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Preface

This is not a textbook on mathematical statistics; it is just a collection of essays on
problems that were of topical interest in the middle of the twentieth century. The
choice of this period is far from arbitrary: It marked the onset of mathematical
statistics.

The main purpose of these essays is not to list who did what and when, but to
present the background for the concepts and theorems which evolved during this
time. Some readers will find that sometimes there are too many details in the
description of the status quo. Yet, only a detailed description of the status quo
provides the necessary information for the evaluation of new results.

Wolfgang Wefelmeyer has carefully read the manuscript and suggested a large
number of corrections and improvements.

A fair discussion of an achievement would be impossible if it was “politically
incorrect” to say that even highly respected scholars made mistakes, that they
presented insufficient proofs, that they had missed certain opportunities, had
misunderstood the relevance of certain results, and had overlooked priorities.
I presume that the reader of this book is familiar with the stature of various scholars.
Hence there seems to be no need to bolster every critical remark using the mantra
“… but he is an honourable man”.

Native speakers will find many parts of the text lacking the elegance of idiomatic
English. I apologize for this, but it seems to be a necessity to sacrifice beauty of
language in the interest of having a common language for science.

Acknowledgements. I thank Barbara Wehmeyer for typing several versions of a
sometimes not very legible manuscript. I also thank a reviewer for a number of
perceptive comments.

Cologne, Germany Johann Pfanzagl
July 2017
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Chapter 1
Introduction

In the years between 1940 and 1970, say, mathematical statistics has undergone a
dramatic change. Not only has the amount of publications increased by a factor of
10 (starting from about 1.500 pages a year in 1940); it is even more the level of
mathematical sophistication which has changed. Comparing a volume of the Annals
of Statistics of 1970 with a volume of 1940 (then called Annals of Mathematical
Statistics) one would not believe it to be the same journal.

The following essays try to portray the historical developments during this period
for selected areas of mathematical statistics. Our emphasis is on conceptualal issues;
this justifies the restriction to basic models mostly based on independent and iden-
tically distributed observations. To describe what has happened fifty years ago is,
however, not the main purpose. What is still of interest today is to see how the emer-
gence of refined mathematical techniques influenced the subject of mathematical
statistics. Whether these refined techniques were fully understood and their power
fully exploited by all contemporary statisticians is an interesting second aspect.

Around 1940, mathematical statistics was mainly restricted to parametric fami-
lies, and the highlights were theorems about unbiased estimators and families with
monotone likelihood ratios. As a new generation of statisticians, familiar with the
techniques of measure theory, entered the stage, it soon became clear that compelling
intuitive ideas like “sufficiency” or “asymptotic optimality” were not so easy to trans-
late into constructs which are accessible to a mathematical treatment. It turned out
that the solution of seemingly meaningful problems can be hampered by difficulties
of purely mathematical nature (such as the existence of regular conditional probabil-
ities), difficulties which are in no inherent relationship with the problem itself, and
which became —even so—the favourite subjects of certain statisticians.

The following essays are restricted to subjects which show some inherent rela-
tionship: Descriptive statistics, sufficiency, estimation, asymptotics. The omission of
important topics like “Bayesian theory”, “decision theory”, “robustness” takes the
restricted competence of the author into account. Before going into the details, we
try to set forth the basic ideas of our approach.

© Springer-Verlag Berlin Heidelberg 2017
J. Pfanzagl, Mathematical Statistics, Springer Series in Statistics,
DOI 10.1007/978-3-642-31084-3_1
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2 1 Introduction

A Methodological Manifesto

Assertions and assumptions on statistical procedures should be of operational sig-
nificance, in other words: Their relations to reality should be expressible in terms
of probabilities and, perhaps, costs. This requires converting inexact, intuitive con-
cepts (like independence, concentration, information) into concepts which are oper-
ationally meaningful. The invention of such constructs is limited by what is feasible
from the mathematical point of view. Insisting on operational significance excludes
the sole reliance on “principles” (like “maximum likelihood”) which rest upon au-
thority or metaphysics.

Assertions based on a particular loss function are operationally significant if the
loss function represents reality. Results based on the quadratic loss function will,
therefore, be operationally significant only under special circumstances. That they
are easy to prove, or nice looking, does not give them any meaning.

Assertions on posterior distributions are operationally significant if the prior dis-
tribution admits an interpretation in terms of reality, be it as a “physical probability”
based on past experience (as, for instance, in acceptance sampling) or a description of
the state of mind (hopefully based on some empirical evidence). Prior distributions
justified by formal arguments might result in nice posterior distributions. This by
itself does not give them any meaning, though.

Converting an intuitive concept into a meaningful mathematical construct may
turn out to be difficult. An example of a successful conversion is the concept of a
“sufficient statistic, containing all information in the sample”. It is made precise by
the idea that for any function which could be computed from the sample there exists
a (randomized) function of the sufficient statistic which has the same distribution, for
every probability measure in the underlying family. Like it or not: For mathematical
reasons, this interpretation is confined to functions taking their values in a complete
separable metric space. (See Sect. 2.2 for details.)

An example of a conditionwithout operational significance is the requirement that
the estimator for the sample size n should be an element of a “convergent” sequence.

“Robustness” is an example of a convincing ideawhich is difficult to cast inmathe-
matical terms: Sincemodels are never exact, the performance of statistical procedures
should be insensitive to small departures from the model. Yet, what are small de-
partures from the model, and what are small changes in the performance? Consider
e.g. a real-valued functional κ of a distribution P in some family P and a sequence
of estimators κ(n), n ∈ N, based on n i.i.d. observations, with joint distribution Pn .
The suggestion of Hampel (1971, p. 1890) to define “qualitative robustness” of κ(n),
n ∈ N, by equicontinuity (with respect to n) of the map P → Pn ◦ κ(n) proved in-
adequate for grasping the phenomenon of “robustness” in its complexity. Hampel’s
concept of qualitative robustness was supplemented by more detailed concepts of
departures from the model (like ε-contamination), additional measures of robustness
(like breakdown point and gross error sensitivity), and, finally, principles for finding
a balance between robustness and efficiency. Although this network of concepts and
principles did not result in a coherent theory, it attracted the attention of compe-

http://dx.doi.org/10.1007/978-3-642-31084-3_2


1 Introduction 3

tent scholars. For informations about the present state of art see Rieder (1994) and
Jurecková and Sen (1996).

Here is an example of a totallymisleading intuitive idea. Assume that (x1, . . . , xn)
is a realization from some normal distribution N (μ, 1)n with mean 0 and variance 1.
If the sample mean xn equals 10, it seems much more likely that μ is in the interval
(8, 12) than in the interval (157, 161), say. Evident as this appears, themathematician
will discover soon the impossibility of expressing this in a mathematically correct
way without introducing a prior probability of μ. Starting in R.A. Fisher (1930)
took numerous occasions to present his idea of a “fiducial probability”. That means:
Given a sample from Pn

ϑ , ϑ ∈ Θ ⊂ R, it is possible to compute a distribution of the
unknown parameter ϑ . If Fisher had tried to describe such a distribution in math-
ematical terms, he would have run into insuperable difficulties. Let Φ denote the
standard normal distribution function. For samples (x1, . . . , xn) from N (μ, 1)n with
μ ∈ R unknown, the probability of μ < xn + n−1/2Φ−1(α) is equal to α. Apply-
ing this relation for α = Φ(n1/2(t − xn)) one arrives at the conclusion that μ < t
holds with probabilityΦ(n1/2(t − xn)), or that t → Φ(n1/2(t − xn)) is the (fiducial)
distribution function of μ. This sounds plausible. If one tries to write this down in
formulas (in particular: replacing the word “probability” by N (μ, 1)n), the absurdity
of this argument becomes patent. The fallacy in Fisher’s reasoning was elaborated
by Neyman1 (1941, Sects. 4 and 5); see also Lehmann (1995). Neither Neyman nor
any other critic was able to convince Fisher of his mistake. Even in Fisher (1959),
when mathematical rigor was standard already, Fisher says (p. 56):

The treatment in this book ... does ... rely on a property inherent in the semantics of the word
“probability”.

In this connection, it might be opportune to remember Fisher as a notorious inventor
of concepts lacking operational significance. “Fiducial probability” is just one ex-
ample of Fisher’s propensity to unsupported concepts. “Likelihood” and “amount of
information” are other examples. Fisher (1935, p. 40) says:

A mathematical quantity of a different kind [i.e., different from probability] which I have
termed mathematical likelihood appears to take its place as a measure of rational belief ...

Referring to Fisher’s idea of the “amount of information” in the discussion of Fisher’s
paper (1935), Bowley (p. 57) says:

I must confess to dislike the method of nomenclature that leads to such a phrase as [see
Fisher, p. 46] “there are 1 and no less units of information to be extracted from the data, if
we equate the information extracted to the variance of our estimate ...”. The measurement
on this basis of the amount of knowledge seems to me to have the same dangers as treating
the correlation coefficient or its square as the amount of covariation. In both cases a definite
meaning is attached to the maximum called unity, and to the minimum called zero. In neither
case does an intermediate value correspond to ... anything otherwise definable.”

1Curiously, the very first sentence in Neyman’s paper is: “The theory of confidence intervals was
started by the author in 1930.” However, forerunners are Laplace (1812) and Poisson (1837). If
there had been any doubts about the interpretation of “covering probability”, they were settled by
Wilson (1927).
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Fisher’s abuse of language was carried on by some of his adherents, so for instance
by C.R. Rao, who gives the following definition (1962, p. 77) for i.i.d. observations
(x1, . . . , xn) with density p(·, ϑ):

A statistic is said to be efficient if its asymptotic correlation with the derivative of log
likelihood is unity. The efficiency of any statistic may be measured by �2, where � is the
asymptotic correlation with [n−1/2 ∑n

ν=1 ∂ϑ log p(xν , ϑ)].
One cannot but sympathize with Lindley when he says, in the discussion of C.R.
Rao’s paper (p. 68):

ProfessorRao follows in the footsteps of Fisher in basing his thesis on intuitive considerations
of estimation that people like myself who lack such penetrating intuition, cannot aspire to.

This and other attempts at defining first and second order efficiency will be discussed
in Sects. 5.9 and 5.18.

The Increasing Role of Mathematics

Prior to the middle of the 20th century, the collection of statistically relevant re-
sults was moderate: The theory of sufficiency on the onset, the Neyman–Pearson
Lemma (which Wolfowitz, 1969, p. 747, calls “pretty trivial to prove and not diffi-
cult to discover”) establishing the existence of “uniformly most powerful” tests for
certain parametric families, abortive attempts at proving consistency and asymptotic
efficiency of maximum likelihood estimators, together with some scattered nonpara-
metric procedures (like rank tests). The use of more advanced mathematical tools
made it possible to fully develop the theory of sufficiency, togetherwith its application
to the theory of unbiased estimators, to clarify the role of monotone likelihood-ratios
for the existence of uniformly most powerful tests and optimal median unbiased
estimators, etc.

Assertions are turned into theorems by specifying the regularity conditions under
which they are true. Until the middle of the 20th century, it was common to assume
that all operations which are carried out are legitimate (e.g. that derivatives can be
taken unde the integral, that suprema are attained, that solutions of the likelihood
equations can be chosenmeasurable etc.). To clarify the conditions under which such
operations are legitimate is a matter of course for a theory which considers itself as
a part of mathematics, but the fruit of this clearing work did not bring basically new
findings, apart from, maybe, some counterexamples (e.g. that maximum likelihood
sequences are not necessarily consistent).

The problematic point: Most theorems are based on conditions which cannot be
supported by empirical evidence. That the probability measure belongs to a certain
parametric family can be supported by a model of the data-generating process in
exceptional cases only (such as the radioactive decay, for instance). For nonparamet-
ric families P, moment conditions like boundedness of moments of some order or
smoothness conditions on the densities, say a Lipschitz-condition for some derivative
of the density, are chosen in regard to mathematical convenience. Progress usually
consists in presenting proofs under weaker conditions, the validity of which remains
open, though.

http://dx.doi.org/10.1007/978-3-642-31084-3_5
http://dx.doi.org/10.1007/978-3-642-31084-3_5


1 Introduction 5

Refinements of the mathematical techniques did not only expose gaps in the pre-
ceding literature. They also turned up technical assumptions the relevance of which
is hard to understand from the intuitive point of view, for instance the conditions for
the existence of a regular conditional probability.

For scholars with a firm background in mathematics it was natural to consider
statistical theory as a part of mathematics. From this point of view it is legitimate to
generalize theorems with a clear statistical interpretation to a more abstract frame-
work. This is not without danger, though. Isolating the abstract core of an argument
might kill the original idea, thus causing a handicap for generalizations in other direc-
tions. Assertions valid in the abstract framework might be without an interpretation
in terms of the original problem and, therefore, without operational significance.
Realizing the shape which Hájek’s Convolution Theorem took in the publications of
Le Cam (see e.g. 1979), the statistician cannot avoid thinking of Lucretius:

When a thing changes its nature, at that moment comes the death of what it was before.

The following example from test theory illustrates the usefulness of refined mathe-
matical techniques, and their limitations.

Example. Given a family P of probability measures which is interpreted as a “hy-
pothesis”, and a probability measure P0 outside P, the “alternative”, the question
arises whether a most powerful test exists, i.e., whether there is a critical function ϕ0

which maximizes the expectation
∫

ϕdP0 in the class Φα of all critical functions ϕ

fulfilling
∫

ϕdP ≤ α for P ∈ P. The mathematical problem is to show that for any
sequence of critical functions ϕn : X → [0, 1], n ∈ N, there exists a subsequence
N0 and a critical function ϕ0 : X → [0, 1] such that (

∫
ϕnd P)n∈N0 → ∫

ϕ0dP for
P ∈ P and P = P0. This so-called “weak compactness theorem” occurs already
in Banach (1932). It was proved independently by Lehmann (1959, p. 354, Theo-
rem3) under the assumption that the underlying σ -field A is countably generated
andP|A is dominated. The same result is obtained by Nölle and Plachky (1967, p.
182, Satz) for arbitrary A (by considering the sub-σ -field generated by a sequence
ϕn , n ∈ N, with

∫
ϕnd P0, n ∈ N, approaching the supremum), and by Landers and

Rogge (1972, p. 339, Theorem) for arbitraryA and without domination ofP, using
that Φα is convex, and that, therefore, the P0-weak closure of Φα coincides with the
P0-strong closure. Even mathematically advanced textbooks like Schmetterer (1974,
p. 14, TheoremXI), Witting (1985, p. 207, Korollar 2.15) or Lehmann (1986, p. 576,
Theorem3) withhold this result from the reader, so that their existence theorems for
most powerful (or most stringent) tests are confined to dominated hypotheses. �

Whether the supremum is attained or not is irrelevant from the practical point
of view; in any case, it can be approximated as closely as one likes. Moreover,
the results mentioned above assert the existence of a critical function for which
the supremum is attained, without giving any advice how such an optimal critical
function can be obtained. After all, the real problems lie somewhere else: In a real
testing problem, there is not one, but a whole class of alternatives and the question
is: For which kind of models does there exist a critical function ϕ0 in Φα such
that

∫
ϕ0dP0 = sup{∫ ϕdP0 : ϕ ∈ Φα}, simultaneously for every P0 in the class of
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alternatives. For i.i.d. products in a one-parameter family, say {Pn
ϑ : ϑ ∈ Θ},Θ ⊂ R,

this is—under weak regularity conditions—the case if and only if the family is
exponential, and the hypothesis ϑ ≤ ϑ0 is tested against the alternatives ϑ > ϑ0.

These results extend to certain exponential families with more than one parameter
as far as similar tests are concerned, say tests of the hypothesisϑ = ϑ0, η ∈ H against
alternatives (ϑ, η) with ϑ > ϑ0.

The situation is different if the tests are not required to be similar. As an exam-
ple, we mention a result due to Lehmann and Stein (1948), referring to the family
{N (μ, σ 2)n : μ ∈ R, σ 2 > 0}. There exists a test of level α for the hypothesisμ ∈ R,
σ 2 ≤ σ 2

0 which is most powerful against all alternatives μ ∈ R, σ 2 > σ 2
0 . As against

that, the test of the hypothesisμ ∈ R, σ 2 ≥ σ 2
0 which is most powerful against an al-

ternative (μ1, σ
2
1 )with σ 2

1 < σ 2
0 depends onμ1 and is, therefore, useless for practical

purposes.

The Role of “Leading Personalities”

Robert K. Merton’s hypothesis (1973, p. 356) “all scientific discoveries are in princi-
ple multiples” also finds support in the realm of mathematical statistics. The standard
example from statistical theory: the Cramér-Rao inequality with (at least) five dis-
coverers. In accordance with “Stigler’s law of eponymy” it is not named after Aitken
and Silverstone (1942), Fréchet (1943) or Darmois (1945), but after Cramér (1946)
and Rao (1945). Another example of this kind are “Cramér’s lemmas” dating from
1946 which are due to Slutsky (1925).

The presence of such multiple discoveries is of methodological interest; it shows
that an idea occurs if there is the time for it. This leads to the question: Are there any
unique ideas in the period under consideration? If we fancy away the contributions of
one of the outstanding scholars: Would the present picture of mathematical statistics
be any different?

This might be true for R.A. Fisher’s concept of “sufficiency”. Remarkably, this
invention is due to a scholar with extraordinary intuition, but limited mathematical
background. He might have had trouble with his concept of sufficiency if he had
been familiar with Kolmogorov’s concept of conditional probabilities.

It appears difficult to find any more examples. Even a concept tied to a particular
name like “Efron’s bootstrap”was bound to come up some time or other. (See, Stigler
(1999), Chap. 7, for the prehistory of the bootstrap.) The situation is different with
Wald’s decision theory, developed by Blackwell and Le Cam to a theory of experi-
ments. One may doubt whether the basic ideas would have developed to respectable
theories without the efforts of two outstanding scholars.

There are outstanding mathematicians who showed some interest in statistics,
like Fréchet, Linnik, Kolmogorov, Cramér, Doob, Halmos,2 ... In spite of important
contributions to measure theory and probability theory, however, they contributed

2Having been undecided between probability and statistics, Halmos made up his mind as early as
1937: “I’ll take probability, and to hell with Fisher” (see Halmos 1985, p. 65). See, however, his
fundamental contribution to the concept of “sufficiency” in Halmos and Savage (1949).
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nothing to statistics which is unique in the sense that “nobody else could have done
it”.

Universal Theories

Statisticians with a strong preference for abstract results might be disappointed by
the fact that attempts at developing a universal theory which “solves” all statistical
problems—likeWald’s “Decision Theory”, or Le Cam’s “Theory of Experiments”—
are not accepted by statisticians interested in problems of practical relevance.

Since the problems dealt with in statistical theory are so diverse, no experienced
statistician would seriously consider the possibility of placing them all in the Pro-
crustean bed of a coherent theory. It required the courage of a mathematician with
limited experience in statistics to build a theory on three principles, each of which is
unreasonable by itself:

(i) Given a decision space (D,D), the consequence drawn on the basis of a sample
x from a distribution P can be evaluated by a loss function a → �(a, P).

(ii) The performance of a randomized decision function D : X × D → [0, 1] at
P is evaluated by the expected loss, or risk, R(D, P) = ∫∫

�(a, P)D(x, da)P(dx).
(iii) The overall performance of a statistical procedure on a familyP of probability

measures is evaluated by the maximal expected loss supP∈P R(D, P).

Wald’s conception of “decision making” as the prototype of a statistician’s usual
activity was obviously inspired by hypotheses testing (more precisely by acceptance
sampling). This impression is confirmed by the content of the lectures Wald gave in
(1941a) at Notre Dame University: About 25 pages are on testing and confidence
intervals, and 4 on estimation. Even in the final shape Wald gave to his decision
theory in (1950), his endeavours to include estimation in this framework seem to
be inadequate. Around (1941b), Wald’s methodological background on estimation
theory was confined to some papers by Fisher; in the finished version of his decision
theory of Wald (1950) he added just one more paper: Pitman (1939). Motivated by
Pitman’s paper (p. 401) he suggests to evaluate an estimator ϑ̂ by the loss function
1{|ϑ̂−ϑ |>t}. This ignores other aspects which might be relevant for the evaluation
of estimators, such as unbiasedness, or measures of concentration other than the
probability of |ϑ̂ − ϑ | ≤ t . Even now, textbooks which introduce the conceptual
framework of decision theory (like Heyer 1982, pp. 16–24 or Witting 1985, pp.
1–17) make no use of it as soon as it comes to estimation theory.

Among the “principles” constituting the conceptual framework of decision theory,
the “minimax-principle” is themost unreasonable one.With his endeavours to justify
a mathematically fruitful idea from the methodological point of view, Wald seems to
be ill at ease. In (1939), Wald’s approach to the evaluation of statistical procedures
is Bayesian. In (1943) he changes his position. Since an “a priori distribution ...
is usually unknown ... it seems of interest to consider a decision function which
minimizes the maximum risk” (p. 267), and similarly in ((Wald, 1950), p. 27) “it
is perhaps not unreasonable for the experimenter to behave as if Nature wanted to
maximize the risk”. As Jimmy Savage never stopped telling, Wald’s attitude towards
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the minimax principle was just “let’s try whether something reasonable comes out
of it”, a fact confirmed by Wolfowitz (1952, p. 8).

The minimax principle was refuted by philosophers on philosophical grounds
(Carnap 1952, Sect. 25, pp. 81–90) and criticized by statisticians on account of statis-
tical and arguments: Hodges and Lehmann (1950, pp. 190/1) determine the minimax
estimator of the parameter p in theBinomial distribution under quadratic loss. It turns
out that the risk of the minimax estimator is larger than the risk of the usual mean-
unbiased estimator k/n, except for a small interval about p = 1/2 (which shrinks
to {1/2} as n tends to infinity). For more on the history of the minimax principle
see L.D. Brown (1964). We conclude our remarks on “Decision Theory” with an
important voice, Fisher (1959, p. 101):

The idea that this responsibility [i.e., the interpretation of observations] can be delegated to
a giant computer programmed with Decision Functions belongs to the phantasy of circles
rather remote from scientific research.

Some Basic Concepts

The basic problem in statistical theory is to draw conclusions from a realization of a
randomvariable to probabilitymeasure. In particular: Given a functional κ : P → Y ,
which function κ̂ : X → Y should be used as an estimator of κ(P)? Given a distance
function, say D : Y × Y → [0,∞), we judge the quality of κ̂ as an estimator of
κ(P) by the distribution P ◦ (x → D(κ(P), κ̂(x))) of the distance between κ(P)

and κ̂(x). An estimator κ̂0 is better than an estimator κ̂1 if, for every P ∈ P, the
distribution P ◦ D(κ(P), κ̂0) is more concentrated about zero than the distribution
P ◦ D(κ(P), κ̂1).

If κ̂0 is better than κ̂1 in this respect, it is tempting to expect that, given a realization
x from an unknown P ∈ P, the unknown value κ(P) of the functional will be closer
to κ̂0(x) than to κ̂1(x). How can this be made operational? The appropriate answer
is: By a confidence procedure, i.e. a map assigning to x ∈ X a set K (x) such that
P{x : κ(P) ∈ K (x)} is close to one for every P ∈ P. The minimal requirement for a
confidence procedure is that the confidence coefficient inf P∈P P{x : κ(P) ∈ K (x)}
is greater than zero.

Given a distance function D, a confidence procedure for κ can be defined by
K (x) = {y ∈ Y : D(y, ˆκ(x) ≤ t)} for some fixed t > 0. The relation κ(P) ∈ K (x)
is then equivalent to D(κ(P), κ̂(x)) ≤ t . Hence the covering probability of κ(P)

by K (x) is the same as the probability that D(κ(P), κ̂(x)) ≤ t . The properties of
this confidence procedure are determined by the properties of the distance D. For
example, K (x) is convex for every x if y → D(y, z) is convex for every z. Similarly,
K (x) is symmetric about κ̂(x) for every x if y → D(y, z) is symmetric about z
for every z. These are properties that hold in particular for the Euclidean distance
D(y, z) = ‖y − z‖.
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Chapter 2
Sufficiency

2.1 The Intuitive Idea

Fisher developed his concept of “sufficiency” in the context of a parametric family
of probability measures {Pϑ : ϑ ∈ Θ}withΘ ⊂ R

k and an i.i.d. sample of size n. To
explain his idea of the “sufficiency” of a statistic S, Fisher alternately uses wordings
like

(i) The whole information to be obtained from the sample (x1, . . . , xn) is already included
in S(x1, . . . , xn). (Fisher 1920, p. 769; Fisher 1922, p. 316.)
(ii) The whole information to be obtained from [another] statistic T is already included in
S. (Fisher 1920, p. 768; Fisher 1922, pp. 316/1.)
(iii) For a given value S(x1, . . . , xn), the distribution of T is independent of ϑ . (Fisher 1920,
p. 768; Fisher 1922, pp. 316/7.)

Comparisons between estimators based on the asymptotic variance have a long his-
tory, dating back to Laplace and Gauss. To express in mathematical terms the idea
that “S contains all information included in T ”, one needs the joint distribution of S
and T . In this way, Laplace (1818) came across the example of two estimators S and
T such that no linear combination of S and T has a smaller asymptotic variance than
S itself (Stigler 1973). This could be considered as a restricted version of Fisher’s
idea that “S contains all information included in T ”.

How did Fisher arrive at his idea of “sufficiency”? Unaware (as often) of what
others had done before him, Fisher considered the estimators

S(x1, . . . , xn) =
(
n−1

n∑
ν=1

(xν − xn)
2
)1/2

and

T (x1, . . . , xn) = √
π/2 n−1

n∑
ν=1

|xν − xn|

© Springer-Verlag Berlin Heidelberg 2017
J. Pfanzagl, Mathematical Statistics, Springer Series in Statistics,
DOI 10.1007/978-3-642-31084-3_2
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for the parameter σ in the family P = {N (μ, σ 2)n : μ ∈ R, σ 2 > 0}. With
computations for the sample size n = 4, Fisher (1920, Sect. 7, pp. 768–770) came
to the conclusion that the conditional distribution of T , given S, does not depend on
σ [and not on μ].

Fisher’s definition that “the whole of the information respecting σ , which the
sample provides, is summed up in the value of S” (p. 769), isolated from the special
context of a parametric family, an i.i.d. sample and real-valued statistics S and T ,
could be phrased as follows:

Definition 2.1.1 A statistic S : X → Y is sufficient for P if the conditional distri-
bution of any statistic T : X → Z under P , given S, is independent of P ∈ P.

In Fisher’s publications, the probability measures are defined by their Lebesgue
densities onRm , and the statistics aremaps fromR

m toRp (usually with p = 1). This
makes it possible to define conditional distributions in an elementary way by using
Lebesgue densities. Fisher could not foresee the mathematical difficulties this idea
would encounter in amoregeneral framework.Within the restricted frameworkwhere
such technical problems do not arise, Fisher’s idea of the conditional distribution, of
T within {x ∈ X : S(x) = y} seems to have been accepted by other scholars without
reserve (see e.g. Bartlett 1937, Sect. 7, pp. 275/6).

Yet, the equivalence of the statements (ii) and (iii) above is not so obvious. If one
thinks of S as an estimator of a parameter ϑ (as Fisher always did), the distribution
of a combined statistic ψ(S(x), T (x)) will differ from the distribution of S(x), and
whether it is better or not depends on how the quality of the estimator is evaluated.
(Laplace, after all, considered ψ(S(x), T (x)) = (1 − c)S(x) + cT (x) only.)

The ultimate justification for the equivalence of (ii) and (iii) came much later (see
Halmos and Savage 1949, Sect. 10, pp. 239–241). If the, conditional distribution of
T , given S, does not depend on P , then this conditional distribution can be used to
generate a random variable which has, for every P ∈ P, the same distributions as
T . Hence for any statistical procedure based on T (x) there exists a (randomized)
procedure depending on x through S(x) only which has the same performance, for
every P ∈ P. When Fisher developed his ideas about sufficiency, the mathematical
tools needed to make this idea precise were not yet available. Yet, this need not have
been an obstacle at this level of rigor. After all, in special examples this randomization
takes on a concrete shape.

Example For P = {N (μ, σ 2)n : μ ∈ R, σ > 0}, a sufficient statistic is

S(x1, . . . , xn) = (μn(x1, . . . , xn), sn(x1, . . . , xn))

with

μn(x1, . . . , xn) = n−1
n∑

ν=1

xν
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and

sn(x1, . . . , xn) =
(
n−1

n∑
ν=1

(xν − μn(x1, . . . , xn))
2
)1/2

.

For ν = 1, . . . , n let

ψν(u1, . . . , un) := (uν − μn(u1, . . . , un))/sn(u1, . . . , un).

Then the distribution of

(μn(x1, . . . , xn) + ψν(u1, . . . , un)sn(x1, . . . , xn))ν=1,...,n

under N (μ, σ 2)n × N (0, 1)n is N (μ, σ 2)n . (Example 2 in Kumar and Pathak 1977.
See Pfanzagl 1981, for a generalization.) �

We now, discuss the, mathematical difficulties connected with the generalization
of Fisher’s idea to a more general framework. Let (X,A ), (Y,B) and (Z ,C ) be
measurable spaces and S : X → Y and T : X → Z measurable maps. Let P|A
be a probability measure. Speaking of the conditional distribution of T within the
partition {x ∈ X : S(x) = y} requires, in mathematical terms, the existence of a
regular conditional probability, i.e. a Markov kernel M |Y × C such that, for every
C ∈ C , M(·,C) is a conditional expectation of 1T−1C , given S, under P , or in other
words:

∫
M(S(x),C)1B(S(x))P(dx) = P(S−1B ∩ T−1C) for every B ∈ B.

(2.1.1)

The question whether the idea of the conditional distribution of T , given S, can
always be expressed by means of a Markov kernel was answered in the affirmative
by Doob (1938, Theorem 3.1, pp. 95/8) for T (x) = x under the assumption that
A is countably generated, but his proof is valid for (X,A ) = (R,B), with B

the Borel σ field, only. It appears that the existence of a Markov kernel was not
a trivial problem then. Even Halmos published an erroneous result (1941, p. 390,
Theorem 1), based on Doob’s Theorem. A counterexample by Dieudonné1 (1948,
p. 42) demonstrated that the existence of a Markov kernel can be guaranteed only
under additional restrictions, such as the compact approximation of P . For the more
general case of maps T : (X,A ) → (Z ,C ), the restrictive assumptions have to be

1It is interesting to observe how the authorship of a nontrivial example was lost as time went on.
Dieudonné’s example appears in various textbooks as an exercise with reference to the author (e.g.
Doob 1953, p. 624; Halmos 1950, p. 210, Exercise 4 and p. 292, Reference to Sect. 48; Dudley
1989, p. 275, Problem 6 and Note Sect. 10.2, p. 298). It also appears in Ash 1972, p. 267, Problem
4, without reference to Dieudonné, and in Romano and Siegel (1986), pp. 138/9, Example 6.13, as
an “Example given in Ash”. In Lehmann and Casella (1998, p. 35) it was presented as an “Example
due to Ash, presented by Romano and Siegel (1986)”.
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placed upon P ◦ T |C . The existence of a Markov kernel is guaranteed if (Z ,C ) is
Polish (i.e., if Z is a complete separable metric space and C its Borel field). More
general concepts like “perfect measures” are hardly used in statistical theory.

Fisher’s idea of sufficiency presumes for every T :X → Z the existence of a
Markov kernel, not depending on P , which fulfills (2.1.1) for every P ∈ P. To
evade the problems with the existence of a Markov kernel, one may start from the
following, less restrictive definition.

Definition 2.1.2 A map S : (X,A ) → (Y,B) is sufficient if for every A ∈ A
there is a conditional expectation of 1A, given S, which is independent of P ∈ P.
That means: For every A ∈ A there exists ψA : (Y,B) → (R,B) such that

∫
ψA(S(x))1B(S(x))P(dx) = P(S−1B ∩ A) (2.1.2)

for every B ∈ B and every P ∈ P.

This definition first appears in Halmos and Savage (1949, pp. 232/3). Since the
connectionwith Fisher’s concept of “sufficiency” is not so obvious, onewould expect
a clearcut theorem asserting that the conditional distribution of any real-valued sta-
tistic with respect to a sufficient statistic can always be represented by a Markov
kernel independent of P . The absence of such a theorem is all the more surprising
as the authors discuss randomization based on a conditional distribution. Their opin-
ion (see p. 230) that “... conditional probabilities are sufficiently tractable for most
practical and theoretical purposes, and the requirement that they should behave like
probability measures in the strict sense ... is almost never needed” corresponds to the
somewhat casual treatment of this problem in Sect. 10 of this paper.

What is missing in the paper by Halmos and Savage is a theorem saying that
if S is sufficient in the sense of Definition 2.1.2, then for every T : (X,A ) →
(Z ,C ) there exists a Markov kernel, not depending on P , such that (2.1.1) holds
for every P ∈ P. This theorem occurs first in Bahadur (1954, p. 434, Theorem
5.1) for T real-valued. It is now standard for statistics T attaining their values in a
Polish space. Hence the randomization procedureworks for virtually all applications.
Critical functions and unbiased estimators are, perhaps, the only instances where the
conditional expectations with respect to a sufficient statistic do a better job than
randomization.

Remark In Definition 2.1.2, the σ -field B occurs three times; (i) in the A ,

B-measurability of S, (ii) in the B,B-measurability of ψA, and (iii) in relation
(2.1.2). IfY is a Euclidean space, the pertainingBorel field is a natural choice forB. If
Y is an abstract space, the presence of an unspecified σ -fieldB is irritating. This, pre-
sumably,motivatedBahadur to introduce the concept of a “sufficient transformation”,
which uses forB the σ -field induced on Y by S, i.e.,BS := {B ⊂ Y : S−1B ∈ A },
the largest σ -field which renders x → S(x) A -measurable.

Most authors ignore the σ -field B which shows up in the Definition 2.1.2 of
sufficiency. (An exception is Witting 1966, who discusses this problem in footnote
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1, p. 121.) Does the sufficiency of S really depend on the —more or less arbitrary—
σ -fieldB?

The operational significance of sufficiency depends on relation (2.2.2). Using
Proposition 1.10.25 in Pfanzagl (1964, p. 60), which connects (2.1.2) with (2.2.2),
it can be shown that (2.1.2) holds for every countably generated σ -field B ⊂ P(Y )

containing {y} for P◦S-a.a. y ∈ Y if it holds for someσ -field sharing these properties.
Presumably this result also holds true under less restrictive regularity conditions.

The concept of a sufficient transformation was almost entirely neglected in the
literature. Sato (1996) seems to have been the first author to reflect upon the rela-
tionship between a sufficient statistic and a sufficient transformation. He shows
(p. 283, Lemma) that the two concepts are identical if (X,A ) and (Y,B) are
Euclidean and P is dominated. This results from the special nature of the spaces
(X,A ) and (Y,B): If f : (Rm,Bm) → (Rk,Bk), then for every B ⊂ R

k with
f −1B ∈ B

m , there exists B0 ∈ B
k with B0 ⊂ B and λm(( f −1B)	( f −1B0)) = 0,

so that {B ∈ R
k : f −1B ∈ B

m} is not much larger than f −1
B
k . (See also Bahadur

1955b, p. 493, Lemma 5.)

2.2 Exhaustive Statistics

Originally, the concept of “sufficiency” rests on the existence of statistics S such
that for any statistic T the conditional distribution, given S, does not depend on
P ∈ P. The mathematically precise version led to a Markov kernel fulfilling (2.1.1)
for every P ∈ P, which, in turn, justifies the concept of sufficiency by the possibility
of randomization. What if one disregards the idea of the conditional distribution of
T , given S, and starts from the randomization procedure immediately? This requires
for the statistic T a Markov kernel M | Y × C such that

∫
M(S(x),C)P(dx) = P(T−1C) for C ∈ C and P ∈ P. (2.2.1)

We shall call S exhaustive if relation (2.2.1) holds with T (x) = x , i.e., if P itself
can be obtained by a randomization procedure based on S(x). More precisely: If
there exists a Markov kernel M |Y × A such that

∫
M(S(x), A)P(dx) = P(A) for A ∈ A and P ∈ P. (2.2.2)

This corresponds to the concept of “sufficiency” introduced by Blackwell (1951) for
the comparison of experiments and occurs, therefore, in the literature as Blackwell
sufficiency (see e.g. Heyer 1972, Sect. 4, or Strasser 1985, p. 102, Definition 23.3).

If (X,A ) is Polish, any sufficient statistic is exhaustive: Specialize (2.1.1) for
B = Y . Since (2.2.2) is all one needs for recovering P , it is of interest to look for
statistics which are exhaustive (but not necessarily sufficient). If P is dominated,
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there are none: If relation (2.2.2) is true (no matter where the Markov kernel comes
from), the statistic S is sufficient. This follows from a result obtained by Sacksteder
(1967, p. 788, Theorem 2.1) on the comparison of experiments (see also Heyer 1969,
p. 39, Satz 5.2.1). Without domination this follows from Roy and Ramamoorthi
(1979, p. 50, Theorem 2) under the assumption that B is countably generated. For
dominated families, the simplest way to show that exhaustivity implies, sufficiency
is to use a result of Pfanzagl (1974, p. 197, Theorem) which implies, in particular,
that S is sufficient if for every A ∈ A there exists a critical function ϕA such that∫

ϕA(S(x))P(dx) = P(A) for every P ∈ P.
It is tempting to conclude from (2.2.2) that M(·, A) itself is a conditional expec-

tation of 1A, given S, i.e., that (2.1.2) holds with ψA = M(·, A). This is, however,
not generally true.

Example Let X = {−1, 0, 1} × {−1, 1} be endowed with the σ -field P(X) of all
subsets of X . For ϑ ∈ (0, 1) let

Pϑ({η, ε}) := (1 − |η|)(1 − ϑ)/2 + |η|ϑ/4 for η ∈ {−1, 0, 1}, ε ∈ {−1, 1}.

Let S : X → Y = {0, 1} × {−1, 1} be defined by

S(η, ε) :=
{

(0, ε),
(|η|, ηε),

η ∈
{ {0},

{−1, 1}.

The Markov kernel M |Y × P(X), defined by

M((ρ, δ), {η, ε}) := ((1 − ρ)(1 − |η|) + ρ|η|/2)1{δ}(ε)

for ρ ∈ {0, 1}, η ∈ {−1, 0, 1} and ε, δ ∈ {−1, 1}, fulfills relation (2.2.2), which is to
say that

∫
M(y, {η, ε})P ◦ S(dy) = (1 − |η|)(1 − ϑ)/2 + |η|ϑ/4 = Pϑ({η, ε}),

without being a conditional probability, given S. Notice that S is neither mini-
mal sufficient (S(η, ε) = |η| is sufficient), nor does it fulfill (2.2.3): We have
M((1, δ), S−1{1, δ}) = 1/2. �

There is an exception: Relation (2.1.2) is automatically fulfilled if S is minimal
sufficient. This follows from Sacksteder (1967, p. 793, Theorem 8.1). For a simple
proof see Pfanzagl (1994, p. 16, Proposition 1.4.9).

The “minimality condition” comes in as some sort of deus ex machina. There is
however an inherent reason why a Markov kernel M that fulfills (2.2.2) should be a
conditional probability, given S: If the idea that M(y, ·) describes the distribution of
x on A within {x ∈ X : S(x) = y} is taken seriously, this demands that

M(y, S−1B) = 1B(y) for B ∈ B and y ∈ Y. (2.2.3)
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Relation (2.1.2) implies that (2.2.3) is, in fact, true for P ◦ S-a.a. y ∈ Y . If B is
countably generated, relation (2.2.3) implies

M(y, S−1{y}) = 1 for P ◦ S-a.a. y ∈ Y.

The relevant point is the converse: (2.2.3) and (2.2.2) together imply (2.1.2), i.e.,
M(·, A) is necessarily a conditional expectation of 1A, given S, with respect to P .
(Blackwell and Dubins 1975, p. 741/2. For a detailed proof see Pfanzagl 1994, p. 60,
Lemma 1.10.24 and Proposition 1.10.25.)

Of course, one would prefer to have a version of M such that (2.2.3) holds for all
(rather than just forP◦ S-a.a.) y ∈ Y . According to Blackwell and Ryll-Nardzewski
(1963, p. 223, Theorem1) this cannot be generally achieved, even if (X,A ) is Polish.

The idea that random variables with distribution P can be obtained from random
variables with distribution P ◦ S by means of a randomization device (not depending
on P) if S is sufficientwas extended to the comparison of “experiments” byBlackwell
(1951, 1953). Let X = (X,A , {Pi : i ∈ I }) and Y = (Y,B, {Qi : i ∈ I }) be two
“experiments” with an arbitrary index set I . Then Y is called “sufficient for X ” if
there exists a Markov kernel M |Y × A such that

Pi (A) =
∫

M(y, A)Qi (dy) for A ∈ A and i ∈ I.

If S : (X,A ) → (Y,B) is exhaustive, then the experiment (Y,B, {Pi ◦ S : i ∈ I })
is sufficient for (X,A , {Pi : i ∈ I }).

The problems that are discussed in connection with sufficient statistics (like the
characterization of sufficiency) can also be discussed at this more general level, with
corresponding results. The application of the more general results to the case of
sufficient statistics offers no additional insights. It is just the same with the further
generalization of the concept of an experiment from probability measures on a σ -
field of sets to linear operators on a lattice of functions. Reader interested in such
generalizations should consult books like Heyer (1982), Strasser (1985), LeCam
(1986), Bomze (1990) and Torgersen (1991).

2.3 Sufficient Statistics—Sufficient σ -Fields

Sufficient sub-σ -fields have been introduced by Bahadur (1954, p. 430), following
a suggestion of L.J. Savage (see p. 431):

Definition 2.3.1 A0 ⊂ A is sufficient for P if for every A ∈ A there exists a
conditional expectation of 1A, given A0, which is independent of P ∈ P.

That means: For every A ∈ A there exists a function ψA : (X,A0) → (R,B) such
that
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∫
ψA(x)1A0(x)P(dx) = P(A0 ∩ A) for every A0 ∈ A0.

Fisher’s idea of sufficiency was related to statistics S that are estimators (of some
parameter ϑ). As soon as it became clear that an interpretation of S as an estimator is
irrelevant for the idea of “sufficiency”, it was also clear that the values taken by the
statistic S are irrelevant, too: Any statistic Ŝ which is one-one with S serves the same
purpose. If the image-space of S is irrelevant, the same is true for the σ -field with
which the image-space of S might be endowed. Consequently, Bahadur suggested
the concept of a sufficient transformation as a map from X to Y , and that we base
the definition of sufficiency on A0 := A ∩ S−1(P(Y )).

The evident notational simplifications which result from studying a statistic in terms of the
subfield induced by it suggest the possibility of taking a sufficient subfield rather than a
sufficient statistic to be the basic concept in the formal exposition. (Bahadur 1954, p. 430.)

When Bahadur wrote these lines, he was not fully aware of the troubles connected
with the duplicity between “sufficient statistics” and “sufficient sub-σ -fields”, still
present in many textbooks. Obviously, S:(X,A ) → (Y,B) is sufficient iff S−1B is
sufficient. The problem lies with the sufficiency of sub-σ -fields that are not inducible
by means of a statistic. Bahadur (1954) was still uncertain about this point, which,
however, was soon clarified: According to a Lemma of Blackwell (see Lemma 1
in Bahadur and Lehmann 1955, p. 139) a subfield A0 ⊂ A cannot be induced by
a statistic if {x} ∈ A0 for every x ∈ X . The situation is much more favourable if
A is countably generated. Under the additional assumption that P is dominated,
Bahadur (1955, Lemmas 3 and 4, pp. 492–493) proved for any sub-σ -fieldA0 ⊂ A
the existence of a statistic f : (X,A ) → (R,B) such that A0 = f −1(B) (P).
More important in connection with sufficiency is a result of Burkholder (1961, p.
1200, Theorem 7): If A is countably generated, then for any sufficient sub-σ -field
A0 ⊂ A there exists a statistic f :(X,A ) → (R,B) such that A0 = f −1(B).

Hence forA countably generated, the concepts of “sufficient statistic” and “suf-
ficient sub-σ -field” are equivalent. Yet even in this case, puzzling things may occur.
If a sufficient statistic S : (X,A ) → (Y,B) is the contraction of a statistic
S′ : (X,A ) → (Y ′,B′) (i.e., S = g ◦ S′ with g : (Y ′,B′) → (Y,B)), then
S′ is sufficient, too. In contrast, a sub-σ -field containing a sufficient sub-σ -field is
not necessarily sufficient itself: For (X,A ) = (R,B), the σ -field B0 of all sets in B
symmetric about 0 is sufficient for the family of all probability measures on Bwhich
are symmetric about 0. Burkholder (1961, pp. 1192/3, Example 1), constructs a sub-
σ -field of B containing B0, which fails to be sufficient. Such a paradox is impossible
if P is dominated (Bahadur 1954, p. 440, Theorem 6.4).

Instead of making the theory of sufficiency more elegant, the introduction of
sufficient sub-σ -fields gave rise to mathematical problems which have nothing to do
with the idea of sufficiency as such.Whereas the interpretation of a sufficient statistic
is clear, neither Bahadur (1954, pp. 431/2) nor any of his followers have so far been
able to explain the operational significance of a sufficient sub-σ -field. Bahadur’s
argument (1954, pp. 431/2) is based on the partitions induced by the σ -fields A
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and A0, say π(x) := ⋂{A ∈ A : x ∈ A} and π0(x) := ⋂{A ∈ A0 : x ∈ A},
respectively: “If A0 is sufficient, a statistician who knows only π0(x) is as well off
as one who knows π(x).” That this argument works ifA0 is the sub-σ -field induced
by S, (so that π0(x) = S−1{S(x)}) is not a convincing argument for replacing the
concept of a sufficient statistic by the concept of a sufficient sub-σ -field, and what if,
in the general case, π0(x) = π(x) = {x}? Leaving aside all mathematical aspects,
we still encounter a problem with the interpretation of sufficiency. If one thinks of
S(x) ∈ Y as “containing all information contained in x” one might feel uneasy if the
definition of sufficiency refers to some σ -field of subsets of Y .

2.4 The Factorization Theorem

Let S and T be two real-valued statistics with a joint density pϑ(s, t). According to
Fisher (1922, p. 331) “the factorization of pϑ into factors involving (ϑ, s) and (s, t),
respectively, is merely a mathematical expression of the condition of sufficiency”.
More precisely (Fisher 1934, p. 288): “If pϑ(s, t) = gϑ(s)h(s, t), the conditional
distribution of T , given S, will be independent of ϑ” (hence S is sufficient in Fisher’s
sense).

One of the important achievements of Neyman was to show that this factorization
is even necessary. Starting from the definition that S is sufficient if the conditional
distribution of any other statistic T is independent of P (Neyman 1935, p. 325),
Neyman asserts in Teorema II, p. 326, that the factorization is necessary and sufficient
for the sufficiencyof S.His theorem refers to a parametric family, and to i.i.d. samples.
Written in our notations this is

pϑ(x1, . . . , xn) = gϑ(S(x1, . . . , xn))h(x1, . . . , xn).

Neyman was unaware that Fisher had already shown that the factorization implies
sufficiency. Neyman’s proof of the nontrivial necessity part of the theorem (Sect. 7,
pp. 328–332) is spoiled by numerous regularity conditions (including, for instance,
the differentiability of S). Obviously, Neyman was not familiar with the measure-
theoretic tools developed by Kolmogorov (1933). The first mathematically “up to
date” paper was that of Halmos and Savage (1949). Their Theorem 1 (p. 233) asserts
that for a dominated familyP, a necessary and sufficient condition for the sufficiency
of S : (X,A ) → (Y,B) is the existence of a dominating measure, say μ0, such
that every P ∈ P admits an S−1B-measurable version of dP/dμ0. Expressed with
reference to an arbitrary dominatingmeasureμ, andwith explicit use of the sufficient
statistic S, this is their Corollary 1, p. 234.

Factorization Theorem Assume thatP is dominated byμ (P � μ). Then S is suffi-
cient if and only if there exists a nonnegativeA -measurable function h : (X,A ) →
([0,∞),B ∩ [0,∞)) and for every P ∈ P a nonnegative B-measurable function
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gP : (Y,B) → ([0,∞),B ∩ [0,∞)) such that x → gP(S(x))h(x) is a μ-density
of P .

An important step in the proof of this theorem is Lemma 7, p. 232, which asserts
that for any dominated familyP there exists a countable subset Pk ∈ P, k ∈ N, such
that P∗ := ∑∞

k=1 2
−k Pk dominates P. (Notice that the clever proof of this lemma

serves just one purpose: To avoid the assumption that A is countably generated, in
which case the assertion becomes almost trivial.)

It appears that the essence of this Lemma was not fully understood in Schmetterer
(1966), the first textbook offering a detailed proof of the Factorization Theorem.
In Satz 7.1, p. 249, Schmetterer requires the existence of a dominating probability
measure, say P̂ , equivalent to P (i.e., P(A) = 0 for P ∈ P implies P̂(A) = 0).
According to Satz 5.2, p. 221, a mangled version of the Halmos–Savage Lemma,
such a P̂ exists for every dominated familyP. However, Schmetterer’s Satz 5.2 omits
the essential point: that P̂ is a convex combination of a countable subset of P, so
that sufficiency for P implies sufficiency for P ∪ {P̂}. This slip has survived in the
translated version (see Schmetterer 1974, p. 214, Theorem 7.3 and p. 208, Theorem
7.1).

It led to some confusion that Halmos and Savage included in the formulation of
their Corollary 1 that h is μ-integrable. In fact, if a factorization holds with some
nonnegative, measurable h, then a factorization also holds with a μ-integrable h:
If P∗ is the dominating measure from Lemma 7, then the μ-density gP(S(x))h(x)
can be rewritten as (gP(S(x))/g∗(S(x)))h∗(x), with g∗(y) := ∑∞

k=1 2
−kgPk (y) and

h∗(x) := g∗(S(x))h(x). This holds since g∗(y) = 0 implies gPk (y) = 0 for k ∈ N;
hence P∗{g∗ ◦ S = 0} = 0. Note that

∫
gPk (S(x))h(x)μ(dx) = 1 for every k ∈ N

implies
∫
h∗(x)μ(dx) = 1. The irritation resulting from theμ-integrability condition

for h was accentuated by an example of Bahadur (1954, p. 438) for which the natural
factorization holds with (the non-integrable) h(x) ≡ 1. It survived in numerous
publications, and Bahadur was praised, for removing the integrability condition in
his Corollary 6.1 on p. 438. (See Lehmann and Scheffé 1950, p. 332, Theorem 6.2.;
Torgersen 1991, p. 65, Remark 1; Dudley 1999, p. 193, Notes, to Sect. 5.1.) Zacks
(1971) has two factorization theorems: Theorem 2.3.2, pp. 44/5, with, and Theorem
2.3.3, p. 48, without μ-integrability.

2.5 Completeness

Let F be a family of measurable functions f : (X,A ) → (Rk,Bk), and P a family
of probability measures P|A .

Definition 2.5.1 The family P is F-complete if for every f ∈ F, the relation∫
f d P = 0 for every P ∈ P implies f = 0 P-a.e.

Versions useful in statistical theory are bounded completeness (F = all bounded
functions), completeness (F = allP-integrable functions), and 2-completeness (F =
all square integrable functions).
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The concept of “completeness” has its origins in two statistical problems.
Lehmann and Scheffé (1950) deserve credit for introducing completeness as a uni-
fying concept.

(i) Let ϕk(x1, . . . , xk) be an unbiased estimator of some functional κ , i.e.,

κ(P) =
∫

ϕk(x1, . . . , xk)P(dx1) . . . P(dxk) for P ∈ P.

Halmos (1946, p. 40, Theorem 5) shows that for every sample size n ≥ k, the
symmetrized version of ϕk , i.e., ϕ

(n)
k (x1, . . . , xn) := ∑

ϕk(xi1 , . . . , xik ), with the
summation extending over all k-tuples (i1, . . . , ik), is of minimal variance among all
unbiased estimators. His argument consists of two steps:

(a) For any unbiased estimator fn , the symmetrized version f (n)
n is unbiased and

of equal or smaller variance (see proof of his Theorem 5).
(b) If the familyP contains all probability measures with finite support, then there

is only one symmetric unbiased estimator. This follows from Lemma 2, p. 38, which
asserts—in modern terminology—that under the conditions onP, the order statistic
is complete.

It is surprising that Halmos—more familiar with the concept of conditional
expectations than practically anybody else— overlooked the fact that the sym-
metrized version is just the conditional expectation with respect to the order statistic
(xn:1, . . . , xn:n). The idea that taking the conditional expectation reduces the variance
in general was used by C.R. Rao and by Blackwell just one year later, in 1947.

Hoel (1951, p. 301, Theorem) shows that for exponential families, unbiased esti-
mators based on the sufficient statistic are unique (and therefore optimal, thanks to
Blackwell’s theorem). His proof essentially shows that an exponential family with
one real parameter is complete.

(ii) Neyman (1937) pointed out that a sufficient statistic S : (X,A ) → (Y,B)

can be used to construct a “similar” critical region C ∈ A . In our notation this
amounts to choosing C such that the conditional expectation of 1C , given S, is
constant. Since one is interested in obtaining critical regions of high rejection power,
the question occurs whether every similar critical region is of this type (now called
“Neyman structure”). To answer this question, Lehmann and Scheffé (1947, p. 383)
introduce the concept of what is now called “bounded completeness”: all similar
critical regions are of Neyman structure if P ◦ S is boundedly complete and they
give afirst proof of the bounded completeness of the sufficient statistic for exponential
families. Independently of the paper by Lehmann and Scheffé, Sverdrup (1953, p.
67, Theorem 1) offers a precise proof that, for exponential families, every similar
test is of Neyman structure (which amounts to proving bounded completeness for
exponential families).

Of course, there are instances where P ◦ S fails to be boundedly complete. A
prominent example is the Behrens–Fisher problem. In such cases there are similar
testswhich are not ofNeyman structure:Anybounded function f : (Y,B) → (R,B)

fulfilling
∫

f (S(x))P(dx) = 0 for P ∈ P can be transformed into a critical function,
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say ϕ, fulfilling
∫

ϕ(S(x))P(dx) = 0 for P ∈ P. How to obtain good critical regions
in such a case was discussed by Wijsman (1958).

The question whether the two concepts of completeness (bounded and plain)
originating from twodifferent statistical problems are, in fact, different,was answered
in the affirmative by the example of a family which is boundedly complete without
being complete (Lehmann and Scheffé 1950, p. 312, Example 3.1).

An important result put forward by Lehmann and Scheffé (1950, p. 316, Theorem
3.1) asserts that a sufficient statistic S isminimal sufficient (Definition 2.6.1) ifP◦ S
is boundedly complete. (The conditions for this theorem remain somewhat vague in
this paper. It is certainly enough that P is dominated and (Y,B) Polish. A precise
proof may be found in Heyer 1982, p. 41, Theorem 6.15.) Consequently, the search
for a sufficient statistic S with P ◦ S boundedly complete requires the search for a
minimal sufficient statistic. This will be dealt with in Sect. 2.6.

What makes the concept of (bounded) completeness manageable are the simple
criteria for it to hold, especially the following:

Theorem 2.5.2 For an exponential family P with densities

x → C(P)h(x)exp

[
m∑
i=1

ai (P)Ti (x)

]
, Ti : (X,A ) → (R,B), i = 1, . . . ,m,

the family {P ◦ (T1, . . . , Tm) : P ∈ P} is complete if the set {(a1(P), . . . , am(P) :
P ∈ P} has a nonempty interior.

A first version of this theorem appears in Lehmann and Scheffé (1955, pp. 223/4,
Theorem 7.3). In Lehmann and Scheffé (1950, pp. 313–315) the completeness for
various exponential families had been proved by means of ad hoc arguments using
power series expansions, Laplace and Mellin transformations.

The condition that {(a1(P), . . . , am(P)) : P ∈ P} has a nonempty interior is
sufficient but not necessary for the completeness of {P ◦ (T1, . . . , Tm) : P ∈ P}.
Examples of complete “curved” exponential families can be found in Messig and
Strawderman (1993). For a particularly simple example see Pfanzagl (1994, p. 96,
Example 2.7.3).

What matters for applications is the completeness of sufficient statistics for i.i.d.
products. Since i.i.d. products of exponential families are exponential, too, this prob-
lem is solved by the theorem above.

Another important result is the [bounded] completeness of the order statistic for
certain nonparametric families, referred to as “symmetric [bounded] completeness”.

Theorem 2.5.3 {Pn : P ∈ P} is symmetrically [boundedly] complete if for
every [bounded] symmetric (i.e., permutation invariant) function fn : (Xn,A n) →
(R,B), the relation

∫
fnd Pn = 0 for P ∈ P implies fn = 0 Pn-a.e. for every

P ∈ P.

A precise proof may be found in, Heyer (1982, p. 41, Theorem 6.15).
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It is intuitively clear that {Pn : P ∈ P} will be symmetrically complete if P
is sufficiently rich. The first results of this kind came from Halmos (1946; for P
consisting of all discrete distributions with finite support) and Fraser (1954; for P
consisting of all uniform distributions over a finite number of intervals).

Developing an idea of Lehmann (1959, p. 152, Problem 12), and Mandelbaum
and Rüschendorf (1987, p. 1233) proved the following

Polarization Lemma Assume thatP is weakly convex in the sense that for arbitrary
Pi ∈ P, i = 0, 1, the convex combination(1 − α)P0 + αP1 ∈ P for some α ∈
(0, 1). Then for every symmetric function fn : (Xn,A n) → (R,B), the relation∫

fnd Pn = 0 for P ∈ Pimplies
∫

fnd(P1 × · · · × dPn) = 0 for arbitrary Pi ∈ P,
i = 1, . . . , n.
(A simpler proof for convex—rather than weakly convex—families can be found in,
Pfanzagl 1994, p. 20, Lemma 1.5.9.)

Since the [bounded] completeness of P|A implies the [bounded] completeness
of {P1 × · · · × Pn : Pi ∈ P}, i = 1, . . . , n (see Landers and Rogge 1976, p. 139,
Theorem; improving an earlier result of, Plachky 1977, concerning bounded com-
pleteness), the Polarization Lemma implies the following theorem (seeMandelbaum
and Rüschendorf 1987, p. 1239, Theorem 7):

If P is [boundedly] complete and weakly convex, then {Pn : P ∈ P} is symmet-
rically [boundedly] complete for every n ∈ N.

According toMattner (1996, p. 1267, Theorem 3), this implies that {Pn : P ∈ P}
is symmetrically complete ifP|B contains all P with unimodal Lebesgue densities.

In this connection we mention a result of Hoeffding (1977) concerning families
that are symmetrically incomplete, but symmetrically boundedly complete, which
generalizes an earlier result of Fraser (1954, p. 48, Theorem 2.1).

If
∫
udP = 0 for some u : (X,A ) → (R,B) and some P|A , then

fn(x1, . . . , xn) :=
n∑

ν=1

u(xν)hn−1(xn·ν) (2.5.1)

is symmetric and fulfills
∫

fnd Pn = 0 if hn−1 : Xn−1 → R is a Pn−1-integrable,
symmetric function and xn·ν := (x1, . . . , xν−1, xν+1, . . . , xn).

Let nowPu be the family of all P dominated byμ that fulfill
∫
udP = 0. A result

of Hoeffding (1977, p. 279, Theorem 1B) implies that any symmetric function fn
fulfilling

∫
fnd Pn = 0 for P ∈ P can be represented by (2.5.1). Hence (Theorem

2B, p. 280) the family {Pn : P ∈ Pu} is symmetrically boundedly complete if u is
unbounded.

Refined mathematical techniques have been used to obtain a great variety of
complete and/or boundedly complete families (for instance Bar-Lev and Plachky
1989 or Isenbeck and Rüschendorf 1992). Referring, so to speak, to the sample size
1, these results seem to be answers waiting for questions.
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2.6 Minimal Sufficiency

If sufficient statistics can be used for a reduction of the data, the aspiration to max-
imal reduction leads to the concept of a “minimal suff icient statistic”, which is the
contraction of any sufficient statistic.

Definition 2.6.1 The sufficient statistic S0 : (X,A ) → (Y0,B0) is minimal suffi-
cient forP if for any sufficient statistic S : (X,A ) → (Y,B) there exists a function
H : (Y,B) → (Y0,B0) such that S0 = H ◦ S (P).

The concept of a minimal sufficient statistic was introduced by Lehmann and
Scheffé (1950, Sect. 6). Their interest in minimal sufficient statistics was motivated
by applications to the theory of similar tests and unbiased estimators. The theory
in this field becomes particularly clear if there exists a sufficient statistic, say S,
such thatP ◦ S is (boundedly) complete. Since the bounded completeness ofP ◦ S
for a sufficient statistic S implies that S is minimal sufficient, the applications of
sufficiency for certain problems in testing and estimation motivated the interest of
Lehmann and Scheffé (1950) in minimal sufficient statistics. Lehmann and Scheffé
(1950, p. 316, Theorem 3.1) show that “S sufficient andP ◦ S boundedly complete”
implies that S is minimal sufficient if a minimal sufficient statistic exists. Bahadur
(1957, p. 217, Theorem 3) shows that “S sufficient andP ◦ S boundedly complete”
implies that S is minimal sufficient.

In their Sect. 6, pp. 327ff, Lehmann and Scheffé suggest a workable technique for
obtaining a minimal sufficient statistic. Their basic assumption is that there exists
a countable subfamily P0 ⊂ P which is dense with respect to the sup-distance.
This implies the existence of a dominating measure, say, μ, equivalent toP. (Recall
that, conversely, the existence of such a subfamily follows for dominated families
if A is countably generated.) To determine a minimal sufficient statistic, Lehmann
and Scheffé introduce the “operation ϑ” which amounts to determining for x0 ∈ X
the set of all x such that qP(x)/qP(x0) is independent of P ∈ P. (The fact that
this is formulated in terms of a parametric family is of no relevance.) This means
that determining a function S|X such that S(x) = S(x0) implies qP(x) = qP(x0)
for P ∈ P. According to Theorem 6.3, p. 336, the resulting statistic S is minimal
sufficient if the “operation ϑ” is applied withP replaced byP0. The restriction to a
countable subfamily is required since the densities are unique μ-a.e. only.

Presuming that a sufficient statistic S : (X,A ) → (Y,B) has been found, i.e.,
that there exists a μ-density of P of the form x → gP(S(x))h(x), the basic idea of
Lehmann and Scheffé can be put into the following form:

Assume that A is countably generated and (Y,B) Polish. If there exists a count-
able dense subfamily P0 ⊂ P such that

gP(y′) = gP(y′′) for P ∈ P0 implies y′ = y′′,

then S is minimal sufficient.
See Pfanzagl (1994), p. 14, Theorem 1.4.4. A related result appears in Sato (1996,

pp. 381/2, Theorem). Translated from parametric families to the case of a general
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family, Sato’s result reads as follows: Let (X,A ) and (Y,B) be Euclidean spaces,
P a dominated family on A and P0 a countable dense subfamily. Assume that the
densities are continuous in the sense that d(Pn, P0) → 0 implies qPn → qP0 μ-
a.e. If for arbitrary x ′, x ′′, the relation S(x ′) = S(x ′′) implies that qP(x ′)/qP(x ′′) is
independent of P ∈ P, then S is minimal sufficient.

The duplicity between sufficient statistics and sufficient sub-σ -fields extends to
the concept of “minimality”.

Definition 2.6.2 A sufficient sub-σ -field A∗ is minimal sufficient if A∗ ⊂ A0 (P)

for any sufficient σ -field A0.

According to Burkholder (1961, p. 1197, Corollary 3) this property is equivalent
to the following: If A0 ⊂ A∗ (P) is sufficient, then A0 = A∗ (P). Bahadur (1954,
p. 439, Theorem 6.2) establishes the existence of a minimal sufficient σ -field for
dominated families, starting from Theorem 1 in Halmos and Savage (1949, p. 233):
The σ -field generated by {x ∈ X : gP(x) < r}, r ∈ (0,∞), P ∈ P} is minimal
sufficient. Bahadur (1955b, p. 495, Corollary 1) shows that for a dominated family
on a Euclidean space, the σ -field induced by a minimal sufficient statistic is minimal
sufficient. This result is contrasted by an example of Bahadur and Lehmann (1955,
p. 140) showing that, in general, the σ -field induced by a minimal sufficient statistic
might fail to beminimal sufficient, even if a minimal sufficient statistic exists. Pitcher
(1957) presented a family of probability measures for which neither a minimal suffi-
cient statistic nor a minimal sufficient σ -field exists. This still left open the question
whether the existence of a minimal sufficient statistic implies the existence of a min-
imal sufficient σ -field or vice versa. This question was answered to the negative by
two counterexamples in a short but profound paper by Landers and Rogge (1972).
Specializing a result of Rogge (1972, p. 210, Theorem 4) on perfect measures one
obtains that for a dominated family on a Polish space a minimal sufficient statistic
induces a minimal sufficient σ -field and vice versa.

It was obviously hard for statisticianswithmainlymathematical interests to accept
the fact that neither minimal sufficient statistics nor minimal sufficient σ -fields exist
in general. The paper by Pitcher (1965) is a good example of this discomfiture. In
it he defines a property of a family of probability measures, called “compactness”,
which is more general than domination, and which allows the construction of a
minimal sufficient statistic. Even a mathematically minded statistician is tempted to
question the relevance of an artificial concept that is bare of intuitive appeal and hard
to verify and leads to a result beyond any practical relevance. In spite of this, various
authors followed the path first opened by Pitcher’s paper. Among these, the most
interesting one seems to beHasegawa and Perlman (1974)which invalidates Pitcher’s
construction bymeans of a counterexample (pp. 1054/5, Sect. 5). The authors suggest
a concept related to Pitcher’s “compactness” that implies the existence of a minimal
sufficient σ -field.

For families of product measures {Pn : P ∈ P}, the order statistic is always suf-
ficient. Hence the relevant question is whether there is a (minimal) sufficient statistic
coarser than the order statistic. For exponential families, the statistic (x1, . . . , xn) →
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(
∑n

ν=1 T1(xν), . . . ,
∑n

ν=1 Tk(xν)) is sufficient and complete, hence minimal suffi-
cient if the set {(a1(P), . . . , ak(P)) : P ∈ P} ⊂ R

k has a nonempty interior. (For
curved exponential families, this statistic may be minimal sufficient without being
complete.)

An interesting result of a general nature is provided by Mattner (2001, p. 3402,
Theorem 1.5). If P is a dominated convex family admitting the minimal sufficient
σ -field A0, then the σ -field of all permutation invariant subsets of A n

0 is minimal
sufficient for {Pn : P ∈ P}. (Note: Recall the analogous result mentioned in Sect.
2.1.5 on (not necessarily dominated) convex families that are [boundedly] complete.)

Concerning location and/or scale parameter families on B, one could, roughly
speaking, say that under suitable regularity conditions on the densities, the order
statistic is minimal sufficient, except for particular families, like {N (μ, σ 2)n : μ ∈
R, σ 2 > 0} or {�(μ, σ 2)n : μ ∈ R, σ 2 > 0}. A recent result in this direction that
requires the use of more subtle mathematics was put forward by Mattner (2000, pp.
1122/3, Theorem 1.1) who shows under a weak regularity condition on the Lebesgue
density of P that for the location and scale parameter family generated by P the order
statistic is minimal sufficient for the sample size n, unless log p is a polynomial of
degree less than n.

2.7 Trivially Sufficient Statistics

If the vague notion that S is sufficient if “S(x) contains all information contained
in x” is taken seriously, it only produces new problems. If the problem is just to
regain from S(x) a random variable equivalent to x : Why use the randomization
device instead of using for S a bijective function from X to R, say? If X = R

n and
S : Rn → R is a bijectivemap, it is possible to regain from S(x1, . . . , xn) the original
sample (x1, . . . , xn) itself (rather than a random variable with the same distribution
as (x1, . . . , xn)). Why do statisticians use S(x1, . . . , xn) = (

∑n
ν=1 xν,

∑
ν=1 1

nx2ν )
as a sufficient statistic for the family {N (μ, σ 2)n : μ ∈ R, σ > 0} rather than an
injective map S : Rn → R, which is trivially sufficient for the larger family of all
probability measures onBn , and is 1- rather than 2-dimensional? Of course, S should
be “regular” in some sense, continuous at least, and it should be interpretable in some
operational sense.

Denny (1964, p. 95, Theorem) proves the existence of a uniformly contin-
uous function Sn : R

n → (0, 1) with nondecreasing partial functions xν →
Sn(x1, . . . , xn), ν = 1, . . . , n, such that Sn is injective on a subset Dn ⊂ R

n with
λn(Dc

n) = 0. Such a function Sn is sufficient for the family of all probability mea-
sures on B

n with λn-density. This result poses a serious problem for the concept of
“sufficiency”. Yet it is ignored in virtually all textbooks on mathematical statistics.
Romano and Siegel (1986, Sect. 7.1, pp. 158/9) even give examples for which, as
they think, “no single [i.e., real-valued] continuous sufficient statistic” exists.

If attention is confined to i.i.d. products, the order statistic is always sufficient.
Mattner (1999, p. 399, Theorem 2.2) constructs a uniformly continuous and strictly
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increasing function T : R → (0, 1) such that
∑n

ν=1 T (xν) is equivalent to the
order statistic on R

n , for arbitrary probability measures on B
n with Lebesgue den-

sity λn . More precisely, there exists a subset D ⊂ R with λ(Dc) = 0 such that,
for every n ∈ N, the following is true: For (x1, . . . , xn), (y1, . . . , yn) ∈ Dn , the
relation

∑n
ν=1 T (xν) = ∑n

ν=1 T (yν) implies that (y1, . . . , yn) is a permutation of
(x1, . . . , xn). Hence, for (x1, . . . , xn) ∈ Dn , one can regain the original sample
(x1, . . . , xn) up to a permutation. This implies that

∑n
ν=1 T (xν) is sufficient for the

family of all i.i.d. products Pn|Bn with P � λ. But note that these functions T
are not exactly what one would consider a decent statistic. In spite of being strictly
increasing they have derivative 0 λ-a.e.

2.8 Sufficiency and Exponentiality

Multidimensional exponential families P, with densities

x → C(P)h(x) exp

[
m∑
i=1

ai (P)Ti (x)

]
, Ti : (X,A ) → (R,B), i = 1, . . . ,m,

are the most familiar example of families admitting a sufficient statistic for every
sample size:

(x1, . . . , xn) →
(

n∑
ν=1

T1(xν), . . . ,

n∑
ν=1

Tm(xν)

)
is sufficient for {Pn : P ∈ P}.

This, of course, is not the only example: If Pϑ |B ∩ (0,∞) has Lebesgue density
ϑ−11(0,ϑ), then (x1, . . . , xn) → xn:n is sufficient for {Pn

ϑ : ϑ > 0}.
In spite of such isolated examples, the idea soon came up that under certain regu-

larity conditions (in particular if all members of the familyP have the same support),
a sufficient statistic for every sample size exists only if the family is exponential. This
idea occurs in vague form in Fisher (1934, Sect. 2.5, pp. 293/4). Readers who are
not satisfied with the outline of a proof offered by Fisher may consult Hald (1998,
p. 728).

Pitman (1936, p. 569) was among the first statisticians to attempt something
approaching a detailed proof. To illustrate the level of mathematical sophistication
at this time we follow Pitman’s argument more closely.

Let P = {Pϑ : ϑ ∈ Θ}, Θ ⊂ R, be a family with Lebesgue densities p(·, ϑ).
Following Fisher’s arguments related to the idea of “maximum likelihood”, Pitman
starts from the assumption that

∑n
ν=1 ∂ϑ log p(xν, ϑ) is a function of the sufficient

statistic Sn : Rn → R, i.e., there exists a function ψϑ : R → (0,∞) such that
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n∑
ν=1

ϕϑ(xν) = ψϑ(Sn(x1, . . . , xn)) with ϕϑ(x) := ∂ϑ log p(x, ϑ). (2.8.1)

Assuming (tacitly) that ψϑ has for some ϑ0 a differentiable inverse, say f0, Pitman
concludes that

S(x1, . . . , xn) = f0

(
n∑

ν=1

ϕϑ0(xν)

)
,

which implies, with Ψϑ := ψϑ ◦ f0,

n∑
ν=1

ϕϑ(xν) = Ψϑ

(
n∑

ν=1

ϕϑ0(xν)

)
for ϑ ∈ Θ. (2.8.2)

Differentiating this relation with respect to xν0 he obtains

∂xν0
ϕϑ(xν0) = Ψ ′

ϑ

(
n∑

ν=1

ϕϑ0(xν)

)
∂xν0

ϕϑ0(xν0).

Since this relation holds for every ν0 = 1, . . . , n, it follows that Ψ ′
ϑ(y), considered

as a function of y, is constant, i.e., Ψ ′
ϑ(y) = a(ϑ), hence Ψϑ(y) = a(ϑ)y + b(ϑ).

From (2.8.2), written for n = 1,

ϕϑ(x) = a(ϑ)ϕϑ0(x) + b(ϑ).

Since ϕϑ(x) = ∂ϑ log p(x, ϑ), this implies that qϑ is exponential.
Apart from the many regularity conditions assumed implicitly (such as the differ-

entiability of ψϑ and the existence of an inverse), Pitman’s argument has two more
serious defects: The Factorization Theorem

n∏
ν=1

p(xν) = gP(Sn(x1, . . . , xn))h(x1, . . . , xn) (2.8.3)

implies

n∑
ν=1

ϕP(xν) = ψP(Sn(x1, . . . , xn)) (2.8.4)

with ϕP(x) = log p(x)/p0(x) and ψP(y) = log gP(y)/gP0(y). Hence it is not
necessary to assume that P is a parametric family in order to obtain a relation like
(2.8.1), and to assume differentiability with respect to ϑ in order to get rid of the
factor h from (2.8.3). Unjustified, too, is the assumption that relation (2.8.3), or the
resulting relation (2.8.4), holds for all (rather than μn-a.a.) (x1, . . . , xn) ∈ Xn .



2.8 Sufficiency and Exponentiality 29

There are several papers that disregard this point and try to solve the functional
equation (2.8.4) under minimal regularity conditions. It suffices to consider the case
n = 2. Let ϕ : X → R and S : X2 → R be functions such that

ϕ(x1) + ϕ(x2) = ψ(S(x1, x2)) for all xi ∈ X, i = 1, 2. (2.8.5)

The problem is: Given S, what can be said about pairs of functions (ϕ, ψ) for which
(2.8.5) holds true? It is clear that this can be solved under restrictive conditions on
the functions S, ϕ andψ only. Considering the origins of this problem, conditions of
operational significance can be placed upon ϕ (corresponding to conditions on the
densities), and conditions on the sufficient statistic S. Conditions on the function ψ

can hardly be justified from an operational point of view.
The intended result is that the solution ϕ is unique up to a linear transformation.

More precisely: If (ϕi , ψi ), i = 0, 1, are two solutions, then

ϕ1(x) = αϕ0(x) + β and ψ1(y) = αψ0(y) + 2β.

The consequence: If the equation

ϕP(x1) + ϕP(x2) = ψP(S(x1, x2))

holds for P ∈ P with a function S not depending on P , then

ϕP(x) = α(P)ϕP0(x) + β(P).

Since ϕP(x) = log p(x)/p0(x), exponentiality follows.
Under the assumption that S is continuous, it was shown that the continuous

solution ϕ is unique upon a linear transformation (Brown 1964, p. 1461, Theorem
4.1) for X an interval, and with a nicer proof for X a region in R

k by Barndorff-
Nielsen and Pedersen (1969, p. 198, (i)). This result was further generalized to X an
arcwise connected Hausdorff space (Denny 1970, p. 404, Corollary 3.2) under the
assumption that the continuous ϕ is not constant on some open set, and to ϕ which are
locally bounded rather than continuous. (See Pfanzagl 1971b, p. 202, Proposition,
and Laube and Pfanzagl 1971, p. 241, Theorem, in connection with Pfanzagl 1970,
p. 139, Corollary).

Still, these results hold under the artificial assumption that (2.8.5) holds every-
where. They are statistically relevant under conditions on ϕ and S that imply that a
relation (2.8.5) holdingμ2-a.e. holds, in fact, everywhere. This is the case if S fulfills
a condition stronger than continuity. Denny (1970, p. 405, Theorem 3.3) proves the
following result.

Let X be an arcwise connected Hausdorff space, and let ϕ : X → R and S :
X → R continuous functions. If

ϕ(x) = ψ(S(x)) for μ-a.a. x ∈ X,
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then there exists a function ψ∗ such that

ϕ(x) = ψ∗(S(x)) for all x ∈ X,

provided S preserves ample sets. (The latter condition is guaranteed if S is locally
Lipschitz.)
See Hipp (1974, p. 1291, Lemmas 3.3 and 3.4) It appears that Denny was unaware of
a similar result by Barankin and Katz (1959, p. 224, Lemma 2.3) for k-dimensional
sufficient statistics, which will be presented below as Lemma 2.8.1.

Summarizing what had been obtained by 1970, one could state that for families of
probabilitymeasures on an arcwise connectedHausdorff space the existence of a one-
dimensional sufficient statistic for some sample size n > 1 implies exponentiality if
the sufficient statistic is locally Lipschitz and the derivatives are continuous. This is
summarized in the somewhat minute Theorem 4.1 by Denny (1970, pp. 408/9).

These results should be seen in connection with the Theorem in Denny (1964, p.
95) which implies the existence of a uniformly continuous statistic Sn : Rn → (0, 1)
with increasing partial functions that is (trivially) sufficient for the family of all
probability measures on B

n with λn-density, hence in particular sufficient for {Pn :
P ∈ P} for any family P|B � λ. This demonstrates that more than the uniform
continuity of the sufficient statistic is needed to infer exponentiality, and that the
need for stronger conditions on the sufficient statistic cannot be compensated for by
regularity conditions on the densities. Therefore an approach that imposes regularity
conditions on the densities in order to obtain equality everywhere from equality
μn-everywhere cannot lead to an optimal result.

Since there are exponential families without continuous densities (see Hipp
1974, p. 1284, Example 1.2) these results are not wholly satisfactory. An impor-
tant improvement was achieved by Hipp (1972, p. 36, Corollary 3.12) who shows
that a family of probability measures on a region of Rk , with positive λk-densities,
is exponential if it admits for some sample size n > 1 a sufficient statistic with con-
tinuous partial derivatives. For k = 1 this condition on the sufficient statistic can be
weakened to “locally Lipschitz” (Hipp 1974, p. 1283, Theorem 1.1). An important
point of the proof is that being locally Lipschitz for S already implies a property of
ϕ which comes close to “continuity a.e.” (see p. 1290, Proposition 2.5).

In this connection, we should mention a paper by Brown (1964). Its main result,
Theorem 2.1, p. 1458, asserts exponentiality under some sort of continuity condition
on the sufficient statistic without a condition on the densities. Still, the proof uses
an incorrect lemma (see Pfanzagl 1971), and a valid proof has never been supplied.
In spite of this, Brown’s paper is mentioned in numerous papers and textbooks. In
“Kendall’s Advanced Theory of Statistics” (see Stuart and Ord 1991, vol. 2, p. 636)
it is praised for its “rigorous treatment”.

So far our considerations have been restricted to sufficient statistics attaining
their values in R, and for one simple reason: The results are easy to review. In fact,
sufficient statistics attaining their values in a Euclidean space of higher dimension
have been a subject of interest from the beginning, startingwith the profound paper by
Koopman.Koopman (1936, p. 400) explicitly criticized the fact that Fisher never gave
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a precise definition of “sufficiency”. Isolated from the special framework,Koopman’s
definition reads as follows:

S : (X,A ) → (Y,B) is sufficient if, for all x ′, x ′′ ∈ X , the relation S(x ′) = S(x ′′)
implies that the function P → p(x ′)/p(x ′′) is constant for P ∈ P.

In this definition, p is a density of P , and it is clear that this definition makes sense
only if there are distinguished versions of the densities, say continuous ones. Notice
that his definition of sufficiency implicitly presumes that a relation like (2.8.5) holds
everywhere.

In Koopman’s paper, P is a multiparametric family of i.i.d. products, and Sn
maps from (Rn,Bn) to (Rk,Bk). Under the assumptions that n > k and that Sn is
continuous and (x, ϑ) → p(x, ϑ) is analytic, he shows (p. 402, Theorem I) that
p(·, ϑ) is exponential of order less than or equal to k. In addition to the strong
regularity condition on p(x, ϑ), his definition of sufficiency does not allow what
corresponds to the occurrence of exceptional sets ofmeasure zero in the Factorization
Theorem. Moreover, he presumes that the number of components of the sufficient
statistic is the same as the number of parameters. Yet, his paper does contain the
essential idea, taken up in the papers by Barankin (and coauthors) more than twenty
years later: that the minimal dimension of the exponential family is determined by
the ranks of the matrices (2.8.7).

Not aware of Koopman’s paper, Dynkin (1951) arrives at a comparable conclu-
sion by pursuing a different approach. Substituting a general familyP for Dynkin’s
parametric family on an open subset ofR, his procedure can be described as follows:
Let

�(x, P) := log p(x)/p0(x),

where P0 is arbitrarily fixed. Again, one has to presume a distinguished version of
qP . Familiar with the Factorization Theorem, Dynkin certainly has in the back of
his mind the fact that �(x, P) depends on x through the sufficient statistic only. His
result:

If the linear space generated by 1 and the functions �(·, P), P ∈ P, is of finite
dimension k + 1, say, then there exist functions Ti : X → R such that, for every
P ∈ P,

�(x, P) = a0(P) +
k∑

i=1

ai (P)Ti (x) for x ∈ X. (2.8.6)

Example For P = N (μ, σ 2) and P0 = N (0, 1), the linear space generated by the
functions

�(x, (μ, σ 2)) = − log σ − μ2

2
σ−2 + μσ−2x + 1

2
(1 − σ−2)x2, x ∈ R,

is of dimension 3, with T1(x) = x and T2(x) = x2. �
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As a consequence of (2.8.6), the family P is exponential with sufficient statistic
S(x) = (T1(x), . . . , Tk(x)), and the map (x1, . . . , xn) → (

∑n
ν=1 T1(xν), . . . ,

∑n
ν=1

Tk(xν)) is sufficient for {Pn : P ∈ P}.
In Dynkin’s paper it remains unclear where the dimension (k + 1) really comes

from and why the functions Ti can be chosen as �(·, Pi ) (see p. 24: “Actually we
have...”). It is just the case k ≥ n where the local properties of the functions �(·, Pi )
are used to show that the sufficient statistic for the sample size n is locally bijective
if the functions �(·, Pi ) have continuous derivatives (Dynkin 1951, p. 24, Theorem
2). Perhaps the reader will get on with what Schmetterer (1966, Satz 7.4, pp. 257/8
and 1974, pp. 215/6) has to say about Dynkin’s Theorem 2. A variant of Dynkin’s
Theorem 2 is Theorem A in Brown (1964, p. 1461).

An approach that derives the minimal dimension of “regular” sufficient statistics
from local properties of the densities qP is more enlightening. It was first explored by
Barankin andKatz (1959), and continued byBarankin (1961), and later Barankin and
Maitra (1963). The paper from Barankin and Katz (1959), original in its approach
compared with Dynkin, is of poor technical quality and Barankin’s paper (1961) is
mainly a correction note. Hence readers interested in this approach should start with
Barankin and Maitra (1963). Yet, even this paper is outdated. Written for parametric
families it uses derivatives of the densities with respect to the parameters. According
to Shimizu (1966), this is avoidable.

The essence of these papers becomes more transparent if (i) we restrict the con-
siderations to i.i.d. products, and (ii) generalize the framework from parametric to
general families. The basic assumption is that the densities qP have continuous deriv-
atives.

Let xn = (x1, . . . , xn) ∈ Xn , where X ⊂ R is an interval. For arbitrary m ∈ N

and arbitrary Pi ∈ P, i = 1, . . . ,m, let M(xn; P1, . . . , Pm) denote the rank of the
matrix

(�′(xν, Pi ))i=1,...,m;ν=1,...,n (2.8.7)

and let

ρ(xn) := max{M(xn; P1, . . . , Pm) : m ∈ N, Pi ∈ P, i = 1, . . . ,m}.

To simplify the presentation, we assume that ρ(xn) (which will turn out to be the
minimal dimension of “regular” sufficient statistics) is the same for every xn ∈ Xn ,
say r . By definition, r ≤ n. For arbitrary Pi ∈ P, i = 1, . . . , r , let

U (P1, . . . , Pr ) := {xn ∈ Xn : M(xn); P1, . . . , Pr ) = r}.

Since �′(·, P) is continuous, the set U (P1, . . . , Pr ) is open. The main results of this
approach are

(i) The map xn → (
∑n

ν=1 �(xν, P1), . . . ,
∑n

ν=1 �(xν, Pr )) is minimal sufficient
for {Pn : P ∈ P} in some neighbourhood of every xn ∈ U (P1, . . . , Pn). (Sufficiency
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on a subset of Xn means in this connection that the factorization holds for all xn in
this subset.)

(ii) If xn → (S1(xn), . . . , Sk(xn) is sufficient for {Pn : P ∈ P}, then k ≥ r ,
provided every Si has continuous partial derivatives: The rank r is a lower bound
for the “dimension” of any sufficient statistic with continuous partial derivatives.

Remark When some statisticians speak of the “dimension” of a sufficient statistic,
they simply mean that S(x) can be written as (S1(x), . . . , Sk(x)) ∈ R

k . Since there
exists a continuous map from R

k to R, say T , which is bijective λk-a.e. (see, Denny
1964, p. 95, Theorem), it is clear that the continuity of the functions Si : X → R is not
enough to define the “dimension” of S: If S is a continuous k-dimensional statistic,
T ◦ S is a continuous one-dimensional sufficient statistic, provided P ◦ S � λk for
P ∈ P. A meaningful concept for the dimension can, therefore, be defined only for
sufficient statistics subject to a condition stronger than continuity.

What has been stated under (i) and (ii) is essentially Lemma 3, pp. 50/1 in Shimizu
(1966). A forerunner of this result is Theorem 3.2 in Barankin and Katz (1959, p.
228), repeated as Theorem 2.1 in Barankin and Maitra (1963, p. 222). All of these
results are based on the assumption that the Factorization Theoremholds everywhere.
This is justified by a Lemma of Barankin and Katz (see Lemma 2.8.1 below) which
seems to have been overlooked by Shimizu.

The arrangement of Shimizu’s proof is not very lucid. Perhaps one could argue
as follows. For x̄n ∈ U (P1, . . . , Pr ), the rank of the matrix (2.8.7) is r .

To simplify our notations, we assume that (�′(xν, Pi ))i=1,...,ν=1,...,n is nonsingular.
By definition of r , the followingmatrix is singular for every x ∈ X and every P ∈ P:

⎛
⎜⎜⎜⎝

�′(x1, P1) . . . �′(x1, Pr ) �′(x1, P)
...

...

�′(xr , P1) . . . �′(xr , Pr ) �′(xr , P)

�′(x, P1) . . . �′(x, Pr ) �′(x, P)

⎞
⎟⎟⎟⎠ .

In particular, there are a1(P), . . . , ar (P) such that

�′(x, P) =
r∑

i=1

ai (P)�′(x, Pi )

and therefore

�(x, P) = a0(P) +
r∑

i=1

ai (P)�(x, Pi ).

Hence, for every P ∈ P,

n∑
ν=1

�(xν, P) = ψP

(
n∑

ν=1

�(xν, P1), . . . ,
n∑

ν=1

�(xν, Pr )

)
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with

ψP(y1, . . . , yr ) = a0(P) +
r∑

i=1

ai (P)yi ,

and this proves the “local” sufficiency claimed under (i).
To show that a sufficient statistic with the minimal dimension r does exist, we

still need to piece the locally sufficient statistics (�(·, P1), . . . , �(·, Pr )) together.
This is done in Theorem 1, p. 52. While Shimizu’s definition of S is more elegant
than the corresponding definition in the papers by Barankin and Katz (1959, p. 227)
or Barankin and Maitra (1963, p. 222), in the construction of the globally sufficient
statistic he closely follows the cumbersome procedure of Barankin and Katz in the
proof of their Theorem 4.1, p. 235. The basic idea of this procedure is to cover X
by using a countable family of bounded, pairwise disjoint sets V�, � ∈ N, such that
each V� is contained in someU (P1, . . . , Pr ). This implies that for each � there exists
a statistic S�, S� = (�(·, P1), . . . , �(·, Pr )) which is locally sufficient on V�. The
statistics S� are shifted by an amount c� such that the sets {S�(x) + c� : x ∈ V�},
� ∈ N, are pairwise disjoint. Then we can define the globally sufficient statistic S by
S(x) = S�(x)+c� if x ∈ V�. In this waywe arrive at the statement that S(x ′) = S(x ′′)
implies that x ′, x ′′ are in the same V�, so that qP(x ′)/qP(x ′′) is independent of P .

An additional result (or, perhaps, themain result) of this approach is the following:
If there exists for some sample size n a sufficient statistic with continuous partial
derivatives and dimension k < n, then the family is exponential of dimension≤k. The
fact that this result presumes densities with a continuous derivative is a substantial
drawback compared with the case of a real-valued sufficient statistic.

In this connection we should also mention a result put forward by (1969, p. 198,
(ii)), who were not aware of Shimizu’s paper. They prove for X = R (with hints
for a generalization to X = R

m) the exponentiality for densities with continuous
derivatives. Their condition on the sufficient statistic is “continuity” only, but they
assume that the factorization holds everywhere, a condition which these authors (in
view of Denny’s 1964 result) consider “indispensable” (p. 198). With the Lemma
of Barankin and Katz (1959) this assumption is fulfilled if the sufficient statistic has
continuous derivatives, but as far as exponentiality is concerned, this does not take
us any farther than does Shimizu (1966).

Barankin andKatz (1959, Lemma 2.3, p. 224; repeated in, Barankin 1960, Lemma
2.2, p. 97 and, Barankin andMaitra 1963, Lemma 2.2, p. 221) show that a relation like
(2.8.4) holds everywhere if it holds λn-a.e., provided the components Si (x1, . . . , xn)
admit continuous partial derivatives, and the densities are continuous.

Since Barankin and Katz need all in all more than five papers for the proof of their
fundamental Lemma 2.3, we offer an independent proof. Isolated from the special
context, this lemma reads as follows.

Lemma 2.8.1 Let X ⊂ R
n be an open subset. Assume that the relation

ϕ(x) = ψ(S1(x), . . . , Sk(x)) (2.8.8)
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holds for λn-a.a. x ∈ X. Assume that every Si , i = 1, . . . , k has continuous partial
derivatives, and that the matrix

(
∂Si

/
∂x j

)
i=1,..., j=1,...,n

has rank k ≤ n for every x ∈ X. Then relation (2.8.8) holds for every x ∈ X if ϕ is
continuous on X.

Addendum. If ϕ has continuous derivatives, thenψ has continuous derivatives, too.
The Addendum follows from the Implicit Function Theorem as in Barankin and Katz
(1959, p. 226).

Proof Let x0, y0 ∈ X be such that S(x0) = S(y0) (= s0, say). We have to show that
ϕ(x0) = ϕ(y0). Let N ⊂ B

n denote the exceptional λn-nullset for relation (2.8.8).
We shall show that for any open U � x0 and V � y0 there exist x ∈ U ∩ Nc and
y ∈ V ∩ Nc such that S(x) = S(y), whence ϕ(x) = ϕ(y). Since U and V are
arbitrary and ϕ continuous, this implies ϕ(x0) = ϕ(y0).

Using the Implicit Function Theorem, we may assume w.l.g. that S(U ) and S(V )

are open in R
k . Since S(U ) ∩ S(V ) �= ∅, we have λk(S(U ) ∩ S(V )) > 0. Since Si

has continuous derivatives, S fulfills Lusin’s condition. Hence λn(N ) = 0 implies
λk(S(N )) = 0 and therefore

λk(S(U ∩ Nc) ∩ S(V ∩ Nc)) = λk(S(U ) ∩ S(V )) > 0.

