal with paired samples later in the section.

As with single sample tests the size of the samples is important because it determines the nature of the sampling distribution. In this section we will assume that the population standard deviations are not known.

8.5.1 Large independent samples

The null hypothesis you have to use in comparing population means is based on the difference between the means of the two populations, $\mu_{1}-\mu_{2}$. The possible combinations of null and alternative hypotheses are shown in Table 8.3.

Table 8.3	Types of Hypotheses for Comparing Population Means	
Null Hypothesis	Alternative Hypothesis	Type of Test
$\mathrm{H}_{0}: \mu_{1}-\mu_{2}=0$	$\mathrm{H}_{1}: \mu_{1}-\mu_{2} \neq 0$	Two-sided
$\mathrm{H}_{0}: \mu_{1}-\mu_{2} \leq 0$	$\mathrm{H}_{1}: \mu_{1}-\mu_{2}>0$	One-sided
$\mathrm{H}_{0}: \mu_{1}-\mu_{2} \geq 0$	$\mathrm{H}_{1}: \mu_{1}-\mu_{2}<0$	One-sided

The hypotheses listed in Table 8.3 all assume that the focus of the test is that there is no difference between the population means. This is very common but the same formats can be used to test whether the difference between two population means is a non-zero constant e.g. $H_{0}: \mu_{1}-\mu_{2}=6$.

If both samples contain 30 or more items the difference between their means, $\bar{x}_{1}-\bar{x}_{2}$, belongs to the sampling distribution of $\bar{X}_{1}-\bar{X}_{2}$. This sampling distribution is normally distributed with a mean of $\mu_{1}-\mu_{2}$, and a standard error of:

$$
\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
$$

where σ_{1} and σ_{2} are the standard deviations of the first and second populations, respectively, and n_{1} and n_{2} are the sizes of the samples from the first and second populations, respectively.

We are assuming that the population standard deviations are not known, in which case the estimated standard error of the sampling distribution is:

$$
\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

where s_{1} and s_{2} are the standard deviations of the first and second samples, respectively.
The test statistic is:

$$
z=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

If the null hypothesis suggests that the difference between the population means is zero, we can simplify this to:

$$
z=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

Once we have calculated the test statistic we need to compare it with the appropriate critical value from the Standard Normal Distribution.

Example 8.18

The mean and standard deviation of the times that it took for the 'Action' breakdown recovery service to assist a random sample of 47 motorists were 51 minutes and 7 minutes. The mean and standard deviations of the response times recorded by the rival 'Bistry' service in assisting a random sample of 39 motorists were 49 minutes and 5 minutes. Test the hypothesis that there is no difference between the mean response times of the two breakdown services. Use a 5% level of significance.
$H_{0}: \mu_{1}-\mu_{2}=0 \quad H_{1}: \mu_{1}-\mu_{2} \neq 0$
Test statistic, $z=\frac{51-49}{\sqrt{\frac{7^{2}}{47}+\frac{5^{2}}{39}}}=\frac{2}{\sqrt{\frac{49}{47}+\frac{25}{39}}}=2 / 1.298$

$$
=1.54 \text { to two decimal places }
$$

This is a two-tail test using a 5% level of confidence so the critical values are $\pm z_{0025}$. Unless the test statistic is below -1.96 or above ± 1.96 the null hypothesis cannot be rejected. The test statistic, 1.54 , is within ± 1.96 so we cannot reject H_{0}; the population mean response times of the two breakdown services could be equal.

Notice that in Example 8.18 we have not said anything about the distributions of response times. The Central Limit Theorem allows us to use the same two-sample z test whatever the shape of the populations from which the samples were drawn as long as the size of both samples is 30 or more.

8.5.2 Small independent samples

If the size of the samples you want to use to compare population means is small, less than 30, you can only follow the procedure outlined in the previous section if both populations are normal and both population standard deviations known. In the absence of the latter it is possible to test the difference between two population means using small independent samples but only under certain circumstances.

If both populations are normal and their standard deviations can be assumed to be the same, that is $\sigma_{1}=\sigma_{2}$, we can conduct a two-sample t test. We use the sample standard deviations to produce a pooled estimate of the standard error of the sampling distribution of $\bar{X}_{1}-\bar{X}_{2}, s_{p}$.

$$
s_{\mathrm{p}}=\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}}
$$

The test statistic is $t=\frac{\bar{x}_{1}-\bar{x}_{2}}{s_{\mathrm{p}} * \frac{1}{n_{1}}+\frac{1}{n_{2}}}$
We then compare the test statistic to the appropriate critical value from the t distribution. The number of degrees of freedom for this test is $n_{1}+$ $n_{2}-2$; one degree of freedom is lost for each of the sample means.

Example 8.19

A cereal manufacturer produces packets of 'own-brand' muesli for a supermarket chain using the same production line as they use for their own premium brand. The mean and standard deviation of the oat content per 100 g of a random sample of 14 'own-brand' packets are 34.9 g and 1.4 g . The mean and standard deviation of the oat content of a random sample of 17 premium brand packets are 33.4 g and 1.1 g . Test the hypothesis that the mean oat content of the premium brand is no greater than the mean oat content of the 'own-brand' muesli using a 1% level of significance. Oat content is normally distributed in both brands.
We will define μ_{1} as the population mean of the 'own-brand' and μ_{2} as the population mean of the premium product.

$$
H_{0}: \mu_{1}-\mu_{2} \leq 0 \quad H_{1}: \mu_{1}-\mu_{2}>0
$$

First we need the pooled estimate of the standard error:

$$
\begin{aligned}
s_{p} & =\frac{(14-1) 1.4^{2} \pm(17-1) 1.1^{2}}{14+17-2}=\frac{(13 * 1.96) \pm(16 * 1.21)}{29} \\
& =\sqrt{(25.48+19.36) / 29}=1.243 \text { to three decimal places }
\end{aligned}
$$

Now we can calculate the test statistic:

$$
t=\frac{34.9-33.4}{1.243 * \frac{1}{14}+\frac{1}{17}}=\frac{1.5}{1.243 * 0.361}=3.344 \text { to three places }
$$

This is a one-tail test so the null hypothesis will only be rejected if the test statistic exceeds the critical value. From Table 4 on pages $320-321, t_{0.01,29}$ is 2.462 . Since the test statistic is greater than the critical value we can reject the null hypothesis at the 1% level. The difference between the sample means is very significant.

Excel Recipe Card -

 Hypothesis tests for differences between population meansEnter the following hotel double room rack rates $(£)$ sample data into two columns.
Town A: $55 \quad 706065806250$
Town B: 766668857080

Move the cursor to an empty cell and type =TTEST (in the Formula bar. As you do so the prompt TTEST(array1, array2,tails,type) appears below the Formula bar.

Click and drag over the first column of data to make them array1.

Type a comma then click and drag over the second column of data to make them array2. Type a comma then 2 for both tails and type to specify a two-tailed test with assumed equal variance.

Press Enter to produce the probability that the sample results occur if the null hypothesis of no difference between the population means is true, 0.046804 .

8.5.3 Paired samples

If you want to test the difference between population means using dependent or paired samples the nature of the data enables you to test the mean of the differences between all the paired values in the population, μ_{d}. This approach contrasts with the methods described in the earlier parts of this section where we have tested the difference between population means, $\mu_{1}-\mu_{2}$.

The procedure involved in testing hypotheses using paired samples is very similar to the one-sample hypothesis testing we discussed in Section 8.3. We have to assume that the differences between the paired values are normally distributed with a mean of μ_{d}, and a standard deviation of σ_{d}. The sampling distribution of sample mean differences will consequently be normally distributed with a mean of μ_{d} and a standard error of $\sigma_{\mathrm{d}} / \sqrt{ } n$, where n is the number of differences in the sample. Since we assume that σ_{d} is unknown we have to use the estimated standard error $s_{\mathrm{d}} / \sqrt{ } n$, where s_{d} is the standard deviation of the sample differences.

Typically samples of paired data tend to be small so the benchmark distribution for the test is the t distribution. The test is therefore called the paired t test. Table 8.4 lists the three possible combinations of hypotheses.

Table $\mathbf{8 . 4}$	Types of Hypotheses for the Mean of the Population of Differences	
Null Hypothesis	Alternative Hypothesis	Type of test
$\mathrm{H}_{\mathrm{o}}: \mu_{\mathrm{d}}=\mu_{\mathrm{do}}$	$\mathrm{H}_{1}: \mu_{\mathrm{d}} \neq \mu_{\mathrm{do}}$ (not equal)	Two-sided
$\mathrm{H}_{\mathrm{o}}: \mu_{\mathrm{d}} \leq \mu_{\mathrm{do}}$	$\mathrm{H}_{1}: \mu_{\mathrm{d}}>\mu_{\mathrm{do}}$ (greater than)	One-sided
$\mathrm{H}_{\mathrm{o}}: \mu_{\mathrm{d}} \geq \mu_{\mathrm{do}}$	$\mathrm{H}_{1}: \mu_{\mathrm{d}}<\mu_{\mathrm{d} ~}$ (less than)	One-sided

In this table $\mu_{d o}$ represents the value of the population mean that is to be tested.
The test statistic is:

$$
t=\frac{\bar{x}_{\mathrm{d}}-\mu_{\mathrm{d} 0}}{s_{\mathrm{d}} / \sqrt{ } n}
$$

where \bar{x}_{d} is the mean of the sample differences.
We then compare the test statistic with the appropriate critical value from the t distribution with $n-1$ degrees of freedom.

Example 8.20

A Business School claims that on average people who take their MBA programme will enhance their annual salary by at least $£ 8000$. Each of a random sample of 12 graduates of the programme was asked for their annual salary prior to beginning the programme and their current annual salary. Use the sample data to test whether the mean difference in annual earnings is $£ 8000$ or more using a 10% level of significance.

$$
H_{0}: \mu_{\mathrm{d}} \geq 8.00 \quad H_{1}: \mu_{\mathrm{d}}<8.00(£ 000)
$$

To conduct the test we first need to find the mean and standard deviation of the salary differences in the sample.

Graduate	1	2	3	4	5	6	7	8	9	10	11	12
Prior salary (£000)	32	39	39	33	43	30	36	31	35	37	37	39
Current salary (£000)	41	48	50	39	51	35	39	36	41	47	51	46
Salary difference (£OOO)	9	9	11	6	8	5	3	5	6	10	14	7

The mean and standard deviation of the sample differences are 7.75 and 3.05 , to two decimal places. The test statistic is:

$$
t=\frac{7.75-8.00}{3.05 / \sqrt{ } 12}=\frac{-0.25}{0.88}=-0.28 \text { to two places }
$$

From Table 4 on pages $320-321$, $t_{0.10,11}$ is 1.363 . The alternative hypothesis is that the population mean salary difference is less than $£ 8000$ so the critical value is -1.363 .

A sample mean that produces a test statistic less than this would lead us to reject the null hypothesis. In this case, although the sample mean is less than $£ 8000$, the test statistic, -0.28 , is not less than the critical value and the null hypothesis cannot be rejected. The population mean of the salary differences could well be $£ 8000$.

Excel Recipe Card - Paired t tests

Excel conducts these tests on sample data so enter the following employee performance ratings, assessed before and after training, into two columns.
Before: 584762535865
After: $7156 \quad 67566374$
Enter the Before data in one column and the After data into another.

Move the cursor to an empty cell and type $=$ TTEST (in the Formula bar.As you do this the prompt TTEST (array1, array2,tails, type) appears below the Formula bar

Make the first column of data array1 and the second array2. Type 1 for tails so that a one-tailed test is conducted and 1 for type to signify a paired test.

Press Enter to produce the probability that the sample results occur if the null hypothesis of no difference between the population means is true, 0.002247 .

8.6 TESTING HYPOTHESES ABOUT POPULATION PROPORTIONS

In many respects the procedure we use to test hypotheses about population proportions is similar to the way we test other types of hypothesis. We begin with a null hypothesis that specifies a population proportion to be tested, which we represent by the symbol π_{0} (the Greek letter pi, π, is the symbol for the population proportion). If the null hypothesis is one of the 'equal to' types we conduct a two-tail test. If it is 'less than' or 'greater than', we conduct a one-tail test. The three possible combinations of hypotheses are listed in Table 8.5.

Table 8.5 Types of Hypotheses for the Population Proportion
Null Hypothesis
Alternative Hypothesis
Type of test
$\mathrm{H}_{0}: \pi=\pi_{0}$
$\mathrm{H}_{1}: \pi \neq \pi_{0}$ ('not equal')
Two-sided
$\mathrm{H}_{0}: \pi \leq \pi_{0} \quad \mathrm{H}_{1}: \pi>\pi_{0}$ ('greater than')
One-sided
$\mathrm{H}_{0}: \pi \geq \pi_{0}$
$\mathrm{H}_{1}: \pi<\pi_{0}$ ('less than')
One-sided
In this table π_{0} represents the value of the population proportion that is to be tested.

We calculate the test statistic from the sample proportion, represented by the symbol p, which comes from the sample data that we want to use to test the hypothesis. We assume that the sample proportion belongs to a sampling distribution that has a mean of π_{0} and a standard error of:

$$
\sqrt{\frac{\pi_{0}\left(1-\pi_{0}\right)}{n}}
$$

Notice that we use the proportion from the null hypothesis to calculate the standard error, not the sample proportion.

The test statistic is:

$$
z=\frac{p-\pi_{0}}{\sqrt{\pi_{0}\left(1-\pi_{0}\right) / n}}
$$

Sample proportions are distributed normally if they come from large samples. As long as the sample size is large, preferably over 100, we can use the Standard Normal Distribution as the benchmark for the test; in other words it will be a z test.

As we have done before we use a decision rule that specifies a level of significance in order to assess the validity of the null hypothesis.

Example 8.21

In her annual report the general manager of a car rental business observes that commercial bookings constituted a proportion of 0.32 of the bookings received over the previous year. Out of a random sample of 146 bookings received for the current year, 40 are commercial bookings. Test the hypothesis that the proportion of commercial bookings in the current year is at least as high as the proportion received last year using a 5% level of significance.
We are interested in proving that the proportion is no lower than it was, so we will use a one-tail test. The hypotheses are:
$H_{0}: \pi_{0} \geq 0.32 \quad H_{1}: \pi_{0}<0.32$
Level of significance, $\alpha=0.05$
The sample proportion, $p=40 / 146=0.274$

$$
\text { The test statistic, } \begin{aligned}
z & =\frac{p-\pi_{0}}{\sqrt{\pi_{0}\left(1-\pi_{0}\right) / n}}=\frac{0.274-0.32}{\sqrt{0.32(1-0.32) / 146}} \\
& =-0.046 / 0.039=-1.19
\end{aligned}
$$

From Table 3 on pages 317-320, the probability that Z is -1.19 or less is 0.117 , or 11.7%. Since this is more than 5% we cannot reject the null hypothesis.
Another way of assessing the test statistic is to compare it with the z value that cuts off a tail of 5% on the left-hand side of the distribution, -1.645 . Because the test statistic is not less than this, the sample result is not significant. We can conclude that, although the sample proportion is lower than the proportion last year, it is not significantly lower.

8.7 A HYPOTHESIS TEST FOR THE POPULATION MEDIAN

For most of this chapter we have concentrated on testing population means. When sample sizes are large this is a generally applicable way of assessing the central tendency of populations. But as we have seen, it is not so straightforward when using small samples, samples that contain less than 30 items.

If you want to test a hypothesis about a mean using a small sample you have to be able to assume that the population that the sample comes from is normal. In many situations this is not a reasonable assumption; patterns of wealth and income, for instance, form a skewed distribution.

When a distribution is skewed the sampling distributions for small samples based on it will also be skewed. You may recall that in the course of the discussion about averages in Chapter 3 we concluded that the median was a more effective measure of location to use with skewed distributions. In this section we will look at a test for the population median known as the sign test, which can be used with small samples drawn from non-normal populations.

The idea at the heart of the sign test is quite a simple one. The definition of the median is that it is the midway point in the population. Exactly one half of the values in the population are above the median and the other half are below it. This means that the probability a randomly selected value is less than the median is $\frac{1}{2}$ and the probability it is more than the median is $\frac{1}{2}$. If we have a random sample the values in it will be either above or below the median. The total number of values in the sample that are above and below the median can therefore be modelled using the binomial distribution, with say 'success' being defined as a value above the median, and p, the probability of success, being 0.5 .

You start with null and alternative hypotheses much the same as those we have already looked at, except that they involve the population median. As before, the null hypothesis must identify the specific value of the population median to be tested. You then have to allocate a plus to each value in the sample that is above the median and a minus to each value that is below the median. In the unlikely event that your sample contains a value exactly the same as the null hypothesis population median, you can allocate a sign on the basis of the toss of a coin.

Once every value has been assigned a plus or minus, you then count up the number of plus signs and the number of minus signs. Finally use the appropriate binomial distribution to define the rejection region in keeping with the desired level of significance.

Example 8.22

The times taken to serve customers in a shop follow a skewed distribution. The service times, in minutes, for a random sample of 10 customers were:
$\begin{array}{llllllllll}2 & 6 & 1 & 4 & 2 & 5 & 1 & 1 & 3 & 2\end{array}$
Test the hypothesis that the population median service time is 2.5 minutes using a 5% level of significance.

$$
H_{0}: \text { median }=2.5 \quad H_{1}: \text { median } \neq 2.5
$$

First we allocate signs to each value, minus for a value below 2.5 and plus for a value above 2.5.

```
2
- + - + - + - - + -
```

We have four plus signs and six minus signs. Table 1 on pages 315-316 contains the probabilities for the binomial distribution for $n=10$ and $p=0.5$.
This is a two-tail test using a 5% level of significance so there are two parts of the rejection region, each with a tail area of 0.025 . We will reject the null hypothesis if there are too many pluses (too many values above the suggested population median) or too few. But what are too many or too few?
We are dealing with discrete distributions so the tail areas will be approximate. From Table 1 we can see that the probability of 0 or 1 successes (in this context values above the median, pluses) is 0.011 , and we can work out that the probability of nine or ten successes is also 0.011 . This means that if the population median really were 2.5 , the probability of getting zero, one, nine or ten pluses is 0.022 or 2.2%. These numbers of pluses constitute the rejection region. As long as there are between two and eight pluses inclusive, we cannot reject the null hypothesis.
In this case there are four pluses so we cannot reject H_{0}, the median could be 2.5. Note that in effect we have used a 2.2% level of significance in this test. It is as near as we can get to 5% without exceeding it. If we were to include two and eight in our rejection region the effective level of significance would be 11% (Table 1 gives the probability of 0,1 or 2 successes as 0.055).

