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PREFACE

Statistical Meta-Analysis with Applications combines our experiences on the topic and

brings out a wealth of new information relevant for meta-analysis. Meta-analysis, a

term coined by Glass (1976), and also known under different names such as research

synthesis, research integration, and pooling of evidence, deals with the statistical

analysis of a large collection of analysis results from individual studies for the purpose

of integrating the findings.

It is a common phenomenon that many studies are carried out over time and space

on some important global issues with a common target or goal. As an example, we

can cite the 19 studies carried out in the context of effects of second-hand smoking

on women! Sometimes the studies may correspond to different experiment settings

with one objective in mind. The main reason that many studies on a research topic are

carried out rather than a single study is to strengthen the overall conclusion about a

certain hypothesis or to negate it with a stronger conviction. When the results of these

component studies, either in full or in summary form, are available, it is desirable that

we combine the results of these studies in a meaningful way so as to arrive at a valid

conclusion about the target parameter. The main object of statistical meta-analysis is

precisely to provide methods to meaningfully combine the results from component

studies.

There are many aspects of statistical meta-analysis which must be addressed in

a book. Most of the concern arises from the nature of the underlying studies, the

xiii



xiv PREFACE

nature of information available from these studies, and also the nature of assumptions

about the distributions of random variables arising in the studies. We have provided

a complete treatment of all these aspects in this book.

Several new features of this book are worth mentioning. We have indicated a wide

variety of applications of statistical meta-analysis ranging from business to education

to environment to health sciences in both univariate and multivariate cases. Our treat-

ment of the statistical meta-analysis about (1) the common mean of several univariate

normal populations, (2) tests of homogeneity, (3) one-way random effects model,

(4) categorical data, (5) recovery of interblock information, and (6) combination of

polls is entirely new, based on many recent results by us and others on these topics.

Other topics such as meta-regression, multivariate meta-analysis, and Bayesian meta-

analysis also appear in completely new forms in our book. Another special feature

of the book is the incorporation of a detailed discussion about computational aspects

and related softwares to carry out statistical meta-analysis in practice. Readers will

find many extra useful features in this book compared to the existing books on this

subject. Our book complements the statistical methods and results described in an

excellent Academic Press text Statistical Methods for Meta-Analysis by Hedges and

Olkin (1985). We put it on record our indebtedness to this book and also to the ex-

cellent edited volume The Handbook of Research Synthesis by Cooper and Hedges

(1994) for many ideas on statistical meta-analysis. We have freely used some of

the data sets and basic ideas from these two sources, and indirectly we owe a lot to

Professors Harris Cooper, Larry Hedges, and Ingram Olkin!

Although some topics and chapters covered in this book require the knowledge

of advanced statistical theory and methods, most of the meta-analysis methods de-

scribed in the book can be understood and applied with a solid master’s level back-

ground in statistics. Parts of the book can also be used as a graduate text on this

topic. We believe that practitioners of statistical meta-analysis will benefit a lot

from this book owing to a host of worked-out examples from various contexts. The

example data sets and the program code may be downloaded from G.K.’s website

at http://www.statistik.uni-dortmund.de/~knapp. Given that the possible

application areas of meta-analysis are fairly broad, we have limited ourselves to a

selected few applications depending on our own interest and expertise.

Financial support from the Dortmund University of Technology, Dortmund, Ger-

many, and University of Maryland, Baltimore County, Maryland, are thankfully ac-

knowledged. We are also grateful to Professors Leon Glaser, Satish Iyenger, and

Neil Timm from the University of Pittsburgh for providing us with reprints of their

papers on many aspects of multivariate meta-analysis. We are thankful to Professor

Anirban Dasgupta of Purdue University for giving us his kind permission to include

his work on combination of polls in this book. This certainly adds a new dimension!

This book grew out of many lectures delivered on some of the topics of statistical

meta-analysis at the University of Hong Kong (B.K.S.), Tunghai University (B.K.S.)

(Taichung, Taiwan), University of South Australia (B.K.S), University of Tampere,

Finland (G.K. and B.K.S.), University of Turku, Finland (G.K. and B.K.S.), United

States Environmental Protection Agency (G.K. and B.K.S.) and the U.S. National

Center for Health Statistics (G.K. and B.K.S.), and, of course, at our host institutions



PREFACE xv

(B.K.S. at the University of Maryland, Baltimore County, J.H. and G.K. at Dortmund

University of Technology).

We mention with great pleasure the invitations received from all these places and

the many comments we received from the audience,including our own students,which

helped us to improve the contents and the presentations. We very much appreciate the

excellent academic atmosphere at Dortmund University of Technology and University

of Maryland, Baltimore County, where most of the book was written.

Last but not least, we express our sincere thanks to our understanding family mem-

bers who occasionally had to put up with our changing moods due to the tremendous

pressure in writing this book with as much information and accuracy as possible.

Joachim Hartung

Guido Knapp

Bimal K. Sinha

Dortmund, Germany

Baltimore, Maryland

June 2008





CHAPTER 1

INTRODUCTION

Meta-analysis, a term coined by Glass (1976), is intended to provide the statistical

analysis of a large collection of analysis results from individual studies for the purpose

of integrating the findings.

Meta-analysis, or research synthesis, or research integration is precisely a scientific

method to accomplish this goal by applying sound statistical procedures, and indeed

it has a long and old history. The very invention of least squares by Legendre (1805)

and Gauss (1809) is an attempt to solve just a unique problem of meta-analysis: use

of astronomical observations collected at several observatories to estimate the orbit

of comets and to determine meridian arcs in geodesy (Stigler, 1986). In order to de-

termine the relationship between mortality and inoculation with a vaccine for enteric

fever, Pearson (1904) used data from five small independent samples and computed a

pooled estimate of correlation between mortality and inoculation in order to evaluate

the efficacy of the vaccine. As an early application of meta-analysis in the physical sci-

ences, Birge (1932) combined estimates across experiments at different laboratories

to establish reference values for some fundamental constants in physics. Early works

of Cochran (1937), Yates and Cochran (1938), Tippett (1931), and Fisher (1932) dealt

with combining information across experiments in the agricultural sciences in order

to derive estimates of treatment effects and test their significance. Likewise, there

Statistical Meta-Analysis with Applications. By Joachim Hartung, Guido Knapp, Bimal K. Sinha
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2 INTRODUCTION

are plenty of applications of meta-analysis in the fields of education, medicine, and

social sciences, some of which are briefly described below.

In the field of education, meta-analysis is useful in combining studies about coach-

ing effectiveness to improve Scholastic Aptitude Test (SAT) scores in verbal and

math (Rubin, 1981; DerSimonian and Laird, 1983), in studying the effect of open

education on (i) attitude of students toward school and (ii) student independence

and self-reliance, and in combining studies about the relationship between teacher

indirectness and student achievement (Hedges and Olkin, 1985). In social science,

there is a need to combine several studies of gender differences in separate categories

of quantitative ability, verbal ability, and visual-spatial ability (Hedges and Olkin,

1985). For some novel applications of meta-analysis in the field of medicine, we

refer to Pauler and Wakefield (2000) for three applications involving dentrifice data,

antihypertension data, and preeclampsia data, to Berry (2000) for questions about

benefits and risks of mammography of women based on six studies, to Brophy and

Joseph (2000) for meta-analysis involving three studies to compare streptokinase

and tissue-plasminogen activator to reduce mortality following an acute myocardial

infarction, and lastly to Dominici and Parmigiani (2000) for an application of meta-

analysis involving studies in which outcomes are reported on continuous variables

for some medical outcomes in some studies and on binary variables on similar med-

ical outcomes in some other studies. Of course, there are numerous other diverse

applications of meta-analysis in many other fields. We mention several applications

below.

A: Business applications. In the context of business management and adminis-

tration, one often encounters several studies with a common effect, and the problem

then is of drawing suitable inference about the common effect based on the infor-

mation from all the studies. Here are some examples. In the context of studying

price elasticity, Tellis (1988) reports results from 42 studies! Sethuraman (1995)

performed meta-analysis of national brand and store brand cross-promotional price

elasticities. Lodish et al. (1995) reported results of 389 real world split cable TV ad-

vertising experiments: How TV advertising works? Churchill et al. (1985) reported

meta-analysis of the determinants of salesperson performance. Farley and Lehmann

(1986, 2001) and Farley, Lehmann, and Sawyer (1995) emphasized the important

role of meta-analysis in international research in marketing. A current major thrust

in marketing has been an attempt to create global products and brands while retain-

ing local requirements: think global, act local. Deciding which elements of which

products can be produced globally and which locally requires meta-analysis of each

of the elements.

B: Environmental applications. In the context of environmental problems, there

are several situations where the meta-analysis methods can be successfully applied.

Here is a partial list of such applications.

Evaluation of superfund cleanup technologies (Sinha, O’Brien, and Smith,

1991; Sinha and Sinha, 1995). Cleaning up of superfund waste sites (nuclear/chemi-

cal/biological) at the National Priorities List (NPL), based on an index compris-

ing four measures, air, groundwater, soil, and surface water, often requires innova-
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tive/extremely expensive technology. A critical study of performance of the suggested

technologies after a certain amount of time is highly desirable. If found useful, the

technologies can be encouraged to continue at the same site. If otherwise, this should

be determined as soon as possible so that suitable corrective measures can be taken.