Hence there exists s ∈ S(U ∩ Nc) ∩ S(V ∩ Nc), s �= s0, and therefore x ∈ U ∩ Nc

and y ∈ V ∩ Nc, such that S(x) = s = S(y). �

2.9 Characterizations of Sufficiency

If S : (X,A ) → (Y,B) is sufficient, then for any statistical procedure based on
the observation x , there exists a statistical procedure depending on x through S(x)
only which is “at least as good”. This holds true for many kinds of statistical proce-
dures (decisions, tests, estimators,...), and any of these can be used to characterize a
statistic S with these properties as “sufficient”. The characterization by measures of
information is of a different nature, since it lacks operational significance.

Decision-Theoretic Characterization

Let T be a decision function mapping (X,A ) into a Polish space (Z ,C ). Given a
loss function �(·, P), the performance of T may be evaluated by the risk function

R(T, P) :=
∫

�(z, P)P ◦ T (dz).



36 2 Sufficiency

If S : (X,A ) → (Y,B) is sufficient, there exists a Markov kernel M |Y × C such
that ∫

M(y,C)P ◦ S(dy) = P(T−1C) for C ∈ C .

This implies in particular that the statistical procedure based on M has, for any loss
function �(·, P), the same risk as the original procedure based on T , i.e.,

∫
�(z, P)M(y, dz)P ◦ S(dy) =

∫
�(z, P)P ◦ T (dz) for P ∈ P.

Bahadur (1955a) has the following converse in mind.
Let S : (X,A ) → (Y,B) be some measurable statistic. If for every T :

(X,A ) → (Z ,C ) there exists a Markov kernel M |Y × C such that

∫
�(z, P)M(y, dz)P ◦ S(dy) ≤

∫
�(z, P)P ◦ T (dz) for P ∈ P, (2.9.1)

then S is sufficient.
Bahadur (1955a) proves this result (p. 288, Theorem) for dominated families P
containingmore than one probabilitymeasure, and for (Z ,C ) = (Rk,Bk) (including
the case k = ∞). The essential point for this converse is for which loss functions
relation (2.9.1) is required. Bahadur gets along with a single loss function fulfilling
a not very appealing condition (see p. 287), namely: For arbitrary Pi ∈ P, i = 0, 1,
inf z{(1 − u)�(z, P0) + u�(z, P1)} is attained for a unique value z = z(u), and
z(u′) = z(u′′) implies u′ = u′′ (a condition not fulfilled for �(z, Pϑ) = (z − ϑ)2).

At first glance, results of this kind would seem to satisfy all needs, at least if the
conditions on the loss function could be somehow improved. Yet, not all statistical
problems fit easily into this framework. This holds, in particular, if equivariance or
unbiasedness of estimators has to be taken into account.

This is trivial for unbiasedness: Let κ̂ : (X,A ) → (R,B) be unbiased and
of minimal convex risk for κ(P) := ∫

κ̂(x)P(dx). That means: For any unbiased
estimator there exists an equivalent or better unbiased estimator depending on x
through κ̂(x) only, namely κ̂ itself. Yet, κ̂ is not necessarily sufficient: This can
happen if there exists a sufficient statistic S : (X,A ) → (Y,B) with P ◦ S|B is
complete, and one chooses a functional contraction of S for κ̂ . (See also Chap.4.)

In connection with equivariant estimators, we mention the following result of
Fieger (1978, p. 39, Satz 1). For ϑ ∈ R let Pϑ |B be the probability measure with
λ-density x → p(x −ϑ). A shift equivariant function Sn : Xn → R

k is sufficient iff
for every convex loss function � there exists a shift equivariant function k� : Rk → R

such that
∫

�(k�(Sn(x)) − ϑ)Pn
ϑ (dx) ≤

∫
�(ϑ(n)(x) − ϑ)Pn

ϑ (dx) (2.9.2)

for every shift equivariant function ϑ(n) : Xn → R. (No randomization!)

http://dx.doi.org/10.1007/978-3-642-31084-3_4
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Note that this theoremdepends on the fact that (2.9.2) is required for a large class of
loss functions. If p(x) = 1[−1/2,1/2](x), the statistic Sn(xn) = (x1:n, xn:n) is sufficient
for the pertaining location parameter family. The function k(y1, y2) = (y1 + y2)/2
fulfills (2.9.2) for every loss function � which is convex and symmetric about 0; yet
1
2 (x1:n + xn:n) is not sufficient (Fieger 1978, p. 39).

Characterization by the Power of Tests

If S : (X,A ) → (Y,B) is sufficient, then for any critical function ϕ : (X,A ) →
([0, 1],B ∩ [0, 1]) there exists a critical function ψ : (Y,B) → ([0, 1],B ∩ [0, 1]),
i.e., the conditional expectation of ϕ, given S, such that

∫
ψ(y)P ◦ S(dy) =

∫
ϕ(x)P(dx) for every P ∈ P.

The converse can be obtained as follows.
Let S : (X,A ) → (Y,B) be an arbitrary statistic. Assume that for every A ∈ A

and any pair Pi , i = 1, 2 in a dominated family P there exists ψA : (Y,B) →
([0, 1],B ∩ [0, 1]) such that

∫
ψA(y)P1 ◦ S(dy) ≤ P1(A),

∫
ψA(y)P2 ◦ S(dy) ≥ P2(A).

Then S is sufficient forP. (See Pfanzagl 1974, Theorem and p. 198. See also Pfanzagl
1994, p. 10, Theorem 1.3.9.)

Characterization by Concentration of Mean Unbiased Estimators

If S : (X,A ) → (Y,B) is sufficient, then for any unbiased estimator κ̂: (X,A ) →
(R,B) there exists a function k : (Y,B) → (R,B) (which is the conditional expec-
tation of κ̂ , given S) such that

∫
k(y)P ◦ S(dy) =

∫
κ̂(x)P(dx), (2.9.3)

∫
C(k(y))P ◦ S(dy) ≤

∫
C(κ̂(x))P(dx), (2.9.4)

for every P ∈ P and every convex function C ≥ 0.
Assume now that S is an arbitrary statistic such that (2.9.3) and (2.9.4) hold for

every bounded unbiased estimator κ̂ . Since (2.9.4) holds for a large class of functions
C , one can easily infer from (2.9.3) and (2.9.4) that k attains only values in [0, 1]
if κ̂ = 1A. Hence the sufficiency of S follows from the result on critical functions
presented above. (Hint: Use the loss function u → |u|1(−∞,0)(u) to conclude that
k ≥ 0, and the loss function u → u1(0,1](u) + u21(1,∞)(u) to conclude that k ≤ 1).
Note that the function k occurring in relations (2.9.3) and (2.9.4) depends on κ̂ . If
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condition (2.9.4) is strengthened in the sense that for every bounded κ̂ there exists k
such that (2.9.4) holds for every ˆ̂κ fulfilling (2.9.3), then (2.9.4) with C(u) = u2 is
enough to infer the sufficiencyof S.Observe, however, that this condition is somewhat
artificial: It requires the existence of an optimal unbiased estimator whenever an
unbiased estimator exists at all. (We mention this just as a variant of a theorem
of Bahadur discussed in Sect. 4.2.) Observe that the extended condition mentioned
above does not imply that P ◦ S is complete. Completeness of P ◦ S follows if
k ◦ S ∈ K for every k : Y → R.

Characterization by Measures of Information

Let Pi , i = 1, 2 be probability measures with μ-densities pi . For a convex function
C : [0,∞) → R, the C-divergence between P1 and P2, introduced by Csiszár
(1963), p. 86, relation (4), is

IC(P1, P2) :=
∫

C(p1(x)/p2(x))P2(dx).

Csiszár (1963, p. 90, Satz 1 and Ergänzung) implies the following assertions. For
any statistic S : (X,A ) → (Y,B),

IC(P1 ∗ S, P2 ∗ S) ≤ IC(P1, P2). (2.9.5)

If S is sufficient for {P1, P2}, equality holds in (2.9.5) for every convex functionC .
Conversely, equality in (2.9.5) for some strictly convex C , implies that S is sufficient
for {P1, P2}, provided IC(P1, P2) < ∞.

This generalizes an earlier result of Kullback and Leibler (1951) for the special
case C(u) = u log u.
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Chapter 3
Descriptive Statistics

3.1 Introduction

Descriptive statistics is an important link between mathematical constructs and real-
ity. Its purpose is to transform inexact, prescientific concepts (like location, concen-
tration, independence ...) into exact concepts which are operationallymeaningful and
suitable for mathematical treatment. Since the mathematical tools used in this area
are elementary, it is surprising that there are no results worth mentioning prior to
1950. This explains why none of the textbooks which were on themarket in the fifties
(like Wilks 1943; Cramér 1946a, or Schmetterer 1956) has a chapter on descriptive
statistics. But why do recent books that try to paint a broad picture of mathematical
statistics (like “Kendall’s Advanced Theory of Statistics”) fail to introduce concepts
like “unimodality” or “spread order”? A remarkable exception isWitting andMüller-
Funk (1995) which contains a large Sect. 7.1, on descriptive functionals. Otherwise,
readers interested in descriptive statistics must use more recent monographs like
Bertin et al. (1997), or Müller and Stoyan (2002), and, above all, the papers on
descriptive statistics by Bickel and Lehmann (1975–1979).

The following remarks are restricted to those topics in descriptive statistics which
are relevant for the subsequent essays. In Sects. 3.4 and 3.7 we discuss concepts of
location and concentration. The papers by Bickel and Lehmann Bickel and Lehmann
(1975–1979) on location andBickel and LehmannBickel and Lehmann (1975–1979)
on dispersion serve as the basis for this discussion. Important papers on descriptive
concepts not discussed here are Lehmann (1966) on dependence and van Zwet (1964)
on inverse function orderings.

Though the emphasis of the following sections is on (partial) order relations
between probability measures with respect to location and concentration, a quan-
tification of these properties may be desirable for some purposes, in particular if
no distribution is optimal with respect to the partial order. Quantification means
defining a functional κ : P → R which “measures” the property in question. It is
essential that this measure be compatible with the given order relation. In general,
the functional is not uniquely determined by the condition of compatibility, nor does
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compatibility with a meaningful (partial) order relation guarantee that the functional
itself is meaningful. Moreover, a comparison based on the functional κ will be less
informative than a comparison with respect to the partial order, assuming such a
comparison is possible. In particular: the comparison of estimators should not be
restricted to the comparison of variances only if they are comparable with respect to
their concentration on intervals. In their papers on descriptive functionals of location
and dispersion, Bickel and Lehmann introduce another aspect for the selection of a
descriptive functional: its robustness and, in this context, its estimability.

In its simplest form, estimation theory starts from a family P of probability
measures P defined on a measurable space (X,A ), and a functional κ|P, taking its
values in a measurable space (Y,B). In the period following 1950, a typical case
was Y = R

k , perhaps Y a function space if the problem was to estimate the density
of P ∈ P. Estimators κ(n) : Xn → Y were obtained from i.i.d. samples guided by
Pn , for some (unknown) P ∈ P.

The big problem is the choice of the basic family. If the P chosen is larger than
necessary, then an estimator which is optimal for this family will be suboptimal
for a subfamily P0 ⊂ P. If the P chosen is too small, then an estimator, though
reasonable for every P ∈ P, might go wild if the true probability measure is not
in P.

There are few situations where the knowledge of the random process generating
the observations x1, x2, . . . suggests forP a particular parametric family. Radioactive
decay is one of these exceptions. Usually, there will be not more than a vague general
experience leaving the choice between a variety of parametric models. The situation
is no better for fully “nonparametric” theory. Even ifP is intended to be a “general”
family, say a large family on Bwith Lebesgue densities, any mathematical treatment
depends on certain nontestable smoothness assumptions about the densities, and
smoothness assumptionswhich are roughly equivalent from an intuitive point of view
(such as Hölder- or Sobolev-classes) produce different results. These are important
problems which can only be addressed using asymptotic techniques.

There are some obvious conditions on the estimators like measurability of
(x1, . . . , xn) → κ(n)(x1, . . . , xn) which is indispensable, or continuity of this map
which is natural and not really restrictive. Other obvious requirements are permu-
tation invariance in the case of an i.i.d. sample, or equivariance if the family P is
closed under certain transformations.

The requirement that the estimators should be concentrated about the estimand
as closely as possible is usually subject to the further condition that the estimators
should be properly centered.

3.2 Parameters and Functionals

Statisticians take it as a matter of course that one has to estimate “functionals”
in the case of general (“nonparametric”) families, and “parameters” in the case of
parametric families. A purist could object that this is not really true. Consider the
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distribution of lifetime with density x → ϑ exp[−ϑx], x > 0. The task to estimate
the parameter is not fully specified unless the intended use of the estimator is known.
The parameter ϑ has an interpretation as decay time, and one might be interested
in an estimator which is median unbiased. If the task is to estimate the expected
lifetime, this is 1/ϑ , and one will be interested in an estimator with expectation 1/ϑ .
Perhaps the problem is to obtain an (unbiased) estimator of the density itself, or an
(unbiased) estimator of exp[−t/ϑ] (= Pϑ(t,∞))?

Even in the case of a parametric family, it is a functional (expressed in terms of
the parameter) which is the estimand. Regrettably, many statisticians use the term
“parameter” though they really mean “functional”.

In the opinion of prominent statisticians (like von Mises 1912, p. 16), parameters
should have an intuitive interpretation (as functionals). Even if this is impossible,
as is the case of the shape parameter of the Gamma-distribution (what, after all,
is an operational definition of shape?), there are functions of the parameters, like∫ ∞
0 xΓa,b(dx) = ab, that have operational significance.
Ifwe take a sensible view, the real problemwill always be to estimate the functional

of an unknown distribution, and the parametric family enters the problem just as an
approximation to the unknown distribution (hopefully supported by some knowledge
of the process generating the unknown distribution).

In many (nonparametric) applications, the functional κ : P → R is not uniquely
determined: κ should, perhaps, be some “measure of location”. It appears doubtful
whether the use of refinedmathematical techniques is adequate in such a case. Not all
scholars share this opinion. Lehmann (1983, p. 365) claims that: “If each [functional
κ] is an equally valuedmeasure of location, what matters is how efficient the quantity
[κ(P)] can be estimated.” In this connection, Bickel and Lehmann speak of the
“robustness” of the functional, which means: Small changes in the distribution imply
only small changes in the value of the functional. In other words: The functional
should be continuous (with respect to some metric on P). Such a requirement is
supported by the fact that κ cannot be estimated locally uniformly at P unless κ is
continuous at P . Yet there continue to be some difficulties with functionals that are
distinguished by being accurately estimable rather than by the nature of the problem,
and one could even ask how important the use of particularly accurate estimators for
only vaguely defined functionals really is. To say that an estimator estimates what it
estimates, but does so efficiently, is tantamount to saying, “anything goes”.

3.3 Estimands and Estimators

Sometimes the question arises: Given a function κ̂ : P → R
k , which value κ(P)

does it estimate? In some cases the question even arises: What does κ̂ estimate?
Consider for example estimators that estimate the center of symmetry of a symmetric
distribution, like the Hodges–Lehmann estimator or the Huber estimators. What do
they really estimate if P fails to be symmetric?
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Theproblem“Given an estimator—identify the estimand” could perhaps be solved
as follows. Suppose using κ̂(x) as a surrogate for the unknown κ(P) causes the
loss �(κ̂(x) − κ(P)). Then κ̂0 will be preferred over κ̂ if

∫
�(κ̂0 − κ(P))d P ≤∫

�(κ̂ − κ(P))d P for every P ∈ P, or, preferably, if �(κ̂0 − κ(P)) is stochastically
smaller than �(κ̂ − κ(P)) (as defined in Sect. 3.4) for every P ∈ P. Since κ(P) is
usually not given, one might define a functional κ(P) by the relation

∫
�(κ̂ − κ(P))dP = min

μ∈Rp

∫
�(κ̂ − μ)d P. (3.3.1)

If the functional κ(P) is given, the relation (3.3.1) is a condition on the estimator. It
confirms that κ̂ does, in fact, what it should: It estimates κ(P) (and not some other
functional). Applied in asymptotic theory, this would also lead to the unpleasant
result that the estimand is different for different sample sizes.

Relation (3.3.1) raises various problems: Unless loss is measured on a cardinal
scale, the functional κ defined by (3.3.1) will depend on the particular scale. More-
over, different functions κ̂ will define different estimands. Hence the definition of
κ(P) by (3.3.1) will usually only make sense in asymptotic considerations. (See
Chap.5.)

Beyond the formal definition of the estimand using (3.3.1), there may be various
intuitive requirements: If P is symmetric about κ(P), and κ̂ is an estimator symmetric
about κ(P), one will be willing to accept κ̂ as an estimator of κ(P) even if condition
(3.3.1) is not fulfilled with μ = κ(P). Applied to families P|B, the loss function
�(u) = u2 defines κ(P) as the mean of P , and �(u) − |u| defines κ(P) as the
median. Depending on the basic model, conditions of mean unbiasedness or median
unbiasedness might have an intuitive appeal of their own.

For multivariate functionals κ : P → R
k , mean unbiasedness of κ(n) : Xn → R

k

poses no problem. It is defined componentwise,

∫
κi (x)P(dx) =

∫
κi (P) for i = 1, . . . , k.

However, there is no operationally significant generalization of “median unbiased-
ness” to multivariate estimators. Median unbiasedness for each component κ

(n)
i ,

i = 1, . . . , k is too weak. With application to asymptotic considerations in mind,
we suggest requiring of median unbiasedness of

∑k
i=1 αiκ

(n)
i for

∑k
i=1 αiκi (P) for

every (α1, . . . , αk) ∈ R
k .

In the following we try to explore the domain in which mean unbiasedness is
appropriate. For some problems, mean unbiasedness’ is mandatory. This presumes
in particular that the quantity to be estimated is measured on a cardinal scale. Typical
examples are weights, costs, durations and probabilities. In such cases, the estimator
κ(n)(x1, . . . , xn) should be “correct” in the long run, i.e., should be mean unbiased.
In such a case, one could say that the estimator κ(n) estimates

∫
κ(n)d Pn .

Assume that P = {Pϑ ; ϑ ∈ R}. In most elementary textbooks, estimators of
ϑ , say ϑ(n), are required to be unbiased. Without knowing the potential uses of

http://dx.doi.org/10.1007/978-3-642-31084-3_5
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this estimator, the requirement of unbiasedness lacks any justification. Unbiasedness
of ϑ(n) as an estimator for ϑ is irrelevant if the purpose is to use Pϑ(n) (A) as an
estimator for Pϑ(A). If Pϑ has a μ-density p(·, ϑ), then one needs an estimator
p(n)(·, x1, . . . , xn) such that ξ → p(n)(ξ, x1, . . . , xn) is unbiased for p(ξ, ϑ) to have∫
1A(ξ)p(n)(ξ, x1, . . . , xn)dξ as an unbiased estimator of Pϑ(A), for every A ∈ A .

This will, in general, not be p(·, ϑ(n)).
Let tα(ϑ) ∈ R denote the α-quantile of Pϑ , defined by Pϑ [tα(ϑ),∞) = α. If the

intention is to use the estimator (x1, . . . , xn) → t (n)
α (x1, . . . , xn) in order to obtain a

tolerance region [t (n)
α ,∞) with average covering probability α, then the requirement

will be
∫

Pϑ [t (n)
α (x1, . . . , xn),∞)Pn

ϑ (d(x1, . . . , xn)) = α for every ϑ ∈ Θ. (3.3.2)

This, too, is a sort of unbiasedness, but the unbiasedness of ϑ(n) as an estimator for
ϑ has nothing to do with condition (3.3.2).

Unbiasedness of an estimator for a parameter ϑ can be justified only if this para-
meter can be interpreted as a functional for which, by its nature, unbiasedness is
desirable. This certainly applies to location parameters. It is doubtful whether unbi-
asedness is adequate for scale parameters. One could argue that a deviation of σ̂ /σ

from 1 by the factor 2 is of the same “weight” as a deviation by the factor 1/2—and
this does not easily go together with unbiasedness.

Even statisticians who admire the beautiful result of Olkin and Pratt (1958, p.
202, relation (2.3)) on the existence of unbiased estimators for the correlation coef-
ficient of a two-dimensional normal distribution will agree that, for this parameter,
unbiasedness is without operational significance.

In spite of the fact that convincing arguments for mean unbiasedness as a uni-
versal requirement for every estimator have never been brought forward, estimation
theory was almost exclusively concerned with mean unbiased estimators in the years
between 1950 and 1970. This can, perhaps, be traced back to the fact that the math-
ematical tools for dealing with mean unbiasedness, like integrals and conditional
expectations, were available at this time.

Comparedwith themathematical appeal of the theory ofmean unbiased estimators
(see Chap.4), the obvious shortcomings of this concept were neglected. The doubts
raised by prominent statisticians concerning mean unbiasedness had no effect on the
predominance of these concepts in textbooks—elementary ones and others. Here are
some critical voices:

C.R. Rao (1945, p. 82): “... the inevitable arbitrariness of these postulates of unbiasedness
and minimum variance needs no emphasis.”
L.J. Savage (1954, Chapter 7, p. 244): “... it is now widely agreed that a serious reason to
prefer [mean] unbiased estimators seems never to have been proposed.”
Barnard (1974, p. 4): “Often one begins with the concept of an unbiased estimator—in spite
of the fifty year old condemnation of this idea, as a foundation for theory, on the part of R.A.
Fisher.”
Fraser (1957, p. 49): “median unbiasedness has found little application in estimation theory

http://dx.doi.org/10.1007/978-3-642-31084-3_4
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primarily because it does not lend itself to themathematical analysis needed to findminimum
risk estimates.”

In somecases, unbiasedness comes as a deus exmachinaunmotivatedby applications.
If the purpose is to estimate a quantile, median unbiasedness is cogent. What would
be the interpretation of a median unbiased estimator of the mean?

Authors who feel obliged to motivate the requirement of unbiasedness—there
aren’t that many—present arguments which seem to be more shaky than they are
convincing. They never admit that it is merely the availability of some nice-looking
easy results that justifies the emphasis given to mean unbiasedness. Here are some
examples.

Cramér (1946b, p. 87): “In order to avoid unnecessary [!] complications, we shall suppose
throughout that [the estimators are unbiased].”
Heyer (1982, p. 116): “The obvious [!] aim of an optimal decision process will be the
search for estimators ... of vanishing distortion [i.e., unbiasedness] and uniformly minimal
variance...”
Strasser (1985, p. 160): “... mean unbiasedness is a natural condition if the problem has a
linear structure.” [?]
Witting (1985, p. 300): “Die Beschränkung auf erwartungstreue Schätzer ist zur Auszeich-
nung optimaler Elemente häufig zweckmäßig”.

The opinion put forward by Aitken and Silverstone (1942, p. 189) on unbiasedness
is downright absurd: “... To obtain an unbiased estimator with minimum variance
we must in most cases estimate not ϑ but some function of ϑ .” Similarly, Barton
(1956) suggests a method “which may only be reasonably applied when the property
of unbiasedness is of more importance than the functional form of the parameter
estimated” (see p. 202). In spite of the absurdity of this idea: What can one do in the
case of a parametric family where no function of the parameter admits an unbiased
estimator?

Abasic shortcoming ofmean unbiased estimators:As opposed tomedian unbiased
estimators, they are not invariant under arbitrary monotone transformations of the
functional: If P = {N (μ, σ 2)n : μ ∈ R, σ 2 > 0}, the square roots of unbiased
estimators for σ 2 are not unbiased for σ .

The bad news is: Even if the model requires an unbiased estimator for some func-
tional, unbiased estimators may not exist at all, or they may show certain disturbing
properties (e.g. by not being proper). We will abstain from presenting an example; a
plethora of them can be found in textbooks like Lehmann and Casella (1998).

Even if unbiasedness is not required by the nature of themodel, onemight surmise
that unbiasedness somehow ensures that the estimator is “impartial”, that it does not
favour some members of P to the disadvantage of others. Yet, there are numerous
examples available in the literature where mean unbiased estimators spectacularly
fail to meet this requirement. The first example of this phenomenon was provided
by D. Basu (1955, p. 346), a variant of which can be found in Pfanzagl (1994, p. 71,
Example 2.2.9). There are estimatorsϑ(n) ofϑ which aremean unbiased in the family
{N (ϑ, 1)n : ϑ ∈ R}, but N (ϑ, 1)n{ϑ(n) = 0} > 0 for every ϑ ∈ R. Zacks (1971, p.



3.3 Estimands and Estimators 49

119, Example 3.9) presents an unbiased estimator for ϑ in the family with density
(x1, x2) → ϑ−21(ϑ,2ϑ)(x1)1(ϑ,2ϑ)(x2) with variance 0 for ϑ ∈ {2k : k = 0,±1, . . .}.
Historical Remark

LetP be a family of probability measures on (X,A ), and κ : P → R a functional.
One of the basic qualities of an estimator κ̂ : X → R is its concentration about κ(P).
One aspect of this is that it should be properly centered, i.e., without a systematic
error which over- or underestimates κ(P) for every P ∈ P. The question is how
these ideas could be made precise.

It appears that the concept of “bias” originally referred to the observations, not
to estimators. Working on the assumption that there is a “true” value and that the
observations differ from this true value by a degree of error, Bowley (1897, p. 859)
distinguishes between “biased errors” going all in the same direction, and “unbiased
errors”, which are equally likely to be positive or negative. His interest is in the
influence of these errors of the observations on the error of an estimator (taken
as an average of the observations), and his conclusion (based on some elementary
computations) is: “Unbiassed errors can be neglected in comparison with biassed”.
Basically the same attitude can be found in Markov (1912, p. 202) who requires as a
starting point for his computations the absence of a systematic error (of the individual
observations).

Aprecise definition of an “unbiased estimator” (in the sense of
∫

ϑ̂(x)P(dx) = ϑ)
first occurs in David and Neyman (1938, p. 106, Definition 1). One could, perhaps,
say that the concept of an unbiased estimator grew out of a compelling condition
formulated as the “absence of a systematic error”, but meaning, in fact, that the
model underlying the analysis should be correct. There is no conclusive argument
leading from this condition to the requirement of “unbiasedness” for estimators. In
the paper by David and Neyman, dealing with theMarkov Theorem on least squares,
unbiasedness is an essential ingredient for this particular theory. It is not meant as a
general condition to be imposed on all estimators.

The idea of the median as an important descriptive functional is as old as prob-
ability theory (see Huygens 1657, de Moivre 1756, Problem 5), and median unbi-
asedness as a requirement for the location of estimators was suggested as early as
1774 (Laplace, p. 363).

3.4 Stochastic Order

For probabilitymeasures onB, various order relations have been suggested to express
that the random variable corresponding to P1 is in a stochastic sense larger than the
random variable corresponding to P0. To define the following order relations, let Fi

denote the distribution function corresponding to Pi .
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Order A. P1 is stochastically larger than P0 iff F1(t) ≤ F0(t) for every t ∈ R.

Order B.
t → F1(t)/F0(t) is nondecreasing, (3.4.1)

t → (1 − F1(t))/(1 − F0(t)) is nonincreasing. (3.4.2)

Order C. (F1(t ′′) − F1(t ′))/(F0(t ′′) − F0(t ′)) is nondecreasing in both variables
whenever F0(t ′) < F0(t ′′).

Order A was introduced by Mann andWhitney (1947). It was used by Lehmann (see
1951a, 1952, and, in particular, 1955, pp. 399/400) in various equivalent versions,
such as:

There exists a function f fulfilling f (x) ≥ x such that P1 = P0 ◦ f

or
∫

m(u)P0(du) ≤
∫

m(u)P1(du) for every nondecreasing function m.

Here is a natural example of orderA: For any location parameter family {Pϑ : ϑ ∈ R},
the family {Pn

ϑ ◦ Tn : ϑ ∈ R} is ordered A if (x1, . . . , xn) → Tn(x1, . . . , xn) is
equivariant under shifts.

Measures κ of location compatible with the stochastic order are studied in Bickel
and Lehmann (1975–1979). In addition to the compatibility with the stochastic order,
i.e., κ(P0) ≤ κ(P1) if P0 ≤ P1, they require that

κ(P ◦ (x → ax + b)) = aκ(P) + b for a > 0 an b ∈ R (3.4.3)

and perhaps, in addition, κ(P ◦(x → −x)) = −κ(P). Compatibility with stochastic
order implies in particular that

κ(P ◦ f ) ≥ κ(P) if f (x) ≥ x

and that

κ(P0) ≤ κ(P1) implies κ(P0 ◦ m) ≤ κ(P1 ◦ m) if m is nondecreasing.

If relation (3.4.3) is strengthened to κ(P ◦ m) = m(κ(P)) for every nondecreasing
function m, this implies that κ(P) is a quantile of P (Fraser 1954b, p. 51).

If P2 is dominated by P1 (P2 
 P1), order C is equivalent to the existence of
a nondecreasing density d P2/d P1, usually called the m.l.r. property (“m.l.r.” for
monotone likelihood ratios).
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ItwasRubinwho, in an abstract (1951, p. 608), pointed out that it is themonotonic-
ity of likelihood ratios that accounts for certain attractive properties of exponential
families. The theory ofm.l.r. familieswas fully developed byKarlin andRubin (1956,
p. 279, Theorem 1) and Lehmann (1959). Various complete class- and optimality
results by Allen (1953), Sobel (1953) and, in particular, Blackwell and Girshick
(1954, p. 182, Lemma 7.4.1) which hold for m.l.r. families are formulated for the
special case of an exponential family only.

It can easily be seen that order C implies order B, and that (3.4.1) as well as (3.4.2)
imply A. Orders A and C are useful in statistical theory. Order B was introduced in
Pfanzagl (1964, p. 217) because it is strong enough to imply certain topological
properties of P. If P is B-ordered, pointwise convergence of the distribution func-
tions implies uniform convergence on B. If the probability measures have continu-
ous Lebesgue densities, pointwise convergence of the distribution functions implies
pointwise convergence a.e. of the densities. (See Pfanzagl 1964, p. 1220, Theorem
1, and 1969, p. 61, Theorem 2.12.) This result applies in particular to exponential
families (which have monotone likelihood ratios and continuous densities). As a
consequence: Pϑn ⇒ Pϑ0 weakly implies ϑn → ϑ0. (See in this connection also
Barndorff-Nielsen 1969.)

A Side Remark on m.l.r. Families and the Power of Tests

For m.l.r. families, Karlin and Rubin (1956) state, among many other results, that
the class of all critical functions ϕ fulfilling

ϕ(t) =
{
1

0
for t

>

<
t0 (3.4.4)

is complete. (See p. 282, Theorem 4, and Lehmann 1959, p. 72, Theorem 3 for a
more accessible version.)

This is a special case of a more general result by Karlin and Rubin (1956, p.
279, Theorem 1) which asserts that the class of all monotone procedures is complete
with respect to any subconvex loss function. An improved version of this result is
Theorem 2.1, p. 714, in Brown et al. (1976).

Lehmann (1959, p. 68, Theorem 2) expresses for a parametric family {Pϑ : ϑ ∈
Θ},Θ ∈ R, what is characteristic for the optimality of tests in m.l.r. families. To
come closer to applications, assume now the existence of a function T : X → R

such that {Pϑ : ϑ ∈ Θ} has “monotone likelihood ratios in T ”, i.e., that for any
ϑ1, ϑ2 there exists a nondecreasing function H1,2 such that

d Pϑ2/d Pϑ1(x) = H1,2(T (x)) μ-a.e. (3.4.5)

Under this assumption, for any critical function ϕ of type (3.4.4), x → ϕ(T (x)) is
most powerful for any of the test problems Pϑ1 : Pϑ2 . Or, in other words:
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If
∫

ψ(x)Pϑ0(dx) =
∫

ϕ(T (x))Pϑ0(dx),

then
∫

ψ(x)Pϑ(dx)
≤
≥

∫
ϕ(T (x))Pϑ(dx) for ϑ

>

<
ϑ0. (3.4.6)

Warning: The optimality of the critical functions ϕ ◦ T depends on the fact that
the family {Pϑ : ϑ ∈ Θ} has m.l.r. in T in the sense of (3.4.5), which implies that
T is sufficient. It is not sufficient for the family {Pϑ ◦ T : ϑ ∈ Θ} to have m.l.r.

M.l.r. families provide tests which not onlymaximize the power for every ϑ > ϑ0.
They alsominimize the power for every ϑ < ϑ0. This is more than is usually required
for testing the hypothesis ϑ ≤ ϑ0 against alternatives ϑ > ϑ0. The usual requirement
on the critical function is Pϑ(ϕ) ≤ α for ϑ ≤ ϑ0 and Pϑ(ϕ) as large as possible for
ϑ > ϑ0. The existence of an optimal critical function in this class does not imply
that the family has m.l.r.—not even if such a critical function exists for every ϑ0 ∈ Θ

and every α ∈ (0, 1). (For an example see Pfanzagl 1960 and 1962, p. 112.)
The existence of tests with the strong optimum property indicated under (3.4.6) is

more or less confined to m.l.r. families. Assume that a dominated familyP is ordered
by a relation ≤ with the following property: For every P0 ∈ P and every α ∈ (0, 1)
there exists a critical function ϕ such that

∫
ϕ(x)P0(dx) = α

and
∫

ψ(x)P(dx)
≤
≥

∫
ϕ(x)P(dx) if P

>

<
P0

for any critical function ψ fulfilling
∫

ψ(x)P(dx) = α. Then there exists a function
T : X → R and for any pair Pi ∈ P, i = 1, 2, a nondecreasing function H1,2 such
that

d P2/d P1(x) = H1,2(T (x)) (P1 + P2)-a.e.

(See Pfanzagl 1962, p. 110, Satz. For a generalization see Mussmann 1987.)
Exponential families with density C(ϑ)h(x) exp[a(ϑ)T (x)] have m.l.r. if the

function a is increasing. For such families the existence of most powerful criti-
cal functions of the type (3.4.4) was already remarked by Lehmann (1947, p. 99,
Theorem 1). Relevant for applications are families with m.l.r. for every sample size.
Exponential families are obviously of this type (with m.l.r. in

∑n
ν=1 T (xν)). Accord-

ing toBorges andPfanzagl (1963, p. 112, Theorem1), a family ofmutually absolutely
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continuous probability measures which has m.l.r. for every sample size is necessarily
exponential.

The results concerning the relationship between m.l.r. families and the existence
of most powerful tests, obtained in the fifties, are not yet familiar to all statisticians.
Berger (1980, p. 369) writes:

The most important class of distributions for which [uniformly most powerful tests] some-
times [!] exist is the class of distributions with monotone likelihood ratio.

3.5 Spread

A construct expressing concentration (or rather dispersion) without reference to a
particular center is spread. If Q0 is less spread out than Q1 (in symbols: Q0 � Q1),
this is much more than greater concentration about a given center μ like in (3.7.1).
It means, in an intuitive sense, greater inherent concentration “everywhere”.

The intuitive meaning of this concept has been expressed by different authors in
different ways, which afterwards proved mathematically equivalent.

Doksum (1969, p. 1169) introduced the tail order: Q1 has heavier tails than Q0

if
F−1
1 − F−1

0 is nondecreasing on (0, 1). (3.5.1)

The same relation, written slightly differently as

x → F−1
1 (F0(x)) − x is nondecreasing,

had earlier been used by Fraser (1957).
Bickel and Lehmann (1975–1979, p. 34, relation 1.3) introduced the spread order:

Q1 is more spread out than Q0 (i.e., Q0 � Q1) if

F−1
0 (β) − F−1

0 (α) ≤ F−1
1 (β) − F−1

1 (α) for 0 < α < β < 1, (3.5.2)

and they show that this is equivalent to

q0(F−1
0 (α)) ≥ q1(F−1

1 (α)) for λ-a.a. α ∈ (0, 1)

if Qi admits a Lebesgue density qi .
Relation (3.5.2) has been used earlier by Saunders and Moran (1978), who prove

for the Gamma-distribution Γ (a, b) with scale parameter a and shape parameter b
that a0 ≤ a1 and b0 ≤ b1 imply Γ (a0, b0) � Γ (a1, b1) (1978, p. 429, Theorem 1).

The merits of the paper by Saunders andMoran lie in their results for the Gamma-
distribution. The priority concerning the construct (3.5.2) is hard to decide. After all,
Saunders andMoran used an unpublished paper byLewiswhich presumably contains
the result of the paper by Lewis and Thompson (1981). Lewis and Thompson (1981,
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pp. 78/79), unaware of the paper by Bickel and Lehmann Bickel and Lehmann
(1975–1979), define a dispersion order as follows.

Q1 is more dispersed than Q0 if for every α ∈ (0, 1),

F0(F−1
0 (α) + x)

≥
≤ F1(F−1

1 (α) + x) for x
>

<
0. (3.5.3)

The equivalence between (3.5.2) and (3.5.3) is already indicated in a somewhat vague
version in Saunders and Moran 1978, p. 427, relation 1.3.

According to Shaked (1982, p. 312, Theorem 2.1), relation (3.5.3) is equivalent
to the following:

For every c ∈ R, x → F0(x) − F1(x + c) changes sign at most once, from − to+ .

It speaks for the power of this construct that it was discovered in different versions
by so many authors. Though the equivalence of the different definitions can easily
be seen, the authors were not always aware of the other related papers. It appears
that the equivalence between (3.5.1) and (3.5.2) remained unnoticed until 1983 (see
Deshpande and Kochar 1983, p. 686). One might even say that the spread order was
discovered once more: The property of estimator sequences asserted in Hájek (1970,
p. 329, Corollary 2), followed by Roussas (1972, p. 145, Proposition 4.1) is just a
version of (3.5.3).

Probability measures which are comparable in the spread order emerge from the
Convolution Theorem. According to the results presented in Sect. 5.13, Q1 = Q0∗ R
is “more” spread out than Q0 if Q0 is logconcave. That regularly attainable limit
distributions on B are comparable with the optimal limit distribution in the spread
order may also be shown directly (see Sect. 5.11).

To obtain from Q0 � Q1 an assertion about the concentration on intervals, one
has to distinguish a certain center μ. The following result is straightforward:

Lemma 3.5.1 If μ is a common quantile of Qi , i = 0, 1, then Q0 � Q1 implies
that Q0 is “more” concentrated than Q1 on all intervals about μ.

Q0 � Q1 implies Q0 ◦ m � Q1 ◦ m if m(x) = ax + b with a > 0, but not for
an arbitrary increasing function m. Yet, an important consequence of Q0 � Q1 is
preserved under monotone transformations: If μ is a common quantile of Qi , then
m(μ) is a common quantile of Qi ◦ m, and Q0 ◦ m is more concentrated than Q1 ◦ m
is on all intervals about m(μ).

In order to stress that comparability with respect to spread is much more than
comparability in the sense of (3.7.1), we mention the example of the Beta distrib-
utions: For α > β, Bα,α is more concentrated than Bβ,β on all intervals containing
the common median μ = 1/2. Yet Bα,α and Bβ,β are not comparable in the spread
order, since they have the same bounded support. (See Pfanzagl 1994, p. 99, Example
2.7.7.)

Another relation based on logconcavity (and useful for the evaluation of confi-
dence intervals) is

http://dx.doi.org/10.1007/978-3-642-31084-3_5
http://dx.doi.org/10.1007/978-3-642-31084-3_5
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Proposition 3.5.2 If P has a logconcave density, then

α → F(F−1(α) + t) is
concave

convex
if t

>

<
0.

(See Pfanzagl 1994, p. 274, Lemma 8.2.14 for F = �).
It is surprising that an intuitively convincing and mathematically useful concept

like “spread” is neglected in almost all textbooks. Many highly qualified mathemat-
ical statisticians have never heard of “spread”.

3.6 Unimodality; Logconcave Distributions

A probability measure on Bwith distribution function F is unimodal at 0 if F is con-
vexon (−∞, 0) and concave on (0,∞). For probabilitymeasureswithLebesgue den-
sity this is equivalent to the existence of a densitywhich is nondecreasing on (−∞, 0]
and nonincreasing on [0,∞). This concept is usually attributed to deHelguero (1904)
and Khintchine (1938), but it was Gauss (1823) who established a bound for the con-
centration of unimodal distributions far earlier (see Hald 1998, pp. 462–465). In
spite of its intuitive appeal, unimodality was not considered worthwhile for theoretic
analysis until the middle of the 20th century. The first such step was taken by two
mathematical giants, Gnedenko andKolmogorov (1954), and it was a slip. In Sect. 32
they assert that the convolution product of two probability measures unimodal at 0 is
unimodal at 0, with a proof adapted from a thesis of A.I. Lapin, 1947. This assertion
is disproved by the example of Chung (1953, pp. 583/4) of a probabilitymeasure P|B
unimodal at 0 such that P ∗ P is not unimodal. (See Dharmadhikari and Joag-Dev
1988, pp. 11/13, for more examples.) (According toWintner 1938, P ∗ P is unimodal
if P|B is unimodal and symmetric. The example in Davidovič (1969, p. 480) shows
that this does not extend to probability measures on B

k with k > 1.)
There are various ways to generalize the concept of unimodality from probability

measures on B to probability measures on Bk . Convexity of {x ∈ R
k : p(x) > r} for

every r ≥ 0 is the most natural and the most useful concept. Another possibility is to
require that {x ∈ R

k : p(x) > r} is star-shaped for every r ≥ 0, i.e. that there exists
a centerμ such that p(x) > r implies p((1−α)μ+αx) > r for everyα ∈ [0, 1]. The
most general concept of unimodality, i.e., that {x ∈ R

k : p(x) > r} is a connected
set, has found no use. To distinguish between the two concepts introduced above, we
speak of convex-unimodality and star-unimodality, if necessary.

In (1956), Ibragimov introduces in connection with this problem the concept
of strong unimodality. A probability measure P is strongly unimodal if P ∗ Q is
unimodal for every unimodal Q. Ibragimov (p. 255, Theorem) establishes that a
non-degenerate probability measure is strongly unimodal iff it admits a logconcave
density. This density is continuous and positive on the support of P . (Klaassen 1985,
p. 906, Lemma 2.1.) Ibragimov’s result preserves the assertion of Gnedenko and
Kolmogorov in amodified version: The assertion is true if at least one of the unimodal
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distributions has a logconcave density. A side result of Ibragimov: Pn ⇒ P0 implies
d(Pn, P0) → 0 if the measures have a unimodal density.

The relevance of logconcave densities goes far beyond the special context of strong
unimodality where it was first recognized by Ibragimov. According to Lehmann
(1955, p. 406, Example 3.2) , P has a logconcave density iff the location parameter
family generated by P has monotone likelihood ratios. Observe also the relation
between logconcavity and logconcavity of the order statistics, and the monotonicity
of failure rates. (See in this connection also the monograph by Reiss 1989.)

Logconcavity extends to Euclidean spaces of any dimension, where the relation
to strong unimodality no longer applies. In particular, the following holds true for
any logconcave probability measure P|Bk .

(i) {x ∈ R
k : p(x) > r} is convex for any r ≥ 0.Hence any logconcaveprobability

measure is unimodal.
(ii) P ◦ (u → Au) is logconcave for any m × k-matrix A (Dharmadhikari and

Joag-Dev 1988, p. 47, Lemma 2.1).

The implications of unimodality and logconcavity for convolution products will
be discussed in Sect. 3.9.

3.7 Concentration

Though the intention of estimation theory is to find estimators that are concentrated
about the estimand as closely as possible, there were no efforts prior to 1950, say,
to find a suitable mathematical construct corresponding to the intuitive concept of
“concentration”. The statisticians settled for comparing estimators on the basis of
their quadratic risk, even though Fisher had already expressed his doubts. L.J. Sav-
age (1954, p. 224) made the obvious suggestion to consider the concentration of
probability measures Q0, Q1 on B about a given center μ, and to define Q0 ≥ Q1 if

Q0(μ − t ′, μ + t ′′) ≥ Q1(μ − t ′, μ + t ′′) for t ′, t ′′ ≥ 0. (3.7.1)

In the case Q0{μ} = 0, relation (3.7.1) implies that μ is a common quantile of Q0

and Q1. The consequence: If μ is a median of Q0, a strong comparison as in (3.7.1)
is possible only with distributions Q1, having the same median.

What makes the spread order particularly important is that Q0 � Q1 implies
(3.7.1) if μ is a common quantile of Q0 and Q1 (see Lemma 3.5.1).

If one considers unbiased estimators, one will be interested in the concentration
aboutμ as the common expectation

∫
uQi (du), i = 0, 1. Unless the distributions are

symmetric aboutμ, one cannot expect thatμ is, at the same time, a common quantile
of Qi . Hence, for mean unbiased estimators, a strong comparison as in (3.7.1) will
be possible in exceptional cases only.
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The Peak Order

The natural basis for the comparison of estimators is their concentration about the
estimand. For estimators on B the obvious concept is the concentration on intervals
containing the estimand, as suggested by Pitman (1939, p. 401), Z.W. Birnbaum
(1948, p. 76, who suggested the term “peakedness”) and L.J. Savage (1954, p. 224).
Pitman and Birnbaum consider intervals symmetric about the estimand only; pre-
sumably they did not expect situations where a comparison on arbitrary intervals
about 0 is possible. To see the need for these more general comparisons, consider
the case of a scale parameter, say a, where the concentration on intervals (t−1a, ta)

is more relevant than the concentration on (a − t, a + t).
Extending Z.W. Birnbaum’s peakedness-concept from B to B

k , Sherman (1955,
p. 765, relation 5) defines a peak order for probability measures on B

k

Q1 ≥ Q2 if Q1(C) ≥ Q2(C) (3.7.2)

for all C ∈ B
k which are convex and symmetric about 0. Half a century later,

the same order relation appears in Witting and Müller-Funk (1995, p. 439) as the
“Anderson-Halbordnung”.

As can easily be seen, the peak order is equivalent to

Q1 ≥ Q2 if
∫

gd Q1 ≥
∫

gd Q2

for all gain functions g : Rk → [0,∞) which are symmetric and unimodal. (See
Witting and Müller-Funk 1995, p. 439, Hilfssatz 6.214.)

Equivalent to (3.7.2) is the statement that the distribution of subconvex loss is
stochastically smaller under Q1 than under Q2.

Notice that Q1 ≥ Q2 in the peak order on B
k implies that

Q1circ(u → a�u) ≥ Q2 ◦ (u → a�u) in the peak order on R for every a ∈ B
k .

There is an obvious but technically useful extension of this equivalence to the class,
say M , of all symmetric gain functions that are approximable (from below) by
functions Σai gi with ai > 0 and gi ≥ 0, symmetric and unimodal.

Generalizing Birnbaum’s Lemma 1 (p. 77), Sherman’s Lemma 3, p. 766, asserts
that P1 ≥ P2 and Q1 ≥ Q2 in the peak order imply P1 ∗ Q1 ≥ P2 ∗ Q2, if all
probability measures are symmetric and unimodal. In fact, a stronger result holds
true:

Proposition 3.7.1 If Q|Bk is symmetric and unimodal, then

P1 ≥ P2 implies Q ∗ P1 ≥ Q ∗ P2, (3.7.3)

without any further condition on P1 and P2.
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This follows directly from the extended version of Anderson’s Theorem, which
asserts that y → Q(C + y) is inM if C is convex and symmetric about 0.

In this connection one should alsomention an early result ofZ.W.Birnbaum (1948,
p. 79,Theorem1) onunimodal distributionswith aLebesguedensity symmetric about
0: If Q1 is more concentrated than Q2 on symmetric intervals about 0, then the same
is true of all n-fold convolution products. (Notice that for symmetric distributions,
“more concentrated on all intervals symmetric about 0” is the same as saying “more
concentrated on all intervals containing 0”.)

The Löwner Order

The family N (0,Σ)|Bk is an instance where the peak order applies. Löwner (1934)
introduced an order relation between positive definite matrices Σi by Σ1 ≤L Σ2

if Σ2 − Σ1 is positive semidefinite. Since N (0,Σ2) = N (0,Σ1) ∗ N (0,Σ2 − Σ1),
Anderson’s Theorem implies that

N (0,Σ1) ≥ N (0,Σ2) in the peak order iff Σ2 − Σ1 is positive semidefinite.
(3.7.4)

In other words, N (0,Σ1) ≥ N (0,Σ2) in the peak order iff Σ1 ≤ Σ2 in the Löwner
order. Amazingly, the basic relation (3.7.4) seems to have been unknown prior to
Anderson’s Theorem.

In Das Gupta (1972, p. 254, Theorem 3.3), relation (3.7.4) is generalized from
N (0,Σ) to distributions PΣ with density x → |Σ |−1/2 p(x�Σ−1x).

Rao (1945, p. 85, and 1947, pp. 281/2) remarks that Σ1 ≥L Σ2 implies

(Σ2)i i ≥ (Σ1)i i for i = 1, . . . , p, (3.7.5)

and that Σ2 = Σ1 if equality holds in (3.7.5) for every i = 1, . . . , p. Since Ander-
son’s Theorem was not yet available, he gives no further interpretation of it in terms
of concentration.

Cramér (1946a, Sect. 2.7 and 1946b, p. 85 ff) tries to illustrate the difference
between N (0,Σ1) and N (0,Σ2) using Markov’s concentration ellipsoid, a compar-
ison without operational significance.

Some statisticians, now that Anderson’s Theorem has become available, still
express their final result in a formal way as “Σ2 − Σ1 is positive semidefinite”,
without using the operational expression (3.7.4). (See e.g. Bahadur 1964, p. 1550;
Roussas 1968, p. 257 and 1972, p. 161; Serfling 1980, p. 142.)

The use of the ellipsoid of concentration in Schmetterer (1974, p. 292, Theorem
1.13) almost thirty years after Cramér, and twenty years after Anderson’s Theorem,
is quite surprising.

If Q0 is unimodal and symmetric about μ, then Q1 � Q2 implies that Q1 is more
concentrated than Q2 (whether μ is a common quantile or not) on all symmetric
intervals, i.e., (3.7.1) holds with t ′ = t ′′. (See Pfanzagl 1995, p. 78, Theorem 2.3.17.)
One could imagine that this holds with arbitrary t ′, t ′′ ≥ 0 if Q1 is not just more
spread out than Q1, but is of the special type Q2 = Q1 ∗ R. This is, however, not the
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case. Example 6.1 in Pfanzagl (2000b, p. 7) shows that for any t ′, t ′′ > 0, t ′ �= t ′′,
there exists R with expectation 0 such that

N (0, 1)(−t ′, t ′′) < N (0, 1) ∗ R(−t ′, t ′′).

(See also Lynch et al. 1983, p. 890, Theorem 2.)
There is yet another condition which implies (3.7.1): If Qi has a continuous

Lebesgue density qi such that {x ∈ R : q1(x) ≥ q2(x)} is an interval containing a
common quantileμ, then (3.7.1) holds true (see Pfanzagl 1994, p. 75, Lemma 2.3.2).

3.8 Anderson’s Theorem

For the interpretation of the Convolution Theorem (Sect. 5.13) with convolution
kernel Q, one needs conditions on Q|Bk which imply

Q ∗ R(B) ≤ Q(B) (3.8.1)

for a relevant family B of sets B|Rk . Since relation (3.8.1) is required to hold for
any R|Bk , this amounts to finding conditions on Q and B such that

Q(B + y) ≤ Q(B) for every y ∈ R
k and B ∈ B. (3.8.2)

The usual textbooks provide for this purpose a shortened version of Anderson’s
Theorem,which asserts (3.8.1) under the condition that Q is unimodal and symmetric
about 0, and B is convex and symmetric about 0. In fact, Anderson’s Theorem offers
a stronger result: Rewritten in our notation it asserts the following.

Anderson’s Theorem. If Q|Bk is unimodal and symmetric about 0, then

Q(C + r y) ≥ Q(C + y) for every y ∈ R
k and every r ∈ [0, 1],

provided that C is convex and symmetric about 0.

Remark. A conjecture by Sherman (1955, p. 766) claims that symmetry and convex-
unimodality of Q might even be necessary for the validity of (3.8.2). This conjecture
was disproved by Wells (1978), using a suggestion by Dharmadhikari and Jogdeo
(1976, p. 612, Example 4.1): There is a symmetric Q, star-unimodal but not convex-
unimodal, such that y → Q(B + y) is star-unimodal for every symmetric convex set
B. An example by Wefelmeyer (1985) presents a star-unimodal symmetric Q such
that y → Q(B + y) is not star-unimodal for every symmetric convex set B.

The shortened version of Anderson’s Theorem suffices for the interpretation of
the Convolution Theorem by means of relation (3.8.1). Yet, it might be of interest
to have a closer look at the function y → Q(C + y). Anderson’s Theorem asserts
that it is star-down, starting from y = 0. For k = 1, this is the same as unimodality.

http://dx.doi.org/10.1007/978-3-642-31084-3_5
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As already remarked by Andersen (1955, p. 171; see Sherman 1955, p. 764 for
a counterexample), this function is not necessarily unimodal if k > 1. (Sherman’s
example is reproduced inDasGupta 1976, Example 1, pp. 90/1 and inDharmadhikari
and Joag-Dev 1988, p. 65.)

Though y → Q(C + y) is not unimodal in general, it can be approximated by a
sequence of unimodal functions, which serves nearly the same purpose. To see this,
we may go back to an alternative proof of Anderson’s Theorem offered by Sherman
(1955). According to his Lemma 1, p. 764, the function

y →
∫

1C(x + y)1K (x)λk(dx) (3.8.3)

is unimodal if C and K are bounded convex sets in B
k . (No symmetry!) In fact,

Sherman’s result is just a weaker version of Satz 3 in Fáry and Rédei (1950, 207)
which implies that the function (3.8.3) is logconcave.

Consider now the function

y →
∫

1C(x + y)q(x)λk(dx), (3.8.4)

where q is a unimodal density. Approximating q by a sequence of functions of the
form

∑N
i=1 ai1Ki with ai ≥ 0 and Ki convex, one obtains that (3.8.4) is approximable

by functions y → ∑n
i ai

∫
1C(x+y)1Ki (x)λk(dx). Hence for unimodal distributions

Q, the function y → Q(C + y) is in M . If we now add the assumption that Q and
C are symmetric about 0, we obtain that the function y → Q(C + y) is star-down
from y = 0 (which is Anderson’s Theorem). Since it is, in addition, in M , relation
(3.8.1) can be extended to

Q ∗ P1 ≤ Q ∗ P2 if P1 ≤ P2. (3.8.5)

Since relation (3.8.3) already occurs in Fáry and Rédei (1950), Anderson’s Theorem
could have been obtained five years earlier, but nobody was interested. Even so,
Anderson’s Theorem had to wait more than ten years to find its pivotal role in the
interpretation of the Convolution Theorem.

In connection with the characterization of maximum likelihood (ML) sequences
as “asymptotically Bayes”, Le Cam (1953, p. 315) introduces the concept of gain
functions g such that

y →
∫

g(x)N (y,Σ)(dx) (3.8.6)

attains its maximum at y = 0. He abstained from identifying these gain functions,
and Anderson, looking for statistical applications of his theorem, did not realise that
he had provided an answer to Le Cam’s problem: Relation (3.8.6) holds for all gain
functions which are unimodal and symmetric about 0. Le Cam, who loved to surprise
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his readers by unusual references, had missed the chance to cite Satz 3 in Fáry and
Rédei (1950, p. 207), from which Anderson’s Theorem easily follows.

The unimodality and symmetry of Q are the basic conditions of Anderson’s Theo-
rem. For interpretations of theConvolutionTheorem, it is only the case Q = N (0,Σ)

where symmetry applies. Yet, N (0,Σ) has an important feature going beyond uni-
modality: Its density is logconcave. Though logconcavity had already turned out to
be an important property in Ibragimov’s paper from 1956, the question was never
taken up whether there is a stronger version of Anderson’s Theorem for the partic-
ular case Q = N (0,Σ). The key for such a possible improvement is the following
theorem1 (Prékopa 1973, p. 342, Theorem 6).

Prékopa’s Theorem. If f : Rm × R
k → [0,∞) is logconcave, then

y −→
∫

f (x, y)λm(dx) is logconcave.

If q ∈ d Q/dλk is logconcave andC is convex, then themap (x, y) → 1C(x + y)q(x)

is logconcave, too. Hence

y →
∫

1C+y(x)q(x)λk(dx) = Q(C + y) is logconcave.

If Q and C are symmetric about 0, this implies that the function y → Q(C + y), too,
is symmetric about 0. Being logconcave, it is, therefore, unimodal about 0. This is a
property which does not apply, in general, if Q is merely unimodal and symmetric.
(Recall the example in Sherman 1955, p. 764.)

Remark. Obviously Prékopa was unaware of the relation between his result and both
Anderson’s Theorem and the Convolution Theorem. He also seems to have over-
looked a forerunner of his result in the paper by Davidovič et al. (1969), which states
that y → ∫

f1(x + y) f2(x)λk(dx) is logconcave if the functions fi are logconcave.
These authors, in turn, were unaware of a just slightly weaker result by Lekkerk-
erker (1953, p. 505/6, Theorem 1), which asserts that y → ∫

f1(x + y) f2(x)dx
is decreasing and logconcave on y ∈ (0,∞) if the functions fi have this property.
Readers interested in this field, with a surprising number of multiple discoveries,
would be well advised to consult Dharmadhikari and Joag-Dev (1988), Pečarić et al.
(1992), and Das Gupta (1980). More may be found in Bertin et al. (1997), but even
readers ready to follow the abstract approach of these authors will be daunted by
their forbidding notation. ��

1According to Pfanzagl (1994, p. 86, Corollary 2.4.10), the function y → ∫
f (x, y)λk(dx) is

concave if f is unimodal. This stronger assertion is obviously wrong: It would imply that any
subconvex function is concave, since (x, y) → 1[0,1]k (x)�(y) is subconvex if � is subconvex, and
�(y) = ∫

1[0,1]k (x)�(y)λk(dx). The proof uses that y → λk(Cy) is concave, which is true only on
{y ∈ R

m : λk(Cy) > 0}, not on R
m . None of the reviewers mentioned this blunder.
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Does the logconcavity of y → Q(C + y) contribute to a refined interpretation of
the Convolution Theorem? It is certainly a welcome property that y → Q(C + y)

varies “regularly”, that the set {y ∈ R
k : Q(C + y) ≥ r} is not “fuzzy” in some

intuitive sense. The more basic requirement, that Q(C + y) is “decreasing” along
rays y = t y0, is already fulfilled in the general case of symmetric and unimodal Q.

To what extent do results like (3.8.2) extend from 1C to general gain functions g,
i.e., what are the properties of

y →
∫

g(x + y)Q(dx)?

The extension of the most fundamental result is immediate: If y → ∫
1C(x +

y)Q(dx) is star-down for every convex and symmetric set C , then y → ∫
g(x +

y)Q(dx) is star-down for every symmetric and unimodal function g. More complex
properties of y → ∫

1C(x + y)Q(dx) like unimodality or logconcavity require more
subtle arguments. If q ∈ d Q/dλk and g are logconcave, the function

y →
∫

g(x + y)Q(dx) (3.8.7)

is logconcave and therefore unimodal according to Prékopa’s Theorem, applied with
f (x, y) = g(x + y)q(x). Of course, one would like to have unimodality (3.8.7)
under conditions on g weaker than logconcavity (though logconcavity is not an
unreasonable property of gain functions.) For k = 1, the function y → ∫

g(x +
y)Q(dx) is, indeed, unimodal if g is unimodal and Q logconcave (see Pfanzagl
2000b, p. 12, Theorem 9.1.) Sherman’s example shows that this does not extend to
dimensions k > 1.

3.9 The Spread of Convolution Products

The results on the concentration of convolution products for measures on B
k , pre-

sented in Sect. 3.8, are confined to the concentration on convex sets which are sym-
metric about 0. For probability measures on B, the concept of “spread” offers the
possibility to characterize the concentration of convolution products in a different
way. For this purpose, a new theorem was required (see Lewis and Thompson 1981,
pp. 88/9).

Theorem of Lewis and Thompson. If Q|B has a logconcave density, then P1 � P2

implies
Q ∗ P1 � Q ∗ P2. (3.9.1)

Observe the analogy to (3.7.3) for Q and Pi on Bk .
For the interpretation of the Convolution Theorem, the application of (3.9.1) with

R2{0} = 1 suffices:
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If Q|B has a logconcave density, then

Q � Q ∗ P for every P|B. (3.9.2)

Of course, one would like to have (3.9.2) for a larger class of distributions Q. This
is ruled out by a result of Droste and Wefelmeyer (1985, p. 237, Proposition 2): The
validity of (3.9.2) for arbitrary R already characterizes Q as logconcave. (See also
Klaassen 1985, p. 905, Theorem 1.1.) The fact that relation (3.9.1) is, with respect
to the spread order, restricted to logconcave Q, does not limit its usefulness for the
interpretation of the Convolution Theorem.

Now we will discuss the consequences which spread order has for the concen-
tration on intervals. Since spread is shift invariant, the relation Q0 � Q1 leads to a
comparison of the respective concentrations only if Q0 and Q1 are comparable with
respect to their location. Lemma 3.5.1 implies the following.

If Q|B is logconcave, then

Q ∗ R(I ) ≤ Q(I ) for every interval I containing 0, (3.9.3)

if Q and Q ∗ R have median 0.
If Q is normal, the inequality (3.9.2) is strict unless R{0} = 1. This is not nec-

essarily true for arbitrary logconcave distributions Q. If Q is exponential, there are
non-degenerate R such that Q and Q ∗ R have median 0, and yet Q ∗ R(−t ′, t ′′) =
Q(−t ′, t ′′) for some t ′, t ′′ > 0. (See Pfanzagl 2000b, p. 6, Remark 5.2.)

Relation (3.9.3) refers to regularly attainable limit distributions of median unbi-
ased estimator sequences. If the Convolution Theorem holds for such a limit dis-
tribution with a logconcave factor Q, then Q is in this class of limit distributions
maximally concentrated on all intervals containing the median. A straightforward
application is to limit distributions which are convolution products with an exponen-
tial factor, evaluated by means of an arbitrary (i.e., not necessarily symmetric) loss
function.

If the convolution factor is N (0, σ 2), then both Anderson’s Theorem and the
Theorem of Lewis and Thompson apply. Hence N (0, σ 2) maximizes the probability
of (−t, t) in the class of all regularly attainable limit distributions, and it maximizes
the probability of (−t ′, t ′′) in the class of all regularly attainable limit distribution
withmedian 0. Expressed in terms of loss functions this occurs inWitting andMüller-
Funk (1995, pp. 440/1), the only textbook on mathematical statistics taking notice of
the concept of “spread” and the Theorem of Lewis and Thompson (see p. 447, Satz
6.221).

Remark. Given a convolution product Q = N (0, σ 2) ∗ R, let Q0 be the shifted
version of Q with median 0. Then

Q0(I ) ≤ N (0, σ 2)(I ) for every interval I containing 0. (3.9.4)
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This leads to the question whether for k > 1, too, there is always a shifted version
Q0 of Q = N (0,Σ) ∗ R such that Q0(B) ≤ N (0,Σ)(B) for a class of sets B more
general than the convex and symmetric ones, say for all convex sets containing 0.

Kaufman (1966, Sect. 6, pp. 176–178) presents for k = 2 the example of a dis-
tribution Q = N (0,Σ) ∗ R (in fact a regularly attainable limit distribution) with
the following property. For every shifted version Q0 there are rectangles I1 × I2
containing 0 such that

Q0(I1 × I2) > N (0,Σ)(II × I2).

What could be considered as a generalization for not necessarily symmetric inter-
vals from k = 1 to arbitrary k is that the distribution of a�u is more spread out under
N (0,Σ) ∗ R than under N (0,Σ), so that (3.9.4) holds for the distribution of a�u.
In a somewhat disguised form this occurs in Hájek (1970, p. 329, Corollary 2). (See
Sect. 5.13 for details.)

3.10 Interpretation of Convolution Products

When Kaufman presented his fundamental result (1966, p. 157, Theorem 2.1) he
simply said: A uniformly attainable limit distribution cannot bemore concentrated—
onconvex sets symmetric about zero—than the limit distributionof theML-sequence.
It was an idea of Inagaki (1970, p. 10, Theorem 3.1), followed by Hájek (1970, p.
324, Theorem), to express limit distributions as convolutions with a factor N (0,Σ),
say N (0,Σ) ∗ R. Even though they supply their result with an interpretation based
on Anderson’s Theorem, one could question whether it was a good idea to use
the convolution form to express an optimality result. It appears that certain authors
consider the convolution form as some sort of a final result. This happens already
in LeCam’s paper (1972, p. 259, Examples 2 and 3), where he presents an abstract
Convolution Theorem. Though he points to convolutions with an exponential factor
as a special case, he feels no need for an interpretation in terms of probabilities.

Ibragimov and Has’minskii present a Convolution Theorem containing the factor
N (0,Σ) (1981, Theorem II,9,1, p. 154). Then they use four pages (155–158) to
prove Anderson’s Theorem, which they need for the interpretation of this result (see
Theorem II.11.2, p. 160). In Theorem V.5.2, p. 278, they present a Convolution
Theorem containing an exponential factor which

is analogous to Theorem II.9.1 with the normal distribution replaced by an exponential one.

No further comment on the interpretation of convolutions with an exponential factor
where Anderson’s Theorem does not apply.

Section3.9 presents conditions under which the relation Q = Q ∗ R admits
an interpretation in terms of probabilities, conditions which justify the assertion
that “estimator sequences with limit distribution Q are preferable over estimator

http://dx.doi.org/10.1007/978-3-642-31084-3_5
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sequences with limit distribution Q” or, more precisely, “Q is more concentrated
than Q”.

Are such considerations really necessary? Some scholars accept the statement
that “Q is better than Q ∗ R” at face value. Their argument: Q = Q ∗ R is a disturbed
version of Q; the convolution with R spreads out mass. An argument of this kind
already occurs in Andersen (1955, p. 173):

Q ∗ R is “in a certain sense...more spread out than Q ∗ Rt for t ∈ (0, 1)”, where Rt :=
R ◦ (v → tv).

Millar (1983, p. 155, Remark 4.3) says so explicitly.

Since convolution “spreads out mass”, it is natural to define [!] a sequence of regular esti-
mators to be efficient if [. . . R . . .] is unit mass at {0}.

A similar argument occurs in Bickel et al. (1993, p. 24).
What could be the intuitive background of the “spreading out mass” idea? By

convolution, each point u is replaced by a probability measure, which distributes the
point-mass of u over Rk . Hence any fixed set B ⊂ R

k loses part of its mass. Could
it be that the proponents of the “spread out mass” idea have overlooked the fact that,
at the same time, B gains mass from points u ∈ Bc, which ruins the idea of the set B
losing mass, an idea which, obviously, cannot apply to B and Bc at the same time.
For which sets B should Millar’s argument apply then? It is, in fact, surprising that
this back and forth—with an unknown (!) R—leads to a predictable result in certain
cases.

The representation as a convolution product is not unique. If Q = Q ∗ R, then
Q = Qc ∗ R−c for every c ∈ R

k (where Pc is a shifted version of P). Hence, which
one of the probability measures Qc is better than Q? If Q is a normal distribution,
N (0,Σ) is, in some sense, distinguished among the convolution kernels N (c,Σ),
c ∈ R

k . If Q is the exponential distribution E , such a distinguished version does not
exist. How can we, then, express the superiority of E over E ∗ R?

If a given class Q of limit distributions contains an element Q which is minimal
in the convolution order, i.e., every Q ∈ Q can be represented as Q = Q ∗ R, then
Q is unique up to a shift, providedQ is closed under shifts. (For a proof see Pfanzagl
2000b, p. 3, Proposition 3.1.)

Millar’s argument does not refer to any property of Q. Even in a favourable case
with symmetric sets B and a symmetric Q, it depends on more subtle properties of
Q (like unimodality) whether Q loses mass on B. If Q = 1

2 N (−c, 1) + 1
2 N (c, 1)

and R = N (0, 1), then Q̂ ∗ R(−t, t) > Q(−t, t) if t is sufficiently small.
Since Millar’s argument refers to any kind of randomization, it should also apply

to randomization using a Markov kernel:
∫

M(x, B)Q(dx) ought to be smaller than
Q(B)—for which B? Even in a situation which seems to be particularly favourable
for Millar’s claim, it can easily be refuted: For Q symmetric about 0, and B convex
and symmetric about 0. If Q̂ = N (0, 1) and M(x, ·) = N (0, x−2), then

∫
M(x, (−t, t))N (0, 1)(dx) > N (0, 1)(−t, t) for every t > 0.
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3.11 Loss Functions

Let κ̂ : X → R
k be an estimator of the functional κ : P → R

k . The task of the
loss function �P : Rk → [0,∞) is to express the loss resulting from the deviation
between κ̂(x) and κ(P). This requires that �P(u) = 0 if u = κ(P), and that �P(u) is
nondecreasing as u moves away from κ(P). For k = 1, this means that u → �P(u) is
nondecreasing as u moves away from κ(P) in either direction. The obvious extension
to arbitrary dimensions k is that �P ismonotonewith center κ(P), in other words: that
{u ∈ R

k : �P(u) ≤ r} is for every r > 0 star-shaped with center κ(P). The generally
accepted concept of a loss function is more restrictive: {u ∈ R

k : �P(u) ≤ r} is
for every r > 0 a convex set containing κ(P). In the usual terminology, such loss
functions are called “subconvex” about κ(P). Warning: Some authors include in
these terms that �P is symmetric about κ(P). Recall that the restriction to symmetric
loss functions is not required if k = 1.

The example of the binomial distribution demonstrates the need for loss functions
other than �P(u) = �(u − κ(P)). A deviation of 0.1, say, from p = 0.5 has a weight
smaller than the same deviation from p = 0.8. | log( p̂/(1 − p̂)) − log(p/(1 − p))|
might be an expression for the difference between p̂ and p more adequate than
| p̂ − p|. After all,

u → | log(u/(1 − u)) − log(p/(1 − p))|, u ∈ (0, 1)

is subconvex and attains its minimum for u = p.
If one believes in the possibility ofmeasuring the loss caused by the deviation of an

estimate from the estimand, one would expect something like a “law of diminishing
returns”, hence a loss function with decreasing derivative. This excludes a priori all
convex loss functions. One could even argue that a loss function should be bounded.
With unbounded loss functions, the expected loss might be determined by values
the estimators hardly ever attain, and one could question whether that’s what really
counts.

So far, the comparison between estimators κ̂i , i = 1, 2, has been based on the
concentration of P ◦ κ̂i on certain sets. To focus on the essentials, we simplify the
notations by omitting P , which is fixed throughout. The problem is now to evaluate
probability measures Q|Bk , expressing the distribution of an estimator κ̂ under P ,
by means of a loss function � : Rk → [0,∞) with the properties indicated above.
For asymptotic considerations, Q denotes the (non-degenerate) limit distribution of
an appropriately standardized estimator sequence, say Q = limn→∞ Pn ◦ cn(κ

(n) −
κ(P)).

In Sects. 3.7 and 3.9 the criterion was the concentration on certain interesting
subsets ofBk . In the present section we shall investigate whether a comparison based
on loss functions offers additional insights. Most authors accept an expression like∫

�(κ̂ − κ(P))d P or
∫

�(cn(κ
(n) − κ(P)))d Pn as a measure of the accuracy of the

estimator κ̂ . (See e.g. Ibragimov and Has’minskii 1981, p. 16, Lehmann and Casella
1998, p. 5, and many more.) Already used by Laplace (1820) and Gauss (1821), it
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was revived by Wald, who introduced (1939, p. 304) the misleading term “risk”. We
prefer to speak of “expected loss” or “average loss”. The use of “gain functions”
by Le Cam (1953), which is more convenient since “gain” is in direct relation to
“concentration”, was not accepted by the statistical community.

Remark. Some authors accept the evaluation of estimator sequences by �(cn(κ
(n) −

κ(P))) only with certain reservations. After all, u → ∫
�(cn(u − κ(P))) evaluates

the loss using a different loss function for every n ∈ N. Arguments brought forward
by some scholars to justify the application of the loss function to the standardized
estimator sequence are spurious. As an example we might mention Millar (1983, p.
145):

[Since n1/2 is the best possible rate of convergence] it is reasonable to specify the loss by
�(n1/2(ϑ(n) − ϑ)).

As J.K. Ghosh (1985, p. 318) succinctly states,

the scaling by
√

n remains, to some extent, more a matter of tradition and mathematical
convenience than good statistical common sense.

The justification for the use of �(cn(κ
(n) − κ(ϑ))) is more convincing in the special

case �(u) = 1[−t,t](u): The concentration of estimator sequences κ(n) is then com-
pared on sets (κ(P) − cnt, κ(P) + cnt) containing these estimator sequences with a
probability which is neither negligible nor close to 1.

With � fixed,
∫

�d Q defines a total order between all probability measures Q|Bk .
Applied with an arbitrarily chosen �, this order says nothing about the reality. One
way out is to consider a large familyL0 of all potential loss functions (including the
unknown true one). Yet, is there any chance that the order based on the expected loss
will be the same for every � ∈ L0? Since

∫
�d Q = ∫ ∞

0 Q{u ∈ R
k : �(u) > r}dr , it

seems unlikely that
∫

�d Q0 ≤
∫

�d Q1 (3.11.1)

for a large number of loss functions, unless there is an inherent relationship between
the probability measures Qi and the loss functions �, which implies that

Q0{u ∈ R
k : �(u) ≥ r} ≤ Q1{u ∈ R

k : �(u) ≥ r} for every r > 0, (3.11.2)

or that there is a large familyB0 of subsets B ⊂ B
k such that

Q0(B) ≤ Q1(B) for B ∈ B0.

If this is the case, relation (3.11.1) will be true for all loss functions � such that

{u ∈ R
k : �(u) ≤ r} ∈ B0 for every r > 0.
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Here is the relevant example, with two variants.

(i) If Q0|Bk is symmetric and unimodal, then (3.11.2) holds for every set B which
is convex and symmetric about zero (see Sect. 3.8).

(ii) If Q0|B is logconcave, and if both Q0 and Q1 have the same median, then
relation (3.11.2) holds for every interval containing the median (see Sect. 3.9).

In either case, Q0◦� is stochastically smaller than Q1◦�, and, therefore,
∫

�d Q0 ≤∫
�d Q1 for � ∈ L , the set of all loss functions which are subconvex and—in case

(i)—also symmetric. This implies in particular that the optimal limit distribution is
comparable with every regularly attainable limit distribution (which are not mutually
comparable in general).

Remark. In a context where unimodality of Q is not available (say probability
measures on C[0, 1]) a comparable result might be obtained under more restrictive
conditions on the loss function.

If � is convex, then y → ∫
�(u + y)Q(du) is convex. If Q and � are symmetric,

then y → ∫
�(u + y)Q(du) is symmetric. Symmetry and convexity together imply

∫
�(u + y)Q(du) ≥

∫
�(u)Q(du) for every y ∈ R

k,

whence
∫

�d Q ∗ P ≥
∫

�d Q for every P|Bk .

This argument was used by Dvoretzky et al. (1956, p. 666) and Beran (1977, p. 402).
If � is subconvex, then m ◦ � is subconvex for any nondecreasing function m with

m(0) = 0.Apart from this special type of loss functions, it is a reasonable requirement
on any class of loss functions to be closed under monotone transformations.

Some authors think of “loss” measured on a cardinal scale. Yet convincing exam-
ples are lacking. Amore realistic assumption is that the loss ismeasured on an ordinal
scale only, and this, too, requires that m ◦ � be a possible loss function if � is such
a one.

Proposition 3.11.1 For families L of loss functions which are closed under
monotone transformations, the following relations are equivalent.

(i)
∫

�d Q0 ≤ ∫
�d Q1 for every � ∈ L .

(ii) Q0 ◦ � is stochastically smaller than Q1 ◦ � for every � ∈ L .

Proof If
∫

m ◦ �d Q0 ≤ ∫
m ◦ �d Q1 for any m on decreasing m with m(0) = 0, then

this relation holds in particular with ms(u) = 1[s,∞)(u) for any s > 0. Since

∫
ms ◦ �d Q =

∫ ∞

0
Q{u ∈ R

k : ms(�(u)) ≥ r}, dr = Q{u ∈ R
k : �(u) ≥ s},

the equality
∫

ms ◦ �d Q0 ≤ ∫
ms ◦ �d Q1 for every s > 0 implies that Q0 ◦ � is

stochastically smaller than Q1 ◦ �. ��
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If L is restricted to loss functions fulfilling certain additional conditions (such
as smoothness, semicontinuity or �(u) > 0 for u �= 0), the function ms may be
approximated by m̄s such that m̄s ◦ � ∈ L if � ∈ L .

The operational significance of expected loss is called into question if the relation
between

∫
�(au)Q0(du) and

∫
�(au)Q1(du) depends on a. This problem arises nec-

essarily in asymptotic comparisons which are on standardized estimator sequences
cn(κ

(n) − κ(P), where cn is chosen such that Pn ◦ cn(κ
(n) − κ(P)) converges to

a non-degenerate limit distribution. Since the rate cn is not unique, standardization
by c̄n = acn is equally justified. (If the rate cn = n1/2 leads to the limit distribu-
tion N (0, σ 2(P)), it is not unusual to standardize by σ(P)−1n1/2 to obtain the limit
distribution N (0, 1).)

Let us assume, for the sake of illustration, that � is bounded and continuous, so
that Pn ◦ cn(κ

(n) − κ(P)) ⇒ Q implies

∫
�(cn(κ

(n) − κ(P)))d Pn →
∫

�(u)Q(du).

If the standardization uses c̄n = acn , then

∫
�(c̄n(κ

(n) − κ(P)))d Pn →
∫

�(au)Q(du).

If the asymptotic performance of two estimator sequences (κ
(n)
i )n∈N with

Pn ◦ cn(κ
(n)
i − κ(P)) → Qi

is evaluated by a comparison between limn→∞
∫

�(cn(κ
(n)
i − κ(P)))d Pn , i = 0, 1,

it might turn out that, for large n,

∫
�(cn(κ

(n)
0 − κ(P)))d Pn <

∫
�(cn(κ

(n)
1 − κ(P)))d Pn,

yet
∫

�(c̄n(κ
(n)
0 − κ(P)))d Pn >

∫
�(c̄n(κ

(n)
1 − κ(P)))d Pn,

corresponding to
∫

�(u)Q0(du) <

∫
�(u)Q1(du)

and
∫

�(au)Q0(du) >

∫
�(au)Q1(du).
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(To obtain an example with risks that can be computed explicitly, choose Q0 =
N (0, 1), Q1 = 1

2 N (−μ, σ 2) + 1
2 N (μ, σ 2), and �(u) = 1 − exp[−u2].)

To summarize: Comparisons based on the expected loss under a single loss func-
tion are significant only if this is the true loss function. Consistent results for a large
class of loss functions can be expected under special conditions only. In such cases,
the comparison of losses leads to the same result as the comparison of the distribu-
tion of losses or the concentration of the estimators in certain sets. It therefore adds
nothing to the results already known from the comparison of concentrations.

Themathematical argument for applying a loss function (attaining its minimum at
0) to cn(κ

(n)−κ(P)) rather than to κ(n)−κ(P) is clear: Since κ(n)−κ(P) → 0 (Pn),
the asymptotic performance of

∫
�(κ(n) − κ(P))d Pn , n ∈ N, depends on the local

properties of � at 0, and with a twice differentiable loss function one ends up with∫
(κ(n) − κ(P))2d Pn as an approximation for the risk.
It is adequate to evaluate the accuracy of an estimator according to the length of

an interval containing the estimate with high probability. (Recall the time-honoured
comparison based on the “probable error”.) This amounts to considering the con-
centration of κ(n) in intervals (κ(P) − c−1

n t ′, κ(P) + c−1
n t ′′), or the concentration of

cn(κ
(n) − κ(P)) in (−t ′, t ′′). The possibility of expressing this in terms of the loss

function �(u) = 1− 1(−t ′,t ′′)(u), applied to cn(κ
(n) − κ(P)), does not imply that the

evaluation of cn(κ
(n) − κ(P)) by means of other loss functions yields a meaningful

result.
If the evaluation using loss functions serves any purpose beyond comparing the

asymptotic concentration on intervals, then that purpose is to obtain a global measure
for this difference. It seems questionablewhether this purpose is achieved.Depending
on the loss function �, the value of

∫
�(κ̂(x) − κ(P))P(dx) might depend mainly

on the tails of P ◦ (κ̂ − κ(P)). The objection against expressing concentration by
means of loss functions gathers momentum if asymptotic concentration is the point:
estimator sequences which are asymptotically equivalent (in terms of concentration
in intervals) may widely diverge in terms of risks if the loss function is unbounded.
There is yet another problem, resulting from the standardization by cn . The purpose
of this standardization is to ensure that P (n) ◦ cn(κ

(n) − κ(P)), n ∈ N, converges to
a non-degenerate limit distribution. If this is achieved by means of standardization
with the rate (cn)n∈N, it is also achieved using standardization with the rate ĉn = acn ,
for any a > 0. The results are not necessarily the same (see Sect. 3.11.)

Few authors admit that comparisons of expected loss are operationally significant
only if based on the true loss function. The “mathematical convenience” of a loss
function has nothing to do with the very nature of the particular problem. Choosing
a loss function on the basis of mathematical convenience, therefore, means —if
judged on the basis of its suitability for a particular problem—choosing it ad libitum.
Hence the optimality of an estimator with respect to such a loss function bears no
relationship to reality. Here are a few important opinions on this problem.

C.R. Rao (1962, p. 74) is skeptical that the “criterion of minimum expected
squared error”, used—among many others—by Berkson (1956), is justified “unless
he believes or makes us believe that the loss to society is proportional to the square
of the error in his estimate”.
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The following statement by Stein (1964, p. 156) is even more important, as it
occurs in a paper on the admissibility of the usual estimator for σ 2 if evaluated by
the quadratic loss function: “I find it hard to take the problem of estimating σ 2 with
quadratic loss function very seriously.”

Usually one finds arguments of a purely formal nature.

Lehmann (1983, p. 8): “The choice of the squared error as loss has the twofold advantage
of ease of computation and of leading to estimators that can be obtained explicitly”, an
argument already brought forward by Gauss.

Zellner (1986, p. 450) on the linex loss functions defined in (3.11.6) below: “The analytic ease
with which results can be obtained makes them attractive for the use in applied problems...”

Another example of the casual approach to dealing with loss functions is (in our
notations)

M.M. Rao (1965, p. 135): “It is more convenient [!] ... to consider the optimality of an
(unbiased) estimator κ̂ ... at P0 as the minimum value of N (κ̂ − κ(P0)) instead of that of∫

C(κ̂ − κ(P0))d P0”,

where

N ( f ) := inf{k > 0 :
∫

C( f/k)dλ ≤ 1}

and C is a convex and symmetric loss function with C(0) = 0.

Remark. Some authors (Shaked 1980, p. 193, Condition B, and Schweder 1982,
p. 165, Definition 1) introduced for probability measures Qi |Bk the concept of a
dilation order Q0 ≤ Q1 by

∫
C(u)Q0(du) ≤

∫
C(u)Q1(du) for every convex function C |Rk (3.11.3)

(provided the integrals exist).
At first glance, this definition does not seem to refer to a particular center. Yet,

relation (3.11.3), applied with C(u) = u and C(u) = −u), implies

∫
uQ0(du) =

∫
uQ1(du). (3.11.4)

Theorem 2 in Muñoz-Perez and Sanchez-Gomes (1990, p. 442) implies that (3.11.3)
is equivalent to (3.11.4) in combination with

∫
|u − μ|Q0(du) ≤

∫
|u − μ|Q1(du) for every μ ∈ R. (3.11.5)

Since the dilation order is not very convincing from an intuitive point of view
(observe that the convex functionC is not required to be nonnegative), it is of interest
to relate it to other order relations. According to Witting and Müller-Funk (1995, p.
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493, Satz 7.24), relation (3.11.3) follows if the (necessary) condition (3.11.4) is
fulfilled, and if (3.11.5) holds true for some μ.

Moreover, Q0 � Q1 (in the spread order) implies

∫
C(u − μ0)Q0(du) ≤

∫
C(u − μ1)Q1(du) with μi =

∫
uQi (du)

for every convex function C (since Q0 � Q1 implies Q∗
0 � Q∗

1 and
∫

uQ∗
i (du) = 0,

if Q∗
i := Qi −μi . From this, Q∗

0 and Q∗
1 have a common quantile, for which (3.11.5)

applies). (See Shaked 1982, p. 313.)
Equality in (3.11.3) for C(u) = |u| implies Q0 = Q1 (Pfanzagl 2000b, p. 8,

Lemma 6.1).
The fact that relations like (3.11.3) are compatible withmeaningful order relations

(based on probabilities) does not entail that they are operationally significant in cases
where an underlying meaningful order relation is not available. Moreover: In view of
the enormous number of functions � orC for which these relations hold true, it would
need additional arguments to distinguish one of the expressions

∫
�(u − μ)Q(du)

(say the one with �(u) = |u| or �(u) = u2) as “the” global measure of concentration.

Loss Functions and Unbiasedness

Lehmann (1951b, p. 587) suggests a general concept of unbiasedness, based on a
given loss function. For the problem of estimation, this reads as follows:

Given a functional κ and a loss function �(·, Q) with minimum �(κ(Q), Q), the
estimator κ̂ is unbiased for κ at P if the function Q → ∫

�(κ̂(x), Q)P(dx) attains
its minimum at Q = P . (Lehmann does not mention that κ(Q) should minimize
�(·, Q).

Specialized to �P(u) = (u − κ(P))2 and �P(u) = |u − κ(P)| this leads to
mean unbiasedness and median unbiasedness, respectively. Yet, it appears that mean
and median unbiasedness have a strong appeal of their own, and not because they
come from some loss function. Loss functions are a rather artificial construct, and
it seems questionable whether one should sacrifice concepts like mean or median
unbiasedness with a clear operational significance for an unbiasedness concept based
on a loss function whose only selling point is that it is “not totally unreasonable”. For
a discussion of various concepts of unbiasedness see also H.R. van der Vaart (1961).

Even if one abandons the idea of using an unbiasedness concept derived from a
loss function, there should be no inherent conflict between, say, mean unbiasedness
and the loss function.As a point of departure, let us assume that �P (u) = �(u−κ(P)),
where � is subconvex, attaining its minimum at 0. Unbiasedness supposes, implicitly,
that the deviation from κ(P) by the amount Δ has the same weight, whether it is to
κ(P) + Δ or to κ(P) − Δ. Correspondingly, � should be symmetric about 0.

Assume now that {Pa : a ∈ (0,∞)} is a scale parameter family, and that κ(Pa) =
a. In this case it is natural to express the deviation of an estimate â from a by the
deviation of â/a from 1, and to suppose that a deviation â/a from 1 by the factor
2, say, has the same weight as a deviation by the factor 1/2. If this is accepted, it
makes no sense to require that â should be unbiased. If â is evaluated by �(â/a), with
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a loss function � attaining its minimum at 1, then one would, if anything, require
that �(1/u) = �(u) rather than symmetry of �(u) about u = 1. A loss function
with this property is �(u) = (log u)2, suggested by Ferguson (1967, p. 179) as
“more appropriate for scale parameters than the squared error loss”. His opinion is,
however, not incontrovertible. On p. 191 he also uses the squared error loss for a
scale parameter only if doing so leads to a nicer result.

One would hesitate to write down such obvious remarks but for the fact that the
textbooks are full of suggestions to measure the deviation of â(x) from a by means
of loss functions like (â(x)/a − 1)2. A loss function not downright absurd for scale
parameters is

�0(u) = u − log u − 1.

This loss function (suggested by James and Stein 1961, p. 376, relation (72) for
matrix-valued estimators) is convex and attains its minimum at u = 1. Yet, it
appears that this loss function harbours an inherent contradiction: �0 attributes dif-
ferent weights to â(x)/a = 1 + Δ and â(x)/a = 1 − Δ. If this is the adequate
description of a real situation, one would not think that—at the same time—mean
unbiasedness is a natural requirement. Nevertheless, it is themean unbiased estimator
which minimizes the risk for the loss function �0. The function

a →
∫

�0(â(x)/a)Pa0(dx)

attains its minimum at a = a0 iff
∫

â(x)Pa0(dx) = a0. It follows from a result of
Brown (1968, p. 35, Theorem 3.1) that �0 is, up to the transformation �0 → α�0 +β,
the only loss function with this property (except for u → (u − a)2, of course).
For real estate assessment, Varian (1975, p. 196) suggests evaluating the difference
κ̂(x)− κ(P) by means of the so-called linex (for “linear-exponential”) loss function

�1(u) = exp[au] − au − 1, (3.11.6)

expressing—somehow—the idea that under-assessment results in an approximately
linear loss of revenue, whereas over-assessment often results in substantial costs. It
appears that Varian missed the relation between the linex loss function and the loss
function �0, namely: �1(u) = �0(exp[au]), and he also missed a characterization of
�1 provided by Klebanov (1974). Given a family {Pϑ : ϑ ∈ Θ}, Θ ⊂ R, consider
the following property of the loss function u → �(u −ϑ): For any sufficient statistic
S|X and any �-unbiased estimator there exists an �-unbiased estimator which is a
contraction of S and has “smaller” risk (with respect to this loss function). By the
Rao–Blackwell Theorem, this statement holds true for �(u) = u2. According to
Klebanov (1974, p. 380, Theorem 1) there is just one more sufficiently regular loss
function � (convexwith a continuous 2nd derivative and �(0) = 0) with this property:
The linex.
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3.12 Pitman Closeness

Given a concept of concentration (of a probability measure Q|B about 0) it is natural
to evaluate the accuracy of an estimator κ̂ by the concentration of P ◦ (κ̂ − κ(P))

about 0, and to prefer κ̂0 over κ̂1 if P ◦ (κ̂0 −κ(P)) is more concentrated about 0 than
P ◦ (κ̂1 − κ(P)). A new aspect is brought in if one considers the joint distribution
P ◦ (κ̂0 − κ(P), κ̂1 − κ(P)). Based on this joint distribution, Pitman (1937, p. 213)
introduced the following concept of “closeness”: κ̂0 is closer to κ(P) than κ̂1 if

P{|κ̂0 − κ(P)| < |κ̂1 − κ(P)|} > 1/2.

Not all statisticians think that it is meaningful to compare estimators according
to their closeness. L.J. Savage (1954, p. 225) insists on comparing estimators only
by their concentration. Without a convincing argument, he states that “it makes no
sense to consider the joint distribution of two estimators”.

It would be an additional argument for the use of an estimator κ̂0 if it were not only
more concentrated about κ(P) than κ̂1, but, in addition, in Pitman’s sense closer to
κ(P) than κ̂1; and it is of interest if an optimum property of an estimator is reflected
in its Pitman closeness.

The concept of closeness would certainly have found general acceptance were it
not for shortcomings which soon became evident. One important shortcoming was
aired by Pitman himself (1937, p. 222): The order according to closeness is not
necessarily transitive.

It is not surprising that a comparison based on a global measure like

∫
|κ̂0 − κ(P)|d P <

∫
|κ̂1 − κ(P)|d P

does not tell us much about the joint distribution. One might, however, expect that κ̂0
is closer to κ(P) than κ̂1 if, say, |κ̂0−κ(P)| is stochastically smaller than |κ̂1−κ(P)|.
Yet this is not the case. An example by Blyth (1972, p. 367, the “clocking paradox”),
referring to a parametric family, shows that P{|κ̂0 − κ(P)| < |κ̂1 − κ(P)|} might be
close to zero, even though κ̂0 and κ̂1 have the same distribution. A slight modification
of this example in Blyth and Pathak (1985, p. 46, Example 1) shows that the same
effect may occur if |κ̂0 − κ(P)| is stochastically smaller than |κ̂1 − κ(P)|.

Yet such examples are highly artificial, and the question ariseswhether the concept
of closeness might be of some use in a more natural context. One such possibility is
the following: If κ̂0 and κ̂1 − κ̂0 are stochastically independent, then κ̂0 is closer to
κ(P) than κ̂1, provided κ̂0 is median unbiased. This is (a special case of) Pitman’s
Comparison Theorem (see 1937, p. 214), proved under somewhat fuzzy conditions.
The Convolution Theorem suggests that this Comparison Theorem could be used to
show that an asymptotically optimal estimator sequence κ

(n)
0 , n ∈ N, is asymptoti-

cally closer to κ(P) than any other “regular” estimator sequence.
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We first consider a result for probability measures Q|Bk , which will later be
applied to limit distributions. If Q is a normal distribution, multidimensional median
unbiasedness is a natural assumption.