The sign test is one of a wide range of tests that can be applied in a broader range of contexts than the more traditional or classical methods we looked at earlier in this chapter. These tests are known as non-parametric tests because they are not generally based on the parameters used in the classical methods, the mean and the standard deviation. They are also referred to as distribu-tion-free methods because they do not depend on assumptions about the population distribution.

Non-parametric methods are simpler to use and more widely applicable than classical methods, but they are not as efficient. Typically a non-parametric test requires more data than a classical test for the same degree of rigour. We have only considered one of the many non-parametric tests that are available. You can find out more about them in Sprent and Smeeton (2007).

Test yourself questions from Warwick's business enterprises

Fully worked solutions to these questions are on pages 337-338. You can find more questions on the topics covered in this chapter at the accompanying website www. elsevierdirect.com/9781856179478.

8.1 (Easy)

The waiting times of each of a random sample of 45 people calling taxis from Warwick's hotel have been recorded. The mean waiting time was 7.3 min with a standard deviation of 3.2 min .
(a) Construct a 95% confidence interval for the mean waiting time.
(b) Construct a 99% confidence interval for the mean waiting time.

8.2 (Moderate)

The alcohol content of bottles of an imported brand of flavoured vodka Warwick serves in his pub is presumed to follow a normal distribution with a standard deviation of 0.83%. The mean alcohol content of a random sample of 12 bottles is 64.6%. Test the validity of the claim made by the supplier that the average alcohol content is at least 65%. Use a 5% level of significance.

8.3 (Hard)

The interval between each of a random sample of 28 guests at Warwick's hotel ordering a room service hot meal and its delivery taken for the room service delivery of hot meals was timed. The mean interval was 31.7 min with a standard deviation of 4.1 min. After making changes to the room service menu, the delivery interval of each of a random sample of 24 room service hot meals was recorded. The mean interval of this second sample was 29.5 min with a standard deviation of 3.2 min . Assuming that the populations of intervals both before and after the menu changes are normally distributed, test the hypothesis that the menu changes have resulted in no reduction in the population mean delivery interval using a 5% level of significance and a pooled estimate of the standard error.

Statistical Decision Making with Bivariate Data

Why do I need to know about this? Warwick the Hospitality entrepreneur says...
'This chapter is all about finding connections between things and establishing just how important, or significant these connections are. For me one important connection was between the prices I charged and how many customers I attracted. Was it worth cutting prices to get more customers? How could I find out? Try it on a few occasions and see. When I did this I was using these few occasions to decide what to do on all occasions, in other words I was testing the connection between prices and sales in a sample so that I could make a judgement about a population.'

Chapter Objectives

This chapter will help you to:

- analyse the connection between variables;
- test bivariate models; and
- use bivariate models to make sophisticated predictions.

CONTENTS

Introduction
Contingency Tests
Testing and
Estimating with
Quantitative Bivariate Data

9.1 INTRODUCTION

The purpose of this chapter is to introduce you to methods of statistical inference, or statistical decision making, that enable us to draw conclusions about connections between variables in populations based on sample data. The sample data we will be using are described as bivariate data because they consist of observed values of two variables. This sort of data is usually collected in order to establish whether there is a connection between the two variables, and if so, what sort of connection it is.

Many organizations use this type of analysis to study consumer behaviour, patterns of costs and revenues and other aspects of their operations. Sometimes the results of such analysis have far-reaching consequences. For example, if you look at a tobacco product you will see a health warning prominently displayed. It is there because some years ago researchers used these types of statistical methods to establish that there was a connection between tobacco consumption and certain medical conditions.

We shall consider two types of statistical decision-making techniques. The first, tests of association or contingency, are designed to investigate connections between qualitative variables, or characteristics. The second are tests that enable us to investigate connections between quantitative variables. The latter usually take the form of bivariate models, and we shall also be looking at how we can use such models to produce confidence intervals for predictions.

9.2 CONTINGENCY TESTS

These tests are used primarily with qualitative data, which are data that consist of different categories of attributes or characteristics. They can help us to determine whether one characteristic is associated with, or contingent upon another characteristic. They are also suitable for use with quantitative data as long as it is discrete data which can take only a very few values, or the data are sorted into relatively few categories.

If you conduct a questionnaire survey, or have to analyse the results of questionnaire research, you may well want to find out from the data how different characteristics are related to each other. For instance, you may want to look into the possible connection between the socio-economic class of respondents and the newspapers they buy. You would need to conduct a contingency test in order to ascertain whether a connection you might find in your sample results is strong enough to enable you to conclude that there is a connection in the population at large, in other words to see if the sample results are significant.

Contingency tests are conducted in the same way as the hypothesis tests we looked at in the Chapter 8 . We begin with a null hypothesis, H_{0}, which in contingency analysis says that there is no association between the characteristics, whereas the alternative hypothesis, H_{1}, says that there is an association between them.

The next stage is to analyse the sample results that we want to use to decide which hypothesis is the more plausible. We can start by putting the data into a contingency table.

Example 9.1

In a survey about television each of a random sample of 100 respondents were asked if they thought there was too much or not enough sport on television. Of the 40 men in the sample, 15 said too much. Of the 60 women in the sample, 35 said too much. Is there a significant connection between gender and attitude to the amount of sport on television? The first stage is to specify suitable hypotheses.
H_{0} : There is no association. H_{1} : There is association.
We begin the analysis of the sample results by arranging them in a contingency table.

	Men	Women	Total
Too much sport	15	35	50
Not enough sport	25	25	50
Total	40	60	100

To test the hypotheses the sample results must be combined to produce a measure of contingency, a test statistic that we can compare to a benchmark distribution. The test statistic that we use is known as chi-square after the Greek letter chi, χ^{2}.

The value of chi-square is calculated by comparing the sample results, which are referred to as the Observed frequencies and are represented by the letter O, to the results that we would expect if the null hypothesis were true. These values, which we have to work out, are known as the Expected frequencies and are represented by the letter E.

Example 9.2

Find the results that we would expect to see in the contingency table in Example 9.1 if there is no association between gender and attitude to the amount of sport on television. We can deduce the figures we would expect to see. We know from the totals that the respondents are split equally between the 50 who think there is too much sport and the 50
who think there is not enough. If there is no association between the attitudes that people have towards the amount of sport on television and gender we would anticipate that both men and women would be evenly split on the issue. In other words, if gender makes no difference to whether people think there is too much sport on television we would expect the same proportion of men as women to say so, and the same proportion of men as women to say there is not enough.
The contingency table would look like this:

	Men	Women	Total
Too much sport	20	30	50
Not enough sport	20	30	50
Total	40	60	100

If you look at the table you will see that each group, men and women, has been divided equally between the opposing viewpoints. These figures are the expected figures we need to use in calculating the test statistic. Notice that, although the figures within the table are different, the row and column totals are unchanged.

If you prefer a more formal way of finding expected frequencies you can multiply the row total by the column total and divide the product by the overall total. So to find how many men in Example 9.2 we would expect to say there is too much sport on television, assuming there is no association, we would multiply the total number saying there is too much sport on television by the total number of men and divide the result by 100 , the total number of respondents in the sample. That is:

$$
\text { Expected frequency }=\frac{\text { row total } * \text { column total }}{\text { Overall total }}=\frac{50 * 40}{100}=20
$$

Once we have the expected frequencies we can compare them to the observed frequencies, the actual sample results, by putting them together in a single table.

Example 9.3

Produce a contingency table that shows the observed frequencies from Example 9.1 alongside the expected frequencies from Example 9.2. Compare the two sets of frequencies.
In the table below the expected frequencies are shown in parentheses.

	Men	Women	Total
Too much sport	$15(20)$	$35(30)$	50
Not enough sport	$25(20)$	$25(30)$	50
Total	40	60	100

Fewer men than we would expect if there were no association state that there is too much sport and more women than we would expect if there were no association state there is too much.

The conclusions from Example 9.3 suggest that there is some association in the sample results but is the association strong enough to be significant, in other words does the evidence point to association in the entire population? To find out we need to calculate the test statistic, χ^{2}.

To do this we subtract each expected frequency from its corresponding observed frequency and then square the result. We will be adding these differences between observed and expected frequencies, so we have to square them otherwise the positive and negative differences will cancel each other out and the test statistic will be of no use. We then divide each squared difference by its expected frequency. This is to standardize the test statistic, in other words to enable us to compare it to the standard χ^{2} distribution. Finally we add together the standardized squared differences, one for each section or cell of the contingency table. The total we get is the value of the test statistic, χ^{2}, for the sample results.

The procedure can be represented using the following formula:

$$
\chi^{2}=\sum(O-E)^{2} / E
$$

Example 9.4

Find the value of χ^{2} for the sample data in Example 9.1.
We can work from the contingency table produced in Example 9.3.

	Men	Women
Too much sport	$15(20)$	$35(30)$
Not enough sport	$25(20)$	$25(30)$

We will start with men who say there is too much sport on television. The observed frequency, O, is 15 and the expected frequency, E, is 20 , so:

$$
(O-E)^{2} / E=(15-20)^{2} / 20=25 / 20=1.25
$$

Next we will consider the women who say there is too much sport on television.

$$
(O-E)^{2} / E=(35-30)^{2} / 30=25 / 30=0.833 \text { to three decimal places }
$$

Next the men who say there is not enough sport on television.

$$
(O-E)^{2} / E=(25-20)^{2} / 20=1.25
$$

Last the women who say there is not enough sport on television.

$$
(O-E)^{2} / E=(25-30)^{2} / 30=0.833 \text { to three decimal places }
$$

The test statistic, χ^{2}, is the sum of these four results, which is:
$\chi^{2}=1.25+0.833+1.25+0.833=4.167$ to three decimal places

Does the test statistic in Example 9.4 suggest that there is association between gender and attitude to the amount of sport on television among the whole population? We can only establish this by comparing the test statistic to a suitable benchmark distribution.

The type of distribution we will use to assess the test statistic is the chisquare distribution, and the procedure is often referred to as a chi-square test. This distribution describes the behaviour of the measure of contingency that we have used, whereas the Standard Normal and t distributions do not. The shape of the chi-square distribution is shown in Figure 9.1.

FIGURE 9.1 The chi-square distribution

There are in fact many different versions of the chi-square distribution. The one we use depends on the number of degrees of freedom we have in our sample results. We can work this out by taking the number of rows in the contingency table, subtracting one, and then multiplying by the number of columns in our contingency table minus one. If we use r to represent the number of rows and c to represent the number of columns:

Degrees of freedom $=(r-1) *(c-1)$
The contingency table in Example 9.4 has two rows and two columns, so the benchmark chi-square distribution is the one that has one degree of freedom. This describes the pattern of chi-square values we would get if we took all the samples we possibly could from a population that had no association between two characteristics, each of which had only two categories, and calculated a chi-square value from each set of sample results.

We need to use the appropriate chi-square distribution to find how likely the test statistic is to arise if there is no association between the characteristics in the population. Using a decision rule that specifies a level of significance we will then be able to arrive at our conclusion.

Table 5 on page 322 provides information about chi-square distributions, with up to 10 degrees of freedom. In Table 5 the figure in the first row, the row for 1 degree of freedom, and the column headed 0.10 is 2.706 . This means that 10% of the distribution is to the right of 2.706 . If we wanted to test the null hypothesis of no association at a 10% level of significance, then the test statistic from our sample results would need to be larger than 2.706 in order to reject the null hypothesis.

Table 5 also shows that 5% of the distribution is to the right of 3.841. If the test statistic is more than this we can reject the null hypothesis at the 5% level of significance. In order to reject the null hypothesis at the 1% level the test statistic would have to be larger than 6.635 .

Notice that the larger our test statistic is, the stronger the evidence of association will be. Rejecting the null hypothesis at 1% is far more conclusive than rejecting it at 10%. This is not surprising because the test statistic, χ^{2}, is based on differences between the actual, or observed, frequencies and those we would expect if there were no association. If there were association then we would anticipate large differences between observed and expected frequencies. If there were no association we would expect small differences.

The test statistic in Example 9.4 was 4.167 , which is large enough (larger than 3.841) to enable us to reject the null hypothesis at the 5% level of significance. The sample results suggest that there is association between gender and their attitude to the amount of sport on television.

The set of data we have used to illustrate chi-square tests for association is quite a simple one. In practice we are likely to have more rows and/or columns. Even in the example, we might have had another category of response, perhaps the view that the amount of sport on television is just right, to cope with. Although the table is more elaborate the procedure you have to follow is essentially the same. However, there are some important points to remember.

The first is that more rows and columns mean more degrees of freedom, so you must use the correct version of the χ^{2} distribution. The second concerns the amount of data. Like other types of statistical testing, all other things being equal, the more data we have the firmer our conclusions will be. We should have enough data to ensure that none of the expected frequencies is less than 5 ; otherwise our results may not be dependable. If any expected frequencies are less than 1 , the results of the test will be useless.

If one or more expected frequencies are too low there are two possible solutions. The first is to obtain more data. The second is to merge categories so that there are fewer rows and columns. If you are managing the data collection process yourself you can avoid the problem by planning the research carefully, an issue we will consider in Chapter 10.

Example 9.5

In a survey a random sample of 135 motorists were each asked about themselves and the cars they drove. Some of the results are summarized in the contingency table below.

Car Type	Performance	Sports	Superminis	Family Car	Total
Drivers 40 or over	4	26	12	28	70
Drivers under 40	3	24	18	20	65
Total	7	50	30	48	135

Use these sample results to test for association between age category and type of car using a 5\% level of significance
H_{0} : There is no association. H_{1} : There is association.
To test the null hypothesis we need to find the expected frequencies for each cell, but when we calculate the expected frequencies for the number of drivers who drive a performance car we find that for both categories of staff these figures are less than 5.

Expected number of drivers 40 or over in Performance cars
$=(70 * 7) / 135=3.63$ to two decimal places
Expected number of drivers under 40 in Performance cars
$=(65 * 7) / 135=3.37$ to two decimal places

These low expected frequencies would weaken the test. We can overcome this by merging the performance and sports categories.

	Performance/Sports	Superminis	Family Car	Total
Drivers 40 or over	30	12	28	70
Drivers under 40	27	18	20	65
Total	57	30	48	135

The expected values are now (to two decimal places):
Expected number of drivers 40 or over in Performance/Sports cars

$$
=(70 * 57) / 135=29.56
$$

Expected number of drivers under 40 in Performance/Sports cars

$$
=(65 * 57) / 135=27.44
$$

Expected number of drivers 40 or over in superminis $=(70 * 30) / 135=15.56$
Expected number of drivers under 40 in superminis $=(65 * 30) / 135=14.44$
Expected number of drivers 40 or over in family cars $=(70 * 48) / 135=24.88$
Expected number of drivers under 40 in family cars $=(65 * 48) / 135=23.12$
These can now be included in the contingency table.

	Performance/Sports	Superminis	Family Cars	Total
Drivers 40 or over	$30(29.56)$	$12(15.56)$	$28(24.89)$	70
Drivers under 40	$27(27.44)$	$18(14.44)$	$20(23.11)$	65
Total	57	30	48	135

The test statistic:

$$
\begin{aligned}
\chi^{2}= & {\left[(30-29.56)^{2} / 29.56\right]+\left[(12-15.56)^{2} / 15.56\right]+\left[(28-24.89)^{2} / 24.89\right] } \\
& +\left[(27-27.44)^{2} / 27.44\right]+\left[(18-14.44)^{2} / 14.44\right]+\left[(20-23.11)^{2} / 23.11\right] \\
= & 0.007+0.814+0.389+0.007+0.878+0.419=2.514
\end{aligned}
$$

The degrees of freedom $=($ rows -1$) *($ columns -1$)$

$$
=(2-1) *(3-1)=2
$$

According to Table 5, the value of χ^{2} that cuts off a 5% area in the right-hand side of the χ^{2} distribution that has two degrees of freedom is 5.991 . This is the critical value of χ^{2}. Since the test statistic, 2.514 , is less than the critical value we cannot reject the null hypothesis. The evidence suggests that there is no significant association between driver age category and type of vehicle driven. However, it is worth noting that the largest two of the six components of the test statistic, 0.814 and 0.878 , both relate to superminis. Fewer drivers 40 or over and more drivers under 40 drive this type of car than we would expect.

Excel Recipe Card -

Contingency tests

Enter the observed and expected values from Example 9.3 in the spreadsheet.

Make sure the cursor is in an empty cell and type =CHITEST(in the Formula bar. As you do so the prompt=CHITEST(actual_range, expected range) appears under the Formula bar.

Make the cell locations of the observed values (the upper four cells) the actual range and the cell locations of the expected values (the lower four cells) the expected range then close the bracket.

Press Enter to produce the probability that the test statistic, or a larger one, occurs if the null hypothesis is true, 0.041227 . Since this is less than 0.05 we reject the null hypothesis of no association at the 5% level. There does seem to be some association between gender and preference.

9.3 TESTING AND ESTIMATING WITH QUANTITATIVE BIVARIATE DATA

The analysis of quantitative bivariate that we looked at in Chapter 4 consisted of two related techniques, correlation and regression. Correlation analysis, which is about the calculation and evaluation of the correlation coefficient, enables us to tell whether there is a connection between the observed values of two variables. Regression analysis, which is about fitting lines of best fit, enables us to find the equation of the line that is most appropriate for the data, the regression model.

In this section we will consider how the results from applying correlation and regression to sample data can be used to test hypotheses and make estimates for the population to which the sample data belong.

9.3.1 Testing correlation coefficients

The Pearson sample correlation coefficient, represented by the letter r, measures the extent of the linear association between sample values of two variables, X and Y. You can find the correlation coefficient of a set of bivariate data using computer software, or the formula:

$$
r=\frac{\operatorname{Cov}_{X Y}}{\left(s_{X}-s_{Y}\right)}
$$

where

$$
\operatorname{Cov}_{X Y}=\frac{\sum(x-\bar{x})(y-\bar{y})}{(n-1)}
$$

and s_{X} and s_{Y} are the standard deviations of the x and y values respectively.

If we select a random sample from populations of X and Y that are both normally distributed, the correlation coefficient calculated from the sample data will be a legitimate estimate of the population correlation coefficient, represented by the Greek r, the letter rho, ρ. In fact the main reason for calculating the sample correlation coefficient is to find out if there is any evidence of linear association between the X and Y populations.