Towards this end, a common procedure is to study a preremediation baseline sample

and an interim sample taken after a certain period of operation of the technology and

test if a desirable percentage of the total contaminant has been removed. Comparison

of a few such technologies can be based on several studies, and a data synthesis or

pooling of evidence is very natural here in order to determine the final ranking of the

technologies.

Assessment of gasoline quality (Yu, Sun, and Sinha, 2002). The U.S. Environ-

mental Protection Agency (EPA) evaluates/regulates gasoline quality based on what

is known as Reid vapor pressure (RVP). Samples of gasoline are taken from various

pumps and RVPs are measured in two ways: on-site at the field level (cheap and

quick) and also off-site at the laboratory level (expensive/higher precision). This

usually results in two types of data: field data and lab data. Gasoline quality based

on RVP can then be determined combining the evidence in both the data sets—a clear

application of meta-analysis!

Water quality in Hillsdale Lake (Li, Nussbaum, and Sinha, 2000). Hillsdale

Lake, a large federal reservoir located about 30 miles from the Kansas City metropoli-

tan area, was authorized by the U.S. Congress in 1954 as part of a comprehensive

flood control plan for the Osage and Missouri River Basins. The lake is a major recre-

ational resource— over 500,000 visitors annually—and is also a significant source of

drinking water. It is therefore essential that the water quality in this lake, as measured

by Secchi depth, be regulated regularly. To achieve this, typically data from a survey

of lake users in the various categories of swimming,fishing, boating, skiing, and water

sports can be collected and analyzed in order to establish what level of water clarity

users perceive as good. Again, it is quite possible that several studies are conducted

for this purpose, and there is a need to pool the evidence from such studies to arrive

at an overall conclusion about the water clarity level.

A comparison of CMW and DPW for groundwater monitoring (Li, 2000).

Long-term monitoring of contamination of groundwater at former military land sites

is performed by boring wells into the ground at predetermined locations and then

assessing trace amounts of certain chemicals. There are two well-known methods

for this purpose: an expensive traditional method of conventionally monitored wells

(CMWs) and a relatively cheaper new methodology of direct push wells (DPWs). In

order to compare these two methods, a joint study was conducted by the United States

Air Force with the EPA to evaluate the assessment of pollutants. The former Hanscom

Air Force Base (HAFB) located in Middlesex County, Massachusetts, and straddling

the towns of Bedford, Concord, Lexington, and Lincoln was selected as the study site,

and groundwater samples were collected for an assessment of long-term monitoring

with both CMWs and DPWs based on 31 paired well locations. Data were collected

on nine volatile organic carbons (VOCs): vinyl chloride, 1,1-DCA, benzene, toluene,
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o-xylene, trans-1,2-DCE, TCE, and 1,4-DCA—labeled as VOC1, VOC2, VOC3,

VOC4, VOC5, VOC6, VOC7, VOC8, and VOC9. The site was divided into three

regions, and data were collected separately in each region. It is then in the spirit of

meta-analysis that we combine the results of the three regions and decide if the two

methods perform equally or there is a significant difference.

Effect of second-hand smoking on women. This of course is a vital environmen-

tal issue with a potential for adverse health effects. Several studies were conducted in

many parts of the world to determine if second-hand smoking is harmful for women,

and it is absolutely essential that we carry out a meta-analysis, pooling the evidence

from all the studies, in order to find out the underlying state of the matter. The relevant

data set is reported in Section 18.6. We should mention that based on a suitable meta-

analysis of the collected information, an advisory committee of the EPA designated

environmental tobacco smoke as a carcinogen.

C: Health sciences applications. In the context of medicine or health science

problems, there are several situations where the meta-analysis methods can be suc-

cessfully applied. Here is a partial list of such applications.

Antiplatelet drug for patients with ischemic attacks. In 1988, the question of

whether to prescribe an antiplatelet drug for patients with transient ischemic attacks to

prevent stroke was controversial. At that time, many randomized trials of antiplatelet

drugs to treat patients with cerebrovascular disease have been completed, but the stud-

ies were variable in question and their results were contradictory. A meta-analysis

of these studies by the Antiplatelet Trialist’ Collaboration (1988) found a highly sig-

nificant 22% reduction in the estimated relative risk of stroke, myocardial infarction,

and vascular death in patients with cerebrovascular disease who were treated with an

antiplatelet drug.

Functional dyspepsia (Allescher et al., 2001). Nonulcer dyspepsia is character-

ized by a variety of upper abdominal symptoms in the absence of organic disease.

Within the general population, dyspepsia is very common, and as a result, empirical

therapy without prior diagnostic procedures has been recommended for the man-

agement of these patients. Both acid-suppressive substances such as histamine H2-

receptor antagonists (H2-RAs) and gastroprokinetics have been suggested as first-line,

empirical therapy. Clinical trials of H2-RAs have yielded somewhat contradictory re-

sults and benefit seems largely confined to refluxlike or ulcerlike dyspepsia subgroups.

All these findings came out of an appropriate meta-analysis study.

Dentifrice (Johnson, 1993). In a series of nine randomized controlled clinical tri-

als, sodium monofluorophosphate (SMFP) was compared to sodium fluoride (NaF)

dentifrice in the prevention of caries development. The data consist of treatment

differences, NaFi − SMFPi, where NAFi is the change from baseline in the de-

cayed/missing (due to caries)/filled-surface dental index at three years follow-up for

regular use of NaF and SMFPi is defined similarly for i = 1, . . . , 9. A statistical

meta-analysis is in order here.
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Recovery time after aneasthesia (Whitehead, 2002). A multicenter study with

nine centers was undertaken to compare two anaesthetic agents undergoing short

surgical procedures, where rapid recovery is important. The response of interest

is the recovery time [time from when the anaesthetic gases are turned off until the

patients open their eyes (in minutes)]. A meta-analysis would be quite appropriate

in this context. Incidentally, a logarithmic transformation of the underlying data

produces almost normal data.

As the scope of meta-analysis grew over the years, several terminologies also came

into existence, such as quantitative research synthesis,pooling of evidence,or creating

an overview. While most of the early works, including Mosteller and Bush (1954),

provided a logical foundation for meta-analysis, the appearance of several books,

notably Glass, McGaw, and Smith (1981), Hunter, Schmidt, and Jackson (1982),

Rosenthal (1984), Hedges and Olkin (1985), and the edited volume by Cooper and

Hedges (1994), and literally thousands of meta-analytic papers during the last 20

years or so, primarily covering applications in health sciences and education, has

made the subject to have a very special role in diverse fields of applications.

The essential character of meta-analysis is that it is the statistical analysis of the

summary findings of many empirical studies, which are called primary analyses, all

targeted towards a common goal. However, differences among the constituent studies

due to sampling designs, presence of different covariates, and so on, can and do exist

while sharing a common objective. A fundamental assumption behind conducting a

meta-analysis or pooling of evidence or information or data across studies in order to

obtain an average effect across all studies is that the size of the effect (basic parameter

of interest) reported in each study is an estimate of a common effect size of the whole

population of studies. It is therefore essential to test for homogeneity of population

effect sizes across studies before conducting a meta-analysis if obtaining an estimate

of average effect or its test is the primary goal of the meta-analysis.

The notion of effect size is central to many meta-analysis studies which often

deal with comparing two treatments, control and experimental, in an effort to find

out if there is a significant difference between the two. In the case of continuous

measurements, a standardized mean difference plays an important role to measure

such a difference. In the case of qualitative attributes, the difference or ratio of two

proportions, odds ratio, andϕ coefficient are used to capture such differences. Again,

when the objective is to study the relationship between two variables, an obvious

choice is the usual correlation coefficient.

Recent meta-analytic work, however, concentrates on discovering and explaining

variations in effect sizes rather than assuming that they remain the same across studies,

which is perhaps rarely the case owing to uncontrollable differences in study contexts,

designs, treatments, and subjects. When results of several scientific studies of the

same phenomena exist and more or less agree, by conducting an appropriate test of

homogeneity and accepting the hypothesis of homogeneity, the case for summarizing

results of all studies with a single average effect size can be strengthened and defended.

If, however, this hypothesis is rejected, no single number can adequately account for

the variety of reported results. Thus, if the results from various studies differ either
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significantly or even marginally, we should make an attempt to investigate methods to

account for the variability by further work. This is precisely the spirit of some recent

research in meta-analysis using random and mixed effects models, allowing inclusion

of trial-specific covariates which may explain a part of the observed heterogeneity. In

other words, a set of conflicting findings from different studies is looked upon as an

opportunity for learning and discovering the sources of variation among the reported

outcomes rather than a cause for dismay.