Lemma 3.12.1 Assume that Q|Bk is median unbiased in the sense that Q ◦ (u →
a�u) has median 0 for every a ∈ R

k . Then the following holds true for every positive
definite k × k-matrix M and every probability measure R|Bk .

Q × R{(u, v) ∈ R
k × R

k : u�Mu ≤ (u + v)�M(u + v)} ≥ 1/2. (3.12.1)

Proof Follows immediately from

u�Mu ≤ (u + v)�M(u + v) iff 2v�Mu ≥ −v�Mv. ��
For k = 1, a relation equivalent to

Q × R{(u, v) ∈ R × R : |u| ≤ |u + v|} ≥ 1/2 (3.12.2)

occurs as Theorem 1 in M. Ghosh and Sen (1989, p. 1089). Relation (3.12.2) is, in
fact, a special case of Pitman’s “Comparison Theorem”.

Ghosh and Senmainly consider applications for parametric families and a median
unbiased estimator ϑ̂0 which is the function of a complete sufficient statistic. If ϑ̂1

is another estimator such that ϑ̂1 − ϑ̂0 is ancillary, then ϑ̂0 − ϑ and ϑ̂1 − ϑ̂0 are
stochastically independent (according to Basu’s Theorem), so that

Pϑ {|ϑ̂0(x) − ϑ | ≤ |ϑ̂1(x) − ϑ |} ≥ 1/2.

This rather special result is then illustrated by various examples.
Asymptotic results obtained from the application of (3.12.1) to limit distribu-

tions are of broader applicability. Assume now that (κ(n))n∈N is a regular estimator
sequence with

P (n) ◦ cn(κ
(n) − κ(P)) ⇒ Q|Bk,

and (κ
(n)
0 )n∈N an asymptotically optimal estimator sequence with

P (n) ◦ cn(κ
(n)
0 − κ(P)) ⇒ Q0|Bk,

where Q0 is the optimal limit distribution. According to the Convolution Theorem
(Sect. 5.13),

P (n) ◦ (cn(κ
(n)
0 − κ(P)), cn(κ

(n) − κ
(n)
0 )) ⇒ Q0 × R.

http://dx.doi.org/10.1007/978-3-642-31084-3_5
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Since the set in (3.12.1) is closed, Alexandrov’s Theorem implies that

lim sup
n→∞

P (n)
{
cn(κ

(n)
0 − κ(P))�Mcn(κ

(n)
0 − κ(P))

≤ cn(κ
(n) − κ(P))�Mcn(κ

(n) − κ(P))
} ≥ 1/2. (3.12.3)

In these relations, M is an arbitrary positive definite k × k-matrix. The natural appli-
cation is with M equal to the identity.

Relation (3.12.3) has a forerunner in Sen (1986, p. 54, Theorem 3.1). Though Sen
refers (pp. 51, 56) to the papers byHájek (1970), Inagaki (1970) and to Ibragimov and
Has’minskii (1981), he does not fully exploit the force of the Convolution Theorem.
His result refers to a k-dimensional regular parametric family {Pϑ : ϑ ∈ Θ},Θ ⊂ R

k .
Under the assumption that (in our notations) Pn

ϑ ◦ (n1/2(ϑ
(n)
0 − ϑ), n1/2(ϑ(n) − ϑ)),

n ∈ N, converges to a 2k-dimensional normal distribution [!] with mean vector 0
and covariance matrix

(
Σ0 Σ1

Σ1 Σ

)

,

he shows that

lim
n→∞ Pn

ϑ

{
n1/2(ϑ

(n)
0 − ϑ)�Σ−1

0 n1/2(ϑ
(n)
0 − ϑ)

≤ n1/2(ϑ(n) − ϑ)�Σ−1
0 n1/2(ϑ(n) − ϑ)

} ≥ 1/2. (3.12.4)

Recall that (u−v)�Σ−1
0 (u−v) has a traditional interpretation as theMahalanobis

distance between u and v.
Theorem 6.2.1 in Keating et al. (1993, p. 182), which asserts, in fact, that

lim
n→∞ Pn

ϑ

{|ϑ(n)
0 − ϑ | ≤ |ϑ(n) − ϑ |} ≥ 1/2

is the special case of (3.12.4) for k = 1.
The more general assertion (3.12.3) also does not establish Pitman closeness as a

concept onwhich the comparison between estimators can be based. Pitman closeness
is, however, a welcome additional property of an estimator which is considered to
be “good” on the basis of other criteria.

There is another field where one would possibly expect to find a use for Pitman
closeness: That an unbiased estimator of minimal variance is Pitman closer than any
other unbiased estimator. This, however, is not true.
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Chapter 4
Optimality of Unbiased Estimators:
Nonasymptotic Theory

4.1 Optimal Mean Unbiased Estimators

Given a family P of probability measures on (X,A ), the estimator κ̂0 : X → R

is �-optimal at P0 among all mean unbiased estimators of the functional κ(P) if κ̂0
minimizes ∫

�(κ̂ − κ(P0))dP0

among all estimators κ̂ fulfilling
∫

κ̂dP = κ(P) for P ∈ P. We speak of convex
optimality if this relation holds for every convex loss function, and of quadratic
optimality if it holds for �(u) = u2.

Certain results become more transparent if we call κ̂0 quadratically [convex]
optimal if it is an �-optimal estimator of its expectation (without an explicit reference
to the functional P → ∫

κ̂dP).
Unlike the case of median unbiased estimators, a comparison of mean unbiased

estimators with respect to the concentration on intervals is impossible. Hence the
following considerations are based on the comparison of estimators by means of
certain loss functions only.

If a functional κ : P → R admits a mean unbiased estimator, all that one could
expect in general is to find an estimator that minimizes the risk for a given loss
function at a certain P0 ∈ P. It is of mainly mathematical interest whether the
infimum of

∫
�0(κ̂ − κ(P0))P0(dx) over all unbiased estimators κ̂ is attained or not.

For �(u) = |u|s , s > 1, this was proved by Barankin (1949, p. 483, Theorem
2(iii)) under the assumption that

∫
(p(x)/p0(x))

s/(s−1)P0(dx) < ∞ for P ∈ P.

For �(u) = u2 see Stein (1950, pp. 407/8, Theorem1). SeeWitting (1985, p. 306, Satz
2.119) for a detailed proof under the condition that

∫
(p(x)/p0(x))2P0(dx) < ∞ for

P ∈ P.
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Of some practical interest are criteria which guarantee that a given unbiased
estimator, say κ̂0, does, in fact, minimize κ̂ → ∫

�P0(κ̂(x))P0(dx). (Recall that there
is at most one such estimator if �P is strictly convex and bounded from below.)
Starting with the quadratic loss function, i.e., �P(u) = (u − κ(P))2, Rao (1952)
suggests the following

Criterion. The estimator κ̂0 minimizes the quadratic risk among all mean unbiased
estimators at P0 iff

∫
v(x)κ̂0(x)P0(dx) = 0 holds for every function v ∈ V2, where

V2 is the set of all functions v : X → R with

∫
v(x)P(dx) = 0 and

∫
v2(x)P(dx) < ∞ for P ∈ P.

This criterion is more important for general considerations than for particular appli-
cations, since the classV2 is not always easy to characterize. (See the examples 2.112,
p. 301 and 2.113, p. 302 in Witting 1985.)

Rao’s criterion was generalized from the power s = 2 to higher powers s ≥ 2:
The estimator κ̂0 minimizes the risk for �(u) := |u|s at P0 iff

∫
v(x)|κ̂0(x) − κ(P0)|s−1sgn (κ̂0(x) − κ(P0))P0(dx) = 0

holds for every function v ∈ Vs , where Vs now denotes all functions v ∈ V2 fulfilling∫ |v(x)|s P(dx) < ∞ for P ∈ P.
See Schmetterer (1960, p. 1155, Theorem 3). (Correct three misprints in the

statement of this theorem.) For a more precise proof of this result see Heyer (1982),
pp. 124/5, Theorem 17.3. This result was further generalized to convex functions �:

The estimator κ̂0 minimizes the risk for a convex function � at P0 iff

∫
v(x)�′(κ̂0(x) − κ(P0))P0(dx) = 0

holds for every function v ∈ V�, it where V� is now denotes all functions v with∫
v(x)P(dx) = 0 and

∫
�(v(x))P(dx) < ∞.

See Linnik and Rukhin (1971, p. 839, Proposition). See also Schmetterer (1960,
p. 1155, Theorem 3) and Krámli (1967, p. 160, Theorem). A presentation of these
results can be found in Heyer (1982, Sect. 17). For an extension to arbitrary convex
loss functions see Kozek (1977, p. 188, Theorem 4.4).

Optimality with respect to some convex loss function at a particular P0 ∈ P
is neither important for applications, nor does it provide deeper insights from a
methodological point of view. Yet, it had a certain appeal to mathematically minded
statisticians. Here we may refer to the usual textbooks for examples in which the
unbiased estimator minimizing the risk at P0 does, in fact, just what one is afraid of:
It depends on P0. An early example of this kind is given by Lehmann and Scheffé
(1950, p. 253, Example 5.3): For the family of uniform distributions with densities
{1(ϑ−1/2,ϑ+1/2) : ϑ ∈ R}, no function of ϑ admits an unbiased estimator based on
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a sample of size n > 1 which minimizes the quadratic risk simultaneously for all
ϑ ∈ R. For an example of a parametric family in which an unbiased estimator exists
for every sample size, but none of them minimizes the risk for any strictly convex
loss function, simultaneously for every ϑ ∈ Θ , see Pfanzagl (1994, p. 103, Example
3.1.6).

In fact one would expect that the existence of an optimal unbiased estimator (i.e.,
one that minimizes the risk for a given loss function simultaneously for all P0 ∈ P)
is a rare exception. It might, therefore, come as a surprise that there is an important
type of families in which for every functional admitting an unbiased estimator there
exists an unbiased estimator that minimizes the risk, simultaneously for all convex
loss functions and all P0 ∈ P. These are the familiesP admitting a sufficient statistic
S : X → Y for whichP◦ S is complete. Historically, it was this finding that sparked
interest in a theory of unbiased estimators around 1950, and which is still responsible
for its presence in textbooks.

Now let κ̂ be unbiased onP for κ : P → R
k in the familyP. If S|X is sufficient,

there exists a conditional expectation of κ̂ , given S, say k ◦ S, which is independent
of P , hence an estimator again. Since

∫
k(S(x))P(dx) = ∫

κ̂(x)P(dx) for P ∈ P,
the estimator k ◦ S is unbiased, too. According to Jensen’s inequality for conditional
expectations, for every convex function �,

�(k(y)) ≤ P(�(κ̂) | S = y) for P ◦ S-a.a. y ∈ Y, (4.1.1)

hence ∫
�(k(S(x))P(dx) ≤

∫
�(κ̂(x))P(dx). (4.1.2)

(If � is strictly convex, the inequality (4.1.1) is strict unless κ̂ = k◦S P-a.e.) Together
with unbiasedness, (4.1.2) implies

∫
�(k(S(x)) − κ(P))P(dx) ≤

∫
�(κ̂(x) − κ(P))P(dx).

Rao (1945, p. 83) proves relation (4.1.2) for �(u) = u2, using an argument specific
to this quadratic loss function. His argument refers to a one-parameter family of
probability measures Pϑ over Rn , with κ(Pϑ) = ϑ . Presumably, he had a real-
valued sufficient statistic in mind. Rewritten in our notations, his argument, given in
his equation (3.8), reads as follows:

∫
(κ̂(x) − κ(P))2P(dx)
∫

(κ̂(x) − k(S(x)))2P(dx) +
∫

(k(S(x) − κ(P))2P(dx)

≥
∫

(k(S(x)) − κ(P))2P(dx).
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In this derivation, he uses

∫
(κ̂(x) − k(S(x)))k(S(x))P(dx) = 0 (4.1.3)

without further comment. In Rao (1947, pp. 280/1, Theorem 1) this argument is
extended to k-parameter families.

Independently of C.R. Rao, the same result was obtained by Blackwell (1947, p.
106, Theorem 2). Relation (4.1.3), used by Rao without further ado, is found worth
of a careful proof by Blackwell (see p. 105, Theorem 1).

The extension to convex loss functions is due to Hodges and Lehmann (1950,
p. 188, Theorem 3.3). Their proof is based on Jensen’s inequality for conditional
expectations (p. 195, Lemma 3.1), corresponding to (4.1.1). The authors are aware
of the fact that this inequality is straightforward if a “regular conditional probability”
exists. Yet they take the trouble to give a proof which goes through without the
conditions needed to ensure the existence of a regular conditional probability in
general. The role of Barankin’s paper (1950) which appeared in the same journal,
but after the paper by Hodges and Lehmann remains unclear. Barankin’s Theorem
on p. 281 gives inequality (4.1.1) for �(u) = |u|s , with a proof attributed to “the
referee”, and he applies this inequality in Corollary 1, p. 283 to obtain (4.1.2) with
�(u) = |u|s . Unclear, too, is the purpose of Barankin’s paper (1951). His Theorem
on p. 168 is just another proof of Jensen’s inequality for conditional expectations,
and its application repeats the result of Hodges and Lehmann.

The idea that unbiased estimators can be improved by taking the conditional
expectation with respect to a sufficient statistic, met with some reserve. First of all,
“improved” just means that the risk is decreased, simultaneously for every convex
loss function; it does not mean that the improved estimator is more concentrated
on intervals containing the estimand. Moreover, the improved estimator may have
certain properties uncalled for (and not shared by the original estimator). It might, for
instance, fail to be proper. Finally, there are cases where the conditional expectation,
given S, cannot be expressed in closed form.

The role of the improvement procedure is accentuated by a result of Lehmann and
Scheffé: The improved estimator is optimal (in the sense of minimizing the convex
risk in the class of all unbiased estimators) if the conditioning is taken with respect
to a sufficient statistic S for whichP ◦ S is complete. Theorem 5.1 in Lehmann and
Scheffé (1950, p. 321) asserts that an unbiased estimator is of minimal quadratic
risk iff it is the contraction of a sufficient statistic S with P ◦ S complete. This
formulation does not exhibit the core of the argument (which depends in by no
means on the assumption that �(u) = u2): IfP ◦ S is complete, there is at most one
unbiased estimator that is a contraction of S. Recall a forerunner of this result, due
to Halmos (1946).

In their final form, these results are an inevitable topic in any textbook under the
title
Theorem of Rao–Blackwell–Lehmann–Scheffé. Let P be a family admitting a
sufficient statistic S such that P ◦ S is complete. Then for every mean unbiased
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estimator κ̂ , its conditional expectation k ◦ S is optimal in the sense that it minimizes
the convex risk in the class of all mean unbiased estimators.

If we consider the steps leading to this result, we find that two essential points
are already present in Rao (1945, in particular p. 83): (i) There is a bound for the
quality of mean unbiased estimators, and (ii) this bound can be achieved by taking
conditional expectations with respect to a certain sufficient statistic.

Yet it needed five authors (and five years) to bring these vague ideas to their final
shape. The reason: Rao had difficulties to cope with the concept of a conditional
expectation (see 1945, p. 83, relation 3.7, and 1947, p. 281). If he had used the
stochastic independence between S and κ̂−k◦S (rather than their being uncorrelated)
he could have obtained the convex-optimality (rather than the quadratic optimality).
Taking conditional expectations leads to an improvement, but not necessarily to
optimality. The optimality follows from the completeness of P ◦ S, introduced by
Lehmann and Scheffé in 1950. Something close to “completeness” is foreshadowed
in Rao (1945), p. 834−6 and (1947), p. 2811,2.

The use of “uncorrelated” rather than “stochastically independent” leads to a seri-
ous disadvantage when Rao extends his results to k-parameter families (see 1945, p.
84–86). Instead of arriving at “minimal convex risk” he ends up with the result that
the covariance matrix of the improved estimators is minimal in the Löwner-order
among all covariance matrices of mean unbiased estimators—a result which fol-

lows immediately, since (u1, . . . , uk) →
(∑k

i=1 αi ui
)2

is convex for every (α1, . . . ,

αk) ∈ R
k .

Remark Various optimality results for unbiased estimators are of the type: κ̂0 min-
imizes

∫
�(κ̂)dP for κ̂ in a certain class of unbiased estimators, simultaneously for

all convex functions � : R → [0,∞). This is not a convincing optimum property,
since the location of P ◦ κ̂ enters through the condition

∫
κ̂dP = κ(P) only. The

loss function � itself makes no allowance for location (say by the property �(u) = 0
for u = κ(P)), nor does it distinguish between estimators that are optimal for the
particular loss function, and estimators that are optimal for every convex loss func-
tion.

Recall that optimality with respect to all subconvex loss functions is equivalent
to the following statements:

(i) The distribution of subconvex losses is minimal in the stochastic order.
(ii) the concentration is maximal on all intervals containing κ(P).
As against that, minimality of κ̂ with respect to every convex loss function says

nothing about the distribution of the convex losses �◦ κ̂ . Moreover, the improvement
of an estimator by taking a conditional expectation reduces the convex risk, but the
distribution of the convex losses of the improved estimator is not necessarily stochas-
tically smaller than the distribution of the original estimator. Finally, an estimator
which is of minimal convex risk in the class of all mean unbiased estimators may be
inferior to other mean unbiased estimators if evaluated by a subconvex loss function
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or by the concentration on intervals. An early example in this regard is due to Basu
(1955, p. 347).

How insufficient “convex risk” as a measure of the quality of an estimator really
is can be seen from examples of estimators with minimal convex risk in the class of
all mean unbiased estimators that are inferior to other mean unbiased estimators if
evaluated by the concentration on certain intervals.

Example For ϑ > 0, let Pϑ be the exponential distribution with density x →
ϑ−1 exp[−x/ϑ], x > 0. Since the family {Pϑ : ϑ > 0} is complete, and∫
x Pϑ(dx) = ϑ , the function x is mean unbiased for ϑ with minimal convex risk.

If Q|B+ fulfills
∫ ∞
0 uQ(du) = 1, the (randomized) estimator (u, x) → ux is mean

unbiased, too, and has, therefore, larger convex risk. Yet Q×Pϑ {ϑ t ′ < ux < ϑ t ′′} >

Pϑ {ϑ t ′ < x < ϑ t ′′} for some t ′ < 1 < t ′′ if Q is chosen appropriately. (Hint: choose
Q{1− δ1} = δ2/(δ1 + δ2) and Q{1+ δ2} = δ1/(δ1 + δ2), with δi > 0 and sufficiently
small.) �
An essential aspect of this is that the higher concentration in intervals containing ϑ

holds for every ϑ > 0. Examples of mean unbiased estimators with higher concen-
tration for some ϑ are much easier to obtain. In the family {N (ϑ, 1)n : ϑ ∈ R}, the
estimator xn is of minimal convex risk in the class of all mean unbiased estimators.
The estimator (x1, . . . , xn) → 2xn1{x1≤xn}(x1, . . . , xn) is mean unbiased and is in
small intervals (ϑ − t, ϑ + t) with higher probability than xn , provided ϑ is close to
zero.

Considering the fact that (a) mean unbiasedness is not a natural condition to be
imposed upon all estimators, (b) minimal convex risk is not a convincing criterion
for the evaluation of estimators, and (c) mean unbiasedness is in no inherent relation
to convex loss, one might ask why this theory flourished for some time. The answer:
It was the foremost common way to prove one’s mathematical skills.

4.2 Bahadur’s Converse of the
Rao–Blackwell–Lehmann–Scheffé Theorem

Consider the following statements:

(1) There exists a statistic S : (X,A ) → (Y,B) which is sufficient for P, and
P ◦ S is complete.

(2) For every functional κ : P → R admitting an unbiased estimator there exists
an unbiased estimator that minimizes every convex risk.

The Rao–Blackwell–Lehmann–Scheffé Theorem asserts that (1) implies (2). In this
Theorem, the sufficiency of S is needed in order to obtain from every unbiased
estimator a “better” S-measurable unbiased estimator P; the completeness ofP ◦ S
is needed in order to show that this estimator minimizes every convex risk. Bahadur’s
intention (see 1957) was to prove that (2) implies (1).
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Bahadur’s paper is fairly poorly arranged, containing six Theorems and seven
Propositions. The presentation of Bahadur’s results in Schmetterer (1966, pp. 332–
352) requires 6 Theorems, and it had not become much simpler twenty years later:
The presentation in Strasser (1985, pp. 168–172) consists of 4 Lemmas, 3 Theorems
and one Corollary. In other textbooks like Eberl andMoeschlin (1982), Heyer (1973,
1982) andWitting (1985) Bahadur’s result is not even mentioned. In roughly a dozen
of papers dealing with Bahadur’s approach (see Eberl 1984, for further references)
one is missing what I would consider the main result of Bahadur (1957): That a
bounded quadratically optimal estimator is convex optimal. This result, based on
Bahadur’s approach, was explicitly put forward by Padmanabhan (1970, p. 109,
Theorem 3.1). See also Schmetterer and Strasser (1974, p. 60). (For more examples
and counterexamples see the papers by Bomze 1986, 1990; Eberl 1984; Heizmann
1989.)

To make a long story short: All these papers were based on an ingenious idea of
Bahadur (1957, p. 218). Given a familyP of probability measures P|(X,A ), let V2

be the set of all functions ν : X → R fulfilling the conditions
∫

ν2dP < ∞ and∫
νdP = 0 for P ∈ P. Bahadur introduces

AP := {A ∈ A :
∫

1AνdP = 0 for ν ∈ V2 and P ∈ P}, (4.2.1)

the σ -field of all subsets A of A for which 1A is a quadratically optimal mean
unbiased estimator of the functional P → P(A).

The following Proposition characterizes the AP-measurable functions.

Proposition 4.2.1 (i) If κ̂ : X → R with
∫

κ̂2dP < ∞ is AP-measurable, then

∫
κ̂ νdP = 0 for ν ∈ V2 and P ∈ P. (4.2.2)

(ii) If κ̂ : X → R is bounded, then relation (4.2.2) implies that κ̂ isAP-measurable.

Proof (i) By definition, relation (4.2.2) holds for κ̂ = 1A if A ∈ AP. Relation (4.2.2)
is extended to AP-measurable functions κ̂ by approximation with AP-measurable
functions.

(ii) For bounded κ̂ , relation (4.2.2) implies that κ̂ν ∈ V2 if ν ∈ V2. Proceeding
inductively, we obtain that for bounded κ̂ ,

κ̂kν ∈ V2 for every k ∈ N.

Following the basic idea of Bahadur (1957, p. 218, proof of Theorem 5(i)), this
implies that

∫
1B(κ̂)νdP = 0 for ν ∈ V2 and P ∈ P. Hence κ̂−1B isAP-measurable

for every B ∈ B, which implies the AP-measurability of κ̂ . �

A detailed proof can be found in Strasser (1972, p. 110, Theorem 5.6). See also
Strasser (1985, p. 170, Theorem 35.14) or Pfanzagl (1994, p. 121).
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An example provided by Bahadur (1957, Sect. 6) shows that the boundedness in
Proposition 4.2.2 is essential: Measurable functions of (unbounded) unbiased esti-
mators of minimal quadratic risk are not necessarily estimators of minimal quadratic
risk of their expectation. Bahadur’s example has been used by Padmanabhan (1970)
to show that an (unbounded) estimator of minimal quadratic risk may be inferior if
evaluated by the loss function u → |u|3. (See Padmanabhan 1970, pp. 110/1 and
112/3.)

Bednarek-Kozek and Kozek (1978) present examples of unbiased estimators that
minimize the risk for some, but not for all convex loss functions. The reader interested
in a more systematic study of the mathematical aspects of this problem could consult
Kozek (1980).

What remains of Bahadur’s approach is that certain optimal estimators may be
considered as conditional expectations, a side result that was never aspired to in
Bahadur’s paper Bahadur (1957).

Proposition 4.2.2 Assume that κ̂0 fulfilling
∫

κ̂2
0dP < ∞ is AP-measurable. If∫

κ̂dP = ∫
κ̂0dP for P ∈ P, then κ̂0 is for every P ∈ P a conditional expectation

of κ̂ , given AP, with respect to P. This implies
∫

�(κ̂0)dP ≤ ∫
�(κ)dP for every

convex loss function �.

Proof We have to show that

∫
(κ̂ − κ̂0)1Ad P = 0 for every A ∈ AP and every P ∈ P.

By definition of AP,

∫
1AνdP = 0 for ν ∈ V2 and P ∈ P. (4.2.3)

Since κ̂ − κ̂0 ∈ V2, relation (4.2.3) applied with ν = κ̂ − κ̂0 implies

∫
1A(κ̂ − κ̂0)dP = 0 for P ∈ P. (4.2.4)

Since relation (4.2.4) holds for every A ∈ AP, the assertion follows. �

The essential point in the proof of Proposition 4.2.2 is that everyAP-measurable
unbiased estimator is the conditional expectation of any unbiased estimator. This
idea occurs first in Padmanabhan (1970, p. 109, Theorem 1), under the redundant
assumption that theAP-measurable estimator minimizes the quadratic risk. Without
the redundant assumption this assertion occurs in Schmetterer (1974, p. 61, Satz 1).
The idea that AP-measurable estimators are conditional expectations and therefore
optimal for every convex loss function was not obvious from the beginning. This may
be seen from Theorem 7 in Schmetterer (1960, p. 1161) which asserts the optimality
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ofAP-measurable estimators for the loss functions u → |u|s , s ≥ 1. This is proved
by means of Rao’s generalized criterion, and not by the conditional expectation-
property of κ̂0, which would imply optimality with respect to every convex loss
function.

Corollary 4.2.3 If κ̂0 isAP0 -measurable, then
∫

κ̂0dP0 = 0 implies κ̂0 = 0 P0-a.e.,
i.e. AP is 2-complete.

Proof Apply relation (4.2.4) with κ̂ ≡ 0. �

In the following we discuss a generalization of Padmanabhan’s result. By Propo-
sition 4.2.2 every quadratically optimal bounded estimator is convex optimal. The
appropriate generalization would be: If a bounded estimator is optimal with respect
to some convex loss function then it is optimal with respect to every convex loss
function.

Various papers by Schmetterer and Strasser are devoted to such a generalization.
(See Strasser 1972, p. 110, Theorem 5.6 or Schmetterer 1977, p. 499, Satz 4.1; see
also Schmetterer 1974 p. 60.)

The best result, obtained by Schmetterer (1974, pp. 61/2, Satz 2), is convex opti-
mality of estimators κ̂0 which are optimal with respect to some convex loss function
�0 with increasing derivative �′

0 that is bounded and continuous and which fulfills

sup
|t |>t0

�0(t)/t < ∞ for some t0.

For such loss functions,
∫

�′
0(κ̂0)νdP = 0 for ν ∈ V2 and P ∈ P (see relation 6, p.

62) which implies
∫

�(κ̂0)dP ≤ ∫
�(κ̂)dP for every convex loss function and every

P ∈ P, whence ∫
�(κ̂0 − μ)dP ≤

∫
�(κ̂ − μ)dP

for every μ ∈ R. If
∫

κ0dP = ∫
κ0dP = κ(P), this implies

∫
�(κ̂0 − κ(P))dP ≤

∫
�(κ0 − κ(P))dP for every P ∈ P. (4.2.5)

The restrictive condition on the loss function �0 is, perhaps, responsible for the
fact that this result is neglected in the literature.

There is another point in the paper by Schmetterer and Strasser whichmight cause
some irritation: Optimality with respect to a loss function � is defined by (4.2.5). For
the quadratic loss function,

∫
(κ̂0 − κ(P))2dP ≤

∫
(κ̂ − κ(P))2dP

is, under the condition
∫

κ̂0dP = κ(P) and
∫

κ̂dP = κ(P), equivalent to
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∫
κ̂2
0dP ≤

∫
κ̂2dP.

Schmetterer and Strasser start from the condition (their relation (2), p. 60)

∫
�(κ̂0)dP ≤

∫
�(κ̂)dP for

∫
κ̂dP =

∫
κ̂0dP = κ(P) and P ∈ P,

which is not the same as (4.2.5) unless �(u) = u2. Yet, since the final result,

∫
�(κ̂0)dP ≤

∫
�(κ0)dP for every convex �,

refers to each P ∈ P separately, the proof by Schmetterer and Strasser can be carried
through with P fixed, i.e., with P = {P0} in which case the loss function may be
taken to be u → �0(u − κ(P0)).

The propositions stated above have nothing to do with the sufficiency of AP.
However, if a 2-complete sufficient sub-σ -field of P does exist, then this is the
σ -field A0 defined by (4.2.1). AP “recovers” the σ -field underlying the Bahadur–
Rao–Lehmann–Scheffé Theorem.

The following Proposition states Bahadur’s converse: If for every unbiasedly
estimable functional there is a quadratically optimal unbiased estimator, then there
exists a sufficient sub-σ -field. With this result, Bahadur answers a question which no
statistician had ever asked.What the statistician is interested in is an optimal unbiased
estimator for a given functional. Whether every unbiasedly estimable functional
admits an optimal unbiased estimator is of no relevance for his problem.

Proposition 4.2.4 (Bahadur’s converse) If for every A ∈ A there is a quadratically
optimal estimator, say κ̂A, for the functional P → P(A), then AP is sufficient (and
complete), and κ̂A is for every P ∈ P a conditional expectation of 1A, given AP.

Proof If κ̂A is an unbiased estimator of P → P(A), we have

∫
κ̂AνdP = 0 for ν ∈ VP and P ∈ P.

By Proposition 4.2.1(ii) this implies that κ̂A isAP-measurable. By Proposition 4.2.2,
κ̂A is for every P ∈ P a conditional expectation of 1A, givenAP. By Definition2.1.2
this implies that AP is sufficient.

Bahadur’s proof (1957), followed by Strasser (1985, pp. 171/2), uses the existence
of optimal estimators for bounded densities.

Sufficiency, which was the main point in Bahadur’s paper, is neglected by
Schmetterer: “It is more difficult to prove under some more conditions that AP

is also sufficient” (see 1966, p. 252 and 1974, p. 289).

http://dx.doi.org/10.1007/978-3-642-31084-3_2
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4.3 Unbiased Estimation of Probabilities and Densities

Probabilities are a typical example of a functional for which unbiasedness of estima-
tors is a natural requirement. To start with: The existence of unbiased estimators for
every sample size is guaranteed. For every A ∈ A , (x1, . . . , xn) → n−1 ∑n

ν=1 1A(xν)

is an unbiased estimator of the functional P → P(A).
Under the conditions indicated in Sect. 2.2, for every statistic Sn : Xn → Y there

exists a Markov kernel Mn | Y × A such that

∫
Mn(y, A)Pn ◦ Sn(dy) = P(A) for P ∈ P, A ∈ A .

That means: For every A ∈ A , the function (x1, . . . , xn) → Mn(Sn(x1, . . . , xn), A)

is an unbiased estimator of the functional P → P(A). Recall that this estimator
is of minimal convex risk among all unbiased estimators if {Pn ◦ Sn : P ∈ P} is
complete. In this case, (x1, . . . , xn) → ∫

k(x)Mn(Sn(x1, . . . , xn), dx) is of minimal
convex risk among all unbiased estimators for κ(P) = ∫

k(x)P(dx).
The practical question then becomes: How can an unbiased estimator Mn be

obtained? If for every P ∈ P there exists a μ-density qP , then an unbiased estimator
of P → P(A) can be obtained from an unbiased estimator of qP(ξ), ξ ∈ X . Assume
that, more generally, there is a function p̂(ξ, y) and a probability measure QP |B
such that, for every P ∈ P,

∫
p̂(ξ, y)QP(dy) = qP(ξ) for ξ ∈ X.

Then M̂n(y, A) := ∫
1A(ξ) p̂(ξ, y)μ(dξ) fulfills for every A ∈ A the relation

∫
M̂n(y, A)QP(dy) = P(A) for P ∈ P.

Applied with QP replaced by Pn ◦ Sn (and p̂(ξ, y) replaced by pn(ξ, y)) this
leads to Mn(Sn(·), A) as an unbiased estimator of P(A).

The relation betweenunbiased density estimators and unbiased estimators of prob-
abilities was first used by Kolmogorov in connection with the normal distribution.
He attributes this idea to Linnik. (See Kolmogorov 1950, p. 388, footnote 9.) The
relation between unbiased density estimators and unbiased estimators of probabili-
ties was later stated as a formal theorem by Seheult and Quesenberry (1971, p. 1435,
Theorem 1).

If {Pn ◦ Sn : P ∈ P} is complete, an unbiased density estimator pn(ξ ; Sn(·))
minimizes the convex risk for every ξ ∈ X , i.e.

http://dx.doi.org/10.1007/978-3-642-31084-3_2
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∫
�(pn(ξ ; Sn(x1, . . . , xn)) − qP(ξ))Pn(d(x1, . . . , xn))

≤
∫

�( p̂n(ξ ; x1, . . . , xn) − qP(ξ))Pn(d(x1, . . . , xn))

for every ξ ∈ X , P ∈ P, and convex � if p̂n(ξ ; ·) is unbiased for qP(ξ). Integrating
over ξ with respect to μ, this implies that pn(ξ ; Sn(·)) minimizes, in the class of all
unbiased density estimators, the risk with respect to any of the loss functions

Δ(p, q) =
∫

�(p(ξ) − q(ξ))μ(dξ).

Needless to say that here the natural choice is �(u) = |u|. Since
1

2

∫
|p(ξ) − q(ξ)|μ(dξ) = sup

A∈A
|P(A) − Q(A)|,

this implies that Mn(Sn(·), ·)|A , evaluated as a probability measure, minimizes the
sup-distance in the class of all unbiased estimators of P|A .Yet, evenmore is true:The
Rao–Blackwell–Lehmann–Scheffé Theorem implies thatMn(Sn(·), A)minimizes—
for every A ∈ A—the convex risk in the class of all unbiased estimators of P →
P(A).

The question remains how an unbiased estimator of qP(ξ) can be obtained. Gener-
alizing the ideas applied by Kolmogorov (1950, Sect. 9, pp. 389–392) for the normal
distribution, Lumel’skii and Sapozhnikov (1969, p. 357, Theorem 1) suggest the
following general procedure:

Let P be dominated by μ. Assume that for every P ∈ P, Pn ◦ Sn|B has a ν-
density, say h(n)

P , and that the joint distribution of (x1, Sn(x1, . . . , xn)) under Pn has
μ×ν-density (ξ, y) → h(n)

P (ξ, y). Then pn(ξ, y) := h(n)
P (ξ, y)/h(n)

P (y) is, thanks to
the sufficiency of Sn , independent of P , and pn(ξ, Sn(·)) is unbiased for hP(ξ). The
computation of h(n)

P becomes simple if Sn(x1, . . . , xn) = ∑n
ν=1 xν . (See Pfanzagl

1994, p. 118.)
The literature provides numerous examples of unbiased estimators of probabilities

and the pertaining estimators of densities. A somewhat disturbing phenomenon, to
be found in all these examples: If P is a parametric family, the optimal unbiased
estimator is not a member of this family. As an example we mention that the optimal
unbiased estimator of N (μ, 1)(A) in the family {N (μ, 1) : μ ∈ R} is

(x1, . . . , xn) → N (xn, (n − 1)/n)(A).

The optimal unbiased estimator of N (μ, σ 2)(A) in the family {N (μ, σ 2) : μ ∈
R, σ 2 > 0} is

(x1, . . . , xn) →
∫

1A(ξ)p(n)(ξ ; xn, sn)dξ
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with sn = n−1 ∑n
ν=1(xν − xn)2 and

p(n)(ξ ;μ, σ) = cn
1

σ

(
1 − 1

n − 1

(ξ − μ)2

σ 2

)(n−4)/2

.

(Find outwhich of the versions of cn offered in the literature comes closest to the truth:
Kolmogorov 1950, pp. 391/2; Barton 1961, p. 228; Basu 1964, p. 219; Lumel’skii
and Sapozhnikov (1969), p. 360, specialized for p = 1.)

4.4 The Cramér–Rao Bound

The first general result on mean unbiased estimators is the so-called Cramér–Rao
bound, a classical example of multiple discoveries. With a straightforward proof,
this result has an unusual number of fathers: Aitken and Silverstone (1942), Fréchet
(1943, p. 185), Darmois (1945, p. 9, with a reference to Fréchet 1943), Rao (1945,
p. 83 and 1947, p. 281) and Cramér (1946, p. 480, relation 23.3.3a). Following
“Stigler’s law of eponymy” it was named after the last two of these. Savage (1954,
p. 238) therefore suggested the now widely used name “information bound”.

The straightforward argument: Let {Pϑ : ϑ ∈ Θ}, Θ ⊂ R, be a parametric
family with p(·, ϑ) ∈ dPϑ/dμ. Write p•(x, ϑ) = ∂ϑ p(x, ϑ) and �•(x, ϑ) =
∂ϑ log p(x, ϑ) = p•(x, ϑ)/p(x, ϑ). If the estimator ϑ̂ : X → R is unbiased for
ϑ , then ∫

(ϑ̂(x) − ϑ)p(x, ϑ)μ(dx) = 0 for ϑ ∈ Θ. (4.4.1)

Differentiation with respect to ϑ leads to

∫
(ϑ̂(x) − ϑ)�•(x, ϑ) Pϑ(dx) = 1. (4.4.2)

Using Schwarz’ inequality, this implies

∫
(ϑ̂(x) − ϑ)2Pϑ(dx) ≥ 1/

∫
�•(x, ϑ)2Pϑ(dx). (4.4.3)

The step from (4.4.1) to (4.4.2) depends on the equality

∂ϑ

∫
ϑ̂(x)p(x, ϑ)μ(dx) =

∫
ϑ̂(x)∂ϑ p(x, ϑ)μ(dx), (4.4.4)

i.e., on the interchange of differentiation and integration. This relation was neither
taken for granted, nor considered as a regularity condition in the early papers. It was
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neglected in Rao (1945). Rao (1949, p. 216, Theorem 3) gives conditions on the
family that imply relation (4.4.4).

A weak condition that ensures the validity of (4.4.4) at ϑ0 (even for k-parameter
families) can be found inWitting (1985, p. 319, Satz 2.136): L2-differentiability of the
family {Pϑ : ϑ ∈ Θ} at ϑ0, and the existence of a function ϑ̂ such that

∫
ϑ̂dPϑ = ϑ

and ϑ → ∫
ϑ̂2dPϑ is locally bounded at ϑ0. Simons and Woodroofe (1983, p. 76,

Corollary 2) show, under slightly weaker conditions, that (4.4.3) holds μ-a.e. (see
also Witting 1985, p. 327, Aufgabe 2.33).

In “Kendall’s Advanced Theory of Statistics”, Stuart and Ord (1991) pass over
such points. They confine themselves to the statement

∫
p•(x, ϑ)dx = 0 is the only

[!] condition for the validity of the Cramér–Rao bound (see p. 616). This slip subsists
in all editions even though it was pointed out already in Polfeldt (1970, p. 23).

The Cramér–Rao bound is attainable in one special case only: If the family {Pϑ :
ϑ ∈ Θ} is exponential with density

p(x, ϑ) = C(ϑ) exp[ϑT (x)] and
∫

T (x)Pϑ(dx) = ϑ.

This is implicitly already contained in Aitken and Silverstone (1942, p. 188), who
show that an unbiased estimator ϑ(n) achieves the minimal variance iff

n∑
ν=1

�•(xν, ϑ) = C(ϑ)(ϑ(n)(x) − ϑ).

A corresponding relation occurs in Cramér (1946, p. 475).
Even for exponential families, unbiased estimators attaining the variance bound

exist certain functions of ϑ only. Rao (1949, pp. 214/5) gives the following example.
For the Γ -distribution with scale parameter a and known shape parameter b, the
estimator κ(n)(x1, . . . , xn) = (nb − 1)/xn is unbiased for κ(Γa,b) = a−1 and has
variance 1/a2(nb − 2), whereas the Cramér–Rao bound is 1/a2nb. He then shows
that no continuous function of xn other than κ(n) can be unbiased. Hence there is
no continuous function of xn attaining the bound. One year later, Rao could have
argued that κ(n) is the function of a complete sufficient statistic, hence 1/a2(nb− 2)
the minimal variance for unbiased estimators. Rao’s example establishes only the
existence of some family for which the bound is not attainable. He obviously had
missed what was implicitly already contained in the paper by Aitken and Silverstone
(cited by Rao), namely that the bound is attainable for special exponential families
only. (See also Witting 1985, Sect. 3.7.1.)

A paper that represents the present state of the art is Müller-Funk et al. (1989).
(See also Witting 1985, Sect. 3.7.1.)

Looking back on the hundreds of papers devoted to the Cramér–Rao bound, it is
hard to understand the attention paid to the conditions needed in the proof of a bound
if this bound is not attainable anyway. Moreover, the variance as a measure for the

http://dx.doi.org/10.1007/978-3-642-31084-3_3
http://dx.doi.org/10.1007/978-3-642-31084-3_3
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quality of an estimator is more than doubtful. Hence, we will abstain from discussing
similar bounds put forward by Hammersley (1950) or Chapman and Robbins (1951).

Some scholars hold the opinion that bounds are meaningful even if they are
not attainable, but they withhold their arguments supporting this opinion. Ander-
sen (1970, p. 85, with respect to another bound which is unattainable, too) claimed:
“... in situations where the lower bound is not attained, [it] provides us with a denom-
inator for an efficiency measure”. Similarly, Barnett (1975, p. 126): “[The Cramér–
Rao bound] provides an absolute standard against which to measure estimators in a
wide range of situations.” Fisz (1963, p. 470, Definition 13.5.1) defines an unbiased
estimator as “most efficient” if it attains the Cramér–Rao bound, neglecting the pres-
ence of models with an unbiased estimator of minimal convex risk, larger than the
Cramér–Rao bound.

Some scholars think that the Cramér–Rao bound is at least valid asymptotically.
This opinion results from the fact that in highly regular parametric families the
Cramér–Rao bound happens to coincide with the asymptotic bound provided by the
Convolution Theorem for regular estimator sequences. Even respected authors like
Witting and Müller-Funk (1995, p. 198) cannot resist the temptation to pretend a
connection which does not exist: The nature of these bounds is totally different,
and so are the proofs. This can be seen from examples where the bound for the
asymptotic variance of regular estimator sequences is attained, whereas the best
sequences of unbiased estimators have a larger asymptotic variance (see Portnoy
1977, for a somewhat artificial, and Pfanzagl 1993, pp. 74–76, for a more natural
example). This refutes a widely held opinion that the Cramér–Rao bound is always
asymptotically attainable.

4.5 Optimal Median Unbiased Estimators

Recall that two estimators of a functional κ : P → R may be comparable with
respect to their concentration on arbitrary intervals (κ(P) − t ′, κ(P) + t ′′) only if
κ(P) is a common quantile. In natural applications, this common quantile κ(P)

is the median, and one can expect that for certain models the class of all median
unbiased estimators of κ(P) contains an element which is optimal in the sense of
being maximally concentrated in every interval containing κ(P).

In contrast, optimality for mean unbiased estimators just means “minimal convex
risk”. Since mean unbiasedness and median unbiasedness are two fundamentally
different conditions on the location of an estimator, it makes no sense to compare
the quality of a mean unbiased estimator with the quality of a median unbiased
one. Moreover, the optimality of a median unbiased estimator, expressed in terms of
concentration intervals, is of a clear operational significance, whereas the optimality
of amean unbiased estimator is based on the concept of convex risk, the interpretation
of which is open to question.

Yet, it might be worthwhile to have a look at estimators that are both mean as
well as median unbiased, say xn as an estimator for μ in the family {N (μ, σ 2)n :
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μ ∈ R, σ 2 > 0}. Most textbooks restrict themselves to stating that xn minimizes
the quadratic risk in the class of all mean unbiased estimators. They do not consider
worth mentioning that no median unbiased estimator can be more concentrated than
xn in any of the intervals (μ − t ′, μ + t ′′).

In the following we discuss conditions under which (optimal) median unbiased
estimators exist. To outline the basic ideas, we consider a family {Pϑ : ϑ ∈ Θ} in
which Θ ⊂ R is an interval. Let S : (X,A ) → (R,B) be a statistic such that the
family {Pϑ ◦ S : ϑ ∈ Θ} is stochastically isotone, say increasing. Then

Fϑ(u) := Pϑ {x ∈ X : S(x) ≤ u}

is, for fixed u, decreasing in ϑ . To avoid technicalities, we assume for the moment
that u → Fϑ(u) is increasing and continuous. If u(ϑ) is such that Fϑ(u(ϑ)) = 1/2,
then x → u−1(S(x)) is a median unbiased estimator of ϑ .

The median unbiased estimators thus obtained will be maximally concentrated
on arbitrary intervals containing ϑ : if S is sufficient, and if the densities p(x, ϑ) =
h(x)g(S(x), ϑ) have monotone likelihood ratios in S, i.e., if y → g(y, ϑ2)/g(y, ϑ1)

is increasing if ϑ1 < ϑ2. Monotonicity of likelihood ratios implies that the family
{Pϑ ◦ S : ϑ ∈ Θ} is stochastically increasing, so that median unbiased estimators
can be obtained as indicated above.

Stochastic monotonicity suffices for the existence of a median unbiased estimator.
It does, however, not guarantee that this estimator is reasonable (see Pfanzagl 1972,
p. 160, Example 3.16). If S is sufficient for {Pϑ : ϑ ∈ Θ} and if {Pϑ ◦ S : ϑ ∈
Θ} has monotone likelihood ratios, then a median unbiased estimator is maximally
concentrated on all intervals (ϑ−t ′, ϑ+t ′′) if it is a monotone function of S. Because
of the m.l.r. property, any set {x ∈ X : m(S(x)) ≥ ϑ ′}, with m increasing, is,
according to the Neyman–Pearson Lemma, most powerful for every testing problem
Pϑ ′ : Pϑ with ϑ > ϑ ′. Since

Pϑ ′ {m ◦ S ≥ ϑ ′} = 1

2
= Pϑ ′ {ϑ̂ ≥ ϑ ′}

if ϑ̂ is median unbiased, this implies

Pϑ {m ◦ S ≥ ϑ ′} ≥ Pϑ {ϑ̂ ≥ ϑ ′},

hence
Pϑ {ϑ ′ ≤ m ◦ S < ϑ} ≥ Pϑ {ϑ ′ ≤ ϑ̂ < ϑ}.

The same argument yields

Pϑ {ϑ ≤ m ◦ S < ϑ ′′} ≥ Pϑ {ϑ ≤ ϑ̂ < ϑ ′′} for ϑ ′′ > ϑ.
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What has been said so far is essentially presented in Lehmann (1959, Sect. 5, pp.
78–83). Lehmann also indicates how randomization can be used to obtain median
unbiased estimators in the more general case where Pϑ ◦ S may contain atoms.

Lehmann is aware of the fact that critical regions {x ∈ X : S(x) ≥ c} do not
only maximize the power for testing ϑ ′′ against ϑ ′′ > ϑ ; they also minimize the
power for alternatives ϑ ′ < ϑ (see his pp. 68/9, Theorem 2). Yet he arrives at the
optimality assertion (see p. 83) by means of a different argument: He considers
median unbiased estimators as a boundary case of two-sided confidence intervals
(ϑ, ϑ̄) with Pϑ {ϑ < ϑ} = α1, and Pϑ {ϑ > ϑ̄} = α2 for α1 = α2 = 1/2, using a
loss function like

�(ϑ;ϑ, ϑ̄) =
⎧⎨
⎩

ϑ − ϑ ϑ < ϑ,

ϑ̄ − ϑ if ϑ ≤ ϑ ≤ ϑ̄,

ϑ̄ − ϑ ϑ̄ < ϑ.

Birnbaum (Birnbaum1964, p. 27) attributes the optimality result formedian unbiased
estimators to Birnbaum (1961), where it is contained implicitly in Lemma 2, p.
121. Pfanzagl (1970, p. 33, Theorem 1.12) treats the general case of random-
ized estimators.

According to Brown et al. (1976, p. 719, Corollary 4.1), the following is true under
them.l.r. conditions indicated above: For anymedian unbiased estimator which is not
a contraction of S (almost everywhere), there exists a median unbiased contraction of
S which is strictly better. This result is an analogue to the Rao–Blackwell–Lehmann–
Scheffé Theorem for mean unbiased estimators.

A straightforward application of these results is to exponential families with den-
sities of the form

C(ϑ)h(x) exp[a(ϑ)S(x)] (4.5.1)

with a monotone function a. These families have monotone likelihood ratios for
every sample size. In fact, this is almost the only application. According to a result
obtained by Borges and Pfanzagl (1963, p. 112, Theorem 1) a one-parameter family
of mutually absolutely continuous probability measures with monotone likelihood
ratios for every sample size is necessarily of the type (4.5.1).

Relevant for applications are results on the existence of optimal median unbiased
estimators for families with nuisance parameters. Such a result may be found in
Pfanzagl (1979, p. 188, Theorem). Here is an important special case.

Assume that Pϑ,η, ϑ ∈ Θ (an interval in R) and η ∈ H (and abstract parameter
space) has densities

C(ϑ, η)h(x) exp

[
a(ϑ)S(x) +

k∑
i=1

ai (ϑ, η)Ti (x)

]

with S : (X,A ) → (R,B) and Ti : (X,A ) → (R,B).
If the function ϑ → a(ϑ, η) is increasing and continuous for every η ∈ H , and

if {(a1(ϑ, η), . . . , ak(ϑ, η)) : η ∈ H} has for every ϑ ∈ Θ a nonempty interior in
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R
k , then there exists a maximally concentrated median unbiased estimator of ϑ ,for

every sample size.
Taken at its surface, the Rao–Blackwell–Lehmann–Scheffé Theorem seems to

provide a much more general assertion about the existence of optimal mean unbi-
ased estimators (as compared to the above theorem on median unbiased estimators).
However, this impression is misleading. The typical case in which the existence of
a complete sufficient statistic is guaranteed for every sample size is the exponential
family, again. Moreover, the Rao–Blackwell–Lehmann–Scheffé Theorem presumes
that mean unbiased estimators exist, and that an “initial” mean unbiased estimator is
known.As against that,median unbiased estimators always exist under the conditions
indicated above.

4.6 Confidence Procedures

Let P|A be a family of probability measures, and let κ : P → R
k be a functional.

If κ̂ : X → R
k is an estimator for κ , and a realization x from P is available, then

one can compute the estimate κ̂(x). What does the observed value κ̂(x) tell us about
κ(P)? Onemight surmise that κ(P)will be somewhere close to κ(x). In which sense
can this be made precise?

The appropriate answer is given by a confidence procedure, i.e. a function K
mapping a point x ∈ X into a subset K (x) of the family P such that

{x ∈ X : t ∈ K (x)} ∈ A for t ∈ R
k .

If P = {Pϑ : ϑ ∈ Θ} with Θ ⊂ R
k is a parametric family of probability

measures, we write the confidence procedure as a map from X into the (Lebesgue
measurable) subsets of Rk . For one-dimensional parametric families, the confidence
sets K (x) are usually intervals [ϑ(x), ϑ(x)] or half rays (−∞, ϑ(x)] or [ϑ(x),∞].

Let Θ ⊂ R
k , and for each ϑ let Hϑ ⊂ Θ . For Θ ⊂ R, we will usually take

Hϑ = {ϑ} or Hϑ = (−∞, ϑ] or Hϑ = [ϑ,∞). A confidence procedure K has
significance level 1 − α for H if

Pτ {ϑ ∈ K } ≥ 1 − α for τ ∈ Hϑ , ϑ ∈ Θ.

If 1 − α is close to 1 we will be confident that the unknown value κ(P) is in the
observed set K (x).

The notion of a confidence interval as a set of parameter values containing the
true parameter value with “high probability” is used in a vague form by several
writers in the 19th century, the first being perhaps Laplace (1812), who gives an
asymptotic confidence interval for the parameter of the binomial distribution (2nd
Book, Sect. 16). It also appears in Gauss (1816). Other examples can be found in
Fourier (1826), Cournot (1843, pp. 185/6) and Lexis (1875).
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The first formally correct statement of confidence sets as random objects contain-
ing the fixed parameter with prescribed probability is given by Wilson (1927). Other
examples of conceptually precise confidence statements prior to Neyman’s general
theory areWorking and Hotelling (1929), Hotelling (1931) and Clopper and Pearson
(1934).

When Neyman entered the scene (1934, Appendix, Note 1, and 1937, 1938) he
was obviously not aware of Wilson’s paper. His intention was to make clear that
the concept of confidence, being based on the usual concept of probability, was
something else than Fisher’s concept of “fiducial distributions” (1930), a concept
based on principles that cannot be deduced from the rules of ordinary logic. (See in
particular Neyman 1941.)

Lehmann (1959) was the first textbook dealing with confidence sets. As a book
with emphasis on test theory, it treats confidence intervalsmore or less as an appendix
to test theory. It obtains confidence sets by inverting critical regions (Lemma 5.5.1,
p. 179). This accounts for the restriction to confidence intervals for the parameter of
a univariate family. As an appendix to test theory, the author borrows the concept
for describing properties of confidence intervals (such as unbiasedness) from the
corresponding properties of tests. This prevents more or less the development of a
genuine theory of confidence sets. For the case of univariate families, something like
optimality was obtained for exponential (more generally: m.l.r.-) families.

The theory of confidence sets has virtually disappeared in the more advanced
textbooks on mathematical statistics—Bickel et al. (1993) has two references to con-
fidence sets; Strasser (1985) has none. The fact that the theory of confidence sets had
lost its adequate treatment is, perhaps due to the inadequate starting point, inLehmann
(1959), to consider where confidence procedures are considered as an appendix to
test theory. Even the most recent book which contains a longer chapter on confidence
sets (“The theory of confidence sets”, Chap. IV, pp. 254–267 in Schmetterer 1974),
still deals with confidence sets as an appendix to test theory. The number of refer-
ences to confidence procedures is two in Lehmann and Casella (1998) and zero in
Bickel et al. (1993) and in Strasser. See however Shao (2003), Chap. 7.

A confidence procedure K ∗ with confidence level 1− α is called uniformly most
accurate (for H ) if for every confidence procedure K ∗ with confidence level 1 − α

we have
Pτ (ϑ ∈ K ∗) ≤ Pτ (ϑ ∈ K ) for τ /∈ Hϑ , ϑ ∈ Θ.

Confidence sets can be obtained by inverting acceptance regions of tests. Let
Θ ⊂ R

k , and for each ϑ let Hϑ be a hypothesis and A(ϑ) an acceptance region with
level α. For x ∈ X set

K (x) = {ϑ ∈ Θ : x ∈ A(ϑ)}.

Then K is a confidence procedure with significance level 1 − α.
If Θ ⊂ R and the acceptance region A(ϑ) is uniformly most powerful for Hϑ for

each ϑ ∈ Θ , then the confidence procedure obtained by inversion is uniformly most
accurate for H .
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The idea to obtain confidence sets by inversion of acceptance regions meets the
following problem: Whereas the shape of a acceptance region is of no relevance for
the power of a test, the shape of a confidence set is crucial for its interpretation. Think
of examples where confidence sets obtained by inversion of (optimal) tests are not
connected.

Pratt (1961) andGhosh (1961) relate the false covering probabilities of confidence
sets K (x) to their expected size. With Θ ⊂ R

k and λ denoting Lebesgue measure
on Rk , Fubini’s Theorem implies

∫
λ(K (x)) P(dx) =

∫
P{x ∈ X : τ ∈ K (x)}λ(dτ)

for any probability measure P , in particular the Ghosh–Pratt identity

∫
λ(K (x)) Pϑ(dx) =

∫
τ �=ϑ

Pϑ {x ∈ X : τ ∈ K (x)}λ(dτ).

We now consider the problem of an upper confidence bound with covering prob-
ability β ∈ (0, 1) for the parameter ϑ in a univariate family Pϑ |A , ϑ ∈ Θ ⊂ R, i.e.
a function ϑβ : X → R such that

Pϑ {x ∈ X : ϑ ≤ ϑβ(x)} = β for every ϑ ∈ Θ. (4.6.1)

For a given ϑ the ideal answer would be qβ(ϑ), the β-quantile of Pϑ . A function
x → ϑβ(x) which meets this requirement for every ϑ ∈ Θ , should be close to
qβ(ϑ) for every ϑ ∈ Θ . If we consider ϑβ as an estimator of qβ(ϑ), the ϑβ should
be concentrated about qβ(ϑ) as closely as possible. Under special conditions there
is a precise answer to this vague question. Let us say that a functional f0 is more
concentrated about q(ϑ) than the functional f1 if

Pϑ {x ∈ X : f0(x) ∈ I } ≥ Pϑ {x ∈ X : f1(x) ∈ I }

for every interval I containing q(ϑ). With this terminology, no confidence bound ϑβ

fulfilling condition (4.6.1) can be more concentrated about qβ(ϑ) than a confidence
bound depending on X through T (x) only. An earlier version of this result occurs in
Pfanzagl (1994, p. 173, Theorem 5.4.3).
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Chapter 5
Asymptotic Optimality of Estimators

5.1 Introduction

Nonasymptotic theory, which flourished between 1940 and 1960, ended up as a
collection of results that does not amount to a consistent theory.

Important parts of nonasymptotic theory are, in fact, confined to exponential
families. Even in this restricted domain, the applicability depends on accidental
features of the model.

Example (i) IfP := {N (μ1, σ
2)n × N (μ2, σ

2)n : μi ∈ R, σ 2 > 0}, then x1n − x2n
is a mean unbiased estimator of μ1 − μ2 which minimizes the convex risk. (Recall
that (x1n, x2n, s21n + s22n) is a complete sufficient statistic.)

(ii) ForP := {N (μ, σ 2
1 )

n × N (μ, σ 2
2 )

n : μ ∈ R, σ 2
i > 0}, the statistic s21n/s22n is

a plausible estimator of σ 2
1 /σ

2
2 , but the Rao–Blackwell–Lehmann–Scheffé Theorem

does not apply: (x1n, x2n, s21n, s
2
2n) is minimal sufficient, but not complete (since

x1n − x̄2n has expectation 0). �

The limitations of nonasymptotic theory motivated statisticians to accept unreason-
able optimality concepts (like minimal quadratic risk) whenever reasonable opti-
mality concepts (like maximal concentration in intervals) are not compatible with
nonasymptotic techniques. In some cases estimators fulfilling certain side conditions
(like unbiasedness, equivariance etc.) do not exist (as in the case of the Behrens–
Fisher problem), whereas estimators fulfilling the side conditions asymptotically are
available. In other cases, relaxing side conditions from “exact” to “approximate” (say
unbiasedness versus asymptoticmean unbiasedness)may lead to estimator sequences
that are asymptotically better.

By relaxing “strict” conditions (like unbiasedness or similarity) to “approximate”
conditions, and “optimality” to “approximate optimality”, one obtains a theory of
almost universal applicability. A problem which can be successfully addressed using
asymptotic techniques is the choice of good confidence intervals, say (ϑ(n), ϑ̄ (n)). For
intervals with a prescribed covering probability (i.e., Pn

ϑ {ϑ ∈ (ϑ(n), ϑ̄ (n))} ≥ α) one
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may require that the expected length,
∫
(ϑ̄ (n)(xn) − ϑ(n)(xn))Pn

ϑ (dxn), isminimal, or,
alternatively, that (ϑ(n), ϑ̄ (n)) ismost accurate in the sense that it covers the parameter
values ϑ − n−1/2r and ϑ + n−1/2r with minimal probability. Strictly speaking, these
two conditions are incompatible, but with increasing sample size, the contradiction
fades away.

The preponderance of fixed-sample-size theory in many textbooks (such as
Lehmann and Casella 1998 with nearly 400 pages on fixed sample-size procedures
and less than 100 pages on asymptotic theory) indicates how uneasy some statisti-
cians felt about results which are only asymptotically true. However, fixed sample-
size results are exact within the model only. In most applications it is impossible
to assess the model error; it is comparatively easy to assess the error of asymptotic
assertions within the model. While the error of an asymptotic assertion decreases
with increasing sample size, the model error remains constant. Hence asymptotic
assertions based on more general models will usually be more accurate than “exact”
assertions referring to a wrong special model.

The shift of the theory from “exact” to “asymptotic” is illustrated by two survey
papers on “Nonparametric Statistics”: Schmetterer (1959), covering the period until
the mid-fifties, hardly mentions asymptotic results;Witting (1998), who covers the
following 40 years, focuses exclusively on asymptotics.

Even though asymptotic methods are necessary to obtain a generally applicable
theory, the problem remains how asymptotic results can be interpreted.

Consistency

For convenience of notation we write x = (x1, x2, . . . ) and xn = (x1, . . . , xn). We
sometimes consider estimators κ(n) as functions of x ∈ XN rather than xn ∈ Xn . The
estimator sequence κ(n), n ∈ N, for a real-valued functional κ(P) is consistent at P
if, for every ε > 0,

Pn{xn ∈ Xn : |κ(n)(xn) − κ(P)| < ε} → 1.

We write κ(n) − κ(P) = o(n0, Pn) or κ(n) → κ(P) (Pn).
The estimator sequence is strongly consistent at P if, for every ε > 0,

Pn{xn ∈ Xn : |κ(n)(xn) − κ(P)| < ε for almost all n ∈ N} → 1.

Strong consistency of κ(n) is equivalent to the convergence of κ(n)(x)), n ∈ N, to
κ(P) for PN−a.a. x ∈ XN. To see this, use the equivalence between

x ∈ An for n ≥ n(x) and x ∈
∞⋃

m=1

∞⋂

n=m

An

with An = {x ∈ XN : |κ(n)(x) − κ(P)| < ε}.
The concept of “strong consistency” was introduced into statistical theory by

Doob (1934) and has been used by Dugué (1937, p. 327), Wald (1949) and many
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others since. It reinforces the assertion of consistency from a mathematical point
of view, but it adds nothing to its operational significance for finite n, even if one
rewrites (κ(n)(x))n∈N → κ(P) for PN-a.a. x ∈ XN as

PN

∞⋃

n=m

{x ∈ XN : |κ(n) − κ(P)| > ε} ≤ ε for m ≥ mε.

The assertions of statistical theory refer to the probability of

Pn0{xn0 ∈ Xn0 : |κ(n0)(xn0) − κ(P)| < ε}

for a fixed sample size n0. Assertions about “what might happen” if the observations
were continued from x1, . . . , xn0 to xn0+1, . . . are not of primary interest.

The concept of consistency (as opposed to strong consistency) was easy to deal
with using n-fold products of Lebesgue densities. Dealing with convergence PN-a.e.
in a mathematically precise way was impossible prior to Kolmogorov’s trailblazing
book (1933). It appears that R.A. Fisher’s unwillingness to handle a mathematically
more complex concept like “strong consistency” lies at the root of his deviating
concept of consistency.

A statistic…is a consistent estimate of any parameter, if when calculated from an indefinitely
large sample it tends to be accurately equal to that parameter.

This definition appeared in Fisher (1925, p. 702), and still held firm in Fisher (1959,
pp. 143–146).

Consistent estimator sequences can be used as a starting point for the construction
of optimal estimator sequences. Consistency of theML-sequences is needed to obtain
their limit distribution. Some authors require to choose among several solutions of the
likelihood equations a consistent one. Yet, consistency is a property of an estimator
sequence, not of a particular estimator.

Rules that guarantee the consistency of an estimator sequence are of questionable
significance if they refer to sample sizes that will never occur. From the methodolog-
ical point of view, the situation is even worse in the case of Cramér’s Consistency
Theorem (see Sect. 5.2). Cramér’sConsistencyTheorem is valid only if the likelihood
equation has for every sample size and every (!) sample (x1, . . . , xn) one solution
only. There is no theorem based on properties of the basic family {Pϑ : ϑ ∈ Θ}
that guarantees that these conditions are fulfilled. (The same mistake occurs in
Schmetterer 1966, p. 373, Satz 3.5.)

How could a property (like consistency) that lacks operational significance, con-
tribute to the proof of an operationally significant assertion (like the asymptotic
distribution of the ML-sequence)? An asymptotic assertion about the estimator κ(n)

should be based on properties for the sample size n only. That N (0, σ 2(ϑ)) is the limit
distribution of the estimator sequence ϑ(n), n ∈ N, can be turned into the operational
assertion that the true distribution of Pn0

ϑ ◦ n1/20 (ϑ(n0) − ϑ) can be approximated by
N0, σ 2(ϑ)), provided n0 is large. In principle, this assertion can be verified by com-
putations. As far as consistency ofϑ(n), n ∈ N, there is no assertion about ϑ(n0) which
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could be verified by computations. Assertions about P (n0)
ϑ ◦ n1/20 (ϑ(n0) − ϑ) should

be based on the observations (x1, . . . , xn0) and not on properties of ϑ
(n) for samples

(x1, . . . , xn) that will never occur.

Limit Distributions

Consistency is just an ancillary concept. What makes asymptotic theory useful are
assertions about the (weak) convergence of the standardized estimator sequences to
a limit distribution, for example

Q(n)
P := Pn ◦ n1/2(κ(n) − κ(P)) ⇒ QP .

Comparing the asymptotic performance of estimator sequences according to their
limit distribution goes back at least to Laplace and Gauss. As an example wemention
a result of Laplace (1812) andGauss (1816), who showed that the estimator sequence
(n−1 ∑n

ν=1(xν − xn)2)1/2 for σ in the model N (0, σ 2) is asymptotically better than√
π/2n−1 ∑n

ν=1 |xν − xn|.
The concept of a limit distribution requires thinking of an estimator κ(n0)

0 as an
element of an infinite sequence κ(n), n ∈ N. If the definition of κ(n) follows the same
rule for every n ∈ N, there is no question as to which limit distribution should be used
for such an approximation. In principle, an estimator for a given sample size can be
considered as an element of an infinite number of sequences, and the question is open
as towhich limit distribution should be used for such approximations. For example, if
ϑ(25)(x1, . . . , x25) := (1/15)

∑20
ν=6 xν:n , what is ϑ(n) for arbitrary n? Is it (1/(n −

10))
∑n−5

ν=6 xν:n? Or perhaps (1/(n − 2
√
n))

∑n−√
n

ν=√
n+1 xν:n? The appropriate answer

is: neither. The problem is not to guess which estimator the experimenter would have
chosen for sample sizes n other than n = 25, but to create an estimator sequence the
limit distribution of which renders a good approximation to P25

ϑ ◦ 251/2(ϑ(25) − ϑ).
To make this point clearer, consider the example of estimating the difference

between a1 and a2, based on a sample of size (n1, n2) from Γ (a1, b1) and Γ (a2, b2).
What is of interest is the distribution of a(n1)

1 − a(n2)
2 underΓ (a1, b1)n1 × Γ (a2, b2)n2 .

The application of asymptotic theory requires determining the standardized limit
distribution of a(n1)

1 − a(n2)
2 , as (n1, n2) tends to infinity. The natural idea is to choose

the sequence (n1/(n1 + n2), n2/(n1 + n2)), n ∈ N, but it is not clear whether this
is the best choice for the approximation of c(n1, n2)(a

(n1)
1 − a(n2)

2 ) by means of a
limit distribution. Further, it would make no sense to consider an infinite sequence of
experiments where, say, the size n of the combined sample is divided into n1 and n2
such that the costs are minimized. This may be relevant for the experimenter, but it
has nothing to dowith the question of how the distribution of c(n1, n2)(a

(n1)
1 − a(n2)

2 ),
with n1, n2 fixed, can be approximated.

Examples of this kind illustrate what the role of a limit distribution really is: Ifϑ(n)

is an estimator for which Pn
ϑ ◦ n1/2(ϑ(n) − ϑ) can be approximated with reasonable

accuracy, nobody will care for the limit (if any) to which Pn
ϑ ◦ n1/2(ϑ(n) − ϑ), n ∈

N, converges. The limit distribution is only relevant if no other approximations to
Pn
ϑ ◦ n1/2(ϑ(n) − ϑ) are available.
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For parametric families, the main result on the asymptotic performance of ML-
sequences is usually stated as follows1 (see Lehmann and Casella 1998, p. 447,
Theorem 6.3.7, Witting and Müller-Funk 1995, p. 202, Satz 6.3.5): Every consistent
sequence of ML estimators converges weakly to N (0,Λ(ϑ)).

Even supplied by conditions which guarantee the consistency of (every? some?)
ML-sequence, this assertion is different fromwhat the statisticianwould like to know:
that N (0,Λ(ϑ)) is a good approximation to the distribution of theMLestimator under
Pn
ϑ when n is large. The latter property has nothing to do with the performance of

the ML-sequence as the sample size tends to infinity.
The condition that ϑ(n) should belong to a consistent sequence is meaningless.

To give operational significance to such a mathematical assertion, one must, again,
keep error bounds in one’s mind. Weak convergence to a limit distribution should
always include the connotation of error bounds. In ideal situations, there exists K > 0
such that

|Q(n)
P (I ) − QP(I )| ≤ Kn−1/2 for every P ∈ P, every interval I, and every n ∈ N.

(5.1.1)
Even if such an assertion can be proved for a certain class of estimator sequences
(say ML), it will, in general, not be useful for practical purposes, unless K is given
explicitly and is not very large. The proof of an assertion like (5.1.1) for a general class
of estimators, say ML estimators, requires several intermediate steps which, taken
together, lead to a constant K which is far too large. In general, practically useful
information about the accuracy of QP(I ) as an estimate of Pn{n1/2(κ(n) − κ(P)) ∈
I } can only be obtained using simulations. Refinements of the normal approximation
by means of asymptotic expansions are more useful than bounds for the error of the
normal approximation.

Basing the comparison of estimator sequences on the standardized version of the
limit distribution is generally accepted. One might question, of course, whether the
comparison of standardized multivariate estimators according to their concentration
on symmetric convex sets is more informative than the component-wise comparison
on intervals containing 0. But one might have reservations about using joint (limit)
distributions as the appropriate concept for judging the quality of estimator sequences
if the standardizing factors cn are different for different components.

Uniformity on P

For two different probability measures P0 and P1, the sup-distance between Pn
0

and Pn
1 tends to 1 as n tends to infinity. Hence the asymptotic performance of

Pn
0 ◦ n1/2(κ(n) − κ(P0)), n ∈ N, is unrelated to the asymptotic performance of

Pn
1 ◦ n1/2(κ(n) − κ(P1)), n ∈ N. One might change the asymptotic performance of a

given estimator sequence at P0 without affecting its asymptotic performance for any
P 
= P0. This makes it impossible to speak of a limit distribution which is optimal
for every P ∈ P, unless one restricts the consideration to estimator sequences which

1A formulation of this result giving full attention to all details as in Schmetterer (1966, p. 388, Satz
3.10) may leave the reader in a state of desperation.
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behave, in some sense, uniformly in P . Uniformity onP, which was required by Rao
(1963) [p. 194], is meaningful from an operational point of view. Wolfowitz (1965)
[p. 250] makes a strong case for requiring uniformity onP as the only operationally
meaningful condition. What is technically useful for asymptotic theory is: for each
P0, uniformity on a neighborhood shrinking to P0 at the appropriate rate.

Section5.6 deals with the question which kind of uniform convergence is opera-
tionally significant and—at the same time—strong enough to guarantee that the limit
distribution provides for large samples a good approximation to the true distribution
of the estimator sequence.

Asymptotic Optimality

To avoid the “evil of superefficiency” (see Ibragimov and Has’minskii 1981, p. 100,
and Stoica and Ottersten 1996), a condition weaker than “uniformity on P ∈ P”
suffices: “Regularity” of estimator sequences κ(n), n ∈ N, defined as convergence of
Pn
n ◦ n1/2(κ(n) − κ(Pn)), n ∈ N, to the same limit distribution for certain sequences

Pn → P0. The relation between this concept of “regular” and “uniform” convergence
will be discussed in Sect. 5.10.

Proving the asymptotic optimality of ML-sequences was in the focus of statisti-
cal theory for decades. First solid results had been attained around 1930; the final
result, obtained by Kaufman (1966), comes close to what is now known as “Convo-
lution Theorem”, see Sect. 5.13. For parametric families, this bound, N (0,Λ(ϑ)), is
attained by ML-sequences.

The attempts at proving the asymptotic optimality of ML-sequences started with-
out a clear concept of what “optimality” means for multivariate estimator sequences.
The Convolution Theorem established the concentration on convex sets, symmetric
about the origin, as the appropriate expression of asymptotic optimality.

In its present form, the Convolution Theorem asserts that the bound for the con-
centration of regular estimator sequences is determined by the canonical gradient of
the functional P → κ(P). It is necessary to restrict attention to regular estimator
sequences in order to obtain limit distributions which are approximations to the true
distribution of the estimator.

“Nice” limit distributions are operationally useful in asymptotic theory. An indis-
pensable property of a limit distribution is its continuity as a function of P ∈ P.
Hence it seems natural to replace conditions on the estimator sequence (like regular-
ity) by conditions on the limit distribution; in other words: To present theorems on
bounds for estimator sequences with “nice” limit distributions instead of Theorems
on bounds for the concentration of regular estimator sequences. In Sect. 5.14 it will
be shown that the usual bound for regular estimator sequences is also valid for esti-
mator sequences with “nice” limit distributions, and that such estimator sequences
are automatically regular.

Initially the purpose of asymptotic theory was to obtain approximate assertions
about the distribution of estimators. This can be achieved by assertions about the
limit distribution of standardized estimators. For parametric families Pϑ this means
an approximation to Pn

ϑ ◦ cn(ϑ(n) − ϑ). For general families of probabilitymeasures,
it means an approximation, say QP , to
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Q(n)
P = Pn ◦ n1/2(κ(n) − κ(P)),

where κ(n) : Xn → R
p is an estimator of the functional κ : P → R

p. The usual
answer to this problem is the assertion that Q(n)

P , n ∈ N, converges weakly to QP

(for every (?) P ∈ P). The desired answer is something different: Forwhich purposes
can QP be used as a surrogate for Q(n)

P ; for instance: Can QP be used for computing
a confidence set for κ(P)?

For such purposes, conditions on the relation between Q(n)
P , n ∈ N, and QP

stronger than just convergence for each P separately are required. Such conditions are
“regular convergence”, “locally uniform convergence”, “continuous convergence”,
etc. None of these conditions is distinguished by being appropriate for every purpose.
However, regular convergence suffices for the purpose of developing the concept of
an “optimal limit distribution” (maximal concentration on convex subsets about the
origin in the Convolution Theorem).

Yet limit distributions of regularly convergent sequences are not necessarily con-
tinuous. The optimal limit distributions (as distinguished by the Convolution Theo-
rem). Estimator sequences converging to the optimal limit distributions are automat-
ically regular (but not necessarily locally uniformly convergent).

5.2 Maximum Likelihood

The Prehistory

In 1912 (Fisher 1912), a self-confident undergraduate, R.A. Fisher, believed to have
discovered a new, “absolute” method of estimation, Maximum Likelihood (ML).
Surprisingly, his paper was published at a time when this “new” method had been
known under various names and with varying justifications for 150 years. That the
basic idea already occurs in Lambert (1760), was only discovered by Sheynin in
(1966). But it was well known that Bernoulli (1778) had suggested the parameter
value as an estimator—the location in his case—“... quimaxima gaudet probabilitate”
(Todhunter 1865, pp. 236/7). In the 19th century, the method was well known to
astronomers (Encke 1832–34), could be found in various textbooks (Czuber 1891)
and was used by Pearson (1896) [pp. 262–265] to determine the sample correlation
coefficient as an estimator of the population correlation coefficient. The basic idea of
maximum likelihood is so obvious that it was “discovered” once again by Zermelo
(1929), a mathematician without any ties to statistics. Though some of the authors
came to the ML idea via a Bayesian approach using a uniform prior (see Hald 1999,
on this particular point), the opinion was widespread that it was the performance of
the estimators that counted, not the “metaphysical principle” on which the estimator
was grounded. As an example we can cite Hald (1998) [p. 499] :

Helmert (1876) borrowed the idea from inverse probability that the “best” estimate is obtained
by maximizing the probability density of the sample and having found the estimate, he
evaluated its properties by studying its sampling distribution.
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Fisher (1912) [p. 155] claims that his new method leads to optimal estimators. It
appears that Fisher was at this time convinced of optimum properties even for finite
samples. The further development of his thought over the next decade is carefully
examined by Stigler (2005).

At the beginning of the 20th century, the time was ripe for a general theorem on
the asymptotic distribution of ML-sequences. The result (for an arbitrary number of
parameters) is basically contained in the paper by Pearson and Filon (1898), written
in the spirit of “inverse probability”, andwith the (misguided) interpretation that their
result refers to moment estimators. Fisher (1922) [p. 329, footnote] heavily criticizes
these points. If he had been familiar with the literature of his time he could have cited
the papers by Edgeworth (1908/1909), which appeared not in some obscure journal,
but in the Journal of the Royal Statistical Society. In these papers, Edgeworth puts
forward a correct interpretation of the results of Pearson and Filon, and he shows that,
in a variety of examples, the asymptotic variance of the ML-sequence is not larger
than that of other estimator sequences. 1. For symmetric densities, the asymptotic
variance of the ML-sequence is at least as good as the sample mean and the sample
median. 2. For Pearsons’s Type III distributions, the ML-sequence is at least as good
as the moment estimators. 3. Among the estimating equations

∑n
ν=1 g(xν − ϑ) = 0,

the one with g(x) = p′(x)/p(x) (corresponding to the likelihood equation for a shift
parameter) yields the estimator sequence with the smallest asymptotic variance.

Instead of welcoming the results of Edgeworth (after they had become known to
him) as supporting his claim of the superiority of theMLmethod, Fisher continued to
quarrel about the distinction between “maximum likelihood” and “maximal inverse
probability”, though Edgeworth had stated explicitly (1908/1909, p. 82) that his
results are “free from the speculative character which attaches to inverse probability”.
Is it legitimate to refuse giving mathematical results proper recognition with the
argument that they are based on the wrong “philosophy”?

The relations between the results of Pearson and Filon (1898), Edgeworth
(1908/1909) and Fisher are discussed in detail by a number of competent schol-
ars, like Edwards (1974, 1992), Pratt (1976), Savage (1976), Hald (1998, Chap. 28)
and (most interesting) Stigler (2007).

Even though the ML principle (in one or the other version) was familiar, general
results about the asymptotic distribution of the ML-sequence were late to arrive. It
might be a promising project to find out how scientists determined the accuracy of
their ML estimators before such general results were available. As an example, we
can mention a paper by Schrödinger (1915) on measurements with particles subject
to Brownian motion. On p. 290, Schrödinger writes:

Es gilt nun, aus einer Beobachtungsreihe ... diejenigen Werte [der beiden Parameter] zu
berechnen, welche durch diese Beobachtungsreihe zu den wahrscheinlichsten gemacht wer-
den; ferner die Fehler zu berechnen, die beiden Werten wahrscheinlich oder im Mittel
anhaften.

What Schrödinger (Sect. 6, pp. 294/5) does to determine the accuracy of his ML
estimatorswas, probably, the common practice among physicists at this time:With an
explicit formula for the ML estimator ϑ(n) at hand, he computes σ 2

n (ϑ) := ∫
(ϑ(n) −
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ϑ)2dPn
ϑ , and bases a measure of accuracy on σn(ϑ

(n)(x)). In the particular case dealt
with by Schrödinger, σn(ϑ) is asymptotically equivalent to n−1/2σ(ϑ).

In the following sections we deal with various proofs of consistency and asymp-
totic normality of the ML-sequences. At the technical level of Fisher’s writings,
consistency had no relevance. (Fisher’s concept of “consistency” meant something
else.) His derivation of the asymptotic variance of theML-sequence (1922, pp. 328/9)
is intelligible only for readers familiar with Fisher’s style. The emphasis of Fisher’s
papers (1922, pp. 330–32, 1925, p. 707) is on the asymptotic optimality of the
ML-sequence. His intention is to show that the asymptotic variance of asymptoti-
cally normal estimator sequences cannot be smaller than

( ∫
�•(x, ϑ)2Pϑ(dx)

)−1
.

Fisher’s efforts to support his claim to the superiority of the ML method by means
of mathematical arguments motivated mathematicians and statisticians with a back-
ground in probability theory to turn conjectures and assertions about ML-sequences
into mathematical theorems. The results will be discussed in the following sections.

What, in the end, is Fisher’s contribution to the theory of ML estimators? It is the
concept of “maximum likelihood”, which he introduced in (1922, p. 326).

When one dealt with the asymptotic theory of ML-sequences in a mathematically
precise way, it soon became clear that the consistency is more difficult to establish
than the asymptotic distribution, given consistency. Occasionally, the consistency
can be proved directly, if the estimators are given by explicit formulas. Hence it
is preferable to present the asymptotic theory of ML-sequences in two parts: (a) a
consistency theorem, (b) a theorem about the asymptotic distribution of consistent
ML-sequences.

Remark Assertions about the distribution of n1/2(ϑ(n) − ϑ) under Pn
ϑ are possible

only if ϑ(n)(xn) is a measurable function of xn . If ϑ(n)(xn) is defined by

n∏

ν=1

p(xν, ϑ
(n)(xn)) = sup

ϑ∈Θ

n∏

ν=1

p(xν, ϑ),

say, the measurability of ϑ(n) can be guaranteed by some kind of “Measurable Selec-
tion Theorem”. An early example of such a theorem occurs in Schmetterer (1966)
[p. 375, Lemma 3.3], who seems to have been unaware of selection theorems in vari-
ous connections. Nowmeasurable selection theorems occur occasionally in advanced
textbooks on mathematical statistics (Strasser 1985, p. 34, Theorem 6.10.1; Pfanzagl
1994, p. 21, Theorem 6.7.22;Witting andMüller-Funk 1995, p. 173, Hilfssatz 6.7). A
paper on the measurability of ML estimators far off the mainstream is Reiss (1973).

Consistency of ML-Sequences

The consistency of an estimator sequence is just an intermediate step on the way to
its asymptotic distribution. Nevertheless, the literature on consistency is immense.
The following considerations are restricted toweak consistency ofML-sequences for
one-parameter families. The generalizations to strong consistency, perhaps locally
uniform, and to multi-parameter families are straightforward if the arguments for the
simplest case are understood.
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The prototype of a consistency theorem is based on 1. conditions on the parameter
spaceΘ and the family {Pϑ : ϑ ∈ Θ} and 2. a prescription as to how the estimator is
defined, for every n ∈ N. Not all theorems declared as consistency theorems are of
this type: Some of them include ad hoc assumptions about the ML-sequence, such
as “The likelihood equation has a unique root for every n ∈ N”. Such an assumption
makes the whole theorem meaningless, unless it can be verified within the given
framework.

Conditions on estimator sequences concerning “all sample sizes” remind us of
the problems with the operational significance of asymptotic assertions in general.
One might be acquiesced if for the sample size n0 in question there were only one
solution. Can our confidence in the quality of the ML estimator for the sample size
n0 really depend on conditions concerning sample sizes which will never occur? Yet
the consistency theorem is valid only if this follows from the regularity conditions.
Consistency as an extra-condition is with no operational significance.

Basically, the ML estimator ϑ(n)(xn) is defined by

n∏

ν=1

p(xν, ϑ
(n)(xn)) ≥

n∏

ν=1

p(xν, ϑ) for ϑ ∈ Θ.

When Θ ⊂ R
k , we have the necessary condition that ϑ(n)(xn) is a solution of the

likelihood equation
n∑

ν=1

�(i)(xν, ϑ) = 0, i = 1, . . . , k.

It is possible that solutions of the estimating equation give reasonable results although
the maximizer of the likelihood function does not; see Kraft and Le Cam (1956).

Notice the basic distinction: To prove consistency based on the original definition,
only topological conditions (on Θ and the function ϑ → p(x, ϑ)) are required.
Obtaining consistency for solutions of the likelihood equation not only requires
ϑ → p(x, ϑ) to be differentiable; it leads to problems if the likelihood equation
has several solutions. (Recall the result of Reeds 1985, that for the location family
of Cauchy distributions, kn(xn) − 1 is asymptotically distributed according to the
Poisson distribution with parameter 1/π , where kn(xn) is the number of solutions of
the likelihood equation.)

It does not make sense to state that among the roots of the estimating question
for the sample size n0 there is (at least) one which is an element of a consistent
estimator sequence. To say that ϑ(n0) is an element of a consistent estimator sequence
is meaningless, anyway. What is needed is a guide which root to choose.

Some Technical Questions

As soon as mathematically oriented statisticians entered the scene, they discovered a
number of problems which nobody had thought about before. The most elementary
one: Assertions about consistency and asymptotic normality require the estimators to
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be measurable. Even if the ML estimator is not uniquely determined, there is always
a measurable version if the density p(x, ·) is continuous for every x ∈ X .

To prepare for the following sections on “consistency” and “asymptotic normal-
ity”, we will discuss some other mathematical problems typical for such asymptotic
considerations at a more general level.

Let (X,A ) be a measurable space, (Θ,U ) a topological space endowed with the
Borel algebra B generated by U , and f : X × Θ → R a function which is for each
y measurable in x , and for each x continuous in y. We might mention in passing that
f is then A × B-measurable. This allows the application of Fubini’s Theorem.
Before discussing some of the consistency theorems from a historical point of

view, it is advisable to point to one of the typical technical problems: To strengthen

n−1
n∑

ν=1

f (xν, ϑ0) →
∫

f (·, ϑ0)dPϑ0 (Pn
ϑ0
)

to

n−1
n∑

ν=1

f (xν, ϑ
(n)(xn)) →

∫
f (·, ϑ0)dPϑ0 (Pn

ϑ0
) (5.2.1)

if ϑ(n) → ϑ0 (Pn
ϑ0
). Not all authors had the right idea about which conditions on f

going beyond continuity of ϑ → f (x, ϑ) for every x ∈ X , are needed for this step:
Continuity of ϑ → f (x, ϑ) uniformly in x , as required by Dugué (1936, 1937),
is much too strong. Let Θ ⊂ R and f •(x, ϑ) = ∂ϑ f (x, ϑ) . In their “fundamen-
tal” Lemma 2.1, Gong and Sameniego (1981, pp. 862/3) require, in addition to∫ | f (·, ϑ0)|dPϑ0) < ∞, a condition corresponding to

∫
supϑ∈U | f (1)(·, ϑ)|dPϑ0 <

∞ for an open subset U containing ϑ0. In fact, the condition

∫
sup
ϑ∈U

| f (·, ϑ)|dPϑ0 < ∞ for some U 
 ϑ0 (5.2.2)

suffices. Since ϑ → f (x, ϑ) is continuous, this implies for every ε > 0 the existence
of Uε 
 ϑ0 such that

∫
sup
ϑ∈Uε

| f (·, ϑ) − f (·, ϑ0)|dPϑ0 < ε. (5.2.3)

By the same argument, condition (5.2.2) implies that

n−1
n∑

ν=1

∫ 1

0
f (xν, (1 − u)ϑ0 + uϑ(n)(xn))du →

∫
f (·, ϑ0)dPϑ0 (Pn

ϑ0
)

if ϑ(n) → ϑ0 (Pn
ϑ0
), a relation useful in connection with Taylor expansions.
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Some proofs concerning the asymptotic distribution of ML-sequences are unnec-
essarily complicated because they use a Taylor expansion with a remainder term
which is not to the purpose. With f • and f •• denoting the first and second deriva-
tive of f (x, ϑ) with respect to ϑ , most authors use an expansion like

n−1
n∑

ν=1

f (xν, ϑ) = n−1
n∑

ν=1

f (xν, ϑ0 + (ϑ − ϑ0) n
−1

n∑

ν=1

f •(xν, ϑ)

+1

2
(ϑ − ϑ0)

2n−1
n∑

ν=1

f ••(xν, ϑ̄n(xn)) (5.2.4)

with ϑ̄(xn) between ϑ0 and ϑ . However, to know the latter is not enough. Since
ϑ̄ (n)(xn) depends on ϑ0 as well as on ϑ , one runs into trouble if (5.2.4) is applied
with ϑ replaced by some ϑ(n)(bxn). For this purpose, the expansion

n−1
n∑

ν=1

f (xν, ϑ) = n−1
n∑

ν=1

f (xν, ϑ0)

+(ϑ − ϑ0) n
−1

n∑

ν=1

∫ 1

0
f (1)(xν, (1 − u)ϑ0 + uϑ)du (5.2.5)

is technically easier to handle (and avoids, in addition, the use of f ••).
There is no need to list all papers using Taylor expansions with an unsuitable

remainder term. It suffices to mention that this tradition goes back to Cramér (1946a)
[p. 501] for f = �•.

Finally, one can criticize the fact that many authors (including Dugué, Cramér,
and M.G. Kendall) simply use the symbol P (or even “prob”) instead of Pϑ , Pn

ϑ ,
etc., so that one has to study the details of the proof to find out what the regularity
conditions really are.

Wald’s Consistency Proof

For any set V ⊂ Θ ⊂ R
k , let

�(x, V ) := sup{�(x, ϑ) : ϑ ∈ V }.

If ϑ → �(x, ϑ) is continuous for every x ∈ X , the function �(·, V ) is measurable.
Since

∫
(�(x, ϑ) − �(x, ϑ0))Pϑ0(dx) < 0 for ϑ 
= ϑ0, there exists an open set V 
 ϑ

not containing ϑ0 which fulfills

∫
(�(x, V ) − �(x, ϑ0))Pϑ0(dx) < 0, (5.2.6)

provided
∫
�(x, V )P0(dx) < ∞ for some V . Let XV ⊂ XN denote the set of all

x ∈ XN such that
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1

n

n∑

ν=1

(�(xν, V ) − �(xν, ϑ0)) ≥ 0 for infinitely many n ∈ N.

By the Strong Law of Large Numbers, relation (5.2.6) implies that PN

ϑ0
(XV ) = 0.

For n ∈ N, let ϑ(n)(x) be such that
∑n

ν=1 �(xν, ϑ
(n)(x)) ≥ ∑n

ν=1 �(xν, ϑ) for ϑ ∈ Θ .
Then ϑ(n)(x) ∈ V implies

n−1
n∑

ν=1

�(xν, ϑ0) ≤ n−1
n∑

ν=1

�(xν, ϑ
(n)(x)) ≤ n−1

n∑

ν=1

�(xν, V ).

Hence the set of all x ∈ XN such that ϑ(n)(x) ∈ V for infinitely many n ∈ N is a
subset of the PN

ϑ0
-null set XV . The immediate consequence: The ML estimator ϑ(n)

(x)
cannot be for infinitely many n in a set V fulfilling (5.2.6) (except for x in a set
of PN

ϑ0
-measure zero). In particular: (ϑ(n)(x))n∈N cannot converge to some ϑ 
= ϑ0

except for x in a set of PN

ϑ0
-measure zero.

If Θ is compact, the set {ϑ ∈ Θ : |ϑ − ϑ0| ≥ ε} is compact and can, therefore,
be covered by a finite number of sets Vϑi : i = 1, . . . ,m, fulfilling (5.2.6). Hence for
PN

ϑ0
-a.a. x ∈ XN, the relation |ϑ(n)(x) − ϑ0| ≥ ε holds for finitely many n only. That

means: ϑ(n)
(x) , n ∈ N, converges to ϑ0 except for x in a set of PN

ϑ0
-measure 0.

This is Wald’s Consistency Theorem, the earliest consistency theorem which is
mathematically correct. It is widely ignored because it requires Θ to be compact.
Various examples show that the compactness condition cannot be omitted without
further ado. The compactness condition, however, may be replaced by the condition
that for every neighbourhoodU0 of ϑ0, the setUc

0 can be covered by a finite number
of sets Vi fulfilling condition (5.2.6). (See e.g. the Covering Condition 6.3.8 in Pfan-
zagl 1994, p. 194, or condition 6.1.57 in Witting and Müller-Funk 1995, p. 201, Satz
6.34.) Schmetterer (1966) [Satz 3.8, p. 384] is the first textbook presenting a (some-
what confused) version of Wald’s strong consistency theorem. Schmetterer does not
mention the compactness condition explicitly, but all his considerations (including
the definition of theML estimator) are restricted to some compact subset ofΘ (called
Γ0) which restricts the assertion of consistency to compact subsets of Θ .

Kendall and Stuart (1961) [pp. 39–41] think they can do better than Wald:

This direct proof of consistency is a simplified form of Wald’s proof. Its generality is clear
from the absence of any regularity conditions on the distribution [p(x, ϑ)].