The value of the sample correlation coefficient alone is some help in assessing correlation between the populations, but a more thorough approach is to test the null hypothesis that the population correlation coefficient is zero,
$H_{0}: \rho=0$
The alternative hypothesis we use depends on what we would like to prove. If we are interested in demonstrating that there is significant correlation in the population, then we should use:

$$
H_{1}: \rho \neq 0
$$

If we want to show that there is significant positive correlation in the population then:

$$
H_{1}: \rho>0
$$

If we want to show that there is significant negative correlation in the population then:

$$
H_{1}: \rho<0
$$

If we adopt the first of these versions of the alternative hypothesis, H_{1} : $\rho \neq 0$, we need to use a two-tail test, if we use one of the other forms we need to conduct a one-tail test. In practice it is more usual to test for either positive or negative correlation rather than for both.

Once we have established the nature of our alternative hypothesis we need to calculate the test statistic from our sample data.

The test statistic : $t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}$
where r is the sample correlation coefficient and n is the number of pairs of observations in the sample.

As long as the populations of X and Y are normal the test statistic will belong to a t distribution with $n-2$ degrees of freedom and a mean of zero, if there is no linear association between the populations of X and Y.

Example 9.6

A shopkeeper believes that the temperature outside and the number of cans of soft drinks sold are connected. She noted the maximum daytime temperature (in degree Celsius) and the soft drinks sales on 10 working days chosen at random.

Temperature	Sales
14	19
11	29
17	47
8	12
20	45
13	41
24	67
3	10
16	28
5	21

The correlation coefficient for this sample is 0.871 to three decimal places. Test the hypothesis that there is no correlation between temperature and sales against the alternative that there is positive correlation. Use a 5% level of significance.
The test statistic,

$$
t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}=\frac{0.871 * \sqrt{10-2}}{\sqrt{1-0.871^{2}}}=\frac{0.871 * \sqrt{8}}{\sqrt{0.24}}=\frac{0.871 * 2.83}{0.49}=5.02
$$

We need to compare this test statistic to the t distribution that has $n-2$, which in this case is 8 , degrees of freedom. According to Table 4 on page $X X X$, the value of t with 8 degrees of freedom that cuts off the 5% tail on the right-hand side of the distribution, $\mathrm{t}_{0.05,8}$, is 1.860 . Since the test statistic is clearly larger than 1.860 we can reject the null hypothesis at the 5% level of significance. The sample evidence strongly suggests that there is positive correlation between temperature and sales in the population.

9.3.2 Testing regression models

The second technique used to analyse quantitative bivariate data is simple linear regression analysis, the method we used in Chapter 4 to find the equation of the line of best fit between two variables, X and Y. Such a line has two distinguishing features, its intercept and its slope. In the standard formula we used for the line the intercept was represented by the letter a and the slope by the letter b :

$$
Y=a+b X
$$

The line that this equation describes is the best way of representing the connection between the dependent variable, Y, and the independent variable, X. In practice it is almost always the result of a sample investigation that is intended to shed light on the connection between the populations of X and Y. That is why we have used ordinary rather than Greek letters in the equation.

The results of such a sample investigation can provide an understanding of the relationship between the populations. The intercept and slope of the line of best fit for the sample are point or single-figure estimates for the intercept and slope of the line of best fit for the populations, which are represented by the Greek equivalents of a and b, α and β :

$$
Y=\alpha+\beta X
$$

The intercept and slope from the analysis of the sample can be used to test hypotheses about the equivalent figures for the populations. Typically we use null hypotheses that suggest that the population values are zero:
$H_{0}: \alpha=0$ for the intercept
and
$H_{0}: \beta=0$ for the slope.
If the population intercept is zero, the population line of best fit will be represented by the equation $Y=0+\beta X$, and the line will begin at the origin of the graph, that is where both X and Y are zero. You can see this type of line in Figure 9.2.

If we wanted to see whether the population intercept is likely to be zero, we would test the null hypothesis $H_{0}: \alpha=0$ against the alternative hypothesis:
$H_{1}: \alpha \neq 0$
When you use regression analysis you will find that investigating the value of the intercept is rarely important. Occasionally it is of interest, for instance, if we are looking at the connection between an organization's levels of operational activity and its total costs at different periods of time the intercept of the line of best fit reflects the organization's fixed costs.

Typically we are much more interested in evaluating the slope of the line of best fit. The slope is pivotal; it tells us how the dependent variable responds to changes in the independent variable. For this reason you will

FIGURE 9.2 Line with zero intercept, $\mathrm{Y}=0+\beta \mathrm{X}$

FIGURE 9.3 Line with zero slope, $\mathrm{Y}=\alpha+\mathrm{OX}$
find that the slope is also known as the coefficient of the independent variable.

If the population slope turns out to be zero, it would tell us that the dependent variable does not respond to the independent variable. The implication of this is that our independent variable is of no use in explaining how our dependent variable behaves and there would be no point in using it to make predictions of our dependent variable.

If the slope of the line of best fit is zero, the equation of the line would be $Y=\alpha+0 X$, and the line would be perfectly horizontal. You can see this illustrated in Figure 9.3.

The line in Figure 9.3 shows that whatever the value of X, whether it is a small one to the left of the horizontal axis or a large one to the right of the horizontal axis, the value of Y remains the same. The size of the x value has no impact whatsoever on Y, and the regression model is useless.

We usually want to use regression analysis to find useful rather than useless models; regression models that help us to understand and anticipate the behaviour of dependent variables. So in order to demonstrate that a model is valid, it is important that we test the null hypothesis that the slope is zero. Hopefully the sample evidence will enable us to reject the null hypothesis in favour of the alternative, that the slope is not zero, and we can proceed to use our model.

The test statistic we shall use to test the hypothesis is:

$$
t=\frac{b-0}{S_{b}}
$$

where b is the sample slope, 0 is the population slope suggested by the null hypothesis, and s_{b} is the estimated standard error of the sampling distribution of the sample slopes.

To calculate the estimated standard error, s_{b}, divide s^{2}, the variance of the sample residuals, the parts of the y values that the line of best fit does not explain, by the sum of the squared deviations between the x values and their mean, x. Then take the square root. That is:

$$
s_{b}=\frac{\sqrt{s^{2}}}{\Sigma(x-\bar{x})^{2}}
$$

Once we have the test statistic we can assess it by comparing it to the t distribution with $n-2$ degrees of freedom, two fewer than the number of pairs of x and y values in our sample data.

Example 9.7

The equation of the line of best fit for the sample data in Example 9.6 is:

$$
\text { Sales }=0.74+2.38 \text { Temperature }
$$

Test the hypothesis that the population slope is zero using a 5% level of significance.

$$
H_{0}: \beta=0 \quad H_{1}: \beta \neq 0
$$

To find the test statistic we first need to calculate the standard deviation of the residuals. We can identify the residuals by taking each x value, putting it into the equation of the line of best fit and then working out what value of Y should, according to the model be associated with it. The difference between the y value that the equation says should be associated with the x value and the y value that is actually associated with the x value is the residual.
To illustrate this, we will look at the first pair of values in our sample data, a day when the temperature was $14^{\circ} \mathrm{C}$ and 19 cans of soft drink were sold. If we insert the temperature into the equation of the line of best fit we can use the equation to estimate the number of cans that 'should' have been sold on that day:

$$
\text { Sales }=0.74+(2.38 * 14)=34.06
$$

The residual is the difference between the actual sales level, 19 , and this estimate, that is:

$$
\text { Residual }=19-34.06=-15.06
$$

The standard deviation of the residuals is based on the squared residuals. The residuals and their squares are given in the table below.

Temperature	Sales	Residuals	Squared Residuals
14	19	-15.06	226.80
11	29	2.10	4.39
17	47	5.82	33.91
8	12	-7.77	60.35
20	45	-3.31	10.98
13	41	9.34	87.20
24	67	9.17	84.12
3	10	2.13	4.52
16	28	-10.80	116.61
5	21	8.37	70.02
			698.90

We find the standard deviation of the residuals by taking the square root of the sum of the squared residuals divided by n, the number of residuals, minus two (We have to subtract two because we have 'lost' two degrees of freedom in using the intercept and slope to calculate the residuals).

$$
s=\sqrt{698.90 / n-2}=\sqrt{698.90 / 8}=9.347 \text { to three decimal places }
$$

To get the estimated standard error we divide the square of this by the sum of squared differences between the temperature figures and their mean then take the square root.

Temperature (x)	\bar{x}	$x-\bar{x}$	$(x-\bar{x})^{2}$
14	13.1	0.9	0.81
11	13.1	-2.1	4.41
17	13.1	3.9	15.21
8	13.1	-5.1	26.01
20	13.1	6.9	47.61
13	13.1	-0.1	0.01
24	13.1	10.9	118.81
3	13.1	-10.1	102.01
16	13.1	2.9	8.41
5	13.1	-8.1	65.61
			388.90

The estimated standard error is:

$$
s_{b}=\sqrt{s^{2} / \Sigma(x-\bar{x})^{2}}=\sqrt{9.347^{2} / 388.90}=0.4738
$$

and the test statistic $t=(b-0) / s_{b}=2.38 / 0.4738=5.02$ to two decimal places

From Table 4 on pages 320-321 the t value with 8 degrees of freedom that cuts off a tail area of $2 \frac{1}{2} \%, t_{8,0.025}$ is 2.306 . If the null hypothesis is true and the population slope is zero only $2 \frac{1}{2} \%$ of test statistics will be more than 2.306 and only $2 \frac{1}{2} \%$ will be less than -2.306 . The level of significance is 5% so our decision rule is therefore to reject the null hypothesis if the test statistic is outside ± 2.306. Since the test statistic in this case is 5.02 we should reject H_{0} and conclude that the evidence suggests that the population slope is not zero.

The implication of the result in Example 9.7 is that the model, represented by the equation is sufficiently sound to enable the temperature variable to be used to predict sales.

If you compare the test statistic for the sample slope in Example 9.7 with the test statistic for the sample correlation coefficient in Example 9.6, you will see that they are both 5.02 . This is no coincidence; the two tests are equivalent. The slope represents the form of the association between the variables, whereas the correlation coefficient measures its strength. We use the same data in the same sort of way to test the rigour of each of them.

The calculations we had to employ in Example 9.7 are quite laborious, but they should enable you to see how the data are used to produce the conclusion. However, you should seldom, if ever, have to work through this sort of calculation yourself. Regression analysis is a statistical technique that is very widely used which means that just about every spreadsheet and statistical package will be able to do this sort of work for you.

Excel Recipe Card - Hypothesis tests for regression model coefficients
 Enter the data from Example 9.6 into two worksheet columns.

3 S Microsoft Excel - Book1									
[ब] Eile Edit Yiew Insert Format Iools Qata Window Help									
B12 - fx									
	A	B	C	D	E	F	G	H	1
1	Temperature	Sales							
2	14	19							
3	11	29							
4	17	47							
5	8	12							
6	20	45							
7	13	41							
8	24	67							
9	3	10							
10	16	28							
11	5	21							
12									
13									

Select Data Analysis from the Tools menu.

Choose Regression from the submenu and click OK.

Provide the cell locations of the Sales values as the Input \boldsymbol{Y} Range: and the cell locations of the Temperatures as the Input \boldsymbol{X} Range: then click OK.

In the lowest section of the output the figures in the Coefficients column are the intercept and slope of the regression line.
The Standard Error column contains the estimated standard errors of the sample intercept (the upper figure) and the sample slope (the lower figure). The \boldsymbol{t} Stat column contains the test statistics based on the sample intercept and the sample slope. The figures in the \boldsymbol{P}-value column allow us to assess the hypotheses that the population intercept and slope are zero. The upper one is the probability that we obtain a sample intercept of 0.738236 or more if the population intercept is zero. This is 0.917115 , indicating a strong possibility that the population intercept is zero.
The lower P-value, 0.001026, is the probability that the sample slope is 2.378761 or more if the population slope is zero. Since this is below the level of significance, 5% or 0.05 , reject the null hypothesis of a zero slope.

9.3.3 Constructing interval predictions

When we use a regression model to make a prediction, as we had to do in Example 9.7 to obtain the residuals we have a single figure that is the value of Y that the model suggests should be associated with the value of X that we specify.

Example 9.8

Use the regression model in Example 9.7 to predict the level of sales that will be achieved on a day when the temperature is $22^{\circ} \mathrm{C}$.
If temperature $=22$, according to the regression equation:

$$
\text { Sales }=0.74+2.38(22)=53.1
$$

Since the number of cans sold is a discrete variable, in practice we would round this to 53 cans.

The problem with all single-figure predictions is that we simply have no idea of how likely they are to be accurate. It is far better to have an interval that we know, with a certain amount of confidence, will be accurate.

Before we look at how we can produce such intervals, we need to clarify exactly what we want to find. The figure we produced in Example 9.8 we described as a prediction of sales on a day when the temperature is $22^{\circ} \mathrm{C}$. In fact it can also be used as an estimate of the mean level of sales that occur on days when the temperature is $22^{\circ} \mathrm{C}$. Because it is a single figure it is a point estimate of the sales levels on such days.

We can construct an interval estimate or confidence interval of the mean level of sales on days when the temperature is at a particular level by taking the point estimate and adding and subtracting an error. The error is the product of the standard error of the sampling distribution of the point estimates and a figure from the appropriate t distribution. The t distribution we use should have $n-2$ degrees of freedom, n being the number of pairs of data in our sample, and the t value we select from it is based on the level of confidence we want to have that our interval will be accurate.

We can express this procedure using the formula:

$$
\text { Confidence interval }=\widehat{y} \pm t_{\alpha / 2, n-2} * s * \sqrt{\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum(x-\bar{x})^{2}}}
$$

where \hat{y} is the point estimate of the mean of the y values associated with x_{0} and s is the standard deviation of the sample residuals.

Example 9.9

Construct a 95\% confidence interval for the mean sales of soft drinks that the shopkeeper in Example 9.6 can expect on days when the temperature is $22^{\circ} \mathrm{C}$.
From Example 9.8 we know that the point estimate for the mean \widehat{y} is 53.1 cans. We will use the original, unrounded figure because the mean, unlike sales on a particular day does not have to be discrete. We also know from Example 9.8 that the standard deviation of the sample residuals, s is $9.347, \bar{x}$ is 13.1 and $\Sigma(x-\bar{x})^{2}$ is 388.90 .
The t value we need is 2.306 , the value that cuts off a tail of $2 \frac{1}{2} \%$ in the t distribution that has $10-2,8$, degrees of freedom. The value of x_{0}, the temperature on the days whose mean sales figure we want to estimate, is 22.

$$
\begin{aligned}
\text { Confidence interval } & =\hat{y} \pm t_{\alpha / 2, n-2} * s * \sqrt{\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum(x-\bar{x})^{2}}} \\
& =53.1 \pm 2.306 * 9.347 \sqrt{\left[1 / 10+(22-13.1)^{2} / 338.90\right]} \\
& =53.1 \pm 2.306 * 9.347 \sqrt{0.304}=53.1 \pm 2.306 * 5.15 \\
& =53.1 \pm 11.87=41.23 \text { to } 64.97 \text { to two decimal places }
\end{aligned}
$$

The confidence interval we produced in Example 9.9 is a reliable guide to what the mean sales are on days when the temperature is $22^{\circ} \mathrm{C}$. This is because, although this level of temperature is not among the temperature values in our sample data, it is within the range of the temperatures in our sample data, which is from a minimum of $3^{\circ} \mathrm{C}$ to a maximum of $24^{\circ} \mathrm{C}$.

If we produce a confidence interval for the mean of the y values associated with an x value outside the range of x values in the sample it will be both wide and unreliable.

Example 9.10

Construct a 95\% confidence interval for the mean sales of cans of soft drinks in Example 9.6 on days when the temperature is $35^{\circ} \mathrm{C}$.

The point estimate for the mean, $\hat{y}=0.74+2.38(35)=84.04$

$$
\begin{aligned}
\text { Confidence interval } & =\widehat{y} \pm t_{\alpha / 2, n-2} * s * \sqrt{\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum(x-\bar{x})^{2}}} \\
& =84.04 \pm 2.306 * 9.347 \sqrt{\left[1 / 10+(35-13.1)^{2} / 338.90\right]} \\
& =84.04 \pm 2.306 * 9.347 \sqrt{1.33}=84.04 \pm 2.306 * 10.79 \\
& =84.04 \pm 24.88=59.16 \text { to } 108.92 \text { to two decimal places }
\end{aligned}
$$

The confidence interval we produced in Example 9.10 is of no real use to us because the temperature on which it is based, $35^{\circ} \mathrm{C}$, is beyond the range of temperatures in our sample. Confidence intervals produced from regression lines will be wider when they are based on x values further away from the mean of the x values. You can see this in Figure 9.4.

If we want to produce a prediction of an individual value rather than an estimate of a mean of a set of values, with a given level of confidence, we can do so by producing what is called a prediction interval. This is to distinguish this type of forecast from a confidence interval, which is a term reserved for estimates of population measures.

The procedure we use to produce prediction intervals is very similar to the one we have used to produce confidence intervals for means of values of dependent variables. It is represented by the formula:

$$
\text { Prediction interval }=\widehat{y} \pm t_{\alpha / 2, n-2} * s * \sqrt{1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum(x-\bar{x})^{2}}}
$$

If you look carefully you can see that the difference between this and the formula for a confidence interval is that we have added one to the expression under the square root sign. The effect of this will be to widen the interval

FIGURE 9.4 Ninety-five percent confidence intervals for the data in Example 9.6
considerably. This is to reflect the fact that individual values vary more than statistical measures like means, which are based on sets of values.

Example 9.11

Construct a 95\% prediction interval for the sales of cans of soft drinks in Example 9.6 on a day when the temperature is $22^{\circ} \mathrm{C}$.

$$
\begin{aligned}
\text { Prediction interval } & =\hat{y} \pm t_{\alpha / 2, n-2} * s * \sqrt{1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum(x-\bar{x})^{2}}} \\
& =53.1 \pm 2.306 * 9.347 \sqrt{\left[1+\frac{1}{10}+(22-13.1)^{2} / 338.90\right]} \\
& =53.1 \pm 2.306 * 9.347 \sqrt{1.304}=53.1 \pm 2.306 * 10.67 \\
& =53.1 \pm 24.60=28.50 \text { to } 77.70 \text { to two decimal places }
\end{aligned}
$$

If you compare the prediction interval in Example 9.11 to the confidence interval in Example 9.9 you will see that the prediction interval is much wider, although the level of confidence involved, 95%, is the same.

Just like confidence intervals produced using regression models, prediction intervals are more dependable if they are based on x values nearer the mean of the x values. Prediction intervals based on x values that are well outside the range that we have in our sample are of no use.

The usefulness of the estimates that you produce from a regression model depends to a large extent on the size of the sample that you have. The larger the sample on which your regression model is based, the more precise and confident your predictions and estimates will be.