While most common meta-analysis applications involve comparison of just one

variable (experimental) with another (control), multivariate data can also arise in

meta-analysis due to several reasons. First, the primary studies themselves can be

multivariate in nature because these studies may measure multiple outcomes for each

subject and are typically known as multiple-endpoint studies. It should, however,

be noted that not all studies in a review would have the same set of outcomes. For

example, studies of SAT do not all report math and verbal scores. In fact, only about

half of the studies dealt with in Becker (1990) provided coaching results for both

math and verbal! Secondly, multivariate data may arise when primary studies involve

several comparisons among groups based on a single outcome. As an example, Ryan,

Blakeslee, and Furst (1986) studied the effects of practice on motor skill levels on

the basis of a five-group design, four different kinds of practice groups and one no-

practice group, thus leading to comparisons of multivariate data. These kinds of

studies are usually known as multiple-treatment studies.

As mentioned earlier, although most statistical methods of meta-analysis focus on

deriving and studying properties of a common estimated effect which is supposed

to exist across all studies, when heterogeneity across studies is believed to exist, a

meta-analyst must estimate the extent and sources of heterogeneity among studies if

the hypothesis of homogeneity is not found to be tenable. While fixed effects models

discussed in this book under the assumption of homogeneous effects sizes continue

to be the most common method of meta-analysis, the assumption of homogeneity

given variability among studies due to varying research and evaluation protocols may

be unrealistic. In such cases, a random effects model which avoids the homogeneity

assumption and models effects as random and coming from a distribution is rec-

ommended. The various study effects are believed to arise from a population, and

random effects models borrow strength across studies in providing estimates of both

study-specific effects and underlying population effect.

Whether a fixed effects model or a random effects model, a Bayesian approach

considers all parameters (population effect sizes for fixed effects models, in particu-

lar) as random and coming from a superpopulation with its own parameters. There are

several advantages for a Bayesian approach to meta-analysis. The Bayesian paradigm

provides in a very natural way a method for data synthesis from all studies by incorpo-

rating model and parameter uncertainty. Moreover, a predictive distribution for future

observations coming from any study, which may be a quantity of central interest to

some decision makers, can be easily developed based on what have been already

observed. The use of Bayesian hierarchical models often leads to more appropri-

ate estimates of parameters compared to the asymptotic ones arising from maximum
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likelihood, especially in the case of small sample sizes of component studies, which

is typical in meta-analysis.

There are at least two other vital issues with meta-analysis procedures. Although

it is true that most of the primary studies to be included in a meta-analysis provide a

complete background of the problem being considered along with relevant entire or

summary data, it also happens sometimes that some studies report only the ultimate

finding in terms of the sign of the estimated underlying effect size being positive or

negative or in terms of the significance or nonsignificance of the test for the absence

of an effect size. It then poses a challenge for the statisticians to develop suitable

statistical procedures to take into account this kind of incomplete or scanty information

to carry out meta-analysis. Fortunately, there are techniques under the category of

vote counting procedures to effectively deal with such situations.

The problem of selection or publication bias is rather crucial in the context of

meta-analysis since the reported studies on which meta-analysis is typically based

tend to be mostly significant and there could be many potential nonsignificant studies

which are not reported at all simply because of their nonsignificant findings and hence

these studies are not amenable to meta-analysis considerations. Such a situation is

bound to happen in almost any meta-analysis scenario in spite of one’s best attempt

to get hold of all relevant studies, and statistically valid corrective measures should

be developed and followed to deal with such a serious publication bias issue. Again,

fortunately, there are some valid statistical procedures to tackle this vital problem.

We now point out that in the context of statistical meta-analysis, there are four

important stages of research synthesis:

(i) problem formulation stage

(ii) data collection stage

(iii) data evaluation stage

(iv) data analysis and interpretation stage.

We describe these four stages below.

At the formulation stage of the research synthesis problem, we clearly spell out

the universe to which generalizations are made (fixed effects model and random ef-

fects model) and the nature of the effect size parameters to be inferred upon (Hedges,

1994). Since research synthesis extends our knowledge through the combination and

comparison of primary studies, it is important for us to indicate the perspective of the

fixed effects model where the universe to which generalizations are made consists

of ensembles of studies identical to those in the study sample. On the other hand,

the random effects model perspective is relevant when the universe to which gener-

alizations are made consists of a population of studies from which the study sample

is drawn. Objectively and clearly defining the nature of the effect size parameter to

be estimated or tested in a meta-analysis problem is also fundamental. One instance

about the inference of an effect size is to ascertain the relationship between two vari-

ables X and Y in terms of either (a) estimation of the magnitude of the relationship

(effect size) along with an indication of the accuracy or the reliability of the estimated
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effect size (standard error or confidence interval) or (b) a test of significance of the

difference between the realized effect size and the effect size expected under the null

hypothesis of no relation between X and Y . Some other common effect size mea-

sures are given by the standardized difference of two means, standardized difference

of two proportions, difference of two correlations, ratio of proportions, odds ratio,

risk ratio, and so on. We have elaborated on all these measures in Chapter 2.

The data collection or literature search stage in research synthesis is indeed very

challenging. This is of course different from primary analysis of studies. There are

usually five major modes of searching for sources of primary research, namely, man-

ual and computer search of subject indexes from abstract databases, footnote chasing

(references in review/nonreview papers and books), consultation (formal/informal

requests, conferences), browsing through library shelves, and manual and computer

citation searches (White, 1994). While it is hoped that these search procedures, in

addition to reviewing books/book chapters, research/technical reports, conference

papers, and other possible sources, would lead to an exhaustive collection of relevant

literature for the problem under study,sometimes we also need to use special ways and

means to retrieve what are known as fugitive literature and information appearing in

unpublished papers/technical reports, unpublished dissertations/master’s theses, and

the like. In this context, publication bias is quite relevant while doing the research

synthesis, bearing in mind the fact that often research leading to nonsignificant con-

clusions are not reported at all or rarely so (the well known file-drawer problem). We

have addressed this important issue in Chapter 13.

Not all studies available for meta-analysis may qualify for inclusion due to various

reasons. The data evaluation stage consists of carefully checking the nature and

sources of primary research data, missing observations in primary data, and sources

of potential bias in the primary data, all in an attempt to assign suitable weights to

the various primary data sources at the time of carrying out meta-analysis or data

synthesis.

Finally, the data analysis stage, which is the main purpose of this book, deals with

statistically describing and combining various primary studies. Naturally what we

need here is a wide collection of sound statistical methods depending on the nature

of the underlying problem. We describe ways to combine various measures of effect

sizes either for estimation or test or confidence interval and also ways to deal with

missing values in primary studies as well as publication bias. In the sequel, we need

statistical procedures for univariate and multivariate cases, discrete and continuous

cases, and also frequentist and Bayesian methods.

Given the above broad spectrum of topics that can be covered under the umbrella

of a book on meta-analysis, our goal in writing this book is primarily concerned with

some statistical aspects of meta-analysis. As already mentioned, the heart of the

enterprise of carrying out meta-analysis or synthesizing research consists of compar-

ing and combining the results of individual primary studies of a particular, focused

research question, and the emphasis is essentially on two types of statistical analysis:

combining results of tests of significance of effect size and combining estimates of

effect size. The effect size, as explained earlier, is a generic term referring to the mag-

nitude of an effect or more generally the size of the relation between two variables.
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Moreover, in case of diverse research findings from comparable studies, an attempt

must be made to understand and point out reasons for such differences.

Keeping the above general points in mind, the outline of the book is as follows.

Chapter 2 describes various standard measures of effect size based on means,

proportions, ϕ coefficient, odds ratio, and correlations. Some illustrative examples

to explain the related computations and concepts are included.

Chapter 3 deals with methods of combining individual tests based on primary

research with plenty of applications. This chapter is exclusively based on combination

of P -values mainly because the studies which are meant for meta-analysis more

often report their P -values than other details of the study. The methods described

here are exact and also appear in standard textbooks on meta-analysis. It should be

mentioned that there are other methods based on suitably combining often independent

component test statistics. However, the sampling distributions of the combination of

such test statistics may not be readily available. We discuss these aspects in detail

in Chapter 5 in the context of inference about a common mean of several univariate

normal populations.

Chapter 4 describes methods of combining individual estimates of effect sizes

based on primary research to efficiently estimate the common effect size parameter

as well as to construct its confidence interval. The methods suggested in this chapter

are mainly asymptotic in nature and again are quite routine.

Chapter 5 is devoted to a detailed analysis of a special kind of meta-analysis

problem, namely, inference about the common mean of several univariate normal

populations with unknown and unequal variances. This problem has a long and rich

history and is very significant in applications. Most of the results presented here are

new and have not appeared in any textbook before. Two classic data sets are used

throughout to explain the concepts.

Chapter 6 describes various tests of the important hypothesis of the homogeneity

of population effect sizes in some particular models. In the context of statistical

meta-analysis, one should carry out these tests of homogeneity of effect sizes before

applying tools of combining the effect sizes. The results presented here are based on

the review papers by Hartung and his students.