This is supplemented by their Exercise 18.35, p. 74: “... show that many inconsistent
ML estimators, as well as consistent ML estimators, exist”. The proof in Kendall and
Stuart (see p. 40) is based on their relations (18.20),

lim
n→∞ Pn

ϑ0

{ n∑

ν=1

�(xν, ϑ) <

n∑

ν=1

�(xν, ϑ0)
}

= 1 for every ϑ 
= ϑ0,
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and (18.21),

n∑

ν=1

�(xν, ϑ
(n)(xn)) ≥

n∑

ν=1

�(xν, ϑ0) for n ∈ N and xn ∈ R
n,

“since, by (18.20), (18.21) only holds with probability zero for any ϑ 
= ϑ0 [?] it
follows that limn→∞ PN

ϑ0
{ϑ(n) = ϑ0} = 1.”

The idea that, because of (18.20) and (18.21), the sequence ϑ(n), n ∈ N, cannot
stay away fromϑ0 with positive probability seems to be obvious, but is not really true.
To make it precise one has to consider the performance of the estimator sequence
ϑ(n)(x), n ∈ N, on x ∈ XN, as done by Wald, an idea which was not understood by
the authors.

If the argument of Kendall and Stuart might have been acceptable in the thirties,
its weakness must have been clear to anybody who had understood Wald’s paper
from (1949). Thirty years later (in “Kendall’s Advanced Theory of Statistics” by
Stuart and Ord 1991) not much had been changed. From (18.20) and (18.21) the
authors now argue as follows: “as n→∞,

∑n
ν=1 �(xν, ϑ̂

(n)(xn)) cannot take any
other value than

∑n
ν=1 �(xν, ϑ0). If

∑n
ν=1 �(xν, ϑ) is identifiable [?] this implies that

PN

ϑ0
{limn→∞ ϑ(n) = ϑ0} = 1”.
A second approach to consistency, using the existence of �•• (see Kendall and

Stuart, 1961, p. 41 and 1991, p. 660), follows Cramér’s lead, described below, both
in the proof as in its misinterpretation.

Cramér’s Consistency Proof

Even now, most textbooks refer to Cramér (1946a) as the author of the first consis-
tency proof. In fact, the basic idea is of tempting simplicity. A concise version of the
proof starts with the expansion

n−1
n∑

ν=1

�•(xν, ϑ) = n−1
n∑

ν=1

�•(xν, ϑ0) + (ϑ − ϑ0)n
−1

n∑

ν=1

k(xν, ϑ0, ϑ) (5.2.7)

with

k(x, ϑ0, ϑ) =
∫ 1

0
�••(x, (1 + u)ϑ0 + uϑ)du.

Ifϑ → ∫
�••(x, ϑ)Pϑ0(dx) is continuous atϑ = ϑ0, thenϑ → ∫

k(x, ϑ0, ϑ)Pϑ0(dx)
is continuous at ϑ = ϑ0. Since

∫
k(x, ϑ0, ϑ0)Pϑ0(dx) = ∫

�••(x, ϑ0)Pϑ0(dx) < 0,
it follows that n−1 ∑n

ν=1 k(xν, ϑ0, ϑ) converges in PN

ϑ0
-measure to a negative value if

ϑ is sufficiently close to ϑ0. Together with n−1 ∑n
ν=1 �

•(xν, ϑ0) → 0 (Pn
ϑ0
), relation

(5.2.7) implies that for δ > 0 and sufficiently small,

Pn
ϑ0

{
n−1

n∑

ν=1

�•(xν, ϑ0 + δ) < 0 < n−1
n∑

ν=1

�•(xν, ϑ0 − δ)
}

→ 1. (5.2.8)



5.2 Maximum Likelihood 121

Since ϑ → n−1 ∑n
ν=1 �

•(xν, ϑ) is continuous in a neighbourhood of ϑ0, there is
a solution of

∑n
ν=1 �

•(xν, ϑ) = 0 in (ϑ0 − δ, ϑ0 + δ). In other words: For every
sufficiently small δ, the PN

ϑ0
-probability that the likelihood equation has a solution in

the interval (ϑ0 − δ, ϑ0 + δ) converges to 1.

It is surprising to see how a mathematician with Cramér’s stature deals with this
approach (see p. 501). For the proof of (5.2.8) he requires the existence of functions
Hi , i = 1, 2, 3, such that |�(i)(x, ϑ)| ≤ Hi (x) for x ∈ X and ϑ ∈ Θ . If Cramér says
that Hi , i = 1, 2, are “integrable over (−∞,+∞)”, he means Pϑ -integrable (for all
ϑ ∈ Θ , or for ϑ = ϑ0?). Local versions of these conditions would suffice, and even
for Cramér’s crude proof, based on the expansion

�•(x, ϑ) = �•(x, ϑ0) + (ϑ − ϑ0)�
••(x, ϑ0) + 1

2
δ(ϑ − ϑ0)

2H3(x) with |δ| < 1,

his condition supϑ∈Θ
∫
H3(x)Pϑ(dx) < ∞ could be replaced by

∫
H3(x)Pϑ0(dx) <

∞.
Cramér did not take much advantage of what other authors had done before

him. Wald (1941a, b) paper was, perhaps, not accessible to Cramér when he wrote
the first version of his book, but he retained his unsatisfactory global regularity
conditions in all subsequent editions. More surprising than the technical infelicities
is the misleading interpretation Cramér gives to his result, namely: That there is a
sequence of solutions of the likelihood equation which is consistent for every ϑ ∈ Θ .
To recall: He just proved that for every ϑ0 ∈ Θ and every neighbourhood of ϑ0, the
Pn
ϑ0
-probability for a solution in this neighbourhood converges to 1 as n tends to

infinity. This does not deliver what Cramér had promised on p. 500: “It will be
shown that, under general conditions, the likelihood equation ... has a solution which
converges in probability to the true value of [ϑ] as n → ∞”. Cramér’s result implies
consistency under an additional condition: That the likelihood equation has one
solution only for every n ∈ N and all (x1, . . . , xn). It would certainly be reassuring
if this holds true for the actual sample size n0. But what is required is uniqueness
for every sample size, a condition which casts some doubts on the interpretation of
asymptotic results.

ThoughCramér’s paralogismbecameknown soon (Wald 1949, p. 595, footnote 3),
the message did not spread quickly. Cramér’s result was presented as a consistency
proof in a number of textbooks. As an example we might mention Schmetterer
(1956), at this time the mathematically most advanced textbook. In Satz 8, pp. 223/4,
Schmetterer asserts the existence of a sequence of solutions of the likelihood equation
which is consistent for every ϑ ∈ Θ , an open rectangle in R

k . His argument is
dubious. After having proved a k-dimensional version of Cramér’s result (following
Chanda1954), hemakes a vault to the interpretation as a consistency theorem (p. 231).
It is, by the way, not straightforward to transfer Cramér’s argument “the interval
(ϑ0 − δ, ϑ0 + δ) contains a solution of the likelihood equation” from R

1 to R
k . An

error in Chanda’s proof was discovered by Tarone and Gruenhage (1975) [p. 903].
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Foutz (1977) tries to simplify the technical details of this proof by means of the
Inverse Function Theorem, but he, too, follows Cramér in the misinterpretation of
his result.

In fact, it requires additional steps to transform Cramér’s result into an assertion
about the existence of a consistent sequence. Introducing

An(xn) :=
{
ϑ ∈ Θ :

n∑

ν=1

�•(xν, ϑ) = 0
}
,

Cramér’s result can be written as

Pn
ϑ0

{An ∩ (ϑ0 − δ, ϑ0 + δ) 
= ∅} → 1 for every δ > 0.

For k ∈ N let Nk be such that

Pn
ϑ0

{ANk ∩ (ϑ0 − 1/k, ϑ0 + 1/k) 
= ∅} > 1 − 1/k.

W.l.g.: Nk+1 > Nk . With kn denoting the largest integer k such that Nk ≤ n, this
implies

Pn
ϑ0

{An ∩ (ϑ0 − 1/kn, ϑ0 + 1/kn) 
= ∅} → 1.

For every xn ∈ Xn let

ϑ(n)(xn) ∈ An(xn) ∩ (ϑ0 − 1/kn, ϑ0 + 1/kn)

if An(xn) ∩ (ϑ0 − 1/kn, ϑ0 + 1/kn) 
= ∅, and ϑ(n)(xn) = ϑ0 otherwise. The estima-
tor sequence (ϑ(n)(xn))n∈N thus defined converges to ϑ0 for every xn ∈ Xn , and it is
a solution of the likelihood equation with Pn

ϑ0
-probability converging to 1.

Whydo someauthors go to the trouble of constructing such an estimator sequence?
The answer is easy in the case of Serfling (1980) [p. 145, Theorem (i)]: He hadmissed
the dependence of this sequence on the arbitrary ϑ0. The motivation is less clear in
the case of Schmetterer (1974) [pp. 296/7, Theorem 3.1], who explicitlymentions the
dependence on ϑ0 (p. 303). This estimator sequence occurs again in Schmetterer’s
Theorem 3.9, p. 316, now without a caveat.

There is no need for a discussion of the papers by Huzurbazar (1948), Gurland
(1954), Kulldorff (1956), Chan (1967) etc., which treat the problem of consistency
and asymptotic normality of ML-sequences under slightly modified regularity con-
ditions, as they offer nothing new from a methodological point of view.

Remark If there is some estimator sequence, say (ϑ̃ (n))n∈N, which is consistent for
ϑ ∈ Θ , then there is also an estimator sequence consistent for ϑ ∈ Θ which is, with
Pn
ϑ -probability tending to 1, a solution of the likelihood equation. (Hint: choose

for ϑ(n)(xn) the element in An(xn) closest to ϑ̃ (n)(xn). If ϑ̃ (n)(xn) ∈ (ϑ0 − δ, ϑ0 +
δ) and An(xn) ∩ (ϑ0 − δ, ϑ0 + δ) 
= ∅, then there is ϑ(n)(xn) ∈ An(xn) such that
|ϑ̃ (n)(xn) − ϑ(n)(xn)| < 2δ, whence |ϑ(n)(xn) − ϑ0| < 3δ. Since ϑ̃ (n)(xn) ∈ (ϑ0 −
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δ, ϑ0 + δ) and An(xn) ∩ (ϑ0 − δ, ϑ0 + δ) 
= ∅ are events with Pn
ϑ0
-probability con-

verging to 1, the same is true of |ϑ(n)(xn) − ϑ0| < 3δ. (See Weiss and Wolfowitz
1966, p. 77.)

Examples of Consistency Theorems Prior to Cramér

The first attempt at a consistency proof is due to Hotelling (1930). His idea to obtain
a general theorem by approximating an arbitrary family with Lebesgue densities by
a family with Lebesgue densities constant on intervals is not very transparent. It
could, perhaps, lead to a consistency proof for a family of discrete distributions but
certainly not to a consistency proof in the generality strived for by Hotelling.

Doob (1934, p. 759) promises “... for the first time a complete proof of the validity
of the method of maximum likelihood of R.A. Fisher ...”, but his Theorem 5, p. 767,
does not live up to this promise. The assumptions of this theorem include a condition
on the asymptotic behaviour of the ML-sequence (ϑ(n)(x))n∈N, namely: There is a
set X0 ⊂ XN of PN-measure 1 such that for every x ∈ X0 and every subsequence
N0 ⊂ N

pn(x, x) := sup{p(x, ϑ(m)(x))/p(x) : m ∈ N0,m ≥ n}

is a continuous function of x , and log+ pn(·, x) is P-integrable. Among his conclu-
sions: If

∫
lim supn∈N0

p(x, ϑ(n)(x))dx ≤ 1, then limn∈N0 p(x, ϑ
(n)(x)) = p(x) for

x ∈ X0 and P-a.a. x ∈ X .
This result can, at best, be considered as a lemma from which a consistency theo-

rem could be derived. Notice that it contains no assumptions on the parameter (like
continuity of ϑ → p(x, ϑ)), and that the distinguished probability measure P is
not necessarily a member of the family. Hence it needs conditions on the family
which imply the conditions of Doob’s Theorem 5, and a condition which leads from
p(x, ϑ(n)(x)) → p(x, ϑ0) to ϑ(n)(x) → ϑ0. Doob confines himself to demonstrat-
ing the usefulness of his theorem by showing (see p. 768) that it establishes the
consistency of xn as an estimator for ϑ in the family {N (ϑ, 1) : ϑ ∈ R}.

Since Doob’s theorem needs further specifications in order to arrive at a consis-
tency theorem for ML-sequences, the question appears to be of minor importance
whether it is true in its own framework. Doubts are in order since in the proof of
Theorem 5, Doob makes use of Theorem 4, p. 766, which is obviously wrong. Doob
claims: “Its proof is simple and will be omitted.” He seems to have overlooked the
fact that the points of discontinuity may depend on the functions g. (See in this
connection also Wald 1949, p. 595, footnote 2.)

Starting in 1936 and 1937, Dugué made several attempts to deliver precise proofs
of the consistency and asymptotic normality of the ML-sequence (Dugué 1936,
1937). According to Le Cam (1953) [p. 279] “... the proofs are not rigorous and
the mistakes are apparent”. In a more transparent version, Dugué’s arguments are
presented (almost unchanged) in 1958, and here the weak points are easier to spot
(Dugué 1958).

From
∑n

ν=1 �
•(xν, ϑ(n)(x)) = 0 for x ∈ XN, n ∈ N, and n−1 ∑n

ν=1 �
•(xν, ϑ0) →

0 (PN

ϑ0
), Dugué concludes (Theorem I, p. 140/1) that
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n−1
n∑

ν=1

(�•(xν, ϑ0) − �•(xν, ϑ(n)(x))) → 0 (PN

ϑ0
).

Now Dugué makes an assumption which excludes most applications: That ϑ →
�•(x, ϑ) is continuous for ϑ = ϑ0, uniformly in x ∈ X , which implies: For every
ε > 0 there exists δε such that

∣
∣
∣n−1

n∑

ν=1

(�•(xν, ϑ) − �•(xν, ϑ0))

∣
∣
∣ < ε for n ∈ N and xn ∈ XN,

provided |ϑ − ϑ0| < δε. Without further arguments, Dugué then states that, con-
versely, for every ε > 0, there is δε such that

∣
∣
∣n−1

n∑

ν=1

(�•(xν, ϑ) − �•(xν, ϑ0))

∣
∣
∣ < δε implies |ϑ − ϑ0| < ε, (5.2.9)

provided the function ϑ → n−1 ∑n
ν=1 �

•(xν, ϑ) is one-one, so that (5.2.9) implies
that ϑ(n) → ϑ0 (PN

ϑ0
).

Wilks (1962) seeks to provide more elegant consistency proofs (Theorem 12.3.2,
p. 360 forΘ ⊂ R and 12.7.2, pp. 379/380 forΘ ⊂ R

k) by using the following auxil-
iary result 4.3.8, p. 105: If fn(·, ϑ) → g(ϑ) (PN) uniformly forϑ in a neighbourhood
of ϑ0, with g continuous at ϑ = ϑ0, then ϑ(n) → ϑ0 (PN) implies

fn(·, ϑ(n)(·)) → g(ϑ0) (PN).

This is what one needs for fn(x, ϑ) = n−1 ∑n
ν=1 f (xν, ϑ) with P = Pϑ0 , in which

case

g(ϑ) =
∫

f (x, ϑ)Pϑ0(dx).

Wilks’ proof contains the usual mistake: Presented in a more transparent way, he
concludes from

Pn
ϑ0

{| fn(·, ϑ) − g(ϑ)| < ε} > 1 − ε for ϑ ∈ Uε, n ≥ nε

and
Pn
ϑ0

{ϑ(n) ∈ Uε} > 1 − ε for n ≥ n′
ε,

together with the continuity of g at ϑ0, that

Pn
ϑ0

{| fn(·, ϑ(n)) − g(ϑ0)| < ε} > 1 − ε for n ≥ n′′
ε ,
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a mistake already noted in the review by Hoeffding (1962) [p. 1469]: The argument
requires Pn

ϑ0
{supϑ∈Uε

| fn(·, ϑ) − g(ϑ)| < ε} > 1 − ε for n ≥ nε. This is, by far, not
the only weak point in Wilks’ book. The 7-page review by Hoeffding contains an
impressive list of shortcomings.

A consistency theorem for a general family of probability measures (with condi-
tions for consistency which are necessary and sufficient) can be found in Pfanzagl
1969a, p. 258, Theorem 2.6. See also Landers (1972).

Examples of Inconsistent ML-Sequences

The intuitive appeal of the ML method is so strong that one might be inclined to
consider all conditions used for the consistency theorem (in particular the compact-
ness of Θ) as being artifacts of the technique of the proof. It is, therefore, important
to point to the numerous examples of nice-looking families where one or the other
condition is violated, and where the ML-sequence fails to be consistent. First, we
will concentrate our attention on counterexamples for parametric families and the
i.i.d. case.

The first counterexamples, provided byKraft and LeCam (1956), present families
where,with probability tending to unity, theMLestimator exists for every sample size
and yet fails to be consistent, though consistent estimator sequences exist. A slight
shortcoming of these examples: The parameter space Θ is an open set, but not an
interval, and the densities are not continuous functions. Bahadur (1958) has various
clever examples, but they are all nonparametric. Ferguson (1982) [Sects. 2 and 3]
presents examples of one-parameter families with Θ = [0, 1] satisfying Cramér’s
conditions such that every ML-sequence converges to 1 if ϑ ∈ [1/2, 1]. Observe
that these are more than examples of inconsistent ML-sequences: They are also
counterexamples to Cramér’s interpretation of his “consistency” theorem. Another
example of an inconsistent ML-sequence can be found in Pfanzagl (1994) [Example
6.6.2, pp. 209–210].

Many textbooks cite Neyman and Scott (1948) [p. 7] for an example of an incon-
sistent ML-sequence. Here is the simplest version of this example: Let (xν, yν),
ν = 1, . . . , n, be distributed as ×n

ν=1N (ϑν, σ
2)2 with σ 2 > 0 and ϑν ∈ R for ν =

1, . . . , n. The ML estimators are

ϑ(n)
ν ((x1, y1), . . . , (xn, yn)) = 1

2
(xν + yν) for ν = 1, . . . , n

and

σ 2
n ((x1, y1), . . . , (xn, yn)) = 1

4n

n∑

ν=1

(xν − yν)
2.

The clue is that (σ 2
n )n∈N converges to σ 2/2. This is not really a “counterexample”,

since the usual consistency theorems refer to the i.i.d. case. In cases with varying
unknown nuisance parameters, inconsistency is not unexpected. Another example of
this kind can be found in M. Ghosh (1995) [p. 166].
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Asymptotic Normality of ML-Sequences

As soon as the consistency of an ML-sequence is established, its asymptotic distri-
bution is easy to obtain. Let Θ ⊂ R be open, and Pϑ |A a probability measure with
μ-density p(·, ϑ). Under suitable conditions on �• and �••, a consistentML-sequence
(ϑ(n))n∈N fulfills

PN

ϑ0
◦ n1/2(ϑ(n) − ϑ0) ⇒ N (0, σ 2(ϑ0)),

where σ 2(ϑ0) = I (ϑ0)
−1 with I (ϑ) = ∫

�•(x, ϑ)2Pϑ(dx) the Fisher information.
The proof starts from the expansion of ϑ → n−1/2 ∑n

ν=1 �
•(xν, ϑ) which can

conveniently be written as (see (5.2.5))

n−1/2
n∑

ν=1

�•(xν, ϑ(n)(xn)) = n−1/2
n∑

ν=1

�•(xν, ϑ0)

+n1/2(ϑ(n)(xn) − ϑ0)n
−1

n∑

ν=1

k(xν, ϑ0, ϑ
(n)(xn)) (5.2.10)

with

k(x, ϑ0, ϑ) :=
∫ 1

0
�••(x, (1 − u)ϑ0 + uϑ)du.

This expansion is valid if ϑ → �••(x, ϑ) is continuous in a neighbourhood of ϑ0.
If

∑n
ν=1 �

•(xν, ϑ(n)(xn)) = 0 for xn ∈ Xn , relation (5.2.10) implies that

n1/2(ϑ(n)(xn) − ϑ0) = −n−1/2 ∑n
ν=1 �

•(xν, ϑ0)

n−1
∑n

ν=1 k(xν, ϑ0, ϑ(n)(xn))
+ o(n0, Pn

ϑ0
). (5.2.11)

If ϑ → �••(x, ϑ) is continuous and fulfills condition (5.2.2), then ϑ(n) → ϑ0 (Pn
ϑ0
)

implies (see (5.2.1))

n−1
n∑

ν=1

k(xν, ϑ0, ϑ
(n)(xn)) →

∫
�••(x, ϑ0)Pϑ0(dx) (Pn

ϑ0
). (5.2.12)

Hence Pn
ϑ0

◦ n1/2(ϑ(n) − ϑ0), n ∈ N, is asymptotically normal with variance

− ∫
�•(x, ϑ0)

2Pϑ0(dx)
( ∫

�••(x, ϑ0)Pϑ0(dx)
)2 ,

which reduces to σ 2(ϑ0) under the condition

∫
�•(x, ϑ0)

2Pϑ0(dx) +
∫

�••(x, ϑ0)Pϑ0(dx) = 0. (5.2.13)
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Simple though this proof may be, various authors were unable to find reasonable
conditionswhich guarantee (5.2.12) for the sequence of their remainder terms. Recall
that Dugué (1937, pp. 328/331) requires that ϑ → �••(x, ϑ) is continuous at ϑ0,
uniformly in x ∈ X (a condition which excludes, for instance, the application to
{N (0, σ 2) : σ > 0}). The fact that Dugué still uses this condition in 1958, Theorem
II, p. 143, more than 17 years after Wald (1941b), is hard to explain.

Dugué’s paper (1937) is just a simplified version of what Doob (1934) [Theorem
6, pp. 770/1], who presented the first valid proof, had already written. Yet Doob’s
proof is also unsatisfactory, since he starts from a Taylor expansion of ϑ → �(x, ϑ),
which he uses to derive the expansion of ϑ → �•(x, ϑ) by means of differentiation,
a procedure which requires a more complex condition on the remainder term.

Remark Under suitable regularity conditions on the family {Pϑ : ϑ ∈ Θ}, the rela-
tions (5.2.11)–(5.2.13) imply that

n1/2(ϑ(n)(xn) − ϑ0) − σ 2(ϑ0)n
−1/2

n∑

ν=1

�•(xν, ϑ0) → 0 (Pn
ϑ0
)n∈N.

This implies that the ML-sequences are regular, a usually neglected fact which is
needed to give operational significance to the assertion that the limit distribution
N (0, σ 2(ϑ0)) is optimal. (For more see Sect. 5.13.)

Maximum Probability Estimators

TheMP estimator (=maximumprobability estimator) is based on a smoothed version
of the density p(n)(·, ϑ) of the observations, defined as

p(n)
r (xn, ϑ) := cn

2r

∫
1(ϑ−c−1

n r,ϑ+c−1
n r)(τ )p

(n)(xn, τ )dτ.

TheMP estimator ϑ(n)
r is the value of ϑ which maximizes ϑ → p(n)

r (xn, ϑ) (approx-
imately). In an elementary but poorly structured proof, Weiss andWolfowitz (1967b,
Theorem, pp. 196/7 and1974,Theorem3.1, p. 17 andpp. 20/21) obtain a resultwhich,
in a simplified version, reads as follows: If ϑ(n)

r , n ∈ N, standardized by cn , n ∈ N,
converges regularly to some limit distribution, say Qr , then Q(−r, r) ≤ Qr (−r, r)
for any regularly attainable limit distribution Q.

In spite of the analogy between MP sequences and the ML-sequence in the defi-
nition, the result is of a different nature:

(i) There are no general conditions under which ϑ(n)
r , n ∈ N, is a regular estimator

sequence in the sense discussed in Sect. 5.12.
(ii) There is no general result expressing Qr in terms of inherent properties of the

model. To obtain the “optimal” limit distribution Qr one needs to determine the MP
estimator ϑ(n)

r for every n ∈ N and to find its asymptotic distribution.
(iii) The optimum property of Qr refers to the interval (−r, r) only.

In (1967) and (1974), Weiss and Wolfowitz present various examples for the
successful applications of the MP theory. Grossmann (1979, 1981) shows that the
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shortcomings indicated above do not arise in regular models. His main result is
Theorem 3.2 in (1981, pp. 99/100): If for s, t ∈ R,

lim
n→∞ nH 2(Pϑ+c−1

n s, Pϑ+c−1
n t ) = (s − t)2L(ϑ)2

with L(ϑ) = ∫
�(·, ϑ)2dPϑ , and

lim
n→∞ nPϑ+c−1

n s{p(x, ϑ + c−1
n t)/p(x, ϑ + c−1

n s) < 1 − ε} = 0 for every ε > 0,

then cn(ϑ(n)
r − ϑ), n ∈ N, converges for every r > 0 regularly to the optimal limit

distribution given by the underlying LAN condition.

The following example, put forward by Akahira and Takeuchi (1979), demon-
strates some shortcomings of the MP theory.

Example Let {Pϑ : ϑ ∈ R} be the shift parameter family, generated by the truncated
distribution

p(x) = K exp[−x2/2]1(−1,1)(x) with K = 2φ(1) − 1.

The authors determine the MP estimator ϑ(n)
r and they show that

lim
n→∞ P (n)

ϑ {n|ϑ(n)
r − ϑ | ≤ t} = 1 − exp[−k(t + min{t, r})] (5.2.14)

with k = c/
√
e. Applied with r = t , relation (5.2.14) yields

lim
n→∞ Pn

ϑ {n|ϑ(n)
t − ϑ | ≤ t} = 1 − exp[−2kt] for t > 0;

hence the optimum property of (Q(n)
t )n∈N implies

lim
n→∞ Pn

ϑ {n|ϑ(n) − ϑ | ≤ t} ≤ 1 − exp[−2kt] for t > 0 (5.2.15)

for any regular estimator sequence (ϑ(n))n∈N.
The right-hand side of (5.2.15) is just a bound. For t > 0 it is attained by ϑ

(n)
t ,

n ∈ N, but there is no general result which guarantees the existence of an estimator
sequence ϑ(n), n ∈ N, such that

lim
n→∞ Pn

ϑ {n|ϑ(n) − ϑ | ≤ t} = 1 − exp[−2kt] for every t > 0. (5.2.16)

Among the MP sequences there is none: We have

lim
n→∞ Pn

ϑ {n|ϑ(n)
r − ϑ | ≤ t} = 1 − exp[−2kt] for t ∈ (0, r ],
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but

lim
n→∞ Pn

ϑ {n|ϑ(n)
r − ϑ | ≤ t} = 1 − exp[−k(t + r)] < 1 − exp[−2kt] for t > r.

It is a particular property of this model (not the outgrowth of a general theorem) that
an estimator sequence attaining the bound (5.5.1) does exist, namely

ϑ̂ (n)(xn) := 1

2
(x1:n + xn:n).

We might mention in passing that the asymptotic efficiency of the ML-sequence
is 1/2. According to Akahira and Takeuchi (1979) [p. 137] the ML estimator is

ϑ(n)(x1, . . . , xn) =
⎧
⎨

⎩

x1:n + 1 xn > x1:n + 1,
xn if xn:n − 1 ≤ xn ≤ x1:n + 1,

xn:n − 1 xn < xn:n − 1,

hence
lim
n→∞ Pn

ϑ {n|ϑ(n) − ϑ | ≤ t} = 1 − exp[−kt].

5.3 Convergence of Distributions

For n ∈ N let Pn|(X,A ) be a probability measure. The following concepts for the
convergence of Pn , n ∈ N, to P0, setwise and uniform, are in use.

Pn(A) → P0(A) for every A ∈ A (5.3.1)

and
sup
A∈A

|Pn(A) − P0(A)| → 0. (5.3.2)

Scheffé’s Lemma. For n ∈ N, let pn be a P0-density of Pn . Then

pn(x) → p0(x) for x ∈ X implies (4.3.2).

(See Scheffé 1947, pp. 434–438.)
Lehmann (1959) [pp. 351/2, Lemma 4] was the first to recognize the importance

of what is now generally known as Scheffé’s Lemma. It is not always reproduced
correctly (see Tong 1990, p. 211).

Remark In the early days of Mathematical Statistics, it was easy for a scholar to get
his name attached to a result that was generally known. In fact, Scheffé’s Lemma is
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a special case of Vitali’s Theorem. It goes back to Riesz (1928/9) [I, p. 350 and II,
p. 182.]

Let X be a metric space, endowed with its Borel-algebraA . Let P and Pn , n ∈ N,
be probability measures on A . We define weak convergence of Pn to P as follows:

Pn ⇒ P if Pn(A) → P(A) (5.3.3)

for every set A ∈ A the boundary of which is of P-measure 0.

Remark It is well known that the bound of every convex set in B
p is of λp-measure

zero. This result extends from λp to all measures that are a product of non-atomic
components. (Hájek, 1971, p. 234. See also Gänssler and Stute, 1976, p. 54, Lemma
2.20.)

Various equivalent definitions ofweak convergence are often cited asPortmanteau
Theorem (see e.g. Billingsley 1968 pp. 11/12, Theorem 2.1,Witting andMüller-Funk
1995 p. 48, Satz 5.40, Elstrodt 2000 p. 385, Theorem 4.10, Bickel et al. 1993 p. 478,
Lemma 1.8.3. Some of these equivalenceswere already known toAlexandrov (1940–
1943). A full list of these equivalences can be found in Ash (2000) and Parthasarathy
(1967).

The story behind the enigmatic name “Portmanteau Theorem”: Billingsley had discovered
Alexandrov’s equivalences independently. Following Stigler’s law of eponymy he refused to
speak of “Alexandrov’s Theorem”. Instead, he invented the name “Portmanteau Theorem”,
a name which calls for a detailed explanation (see Witting and Müller-Funk, p. 48, and
Elstrodt, p. 384).

Among the relations equivalent to (5.3.3), the following is, perhaps, the most
useful:

Pn ⇒ P if
∫

f (x)Pn(dx) →
∫

f (x)P(dx) (5.3.4)

for every bounded and uniformly continuous function f .
For X = R

k this is equivalent to

Pn(Br ) → P(Br )

for every rectangle Br = {x ∈ R
k : xi ≤ ri , i = 1, . . . , k} whose boundary has P-

measure 0. See also Billingsley (1968) [p. 17]. In applications, P has a Lebesgue
density, and all rectangles have boundaries with P-measure 0.

C.R. Rao, Wolfowitz, Kaufman and Inagaki require weak convergence uniformly
in r . (See e.g. Rao 1963, p. 194, Definition 3c, Wolfowitz 1965, p. 25, Kaufman
1966, p. 155.) It appears that these authors have missed that Pn(Br ) − P(Br ) → 0
for every r ∈ R

k already implies uniformity in r , i.e.

sup
r∈R

|Pn(Br ) − P(Br )| → 0.
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In particular, weak convergence to a limit distribution P with P � λk implies uni-
form convergence on all rectangles. In this case every convex set has a boundary of
P-measure 0. Hence Pn ⇒ P implies

Pn(C) → P(C) for every C ∈ C , (5.3.5)

with C denoting the family of convex sets C ∈ B
k . According to a theorem of

Ranga Rao (1962) [p. 665, Theorem 4.2] (see Fabian 1970, p. 142, Theorem 4.1 for
an alternative proof), the convergence in (5.3.5) is uniform with respect to C ∈ C ,
i.e.

sup
C∈C

|Pn(C) − P(C)| → 0.

LetL denote the set of all subconvex functions � : Rk → [0, 1], andLu the subset
of uniformly continuous functions. These sets are weak convergence determining
classes. We will often express weak convergence of Pn to P by

∫
�dPn →

∫
�dP for � ∈ Lu . (5.3.6)

Proposition 5.3.1 Let P � λk . Then Pn ⇒ P implies

sup
�∈Lu

∣
∣
∣

∫
�dPn −

∫
�dP

∣
∣
∣ → 0.

Proof Since {x ∈ R
k : �(x) ≤ t} is convex for every t ≥ 0, for every ε > 0, there is

nε such that for n ≥ nε, t > 0 and � ∈ Lu ,

∣
∣Pn{x ∈ R

k : �(x) ≤ t} − P{x ∈ R
k : �(x) ≤ t}∣∣ < ε.

This implies that

∣
∣Pn{x ∈ R

k : �(x) > t} − P{x ∈ R
k : �(x) > t}∣∣ < ε for n ≥ nε.

Hence the relation

∫
�(x)Pn(dx) =

∫ 1

0
Pn{x ∈ R

k : �(x) > t}dt

implies ∣
∣
∣

∫
�dPn −

∫
�dP

∣
∣
∣ < ε for n ≥ nε.

�
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Remark If � : Rk → [0, 1] is continuous and {x ∈ R
k : �(x) ≤ t} is bounded for

every t ∈ [0, 1), then � is uniformly continuous.

Proof Since � is continuous and |�(u′) − �(u′′)| < ε on the complement of the com-
pact set {u ∈ R

k : �(u) ≤ 1 − ε}, � is uniformly continuous on R
k (see Hewitt and

Stromberg, 1965, pp. 87/88, Theorem 7.17). �

Now letP be a family of probability measures on ameasurable space (X,A ), and
let κ be a real-valued functional onP. Let κ(n) be an estimator for κ(P). Asymptotic
statistical theory deals with the weak convergence of probability measures Q(n)

P :=
Pn ◦ n1/2(κ(n) − κ(P)). In the case of a parametric family P = {Pϑ : ϑ ∈ Θ} we
will write Q(n)

ϑ in place of Q(n)
Pϑ
. The phenomenon of superefficiency demonstrates

that it does not always suffice to consider the performance of Q(n)
P , n ∈ N, for P

fixed. Significant assertions about the asymptotic performance of Q(n)
P , n ∈ N, under

P ∈ P depend on the way in which Q(n)
P , n ∈ N, depend on P .

In the followingwe use the sup-distance between probabilitymeasures P, Q ∈ P,

d(P, Q) = sup
A∈A

|P(A) − Q(A)|.

Proposition 5.3.2 Let n ∈ N be fixed. If P → κ(P) is continuous, then P →∫
�dQ(n)

P is continuous for � ∈ Lu.

Proof We have

∣
∣
∣

∫
�(n1/2(κ(n) − κ(P))dPn −

∫
�(n1/2(κ(n) − κ(P0))dP

n
0

∣
∣
∣

≤
∫ ∣

∣�(n1/2(κ(n) − κ(P)) − �(n1/2(κ(n) − κ(P0))
∣
∣dP0 + d(Pn, Pn

0 ),

and d(Pn, Pn
0 ) ≤ nd(P, P0) by Hoeffding and Wolfowitz (1958). Since � is uni-

formly continuous, there exists for every ε > 0 a δε > 0 such that n1/2|κ(P) −
κ(P0)| < δε implies

|�(n1/2(κ(n) − κ(P)) − �(n1/2(κ(n) − κ(P0))| < ε.

The assertion follows since κ is continuous. �

Proposition 5.3.3 If � ∈ Lu, κ is continuous at P0 and
∫
�dQ(n)

p → ∫
�dQP locally

uniformly at P0, then P → ∫
�dQP is continuous at P0. For short: The limit distri-

bution of a sequence converging locally uniformly everywhere is continuous.

The proof follows as in Proposition5.3.2.
If Q(n)

P , n ∈ N, converges to QP everywhere on P, then it converges locally
uniformly on a dense subset of P. Hence the convergence is locally uniform on a
dense subset of P. Therefore, P → QP is continuous on a dense subset of P.



5.3 Convergence of Distributions 133

Corollary 5.3.4 Every locally uniformly attainable limit distribution is continuous.

Remark Aweaker type of convergence like “regular” convergence (i.e. Q(n)
Pn

→ QP0

for Pn = P0(1 + n−1/2g)) is not strong enough to imply the continuity of P → QP

at P = P0.
We abstain from a definition of weak convergence of Q(n) to Q by some metric

on the set of probability measures on B
k . Different metrics for a weak convergence

express different aspects of this concept and give different rates. In this connectionwe
mention the paper by Kersting (1978). One could even question whether the concept
of weak convergence as defined by (5.3.6) is too strong. If the true loss function,
say �, is known, it would be sufficient that

∫
�(x)Q(n)

ϑ (dx) → ∫
�(x)Qϑ(dx) for the

true loss function �.

LetΘ be a metric space with metric ρ. Locally uniform weak convergence of Q(n)
ϑ

to Qϑ at ϑ0 is defined by

inf
U
ϑ0

lim sup
n→∞

sup
ϑ∈U

∣
∣
∣

∫
f (x)Q(n)

ϑ (dx) −
∫

f (x)Qϑ(dx)
∣
∣
∣ = 0

for every bounded and uniformly continuous function f , or by

inf
U
ϑ0

lim sup
n→∞

sup
ϑ∈U

|Q(n)
ϑ (A) − Qϑ(A)| = 0

for every set A the boundary of which is of Qϑ -measure zero (e.g. for every convex
set A if Qϑ � λk) for every ϑ ∈ Θ . Uniformity in f or A is not required.

Proposition 5.3.5 The following statements are equivalent.

(i) Q(n)
ϑ converges to Qϑ locally uniformly weakly at ϑ0.

(ii) ρ(ϑn, ϑ0) → 0 implies Q(n)
ϑn

⇒ Qϑ0 .

Either of these conditions implies that Qϑ is continuous at ϑ0.

Proof Apply Proposition5.3.12 below with hn(ϑ) = ∫
f (x)Q(n)

ϑ (dx) and h(ϑ) =∫
f (x)Qϑ(dx). Recall that

∫
f (x)Qϑ(dx) is continuous at ϑ0 as a consequence of

Lemma5.3.11. �

An application of Corollary5.3.13 below leads to the following

Proposition 5.3.6 If Q(n)
ϑ converges to Qϑ uniformly on some setΘ0 ⊂ Θ , then this

convergence is continuous at every ϑ0 ∈ Θ0. If Θ is locally compact, then locally
uniform weak convergence at every ϑ ∈ Θ implies uniform weak convergence on
every compact subset of Θ .

Fundamental for the application of asymptotic techniques are appropriate versions
of the Central Limit Theorem. A detailed presentation can be found in Bhattacharya
and Ranga Rao (1976). The following Theorem5.3.7 is a uniform version of the
Central Limit Theorem that suffices for most purposes of the present text.
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Theorem 5.3.7 Let h : X × Θ → R
k be such that

∫
h(·, ϑ)dP = 0 and

lim
a→∞ sup

ϑ∈Θ

∫
‖h(·, ϑ)‖21(‖h(·,ϑ)‖>a)dPϑ = 0

and the smallest eigenvalue ofΣ(ϑ) := ∫
h(·, ϑ)h(·, ϑ)�dPϑ is bounded away from

0 on Θ . Then h̃n(xn) = n−1/2 ∑n
ν=1 h(xν, ϑ) fulfills

lim
n→∞ sup

ϑ∈Θ
sup
C∈C

∣
∣Pn

ϑ {h̃n(·, ϑ) ∈ C} − N (0,Σ(ϑ))(C)
∣
∣ = 0.

Proof Pfanzagl (1994) [p. 259, Theorem 7.7.11]. �

Auxiliary Results on the Convergence of Functions on Metric Spaces

LetΘ be a metric space with metric ρ. A sequence of functions hn : Θ → R, n ∈ N,
converges to 0 uniformly on Θ0 ⊂ Θ if

lim sup
n→∞

sup
ϑ∈Θ0

|hn(ϑ)| = 0.

The sequence converges to 0 locally uniformly at ϑ0 if

inf
U
ϑ0

lim sup
n→∞

sup
ϑ∈U

|hn(ϑ)| = 0.

If hn converges to 0 uniformly on Θ0, then it converges locally uniformly to 0 at
every ϑ0 in Θ0.

Proposition 5.3.8 The following statements are equivalent.

(i) hn, n ∈ N, converges to 0, locally uniformly at ϑ0.
(ii) hn(ϑn) → 0 if ρ(ϑn, ϑ0) → 0.

Proof The relations (i) and (ii) can be rewritten as follows.

(i) infU
ϑ0 lim supn→∞ supϑ∈U hn(ϑ) = 0.
(ii) ρ(ϑn, ϑ0) → 0 implies hn(ϑn) → 0.

The conclusion from (i) to (ii) is straightforward. It remains to show that “non (i)”
implies “non (ii)”. Now “non (i)” implies that

α0 := inf
U
ϑ0

lim sup
n→∞

sup
ϑ∈U

hn(ϑ) > 0. (5.3.7)

Set Um := {ϑ ∈ Θ : ρ(ϑ, ϑ0) < 1/m}. For m sufficiently large,

lim sup
n→∞

sup
ϑ∈Um

hn(ϑ) > α0/2.
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Let
an,m := sup

ϑ∈Um

hn(ϑ).

Since (5.3.7) implies

n → ∞an,m ≥ α0/2 for m sufficiently large,

there exists a sequence n(m), m ∈ N, such that

lim inf
m∈N

an(m),m > 0.

Hint: If n(m0) is defined, choose n > n(m0) such that an,m0+1 > α/2, i.e.

sup
ϑ∈Um

hn(m)(ϑ) ≥ α0 for m ∈ N.

With ϑm ∈ Um chosen such that hn(m)(ϑm) > supϑ∈Um
hn(ϑ) − 1/m, we have

hn(m)(ϑm) ≥ α0 > 0.

Since ϑm ∈ Um form ∈ N, we have ρ(ϑm, ϑ0) → 0. Since hn(m)(ϑm) ≥ α0 > 0, this
implies “non (ii)”. �

Lemma 5.3.9 Assume that δ(hn(ϑ), h0(ϑ)) → 0 for every ϑ in a neighbourhood
of ϑ0, and that this convergence is locally uniform at ϑ0. If every hn is continuous at
ϑ0, then h0 is continuous at ϑ0.

Proof We have

δ(h0(ϑ), h0(ϑ0)) ≤ δ(h0(ϑ), hn(ϑ)) + δ(hn(ϑ), hn(ϑ0)) + δ(hn(ϑ0), h0(ϑ0)).

Now δ(hn(ϑ0), h0(ϑ0)) < ε for n ≥ n′
ε and δ(h0(ϑ), hn(ϑ)) < ε for ϑ ∈ U ′

ε and
n ≥ n′

ε, and, with nε := n′
ε ∨ n′′

ε , δ(hnε
(ϑ), hnε

(ϑ0)) < ε for ϑ ∈ U ′′
ε . It follows that

δ(h0(ϑ), h0(ϑ0)) < 3ε for ϑ ∈ U ′
ε ∩U ′′

ε . �

A Remark on Continuous Convergence

Let Θ be a metric space with metric ρ, and let hn : Θ → R, n ∈ N, be a sequence
of functions.

Definition 5.3.10 The convergence of the sequence (hn)n∈N to h0 is continuous at
ϑ0 if ρ(ϑn, ϑ0) → 0 implies δ(hn(ϑn), h0(ϑ0)) → 0.

Continuous convergence was used in certain parts of mathematics (see e.g. Hahn
1932). It was introduced in asymptotic statistical theory by Schmetterer (1966). To
motivate this step (see p. 301), he does not say more than



136 5 Asymptotic Optimality of Estimators

it seems better to introduce the idea of continuous convergence.When the limit of a sequence
of functions is continuous, the idea of continuous convergence is even more general [?] than
the idea of uniform convergence.

Continuous convergence was used by Roussas (1972, Sects. 5.6 and 5.7) J.K. Ghosh
(1985) mentions continuous convergence as “interesting and useful” (p. 315) without
any further arguments.

At a surface inspection, continuous convergence looks more natural than reg-
ular convergence. Does it really make sense to restrict the condition of conver-
gence to sequences ϑn = ϑ0 + n−1/2a? It does, from the technical point of view,
since these are the sequences for which (Pn

ϑn
)n∈N is contiguous to (Pn

ϑ0
)n∈N. For

sequences (ϑn)n∈N converging to ϑ0 more slowy than n−1/2 (i.e., sequences with
n1/2|ϑn − ϑ0| → ∞), convergence of Pn

ϑn
◦ n1/2(ϑ(n) − ϑn), n ∈ N, is no effective

restriction on the asymptotic performance of the estimator sequences. Pay attention to
examples where the asymptotic performance of Pn

ϑ+n−1/4 ◦ n1/2(ϑ(n) − ϑ) is distinct
from Pn

ϑ+n−1/2 ◦ n1/2(ϑ(n) − ϑ). (See, e.g. Lehmann and Casella 1998, pp. 442/443,
Example 2.7.)

Schmetterer’s conclusion about the relation between “uniform convergence” and
“continuous convergence” reads as follows (see 1966, p. 303):

Continuous convergence and uniform convergence to a continuous function on a compact
set are equivalent.

This equivalence remained unnoticed. Schmetterer’s assertion seems to be much
more complicated than our Corollary5.3.14 below. The explanation: The relevance
of this equivalence lies in its application to “continuous” resp. “uniform” convergence
between probability measures. Since ϑ → Q(n)

ϑ is continuous, one may use Corol-
lary5.3.14 which takes advantage of the continuity of the functions hn . Schmetterer
cites the following Lemma of Hahn (1932) [p. 222] showing that continuous conver-
gence implies continuity of the limit distribution.

Lemma 5.3.11 Let δ(hn(ϑ), h0(ϑ)) → 0 for every ϑ in a neighbourhood of ϑ0. If
the convergence of (hn)n∈N, to h0 is continuous at ϑ0, then h0 is continuous at ϑ0.
(No continuity of hn is required!)

Proof Let (ϑm)m∈N → ϑ0. By assumption, for every m ∈ N there is nm such that

|hn(ϑm) − h0(ϑm)| < 1

m
for n ≥ nm .

W.l.g., nm+1 > nm . For N ∈ N, let M(N ) be the largest integerm such that nm ≤ N .
We have M(N ) → ∞ and |hn(ϑM(N )) − h0(ϑM(N ))| < 1/M(N ), hence

lim
N→∞ |hN (ϑM(N )) − h0(ϑM(N ))| = 0. (5.3.8)
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Since ϑM(N ) → ϑ0, the continuous convergence of hn , n ∈ N, to h0 implies

lim
n→∞ hN (ϑM(N )) = h0(ϑ0).

Together with (5.3.8) this implies

lim
N→∞ h0(xM(N )) = h0(ϑ0). (5.3.9)

Hence any sequence (ϑm)m∈N converging to x0 contains a subsequence (ϑM(N ))N∈N
fulfilling (5.3.9), and this implies limm→∞ h0(ϑm) = h0(ϑ0). �

Proposition 5.3.12 The following statements are equivalent.

(i) hn, n ∈ N, converges at ϑ0 locally uniformly to h0, and h0 is continuous at ϑ0.
(ii) hn, n ∈ N, converges to h0 continuously at ϑ0, i.e. ρ(ϑn, ϑ0) → 0 implies

δ(hn(ϑn), h(ϑ0)) → 0.

Proof (i) implies (ii). Let fn(ϑ) := δ(hn(ϑ), h0(ϑ)). If hn → h0 locally uniformly
at ϑ0, this implies fn(ϑ) → 0 locally uniformly at ϑ0. By Proposition5.3.8 this
implies fn(ϑn) → 0 and δ(hn(ϑn), h0(ϑn) → 0 if ρ(ϑn, ϑ0) → 0. Since h0 is, by
assumption, continuous at ϑ0, this implies δ(hn(ϑn), h0(ϑ0) → 0, i.e. (ii).

(ii) implies (i). Let fn(ϑ) := δ(hn(ϑ), h0(ϑ0)). Relation (ii) implies fn(ϑn) → 0
if ρ(ϑn, ϑ0) → 0. By Proposition5.3.8 this implies fn(ϑ) → 0 locally uniformly at
ϑ0, i.e. δ(hn(ϑ), h(ϑ0)) → 0 locally uniformly at ϑ0. Since h is continuous at ϑ0 by
Proposition5.3.8, this implies δ(hn(ϑ), h(ϑ)) → 0 locally uniformly at ϑ0, which
is (i). �

Corollary 5.3.13 If every hn is continuous at ϑ0, then locally uniform convergence
of hn, n ∈ N, to h0 is the same as continuous convergence (both at ϑ0).

Proof Follows from Proposition5.3.8 since h0 is continuous at ϑ0 by Lemma5.3.9.
�

Corollary 5.3.14 If a sequence of continuous functions hn converges to the function
h uniformly on some subset Θ0 ⊂ Θ , then this convergence is continuous on Θ0.

Proof Follows from Corollary5.3.13: Uniform convergence on Θ0 implies locally
uniform convergence at ϑ0 for every ϑ0 ∈ Θ0. �

5.4 Consistency and
√
n-consistency of Estimator

Sequences

In the theory of ML-sequences, consistency is the delicate point. Natural conditions
suffice to prove the asymptotic optimality of a consistent ML-sequence. Conditions
of a different kind are needed to establish consistency.



138 5 Asymptotic Optimality of Estimators

For different estimating procedures, consistency is proved under different types
of regularity conditions. Hence it appears plausible that these conditions are con-
tingent on the estimating procedure, and far from necessary. In the following we
consider general theorems on the existence of consistent and

√
n-consistent estima-

tor sequences.

Consistency

LetP be a family of probability measures on a measurable space (X,A ), endowed
with a metricΔ. Using ideas of Le Cam (1956) we present in the following a reason-
ably general consistency theorem for estimator sequences of P ∈ P, and we show
how such estimator sequences can be transformed into estimator sequences of the
parameter in case P is a parametric family.

The first step consists in finding an estimator sequence of P ∈ P assigning to
xn = (x1, . . . , xn) a probability measure P (n)

xn |A . The estimator sequence (P (n))n∈N
is uniformly consistent on P0 ⊂ P if

sup
P∈P0

Pn{xn ∈ Xn : Δ(P (n)
xn , P) > ε} → 0 for ε > 0. (5.4.1)

If Δ is bounded, an equivalent and perhaps more convenient version of (5.4.1) is

sup
P∈P0

∫
Δ(P (n)

xn , P)Pn(dxn) → 0.

The usual starting point for consistency theorems is

sup
P∈P

Pn{xn ∈ Xn : Δ(Q(n)
xn , P) > ε} → 0 for ε > 0, (5.4.2)

where Q(n)
xn is the empirical distribution, defined by

Q(n)
xn (A) := n−1

n∑

ν=1

1A(xν), A ∈ A .

Projecting Q(n)
xn approximately onto P, e.g., determining P (n)

xn ∈ P such that

Δ(P (n)
xn , Q(n)

xn ) < 2 inf{Δ(P, Q(n)
xn ) : P ∈ P},

say, we obtain

Δ(P (n)
xn , P) ≤ Δ(P (n)

xn , Q(n)
xn ) + Δ(Q(n)

xn , P) ≤ 3Δ(Q(n)
xn , P),
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which implies

sup
P∈P

Pn{xn ∈ Xn : Δ(P (n)
xn , P) > ε} → 0 for ε > 0. (5.4.3)

This idea of a “minimum distance estimator” occurs first in Wolfowitz (1952) in
connection with a particular problem. It is developed further in Wolfowitz (1953b,
1957). An example of a distance function Δ fulfilling (5.4.2) is

Δ(P ′, P ′′) :=
∞∑

k=1

2−k
∣
∣
∣

∫
fkd P

′ −
∫

fkd P
′′
∣
∣
∣, (5.4.4)

where fk : X → R, k ∈ N, is a sequence of functions identifying P , i.e.,

∫
fkd P

′ =
∫

fkd P
′′ for k ∈ N implies P ′ = P ′′. (5.4.5)

For probability measures on B
k , a metric fulfilling (5.4.2) is the Kolmogorov met-

ric, which will play a decisive role in the construction of
√
n-consistent estimator

sequences, since it fulfills the stronger relation (5.4.12).
If the problem is to estimate P , it is essential to have a metric which admits a

statistically meaningful interpretation. IfP is a parametric family, say {Pϑ , ϑ ∈ Θ}
with Θ a metric space, and the problem is to estimate ϑ , then (5.4.3) is just an
intermediary result on the way to a consistent estimator sequence of ϑ . For this
purpose, an artificial metric like (5.4.4) suffices.

For a parametric family, we often consider P (n)
xn of the form Pϑ(n)(xn), and relation

(5.4.3) becomes

sup
ϑ∈Θ

Pn
ϑ

{
xn ∈ Xn : Δ(Pϑ(n)(xn), Pϑ) > ε

} → 0 for ε > 0. (5.4.6)

The conclusion from the stochastic convergence of Pϑ(n) to Pϑ to the stochastic
convergence of ϑ(n) to ϑ is possible only if ϑ is identifiable, i.e., if ϑ ′ 
= ϑ ′′ implies
Pϑ ′ 
= Pϑ ′′ . Yet an estimator sequence (ϑ(n))n∈N fulfilling (5.4.6) will not necessarily
be consistent for ϑ : Even if ϑ → Pϑ is continuous, Pϑn → Pϑ does not necessarily
imply ϑn → ϑ .

To be more specific, let now Θ be a metric space with metric ρ. The problem is
to prove that

Pn
ϑ {xn ∈ Xn : ρ(ϑ(n)(xn), ϑ) > ε} → 0 for ε > 0

holds for every ϑ ∈ Θ , if possible even uniformly on compact subsets of Θ . To
obtain such an estimator sequence, Le Cam uses in various places the idea that
identifiability and continuity of ϑ → Pϑ (with respect to ρ and Δ) imply that, on
every compact subset of Θ , the map ϑ → Pϑ is one-to-one, and the inverse map
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Pϑ → ϑ is continuous. This idea can be used to obtain from an estimator sequence
(ϑ(n))n∈N fulfilling (5.4.6) an estimator sequence converging stochastically to ϑ . To
isolate the abstract core of this argument, we consider two arbitrary metrics ρ and
ρ∗ on Θ , where ρ is stronger than ρ∗ (i.e., for every ε > 0 there exists δε such that
ρ(ϑ ′, ϑ ′′) < δε implies ρ∗(ϑ ′, ϑ ′′) < ε).

Lemma 5.4.1 Assume that Θm ⊂ Θ , m ∈ N, is an increasing sequence of
ρ-compact subsets. If there exists an estimator sequence (ϑ(n))n∈N, such that

sup
ϑ∈Θm

Pn
ϑ {xn ∈ Xn : ρ∗(ϑ(n)(xn), ϑ) > ε} → 0 for m ∈ N and ε > 0, (5.4.7)

then there exists an estimator sequence (ϑ̂ (n))n∈N such that

sup
ϑ∈Θm

Pn
ϑ {xn ∈ Xn : ρ(ϑ̂(n)(xn), ϑ) > ε} → 0 for m ∈ N and ε > 0. (5.4.8)

For later use we remark that for n ≥ nm , say,

ρ∗(ϑ̂ (n)(xn), ϑ) ≤ 2ρ∗(ϑ(n)(xn), ϑ) for xn ∈ Xn and ϑ ∈ Θm . (5.4.9)

Remark If Θ is locally compact and σ -compact, the sequence Θm , m ∈ N, with
Θ = ⋃∞

m=1 Θm can be chosen such that Θm ⊂ Θ0
m+1. (See e.g. Ash 1972, p. 387,

Theorem A5.15.) In this case, every compact subset of Θ is contained in some Θm ,
so that relation (5.4.8) holds with Θm replaced by an arbitrary compact subset of
Θ . Observe that Θ = ⋃∞

m=1 Θm with Θm ⊂ Θm+1 (instead of Θm ⊂ Θ0
m+1) is not

enough. This point is observed by Le Cam (1956, p. 136, or 1986, p. 605), but missed
by other authors (Bickel et al. 1993, p. 43). For example,R is the union of the compact
setsΘm = [−m, 1 − m−1] ∪ [1,m], m ∈ N, but none of theΘm covers the compact
set [0, 1]. �
Proof of Lemma5.4.1. Let

δm := inf{ρ∗(ϑ ′, ϑ ′′) : ϑ ′, ϑ ′′ ∈ Θm, ρ(ϑ ′, ϑ ′′) > m−1}.

Since ρ is stronger than ρ∗, any ρ-compact subsetΘm is ρ∗-compact, which implies
δm > 0. As a consequence of (5.5.1), for every m ∈ N there is Nm such that

sup
ϑ∈Θm

Pn
ϑ {xn ∈ Xn : ρ∗(ϑ(n)(xn), ϑ) > δm/2} < m−1 for n ≥ Nm .

W.l.g. we assume that Nm+1 > Nm . Withmn denoting the largest integerm such that
Nm ≤ n, we obtain

sup
ϑ∈Θmn

Pn
ϑ {xn ∈ Xn : ρ∗(ϑ(n)(xn), ϑ) > δmn/2} < m−1

n for n ∈ N. (5.4.10)
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Since ϑ ′ → ρ∗(ϑ ′, ϑ) is continuous and Θm is ρ∗-compact, there exists ϑ̂ (n)(xn) ∈
Θm such that

ρ∗(ϑ̂ (n)(xn), ϑ(n)(xn)) = inf{ρ∗(ϑ ′, ϑ(n)(xn)) : ϑ ′ ∈ Θmn }, (5.4.11)

whence
ρ∗(ϑ̂ (n)(xn), ϑ(n)(xn)) ≤ ρ∗(ϑ, ϑ(n)(xn)) if ϑ ∈ Θmn .

This, in turn, implies

ρ∗(ϑ̂ (n)(xn), ϑ) ≤ 2ρ∗(ϑ(n)(xn), ϑ) if ϑ ∈ Θmn .

Since (mn)n∈N ↑ ∞, relation (5.4.9) follows.

If ϑ, ϑ̂(n)(xn) ∈ Θmn , then ρ(ϑ̂(n)(xn), ϑ) > m−1
n implies ρ∗(ϑ̂ (n)(xn), ϑ) ≥ δmn ,

hence also ρ∗(ϑ(n)(xn), ϑ) ≥ δmn/2. Together with (5.4.10) this implies

sup
ϑ∈Θmn

Pn
ϑ {xn ∈ Xn : ρ(ϑ̂(n)(xn), ϑ) > m−1

n }

≤ sup
ϑ∈Θmn

Pn
ϑ {xn ∈ Xn : ρ∗(ϑ(n)(xn), ϑ) ≥ δmn/2} < m−1

n for n ∈ N.

Since mn ↑ ∞, this completes the proof of (5.4.8). �
This Lemma can be applied with ρ∗(ϑ ′, ϑ ′′) := Δ(Pϑ ′ , Pϑ ′′). The metric ρ∗ is

weaker than ρ if ϑ → Pϑ is continuous with respect to ρ andΔ. Hence the estimator
sequence (ϑ̂ (n))n∈N defined by (5.4.11) is uniformly consistent on compact subsets
of Θ .

The metric Δ defined in (5.4.4) presumes the existence of a sequence of func-
tions fk : X → R, k ∈ N, identifying P (i.e., fulfilling (5.4.5)). If this condition
is fulfilled, the map ϑ → Pϑ is continuous with respect to ρ and Δ if the map
ϑ → ∫

fkd Pϑ from Θ to R is ρ-continuous for every k ∈ N. Though the metric Δ

does not show up in the final result (5.4.8), it is still the continuity of ϑ → ∫
fkd Pϑ

which needs an intuitive interpretation.
There are two sets of conditions leading to meaningful results:

(i) X is a complete separable metric space. According to Parthasarathy (1967)
[p. 17, Theorem 6.6], there exists a sequence of bounded and continuous func-
tions fk , k ∈ N, fulfilling (5.4.5). Hence ϑ → ∫

fkd Pϑ will be ρ-continuous if
the map ϑ → Pϑ is ρ-continuous with respect to the topology of weak conver-
gence. This is a result slightly more general than Lemma 4 in Le Cam (1956)
[p. 136] which is confined to Euclidean spaces X and Θ .

(ii) If (X,A ) is arbitrary, the natural condition is ρ-continuity of ϑ → Pϑ(A) for
A ∈ A . Applying the metricΔ defined by (5.4.4) requires a countable subfam-
ily {Ak : k ∈ N} identifying P (i.e.: (5.4.5) is fulfilled with fk = 1Ak ). If A is
countably generated, one may take for {Ak : k ∈ N} a countable field generating
A . Here is a less restrictive alternative: If there exists a countable dense subset
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Θ0 ⊂ Θ , then {Pϑ : ϑ ∈ Θ0} is dense in {Pϑ : ϑ ∈ Θ}with respect to the topol-
ogy generated by the neighbourhoods {P ∈ P : |P(A) − P0(A)| < ε}, A ∈ A ,
ε > 0. This implies (see Pfanzagl 1969b, p. 15, Lemma 5 or Strasser 1985, p. 17,
Lemma 4.3) the existence of a countably generated sufficient σ -field A0 ⊂ A ,
and one may defineΔwith {Ak : k ∈ N} a countable field generatingA0. Hence
relation (5.4.5) is guaranteed ifΘ is a separable metric space, and ϑ → Pϑ(A)
is continuous for every A ∈ A .

Relevant for applications is
√
n-consistency rather than just consistency without a

rate, which however requires more restrictive conditions concerning the dependence
of Pϑ on ϑ . Hence it is a matter of taste whether one considers the existence of just
consistent estimator sequences as fundamental, or as l’art pour l’art.
√
n-Consistency

Under more restrictive conditions on the distance function Δ and on the family
{Pϑ : ϑ ∈ Θ}, the estimator sequence (ϑ̂ (n))n∈N constructed in Lemma5.4.1 is even√
n-consistent.Observe that

√
n-consistency is necessary for the convergence of Pn

ϑ ◦
n1/2(ϑ(n) − ϑ), n ∈ N, to a limit distribution. Moreover,

√
n-consistent estimator

sequences may, under suitable conditions, be improved to become asymptotically
optimal.

Le Cam (1956) [p. 137, Lemma 5] uses the existence of a consistent estimator
sequence to construct a

√
n-consistent sequence. In a slightly modified version,

his definition (p. 137, relation 38) of a
√
n-consistent estimator sequence reads as

follows:
An estimator sequence (ϑ(n))n∈N is uniformly consistent on compact subsets if

there exists a sequence mn ↑ ∞ such that

sup
ϑ∈Θmn

Pn
ϑ {xn ∈ Xn : ρ(ϑ(n)(xn), ϑ) > m−1

n } < m−1
n for n ∈ N.

The modified (ML) estimator ϑ̂ (n) is defined as an element ofUn(xn) := {ϑ ∈ Θmn :
ρ(ϑ(n)(xn), ϑ) ≤ m−1

n } such that

n∑

ν=1

�(xν, ϑ̂
(n)) ≥ sup

ϑ∈Un(xn)

n∑

ν=1

�(xν, ϑ) − n−1.

Le Cam’s Lemma 5 asserts that the estimator sequence thus defined is
√
n-consistent

(under suitable regularity conditions on the densities p(·, ϑ)). In this Lemma, X is
Euclidean; the conditions on Θ remain vague (locally convex and without isolated
points on p. 130, locally compact and σ -compact on p. 137). Le Cammakes no use of
the fact that his (ϑ̂ (n))n∈N is a consistent sequence of asymptotic ML estimators, and
therefore asymptotically efficient. (To obtain an asymptotically efficient estimator
sequence, he applies in Lemma 6, p. 138, the usual one-step improvement procedure
to this

√
n-consistent estimator sequence.)
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In 1966 (p. 183, Lemma 2), 1969 (pp. 103–107) and 1986 (p. 608, Proposition 1)
Le Cam uses a different argument in the construction of

√
n-consistent estimator

sequences. The starting point is
√
n-consistency of the empirical distribution, i.e.,

relation (5.4.2) is replaced by the stronger relation

sup
P∈P

Pn{xn ∈ Xn : n1/2Δ(Q(n)
xn , P) > tn} → 0 for (tn)n∈N ↑ ∞. (5.4.12)

Proceeding as above, relation (5.4.12) implies that

sup
ϑ∈Θ

Pn{xn ∈ Xn : n1/2ρ∗(ϑ(n)(xn), ϑ) > tn} → 0 for (tn)n∈N ↑ ∞. (5.4.13)

Since (5.4.13) is stronger than (5.5.1), the same construction as in Lemma5.4.1
applies, thus leading to an estimator sequence (ϑ̂ (n))n∈N fulfilling (5.4.8) and (5.4.9).
This implies that (ϑ̂ (n))n∈N is ρ-consistent (by 5.4.8), and

√
n-consistent with respect

to ρ∗ (by (5.4.13) and (5.4.9), uniformly on everyΘm . The following Lemma asserts
that such estimator sequences are

√
n-consistent with respect to ρ, uniformly on

every Θm , provided the following condition on the relation between ρ and ρ∗ holds
true. For some ε > 0,

c := inf{ρ∗(ϑ ′, ϑ ′′)/ρ(ϑ ′, ϑ ′′) : ϑ ′, ϑ ′′ ∈ Θ, ρ(ϑ ′, ϑ ′′) < ε} > 0. (5.4.14)

This means: If the construction of the consistent estimator sequence is based on the
Kolmogorov metric, this estimator is automatically

√
n-consistent under the condi-

tion (5.4.14).

Lemma 5.4.2 Let ρ and ρ∗ be arbitrary metrics fulfilling (5.4.14). If

sup
ϑ∈Θm

Pn
ϑ {xn ∈ Xn : ρ(ϑ̂(n)(xn), ϑ) > ε} → 0 for ε > 0

and

sup
ϑ∈Θm

Pn
ϑ {xn ∈ Xn : n1/2ρ∗(ϑ̂ (n)(xn), ϑ) > tn} → 0 for (tn)n∈N ↑ ∞,

then

sup
ϑ∈Θm

Pn
ϑ {xn ∈ Xn : n1/2ρ(ϑ̂(n)(xn), ϑ) > tn} → 0 for (tn)n∈N ↑ ∞.

Proof Follows immediately from

{n1/2ρ(ϑ̂(n), ϑ) > tn}
⊂ {ρ(ϑ̂(n), ϑ) > ε} ∪ {ρ(ϑ̂(n), ϑ) ≤ ε, n1/2ρ(ϑ̂(n), ϑ) > tn}
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⊂ {ρ(ϑ̂(n), ϑ) > ε} ∪ {n1/2ρ∗(ϑ̂ (n), ϑ) > ctn}. �

Lemma5.4.2 yields the existence of
√
n-consistent estimator sequences if there

is a metric Δ on P fulfilling (5.4.12), and if the pertaining metric ρ∗(ϑ ′, ϑ ′′) :=
Δ(Pϑ ′ , Pϑ ′′) fulfills condition (5.4.14).

For P|Bk , relation (5.4.12) holds, in particular, for the Kolmogorov metric (but
not, for instance, for the Prohorov-metric; see Kersting 1978).

Relation (5.4.14) for the Euclidean metric on Θ and the Kolmogorov metric for
probabilitymeasures on the Borel field of [0, 1]was proved by LeCam (1966, p. 184;
1969, pp. 106/107; 1986, pp. 606/607, Lemma 3) and, with a similar proof, for P|Bk

in Bickel et al. (1993) [p. 42, relation (e)]. These proofs require that the densities are
differentiable in some sense.

Le Cam suggests that his theorems, proved for probability measures on the Borel-
field of [0, 1], hold in fact for probability measures on an arbitrary measure space
(X,A ). “There is no loss of generality in assuming that the variables xν take their
values in the interval [0, 1]” (see Le Cam 1966, p. 183 and, similarly, 1969, p. 104,
and 1986, pp. 608/9). Le Cam’s argument: Let {ϑk : k ∈ N} be a dense subset of
(the Euclidean) Θ , map X into [0,∞]N by assigning to x the point (p(x, ϑk))k∈N ∈
[0,∞]N, and map [0,∞]N in a one-to-one Borel way onto [0, 1]. “The sufficiency
of [x → (p(x, ϑk))k∈N] implies that no information is lost in the process. Thus, the
general case can be reduced to the case where (X,A ) is the interval [0, 1] with its
Borel sets” (Le Cam 1986, pp. 608/9).

This is an argument of almost Fisherian precision. One would wish that Le Cam
had presented his idea in a precise manner, somewhere, instead of repeating these
vague hints three times. It is hard to understand how Le Cam’s idea should work.
After all, one has not more than a measurable map χ |X into a subset of [0, 1]. Being
an isomorphism, this map is sufficient in a trivial sense, and it remains unclear what
the role of the sufficiency of x → (p(x, ϑk))k∈N could be. What comes out in the
end is that n1/2Δ(Pϑ(n)(xn) ◦ χ, Pϑ ◦ χ), n ∈ N, is under Pn

ϑ asymptotically bounded
if Δ is the Kolmogorov metric. To infer from this

√
n-consistency of (ϑ(n))n∈N one

would need a relation like (5.4.14) between ρ and

ρ∗(ϑ ′, ϑ ′′) := Δ(Pϑ ′ ◦ χ, Pϑ ′′ ◦ χ).

Apart from Le Cam (1986) there are not more than three text-books which contain
general theorems on the existence of consistent estimator sequences. Ibragimov and
Has’minskii (1981, p. 31, Theorem 4.1) prove the existence of

√
n-consistent estima-

tor sequences for Euclidean Θ under the condition that ϑ → Pϑ is continuous with
respect to the sup-distance, and that inf{d(Pϑ , Pϑ0) : ‖ϑ − ϑ0‖ > δ} > 0 if δ > 0.
Rüschendorf (1988) [p. 68, Proposition 3.7] proves the existence of

√
n-consistent

estimator sequences assuming Fréchet-differentiability of ϑ → Δk(Pϑ , Pϑ0). Bickel
et al. (1993) [p. 42, Theorem 1] asserts for regular parametric models Pϑ |Bp, ϑ ∈ Θ ,
the existence of uniformly

√
n-consistent estimator sequences, provided ϑ is identi-

fiable. “Regular parametric model” means, roughly speaking, that the density has a
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continuous derivative. (See their Definition 2, p. 12, for a precise definition.) Check-
ing the proof it becomes clear thatΘ ismeant as an open subset of anEuclidean space,
and that “uniformly

√
n-consistent”means “

√
n-consistent, uniformly on every com-

pact subset ofΘ”. Since this is the only easily accessible place where this result can
be found, it seems in order to mention that the proof of Theorem 1 is somewhat
sketchy on p. 43. With applications in mind, the authors forgo proving the exis-
tence of consistent (rather than

√
n-consistent) estimator sequences for more general

models.
The theoremsmentioned above aremore than “existence theorems”:The estimator

sequences are constructed explicitly. Yet, many steps in these constructions include
arbitrary elements. While the maximum likelihood estimator is uniquely determined
for every sample size (at least in the usual cases), the result of the foregoing con-
struction for a particular sample is vague, which calls the operational significance of
the asymptotic assertion in question.

5.5 Asymptotically Linear Estimator Sequences

Many estimator sequences with limit distribution are asymptotically linear. Asymp-
totically optimal estimator sequences in the sense of the Convolution Theorem are
necessarily of this type.

Let P be an arbitrary family of probability measures P|A . For P ∈ P set

L∗(P) :=
{
g ∈ L2(P) :

∫
gdP = 0

}
.

Let κ : P → R
p be a functional. An estimator sequence κ(n) : Xn → R

p is asymp-
totically linear (for κ at P) if it admits a stochastic expansion of order 1, more
precisely if there is a function K (·, P) ∈ L∗(P)p such that

n1/2(κ(n) − κ(P)) − K̃ (·, P) → 0 (Pn) (5.5.1)

with

K̃ (xn, P) = n−1/2
n∑

ν=1

K (xν, P).

In the common terminology, originating from the literature on robustness, K is
called the influence function. The representation of κ(n), n ∈ N, by (5.4.7) leads
immediately to

Pn ◦ n1/2(κ(n) − κ(P)) ⇒ N (0,Σ(P)) (5.5.2)

with Σ(P) = ∫
K (·, P)K (·, P)�dP .
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One could question whether an approximation of n1/2(κ(n) − κ(P)) by K̃ (·, P)

is operationally significant unless it holds in some sense locally uniformly. Bickel
et al. (1993) [p. 201, Definition 2.2.6] require relation (5.5.1) to hold uniformly on
compact (!) subsets of P, and they show that under this condition the estimator
sequence converges regularly to the normal limit distribution with the covariance
matrix Σ(P). (Uniformity in (5.5.1) is not required by Witting and Müller-Funk
1995, p. 197, relation 6.147.)

Assume that κ has a gradient κ• ∈ L∗(P) in the sense of Sect. 5.6,

n1/2(κ(Pn−1/2g) − κ(P)) →
∫

κ•(x, P)g(x)P(dx)

for paths Ptg whose density ptg fulfills a suitable representation ptg/p = 1 + tg + rt ,
t ∈ (−ε, ε), with g ∈ L∗(P). Then asymptotic linearity (5.5.1) holdswith P replaced
by Pn−1/2g iff

K̃ (·, Pn−1/2g) = K̃ (·, P) −
∫

κ•(x, P)g(x)P(dx) + o(n0, Pn). (5.5.3)

Relation (5.5.3) holds in parametric families {Pϑ : ϑ ∈ Θ}, Θ ⊂ R
k , of proba-

bility measures under mild regularity conditions. It reads

K̃ (·, ϑ + n−1/2a) − K̃ (·, ϑ) =
∫

K (x, ϑ)�•(x, ϑ)dPϑ(dx) · a + o(n0, Pn
ϑ ).

(5.5.4)
To see this, let K (·, ϑ) ∈ L∗(Pϑ) be suitably differentiable in ϑ with Jacobian
K •(·, Pϑ). Then

K̃ (·, ϑ + n−1/2a) − K̃ (·, ϑ) →
∫

K •(·, ϑ)dPϑ · a (Pn
ϑ ). (5.5.5)

On the other hand,

0 =
∫

K (x, ϑ + n−1/2a)Pϑ+n−1/2a(dx)

=
∫

(K (x, ϑ) + n−1/2K •(x, ϑ)a)(1 + n−1/2�•(x, ϑ)a)Pϑ(dx) + o(n−1/2)

= n−1/2
∫

K •(x, ϑ)Pϑ(dx) · a +
∫

K (x, ϑ)�•(x, ϑ)Pϑ(dx) · a + o(n−1/2).

Hence ∫
K •(x, ϑ)Pϑ(dx) +

∫
K (x, ϑ)�•(x, ϑ)Pϑ(dx) = 0. (5.5.6)

Together with (5.5.5) this implies (5.5.4).
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Observe that relation (5.5.5) applied with K (x, ϑ) = �•(x, ϑ) becomes

∫
(
�••(x, ϑ) + �•(x, ϑ)�•(x, ϑ)�

)
Pϑ(dx) = 0.

With Li j (ϑ) = ∫
�(i j)(x, ϑ)Pϑ(dx) and Li, j (ϑ) = ∫

�(i)(x, ϑ)�( j)(x, ϑ)Pϑ(dx)
this is the well known relation

Li j (ϑ) + Li, j (ϑ) = 0 for i, j = 1, . . . , k.

Relation (5.5.4) extends immediately to K : X × Θ → R
k . Observe that (5.5.4)

implies that
lim
n→∞ Pn

ϑ+n−1/2a ◦ K̃ (·, ϑ + n−1/2a)

does not depend on a ∈ R
k . In fact, it holds with a replaced by a bounded sequence

an , n ∈ N.

Returning to the nonparametric setting, one could question whether asymptotic
linearity with P replaced by Pn−1/2g is of much interest. Yet, at least in the case of
parametric families, the relation

n1/2(κ(n) − κ(Pϑ+n−1/2a)) = K̃ (·, ϑ + n−1/2a) + o(n0, Pn
ϑ )

occurs by Bahadur’s Lemma automatically for λp−a.a. ϑ of all rational a along some
subsequence. Hence one cannot escape the question for conditions on K (·, P)which
imply relation (5.5.3).

The results presented so far are based on asymptotic linearity of κ(n) and the
differentiability of κ . If we include properties of Pn

n−1/2g ◦ n1/2(κ(n) − κ(Pn−1/2a)), in
our considerations, we obtain the following Proposition.

Proposition 5.5.1 Assume that an estimator sequence of κ is at P asymptotically
linear with influence function K . This estimator sequence is regular at P iff κ is
differentiable at P, and K is a gradient of κ at P.

Weaker versions of this result occur in Witting and Müller-Funk 1995, p. 422,
Satz 6.201). That the influence function is a gradient is expressed in a disguised form
as “Kopplungsbedingung (6.5.15)”. For related results see also Bickel et al. 1993,
p. 39, Proposition 2.4.3A and p. 183, Theorem 5.2.3.

Proof Recall that Pn ◦ K̃ (·, P) ⇒ N (0,Σ(P)). The relation

n1/2(κ(n) − κ(P)) = K̃ (·, P)) + o(n0, Pn)

implies by Le Cam’s Lemma that

Pn
n−1/2g ◦ n1/2(κ(n) − κ(P)) ⇒ N (μ,Σ(P))
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with μ = ∫
K (x, P)g(x)P(dx).

On the other hand,

n1/2(κ(n) − κ(Pn−1/2g))

= n1/2(κ(n) − κ(P)) − n1/2
(
κ(Pn−1/2g) − κ(P)

) + o(n0, Pn). (5.5.7)

Therefore, κ(n) is regular iff the righthand side of (5.5.7) is asymptotically indepen-
dent of g, i.e. iff

n1/2(κ(Pn−1/2g) − κ(P)) →
∫

K (x)g(x)P(dx),

a relation equivalent to the differentiability of κ with derivative K . �

In the following we shall discuss how the representation of estimator sequences
by (5.5.1) can be used to obtain asymptotically efficient estimator sequences. The
technical problems are different for parametric, semiparametric and general families.

Parametric Families

As above we write �•(x, ϑ) for the vector �(i)(x, ϑ), i = 1, . . . , k, and �••(x, ϑ) for
the matrix �(i j)(x, ϑ), i, j = 1, . . . , k, and we set L(ϑ) for the matrix with entries
Li, j (ϑ) and write Λ(ϑ) = L(ϑ)−1.

SinceML estimators are not always easy to compute, Fisher (1925) [Sect. 5, pp. 707–
709] suggests to approximate ML estimators by expanding the function

∑n
ν=1 �

•
(xν, ϑ) about the value ϑ = ϑ(n)(xn) of a

√
n-consistent preliminary estimator:

n∑

ν=1

�•(xν, ϑ) =
n∑

ν=1

�•(xν, ϑ(n)(xn)) +
n∑

ν=1

�••(xν, ϑ)(ϑ(n)(xn) − ϑ) + o(n−1/2, Pn
ϑ ).

For the ML estimator ϑ̂ (n), the likelihood equation
∑n

ν=1 �
•(xν, ϑ̂ (n)(xn)) = 0 then

leads to the approximation

ϑ̂ (n)(xn) = ϑ(n)(xn) +
( n∑

ν=1

�••(xν, ϑ
(n)(xn))

)−1 n∑

ν=1

�•(xν, ϑ(n)(xn))

= ϑ(n)(xn) + Λ(ϑ(n)(xn))n−1
n∑

ν=1

�•(xν, ϑ(n)(xn)) + o(n−1/2, Pn
ϑ ).

Following his principle of “proof by example”, Fisher carries this through for the
Cauchy distribution, starting from the median as a preliminary estimator. In a more
general context, the same idea occurs (independently?) in Le Cam (1956) [p. 139]:
If {Pϑ : ϑ ∈ Θ}, Θ ⊂ R

k , is sufficiently regular (something close to LAN), then
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ϑ̂ (n)(xn) := ϑ(n)(xn) + Λ(ϑ(n)(xn))n−1
n∑

ν=1

�•(xν, ϑ(n)(xn))

is asymptotically linear with influence function Λ(ϑ)n−1/2 ∑n
ν=1 �

•(xν, ϑ), i.e.

n1/2(ϑ(n)(xn) − ϑ) = Λ(ϑ)n−1/2
n∑

ν=1

�•(xν, ϑ) + o(n0, Pn
ϑ ). (5.5.8)

(His p. 138, Lemma 6, (47).)
The immediate consequence of relation (5.5.8): The limit distribution of the

improved estimator sequence is N (0,Λ(ϑ)), identical with the limit distribution
of (consistent) ML-sequences.

The improvement procedure requires just
√
n-consistency of ϑ(n), not more. It

solves, by the way, also the problem of consistency connected with the ML method,
a problem Fisher was not aware of.

Applications of the improvement procedure depend on ad hoc procedures for find-
ing

√
n-consistent preliminary estimator sequences: The general existence theorems

are hardly applicable. There are numerous papers investigating various aspects of
the improvement procedure.

(i) First of all, the improvement procedure can be modified to

ϑ̂ (n)(xn) = ϑ(n)(xn) + Λ(n)(xn)n−1
n∑

ν=1

�•(xν, ϑ(n)(xn)), (5.5.9)

with some sequence Λ(n) → Λ(ϑ) (Pn
ϑ ), and one can ask whether

Λ(n)(xn) = Λ(ϑ(n)(xn))

or

Λ(n)(xn) = −n−1
n∑

ν=1

�••(xν, ϑ(n)(xn))

works better in which examples.
(ii) Does iteration of the improvement procedure lead to asymptotically better esti-

mator sequences? Perhaps, but this does not show up in an asymptotic analysis
of first order: ϑ̂ (n) defined by (5.5.9) is asymptotically optimal already.

(iii) How important is the influence of the preliminary estimators?

We forgo discussing such questions in more detail. In the following we take a
closer look at the formal conditions required for the assertion that (5.5.9) implies
(5.5.8). From (5.5.9) one obtains
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n1/2(ϑ̂ (n)(xn) − ϑ) = n1/2(ϑ(n)(xn) − ϑ) + Λ(n)(xn)n−1/2
n∑

ν=1

�•(xν, ϑ(n)(xn))

SinceΛ(n) → Λ(ϑ) (Pn
ϑ ) and since n

−1/2 ∑n
ν=1 �

•(xν, ϑ) is stochastically bounded,
relation (5.5.8) follows if

n1/2(ϑ(n)(xn) − ϑ)

+Λ(n)(xn)n−1/2
n∑

ν=1

(
�•(xν, ϑ(n)(xn)) − �•(xν, ϑ)

) → 0 (Pn
ϑ ).

Under conditions on the second derivative �••, as used, for instance, by Ibragimov
and Has’minskii (1981) [p. 83, Theorem 8.1], one obtains (see (5.2.5)) that

n−1/2
n∑

ν=1

(�•(xν, ϑ(n)(xn)) − �•(xν, ϑ)) = o(n0, Pn
ϑ ),

provided n1/2(ϑ(n) − ϑ) is stochastically bounded. Relation (5.5.9) follows under
the usual condition that Λ(ϑ) = −L••(ϑ).

Nonparametric Families

After asymptotic bounds for the concentration of estimator sequences in general
families became available around 1975 (see Sect. 5.6), it was of topical interest if
these bounds are attainable under general conditions.

In some cases, the bounds just confirmed that estimator sequences available
in the literature are, in fact, asymptotically optimal (see e.g. Levit 1975, p. 732,
Theorem 3.1).

The first general attempt at constructing asymptotically efficient estimator seque-
nces in nonparametric families is due to Has’minskii and Ibragimov (1979). Their
results refer to an arbitrary Gâteaux differentiable functional κ on a family P of
probability measures on B with smooth densities. The problem is to construct an
estimator for κ with influence function K . They start from a preliminary estima-
tor Pxmn

of P , based on a subsample xmn = (x1, . . . , xmn ) of xn = (x1, . . . , xn). In
relation (7), p. 44, they define the estimator

κ(n)(xn) := κ(Pxmn
) + (n − mn)

−1
n∑

ν=mn+1

K (xν, Pxmn
). (5.5.10)

Definition (5.5.10) is a version of an improvement procedure that uses sample
splitting.

Semiparametric Families

Following the pioneering paper by Bickel (1982), there is now a large literature on
the construction of estimator sequences for semiparametric models. The family of
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probability measures is now written as P = {Pϑ,η : ϑ ∈ Θ, η ∈ H}, with Θ ⊂ R
k

and H a topological space. The functional is κ(Pϑ,η) = ϑ . To keep the following dis-
cussion transparent, we assume that k = 1. The problem is to construct an estimator
sequence for the finite-dimensional parameter ϑ with influence function K (·, ϑ, η).

The basic idea is the same as in the more general case of an nonparametric family
P and a differentiable functional κ on P, namely: To improve a given estimator
sequence. For technical reasons, the details are slightly different. The starting point
now is an estimator sequence ϑ(n) of ϑ , which is

√
n-consistent in a locally uniform

sense, i.e., n1/2(ϑ(n) − ϑn) is stochastically bounded under Pn
ϑn ,ηn

whenever Pn
ϑn ,ηn

is
stochastically bounded under Pn

ϑn ,ηn
, whenever Pn

ϑn ,ηn
and Pn

ϑ,η are contiguous.
In spite of its more restricted character, semiparametric families comprise a

plethora of special models, and the prospects for a general procedure working effi-
ciently in each of these cases are not very favourable. Hence procedures working at
the general level can hardly be more than existence theorems.

To illustrate the diversity of semiparametric models think of the problem of
(i) estimating the center of symmetry for a family of probability measures on
B with unknown symmetric densities, or (ii) of estimating the expectation of
A → ∫

Pϑ,τ (A)Γ (dτ) where Γ is unknown. Dozens of further examples of spe-
cial semiparametric models are presented in Bickel et al. (1993).

Let now (ϑn, ηn) ∈ Θ × H be such that Pn
ϑn ,ηn

and Pn
ϑ,η are mutually contiguous.

If relation (5.5.1), applied for κ(Pϑ,η) = ϑ and κ(n) = ϑ(n), holdswith Pϑ,η and Pϑn ,η,
this implies

n1/2(ϑn − ϑ) + n−1/2
n∑

ν=1

(K (xν, ϑn, η) − K (xν, ϑ, η)) = o(n0, Pn
ϑ,η). (5.5.11)

If (5.5.1) holds with Pϑn ,η and Pϑn ,ηn , then

n−1/2
n∑

ν=1

(K (xν, ϑn, ηn) − K (xν, ϑn, η)) = o(n0, Pn
ϑ,η). (5.5.12)

Both, (5.5.11) and (5.5.12), are necessary for the existence of estimator sequences
admitting the influence function K (·, ϑ, η) locally uniformly.

Klaassen (1987) was the first to consider the construction of asymptotically lin-
ear estimator sequences with an arbitrary influence function. He justifies condition
(5.5.11) (corresponding to his condition (2.2), p. 1550) by the remark that “it often
holds”. He does notmention that it is necessarily true under the condition of local uni-
formity. Condition (5.5.11) occurs in Bickel et al. 1993, p. 395, (iv), as “smoothness
condition” (!).

The paper of Schick (1986) is confined to K (·, ϑ, η) being a canonical gradient.
In this case, condition (5.5.11) follows from some kind of LAN-condition on the
family (see p. 1142, relation (2.5)), an idea going back to Bickel (1982) [p. 670,
relation (6.43)].



152 5 Asymptotic Optimality of Estimators

Condition (5.5.12) does not show up in the literature. Since this condition is neces-
sary too, this requires an explanation. The results in Schick (1986), Klaassen (1987),
Bickel et al. (1993) are based on the following condition (5.5.13) and (5.5.14): There
exists an estimator sequence (x1, . . . , xm) → K̂m(·, ϑ, x1, . . . , xm) of the function
K (·, ϑ, η) with the following properties.

(x1, . . . , xm) → m1/2
∫

K̂m(y, ϑm, x1, . . . , xm)Pϑm ,η(dy) = op(m
0, Pm

ϑ,η)

(5.5.13)
and

(x1, . . ., xm)→
∫

(K̂m(y, ϑm, x1, . . ., xm)−K (y, ϑm, η))
2Pϑm ,η(dy)=op(m

0, Pm
ϑ,η).

(5.5.14)

These conditions presume that (Pm
ϑm ,η

)m∈N and (Pm
ϑ,η)n∈N are mutually contiguous

if ϑm − ϑ = O(m−1/2). Conditions (5.5.13) and (5.5.14) imply that

(n − mn)
−1/2

n∑

ν=mn+1

(K̂mn (xν, ϑmn , x1, . . . , xmn ) − K (xν, ϑmn , η)) = op(n
0, Pn

ϑ,η)

(5.5.15)

for every sequence mn such that n − mn → ∞ and n−1mn is bounded away from 0.
If sequences K̂m fulfilling (5.5.15) exist, then the necessary condition (5.5.12) is

automatically fulfilled (use (5.5.15) with η and ηn , and replace n − mn by n).
That (5.5.15) follows from (5.5.13) and (5.5.14) can be seen as follows. Write

(n − mn)
−1/2

n∑

ν=mn+1

(K̂mn (xν, ϑmn , x1, . . . , xmn ) − K (xν, ϑmn , η))

= (n − mn)
−1/2

n∑

ν=mn+1

(
K̂mn (xν, ϑmn , x1, . . . , xmn )

−
∫

K̂mn (y, ϑmn , x1, . . . , xmn )Pϑmn ,η
(dy) − K (xν, ϑmn , η)

)

+(n − mn)
1/2

∫
K̂mn (y, ϑmn , x1, . . . , xmn )Pϑmn ,η

(dy). (5.5.16)

The first term on the right-hand side of (5.5.16) converges stochastically to 0 because
of (5.5.14), provided n − mn) tends to infinity. The second term converges to 0
because of (5.5.13) if n−1mn is bounded away from 0. Both conditions are fulfilled
if mn ∼ n.

Now we shall show how, under conditions (5.5.11) and (5.5.15), an estimator
sequence with influence function K (·, ϑ, η) can be constructed.
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We first remark that relations (5.5.11) and (5.5.15) hold, in a modified form, with
ϑm replaced by a

√
m-consistent estimator sequence ϑ(m). This is true without any

modifications if (ϑ(m))n∈N is discretized. This was the choice in the papers by Bickel
(1982) and Schick (1986). Alternatively, one might, following Klaassen (1987), use
the splitting trick.

Let 1 < kn < mn < n be such that n−1kn is bounded away from 0 and n−1mn

bounded away from 1. Relation (5.5.11) with (x1, . . . , xn) replaced by (xmn+1,

. . . , xn) yields

(n − mn)
1/2(ϑ(mn−kn)(xkn+1, . . . , xmn ) − ϑ)

+(n − mn)
−1/2

n∑

ν=mn+1

(
K (xν, ϑ

(mn−kn)(xkn+1, . . . , xmn ), η) − K (xν, ϑ, η)
)

= o(n0, Pn
ϑ,η). (5.5.17)

Similarly, (5.5.16) implies

(n − mn)
−1/2

n∑

ν=mn+1

(
K̂kn (xν, ϑ

(mn−kn)(xkn+1, . . . , xmn ), xkn )

− K (xν, ϑ
(mn−kn)(xkn+1, . . . , xmn ), η)

)

= op(n
0, Pn

ϑ,η).

Let now

ϑ
(n)
1 (xn) := ϑ(mn−kn)(xkn+1, . . . , xmn )

+(n − mn)
−1

n∑

ν=mn+1

K̂kn (xν, ϑ
(mn−kn)(xkn+1, . . . , xmn ), xkn ).

We shall show that

(n − mn)
1/2(ϑ

(n)
1 (xn) − ϑ)

= (n − mn)
−1/2

n∑

ν=mn+1

K (xν, ϑ, η) + o(n0, Pn
ϑ,η). (5.5.18)

This can be seen as follows.

(n − mn)
1/2(ϑ

(n)
1 (xn) − ϑ)

= (n − mn)
1/2(ϑ(mn−kn)(xkn+1, . . . , xmn ) − ϑ)
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+(n − mn)
−1/2

n∑

ν=mn+1

K̂kn (xν, ϑ
(mn−kn)(xkn+1, . . . , xmn ), xkn )

= (n − mn)
−1/2

n∑

ν=mn+1

K (xν, ϑ, η)

+(n − mn)
−1/2

n∑

ν=mn+1

(
K̂kn (xν, ϑ

(mn−kn)(xkn+1, . . . , xmn ), xkn )

− K (xν, ϑ
(mn−kn)(xkn+1, . . . , xmn ), η)

) + o(n0, Pn
ϑ,η)

= (n − mn)
−1/2

n∑

ν=mn+1

K (xν, ϑ, η) + o(n0, Pn
ϑ,η).

For an estimator sequence ϑ(n)
2 constructed in the sameway as ϑ(n)

1 , but with the roles
of x1, . . . , xmn and xmn+1, . . . , xn interchanged, we obtain in analogy to (5.5.18):

m1/2
n (ϑ

(n)
2 (xn) − ϑ) = m−1/2

n

mn∑

ν=1

K (xν, ϑ, η) + o(n0, Pn
ϑ,η).