As we have seen, the width of the intervals increases the further the x value is away from the mean of the x values, and estimates and predictions based on x values outside the range of x values in our sample are useless. So, if you want to construct intervals based on specific values of x, try to ensure that these values are within the range of x values in your sample.

9.3.4 When simple linear models won't do the job

So far we have concentrated on the simple linear regression model. Although it is used extensively and is the appropriate model in very many cases, some sets of bivariate data show patterns that cannot be represented adequately by a simple linear model. If you use such data to test hypotheses about the slopes of linear models you will probably find that the slopes are not significant. This may be because the relationship between the variables is nonlinear and therefore the best-fit model will be some form of curve.

Example 9.12

A retail analyst wants to investigate the efficiency of the operations of a large supermarket chain. She has taken a random sample of 22 of their stores and produced the following plot of the weekly sales per square foot of selling area (in pounds) against the sales area of the store (in $000 \mathrm{sft}{ }^{2}$).

FIGURE 9.5 Sales per square foot and sales area

It is clear from Figure 9.5 that the relationship between the two variables does not appear to take the form of a straight line. In these circumstances to fit a line you would have to look to the methods of non-linear regression. The sheer variety of non-linear models means that it is not possible to discuss them here. For a thorough discussion of them try Bates and Watts (2007) or Seber and Wild (2003). Non-linear models themselves can look daunting but in essence using them typically involves transforming the data so that the simple linear regression technique can be applied; in effect you 'straighten' the data to use the straight-line model.

The simple linear regression model you produce for a set of data may not be effective because the true relationship is non-linear. But it might be that the two variables that you are trying to relate are not the whole story; perhaps there are other factors that should be taken into account. One way of looking into this is to use the residual plots.

Example 9.13

Produce a plot of the residuals against fits for the best-fit simple linear regression model for the temperature and sales data in Example 9.6.

FIGURE 9.6 A residual plot for the model in Example 9.6

There is no apparent systematic pattern to the scatter in Figure 9.6 so we would conclude that there is no case for looking for another variable to include in the model; the simple linear model appears to be suitable.

Excel Recipe Card - Residual plots

Enter the data from Example 9.6 into two worksheet columns.

Select Data Analysis from the Tools menu.

Choose Regression from the submenu and click OK.

3 Microsoft Excel-Book1
[ब] Eile Edit View Insert Format Iools Qata Window Help

B12 - f*									
	A	B	C	D	E	F	G	H	1
1	Temperature	Sales							
2	14	19							
3	11	29							
4	17	47							
5	8	12							
6	20	45							
7	13	41							
8	24	67							
9	3	10							
10	16	28							
11	5	21							
12									
13									

23 Microsoft Excel - Book1

Make the Sales values the Input Y Range and the Temperatures the Input X Range. Tick Residual Plots and click OK.

The graph that appears in the output is the plot of the residuals against the x values. Examine it for patterns of variation that indicate the influence of factors not included in the model. The residuals themselves are in the right hand side column under RESIDUAL OUTPUT.

Example 9.14

Produce a plot of the residuals against fits for the best-fit simple linear regression model for the supermarket data in Example 9.12.

FIGURE 9.7 A residual plot for the model in Example 9.12

In Figure 9.7 there is clearly a pattern of variation in the residuals. It appears that the stores with smaller sales areas and the stores with larger sales areas seem to have higher sales rates than medium-sized stores. If this company has modern smaller stores in prime city-centre locations that perform well and modern large stores on new retail parks that also perform well, yet also had stores that were constructed in the 1970s in locations where the income of the local population has fallen, then it is clear that other factors such as the age of the store should be included. We should consider regressing the sales variable not just against one variable, the sales area, but another variable as well. The appropriate technique for this is multiple regression, a technique that is outside the scope of this book, but covered in Dielman (2000) and Draper and Smith (1998).

Test yourself questions based on Warwick's business enterprises

Fully worked solutions to these questions are on pages 338-342. You can find more questions on the topics covered in this chapter at the accompanying website www. elsevierdirect.com/9781856179478.

9.1 (Easy)

A random sample of male beer drinkers in Warwick's pub were each asked if they preferred bottled or draught beer. They were also asked to indicate their age. The results were collated and the following table produced:

Age	Prefer Bottled Beer	Prefer Draught Beer
Under 30	11	4
30-45	24	10
Over 45	15	16

Test the hypothesis that there is no association between preference and age:
(a) At the 5% level of significance.
(b) At the 1% level of significance.

9.2 (Moderate)

Warwick is interested in the factors that are associated with how often couples take evening meals in restaurants. He has found a selection of small-scale studies published in academic journals, each of which provides a correlation coefficient (r) for the correlation between the frequency of eating out and an explanatory variable. The results from these studies are given below. All samples can be assumed to be random.

Explanatory variable			Sample size (n)
Study 1	Ease of access to favourite restaurants	0.314	26
Study 2	Family size	-0.692	21
Study 3	Household income	0.480	31
Study 4	Mean age of the couple	0.755	16
Study 5	Variability of household income	-0.173	52

In each case conduct an appropriate one-sided hypothesis test about the population correlation coefficient, ρ, using a 5% level of significance. Comment on the results.

9.3 (Hard)

A DJ stages 'disco classics' on an occasional basis at Warwick's club. Teams of casual employees hand out 'discount' ticket cards at colleges and music venues to advertise these events. The number of cards handed out before each of the 10 events staged so far, and the audience they attracted are given below.

Number of cards	3750	4100	4500	4750	4800	5250	4600	4800	4320
Audience	925	1000	1150	1200	1100	1680	1480	1370	860

(a) Find the least squares regression equation and test the hypothesis, at the 5\% level of significance, that the population slope is zero.
(b) Construct a 95\% confidence interval for the mean number of people attracted to an event when 4400 cards have been distributed.
(c) Construct a 95% prediction interval for the mean number of people attracted to an event when 4400 cards have been distributed and compare this to your answer for (b).

This page intentionally left blank

Managing Statistical Research

Why do I need to know about this? Warwick the Hospitality entrepreneur says ...
'In my academic work I spend a lot of time supervising and marking student projects. Often the very best projects are those that are built on statistical research, but it has to be done properly so if you want to base your project on statistical research take note of the advice here.'

CONTENTS

Introduction
Secondary Data
Primary Data
Presenting Your
Analysis

Chapter Objectives

This chapter will help you to:

- plan statistical work for a project;
- consider different means of obtaining data;

■ undertake sample surveys; and

- present your results effectively.

10.1 INTRODUCTION

When you reach the final stage of your course, or possibly earlier, you will probably be told that one of the course requirements is that you produce a final-year project or dissertation. This typically means that you have to identify a project idea, write a project proposal, undertake research to investigate your project idea and then produce a substantial written document that delivers your findings.

You may see this as a daunting task, particularly when you are trying to think of ideas for a project, but if you approach it positively and manage the task well you can get a great deal out of it. A good final-year project could improve the grade of the qualification that you receive. It could also be a useful document to show potential employers as an example of your work.

Your project is probably the first, if not the only time during you course when your tutors offer you the opportunity to study what you like. The parts of your course that you have done so far have probably consisted of studying things that somebody else has decided you should do. Your project is different; it is 'your baby'.

It is very hard to produce a good project if you are not committed to it, so it is worth putting time and effort into thinking up three or four possible ideas at a very early stage. But how can you generate project ideas? It may help if you ask yourself a series of questions:

1. About your course: Which parts of it have you enjoyed most? What are your academic strengths?
2. What are your interests outside your current studies arising perhaps from previous study, hobbies or past work experience?
3. What resources can you access? These might be personal, your own contacts or those you can access through family or friends, or inanimate such as access to databases.

Make a list of your responses to these questions. Look at them in relation to each other; perhaps there are some interesting combinations? Figure 10.1 presents a model of how the ideas you explore might be mapped out. The ideal project for you may well be one that lies in the three-way overlap between the circles representing course, interests and resources.

You may have enjoyed Marketing as a subject, you may have worked in a catering facility at a football ground on a part-time basis, and you may have a strong interest in football. If all this is true then perhaps a project that looks into how football clubs market food and beverages at their grounds is a possibility?

FIGURE 10.1 A project selection model

If you have thought about your responses and no project ideas come to mind, try talking through your responses with somebody else, perhaps a friend or a tutor. It doesn't matter too much if that person is not involved with your course, simply explaining your thinking to somebody else may prompt some excellent project ideas.

Once you have established at least one viable project idea you will probably have to shape your outline ideas into a formal proposal and carry out some sort of literature survey. A good proposal will identify specific propositions and hypotheses that your project is intended to investigate. A good literature survey will find what published material is available in your college library or electronically on the subject you have chosen. This is important because it will influence the nature and direction of the research you will undertake.

At this stage you need to consider the data that you will need for your investigation. Perhaps the data are available from published or electronic sources, if not, you will have to consider how you can obtain it yourself. In fact you will probably find that some of the data you need are already available but other data will need to be collected.

Data that are already available, perhaps in a publication on the Internet or in a library, are there because somebody else collected and analysed it. As far as you are concerned it is secondary data, in other words 'second-hand'. Whoever has produced it did so to fulfil their requirements rather than yours, so be careful.

As we shall see later on in this chapter when you collect data yourself, that is, when you gather primary or first-hand data, you will have to decide what to ask, who to ask, and so on. These are issues that require careful thought.

Whether the data you analyse in your work are primary or secondary, you will have to consider how to present the analysis in your final document. This is something we will consider in the last section of the chapter.

10.2 SECONDARY DATA

If you use secondary data it is the person or agency that collected the data that has decided how the data were collected. You have had no say in the matter. You also have had no say in the way in which the data are presented to you. It may be that the secondary data that you have found are exactly what you require for your investigation, and it could be already presented in a form that will suit your purposes. But you need to look into both of these issues carefully.

There are a number of questions you should consider about the collection of secondary data. First, exactly when was it collected? Published results are by definition historic, they relate to the past. This is inevitable because publication takes time. The data may be fairly recent if it is on a website or in a journal, but may be much older if it is in a book.

If you are researching a field that has changed relatively little since the publication of the secondary data that you have found then data published some time ago may still be useful.

However, if your field of research is rapidly changing then old secondary data are likely to be of limited value to you. If you decide to use it you will have to caution your readers about its validity as a reflection of the current situation and explain how what has happened since the data were collected might have reduced its usefulness.

If you want to use the data as the basis of a comparison between then and now, the age of the data is what makes it useful. You will of course need to make sure that if you collect data as part of your investigation of the current situation, you generate data that can be compared to the secondary data. This means you will have to ask or measure the same sort of things about the same sort of sample.

A second issue that you need to look at is how the secondary data were collected. Unless the results are about a small population, it is sample data. So, how large was the sample? How were the people or items in the sample selected? Was it a random or at least representative sample of the population it came from?

If the population consisted of things, how were the items in the sample measured or counted? If the population consisted of people, how were they asked for the data they provided?

You will probably have to study the source in which you found the secondary data very carefully to find the answers to these questions. Look for
a section called 'Methodology', which should explain the methods used to gather the data. Look through any footnotes or notes at the end of the source for information about how the data were collected, any difficulties the researchers had, and any warnings they give about the validity of their results.

You may be fortunate in finding secondary data that are sufficiently up to date and collected properly. If this is the case the next thing you have to think about is the way in which the secondary data is presented in the secondary source.

The author or authors who prepared the secondary source may have included their original data in their publication, perhaps in an appendix, so check the source carefully. If the original data are included you will be able to consider various ways in which you can present their data in your report. You can decide which form of presentation will be most appropriate for your discussion of the data.

However, it is more likely that the researchers who collected the original data have not included it in their published results. This is almost inevitable if the study they undertook was a large one. The data will probably be presented in the form of statistical measures and diagrams. You may find that although the forms of presentation that have been used in the secondary source may not be the ones that you would have chosen, they are ones that will be appropriate for your discussion.

If the form of presentation used in the published source will not be appropriate for your report consider alternative ways of presenting the data that can be based on the form in which it is published. If the secondary source contains a grouped frequency distribution, you can produce a histogram or an approximation of the mean from it. If they have used a contingency table, you can produce a bar chart, and so on.

But you may not be able to present the data in the form you would like using the forms that appear in the secondary source. This may be a problem if you are trying to compare two or more studies from different points in time or locations.

If you really would like to present the data in forms that cannot be based on the data as it is published, then it might be worth contacting the authors of the study directly to ask whether you can get access to the original data. If this seems rude remember that the secondary source you have found has been produced by people who have probably spent considerable time and effort in carrying out their research and are quite justifiably proud of it. They would probably welcome any inquiry about their work, particularly from somebody like you who is undertaking their own research and may well introduce their work to a new audience. Authors of published articles often provide details of the place they work or an e-mail address so that interested
readers can contact them. At the very worst they can only turn down your request or ignore it.

It is also worth contacting authors of secondary sources if you have any questions about their research, or if they know of any follow-up work that has been done on it. However, you must give them time to respond to your request. Perhaps they have changed jobs, or are simply too busy to reply to you right away. Try to contact them at least a month or two before thelatest time you would need to have their response in order to make use of it.

When you prepare your project report for submission you must make sure that you acknowledge the sources of all secondary data that you use, even if the form in which it is presented in your report is your own work. There is nothing at all wrong with quoting data or text from other publications in your report as long as you cite the reference, in other words indicate clearly using a recognized style such as the Harvard system where it came from.

10.3 PRIMARY DATA

Often the main difficulty in using secondary data for a project is that it may not fit your requirements. It may not be the data that you would like to have to support the arguments and discussion that you want to develop in your work. You can get around this by collecting primary data. The advantage of doing this is that the data will be up to date and it should be exactly what you want for your project. The disadvantage is that collecting primary data requires careful thought, detailed planning and plenty of time.

You will have to decide if you are going to collect primary data as early as possible. You should try to identify your data requirements at the same stage as you produce your literature survey. Successful primary data collection is very difficult to do successfully in a short period of time.

After you have identified your data requirements you will need to address two questions: first, from whom can you get the data and second, how will you be able to get it?

If you require data that you yourself can collect by undertaking experiments in a particular place such as a laboratory, or by making direct observations then the first of these questions is answered. You will next need to consider the second question. This means you will have to identify the method of investigation or the means of observation, define the population, decide how large the sample you will study needs to be and how you will select it.

However, much research in the business sphere involves getting data from individuals or organizations. If this is true in your case then define the types of people or organizations carefully. If the number of people or
organizations that fit your definition is quite small then you might carry out a survey of the whole population. This situation is rare, so you will probably have to take a sample from the population.

10.3.1 Selecting Your Sample

The approach you take to select a sample depends on whether you can list all the things, people or organizations that make up the population you want to investigate. Such a list is called a sampling frame. If you can do this, which is possible if you are looking, for instance, at quoted companies in the UK, then there are a number of ways in which you can select your sample.

If you want to select a random sample, you could number each item listed on your sampling frame. One way of picking your random sample is called the lottery method. Put one numbered ticket for each entry on the list into some sort of receptacle, traditionally a hat, and blindly pick the same number of tickets from the hat as the number of items that you want in your sample. You could write numbers on pieces of paper but it is much easier to buy a set of raffle tickets.

An alternative way of getting a random sample is to use random numbers. These are not, as the name may suggest, numbers that just come into your head, which would not be random, but sequences of numbers generated at random using computer software.

The way you use the random number depends on how many elements there are in your sampling frame. If there are less than 10, take a sequence of random numbers and use them one at a time to pick your sample. If there are up to a hundred in your sampling frame, use the random numbers two at a time. If you have up to a thousand, use them three at a time and so on.

Example 10.1

A sampling frame identifies 68 restaurants that offer Slavonic cuisine. We want to study a random sample of 10 of these restaurants. The following sequence of 26 random numbers has been produced to help us select a sample:

15030	61249	01802	91561	93175	1

The sampling frame consists of less than 100 entries so we take the random numbers two at a time:

15	03	06	12	49	01	80	29	15	61	93	17	51

The first pair is 15 , so the first restaurant in our sample will be the one that appears 15th in the sampling frame. The second pair is 03 , so we pick the third restaurant on the list. As
we continue we find that the seventh pair of number is 80 , which means that the seventh restaurant we should select is the one that appears 80th on the list. As we only have 68 restaurants on the list we ignore the 80 and use the next pair, 29 , to select our seventh restaurant. This means the next pair, 15 , should be used to select the eighth restaurant. But we have already picked the 15th restaurant, so again we take the next pair of numbers instead of 61.

Excel Recipe Card-Random

 number generationSelect Data Analysis from the Tools menu.

Choose Random Number Generation from the sub-menu then click OK.

Type 1 as the Number of Variables: and, following Example 10.1, 26 as the Number of Random Numbers. Choose Uniform from the Distribution: menu and take the default values, 0 and 1 of the Parameters. Type in any number as the Random Seed: and click OK.

From each number that appears take the first two digits after the decimal point as the random number.

3 Microsoft Exel - Book1									
A1 - f) 0.00207525864436781									
$\begin{array}{\|c\|} \hline \text { A } \\ \hline 0.002075 \\ \hline \end{array}$		B	c	D	E	F	G	H	1
1	0.187719								
$\frac{2}{3}$	0.554674								
4	0.683554								
5	0.103214								
$\frac{5}{6}$	0.43852								
7	0.110141								
8	0.18128								
9	0.853969								
10	0.245582								
11	0.138005								
$\frac{11}{12}$	0.869686								
$\frac{12}{13}$	0.115482								
$\frac{13}{14}$	0.553179								
	0.722037								
$\frac{15}{16}$	0.247932								
16	0.638783								
$\frac{17}{18}$	0.862819								
$\frac{18}{19}$	0.594287								
$\frac{19}{20}$	0.909268								
	0.775506								
21	0.225196								
$\frac{22}{23}$	0.784845								
$\frac{23}{24}$	0.717246								
25	0.574114								
26	0.077761								
28									

In general, random sampling is the best way of selecting your sample because it means you will be able to use statistical decision-making techniques to generalize from your results. However, you may need to modify the approach in order to make sure that a balanced sample is produced. This is important when the population is composed of clearly divided categories and you want to ensure that each category is represented in your sample. Such categories are called strata and the method we use to take a sample from such a population is called stratified sampling.

To use stratified sampling you need to identify how many elements in the population belong to each category. You have to work out the proportion of the population that you want to have in your sample and apply this proportion to the number of elements in each category to find out how many need to be selected from each category. You can then use random sampling to make the selection from each category.

Example 10.2

A contract catering company has 500 employees. Of these, 200 are based at Aberdeen, 180 at Barnet and 120 at Canterbury. We want to select a sample of 100 of the employees. The sample will consist of 20% of the company employees so we will select a random sample of 20% of the employees at each site. To make up our sample we will select a random sample of 20% of the employees at Aberdeen, 20% from Barnet and 20% from Canterbury. The 40 we choose from Aberdeen, with the 36 from Barnet and the 24 from Canterbury will give us the sample of 100 .