One-way random effects models, useful when the basic hypothesis of homogeneity

of effect sizes does not hold, is taken up in Chapter 7. There is a huge literature

on this topic and we have made an attempt to present all the important results in

this connection. Typically, there are two scenarios: error variances are all equal

(homogeneous case) and error variances are not equal (heterogeneous case). We

have dealt with both cases. The reader will find a variety of new and novel solutions

in this chapter.

Chapter 8 extends the results of the previous three chapters to the meta-analysis

of comparative trials with normal outcome. Results in the fixed effects as well as

in the random effects model are provided for the effect sizes difference of means,

standardized difference of means, and ratio of means.

Meta-analysis procedures to analyze categorical data of both binary and ordinal

nature are presented in Chapter 9. We have provided fixed effects as well as random

effects results with motivating examples. This is another nice feature of the book.
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Meta-regression, multivariate meta-analysis, and Bayesian meta-analysis are, re-

spectively, presented in three subsequent chapters—10, 11, and 12. In Chapter 10,

we describe meta-analysis regression procedures with one and more than one covari-

ate with illustrations. In Chapter 11, we describe both aspects of multiple-endpoint

and multiple-treatment studies. We have provided a unified Bayesian approach to

meta-analysis with some examples in Chapter 12. All these three chapters provide

unique features to our book.

The important concepts of publication bias and vote counting procedures, which

also appear in standard textbooks, are taken up in Chapters 13 and 16. As mentioned

earlier, these problems arise when we do not have access to all the literature on the

subject under study and also when there is not enough evidence in the studies which

are indeed available.

We describe in Chapter 14 the statistical methods for recovery of interblock in-

formation. One of the earliest applications of statistical meta-analysis (Yates, 1939,

1940; Rao, 1947) consists of combining what are known as intrablock and interblock

estimates of treatment effects in the presence of random block effects in two-way

mixed effects models. Early tests of significance of treatment effects in this context

were based on combining the P -values using Fisher’s method. Since this method

does not take into account the underlying statistical structure, methods to improve

it were suggested in several papers (Feingold, 1985, 1988; Cohen and Sackrowitz,

1989; Mathew, Sinha, and Zhou, 1993; Zhou and Mathew; 1993). We describe all

these procedures in detail in this chapter, which is a new and novel contribution to

the vast literature on statistical meta-analysis.

A different kind of meta-analysis dealing with a combination of polls is presented in

Chapter 15. This particular topic has applications in market research and is completely

new. This is based on a technical report by Dasgupta and Sinha (2006).

There are many computational aspects of statistical meta-analysis which are taken

up in Chapter 17 using the general statistical software packages SAS and R. Sample

programs for both softwares are explained with examples.

Finally, sample data sets which are analyzed throughout the book are included in

the final section of the book, Chapter 18. The References section at the end contains

a long list of papers referred to in this book.

We conclude this introductory chapter with two observations. First, although we

have described a variety of diverse scenarios where meta-analysis methods can be

successfully applied, we have not made an attempt to do so. Our illustrations of the

methods are naturally limited to our judgment and own experiences. Second, except

in some chapters, virtually all of the statistical methods described in this book are

based on standard large sample results for the (asymptotic) distributions of sample

means, sample proportions, sample correlations, and so on, and hence due caution

should be exercised when using these methods. Some of the frequently quoted results

are listed below for ready reference (see Rao, 1973; Rohatgi, 1976):



INTRODUCTION 11

1. X1, . . . , Xn are independently and identically distributed (iid) with mean µ
and variance σ2. Then, for large n,

X̄ =
1

n

n∑

i=1

Xi ∼ N

(
µ,
σ2

n

)
,

that is, √
n (X̄ − µ)

σ
∼ N(0, 1).

This is a standard version of the celebrated central limit theorem (CLT).

2. X1, . . . , Xn are iid with mean µ and variance σ2. Then, for large n,

√
n (X̄ − µ)

S
∼ N(0, 1),

where S2 =
∑n

i=1(Xi − X̄)2/(n− 1). This is an application of CLT coupled

with Cramer’s theorem (Slutsky’s theorem).

3. X ∼ B(n, P ). Then, for large n,

X − n P√
n P Q

∼ N(0, 1),

where Q = 1 − P , that is,

√
n(p− P )√
P Q

∼ N(0, 1),

where p = X/n. This is a standard application of the CLT.

4. X ∼ B(n, P ). Then, for large n, writing p = X/n,

sin−1 √p ∼ N

(
sin−1

√
P ,

1

4n

)
.

This is a well-known version of Fisher’s variance-stabilizing transformation

applied to the binomial proportion.

5. (X1, Y1), . . . , (Xn, Yn) are iid from a bivariate distribution with means (µ1, µ2),
variances (σ2

1 , σ
2
2), and correlation ρ. Then, for large n,

r ∼ N

(
ρ,

(1 − ρ2)2

n− 1

)
,

where r is the usual sample correlation defined as

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )

[∑n
i=1(Xi − X̄)2

∑n
i=1(Yi − Ȳ )2

]1/2
.
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This is also an application of CLT coupled with Cramer’s theorem (Slutsky’s

theorem; see Rao, 1973).

6. (X1, Y1), . . . , (Xn, Yn) are iid from a bivariate distribution with means (µ1, µ2),
variances (σ2

1 , σ
2
2), and correlation ρ. Then, for large n,

z ∼ N

(
ζ,

1

n− 3

)
,

where

z =
1

2
ln
(1 + r

1 − r

)
and ζ =

1

2
ln
(1 + ρ

1 − ρ

)
.

This is a well-known version of Fisher’s variance-stabilizing transformation

applied to the sample correlation coefficient.



CHAPTER 2

VARIOUS MEASURES OF EFFECT SIZE

Quite often the main objective in a study is to compare two treatments: experimental

and control. When these treatments are applied to a set of experimental units, the

outcomes can be of two types, qualitative and quantitative, leading to either propor-

tions or means. Accordingly, effect sizes are also essentially of these two types: those

based on differences of two means and those based on differences of two proportions.

A third type of effect size, namely, correlation, arises when the objective in a study

is to ascertain the nature and extent of the relationship between two variables.

2.1 EFFECT SIZE BASED ON MEANS

An effect size based on means is defined as follows. Denote the population means of

the two groups (experimental and control) by µ1 and µ2 and their variances by σ2
1 and

σ2
2 , respectively. Then the effect size θ based on means is a standardized difference

between µ1 and µ2 and can be expressed as

θ =
µ1 − µ2

σ
, (2.1)

Statistical Meta-Analysis with Applications. By Joachim Hartung, Guido Knapp, Bimal K. Sinha
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where σ denotes either the standard deviation σ2 of the population control group or

an average population standard deviation (namely, an average of σ1 and σ2).

The above measure of effect size θ can be easily estimated based on sample values,

and this is explained below. Suppose we have a random sample of size n1 from the

first population with the sample mean X̄1 and sample variance S2
1 and also a random

sample of size n2 from the second population with the sample mean X̄2 and sample

variance S2
2 . One measure of the effect size θ, known as Cohen’s d (Cohen, 1969,

1977, 1988), is then given by

d =
X̄1 − X̄2

S
, (2.2)

where the standardized quantity S is the pooled sample standard deviation defined as

S =
√
S2 where

S2 =
(n1 − 1) S2

1 + (n2 − 1) S2
2

n1 + n2

with

(n1 − 1) S2
1 =

n1∑

i=1

(X1i − X̄1)
2 and (n2 − 1) S2

2 =

n2∑

i=1

(X2i − X̄2)
2.

A second measure of θ, known as Hedges’s g (Hedges, 1981, 1982), is defined as

g =
X̄1 − X̄2

S∗ , (2.3)

where the standardized quantity S∗ is also the pooled sample standard deviation

defined as S∗ =
√
S∗2 with

S∗2 =
(n1 − 1) S2

1 + (n2 − 1) S2
2

n1 + n2 − 2
.

It can be shown that (see Hedges and Olkin, 1985)

E(g) ≈ θ +
3 θ

4N − 9
, (2.4)

σ2(g) = Var(g) ≈ 1

ñ
+

θ2

2(N − 3.94)
, (2.5)

where

N = n1 + n2, ñ =
n1 n2

n1 + n2
.

In case the population variances are identical in both groups, under the assumption

of normality of the data, Hedges (1981) shows that
√
ñ g follows a noncentral t

distribution with noncentrality parameter
√
ñ θ and n1 + n2 − 2 degrees of freedom.

Consequently, the exact mean and variance of Hedges’s g are given by

E(g) =

√
N − 2

2

Γ [(N − 3)/2]

Γ [(N − 2)/2]
θ, (2.6)

σ2(g) = Var(g) =
N − 2

N − 4
(1 + θ2) − θ2

N − 2

2

{Γ [(N − 3)/2]}2

{Γ [(N − 2)/2]}2 (2.7)
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and Γ(·) denotes the gamma function. As Cohen’s d is proportional to Hedges’s g,

the results in Eq. (2.6) can be easily transferred providing the mean and variance of

Cohen’s d. The exact mean in Eq. (2.6) is well approximated by Eq. (2.4) so that an

approximately unbiased standardized mean difference g∗ is given as

g∗ =

(
1 − 3

4N − 9

)
g. (2.8)

Finally, a third measure of θ, known as Glass’s ∆ (Glass, McGaw, and Smith,

1981), is defined as

∆ =
X̄1 − X̄2

S2
, (2.9)

where the standardized quantity is just S2, the sample standard deviation based on

the control group alone. This is typically justified on the ground that the control

group is in existence for a longer period than the experimental group and is likely to

provide a more stable estimate of the common variance. Again under the assumption

of normality of the data, Hedges (1981) shows that
√
ñ ∆ follows a noncentral t

distribution with noncentrality parameter
√
ñ θ and n2 − 1 degrees of freedom.