Hence
ϑ̂ (n) := (1 − n−1mn)ϑ

(n)
1 + n−1mnϑ

(n)
2 (5.5.19)

is asymptotically linear with influence function K (·, ϑ, η).
This is a simplified version of the construction proposed by Klaassen (1987)

[p. 1552, Theorem 2.1] and adopted by Bickel et al. (1993) [p. 395, Theorem 7.8.1].
Conditions (5.5.13) and (5.5.14) underlying the construction appear strong and

artificial. It is an interesting aspect of Klaassen’s paper that—under a uniform inte-
grability condition on K (·, ϑ, η)2—just these conditions are necessary (Klaassen
1987, p. 1553, Theorem 3.1, and Bickel et al. 1993, pp. 396/7, Theorem 7.8.2).

Remark The constructions presented above use separate estimators of ϑ and η, as in

K̂kn (·, ϑ(mn−kn)(xkn+1, . . . , xmn ), x1, . . . , xkn ).

In practical case, ϑ and η will be estimated simultaneously. Example: If ϑ is the
center of a symmetric density, a preliminary estimator of ϑ will enter the estimator
of the density based on x1, . . . , xkn . The theory requires this preliminary estimate
to be based on x1, . . . , xkn only, hence different from ϑ(mn−kn)(xkn+1, . . . , xmn ). (It
appears that this has been neglected in Bickel et al. 1993, pp. 400/1, Example 7.8.1.)

Remark As the result of a rather artificial construction, the estimate ϑ̂ (n)(x1, . . . , xn)
defined by (5.5.19) will not be invariant under permutations of (x1, . . . , xn). How-
ever, the median of all permutations ϑ(n)(xi1 , . . . , xin ) is permutation invariant and
asymptotically linear with the same influence function (see Pfanzagl 1990, p. 7,
Lemma 3.2).
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The idea to construct an asymptotically optimal estimator sequence for semipara-
metric models by the improvement procedure was developed by Bickel (1982), inde-
pendently of the paper by Has’minskii and Ibragimov (1979). (See p. 670, acknowl-
edgement.) His construction is based on condition (5.5.14) (see p. 653, condition
3.5) and on the condition

∫
K̂m(ξ, ϑm, x1, . . . , xm)Pϑm ,η(dξ) = 0,

a rather stringent version of (5.5.13). (To the reader who has trouble in finding this
condition in Bickel’s paper: It is part of “condition H” on p. 653.)

5.6 Functionals on General Families

Let (X,A ) be a measurable space, P a family of probability measures P|A , and
κ : P → R

k the functional to be estimated. The problem is to find an operationally
meaningful concept of asymptotic optimality for estimator sequences. Of course, we
encounter the same problems which were present already in the case of a parametric
familyP: that one has to find a suitable concept of local uniformity, and of an intrinsic
bound for the asymptotic concentration of locally uniformly convergent estimator
sequences.

If P is an arbitrary family and κ : P → R an arbitrary functional, one has no
immediate standard for judging the quality of an estimator. Is the sample quantile
asymptotically efficient ifP consists of all probabilitymeasures onBwith continuous
density? What is the asymptotic efficiency of the sample quantile if every density in
P is symmetric?

As another example, consider the problem of estimating

κ(P) :=
∫

Ψ (x1, x2)P(dx1)P(dx2)

with Ψ (x1, x2) = Ψ (x2, x1) and
∫
Ψ (x1, x2)2P(dx1)P(dx2) < ∞. A reasonable

estimator is

(x1, . . . , xn) → n−2
n∑

ν=1

n∑

μ=1

Ψ (xν, xμ).

But is this estimator asymptotically optimal? If it is known that P has a continuous
λ-density, can one achieve an asymptotically better estimator sequence by estimating
first the density of P by p(n)(·, xn) and computing subsequently the estimator

xn →
∫

Ψ (ξ1, ξ2)p
(n)(ξ1, xn)p(n)(ξ2, xn)dξ1dξ2.
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Stein’s Approach

Stein was the first scholar to strive for an answer to such questions. His paper (1956)
is generally considered as pioneering for the problems of nonparametric bounds.
Regrettably, Stein wrote his paper several years too early. He cites Le Cam (1953),
but he ignores the problem of “superefficiency”. Without a solid concept for the
optimality in parametric families, he takes ML-sequences as asymptotically efficient
straightaway, without entering the discussion about the asymptotic optimality of
statistical procedures. Stein never came back to this problem when the adequate
techniques were available. Recall that the idea to base the concept of asymptotic
optimality on local uniformity as in Rao (1963) and Bahadur (1964) had not yet
evolved, and that the optimality of ML-sequences based on such a solid concept of
asymptotic optimality occurred first in Wolfowitz (1965) and Kaufman (1966).

The main idea in Stein’s paper is to obtain the asymptotic bound for estima-
tor sequences of a functional κ : P → R at P0 ∈ P from the bound for estimator
sequences in the “least favourable” parametric subfamily passing through P0, say
P0. Assuming that ML-sequences are asymptotically optimal, the question remains
which parametric subfamily is the least favourable one. With a solid concept of
asymptotic optimality at our disposal, this is clear: P0 is least favourable if the best
possible estimator sequence which is regular in P0 is also regular in P, or con-
versely: If an estimator sequence which is regular and optimal in P is optimal in
P0. Without a precise concept of asymptotic optimality, Stein’s argument (p. 187)
remains necessarily vague.

Clearly [!] a nonparametric problem is at least as difficult as any of the parametric problems

The reasoning underlying Stein’s idea contains certain weak points: (i) He assumes
that for parametric families the ML-sequence is asymptotically optimal. (ii) More-
over, it makes no sense to speak of the quality of an estimator sequence of κ(P)

at P = P0 without reference to the class of competing estimator sequences. Hence
it makes no sense to say what one would like to say, namely: That an estimator
sequence is optimal on some family P if it is optimal on some subfamily P0 ⊂ P.

To illustrate Stein’s approach, we consider the problem of estimating the quantile
of an unknown symmetric distribution.

Example LetP be the family of all symmetric distributions onBwith a differentiable
Lebesgue density p. The problem is to estimate the β-quantile κβ(P), defined by
P(−∞, κβ(P)] = β. W.l.g. we assume β ≥ 1/2. The β-quantile κ(n) of the sample
is certainly a reasonable estimator; its limit distribution is normal with mean 0 and
variance β(1 − β)/p(κβ(P))2. Can the symmetry of the densities be utilized to
obtain a better estimator? According to Stein’s program, one has to find a parametric
subfamily in which the estimation of the β-quantile is particularly difficult. Let
P0 ∈ P be fixed. As starting point we consider the parametric family Q := {Qϑ :
ϑ ∈ (−ε, ε)} with Lebesgue density

q(x, ϑ) = p0(x − ϑ)(1 + ϑψ(x − ϑ)), p0 symmetric about 0. (5.6.1)
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The family {Qϑ : ϑ ∈ R} passes through P0 for ϑ = 0. The signed measure Qϑ is a
probability measure (for ϑ sufficiently small) if

inf
x∈R

ψ(x) > −∞ (5.6.2)

and ∫
ψ(x)p0(x)dx = 0. (5.6.3)

Since Qn−1/2a , n ∈ N, is a sequence converging to P0, condition (5.6.1) implies that
Q0 is a limit of Qn−1/2a ◦ n−1/2(κ(n) − κβ(Qn−1/2a)), n ∈ N. In other words: The
convergence of κ(n) is regular within the parametric familyQ in the sense of Sect. 5.8.

Qϑ is symmetric about ϑ if ψ is symmetric about 0. The aim is to choose
ψ such that the estimation of the β-quantile in the family {Qϑ : ϑ ∈ (−ε, ε)}
becomes as difficult as possible. For the following notice that

∫ +∞
−∞ ψdP0 = 0 implies

∫ ∞
0 ψdP0 = 0 (since ψ and p0 are symmetric). To simplify our notations, we write
qβ = κβ(P0). It is easy to check that

K (0) := ∂ϑκβ(Qϑ)|ϑ=0 = 1 −
∫

Ψ 1(0,qβ )dP0
/
p0(qβ).

Moreover, under suitable regularity conditions on ψ ,

∂ϑ log q(x, ϑ)|ϑ=0 = −�′
0(x) + ψ(x), (5.6.4)

so that

L(Q0) :=
∫

(−�′
0 + ψ)2dP0 =

∫
(�′

0)
2dP0 +

∫
ψ2dP0.

Hence the intrinsic bound for the asymptotic variance of estimator sequences of the
β-quantile in the family (5.6.1) is

(
1 −

∫
Ψ 1(0,qβ )dP0

/
p0(qβ)

)2/( ∫
(�′

0)
2dP0) +

∫
ψ2dP0

)
. (5.6.5)

The problem is to chooseψ symmetric and subject to the conditions (5.6.1) such that
(5.6.5) is as large as possible. The solution of this task becomes more transparent if
we represent ψ = λψ0, with

∫
ψ2

0dP0 = 1. Given ψ0,

(
1 − λ

∫
ψ01(0,qβ )dP0

/
p0(qβ)

)2/(∫
(�′

0)
2dP0) + λ2

)

attains its maximal value

( ∫
(�′

0)
2dP0

)−1 +
( ∫

ψ01(0,qβ )dP0
)2/

p0(qβ)
2
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for λ = −( ∫
(�′

0)
2dP0

)−1 ∫
ψ01(0,qβ )dP0

/
p0(qβ).

The problem now is to choose ψ0, symmetric about 0, with
∫
ψ0dP0 = 0 and∫

ψ2
0dP0 = 1 such that (

∫
ψ01(0,qβ )dP0)

2 becomes as large as possible. The solution
to this problem is (recall that P0(−∞, qβ) = β)

ψ0(x) = (2(2β − 1)1 − β))−1/2(1(0,qβ )(|x |) − (2β − 1). (5.6.6)

The least favourable subfamily is of the type (5.6.1) with Ψ given by (5.6.6). This
leads to the variance bound

( ∫
(�′

0)
2dP0

)−1 + (β − 1/2)(1 − β)/p0(qβ)
2. (5.6.7)

Endowed with the concepts of “tangent space” and “gradient” introduced below, we
now complete this example of bounds for the β-quantile of a symmetric distribution
onB. According to (5.6.4), the tangent cone of this family contains all functions x →
−a�′

0(x) + ψ(x), where p0 is any density symmetric about 0, andψ a (differentiable)
function fulfilling (5.6.2) and (5.6.3), which is symmetric about 0.A gradient of the
β-quantile at P0 is

κ•
β(x, P0) = (β − 1(−∞,qβ )(x))

/
p0(qβ),

the canonical gradient is

κ∗
β(x, P0) = −L(P0)

−1�′
0(x) + (

2β − 1 − 1(q(1−β),q(β))(x)
)/

2p0(qβ).

The asymptotic variance bound
∫
κ∗
β(x, P0)

2dP0 coincides with (5.6.7).

Remark With ψ0 defined in (5.6.6), the probability measure Qϑ defined in (5.6.1)
is not in P. Hence one needs to modify ψ0 slightly in such a way that the density
q(·, ϑ) becomes differentiable, without disturbing the relevant local properties of
Qϑ at ϑ = 0.

The term (5.6.7) is an intrinsic bound obtained from one-parameter families of the
particular type (5.6.1), and one cannot be sure that this is the largest bound result-
ing from one-parameter families passing through P0, nor can one be sure that the
largest bound obtained from all one-parameter subfamilies is attainable at P0, locally
uniformly in the full family P. All doubts whether (5.6.7) is the bound we were
looking for can be removed by presenting a regular estimator sequence attaining this
bound. �

This example illustrates what Stein could have done to demonstrate the power
of his method: Look for a one-parameter subfamily in which the estimation of the
functional is “most difficult”, and show that the intrinsic bound for this subfamily is
attainable in the full familyP. What tein did is much less, and one can hardly refute
Millar’s verdict (1983, p. 261) that Stein’s paper consists of “some obscure remarks”.
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This impression is due to the fact that Stein mingles the problems of “nonparametric
bounds” and “adaptivity”.

Most authors refer to Stein (1956) as a pioneering paper for the concept of non-
parametric bounds. It is, in fact, a paper on adaptivity. Readers who have difficulties
to understand Stein’s enigmatic “algebraic lemma” (p. 189) might consult Bickel
(1982) [p. 651, condition S] or Fabian and Hannan (1982) [p. 474, condition 8].
These authors offer simplified and more transparent versions of what Stein intended
to express in his “algebraic lemma”: That a certain orthogonality relation is necessary
for the existence of “adaptive” procedures.

The examples in Stein’s paper are all of the “adaptive” type, and in such cases it
is superfluous to search for “least favourable parametric subfamilies”: The intrinsic
nonparametric bound is the intrinsic bound for the submodelwhere the nonparametric
component is known.

The most interesting among Stein’s examples is the estimation of the median
of an unknown symmetric distribution. The estimation of an arbitrary β-quantile
would have offered the possibility to show how the method of least favourable one-
parameter subfamilies can be used to obtain a nonparametric bound. The restriction
to the adaptive case β = 1/2 in Stein’s paper deprives his example of its substance.

Tangent Sets

Shortly after Hájek’s paper (1972) on bounds for the concentration of estimator
sequences in parametric families, the problem of intrinsic bounds for functionals
on general families was taken up in a series of papers by Levit (1974, 1975) and
Koshevnik and Levit (1976). In these papers the ideas of Stein (1956) were trans-
formed into a serviceable technique for determining intrinsic bounds, based on the
concepts “tangent space” and “gradient”.

To keep the following considerations transparent, we assume that the probability
measures P ∈ P are mutually absolutely continuous. We consider paths Pt ∈ P for
t ∈ A = (−ε, ε) approximating P in the following sense: The density pt of Pt can
be represented as

t−1(pt/p − 1) = g + rt (5.6.8)

with g ∈ L∗(P) and rt “DCC-differentiable” as defined below.
The tangent set T (P,P) is the set of all g ∈ L∗(P) occurring in a representation

(5.6.8). By definition, T (P,P) is a cone. Applications sometimes require more
properties of T (P,P). By definition, T (P,P) is closed under delations, i.e. g ∈
T (P,P) implies tg ∈ T (P,P) for every t ∈ A, neighbourhood of o. Throughout
the following we assume that T (P,P) is linear and ‖ ‖2-closed.

Warning: Expressions for the (co-)variance bounds in the papers by Levit (1974)
[p. 333] and Koshevnik and Levit (1976) [p. 744, Theorem 1] appear with the factor
1/4. This is a consequence of the deviating definition of a Hellinger derivative g by

lim
t→0

∫
(
t−1((pt/p)

1/2 − 1) − g
)2
dP = 0
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rather than the natural (and now common) definition

lim
t→0

∫
(
t−1((pt/p)

1/2 − 1) − 1

2
g
)2
dP = 0.

Given a functional κ : P → R, Levit (1974) [p. 332] assumes a particular para-
metrization, namely κ(Pϑ0+t ) = κ(Pϑ0) + t , so that κ(·)(ϑ0) = 1. In this case, the

usual variance bound 1
/ ∫

�•(·, ϑ0)
2dPϑ0 changes to σ

2(ϑ0) = 1
/ ∫

g(·, ϑ0)
2dPϑ0 ,

and the least favourable parametric subfamily, leading to the largest asymptotic
variance, is the one which minimizes

∫
g(·, ϑ0)

2dP0, subject to the condition
κ(Pϑ0+t ) = κ(Pϑ0) + t .

We call the path pt , t ∈ A, DCC-differentiable (at t = 0) with derivative g if
g ∈ L∗(P) and

pt/p = 1 + tg + rt (5.6.9)

with rt , t ∈ A, fulfilling the degenerate convergence conditions (DCC):

P{|rt | > εt−1} = o(t2) for every ε > 0, (5.6.10)

∫
rt1{|rt |≤t−1}dP = o(t), (5.6.11)

∫
r2t 1{|rt |≤t−1}dP = o(to) (5.6.12)

Theorem 5.6.1 If pt , t ∈ A, is DCC-differentiable with derivative g, then

n∑

ν=1

log(pn−1/2a(xν)/p(xν)) = an−1/2
n∑

ν=1

g(xν) − 1

2
a2

∫
g2dP0 (Pn

0 ). (5.6.13)

In other words, (5.6.10)–(5.6.12) imply an LAN-condition. (In fact,
∫
r2t d P → 0

suffices.) For a proof see (Pfanzagl 1985, Proposition 1.2.7, p. 22 ff).
For parametric families Pϑ : ϑ ∈ Θ withΘ ⊂ R

k we set Pϑ+ta in place of Pt and
obtain

dPϑ+ta/dPϑ = 1 + ta��•(·, ϑ) + trt .

Then

n∑

ν=1

log(p(xν, ϑ + n−1/2at)/p(xν, ϑ))

= n−1/2ta�
n∑

ν=1

�•(xν) − 1

2
t2a�

∫
�•(·, ϑ)�•(·, ϑ)�dPϑa (Pn

ϑ ).
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A representation (5.6.9) of the densities is natural from the intuitive point of view.
Technically useful for the determination of the concentration bound is the LAN-
condition (5.6.13). That (5.6.9) is almost necessary for (5.6.13) was suggested by
Le Cam (1984, 1985). See Pfanzagl (1985) [p. 22, Proposition 1.2.7] for details. Let
H : R → R be a function with continuous 2nd derivative in a neighbourhood of 0
such that

H(0) = 0 and H ′(0) = 1. (5.6.14)

We shall use the following

Lemma 5.6.2 If
ht = tg + t2K + trt (5.6.15)

with K a constant and rt fulfilling (5.6.10)–(5.6.12), then

H(ht ) = tg + t2(K + 1

2
H ′′(0)σ 2) + tst (5.6.16)

with st fulfilling (5.6.10)–(5.6.12).

This is a special case of Lemma 1.3.4 in Pfanzagl (1985) [pp. 30/1], applied with
a = b = 0. See also the remark on p. 21 concerning the condition on H ′′. If G
is the inverse of H in a neighbourhood of 0, then the conditions (5.6.14) on H
imply G(0) = 0, G ′(0) = 1 and G ′′(0) = −H ′′(0). Hence, (5.6.16) and (5.6.15) are
equivalent.

If relation (5.6.9) holds true, relation (5.6.15) is fulfilled with

ht = pt/p − 1 and K = 0.

Applied with H(u) = log(1 + u), relation (5.6.16) asserts that

log pt/p = H(ht ) = tg + t2
1

2
H ′′(0)σ 2 + trt .

Since H ′′(0) = −1, this is

log pt/p = tg − t2

2
σ 2 + trt . (5.6.17)

To establish LAN for i.i.d. products one may use relation (5.6.17). Since

n−1/2
n∑

ν=1

rn−1/2a(xν) → 0

by the Degenerate Convergence Theorem, relation (5.6.13) follows.

http://dx.doi.org/10.1007/978-3-642-31084-3_1
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Usually, the LAN-representation (5.6.13) is obtained from the assumption that
t → pt/p is Hellinger differentiable, i.e., that there exists a representation

(pt/p)
1/2 = 1 + t

2
g + tst , with

∫
s2t d P → 0. (5.6.18)

We shall show that (5.6.18) is equivalent to (5.6.9) with (rt )t∈A fulfilling condi-
tions (5.6.10)–(5.6.12). Notice that (5.6.18) implies

∫
gdP = 0 and

∫
g2dP < ∞.

According to Lemma 1.2.17 in Pfanzagl (1985) [p. 27], relation (5.6.18) is equivalent
to the condition that rt := st + 1

8 tσ
2 fulfills conditions (5.6.10)–(5.6.12). Hence

(pt/p)
1/2 = 1 + t

2
g − 1

8
t2σ 2 + trt (5.6.19)

is equivalent to Hellinger differentiability of t → pt/p with derivative g. As a con-
sequence of (5.6.19), relation (5.6.15) is fulfilled with

ht = 2((pt/p)
1/2 − 1) and K = −1

4
σ 2.

Applied with H(u) = u(1 + u/4), relation (5.6.16) asserts that

pt/p − 1 = H(ht ) = tg + t2
(

−1

4
σ 2 + 1

2
H ′′(0)σ 2

)

+ trt .

Since H ′′(0) = 1/2, this is relation (5.6.9). Hence conditions (5.6.9), (5.6.17),
(5.6.18) and (5.6.19) are equivalent.

If condition (5.6.17) is the technically most convenient one, it is not so easy to
justify from the intuitive point of view for a given family {Pϑ : ϑ ∈ Θ}. Pfanzagl
(1982) is based on the more transparent condition (5.6.9) (see p. 23). Now generally
accepted is condition (5.6.18), i.e. Hellinger differentiability. What makes this con-
dition attractive is its provenance from a classical concept of differentiability. But is
this really a strong argument if the underlying distance function is rather artificial?
One reason for the general acceptance of Hellinger differentiability seems to be the
prestige of Le Cam who started its use in (1969) (see e.g. p. 94, Théorème).

Gradients

The functional κ : P → R is differentiable at P if there exists κ• ∈ L∗(P) such that

t−1(κ(Pt ) − κ(P)) →
∫

κ•gdP (5.6.20)

for every g ∈ T (P,P) and every DCC-differentiable path Pt inPwith derivative g.
Any function κ• ∈ L∗(P) fulfilling (5.6.20) is a gradient of the functional κ . A

gradient in T (P,P) is unique. It is distinguished by the symbol κ∗ and the name
canonical gradient. It can be obtained as the projection of any gradient onto T (P,P).

http://dx.doi.org/10.1007/978-3-642-31084-3_1
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The tangent space describes the local properties of the family P; the gradient
describes the local properties of the functional κ . The Convolution Theorem (see
Sect. 5.13) shows that the canonical gradient of the functional κ determines the
bound for the concentration of regular estimator sequences.

Differentiability of the functional κ seems to be a natural condition for the exis-
tence of a reasonable estimator sequence. In fact, Bickel et al. (1993) [p. 183,
Theorem 5.2.3] claim the “equivalence of regularity and differentiability”, a result
going back to van der Vaart (1988). This claim is based on the joint convergence
of (n1/2(κ(n) − κ(P)), n−1/2 ∑n

ν=1 g(xν)) for any g in the tangent set. Without this
popular but not operational assumption this is not true any more: Pfanzagl (2002a)
[pp. 266–268] presents a one-parameter family and a non-differentiable functional
admitting a regular estimator sequence with continuous limit distribution.

For parametric families {Pϑ : ϑ ∈ Θ}, Θ ⊂ R
k , it is natural to consider κ as a

functional onΘ instead of a functional defined on the family of probability measures
{Pϑ : ϑ ∈ Θ} with K (ϑ) := κ(Pϑ). The canonical gradient of the functional κ may
now be written as

κ∗ = K •Λ(ϑ)�•(·, ϑ)

with K • the gradient K at ϑ .
With the introduction of “tangent cone” and “gradient” in Koshevnik and Levit

(1976) [p. 742], the least favourable subfamily for a real-valued functional is
expressed through the canonical gradient of κ . The tangent cone contains all infor-
mation about the local structure of the family P at P which is needed to obtain the
intrinsic bound. Koshevnik and Levit (as well as Has’minskii and Ibragimov (1979),
confine themselves to expressing the intrinsic bounds by Minimax Theorems, fol-
lowing Hájek (1972). They could have used the Convolution Theorem as well.

Levit (1974) [Sects. 2 and 3] illustrates the use of this approach by application to
the functional

κ(P) :=
∫

Ψ (x1, . . . , xm)P(dx1) . . . P(dxm),

a functional investigated by von Mises in (1947) and in some earlier papers. After
some less satisfactory results of von Mises on the distribution of estimators of κ

(see Filippova, 1962, p. 24, for critical remarks), the following result was obtained
by Hoeffding (1948) in a paper “which was essentially completed before the paper
by von Mises (1947) was published” (see p. 306). Specialized for one-dimensional
functionals, Hoeffding’s Theorem 7.4, p. 309, proves that the estimator

κ(n)(x1, . . . , xn) :=
(
n

m

)−1

ΣΨ (xi1 , . . . , xim ), (5.6.21)

with the summation extending over all 1 ≤ i1 < . . . < im ≤ n, is asymptotically
distributed as N (0,m2σ 2(P)), where
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σ 2(P) :=
∫

(Ψ1(x, P) − κ(P))2P(dx),

with

Ψ1(x, P) :=
∫

Ψ (x, x2, . . . , xm)P(dx2) . . . P(dxm)

if Ψ is, w.l.g., assumed to be permutation-invariant. Levit (1974) [proof of Theorem
2.2] gives conditions which imply thatm(Ψ1(·, P) − κ(P)) is the canonical gradient
of κ , hence m2σ 2(P) the intrinsic variance bound. This proves that the estimator
sequence defined by (5.6.21) is asymptotically optimal.

Le Cam’s Lemmas

Le Cam’s Theorem 2.1 (1960, p. 40) contains under point (6) the following assertion.

Let Pn, P ′
n be probability measures on (Xn,An) which are mutually contiguous.

For any sequence hn : Xn → R, the convergence of Pn ◦ (log(dP ′
n/dPn), hn) to a

limit distribution M implies the convergence of P ′
n ◦ (log(dP ′

n/dPn), hn) to the limit
distribution with M-density (u, v) → exp[u].
By this result, assertions about the asymptotic performance of (hn)n∈N under (P ′

n)n∈N
can be obtained from assertions about the asymptotic performance of (hn)n∈N under
(Pn)n∈N. It implies in particular the equivalence of

P (n)
ϑ ◦ log(dP (n)

ϑ+c−1
n a

/
dP (n)

ϑ ) ⇒ N
(

− 1

2
a�L(ϑ)a, a�L(ϑ)a

)

and

P (n)
ϑ+c−1

n a
◦ log(dP (n)

ϑ+c−1
n a

/
dP (n)

ϑ ) ⇒ N
(1

2
a�L(ϑ)a, a�(ϑ)a

)
,

which is essential for certain asymptotic results on the concentration of estimator
sequences obtained from the Neyman–Pearson Lemma (see Sect. 5.11).

Le Cam’s beautiful Lemma inspired Hájek and Šidák (1967) [Sects.VI.1.2–
VI.1.4] to introducewhat they calledLeCam’s 1st, 2nd and 3rdLemma, an adaptation
useful in their particular framework, and it is this version in which Le Cam’s Lemma
now usually occurs in the literature. Le Cam’s original Lemma was extended to hn
with values in a metric space by Bickel et al. (1993) [p. 480, Lemma A.8.6]. Wit-
ting and Müller-Funk (1995) present the “three Lemmas”, and two versions of Le
Cam’s original Lemma on p. 326 as Satz 6.138. See also Bening (2000) [Sect. A, pp.
149–156].

Since Le Cam’s proof is opaque and the proof in Witting and Müller-Funk (with
5 references to auxiliary results) rather technical, we present the following lemma
which shows the basic idea.

Lemma 5.6.3 Let (Y,B) be a topological space, endowed with its Borel alge-
bra, and Qn|B, n ∈ N, a sequence of probability measures converging weakly to
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a probability measure Q|B. Let q : Y → [0,∞) be a continuous function fulfilling∫
qdQ = 1.
If every Q′

n|B has Qn-density q, then Q′
n, n ∈ N, converges weakly to the prob-

ability measure Q′ with Q-density q.

Proof By assumption,
∫

f (v)Qn(dv) → ∫
f (v)Q(dv)) for every bounded and con-

tinuous function f : Y → R. The assertion is that

∫
f (v)q(v)Qn(dv) →

∫
f (v)q(v)Q(dv).

If q is bounded, y → f (v)q(v) is bounded and continuous; hence the assertion
is proved. Since

∫
q(v)Qn(dv) = 1 for n ∈ N, and

∫
q(v)Q(dv) = 1, the assertion

holds for q unbounded. (Hint: approach q by 0 ≤ qε ≤ q such that
∫
(q − qε)dQ ≤ ε

and
∫
(q − qε)dQn < ε for n ≥ nε.) �

Corollary 5.6.4 Let Pn and P ′
n, n ∈ N, be probability measures on (X,A ), with

pn ∈ dP ′
n/dPn. Let gn : X → R

m, n ∈ N, be such that Pn ◦ (gn, pn) ⇒ Q|Bm × B+.
If

∫
vQ(d(u, v)) = 1, then P ′

n ◦ (gn, pn), n ∈ N, converges weakly to the probability
measure Q′ with Q-density (u, v) → v.

This implies in particular that
∫

f (gn)dP ′
n → ∫

f (u)vQ(d(u, v)) for any boun-
ded and continuous function f .

Addendum. If Q has λm × λ-density (u, v) → q(u, v), then P ′
n ◦ gn , n ∈ N, con-

verges weakly to the probability measure with λm-density u → ∫
vq(u, v)dv.

Proof The corollary follows from Lemma (5.6.3), applied with Qn = Pn ◦ (gn, pn)
and Q′

n = P ′
n ◦ (gn, pn), since

∫
f (u, v)Q′

n(d(u, v)) =
∫

f (gn, pn)dP
′
n =

∫
f (gn, pn)pndPn =

∫
f (u, v)vdQn

for any measurable function f : Rm × R+ → R. The condition
∫
q(u, v)Q

(d(u, v)) = 1 now becomes
∫
vQ(d(u, v)) = 1. �

The essential point of LeCam’s idea is to determine the limit distribution of a function
Sn under P ′

n from the limit distribution under Pn without knowing where this limit
distribution comes from.

For functions h, g ∈ L∗(P0), an elementary computation shows that

Pn
n−1/2g ◦ h̃n ⇒ N

(
hgdP0,

∫
h2dP0

)
. (5.6.22)

This relation is basic for the g-regularity of asymptotically linear estimator sequences
with influence function h.

To illustrate Le Cam’s idea from 1960 (Le Cam 1960), we prove the following
generalization of (5.6.22), in which h̃n is replaced by a function Sn .
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Theorem 5.6.5 Let Sn : Xn → B and g : X → B be such that the limit distribution
of (Sn, g̃n) under Pn is jointly normal N (0,Σ) with covariance matrix

(
Σ11 Σ12

Σ21 Σ22

)

.

Then the limit distribution of (Sn, g̃n) under Pn
n−1/2g is N (μ,Σ), with

μ1 = Σ12 and μ2 = Σ22.

The second marginal of N (μ,Σ) i.e. the limit distribution of g̃n under Pn
n−1/2g , is

the well known N (Σ22,Σ22). Of interest is the first marginal, N (Σ12,Σ11), the limit
distribution of Sn under Pn

n−1/2g .

Applied for the special case Sn = h̃n , the covariance matrix becomes

Σ11 =
∫

h2dP0, Σ22 =
∫

g2dP0, Σ12 =
∫

hgdP0.

Proof According to (5.6.22), the density of Pn
n−1/2g with respect to Pn

0 can be approx-

imated by exp[g̃n − 1
2Σ22]. Therefore the density of Pn

n−1/2g ◦ g̃n with respect to

Pn
0 ◦ g̃n is approximable by v → exp[v 1

2Σ22]. If Pn
0 ◦ (Sn, g̃n) ⇒ Q, then Pn

n−1/2g ◦
(Sn, g̃n) → Q′ with Q-density (u, v) → (u, exp[v − 1

2Σ22]). Hence, if Q = N
(0,Σ), this leads to Q′ = N (μ,Σ) with μ1 = Σ12, μ2 = Σ22.

The conclusion from N (0,Σ) to N (μ,Σ) requires an elementary but some-
what tedious computation. Hint: Rewrite the 2-dimensional normal distribution with
covariance matrix Σ as

c exp
[

− 1

2
A11u

2 + A12uv − 1

2
A22v

2
]

with

A11 = 1

(1 − ρ2)
, A22 = 1

(1 − ρ2)Σ22
, A12 = ρ

1 − ρ2
· 1

(Σ11Σ22)1/2
. �

5.7 Adaptivity

The estimator sequence s2n (x) = n−1 ∑n
ν=1(xν − xn)2 is asymptotically optimal for

estimating σ 2 in the family P = {N (μ, σ 2) : μ ∈ R, σ 2 > 0}. It is still asymptot-
ically optimal in any of the subfamilies Pμ := {Nμ, σ 2) : σ 2 > 0}, μ ∈ R. That
means: Knowing μ does not help to obtain an estimator sequence for σ 2 which
is asymptotically better than s2n . Within the realm of parametric families there
are many such examples. (Another example is the estimation of ρ in the family
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{N (μ1, μ2, σ
2
1 σ

2
2 , ρ) : μi ∈ R, σ 2

i > 0, ρ ∈ (−1, 1)}. Knowing that σ 2
1 = σ 2

2 does
not help to obtain an estimator sequence asymptotically superior to the correlation
coefficient. (See Pfanzagl 1982, p. 219, Example 13.2.4.)

This phenomenon of “adaptivity” did not find particular attention as long as it
occurred in parametric families. It became a worthwhile subject of statistical theory
as soon as it occurred in a general family. LetP be the family of all distributions on
B with a sufficiently smooth density; The problem is to estimate the median. Here
is a natural idea as to how a “good” estimator for the median may be obtained. The
simplest idea: Take the median of the sample, or: estimate the unknown density and
take the median of the estimated density as an estimator of the “true” median. If the
family of probability measures is large, no regular estimator sequence can be better
than the sample median. The situation changes dramatically as soon as it is known
that all densities are symmetric. Stein (1956) gave in his Sect. 4, pp. 190/1, a rough
sketch of how “adaptive” tests for the position of the median of a symmetric density
and for the difference in location and scale between two distributions of the same
unknown shape could be obtained.

It took almost fifteen years until Stein’s sketch was turned into a mathematically
solid result. The (equivalent) two-sample problem was solved independently by van
Eeden (1970) [p. 175, Theorem 2.1], Weiss and Wolfowitz (1970, Sect. 4, pp. 144/5)
and Beran (1974) [Theorem 3.1, p. 70]. The papers by van Eeden and Beran are based
on Hájek’s (1962) theorem on adaptive rank tests. They also assert the existence of
adaptive estimator sequences for the median of a symmetric distribution (their p.
180, Theorem 4.1, and p. 73, Theorem 4.1, respectively). See also the preliminary
version of van Eeden’s result, dating from (1968).

These basic papers were followed by a number of papers, doing what is usual in
mathematics: To prove a stronger assertion under weaker assumptions. (See Fabian,
1973, Sacks, 1975, and Stone, 1975.) There is also a questionable paper by Takeuchi
(1971): “Wedo not understand his argument” iswhatWeiss andWolfowitz say (1970,
p. 149). The most impressive of these results is Theorem 1.1 in Stone (1975) [p. 268]
which asserts the existence of an adaptive translation and scale invariant estimator
of the median without any regularity conditions on the density except for absolute
continuity (and symmetry, of course).

Perplexing as the phenomenon of adaptivity in nonparametric families is, it obvi-
ouslywas not easy to find an appropriate conceptual framework. To discuss the results
mentioned above we use the conceptual framework of “semiparametric” models
introduced later by Bickel (1982). Let

P = {Pϑ,η : ϑ ∈ Θ, η ∈ H},

whereΘ ∈ R
k andη ∈ H , an abstract set. Intuitively speaking, an estimator sequence

of ϑ is adaptive inP if it is asymptotically as good as any optimal estimator sequence
based on the knowledge of η. Yet, what is “the optimal estimator sequence of ϑ”,
based on the knowledge of η? The solution to this problem starts with Stein. Since
Stein (1956) cites Le Cam (1953), he must have been familiar with the problem of
superefficiency and the necessity of basing the concept of an optimal limit distribution

http://dx.doi.org/10.1007/978-3-642-31084-3_1
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on some kind of locally uniform convergence to this limit distribution. Yet, he did not
care: “... in a sense, [the ML estimate] is the asymptotically best possible estimate”
(p. 188). Similarly, his definition of adaptivity (p. 192) “... if it is as difficult when the
form of the distribution is known as it is when the form of the distribution depends
in a regular way [?] on an unknown parameter.”

The succeeding authors, too, assume that the limit distribution of theML-sequence
(or theCramér–Raobound) are bounds for the quality of estimator sequences,without
mentioning that such bounds are valid for “regular” estimator sequences only.

Most of the authors mentioned above are satisfied with estimator sequences
(ϑ(n))n∈N attaining for every η ∈ H the optimal limit distribution N (0, σ 2

η (ϑ)) and
ignore the assumption of regularity (which is essential for the validity of σ 2

η (ϑ) as a
bound inPη.) None of these authors pays attention to the preconditions under which
adaptivity is possible. In spite of the heuristic character of his paper, Stein arrives
with his “algebraic Lemma” (Sect. 3, pp. 188–190) somehow at the conclusion that
“orthogonality” is necessary for “adaptivity”. Bickel presents Stein’s “proof” that
“adaptivity” requires “orthogonality” in an intelligible form (see 1982, p. 651).
Bickel’s presentation is repeated in Fabian and Hannan, 1982, p. 474, Theorem 9
and in Bickel et al. 1993, pp. 28/9.

To arrive at a precise concept of “adaptivity”, let Pη := {Pϑ,η : ϑ ∈ Θ}, and let
N (0, σ 2

η (ϑ)) be the optimal limit distribution for estimator sequences of ϑ which are
“ϑ-regular” within Pη. Bickel’s definition of adaptivity (see 1982, p. 649) reads as
follows. The estimator sequenceϑ(n), n ∈ N, is “adaptive” if it convergesϑ-regularly
to N (0, σ 2

η (ϑ)) for every η ∈ H , i.e. if

Pn
ϑn ,η

◦ n1/2(ϑ(n) − ϑn) ⇒ N (0, σ 2
η (ϑ)) for ϑn = ϑ + n−1/2a, a ∈ R

k, η ∈ H.

Within this framework it would still be possible to construct ϑ-regular estimator
sequences which are adaptive on a countable subset of H . To establish “orthogonal-
ity” as necessary for “adaptivity” is, therefore, impossible unless Bickel’s definition
of “adaptivity” is modified, e.g. by requiring continuity of η → σ 2

η (ϑ).
Begun et al. (1983) [p. 438, Definition 3.1] suggest a more restrictive definition

of “adaptivity”. They require that

Pn
ϑn ,ηn

◦ n1/2(ϑ(n) − ϑn) ⇒ N (0, σ 2
η (ϑ))

for unspecified sequences ϑn → ϑ and ηn → ϑ and ηn → η. To justify their defini-
tion they do not say more than (see p. 438)

Beran’s result bolsters our feeling that [this definition] captures the local uniformity that
should reasonably be required of adaptive estimates if [η] is unknown.

The same definition is accepted by Bickel et al. (1993) [p. 29, Definition 2.4.1]. It
is, roughly speaking, equivalent to “(ϑ, η)-regularity”, i.e. regularity w.r.t. P.
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To make the connection between orthogonality and adaptivity more transparent,
we consider the case that Θ ⊂ R. After all, the results for arbitrary families are
derived from results for parametric subfamilies. Assume that ϑ(n), n ∈ N, is an esti-
mator sequence which is adaptive and (ϑ, η)-regular. Adaptivity implies

Pn
ϑ,η ◦ n1/2(ϑ(n) − ϑ) ⇒ N (0, σ 2

η (ϑ))

with σ 2
η (ϑ) = 1/Iη(ϑ) and Iη(ϑ) = ∫

�•
ϑ(x, ϑ, η)

2Pϑ,η(dx). Since N (0, σ 2
η (ϑ)) is

the optimal limit distribution for ϑ-regular estimator sequences in Pη, this implies
that

n1/2(ϑ(n) − ϑ) = n−1/2
n∑

ν=1

σ 2
η (ϑ)�•(xν, ϑ, η) (Pn

ϑ,η). (5.7.1)

If ηn ∈ H is a sequence such that (Pn
ϑ,ηn

)n∈N � (Pn
ϑ,η)n∈N, this implies

n1/2(ϑ(n) − ϑ) = n−1/2
n∑

ν=1

σ 2
η (ϑ)�•(xν, ϑ, η) (Pn

ϑ,ηn
).

If ϑ(n), n ∈ N, is η-regular, i.e.,

Pn
ϑ,ηn

◦ n1/2(ϑ(n) − ϑ) ⇒ N (0, σ 2
η (ϑ)), (5.7.2)

then

Pn
ϑ,ηn

◦ n−1/2
n∑

ν=1

σ 2
η (ϑ)�•(xν, ϑ, η) ⇒ N (0, σ 2

η (ϑ)). (5.7.3)

Yet,

Pn
ϑ,η+n−1/2u ◦ n−1/2

n∑

ν=1

σ 2
η (ϑ)�•(xν, ϑ, η) ⇒ N (uσ 2

η (ϑ)L12(ϑ, η), σ
2
η (ϑ)). (5.7.4)

Hence (5.7.3) holds iff L1,2(ϑ, η) = 0, which is the orthogonality called for.
Conversely, if (ϑ(n))n∈N is adaptive and ϑ-regular, we obtain from (5.7.1) and

(5.7.4) under the condition L1,2(ϑ, η) = 0 the relations (5.7.3) and (5.7.2). Hence
under this orthogonality condition any (in Bickel’s sense) adaptive and ϑ-regular
estimator sequence is automatically also η-regular. In a disguised form this occurs
in Fabian and Hannan 1982, p. 474, Theorem 7.10.

Applied to the problem of estimating the parameter ϑ of a family with den-
sity x → p(x − ϑ) this implies that any ϑ-equivariant (hence ϑ-regular) estimator
sequence which is efficient for every p is “robust” in the sense that its limit distri-
bution remains unchanged if the observations come from a density x → pn(x − ϑ)

where pn , n ∈ N, tends to p from an orthogonal direction. Beran (1974, Remark on
p. 74, 1978, p. 306, Theorem 4 and various other papers) seems to have been the first
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to exhibit estimator sequences that converge to an optimal limit distribution for a
larger class of distributions (not just for the symmetric ones), and that this is related
to “orthogonality”. “This property can, we believe, be suitably re-expressed to apply
generally” says Bickel (1982, p. 664, Remark 5.5), but apparently he never came
back to this question.

With “asymptotic robustness” in mind, Beran makes in connection with the esti-
mation of the median of a symmetric distribution a point of the fact that η-regularity
(i.e., independence of the limit distribution from small deviations ηn) is not confined
to symmetric distributions; relation (5.7.2) holds for all sequences ηn converging to
η from a direction orthogonal to �•(·, ϑ, η). Observe that this phenomenon is related
to the regularity of all asymptotically linear estimator sequences (see Sect. 5.5).

So far we have discussed the phenomenon of adaptivity in its historical context.
How does it present itself in a more general framework? LetP be a general family of
probability measures with tangent space T (P,P), and κ : P → R a differentiable
functional with canonical gradient κ∗(·, P) ∈ T (P,P). According to the Convolu-
tion Theorem, the limit distribution of a regular estimator sequence cannot be better
than N (0, σ 2(P)), with σ 2(P) := ∫

κ∗(·, P)2dP . In the following we shall show
that “optimality on a subfamilyP0 ⊂ P” is necessary and sufficient for “optimality
on P” if κ∗(·, P) belongs to the tangent space of P0.

(i) κ(n) is optimal on P if it is T (P,P0)-regular and asymptotically linear with
influence function κ∗(·, P). Being regular onP, κ(n) is a fortiori regular on T (P,P0).
It is optimal on P0 iff κ∗(·, P) is in T (P,P0). Hence there is always a subfamily
on which κ(n) is asymptotically optimal, namely the path converging to P from the
direction κ∗(·, P).

(ii) If κ(n) is optimal inP0, i.e. and) asymptotically linear with influence function
κ∗
0 (·, P), and hence T (P,P0)-regular, then it is optimal onP if it is T (P,P)-regular.
This is the case iff κ∗

0 is a gradient in T (P,P), i.e. iff

∫
κ∗
0 g =

∫
κ∗g for g ∈ T (P,P).

This is the case if κ∗(·, P) = κ∗
0 (·, P), i.e. if κ∗(·, P) ∈ T (P,P0).

The idea that some kind of “orthogonality” is necessary for adaptivity goes back
to Stein (1956). It occurs in the papers by Bickel and by Fabian and Hannan, mainly
in connection with a special type of models: The estimation of the parameter ϑ for
families Pϑ,η, with η known or unknown.

Does “orthogonality” also play a similar role in general models? Let P be a
general family, and κ : P → R the functional to be estimated. Can we characterize
the subfamiliesP0 on which the estimation of κ is as difficult as onP? The answer
is affirmative if the restriction from P to P0 is based on a side condition of the
following type: There is a differentiable functional γ : P → H such that

P0(P) := {P̄ ∈ P : γ (P̄) = γ (P)}. (5.7.5)
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Observe that this corresponds to the restriction of P = {Pϑ,η : ϑ ∈ Θ, η ∈ H} to
P0 = {Pϑ,η0 : ϑ ∈ Θ} by the condition (5.7.5) with γ (Pϑ,η) = η. If γ ∗(·, P) denotes
the canonical gradient of the functional γ , the tangent space of this family is

T (P,P0) =
{
γ ∈ T (P,P) :

∫
κ∗(·, P)γ dP = 0

}
.

Anestimator sequencewhich is optimal for κ onP (i.e. T (P0,P)-regular and asymp-
totically linear with influence function κ∗(·, P)), is optimal on the family P0 iff

κ∗(·, P) ∈ T (P,P), i.e.
∫

γ ∗(·, P)κ∗(·, P)dP = 0.

This is the orthogonality condition which is necessary and sufficient for adaptivity,
or: Optimal estimator sequences on P cannot be improved if it is known that P0
belongs to the smaller subfamily P0.

In general, the knowledge that the “true” probability measure belongs to a given
subfamilyP0, can be utilized to obtain an asymptotically better estimator sequence
for κ(P). But again, if P ∈ P0 and

κ∗(·, P) ∈ T (P,P0),

then κ∗(·, P), the canonical gradient of κ inP, is also the canonical gradient inP0,
and N (0, σ 2(P)) (with the same σ 2(P)) is also the optimal limit distribution for
P0-regular estimator sequences. In this case, reducing the condition ofP-regularity
toP0-regularity is not effective. AP-regular estimator sequence (which is a fortiori
P0-regular) cannot be replaced by a better P0-regular estimator sequence.

Let now κ
(n)
0 , n ∈ N, be aP0-regular estimator sequence which is optimal inP0.

This implies
n1/2(κ(n)

0 − κ(P)) = κ̃∗
0n(·, P) + o(n0, Pn),

where κ∗
0 is the canonical gradient of κ in P0. If κ∗(·, P) ∈ T (P,P0), then

κ∗
0 (·, P) = κ∗(·, P), i.e.

n1/2(κ(n)
0 − κ(P)) = κ̃∗

n (·, P) + o(n0, Pn),

This implies that the estimator sequence κ(n)
0 , n ∈ N, is regular with respect to every

h ∈ T (P,P): Any estimator sequence which isP0-regular and optimal inP0 is also
P-regular (and therefore optimal in P).

For the purpose of illustration, we specialize the general considerations to a
semiparametric model in which P consists of all probability measures Pϑ,η|B with
Lebesgue density

x → pη(x − ϑ)
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with ϑ ∈ R, where pη is a density symmetric about 0. For this model, the tangent
space T (Pϑ,η,P) consists of the functions of the form a�′

η(x − ϑ) + Ψ (x − ϑ),
where �′

η(x) = ∂x log pη(x) and Ψ is symmetric about 0 with
∫
Ψ (x)Pϑ,η(dx) = 0.

The functional κ(Pϑ,η) = ϑ has in P the canonical gradient κ∗(·, ϑ, η) = σ(η)2�′
η

(x − ϑ) with σ(η)2 = (
∫
(�′

η)
2dPϑ0,η)

−1.
If the density pη0 is known, then the tangent space T (Pϑ,η0 ,Pη0) reduces to

{a�′
η0
(· − ϑ) : a ∈ R}, which still contains x → σ 2(η0)�

′
η0
(x − ϑ), the canonical

gradient of the functional κ(Pϑ,η) = ϑ in T (Pϑ,η0 ,P). If an estimator sequence ϑ(n),
n ∈ N, is ϑ-equivariant and optimal in Pη0 , it is regular in P, and even locally
robust for certain directions, not necessarily in T (P,P), which are orthogonal to
x → �′

η0
(x − ϑ).

The Convolution Theorem provides precise information about the optimal limit
distribution, based on the concepts of “tangent space” and “gradient”. The con-
cepts “tangent space” and “gradient” are somehow descendants of Stein’s ideas.
Yet it appears that something of Stein’s intuitive ideas is lost, namely: An estima-
tor sequence which is regular and optimal in the least favourable subfamily is also
regular, hence also optimal, in the whole family.

To verify Stein’s idea, and to elaborate on an aspect neglected by Stein, we apply
his ideas to a “large” parametric family, and we study the performance of estimator
sequences in one-parameter subfamilies. Let P = {Pϑ : ϑ ∈ Θ}, Θ ⊂ R

k , be an
LAN family with tangent space T (Pϑ ,P) spanned by �(1)(·, ϑ), . . . , �(k)(·, ϑ), i.e.

log(dPn
ϑ+n−1/2a

/
dPn

ϑ ) = a�(·, ϑ)�̃•
n − 1

2
a�L(ϑ)a + o(n0, Pn

ϑ ).

We consider a one-parameter subfamily P̄t := Pϑ(t), t ∈ R, with ϑ(0) = ϑ . If the
functions ϑi : R → R, i = 1, . . . , k, have continuous derivatives ϑ ′

i at t = 0, then at
t = 0 the family P̃ := {P̄t : t ∈ R} has the one-dimensional tangent space

T (P, P̃) =
{
a

k∑

i=1

ϑ ′
i�

(i)(·, ϑ) : a ∈ R

}

and the LAN-expansion

log(d P̄n
n−1/2b

/
dPn

ϑ ) = b
k∑

i=1

ϑ ′
i �̃

(i)(·, ϑ) − 1

2
b2

k∑

i, j=1

ϑ ′
iϑ

′
j Li, j (ϑ) + o(n0, Pn

ϑ ).

We now consider estimation of κ̃(t) := κ(ϑ1(t), . . . , ϑk(t)) within the family
P̃. According to the Convolution Theorem, the optimal estimator sequence among
regular estimator sequences in this family has at t = 0 the stochastic expansion

n1/2(κ(n) − κ̃(0)) = n−1/2
n∑

ν=1

κ∗
0 (xν) + o(n0, Pn

ϑ )
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with

κ∗
0 =

( k∑

i, j=1

ϑ ′
iϑ

′
j Li, j (ϑ)

)−1 k∑

i=1

κ(i)ϑ ′
i

k∑

r=1

ϑ ′
r�

(r)(·, ϑ). (5.7.6)

The pertaining asymptotic variance is

( k∑

i, j=1

ϑ ′
iϑ

′
j Li, j (ϑ)

)−1( k∑

i=1

κ(i)ϑ ′
i

)2
.

The variance attains its maximal value
∑k

r,s=1 κ
(r)κ(s)Λrs(ϑ) if

ϑ ′
i =

( k∑

r,s=1

κ(r)κ(s)Λrs(ϑ)
)−1 k∑

i=1

Λi j (ϑ)κ( j). (5.7.7)

This follows from the Schwarz inequality if we rewrite
∑k

i=1 κ
(i)ϑ ′

i as

∫ k∑

i=1

ϑ ′
i�

(i)(·, ϑ)

k∑

r,s=1

Λrs(ϑ)κ(r)�(s)(·, ϑ)dPϑ .

Hence the subfamily ϑ(t) with ϑ ′
i given by (5.7.7) is the least favorable one.

Since T (P, P̃) ⊂ T (P,P), the minimal asymptotic variance of T (P,P)-regular
estimator sequences is “larger” than the minimal asymptotic variance of any one-
dimensional subfamily, hence in particular larger than

∑k
i, j=1 κ

(i)κ( j)Λi j (ϑ), the
minimal asymptotic variance of the least favourable subfamily.

Now comes the point neglected by Stein: The estimator sequencewhich is optimal
among the estimator sequences regular in the least favorable subfamily is T (P,P-
regular, i.e., regular in the whole subfamily.

The canonical gradient κ∗
0 for the subfamily {P̄t : t ∈ R} given by (5.7.6) reduces

for the least favorable subfamily defined by (5.7.7) to

κ∗ =
k∑

i, j=1

Λi j (ϑ)κ(i)�( j)(·, ϑ).

Since

κ(r) =
∫

κ∗�(r)(·, ϑ)dPϑ for r = 1, . . . , k,

κ∗ is also the canonical gradient of κ in T (P,P). Therefore any estimator sequence
with stochastic expansion
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n1/2(κ(n) − κ(ϑ)) = n−1/2
n∑

ν=1

κ∗(xν, ϑ)

is T (P,P)-regular.

5.8 “Regular” Estimator Sequences

WithML-sequences in mind one might think that regularity conditions on the family
of probability measures is all one needs for assertions on the asymptotic performance
of the estimator sequences. If one turns to arbitrary estimator sequences it becomes
evident thatmeaningful results can be obtained only under conditions on the estimator
sequences (such as uniform convergence) which are automatically fulfilled for ML-
sequences under conditions on the family of probability measures.

The purpose of such regularity conditions on the estimator sequences is to make
sure that the limit distribution provides information on the true distribution of the
estimator for large samples. Ideally, this means that the convergence of

Q(n)
P := P (n) ◦ cn(κ

(n) − κ(P)), n ∈ N,

to a limit distribution QP is uniform inP. Obviously such a property cannot be dealt
with in the framework of local asymptotic theory. A possible way out is the resort
to an asymptotic version of uniformity (based on local properties of P and κ only)
which is in some sense necessary for uniformity onP. Such a weak condition could
be used to obtain results on the possible limit distributions (e.g. a bound for their
concentration). Such results can be extended to obtain uniformity on P for special
models.

In the first papers by Rao and Wolfowitz for one-parameter families, the authors
require uniformity onRor on a compact subsetΘ ⊂ R, but they only use convergence
of Q(n)

ϑ+n−1/2a to Qϑ for every a ∈ R (see Rao 1963, p. 197, proof of Lemma 2 and
Wolfowitz 1965, p. 254, proof of Lemma 1).

Convergence of Q(n)
ϑ+n−1/2a , n ∈ N, to Qϑ was explicitly introduced by Hájek

(1970) [p. 324] under the name “regular convergence”. A similar condition had
earlier been used by Bahadur (1964) [p. 1546]. It occurs in different variants: Ibrag-
imov and Has’minskii (1981) [p. 151, Definition 9.1] with uniformity for |a| ≤ c,
for any c > 0; and with a replaced by a bounded sequence (an)n∈N as in Bickel et al.
1993, p. 21, Definition 2.2.7.

Going back to the origins of “regular convergence”, there is a technical rea-
son why authors starting from the concept of “uniform convergence” change to
D(Q(n)

ϑn
, Qϑ0) → 0 rather than D(Q(n)

ϑn
, Qϑn ) → 0, with ϑn = ϑ0 + n−1/2a in the

definition of a localized version of uniformity. Bickel (See e.g. et al., p. 18, Defini-
tion 2.2.3 for uniformly regular convergence, and p. 21, Definition 2.2.7 for locally
regular convergence.) From themethodological point of view, “regular convergence”

http://dx.doi.org/10.1007/978-3-642-31084-3_2
http://dx.doi.org/10.1007/978-3-642-31084-3_2
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is the residual (Le Cam would, perhaps, say a ghost) of the operationally meaning-
ful condition of “uniform convergence”. It is convenient from the technical point of
view, and it suffices to establish bounds for the concentration of estimator sequences.

Remark Hájek’s concept of “regular convergence” might also be interpreted as a
localized version of the idea to consider the performance of an estimator sequence
ϑ(n) within a one-dimensional subfamily Pϑ(t) : t ∈ R, approaching Pϑ from the
direction a ∈ R

k if t−1(ϑi (t) − ϑi ) → ai for i = 1, . . . , k.
The choice of such a family is straightforward. If Pϑ is sufficiently regular, the

function ϑ(t) should be sufficiently smooth, say differentiable at t = 0. How should
one choose a one-parameter subfamily, say {Pt : t ∈ A} with Pt in a general family
P? The essential point: For assertions about the asymptotic distribution of estimator
sequences ϑ(n) requires (in the i.i.d. case) an approximation to (Pn

t )n∈N for t close
to 0.

How could the idea of “regular convergence”, defined for parametric families, be
carried over to general families? Should we consider estimator sequences which are
regularly convergent on all (sufficiently regular) subfamilies, or should we consider
estimator sequences which converge regularly with respect to all directions in the
tangent space T (P,P)? (See Sect. 5.6 for details.)

A natural way to introduce such a tangent space is to start from a family of
measures Pt , the P0-density of which can be approximated by

pt (x) = p0(x)(1 + tgt(x)).

If gt converges to a function g0 in a suitable sense (see (5.6.10)–(5.6.12)), then
{(Pn

t )n∈N, t ∈ A} fulfills an LAN-condition

dPn
n−1/2t/dP

n
0 = exp

[
t g̃0 − 1

2
t2σ 2

]
with σ 2 =

∫
g20dP0.

(See Sect. 5.12 for details.)

Apart from its inherent relationship to uniform convergence, continuity of the
limit distribution is of independent interest. It is surprising that few authors consider
continuity of the limit distribution as some sort of regularity condition to be imposed
on estimator sequences in general.

Since the continuity of ϑ → Q(n)
ϑ is fundamental for the continuity of ϑ → Qϑ ,

we state the following Theorem.

Theorem 5.8.1 If ϑ → Pϑ is continuous at ϑ0 with respect to the sup-distance d,
then ϑ → Q(n)

ϑ is continuous at ϑ0 for every n:

ϑ → ϑ0 implies
∫

f dQ(n)
ϑ −

∫
f dQ(n)

ϑ0
→ 0

for every bounded and continuous function f : Rk → R.



176 5 Asymptotic Optimality of Estimators

Corollary 5.8.2 If
∫

f dQ(n)
ϑ → ∫

f Qϑ locally uniformly at ϑ0 for all bounded and
continuous f : Rk → R, then ϑ → Qϑ is continuous at ϑ0.

Proof Theorem5.8.1 and Lemma5.3.9, applied with ϑ → ∫
f dQ(n)

ϑ in place of
x → hn(x) and ϑ → ∫

f dQϑ in place of x → h0(x). �

Versions of Theorem5.8.1 and Corollary5.8.2 for general families are given in
Pfanzagl (2003) [p. 109].

Regularly Attainable Limit Distributions are Continuous

In the following section, we consider functions P → QP from P to the family of
probability measures on B

m . By continuity we mean that the map P → ∫
f dQP

is continuous for every bounded and continuous function f , if P is endowed with
the sup-distance. In otherwords, that d(Pn, P0) → 0 implies

∫
f dQPn → ∫

f dQP0 .
Recall that continuity of P → QP implies that P → ∫

f dQP is lower [upper] semi-
continuous if f is bounded and lower [upper] semicontinuous. (Ash 2000, p. 122,
Theorem 2.8.1.)

IfP is a parametric family {Pϑ : ϑ ∈ Θ},Θ ⊂ R
k , we write Qϑ for QPϑ

, and the
continuity ofϑ → Qϑ follows ifϑ → Pϑ is continuouswith respect to the Euclidean
distance in Θ and the sup-distance in P, i.e., if

‖ϑn − ϑ0‖ → 0 implies d(Pϑn , Pϑ0) → 0.

For parametric families with Θ ⊂ R, the continuity of

ϑ → Q(n)
ϑ = Pn

ϑ ◦ n1/2(ϑ(n) − ϑ)

was first established by Rao (1963) [p. 196, Lemma 2(i)] under the unnecessarily
restrictive condition that Pϑ has a density such that ϑ → p(x, ϑ) is continuous for
every x ∈ X . From this he inferred that a (normal) limit distribution of Q(n)

ϑ , n ∈ N, is
continuous if the convergence is uniform. Similar results occur in Wolfowitz (1965)
[p. 254, Lemma 2].

Since continuity of the limit distribution is important in various connections, we
present the following result on the continuity of P → Q(n)

P in greater generality.

Lemma 5.8.3 LetP|A be endowed with the sup-distance d. If κ : P → R
k is con-

tinuous, then P → Q(n)
P (B) is, for every n ∈ N, lower [upper] semicontinuous if B

is open [closed].

The proof given in Pfanzagl (2003) [p. 109, Corollary 5.1] for the case k = 1 carries
over to arbitrary k.

Theorem 5.8.4 LetP|A be endowed with the sup-distance. If κ : P → R
k is con-

tinuous, and Pn ◦ cn(κ(n) − κ(P)), n ∈ N, converges weakly to QP, uniformly on
P0, then P → QP is weakly continuous on P0.

In particular: d(Pn, P0) → 0 implies QPn ⇒ QP0 .

The proof follows from Lemma5.8.3.
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5.9 Bounds for the Asymptotic Concentration of Estimator
Sequences

The Convolution Theorem (Sect. 5.13) gives a satisfactory bound for the asymptotic
concentration of “regular” estimator sequences.Beforewepresent it,we give a survey
of earlier attempts.

A Metaphysical Approach

We omit the attempts of Fisher at this problem that culminate in statements like (see
Fisher 1925, p. 714):

The efficiency of a statistic is the ratio of the intrinsic accuracy of its random sampling
distribution to the amount of information in the data from which it has been derived.

The reader interested in Fisher’s contributions to the problem of efficiency is referred
to Pratt (1976).

The idea of a bound for the “accuracy” of estimators occurs already in Rao (1945)
in connection with mean unbiased estimators in families admitting a complete suf-
ficient statistic. The “accuracy” of the estimators is expressed by convex loss. The
mathematics behind this result is unassuming (see Sect. 3.2 for details).Afirst attempt
by Rao (1947) [p. 282, Theorem 2] to modify such (nonasymptotic) results to obtain
the asymptotic optimality of ML-sequences is not satisfactory.

The way to an asymptotic bound (such as the Convolution Theorem) turned out
demanding, both mathematically and methodologically. It was necessary to find a
framework for the basic family of probabilitymeasures (sayLAN), to find operational
and effective conditions on the estimator sequence (like uniform convergence), and
to find a concept of quality (say concentration) for limit distributions. It may be of
interest to illustrate how troublesome the way to an asymptotic optimality concept
had been.

When C.R. Rao embarked upon the problem of asymptotic efficiency—between
1961 and 1963 he published four papers on this subject which are distinct more by
their titles than by their contents —the scene had changed drastically compared with
the time of Fisher’s endeavors to prove the optimality of ML-sequences. In 1953, Le
Cam had presented various important results (Le Cam 1953). Adjusted to the present
framework, some of these results may be rewritten as follows.

The Example of Hodges

One can always improve the asymptotic performance of a given estimator sequence
(ϑ(n))n∈Nwith Pn

ϑ ◦ n1/2(ϑ(n) − ϑ) ⇒ N (0, σ 2(ϑ)) for someϑ = ϑ0 without chang-
ing its asymptotic performance for any other ϑ ∈ Θ . One just has to change the def-
inition of ϑ(n)(xn) to ϑ̂ (n)

a (xn) := (1 − a)ϑ0 + aϑ(n)(xn) if ϑ(n)(xn) is sufficiently
close to ϑ0, say |ϑ(n)(xn) − ϑ0| < n−1/4. Then (Pn

ϑ ◦ n1/2(ϑ̂ (n)
a − ϑ))n∈N converges

to N (0, σ 2(ϑ)) if ϑ 
= ϑ0, and to N (0, a2σ 2(ϑ0)) for ϑ = ϑ0.
The risk

∫
�(n1/2(ϑ(n)

a − ϑ))dPn
ϑ , n ∈ N, of superefficient estimators like ϑ̂ (n)

a
behaves irregularly in shrinking neighbourhoods of ϑ0. This is the content of Le
Cam (1953) [p. 327, Theorem 14], which may be written as follows.

http://dx.doi.org/10.1007/978-3-642-31084-3_3
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(i) If

lim sup
n→∞

∫
�(n1/2(ϑ(n) − ϑ0))dP

n
ϑ0

<

∫
�dN (0, 1/I (ϑ0))

for some ϑ0 ∈ Θ , then

lim sup
n→∞

sup
|ϑ−ϑ0|<δ

∫
�(n1/2(ϑ(n) − ϑ))dPn

ϑ >

∫
�dN (0, 1/I (ϑ0)).

(ii) If for some estimator sequence ϑ(n), n ∈ N,

lim sup
n→∞

∫
�(n1/2(ϑ(n) − ϑ))dPn

ϑ ≤
∫

�dN (0, 1/I (ϑ)) for every ϑ ∈ Θ,

(5.9.1)
then equality holds in (5.9.1) for λ-a.a. ϑ ∈ Θ . (Le Cam 1953, p. 314, Corol-
lary 8.1.)

Though Rao cites Le Cam (1953) in each of his papers, he ignores the main results
for this paper, except for the Hodges-example of superefficiency. His declared goal
was to find a concept of asymptotic efficiency which excludes superefficiency, but
he had no clear idea how this could be done. Ignoring the main corpus of Le Cam’s
paper, Rao started where Fisher had stopped almost forty years ago.

Rao (1961) [p. 537] suggested five equivalent (?) definitions of asymptotic effi-
ciency. Definition (ii) of asymptotic efficiency requires Iϑ(n) (ϑ) → I (ϑ). This defi-
nition is based on the inequality

Iϑ(n) (ϑ) ≤ I (ϑ) (5.9.2)

with Iϑ(n) (ϑ) := ∫ (
q•
n (y, ϑ)

/
qn(y, ϑ)

)2
Q(n)

ϑ (dy), which is, in Fisher’s interpreta-

tion, the “amount of information per observation” contained in ϑ(n). Here qn(·, ϑ)

is the density of Q(n)
ϑ := Pn

ϑ ◦ n1/2(ϑ(n) − ϑ). The inequality (5.9.2) is based on the
fact that q•

n (·, ϑ)/qn(·, ϑ) is a conditional expectation of

(x1, . . . , xn) →
n∑

ν=1

p•(xν, ϑ)/p(xν, ϑ),

given n1/2(ϑ(n) − ϑ), with respect to Pn
ϑ . Doob (1936) [p. 415, Theorem 2] gave a

precise but somewhat disorganized proof of this inequality. Rao’s proof (1961, p.
534, Lemma 1 (iii)) is less precise, but more transparent.

Not being amaster of concepts like “conditional expectation”, Fisher had to resort to a notion
like “summing over all (x1, . . . , xn) for which Tn(x1, . . . , xn) attains the same value”. That
Doob makes no use of “conditional expectations” is the more surprising since just two years
later he presented a paper including a detailed chapter on “conditional probability” (1938,
Sect. 3). This, by the way, is the paper notorious for its wrong theorem. On p. 96, Theorem
3.1, Doob tries to generalize Kolmogorov’s theorem the existence of a regular conditional
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probability for probability measures on (R,B) to more general measurable spaces. In this
paper he had overlooked that the proof requires some kind of compact approximability
(which is, for instance, given in Polish spaces).

In Theorem 2, p. 535, Rao shows that equality in (5.9.2) follows if

n1/2(ϑ(n) − ϑ) − (
α(ϑ) + β(ϑ)�̃•(·, ϑ)

) → 0 (Pn
ϑ ) (5.9.3)

for some functions α and β (with α = 0 in most of the subsequent papers). From
then on Rao takes (5.9.3) as the definition of asymptotic efficiency. This corresponds
to the principle that (see Rao 1961, p. 532)

the efficiency of a statistic has to be judged by the degree to which the estimate provides an
approximation to [�̃•(·, ϑ)].

In 1963, p. 200, Rao praises his concept for being “... not explicitly linked with any
loss functions” (Rao 1963). This is certainly true: It fails to reflect any meaningful
property of the estimator sequence (ϑ(n))n∈N.

Remark One can all but admire Rao’s courage to define 2nd order efficiency before
he had established a plausible concept of 1st order efficiency. From a formal relation
like �̃•(·, ϑ) − (

α(ϑ) + β(ϑ)n1/2(ϑ(n) − ϑ) + λ(ϑ)n1/2(ϑ(n) − ϑ)2
) → 0 (see Rao

1961, p. 532, 1962a, p. 49, 1963, p. 199), one can hardly expect a refined information
about the performance of estimator sequences, let alone a result like “first order
efficiency implies second order efficiency ”. Le Cam (1974) [p. 233] politely says:

The reader may also have noticed that we did not mention the concept introduced by C.R.
Rao under the name of “second order efficiency”.

Condition (5.9.3), occasionally with α = 0, occurs in most of Rao’s papers (1961,
p. 537, Definition (iv), 1962a, p. 49, Definition 2.5). In 1963, p. 194, Definition 3C,
Rao says

It would be natural to define uniform first order efficiency as

n1/2(ϑ(n) − ϑ) − β(ϑ)�̃•(·, ϑ) → 0

without specifying the value of β(ϑ). It appears that if [this condition] is satisfied for various
values of β(ϑ), then it is desirable to choose an estimator for which β(ϑ) is a minimum
which is shown to be (

∫
�•(·, ϑ)2dPϑ )

−1/2 [recte (
∫
�•(·, ϑ)2dPϑ )

−1]

It escaped Rao’s attention that under the condition of uniform convergence, the
factor β(ϑ) is uniquely determined (as 1/I (ϑ)) (provided I is continuous). (Hint:
Use that �̃•(·, ϑ + n−1/2a) − �̃•(·, ϑ) → a

∫
�•(·, ϑ)2dPn

ϑ , and that Pn
ϑ+n−1/2a and

Pn
ϑ are mutually absolutely continuous.) Rao’s misconception of the role of uniform

convergence is the more surprising since, in the very same paper (Rao 1963), he
uses uniform convergence to establish (by means of the Neyman–Pearson Lemma)
1/I (ϑ) as the optimal asymptotic variance (see p. 196, Lemma 2 (ii)).
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There is a number of authors who mention relation (5.9.3) (together with its
extension to second order efficiency) (Zacks 1971, p. 207 and p. 243; Schmetterer
1966, p. 416/7 and 1974, p. 341; Hájek 1971, p. 161, and 1972, p. 178; Ghosh and
Subramanyam 1974, p. 331; Ibragimov andHas’minskii 1981, p. 102), but theymake
no use of it, nor do they question its interpretation, in particular the role of β.

Rao’s Definition (5.9.3) requires basing the concept of asymptotic efficiency on
ρ(ϑ), the asymptotic correlation between n1/2(ϑ(n) − ϑ) and �̃•(·, ϑ). Rao suggests
to take ρ(ϑ)2 as a measure of asymptotic efficiency, hence ρ(ϑ) = 1 as a criterion of
optimality. Whatever “approximation by �̃•(·, ϑ) of the estimate” means—the corre-
lation between n1/2(ϑ(n) − ϑ) and α(ϑ) + β(ϑ)�̃•(·, ϑ) is certainly not an adequate
expression for this approximation, nor is this correlation in a meaningful relation to
the asymptotic concentration of n1/2(ϑ(n) − ϑ).

To see that neither the relation Iϑ(n) (ϑ) → I (ϑ) nor ρ(ϑ) = 1 is a meaningful
concept of asymptotic efficiency, one might consider the example of the Hodges
estimator ϑ̂ (n)

a . A somewhat tedious computation shows that the Lebesgue density of
N (ϑ, 1)n ◦ ϑ̂ (n)

a is

qn(y, ϑ) :=
{

n1/2ϕ(n1/2(y − ϑ))
1
a n

1/2ϕ(n1/2( ya − ϑ))
if |y|>

<
n−1/4.

From this one easily obtains that

(i) I
ϑ̂

(n)
a
(ϑ) → I (ϑ) for every ϑ ∈ R,

(ii) ρ(ϑ) = 1 for every ϑ ∈ R.

On the other hand, we have, for ϑ = 0, that N (ϑ, 1)n ◦ n1/2(ϑ̂ (n)
a − ϑ) ⇒ N (0, a2),

as well as
∫
(n1/2(ϑ̂ (n)

a − ϑ))2dN (ϑ, 1)n → a2.
Rao’s “metaphysical” concepts of asymptotic efficiency were not generally

accepted. Lindley (p. 68 in the discussion of Rao 1962a)

ProfessorRao follows in the footsteps of Fisher in basing his thesis on intuitive considerations
of estimation that people, like myself, who lack such penetrating intuition, cannot aspire to.

Neyman (p. 90 in the discussion of Rao 1962b),

I would like to request Professor Rao to explain his philosophical standpoint a little more
clearly

Remark There is, by the way, an even more mystical concept of “optimality”.
Godambe (1960) [and many more papers] calls an estimating equation

∑n
ν=1 g(xν,

ϑ) = 0 with
∫
g(·, ϑ)dPϑ = 0 “optimal” if the variance σ 2(ϑ) of g(·, ϑ)/

∫
∂ϑ

g(·, ϑ)dPϑ is minimal. Accordingly, estimators derived from an optimal estimat-
ing equation are “optimal”—by definition. In this sense, the estimating equation
based on g(·, ϑ) = ∂ϑ log p(·, ϑ) is optimal, and this establishes the optimality of
the ML-sequence (for every finite sample size!). One can hardly disagree with Hájek
(1971) [p. 161], who says that
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Professor Godambe’s suggestion how to prove the “optimality” of the maximum likelihood
estimate for any finite n is ... not convincing enough.

Rao (1961) [p. 196, Lemma 2] gives conditions under which Pn
ϑ ◦ n1/2(ϑ(n) −

ϑ) ⇒ N (0, σ 2(ϑ)) locally uniformly implies that σ 2 is continuous and σ 2(ϑ) ≥
1/I (ϑ). The inequality is proved using test theory. Though Rao considered the con-
dition of uniform convergence as an important idea (see Sect. 5.6 for the question of
priority), he did not fully exploit its impact. With a more subtle use of uniform con-
vergence, he could have obtained the inequality σ 2(ϑ) ≥ 1/I (ϑ) earlier and without
recourse to test theory. In (Rao 1961, p. 534, assumption 4, 1962b, p. 80, and 1963, p.
198) he assumes that Pn

ϑ ◦ (n1/2(ϑ(n) − ϑ), �̃•(·, ϑ)), n ∈ N, converges to a normal
limit distribution N (0,Σ(ϑ)) of the form

Σ =
(
σ 2 σ12
σ12 I

)

, (5.9.4)

with I (ϑ) := ∫
(�•(·, ϑ))2dPϑ .

Remark The existence of a limit distribution for Pn
ϑ ◦ (n1/2(ϑ(n) − ϑ), �̃•(·, ϑ)),

n ∈ N, is guaranteed if ϑ(n), n ∈ N, is regular (see van der Vaart 1991, p. 181,
Theorem 2.1 and p. 198, Lemma A.1). Restrictive is the assumption that this joint
distribution is normal, an assumption stronger than the asymptotic normality of n1/2

(ϑ(n) − ϑ). �
Assumption (5.9.4) is used in the somewhat mysterious Lemma 4, p. 198, to show
that the correlation between n1/2(ϑ(n) − ϑ) and �̃•(·, ϑ) is unity iff n1/2(ϑ(n) − ϑ) −
�̃•(·, ϑ)/I (ϑ) → 0 (Pn

ϑ ). A more subtle use of assumption (5.9.4) entails a much
stronger result, namely: n1/2(ϑ(n) − ϑ) − �̃•(·, ϑ)/I (ϑ) and �̃•(·, ϑ) are asymptot-
ically stochastically independent. Though confined to asymptotically normal esti-
mator sequences, this indicates what the essence of the Convolution Theorem is in
general: The stochastic independence between n1/2(ϑ(n) − ϑ) − �̃•(·, ϑ)/I (ϑ) and
�̃•(·, ϑ) (see (5.13.2)). It would have been easy for Rao to prove, at a moderate level
of rigor, that (5.9.4) implies

Pn
ϑ+n−1/2a ◦ (n1/2(ϑ(n) − ϑ), �̃•(·, ϑ)) ⇒ N ((aσ12, a

2 I )�,Σ). (5.9.5)

Beyond that, Rao (1963) cites Le Cam (1960), who provides in Theorem 2.1 (6), p.
40, the basis for a precise proof. (This theorem is, by the way, the source from which
Hájek and Šidák (1967) [p. 208] extracted “Le Cam’s 3rd Lemma”.)

Relation (5.9.5) implies

Pn
ϑ+n−1/2a ◦ n1/2(ϑ(n) − (ϑ + n−1/2a)) ⇒ N (a(σ12 − 1), σ 2). (5.9.6)

If the estimator sequence is regular (Rao even assumes uniform convergence on
compact subsets ofΘ), relation (5.9.6) implies σ12 = 1, an essential point missed by
Rao. Relation (5.9.5) with σ12 = 1 implies

http://dx.doi.org/10.1007/978-3-642-31084-3_2
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Pϑ ◦ (n1/2(ϑ(n) − ϑ) − �̃•(·, ϑ)/I (ϑ), �̃•(·, ϑ)) ⇒ N (0, Σ̄)

with

Σ̄ =
(
σ 2 − I−1 0

0 I

)

,

which establishes I−1 as a lower bound for the asymptotic variance of regular (asymp-
totically normal) estimator sequences. At the same time, it asserts the asymptotic sto-
chastic independence between n1/2(ϑ(n) − ϑ) − �̃•(·, ϑ)/I (ϑ) and �̃•(·, ϑ), n ∈ N.

Moreover, σ12 = 1 in (5.9.4) implies that ρ(ϑ), the asymptotic correlation
between n1/2(ϑ(n) − ϑ) and �̃•(·, ϑ), is I (ϑ)−1/2/σ(ϑ). Hence

ρ(ϑ)2 = I (ϑ)−1/σ 2(ϑ)

is an adequate measure for asymptotic efficiency. This justifies Rao’s claim (1962b,
p. 77, Definitions) for the case of regular, asymptotically normal estimator sequences.

First solid results

Intrinsic bounds for the asymptotic concentration of estimator sequences for a func-
tional κ at P0 ∈ P depend on the local properties of P and κ at P0. As the example
of Hodges convincingly demonstrated, regularity conditions on the family P and
on the functional κ are not enough to find a reasonable concept of “asymptotic effi-
ciency”: It would need conditions on the estimator sequence to avoid the “evil of
superefficiency” (Has’minskii and Ibragimov 1979, p. 100).

The now common concept of “regularity” appears as a deus ex machina. It is,
in fact, the outcome of the conceptual development that took place in the decade
between 1960 and 1970. From the beginning it was clear that the convergence of
Q(n)

ϑ = Pn
ϑ ◦ n1/2(ϑ̂ (n) − ϑ) to a limit distribution Qϑ (which was usually assumed

to be normal) needed to be “uniform” in some asymptotic sense. It was, however,
not clear how this uniformity could be expressed adequately.

To show that ML-sequences are asymptotically optimal was the purpose of the
asymptotic considerations; but there was no clear concept for the optimality of mul-
tivariate limit distributions. The outcome of these endeavors was that “regularity” in
the sense of definition is the adequate expression for locally uniform performance
of the estimator sequences. The maximal concentration on convex sets symmetric
about the origin came out as quite a surprise.

Following the course of history, we start with the estimation ofϑ in one-parameter
families {Pϑ : ϑ ∈ Θ}, Θ ⊂ R. The intention initially was to find an asymptotic
bound for the concentration of estimators; a side result was that the limit distribution
depends continuously on ϑ .

The first result is due to Rao: If Pn
ϑ ◦ n1/2(ϑ(n) − ϑ) ⇒ N (0, σ 2(ϑ)) uniformly

on compact subsets ofΘ , then (Rao 1963, p. 196, Lemma 2(i)) the map ϑ → σ 2(ϑ)

is continuous if the Lebesgue density p(·, ϑ) of Pϑ is a continuous function of ϑ , and
furthermore (p. 196, Lemma 2(ii)) we have σ 2(ϑ) ≥ 1/I (ϑ). (Observe a misprint
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in Lemma 2(ii). Read ≥ instead of ≤.) According to Rao’s Lemma 3, p. 197, the
equality σ 2(ϑ) = 1/I (ϑ) is achieved if

n1/2(ϑ(n) − ϑ) − �̃•(·, ϑ)/I (ϑ) → 0.

Rao’s result, based on the continuity of

ϑ → Pn
ϑ {n1/2(ϑ(n) − ϑ) ≤ t} for t ∈ R,

extends to general familiesP endowedwith the sup-metric d and estimator sequences
κ(n) for a d-continuous functional κ : P → R

p fulfilling

Pn ◦ n1/2(κ(n) − κ(P)) ⇒ QP . (5.9.7)

If the convergence in (5.9.7) is locally uniform at P0, then P → QP is continuous
at P0 (by Proposition5.3.5).

In addition to the continuity of the density as a function of ϑ , Rao requires a
number of regularity conditions (see pp. 194/5) that made the Cramér type regularity
conditions look moderate for some sequence ϑn → ϑ0. Weak convergence of Q(n)

ϑ

to Qϑ , uniformly on compact subsets of Θ as a remedy against superefficiency was
suggested independently by C.R. Rao (1963) [p. 196, Lemma 2] and Wolfowitz
(1963; see in this connection Wolfowitz 1965, p. 250, footnote 3). It was used as a
condition in Kaufman (1966) [p. 157] and Inagaki (1970) [p. 3, (vi)]. These authors
never give explicit reasons for requiring compactness. What seems to be natural is
uniform convergence on open sets. To require uniform convergence on compact sets
(with non-empty interior) is, perhaps, motivated by the fact that uniform convergence
on (small) open sets implies uniform convergence on (large) compact sets, and that
uniformity may fail at the boundary of open subsets of Θ . For a theory concerning
general families P it seems appropriate to assume uniform convergence on a given
open set, or locally uniform convergence on P.

Wolfowitz (1965) considers—more generally—estimator sequences converging
to some not necessarily normal limit distribution, say Qϑ . He shows that

Qϑ(−t ′ < n1/2(ϑ(n) − ϑ) < t ′′) ≤ N (0, 1/I (ϑ))(−t ′, t ′′) for t ′, t ′′ ≥ 0

(see p. 251, relation (2.1)) for any estimator sequence such that Q(n)
ϑ (−∞, t], n ∈ N,

converges to Qϑ(−∞, t], uniformly inϑ and t . UnlikeRao andSchmetterer he shows
that ML-sequences converge in this sense to N (0, 1/I (ϑ)) (see p. 253). Hence ML-
sequences are optimal in the class of all estimator sequences fulfilling Wolfowitz’s
conditions of uniform convergence.

When Wolfowitz submitted his paper in 1965 he was still unaware that lower and
upper medians are identical, a result which had been obtained in the meantime by
Kaufman (see Wolfowitz 1965, p. 259, footnote). In our presentation of the results
of Schmetterer and Wolfowitz this simplification has been taken into account. Sur-
prisingly, Roussas (1972) still struggles with lower and upper medians (see p. 130).
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Schmetterer (1966) claims that Theorem 2.2, p. 308, based on the condition of
regular convergence, generalizes Rao’s result. In fact, his assumption of regular
convergence for every ϑ ∈ Θ is, on a locally compact parameter set Θ , equivalent
to Rao’s assumption of uniform convergence on compact subsets. This seems to
have escaped Schmetterer’s attention. Schmetterer uses the condition of continuous
convergence for twodifferent purposes: To show that estimator sequences converge to
N (0, σ 2(ϑ)) continuously (less would have done) and to show that σ 2 is continuous
(which follows from the fact that all limit distributions of uniformly convergent
estimator sequences are continuous). Schmetterer requires (see p. 307) that ϑ →
�•(x, ϑ) is continuous, a fact already familiar to Rao (1963) [p. 196, Lemma 2(i)]
and Wolfowitz (1965) [p. 254, Lemma 2].

Still, the achievements of Rao and Wolfowitz are confined to one-parameter
families. The next step followed soon: This was the paper by Kaufman (1966),
which made all preceding results look poor. He shows that n1/2(ϑ̂ (n) − ϑ)n∈N and
n1/2(ϑ(n) − ϑ̂ (n))n∈N are asymptotically independent if the estimator sequence ϑ(n),
n ∈ N is sufficiently regular and (ϑ̂ (n))n∈N is a ML-sequence. This discovery is the
basis for an operational concept of multivariate optimality.

Some Properties of Limit Distributions

In this sectionwe summarize properties of limit distributionswhichhadbeenobtained
by various authors as side results. The conditions in these papers are not easy to
compare since continuity of the limit distribution usually occurs as a side result, and
the regularity conditions are chosen with a different main result in mind.

Regularly attainable limit distributions have a Lebesgue density. Convolution
products inherit certain properties of the factors: Q1 ∗ Q2 is nonatomic or absolutely
continuous with respect to the Lebesgue measure if at least one of the factors has
this property (see e.g. Lukacs 1960, p. 45, Theorem 3.3.2). Hence limit distributions
which are regularly attainable are, as a consequence of the Convolution Theorem,
absolutely continuouswith respect to the Lebesguemeasure. Of historical interest are
properties of limit distributionswhichwere known prior to theConvolutionTheorem.

Wolfowitz (1965) [p. 253, Lemma 1] asserts that uniformly attainable limit distri-
butions have continuous distribution functions (forΘ ⊂ R). According to Kaufman
(1966) [p. 173, Lemma 5.3 and p. 174, Lemma 5.4], they have a positive Lebesgue
density for Θ ⊂ R

k .
The following more general result can be found in Pfanzagl (1994) [p. 229],

Proposition 7.1.11): LetΘ be an open subset ofRk , and κ : Θ → R
p a differentiable

functional. Then

Q(n)
ϑ+c−1

n a
= P (n)

ϑ+c−1
n a

◦ cn(κ
(n) − κ(ϑ + c−1

n a)) ⇒ Qϑ

for every a ∈ R
k implies that Qϑ � λk if (P (n)

ϑ+c−1
n a

)n∈N is contiguous to (P (n)
ϑ )n∈N,

for every a ∈ R
k .
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Locally uniformly attainable limit distributions are continuous.According toRao
(1963) [p. 197, Lemma 3(i)], continuity of ϑ → Qϑ follows from the continuity of
ϑ → Q(n)

ϑ . In Lemma 2, pp. 254/5, Wolfowitz gives a less transparent proof, also
based on the continuity of ϑ → Q(n)

ϑ , concealed in condition 4.15, p. 255.
Kaufman (1966) [p. 175, Lemma 5.5] shows that continuity of ϑ → Pϑ with

respect to the sup-distance suffices. Schmetterer (1966) [p. 308, Theorem2.2] derives
continuity of the (normal) limit distribution (i.e., continuity of ϑ → σ 2(ϑ)) from
continuous convergence of Q(n)

ϑ (−∞, t], n ∈ N, to N (0, σ 2(ϑ)(−∞, t] for every
t ∈ R, a condition slightly weaker but less convincing than uniform convergence.

A weaker condition for the continuity of limit distributions. In the following,
D(Q′, Q′′) denotes | ∫ hdQ′ − ∫

hdQ′′|, with a fixed bounded and continuous func-
tion f .

Continuity ofϑ → Qϑ atϑ0 follows if D(Q(n)
ϑn

, Qϑ0) → 0 for arbitrary sequences
ϑn → ϑ0; the same relation for all sequences (ϑn)n∈N with lim supn→∞ cn‖ϑn −
ϑ0‖ < ∞ is not strong enough. To start from the convergence of Q(n)

ϑn
, n ∈ N,

to a fixed Qϑ0 is sanctioned by tradition, yet far from reasonable. Recall that
locally uniform convergence is equivalent to D(Q(n)

ϑn
, Qϑn ) → 0 if ϑn → ϑ0. Since

ϑ → Q(n)
ϑ is continuous, continuity of ϑ → Qϑ follows by Lemma5.8.3. A more

subtle argument shows that D(Q(n)
ϑn

, Qϑn ) → 0 for all sequences (ϑn)n∈N fulfill-
ing lim supn→∞ cn‖ϑn − ϑ0‖ < ∞ suffices to prove continuity of ϑ → Qϑ under
additional regularity conditions. Continuity of ϑ → Q(n)

ϑ plays no role in this argu-
ment. Applications of this theorem to parametric subfamilies of general families are
straightforward.

The following Theorem is an improved version of the Proposition in Pfanzagl
(1999a) [p. 72].Condition (5.9.8) and condition (5.9.9) are fulfilled forLAN-families.

Theorem 5.9.1 Let {(P (n)
ϑ )n∈N : ϑ ∈ Θ}, Θ ⊂ R

k , be a family such that

lim sup
n→∞

‖a‖−1d(P (n)
ϑ0+c−1

n a
, P (n)

ϑ0
) < ∞, a ∈ R

k, (5.9.8)

for some sequence (cn)n∈N ↑ ∞ fulfilling

lim
n→∞ cn+1/cn = 1.

Let κ : Θ → R
p, p ≤ k, be a differentiable functional. Let Q(n)

ϑ := P (n)
ϑ ◦ cn(κ(n) −

κ(ϑ)). Assume there is a family Qϑ |Bp, ϑ ∈ Θ , such that

lim
n→∞ D(Q(n)

ϑ0+c−1
n an

, Qϑ0+c−1
n an ) = 0 (5.9.9)

for every sequence (an)n∈N, converging to some a 
= 0. Then the following holds
true: If Qϑ0 is nonatomic, then ϑ → Qϑ is continuous at ϑ0.
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Proof We shall show that ϑm → ϑ0 implies D(Qϑm , Qϑ0) → 0. W.l.g. we assume
that ‖ϑm − ϑ0‖ ↓ 0. Given ε > 0, let nm be defined by cnm ≤ ε/‖ϑm − ϑ0‖ < cnm+1.
Observe that (nm)m∈N ↑ ∞. For am := (ϑm − ϑ0)cnm we have

εcnm/cnm+1 < ‖am‖ ≤ ε. (5.9.10)

Since ‖am‖ ≤ ε, there exists a convergent subsequence, say (am)m∈N0 → a. Because
of (5.9.10), ‖a‖ = ε. We have

D(Qϑm , Qϑ0) ≤ D(Qϑm , Q
(nm )
ϑm

) + D(Q(nm )
ϑm

, Qϑ0).

Since ϑm = ϑ0 + c−1
nm am , relation (5.9.9) implies limn∈N0 D(Qϑm , Q

(nm )
ϑm

) = 0. To
simplify our notations, let

gn(·, ϑ) := cn(κ
(n) − κ(ϑ)).

With these notations,

D(Q(nm )
ϑm

, Qϑ0) = D(P (nm )
ϑm

◦ gnm (·, ϑm), Qϑ0)

≤ D(P (nm )
ϑm

◦ gnm (·, ϑm), P
(nm )
ϑ0

◦ gnm (·, ϑm)) + D(P (nm )
ϑ0

◦ gnm (·, ϑm), Qϑ0)

≤ d(P (nm )
ϑm

, P (nm )
ϑ0

) + D(P (nm )
ϑ0

◦ gnm (·, ϑm), Qϑ0).

Let J denote the Jacobian of κ at ϑ0. By assumption,

gnm (·, ϑm) − gnm (·, ϑ0) → Ja (P (nm )
ϑ0

).

Writing Q + Ja for Q ◦ (u → u + Ja)), we have

D(P (nm )
ϑ0

◦ gnm (·, ϑm), Qϑ0) = D(P (nm )
ϑ0

◦ gnm (·, ϑ0) + Ja, Qϑ0) + o(n0, P (nm )
ϑ0

)

≤ D(Q(nm )
ϑ0

+ Ja, Qϑ0 + Ja) + D(Qϑ0 , Qϑ0 + Ja) + o(n0, P (nm )
ϑ0

),

hence

lim sup
m∈N0

D(Qϑm , Qϑ0) ≤ lim sup
m∈N0

d(P (nm )
ϑm

, P (nm )
ϑ0

) + D(Qϑ0 , Qϑ0 + Ja).

Since this relation holds for every ε > 0, we have

lim
m∈N0

D(Qϑm , Qϑ0) = 0. (5.9.11)

Since any subsequence of N contains a subsequence N0 fulfilling (5.9.11), the asser-
tion follows. �
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5.10 Regular Convergence and Continuity in the Limit

When Kaufman wrote his fundamental paper (1966) the problem was clear: There
was an intuitively convincing method for the construction of estimators, the ML
method. ML estimators were generally considered as “optimal”. Yet, outstanding
scholars had failed in their attempts to prove this optimality. In fact, nobody had an
idea what optimality could mean for multivariate estimator sequences.