Using stratified sampling is particularly useful if you want to perform contingency analysis on your data. It should enable you to avoid having too few data in some categories and not being able to get valid test results.

The methods of sampling that we have looked at so far assume that it is possible to compile a list of elements in the population, a sampling frame. But what if this is not possible? Perhaps the population is very large or it is not possible to identify all of the elements in it.

If you can't produce a sampling frame you could use cluster sampling to select a sample. This is a good approach to take if the population is finite. For instance, you may want to study a sample of 'Do-It-Yourself' shops in the UK. There are many of these, but not so many that we could describe the number of them as infinite. Constructing a sampling frame may be difficult if they are not all listed in a readily available source.

To apply cluster sampling to produce a sample in such circumstances would mean dividing the UK into areas and selecting a small random sample of areas. Sub-divide these areas into smaller areas and select a small random sample of each of them. Keep going until you have a suitable number of small areas. You then study every element in each of the small areas you have selected.

Using cluster sampling is easier if you use existing ways in which the areas are divided to make your selections. The way in which the UK is divided up on maps and between different telephone directories and postcodes can provide useful frameworks for cluster sampling.

You should be wary of using cluster sampling if your method of data collection entails visiting each person or organization or location in your sample. The expense of making visits to a selection of far-flung areas may be prohibitive. You can reduce the prospect of this somewhat by excluding areas that you could not feasibly visit.

If you need to select a sample from a very large population, such as the general public, then the construction of a sampling frame is just not feasible. For instance, suppose you want to interview a sample of 100 people in the UK to find out about their attitude to computer games. You could find the most recent electoral roll of the UK population, use it as a sampling frame and select from it a random sample of 100 people, but this would be a huge task.

It would be much more feasible to take a clipboard and ask 100 people that you approach on the street. However, if you do this you should try to ensure that the sample you select is balanced. If you want to research the relationship between gender and attitudes to computer games then you will not be able to do so effectively if your sample consists of 99 men and 1 woman. If you want to contrast the opinions of school students with those of others you won't be able to do so if you conduct your interviews on a working day during a school term.

To make sure that you get a balanced sample from this sort of investigation use quota sampling. Suppose you want to make sure that a sample of 100 people is balanced by gender and whether or not the respondents are school students. You might decide to interview a quota of 25 male school students, a quota of 25 female school students, a quota of 25 adult males and a quota of 25 adult females. This would mean that once you have interviewed the 25th male school student you don't bother interviewing any more male school students and so on.

10.3.2 Choosing the Size of Your Sample

As well as deciding how you will select your sample you need to decide how large it should be. Basically the larger the sample, the better, but also the larger the sample, the more time and resources will be required to collect the data. There are two issues that you have to consider. The first is how large a data set you will need in order to use the techniques you would like to use to analyse it. The second issue is the proportion of inquiries that will be successful, the response rate.

Although we can say that the larger the sample, the better, we should add that the larger the sample, the less the marginal advantage of a large sample tends to be. For instance, a sample that consists of 30 elements means we will be able to use the Standard Normal Distribution in any statistical decision-making based on the sample data and the sample doesn't have to come from a normal population. So having a sample that consists of at least 30 elements is to our advantage. The extra advantage of having a sample much larger than 30 , for instance 100 , is not so great, in fact so little that it may be difficult to justify the extra time involved.

If you need to produce inference results to a particular degree of precision and level of confidence then you must calculate the minimum sample size you should use. Sections 8.2.1 and 8.3.1 in Chapter 8 illustrate how this is done.

If you plan to carry out contingency analysis on your sample data to test for association between characteristics, then you have to take into account the number of categories in each of the characteristics. Suppose you want to ask a sample of respondents from five different geographical regions their opinion of five different types of leisure activity, then the contingency table you will be using for your results will have five rows and five columns, making 25 cells in all. If your sample consists of 100 respondents then the sample data will be spread around these cells far too thinly. If you cannot reduce the number of categories you will have to increase the sample size as
well as use cluster sampling to ensure that your results are substantial enough to make your conclusions reasonably sound.

You should also consider that the sample size is not necessarily the same as the number of people or organizations that you will need to approach for data. The reason is that some of them will be disinclined or unable to respond to your request. The proportion of responses that are successful is the response rate.

The response rate you achieve will depend partly on the method you use to collect your data and there are a number of things that you can do to make the response rate higher. We will look at these in the next section. However, when you are planning your data collection you need to build a figure for the response rate into your calculations.

Response rates vary widely, but in most investigations like the one you are undertaking a response rate of more than 40%, which means that more than 40% of requests made are successful, would be considered very good. A response rate of less than 20%, on the other hand, would be considered poor.

To make sure that you get enough responses to satisfy your sample size requirements multiply the sample size you need by a factor of three, or even four if your request will be difficult for your respondents to fulfil. This means that if, for the purposes of your analysis you need a sample of 30 , then you should approach a sample of 90 , or even 120 .

10.3.3 Methods of Collecting Primary Data

If the primary data that you require will be collected as a result of experiments you will be carrying out in laboratory-style conditions, planning the process of collection involves allocating your time and making sure you have access to the appropriate facilities when you need to use them. The process of collection is under your control. You should allow sufficient time for conducting the experiments and, if you are wise some extra margin of time in case something goes wrong. Even if things go badly wrong there is every chance that you will be able to reschedule your other work in order to complete your research in time to be able to use the data.

Although there are areas of research in the field of business that do involve this sort of work, for instance research into workplace ergonomics, it is much more likely that your project will involve seeking information from other people or organizations. If your project involves collecting data from others your planning needs to take into account that you do not control their actions. You will have to consider how and when to make your request very carefully and allow time in your schedule for the organizations or people who will be asked for data to make their response.

You must start by being absolutely clear about the information you want from them. If you do not understand this, how can you expect them to understand your request? Probably the least effective approach that you could make is to write to them, tell them what your project is about and ask them if they can supply you with any relevant information. At the very best they will send you a leaflet about their business that will probably be of little value to you. Most likely they will not respond to your request at all. After all, if you don't take the trouble to be clear about your information needs why should they take the trouble to help you?

So, you have to be absolutely clear about what you want to know, who will be able to give you the information you need, and how you plan to ask them for it. You will have to be precise about your requirements, make sure you are approaching the right people and ask them for what you need in such a way that they will find it as easy as possible to help you. You may decide to use a questionnaire to do this.

If your respondents are individuals, make sure that you have the correct name and e-mail or postal address for every one of them. If your respondents are people who hold certain types of posts within organizations, make sure you have the correct name, job title and address for every one of them. Getting these details right will improve your response rate. The fastest way that anything you send gets binned is if it isn't directed to a named individual.

If you use the post to distribute your questionnaire your request for information should be made in the form of a business letter. It must be wordprocessed and you should use appropriate opening and closing formalities, after all you are not writing to a friend. The letter should explain clearly to the recipient who you are, what research you are undertaking, and how they can help you. The final paragraph should thank them in anticipation of their help.

You may prefer to distribute your questionnaire electronically. The advantage is that it is usually quicker and cheaper. The disadvantage is that the recipient can dismiss it as yet another piece of junk e-mail and delete it. To reduce the risk of this happening it is even more important to express the request in a suitably polite and formal style, and to ensure that your questionnaire is as concise as possible.

The decision about distribution mode is not always easy. If your respondents are easily accessible by e-mail, perhaps because they all work for the same organization or use the same online social network, and use the facility on a regular basis then electronic distribution may be better. An added advantage is that you can use questionnaire design software to produce your research instrument and dispatch it easily. On the other hand if the respondents you want to reach are older or not all users of an organizational
or social network, it is probably better to use direct or postal means of delivering the questionnaire. You may find the articles by Sax, Gilmartin and Bryant (2003) and Burkey and Kuechler (2003) of use when considering electronic distribution.

What you ask your respondents to do depends on the depth and breadth of the information that you are seeking. If you only want one or two pieces of data, then simply ask for this in your letter, making sure that you are as precise as possible about your requirements. For instance, if you want a figure relating to a particular year or location, then say so.

If you need information in depth, such as opinion and comment on particular issues, then consider requesting an interview with each of your respondents. If you decide to do this, ask for an interview in your letter and explain in the letter what sort of issues you would like to ask them about. To make it easy to compare the results from the different respondents, conduct structured interviews, interviews that consist of the same framework of primary and supplementary questions.

If you need a broad range of information, then you will probably have to design and use a questionnaire. This is a standard document that consists of a series of questions and spaces for the respondent to provide written responses.

Before you start compiling a questionnaire, make sure that it is the most appropriate method of collecting the data you need. Good questionnaire research is not easy to conduct, so explore all other ways of assembling the data you need first.

Unfortunately, there are many final-year students who have launched themselves straight into collecting data using questionnaires without thinking things through. One student studying the effectiveness of special hospitality events in boosting sales sent a questionnaire to every member of the Marketing Department of a multinational IT company. She asked each respondent to say how many new sales leads had come from special events over the previous year. The Administrative Officer in the Marketing Department had this information at her fingertips. In that case one welldirected letter would have produced better results more quickly than the 50 or so questionnaires the student sent out.

However, if you want responses to many precise questions from many respondents, then a questionnaire is probably the best way of getting them. If you do it properly, questionnaire research will give you the data you need at relatively little expense. But done badly, questionnaire research can result in poor response rates and inappropriate data.

So, how can we undertake questionnaire research to maximize the chances of good results? The key is to design the questionnaire carefully and to test it before sending it out to all the respondents in your sample. If you
make the effort to produce a questionnaire that is straightforward for your respondents to complete, you will get a higher response rate.

You should send the questionnaire out with the letter requesting help from your respondents. If you do not send it out with an accompanying letter, perhaps because you will be distributing it personally, insert a message thanking your respondents for their help at the top of the questionnaire. If you want your respondents to return the completed questionnaires by post, you can improve the chances of them doing so by enclosing a self-addressed envelope with the questionnaire.

You may also be able to improve the chances of getting a good response rate if you offer 'lures' for respondents who return completed questionnaires such as entry into a raffle for a prize, or a copy of your results when they are available. The effectiveness of these depends largely on the respondents you are targeting. The raffle prize is probably a better bet if you are contacting individuals, whereas your results may be more useful when your respondents have a specific type of role within organizations and may well have a specialist interest in your field of research.

Aim to restrict the length of the questionnaire so that it should take no more than 15 min to complete. This will make the task of completing it less onerous for your respondents and make it easier for you to collate the results at a later stage.

The sequence in which you pose the questions needs careful thought. You may want to know some details about the respondents, such as the time they have worked in their current post, or their qualifications. It is probably best to ask these sorts of questions first, because they will be easy for your respondents to answer, and once they have started filling in your questionnaire they are likely to finish it.

Sometimes researchers will put questions that seek personal information at the very end of the questionnaire. They do this because they are concerned that putting requests for personal information first makes the questionnaire seem too intrusive and respondents will be wary about completing it. This is a matter of judgement. Unless the questions you use to request personal information are invasive, it is probably better to put them first.

Arrange the questions that you want to put in your questionnaire in a logical sequence. Avoid jumping from one topic to another. You may find it useful to arrange the questionnaire in sections, with each section containing a set of questions about a particular topic or theme.

Design the questions so that they will be easy for your respondents to answer and so that the answers will be easy for you to collate. Avoid openended questions like 'What do you think about Internet marketing?' Many respondents will be deterred from answering questions like this because they
feel they have to write a sentence or a paragraph to respond to them. You will find the responses difficult to analyse because there will probably be no obvious way of segregating and arranging them. At best you will be able to put them into broad categories of response.

You will find the results far easier to analyse if you build the categories into the questions. In some cases these categories are obvious, such as female and male for gender. In other cases you may need to establish the categories yourself, for instance types of qualification.

If you want to find what opinions your respondents have, you might use rating scales. One way of doing this is to make a statement and invite your respondents to express the strength of their agreement or disagreement with the statement using a numerical scale. For instance, we might ask respondents to give their assessment of the statement,
'Internet marketing is vital for the future of our business.'
We could ask them to indicate their opinion by giving us a rating on a scale of 1 to 5 , where 1 is strong agreement with the statement and 5 is strong disagreement with the statement.

The data we get from questions that use rating scales are often described as 'soft', to suggest that it is likely to be a little vague or erratic. The adjectives 'firm' or 'hard', on the other hand, describe data that is clear and consistent.

The reason that data collected by means of rating scales is probably soft is that the scales are subject to the interpretation of the respondents. Different respondents will have different perceptions of concepts like 'strong agreement'. Two people may have identical viewpoints but one may consider it to be 'strong agreement' and put a ' 1 ' whereas the other may consider it 'general agreement' and put a ' 2 '. We would not have the same difficulty with a question like 'how many children do you have?' which would generate hard data.

It is better to ask questions that will provide hard data if you can. For instance, instead of the request for an opinion on a statement about Internet marketing, it would be better to ask if the organization uses the Internet in its marketing activities, how much business has been generated through it, and so on.

There are a number of specialist texts on questionnaire design. For more guidance on the subject try Oppenheim (2000) or Saris and Gallhofer (2007).

When you have designed your questionnaire it is absolutely vital that you try it out before you send it out to your respondents. You need to make sure that somebody who is reading it for the first time will understand it completely and be able to respond to the questions asked. This is something you simply cannot do yourself. You have written and designed it, so of course it makes sense to you, but the key question is, will it make sense to the people that you want to complete it?

Try to test or 'pilot' your questionnaire by asking a number of people to complete it. Ideally these people should be the same sort of people as the respondents in your sample, the same sort of age, occupation etc. If you can't find such people then ask friends.

Whoever you get to test the questionnaire for you, talk to them about it after they have completed it. You need to know which questions were difficult to understand, which ones difficult to answer, was the sequence right and so on. If necessary, modify the questionnaire in the light of their criticisms. Then test it again, preferably on different people. Keep testing it until it is as easy for respondents to use as possible, yet will still enable you to get the information you need.

Testing a questionnaire can be a tedious and annoying process, not least because you are convinced that your questionnaire is something that even a compete idiot can understand. The point is that it is not your assessment of the questionnaire that matters. It is whether the respondents who can provide you with the information you want will understand it; if they can't then the whole exercise will be a waste of time. So, be patient and learn from the people who test your questionnaire. Their advice can improve your response rate and the quality of information you get.

10.4 PRESENTING YOUR ANALYSIS

When you have completed you investigations and analysed your results you will need to think about how you will incorporate your analysis into your report. The key editorial questions that you have to address are what to include, how to present it and where to put it. You will have to think about these issues when you plan the structure of your final document.

If you have collected primary data you will need to explain how you collected it. You should do this in a section called 'Methodology' that ought to be located among the early sections of the report, probably after the introductory sections. Your reader should be able to find out from your methodology section how you selected your sample, and what process you used to gather your data.

You shouldn't need to include the raw data in your report. Your reader is unlikely to want to comb through letters, completed questionnaires or record sheets. However, it may be wise to put a single example in an appendix, and make reference to that appendix in the methodology section, to help your reader understand how the data were collected.

Unless you have a very modest amount of data use a suitable computer package to produce your analysis. If you have a set of completed paper
questionnaires make sure you number each one of them before you store data from them in the package. Put the data from questionnaire number one into row one of the worksheet or spreadsheet and so on. If you do this you will find it much easier to rectify any mistakes that you make when you enter your data. You will also find it convenient if you need to check specific responses when you come to examine the analysis.

The results that you do eventually include in your report should be those that have proved to be useful. There may be data that you tried to collect, but were unable to. Perhaps your respondents simply didn't have the information; perhaps they supplied the wrong data. For a variety of reasons collecting primary data can produce disappointment.

If part of your data collection activity has not borne fruit, there's not a lot you can do about it. Don't be tempted to include inappropriate data purely because you have collected it. The results you include in the report should be the ones that have a part to play within your report, not ones for which you have to create an artificial role.

You may well need to discuss the reasons for the failure of part of your quest for information in your report, particularly if it relates to an important aspect of your project. Others could use your work and you will be making a valid contribution to knowledge if your unfortunate experience is something they can learn from.

The structural plan of your final report should help you decide what results you will need to include, but you will also have to decide how to present them. You need to remember that your reader will be looking at your final report without experiencing the process of carrying out the project. You will have to introduce the results to them gradually, starting with the more basic forms of presentation before showing them more elaborate types of analysis.

In the early parts of the discussion of your results you should explain the composition of your sample. You can do this effectively by using simple tables and diagrams. Further on you may want to show what your respondents said in response to the questions you asked them. Again there is scope here for using simple tables and diagrams. If the results you are reporting consist of quantitative data, use summary measures to give your reader an overview of them.

Later on in your report you will probably want to explore connections between the characteristics of your respondents, or the organizations they work for and the facts or opinions they have provided. Here you can make use of bivariate techniques: contingency tables for qualitative data, and scatter diagrams, regression and correlation for quantitative data.

The techniques we have referred to so far in this section are descriptive methods, techniques we can use to show or describe data.

Look back at the first few chapters of this book for more information about them.

At the heart of most good projects is at least one proposition or hypothesis that the project is designed to evaluate. You should be able to put your hypothesis to the test by using statistical decision-making techniques, the methods of statistical inference that feature in the later chapters of this book. These techniques will enable you to make judgements about the population from which your sample is drawn using your sample results.

For instance, suppose the proposition that your project is intended to assess is that successful clothing retailers use Internet marketing. You could use a contingency test to test for association between whether or not clothing retailers use Internet marketing and whether or not they recorded an increase in turnover in their most recent accounts. If your proposition is that hours worked in the road haulage industry exceed those specified in working time regulations you could test the hypothesis using data from a random sample of haulage contractors.

If you want to produce estimates or test hypotheses and your sample results come from a small population you may have to make a small adjustment when you calculate the estimated standard error. You need to multiply it by the finite population correction factor. If we use n to represent the size of the sample and N to represent the size of the population, we can express the correction factor as:

$$
\frac{(N-n)}{N}
$$

Example 10.3

A random sample of 40 car dealers is taken from the 160 dealers franchised to a particular manufacturer. The standard deviation of the number of cars sold per month by these 40 dealers is 25 . Calculate the estimated standard error using the appropriate finite population correction factor.

$$
\begin{aligned}
\text { Estimated standard error } & =\frac{s}{\sqrt{n}} * \frac{(N-n)}{N} \\
& =\frac{25}{\sqrt{40}} * \frac{(160-40)}{160}=3.953 * 0.75=2.965
\end{aligned}
$$

The adjustment is important if the sample constitutes a large proportion of a population as in Example 10.3. However, if the sample constitutes less than 5% of the population it is not necessary to make the adjustment.