The variances of the above estimates of θ, in large samples, are given by the

following:

σ2(d) = Var(d) ≈
[
n1 + n2

n1 n2
+

θ2

2 (n1 + n2 − 2)

] [
n1 + n2

n1 + n2 − 2

]
,

σ2(g) = Var(g) ≈ n1 + n2

n1 n2
+

θ2

2 (n1 + n2 − 2)
,

σ2(∆) = Var(∆) ≈ n1 + n2

n1 n2
+

θ2

2 (n2 − 1)
.

The estimated variances are then obtained by replacing θ in the above expressions

by the respective estimates of θ, namely, d, g, and ∆. These are given below:

σ̂2(d) = V̂ar(d) =

[
n1 + n2

n1 n2
+

d2

2 (n1 + n2 − 2)

] [
n1 + n2

n1 + n2 − 2

]
,

σ̂2(g) = V̂ar(g) =
n1 + n2

n1 n2
+

g2

2 (n1 + n2 − 2)
,

σ̂2(∆) = V̂ar(∆) =
n1 + n2

n1 n2
+

∆2

2 (n2 − 1)
.

Large sample tests for H0 : θ = 0 versus H1 : θ 6= 0 are typically based on the

standardized normal statistics

Z =
θ̂

σ̂(θ̂)
, (2.10)

where θ̂ is an estimate of θ defined above with σ̂(θ̂) as its estimated standard error

and H0 is rejected if |Z| exceeds zα/2, the upper α/2 cut-off point of the standard
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normal distribution. Of course, if the alternative is one-sided, namely, H2 : θ > 0,

thenH0 is rejected if Z exceeds zα, the upper α cut-off point of the standard normal

distribution. Again, if one is interested in constructing confidence intervals for θ, it

is evident that, in large samples, the individual confidence intervals are given by

1 − α ≈ Pr
[
θ̂ − zα/2 σ̂(θ̂) ≤ θ ≤ θ̂ + zα/2 σ̂(θ̂)

]
. (2.11)

Example 2.1. We use a data set from Hedges and Olkin (1985, p. 17) where a set

of seven studies deals with sex differences in cognitive abilities. Originally, studies

on sex differences in four cognitive abilities (quantitative, verbal, visual-spatial, and

field articulation) were considered. We use only the effect size estimates derived

from studies with quantitative ability. The relevant data are basically reproduced in

Table 2.1 and include the total sample size (N ) of each study, estimates of Hedges’s

g, and unbiased effect size estimates g∗. For further information about the studies let

us refer to Hedges and Olkin (1985).

Table 2.1 Studies of gender difference in quantitative ability

Total Standardized Unbiased

sample mean standardized mean

Study size (N ) difference (g) difference (g∗) 95% CI on θ

1 76 0.72 0.71 [ 0.256, 1.184]

2 6, 167 0.06 0.06 [ 0.010, 0.110]

3 355 0.59 0.59 [ 0.377, 0.803]

4 1, 050 0.43 0.43 [ 0.308, 0.552]

5 136 0.27 0.27 [−0.068, 0.608]

6 2, 925 0.89 0.89 [ 0.814, 0.966]

7 45, 222 0.35 0.35 [ 0.331, 0.369]

For each study above, we can carry out the test forH0 : θ = 0 versusH1 : θ 6= 0 as

well as construct a confidence interval for θ based on the above discussion. Thus, for

study 1, using the standardized mean difference g (Hedges’s g) = 0.72 and assuming

n1 = n2 = 38, we get

Z =
g

[
n1 + n2

n1 n2
+

g2

2 (n1 + n2 − 2)

]1/2
=

0.72

0.2369
= 3.039

and hence reject H0 with α = 0.05. Moreover, based on Eq. (2.11), the 95% con-

fidence interval (CI) for θ is obtained as [0.256 , 1.184]. It may be noted that the

conclusions based on g∗ = 0.71 are the same. All the 95% confidence intervals for

the seven studies are summarized in the last column of Table 2.1.

When the analysis is to be carried out on the original metric, the difference of µ1

and µ2, sometimes called the absolute difference between means, is the appropriate
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measure. The difference between means may be easier to interpret than the dimen-

sionless standardized mean difference. The difference of the sample means, X̄1−X̄2,

is an unbiased estimator of the parameter of interest in this situation with variance

σ2
1/n1 + σ2

2/n2. By plugging in the sample variances, the estimated variance of

X̄1 − X̄2 is S2
1/n1 + S2

2/n2.

2.2 EFFECT SIZE BASED ON PROPORTIONS

An effect size θ based on proportions is derived as follows. Denote the population

proportions of the two groups (experimental and control) by π1 and π2. One measure

θ1 of the effect size θ is then given by

θ1 = π1 − π2 (2.12)

which is simply the difference between the two population proportions.

A second measure θ2 of θ based on Fisher’s variance-stabilizing transformation

(of a sample proportion) is defined as

θ2 = sin−1 √π1 − sin−1 √π2. (2.13)

A third measure θ3 of θ, commonly known as the rate ratio, also called relative

risk or risk ratio, is given by

θ3 =
π1

π2
. (2.14)

The measures θ1 and θ2 are such that the value 0 indicates no difference, while

for the measure θ3, the value 1 indicates no difference. Often θ∗3 = ln θ3, which is

the natural logarithm of θ3, is used so that the same value 0 indicates no difference in

all three cases. The above measures of θ can be easily estimated. Suppose a random

sample of size n1 from the first population yields a count ofX1 for the attribute under

study while a random sample of size n2 from the second population yields a count

of X2. Then, if p1 = X1/n1 and p2 = X2/n2 denote the two sample proportions,

estimates of θ are obtained as

θ̂1 = p1 − p2,

θ̂2 = sin−1 √p1 − sin−1 √p2,

θ̂∗3 = ln
p1

p2
,

with the respective variances as

σ2(θ̂1) = Var(θ̂1) =
π1 (1 − π1)

n1
+
π2 (1 − π2)

n2
,

σ2(θ̂2) = Var(θ̂2) ≈ 1

4 n1
+

1

4 n2
,

σ2(θ̂∗3) = Var(θ̂∗3) ≈ 1 − π1

n1 π1
+

1 − π2

n2 π2
.
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As before, large sample tests forH0 : θ = 0 versusH1 : θ 6= 0 are typically based

on the standardized normal statistics

Z =
θ̂

σ̂(θ̂)
, (2.15)

where σ̂(θ̂) is the estimated standard error of θ̂ andH0 is rejected if |Z| exceeds zα/2,

the upper α/2 cut-off point of the standard normal distribution. Of course, if the

alternative is one-sided, namely,H2 : θ > 0, thenH0 is rejected if Z exceeds zα, the

upper α cut-off point of the standard normal distribution. Again, if one is interested

in constructing confidence intervals for θ, it is evident that, in large samples, the

individual confidence intervals are given by

1 − α ≈ Pr
[
θ̂ − zα/2 σ̂(θ̂) ≤ θ ≤ θ̂ + zα/2 σ̂(θ̂)

]
. (2.16)

Example 2.2. Consider a comparative study in which the experimental treatment is

applied to a random sample ofn1 = 80 subjects and the control treatment is applied to

a random sample of n2 = 70 subjects. If the unimproved proportions are p1 = 0.60
and p2 = 0.80, the value of θ̂1 is −0.20 and its estimated standard error is

σ̂(θ̂1) =

(
0.60 × 0.40

80
+

0.80 × 0.20

70

)1/2

= 0.0727.

An approximate 95% confidence interval for θ1 is θ̂1±1.96× σ̂(θ̂1), which turns out

to be the interval

−0.20 ± 1.96 × 0.0727,

or the interval from −0.34 to −0.06. Incidentally, since this interval does not contain

0, we reject the null hypothesisH0 : θ1 = 0.

For the same data, an estimate of θ2 is given by θ̂2 = 0.8861−1.1071 = −0.2211
with V̂ar(θ̂2) = 0.006696, resulting inZ = −2.702. We therefore rejectH0 : θ2 = 0.

A 95% confidence interval for θ2 is easily obtained as

[
θ̂2 − 1.96 σ(θ̂2), θ̂2 + 1.96 σ(θ̂2)

]
= [−0.501,−0.074].