Kaufman gave regularity conditions for the (uniform) convergence of ML-
sequences of a k-dimensional parameter ϑ to the (already well known) normal limit
distribution with covariance matrixΛ(ϑ) = L(ϑ)−1, and he showed thatΛ(ϑ) is the
optimal covariancematrix for estimator sequences converging uniformly on compact
sets ofΘ . His paper established the concept of multidimensional optimality of limit
distributions as maximal concentration on sets that are convex and symmetric about
the origin.

In his paper from1970,Hájek approached the problemof asymptotic optimality of
estimator sequences from a different point of view: Instead of presenting an estimator
sequence and proving its asymptotic optimality, he started from “regularity” as the
essential property of estimator sequences, and he gave a bound for the concentration
of regular estimator sequences. (His Theorem refers to general LAN-sequences and
is, therefore, not restricted to the i.i.d. case.)

In Kaufman’s paper, the optimality of the ML-sequence follows from the fact
that any convergent estimator sequence is a convolution product involving the limit
distribution of the ML-sequence. Hájek’s Theorem provides a bound for the con-
centration of regular estimator sequences; yet it remains to be shown that regular
estimator sequences attaining this bound do exist.

The idea to replace “uniform convergence on compact subsets ofΘ” by “regular-
ity”, i.e. by the convergence of Q(n)

ϑ along sequences ϑ + n−1/2a is now generally
accepted. (See Ibragimov and Has’minskii 1970; Bickel et al. 1993; Witting and
Müller-Funk 1995.) It was, in fact, regular convergence that was implicitly used by
many authors. Starting from uniform convergence of Pn

ϑ ◦ n1/2(ϑ(n) − ϑ) to a limit
distribution Qϑ , they used convergence on paths ϑ + n−1/2a only. (C.R. Rao, 1963,
p. 196, Lemma 2, and Bahadur 1964, p. 1546, Proposition 1, and many more.) In
test theory, the use of Pϑ+n−1/2a for approximations to the power function turned up
quite early (see e.g. Eisenhart 1938, p. 32).

According to the Convolution Theorem, “regular convergence” is strong enough
for obtaining a bound for the concentration of estimator sequences. Yet regularly
convergent sequences Q(n)

ϑ , n ∈ N, may have unpleasant properties.
(i) Regular convergence of Q(n)

ϑ to Qϑ at ϑ0 does not imply that Qϑ is continuous
at ϑ0.
That regular convergence is not strong enough to imply continuity of the limit dis-
tribution was first observed by Tierney (1987) [p. 430]. Beware of a misprint in
line 20 of p. 430: Replace ϑ by ϑn in L (

√
n(Tn − ϑ)|ϑn)). For P = {N (ϑ, 1) :

ϑ ∈ R}, and the estimator ϑ(n)(xn) := (1 − n−1/2)xn + n−1/2x1 if |xn| < 1/ log n
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and ϑ(n)(xn) := xn otherwise, one easily finds that limn→∞ Q(n)
ϑ0+n−1/2a is N (0, 2) for

ϑ0 = 0 if a ∈ R, and N (0, 1) otherwise.
(ii) Even if Qϑ is continuous at ϑ0, regular convergence of Q

(n)
ϑ to Qϑ at ϑ0 does

not imply that Q(n)
ϑn

→ Qϑ0 for arbitrary sequences ϑn → ϑ0.

In spite of the fact that Q(n)
ϑ0+n−1/2a(A) → Qϑ(A) for every set A ∈ B with boundary

zero under Qϑ0 , it is not excluded that

Q(n)
ϑn

(A) → 0 for every bounded set A ∈ B
k

if the convergence of ϑn to ϑ0 is too slow.
The more subtle question whether there are continuous limit distributions which

can be attained regularly, but not uniformly, was answered to the affirmative by
Fabian and Hannan (1982) by a (somewhat artificial) example in their Remark 3.2,
p. 462.

Example Let xn = (x1, . . . , xn) be distributed as Nn
ϑ |Bn , with Nϑ the normal distri-

bution with mean ϑ and variance 1. Let

ϑ(n)(xn) :=
{

xn
xn + n−1/2un

if xn
≤
>
n−1/2ωn

with ωn ↑ ∞ and n−1/2ωn → 0. We shall show that

Pn
ϑn

◦ n1/2(ϑ(n) − ϑn) ⇒ N0 ifn1/2ϑn, n ∈ N, is bounded (5.10.1)

and
Pn
ϑn

◦ (n1/2(ϑ(n) − ϑn) − un) ⇒ N0 ifn1/2ϑn > 2ωn. (5.10.2)

From this the assertions follow easily. (To prove the discontinuity of the regularly
attainable limit distribution use un = u for n ∈ N.)

For convenience we introduce the random variable ξ := n1/2(ϑn − ϑ) which is
under Nn

ϑ distributed as N0. Hence the distribution of n1/2(ϑ(n)(x) − ϑ) under Nn
ϑ

is the same as the distribution of

H (n)
ϑ (ξ) :=

{
ξ

ξ + un
if |n1/2ϑ + ξ |≤

>
ωn

under N0. Since

N0{ξ : H (n)
ϑn

(ξ) = ξ} → 1 ifn1/2ϑn, n ∈ N, is bounded

and
N0{ξ : H (n)

ϑn
(ξ) = ξ + un} → 1 ifn1/2ϑn > 2ωn,

this implies (5.10.1) and (5.10.2). �

http://dx.doi.org/10.1007/978-3-642-31084-3_3
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The example above presents a particular regularly attainable limit distribution
which gives a misleading impression of the true distribution even for large sample
sizes. If the basic familyP is large, then this may be necessarily so for any estimator
sequence.

A first asymptotic impossibility result is due to Klaassen (1979). He shows (p.
853, Remark; see also Klaassen 1981, p. 62, Theorem 3.2.2) that for any sequence of
equivariant and antisymmetric (hence median unbiasedmedian unbiased estimator)
estimators of the median κ(P) in the familyP of all symmetric densities with finite
σ 2(P) := ∫

(p′/p)2dP ,

lim
n→∞ inf

P∈P0

Pn{n1/2(κ(n) − κ(P))/σ (P) < t} = 1/2 for every t > 0,

if P0 is a sufficiently large subset of P.
Ritov and Bickel (1990) use the estimation of κ(P) = ∫

p(x)2dx in the family
P of all probability measures on B with λ-density p to illustrate the problems with
uniformity in general families. In a slightly simplified version, their main result
(Theorem 1, p. 926) reads as follows: For every ε > 0 there exists a compact subset
Pε ⊂ (P, d) of diameter less than ε with the following property: For every estimator
sequence κ(n), n ∈ N, and every α > 0, lim infn→∞ Pn{|κ(n) − κ(P)| > n−α} > 0
for some P ∈ Pε. This result may be improved as follows (see Pfanzagl 2002a, p.
93): For any sequence εn ↓ 0, the relation

lim
n→∞ Pn{|κ(n) − κ(P)| > εn} = 1

holds for P in a dense subset of (P, d).
The essential point in such nonexistence theorems is that the minimal asymp-

totic variance of a continuous functional κ : P → R, given by
∫
κ∗(·, P)2dP , is

discontinuous at some P0. (See Pfanzagl 1982, p. 165, Corollary).

5.11 The Neyman–Pearson Lemma and Applications

The following version of the Neyman–Pearson Lemma refers to the case of mutually
absolutely continuous probability measures Pi |(X,A ), i = 1, 2, with densities pi .

Definition 5.11.1 A critical function ϕ0 is of Neyman–Pearson type for P0 : P1 if

ϕ0(x) =
{
1

0
if

p1(x)

p0(x)
for some c > 0.

Definition5.11.1 assumes nothing about the value of ϕ0(x) if p1(x) = cp0(x).
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It is easily seen that for any α ∈ (0, 1) there exists a critical function ϕ0 of
Neyman–Pearson type such that

∫
ϕ0(x)P0(x) = α.

Neyman–Pearson Lemma. A critical function ϕ0 with
∫
ϕ0(x)P0(dx) ∈ (0, 1) is of

Neyman–Pearson type for P0 : P1 iff for every critical function ϕ,

∫
ϕ(x)P0(dx) =

∫
ϕ0(x)P0(dx)

implies ∫
ϕ(x)P1(dx) ≤

∫
ϕ0(x)P1(dx). (5.11.1)

Addendum. Equality in (5.11.1) holds iff

ϕ(x) = ϕ0(x) if ϕ0(x) ∈ {0, 1}.

Observe that the value of ϕ(x) is irrelevant for x with p1(x) = cp0(x).
According to Schmetterer (1974, footnote on p. 166), a first version of the

Neyman–Pearson Lemma occurs in Neyman and Pearson (1936) [p. 207, relation
(4)]. The basic idea of this Lemma occurs earlier in Neyman and Pearson (1933) [p.
300, p. 151, relation (25)].

In Wolfowitz’s opinion, (Wolfowitz 1970, p. 767, footnote 4) “... the “Neyman–
Pearson fundamental Lemma”, which, no matter how “fundamental” it may be, is
pretty trivial to prove and not difficult to discover”.

Since the textbook by Schmetterer (1974) [Theorem 3.1, p. 166] needs four pages
for the proof of theNeyman–PearsonLemma, it isworthwhile to look for alternatives.
Such can be found in Witting (1985) [p. 193, Satz 25] or Pfanzagl (1994) [p. 133,
Lemma 4.3.3]. The basic idea of these proofs is the relation

(ϕ0(x) − ϕ(x))(p1(x) − cp0(x)) ≥ 0 for x ∈ X,

which holds for every critical function ϕ.
The first optimality results for the asymptotic concentration of estimator

sequences, obtained by C.R. Rao (1963), Bahadur (1964), Wolfowitz (1965),
Schmetterer (1966) and Roussas (1968), are based on the Neyman–Pearson Lemma.
Here is an outline of the basic idea. For a more general version see Theorem5.11.4.

Definition 5.11.2 LetΘ ⊂ R. The estimator sequenceϑ(n),n ∈ N, isasymptotically
median unbiased at ϑ0 if
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lim sup
n→∞

P (n)
ϑn

{ϑ(n) ≤ ϑn} ≤ 1/2

and
lim sup
n→∞

P (n)
ϑn

{ϑ(n) ≥ ϑn} ≤ 1/2

for all sequences ϑn = ϑ0 + c−1
n t , with |t | ≤ ε, say.

Remark Let, more generally, Qn|B, n ∈ N, be such that

lim sup
n→∞

Qn(−∞, 0] ≤ 1/2 and lim sup
n→∞

Qn[0,∞) ≤ 1/2.

Then limn→∞ Qn{0} = 0, hence

lim
n→∞ Qn(−∞, 0] = 1/2 and lim

n→∞ Qn[0,∞) = 1/2.

Hint: Qn(−∞, 0] + Qn[0,∞) = 1 + Qn{0} implies

1 + lim sup
n→∞

Qn{0} ≤ lim sup
n→∞

Qn(−∞, 0] + lim sup
n→∞

Qn[0,∞) ≤ 1.

Assume LAN, i.e., the stochastic expansion

Λnt = log(dP (n)
ϑ0+c−1

n t

/
dP (n)

ϑ0
) = tΔn(·, ϑ0) − 1

2
t2L(ϑ0) + o(n0, P (n)

ϑ0
).

Then asymptotic bounds for the concentration of asymptotically median unbi-
ased estimator sequences can be obtained (as in C.R. Rao 1963, in the proof of
his Lemma 2) by considering {ϑ(n) ≤ ϑ0 + c−1

n t} as a critical region for testing the
hypothesis P (n)

ϑ0+c−1
n t

against the alternative P (n)
ϑ0

and comparing this critical region
with an asymptotically most powerful critical region

Cn(t) := {
Λnt ≤ 1

2
t2L(ϑ0)

2}.

We have

P (n)
ϑ0

◦ Λnt ⇒ N (−1

2
t2L(ϑ0)

2, t2L(ϑ0)
2) (5.11.2)

and, consequently, by Le Cam’s 3rd Lemma,

P (n)
ϑ0+c−1

n t
◦ Λnt ⇒ N (

1

2
t2L(ϑ0)

2, t2L(ϑ0)
2). (5.11.3)

This implies
P (n)
ϑ0+c−1

n t
(Cn(t)) → 1/2
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and
P (n)
ϑ0

(Cn(t)) → Φ(t L(ϑ0)).

Since

lim sup
n→∞

P (n)
ϑ0+c−1

n t
{ϑ(n) ≤ ϑ0 + c−1

n t} ≤ 1/2 = lim
n→∞ P (n)

ϑ0+c−1
n t

(Cn(t)),

an asymptotic version of the Neyman–Pearson Lemma implies

lim sup
n→∞

P (n)
ϑ0

{ϑ(n) ≤ ϑ0 + c−1
n t} ≤ lim

n→∞ P (n)
ϑ0

(Cn(t)) = Φ(t L(ϑ0)).

Together with the corresponding relation with t replaced by −t , i.e.,

lim sup P (n)
ϑ0

{ϑ(n) ≥ ϑ0 − c−1
n t} ≤ lim

n→∞Φ(Cn(−t)) = Φ(−t L(ϑ0)),

this implies for t ′, t ′′ ≥ 0,

lim sup
n→∞

P (n)
ϑ0

{ϑ0 − c−1
n t ′ < ϑ(n) ≤ ϑ0 + c−1

n t ′′} ≤ N (0,Λ(ϑ0))(−t ′, t ′′). (5.11.4)

�
Observe that relation (5.11.4) refers to estimator sequences which are asymptot-

ically median unbiased . Convergence to a limit distribution is not required.
As mentioned in Sect. 5.9, various authors presented bounds for the concentration

of limit distributions under the assumption of uniform convergence, but they only use
regular convergence to the median of the limit distribution. Though Bahadur (1964)
[p. 1546] and Schmetterer (1966, p. 313, Remark 3.2) realize that their proofs use
uniform convergence to the median of the limit distribution only, they are not sur-
prised that this suffices to establish the limit distribution ofML-sequences as optimal,
and they don’t question what the apparently abundant assumption of uniform conver-
gence to a limit distribution should be good for. Pfanzagl (1970) [p. 1502, Theorem
1] shows that median unbiasedness as such suffices for (5.11.4). It remains mysteri-
ous why this theorem is stated for sequences of exactly median unbiased estimators,
though the proof obviously holds for estimator sequences which are asymptotically
median unbiased only.Roussas (1972) still gives two separate theorems for sequences
of median unbiased estimators (Lemma 5.1, p. 149), and estimator sequences con-
verging to a limit distribution with median 0 (Theorem 5.1, p. 153 and Theorem 5.2,
p. 154).

Pfanzagl (1972a) [p. 170, Theorem 5.2] gives conditions under which

lim sup
n→∞

n1/2
(
Pn
ϑ {ϑ − n−1/2t ′ < ϑ(n) < ϑ + n−1/2t ′′} − N (0,Λ(ϑ))(−t ′, t ′′)

)
< ∞.
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With the same techniques, but under stronger regularity conditions, Michel (1974)
[p. 207, Theorem] obtains the following result of Berry-Esseen type. If (ϑ(n))n∈N is
approximately median unbiased in the sense that for every compact K ⊂ Θ there is
aK such that, for ϑ ∈ K ,

Pn
ϑ {ϑ(n) < ϑ} ≤ 1/2 + aKn

−1/2 and Pn
ϑ {ϑ(n) > ϑ} ≤ 1/2 + aKn

−1/2,

then there is a′
K such that for every ϑ ∈ K ,

Pn
ϑ {ϑ − n−1/2t ′ < ϑ(n) < ϑ + n−1/2t ′′} ≤ N (0,Λ(ϑ))(−t ′, t ′′) + a′

K n
−1/2.

Remark For some authors, the distinction between symmetric and arbitrary intervals
(or loss functions) seems to be nothing to speak of; see Witting and Müller-Funk
(1995) [p. 423]. Strasser (1985), presents a result concerning the concentration of
median unbiased estimators on arbitrary intervals containing 0 on p. 162, Lemma
34.2, and a corresponding result for symmetric loss functions on p. 362, Lemma 72.1.
Rüschendorf (1988) [p. 207, Satz 6.10] is on symmetric loss functions. �

To derive asymptotic median unbiasedness from regular or locally uniform con-
vergence to a limit distribution poses no problems if the limit distribution is of the
form N (0, σ 2(ϑ0)) (as in the papers by C.R. Rao, Schmetterer and Bahadur). Any
estimator sequence converging regularly to N (0, σ 2(ϑ0)) is asymptotically median
unbiased, and relation (5.11.4) can now be rewritten as

N (0, σ 2(ϑ0))(−t ′, t ′′) ≤ N (0, σ 2
∗ (ϑ0))(−t ′, t ′′) for t ′, t ′′ ≥ 0,

which means
σ 2(ϑ0) ≥ Λ(ϑ0).

(See C.R. Rao 1963, p. 196, Lemma 2(ii) and Bahadur 1964, p. 1546, Proposition 1;
notice the misprint in Rao’s Lemma 2(ii) which says σ 2(ϑ0) ≤ Λ(ϑ0).)

That regularly attainable limit distributions have, under the usual regularity con-
ditions, a positive Lebesgue density and therefore a unique median was established
by Kaufman (1966, p. 174, Corollary). Since this result was not yet available toWol-
fowitz (1965), and unknown to Schmetterer (1966) and Roussas (1968 and 1972),
these authors had to formulate a result with the median replaced by the lower or
upper bound of the median interval, respectively.

Problems connectedwith the nonuniqueness of themedian vanish if the optimality
assertions are confined to intervals symmetric about 0. For regular one-parameter
families, Weiss and Wolfowitz (1966) [p. 61] show that for any regularly attainable
limit distribution Qϑ ,

Qϑ(−t, t) ≤ N (0,Λ(ϑ))(−t, t), t > 0.
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The argument in this paper is Bayesian, but the Neyman–Pearson Lemma suffices
(see below).

The idea to obtain a bound from the Neyman–Pearson Lemma also works in
“almost regular” cases. For shift parameter families, based on a probability measure
with support (a, b), Akahira (1975) [II] presents in Theorem 3.1, p. 106, a result
which implies, in particular, the following. Let

A := lim
x↓a (x − a)−1 p(x), B := lim

x↑b(b − x)−1 p(x),

A′ := lim
x↓a |p′(x)|, B ′ := lim

x↑b |p′(x)|.

If these quantities are finite and positive, then theM.L. sequence of the location para-
meter, standardized by cn = n1/2(log n)1/2, is asymptotically normal with variance
1
2 (A

′ 2/A + B ′ 2/B). According to Theorem 3.2, p. 107, this is the best possible limit
distribution for estimator sequences (ϑ(n))n∈N converging to their limit distribution
Qϑ locally uniformly. Akahira’s proof is based on the Neyman–Pearson Lemma.
Roughly speaking, his Lemma 3.1, p. 102, implies the validity of conditions (5.11.2)
and (5.11.3) with cn = n1/2(log n)1/2 and L(ϑ) = 2

(
A′ 2/A + B ′ 2/B)

)−1
.

Though Akahira is aware of Woodroofe’s related paper (1972) (see Akahira
1975, I, p. 26) he desists from discussing the connection of his results with that
of Woodroofe and the pertaining optimality results of Weiss and Wolfowitz (1973).

By the same technique, bounds for asymptotically median unbiased estimator
sequences may also be obtained for certain non-regular parametric families where
the rate of convergence is cn = n, and the optimal limit distribution is non-Gaussian.
As a typical example we mention a result of Grossmann (1981) [p. 106, Corollary
4.3 and p. 107, Proposition 4.4]. Let p|R be a density such that p(x) = 0 for x ≤ 0
and

p(x) > 0 for x > 0 with lim
x↓0 p(x) = A.

Let Pϑ |B be the distribution with density x → p(x − ϑ). Then for any estimator
sequence (ϑ(n))n∈N fulfilling the condition of regular convergence with cn = n,

lim sup
n→∞

Pn
ϑ0

{ϑ0 − n−1t ′ < ϑ(n) < ϑ0 + n−1t ′′} ≤ 1

2

(
exp[At ′] − exp[−At ′′]).

This bound is attained (for t ′, t ′′ sufficiently small) by the median unbiased estimator
sequence x1:n − n−1A−1 log 2.

Various examples of this kind (with t ′ = t ′′) can be found in Akahira (1982) and
the references there. Notice that in non-regular cases the bounds obtained by the
Neyman–Pearson Lemma are not necessarily attainable for every t > 0.

http://dx.doi.org/10.1007/978-3-642-31084-3_3
http://dx.doi.org/10.1007/978-3-642-31084-3_3
http://dx.doi.org/10.1007/978-3-642-31084-3_3
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A Multidimensional Bound

By nature, results on median unbiased estimator sequences are restricted to one-
dimensional functionals. They might, however, be used to derive some results on
multidimensional functionals.

LetΘ ⊂ R
k . Assume that ϑ(n) : Xn → R

k , n ∈ N, is an estimator sequence for ϑ
which converges regularly to some limit distribution Qϑ |Bk . If this limit distribution
is normal, say Qϑ = N (0,Σ(ϑ)), the estimator sequence κ(n) := a�ϑ(n), n ∈ N,
for κ(ϑ) = a�ϑ is asymptotically normal: Pn

ϑ ◦ cn(κ(n) − κ(ϑ)), n ∈ N, converges
regularly to N (0, a�Σ(ϑ)a). Hence κ(n) is asymptotically median unbiased, and
relation (5.11.4), applied with K = a, leads to

N (0, a�Σ(ϑ0)a)(−t ′, t ′′) ≤ N (0, a�Λ(ϑ0)a)(−t ′, t ′′) for t ′, t ′′ ≥ 0,

hence
a�Σ(ϑ0)a ≥ a�Λ(ϑ0)a.

Since this relation holds for arbitrary a ∈ R
k , the matrix Σ(ϑ0) − Λ(ϑ0) is positive

semidefinite. This argument occurs in Bahadur 1964, p. 1550, relation (26) and is
repeated in Roussas (1968) [p. 255, Theorem 3.2 (iii)]. Both authors are satisfied
with this formal relation betweenΣ(ϑ0) andΛ(ϑ0). Since Anderson’s Theorem was
well known at this time, (see in particular Anderson 1955, p. 173, Corollary 3) they
could have turned this relation into the inequality

N (0,Σ(ϑ0))(C) ≤ N (0,Λ(ϑ0))(C)

for all sets C which are convex and symmetric about 0, a relation which anticipates
the essence of the Convolution Theorem for the particular case of normal limit
distributions.

Remark The idea to conclude from the distribution of estimators a�ϑ(n) to the distri-
bution of ϑ(n) occurs already in Kallianpur and Rao (1955) [p. 342], foreshadowed
in a paper by Rao (1947) [p. 281, Corollary 1.1], which also contains the idea of an
intrinsic bound for the asymptotic variance of (unbiased) estimator sequences. Sur-
prisingly, it is not applied by Rao (1963). It was taken up by Roussas (1968, p. 255,
Theorem 3 and 1972, p. 161, Theorem 7.1)—post festum. Though Roussas (1968)
was aware of Kaufman’s result from 1966 he obviously misunderstood its relevance
(see Roussas 1968, p. 259, and 1972). Using the Neyman–Pearson Lemma, Roussas
still struggles with upper and lower medians, a problem settled already by Kaufman
(1966) [p. 174, Corollary]. It is not only the relevance of Kaufman’s pre-Convolution
Theorem which escaped Roussas’ attention. In the very same book, he presents as
Theorem 3.1, p. 136, a full version of the Convolution Theorem from which the
above-mentioned results follow immediately.

http://dx.doi.org/10.1007/978-3-642-31084-3_3
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Remark Observe that Roussas’ paper deals with Markov chains fulfilling an LAN-
condition. It seems to be thefirst paper at this level of generality, prior toHájek (1970).
A comparable result by Schmetterer (1966) [p. 316, Theorem 4.2] on Markov chains
with a 1-dimensional parameter is technically less advanced. Schmetterer’s paper
was criticized by Roussas (1968) [p. 252] for being technically obsolete, using on p.
309 results by Daniels (1961) rather than Le Cam (1960) [p. 40, Theorem 2.1 (6)].
Roussas could have added that Schmetterer’s Lemma 2.2, attributed by Schmetterer
to Daniels (1961), occurs there (p. 156, relation (3.8)) with an incorrect proof. (Since
this paper of Daniels is cited by many authors (Rao 1963, Bickel 1974, Lehmann and
Casella 1998 and Le Cam in various places), it might be worth mentioning that this
is not the only slip in Daniels’ paper. See also G. Huber 1967, p. 211 andWilliamson
1984.) �

Since Roussas avoids the use of Anderson’s Theorem (for unknown reasons), the
relation Λ(ϑ0) ≤ Σ(ϑ0) between the covariance matrices (in the Löwner order) is
used to derive relations between hyperplanes. For the case of an arbitrarymultivariate
limit distribution, Roussas (1968) [p. 257, Theorem 4] presents a result concerning
the concentration about median hyperplanes.

Call {u ∈ R
k : a�u = c} amedian hyperplane for the probabilitymeasure Q|Bk if

Q{u ∈ R
k : a�u ≤ c} = Q{u ∈ R

k : a�u ≥ c} = 1/2.

The optimal limit distribution N (0,Λ(ϑ0)) is for any a ∈ R
k “more” concentrated

about the median hyperplane {u ∈ R
k : a�u = 0} than any regularly attainable dis-

tribution Qϑ0 about its median hyperplane. More precisely: If {u ∈ R
k : a�u =

ma(Qϑ0)} is a median hyperplane of Qϑ0 , then

Qϑ0{u ∈ R
k : ma(Qϑ0) − t ′ ≤ a�u ≤ ma(Qϑ0) + t ′′}

≤ N (0,Λ(ϑ0)){u ∈ R
k : −t ′ ≤ a�u ≤ t ′′} for t ′, t ′′ ≥ 0.

This result of Roussas generalizes the result of Wolfowitz (1965) [pp. 258/9, Theo-
rem] from k = 1 to an arbitrary k. It is, in fact, a trivial consequenceof theConvolution
Theorem. Since a�u is under Qϑ0 more spread out than under N (0,Λ(ϑ0)), it is (see
2.3.5) more concentrated—on arbitrary intervals—about its median under Qϑ0 than
about its median under N (0,Λ(ϑ0)).

According to the Convolution Theorem, N (0, KΛK�) is the optimal limit distri-
bution of regular estimator sequences for for a real-valued functional κ with gradient
J . Since JΛ�•(·, ϑ) is a gradient of κ , the stochastic expansion (5.11.6) implies that
the convergence of any optimal median unbiased estimator sequence to N (0, JΛJ�)
is regular. Hence these estimator sequences are a fortiori optimal in the class of all
regular estimator sequences for κ . It appears that this automatic regularity of asymp-
totically optimal median unbiased estimator sequences was overlooked in the papers
by Rao, Wolfowitz, Schmetterer, etc.

http://dx.doi.org/10.1007/978-3-642-31084-3_2
http://dx.doi.org/10.1007/978-3-642-31084-3_3
http://dx.doi.org/10.1007/978-3-642-31084-3_2
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A More Sophisticated Use of the Neyman–Pearson Lemma

The results presented so far are based on theNeyman–PearsonLemma. Some of these
results have later been obtained as a consequence of the Convolution Theorem—
perhaps under stronger regularity conditions (such as regular convergence to a limit
distribution, as opposed to asymptotic median unbiasedness).

In the followingwemention two subtle consequences of theConvolutionTheorem
which, too, might have been obtained years earlier by an elementary proof, based on
the Neyman–Pearson Lemma. Using an asymptotic version of the Neyman–Pearson
Lemma, it can be shown that any estimator sequence which is asymptotically optimal
among the asymptotically median unbiased estimator sequences is asymptotically
linear with the optimal influence function. In this proof one has to use what has
been ignored by the pioneers in their endeavor to establish the optimality of the ML-
sequence, namely: That asymptotically optimal sequences of critical functions are
asymptotically unique. The nonasymptotic version of this result dates from 1933. A
contemporary textbook-reference could have been found in Schmetterer (1966) [Satz
3.1, pp. 202–206, in particular p. 204].Anasymptotic versionof theNeyman–Pearson
Lemma, particularly suitable for the subsequent results, is given in Lemma5.11.7.

There is another result which is usually derived from the Convolution
Theorem and which could have been obtained earlier by a proof based on the
Neyman–Pearson Lemma: Any regularly attainable limit distribution (for estima-
tors of a one-dimensional functional) is “more” spread out than the limit distribution
determined by the LAN-condition. (See Sect. 2.8.)

The following results refer to parametricLAN-families {(P (n)
ϑ )n∈N : ϑ ∈ Θ},Θ ⊂

R
k . Since the value of ϑ remains fixed it will be omitted if there is no danger of

confusion. Using the concepts developed in Sect. 5.13, these results can be easily
extended to general families.

Theorem 5.11.3 Assume that {(P (n)
ϑ )n∈N : ϑ ∈ Θ},Θ ⊂ R

k , is an LAN-family and
κ : Θ → R a differentiable functional with gradient J . Then the following is true.

(i) For any estimator sequence κ(n), n ∈ N, which is asymptotically median unbi-
ased for κ ,

lim sup
n→∞

P(n)
ϑ {−t ′ ≤ cn(κ

(n) − κ(ϑ)) ≤ t ′′} ≤ N (0, JΛJ�)(−t ′, t ′′) for t ′, t ′′ ≥ 0.

(5.11.5)
(ii) If

lim
n→∞ P (n)

ϑ {cn|κ(n) − κ(ϑ)| ≤ t} = N (0, JΛJ�)(−t, t) for every t > 0,

then
cn(κ

(n) − κ(ϑ)) − JΔn → 0 (P (n)
ϑ ). (5.11.6)

http://dx.doi.org/10.1007/978-3-642-31084-3_2
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Remark The scholars who tried to prove certain optimality properties of ML esti-
mators by means of the Neyman–Pearson Lemma could have used an asymptotic
expansion like (5.11.6) to show that an asymptotically normal estimator sequence
with optimal marginals has the same (joint) limit distribution as the ML-sequences.
This does, however, not yet establish ML-sequences as asymptotically optimal in
some multivariate sense. Estimator sequences with marginals inferior to the mar-
ginals of the ML-sequences could, in principle, be asymptotically superior to the
ML-sequences in some multidimensional sense. (See Sect. 5.13 for a discussion of
this question.)

Proof of Theorem4.11.3. (i) Let a ∈ R be fixed. If κ(n), n ∈ N, is asymptotically
median unbiased and κ is differentiable, the relation

lim sup
n→∞

∫
ϕnd P

(n)
ϑ+c−1

n a
≤ 1/2

is fulfilled for ϕn = 1{c−1
n (κ(n)−κ(ϑ))≤Ja}. Hence Corollary5.11.8 below implies

lim sup
n→∞

P (n)
ϑ {cn(κ(n) − κ(ϑ)) ≤ Ja} ≤ Φ((a�La)1/2). (5.11.7)

To make the upper bound as sharp as possible, one needs to minimize a�La subject
to the condition Ja ≥ t . This is achieved by choosing a = ā with

ā := ΛJ�/JΛJ�. (5.11.8)

Relation (5.11.7), applied with â given by (5.11.8), yields

lim sup
n→∞

P (n)
ϑ {cn(κ(n) − κ(ϑ)) ≤ t} ≤ Φ(t (JΛJ�)−1/2) for t ≥ 0.

Together with the corresponding relation for t < 0, this implies (5.11.5).
(ii) According to Corollary5.11.8 applied with β = 1/2 and a replaced by t â, the

relation
ϕn = 1{JΔn<t}

holds for any critical function ϕn fulfilling

∫
ϕnd P

(n)
ϑ+c−1

n t â
→ 1/2 (5.11.9)

and ∫
ϕnd P

(n)
ϑ → Φ((JΛJ�)−1/2). (5.11.10)
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If κ(n) is asymptotically median unbiased and optimal, then

ϕn = 1{cn(κ(n)−κ(ϑ))≤t}

has properties (5.11.9) and (5.11.10). Hence

1{n1/2(κ(n)−κ(ϑ))≤t} − 1{JΛ�̃◦≤t} → 0 for t ∈ R.

By Lemma5.11.6 below this implies

c−1
n (κ(n) − κ(ϑ)) − JΔn → 0 (P (n)

ϑ ).

�
Proposition5.5.1 implies that asymptotically median unbiased estimator seque-

nces that attain atϑ themaximal value N (0, JΛJ�)(−t, t) for every t > 0, converge
regularly to a limit distribution, which is N (0, JΛJ�).

Leaving median unbiasedness aside, we turn to estimator sequences for κ : Θ →
Rwith a regularly attainable limit distribution, say Q. The following Theorem5.11.4
asserts that Q is more spread out than N (0, JΛJ�). This assertion is weaker than the
ConvolutionTheorem, sinceQ � N (0, JΛJ�) follows fromQ = N (0, JΛJ�) ∗ R
(see Sect. 2.8). It might be worth mentioning that the relation Q � N (0, JΛJ�)
could thus have been obtained years before the Convolution Theorem.

Theorem 5.11.4 Assume that {(P (n)
ϑ )n∈N : ϑ ∈ Θ},Θ ⊂ R

k , is an LAN-family and
κ : Θ → R a differentiable functional with gradient J . Then Qϑ � N (0, JΛJ�)
for any regularly attainable limit distribution Qϑ of estimator sequences for κ .

Proof. With F(t) := Qϑ(−∞, t], let

ϕn(·, a) := 1{n1/2(κ(n)−κ(ϑ+c−1
n a))≤F−1(β)}.

The relation P (n)
ϑ+c−1

n a
◦ n1/2(κ(n) − κ(ϑ + c−1

n a)} ⇒ Qϑ implies

∫
ϕn(·, a)dP (n)

ϑ+c−1
n a

→ β

and ∫
ϕn(·, a)dP (n)

ϑ → F(F−1(β) + Ja).

Hence Corollary5.11.8 implies

F(F−1(β) + Ja) ≤ Φ(Φ−1(β) + (a�La)1/2).

Applied with a = td this leads to

http://dx.doi.org/10.1007/978-3-642-31084-3_2


200 5 Asymptotic Optimality of Estimators

F(F−1(β) + t) ≤ Φ(Φ−1(β) + t (JΛJ�)−1/2). (5.11.11)

By Lemma5.11.5,

Φ(Φ−1(β) + tσ−1) = Φσ(Φ
−1
σ (β) + t)

where Φσ is the distribution function of N (0, σ 2). Hence (5.11.11) may be rewrit-
ten as

F(F−1(β) + t) ≤ Φσ(Φ
−1
σ (β) + t), with σ 2 = JΛJ�.

This relation holds for every β ∈ (0, 1) and every t ≥ 0. According to a well known
Lemma on the spread order (see (2.4.3)), this implies Qϑ � N (0, JΛJ�). �
Some Auxiliary Results

Lemma 5.11.5 Let F and F1 be increasing distribution functions of probability
measures Q and Q1, respectively. If

F(F−1(β) + t) ≤ F1(F
−1
1 (β) + t/σ) for β ∈ (0, 1) and t ∈ R,

then Q is “more” spread out than Qσ := Q1 ◦ (u → σu).

Proof With Fσ denoting the distribution function of Qσ , we have

F1(F
−1
1 (β) + t/σ) = Fσ (F

−1
σ (β) + t),

hence
F(F−1(β) + t) ≤ Fσ (F

−1
σ (β) + t) for β ∈ (0, 1), t ∈ R.

�
Lemma 5.11.6 For n ∈ N, let fn, gn be real functions defined on (X,A ), and Pn|A
a probability measure.

If
1{ fn≤t} − 1{gn≤t} → 0 (Pn) for t ∈ R,

then
fn − gn → 0 (Pn).

Proof Since ∣
∣1{ fn≤t} − 1{gn≤t}

∣
∣ = 1{ fn≤t,gn>t} + 1{ fn>t,gn≤t},

it suffices to prove that

lim
n→∞ Pn{ fn > t, gn ≤ t} = 0 for every t ∈ R

implies

http://dx.doi.org/10.1007/978-3-642-31084-3_2
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lim
n→∞ Pn{ fn − gn > ε} = 0 for every ε > 0.

If fn(x) − gn(x) > ε, the interval (gn(x) + ε/2, fn(x) − ε/2) is nonempty, and
there is t ∈ Q such that gn(x) + ε/2 < t < fn(x) − ε/2. Hence

{x ∈ X : fn(x) − gn(x) < ε} ⊂
⋃

t∈Q
{x ∈ X : gn(x) < t − ε/2, fn(x) > t + ε/2}.

Since

lim sup
n→∞

Pn{x ∈ X : gn(x) < t − ε/2, fn(x) > t + ε/2}
≤ lim

n→∞ Pn{x ∈ X : gn(x) ≤ t + ε/2, fn > t + ε/2} = 0,

the assertion follows. �

Lemma 5.11.7 For n ∈ N, let Pn and P ′
n � Pn be probability measures on a mea-

surable space (X,A ). Let qn ∈ dP ′
n/dPn. Assume that Pn ◦ qn ⇒ Q|B, a non-

degenerate probability measure on B ∩ [0,∞) fulfilling
∫
uQ(du) = 1, so that

P ′
n ◦ qn ⇒ Q′, with id ∈ dQ′/dQ. (See also Le Cam’s Lemmas.)
Under these conditions, the following is true for any sequence of critical functions

ϕn : X → [0, 1], n ∈ N.

(i) For every r > 0,

lim sup
n→∞

∫
ϕnd P

′
n ≤ Q′[0, r ] (5.11.12)

implies

lim sup
n→∞

∫
ϕnd Pn ≤ Q[0, r ]. (5.11.13)

(ii) If equality holds in (5.11.13) for some r > 0, then limn→∞
∫
ϕnd Pn = Q[0, r ]

and therefore
ϕn − 1{qn<r} → 0 (Pn). (5.11.14)

Proof (i) For every r > 0,

(ϕn − 1{qn<r})(r − qn) ≤ 0. (5.11.15)

Hence (5.11.13) follows from (5.11.12) after integration of (5.11.15) with
respect to Pn .

(ii) If equality holds in (5.11.12) for some r > 0, relation (5.11.15) implies

lim
n→∞

∫
|ϕn − 1{qn<r}| · |r − qn|dPn = 0.
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To show that this implies

∫
|ϕn − 1{qn<r}|dPn → 0,

we assume, more generally, that

∫
|χn| · |r − qn|dPn → 0,

for some sequence |χn| ≤ 1, n ∈ N.
Since

∫
|χn|dPn =

∫
|χn|1{|r−qn |<ε}dPn +

∫
|χn|1{|rn−qn |≥ε}dPn ≤

Pn{|r − qn| < ε} + 1

ε

∫
|χn| · |rn − qn|dPn, (5.11.16)

relation (5.11.16) implies

lim sup
n→∞

∫
|χn|dPn ≤ lim sup

n→∞
Pn{|r − qn| < ε}. (5.11.17)

Since Pn ◦ qn , n ∈ N, converges to a nonatomic distribution, the right-hand
side of (5.11.17) may be made arbitrarily small by choice of ε > 0. This proves
(5.11.14). �

Applied to an LAN-family {P (n)
ϑ : ϑ ∈ Θ}, Θ ⊂ R

k , with

log(dP (n)
ϑ+c−1

n a

/
dP (n)

ϑ ) = a�Δn(·, ϑ) − 1

2
a�L(ϑ)a + o(n0, P (n)

ϑ ).

and
P (n)
ϑ ◦ a�Δn(·, ϑ) ⇒ N (0, a�L(ϑ)a),

P (n)
ϑ+c−1

n a
◦ a�Δ(·, ϑ) ⇒ N (a�L(ϑ)a, a�L(ϑ)a),

Lemma5.11.7 yields the following Corollary.

Corollary 5.11.8 Under the conditions specified above, the following holds true for
any critical function ϕn : Xn → [0, 1].

If

lim sup
n→∞

∫
ϕnd P

(n)
ϑ+c−1

n a
≤ β for some a ∈ R

k,

then

lim sup
n→∞

∫
ϕnd P

(n)
ϑ ≤ Φ

(
Φ−1(β) + (a�L(ϑ)a)1/2

)
.
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Addendum. If for some a ∈ R
k ,

∫
ϕnd P

(n)
ϑ+n1/2a → 1

2

and ∫
ϕnd P

(n)
ϑ → Φ((a�La)1/2),

then
ϕn − 1{a�Δn<a�La} → 0 (P (n)

ϑ ).

Proof (i) The assertion follows fromLemma5.11.7(i), applied with Pn = P (n)
ϑ and

P ′
n = P (n)

ϑ+c−1
n a

and with ra = exp[(a�La)1/2Φ−1(β) + 1
2a

�La]. Since

P (n)
ϑ {Λna ≤ ra} − P (n)

ϑ {a�Δn) ≤ (a�La)1/2Φ−1(β) + a�La} → 0,

we have
P (n)
ϑ+c−1

n a
{Λna ≤ ra} → β

and therefore

lim sup
n→∞

P (n)
ϑ {Λna < ra} ≤ Φ

(
Φ−1(β) + (a�La)1/2

)
.

(ii) The addendum follows from Lemma5.11.7(ii).
�

Symmetric Optimality

We consider a parametric family {(P (n)
ϑ )n∈N : ϑ ∈ Θ}, Θ ⊂ R

k fulfilling an LAN-
condition

log(dP (n)
ϑ+c−1

n a

/
dP (n)

ϑ ) = a�Δn(·, ϑ) − 1

2
a�L(ϑ)a + o(n0, P (n)

ϑ ).

Asymptotic bounds for the concentration of estimator sequences for differentiable
functionals κ : Θ → R

p are necessarily restricted to the concentration on symmetric
sets if p > 1.

For functionals κ : Θ → R this is not necessarily so. Among median unbiased
estimator sequences there may be estimator sequences which are asymptotically
maximally concentrated on arbitrary intervals containing 0. For irregular models,
estimator sequences with this strong optimum property do not necessarily exist. In
such cases, optimality on intervals symmetric about 0 may be a useful surrogate.

A first result on symmetric optimality was presented by Weiss and Wolfowitz
(1966) [p. 61]. To establish the asymptotic optimality of ML-sequences under
Cramér-type regularity conditions they show that

Qϑ(−t, t) ≤ N (0,Λ(ϑ))(−t, t), t > 0
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for any regularly attainable limit distribution Qϑ . Since corresponding results with
not necessarily symmetric intervals were already available at this time, one can only
guess why they were interested in symmetric intervals. Perhaps their intention was
to avoid trouble with the median. They use Bayesian arguments though a proof based
on the Neyman–Pearson Lemma would have been simpler (see below).

The idea of symmetric optimality was taken up by Akahira and/or Takeuchi (see
e.g. 1982), combined with the requirement of asymptotic median unbiasedness.

Is an optimality concept based on the concentration on symmetric intervals
really required? In the regular cases considered above, there exist median unbi-
ased estimator sequences which are optimal on all intervals containing 0. In certain
non-regular models one encounters estimator sequences with an optimum property
limited to symmetric intervals. Such limited optimum properties are of interest also
from another point of view: They are neither related to the spread order nor to a
convolution property.

Let P (n)
ϑ ◦ cn(ϑn) − ϑ) ⇒ Qϑ |Bk with Qϑ nonatomic. The following proposition

gives bounds for Qϑ(−t ′, t ′′) expressed by the asymptotic performance of

pn(·, ϑ + c−1
n t)/pn(·, ϑ) ∈ dP (n)

ϑ+c−1
n t

/dP (n)
ϑ

under the assumption that the convergence to Qϑ is regular at −t ′ and t ′′, i.e.,

P (n)
ϑ+c−1

n t
◦ cn(ϑ

(n) − (ϑ + c−1
n t)) ⇒ Qϑ for t = −t ′ and t = t ′′.

Proposition 5.11.9 Under the conditions indicated above,

Qϑ(−t ′, t ′′) ≤ lim sup
n→∞

(
P (n)
ϑ−c−1

n t ′′ {pn(·, ϑ − c−1
n t ′′) > pn(·, ϑ + c−1

n t ′)}
−P (n)

ϑ+c−1
n t ′ {pn(·, ϑ − c−1

n t ′′) > pn(·, ϑ + c−1
n t ′)}). (5.11.18)

Proof By assumption,

P (n)
ϑ+c−1

n t ′ {ϑ(n) ≤ ϑ} = P (n)
ϑ+c−1

n t ′ {cn(ϑ(n) − (ϑ + c−1
n t ′)) ≤ −t ′} → Qϑ(−∞,−t ′)

and

Pn
ϑ−c−1

n t ′′ {ϑ(n) ≤ ϑ} = P (n)
ϑ−c−1

n t ′′ {cn(ϑ(n) − (ϑ − c−1
n t ′′)) ≤ t ′′} → Qϑ(−∞, t ′′),

hence

Qϑ(−t ′, t ′′) = lim
n→∞

∫
1{ϑ(n)≤ϑ}(pn(·, ϑ − c−1

n t ′′) − p(·, ϑ + c−1
n t ′))dμn.

Since
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(
1{ϑ(n)≤ϑ} − 1{pn(·,ϑ−c−1

n t ′′)>pn(·,ϑ+c−1
n t ′)}

)

(
pn(·, ϑ − c−1

n t ′′) − pn(·, ϑ + c−1
n t ′)

) ≤ 0,

this implies the assertion. �

This proposition, based on the Neyman–Pearson Lemma, offers another bound
for the concentration of limit distributions, complementary to the bounds based on
median unbiasedness and on the Convolution Theorem.

Recall the bound given in (5.11.4) for the concentration of asymptotically median
unbiased estimator sequences,

lim sup
n→∞

P (n)
ϑ0

{−t ′ ≤ cn(ϑ
(n) − ϑ0) ≤ t ′′} ≤ N (0,Λ(ϑ0))(−t ′, t ′′).

Under equivalent regularity conditions (using (5.11.2) and (5.11.3) again), Proposi-
tion5.11.9 yields the bound

lim
n→∞ P (n)

ϑ0
{−t ′ ≤ cn(ϑ

(n) − ϑ0) ≤ t ′′} ≤ N (0,Λ(ϑ0))(−1

2
(t ′ + t ′′),

1

2
(t ′ + t ′′))

(5.11.19)

(now under the assumption that the lim on the left-hand side exists).
Whereas the bound given in (5.11.4) is attainable, this is not the case with the

bound given in (5.11.19). Observe that

N (0, σ 2)(−t ′, t ′′) ≤ N (0, σ 2)(−1

2
(t ′ + t ′′),

1

2
(t ′ + t ′′)).

For t ′ = t ′′(= t) the two bounds are the same,

lim
n→∞ P (n)

ϑ0
{cn|ϑ(n) − ϑ0| ≤ t} ≤ N (0,Λ(ϑ0))(−t, t), (5.11.20)

with two different interpretations, corresponding to the two different side conditions:
median unbiasedness, and convergence to a limit distribution, respectively.

There is a third approach leading to the same bound, the Convolution Theorem,
which requires regular convergence of P (n)

ϑ ◦ cn(ϑ(n) − ϑ), n ∈ N, to some limit
distribution Qϑ , and which implies, corresponding to (5.11.20), that

Qϑ0(−t, t) ≤ N (0,Λ(ϑ0))(−t, t).

For multivariate LAN-families, the bounds provided by the Convolution Theo-
rem are confined to the concentration on convex and symmetric sets. The following
Theorem suggests how the same result may be obtained as a corollary to Proposi-
tion5.11.9.

Theorem 5.11.10 Let C ⊂ R
k be convex and symmetric about 0. If
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P (n)
ϑ+c−1

n a
{cn(ϑ(n) − (ϑ + c−1

n a)) ∈ C}, n ∈ N,

converges for every a ∈ R
k to the same limit, then

lim
n→∞ P (n)

ϑ {cn(ϑ(n) − ϑ) ∈ C} ≤ N (0,Λ(ϑ))(C).

Observe that the set C is fixed. The proof follows from Proposition5.11.9, applied
with a�ϑ(n), as an estimator of a�ϑ , a ∈ R

k .

Dowe really need an independent concept of symmetric optimality?The following
example presents a limit distribution which is (i) optimal on all symmetric intervals,
and (ii) its optimality is not a consequence of the Convolution Theorem.

Theoperational significance of a representationQ = Q ∗ R depends onproperties
of the factor Q. In the case k = 1 this is the logconcavity of Q, and the result is
Q(−t ′, t ′′) ≤ Q(−t ′, t ′′) for t ′, t ′′ ≥ 0.The following example presents two regularly
attainable limit distributions Q and Q, such that Q(−t, t) ≥ Q(−t, t) for every
t > 0, but Q(−t ′, t ′′) > Q(−t ′, t ′′) for some t ′, t ′′ > 0. Since Q is logconcave, Q
cannot be a convolution product involving the factor Q. Hence the optimality of Q
on all symmetric intervals is not a consequence of the Convolution Theorem.

Example For ϑ ∈ R let Pϑ be the probability measure with density p(x, ϑ) :=
1[−1/2,1/2](x − ϑ). By (5.11.18),

Qϑ(−t ′, t ′′) ≤ 1 − e−(t ′+t ′′). (5.11.21)

Here 1 − e−(t ′+t ′′) is just a bound for Qϑ(−t ′, t ′′); equality in (5.11.21) for arbitrary
t ′, t ′′ is impossible. For t ′ = t ′′ = t , we obtain

Qϑ(−t, t) ≤ 1 − e−2t ,

and this symmetric bound, 1 − e−2t , is attainable. For the estimator sequence

ϑ̂ (n)(xn) := 1

2
(x1:n + xn:n),

Pn
ϑ ◦ n(ϑ̂ (n) − ϑ) converges to the Laplace distribution with scale parameter 1/2,

hence
lim
n→∞ Pn

ϑ {n|ϑ̂ (n) − ϑ | ≤ t} = 1 − e−2t .

The estimator sequence

ϑ̃ (n)(xn) := x1:n + 1

2
− n−1 log 2

converges regularly to the limit distribution Q̃ with
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Q̃(−t ′, t ′′) = min{1, 1
2
et

′ } − 1

2
e−t ′′ for − log 2 < −t ′ ≤ 0 < t ′′ < ∞.

We have Q̃(−t, t) < Q(−t, t) for t > 0 by Proposition5.11.9 and Q̃(−t ′, t ′′) >
Q(−t ′, t ′′) for t ′ close to log 2 and t ′′ small. �

We conclude this section by some side results. Let, more generally, Q denote a
family of distributions on B which contains an element Q0 with median 0 which is
optimal on all symmetric intervals, i.e., for every Q ∈ Q,

Q(−t, t) ≤ Q0(−t, t) for t > 0.

Then the following is true.

(i) IfQ contains an element which is minimal in the spread order , then Q0 has this
property.

(ii) If Q contains an element Q which is minimal in the convolution order (i.e.,
Q = Q ∗ R for every Q ∈ Q), then this is Q0, provided

∫
u2Q0(du) < ∞.

Proof (i) Assume that Q is minimal in the spread order. W.l.g. we may assume
that Q has median 0. Then Q(−t ′, t ′′) ≥ Q0(−t ′, t ′′) for all t ′, t ′′ ≥ 0. Since
Q0 is optimal on all symmetric intervals, Q(−t, t) = Q0(−t, t) for t > 0. By
Lemma5.11.12 this implies Q = Q0.

(ii) Assume now that Q is minimal in the convolution order. Without assuming
anything about Q, it is not permitted to conclude that Q is also minimal in
the spread order (since Q ∗ R is not necessarily “more” spread out than Q in
general). Yet, the relation Q = Q0 follows from Lemma5.11.12. �

Lemma 5.11.11 If Q0(−t, t) ≥ Q(−t, t) for t > 0, and Q0(−t ′, t ′′) ≤ Q(−t ′, t ′′)
for t ′, t ′′ ≥ 0, then Q = Q0.

Proof We have

Q(−t ′′, t ′) + Q(−t ′, t ′′) = Q(−t ′, t ′) + Q(−t ′′, t ′′)
≤ Q0(−t ′, t ′) + Q0(−t ′′, t ′′) = Q0(−t ′′, t ′) + Q0(−t ′, t ′′).

IfQ(−t ′′, t ′) ≥ Q0(−t ′′, t ′) andQ(−t ′, t ′′) ≥ Q0(−t ′, t ′′), this impliesQ(−t ′, t ′′) =
Q0(−t ′, t ′′) for arbitrary t ′, t ′′ ≥ 0, whence Q = Q0. �

Lemma 5.11.12 Assume that Q contains an element Q0 which is optimal in the
sense that for every Q ∈ Q,

Q(−t, t) ≤ Q0(−t, t) for t > 0. (5.11.22)
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Assume that
∫
w2Q0(dw) < ∞. If Q contains an element which is minimal in the

convolution order, then Q0 has this property.

Proof Assume that Q0 = Q ∗ R. It is easily seen that
∫
w2Q0(dw) < ∞ implies∫

u2Q(du) < ∞ and
∫
v2R(dv) < ∞. Hence

∫
uQ(du) exists, and Q may be cho-

sen such that
∫
uQ(du) = 0. This implies

∫
w2Q0(dw) =

∫
(u + v)2Q(du)R(dv) =

∫
u2Q(du) +

∫
v2R(dv).

Relation (5.11.22) with Q in place of Q implies
∫
u2 Q̂(du) ≥ ∫

w2Q0(dw). Hence
∫
v2R(dv) = 0, and Q̂ = Q0. �

Bounds for Asymptotically Mean Unbiased Estimator Sequences

The definition of asymptotic median unbiasedness is straightforward. In the case of
asymptotic mean unbiasedness one encounters the problem that

∫
ϑ(n)(xn)Pn

ϑ (dxn)
does not necessarily exist. Even if this expectation exists, the natural definition,
limn→∞

∫
ϑ(n)(xn)Pn

ϑ (dxn) = ϑ , is not strong enough to be technically useful.More-
over, it does not entail some sort of local uniformity. Therefore, the theory of asymp-
totically mean unbiased estimator sequences is based on the following somewhat
artificial definition, which goes back to Chernoff (1956) [p. 12], at least.

For u > 0 let
Lu[y] := y1[−u,u](y), y ∈ R.

(Lu[y] := y1[−u,u](y) + u(1(−∞,−u) + 1(u,∞)) serves the same purpose.)
An estimator sequence (ϑ(n))n∈N is at ϑ0 asymptotically mean unbiased with rate

(cn)n∈N if for every sequence if ϑn = ϑ0 + c−1
n a, a ∈ R,

lim
u→∞ lim sup

n→∞

∣
∣
∣

∫
Lu

(
cn(ϑ

(n) − ϑn)
)
dPn

ϑn

∣
∣
∣ = 0.

If the family {Pϑ : ϑ ∈ Θ},Θ ⊂ R, fulfills an LAN-condition and if (ϑ(n))n∈N is
mean unbiased with rate cn = n1/2, then

lim
u→∞ lim inf

n→∞

∫
Lu[n1/2(ϑ(n) − ϑ0)]2dPn

ϑ0
≥ Λ(ϑ0). (5.11.23)

(See Pfanzagl 2001, p. 507, Theorem 3.1, improving an earlier result by Liu and
Brown (1993). Notice a misprint: cn in (3.6) has to be replaced by n1/2.)

Of course, relation (5.11.23) follows from the Convolution Theorem if Pn
ϑn

◦
n1/2(ϑ(n) − ϑn), n ∈ N converges to a limit distribution. The essence of this theorem
is that the local uniformity condition refers to mean unbiasedness only; convergence
to a limit distribution is not required.
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5.12 Asymptotic Normality: Global and Local

The idea to take theLAN-condition as a basis for asymptotic results developed slowly.
The starting point was the paper byWald (1943), suggesting the idea to approximate a
k-parameter family of i.i.d.-products for large n by a family of k-dimensional normal
distributions, and to obtain an approximate solution for the original problem (say an
optimal test) from the solution for the approximating normal distribution. The most
interesting result in this paper seems to be Lemma 2, p. 443, asserting the existence
of a map Wn : Bn → B

k such that

∣
∣Pn

ϑ (B) − N (0,Λ(ϑ))(Wn(B))
∣
∣ → 0 (5.12.1)

uniformly in ϑ and B ∈ B
n .

In this relation, Wn(B) is something like ϑ(n)(B), with ϑ(n) : Xn → R
k a ML

estimator. With Wn a set-transformation, the representation (5.12.1) is not easy to
deal with (though Wald presents various applications to asymptotic test theory).

IfWolfowitz (1952) [p. 10] says thatWaldwrote papers “without toomuch thought
of elegance”: this paper by Wald (containing 57 pages) is a convincing example.
Probably, nobody ever had the patience to study it in detail.

Global Asymptotic Normality

Wald’s approach was superseded by the following result of Le Cam (1956) [p. 140,
Theorem 1]:

Under suitable regularity conditions on the family {Pϑ |A : ϑ ∈ Θ}, Θ ⊂ R
k ,

dominated by μ|A , there exists an estimator sequence (ϑ(n))n∈N and a sequence of
probability measures Qn,ϑ |A n with μn-density

Kn(ϑ)hn1Bn (ϑ
(n) − ϑ) exp

[
− 1

2
n(ϑ(n) − ϑ)�L(ϑ)(ϑ(n) − ϑ)

]
(5.12.2)

such that
d(Pn

ϑ , Qn,ϑ ) → 0, (5.12.3)

uniformly for ϑ in compact subsets of Θ .
The regularity conditions correspond to a Taylor expansion of order 2 for

ϑ → log p(x, ϑ). Le Cam’s proof of this assertion involves the construction of
an asymptotically efficient estimator sequence under rather weak conditions. (See
Sect. 5.5.)

Since the density of Qn,ϑ is of the type hn(xn)gn(ϑ(n)(xn), ϑ), the function ϑ(n)

is sufficient for {Qn,ϑ : ϑ ∈ Θ}; naturally, (ϑ(n))n∈N is called “asymptotically suf-
ficient” for {(Pn

ϑ )n∈N : ϑ ∈ Θ}, n ∈ N. Observe that relation (5.12.3) implies, in
fact, an asymptotic property of (ϑ(n))n∈N stronger than “sufficiency”. Sufficiency of
an estimator ϑ̃ (n) for {Pn

ϑ : ϑ ∈ Θ} in the usual sense means that—in the present
framework—any Pn

ϑ (Bn) can be expressed through ϑ̃ (n) as
∫
Mn(ϑ̃

(n), Bn)dPn
ϑ . The
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asymptotic sufficiency as explained above means that P (n)
ϑ (Bn) can be approximated

by Qn,ϑ (Bn), without randomization.
Relation (5.12.3) is used in the papers by Kaufman (1966) and Inagaki (1970).

Kaufman (p. 170, Theorem 4.3) gives an independent proof of relation (5.12.3), with
Qn,ϑ similar to (5.12.2). Under his strong regularity conditions, the ML estimator
may be taken for ϑ(n).

In Michel and Pfanzagl (1970, p. 188, Theorem) it was shown that the factor
1Bn (ϑ

(n)(xn) − ϑ) in definition (5.12.2) may be omitted. In Pfanzagl (1972b) [p.
177, Theorem 1] it was shown that for every compact subset K ⊂ Θ there exists a
constant aK such that

sup
ϑ∈K

d(Pn
ϑ , Qn,ϑ ) ≤ aKn

−1/2.

According to Pfanzagl (1972c), approximations of the type (5.12.2) with

sup
ϑ∈K

n1/2d(Pn
ϑ , Qn,ϑ ) → 0

are impossible, even in a simple case like p(x, ϑ) = ϑ−1 exp[−ϑ−1x], x > 0, with
Θ = (0,∞).

After the general LAN -condition (see below) had been firmly established as a
technically useful tool for asymptotic theory, it was natural to reconsider “global
asymptotic normality”, originally confined to i.i.d., at this more general level. This
was done in papers by Milbrodt (1983), Droste (1985) and Pfanzagl (1995). For
n ∈ N let (Xn,An) be a measurable space. The family of sequences of distributions
{(Qn,ϑ )n∈N : ϑ ∈ Θ}, Θ ⊂ R

k is quasi-normal if Qn,ϑ has, with respect to some
σ -finite measure, a density

xn → Kn(ϑ) exp
[

− 1

2
c2n(ϑ

(n)(xn) − ϑ)�L(ϑ)(ϑ(n)(xn) − ϑ)
]

with Kn(ϑ) → 1.
The family of sequences {(P (n)

ϑ )n∈N : ϑ ∈ Θ} is called asymptotically normal if
there exists a quasi-normal family such that

d(P (n)
ϑ , Qn,ϑ ) → 0.

It can be shown that {(P (n)
ϑ )n∈N : ϑ ∈ Θ} is asymptotically normal iff it fulfills

an LAN-condition with Δn(·, ϑ) = L(ϑ)cn(ϑ(n) − ϑ), and with a remainder term
fulfilling rn(·, ϑ, an) → 0 (P (n)

ϑ ) for every bounded sequence (an)n∈N. This result
makes clear that an LAN-condition with a remainder term fulfilling rn(·, ϑ, a) →
0 (P (n)

ϑ ) for every a ∈ R
k , is not strong enough to imply asymptotic normality.

Milbrodt (1983) [p. 406, Theorem2.7] proves that LAN implies asymptotic normality
under a stronger condition on the remainder term in the LAN-condition, namely
sup|a|≤ε |rn(·, ϑ, a)| → 0 (P (n)

ϑ ). The result with a remainder term rn(·, ϑ, an) → 0
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which establishes the equivalence is due to Droste (1985) [p. 47, Satz 5.5]. Pfanzagl
(1995) [p. 117, Theorem] asserts the same result with an improved proof. The papers
mentioned above consider, in fact, a locally uniform version of this equivalence.
Since Θ is an open subset of Rk , the results hold then also uniformly on compact
subsets of Θ; hence the name “global asymptotic normality”.

That intuitively equivalent conditions on the remainder term like rn(·, ϑ, an) → 0
and rn(·, ϑ, a) → 0 are of decisive influence on an asymptotic result is somewhat
irritating.

Global asymptotic normality of i.i.d.-families was used by Kaufman and Inagaki
in the proof of the Convolution Theorem. The extension of global asymptotic nor-
mality from i.i.d. models to LAN-families is an interesting, nontrivial achievement
of asymptotic theory. From the technical point of view the proof of the Convolution
Theorem is easier if it uses the LAN-condition immediately (rather than taking the
intuitively inverting digression via global asymptotic normality).

Local Asymptotic Normality

Unlike Kaufman (1966) and Inagaki (1970), Hájek starts in his papers (Hájek 1970,
1972) not from relation (5.12.2), but from the following LAN-condition:

LAN-condition. Let (Xn,An), n ∈ N, be a sequence of measurable spaces. For
ϑ ∈ Θ ⊂ R

k let P (n)
ϑ be a sequence of probability measures such that

log(dP (n)
ϑ+c−1

n a

/
dP (n)

ϑ ) = a�Δn(·, ϑ) − 1

2
a�L(ϑ)a + rn(x, ϑ, a) (5.12.4)

with
P (n)
ϑ+c−1

n a
◦ Δn(·, ϑ) ⇒ N (a�L(ϑ), L(ϑ)) (5.12.5)

and
rn(·, ϑ, a) → 0 (P (n)

ϑ ) for every a ∈ R
k . (5.12.6)

(For variants of condition (5.12.6) see Pfanzagl 1994, p. 264.)

Under suitable regularity conditions on the family {Pϑ : ϑ ∈ Θ}, relation (5.12.4)
holds for (Xn,An) = (Xn,A n) and P (n)

ϑ = Pn
ϑ with

Δn(xn, ϑ) = n−1/2
n∑

ν=1

�•(xν, ϑ) and L(ϑ) =
∫

�•(·, ϑ)�•(·, ϑ)�dPϑ .

More on sufficient conditions for LAN can be found in Sect. 5.6.

In regular cases, theLAN-conditionholdswithΔn(xn, ϑ) = n−1/2 ∑n
ν=1 �

•(xν, ϑ);
in “almost regular” cases usually with Δn(xn, ϑ) = c−1

n

∑n
ν=1 �

•(xν, ϑ) and cn =
n1/2L(n) with L slowly varying.

As an example wemention the location parameter family generated by the density
p(x) = 2x exp[−x2]1(0,∞)(x), where LAN holds with
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Δn(xn, ϑ) = n−1/2(log n)−1/2
n∑

ν=1

(
2(xν − ϑ) − (xν − ϑ)−1

)
.

(See Pfanzagl 2002b, p. 484, Example 1. See also Ibragimov and Has’minskii 1973,
p. 249, Theorem 1, and 1981, p. 134, Theorem 5.1.)

There are, however, almost regular models with Δn(xn, ϑ) = ∑n
ν=1 hn(xν, ϑ),

where hn cannot be replaced by c−1
n �•. (See Pfanzagl 2002b, p. 481, Proposition 2.2

and Example 2.)

Proposition 5.12.1 The central sequence Δn, n ∈ N, is unique up to a term op(no)
only. It may always be chosen such that

d P (n)
ϑ+c−1

n a
/dP (n)

ϑ − exp
[
a�Δn(·, ϑ) − 1

2
a�L(ϑ)a

]
→ 0 (P (n)

ϑ ). (5.12.7)

This is, in certain instances, a convenient alternative to (5.12.4).

Proof To simplify our notations, let

gn := exp
[
a�Δn(·, ϑ) − 1

2
a�L(ϑ)a

]

and
δn := exp[rn(·, ϑ, a)]. (5.12.8)

Relation (5.12.6) implies
δn → 1 (P (n)

ϑ ).

As a consequence of (5.12.5),

∫
δngnd P

(n)
ϑ = 1 for n ∈ N. (5.12.9)

According to a Lemma of Hájek (1970) [p. 327, Lemma 1], Δn may be replaced by
a truncated version such that, in addition to (5.12.4),

∫
gnd P

(n)
ϑ → 1. (5.12.10)

(According to Hájek, the convergence in (5.12.10) holds even uniformly on compact
subsets of a, but this is not needed here.)

Since
P (n)
ϑ ◦ Δn(·, ϑ) ⇒ N (0, L(ϑ))

and ∫
exp[a�u − 1

2
a�L(ϑ)a]N (0, L(ϑ))(du) = 1,
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there are, for every ε > 0, numbers Mε and nε such that

∫
gn1[0,Mε](gn)dP

(n)
ϑ > 1 − ε for n ≥ nε.

Together with (5.12.10) this implies

∫
gn1(Mε,∞)(gn)dP

(n)
ϑ < ε for n ≥ n′

ε. (5.12.11)

Relation (5.12.7) follows if we show that

(δn − 1)gn → 0 (P (n)
ϑ ). (5.12.12)

By (5.12.9) and (5.12.10),

∫
(δn − 1)gnd P

(n)
ϑ → 0. (5.12.13)

We shall show that ∫
(δn − 1)1[0,1)(δn)gnd P (n)

ϑ → 0. (5.12.14)

Together with (5.12.13) this implies

∫
(δn − 1)1(1,∞)(δn)gnd P

(n)
ϑ → 0,

so that ∫
|δn − 1|gnd P (n)

ϑ → 0, (5.12.15)

which implies (5.12.12).
We have (use (5.12.11)

0 ≥
∫

(δn − 1)1[0,1](δn)gnd P (n)
ϑ ≥ Mε

∫
(δn − 1)1[0,1](δn)dP (n)

ϑ − ε

for n ≥ n′
ε. Since δn → 1 implies

∫
(δn − 1)1[0,1](δn)dP (n)

ϑ → 0,

relation (5.12.14) follows. �
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The LAN-conditionmay be considered as a localized version of global asymptotic
normality (in the sense of (5.12.2)). It describes the local properties of the family
{(P (n)

ϑ )n∈N : ϑ ∈ Θ} in a technically convenient way, sufficient for an asymptotic
theory of first order. How difficult is was, even for leading statisticians of this time,
to see the importance of conditions like local or global asymptotic normality, and to
understand themeaning of the resulting intrinsic bounds (as shown in theConvolution
Theorem and the Minimax Theorem) can be seen from C.R. Rao’s contribution to
the discussion of Hájek’s survey paper (1971, p. 160).

Remark LAN is usually attributed to Le Cam. Various conditions closely related to
(5.12.4) occur in Le Cam 1960 (see p. 46 “system A”; p. 51 “asymptotically differ-
entiable”; p. 57 “differentially asymptotically normal”), and in several subsequent
papers. Notice that “asymptotiquement dérivable” in Le Cam (1969) [p. 61] is some-
thing different from “asymptotically differentiable” in (1960, p. 46). In these papers,
Le Cam’s interest is confined to technical details of his LAN-variants. More surpris-
ing than Le Cam’s concentration on technicalities is the fact that he never tried to
apply LAN-conditions to statistical problems: It was left to Hájek (1970, 1972) to
extract from the LAN-profusion in Le Cam’s papers the technically useful version
(5.12.4), and to show that it provides a base for convolution- and minimax-theorems.
Though Le Cam’s LAN-variants refer to families of general sequences (P (n)

ϑ )n∈N, his
examples deal with product measures only. The first instance of a LAN-model out-
side this realm is due to Roussas (1965) [p. 979, Theorem 3.1] who proves LAN for
ergodicMarkov-processes. The first examples of LAN-familieswith a rate other than
n1/2 occur in Le Cam (1969) [pp. 108–112]. Themost interesting among these exam-
ples is the location parameter family generated p(x) = C(α) exp[−|x |α], α > 0, a
family first studied by Prakasa Rao (1968). This family is differentiable in quadratic
mean for α > 1/2, but not any more for α = 1/2, the “almost regular” case with
the rate n1/2(log n)1/2 mentioned above. Le Cam’s comments on this boundary case
are rather scarce. “On vérifie alors sans difficulté que la famille est encore asympto-
tiquement gaussienne...” Nothing about the central sequence Δn , and nothing about
the asymptotic variance; it remained that vague also in later publications (Le Cam
1986, p. 59) or Le Cam and Yang (1990, Example 2, pp. 111–114. Notice a misprint:
In the relation C(α) = α/2Γ (1/α), the factor α is missing.)

5.13 The Convolution Theorem

Kaufman’s Paper

In 1966, the optimality of ML estimators for i.i.d. observations was still an open
problem. Since Le Cam’s paper (1953) it was clear that there are problems with the
concept of an optimal limit distribution, and it took about 10 years to find a solution
in the restriction to estimator sequences which attain their limit distribution (locally)
uniformly (Rao 1963, Wolfowitz 1965).
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In the fundamental paper by Kaufman (1966) and the related paper by Inagaki
(1970), the main result reads as follows: Under suitable regularity conditions, the
ML-sequence (ϑ̂ (n))n∈N converges on the family {Pϑ : ϑ ∈ Θ}, Θ ⊂ R

k , uniformly
on compact subsets of Θ to N (0,Λ(ϑ)), where Λ(ϑ) is the inverse of the matrix
L(ϑ) := ∫

�•(·, ϑ)�•(·, ϑ)�dPϑ .
Leaving the relation to the ML-sequence aside (which was the main subject of

interest in this time), the essence of the Convolution Theorem can be described as
follows:

If Pn
ϑ ◦ (n1/2(ϑ(n) − ϑ), n ∈ N, converges to Qϑ |Bk , uniformly on Θ , then

Qϑ(C) ≤ N (0,Λ(ϑ))(C) (5.13.1)

for every C which is convex and symmetric about 0.
This follows easily from the main result in these papers, namely that n1/2(ϑ(n) −

ϑ̂ (n)) and n1/2(ϑ̂ (n) − ϑ) are, under (Pn
ϑ )n∈N, asymptotically stochastically indepen-

dent (Kaufman 1966, p. 164, Lemma 3.4, and Inagaki 1970, p. 8, Lemma 2.3). By
Anderson’s Theorem, this implies (5.13.1), which is Kaufman’s Theorem 2.1, p. 157.
Inagaki presents this result in a more elegant make up, as a Convolution Theorem
(p. 10, Theorem 3.1):

Qϑ = N (0,Λ(ϑ)) ∗ Rϑ . (5.13.2)

There can be no question that Kaufman could have arrived at the convolution version,
but he preferred the direct way via Anderson’s Theorem (see p. 166).

The use of Anderson’s Theorem was not obvious from the beginning. In the
abstract of Kaufman’s paper from 1965, the optimality assertion (5.13.1) was
confined to ellipsoids C which are concentric to the concentration ellipsoid of
N (0,Λ(ϑ)).

Compared with later versions of the Convolution Theorem, Kaufman’s paper
is overcrowded with regularity conditions on the parametric family {Pϑ : ϑ ∈ Θ},
Θ ⊂ R

k . These regularity conditions are to ensure the usual properties of the ML-
sequence. Moreover, they are needed to prove that the ML-sequence is “asymptoti-
cally sufficient” in the following sense: There exist sequences of functions gn(·, ϑ),
ϑ ∈ Θ , and hn on Xn such that uniformly on compact subsets of Θ ,

∫ ∣
∣
∣

n∏

ν=1

p(xν, ϑ) − hn(xn)gn(ϑ̂ (n)(xn), ϑ)

∣
∣
∣μn(dxn) → 0.

Kaufman’s proof has a clear underlying idea: For asymptotic considerations, the
sequence of i.i.d.-products Pn

ϑ , n ∈ N, can be replaced by a family, say Q(n)
ϑ , with

μn-densityxn → hn(xn)gn(ϑ̂ (n)(xn), ϑ). Since ϑ̂ (n) is sufficient for the family {Q(n)
ϑ :

ϑ ∈ Θ}, any estimator ϑ(n) can be obtained from ϑ̂ (n) by randomization, and this
suggests that ϑ(n) is less accurate than ϑ̂ (n). Plausible as this idea is, it is difficult
to carry through in a mathematically precise way. (For this purpose, (ϑ̂ (n))n∈N and



216 5 Asymptotic Optimality of Estimators

(ϑ(n))n∈N have to be replaced by asymptotically equivalent sequences etc.)Moreover,
as later proofs show, the idea that ϑ(n) is a randomization of ϑ̂ (n) is dispensable.

Kaufman’s paper is concerned with the asymptotic optimality of ML-sequences.
It cannot serve as a model for general convolution theorems. Yet, it contains an
idea which is basic for convolution theorems in general: The representation of an
estimator as the sum of two (asymptotically) stochastically independent terms, in
Kaufman’s paper (see p. 158).

n1/2(ϑ(n) − ϑ) = n1/2(ϑ̂ (n) − ϑ) + n1/2(ϑ(n) − ϑ̂ (n)), (5.13.3)

where ϑ̂ (n) is a modified version of the ML estimator.
Relation (5.13.3) may remind the reader of a similarly looking relation due to

Fisher (1925) [p. 706], namely

n1/2(ϑ(n) − ϑ) = n1/2(ϑ̂ (n) − ϑ) + n1/2(ϑ(n) − ϑ̂ (n)), (5.13.4)

where ϑ(n) is an arbitrary unbiased estimator. If ϑ̂n is an unbiased estimator of
minimal variance, the two terms on the right-hand side of (5.13.4) are uncorrelated
(but not necessarily stochastically independent). See also Sect. 7 in Fisher (1922).

Even if Kaufman’s proof is not easy to follow, it is the first mathematically accept-
able proof of a version of relation (5.13.1). (It does not diminish the value of Kauf-
man’s paper that he uses in one place, p. 168, a Theorem of Bergström (1945), the
proof of which is not correct; see Bergström 1974. Inagaki’s proof from (1970) is just
a streamlined version of Kaufman’s proof. (At a surface inspection, Inagaki’s paper
looks much nicer with respect to the regularity conditions, but this is just because of
his generous “we use the same regularity conditions ... as in Kaufman”.) Weiss and
Wolfowitz (1966) [Sect. 5] suggest for Kaufman’s result an alternative proof which
they consider as “simple and perspicuous”.

Considering the fact that Kaufman was a student of Wolfowitz, and that his paper
appeared almost simultaneously with the paper by Wolfowitz (1965) confined to
univariate families, which, for its part, uses results from Kaufman’s paper, one could
think that Kaufman did not do more than generalizing Wolfowitz’s result from one-
parameter to k-parameter families. This would be totally wrong. Wolfowitz’s result
is—like the results of C.R. Rao, Roussas and Schmetterer (see Sect. 5.11)—based
on the Neyman–Pearson Lemma. Kaufman’s result is based on Le Cam’s idea of
“asymptotic sufficiency”. See Le Cam (1956, 1964).

How was Kaufman’s result greeted by the scientific community? Schmetterer
(1956 and 1974), familiar with a fundamental preliminary version of Wolfowitz
(1965) ignores Kaufman altogether. Le Cam, whose paper (1956) was a cornerstone
for Kaufman, did not react until Hájek’s paper appeared in 1970 (Hájek 1970).
Roussas, who was coauthor of the paper on the convolution theorem by Roussas and
Soms, published (1973), confines himself to the statement (see Roussas 1972 (!), p.
131):

Kaufman [1966] has generalized Wolfowitz’s result for the case that Θ is k-dimensional.
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Hajek’s Convolution Theorem

Shortly after Kaufman’s Theorem from (1966), Hájek (1970) published a general
Convolution Theorem . In Kaufman’s paper the limit distribution of uniformly con-
vergent estimator sequences hadbeen shown tobe a convolutionproduct involving the
limit distribution of the ML-sequence. A general Convolution Theorem establishes
that the limit distribution of any uniformly convergent sequence is a convolution
product—of what? This question is answered implicitly in Hájek’s paper. He pre-
sumes that the basic family of probability measures fulfills an LAN-condition (see
his p. 324, relation 2).

TheConvolutionTheorem asserts that the limit distribution of any convergent esti-
mator sequence is a convolution product with the limit distribution of Pn

ϑ ◦ Δn(·, ϑ),
i.e. that Pn

ϑ ◦ Δn(·, ϑ) is an intrinsic bound for the concentration of everywhere con-
vergent estimator sequences. There is, however, no general result that guarantees that
this bound is attained by an estimator sequence. What is the meaning of “attained”
in this connection? After all the concept of “regular convergence” is technically use-
ful but not intuitively convincing. A mathematically consistent result requires that
there should be regular estimator sequences attaining this bound. From an intuitive
point of view one would like to have an estimator sequence attaining this bound that
converges on compact subsets of Θ .

The asymptotic optimality of Pn
ϑ ◦ Δn(·, ϑ) would be a natural consequence of

the representation

n1/2(ϑ(n) − ϑ) = Δn(·, ϑ) + n1/2(ϑ(n) − ϑ) − Δn(·, ϑ) (5.13.5)

with asymptotically stochastically independent termsΔn(·, ϑ) and n1/2(ϑ(n) − ϑ) −
Δn(·, ϑ). Surprisingly, this argument does not occur in connection with general func-
tions of the parameters explicitly until Bickel et al. (1993) (where it occurs at various
levels of generality: Theorem 2.3.1, p. 24, Theorem 3.3.2, p. 63, Theorem 5.2.2, p.
182, etc.).

Moreover, Hájek’s proof of his Convolution Theorem on pp. 324/5, is not optimal
in its presentation. It is, therefore, not surprising that it was superseded soon by the
now common proof suggested by Bickel and worked out in detail by Roussas and
Soms (1973; see the reference on p. 28, and Theorem 5.1, pp. 34/5).

Bickel’s idea to base the proof of the Convolution Theorem on characteristic
functions was presented in detail in Roussas and Soms (1973, p. 28, and Theorem
5.1, pp. 34/5). It appears in various textbooks (Bickel et al. 1993, Theorem 3.3.2,
pp. 63/4, Pfanzagl 1994, Theorem 8.4.1, pp. 278/9; Witting and Müller-Funk (1995,
Satz 6.211, pp. 433/4).

What distinguishes Hájek’s approach from that of Kaufman and Inagaki is (i) the
use of an LAN-condition, extending the applicability from i.i.d. families to more
general ones, (ii) the idea of an intrinsic bound for the asymptotic accuracy of esti-
mator sequences, a bound which is determined by the local structure of the family,
as described by the LAN-condition, and which makes no reference to a particular
(asymptotically efficient) estimator sequence, and (iii) the technical details of the

http://dx.doi.org/10.1007/978-3-642-31084-3_2
http://dx.doi.org/10.1007/978-3-642-31084-3_3
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proof are concerned with limit distributions, not with the estimators themselves.
(What has not survived from Hájek’s approach are Bayesian techniques.) The com-
ments by C.R. Rao (p. 160) and Godambe (p. 159) on Hájek’s paper from (1971)
show how progressive Hájek’s approach has been.

Obviously, Hájek considers his Convolution Theorem as a generalization of Kauf-
man’s Theorem. Yet, he is rather terse about the consequences of his theorem for the
optimality of ML-sequences.

Remark Some authors name the “Convolution Theorem” after Hájek and Le Cam.
This eponymy takes into account that it was Le Cam who had blazed the trail for
Hájek’s version of the Convolution Theorem by his papers on asymptotic normal-
ity, local and global, mainly in Le Cam (1956, 1960 and 1966). If it is true that
Hájek’s publication of the Convolution Theorem (1970) came to Le Cam as “a bolt
out of the blue” (a personal communication of Beran, cited in van der Vaart 2002,
p. 643) this confirms that Le Cam had, at this time, was not focused on what his fel-
low statisticians considered as relevant problems. In his last papers prior to Hájek’s
path-breaking paper from 1970, Le Cam (1969, entitled Théorie asymptotique de la
décision statistique, still plays around with various subtle points related to “asymp-
totic normality”. The emphasis of this paper can be illustrated by the references
which include Alexiewicz (differentiation of vector valued functions), Dudley (con-
vergence of Baire measures), Pettis (differentiation in Banach spaces), Saks (theory
of the integral), but not the paper by Kaufman (1966), which was based on Le Cam
(1956). If Le Cam says that he could prove the Convolution Theorem immediately
after he had seen it (Yang 1999, p. 236), this confirms his ability to perceive the
abstract structure of a problem (the local translation invariance, in this case). Two
years after Hájek’s paper, Le Cam, using the techniques of Le Cam (1964), offers an
abstract version of the Convolution Theorem (Le Cam 1972, p. 256, Proposition 8)
which asserts the existence of a transition between the limit distribution of a distin-
guished statistic and an arbitrary limit distribution. In Proposition 10, pp. 257/6, he
gives conditions under which this transition may be represented as a convolution. In
Sect. 6 he indicates certain applications of this result, including convolutions with an
exponential factor, cases which are ignored by Hájek. Ibragimov and Has’minskii
obtained for the same models the same results by elementary techniques. (See Ibrag-
imov and Has’minskii (1981), p. 278, Theorem 5.2. Hint: In relation 5.5, the letter n
must be replaced by u, a misprint dating from the Russian original, 1979, p. 370.)

We shall not follow Le Cam’s path to more and more abstract versions, a path
which ends up with the idea that the essence of the Convolution Theorem was there
long before statisticians had any notion of it: No, it is not the unpublished thesis
of Boll (1955); it is a paper by Wendel (1952) on the representation of bounded
linear transformations on integrable functions on locally compact groups with right
invariant Haar measure. Such transformations can be represented by a convolution
if they commute with all operations of left multiplication. (See the reference in Le
Cam 1994, p. 405 or 1998, p. 27.) �
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The first Convolution Theorems refer to estimator sequences of ϑ ∈ Θ ⊂ R
k .

For a coherent theory of asymptotic efficiency, a convolution theorem for estimator
sequences κ(n) of κ(ϑ) and on functionals κ(P)) is indispensable. Without such a
general Convolution Theorem it is impossible to say that κ(ϑ(n)) is asymptotically
optimal for κ(ϑ) if ϑ(n) is asymptotically optimal for ϑ , that ϑ(n) = (ϑ

(n)
1 , . . . , ϑ(n)

p )

is asymptotically optimal for ϑ = (ϑ1, . . . , ϑp) if each component ϑ(n)
i is asymptot-

ically optimal for ϑi , etc. Such a coherent theory, based on local properties of the
familyP and the functional κ leads to an inherent concept of asymptotic optimality.
Convolution Theorems for functionals (rather than parameters) appear in Pfanzagl
1982, p. 158, Theorem 9.3.1, van der Vaart (1988, p. 20, Theorem 2.4), a Le Cam-
type Convolution Theorem in Strasser (1985) [p. 199, Theorem 38.26], Bickel et al.
(1993) [p. 63, Theorem 3.3.2 and p. 182, Theorem 5.2.2.]

Lehmann and Casella (1998) present an asymptotic estimation theory without
the Convolution Theorem. In Theorem 6.5.1b, p. 463, they give conditions under
which the ML-sequence ϑ̂ (n) is asymptotically normal with variance Λ(ϑ). The
problem is to show that N (0,Λ(ϑ)) is optimal in some sense. The authors try to
answer this question in Theorem 6.5.1. Since their relation 5.10 is an immediate
consequence of Pn

ϑ ◦ n1/2(ϑ̂ (n) − ϑ) ⇒ N (0,Λ(ϑ)), it remains unclear where the
asymptotic efficiency asserted in Theorem 6.5.1c should come from. The reference to
Theorem 6.3.10, p. 449 and to Definition 6.2.4, p. 439 is of no help. Theorem 6.3.10
refers to univariate parametric families, and Definition 6.2.4 is motivated by the
relationσ 2(ϑ) ≥ Λ(ϑ)which holds “under some additional restriction” for estimator
sequences with limit distribution N (0, σ 2(ϑ)).

With this presentation, the authors withhold two important messages from the
reader:

(i) Asymptotic optimality is restricted to estimator sequences converging to a limit
distribution locally uniformly in some sense.

(ii) There is an operationally meaningful concept of multivariate optimality (which
applies, in particular, to ML-sequences).

Hence the reader Lehmann and Casella’s book gets no complete picture of the
asymptotic optimality of ML-sequences—a problem in the focus of statistical theory
since the twenties, and with a satisfying answer available since Kaufman’s paper
from 1966.

The textbook by Witting and Müller-Funk 1995 (with 803 pages on asymptotic
theory), might have been the appropriate forum to present a coherent theory of
multivariate asymptotic optimality. They forgave this chance. Though they present
a detailed proof of the Convolution Theorem as Satz 6.211 (with a reference to
Hájek 1970, followed by a proof based on Bickel’s idea), it appears that the authors
misunderstood the relevance of this theorem for proving the asymptotic optimality
of ML-sequences. In Satz 6.35, p. 202, they show that the ML-sequence converges
to N (0,Λ(ϑ)), in Satz 6.203, p. 423 they claim the asymptotic optimality of the
ML-sequence. This claim is based on Satz 6.202, p. 423 which asserts that Λ(ϑ) is
minimal in the Löwner-order—among all normal limit distributions of regular and
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asymptotically linear [!] estimator sequences. Asymptotic linearity is a widespread
and technically useful property of estimator sequences. Yet one might prefer an
optimality concept for estimator sequences which is based solely on an operationally
significant property. The Convolution Theorem, presented in Satz 6.211, p. 433,
would have provided the appropriate framework to establish the optimality of the
ML-sequence among all regular estimator sequences of the parameters. Estimators
for functionals κ : Rk → R

p flare up, here and there, like an ignis fatuus. On p. 175
the authors suggest for this purpose a curious estimator (which is, in their opinion,
ML “im erweiterten Sinne”). On p. 424 the problem of estimating κ(ϑ) is raised
again. At this point they should have noticed that an appropriate answer requires a
Convolution Theorem for estimators of κ(ϑ).What they offer in this connection, Satz
6.204, p. 424 is on functionals κ which are bijective and differentiable. In part b) of
this Theorem they just compute the distribution of κ(ϑ(n)) if ϑ(n) is asymptotically
linear and efficient, but they say nothing about the optimality of these estimator
sequences.

A reader who has studied section their 6.5 on “local asymptotic efficiency” of
almost 50 pages will discover that he has not learned how to answer a simple question
like: “Which is the asymptotically best estimator sequence for the coefficient of
variation in the family {N (μ, σ 2)n : μ > 0, σ 2 > 0}?”

So far we have followed the first steps towards a convolution theorem for estima-
tors of the parameters. Now we turn to the general problem of a convolution theorem
for a general functional defined on an arbitrary family of probability measures P.
Let now κ : P → R

p be a functional that is differentiable at P with canonical gra-
dient κ∗(·, P). The presentation (5.13.5) suggests to consider for an estimator
κ(n) : Xn → R

p the analogous presentation

n1/2(κ(n) − κ(P)) = κ̃∗(·, P) + (
n1/2(κ(n) − κ(P)) − κ̃∗(·, P)

)
. (5.13.6)

To prove that Pn ◦ n1/2(κ(n) − κ(P)) is asymptotically a convolution product with
Pn ◦ κ̃∗

n (·, P), it remains to be shown that κ̃∗(·, P) and n1/2(κ(n) − κ(P)) − κ̃∗(·, P)

are asymptotically stochastically independent.
In fact, a more general result holds true. The sequence n1/2(κ(n) − κ(P)) −

κ̃∗(·, P) is asymptotically stochastically independent of any g̃ with g ∈ T (P)p. This
follows immediately from Proposition5.13.1.

The proofs of various versions of the Convolution Theorem, too, in Bickel et al.
(1993), are based on the presentation (5.13.6). (See p. 24, Theorem 2.3.1, relation
3, pp. 63/4, Theorem 3.3.2, relations 26 and 27, p. 182, Theorem 5.2.2, relation 21.)
The proofs of all these convolution theorems follow the same pattern, due to Bickel,
as presented in Roussas and Soms (1973). Observe that for parametric families a
much simpler proof could be obtained from Proposition5.13.1.

In the following we present a result for estimators (κ(n)
1 , . . . , κ(n)

p ) of a functional
(κ1(P), . . . , κp(P)) on a general family of probability measures with tangent space
T (P).

http://dx.doi.org/10.1007/978-3-642-31084-3_2
http://dx.doi.org/10.1007/978-3-642-31084-3_3
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Proposition 5.13.1 If (κ(n)
1 , . . . , κ(n)

p ) is regular with respect to the linear space
spanned by g1, . . . , gk ∈ T (P), then g̃1, . . . , g̃k and

n1/2(κ(n)
1 − κ1(P)) − κ̃∗

1 (·, P), . . . , n1/2(κ(n)
p − κ(P)) − κ̃∗

p(·, P)

are asymptotically stochastically independent.

Proof The multidimensional version follows from the one-dimensional one, applied
with

κ =
p∑

i=1

aiκi , κ(n) =
p∑

i=1

aiκ
(n)
i , g =

p∑

i=1

ai gi .

In the following proof we write κ∗ for κ∗(·, P). Since the sequence of probability
measures

Pn ◦ (
g̃, κ̃∗, n1/2(κ(n) − κ(P))

)
, n ∈ N,

is tight, Prohorov’s Theorem implies the existence of a sequence N0 and of a proba-
bility measure Π |B × B × B such that

Pn ◦ (
g̃, κ̃∗), n1/2κ(n) − κ(P))

)
n∈N0

⇒ Π |B × B × B.

Since the limits turn out to be independent of N0 the reference to N0 will be omitted
throughout. By assumption, the marginal on the first two components of Π is the
normal distribution N (0,Σ(P)) with

Σ11 =
∫

u2Π(d(u, v,w)), Σ12 =
∫

uvΠ(d(u, v,w)), Σ22 =
∫

v2Π(d(u, v,w)).

Since κ(n) is regular with respect to ag + bκ∗, there is a probability measure M |B
such that

Pn
n−1/2(ag+bκ∗) ◦ n1/2(κ(n) − κ(Pn−1/2(ag+bκ∗))) ⇒ M for a, b ∈ R.

Since

n1/2
(
κ(Pn−1/2(ag+bκ∗)) − κ(P)

) →
∫

κ∗(ag + bκ∗)dP = aΣ12 + bΣ22,

the regularity of κ(n) implies that

Pn
n−1/2(ag+bκ∗) ◦ (

n1/2(κ(n) − κ(P)) − aΣ12 − bΣ22
) ⇒ M for a, b ∈ R.