Once you have decided which analysis to include in your final report and the form in which you will present it, you must consider exactly where the various tables, diagrams and numerical results will be located within your report. You will have gone to a lot of trouble to collect your data and analyse it so it is worth making sure that you use it in the most effective way.

Your guiding principle should be to make it as easy as possible for your readers to find the pieces of your analysis that you want them to consult. If the piece of analysis is a diagram or a table you have two options: you can insert it within the text of your report or you can put it in an appendix. If the piece of analysis is a numerical result you have a third option; you can weave it into the text itself.

In order to decide where to put a piece of analysis, consider how important it is that your readers look at it. If it is something that readers must see in order to follow your discussion, then it really should be inserted within the text. Avoid full-page inserts and make sure that the analysis is positioned as closely as possible to the section of the text that first refers to it. It will be very frustrating for your readers if they have to comb through the whole report to look for something that you refer to pages away from it. Every insert you place within the text must be labelled, for instance 'Figure 1' or 'Table 3', and you should always refer to it using the label, 'e.g... is shown in Figure 1'.

If you have some analysis that you consider your readers may want to refer to, but don't need to look at, put it in an appendix. Make sure that the appendix is numbered, and that you use the appendix number whenever you refer to the analysis in it. Arrange your appendices so that the first one that readers find referred to in your text is Appendix 1, and so on. Don't be tempted to use appendices as a 'dustbin' for every piece of analysis that you have produced, whether you refer to it or not. Any analysis that you do not refer to directly will be superfluous as far as your readers are concerned and may distract them from what you want them to concentrate on.

Single numerical results such as means and standard deviations can be reported directly as part of your text. However, you may want to draw your readers' attention to the way in which it has been produced. If so, you can put the derivation of the result in an appendix and refer your readers to it. This is a particularly good idea if you have had to adjust the procedure that your readers would expect you to use to produce such a result, for instance if you have to use the finite population correction factor that we looked at in Example 10.3.

Allow yourself time in your schedule to read through your final report carefully before submitting it. Make sure that all your inserts are labelled, all your appendices numbered, and all your sources acknowledged. If you have time ask a friend to read through in case there are any mistakes that you have
overlooked. Ask them how easy it was to find the inserts and appendices when they were referred to them.

Checking the draft and the final version can be tedious and timeconsuming, but it is time and effort well spent. When your tutors read it in order to assess it you want to make sure that the version they read is as polished and professional as possible.

This page intentionally left blank

Appendix 1

Statistical Tables

Table 1 Binomial Probabilities and Cumulative Binomial Probabilities
You can use this table to solve problems involving a series of n trials each of which can result in 'success' or 'failure'. Begin by finding the section of the table for the appropriate values of n (the number of trials) and p (the probability of success in any one trial). You can then use the table in three ways:

1 To find the probability that there are exactly x 'successes' in n trials look for the entry in $P(x)$ column and the row for x.

2 To find the probability that there are x or fewer 'successes' in n trials look for the entry in $P(X \leq x)$ column and the row for x.

3 To find the probability that there are more than x 'successes' in n trials, $P(X>x)$, look for the entry in the $P(X \leq x)$ column and the row for x. Subtract the figure you find from one. The result, $1-P(X \leq x)$ is $P(X>x)$.

Example

The probability of success in a trial is 0.4 and there are 5 trials. The probability that there are exactly 2 successes, $P(2)$, is 0.346. The probability that there are two or fewer successes, $P(X \leq 2)$ is 0.683 . The probability that there are more than two successes, $P(X>2)$ is $1-0.683,0.317$.

For 5 trials ($n=5$)										
	$p=0.1$		$p=0.2$		$p=0.3$		$p=0.4$		$p=0.5$	
	$P(x)$	$P(X \leq x)$								
$x: 0$	0.590	0.590	0.328	0.328	0.168	0.168	0.078	0.078	0.031	0.031
$x: 1$	0.328	0.919	0.410	0.737	0.360	0.528	0.259	0.337	0.156	0.187
$x: 2$	0.073	0.991	0.205	0.942	0.309	0.837	0.346	0.683	0.313	0.500
x : 3	0.008	1.000	0.051	0.993	0.132	0.969	0.230	0.913	0.313	0.813
$x: 4$	0.000	1.000	0.006	1.000	0.028	0.998	0.077	0.990	0.156	0.969
$x: 5$	0.000	1.000	0.000	1.000	0.002	1.000	0.010	1.000	0.031	1.000

Continued

316 Appendix 1

Table 1 Binomial Probabilities and Cumulative Binomial Probabilities-cont'd
For 10 trials ($n=10$)

	$p=0.1$		$p=0.2$		$p=0.3$		$p=0.4$		$p=0.5$	
	$P(x)$	$P(X \leq x)$								
$x: 0$	0.349	0.349	0.107	0.107	0.028	0.028	0.006	0.006	0.001	0.001
$x: 1$	0.387	0.736	0.268	0.376	0.121	0.149	0.040	0.046	0.010	0.011
$x: 2$	0.194	0.930	0.302	0.678	0.233	0.383	0.121	0.167	0.044	0.055
$x: 3$	0.057	0.987	0.201	0.879	0.267	0.650	0.215	0.382	0.117	0.172
$x: 4$	0.011	0.998	0.088	0.967	0.200	0.850	0.251	0.633	0.205	0.377
$x: 5$	0.001	1.000	0.026	0.994	0.103	0.953	0.201	0.834	0.246	0.623
$x: 6$	0.000	1.000	0.006	0.999	0.037	0.989	0.111	0.945	0.205	0.828
$x: 7$	0.000	1.000	0.001	1.000	0.009	0.998	0.042	0.988	0.117	0.945
$x: 8$	0.000	1.000	0.000	1.000	0.001	1.000	0.011	0.998	0.044	0.989
$x: 9$	0.000	1.000	0.000	1.000	0.000	1.000	0.002	1.000	0.010	0.999
x : 10	0.000	1.000	0.000	1.000	0.000	1.000	0.000	1.000	0.001	1.000

Table 2 Poisson Probabilities and Cumulative Poisson Probabilities

You can use this table to solve problems involving the number of incidents, x, that occurs during a period of time or over an area. Begin by finding the section of the table for the mean number of incidents per unit of time or space, μ. You can then use the table in three ways:

1 To find the probability that there are exactly x incidents occur look for the entry in the $P(x)$ column and the row for x.

2 To find the probability that there are x or fewer incidents look for the entry in the $P(X \leq x)$ column and the row for x.

3 To find the probability that there are more than x incidents, $P(X>x)$, look for the entry in the $P(X \leq x)$ column and the row for x. Subtract the figure you find from one. The result, $1-P(X \leq x)$ is $P(X>x)$.

Example

The mean number of incidents is 5 . The probability that there are exactly 3 incidents, $P(3)$, is 0.140 . The probability that there are three or fewer incidents, $P(X \leq 3)$, is 0.265 . The probability that there are more than three incidents, $P(X>3)$, is $1-0.265,0.735$.

Table 2 Poisson Probabilities and Cumulative Poisson Probabilities-cont'd

	$\mu=1.0$		$\mu=2.0$		$\mu=3.0$		$\mu=4.0$		$\mu=5.0$	
$P(x)$	$P(X \leq x)$	$P(x)$								
$x: 0$	0.368	0.368	0.135	0.135	0.050	0.050	0.018	0.018	0.007	0.007
$x: 1$	0.368	0.736	0.271	0.406	0.149	0.199	0.073	0.092	0.034	0.040
$x: 2$	0.184	0.920	0.271	0.677	0.224	0.423	0.147	0.238	0.084	0.125
$x: 3$	0.061	0.981	0.180	0.857	0.224	0.647	0.195	0.433	0.140	0.265
$x: 4$	0.015	0.996	0.090	0.947	0.168	0.815	0.195	0.629	0.175	0.440
$x: 5$	0.003	0.999	0.036	0.983	0.101	0.916	0.156	0.785	0.175	0.616
$x: 6$	0.001	1.000	0.012	0.995	0.50	0.966	0.104	0.889	0.146	0.762
x: 7	0.000	1.000	0.003	0.999	0.022	0.988	0.060	0.949	0.104	0.867
$x: 8$	0.000	1.000	0.001	1.000	0.008	0.996	0.030	0.979	0.065	0.932
$x: 9$	0.000	1.000	0.000	1.000	0.003	0.999	0.013	0.992	0.036	0.968
$x: 10$	0.000	1.000	0.000	1.000	1.000	1.000	0.005	0.997	0.018	0.986
$x: 11$	0.000	1.000	0.000	1.000	0.000	1.000	0.002	0.999	0.008	0.995
x: 12	0.000	1.000	0.000	1.000	0.000	1.000	0.000	1.000	0.003	0.998
$x: 13$	0.000	1.000	0.000	1.000	0.000	1.000	0.000	1.000	0.001	0.999
x: 14	0.000	1.000	0.000	1.000	0.000	1.000	0.000	1.000	0.000	1.000
x: 15	0.000	1.000	0.000	1.000	0.000	1.000	0.000	1.000	0.000	1.000

Table 3 Cumulative Probabilities of the Standard Normal Distribution

This table describes the pattern of variation of the standard normal variable, Z, which has a mean μ, of 0 and a standard deviation, σ, of 1 . You can use this table to find proportions of the area of the distribution that lie either to the right or to the left of a particular value of Z, z.

To find the proportion of the area to the right of z, which represents the probability that Z is greater than $z, P(Z>z)$, find the row for the value of z to the first decimal place and then look across the columns until you reach the column associated with the second figure after the decimal place.

Example 1

The probability that Z is greater than -1.62 is in the row for -1.6 and in the column labelled $0.02 . P(Z>-1.62)=0.9474$.
Example 2
The probability that Z is greater than 0.57 is in the row for 0.5 and in the column labelled 0.07 . $P(Z>0.57)=0.2843$.

318 Appendix 1

Table 3 Cumulative Probabilities of the Standard Normal Distribution-cont'd

To find the proportion of the area to the left of z, which represents the probability that Z is less than $z, P(Z<z)$, find the row for the value of z to the first decimal place and then look across the columns until you reach the column associated with the second figure after the decimal place. Subtract the figure from 1.

Example 3

To obtain the probability that Z is less than -0.85 , first find the figure in the row for -0.8 and in the column labelled 0.05 . This is $P(Z>-0.85), 0.8023 . P(Z<-0.85)=1-0.8023=0.1977$.

Example 4

To obtain the probability that Z is less than 2.10 , first find the figure in the row for 2.1 and in the column labelled 0.00 . This is $P(Z>2.1), 0.0179 . P(Z<2.1)=1-0.0179=0.9821$.
Note that the probability that Z is greater than a z value is -3.0 or less is 0.999 or more, and the probability that Z is greater than a z value is 3.0 or more is 0.001 or less.

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
-2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
-2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
-2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
-2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
-2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
-2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
-2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
-2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
-2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
-1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
-1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
-1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
-1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
-1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
-1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
-1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
-1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015

Table 3 Cumulative Probabilities of the Standard Normal Distribution—cont'd

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
-1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
-0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
-0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
-0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
-0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
-0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
-0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
-0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
-0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
-0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
-0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7	0.2420	0.2389	0.2358	0.2327	0.2297	0.2266	0.2236	0.2206	0.2177	0.2148
0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
									0	

Continued

Table 3 Cumulative Probabilities of the Standard Normal Distribution—cont'd

$z z$	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014

Table 4 Selected Points of the t Distribution

This table provides values of the t distribution, with different numbers of degrees of freedom, which cut off certain tail areas to the right of the distribution, $t_{a, v}$. To use it you will need to know the number of degrees of freedom, v, and the size of the tail area, α. Find the row for the number of degrees of freedom and then look to the right along the row until you come to the figure in the column for the appropriate tail area.

Example

The value in the t distribution with 7 degrees of freedom that cuts off a tail area of $0.05, t_{0} 05,7$, is in the row for 7 degrees of freedom and the column headed $0.05,1.895$.
Note that as the number of degrees of freedom increases, the t distribution becomes more like the Standard Normal Distribution. Look at the bottom row of this table and you will see a row of t values that are from the t distribution that has an infinite (∞) number of degrees of freedom. This 'extreme' t distribution is the Standard Normal Distribution, and the figures along the bottom row here can also be found in Table 3, e.g. look up the z value 1.96 in Table 3 and you will see the probability that Z is more than 1.96 is 0.025 . In this table, 1.96 is listed as the value of t with infinite degrees of freedom that cuts off a tail area of 0.025 .

v	0.10	0.05	0.025	0.01	0.005
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841

Table 4 Selected Points of the t Distribution—cont'd

v	0.10	0.05	0.025	0.01	0.005
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819
23	1.319	1.714	2.069	2.500	2.807
24	1.318	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.787
26	1.315	1.706	2.056	2.479	2.779
27	1.314	1.703	2.052	2.473	2.771
28	1.313	1.701	2.048	2.467	2.763
29	1.311	1.699	2.045	2.462	2.756
30	1.310	1.697	2.042	2.457	2.750
50	1.299	1.676	2.009	2.403	2.678
100	1.290	1.660	1.984	2.364	2.626
∞	1.282	1.645	1.960	2.326	2.576

322 Appendix 1

Table 5 Selected Points of the χ^{2} Distribution

This table provides values of the χ^{2} distribution, with different numbers of degrees of freedom, which cut off certain tail areas to the right of the distribution, $\chi^{2}{ }_{a, v}$. To use it you will need to know the number of degrees of freedom, v, and the size of the tail area, α. Find the row for the number of degrees of freedom and then look to the right along the row until you come to the figure in the column for the appropriate tail area.

Example

The value in the χ^{2} distribution with 3 degrees of freedom that cuts off a tail area of $0.05, \chi^{2}{ }_{0.05,3}$ is in the row for 3 degrees of freedom and the column headed $0.05,7.815$.

v	0.10	0.05	0.01
1	2.706	3.841	6.635
2	4.605	5.991	9.210
3	6.251	7.815	11.345
4	7.779	9.488	13.277
5	9.236	11.070	15.086
6	10.645	12.592	16.812
7	12.017	14.067	18.475
8	13.362	15.507	20.090
9	14.684	16.919	21.666
10	15.987	18.307	23.209

Appendix 2

Answers to Test Yourself Questions Based on Warwick's Business Enterprises

All numerical answers are precise or accurate to at least three decimal places (d.p.) unless stated otherwise.

CHAPTER 1

1.1 (a) $£ 8.95+£ 4.65+£ 9.50+£ 7.20+£ 6.35=£ 36.65$
(b) $£ 4.65+£ 9.50+£ 7.20=£ 21.35$, the total cost of the food items
1.2

Item	Required (R)	Available (A)	Shortfall (R-A)
Vodka	1.51	0.3751	1.125 I
Vermouth	0.51	0.751	None
Lime cordial	0.51	0.751	None
Orange juice	1.51	21	None
Lemonade	11	0.51	0.51

$$
\begin{aligned}
& 1.3[£ 50+(£ 15 * 0.4)+(£ 30 * 3)] * 1.175 \\
& \quad=[£ 50+£ 6+£ 90] * 1.175=£ 146 * 1.175=£ 171.55
\end{aligned}
$$

CHAPTER 2

2.1 (a) Winter 72, Spring 99, Summer 95, Autumn 104

(b)

(c)

2.2 (a)

Class	Frequency
0 to 4	3
5 to 9	5
10 to 14	12
15 to 19	12
20 to 24	4
25 to 29	1

(b)

(c)

2.3 (a)

Stem		Leaves (Leaf digit $=\boldsymbol{£ 1)}$						
2	2	7						
3	2	3	4					
4	1	3	4	8	8	8		
5	6							
6	0	3	5	7	7	7	9	
7	3	7	8					

(b)

(c) Lunchtime bills tend to be smaller and less varied.