Finally, again for the same data, the estimated rate ratio is θ̂3 = 0.60/0.80 = 0.75,

so group 1 is estimated to be at a risk that is 25% less than group 2’s risk. To construct

a confidence interval for θ3, one first obtains the value θ̂∗3 = ln θ̂3 = −0.2877 and

then obtains the value of its estimated standard error as

σ̂(θ̂∗3) =

(
0.40

80 × 0.60
+

0.20

70 × 0.80

)1/2

= (0.0119)1/2 = 0.1091.

An approximate 95% confidence interval for θ∗3 has as its lower limit

ln(θ∗3L) = −0.2877− 1.96 × 0.1091 = −0.5015
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and as its upper limit

ln(θ∗3U ) = −0.2877 + 1.96 × 0.1091 = −0.0739.

The resulting interval for θ3 extends from exp(−0.5015) = 0.61 to exp(−0.0739) =
0.93.

2.3 EFFECT SIZE BASED ON ϕ COEFFICIENT AND ODDS RATIO

This section is patterned after Fleiss (1994). Consider a cross-sectional study in which

measurements are made on a pair of binary random variables, X and Y , and their

association is of primary interest. Examples include studies of attitudes or opinions

(agree/disagree), case-control studies in epidemiology (exposed/not exposed), and

intervention studies (improved/not improved).

Table 2.2 presents notation for the underlying parameters and Table 2.3 presents

notation for the observed frequencies in the 2 × 2 table cross-classifying subjects’

categories on the two variables X and Y , the levels of both labeled as 0 or 1.

Table 2.2 Probabilities associated with two binary characteristics

Y

X Positive Negative Total

Positive Π11 Π12 Π1.

Negative Π21 Π22 Π2.

Total Π.1 Π.2 1

Table 2.3 Observed frequencies on two binary characteristics

Y

X Positive Negative Total

Positive n11 n12 n1.

Negative n21 n22 n2.

Total n.1 n.2 n..

Then one measure of association betweenX and Y can be described as the product

moment correlation coefficient between the two numerically coded variables and is

equal to

ϕ =
Π11 Π22 − Π12 Π21√

Π1. Π2. Π.1 Π.2

. (2.17)
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Based on the data shown in Table 2.3, the maximum likelihood estimator of ϕ is

equal to

ϕ̂ =
n11 n22 − n12 n21√

n1. n2. n.1 n.2
, (2.18)

which is closely related to the classical chi-square statistic for testing for association

in a fourfold table: χ2 = n.. ϕ̂2. The large sample estimated standard error of ϕ̂ is

given by (Bishop, Fienberg, and Holland, 1975, pp. 381–382)

σ̂(ϕ̂) =
1√
n..

[
1 − ϕ̂2 + ϕ̂

(
1 +

ϕ̂2

2

) (p1. − p2.) (p.1 − p.2)√
p1. p.1 p2. p.2

−3

4
ϕ̂2

(
(p1. − p2.)

2

p1. p2.
+

(p.1 − p.2)
2

p.1 p.2

)]1/2

. (2.19)

A second measure of the association between X and Y is provided by the odds

ratio (sometimes referred to as the cross-product ratio) defined as

ω =
Π11 Π22

Π12 Π21
. (2.20)

If the observed multinomial frequencies are as displayed in Table 2.3, the maximum

likelihood estimator of ω is

ω̂ =
n11 n22

n12 n21
. (2.21)

The motivation for using ω as a measure of association between two binary variables

stems from the following observation. Suppose that the study calls for n1. units to

be sampled from the population which are positive on X and for n2. units to be

sampled from the population which are negative onX . Then Π11/Π1. represents the

conditional probability that Y is positive given that X is positive, namely, Pr(Y+ |
X+), and hence the odds for Y being positive, conditional on X being positive, is

equal to

odds(Y + |X+) =
Pr(Y + |X+)

Pr(Y − |X+)

=
Π11 / Π1.

Π12 / Π1.
=

Π11

Π12
.

Analogously, the odds for Y being positive, conditional onX being negative, is equal

to

odds(Y + |X−) =
Pr(Y + |X−)

Pr(Y − |X−)

=
Π21 / Π2.

Π22 / Π2.
=

Π21

Π22
.
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The odds ratio ω is simply defined as the ratio of these two odds values, leading to

ω =
odds(Y + |X+)

odds(Y + |X−)
=

Π11/Π12

Π21/Π22
=

Π11 Π22

Π12 Π21
. (2.22)

A value of 1 for ω represents no association between X and Y while values more

than 1 (less than 1) mean positive (negative) association. In practice, it is customary

to use ω∗ = lnω, the natural logarithm of the odds ratio, and its sample analogue

ω̂∗ = ln ω̂, rather than the odds ratio directly. The large sample standard error of ω̂∗

(Woolf, 1955) is given by the equation

σ̂(ω̂∗) =

(
1

n11
+

1

n12
+

1

n21
+

1

n22

)1/2

(2.23)

which can be readily used to test hypotheses for ω and also to construct a confidence

interval for ω.

Example 2.3. Consider a hypothetical study with the data as shown in Table 2.4.

Table 2.4 Hypothetical frequencies in a fourfold table

Y

X Positive Negative Total

Positive 135 15 150

Negative 40 10 50

Total 175 25 200

The value of ϕ̂ for the above frequencies is easily computed as

ϕ̂ =
135 × 10 − 15 × 40√
150 × 50 × 175 × 25

= 0.130931,

which represents a modest association. Its estimated standard error, based on formula

(2.19), is obtained as

σ̂(ϕ̂) =
1√
200

(1.245388)1/2 = 0.079.

Similarly, we compute ω̂ = 2.25 and hence ω̂∗ = ln ω̂ = 0.811 with σ̂(ω∗) = 0.4462.

We can test the null hypothesis of no association, that is, H0 : ϕ = 0 versus

H1 : ϕ 6= 0 based on

Z =
ϕ̂

σ̂(ϕ̂)
= 1.66

which leads to acceptance ofH0 with α = 0.05. Also, a 95% confidence interval for

ϕ is obtained as

LB = ϕ̂− 1.96 σ̂(ϕ̂) = −0.024, UB = ϕ̂+ 1.96 σ̂(ϕ̂) = 0.286.
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Likewise, we can also test the null hypothesis of no association, that is,H0 : ω∗ = 0
versus H1 : ω∗ 6= 0 based on

Z =
ω̂∗

σ̂(ω̂∗)
= 1.82

which leads to acceptance ofH0 with α = 0.05. Also, a 95% confidence interval for

ω∗ is obtained as

LB = ω̂∗ − 1.96 σ̂(ω̂∗) = −0.063, UB = ω̂∗ + 1.96 σ̂(ω̂∗) = 1.685

which yields [0.939, 5.395] as the confidence interval for ω.

2.4 EFFECT SIZE BASED ON CORRELATION

Finally, an effect size based on correlation is directly taken as the value of the cor-

relation ρ itself, or its well known ζ-value, based on Fisher’s variance-stabilizing

transformation (of r), given by

ζ =
1

2

[
ln

1 + ρ

1 − ρ

]
. (2.24)

These measures are readily estimated by the sample correlation r (for ρ) or its

transformed version z (for ζ) given by

z =
1

2

[
ln

1 + r

1 − r

]
(2.25)

with respective approximate variances as (see Rao, 1973)

Var(r) ≈ (1 − ρ2)2

n− 1
,

Var(z) ≈ 1

n− 3
.

Large sample tests for H0 : ρ = 0 versus H1 : ρ 6= 0 are typically based on the

standardized normal statistics

Z1 =
r
√
n− 1

1 − r2
,

Z2 = z
√
n− 3

and H0 is rejected if |Z1| (or |Z2|) exceeds zα/2, the upper α/2 cut-off point of

the standard normal distribution. Of course, if the alternative is one-sided, namely,

H2 : ρ > 0, thenH0 is rejected ifZ1 orZ2 exceeds zα, the upperα cut-off point of the

standard normal distribution. Again, if one is interested in constructing confidence
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Table 2.5 Studies of the relationship between an observation measure

of teacher indirectness and student achievement

Correlation 95 % CI

No. of coefficient 95% CI 95 % CI on ρ

Study teachers r on ρ on ζ (retransformed)

1 15 −0.073 [−0.594, 0.448] [−0.639, 0.493] [−0.564, 0.456]

2 16 0.308 [−0.150, 0.766] [−0.225, 0.862] [−0.222, 0.697]

3 15 0.481 [ 0.078, 0.884] [−0.042, 1.090] [−0.041, 0.797]

4 16 0.428 [ 0.015, 0.841] [−0.086, 1.001] [−0.086, 0.762]

5 15 0.180 [−0.327, 0.687] [−0.384, 0.748] [−0.366, 0.634]

6 17 0.290 [−0.159, 0.739] [−0.225, 0.822] [−0.222, 0.676]

7 15 0.400 [−0.040, 0.840] [−0.142, 0.989] [−0.141, 0.757]

intervals for ρ, it is evident that, in large samples, the individual confidence intervals

based on r for ρ and z for ζ are given by

1 − α ≈ Pr

[
r − zα/2 (1 − r2)√

n− 1
≤ ρ ≤ r +

zα/2 (1 − r2)√
n− 1

]
, (2.26)

1 − α ≈ Pr

[
z − zα/2√

n− 3
≤ ζ ≤ z +

zα/2√
n− 3

]
. (2.27)

Clearly, the second equation above can be used to provide a confidence interval for ρ
using the relation between ρ and ζ.