This implies that

∫
H (w − aΣ12 − bΣ22)
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exp
[
(au + bv)) − 1

2
(a2Σ11 + 2abΣ12 + b2Σ22)

]
Π(d(u, v))

=
∫

H(w)Π(dw) for a, b ∈ R (5.13.7)

for every bounded and continuous function H . With H(w) = exp[i tw] we obtain
from (5.13.7) that

∫
exp

[
i t (w − aΣ12 − bΣ22)

]

exp
[
(au + bv) − 1

2
(a2Σ11 + 2abΣ12 + b2Σ22)

]
Π(d(u, v))

=
∫

exp[i tw]Π(dw) for a, b ∈ R. (5.13.8)

Since the left-hand side of (5.13.8) is a holomorphic function of a, b, relation (5.13.8)
holds for all a, b ∈ C . From (5.13.8), applied with a = is and b = −i t we obtain

∫
exp[isu + i t (w − v)]Π(d(u, v,w))

= exp
[

− 1

2
s2Σ11 + t2Σ22

] ∫
exp[i tw]Π(dw). (5.13.9)

Applied with t = 0, relation (5.13.9) yields

∫
exp[isu]Π(du) = exp

[
− 1

2
s2Σ11

]

which is the characteristic function of N (0,Σ11). Applied with s = 0, relation
(5.13.9) yields

∫
exp[i t (w − v)]Π(d(v,w)) = exp[t2Σ22]

∫
exp[i tw]Π(dw).

Inserting this relation into (5.13.9), we obtain
∫

exp[isu + i t (w − v)]Π(d(u, v,w)) =
∫

exp[isu]Π(du)
∫

exp[i t (w − v)]Π(d(v,w)),

which implies the stochastic independence between u and w − v under Π . �
A Convolution Theorem for General Families

Theorem 5.13.2 Let κ : P → R
p be a differentiable functional , i.e., there exists a

canonical gradient κ∗(·, P) such that

n1/2(κ(Pn−1/2g) − κ(P)) →
∫

κ∗(·, P)gdP for g ∈ T (P,P).
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Let κ(n), n ∈ N, be a regular estimator sequence for κ(P), i.e.

M := lim
n→∞ Pn

n−1/2g ◦ n1/2(κ(n) − κ(Pn−1/2g))

is the same for every g ∈ T (P,P). Then M is a convolution product of the factor
N (0,Σ(P)), with

Σ(P) =
∫

κ∗(·, P)κ∗(·, P)�dP, (5.13.10)

and the limit distribution of

(R(n)(·, P) = n1/2(κ(n)
i − κ(P)) − κ̃∗

i (·, P).

By Anderson’s Theorem this implies

N (0,Σ(P))(C) ≥ Π0(C) for C ∈ Cp. (5.13.11)

Equality in (5.13.11) holds for every C ∈ Cp iff

R(n)
i (·, P) → 0 (Pn) for i = 1, . . . , p,

i.e.
n1/2(κ(n)

i − κi (P)) = κ̃∗
i (·, P) + o(n0, Pn),

hence κ
(n)
i is asymptotically linear with influence function κ∗

i (·, P). By Proposi-
tion5.5.1, such estimators are automatically regular.

Proof of the Theorem. Since

n1/2(κ(n)
i − κi (P)) = κ̃∗

i (·, P) + R(n)
i (·, P) + o(n0, Pn),

we obtain from Proposition5.13.1 that g̃ and R(n)(·, P) are asymptotically stochas-
tically independent for every g ∈ T (P,P). Applied with g = αiκ

∗
i (·, P) this yields

the asymptotic independence between κ̃∗(·, P) and R(n)(·, P). Hence the limit dis-
tribution of n1/2(κ(n) − κ(P)) is a convolution product between the limit distribution
of κ∗(·, P) and that of R(n)(·, P). �
The Convolution Theorem Applied to Parametric Families

If P = {Pϑ : ϑ ∈ Θ}, Θ ⊂ R
k , then the tangent space is (under suitable regularity

conditions on the densities) the linear subspace of L∗(P) spanned by the components
of �•(·, ϑ). The canonical gradient of the functional κ(ϑ) := ϑ is Λ(ϑ)�•(·, ϑ),
and the optimal limit distribution of regular estimators of ϑ is N (0,Λ(ϑ)). Regular
estimator sequences (ϑ(n)),n ∈ N, attaining this limit distribution have the stochastic
expansion

n1/2(ϑ(n) − ϑ) = Λ(ϑ)�̃•(·, ϑ) + o(n0, Pϑ).
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If κ : Θ → R
p is continuously differentiable with Jacobian

J (ϑ) = (κ
( j)
i (ϑ))i=1,...,p; j=1,...,k,

it suggests itself to use κ(n) := κ(ϑ(n)) as an estimator of κ(ϑ). If ϑ(n) is regular for
ϑ , then κ(ϑ(n)) is also regular by the expansion

n1/2(κ(ϑ(n) − κ(ϑ)) = J (ϑ(n))n1/2(ϑ(n) − ϑ) + o(n0, Pn
ϑ ). (5.13.12)

If Pn
ϑ ◦ n1/2(ϑ(n) − ϑ) is asymptotically normal with covariance matrix Σ(ϑ) =

Λ(ϑ) (the optimal limit distribution), thenn1/2(κ(ϑ(n) − κ(ϑ))has (as a consequence
of the asymptotic expansion (5.13.12)) the normal limit distribution with covariance
matrix J (ϑ)Λ(ϑ)J (ϑ)�. One might suspect that this limit distribution is optimal
among all regular estimator sequences of κ(ϑ) (not just among estimator sequences
of the type κ(ϑ(n)). To answer such a question, we need a concept of asymptotic
optimality for estimators of a functional κ(ϑ). Since the canonical gradient of κ(ϑ)

in the tangent space spanned by the components of �•(·, ϑ) is

κ∗(·, ϑ) = J (ϑ)Λ(ϑ)�•(·, ϑ),

this leads to N (0,Σ(ϑ)) withΣ(ϑ) = J (ϑ)Λ(ϑ)J (ϑ)� as the optimal limit distri-
bution of estimators of κ(ϑ).

Proposition5.13.1 implies that �̃•
n(·, ϑ) andn1/2(κ(n) − κ(ϑ)) − K (ϑ)Λ(ϑ)�̃•(·, ϑ)

are asymptotically independent. Hence the optimal limit distribution for estimator
sequences (κ(n), n ∈ N, that are regular with respect to all directions, is N (0,Σ(ϑ)).

Applied with p = k and κ(ϑ) = ϑ , this leads to J = I , the k × k unit matrix, i.e.
to Σ(ϑ) = Λ(ϑ).

For readers who dislike the condition of regular convergence on which the Con-
volution Theorem is based, we offer an alternative which is based on the continuity
of Σ(ϑ):

Theorem 5.13.3 Assume that Pn
ϑ ◦ n1/2(κ(n) − κ(ϑ)), n ∈ N, converges to a limit

distribution Qϑ which is continuous at ϑ0. If Σ(ϑ) is continuous at ϑ0, then

∫
�(u)N (0,Σ(ϑ0))(du) ≤

∫
�(u)Qϑ0(du)

for every subconvex loss function �.

For a proof see (5.14.2).

Some scholars are misguided by formulations like “What is the best estimator
sequence for ϑ1 in the presence of nuisance parameters ϑ2, . . . , ϑp?”. Such formu-
lations ignore an essential aspect, namely: The quality of the estimator ϑ(n)

1 for ϑ1 is
limited by the condition that (ϑ(n)

1 )n∈N must be regular with respect to all parameters.
Whether estimators of nuisance parameters are required does not matter.
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According to our intuition, it should be possible to estimate ϑ1 more accurately
if we know the nuisance parameters ϑ2, . . . , ϑp. This idea occurs occasionally in
the literature. In connection with the Cramér-Rao Theorem, Cramér (1946b) [p. 94]
mentions this phenomenon explicitly. Kati (1983) [p. 302] objects against Bar-Lev
and Reiser (1983) [p. 300] for estimating two parameters of a Gamma-distribution
simultaneously. A somewhat twisted statement in Stuart and Ord (1991) [p. 676,
and p. 646, Exercise 17.20] asserts that, for any component, the minimal attainable
variance is “no less than if a single parameter were being estimated”. Surprising
is the remark in Witting and Müller-Funk (1995) [p. 426] on this problem. Given
estimators (ϑ(n)

1 , . . . , ϑ
(n)
k ) for (ϑ1, . . . , ϑk) and p < k, they say “auf die Frage der

asymptotischen Effizienz von [(ϑ(n)
1 , . . . , ϑ(n)

p ) als Schätzer für (ϑ1, . . . , ϑp)] soll
wegen des Auftretens der “Nebenparameter” ϑp+1, . . . , ϑk hier nicht weiter einge-
gangen werden.”

To emphasize this point, we consider the functional κ(ϑ) = ϑ1. Specialized to
this case, Proposition5.13.1 says that n1/2(ϑ(n)

1 − ϑ1) − ∑k
j=1 Λ1 j (ϑ)�̃( j)(·, ϑ) is

stochastically independent of �̃•(·, ϑ). Hence n1/2(ϑ(n)
1 − ϑ1) is stochastically inde-

pendent of every �̃(i)(·, ϑ), i 
= 1 (which was considered by Parke 1986, p. 356, a
“surprising fact”).

Proposition5.13.1 implies that n1/2(ϑ(n) − ϑ̂ (n)) and n1/2(ϑ̂ (n) − ϑ) are stochas-
tically independent if ϑ̂ (n), n ∈ N, is asymptotically optimal. This asymptotic sto-
chastic independence occurs in a weaker form in R.A. Fisher (1925, p. 706):
n1/2(ϑ̂ (n) − ϑ) and n1/2(ϑ(n) − ϑ̂ (n)) are symptotically uncorrelated. (Hint: If ϑ̂ (n)

has minimal asymptotic variance, the asymptotic variance of (1 − α)ϑ̂(n) + αϑ(n)

cannot be smaller.)

Discussion of the Convolution Theorem

The limit distributions in the Convolution Theorem are of the form Q = Q ∗ R with
Q and R Q in some class Q of probability measures on B

k .
Obviously, Q is unique up to shifts only: If Q = Q ∗ R, then Q = Qc ∗ R−c for

every c ∈ R
k (where Pc is a shifted version of P). If Q is closed under shifts, then

Q is unique up to a shift (i.e., if Q1 and Q2 have the property specified above, then
they differ by a shift only. (For a proof see Pfanzagl 2000a, p. 3, Proposition 3.1.)

Some authors consider the assertion that a given limit distribution, say Q, can
be represented as a convolution product like Q = Q ∗ R as a final result (see e.g.
Roussas 1972, or Janssen and Ostrovski 2013). These authors ignore the fact that a
relation like Q = Q ∗ R admits an operational interpretation in terms of concentra-
tion on certain sets in special cases such as Q = N (0,Σ) only. They accept without
discussion that Q is “better” than Q ∗ R and that, therefore, an estimator sequence
with limit distribution Q is asymptotically better than an estimator sequence with
limit distribution Q ∗ R, as the latter one is subject to a “disturbance”, expressed by
R. First doubts about the weight of this idea arise from the fact that the representation
of a probabilitymeasure as a convolution product is not unique. Is it convincing to say
that every Qc is better than Q ∗ R? For a discussion of this question see Section 2.8.
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The concept of multivariate optimality based on the peak-order is an outgrowth
of Anderson’s Theorem and is therefore restricted to models for which the optimal
limit distribution is normal. Prior to the Convolution Theorem there was no con-
vincing idea of a concept of multivariate optimality. Starting from the univariate
situation where the concentration on symmetric intervals was universally accepted
as an expression of the accuracy of limit distributions, it was not clear what the
adequate generalization from R

1 to R
k could be: symmetric rectangles (symmetric

in which sense) or balls? Kaufman, before he settled on arbitrary symmetric convex
sets, thought of the concentration on ellipsoids {u ∈ R

k : u�Λ(ϑ)u ≤ r} (see his
Abstract from 1965).

In order to create anoperationally significant concept ofmultivariate concentration
on Bk one needs a family of setsBp ⊂ B

p which can be used to define “Q0 is more
concentrated than Q1 if Q0(B) ≥ Q1(B) for every B ∈ Bp”.

By Anderson’s Theorem, such an assertion holds for Bp = Cp if Q1 is a convo-
lution product with a factor Q0 which is symmetric and unimodal. It appears that
there is no familyBp of interesting sets larger than Cp (except for the stripes).

The optimality concepts for probability measures on B
p and B

q are linked in a
meaningful way if for q < p the familyBq consists of all sets with cylinders inBp,
i.e., if Bq consists of all sets B ∈ B

q such that {u ∈ R
p : Ku ∈ B} ∈ Bp for some

q × p matrix K . In this case,

Q0(B) ≥ Q1(B) for B ∈ Bp

implies

Q0 ◦ (u → Ku)(B) ≥ Q1 ◦ (u → Ku)(B) for B ∈ Bq . (5.13.13)

Relation (5.13.13) is in particular fulfilled if Bp = Cp and Bq = Cq .

Functions of Functionals

What has been said about the quality of estimators of functions of the parameter can
be generalized to functions, say Gi (κ1(P), . . . , κp(P)), i = 1, . . . , q, of functionals
(κ1(P), . . . , κp(P)). These reflections are needed to develop an operational concept
of multivariate optimality.

Throughout the following we assume that the function G : Rp → R
q is continu-

ously differentiable at κ(P) with Jacobian

J (κ(P)) = (G( j)
i (κ(P)))i=1,...,q; j=1,...,p.

Then

n1/2(G(κ(n)) − G(κ(P))) = J (κ(P))n1/2(κ(n) − κ(P)) + o(n0, Pn). (5.13.14)
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This makes it easy to link the asymptotic concentration of G(κ(n)) in certain subsets
ofBq , sayBq , to the asymptotic concentration of κ(n) in corresponding subsets ofBp.

Convexity is a natural requirement for the sets in Bp and Bq . According to the
Convolution Theorem, concentrations of regularly attainable limit distributions are
comparable on convex sets that are symmetric about the origin. This is a property
inherited from κ(n) by G(κ(n)).

A particular consequence: If κ̂ (n) is better than κ(n) on Cp, then G(κ̂(n)) is better
than G(κ(n)) on Cq . This does, however, not imply that optimality of κ(n) implies
optimality of (G(κ(n)) among all regular estimator sequences of G(κ(P). For this,
the Convolution Theorem is indispensable.

Under suitable regularity conditions, the canonical gradient ofG ◦ κ is of the form
J (κ(P))κ∗(·, P). Hence the covariance matrix of the optimal limit distribution of
regular estimator sequences ofG(κ(P)) is J (κ(P))Σ(P)J (κ(P))�, whereΣ(P) =∫
κ∗(·, P)κ∗(·, P)�dP is the covariance matrix of the optimal limit distribution of

regular estimator sequences of κ .
It now follows from (5.13.14) that the estimator sequence G(κ(n)) is optimal on

Cq among all regular estimator sequences if κ(n) is optimal on Cp. In particular: If
κ(n) is optimal on Cp, then each component Gi (κ

(n)) is optimal on C1, the family
of all intervals symmetric about 0. Hence a multidimensionally optimal estimator
sequence consists of optimal components.

Conversely, if κ(n)
1 , . . . , κ(n)

p are p optimal estimator sequences, then each of these
admits the stochastic expansion

n1/2(κ(n)
i − κi (P)) = κ̃∗

i (·, P) + o(n0, Pn).

Therefore, (κ(n)
1 , . . . , κ(n)

p ) estimates (κ1(P), . . . , κp(P)) and has the limit distribu-
tion N (0,Σ(P)), which is optimal according to the Convolution Theorem.

To summarize: In a comparison between estimator sequences based on the asymp-
totic concentration on convex and symmetric sets, we find that functions of better
estimator sequences are again better. In LAN-models, functions of optimal estimator
sequences are again optimal. In particular, optimal multivariate estimator sequences
consist of optimal components.

The following example shows that the phrase “componentwise optimality implies
joint optimality” has to be interpreted with some care.

Example There exist probability measures Q0|B2 with the following properties.

(i) For i = 1, 2, the marginals Q0i are of minimal spread.
(ii) There exists Q|B2 such that Qi has the same median, say mi , as Q0i , so that

Qi (I ) ≤ Q0i (I ) for every interval I containing mi .
(iii) There are intervals I1 
 m1 and I2 
 m2 such that

Q(I1 × I2) > Q0(I1 × I2). (5.13.15)
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Hence component-wise optimality does not imply optimality on a relevant sub-
set of B2, even if the comparison is restricted to probability measures with
comparable marginals.

Since Q is in this example a convolution product with the factor Q0, relation
(5.13.15) also disproves the idea that “convolution always spreads out mass” (see
Section 2.8).

Here is such an example. Let q(x) := 1(0,∞)(x)e−x , x ∈ R, be the density of
the exponential distribution. Let Q0|B2 be the probability measure with λ2-density
(x1, x2) → q(x1)q(x2). Let R|B be a probability measure with support (− log 2,∞).
(This is just for convenience.) Let Q|B2 be the probability measure with λ2-density

(x1, x2) →
∫

q(x1 + y)q(x2 + y)R(dy).

Essential for the following computations is the relation

∫

t+y
q(x)dx = e−(t+y) if t ≥ log 2 and y > − log 2.

For i = 1, 2, the probability measure Q0i has the median log 2, and Qi has the same
median if

∫
e−y R(dy) = 1. Moreover,

Q((t ′, t ′′) × (t ′, t ′′)) =
∫

Q0((t
′ + y, t ′′ + y) × (t ′ + y, t ′′ + y))R(dy)

=
∫

(e−t ′ − e−t ′′)2
∫

e−2y R(dy) if log 2 ≤ t ′ < t ′′.

Since
∫
e−2y R(dy) >

∫
e−y R(dy) = 1 (unless R{0} = 1), this implies

Q((t ′, t ′′) × (t ′, t ′′)) > Q0((t
′, t ′′) × (t ′, t ′′)),

with strict inequality if R is chosen appropriately. Since the (strict) inequality holds
for every t ′ ≥ log 2, it also holds for t ′ < log 2 close to log 2, in which case (t ′, t ′′) ×
(t ′, t ′′) contains the medians (log 2, log 2). �

The following example shows that “componentwise better” does not always imply
“jointly better”.

Example There are Q0 = N (0,Σ0) and Q = N (0,Σ)|B2 such that

Q0{|ui | ≤ t} > Q{|ui | ≤ t} for i = 1, 2 and every t > 0

but

Q0{|ui | ≤ t for i = 1, 2} < Q{|ui | ≤ t for i = 1, 2} for some t > 0.
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(See Pfanzagl 1994, pp. 291/2, Example 8.5.7.) �
Example There is a (symmetric) probability measure Q|B2 such that

N (0, I ){|a�u| ≤ t} ≥ Q{|a�u| ≤ t} for a ∈ R
2 and t > 0

but
N (0, I ){u�u ≤ t} < Q{u�u ≤ t} for 0 < t < 1.

(See Pfanzagl 1994, p. 84, Example 2.4.3.) If we interpret N and Q as limit distribu-
tions of estimator sequences (ϑ(n)

1 , ϑ
(n)
2 )n∈N and (ϑ̂

(n)
1 , ϑ̂

(n)
2 )n∈N, then we obtain that

every κ(ϑ̂
(n)
1 , ϑ̂

(n)
2 ) is better than κ(ϑ

(n)
1 , ϑ

(n)
2 ), though (ϑ

(n)
1 , ϑ

(n)
2 ) is more concen-

trated than (ϑ̂
(n)
1 , ϑ̂

(n)
2 ) on small circles around (ϑ1, ϑ2). �

We conclude this section by a result on the relation between multivariate concen-
tration and the concentration on its marginals, the inequality

N (0,Σ)([−t1, t1] × · · · × [−tk , tk ]) ≥
k∏

i=1

N (0, σi i )[−ti , ti ] for all ti > 0, i = 1, . . . , k.

(5.13.16)
This relation was proved by Dunn (1958) under rather restrictive conditions. After an
abortive attempt by Scott (1967), it was proved by Sidak (1967, p. 628, Corollary 1),
using Anderson’s theorem. According to Jogdeo (1970) [p. 408, Theorem 3] equality
in (5.13.16) for some t1, . . . , tk implies that Σ is a diagonal matrix.

5.14 The Extended Role of Intrinsic Bounds

LetP be a family of probability measures P|A and κ : P → R
p a functional. Given

an estimator κ(n) for κ , let

Q(n)
P := Pn ◦ cn(κ

(n) − κ(P)).

We assume that Q(n)
P ⇒ QP for P ∈ P.

Sections5.9, 5.11 and 5.13 present bounds for the concentration of QP if the
convergence of Q(n)

P , n ∈ N, to QP is—in some sense—distinguished. Depending
on the conceptual framework, this may be “regular convergence” or “locally uniform
median unbiasedness”. For P ∈ P let QP be optimal among these distinguished
limit distributions; i.e. QP ≤ QP for P ∈ P; with the interpretation that

∫
�dQP ≥∫

�dQP for certain loss functions �. Under suitable regularity conditions onP, this
inequality holds for subconvex loss functions.

Our intention is to show that QP , defined as a bound for “distinguished” limit
distributions, is valid for a larger class of limit distributions. The basic idea: Depend-
ing on the general framework, any limit distribution QP is distinguished for P in a
dense subset P1 ⊂ P, so that
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QP ≤ QP for P ∈ P1. (5.14.1)

If both, QP and QP , depend separately on P , relation (5.14.1) holds for every P ∈ P.
Under these conditions, an estimator sequence with continuous limit distribution
cannot be superefficient. This generalizes an argument occurring in Bahadur (1964,
Sect. 3, pp. 1550/1).

Warning: If Q(n)
P , n ∈ N, converges to QP (locally) uniformly, then the inequality

QP ≤ QP establishes QP as a bound for Q(n)
P for large n. This is not the case any

more if this inequality is, by a trick, extended to limit distributions QP which are not
attained (locally) uniformly.

It remains to be shown how the general program indicated above can be carried
through.

(i) Parametric families. The Convolution Theorem applied to parametric families
{Pϑ : ϑ ∈ Θ}, Θ ⊂ R

k , asserts that a regular estimator sequence κ(n), n ∈ N, is
optimal iff

n1/2(κ(n) − κ(ϑ)) = κ̃∗(·, ϑ) + o(n0, Pn
ϑ ),

where κ∗(·, ϑ) is the canonical gradient of κ with respect to the tangent space
{a��•(·, ϑ) : a ∈ R

k}. It is easy to see that the proof of the Convolution Theorem
(yielding the optimality of Qϑ = N (0,Λ(ϑ)) among all regularly attainable limit
distributions) remains valid if the convergence of Q(n)

ϑ to Qϑ holds just for a sub-
sequence N0 and for Q(n)

ϑ+n−1/2a ⇒ Qϑ with a in a dense subset of Rk . According to
Bahadur’s Lemma , these assumptions are fulfilled for ϑ in a dense subset Θ0 ⊂ Θ .
Hence for � ∈ Ls ,

∫
�(u)N (0,Λ(ϑ))(du) ≤

∫
�(u)Qϑ(du) for ϑ ∈ Θ0. (5.14.2)

If Λ is continuous on Θ then no continuous limit distribution can be better than
N (0,Σ(ϑ)). The idea to use continuity for extending an a.e.-relation to a relation
which holds everywhere occurs already in Bahadur (1964). It was, in fact, one moti-
vation for introducing what is now called Bahadur’s Lemma.

(ii) Nonparametric families. LetP be a general family with tangent set T (P,P),
and κ : P → R

p a differentiable functional with canonical gradient κ∗(·, P) ∈
T (P,P)p. By the Convolution Theorem the optimal limit distribution of regular
estimator sequences of κ is QP = N (0,Σ∗(P)) with

Σ∗(P) :=
∫

κ∗(·, P)κ∗(·, P)�dP.

More precisely,
QP ≤ N (0,Σ∗(P))
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if Q(n)
P , n ∈ N, converges to QP regularly in the parametric subfamily spanned by

the tangent set {κ∗
1 (·, P), . . . , κ∗

p(·, P)}.
For the following we need a metric ρ onP such that P → ∫

�dQ(n)
P is continuous

for � ∈ Lu . By the Addendum to Lemma5.14.1, applied for X = P with fn(P) =∫
�dQ(n)

P and f0(P) = ∫
�dQP , the convergence of

∫
�dQ(n)

P , n ∈ N, to
∫
�dQP is

locally uniform (hence also regular) except for a setP1 of first category in (P, ρ). If
ρ is the sup-metric d and κ is continuous, this holds by Proposition5.3.2 for � ∈ Lu .
The classLu contains a countable weak convergence determining class, for example
by appropriately truncating the convergence determining class x → exp[i t x], t ∈
Q

k . We obtain QP ≤ N (0,Σ∗(P)) for P ∈ P − P1.
In the case of a parametric family, the exceptional set, being of λk-measure 0,

could legitimately be considered “small”. This does not necessarily apply to the set
P1. However: If (P, ρ) is complete, P − P1 is dense in P by Lemma5.14.2.

Instances of a metric ρ with the desired properties can be found in Pfanzagl
(2002a) [Sect. 7]. Here are two examples of general families with a natural metric ρ

such that no estimator sequence can be superefficient on some open subset of (P, ρ).

Example 1. Let P be the family of all probability measures P|B with Lebesgue
density such that

∫ |x |P(dx) < ∞. Let κ(P) := ∫
x P(dx). ThenP, endowed with

themetricρ(P, Q) := ∫
(1 + |x |)|p(x) − q(x)|dx , is complete, and κ is continuous.

Example 2. Let P be the family of all probability measures P|B with a positive,
bounded and continuous Lebesgue density. Let κ(P) be the median of P . Then P,
endowed with the metric ρ(P, Q) := ‖p − q‖1 + ‖p − q‖∞, is complete and κ is
continuous.

(ii) Here is a suggestion how the inequality QP ≤ QP can be extended to limit
distributions QP which are continuous in all parametric subfamilies. Let Πa :=
QPa . This notation is to distinguish between QP (the optimal limit distribution in
the family P), applied with P = Pa , and Π̂a , the optimal limit distribution in the
family a → QPa . If P → QP is continuous in all parametric subfamilies, a → Πa

is continuous. Since Pa is a path with Pa = P0 for a = 0, we have Π0 = QP0 .
Let Πa denote the optimal limit distribution within the path Pa , a ∈ A. Since

a → Πa is continuous, we obtain from the results obtained in (i) that

Πa ≤ Πa for a ∈ A. (5.14.3)

The essential point is to choose the subfamily such that Πa is continuous.
If the path Pa , a ∈ A, converges to P0 from the least favourable direction, we have

Π0 = QP0 . According to (5.14.3), applied for a = 0,

QP0 = Π0 ≤ Π0 = QP0 .

Hence the inequality QP ≤ QP0 holds for all limit distributions QP which are con-
tinuous on all parametric subfamilies.
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The application of this idea requires to define a least favourable parametric
subfamily with the desired continuity properties. A natural choice is the density
x → p0(x)(1 + ϑκ∗(x, P0)), but these probability measures will usually not be ele-
ments of P; the choice of P0 requires much care.

As an example we mention the estimation of the β-quantile κβ(P) of P in the
family P of all distributions on B with a positive, symmetric and differentiable
Lebesguedensity. Presuming (w.l.g)β ≥ 1/2, the optimal limit distributionof regular
estimator sequences is N (0, σ 2

β (P)) with (see Sect. 5.6)

σ 2
β (P) :=

(∫
p′(x)2

p(x)
dx

)−1

+ (β − 1

2
)(1 − β)/(p(κβ(P)))2.

Regular estimator sequences attaining the optimal limit distribution do exist. The
optimal limit distribution depends continuously on P along any sufficiently reg-
ular one-parameter subfamily. Hence, no limit distribution sharing this continuity
property can be superefficient at some P ∈ P.

(Warning: The reader who tries to find a clear-cut description of this procedure
in Pfanzagl (2002a) will be disappointed. There are various examples where this
is carried through, but the ingredients of this procedure need to be collected from
Lemma 4.1, Theorem 6.1, etc. See also Pfanzagl 1999a, p. 74, Theorem.)

Auxiliary Results

In the followingwe show that under various conditions on a sequence of functions fn :
X → R, “convergence everywhere” implies “continuous convergence somewhere”.
Wefirst present results for a general set X , and then stronger results for a Euclidean X .

Lemma 5.14.1 Let (X,U ) be a Hausdorff space. For n ∈ N let fn : X → R be
upper semicontinuous and f0 : X → R lower semicontinuous. If

lim inf
n→∞ fn(x) ≥ f0(x) for x ∈ X,

then there exists a set X1 ⊂ X which is of first category in X such that for every
x0 ∈ X − X1 and for every sequence xn → x0,

lim inf
n→∞ fn(xn) ≥ f0(x0). (5.14.4)

Addendum. For continuous functions fn : X → Y , the following is true. If

lim
n→∞ fn(x) = f0(x) for x ∈ X,

then there exists a set X1 ⊂ X of first category in X such that for every x0 ∈ X −
X1 and every sequence xn → x0,

lim
n→∞ fn(xn) = f0(x0), (5.14.5)
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i.e. fn converges on X − X1 continuously to f0, and f0 is continuous on X − X1.
Therefore, fn → f0 locally uniformly on X − X1.

This holds for Y an arbitrary metric space. Observe that continuity of f0 is not
required. If Y = R and f0 is continuous, relation (5.14.5) follows from (5.14.4) and
the corresponding assertion for lower/upper semicontinuous functions.

Lemma5.14.1 is a generalized version of a theorem which goes back to (Osgood
1897, p. 173, Corollary). For comments and a convenient proof see Pfanzagl (2003,
p. 108, Proposition 5.2, and 2002a, pp. 94/5, Lemma 9.1 for the Addendum.)

For statistical applications one needs to know more about the exceptional set X1

of “first category”. In particular: Can X1 be justifiably considered as “small”, or:
Is the set of continuous convergence a large subset of X0? In fact, the set X0 − X1

of continuous convergence may be even empty. Therefore, the following Lemma is
important.

Lemma 5.14.2 Let (X, ρ) be a metric space which is complete or locally compact.
Let X0 ⊂ X be an open subset. If X1 is of first category in (X0, ρ), then X0 − X1 is
dense in X0.

Proof A convenient proof for the case of a complete metric space can be found in
Pfanzagl (2002a) [p. 96, Lemma 9.2]. In order to establish the assertion for locally
compact metric spaces, observe that for any compact C ⊂ X0 with C◦ 
= ∅, the set
X1 ∩ C is of first category in C if X1 is of first category in X0. Since (C, ρ) is
complete, C − X1 is dense in C . The assertion follows by applying this with C a
compact neighbourhood of an arbitrary element of X . (See also Kelley 1955, p. 200,
Theorem 34.) �

If X is Euclidean, the following result is more useful for statistical applications.

Lemma 5.14.3 Let X0 be a subset ofRk . Let f0, fn : X0 → R be measurable func-
tions such that

lim inf
n→∞ fn(x) ≥ f0(x) for x ∈ X0.

Then for every sequence (yn)n∈N → 0 there exists an infinite subsequence N0 and a
λk-null set X1 such that

lim inf
n∈N0

fn(x + yn) ≥ f0(x) for x ∈ X0 − X1.

Addendum. Together with the analogous version with lim inf and ≥ replaced
by lim sup and ≤, this yields that limn→∞ fn(x) = f0(x) for x ∈ X0 implies

lim
n∈N0

fn(x + yn) = f0(x) for x ∈ X0 − X1,

with X1 a λk-null set and N0 ⊂ N an infinite subsequence.
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This Addendum is the well known Lemma of Bahadur (1964) [p. 1549, Lemma
4]. See also Droste and Wefelmeyer (1984) [p. 140, Proposition 3.7]. For a proof of
Lemma5.14.3 see Pfanzagl (2003) [p. 107, Proposition 5.1].

In contrast to Lemmas5.14.1, 5.14.3 does not necessarily require the functions
fn to be continuous. On the other hand, Bahadur’s Lemma asserts a version of
local uniformity which is weaker than continuous convergence in two respects. It
asserts fn(xn) → f0(x) (i) not for all sequences xn → x , but only for xn = x + yn ,
for a countable family of sequences (yn)n∈N → 0, and (ii) only for some subsequence
N0 ⊂ N. Yet, this is all one needs for applications in statistical theory: The proof of the
ConvolutionTheorem requires Q(n)

ϑn
⇒ Qϑ0 just for those sequencesϑn = ϑ0 + c−1

n a
with a ∈ Q.

Though the occurrence of some subsequence N0 in Bahadur’s Lemma does not
impair its usefulness in statistical applications, Bahadur (1964) [p. 1550] raised the
question whether limn∈N0 fn(x + yn) = f0(x) for λk-a.a. x ∈ R

k for some subse-
quenceN0 could be strengthened to limn→∞ fn(x + yn) = f0(x) for λk-a.a. x ∈ R

k .
An example by Rényi and Erdős (see Schmetterer 1966, pp. 304/5) exhibits a
sequence of functions with fn(x) → 0 for λ-a.a. x ∈ (0, 1), but lim supn→∞ fn(x +
n−1/2) = 1 for every x ∈ (0, 1). (Be aware of a misprint on p. 306). Since the func-
tions fn in this example are discontinuous, this does not exclude a sharper result for
continuous functions.

In the case of a parametric family P := {Pϑ : ϑ ∈ Θ}, Θ ⊂ R
k , the natural

application is with Lemma5.14.3. As an alternative one might entertain the use
of Lemma5.14.1, applied with X = Θ and fn(ϑ) = ∫

�(cn(ϑ(n) − ϑ))dPn
ϑ (rather

than X = {Pϑ : ϑ ∈ Θ}). If ϑ → Pϑ is continuous with respect to the sup-distance
on P, the functions fn are continuous. (The proof is about the same as that of
Lemma5.8.3). Hence the Addendum to Lemma5.14.1 implies continuous conver-
gence on Θ except for a set Θ1 of first category. Lemma5.14.3 yields the weaker
(but equally useful) regular convergence along some subsequence, except for a set
Θ2 which is of Lebesgue-measure zero. Obviously, Θ2 ⊂ Θ1, i.e., the set of contin-
uous convergence is smaller than the set of regular convergence. If one is satisfied
with the weaker assertion, then one can do without Bahadur’s Lemma , provided
Θ is complete. Yet it adds much to the interpretation of this result if we know that
the set of regular convergence is not just dense in Θ but equal to Θ up to a set of
Lebesgue-measure zero. (Recall, in this connection, that a set of first category in Rk

may be of positive Lebesgue-measure.)
If X = R

k and the functions fn , n = 0, 1, . . ., are continuous, both versions of the
lemmas apply. To make use of the fact that the exceptional set X1 in Lemma5.14.1
is of first category, one might assume that X0 is complete or locally compact. Then
one could conclude that (see Lemma5.14.2) convergence of fn(x) to f0(x) for every
x ∈ X0 implies locally uniform convergence on a dense subset of X0.

Lemma5.14.3 implies some sort of “qualified” regularity only, i.e., the conver-
gence of fn(x + c−1

n a), n ∈ N0, to f0(x) along a subsequence N0 for λ-a.a. x ∈ X0

and all a in a countable subset of Rk . For certain proofs this qualified regularity
suffices. In such cases, one will prefer a result for λ-a.a. x ∈ X0 over a result for all
x in countable subset of X0.
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Some Additional Results

Let {(P (n)
ϑ )n∈N : ϑ ∈ Θ} be a family of sequences of probability measures withΘ ⊂

R
k , and let κ : Θ → R

p with p ≤ k be a differentiable functional. Let

Q(n)
ϑ := P (n)

ϑ ◦ cn(κ
(n) − κ(ϑ)).

As a consequence of Lemma5.8.3, for � is bounded and continuous,

ϑ →
∫

�dQ(n)
ϑ is continuous for every n ∈ N.

Asymptotic assertions about the function sequences

a →
∫

�dQ(n)
ϑ+c−1

n a
, n ∈ N,

seem not to have been considered so far.

Theorem 5.14.4 Let {(P (n)
ϑ )n∈N : ϑ ∈ Θ}, Θ ⊂ R

k , be a family such that

lim sup
n→∞

‖a − a0‖−1d(P (n)
ϑ+c−1

n a
, P (n)

ϑ+c−1
n a0

) < ∞ (5.14.6)

for two vectors a, a0 ∈ R
k , and let κ : Θ → R

p with p ≤ k be a differentiable func-
tion. Then the functions

a →
∫

�dQ(n)
ϑ+c−1

n a
, n ∈ N,

are equicontinuous for a ∈ R
k if � is bounded and uniformly continuous.

Proof Since

∣
∣
∣

∫
�dQ(n)

ϑ+c−1
n a

−
∫

�dQ(n)
ϑ+c−1

n a0

∣
∣
∣

≤
∣
∣
∣

∫
�(cn(κ

(n) − κ(ϑ + c−1
n a)))dP (n)

ϑ+c−1
n a

−
∫

�(cn(κ
(n) − κ(ϑ + c−1

n a)))dP (n)
ϑ+c−1

n a0

∣
∣
∣

+
∫ ∣

∣�(cn(κ
(n) − κ(ϑ + c−1

n a))) − �(cn(κ
(n) − κ(ϑ + c−1

n a0)))
∣
∣dP (n)

ϑ+c−1
n a0

≤ d(P (n)
ϑ+c−1

n a
, P (n)

ϑ+c−1
n a0

) + sup
u∈Rk

∣
∣�(u + cn(κ(ϑ + c−1

n a) − κ(ϑ + c−1
n a0))) − �(u)

∣
∣,

the assertion follows from (5.14.6) and the differentiability of κ . �
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Proposition 5.14.5 Under condition (5.14.6), and for compact A,

lim sup
n→∞

sup
a∈A

∫
�dQ(n)

ϑ+c−1
n a

= sup
a∈A

lim sup
n→∞

∫
�dQ(n)

ϑ+c−1
n a

(5.14.7)

if the loss function � : Rk → [0, 1] is continuous and {u ∈ R
k : �(u) ≤ t} is bounded

for every t ∈ [0, 1).
Proof Since the functions a → ∫

�dQ(n)
ϑ+c−1

n a
are equicontinuous, an → a implies

∫
�dQ(n)

ϑ+c−1
n an

− ∫
�dQ(n)

ϑ+c−1
n a

→ 0. Hence relation (5.14.7) follows from Lemma

5.14.6, applied with fn(a) = ∫
�dQ(n)

ϑ+c−1
n a

. �

Lemma 5.14.6 Let (X, ρ) be a metric space. For n ∈ N let fn : X → R be such
that for every x ∈ X, the relation limn→∞ ρ(xn, x) = 0 implies

lim
n→∞( fn(xn) − fn(x)) = 0.

Then for A compact,

lim sup
n→∞

sup
x∈A

fn(x) = sup
x∈A

lim sup
n→∞

fn(x). (5.14.8)

Addendum 1. We have

lim
r→∞ lim sup

n→∞
sup

‖x‖≤r
fn(x) = sup

x∈X
lim sup
n→∞

fn(x).

(From (5.14.7), applied with A = {x ∈ R
p : ‖x‖ ≤ r}.)

Addendum 2. If limn→∞ fn(x) = 0 for every x ∈ X , then for A compact,

lim
n→∞ sup

x∈A
| fn(x)| = 0.

(From (5.14.8) applied with | fn| in place of fn .)

Proof For n ∈ N let xn ∈ A be such that supx∈A fn(x) ≤ fn(xn) + n−1. Since A
is compact, there exists x0 ∈ A and N0 ⊂ N such that limn∈N0 xn = x0. Hence
limn∈N0( fn(xn) − fn(x0)) = 0, which implies

lim sup
n→∞

sup
xd∈A

fn(x) ≤ lim sup
n∈N0

fn(x0) ≤ lim sup
n→∞

fn(x0) ≤ sup
x∈A

lim sup
n→∞

fn(x).

Since the converse inequality is obvious, this proves (5.14.8). �
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5.15 Local Asymptotic Minimaxity

Chernoff (1956) [p. 12, Theorem 1] presents for regular one-parameter families and
i.i.d. observations a result which seems to be the forefather of various asymptotic
“minimax” theorems. Rewritten in our notations, with ϑ(n) an estimator of ϑ and

Q(n)
ϑ = Pn

ϑ ◦ n1/2(ϑ(n) − ϑ),

and assuming that Λ(ϑ) := 1/I (ϑ) is continuous at ϑ0, Chernoff’s Theorem (attri-
buted by Hájek 1972, p. 177, to an unpublished paper by Stein and Rubin) asserts
that for every estimator sequence ϑ(n),

lim
r→∞ lim inf

n→∞ sup
|ϑ−ϑ0|≤n−1/2r

∫
min{u2, r2}Q(n)

ϑ (du) ≥ Λ(ϑ0).

Chernoff’s Theorem is supplemented by a result by Huber (1966) [Theorem],
proved under the usual regularity conditions: If for some estimator sequence,

lim sup
n→∞

sup
|ϑ−ϑ0|≤n−1/2r

∫
min{u2, r2}Q(n)

ϑ (du) ≤ Λ(ϑ0) for every r > 0,

then
Q(n)

ϑ0
⇒ N (0,Λ(ϑ0)) = Qϑ0

.

The interrelation between the length of the interval |ϑ − ϑ0| ≤ n−1/2r over which
the sup is taken, and the loss function u → min{u2, r2}, makes the interpretation
of such results difficult; the restriction to the quadratic loss function impairs their
relevance.

Motivated by the results of Chernoff (1956) and Huber (1966), Hájek (1972)
felt the need of supplementing the Convolution Theorem for regular estimator
sequences converging regularly to a limit distribution by a result for arbitrary estima-
tor sequences. This led him to the so-called “local asymptotic Minimax Theorem”:
For regular estimator sequences, the asymptotic risk

∫
�dQ(n)

ϑ is constant in shrink-
ing neighborhoods |ϑ − ϑ0| ≤ n−1/2r for every r . The minimax theorem says that
even for non-regular estimators, the maximal risk in such neighborhoods, or more
precisely

lim
r→∞ lim inf

n→∞ sup
|ϑ−ϑ0|≤n−1/2r

∫
�dQ(n)

ϑ ,

cannot be lower than this constant. Chernoff already seemed to be ill at ease with
the interpretation of his theorem. “For an arbitrary estimate [Λ(ϑ0)] is “essentially”
asymptotically a lower bound for the asymptotic variance...” After more than 50
years this construct is still lacking an operationally significant interpretation. For Le
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Cam, Hájek’s Minimax Theorem is another chance to invent an abstract version (see
e.g. Le Cam 1979, p. 124, Theorem 1).

The following refers to a general family {(P (n)
ϑ )n∈N : ϑ ∈ Θ}, Θ ⊂ R

k fulfilling
an LAN condition

log(dP (n)
ϑ+cna/dP

(n)
ϑ ) = a�Δn − 1

2
a�L(ϑ)a + o(n0, P (n)

ϑ ).

We write Λ(ϑ) = L(ϑ)−1 for the the “optimal” asymptotic covariance matrix for
estimators of ϑ .

Hájek’s Minimax Theorem For one-parameter families fulfilling LAN, the follow-
ing is true for loss functions � ∈ Ls .

(i) For any estimator sequence ϑ(n),

lim
r→∞ lim inf

n→∞ sup
|ϑ−ϑ0|≤cnr

∫
�dQ(n)

ϑ ≥
∫

�dN (0, σ 2
∗ (ϑ0)). (5.15.1)

(ii) If

lim
r→∞ lim

n→∞ sup
|ϑ−ϑ0|≤cnr

∫
�dQ(n)

ϑ =
∫

�dN (0,Λ(ϑ0)) (5.15.2)

for some non-constant loss function � ∈ Ls , then

c−1
n (ϑ(n) − ϑ0) − Λ(ϑ0)Δn(·, ϑ0) → 0 (P (n)

ϑ0
). (5.15.3)

Hájek (1972) [p. 186, Theorem 4.1.]

Remark Relation (5.15.1) occurs in Hájek’s Theorem 4.1 with

lim
δ→0

lim inf
n→∞ sup

|ϑ−ϑ0|<δ

rather than
lim
r→∞ lim inf

n→∞ sup
|ϑ−ϑ0|≤cnr

,

but the latter version is indicated in his Remark 1, p. 189. (Beware of a misprint
in Hájek’s relation 4.17.) Hájek’s remark does not explicitly refer to part(ii), but
Ibragimov and Has’minskii 1981, p. 168, claim (without proof) that part (ii) holds
for neighbourhoods |ϑ − ϑ0| ≤ cnr as well.) Fabian and Hannan (1982) discuss
the distinction between fixed and shrinking neighbourhoods in detail. In Sect. 3,
pp. 463/4, they point out that estimator sequences fulfilling relation (5.15.2) with
sup|ϑ−ϑ0|<δ may not exist.
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Hájek’sMinimax Theorem is restricted to the caseΘ ⊂ R, with a brief remark (p.
188, Theorem 4.2) concerning the bound for estimators of ϑ1 if ϑ = (ϑ1, . . . , ϑk).
The full k-dimensional version of part (i), referring to loss functions which are
symmetric, subconvex, and which increase with ‖u‖ → ∞ not too quickly, is due to
Ibragimov and Has’minskii (1981) [p. 162, Theorem 12.1, with the Russian original
dating from 1979].

For readers who are amazed at finding on p. 162 in Ibragimov and Has’minskii the assertion
“... is possible if and only if ...”: The “if” is an extra of the translator. The Russian original
says correctly: “... is possible only if ...”.

This is not the only slip in the translation of this theorem. The theorem refers to the class
We,2 of all loss functions growing more slowly than u → exp[εu2] for every ε > 0. In the
translation, this class appears as Wε,2, a slip which is not without the danger of confusion,
since ε corresponds in the model of Ibragimov and Has’minskii to n−1, and the asymptotic
assertion refers explicitly to ε → 0. Hence the reader might be confused by an asymptotic
assertion for ε → 0 which holds for every loss function in the class Wε,2.

In their Theorem 12.1, the authors present the version of (5.15.1) with

lim
δ→0

lim inf
n→∞ sup

|ϑ−ϑ0|<δ

,

but they mention on p. 168, Remark 12.2, the version with

lim
r→∞ lim inf

n→∞ sup
|ϑ−ϑ0|≤c−1/2

n r

.

A detailed proof of the latter version may be found in Witting and Müller-Funk
(1995) [p. 457, Satz 6.229].

Observe that limr→∞ in relation (5.15.1) is essential. For the Hodges estimator
with α = 1/2, we have

lim
n→∞ sup

|ϑ |≤cnr

∫
�dQ(n)

ϑ <

∫
�dN (0, 1) for �(u) = u2

as long as r <
√
3. (See Lehmann and Casella 1998, p. 440, Example 2.5 and p. 442,

Example 2.7.)
When Hájek wrote his paper on the Minimax Theorem, N (0,Λ(ϑ0)) was known

as a bound for regular estimator sequences. When he tried in 1972 to characterize
N (0,Λ(ϑ0)) as a bound forarbitrary estimator sequences (Hájek 1972), he obviously
was not familiar with the details of Le Cam’s fundamental from (1953). In Theorem
14, page 327, Le Cam had shown, forΘ ⊂ R, bounded and continuous loss functions
�, and under Cramér-type regularity conditions, that

lim sup
n→∞

∫
�dQ(n)

ϑ0
<

∫
�dQϑ0
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implies

lim sup
n→∞

∫
�dQ(n)

ϑn
>

∫
�dQϑ0

for some sequence ϑn → ϑ0.

This implies that

lim sup
n→∞

sup
|ϑ−ϑ0|≤δ

∫
�dQ(n)

ϑ ≥
∫

�dQϑ0
for δ > 0.

Since this relation holds for every subsequence, it follows that

lim inf
n→∞ sup

|ϑ−ϑ0|≤δ

∫
�dQ(n)

ϑ ≥
∫

�dQϑ0
for δ > 0,

which is the original version of Hájek’s relation (5.15.1). Hence in part (i) of his
Minimax Theorem, Hájek had just rediscovered earlier results of Le Cam. Part (ii)
contains something new.

With the bound N (0,Λ(ϑ0)) determined by (5.15.1), it is natural to define “opti-
mality” (or “local asymptotic minimaxity”) by equality in (5.15.1). One could object
that Hájek’s definition (5.15.1) presumes the existence of

lim
n→∞ sup

|ϑ−ϑ0|≤cnr

∫
�dQ(n)

ϑ

for every r > 0. This suggests replacing the definition of optimality by the apparently
stronger but more intuitive condition

lim sup
n→∞

sup
|ϑ−ϑ0|≤cnr

∫
�dQ(n)

ϑ ≤
∫

�dN (0,Λ(ϑ0)) for every r > 0. (5.15.4)

With

Fn(r) := sup
|ϑ−ϑ0|≤cnr

∫
�dQ(n)

ϑ −
∫

�dQϑ0
, (5.15.5)

Le Cam’s result may be rewritten as

lim inf
n→∞ Fn(0) < 0 implies lim

r→∞ lim sup
n→∞

Fn(r) > 0.

Le Camwrites this relation with neighbourhoods |ϑ − ϑ0| < δ, but his proof is valid
for |ϑ − ϑ0| < cnr as well. Relation (5.15.4), rewritten as lim supn→∞ Fn(r) ≤ 0,
for every r > 0, therefore implies lim infn→∞ Fn(0) ≥ 0. Hence

0 ≤ lim inf
n→∞ Fn(0) ≤ lim inf

n→∞ Fn(r) ≤ lim sup
n→∞

Fn(r) ≤ 0,
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so that
lim
n→∞ Fn(r) = 0 for every r > 0,

or, written explicitly,

lim
n→∞ sup

|ϑ−ϑ0|≤cnr

∫
�dQ(n)

ϑ =
∫

�dN (0,Λ(ϑ0)),

which is Hájek’s definition (5.15.3) of optimality.
According to Hájek’s Minimax Theorem (ii), optimal estimator sequences have

the stochastic expansion (5.15.3).
Levit (1974) [pp. 333/4 Theorem 1.1 and p. 336, Theorem 1.3], presents nonpara-

metric versions of Hájek’s Minimax Theorem (i) and (ii). (See also Koshevnik and
Levit (1976) [p. 745, Theorem 2.]

A proof of Hájek (i) can be found in Ibragimov and Has’minskii (1981) [p. 162,
Theorem II 12.1], Millar (1983) [p. 45, Definition 2.4], and Rüschendorf (1988) [p.
209, Satz 6.11]. Minimaxity in its relation to superefficiency is discussed in Pfanzagl
(1994) [pp. 298–303].

Some authors ignore Hájek’s main result. Witting and Müller-Funk (1995) [p.
457] present in Satz 6.229 on “Hájek’s Minimax Theorem”, proved for continuous
(!) loss functions, a second part which should not be mistaken for Hájek (ii). It just
asserts the existence of estimator sequences attaining the bound given in (5.15.1).
A path breaking book like Bickel et al. (1993) with important results on asymptotic
optimality of regular estimator sequences contains a reference to Hájek (1972) in
several places but it never mentions what the subject of this paper is, optimality in
the minimax sense.

According to Hájek’s Minimax Theorem, the stochastic expansion (5.15.3) is
necessary for optimality in the minimax sense. Neither Hájek nor any of the authors
mentioned above show that their stochastic expansion is also sufficient. Sufficiency
follows if the estimator sequence ϑ(n) is regular in the sense with a replaced by
bounded sequences an . Apparently, Hájek and his followers have been unaware of
the fact that this kind of regularity holds automatically for estimator sequences with
the asymptotic expansion (5.15.3). (More generally: For estimator sequenceswith the
asymptotic expansion pertaining to optimal regular estimator sequences. See Propo-
sition5.5.1.) This is almost trivial for the particular case in question. The relation

c−1
n (ϑ(n) − ϑ0) − Λ(ϑ0)Δn(·, ϑ0) → 0 (P (n)

ϑ )

implies

c−1
n (ϑ(n) − (ϑ0 + cnan)) = c−1

n (ϑ(n) − ϑ0) − an

= Λ(ϑ0)Δn(·, ϑ0) − an + o(n0, P (n)
ϑ ).
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If the LAN-condition holds with an in place of a, we have

P (n)
ϑ+n−1/2an

◦ (Λ(ϑ0)Δn(·, ϑ0) − an) ⇒ N (0,Λ(ϑ0)),

hence also

P (n)
ϑ0+cnan ◦ c−1

n (ϑ(n) − (ϑ0 + cnan)) ⇒ N (0,Λ(·, ϑ0)),

which may be rewritten as

lim
n→∞ sup

|a|≤r

∫
�(c−1

n (ϑ(n) − (ϑ0 + n−1/2a))dP (n)
ϑ0+cna =

∫
�dN (0,Λ(ϑ0))

for every r > 0, a relation stronger than (5.15.2).
The only paper claiming sufficiency of (5.15.3) is Fabian and Hannan (1982). On

p. 467, Theorem 6.3, they proved the sufficiency for LAN-families with a replaced
by a bounded sequence (an)n∈N). (Note: If the authors speak of “regular” estimator
sequences, they mean estimator sequences with a stochastic expansion.)

Being poorly organized, this paper is not easy to read. (In fact the authors had
trouble getting it published.) This perhaps explains why it is ignored throughout.
Though it contains a section on adaptivity, it is not listed among the nearly 500
references in the book by Bickel et al. (1993) on “efficient and adaptive estimation”.

As shown above, a condition weaker than (5.15.2) suffices for the asymptotic
expansion (5.15.3). The fact that (5.15.3) implies (5.15.2) does not exclude the pos-
sibility of conditions nicer than (5.15.2) that imply (5.15.3). By Theorem 8.3.2 in
Strasser (1985) [p. 439], specialized to the present framework, the stochastic expan-
sion (5.15.3) follows from the relation

lim sup
n→∞

∫
�dQ(n)

ϑ+c−1
n a

≤
∫

�dN (0,Λ(ϑ)) for every a ∈ R.

For the origin of this result, Strasser gives unspecified references to Hájek (1972)
and Le Cam (1953), without emphasizing the improvement from “sup|a|≤r for all r”
to “for all a”. (The reader who tries to discover traces of this result in Le Cam (1953),
will fail. A rather abstract version of Hájek (ii) appears in Le Cam (1972).)

Observe that the implication from (5.15.4) to (5.15.3) does not extend to families
with Θ ⊂ R

k , k ≥ 3. Stein’s estimator (1956), see Sect. 5.14, Example 4, below,
fulfills at ϑ0 = 0 relation (5.15.4), hence also (5.15.2), for the loss function �(u) =
‖u‖2, but not (5.15.3).

For Θ ⊂ R
k with k > 1, Hájek does not mention that a k-dimensional estimator

sequence ϑ(n) = (ϑ
(n)
1 , . . . , ϑ

(n)
k ) which admits a stochastic expansion

c−1
n (ϑ(n) − ϑ0) − Λ(ϑ0)Δn(·, ϑ0) → 0 (P (n)

ϑ )
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has the joint limit distribution N (0,Λ(ϑ0)). For a discussion of “component-wise
optimality” versus “joint optimality” see Sect. 5.13.

Since the result of Hájek (ii) does not extend from Θ ⊂ R to arbitrary dimen-
sions k (think of Stein’s shrinking estimators), the adequate generalization is to one-
dimensional functionals defined onΘ ⊂ R

k . A result of this kind appears in Strasser
(1997) [p. 372, Theorem (iii)]. Specialized to the present framework of parametric
LAN-families withΘ ⊂ R

k and continuously differentiable functionals κ : Θ → R

with gradient K (ϑ) at ϑ , Strasser’s result reads as follows. LetLs denote the set of
subconvex and symmetric functions L : [0, 1] → R

k .
If for some estimator sequence κ(n), n ∈ N,

lim sup
n→∞

∫
�(cn(κ

(n) − κ(ϑ + c−1
n a)))dP (n)

ϑ+c−1
n a

(5.15.6)

≤
∫

�dN (0, K (ϑ)Λ(ϑ)K (ϑ)�) for a ∈ R
k and every � ∈ Ls,

then
cn(κ

(n) − κ(ϑ)) − K (ϑ)Λ(ϑ)Δn(·, ϑ) → 0 (P (n)
ϑ ). (5.15.7)

According to Strasser, the result forΘ ⊂ R
k is an easy consequence of the results

forΘ ⊂ R: “... the complete assertion of part (iii) for k > 1 follows sinceLs contains
sufficiently many loss functions which depend only on one single component of κ”.
For statisticians with a less penetrating intuition it might be easier to obtain this
result for Θ ⊂ R

k by an application of the result for one-parameter subfamilies to
the least favourable one-parameter subfamily . With this argument it becomes clear
that (5.15.6) for one particular � ∈ L suffices to imply (5.15.7), and that condition
(5.15.6) may be confined to one particular a ∈ R

k , the “least favourable direction”.

The Role of the Supremum in the Minimax Theorem

The occurrence of sup|a|≤r in Hájek’s Minimax Theorem makes its interpretation
difficult. It occurs twice, in (5.15.1) and (5.15.3).

For Θ ⊂ R
k ,

lim
r→∞ lim inf

n→∞ sup
|a|≤r

∫
�dQ(n)

ϑ+c−1
n a

≥
∫

�dQϑ for every � ∈ Ls (5.15.8)

and for Θ ⊂ R (in the modified version (5.15.3)),

lim sup
n→∞

sup
|a|≤r

∫
�dQ(n)

ϑ+c−1
n a

≤
∫

�dQϑ for some � ∈ Ls and every r > 0

(5.15.9)

implies
cn(ϑ

(n) − ϑ) − Λ(ϑ)Δn(·, ϑ) → 0 (P (n)
ϑ ). (5.15.10)
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As already mentioned above, a result of Strasser shows that (5.15.10) follows
from a weaker version of (5.15.9) in which supr→∞ lim supn→∞ sup|a|≤r is replaced
by supa∈R lim supn→∞.

For the particular case of loss functions which are bounded and continuous, we
have (apply Proposition5.14.5 for A = {a ∈ R

k : |a| ≤ r})

lim
r→∞ lim sup

n→∞
sup

‖a‖≤r

∫
�dQ(n)

ϑ+c−1
n a

= sup
a∈Rk

lim sup
n→∞

∫
�dQ(n)

ϑ+c−1
n a

.

With the help of this relation, one obtains from Hájek’s results (5.15.6) and (5.15.7)
or (5.15.8) that

sup
a∈R

lim sup
n→∞

∫
�dQ(n)

ϑ+c−1
n a

≥
∫

�dQϑ

and, more importantly, that

sup
a∈R

lim sup
n→∞

∫
�dQ(n)

ϑ+c−1
n a

≤
∫

�dQϑ

implies (5.15.10).
Corresponding results are true if Q(n)

ϑ = P (n)
ϑ ◦ cn(ϑ(n) − ϑ) is replaced by

Q(n)
ϑ = P (n)

ϑ ◦ cn(κ(n) − κ(ϑ)).

Asymptotic Optimality is Independent of the Loss Function

The Convolution Theorem provides an asymptotic bound for the concentration of
an important class of estimator sequences: Those converging regularly to some limit
distribution. If one takes the concept of a loss function seriously, one might ask
whether there are estimator sequences adjusted to the “true” loss function that are
asymptotically better than the best regular estimator sequences. The Convolution
Theorem, after all, assumes regular convergence of

∫
�dQ(n)

ϑ , n ∈ N, to
∫
�dQϑ for

some Qϑ and every � ∈ L .
In order to bring in a certain regularity if the evaluation is restricted to some �0,

one might require the existence of a function �̃0 : Θ → [0,∞) which is approached
by

∫
�0dQ

(n)
ϑ in the sense that

lim
δ↓0 lim

n→∞ sup
|ϑ−ϑ0|≤δ

∣
∣
∣

∫
�0dQ

(n)
ϑ − �̄0(ϑ)

∣
∣
∣ = 0. (5.15.11)

Recall that continuity of ϑ → ∫
�0dQ

(n)
ϑ implies continuity of ϑ → �̄0(ϑ) by

Lemma5.3.9. Together with (5.15.1), relation (5.15.11) implies that

�̄0(ϑ0) ≥
∫

�0dQϑ0
.
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Hence any optimal regular estimator sequence is also optimal in the larger class of all
estimator sequences for which

∫
�0dQ

(n)
ϑ , n ∈ N, converges locally uniformly to a

limit whichmay serve as an approximation to
∫
�0dQ

(n)
ϑ . In other words: Asymptotic

optimality does not depend on the loss function; a conjecture indicated already in
Millar (1983) [p. 146].

Some Auxiliary Results

In the discussion of the Minimax Theorem, the following lemmas for nondecreasing
functions Fn : [0,∞) → R have been applied with Fn defined by (5.15.5). In the
proofs of these lemmas, we use repeatedly that any subsequence N1 a subsequence
N0 such that limn∈N0 Fn(r) exists for every r ≥ 0.

Lemma 5.15.1 The assertions (i) and (ii) are equivalent.
(i)

lim
r→∞ lim inf

n→∞ Fn(r) ≥ 0 (5.15.12)

and
lim sup
n→∞

Fn(r) ≤ 0 for every r ≥ 0. (5.15.13)

(ii) If, for some subsequence N0, limn∈N0 Fn(r) exists for every r ≥ 0, then

lim
r→∞ lim

n∈N0

Fn(r) = 0. (5.15.14)

Observe that (5.15.12) is based on relation (5.15.1), i.e., part (i) of Hájek’s Mini-
max Theorem, which is not restricted to one-parameter families.

Proof (i) implies (ii). Let N0 be a subsequence such that limn∈N0 Fn(r) exists for
every r ≥ 0. Since

lim inf
n→∞ Fn(r) ≤ lim

n∈N0

Fn(r) ≤ lim sup
n→∞

Fn(r),

we obtain from (5.15.12) and (5.15.13) that

lim
r→∞ lim

n∈N0

Fn(r) ≥ 0 and lim
n∈N0

Fn(r) ≤ 0 for r ≥ 0,

hence
lim
r→∞ lim

n∈N0

Fn(r) = 0.

(ii) implies (i). Since Fn is nondecreasing, any subsequence N1 contains a sub-
sequence N0 such that limn∈N0 Fn(r) exists for every r ≥ 0. By assumption, this
implies (5.15.14).
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Equation (5.15.12): If limr→∞ lim infn→∞ Fn(r) < 0, there exists a sequence
(rn)n∈N1 → ∞ such that limn∈N1 Fn(rn) < 0. Since there exists a subsequence N0 ⊂
N1 such that limr→∞ limn∈N0 Fn(r) = 0, the relation limn∈N0 Fn(r) ≤ limn∈N0 Fn

(rn) < 0 for r ≥ 0 leads to a contradiction.
Equation (5.15.13): If lim supn→∞ Fn(r0) > 0 for some r0 ≥ 0, there exists a

subsequenceN1 such that limn∈N1 Fn(r0) > 0. This is in contradiction to the existence
of a subsequence N0 ⊂ N1, such that limn∈N0 Fn(r) exists for every r > 0 whence
limr→∞ limn∈N0 Fn(r) = 0. �

Lemma 5.15.2 The implications (i), (ii) and (iii) are equivalent.

(i) For every subsequence N0,

lim sup
n∈N0

Fn(0) < 0 implies lim
r→∞ lim sup

n∈N0

Fn(r) > 0.

(ii) For every subsequence N0,

lim inf
n∈N0

Fn(0) < 0 implies lim
r→∞ lim sup

n∈N0

Fn(r) > 0.

(iii) For every subsequence N0,

lim sup
n∈N0

Fn(0) < 0 implies lim
r→∞ lim inf

n∈N0

Fn(r) > 0.

Addendum. If any of these implications holds true, then

lim
r→∞ lim inf

n→∞ Fn(r) ≥ 0.

Proof (i) implies (ii). If lim infn∈N0 Fn(0) < 0, there exists N1 ⊂ N0 such that

lim
n∈N1

Fn(0) = lim inf
n∈N0

Fn(0) < 0.

By (i) this implies limr→∞ lim supn∈N1
Fn(r) > 0, whence

lim
r→∞ lim sup

n∈N0

Fn(r) > 0.

(ii) implies (iii). Assume that

lim
r→∞ lim inf

n∈N0

Fn(r) ≤ 0.

There exists a subsequence N1 ⊂ N0 such that

lim
r→∞ lim sup

n∈N1

Fn(r) = lim
r→∞ lim inf

n∈N0

Fn(r),
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hence
lim
r→∞ lim sup

n∈N1

Fn(r) ≤ 0.

By (ii) this implies lim infn∈N1 Fn(0) ≥ 0, whence

lim sup
n∈N0

Fn(0) ≥ 0.

The implication from (iii) to (i) is obvious.

To prove the addendum, assume that limr→∞ lim infn→∞ Fn(r) < 0. There exists
N0 such that

lim
r→∞ lim sup

n∈N0

Fn(r) = lim
r→∞ lim inf

n→∞ Fn(r) < 0.

However, limr→∞ lim supn∈N0
Fn(r) < 0 for some subsequence N0 is impossible if

(i) is true. �

5.16 Superefficiency

Let {(P (n)
ϑ )n∈N : ϑ ∈ Θ}, Θ ⊂ R

k fulfill LAN, and let κ : Θ → R
p be a func-

tional with Jacobian K . The normal distribution Qϑ = N (0,Σ∗(ϑ)), withΣ∗(ϑ) =
K (ϑ)Λ(ϑ)K (ϑ)�, comes out as asymptotically optimal in various aspects: If
P (n)
ϑ ◦ cn(κ(n) − κ(ϑ)), n ∈ N, converges regularly to a limit distribution Qϑ , then

Qϑ is a convolution product with the factor N (0,Σ∗(ϑ)), whence
∫
�dQϑ ≥∫

�dN (0,Σ∗(ϑ)) for every � ∈ Ls . If κ(n) : X → R, n ∈ N, is required to be asymp-
totically median unbiased (see Sect. 5.11), then

lim inf
n→∞

∫
�dQ(n)

ϑ ≥
∫

�dN (0, σ 2
∗ (ϑ)) for � ∈ L .

In Hájek’s Minimax-Theorem,
∫
�dN (0,Σ∗(ϑ)) occurs as a lower bound for

lim
r→∞ lim inf

n→∞ sup
|a|≤r

∫
�dQ(n)

ϑ+c−1
n a

.

All these results are based on some kind of local uniformity condition. Even if
a condition like regular convergence to a limit distribution may be justified from
the operational point of view (as an outgrowth of locally uniform convergence), it
is of interest whether a bound like N (0,Σ∗(ϑ)) keeps its role under less restrictive
conditions, say as a bound for limit distributions which are attained for every ϑ ∈
Θ (but not necessarily in a locally uniform sense). This problem is dealt with in
Sect. 5.14. The present section is on the phenomenon of “superefficiency”.
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Definition 5.16.1 The family P0 ⊂ P is for the estimator sequence (κ(n))n∈N and
the loss function � a set of superefficiency if there exists a subsequence N0 such that

lim sup
n∈N0

∫
�(cn(κ

(n) − κ(P)))dP (n) <

∫
�dQP for P ∈ P0. (5.16.1)

The “optimal” limit distribution QP to which the definition of superefficiency
refers is characterized by two properties:

(i) It is attainable, i.e., there exists a “regular” estimator sequence (κ̂(n))n∈N such
that

P (n) ◦ cn(κ̂
(n) − κ(P)) ⇒ QP .

(ii) QP is optimal in the sense that for every “regular” estimator sequence (κ(n))n∈N

lim
n→∞

∫
�(cn(κ

(n) − κ(P))dP (n) ≥
∫

�dQP for every � ∈ L0.

For parametric LAN-families we have

QPϑ
= N (0,Σ∗(ϑ)) with Σ∗(ϑ) = K (ϑ)Λ(ϑ)K (ϑ)�.

See Sect. 5.13.

The question is whether there are estimator sequences κ(n) such that the risk∫
�(cn(κ(n) − κ(P)))dP (n) remains, for some subsequence and some loss function

�, smaller than
∫
�dQP for P in a substantial subset of P.

The common definition requires (5.16.1) with N in place of N0. The present
definition takes into account that the statistician will be satisfied with superefficiency
along some infinite subsequence from which the sample size could be chosen.

Some authors (see e.g. Ibragimov and Has’minskii 1981, p. 170) use lim inf
rather than lim sup in the definition of superefficiency. This seems to be questionable.
Smallness of lim infn→∞

∫
�(cn(κ(n) − κ(P)))dPn for every P is of no relevance if

the sample sizes corresponding to small values of
∫
�(cn(κ(n) − κ(P)))dP (n) depend

on P . This is convincingly demonstrated by the following example, due to van der
Vaart (1997, p. 407).

Example 1. (i) Let un ∈ (0, 1), n ∈ N, be such that n1/2|un − u|, n ∈ N, has, for
every u ∈ (0, 1), the accumulation point zero. If u2m+k := k2−m for k = 1, . . . , 2m ,
then |un − u| < n−1 for n = 2m + km , if km ∈ {1, . . . , 2m} is chosen such that (km −
1)2−m < u ≤ km2−m .

(ii) Let {Pϑ : ϑ ∈ (0, 1)} be a parametric family. Then the estimator sequence
ϑ(n)(xn) := un (which is independent of xn) fulfills

lim inf
n→∞

∫
�(n1/2(ϑ(n) − ϑ))dPn

ϑ = 0
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for every ϑ ∈ (0, 1) if � with �(0) = 0 is bounded and continuous. �
Recall that the evaluation of estimator sequences in k-parameter families (or, more

generally, of estimator sequences for k-dimensional functionals on a general family)
is restricted to loss functions which are subconvex and symmetric, provided the
optimal distribution QP |Bk is normal. Accordingly, the concept of “superefficiency”
must be based on such loss functions. The exception is a one-dimensional parametric
family (or a one-dimensional functional on a general family) if the comparison is
restricted to asymptotically median unbiased estimator sequences. In this case, a
definition based on an arbitrary (i.e., not necessarily symmetric) loss function makes
sense.

Applied to estimator sequences with limit distribution QP := limn→∞ Q(n)
P ,

superefficiency at P with respect to the loss function � just means that
∫
�dQP <∫

�dQP .
It took surprisingly long until such a simple example demonstrated that there is no

bound for the concentrationof limit distributionswithout someasymptotic uniformity
of the estimator sequence. The first example of a superefficient estimator sequence
is due to Hodges (see Sect. 5.9). Using the idea underlying the example of Hodges,
it is easy to construct estimator sequences superefficient on a given countable subset
of Θ . Le Cam (1953, p. 291, Example 4) suggested how to construct an estimator
sequence superefficient on an uncountable subset of Θ ⊂ R. His suggestion has
never been worked out in detail.

Examples of Superefficiency

The first example of a superefficient estimator sequence is due to Hodges (see Le
Cam 1953, p. 280).

Example 1. For the family {(N (ϑ, 1)n)n∈N : ϑ ∈ R}, the estimator

ϑ(n)(xn) :=
{

xn
αxn

if |x |>≤n−1/4,

with α ∈ (0, 1), is superefficient at ϑ = 0. We have

N (ϑ, 1)n ◦ n1/2(ϑ(n) − ϑ) ⇒
{
N (0, α2)

N (0, 1)
for ϑ

=

=0.

Example 2. In the followingwe construct forα ∈ (0, 1) an estimator sequence forϑ in
{(N (ϑ, 1)n)n∈N : ϑ ∈ R}which converges for the subsequence {N0 := 2m

2 : m ∈ N}
on an uncountable subset of R to the limit distribution N (0, α2), and to N (0, 1)
elsewhere. By means of a more subtle construction one can probably obtain an
estimator sequence which is superefficient on the whole sequence.

(i) To prepare the definition of a superefficient estimator we define a sequence of
sets (Sm)m∈N as follows. Sm consists of 2m intervals Iδ1,...,δm , (δ1, . . . , δm) ∈ {0, 1}m ,
which are defined by the following inductive procedure:
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I0 := [−1,−1/2], I1 := [1/2, 1].

If, for m > 1, Iδ1,...,δm−1 = [aδ1,...,δm−1 , bδ1,...,δm−1 ], we define

Iδ1,...,δm−1,0 := [aδ1,...,δm−1 , aδ1,...,δm−1 + 2−m(m+1)/2],
Iδ1,...,δm−1,1 := [bδ1,...,δm−1 ,−2−m(m+1)/2, bδ1,...,δm−1 ].

The length of Iδ1,...,δm is 2−m(m+1)/2, and the minimum distance between the two
intervals Iδ1,...,δm and Iδ′

1,...,δ
′
m
is

Δm = 2−(m−1)m/2 − 2 · 2−m(m+1)/2 = 2−m(m−1)/2(1 − 2−m+1).

Finally, let nm := 2m
2
.

(ii) We define a sequence of estimators (ϑ(nm ))m∈N as follows: If d(xnm , Sm) ≥
1
2Δm , we define ϑ(nm )(xn) = xnm . If d(xnm , Sm) <

1
2Δm , then there exists a uniquely

determined m-tuple (δ1, . . . , δm) such that d(xnm , Iδ1,...,δm ) <
1
2Δm . In this case we

define ϑ(nm )(xn) := (1 − α)zδ1,...,δm + αxnm , where zδ1,...,δm ∈ Iδ1,...,δm is arbitrarily
fixed and α ∈ (0, 1).

(iii) Obviously, ϑ(nm ) is measurable. We shall show that

N (ϑ, 1)nm ◦ n1/2m (ϑ(nm ) − ϑ) ⇒
{
N (0, α2)

N (0, 1)
for ϑ

{∈
/∈
} ∞⋂

m=1

Sm .

(iv) If ϑ /∈ ∩∞
m=1 Sm , there exists m0 ∈ N such that ϑ /∈ Sm0 , whence d(ϑ, Sm0) >

0. Let m1 be such that 1
2Δm1 < d(ϑ, Sm0). As (xnm )m∈N → ϑ Nϑ, 1)N-a.e., there

exists m(xn) ≥ max{m0,m1} (depending on ϑ) such that d(x̄nm , ϑ) ≤ d(ϑ, Sm0) −
1
2Δm1 for all m ≥ m(xn). Hence m ≥ m(xn) implies

d(xnm , Sm) ≥ d(xnm , Sm0) ≥ d(ϑ, Sm0) − d(xnm , ϑ) ≥ 1

2
Δm1 ≥ 1

2
Δm .

Hence we have ϑ(nm )(xn) = xnm for allm ≥ m(xn) and N (ϑ, 1)N-a.a. xn ∈ R
N. This,

however, implies that Nnm
(ϑ,1) ◦ n1/2m (ϑ(nm ) − ϑ),m ∈ N, has the same limit distribution

as Nnm
(ϑ,1) ◦ n1/2m (x̄nm − ϑ), m ∈ N, namely N (0, 1).

(v) If ϑ ∈ ∩∞
m=1 Sm , there exists (δi )i∈N ∈ {0, 1}N such that ϑ ∈ Iδ1,...,δm for all

m ∈ N. Then

{xn ∈ R
N : ϑ(nm )(xn) = (1 − α)zδ1,...,δm + αxnm }

= {xn ∈ R
N : aδ1,...,δm − 1

2
Δm < xnm < bδ1,...,δm + 1

2
Δm}

⊃ {xn ∈ R
N : −1

2
Δmn

1/2
m < n1/2m (xnm − ϑ) <

1

2
Δmn

1/2
m },
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since aδ1,...,δm < ϑ < bδ1,...,δm . As
1
2Δmn

1/2
m = 2m/2−1(1 − 2−m+1), we have

lim
m→∞ N (ϑ, 1)N{xn ∈ R

N : ϑnm (xn) = (1 − α)zδ1,...,δm + αxnm } = 1.

Therefore, Nnm
(ϑ,1) ◦ n1/2m (ϑ(nm ) − ϑ), m ∈ N, has the same limit distribution as

Nnm
(ϑ,1) ◦ n1/2m ((1 − α)zδ1,...,δm + α x̄nm − ϑ), m ∈ N, namely N (0, α2).
Furthermore, ϑ ∈ Iδ1,...,δm implies

|((1 − α)zδ1,...,δm + αϑ) − ϑ |
αn−1/2

m

= 1 − α

α
|zδ1,...,δm − ϑ |n1/2m

≤ 1 − α

α
2−m(m+1)/22m

2/2 = 1 − α

α
2−m/2 ↓ 0.

Therefore,
Nnm

(ϑ,1) ◦ n1/2m (ϑ(nm ) − ϑ) ⇒ N (0, α2).

(vi) For every sequence (δi )i∈N ∈ {0, 1}N there exists a point r(δi )i∈N in the set⋂∞
m=1 Iδ1,...,δm . (Since (Iδ1,...,δm )m∈N is a decreasing sequence of compact sets with

diameter converging to zero, this intersection consists of exactly one point.) As
{0, 1}N is uncountable, ∩∞

m=1 Sm is uncountable. Being a set of superefficiency,
∩∞
m=1 Sm is necessarily of Lebesgue measure zero. This also follows directly from

λ(∩∞
m=1 Sm) ≤ λ(Sm) = 2m2−m(m+1)/2 = 2−m(m−1)/2 for m ∈ N. �
Whereas it requires some efforts (as in Example 2) to construct an estimator

sequence which is superefficient on an uncountable subset of R, superefficient esti-
mator sequences on uncountable subsets of Rk , k > 1, are straightforward.

Example 3. ForΘ = R
2 let P(ϑ1,ϑ2) := N (ϑ1, 1) × N (ϑ2, 1). The problem is to esti-

mate κ(P(ϑ1,ϑ2)) = ϑ1. The optimal limit distribution of regular estimator sequences
is N (0, 1). The estimator sequence

ϑ(n)((x1ν, x2ν)ν=1,...,n) :=
{

x1n
(x1n + x2n)/2

if |x1n − x2n|>≤n−1/4

is superefficient on {(ϑ1, ϑ2) ∈ R
2 : ϑ1 = ϑ2}, with limit distribution N (0, 1/2).

The Set of Superefficiency is Small

Le Cam (1953) was the first to show that a set of superefficiency for a k-parameter
family is necessarily of λk-measure zero. For a correct interpretation of Le Cam’s
result, observe that his definition of superefficiency (p. 283, Definitions 3 and 4)
is more restrictive. To present his definition in the present framework, we presume
that the M.L. sequence occurring explicitly in Le Cam’s definition converges to the
optimal limit distribution Qϑ := N (0, σ 2∗ (ϑ)). Moreover, we use the now common
concept of a loss function rather than Le Cam’s gain functions. With Anderson’s
Theorem not yet available, Le Cam had to invent a concept for loss functions suitable



252 5 Asymptotic Optimality of Estimators

for expressing the optimality of a normal limit distribution. The decisive property (see
p. 312) is that z → ∫

�(u + z) exp[−u�Σu]du attains, for every Σ , its maximum
at z = 0. This is a concept adjusted to the particular framework in which optimal
limit distributions are normal; it is not derived from a general concept of optimality
which is significant in a more general framework. It is merely an accident that the
operationallymeaningful subconvex and symmetric loss functions share the property
required by Le Cam.

With the necessary modifications, Le Cam’s definition of superefficiency reads as
follows: The estimator sequence with distribution Q(n)

ϑ , n ∈ N, is superefficient on
Θ0 if

lim sup
n→∞

∫
�dQ(n)

ϑ ≤
∫

�dQϑ for every ϑ ∈ Θ

and

lim sup
n→∞

∫
�dQ(n)

ϑ <

∫
�dQϑ for some ϑ ∈ Θ0.

Since the interesting results on superefficiency are to the negative (in the sense
that “sets of superefficiency are necessarily small”) they are stronger if based on
Definition5.16.1 which requires nothing about the performance of the estimator
sequences for ϑ outside Θ0.

In his Corollary 8:1, p. 314, Le Cam asserts for Θ ⊂ R
k under Cramér-type reg-

ularity conditions that the set of superefficiency is necessarily of Lebesgue measure
0. His result is based on Bayesian arguments, which were in the air at this time.
Wolfowitz, too (1953a, p. 116), gave an (informal) Bayesian proof for the fact that
superefficiency is possible on a set of Lebesgue measure zero only, but he assumes
that the estimator sequence converges to a normal limit distribution. An elegant proof
under the same assumption was later given by Bahadur (1964) in a paper which is
remarkable in various respects.

The best result concerning sets of superefficiency for k-parameter LAN-families
is implicitly contained in Strasser (1978a). His Proposition, p. 37, adjusted to the
present framework, reads as follows.

For any probability measure Π |Bk � λk |Bk and any subconvex loss function
� ∈ Ls ,

lim inf
n→∞

∫ ∫
�dQ(n)

ϑ Π(dϑ) ≥
∫ ∫

�dN (0,Σ∗(ϑ))Π(dϑ). (5.16.2)

The emphasis of Strasser’s paper is on the Convolution Theorem. He concludes
from (5.16.2) that Q(n)

ϑ ⇒ Qϑ for every ϑ ∈ Θ implies

lim
n→∞

∫
�dQ(n)

ϑ ≥
∫

�dN (0,Σ∗(ϑ)) for λk − a.a. ϑ ∈ Θ,
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but he ignores an important consequence of (5.16.2): By Fatou’s Lemma,

λk
{
ϑ ∈ Θ : lim sup

n→∞

∫
�dQ(n)

ϑ <

∫
�dN (0,Σ∗(ϑ))

}
= 0 for every � ∈ Ls .

An intelligible version of Le Cam’s original proof can be found in van der Vaart
(1997, pp. 398–401).

For parametric families, “smallness” of a set can be expressed as being “of
Lebesgue measure 0”. For general families, a set of superefficiency may be shown
to be of “first category” (see Pfanzagl (2003), p. 97, Theorem 2.1). Conditions under
which sets of first category can be considered as “small” are discussed in Sect. 5.14.

Does Superefficiency Exclude Local Uniformity?

After having shown that sets of superefficiency are necessarily of Lebesgue measure
zero, the next step for Le Camwould naturally have been to find operationally mean-
ingful conditions on the estimator sequence which preclude the irritating phenom-
enon of superefficiency. Le Cam approached this problem indirectly by exhibiting
the irregularity of superefficient estimator sequences for one-dimensional parame-
ters. He proved (Le Cam 1953, p. 327, Theorem 14) under Cramér-type conditions
the following.

Lemma 5.16.2 Let Θ ⊂ R. For every loss function � which is sufficiently smooth,
bounded and symmetric about 0,

lim sup
n→∞

∫
�dQ(n)

ϑ0
<

∫
�dQϑ0

(5.16.3)

implies

lim sup
n→∞

∫
�dQ(n)

ϑn
>

∫
�dQϑ0

for some sequence ϑn → ϑ0. (5.16.4)

Based on this result, it would have been easy to show that uniformly convergent
estimator sequences of real parameters cannot be superefficient; more precisely:

Proposition 5.16.3 If Qϑ0 is a limit distribution such that

lim
n→∞

∫
�dQ(n)

ϑn
=

∫
�dQϑ0 for every sequence ϑn → ϑ0, (5.16.5)

then ∫
�dQϑ0 ≥

∫
�dQϑ0

. (5.16.6)

Proof If ∫
�dQϑ0 <

∫
�dQϑ0

, (5.16.7)
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then relation (5.16.5), applied with ϑn ≡ ϑ0, implies (5.16.3), which, in turn, implies
(5.16.4), i.e. ∫

�dQϑ0 = lim
n→∞

∫
�dQ(n)

ϑn
>

∫
�dQϑ0

,

which is in contradiction to (5.16.7). �

It is clear from Le Cam’s proof that Lemma5.16.2 holds true already with ϑn =
ϑ0 + n−1/2a.Hence regularity in the sense of (5.16.5)withϑn = ϑ0 + n−1/2a suffices
to exclude superefficiency. Since Le Cam missed this opportunity, such results did
not appear until 1963 (C.R. Rao, Wolfowitz; see Sect. 5.8).

The implication from (5.16.3) to (5.16.4) was established by Le Cam forΘ ⊂ R,
and he remarks that its extension to arbitrary dimensions ofΘ poses certain problems.
This is confirmed by Stein’s shrinkage estimator.

Example 4. We consider for k ≥ 3 the family {N (ϑ, Ik) : ϑ ∈ R
k}, where Ik is the

unit-matrix in R
k . The problem is to estimate ϑ = (ϑ1, . . . , ϑk). The optimal limit

distribution for regular estimator sequences is N (0, Ik), which is attained locally
uniformly by the sample mean x̄n := (x1n, . . . , xkn) for every n ∈ N. Evaluated by
the loss function �(u) = ‖u‖2, we have
∫

�(n1/2(x̄n − ϑ))N (ϑ, Ik)
n(dxn) = k =

∫
�dN (0, Ik) for ϑ ∈ R

k and n ∈ N.

For Stein’s estimator

ϑ(n)(xn) :=
(

1 − k − 2

n‖x̄n‖2
)

x̄n

we have
∫

�(n1/2(ϑ(n) − ϑ))dN (ϑ, Ik)
n =

∫
�dN (0, Ik) − n−1

∫
‖x̄n‖−2N (ϑ, Ik)

n(dxn).

Since the presentation in Stein (1956) is not very transparent, compare Ibragimov
and Has’minskii (1981) [p. 27] or Lehmann and Casella (1998, p. 355, Theorem
5.5.1) for details. According to Casella and Hwang (1982) [p. 306, Lemma 1],

1

(k − 2) + n‖ϑ‖2 < n−1
∫

‖x̄n‖−2N (ϑ, Ik)
n(dxn) ≤ 1

k − 2
· 1

1 + n‖ϑ‖2/k ,

which implies for ϑ ∈ R
k and n ∈ N,

∫
�(n1/2(ϑ(n) − ϑ))dNn

(ϑ,Ik ) <

∫
�dN (0, Ik) − 1

(k − 2) + n‖ϑ‖2 .

Hence Stein’s estimator, evaluated by the loss function �(u) = ‖u‖2, is superefficient
at ϑ = 0, and nowhere inefficient. Stein was interested in the performance of ϑ(n) for
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finite sample sizes. This might explain why he overlooked the relevance his invention
has in connection with Le Cam’s Theorem 14. �

With Stein’s example restricted to the dimension k ≥ 3, the problem arises
whether Le Cam’s Theorem 14 is valid for k = 2. Proposition 6 in Le Cam 1974, p.
187, seems to give an affirmative answer to this question, but I was unable to follow
the proof.

The reader who is aware of the problem raised by Le Cam’s Theorem 14, will
be disappointed by the treatment Le Cam gives to this problem in (1986, p. 144).
He presents a hitherto unknown version of Stein’s estimator which reads in our
notations as (

1 − k − 2

1 + ‖x̄n‖2
)

x̄n.

Omitting all details, he gives his opinion about the limit distribution of this estimator
sequence, but he avoids to discuss what is of interest here, namely the performance
of these estimators near ϑ = 0, the point of superefficiency.

According to Sect. 5.15, regular estimator sequences are optimal with respect to all
loss functions inLs if they are optimal with respect to one of these. This implies, in
particular, that the components of an optimal multidimensional estimator sequence
are optimal themselves. In contrast to that, superefficiency may be tied to a particular
loss function.

If an estimator sequence (ϑ
(n)
1 , . . . , ϑ

(n)
k ) is superefficient for (ϑ1, . . . , ϑk) with

respect to some loss function �0, then at least one of the components ϑ
(n)
i , i =

1, . . . , k, fails to converge regularly to the optimal limit distribution for ϑi .

Remark That Le Cam’s paper is mainly known for Hodges’ example and not for its
many deep results is, perhaps, due to the fact that it is not easy to read. (It contains
14 theorems, 4 corollaries and addenda, and 8 lemmas, all of which are somehow
interrelated.) Its mathematical deficiencies were criticized by Wolfowitz (1965) [p.
249]; Hájek (1972, p. 177) politely says that this paper “contains some omissions”.
Le Cam (1974) [p. 254] explains why his paper is “rather incorrect”. As a conse-
quence of the intricate presentation, it escaped notice that Le Cam’s results do not
require convergence to a limit distribution. Miraculously, Le Cam himself published
his superefficiency result once more for estimator sequences with limit distribution
(1958, p. 33). Bahadur (1964) suggests an easier way to this result. Though he explic-
itly refers to Le Cam’s papers of 1953 and 1958 (Le Cam 1953, 1958), he overlooked
the fact that the paper of 1953 is on arbitrary estimator sequences. The same mis-
understanding occurs in many textbooks. (See e.g. Stuart and Ord 1991, pp. 660/1.
Witting and Müller-Funk 1995, p. 200, Satz 6.33 and p. 417, Satz 6.199; Lehmann
and Casella 1998, p. 440.)

Remark on a Concept of Global Superefficiency

Brown et al. (1997) [p. 2612] suggest a new concept of superefficiency. To illustrate
the difficulties with the interpretation of this concept, we consider the following
problem: Let {Pϑ : ϑ ∈ Θ}, Θ = (ϑ0,∞), be a family of probability measures on
some measurable space (X,A ). For any estimator ϑ(n) let
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R(n)
ϑ (ϑ(n)) := n

∫
(ϑ(n) − ϑ)2dPn

ϑ .

According to Brown et al.’s new concept, the estimator sequence (ϑ̂ (n))n∈N is
(asymptotically]) superefficient at ϑ if

lim sup
n→∞

R(n)
ϑ (ϑ̂ (n)) < lim sup

n→∞
inf
ϑ(n)

sup{R(n)
τ (ϑ(n)) : τ ∈ Θ, τ ≤ ϑ}.

Let
r (n)ϑ := inf

ϑ(n)
R(n)

ϑ (ϑ(n)) and r(ϑ) := lim sup
n→∞

r (n)ϑ .

Since

inf
ϑ(n)

sup{R(n)
τ (ϑ(n)) : τ ∈ Θ, τ ≤ ϑ} ≥ sup{r (n)τ : τ ∈ Θ, τ ≤ ϑ},

the estimator sequence (ϑ̂ (n))n∈N is superefficient at ϑ if

lim sup
n→∞

R(n)
ϑ (ϑ̂ (n)) < sup{r(τ ) : τ ∈ Θ, τ ≤ ϑ}.

If (ϑ̂ (n))n∈N is asymptotically efficientwith respect to the quadratic loss function, then
limn→∞ R(n)

ϑ (ϑ̂ (n)) = r(ϑ). Hence any asymptotically efficient estimator sequence
is superefficient at ϑ if r(ϑ) < sup{r(τ ) : τ ∈ Θ, τ ≤ ϑ}. Therefore, any estimator
sequence which is asymptotically efficient for every ϑ ∈ Θ is by definition automat-
ically superefficient on Θ if the function r is decreasing. An example of this kind is
the family {N (ϑ, ϑ−1) : ϑ ∈ (1,∞)}, where r(ϑ) = 2ϑ2/(1 + 2ϑ3). It is straight-
forward to modify these considerations in such a way that estimator sequences which
are asymptotically inefficient for every ϑ ∈ Θ are asymptotically superefficient on
a large subset of Θ .

5.17 Rates of Convergence

ForLAN-families and one-dimensional differentiable functionals, it is comparatively
easy to find a concept of asymptotic optimality: There is an optimal rate cn =
n1/2 (or cn = n1/2(log n)a in “almost regular” models), and there exists a normal
distribution with variance σ 2(P), determined by the local structure ofP and κ at P ,
such that no “regularly attainable” limit distribution QP can be more concentrated
than N (0, σ 2(P)) on symmetric intervals containing 0.

This favourable situation is typical for parametric families. It occurs in some
nonparametric models, too. As an example we mention the estimation of the if P
is the family of all symmetric P|B with a sufficiently regular density. Typical for
nonparametric families is the existence of an estimator sequence such that cn(κ(n) −
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κ(P)) remains stochastically bounded for a rate (cn)n∈N which tends to infinity more
slowly than n1/2; even if Pn ◦ cn(κ(n) − κ(P)) converges to a limit distribution, the
optimality of this limit distribution remains open.

For the purpose of illustration we consider the estimation of a density at a given
point. This is also the problemwhere the question of optimal rates took its origin. The
natural framework: a family of probability measures on B, with a Lebesgue density
p fulfilling a certain smoothness condition. The early papers in this area were just
concerned with the construction of “good” estimators. Histogram estimators were a
natural choice: For a fixed value of ξ , p(ξ) is estimated by

p(n)(ξ, xn) := n−1
n∑

ν=1

h−1
n 1[ξ−hn/2,ξ+hn/2](xν).