CHAPTER 3

3.1 (a) Array:

$$
\begin{array}{lllllllllllllllllll}
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 & 4 & 4 & 4 \\
4 & 5 & 5 & 5 & 7 & 9 & & & & & & & & & & & &
\end{array}
$$

Mode $=1$ (most frequent value),
Median $=2(25+1 / 2=13$ th value $)$
(b) Mean $=\Sigma \mathrm{x} / \mathrm{n}=70 / 25=2.8$

The distribution is probably positively skewed since the mean is higher than the median.
(c)

3.2 A: Mean $=(39.0+31.8+35.5+33.4+26.6+30.0) / 6$

$$
=186.30 / 6=32.72 \text { to } 2 \text { d.p. }
$$

\mathbf{x}	$\overline{\mathbf{x}}$	$\mathbf{x}-\overline{\mathbf{x}}$	$(\mathbf{x}-\overline{\mathbf{x}})^{2}$
39.0	32.72	6.28	39.4384
31.8	32.72	-0.92	0.8464
35.5	32.72	2.78	7.7284
33.4	32.72	0.68	0.4624
26.6	32.72	-6.12	37.4544
30.0	32.72	-2.72	7.3984
			$\underline{93.3284}$

$$
\begin{aligned}
\text { Standard deviation } & =\sqrt{93.3284 /(6-1)}=\sqrt{93.3284 / 5} \\
& =\sqrt{18.66568}=4.320 \text { to } 3 \mathrm{~d} . \mathrm{p} .
\end{aligned}
$$

B: Mean $=(36.6+26.3+33.2+27.1+26.7+27.1) / 6=177 / 6=29.5$

\mathbf{x}	$\overline{\mathbf{x}}$	$\mathbf{x}-\overline{\mathbf{x}}$	$(\mathbf{x}-\overline{\mathbf{x}})^{2}$
36.6	29.5	7.1	50.41
26.3	29.5	-3.2	10.24
33.2	29.5	3.7	13.69
27.1	29.5	-2.4	5.76
26.7	29.5	-2.8	7.84
27.1	29.5	-2.4	5.76
			93.70

Standard deviation $=\sqrt{93.7 /(6-1)}=\sqrt{93.7 / 5}=\sqrt{18.74}$

$$
=4.329 \text { to } 3 \mathrm{~d} . \mathrm{p} .
$$

B has on average lower times but with a similar spread to those of A.
3.3 (a) True (b) False (c) False (d) True (e) False (f) False (g) True

CHAPTER 4

4.1 (a) (i) Negative (ii) Positive (iii) Positive (iv) Negative (v) Positive (vi) Positive
(b) (i) 2008:

$$
\frac{2.65+2.87+1.10}{1.95+2.55+0.60} * 100=\frac{6.62}{5.10} * 100=129.804
$$

2010

$$
\frac{2.85+3.15+1.35}{1.95+2.55+0.60} * 100=\frac{7.35}{5.10} * 100=144.118
$$

(ii) The amounts of the ingredients purchased.
4.2 (a)

$$
\begin{aligned}
\bar{x}(\text { Mean Price }) & =(95+69+18+32+27+70+49+35+50+29) / 10 \\
& =474 / 10=47.4 \\
\bar{y}(\text { Mean Score }) & =(74+63+28+33+37+58+38+43+50+31) / 10 \\
& =455 / 10=45.5
\end{aligned}
$$

Price (\mathbf{x})	$(\mathbf{x}-\overline{\mathbf{x}})$	Score (\mathbf{y})	$(\mathbf{y}-\overline{\mathbf{y}})$	$(\mathbf{x}-\overline{\mathbf{x}})(\mathbf{y}-\overline{\mathbf{y}})$
95	47.6	74	28.5	1356.6
69	21.6	63	17.5	378.0
18	-29.4	28	-17.5	514.5
32	-15.4	33	-12.5	192.5
27	-20.4	37	-8.5	173.4
70	22.6	58	12.5	282.5
49	1.6	38	-7.5	-12.0
35	-12.4	43	-2.5	31.0
50	2.6	50	4.5	11.7
29	-18.4	31	-14.5	266.8

$\Sigma(x-\bar{x})(y-\bar{y})=3195$
covariance $=\Sigma(x-\bar{x})(y-\bar{y}) /(n-1)=3195 / 9=355$

$(\mathbf{x}-\overline{\mathbf{x}})^{2}$	$(\mathbf{y}-\overline{\mathbf{y}})^{2}$
2265.76	812.25
466.56	306.25
864.36	306.25
237.16	156.25
416.16	72.25
510.76	156.25
2.56	56.25
153.76	6.25
6.76	20.25
338.56	210.25

$\sum(x-\bar{x})^{2}=5262.4 \sum(y-\bar{y})^{2}=2102.5$
$S_{X}=\sqrt{5262.4 / 9}=24.181$
$S_{y}=\sqrt{2102.5 / 9}=15.284$
$r=$ covariance $/\left(S_{x} * S_{y}\right)=355 /(24.181 * 15.284)=0.961$
High positive correlation.
4.2 (b) (i) Laspeyres (2010)

$$
\begin{aligned}
& =\frac{(2.85 * 490)+(3.15 * 150)+(1.35 * 315)}{(1.95 * 490)+(2.55 * 150)+(0.60 * 315)} * 100 \\
& =\frac{1396.5+472.5+425.25}{955.5+382.5+189} * 100 \\
& =\frac{2294.25}{1527} * 100=150.246
\end{aligned}
$$

$$
\begin{aligned}
\text { Paasche }(2010) & =\frac{(2.85 * 575)+(3.15 * 135)+(1.35 * 220)}{(1.95 * 575)+(2.55 * 135)+(0.60 * 220)} * 100 \\
& =\frac{1638.75+425.25+297}{1121.25+344.25+132} * 100 \\
& =\frac{2361}{1597.5} * 100=147.793
\end{aligned}
$$

(ii) Paasche is lower because tomato paste, which has the highest price rise, is weighted with a lower quantity.

4.3 (a) (i) $\sum \mathrm{x}=474 \sum \mathrm{y}=455$

Price (x)	$\mathbf{x}^{\mathbf{2}}$	Score (\mathbf{y})	$\mathbf{y}^{\mathbf{2}}$	$\mathbf{x y}$
95	9025	74	5476	7030
69	4761	63	3969	4347
18	324	28	784	504
32	1024	33	1089	1056
27	729	37	1369	999
70	4900	58	3364	4060
49	2401	38	1444	1862
35	1225	43	1849	1505
50	2500	50	2500	2500
29	841	31	961	899
	27730		22805	24762

$$
\begin{aligned}
\mathrm{b} & =\frac{24762-(474 * 455) / 10}{27730-(474)^{2} / 10}=\frac{24762-21567}{27730-22467.6}=\frac{3195}{5262.4} \\
& =0.607
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{a} & =(\Sigma y-\mathrm{b} \Sigma \mathrm{x})) / \mathrm{n}=(455-(0.607) 474) / 10 \\
& =(455-287.718) / 10=16.728
\end{aligned}
$$

Score $=16.728+0.607$ Price
(ii)

(iii) Score $=16.728+0.607 * 60=53.148$
(b) (i)

(ii)

Sales (Y)	3pt MA (T)	Y-T
204		
450	531	-81
939	550	389
261	553	-292
459	592	-133
1056	610	446
315	631	-316
522	650	-128
1113		

(iii)

	Morning	Afternoon	Evening
	-292	-133	389
Sum	-316	-128	446
Mean	-608	-342	
Component	-304	-114	835

(iv)

Trend line: Sales $=485.286+20.571 \mathrm{t}$ (using Excel)
Day 4 am sales $=485.286+20.571 * 10=690.996$
Day 4 pm sales $=485.286+20.571 * 11=711.567$
Day 4 evening sales $=485.286+20.571 * 12=732.138$
(v)

Forecasts : Day 4 am sales $=690.996-303.833=387.163$
Day 4 am sales $=711.567-113.833=597.734$
Day 4 evening sales $=732.138+417.667=1149.805$

CHAPTER 5

5.1
(a) $259 / 347=0.746$
(b) $93 / 216=0.431$
(c) Much higher probability that evening diners order wine.
5.2 (a) (i) $(12+9) / 100=0.21$
(ii) $28 / 100=0.28$
(iii) $(17+21+12+13) / 100=0.63$
(iv) $9 / 50=0.18$
(v) $12 / 50=0.24$
(b) The probability that males don't like the new design (0.18) is lower than the simple probability that customers don't like the new design (0.21). The probability that females don't like the new design (0.24) is higher than the simple probability that customers don't like the new design (0.21). Gender does influence opinion.
5.3 Let Trepresent no trouble on Thursday and T' represent trouble on Thursday. Similarly F and F', S and S' represent no trouble and trouble respectively on Friday and Saturday.
(a) $\mathrm{P}($ No trouble $)=\mathrm{P}(\mathrm{TFS})=\mathrm{P}(\mathrm{T}) * \mathrm{P}(\mathrm{F}) * \mathrm{P}(\mathrm{S})$
$=38 / 50 * 35 / 50 * 34 / 50$
$=0.76 * 0.70 * 0.68=0.362$
(b) $\mathrm{P}($ Trouble on Thursday only $)=\mathrm{P}\left(\mathrm{T}^{\prime} \mathrm{FS}\right)=\mathrm{P}\left(\mathrm{T}^{\prime}\right) * \mathrm{P}(\mathrm{F}) * \mathrm{P}(\mathrm{S})$

$$
\begin{aligned}
& =12 / 50 * 35 / 50 * 34 / 50 \\
& =0.24 * 0.70 * 0.68=0.114
\end{aligned}
$$

(c) $\mathrm{P}($ Trouble on one night only $)=\mathrm{P}\left(\mathrm{T}^{\prime} \mathrm{FS}\right)+\mathrm{P}\left(\mathrm{TF}^{\prime} \mathrm{S}\right)+\mathrm{P}\left(\mathrm{TFS}^{\prime}\right)$

$$
\begin{aligned}
= & {\left[\mathrm{P}\left(\mathrm{~T}^{\prime}\right) * \mathrm{P}(\mathrm{~F}) * \mathrm{P}(\mathrm{~S})\right] } \\
& +\left[\mathrm{P}(\mathrm{~T}) * \mathrm{P}\left(\mathrm{~F}^{\prime}\right) * \mathrm{P}(\mathrm{~S})\right] \\
& +\left[\mathrm{P}(\mathrm{~T}) * \mathrm{P}(\mathrm{~F}) * \mathrm{P}\left(\mathrm{~S}^{\prime}\right)\right] \\
= & {[0.24 * 0.70 * 0.68] } \\
& +[0.76 * 0.30 * 0.68] \\
& +[0.76 * 0.70 * 0.32] \\
= & 0.114+0.155+0.170=0.439
\end{aligned}
$$

(d) P (Trouble on Friday and Saturday $=\mathrm{P}\left(\mathrm{TF}^{\prime} \mathrm{S}^{\prime}\right)$

$$
=0.76 * 0.3 * 0.32=0.073
$$

(e) $\mathrm{P}($ Trouble on two nights only $)=\mathrm{P}\left(\mathrm{T}^{\prime} \mathrm{F}^{\prime} \mathrm{S}\right)+\mathrm{P}\left(\mathrm{T}^{\prime} \mathrm{FS}^{\prime}\right)+\mathrm{P}\left(\mathrm{TF}^{\prime} \mathrm{S}^{\prime}\right)$

$$
\begin{aligned}
= & {\left[\mathrm{P}\left(\mathrm{~T}^{\prime}\right) * \mathrm{P}\left(\mathrm{~F}^{\prime}\right) * \mathrm{P}(\mathrm{~S})\right] } \\
& +\left[\mathrm{P}\left(\mathrm{~T}^{\prime}\right) * \mathrm{P}(\mathrm{~F}) * \mathrm{P}\left(\mathrm{~S}^{\prime}\right)\right] \\
& +\left[\mathrm{P}(\mathrm{~T}) * \mathrm{P}\left(\mathrm{~F}^{\prime}\right) * \mathrm{P}\left(\mathrm{~S}^{\prime}\right)\right] \\
= & {[0.24 * 0.30 * 0.68] } \\
& +[0.24 * 0.70 * 0.32] \\
& +[0.76 * 0.30 * 0.32] \\
= & 0.049+0.054+0.073=0.176
\end{aligned}
$$

CHAPTER 6

6.1

Binomial distribution: $\mathrm{n}=10, \mathrm{p}=0.2$ Use Table 1 on pages 315-6.
(a) P (None without labels) $=\mathrm{P}(\mathrm{X}=0)=0.107$
(b) $\mathrm{P}(3$ or fewer without labels $)=\mathrm{P}(\mathrm{X} \leq 3)=0.879$
(c) $\mathrm{P}($ More than one without a label $)=\mathrm{P}(\mathrm{X}>1)=1-\mathrm{P}(\mathrm{X} \leq 1)$ $=1-0.376=0.624$
(d) P (Less than 5 without labels $)=\mathrm{P}(\mathrm{X}<5)=\mathrm{P}(\mathrm{X} \leq 4)=0.967$
(e) P (Majority without labels) $=\mathrm{P}(\mathrm{X}>5)=1-\mathrm{P}(\mathrm{X} \leq 5)$

$$
=1-0.994=0.006
$$

6.2 Poisson distribution: $\mu=14 /$ week $=2 /$ day. Use Table 2 on pages 316-7.
(a) $\mathrm{P}(1$ day without incident $)=\mathrm{P}(\mathrm{X}=0)=0.135$
(b) $\mathrm{P}(1$ day with 0 or 1 incidents $)=\mathrm{P}(\mathrm{X} \leq 1)=0.406$
(c) Define $\mu=4 /$ two days.
(d) $\mathrm{P}(2$ days without incidents $)=\mathrm{P}(\mathrm{X}=0)=0.018$
$\mathrm{P}(2$ days with more than one incident $)=\mathrm{P}(\mathrm{X}>1)=1-\mathrm{P}(\mathrm{X}<1)$

$$
=1-0.092=0.908
$$

$$
\begin{aligned}
\text { EMV (Large order })= & {[P(\text { Home }) * P(\text { Play at Eagraville }) * £ 10,000] } \\
& +[P(\text { Home }) * P(\text { Play elsewhere }) *(-£ 2,500)] \\
& +[P(\text { Away }) *(-£ 2,500)] \\
= & {[0.5 * 0.6 * £ 10,000]+[0.5 * 0.4 *(-£ 2,500)] } \\
& +[0.5 *(-£ 2,500)] \\
= & £ 3,000-£ 500-£ 1,250=£ 1,250
\end{aligned}
$$

$$
\begin{aligned}
\text { EMV }(\text { Small order })= & {[\mathrm{P}(\text { Home game }) * \mathrm{P}(\text { Play at Eagraville }) * £ 3,000] } \\
& +[\mathrm{P}(\text { Home game }) * \mathrm{P}(\text { Play elsewhere }) *(-£ 1,000)] \\
& +[\mathrm{P}(\text { Away }) *(-£ 1,000)] \\
= & {[0.5 * 0.6 * £ 3,000]+[0.5 * 0.4 *(-£ 1,000)] } \\
& +[0.5 *(-£ 1,000)] \\
= & £ 900-£ 200-£ 500=£ 200
\end{aligned}
$$

Place a large order.

CHAPTER 7

7.1 Standard Normal Distribution. Use Table 3 on pages 317-320.
(a) 0.0749 (Table 3 - row for 1.4, column headed 0.04)
(b) 0.6141 (Table 3 - row for -0.2 , column headed 0.09)
(c) $1-P(Z>2.06)=1-0.0197=0.9803$
(d) $1-\mathrm{P}(\mathrm{Z}>-1.73)=1-0.9582=0.0418$
(e) $\mathrm{P}(\mathrm{Z}>0.52)-\mathrm{P}(\mathrm{Z}>1.99)=0.3015-0.0233=0.2782$
(f) $\mathrm{P}(\mathrm{Z}>-2.31)-\mathrm{P}(\mathrm{Z}>-1.08)=0.9896-0.8599=0.1297$
(g) $\mathrm{P}(\mathrm{Z}>-0.97)-\mathrm{P}(\mathrm{Z}>0.65)=0.8340-0.2578=0.5762$
$7.2 \mu=62, \sigma=2.5$. Use Table 3 on pages 317-320.
(a) $\mathrm{P}\left(\mathrm{X}>\frac{65-62}{2.5}=\mathrm{P}(\mathrm{Z}>1.2)=0.1151\right.$
(b) $\mathrm{P}\left(\mathrm{X}<\frac{55-62}{2.5}\right)=\mathrm{P}(\mathrm{Z}<-2.8)$

$$
=1-\mathrm{P}(\mathrm{Z}>-2.8)=1-0.9974=0.0026
$$

(c) $\mathrm{P}\left(\frac{60-62}{2.5}<\mathrm{X}<\frac{66-62}{2.5}\right)=\mathrm{P}(-0.8<\mathrm{Z}<1.6)$

$$
=P(Z>-0.8)-P(Z>1.6)=0.7881-0.0548=0.7333
$$

$7.3 \mu=5.4, \sigma / \sqrt{\mathrm{n}}=1.3 / \sqrt{40}=0.206$. Use Table 3 on pages $317-320$.
(a) $\mathrm{P}(\bar{X}>6)=\mathrm{P}\left(\mathrm{Z}>\frac{6-5.4}{0.206}\right)=\mathrm{P}(\mathrm{Z}>2.91)=0.0018$
(b) $\mathrm{P}(\bar{X}>5)=\mathrm{P}\left(\mathrm{Z}>\frac{5-5.4}{0.206}\right)=\mathrm{P}(\mathrm{Z}>-1.94)=0.9738$
(c) $\mathrm{P}(\mathrm{Z}<-1.645)=0.05$
$\bar{X}=5.4-1.645 * 0.206=5.061$ days

Buy every 5 days

CHAPTER 8

8.1 $\bar{X}=7.3, \mathrm{~s}=3.2, \mathrm{n}=45$. Use the Z distribution as although σ is not known, $\mathrm{n}>30$.
(a) $\alpha=5 \%, z_{\alpha / 2}=z_{0.025}=1.960$

$$
\begin{aligned}
95 \% \mathrm{CI} & =7.3 \pm 1.96 * 3.2 / \sqrt{45}=7.3 \pm 1.96 * 0.477 \\
& =7.3 \pm 0.935=6.365 \text { to } 8.235 \mathrm{~min}
\end{aligned}
$$

(b) $\alpha=1 \%, z_{\alpha / 2}=z_{0.005}=2.576$

$$
\begin{aligned}
95 \% \mathrm{CI} & =7.3 \pm 2.576 * 3.2 / \sqrt{45}=7.3 \pm 2.576 * 0.477 \\
& =7.3 \pm 1.229=6.071 \text { to } 8.529 \mathrm{~min}
\end{aligned}
$$

8.2 $\mathrm{H}_{0}: \mu \geq 65 \mathrm{H}_{1}: \mu<65 \alpha=0.05$. One-sided test.
$\bar{X}=64.6, \mathrm{n}=12, \sigma=0.83$ Use the Z distribution as although n is $<30, \sigma$ is known.

Test statistic $=\frac{64.6-65}{0.83 / \sqrt{12}}=\frac{-0.4}{0.240}=-1.669$
Critical value $=-z_{0.05}=-1.645$.
Reject H_{0} as the test statistic is less than the critical value. The mean alcohol level appears to be below that specified by the supplier.

$$
\begin{aligned}
8.3 \quad \mathrm{H}_{0}: \mu_{\text {BEFORE }}-\mu_{\text {AFTER }} \leq 0 & \mathrm{H}_{1}: \mu_{\text {BEFORE }}-\mu_{\text {AFTER }}>0 \\
& \text { One-sided test. }
\end{aligned}
$$

$$
\overline{\mathrm{x}}_{1}=31.7, \mathrm{~s}_{1}=4.1 \quad \mathrm{n}_{1}=28 \quad \overline{\mathrm{x}}_{2}=29.5, \mathrm{~s}_{2}=3.2, \mathrm{n}_{2}=24
$$

The pooled estimate of the standard error,

$$
\begin{aligned}
\mathrm{s}_{\mathrm{p}} & =\sqrt{\frac{(28-1) 4.1^{2}+(24-1) 3.2^{2}}{28+24-2}} \\
& =\sqrt{\frac{(27 * 16.81)+(23 * 10.24)}{50}} \\
& =\sqrt{(453.87+235.52) / 50}=3.713
\end{aligned}
$$

The test statistic,

$$
\begin{aligned}
\mathrm{t} & =\frac{31.7-29.5}{3.713 * \sqrt{\frac{1}{28}+\frac{1}{24}}} \\
& =\frac{-2.2}{3.713 * 0.278}=-2.130
\end{aligned}
$$

Critical value $=-\mathrm{t}_{0.05}, 50=-1.676$. Reject H_{0}, the population mean delivery time seems to be reduced.