Example 2.4. Let us consider the data set from Hedges and Olkin (1985, p. 25),

which is reproduced in the second and third columns of Table 2.5. Several studies

reported correlations between an observational measure of teacher indirectness and

student achievement. In these data the sample size is the number of teachers. The

correlation coefficient reflects the relationship between a score on teacher indirectness

from an observational measure and mean class achievement.

For the first study, we can test H0 : ρ = 0 versus H1 : ρ 6= 0 based on both Z1

and Z2. A direct computation gives

Z1 = −0.275, z = −0.073, Z2 = −0.253.

Takingα = 0.05, which means zα/2 = 1.96, we acceptH0. To construct a confidence

interval for ρ with confidence level 0.95, we can use Eq. (2.26) or (2.27). The first

equation gives [−0.594 , 0.448] as the confidence interval for ρ. On the other hand,

the second equation yields [−0.639 , 0.493] as the confidence interval for ζ. Using

Eq. (2.24), we convert this to the interval for ρ as [−0.564 , 0.456]. A similar analysis

can be carried out for all the other studies. The results are given in Table 2.5.





CHAPTER 3

COMBINING INDEPENDENT TESTS

3.1 INTRODUCTION

Methodology for combining findings from repeated research studies did in fact begin

with the idea of combining independent tests back in the 1930s (Tippett, 1931; Fisher,

1932; Pearson, 1933). Here we provide a comprehensive review of the so-called

omnibus or nonparametric statistical methods for testing the significance of combined

results. The presentation here is quite routine and standard,and the methods discussed

here appear in other textbooks as well. The main results do not depend on the form of

the underlying distribution, except for the assumption that the relevant test statistics

follow continuous distributions. It should be noted that all the measures of effect size

discussed in Chapter 2 behave normally in large samples, implying thereby that this

crucial assumption is indeed satisfied when the sample size is large.

All the methods of combining tests depend on what is popularly known as a P -

value. A key point is that the observedP -values derived from continuous test statistics

follow a uniform distribution under the null hypothesis regardless of the form of the

test statistic, the underlying testing problem, and the nature of the parent population

from which samples are drawn. This is indeed a robust result. Quite generally,

suppose X1, . . . , Xn is a random sample from a certain population indexed by the
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parameter θ and T (X1, . . . , Xn) is a test statistic for testing H0 : θ = θ0 against

H1 : θ > θ0, where θ0 is a null value, and suppose also that H0 is rejected for large

values ofT (x1, . . . , xn). Then if the (continuous) null distribution ofT (X1, . . . , Xn)
is denoted by g(t), the P -value based on T (X1, . . . , Xn) is defined as

P =

∫ ∞

T (x1,...,xn)

g(t) dt = Pr[T (X1, . . . , Xn) > T (x1, . . . , xn)|H0], (3.1)

which stands for the probability of observing as extreme a value of T (X1, . . . , Xn)
as the observed oneT (x1, . . . , xn) under the null hypothesis. Herex1, . . . , xn denote

the observed realizations of the Xi’s. Since the null hypothesis H0 is rejected for

large values of T (x1, . . . , xn), this is equivalent to rejecting H0 for small values of

P .

In most meta-analysis applications, the P -values are computed from the approx-

imate normal distribution of the relevant test statistics. Thus, if T (X1, . . . , Xn) is

approximately normally distributed with mean µ(θ) and variance σ2(θ, n), the P -

value is computed as

P = Pr [T (X1, . . . , Xn) > T (x1, . . . , xn)|H0]

= Pr

[
N(0, 1) >

T (x1, . . . , xn) − µ(θ0)

σ(θ0, n)

]
. (3.2)

In cases where the alternative hypothesis is both-sided, namely, H2 : θ 6= θ0, we

consider the test based on

χ1 =
|T (X1, . . . , Xn) − µ(θ0)|

σ(θ0, n)
, (3.3)

which follows a chi distribution with 1 degree of freedom (df) under the null hypoth-

esis. The P -value is then computed as

P = Pr

[
χ1 >

|T (x1, . . . , xn) − µ(θ0)|
σ(θ0, n)

]
. (3.4)

Alternatively, we can also consider the test based on

χ2
1 =

[ |T (X1, . . . , Xn) − µ(θ0)|
σ(θ0, n)

]2
, (3.5)

which follows a chi-square distribution with 1 df under H0, and the P -value is then

computed as

P = Pr

[
χ2

1 >

{ |T (x1, . . . , xn) − µ(θ0)|
σ(θ0, n)

}2
]
. (3.6)

Obviously, Eqs. (3.4) and (3.6) provide equivalent formulations, and in any event,H0

is always rejected for small values of P .
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The general principle of combining test statistics is as follows: Consider k different

studies in which test problems H0i versus H1i are considered, i = 1, . . . , k. A

combined test procedure tests the global null hypothesis

H0 : All H0i true, i = 1, . . . , k,

versus the alternative

H1 : Some of the H1i true.

The problem of selecting a test for H0 is complicated by the fact that there are many

different ways in which the omnibus null hypothesis H0 can be false.

Two general properties a combined test procedure should fulfill are admissibility

and monotonicity:

• A combined test procedure is said to be admissible if it provides a (not nec-

essarily the only) most powerful test against some alternative hypothesis for

combining some collection of tests.

• A combined test procedure is said to be monotone if the combined test procedure

rejects the null hypothesis H0 for one set of P -values and it must also reject

the hypothesis for any set of componentwise smaller P -values.

Birnbaum (1954) showed that every monotone combined test procedure is admissible

and therefore optimal for some testing situation.

3.2 DESCRIPTION OF COMBINED TESTS

We are now ready to describe the methods for summarizing significance values based

on repeated tests. The basic scenario is that we have carried out independent tests for

the same effect size parameter θ and of course for the same null hypothesisH0 against

a given alternative (either one-sided like H1 or both-sided like H2) on a number of

occasions, say k, resulting in the P -values P1, . . . , Pk. Note that these P -values are

usually computed on the basis of Eq. (3.2) or (3.4) or (3.6), depending on the nature

of the alternative hypothesis (one-sided or both-sided). It is quite possible that some

of these tests lead to the nonrejection of H0 while others lead to its rejection when

the tests are carried out independently and separately at a given level of significance.

What we are interested in is a combined test of H0 at an overall level of significance

α.

There are two broad classes of combined tests based on theP -values: one based on

uniform distribution methods and the other based on probability transformation meth-

ods. There are three main combined tests under the former case, namely, Tippett’s

method, Wilkinson’s method, and the one based on the mean of the Pi’s. Likewise,

there are four main combined tests under the latter case, namely, Stouffer’s method

(also known as inverse normal method), a modified (weighted) Stouffer’s method,

Fisher’s method, and the logit method. All these methods are described below with

examples. Each of the methods described below satisfies the monotonicity principle
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and is therefore optimal for some testing situation. For details on the other summaries,

see Becker (1994), Hedges and Olkin (1985), and Rosenthal (1978).

Minimum P Method. Tippett’s (1931) minimum P test rejects the null hypothesisH0

if any of the k P -values is less than α∗, where α∗ = 1− (1−α)1/k. In other words,

we reject H0 if

min(P1, . . . , Pk) = P[1] < α∗ = 1 − (1 − α)1/k. (3.7)

The rejection region for this test is thus explicitly defined as the union of the rejection

regions from allk separate studies. This method is a special case of Wilkinson’s (1951)

method.

Example 3.1. Consider the following set of probabilities, which are ordered as

0.015, 0.077, 0.025, 0.045, 0.079. The minimum P -value is P[1] = 0.015. If

we desire an error rate of α = 0.05 for the combined significance test, we reject

H0 if P[1] is less than α∗ = 1 − (1 − 0.05)1/5 = 1 − 0.9898 = 0.0102. Since

P [1] = 0.015 > α∗ = 0.0102, the minimum P test fails to reject H0 for this set of

data.

Wilkinson’s method. This method, due to Wilkinson (1951), rejects H0 if the rth
smallest P -value, P[r], is small, that is, less than some c for some fixed r. Since

under H0, P[r] follows a beta distribution with the parameters r and k − r + 1, it is

easy to determine the cut-off point c for this test from the following equation:

α =

∫ c

0

ur−1(1 − u)k−r

B(r, k − r + 1)
du, (3.8)

where B(·) is the usual beta function.

Example 3.2. Consider the same set of probabilities as in Example 3.1,namely, 0.015,

0.077, 0.025, 0.045, 0.079. Taking r = 2, a direct computation shows c = 0.077.

Since P[2] = 0.025, we reject H0. Similarly, we can get c = 0.1892 for r = 3 and

c = 0.3425 for r = 4, and since P[3] = 0.045 and P[4] = 0.077, we reject H0 in all

these cases.