That the estimator sequence p(n)(ξ, ·) is consistent for p(ξ) under mild conditions on
p (continuity at ξ ) provided hn → 0 is usually attributed to Fix and Hodges (1951)
[p. 244, Lemma 3]. It occurs, from what is heard, already in Glivenko’s “Course in
Probability Theory” (1939). In a paper unknown to Fix and Hodges, Smirnov (1950,
p. 191, Theorem 3) had already obtained certain results on the rate at which

max{|p(n)(ξ, ·) − p(ξ)|/p(ξ)1/2 : ξ ∈ [a, b]}

converges to zero, depending on the choice of hn .
In a fundamental paper, Rosenblatt (1956) [p. 835] shows for the sequence of

histogram estimators with hn = O(n−1/5) that

n4/5
∫

(p(n)(ξ, xn) − p(ξ))2Pn(dxn)

converges for every ξ ∈ R to a finite and positive number if p admits a continuous
second derivative at ξ . In Sect. 4 of this paper, he shows that the same result holds for
arbitrary kernel estimators, defined by n−1 ∑n

ν=1 h
−1
n K (h−1

n (ξ − xν)) with K ≥ 0
and

∫
K (ξ)dξ = 1. On p. 837, Rosenblatt raises the question whether estimators

with the rate n (in place of n4/5) exist.
If p admits a continuous r -th derivative at ξ , Parzen (1962) [p. 1074, relation

(4.16)] shows that for kernel estimators with bandwidth

hn = n1/(2r+1)Cr (K )p(ξ)|p(r)(ξ)|−2/(2r+1)

one has

lim
n→∞ n2r/(2r+1)

∫
(p(n)(ξ, xn) − p(ξ))2Pn(dxn)

= Cr (K )p(ξ)2r/(2r+1)|p(r)(ξ)|2/(2r+1).
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Parzen’s result refers to a particular class of kernels, and he neglects the question of
how to choose a sequence hn not depending on p.

It is not the purpose of the present section to deal with the theory of kernel
estimators in more detail. What is essential for our problem is the fact that other
techniques of density estimation like orthogonal expansions (Čentsov 1962), Fourier
series (Kronmal and Tarter 1968) or polynomial algorithms (Wahba 1971) lead under
intuitively comparable regularity conditions on the densities to the same rates of
convergence.

We just mention one more paper which was at that time almost entirely ignored
by scholars working on density estimation. Prakasa Rao (1969) [Theorem 6.3, p.
35] obtained for the family of all distributions on B ∩ (0,∞) with a nonincreasing
Lebesgue density the following result for the distribution of the ML-sequence

Pn ◦ n1/3(p(n)(ξ, ·) − p(ξ)) ⇒ Q,

where Q|B is a certain (nonnormal) distribution, symmetric about 0, with moments
of all orders. Prakasa Rao’s interest was just in the distribution of the maximum
likelihood estimator. Hewas not concerned with the question whether themaximum
likelihood estimator, known to be asymptotically optimal in regular parametric
families, retains this property also here. If Prakasa Rao says that the ML-sequence
is “suboptimal”, he just means that the rate is n1/3, in contrast to the usual n1/2. He
had, perhaps, missed Parzen’s paper (1962) according to which the same rate n1/3

is achieved by kernel estimators under comparable smoothness conditions (densities
with one derivative).

Since different techniques of density estimation lead under comparable regularity
conditions to the same rate of convergence (which cannot be improved by refinements
of the specific techniques), this suggests that this common rate is the best possible
one, that there exists a bound for the rate of convergence, determined by the properties
of the density, which cannot be surpassed by any method of density estimation. This
motivated Farrell’s paper (1972). His Theorem 1.2, p. 173, specialized to densities
of dimension 1 and written in our notations, asserts that

lim sup
n→∞

cnn
−r/(2r+1) = ∞

implies

lim sup
n→∞

sup
P∈Pr

c2n

∫
(p(n)(ξ, xn) − p(ξ))2Pn(dxn) = ∞

for every estimator sequence p(n)(ξ, ·). In this relation, Pr is (somewhat simpli-
fied) the family of all probability measures in a Lipschitz neighbourhood of a given
measure P0 admitting a density with a bounded r -th derivative.

At the time Farrell wrote his paper, it was clear from the study of parametric
families that a meaningful concept of asymptotic optimality had to be built upon
a condition of (locally) uniform convergence. Farrell requires uniformity on Pr
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without giving second thoughts to this question. To establish the rate cn = nr/(2r+1)

as optimal, itwas therefore necessary to showan estimator sequence p̂(n)(ξ, ·),n ∈ N,
such that

lim sup
n→∞

sup
P∈Pr

n2r/(2r+1)
∫

( p̂n(ξ, xn) − p(ξ))2Pn(dxn) < ∞.

According to Farrell’s Lemma 1.4, p. 173, this holds true for kernel estimators.
In the proof of his Theorem 1.2, Farrell uses (see p. 174) what corresponds to

“least favourable paths” (pn)n∈N, converging to p such that pn(ξ) − p0(ξ) is large,
and Pn is close to P0. Farrell’s complicated construction on pp. 174–177 shows that
the invention of a least favourable path may be a nontrivial task. A better arranged
version of Farrell’s proof can be found in Wahba (1975) [pp. 27–29].

Farrell (1972) was also aware of a problem which did not find due attention until
twenty years later: The problem of rate adaptivity. His generally neglected Theorem
1.3, p. 173, is a somewhat vague expression of the fact that estimator sequences
attaining the optimal rate nr/(2r+1) uniformly on Pr cannot, at the same time, attain
the better rate nr̄/(2r̄+1) locally uniformly on the smaller family Pr̄ if r̄ > r .

Farrell’s paper (1972) has a forerunner in his paper (1967), giving a lower bound
for the quadratic risk of sequential estimator sequences. In this paper, Farrell suspects
(see pp. 471/2) that for densities with a continuous second derivative,

lim inf
n→∞ inf

p(n)(ξ,·)
sup
P∈P

n2/3
∫

(p(n)(ξ, xn) − p(ξ))2Pn(dxn) > 0

(On p. 472, line 1, this statement occurs without the factor n2/3. It makes sense only
if one assumes that this factor became victim of a misprint.) As remarked by Kiefer
(1982) [p. 424], Farrell’s proof is not entirely correct since he uses a least favourable
subfamily which is not in P.

The best result now available is Theorem5.1 in Ibragimov andHas’minskii (1981)
[p. 237] saying that for every ξ ∈ R

lim inf
n→∞ inf

p(n)(ξ,·)
sup

P∈Pr,L

∫
�
(
nr/(2r+1)(p(n)(ξ, xn) − p(ξ))

)
Pn(dxn) > 0 (5.17.1)

for arbitrary symmetric loss functions �.
This is the counterpart to their Theorem 4.2, p. 236, asserting the existence of

estimator sequences attaining the rate nr/(2r+1):

lim sup
n→∞

sup
P∈Pr,L

sup
ξ∈R

∫
�
(
nr/(2r+1)(p(n)(ξ, xn) − p(ξ))

)
Pn(dxn) < ∞ (5.17.2)

for symmetric loss functions � increasing not too quickly (u → �(u) exp[−εu2]
bounded). In these relations, Pr,L is the class of all probability measures on B the
densities of which have r − 1 derivatives with |p(r−1)(x) − p(r−1)(y)| ≤ L|x − y|.
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Prior to Farrell (1972) there was a paper by Weiss and Wolfowitz (1967a)
asserting the existence of an estimator sequence p(n)(ξ, ·), n ∈ N, such that Pn ◦
n2/5(p(n)(ξ, ·) − p(ξ)) is asymptotically maximally concentrated in intervals sym-
metric about zero (see p. 331, relation (2.22)). Here p(n)(ξ, ·) is some kind of max-
imum probability estimator, and the assertion refers to densities admitting a certain
Taylor expansion of order 2. For the proof the authors refer to Theorem 3.1 in Weiss
and Wolfowitz (1966) [p. 65], which, however, is on the estimation of a real para-
meter; the optimality assertion in that theorem holds for one particular symmetric
interval (involved in the construction of the estimator) and (of course) for estimator
sequences fulfilling a certain local uniformity condition.

What Is an Optimal Rate?

To discuss the idea of an “optimal rate ” in a more general (i.i.d.) context, let nowP
be an arbitrary family of probability measures P on a measurable space (X,A ), let
κ : P → R be a functional and κ(n) : Xn → R an estimator sequence. To deal with
(local) uniformity, we introduce a sequencePn ⊂ P which could meanPn = P or
Pn ↓ {P0}.
Definition 5.17.1 The estimator sequence (κ(n))n∈N attains the rate (cn)n∈N uni-
formly on (Pn)n∈N if

lim
n→∞ sup

P∈Pn

Pn{cn|κ(n) − κ(P)| > un} = 0 for every un → ∞. (5.17.3)

The rate (cn)n∈N is attained iff cn(κ(n) − κ(P)) is stochastically bounded, uni-
formly on Pn . This is in particular the case if Pn ◦ cn(κ(n) − κ(P)) converges to a
limit distribution, uniformly on Pn .

We define an order relation between rates by

(c′
n)n∈N � (cn)n∈N if lim sup

n→∞
c′
n

cn
< ∞.

If (cn)n∈N is attainable, then, by Definition5.17.1, any rate (c′
n)n∈N � (cn)n∈N is

attainable, too. The interest, therefore, is in attainable rates which are as large as
possible. How can we determine whether an attainable rate is the best possible one?

For this purpose, we introduce the concept of a “rate bound”. Roughly speaking,
(cn)n∈N is a rate bound if no better rate is attainable. A second thought suggests amore
restrictive definition: An estimator sequence attaining a better rate for infinitelymany
n ∈ Nwould certainly be considered as an improvement. This suggests the following
definition.

Definition 5.17.2 (cn)n∈N is a rate bound for uniform convergence on (Pn)n∈N if
the following is true. If the rate (c′

n)n∈N is attained along an infinite subsequence N0,
i.e., if

lim
n∈N0

sup
P∈Pn

Pn{c′
n|κ(n) − κ(P)| > un} = 0 (5.17.4)
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for some estimator sequence (κ(n))n∈N and every un → ∞, then

lim sup
n∈N0

c′
n/cn < ∞.

Hence an attainable rate is optimal if it is, at the same time, a rate bound.
Definition5.17.2 is not so easy to handle if it comes to proving that a given rate

(cn)n∈N is a rate bound. Here is another, equivalent, definition expressing the idea of
a rate bound.

Definition 5.17.3 (cn)n∈N is a rate bound for uniform convergence on (Pn)n∈N if
for every estimator sequence (κ(n))n∈N,

lim inf
n→∞ sup

P∈Pn

Pn{cn|κ(n) − κ(P)| > un} > 0 for every un → 0. (5.17.5)

The following Lemma implies the equivalence of Definitions5.17.2 and 5.17.3.

Lemma 5.17.4 For any sequence of nonincreasing functions Hn : [0,∞) →
[0,∞), the following assertions are equivalent.

(i) For every N0 ⊂ N,

lim
n∈N0

Hn(δnun) = 0 for (un)n∈N0 → ∞ implies lim inf
n∈N0

δn > 0.

(ii) lim infn→∞ Hn(un) > 0 for (un)n∈N → 0.

Proof (i) If for some infinite subsequence N0 ⊂ N there exists (δn)n∈N fulfilling
lim infn∈N0 δn = 0 and

lim
n∈N0

Hn(δnun) = 0 for every (un)n∈N → ∞,

then
lim
n∈N0

Hn(δ
1/2
n ) = lim

n∈N0

Hn(δnδ
−1/2
n ) = 0.

Hence (ii) is violated for un = δ
1/2
n .

(ii) If (un)n∈N → 0 and lim infn→∞ Hn(un) = 0 then limn∈N0 Hn(un) = 0 for some
N0 ⊂ N. Since Hn(unun) ≤ Hn(un) eventually if un → ∞, relation (i) is vio-
lated for δn = un . �

If (cn)n∈N is a rate bound, then (c′
n)n∈N with (c′

n)n∈N � (cn)n∈N is a rate bound,
too. As a side result: If every (c′

n)n∈N � (cn)n∈N is a rate bound, then (cn)n∈N is a
rate bound itself.

If (cn)n∈N is attainable, and (c′
n)n∈N is a rate bound, then (cn)n∈N � (c′

n)n∈N. This
implies (cn)n∈N ≈ (c′

n)n∈N if both sequences are attainable rate bounds. Hence an
optimal rate is unique up to equivalence.
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This can be seen as follows. Assume that lim sup cn/c′
n = ∞, and let N0 be such

that limn∈N0 c
′
n/cn = ∞. Since (cn)n∈N is attainable, (5.17.3) implies

lim
n∈N0

sup
P∈Pn

Pn{cn|κ(n)
0 − κ(P)| > (cn/c

′
n)

1/2} = 0 for some (κ
(n)
0 )n∈N.

Since (c′
n)n∈N is a rate bound, (5.17.5) implies

lim inf
n∈N0

sup
P∈Pn

Pn{c′
n|κ(n) − κ(P)| > (c′

n/cn)
1/2} > 0

for every (κ(n))n∈N, hence in particular for (κ(n)
0 )n∈N. Since

{c′
n|κ(n)

0 − κ(P)| > (c′
n/cn)

1/2} = {cn|κ(n)
0 − κ(P)| > (cn/c

′
n)

1/2},

this is impossible. Hence (cn)n∈N � (c′
n)n∈N. �

As an alternative to Definition5.17.2 we mention a less stringent concept of opti-
mality which can be justified on methodological grounds: That (cn)n∈N is optimal if
it cannot be improved for a.a. n ∈ N. That means: If

lim
n→∞ sup

P∈Pn

Pn{c′
n|κ(n) − κ(P)| > un} = 0 (5.17.6)

for some estimator sequence (κ(n))n∈N and every un → ∞, then

lim inf
n∈N

c′
n/cn < ∞.

This is a definition equivalent to

lim sup
n→∞

sup
P∈Pn

Pn{cn|κ(n) − κ(P)| > un} > 0 for un → 0. (5.17.7)

Though the definitions (5.17.4) and (5.17.6) as well as (5.17.5) and (5.17.7) are
conceptionally distinct, the difference will usually be irrelevant. If (5.17.6) holds
true, then in all practical cases the stronger condition (5.17.4) will be fulfilled, too.
That means: If (cn)n∈N cannot be improved for a.a. n ∈ N, then, usually, it cannot be
improved along an infinite subsequence.

The concept of an attainable rate defined by (5.17.3) is generally accepted. (See
Farrell 1972, p. 172, relation (1.4); Stone 1980, p. 1348, relation (1.3); Kiefer 1982, p.
420; Hall andWelsh 1984, Sect. 3, pp. 1083–1084.) With cn = n1/2, relation (5.17.3)
occurs as

√
n-consistency in Bickel et al. (1993) [p. 18, Definition 2]. Akahira and

Takeuchi (1995, p. 77, Definition 3.5.1) call the property defined by (5.17.3) “con-
sistency of order (cn)n∈N”.
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There is less agreement on the concept of a rate bound (often occurring only
implicitly in the proof that a certain rate is optimal). Since (5.17.5) is equivalent to
(5.17.4), this is the weakest condition on the sequence (cn)n∈N which guarantees that
an estimator sequence attaining a better rate for infinitely many n ∈ N is impossible.

The literature offers a plethora of intuitively plausible conditions for a rate bound.
As an example of such a condition we mention the following:

lim inf
n→∞ sup

P∈Pn

Pn{cn|κ(n) − κ(P)| > u} > 0 for every (κ(n))n∈N and every u > 0.

(5.17.8)
This condition, which implies (5.17.5), occurs in (Stone (1980), p. 1348) and in
Hall (1989) [p. 50, (3.3); see also p. 51, Example 3.1]. In addition to (5.17.8), Stone
requires one more condition, (1.2) (see also Kiefer 1982, p. 420), which is equivalent
to

lim
n→∞ sup

P∈Pn

Pn{cn|κ(n) − κ(P)| > un} = 1 for every (κ(n))n∈N and un → 0.

(5.17.9)
Needless to say that (5.17.9), too, implies (5.17.5).

In (1983, p. 393) Stone requires—in a different context—a condition which cor-
responds to

lim
n→∞ sup

P∈Pn

Pn{cn|κ(n) − κ(P)| > u} = 1 for some u > 0.

In this paper, Stone had a deviating definition of attainability (p. 394, relation (2)),
namely

lim
n→∞ sup

P∈Pn

Pn{cn|κ(n) − κ(P)| > u} = 0 for some u > 0.

That a competent author like Stone is at variance with himself illustrates how vague
the idea of an optimal rate is unless intuition is guided by methodological prin-
ciples. His argument (p. 394) that “these definitions...were formulated this way
mainly because they could be verified in the present context” is not compelling.
Stone abstains from relating his concept(s) of a rate bound to the concept Farrell had
used ten years ago.

Farrell (1972), p. 173 (see also Hall and Welsh 1984, p. 1080, and Carroll and
Hall 1988, p. 1185) considers the rate (cn)n∈N as optimal if

lim
n→∞ sup

P∈Pn

Pn{|κ(n) − κ(P)| > an} = 0 for every (κ(n))n∈N implies lim
n→∞ ancn = ∞,

a condition which, on second thought, turns out to be equivalent to (5.17.8) with
lim sup in place of lim inf.

The question of optimal rates did not find much attention in textbooks. Prakasa
Rao, in his monograph Nonparametric Functional Estimation (1983), presents no
general thoughts concerning optimal rates or optimal limit distributions. In the
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particular context of estimating the value of a density, he presents in Theorem 2.0.2,
p. 31, the conditions of Farrell (1972) for “best possible rates”, and the conditions
of Stone (1980) in Example 3, p. 153, for “optimal rates” without comments on the
mutual relationship.

Rates Based on Loss Functions

Some scholars hold the opinion that for a crude concept of optimality like that of an
optimal rate (as opposed to an optimal limit distribution) a detailed consideration
of supP∈Pn

Pn{cn|κ(n) − κ(P)| > u} as a function of u is to no avail. This suggests
to base the concept of an optimal rate on a global measure like “risk”. Let � be a
symmetric loss function. The following definitions are rather plausible:

The estimator sequence (κ(n))n∈N attains the rate (cn)n∈N uniformly on (Pn)n∈N if

lim sup
n→∞

sup
P∈Pn

∫
�(cn(κ

(n) − κ(P)))dPn < ∞. (5.17.10)

The attainable rate (cn)n∈N is optimal uniformly on (Pn)n∈N if

lim inf
n→∞ sup

P∈Pn

∫
�(cn(κ

(n) − κ(P)))dPn > 0 for every (κ(n))n∈N. (5.17.11)

Based on a global measure, relation (5.17.11) can be given in a slightly stronger
version, as

lim inf
n→∞ inf

κ(n)
sup
P∈Pn

∫
�(cn(κ

(n) − κ(P)))dPn > 0 for every (κ(n))n∈N,

the proof of which is not more difficult than the proof of (5.17.11), which suffices to
establish the optimality of an attainable rate.

In order to express that (cn)n∈N is attainable, relation (5.17.10) with �(u) = u2

was used from the beginning. In Theorem 1.2, p. 173, Farrell (1972) (see alsoWahba
1975, p. 16) defines an attainable rate (cn)n∈N as optimal if

lim sup
n→∞

sup
P∈Pn

a−2
n

∫
(κ(n) − κ(P))2dPn < ∞ implies lim inf

n→∞ cnan > 0.

This is a rather circumstantial way of saying that (5.17.11) holds true for �(u) = u2.
Recall that relations (5.17.1) and (5.17.2), proved by Ibragimov and Has’minskii

(1981) [pp. 236/7] to establish nr/(2r+1) as an optimal rate for density estimators,
imply (5.17.10) and (5.17.11).

In the following we discuss the connection between rate concepts based on u →
Pn{cn|κ(n) − κ(P)| > u}, and rate concepts based on ∫

�(cn(κ(n) − κ(P)))dPn . The
connection between these concepts is conveyed by the following lemma, appliedwith
Q(n)

P := Pn ◦ cn(κ(n) − κ(P)).
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Lemma 5.17.5 LetL0 be the class of all symmetric loss functions � : R → [0,∞]
which are continuous, and positive on (0,∞]. Given probability measures Q(n)

P on
B ∩ [0,∞), we consider the following statements.

lim inf
n→∞ sup

P∈Pn

Q(n)
P [un,∞) > 0 for every un → 0, (5.17.12)

lim inf
n→∞ sup

P∈Pn

∫
�(v)Q(n)

P (dv) > 0. (5.17.13)

Then the following is true.
(i) Relation (5.17.13) for some bounded � ∈ L0 implies (5.17.12).
(ii) Relation (5.17.12) implies (5.17.13) for every � ∈ L0.
The same assertions hold true if lim inf is replaced with lim sup in both (5.17.12)

and (5.17.13).
Moreover, lim supn→∞ supP∈Pn

∫
�(v)Q(n)

P (dv) < ∞ for anunbounded loss func-
tion implies

lim
n→∞ sup

P∈Pn

Q(n)
P (un,∞) = 0 for every un → ∞.

Observe that nothing is assumed aboutPn . Hence the assertions hold in particular
with Pn = {P0} for n ∈ N.

Proof Since � is nondecreasing, we have

�(u)1[u,∞)(v) ≤ �(v) for u, v > 0.

Since � is bounded by 1,

�(v) ≤ �(u) + 1[0,∞)(v) for u, v > 0.

Hence

�(u)Q(n)
P [u,∞) ≤

∫
�(v)Q(n)

P (dv) ≤ �(u) + Q(n)
P [u,∞) for u ≥ 0. (5.17.14)

(i) Since un → 0 implies �(un) → 0, we obtain from the right-hand side of
(5.17.14), applied with u = un , that (5.17.12) follows from (5.17.13).

(ii) Assume there exists a bounded � ∈ L0 such that

n → ∞ sup
P∈Pn

∫
�(v)Q(n)

P (dv) = 0.

Then we obtain from the left-hand side of (5.17.14) that

lim inf
n→∞ sup

P∈Pn

Q(n)
P [u,∞) = 0 for u > 0.
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This, in turn, implies the existence of a sequence un → 0 such that

lim inf
n→∞ sup

P∈Pn

Q(n)
P [un,∞) = 0,

in contradiction to (5.17.12). (Hint: For every m there exists n(m) > n(m − 1) such
that supP∈Pn(m)

Q(n(m))
P [1/m,∞) < 1/m.) �

Rate Bounds Without Local Uniformity

In Sect. 5.16 it was shown that limit distributions which are optimal subject to the
condition of locally uniform convergence, cannot be surpassed on open subsets by
any limit distribution. In the following we shall establish an analogous result for
optimal rates. More precisely, we shall show the following: If (cn)n∈N is, for every
P in an open subset P0, a rate bound under the condition of local uniformity, then
it is (under suitable regularity conditions on κ and P) also a rate bound (without a
local uniformity condition) for P in a dense subset of P0. In other words: There is
no estimator sequence attaining a better rate for every P in an open subset of P.

The proof is based on Lemma5.14.1. This lemma applies with X replaced by
P, endowed with a suitable metric ρ. If P → κ(P) is ρ-continuous, and if ρ is at
least as strong as the sup-metric, then the function P → ∫

�(cn(κ(n) − κ(P)))dPn

is continuous for every n ∈ N, provided � is bounded and continuous. (The proof is
about the same as that of Corollary 5.1 in Pfanzagl 2003, p. 109.)

Assume now that (cn)n∈N is, for every P0 in an open subsetP0 ⊂ P, a rate bound
(in the sense of (5.17.7) for locally uniform convergence. Using the characterization
by means of loss functions given in Lemma5.17.5, this can be expressed as follows:
For every (κ(n))n∈N and every � ∈ L0,

lim sup
n→∞

sup
P∈Pn(P0)

∫
�(cn(κ

(n) − κ(P)))dPn > 0. (5.17.15)

We shall show that this implies

lim sup
n→∞

∫
�(cn(κ

(n) − κ(P)))dPn > 0

for P in some dense subset of P0. (Observe that this subset depends on (κ(n))n∈N.)

Proof Assume that for some (κ(n))n∈N and some � ∈ L0 the relation

lim
n→∞

∫
�(cn(κ

(n) − κ(P)))dPn = 0

holds for every P in some open subsetP1 ⊂ P0. Since P → ∫
�(cn(κ(n) − κ(P)))

dPn is continuous for every n ∈ N, there exists (by Lemmas5.14.1 and 5.14.2) a
dense subsetP2 ⊂ P1 such that, for every P0 ∈ P2, the relation limn→∞ ρ(P0, Pn) =
0 implies
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lim
n→∞

∫
�(cn(κ

(n) − κ(Pn)))dP
n
n = 0.

If (Pn(P0))n∈N shrinks to P0 with respect to the metric ρ, this implies

lim
n→∞ sup

P∈Pn(P0)

∫
�(cn(κ

(n) − κ(P)))dPn = 0,

in contradiction to (5.17.15). �

For examples where the conditions of these assertions (such as the existence of a
metric ρ for which P is complete) see Pfanzagl (2002a) .

For families with a Euclidean parameter, the optimal rate usually is n1/2 (or
n1/2(log n)a), and estimator sequences converging at this rate to a limit distribu-
tion are the custom. Hence assertions on the pointwise validity of locally uniform
rate bounds are, in this case, of minor interests. Just for sake of completeness we
mention that, as a consequence of Bahadur’s Lemma, locally uniform rate bounds
are valid pointwise for all Θ except for a set of Lebesgue measure 0.

Optimal Rates and Optimal Limit Distributions

In most cases, there are several estimator sequences converging to the estimand with
the same, optimal, rate. As an example, we mention the estimation of the center
of symmetry of an (unknown) distribution on B. Examples of estimator sequences
with the optimal rate n1/2 are the Bickel and Hodges estimator (1967, Sect. 3),
the estimator of Rao et al. (1975) [Theorem 4, p. 866] based on the Kolmogorov
distance, or the (adaptive) estimator by van Eeden (1970). Under natural conditions
(see Sect. 5.5), the center of symmetry is a differentiable functional, so that the
LAN-theory yields the asymptotic concentration bound, which is attained by various
estimator sequences (see Sect. 5.13).

There are many more nonparametric models of this kind: a differentiable func-
tional and anLAN-conditionbasedon a raten1/2L(n) (usuallywith L(n) = (log n)a),
which distinguishes certain estimator sequences as asymptotically maximally con-
centrated.

Typical for nonparametric models are, however, optimal rates slower than n1/2.
[This is shorthand for a rate naL(n) with a < 1/2.] Even if estimator sequences
attaining this optimal rate converge to a limit distribution, there is no asymptotic
bound for the quality of these estimator sequences. This is not a lacuna in the theory;
such bounds are impossible.

First we mention a result which illustrates the principal difficulties relating to
limit distributions attained with an optimal rate slower than n1/2. Then we turn to
more specific conditions which determine the optimal rate, and which, at the same
time, exclude the existence of estimator sequences converging locally uniformly to
some limit distribution with the optimal rate, if the latter is slower than n1/2.



268 5 Asymptotic Optimality of Estimators

If there exists an estimator sequence converging with a rate naL(n), a ∈ [0, 1/2)
locally uniformly to a limit distribution with expectation 0 and finite variance, then
there exists an estimator sequence converging with a better rate locally uniformly
to a normal limit distribution with mean 0. (See Pfanzagl 1999b, p. 759, Theorem
2.1 (ii).)

For a precise formulation of this result we need the concept of locally uniform
convergence, holding uniformly on some subset P0 ⊂ P. (The formulation of the
Theorem cited above is somewhat careless in this respect.) Given for every P0 ∈ P a
nondecreasing sequencePn(P0), n ∈ N, we say that Q(n)

P , n ∈ N, converges locally
uniformly to QP , uniformly onP0, if supP∈Pn(P0) D(Q(n)

P , QP), n ∈ N, converges

to 0, uniformly for P0 ∈ P0. (This is, in particular, the case if supP∈P0
D(Q(n)

P , QP),
n ∈ N, converges to 0.)

If there exists an estimator sequence κ(n) such that Pn ◦ cn(κ(n) − κ(P)), n ∈ N,
converges in this sense with cn = naL(n), a ∈ [0, 1/2), to a limit distribution QP ,
then there is an estimator sequence κ̂ (n) such that Pn ◦ ĉn(κ̂(n) − κ(P)), converges
in this sense to N (0, σ 2(P)), with a rate(ĉn)n∈N such that limn→∞ ĉn/cn = ∞. This
holds under the assumption that QP has expectation 0, that u2 is QP -integrable
uniformly for P ∈ P0, and σ 2(P) = ∫

u2QP(du) is bounded and bounded away
from 0 on P0. A special, yet more concise version is this: If Pn ◦ cn(κ(n) − κ(P)),
n ∈ N, converges with cn = naL(n), a ∈ [0, 1/2) to a N (0, σ 2(P)), then there exists
an estimator sequence (κ̂(n))n∈N such that Pn ◦ ĉn(κ̂(n) − κ(P)), n ∈ N, converges
to the same normal limit distribution with a rate (ĉn)n∈N better than (cn)n∈N, provided
σ 2(P) is bounded and bounded away from 0 for P ∈ P0.

The conclusion: In situations which are typical for nonparametric models, it is
impossible to define the concept of a maximally concentrated limit distribution in
the usual sense, based on a local uniformity.

This result does not exclude the existence of estimator sequences which converge
locally uniformly to a limit distribution with a rate slower than the optimal one,
and they do not exclude the existence of estimator sequences converging to a limit
distribution with this rate for every P ∈ P.

Observe the connection with what has been said above: If it is possible to find
a metric ρ “stronger” than d, such that P is complete and κ continuous, then con-
vergence of Pn ◦ cn(κ(n) − κ(P)) to a limit distribution QP for every P in an open
subset P0 implies locally uniform convergence on a dense subset of P0. However,
this local uniformity is with respect to ρ, and locally ρ-uniform convergence at some
P0 does not imply uniform convergence on {P ∈ P : d(Pn

0 , P
n) ≤ α}.

How to Determine the Optimal Rate

The following theorem shows explicitly how optimal rate bounds can be determined,
and that estimator sequences converging with this optimal rate locally uniformly to
some limit distribution do not exist if this optimal rate is slower than n1/2.

Theorem 5.17.6 Assume that for (cn)n∈N there exists a sequence Pn ∈ P, n ∈ N,
such that

lim sup
n→∞

d(Pn
0 , P

n
n ) < 1 (5.17.16)
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and
lim inf
n→∞ cn|κ(Pn) − κ(P0)| > 0. (5.17.17)

Then the following is true.

(i) There is an α < 1 such that (cn)n∈N is a rate bound for uniform convergence on

Pn,α(P0) := {P ∈ P : d(Pn
0 , P

n) ≤ α}, for some α < 1.

(ii) If
lim
m→∞m−1/2 lim sup

n→∞
cmn/cn = 0, (5.17.18)

then there exists no estimator sequence converging with this rate uniformly on
Pn,α(P0) for some α ∈ (0, 1) to a non-degenerate limit distribution.

Remark Condition (5.17.18) is in particular fulfilled if cn = naL(n) with a ∈
[0, 1/2). Recall that all regularly varying sequences (cn)n∈N are of the type cn =
naL(n).

Proof (i) By assumptions (5.17.16) and (5.17.17) there is α < 1 and λ > 0 such
that for n ∈ N,

d(Pn
0 , Pn) < α (5.17.19)

and
cn|κ(Pn) − κ(P0)| > λ. (5.17.20)

W.l.g. we assume that

cn(κ(Pn) − κ(P0)) > λ for n ∈ N.

These relations imply

Pn
0 {cn(κ(n) − κ(P0)) > u + λ}

> −α + Pn
n {cn(κ(n) − κ(P0)) > u + λ}

≥ −α + Pn
n {cn(κ(n) − κ(Pn)) > u}. (5.17.21)

(ii) Relation (5.17.21), applied with u = −λ/2, yields

Pn
0 {cn(κ(n) − κ(P0)) > λ/2} + Pn

n {cn(κ(n) − κ(Pn)) ≤ −λ/2} > 1 − α.

Since Pn ∈ Pn,α(P0), this implies

sup
P∈Pn,α(P0)

Pn{cn|κ(n) − κ(P)| ≥ λ/2} >
1

2
(1 − α) > 0.
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Hence, by Definition5.17.3, (cn)n∈N is a rate bound for uniform convergence
on (Pn,α̂)n∈N.

(iii) Assume now that Pn ◦ cn(κ(n) − κ(P)), n ∈ N, converges weakly to QP0 |B,
uniformly for P ∈ Pn,β for some β > 0. By definition of uniform weak con-
vergence, there exists a dense subset B ⊂ R such that

lim
n→∞ sup

P∈Pn,β

|Pn{cn(κ(n) − κ(P)) > u} − QP0(u,∞)| = 0 for every u ∈ B.

(5.17.22)
Relation (5.17.24), applied with P replaced by Pn

0 and Q replaced by Pn
mn (with

m fixed), yields

d(Pn
0 , P

n
mn) ≤ m−1/2

√
2/(1 − α)d(Pmn

0 , Pmn
mn )

1/2

≤ m−1/2
√
2α/(1 − α). (5.17.23)

With Pmn in place of Pn , relation (5.17.19) therefore holds with

α̂ = m−1/2
√
2α/(1 − α).

From (5.17.20),

cn|κ(Pmn) − κ(P0)| ≥ cn
cmn

λ.

Let
εm := m−1/2 lim sup

n→∞
cmn/cn .

By assumption (5.17.18), limm→∞ εm = 0. For every m ∈ N, there is nm such
that

cmn/cn < 2 lim sup
n→∞

cmn/cn for n ≥ nm,

hence
cmn/cn ≤ 2m1/2εm for n ≥ nε.

This implies

cn|κ(Pmn) − κ(P0)| ≥ cn
cmn

λ ≥ λ

2
m−1/2ε−1

m .

Hence, with Pmn in place of Pn , relation (5.17.20) holds for n ≥ nm with λ̂ =
λ
2m

−1/2ε−1
m .

Relation (5.17.21), with Pmn in place of Pn and α̂, λ̂ in place of α, λ, respectively,
becomes

Pn
0 {cn(κ(n) − κ(P0)) > u + λ

2
m−1/2ε−1

m }
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≥ −m−1/2
√
2α/(1 − α) + Pn

mn{cn(κ(n) − κ(Pmn)) > u} for n ≥ nm .

Since Pmn ∈ Pn,β for every β > 0 (by (5.17.23), relation (5.17.22) implies

QP0(u + λ

2
m−1/2ε−1

m ,∞) ≥ −m−1/2
√
2α/(1 − α) + QP0(u,∞),

i.e.

QP0(u, u + λ

2
m−1/2ε−1

m ] ≤ m−1/2
√
2α(1 − α) for u ∈ B and m ∈ N.

Since the convergence ofm−1/2ε−1
m to 0 is slower than the convergence ofm−1/2, it

is plausible that this is incompatible with the assumption that QP0 is non-degenerate.
This can be made precise by the following lemma (see Pfanzagl 2000b, p. 39,
Lemma 4.1):

For nondecreasing functions F : R → [0, 1], and t, s > 0, the relation
F(u + t) − F(u) ≤ s for all u in a dense subset implies

F(u′′) − F(u′) ≤ 2s(1 + (u′′ − u′)t−1) for arbitrary u′ < u′′.

Applied with F(u) = QP0(−∞, u], this lemma implies

QP0(u
′, u′′] ≤ 2m−1/2

√
2α/(1 − α)(1 + (u′′ − u′)2λ−1m1/2εm)

= 2m−1/2
√
2α/(1 − α) + (u′′ − u′)4λ−1

√
2α/(1 − α)εm .

Since εn → 0, this implies the assertion. �

Lemma 5.17.7 Let α ∈ (0, 1). Then

(1 − u)1/m ≥ 1 − u

1 − α
· 1

m
for every u ∈ [0, α].

Proof Let
f (u) := (1 − u) exp[u/(1 − α)].

Then f (0) = 1 and f ′(u) ≥ 0 for u ∈ [0, α] imply f (u) ≥ 1 for u ∈ [0, α], hence

(1 − u) ≥ exp[−u/(1 − α)] ≥
(
1 − u

1 − α
· 1

m

)m
.

�

Lemma 5.17.8 (i) H(Pm, Qm)2 ≤ α < 1 implies

H(P, Q)2 ≤ m−1

1 − α
H(Pm, Qm)2.
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(ii) d(Pm, Qm) ≤ α < 1 implies

d(P, Q) ≤ m−1/2
√
2/(1 − α)d(Pn, Qm)1/2. (5.17.24)

Proof (i) Lemma5.17.7 implies

(1 − H(Pm, Qm)2)1/m ≥ 1 − m−1

1 − α
H(Pm, Qm)2.

Relation (i) now follows from

1 − H(P, Q)2 = (1 − H(Pm, Qm)2)1/m .

(ii) Relation (ii) follows from (i), since

H(P, Q)2 ≤ d(P, Q) ≤ √
2H(P, Q).

(See e.g. Strasser 1985, p. 11, Lemma 2.15.) �

5.18 Second Order Optimality

Asymptotic assertions on the performance of estimator sequences more informative
than the approximation by limit distributions, require conditions on the family of
probability measures going beyond “LAN” as well as regularity conditions on the
estimator sequences going beyond “locally uniform convergence to a limit distrib-
ution”, or “locally uniform median unbiasedness”. Though our main interest is in
estimation theory, auxiliary results on test sequences will be essential.

Following the historical development, we present the results for parametric fami-
liesP = {Pn

ϑ : ϑ ∈ Θ},Θ ⊂ R
k . Corresponding results for general families require

more technical preparations. Readers interested in these extensions are referred to
Pfanzagl (1985). In this Section we will write op(εn) for o(εn, Pn

ϑ ) and use the
Einstein convention which omits summation signs over pairs of indices. Besides
Li j (ϑ) = ∫

�(i j)(·, ϑ)dPϑ and Li, j (ϑ) = ∫
�(i)(·, ϑ)�( j)(·, ϑ)dPϑ we introduce

Li jk(ϑ) =
∫

�(i jk)(·, ϑ)dPϑ , Li j,k(ϑ) =
∫

�(i j)(·, ϑ)�(k)(·, ϑ)dPϑ ,

etc. As before, L(ϑ) = (Li, j (ϑ))i, j=1,...,k and Λ(ϑ) = L(ϑ)−1.
As a first step we present asymptotic results of order o(n−1/2). Many results

familiar from the asymptotic theory of order o(n0) carry over to o(n−1/2). The inter-
pretation of results of order o(n−1) is much more complex from the conceptual point
of view; the regularity conditions to be imposed on the familyP are more restrictive.
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This is not just a matter of higher order smoothness of the densities, say. Proper-
ties which were irrelevant for approximations of order o(n0) now enter the stage:
Assertions of order o(n−1/2) about the concentration on even rather simple sets are
impossible for families of discrete distributions. If we consider asymptotic assertions
as approximations to the reality, we must not ignore that families of probability mea-
sures reflect reality to a degree which hardly ever justifies to take serious differences
between statistical procedures which are of the order n−1 only.

In contrast to an asymptotic theory of order o(n−1), some basic results following
from an asymptotic theory of order o(n−1/2) seem to be of practical relevance. One
would expect that an analysis of order o(n−1/2) reveals differences of order n−1/2

between asymptotically efficient estimator sequenceswhich are indistinguishable by
an analysis of order o(n0). This is, however, not the case. For a large class of estimator
sequences, asymptotic efficiency of order o(n0) implies efficiency of order o(n−1/2).
It contributes to the relevance of this result that “efficiency of order o(n−1/2)” holds
simultaneously for all loss functions in the case of one-parameter families, and for
all symmetric loss functions in the general case.

In this section we write op(an) for o(an, Pn
ϑ ). We also use the Einstein convention

and sum over pairs of indices.

Asymptotic theory going beyond the approximation by limit distributions started
with papers on the distributions of ML-sequences, say (ϑ(n))n∈N. For highly reg-
ular parametric families {Pn

ϑ : ϑ ∈ Θ}, Θ ⊂ R
k , the ML estimator sequence has a

stochastic expansion (S-expansion ) of order o(n−1/2),

n1/2(ϑ(n) − ϑ) = S(n)(·, ϑ) + op(n
−1/2) (5.18.1)

with

S(n)(·, ϑ) = λ̃(·, ϑ) + n−1/2
(1

2
Λ•�(ϑ)L�i j (ϑ)λ̃i (·, ϑ)λ̃ j (·, ϑ)

+ Λ•i (ϑ)�̃(i j)(·, ϑ)λ̃ j (·, ϑ)
)
. (5.18.2)

and λ(·, ϑ) = Λ(ϑ)�•(·, ϑ) ∈ L∗(Pϑ). Straightforward computation shows that

S(n)(·, ϑ + n−1/2a) = S(n)(·, ϑ) − a + op(n
−1/2). (5.18.3)

Hence relation (5.18.1) holds with ϑ replaced by ϑ + n−1/2a.
Similar stochastic expansions exist for various estimator sequences: for sequences

of ML estimators see Linnik and Mitrofanova (1963, 1965) and Mitrofanova (1967),
with imperfect proofs. The first correct proof for the validity of an expansion of
the distribution function, i.e., an Edgeworth expansion (E-expansion ) for one-
dimensional minimum contrast estimators was given by Chibisov (1973b) [pp. 651–
652, Theorem 2]. A similar result was obtained independently by a different method
(which does not extend, however, to the case of vector parameters) in Pfanzagl
(1973) [p. 997, Theorem 1], where the polynomials up to the order o(n−1/2) are
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given explicitly. For the ML estimator of a vector parameter see Michel (1975)
[p. 70, Theorem 1]. Stochastic expansions for Bayes estimators and for estimators
obtained by maximizing the posterior density can be found in Gusev (1975) [p.
476, Theorem 1, p. 489, Theorem 5] and Strasser (1977) [p. 32, Theorem 4]; for
estimators obtained as the median of the posterior distribution see Strasser (1978b)
[pp. 872–873, Lemma 2].

The Convolution Theoremwas the outcome of long-lasting endeavors to prove the
asymptotic optimality ofML-sequences. The resultwas twofold. (i)Under conditions
on the basic family, there is a “bound” for regularly attainable limit distribution, and
(ii) under additional conditions on the family, estimator sequences attaining this
bound do exist.

From the beginning, E-expansions for the distribution of certain sequences of esti-
mators and tests had a less ambitious goal: To obtain more accurate approximations
to Pn

ϑ ◦ n1/2(ϑ(n) − ϑ), in particular: to distinguish between estimator sequences
with identical limit distributions.

One would expect the class of all asymptotically efficient estimator sequences to
split up under a closer investigation. If we restrict attention to estimator sequences
with distributions approximable by an E-expansion E (n)

ϑ with λk-density ϕΛ(ϑ)(u)
(1 + n−1/2G(u, ϑ)), i.e.,

sup
C∈C

∣
∣
∣Pn

ϑ {n1/2(ϑ(n) − ϑ) ∈ C} −
∫

C
φΛ(ϑ)(u)(1 + n−1/2G(u, ϑ))

∣
∣
∣ = o(n−1/2),

this would mean a variety of n−1/2-terms G, and the best one could hope for is the

existence of an E-expansion E
(n)

such that, for every n ∈ N, E
(n)

(B) ≥ E (n)(B) for
a large class of sets B, say all convex and symmetric sets. It came as a surprise to
all of us that this disaster did not occur. It turned out that asymptotically efficient
estimator sequences have the same E-expansion of order o(n−1/2), except for a
difference of order n−1/2 in their location.

Remark That different asymptotically efficient statistical procedures agree in their
efficiency to a higher order, was already observed byWelch (1965) [p. 6]: confidence
procedures based on different statistics like ML estimators or �̃• have up to o(n−1/2)

the same covering probability for ϑ − n−1/2t if the covering probabilities for ϑ agree
up to o(n−1/2). Hartigan (1966) [p. 56] observes that central Bayes intervals agree in
their size for various prior distributions up to the order n−1. For more results of this
kind see Strasser (1978b) [p. 874, Theorem 3.] Sharma (1973) [p. 974] observes for
certain exponential families: If the minimum variance unbiased estimator sequence
has the sameasymptotic distribution as theML-sequence, then the difference between
these distributions is of an order—almost—smaller than n−1/2. (Readers interested
in questions of priority should be aware of J.K. Ghosh, 1991, p. 506, who claims to
have been the first to observe the phenomenon of 2nd order efficiency of certain 1st
order efficient tests, but gives no information about the date of this happening.)

When Hodges and Hodges and Lehmann (1970) introduced the concept of “defi-
ciency” to characterize the differences between asymptotically efficient statistical
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procedures, they accepted off-hand that this required an analysis of order n−1,
although one would expect that an analysis of order n−1/2 should suffice. The same
holds true for authors like Albers (1974) andDoes (1982) who computed deficiencies
for various types of nonparametric statistics. All these statistics are efficient of order
o(n0), and their efficiency is the same up to terms of order n−1, a fact which none of
these authors found worth mentioning. An exception is Bickel and van Zwet (1978,
p. 988).

That various asymptotically efficient procedures have the same n−1/2-term does
not necessarily imply that this term is the optimal one. The situation is different for
certain tests. Given a univariate family of probability measures, a bound of order
o(n−1/2) for the power of tests for the hypothesis ϑ = ϑ0 against alternatives ϑ0 +
n−1/2t may be obtained from an E-expansion based on the Neyman–Pearson Lemma
(see e.g. Pfanzagl 1973, p. 1000, Theorem 3(iii) and the references cited there).
A corresponding result was obtained for tests of composite hypotheses which are
similar of order o(n−1/2) (see e.g. Chibisov 1973a, p. 40, Theorem 9.1, or Pfanzagl
1974, p. 208, without proof, 1975, p. 14, and 1979, p. 180, Theorem 6.5). Such results
imply that the n−1/2-terms, common to all tests which are asymptotically efficient
of order o(n0) and similar of order o(n−1/2) are, in fact, optimal of order o(n−1/2).
In view of the variety of such tests, this was surprising (see the remarks in Chibisov
1973a, p. 16 on C(α)-tests or Pfanzagl 1974, p. 224). It was mentioned by Takeuchi
and Akahira (1976) [p. 629] for the special case of asymptotically efficient tests
based on linear combination of order statistics.

These results on tests carry over to estimator sequenceswhich aremedian unbiased
of order o(n−1/2). This leads to a bound of order o(n−1/2) for the concentration of
estimator sequences which are median unbiased of order o(n−1/2) in the sense that,
for a ∈ R,

P (n)
ϑ+n−1/2a{ϑ(n) ≤ ϑ + n−1/2a} = 1

2
+ o(n−1/2)

and

P (n)
ϑ+n−1/2a{ϑ(n) ≥ ϑ + n−1/2a} = 1

2
+ o(n−1/2).

There are no further conditions on the structure of the sequence (ϑ(n))n∈N.
In contrast to the situation for univariate families, there is no “absolute” bound

of order o(n−1/2) for the concentration of multivariate estimator sequences. This
motivates the study of estimator sequences with S-expansion.

Estimator Sequences With S-Expansions

The next step was to consider estimator sequences ϑ(n), n ∈ N, with general S-
expansion

n1/2(ϑ(n) − ϑ) = λ̃(·, ϑ) + n−1/2Q(λ̃(·, ϑ), g̃(·, ϑ), ϑ) + op(n
−1/2), (5.18.4)
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with functions g(·, ϑ) ∈ L∗(ϑ)m uncorrelated to λ(·, ϑ). In the usual cases, the com-
ponents Q1(·, ϑ), . . . Qk(·, ϑ) of Q(·, ϑ) are polynomials with coefficients depend-
ing on ϑ .

Considering the general S-expansion (5.18.4), one would expect a great variety
of possible E-expansions. This is, however, not the case. First of all, the generality
of the functions Q1, . . . , Qk is spurious. If the S-expansion (5.18.4) holds locally
uniformly, more precisely: with ϑ replaced by ϑ + n−1/2a, this restricts the possible
forms of the functions Qr . Replacing ϑ by ϑ + n−1/2a and considering the resulting
relation as an identity in a leads to the following canonical representation (see
Pfanzagl and Wefelmeyer 1978, p. 18, Lemma 5.12 for more details):

n1/2(ϑ(n) − ϑ) = S(n)(·, ϑ) + n−1/2R(n)(·, ϑ) + op(n
−1/2), (5.18.5)

where S(n) is given by (5.18.2) and the remainder term R(n) is of the type

R(n)(·, ϑ) = R( f̃ (·, ϑ);ϑ) (5.18.6)

with functions f (·, ϑ) ∈ L∗(ϑ)m that are uncorrelated to λ(·, ϑ).With the seemingly
more general S-expansion (5.18.4) we are in the end back to the S-expansion of the
ML-sequence except for the remainder term R(n).

According to Pfanzagl (1979) [p. 182, Theorem 7.4], Pn
ϑ ◦ S(n)(·, ϑ) has an E-

expansion with λk-density

ϕΛ(ϑ)(u)(1 + n−1/2G(u, ϑ)), (5.18.7)

where
G(u, ·) = aiui + ci jkuiu juk (5.18.8)

with

ai = −(
1

2
Li, j,k + Li j,k)Λ jk (5.18.9)

and

ci jk = −(
1

3
Li, j,k + 1

2
Li, jk). (5.18.10)

Let E0 denote the class of all estimator sequences for ϑ admitting an E-expansion
with λk-density (5.18.7), (5.18.8) with ci jk given by (5.18.10) and with generic con-
stants a1, . . . , ak . These constants become unique under additional conditions on the
estimator sequence (say ML or componentwise median unbiased.)

By introducing the class E0, we avoid building an optimality concept which
is confined to “standardized” estimator sequences. After all, there is no convinc-
ing standardization of order o(n−1/2) for multidimensional estimators (except for
component-wise median unbiasedness). Moreover, a standardization of ϑ(n) as an
estimator for ϑ does not carry over to a corresponding standardization for κ ◦ ϑ(n)

as an estimator for κ(ϑ).
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E0 contains all o(n−1/2)-optimal estimator sequences with S-expansion. Under
suitable regularity conditions, any estimator sequence in E0 can be transformed in
any other estimator sequence in this class.

Remark The constants a1, . . . , ak given by (5.18.9) are specific for ML-sequences.
They will be different for other asymptotically efficient estimator sequences.

For the following, it will be of interest that an estimator sequence ϑ(n), n ∈ N,
with an n−1/2-term G(u, ·) = aiui + ci jkuiu juk in the density, can be transformed
into an estimator sequence ϑ̂ (n), n ∈ N, with an n−1/2-term âi ui + ci jkuiu juk by

ϑ̂ (n) := ϑ(n) + n−1Λ• j (ϑ(n))(a j (ϑ
(n)) − â j (ϑ

(n)))

provided Λi j are continuous and a j , âi are Lipschitz.

For later use we remark that estimator sequences with E-expansion and o(n−1/2)-
median unbiasedmarginals have (see Pfanzagl 1979, p. 183, relation (7.9)) the n−1/2-
term

G(u, ·) = (
(Li, j,k + Li j,k + 1

2
Li, jk)Λ jk + ci jk Lr,rΛirΛ jrΛkr Lr,s

)
us

+ci jkuiu juk . (5.18.11)

If the concentration of such estimator sequences in E0 are compared on sets C ∈ C
symmetric about 0, the difference of order n−1/2 in location cancels out, and

Pn
ϑ {n1/2(ϑ(n) − ϑ) ∈ C} = N (0,Λ(ϑ))(C) + o(n−1/2).

Since estimator sequences with a stochastic expansion (5.18.4) differ, in the end,
by a term n−1/2R(n) only—what is the influence of this term on the E-expansion?
Theorem 7.4 in Pfanzagl (1979) [p. 182] asserts that such estimator sequences have,
except for a shift of order n−1/2, the same E-expansion, hence the same efficiency of
order o(n−1/2). This was the result which justified the phrase “first order efficiency
implies second order efficiency”. (The paper Pfanzagl 1979, was already presented
at theMeeting of Dutch Statisticians in Lunteren in 1975, but was not been published
until 1979 because of a delay in the publication of the Hájek Memorial Volume.)

In the following, this result (i.e., the o(n−1/2)-equivalence of all o(n0)-efficient
estimator sequences) will be established under more general conditions.
We consider estimator sequences with the S-expansion

n1/2(ϑ(n) − ϑ) = S(n)(·, ϑ) + n−1/2R(n)(·, ϑ) + op(n
−1/2) (5.18.12)

with S(n) given by (5.18.2). If this representation holds with ϑ replaced by ϑ +
n−1/2a, relation (5.18.3) implies that

R(n)(·, ϑ + n−1/2a) = R(n)(·, ϑ) + op(n
0). (5.18.13)
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Observe that relation (5.18.13) is, in particular, true for remainder terms of the special
type (5.18.6). Since fi (·, ϑ) are uncorrelated to λ1(·, ϑ), . . . , λk(·, ϑ), this implies
f̃i (·, ϑ + n−1/2a) = f̃i (·, ϑ) + op(n0). If R(n) is a continuous function of all its argu-
ments, relation (5.18.13) follows.

We shall show that all estimator sequences with a representation (5.18.12) have
the same E-expansion, except for a shift of order n−1/2. What makes the whole
thing tick is the asymptotic independence between S(n) and R(n). This independence
follows since S(n) is the contradiction of an asymptotically sufficient and complete
statistic, and R(n) is asymptotically invariant (according to (5.18.13) (compareBasu’s
Theorem).

For the proof of the following Theorem5.18.1 we need in addition to (5.18.13)
that the sequence R(n)(·, ϑ + n−1/2a), n ∈ N, is uniformly Pn

ϑ+n−1/2a-integrable, a
property which is not inherent in the role of R(n) in the representation (5.18.12). A
proof under weaker conditions on R(n) is wanted.

Theorem 5.18.1 If R(n)(·, ϑ + n−1/2a), n ∈ N, is uniformly Pn
ϑ+n−1/2a-integrable for

each a and Pn
ϑ ◦ (S(n)(·, ϑ) + n−1/2R(n)(·, ϑ)), n ∈ N, admits an E-expansion, then

this E-expansion differs from the E-expansion of Pn
ϑ ◦ S(n)(·, ϑ), n ∈ N, by a shift of

order n−1/2 only.

More precisely: Under the conditions indicated above, there exist ρ(ϑ) ∈ R
k such

that Pn
ϑ ◦ (S(n)(·, ϑ) + n−1/2R(n)(·, ϑ)) and Pn

ϑ ◦ (S(n)(·, ϑ) + n−1/2ρ(ϑ)), n ∈ N,
have the same E-expansion.

Remark If ρ is a continuous function of ϑ , then the estimator sequence

ϑ̂ (n)(xn) = ϑ(n)(xn) + n−1ρ(ϑ(n)(xn))

has the same E-expansion as the estimator sequence ϑ(n) with the expansion
(5.18.12). This shows, in particular, that the class of all estimator sequences which
are modifications of the ML-sequence is complete of order o(n−1/2) in the class of
all estimator sequences with S-expansions. (Earlier completeness theorems, some of
these extending to an order going beyond o(n−1/2), can be found in Pfanzagl 1973,
Sect. 6, Pfanzagl 1974, Sect. 6 Pfanzagl 1975, p. 34, Theorem 6, and Pfanzagl and
Wefelmeyer 1978, p. 7, Theorem 1 (iii).)

Example For P = {N (0, σ 2) : σ 2 > 0}, the estimator sequences

s2n (xn) := n−1
n∑

ν=1

(xν − xn)
2 and ŝ2n (xn) := n−1

n∑

ν=1

x2ν

are both efficient of order o(n0), and

n1/2(s2n (xn) − σ 2) = n1/2(ŝ2n (xn) − σ 2) + n−1/2R(n)(xn),
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with R(n)(xn) = nx2n . This is an S-expansion of n1/2(s2n − σ 2) with S(n)(xn, σ 2) =
n1/2(ŝ2n (xn) − σ 2) and R(n)(xn) = ( f̃ (xn))2 with f (x) = x ; observe that the cor-
relation between S(n)(·, σ 2) and R(n) is of order o(n0), which follows in this case
immediately from the stochastic independence between n1/2(s2n − σ 2) and R(n). The
distribution of n1/2(ŝ2n − σ 2) differs from the distribution of n−1/2(s2n − σ 2) by a sto-
chastic term of order op(n−1/2). N (0, σ 2)n ◦ R(n) = σ 2χ2

1 is non-degenerate, with∫
R(n)dN (0, σ 2)n = σ 2. �

Proof of Theorem 5.18.1. Since R(n)(·, ϑ), n ∈ N, is uniformly Pn
ϑ -integrable, the

sequence
∫ |R(n)(·, ϑ)|dPn

ϑ , n ∈ N, is bounded. Hence ρn(ϑ) := ∫
R(n)(·, ϑ)dPn

ϑ is
bounded, too, and converges to some ρ(ϑ) ∈ R

k for some subsequence N0.
Let g : Rk → R be a bounded function with bounded and continuous derivatives

g(i), i = 1, . . . , k, so that

g(S(n)(·, ϑ) + n−1/2(R(n)(·, ϑ) − ρ(ϑ)))

= g(S(n)(·, ϑ)) + n−1/2gi (S
(n)(·, ϑ))(R(n)

i (·, ϑ) − ρi (ϑ)) + op(n
−1/2).

Lemma5.18.9, applied with h = g(i) and fn = R(n) − ρ, implies that

∫
gi (S

(n)(·, ϑ))(R(n)
i (·, ϑ) − ρn(ϑ))dPn

ϑ = o(n0).

(Since R(n) is uniformly integrable, R(n) − ρn is uniformly integrable, too.) Hence
∫

g(S(n)(·, ϑ) + n−1/2(R(n)(·, ϑ) − ρn(ϑ)))dPn
ϑ =

∫
g(S(n)(·, ϑ))dPn

ϑ + o(n−1/2).

Applied with g(u + n−1/2ρ) in place of g(u) this implies for n ∈ N0,

∫
g(S(n)(·, ϑ) + n−1/2R(n)(·, ϑ))dPn

ϑ

=
∫

g(S(n)(·, ϑ) + n−1/2ρ(ϑ))dPn
ϑ + o(n−1/2). (5.18.14)

Since Pn
ϑ ◦ g(S(n) + n−1/2R(n)) admits an approximation by an E-sequence, the con-

vergence of (ρn)n∈N0 to ρ holds, in fact, for the whole sequence.
So far, the equality (5.18.14) holds for certain functions g only. Yet, the class

of these functions is large enough to imply that the E-expansions of Pn
ϑ (S

(n) +
n−1/2R(n)) and P (n)

ϑ ◦ (S(n) + n−1/2ρ) are identical. �
The results indicated so far hold for estimator sequences with an S-expansion.

The approximation of n1/2(ϑ(n) − ϑ) by an S-expansion is an important device to
obtain an approximation to Pn

ϑ ◦ n1/2(ϑ(n) − ϑ) by an E-expansion. The S-expansion
itself is of no operational significance. Hence it suggests itself to look for estimator
sequences with E-expansion which are better than the best estimator sequences with
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S-expansion. The purpose of the following section is to show that there are no E-
expansions with a better n−1/2-term. This assertionwill be supported by two different
results.

(i) All sufficiently regular E-expansions have an n−1/2 term of the particular type
(5.18.7), and the one with bi j ≡ 0 is optimal in this class.

(ii) Another result is based on the “absolute” concept of o(n−1/2)-optimality for
univariate functionals. It will be shown that

(i) Expansion (5.18.11) is the only E-expansion for estimator sequences (ϑ(n))n∈N
with o(n−1/2)-median unbiased marginals.

(ii) For sufficiently regular functionals κ : Rk → R, the estimator sequence κ ◦
ϑ(n), n ∈ N, is o(n−1/2)-optimal if (ϑ(n))n∈N has an E-expansion (5.18.8).

E-Expansions Without S-Expansions

It is an operationally significant property of the estimator sequences ϑ(n), n ∈ N, that
Pn
ϑ ◦ n1/2(ϑ(n) − ϑ), n ∈ N, is approximable by a limit distribution. The correspond-

ing refinement is approximability up to o(n−1/2) of Pn
ϑ ◦ n1/2(ϑ(n) − ϑ), n ∈ N, by

an E-sequence. As for the approximations by limit distributions, it is some kind of
local uniformity which makes this idea operationally meaningful and which restricts
the possible forms of E-expansions. The idea of local uniformity was applied for S-
expansions, and it can be applied as well to the approximation of Pn

ϑ ◦ n1/2(ϑ(n) − ϑ)

by a sequence E (n)
ϑ having a λk-density of the type (5.18.7), i.e.,

ϕΛ(ϑ)(u)(1 + n−1/2G(u, ϑ))

with some functionG(·, ϑ). The application of this idea leads to the following result:

Assume that for every loss function � ∈ L∗ and some δ > 1
2 ,

nδ
∣
∣
∣

∫
�(n1/2(ϑ(n) − ϑ))dPn

ϑ

−
∫

�(u)(1 + n−1/2G(u, ϑ))ϕΛ(ϑ)(u)λ
k(du)

∣
∣
∣ = o(n0) (5.18.15)

holds uniformly with ϑ replaced by ϑ + n−1/2a. (Condition (5.18.15) with δ > 1/2
is needed in the proof. What corresponds to “approximation of order o(n−1/2)” is
δ = 1/2.)

The use of loss functions � with bounded and continuous first and second order
derivatives is needed since approximations of this order on (say convex) setswould be
possible only under additional smoothness conditions on the family (which exclude
lattice distributions).

If such an estimator sequence admits an E-expansion (5.18.7), then the function
G is necessarily of the following type.

G(u, ϑ) = ai (ϑ)ui + bi j (ϑ)(uiu j − Λi j (ϑ)) + ci jk(ϑ)uiu juk, (5.18.16)
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where the matrix (bi j )i, j=1,...,k is positive semidefinite. Recall that the factor ci jk
given by (5.18.10) does not depend on the estimator sequence.

This is the parametric version of a more general theorem proved in Pfanzagl
(1985, Sect. 9, pp. 288–332) under the assumption that G(·, ϑ) is bounded by some
polynomial and that it fulfills certain smoothness conditions, such as

∫ ∣
∣G(u, ϑn)ϕΛ(ϑn)(u) − G(u, ϑ)ϕΛ(ϑ)(u)

∣
∣λk(du) = o(n0) forϑn = ϑ + n−1/2a

and ∫ ∣
∣G(u + y, ϑ) − G(u, ϑ)

∣
∣ϕΛ(ϑ)(u)λ

k(du) = O(|y|) if y → 0.

If we accept the regularity conditions under which this result was proved, then one
might say that for the class of all estimator sequences admitting an E-expansion
(5.18.7),G(·, ϑ) is given by (5.18.16). This class of estimator sequences is, therefore,
(i)more general than the class of all estimator sequenceswithS-expansion, and (ii) the
optimal estimator sequences fulfill (5.18.16) with bi j = 0 for i, j = 1, . . . , k. Hence,
any estimator sequence with S-expansion is optimal in the larger class of estimator
sequences the distributions of which is approximable up to the order o(n−1/2) in the
sense described by (5.18.15).

The optimality of E-distributions with bi j = 0 for i, j = 1, . . . , k is based on
Lemma5.18.2. Since thematrix (bi j ), i, j = 1, . . . , k is positive semidefinite, Lemma
5.18.2 implies that bi j

∫
�(u)

(
uiu j − Λi j (ϑ)

)
ϕΛ(ϑ)(u)λk(du) ≥ 0 for any symmet-

ric and subconvex loss function �.

Lemma 5.18.2 (i) For any symmetric and subconvex loss function � : Rk → [0,∞),
the matrix ∫

�(u)
(
uiu j − Σi j

)
ϕΣ(u)λk(du), i, j = 1, . . . , k,

is positive semidefinite (see Pfanzagl and Wefelmeyer 1978, p. 16, Lemma 5.8 or
Pfanzagl 1985, p. 454, Lemma 13.2.4).

(ii) If k = 1, ∫
�(u)(u2 − σ 2)ϕσ 2(u)λ(du) ≥ 0

holds for all loss functions �which are subconvex about 0 (Pfanzagl 1985, Sect.7.11,
p. 231.)

The following examples present estimator sequences with an E-expansion with
bi j 
= 0. More examples can be found in Pfanzagl (1985, Sect. 9.8, pp. 324–330).

Example LetP = {N (μ, σ 2) : μ ∈ R, σ 2 > 0} be the family of all one-dimensional
normal distributions. The problem is to estimate κ(N (μ, σ )) = σ 2.

We define the following sequence of estimators. Given a rational number a>0,
we divide samples of size n into kn = an1/2 subsamples of size mn = a−1n1/2. (To
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avoid technicalities, we consider only sample sizes n for which kn and mn are inte-
gers.) With

xi := m−1
n

mn∑

ν=1

x(i−1)mn+ν

we define

κ(n)(xn) := k−1
n (mn − 1)−1

kn∑

i=1

mn∑

ν=1

(x(i−1)mn+ν − xi )
2.

(Intuitively speaking, we compute an estimator for each of the kn subsamples, and
take the arithmetic mean of these estimators.)

A straightforward computation shows that the distribution of n1/2(κ(n) − σ 2)

under N (μ, σ 2)n admits an E-expansion of order o(n−1/2) with Lebesgue density

ϕ2σ 4(u)
(
1 + n−1/2

(
− σ−2u + a

4
σ−4(u2 − 2σ 4) + 1

6
σ−6u3

))
.

It is easy to check that the coefficient of u3 agrees with that given in (5.18.10).

The important aspect of this example is the occurrence of a quadratic term with
positive coefficient, a

4σ
−4. Hence the estimator sequence is first-order efficient but

not second-order efficient. The following simpler, if somewhat artificial, example
shows the same effect.

Example For P = {N (ϑ, 1) : ϑ ∈ R}, the sample mean xn is the asymptotically
optimal regular estimator sequence for ϑ . The S-expansion of n1/2(xn − ϑ) is
n−1/2 ∑n

ν=1(xν − ϑ); the pertaining E-expansion of order o(n−1/2) has λ-density
ϕ. The estimator sequence ϑ(n)(xn) := xn + n−3/4δn(xn) is regularly approximated
by the E-expansion with density

u → ϕ(u)(1 + n−1/2(u2 − 1)/2)

if δn = ±1 with probability 1/2, independently of xn .

The results indicated above refer to families fulfilling an LAN-condition (resp.
Cramér-type regularity conditions). For “irregular” families, E-expansions of a dif-
ferent type may occur.

Example The location parameter family of Laplace distributions, given by the
Lebesgue density

x → 1

2
exp[−|x − θ |], θ ∈ R,

provides an example in which the ML estimator, i.e., the median, admits a stochastic
expansion and is first- but not second-order efficient due to the lack of regularity (the
density is not differentiable in θ for θ = x).
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It was already observed by Fisher (1925) [pp. 716–717] that in this case the
distribution of the ML estimator approaches its limiting distribution particularly
slowly. Comparing the variance of theML estimator with the variance of the limiting
distribution, he found that the deficiency is of order n1/2 (whereas it is of order n0 in
the regular cases).

This example was taken up by Takeuchi (1974, pp. 188–193; see also Akahira,
1976a, pp. 621–622). For theML-sequence they obtain the E-expansion with density

ϕ(u)
(
1 + n−1/2|u|

(u2

2
− 1

))

and the distribution function

t → φ(t) − n−1/2 1

2
t2sign t ϕ(t) + o(n−1/2).

Since the ML estimators are median unbiased, it suggests itself to compare this
distribution function with the bound of order o(n−1/2) for median unbiased estimator
sequences, given as

t → φ(t) − n−1/2 1

6
t2sign t ϕ(t) + o(n−1/2).

This bound is attainable in the following sense: For each s ∈ R there exists an
estimator sequence, median unbiased of order o(n−1/2), such that its distribution
function coincides with the bound up to o(n−1/2) for t = s. Hence we have a whole
family of first-order efficient estimator sequences with distributions differing by
amounts of order n−1/2. (For regular families, this phenomenon does not occur until
the order n−1.)

“Absolute” Optimality Based on Tests

The purpose of this section is to establish the optimality of E-expansions in E0. Our
starting point is the “absolute” optimality concept for univariate estimator sequences
based on the Neyman–Pearson Lemma. Starting from this “absolute” optimality-
concept for univariate estimator sequences, a concept of multivariate o(n−1/2)-
optimality will be developed.

The following theorem is a first step towards this “absolute” optimality concept.
It provides an “absolute” bound of order o(n−1/2) for the concentration of estimator
sequences κ(n), n ∈ N, for κ(ϑ) which are median unbiased of order o(n−1/2).

Theorem 5.18.3 Let {Pϑ : ϑ ∈ Θ}, Θ ⊂ R
k , be a parametric family fulfilling the

conditions indicated above. Let κ : Θ → R be a twice continuously differentiable
functional. Let κ(n) : Xn → R, n ∈ N, be an estimator sequence for κ(ϑ) such that

Pm
ϑ+n−1/2a{κ(n) ≤ κ(ϑ + n−1/2a)} = β + o(n−1/2) for a ∈ R

k . (5.18.17)



284 5 Asymptotic Optimality of Estimators

Then the following is true:

Pn
ϑ {n1/2(κ(n) − κ(ϑ)) ≤ t}

≤
≥Φ

(
Φ−1(β) + t

σ
+ n−1/2

(
σ−3 1

6
Li, j,k Ki K j KkΦ

−1(β)
t

σ
− c̄

t2

σ 2

))
+ o(n−1/2)

for t
>

<
0, (5.18.18)

with

σ 2 := Λi jκ
(i)κ( j) = Li, j Ki K j , Ki := Λi jκ

( j),

c̄ := σ−3
(
ci jk Ki K j Kk + 1

2
κ(i j)Ki K j

)
.

This theorem provides a bound for the concentration of confidence bounds with
covering probability β. Of interest for our problem is the case β = 1/2: For esti-
mator sequences κ(n), n ∈ N, which are median unbiased of order o(n−1/2), relation
(5.18.18) implies that o(n−1/2)-optimal estimator sequences have an E-expansion
with distribution function

Φ
( t

σ
− n−1/2c̄

t2

σ 2

)
. (5.18.19)

For later use we note the pertaining density

ϕσ 2(t)
(
1 + n−1/2c̄

(
− 2

t

σ
+ t3

σ 3

))
. (5.18.20)

For o(n−1/2)-median unbiased estimator sequences κ(n), n ∈ N, relation (5.18.19)
implies

Pn
ϑ {−t ′ ≤ n1/2(κ(n) − κ(ϑ)) ≤ t ′′} (5.18.21)

≤ N (0, σ 2)
(

− t ′ − n−1/2c̄
t ′2

σ
, t ′′ − n−1/2c̄

t ′′2

σ

)
+ o(n−1/2) for t ′, t ′′ ≥ 0.

Observe that this bound is absolute in the sense that it holds for every estimator
sequence which is median unbiased of order o(n−1/2) (without any condition like
S-expansion).

Specializing for κ(ϑ1, . . . , ϑk) = ϑr we obtain the following bound for estimator
sequences ϑ(n)

r , n ∈ N, which are median unbiased of order o(n−1/2) for ϑr .

Pn
ϑ {−t ′ ≤ n−1/2(ϑ(n)

r − ϑr ) ≤ t ′′} (5.18.22)

≤ N (0, σ 2
r )

(
− t ′ − n−1/2c̄r

t ′2

σ
, t ′′ − n−1/2c̄r

t ′′2

σ

)
+ o(n−1/2) for t ′, t ′′ ≥ 0

with σ 2
r = Λrr and c̄r := ci jkΛirΛ jrΛkrΛ

−2
rr . (No summation over r .)
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For k = 1, relation (5.18.22) occurs in Pfanzagl (1973) [p. 1005, Theorem 6.1,
relation (6.4)]. A relation more general than (5.18.22) is given in Pfanzagl (1985,
pp. 250/1, Theorem 8.2.3. Observe a misprint in 8.2.4: replace u by n−1/2u).

Proof of Theorem 5.18.3. By condition (5.18.17), assumption (5.18.26) of Theo-
rem5.18.6 below is fulfilled for

ϕn(xn) = 1(−∞,κ(ϑ+n−1/2a)](κ(n)(xn)).

The inequality (5.18.18) with ≤ follows if we apply assertion (5.18.27) with

ar = t
Kr

σ 2

(
1 − n−1/2 t

2

κ(i j)Ki K j

σ 4

)
.

This choice of ar , r = 1, . . . , k, minimizes Li, j aia j under the condition

n1/2(κ(ϑ + n−1/2a) − κ(ϑ)) = t + o(n−1/2).

�
The bound in (5.18.21) for the concentration of o(n−1/2)-optimal estimator

sequences presumes a certain smoothness of κ(ϑ). For such functionals, o(n−1/2)-
optimal estimator sequences κ(n) can easily be obtained as κ(n) = κ ◦ ϑ(n), if ϑ(n),
n ∈ N, is in E0. The bound refers to estimator sequences κ(n) which are median unbi-
ased of order o(n−1/2). It may be achieved by κ ◦ ϑ(n) if ϑ(n) ∈ E0 is appropriately
chosen. The important point: If ϑ(n) is in E0, then κ ◦ ϑ(n) will be o(n−1/2)-optimal.

Observe the following detail: The bound given by (5.18.21) is “absolute”, i.e., it
holds for any estimator sequence which is median unbiased of order o(n−1/2). To
show that κ ◦ ϑ(n) is o(n−1/2) optimal we make use of the fact that, for sufficiently
regular families, the estimator sequences ϑ(n) admit an S-expansion.

Theorem 5.18.4 Forany functionalκ : Θ → Rwith a continuous secondderivative
the following is true.

(i) There exists (ϑ(n))n∈N ∈ E0 such that κ ◦ ϑ(n), n ∈ N, is median unbiased of
order o(n−1/2).

(ii) Any of these estimator sequences is o(n−1/2)-optimal in the absolute sense.

Proof Let ϑ(n), n ∈ N, be an estimator sequence in E0 with

G(u) = aiui + ci jkuiu juk .

From the approximation of

n1/2(κ ◦ ϑ(n) − κ(ϑ)) = κ(i)(ϑ)n1/2(ϑ(n)
i − ϑi )

+n−1/2 1

2
κ(i j)(ϑ)n1/2(ϑ(n)

i − ϑi )(ϑ
(n)
j − ϑ j ) + op(n

−1/2)
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we obtain for n1/2(κ ◦ ϑ(n) − κ(ϑ)) the E-expansion

E (n) := E
(n) ◦ (u → κ(i)ui + n−1/2 1

2
κ(i j)uiu j )

if E
(n)

is the E-expansion of n1/2(ϑ(n) − ϑ). By Lemma5.18.7, the E-expansion E (n)

has the λ-density

ϕσ 2(t)
(
1 + n−1/2

(
ā
t

σ
+ c̄

t3

σ 3

))
(5.18.23)

with

σ 2 = Li, j Ki K j ,

ā = σ−3(ai Ki + 3ci jk(Λi j Kk − Ki K j Kk),

c̄ = σ−3(ci jk Ki K j Kk + 1

2
κ(i j)Ki K j ).

The estimator sequence κ ◦ ϑ(n) is median unbiased of order o(n−1/2) if (5.18.23)
holds with ā = −2c̄. This can be achieved by the choice of (a1, . . . , ak). That means:
Bychoosing (ϑ(n))n∈N ∈ E0 appropriately, oneobtains an estimator sequenceκ ◦ ϑ(n)

which is median unbiased of order o(n−1/2). Any of these estimator sequences has
an E-expansion with λ-density (5.18.20) and is, therefore, o(n−1/2)-optimal. �

Recall that our purpose is to find an operational concept of o(n−1/2)-optimality
for estimators of multivariate functionals. What is it that qualifies the estimator
sequences in E0 as o(n−1/2)-optimal? According to Theorem5.18.4, the estimator
sequences in E0 are a reservoir for generating univariate estimator sequences which
are o(n−1/2)-optimal in an absolute sense. Conversely, any estimator sequence ϑ(n),
n ∈ N, with this property, belongs to E0.

It would be nice to have a result of the following kind. If, for every α ∈ R
k , the

estimator sequence αiϑ
(n)
i is o(n−1/2)-optimal for αiϑi , then ϑ(n) is in E0. Yet, this

does not work with an optimality concept based on median unbiasedness of order
o(n−1/2): In general, there is no sequence ϑ(n) such that

Pn
ϑ {αiϑ

(n)
i ≤ αiϑi } = 1

2
+ o(n−1/2) for every α ∈ R

k .

(See the example in Pfanzagl 1979, pp. 183/4, or Pfanzagl 1985, p. 218, Example
7.8.2.)

Even though there is no estimator sequence ϑ(n) such that αiϑ
(n)
i is o(n−1/2)-

median unbiased for αiϑi for every α ∈ R
k , there are estimator sequences fulfilling

this condition for αr = δr , r = 1, . . . , k, i.e., estimator sequences with o(n−1/2)-
median unbiased components.

An interesting converse supporting the interpretation of E0 as the class of all
o(n−1/2)-optimal estimator sequences reads as follows: Assume that the estima-



5.18 Second Order Optimality 287

tor sequence ϑ(n) = (ϑ
(n)
1 , . . . , ϑ

(n)
k ), n ∈ N, admits an E-expansion with a regu-

lar but otherwise unspecified term G. If all marginals of ϑ(n) are median unbi-
ased of order o(n−1/2) and o(n−1/2)-optimal, then G is uniquely determined (and
(ϑ(n))n∈N an element of E0). (Hint: Under suitable regularity conditions, G(u) =
aiui + bi j (uiu j − Λi j ) + ci jkuiu juk . Now o(n−1/2)-optimality implies bi j = 0, and
median unbiasedness of order o(n−1/2) determines the constants a1, . . . , ak .)

Auxiliary Results

The following results hold for highly regular parametric families {Pn
ϑ : ϑ ∈ Θ},

Θ ⊂ R
k , for which all integrals occurring below are defined. The dependence of

Li, j,k etc. on ϑ will be omitted in our notations.

Lemma 5.18.5

Pn
ϑ

{ n∑

ν=1

log(p(xν, ϑ + n−1/2a)/p(xνϑ)) ≤ t
}

(5.18.24)

= Φ
( t

τ
+ τ

2
+ n−1/2(Ai jk + t Bi jk + t2Ci jk)

aia jak
τ 3

)
+ o(n−1/2).

Pn
ϑ+n−1/2a

{ n∑

ν=1

(log p(xν, ϑ + n−1/2a)/p(xν, ϑ)) ≤ t
}

(5.18.25)

= Φ
( t

τ
− τ

2
+ n−1/2(A′

i jk + t B ′
i jk + t2Ci jk)

aia jak
τ 3

)
+ o(n−1/2).

In these relations, the following notations are used.

τ2 = Li, j ai a j , Ci jk = −1

6
Li, j,k/τ

2,

Ai jk = 1

6
Li, j,k + 1

12

(1

2
Li, j,k − Li jk

)
τ2, A′

i jk = 1

6
Li, j,k − 1

12

(1

2
Li, j,k − Li jk

)
τ2,

Bi jk = 1

6
Li jk , B′

i jk = −1

6
(Li, j,k − Li jk).

Theorem 5.18.6 Let ϕn : Xn → [0, 1] be a critical function. Assume that

βn :=
∫

ϕnd P
n
ϑ+n−1/2a, n ∈ N, is bounded away from 0 and 1. (5.18.26)

Then the following is true.

∫
ϕnd P

n
ϑ ≤ Φ

(
Φ−1(βn) + τ

+ n−1/2
(1

6
Li, j,kΦ

−1(βn)τ + 1

6
(Li, j,k − Li jk)τ

2
)aia jak

τ 3

)
+ o(n−1/2).
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For Θ ⊂ R, this relation occurs in Pfanzagl (1973, p. 1003, Theorem 5(i)) or
Pfanzagl (1974) [pp. 213/5, Theorem (iv) and pp. 260/1, Proposition].

Proof With qn ∈ dPn
ϑ+n−1/2a/dP

n
ϑ , use relation (5.18.25) to determine rn > 0 such

that Pn
ϑ+n−1/2a{qn ≤ rn} = βn + o(n−1/2). Since (ϕn − 1{qn≤r})(rn − qn) ≤ 0, this

choice of rn implies that Pn
ϑ (ϕn) ≤ Pn

ϑ {qn ≤ rn} + o(n−1/2). The assertion follows
if Pn

ϑ {qn ≤ rn} is approximated by means of relation (5.18.24). �

Lemma 5.18.7 Assume that Qn|Bk has the λk-density

u → ϕΛ(u)(1 + n−1/2G(u))

with G(u) = aiui + ci jkuiu juk . Then

Qn ◦ (u → αi ui + n−1/2βi j ui u j )

is up to o(n−1/2) approximable by Qn|B with λ-density

v → ϕσ 2(v)(1 + n−1/2Ḡ(v)), (5.18.27)

where

Ḡ(v) = ā
v

σ
+ c̄

v3

σ 3
(5.18.28)

with

σ 2 = Λi jαiα j , (5.18.29)

āσ 3 = Λi j aiα j + 3ci jk(Λi jΛkrαr − ΛirΛ jsΛktαrαsαt ), (5.18.30)

c̄σ 3 = ci jkΛirΛ jsΛktαrαsαt + βi jΛirΛ jsαrαs . (5.18.31)

Proof By definition of Qn , the relation

∫
h(αi ui + n−1/2βi j ui u j )ϕΛ(u)(1 + n−1/2G(u))λk(du)

=
∫

h(v)ϕσ 2(v)(1 + n−1/2Ḡ(v))λ(dv) + o(n−1/2)

holds for every continuous N (0,Λ)-integrable function h. The relations (5.18.27)–
(5.18.31) follow from an application with h(v) = exp[i tv]. (For a similar proof see
Pfanzagl 1985, p. 468, Addendum to Lemma 13.5.12.) �

Lemma 5.18.8 Assume that Pn ◦ S(n) and Pn ◦ Ŝ(n), n ∈ N, admit E-expansions
with λk-densities ϕΛ(u)(1 + n−1/2G(u)) and ϕΛ(u)(1 + n−1/2Ĝ(u)), respectively.
If
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Pn ◦ {S(n)
i ≤ t}Δ{Ŝ(n)

i ≤ t} = o(n−1/2) for t ∈ R and i = 1, . . . , k, (5.18.32)

then the two E-expansions are identical.

Proof Since

{S(n)
i ≤ ti for i = 1, . . . , k}Δ{Ŝ(n)

i ≤ ti for i = 1, . . . , k} ⊂
k⋃

i=1

{S(n)
i ≤ ti }Δ{Ŝi ≤ ti },

relation (5.18.32) implies that

Pn({S(n)
i ≤ ti for i = 1, . . . , k}Δ{Ŝ(n)

i ≤ ti for i = 1, . . . , k}) = o(n−1/2).

Hence the pertaining E-expansions E (n) and E
(n)

agree for every n ∈ N on all rec-
tangles. For B ∈ B

k let

μ(B) :=
∫

1B(u)G(u)N (0,Λ)(du),

μ̂(B) :=
∫

1B(u)Ĝ(u)N (0,Λ)(du).

Since the signed measures μ and μ̂ agree on all rectangles, they agree on B
k . �

A Lemma on Completeness and Independence

Lemma5.18.9 below refers to the following framework.
For a ∈ A ⊂ R

k let Pa be a probability measure on the measurable space (X,A ).
Let Tn : Xn → R

m be A n,Bm-measurable. Assume that Tn is asymptotically suffi-
cient in the sense that for every a ∈ A there is p(·, a) : Rm → [0,∞) such that

Pn
a (B) =

∫
1B(xn)p(Tn(xn), a)Pn

0 (dxn) + o(n0) for B ∈ A n,

i.e., p(Tn(·), a) is asymptotically a Pn
0 -density of P

n
a |A n . Moreover, the family with

Pn
0 -densities p(Tn(·), a), a ∈ A, is assumed to be asymptotically complete in the

sense that, for Q = Pn
0 ◦ Tn and each measurable g : Rm → R,

∫
g(u)p(u, a)Q(du) = 0 for a ∈ A implies g = 0 Q-a.e.

The interesting application is with p(u, a) = exp[a�u − 1
2a

�Λa].
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Lemma 5.18.9 If fn : Xn → R is A n,B-measurable and fulfills

∫
fnd P

n
a = o(n0) for every a ∈ A, (5.18.33)

then
∫

fnh ◦ TndP
n
0 = o(n0)

for every bounded and continuous function h : Rm → R. (5.18.34)

For the proof we need in addition to the essential condition (5.18.33) the following
technical condition: fn , n ∈ N, is uniformly integrable with respect to Pn

a , i.e., for
every ε > 0 there exists ta,ε such that

∫ | fn|1[ta,ε ,∞)(| fn|)dPn
a < ε for n ∈ N.

RemarkNotice that Lemma5.18.9 is closely related toBasu’sTheorem,which asserts
that completeness implies stochastic independence of ancillary statistics. Asymptotic
ancillarity could be defined as

Pn
a ◦ fn = Pn

0 ◦ fn + o(n0) for a ∈ A.

Under the weaker condition
∫

fnd P
n
a =

∫
fnd P

n
0 + o(n0) for a ∈ A,

relation (5.18.34) applied with fn replaced by fn − ∫
fnd Pn

0 , yields

∫
fnh ◦ TndP

n
0 =

∫
fnd P

n
0

∫
h ◦ TndP

n
0 + o(n0),

an asymptotic version of the stochastic independence between fn and Tn .

Proof Let f̃ +
n := fn1(0,∞)( fn) and f̃ −

n := − fn1(−∞,0)( fn). LetN0 be a subsequence
such that c+

n := ∫
f −
n d Pn

0 , n ∈ N, converges to some c+ ≥ 0. If c+ > 0, we define
the probability measures Q+

n |Bm and Q−
n |Bm by

Q+
n (B) :=

∫
1B f̃ +

n d Pn
0 /c

+
n , B ∈ B

m,

and

Q−
n (B) :=

∫
1B f̃ −

n d Pn
0 /c

−
n , B ∈ B

m .
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Let f +
n := f̃ +

n /c+
n and f −

n := f̃ −
n /c−

n . Then

∫
f +
n d Pn

0 =
∫

f −
n d Pn

0 = 1.

Since c+
n − c−

n = o(n0), assumption (5.18.33) implies

∫
f +
n d Pn

a =
∫

f −
n d Pn

a + o(n0) for a ∈ A.

Let G+
n B

k be the probability measure defined by

G+
n (B) =

∫
f +
n (x)1B(Tn(x))P

n
0 (dx), B ∈ B

m . (5.18.35)

If f +
n is uniformly Pn

a -integrable for every a ∈ A, there exists for every ε > 0 a
number sa,ε > 0 such that

∫
f +
n 1[sa,ε ,∞)( f

+
n )dPn

a < ε for n ∈ N.

Since
∫

f +
n 1[t,∞)(|Tn|)dPn

a

=
∫

f +
n 1{ f +

n >sa,ε}1[t,∞)(|Tn|)dPn
a +

∫
f +
n 1{ f +

n ≤sa,ε}1[t,∞)(|Tn|)dPn
a

≤
∫

f +
n 1{ f +

n >sa,ε}dP
n
0 + sa,εP

n
a {|Tn| > t},

the convergence Pn
a ◦ Tn ⇒ N (a,Λ) implies for every fixed neighbourhood A0 of

0: For every ε > 0 there exists tε such that

∫
f +
n 1[tε,∞)(|Tn|)dPn

a < ε for a ∈ A0 and n ∈ N. (5.18.36)

Applied with a = 0 this implies (see (5.18.35)) that

G+
n {u ∈ R

m : |u| > tε} < ε for n ∈ N,

i.e., the sequence G+
n , n ∈ N, is tight. By Prohorov’s Theorem there exists a proba-

bility measure G+∗ |Bm and a subsequence N0 such that

G+
n ⇒n∈N0 G

+
∗ .
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By relation (5.18.35),

∫
f +
n (x)h(Tn(x))P

n
0 (dx) →n∈N0

∫
h(u))G+

∗ (du)

for every bounded and continuous function h|Rm .
Since

∫
f +
n Pn

a − ∫
f −
n d P (n)

a = o(n0), relation (5.18.36), applied with f +
n and

f −
n , implies

∣
∣
∣

∫
f +
n 1[−t,t](Tn)dPn

a −
∫

f −
n 1[−t,t](Tn)dPn

a

∣
∣
∣ < 2ε (5.18.37)

for n ∈ N if t > tε.
Since ∫

f ±
n 1[−t,t](Tn)dPn

a =
∫

p(u, a)1[−t,t](u)G±
n (du),

relation (5.18.37) may be rewritten as

∣
∣
∣

∫
p(u, a)1[−t,t](u)G+

n (du) −
∫

p(u, a)1[−t,t](u)G−
n (du)

∣
∣
∣ < 2ε f

or n ∈ N and t > tε.
Since u → p(u, a)1[−t,t](u) is bounded and continuous λm-a.e.,

lim
n∈N0

∫
p(u, a)1[−t,t](u)G±

n (du) =
∫

p(u, a)1[−t,t](u)G±
∗ (du),

hence

∣
∣
∣

∫
p(u, a)1[−t,t](u)G+

∗ (du) −
∫

p(u, a)1[−t,t](u)G−
∗ (du)

∣
∣
∣ < 3ε

for a ∈ A0 and t > tε.
This implies G+∗ = G−∗ . Hence relation (5.18.35) implies

lim
n∈N0

( ∫
f +
n (x)h(Tn(x))P

n
0 (dx) −

∫
f −
n (x)h(Tn(x))P

n
0 (dx)

)
= 0

for any bounded and continuous h, which implies

lim
n∈N0

∫
fn(x)h(Tn(x))P

n
0 (dx) = 0. (5.18.38)

Since N0 may be considered as the subsequence of an arbitrary subsequence,
(5.18.38) holds with N0 replaced by N. �
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5.19 Asymptotic Confidence Procedures

Limit distributions provide afirst information about the quality of estimator sequences
for large samples. LetP|A be a family of probability measures, and let κ : P → R

k

be a k-dimensional functional. Let κ(n) and κ̂ (n) be estimators for κ(P) such that
Pn ◦ cn(κ(n) − κ(P)) ⇒ QP and Pn ◦ cn(κ̂(n) − κ(P)) ⇒ Q̂P . If the limit distrib-
ution Q̂P is more concentrated about 0 than QP , this suggests to use κ̂ (n) rather than
κ(n). Since we do not know the true P , the situation is unclear if it happens that Q̂P

is better than QP for P in some subset P0 of P but worse for P outside P0.
If an estimate κ(n)(xn) has been observed—what does this tell us about the “true”

value of the functional κ(P)? Even if the true distribution of n1/2(κ(n) − κ(P)) under
Pn is known, there is no satisfactory answer, because a satisfactory answer must be
independent of the unknown P . In special cases, e.g. for real-valued functionals κ :
P → R, a satisfactory answer can be given by a confidence bound K (n) : Xn → R

such that {κ(P) ≤ Kn(xn)} holds under Pn with high probability. An asymptotic
solution to this problem can be based on the limit distribution QP |B.
(i) Given β ∈ (0, 1), determine the quantile tβ(P) defined by

QP(−∞, tβ(P)] = β.

Thequantile tβ(P) is uniquely determined if QP has a positiveLebesgue density.
The map P → tβ(P) is continuous since P → QP(−∞, t] is continuous for
every t ∈ R.

(ii) Find a consistent estimator sequence t (n)β for tβ(P). Then

Pn{xn ∈ Xn : κ(P) ≤ κ(n)(xn) + nc−1
n t (n)β (xn)} → β. (5.19.1)

The convergence in (5.19.1) should hold uniformly for P ∈ P. Regular conver-
gence on parametric subfamilies is all one can achieve through the LAN approach.
Confidence bounds are impossible for discontinuous functionals. See Pfanzagl
(1998). For more historical remarks on the concept of confidence bounds see
Pfanzagl (1994), p. 159.

The approach via quantile estimators generalizes to k-dimensional functionals
κ : P → R

k . Suppose that Pn ◦ cn(κ(n) − κ(P)) ⇒ QP . For each P choose a set
CP such that QP(CP) ≥ 1 − α. If the setCP depends continuously on P in an appro-
priate sense and P (n) is a consistent estimator for P , say the empirical estimator, then
K (n) = κ(n) + c−1

n CP (n) is a confidence procedure for κ with asymptotic confidence
level 1 − α.

In particular, if the limit distribution QP has a unimodal density, then it suggests
itself to choose CP bounded by a level set of the density. This may not be unique if
the density has plateaus, but natural choices suggest themselves. Such sets CP are
star-shaped, and they obviously have minimal volume among sets C with QP(C) ≥
1 − α. We can then try to choose an estimator κ(n) for which the volume of CP is
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minimal. Different such sets need of course not be inclusion ordered. If QP is convex
unimodal, the sets CP are convex.

For LAN families and regular estimators κ(n), an efficient estimator leads to the
usual confidence procedure with convex CP of minimal asymptotic volume.
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