CHAPTER 9

9.1

	Bottled	Draught	Total
<30	11	4	15
$30-45$	24	10	34
>45	15	16	31
Total	50	30	80

Expected frequencies:

$$
\begin{aligned}
& \frac{15 * 50}{80}=9.375 \quad \frac{15 * 30}{80}=5.625 \\
& \frac{34 * 50}{80}= \\
& \begin{aligned}
\frac{31 * 50}{80}= & 19.375 \quad \frac{34 * 30}{80}=12.75 \\
& \text { Test statistic }=\frac{(11-9.375)^{2}}{9.375}+\frac{(4-5.625)^{2}}{5.625} \\
& \quad+\frac{(24-21.25)^{2}}{21.25}+\frac{(10-12.754)^{2}}{12.75} \\
& +\frac{(15-19.375)^{2}}{19.375}+\frac{(16-11.625)^{2}}{11.625}
\end{aligned} \\
& =0.282+0.469+0.356+0.593+0.988+1.647=4.335
\end{aligned}
$$

Degrees of freedom, $v=(3-1) *(2-1)=2 \quad \alpha=0.01$
Critical value, $\chi^{2}{ }_{0.05,2}=5.991$
Test statistic $<$ critical value, so don't reject H_{0}.

9.2 One-sided tests

In studies 1,3 and $4 \mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho>0 \quad \alpha=0.05$
In studies 2 and $5 \mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho<0 \quad \alpha=0.05$
Study 1: $\mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho>0 \quad \alpha=0.05$
$\mathrm{r}=0.314 \mathrm{n}=26$ degrees of freedom, $v=\mathrm{n}-2=24$
Test statistic $=\frac{0.314 * \sqrt{(26-2)}}{\sqrt{\left(1-0.314^{2}\right)}}=\frac{0.314 * \sqrt{24}}{\sqrt{0.901}}$

$$
=\frac{0.314 * 4.899}{0.949}=1.621
$$

Critical value, $t_{0.05,24}=1.711$. Don't reject H_{0}. The correlation is not significant.

Study 2: $\mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho<0 \quad \alpha=0.05$
$\mathrm{r}=-0.692 \mathrm{n}=21 \quad$ degrees of freedom, $v=\mathrm{n}-2=19$

Test statistic $=\frac{-0.692 * \sqrt{(21-2)}}{\sqrt{\left(1-(-0.69)^{2}\right.}}=\frac{-0.692 * \sqrt{19}}{\sqrt{0.521}}$

$$
=\frac{-0.692 * 4.359}{0.722}=-4.178
$$

Critical value, $-t_{0.05,19}=-1.729$. Reject H_{0}. The correlation is significant.

Study 3: $\mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho>0 \quad \alpha=0.05$
$\mathrm{r}=0.480 \mathrm{n}=31$ degrees of freedom, $v=\mathrm{n}-2=29$
Test statistic $=\frac{0.480 * \sqrt{(31-2)}}{\sqrt{\left(1-0.480^{2}\right)}}=\frac{0.480 * \sqrt{29}}{\sqrt{0.770}}$

$$
=\frac{0.480 * 5.385}{0.877}=2.947
$$

Critical value, $t_{0.05,29}=1.699$. Reject H_{0}. The correlation is significant.
Study 4: $\mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho>0 \quad \alpha=0.05$
$\mathrm{r}=0.755 \mathrm{n}=16$ degrees of freedom, $v=\mathrm{n}-2=14$
Test statistic $=\frac{0.755 * \sqrt{(16-2)}}{\sqrt{\left(1-0.755^{2}\right)}}=\frac{0.755 * \sqrt{14}}{\sqrt{0.430}}$

$$
=\frac{0.755 * 3.742}{0.656}=4.307
$$

Critical value, $t_{0.05,14}=1.671$. Reject H_{0}. The correlation is significant.
Study 5: $\mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho<0 \quad \alpha=0.05$

$$
\mathrm{r}=-0.173 \quad \mathrm{n}=52 \quad \text { degrees of freedom, } v=\mathrm{n}-2=50
$$

Test statistic $=\frac{-0.173 * \sqrt{(52-2)}}{\sqrt{\left(1-\left(-0.173^{2}\right)\right.}}=\frac{-0.173 * \sqrt{50}}{\sqrt{0.970}}$

$$
=\frac{-0.173 * 7.071}{0.985}=-1.242
$$

Critical value, $-t_{0.05,50}=-1.676$. Don't reject H_{0}. The correlation is not significant.
9.3 (a) The regression equation is

$$
\begin{aligned}
& \text { Audience }=-1018+0.487 \text { Cards } \\
& \mathrm{H}_{0}: \beta=0 \text { Alternative hypothesis, } \mathrm{H}_{1}: \beta \neq 0
\end{aligned}
$$

Cards (\boldsymbol{x})	Audience (y)	Residuals	Squared residuals
3750	925	114.544	13120
4100	1000	18.924	358
4500	1150	-26.070	680
4750	1200	-97.941	9593
4800	1100	-222.316	49424
5250	1680	138.316	19131
4600	1480	255.181	65118
4800	1370	47.684	2274
4320	860	-228.323	52131
			211829

Standard deviation of the residuals, $\mathrm{s}=\sqrt{211829 / 7}=173.958$

Cards (\boldsymbol{x})	$\overline{\mathbf{x}}$	$(\mathbf{x}-\overline{\mathbf{x}})$	$(\mathbf{x}-\overline{\mathbf{x}})^{2}$
3750	4541.1	-791.1	625839
4100	4541.1	-441.1	194569
4500	4541.1	-41.1	1689
4750	4541.1	208.9	43639
4800	4541.1	258.9	67029
5250	4541.1	708.9	502539
4800	4541.1	258.9	67029
4320	4541.1	-221.1	48885
			$\overline{1554689}$

Estimated standard error, $s_{\mathrm{b}}=\sqrt{173.958^{2} / 1554689}=0.140$
Test statistic, $t=\frac{0.487-0}{0.140}=3.479$

(b) $\widehat{y}=-1018+0.487(4400)=1124.8$

$$
\begin{aligned}
& 95 \% C I=1124.8 \pm 2.365 * 173.958 \\
& * \sqrt{\left[\left(1 / 9+(4400-454.111)^{2}\right) / 1554689\right]} \\
& =1124.8 \pm 2.365 * 173.958 * \sqrt{(1 / 9+0.0128)} \\
& =1124.8 \pm 2.365 * 173.958 * \sqrt{0.124} \\
& =1124.8 \pm 2.365 * 173.958 * 0.352 \\
& =1124.8 \pm 2.365 * 61.237 \\
& =1124.8 \pm 144.825=979.975 \text { to } 1269.625
\end{aligned}
$$

$$
\text { (c) } \begin{aligned}
& 95 \% \mathrm{PI}=1124.8 \pm 2.365 * 173.958 \\
& * \sqrt{\left[\left(1+1 / 9+(4400-454.111)^{2}\right) / 1554689\right]} \\
& \quad=1124.8 \pm 2.365 * 173.958 * \sqrt{(1+1 / 9+0.0128)} \\
& \quad=1124.8 \pm 2.365 * 173.958 * \sqrt{1.124} \\
& \quad=1124.8 \pm 2.365 * 173.958 * 1.060 \\
& \quad=1124.8 \pm 2.365 * 184.428 \\
& \quad=1124.8 \pm 436.173=688.627 \text { to } 1560.973
\end{aligned}
$$

This is much wider than the confidence interval in (b).

References

Bates, D. M., \& Watts, D. G. (2007). Nonlinear Regression Analysis and its Applications. New York: Wiley.
Burkey, J., \& Kuechler, W. L. (2003). Web-based surveys for corporate information gathering: a bias-reducing design framework. IEEE Transactions on Professional Communication, 46(2), 81-93.
Chatfield, C. (2003). The Analysis of Time Series: An Introduction (6th ed.). London: Chapman and Hall.
Dielman, T. E. (2000). Applied Regression Analysis for Business and Economics (3rd ed.). Belmont, (CA): Duxbury Press.
Draper, N. R., \& Smith, H. (1998). Applied Regression Analysis (3rd ed.). New York: Wiley.
Montgomery, D. C. (2004). Introduction to Statistical Quality Control (5th ed.). Chichester: Wiley.
Oppenheim, A. N. (2000). Questionnaire Design and Attitude Measurement (2nd ed.). London: Heinemann.
Saris, W. E., \& Gallhofer, I. N. (2007). Design, Evaluation and Analysis of Questionnaires for Survey Research. Hoboken, (NJ): Wiley.
Sax, L. J., Gilmartin, S. K., \& Bryant, A. N. (2003). Assessing response rates and nonresponse bias in web and paper surveys. Research in Higher Education, 44(4), 409-432.
Seber, G. A. F., \& Wild, C. J. (2003). Nonlinear Regression. New York: Wiley.
Sprent, P., \& Smeeton, N. C. (2007). Applied Nonparametric Statistical Methods (4th ed.). London: Chapman and Hall.
Tukey, J. W. (1977). Exploratory Data Analysis. London: Addison-Wesley.
Velleman, P. F., \& Hoaglin, D. C. (1981). Applications, Basics and Computing of Exploratory Data Analysis. Boston (MA): Duxbury Press.

This page intentionally left blank

Index

Addition, 6-7
involving time, 9-10
Addition rule of probability, 157-162
Additive model of time series, 142-146
Alternative hypothesis, 239
Approximation, 15-16
Arithmetic mean, 77-88, 96, 103
Array, 76
Association:
in qualitative data, see
Contingency analysis
in quantitative data, see Correlation
Averages, 74-90

Bar charts, 33-41
clustered bar charts, 38-41
component bar charts, 38
simple bar charts, 33-5
stacked bar charts, 33, 35-8
Bayes' rule, 165-7
Best-fit line, see Regression
Binomial distribution, 179-184, 260-1
Bivariate analysis, definition of, 26, 62
Bivariate data, definition of, 110, 264
BODMAS, 14-15
Boxplots, 94-5

Calculators, 17-18
Central Limit Theorem, 215-6, 253
Chi-square distribution, 265, 267-272
Cluster sampling, 302
Coefficient of determination, 120-121
Computer software, 18-20

Confidence intervals, see Estimation, interval estimation
Contingency analysis, 25, 264-272
contingency table, 27,265
contingency tests, 264-272
Continuous data, 25-7
Continuous probability distributions, 194
Continuous variable, 26
Control charts (quality management), 106-7
Correlation, 110-120
negative correlation, 116-118-120
population correlation coefficient (ρ), 111, 273-5
positive correlation, 116-8, 120
sample correlation coefficient (r), 111-120
Covariance, 111-4, 273
Cumulative frequency, 52-3, 89
Cumulative frequency graph, 52-56, 89, 105
Cumulative relative frequency graph, 55-6, 89-90, 105-6
Cyclical variation in time series, 67, 138

Data, definition of, 4, 24
Deciles, 92
Decimal places, 17
Decision trees, 189-191
Degrees of freedom, 97-8, 218, 253, 269
Dependency, 163
Dependent samples, 250
Dependent variable, 62, 110-1
Descriptive statistics, definition of, 3
Direct relationship, 63, 112
Discontuous data, 25
Discrete data, 25

Discrete probability distribution, 183
Discrete variable, 26
Discrete random variable, 175
Distribution, definition of, 5
Distribution-free methods, 261
Division, 11-12

EMVs (Expected Monetary Values), 188-191
Estimated standard error, 217
Estimation, 224-8
interval estimation, 225-238, 282-6
point estimation, 225
population mean, 227-235
population proportion, 235-238
setting sample size, 232-3, 237-8
using regression models, 283-6
using small samples, 234-5
Excel computer software, 18
averages, 78-80
bar charts, 34-5
binomial distribution, 181
chi-square test, 272
clustered bar charts, 39-41
confidence intervals for the population mean, 235
contingency tests, 272
correlation coeffficients, 115-6
data entry, 19
estimation of the population mean, 235
fitted line plots, 127-131
frequency distributions, 46-7
histograms, 46-7, 48-50
hypothesis testing, difference between population means, 254-5
mean, 78-80
measures of spread, 99-100
median, 78-80
mode, 78-80
normal distribution, 197

Excel computer software (continued) paired t tests, 257
pie charts, 31-2
Poisson distribution, 185
quartiles, 100-101
random number generation, 300-1
range, 99-100
regression, 126-7, 280-2
residual plots, 288-9
scatter diagrams, 63-6
stacked bar charts, 36-8
standard deviation, 99-100
summation, 19
t distribution, 219
time series analysis, 146-8
time series charts, 68-70
Expectation, 187-191
Expected monetary values, 188-191
Expected value, 177
Exploratory Data Analysis, 56

Factorial, 180
Finite population correction factor, 311
Fractions, 13
Frequency density, 51-2
Frequency distribution, 41-2, 86-7, 103-4

Grouped frequency distribution, 42-45, 87-89, 104-5

Histograms, 45-52
produced from a stem and leaf display, 62
Hypothesis testing, 224, 238-261
critical values, 243, 247
decision rule, 240, 248
difference between population means, 250-5
mean of population differences, 255-7
one-sided test, 239
one tail test, 244
population correlation coefficient, 273-5
population mean, 238-250
population medians, 259-261
population proportions, 258-9
regression model intercept, 275-276, 280-282
regression model slope, 275-282
rejection regions, 239-247
significance levels, 242-7
test statistic, 243
two-sided test, 239
two tail test, 243
using a small sample, 249-250

Independent samples, 250
Independent variable, 62, 111
Index numbers, see Price indices
Inference, see Estimation, Hypothesis testing
Inferential statistics, definition of, 3
Inflation, adjusting for, 136-7
Intercept of a regression line, 122, 124-127
Interquartile range, 93
Interval estimates, see Estimation
Inverse relationship, 63, 112, 116

Key words, 4-6
Least squares regression, 124
Levels of significance, 242-7
Linear association, see Correlation
Line of best fit, see Regression

Mean, 77-88, 96, 103
Mean of a probability distribution, 176-7, 183
Measures of central tendency (averages), 74-90
Measures of dispersion, 74, 90-107
Measures of location (averages), 74-90
Measures of spread, 74, 90-107
Median, 76-7, 80-90, 92-6
Minitab computer software, 18
Modal class, 87-8
Mode, 75, 80, 84-87
Moving averages, see Time series
Multiplication, 10-11
Multiplication rule of probability, 157, 162-5

Non-parametric tests, 261
Normal distribution, 194-216, 220-1
Null hypothesis, 239

Observation, definition of, 5
Order statistics, 92
Outliers, 82, 95

Paired sample, 255
Paired t test, 255-7
Parameters of a probability distribution, 184
Percentages, 13-14
Percentiles, 92
Pictographs, 28-30
Pie charts, 30-33
Poisson distribution, 184-7
Pooled estimate of the standard error, 253
Population, definition of, 5
Precedence of arithmetical operations, 13-14
Prediction intervals, 284-5
Predictor (independent variable), 111
Price indices, 132-7
adjusting for inflation, 136-7
Laspeyre, 135-6
Paasche, 135-6
simple, 133-4
simple aggregate, 134
Primary data, 295, 298
Probability, 152-171
addition rule, 157-162
Bayes' rule, 165-7
collectively exhaustive outcomes, 161-2, 171
compound probability, 156-9
conditional probability, 158, 162-7
dependency, 163-5
experimental approach, 154-5
judgmental approach, 153-4
multiplication rule, 157, 162-5
mutually exclusive outcomes, 160-2, 171
simple probability, 156
theoretical approach, 155
tree diagram, 169-171
Probability distributions, 174-178
binomial, 179-184
mean, 183
standard deviation, 183
variance, 183
cumulative probability, 177-9
normal, 194-216, 220-1
Poisson, 184-7
simple, 174-9
expected value, 177
mean, 176-7
standard deviation, 176-7
variance, 176-7
Proportions, 13-14

Qualitative data, 24
Quality, 106
Quantitative data, 24
Quartiles, 92-96
Questionnaire research, 265, 305-9
Quota sampling, 303
r (sample correlation coefficient), 111-120, 273-5
R-squared, 120-121
Random, definition of, 5
Random sample, 5-6, 153
Random sampling, 299-301
Range, 90-1, 96
Regression, 110, 121-132, 275-290
confidence intervals, 283-4
equation, 125
hypothesis testing, 275-282
intercept, 275-276, 280-282
slope, 275-282
multiple, 121, 290
non-linear, 121, 286-7
prediction, 131-132, 282-286
prediction intervals, 284-5
residuals, 278-9, 287-290
residual plots, 287-290
simple linear, 121-132
Relative frequency, 27, 154-5
Response (dependent variable), 111
Response rate, 304
Retail Price Index, 137
Risk, 152
Rounding, 15-16
R-squared, 120-121

Sample, definition of, 5-6
Sampling distributions, 212-221, 225
Sampling frame, 299, 302
Sampling methods, 299-302
cluster sampling, 302
quota sampling, 303
random sampling, 299-301
sample size, 303-4
stratified sampling, 301-2
Scatter diagrams, 62-6, 111-3
Seasonal variation in time series, 67-8, 138, 141-2
Secondary data, 295-8
Semi-interquartile range (SIQR), 92-4, 96, 105-6
Sigma sign (\sum), 6-7
Sign test, 260-1
Significance, 242-7
Significant figures, expressing to, 16
Skewed distributions, 52, 81-83, 95-6
Slope of a regression line, 122, 124-127
SPSS computer software, 18
Square rooting, 13
Squaring, 12
Standard deviation, 96-100, 102-7, 114
population, 98
sample, 98-100, 102-7, 114
Standard error, 214, 225
Standard Normal Distribution, 200-12, 214
Statistics, definition of, 4
Stem and leaf displays, 46-52, 84-5, 104
to compare two distributions, 59
Stratified sampling, 301-2
Structured interviews, 306
Subtraction, 7-9
Summary measures, 74
Symmetrical distributions, 52, 81, 83-4
t distribution, 217-221
t tests, 249
Tabulation, 26-8
Time series, definition of, 66
Time series analysis, 137-148
additive model, 142-146
cyclical variation, 67, 138
decomposition model, 138-146
error component, 138, 142, 144-5
moving averages, 139-144
multiplicative model, 142
periodicity, 141
preditions, 145-6
seasonal variation, 67-8, 138, 141-2
trend, 67, 138-9, 142-6
trend line equation, 145-6
Time series charts, 66-70
Trend, see Time series analysis

Uncertainty, 152
Univariate analysis, definition of, 26, 62

Value, definition of, 5
Variable, definition of, 5
Variance, 102, 106
population variance, 102
sample variance, 102

X axis, 62
X variable in bivariate analysis, 62, 110-1

Yaxis, 62
Y variable in bivariate analysis, 62, 110-1

Z distribution, 200-212, 214
z equivalent, 210
z score, 210
z test, 241

This page intentionally left blank

[^0]: FIGURE 5.1 A Venn diagram to illustrate Example 5.7

[^1]: * With the exception of question 7.1 which is intended to help you navigate Table 3 on pages 317-320.