Test based on mean of Pi’s. Another test based on the mean of the Pi-values is

also possible, and the test rejects H0 when the mean is small. However, the null

distribution of the mean is not simple for small values of k, and so this test is rarely

used. On the other hand, for a large value of k, one can use the central limit theorem

to approximate the distribution of the mean of Pi’s by a suitable normal distribution.

Stouffer’s method. This method, due to Stouffer and his colleagues (1949), also

known as the inverse normal method, is widely used in the social sciences and is

highly recommended in this context (Mosteller and Bush, 1954). It is based on the

fact that the z-value based on the P -value, defined as

z = Φ−1(P ), (3.9)
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is a standard normal variable under the null hypothesisH0, where Φ(·) is the standard

normal cumulative distribution function (cdf). Thus, when the P -values P1, . . . , Pk

are converted to the z-values z1, . . . , zk, we have iid standard normal variables under

H0. The combined significance test is essentially based on the sum of these z-values,

which has a normal distribution under the null hypothesis with mean 0 and variance

k. The test statistic

Z =

k∑

i=1

z(Pi)√
k

(3.10)

is thus a standard normal variable under H0 and hence can be compared with the

critical values in the standard normal table. Since small P -values correspond to

small (in fact, negative) z-values, the combined test rejects H0 when Z is less than

−zα, or, equivalently, |Z| > zα.

Some authors suggest to compute the z scores from the P -values by using the

formula

z = Φ−1(1 − P ). (3.11)

If this is done, the resulting z-value, say Z∗, will be large for small values of P ,

implying thereby that H0 is rejected when Z∗ is large.

Example 3.3. We can compute the value of the sum-of-z’s test for our small data set

given above in Example 3.1. First, we obtain the standard normal deviates for the

five P -values, namely,

z(0.015) = −2.1701, z(0.077) = −1.4257, z(0.025) = −1.9601,

z(0.045) = −1.6961, z(0.079) = −1.4257.

The z-values are summed, giving z(Pi) = −8.6637. The sum is divided by the

square root of k = 5, leading to the normal test statistic Z = −3.8745. The absolute

value |Z| is compared with the critical value zα for a one-tailed test at α = 0.05,

which is 1.645. Thus, the sum-of-z’s test also rejects H0 for this data set.

Fisher’s method. This method, which is a special case of the inverse chi-square

transform, was described by Fisher (1932), and is widely used in meta-analysis. The

method is based on the fact that the variable −2 lnP is distributed as a chi-square

variable with 2 degrees of freedom under the null hypothesis whenever P has a

uniform distribution. The sum of k of these values is therefore a chi-square variable

with 2k degrees of freedom underH0. The test thus rejectsH0 when −2
∑k

i=1 lnPi

exceeds the 100(1−α)% critical value of the chi-square distribution with 2k degrees

of freedom.

Example 3.4. We compute the sum-of-logs statistic for the sample data set given

above. First, we compute the natural logarithm of each P -value:

ln(0.015) = −4.1997, ln(0.077) = −2.5639, ln(0.025) = −3.6888,

ln(0.045) = −3.1011, ln(0.079) = −2.5383.
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These values are summed and multiplied by −2. The value of the test statistic is

−2 × (−16.0919) = 32.1839. We compare this value with α = 0.05 upper-tail

critical value, which is 18.307 for the chi-square distribution with 10 degrees of

freedom. Therefore, we reject H0 using Fisher’s procedure. This test suggests that

at least one population has a parameter θ that is nonzero.

Logit Method. George (1977) proposed this method using the statistic

G = −
k∑

i=1

ln

[
Pi

1 − Pi

] [
kπ2(5k + 2)

3(5k + 4)

]−1/2

(3.12)

as another combined significance technique. The argument is that the logit, that is,

ln[P/(1 − P )], is distributed as a logistic variable under H0 and further that the

distribution of the sum of the logits, suitably normalized, is close to the t distribution.

There are usually two approximations of the null distribution of G which can be

used. First, we can approximate the null distribution of G with the t distribution

based on 5k + 4 degrees of freedom. The test based on this approximation rejects

H0 if G exceeds the 100(1 − α)% critical value of the t distribution with 5k + 4
degrees of freedom. Another approximation is based on the observation that, under

H0, ln[Pi/(1−Pi)] could be viewed as approximately normal with a zero mean and

variance of π2/3. The test based on this approximation therefore rejects H0 when

G∗ = −
k∑

i=1

ln

(
Pi

1 − Pi

)(
3

kπ2

)1/2

(3.13)

exceeds zα.

Example 3.5. We apply the logit test for the same data set as above. We first compute

the natural logarithm of P/(1 − P ) for each P -value. The values are

ln(0.015/0.985) = −4.1846, ln(0.077/0.923) = −2.4838,

ln(0.025/0.075) = −3.6636, ln(0.045/0.955) = −3.0550,

ln(0.079/0.921) = −2.4560.

These values are summed, which gives
∑5

i=1 ln[Pi/(1 − Pi)] = −15.843. The sum

is multiplied by −[5π2(27)/(3 × 29)]
−1/2

or −0.2555. The resultant test statistic is

4.048, which is compared with the 100(1 − α) percentile point of the t distribution

with 29 degrees of freedom. The critical value being 1.699 for α = 0.05, we reject

H0 on the basis of the logit method.

We now provide one example of practical applications of combinations of P -

values.

Example 3.6. We refer to the data set in Section 18.6, which is reproduced in Table

3.1. Given the estimated relative risks (here: odds ratios) and the corresponding 95%

confidence intervals, the one-sided P -values in Table 3.1 are calculated as follows:
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taking the natural logarithm of the upper and lower bound of the confidence interval,

the standard error of the estimate is the length of the transformed confidence interval

divided by 3.92. According to large-sample theory, the estimate divided by the stan-

dard error is standard normally distributed under the null hypothesis of no difference

between the groups. Thus, P = 1− Φ
[
θ̂/σ̂(θ)

]
because large values of the estimate

are in favor of the alternative.

Table 3.1 Studies on second-hand smoking

Estimated Estimated

relative relative

Study risk 95% CI P Study risk 95% CI P

1 1.52 [0.88, 2.63] 0.0669 11 0.79 [0.25, 2.45] 0.6572

2 1.52 [0.39, 5.99] 0.2740 12 1.55 [0.90, 2.67] 0.0571

3 0.81 [0.34, 1.90] 0.6844 13 1.65 [1.16, 2.35] 0.0027

4 0.75 [0.43, 1.30] 0.8460 14 2.01 [1.09, 3.71] 0.0127

5 2.07 [0.82, 5.25] 0.0623 15 1.03 [0.41, 2.55] 0.4747

6 1.19 [0.82, 1.73] 0.1805 16 1.28 [0.76, 2.15] 0.1760

7 1.31 [0.87, 1.98] 0.0990 17 1.26 [0.57, 2.82] 0.2855

8 2.16 [1.08, 4.29] 0.0143 18 2.13 [1.19, 3.83] 0.0056

9 2.34 [0.81, 6.75] 0.0580 19 1.41 [0.54, 3.67] 0.2411

10 2.55 [0.74, 8.78] 0.0690

Table 3.2 shows the transformed P -values according to Fisher’s method, inverse

normal method, and logit method.

The smallest P -value is 0.0027 from study 13, and the critical value is also 0.0027

with α = 0.05 in the minimum P method. Based on the accuracy of the reported

confidence intervals in this example, we cannot reject H0.

The value of the test statistic in Fisher’s method is 90.0237, and we reject H0 as

53.3835 is the critical value from a chi-square distribution with 38 degrees of freedom.

The absolute value of the test statistic in Stouffer’s method, |Z| = 20.57/
√

(19) =
4.7191, exceeds the critical value 1.645. Thus, the sum-of-z’s test rejects H0 at

α = 0.05.

The sum of the logit values is −38.4852. This sum is multiplied by −0.1278 and

the resultant test statistic is 4.9184. The critical value being 1.6604, we reject H0 on

the basis of the logit method.

There is no general recommendation for the choice of the combination method.

All the combination methods are optimal for some testing situations. Hedges and

Olkin (1985) summarize some results on the performance of the various combination

methods given above in Table 3.3 considering such criteria as admissibility, mono-

tonicity, and Bahadur efficiency. They conclude that Fisher’s test is perhaps the best

one to use if there is no indication of particular alternatives. For more details, we refer

to Hedges and Olkin (1985). Marden (1991) introduced the notions of sensitivity and

sturdiness to compare the performance of combination test procedures. Based on

five combination methods, namely minimum P , maximum P (Wilkinson’s test with
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Table 3.2 Transformed P -values of studies on second-hand smoking

Study P −2 ln(P ) z(P ) ln[P/(1 − P )]

1 0.0669 5.4088 −1.4992 −2.6351

2 0.2740 2.5895 −0.6009 −0.9746

3 0.6844 0.7584 0.4801 0.7741

4 0.8460 0.3345 1.0193 1.7034

5 0.0623 5.5529 −1.5361 −2.7121

6 0.1805 3.4238 −0.9134 −1.5128

7 0.0990 4.6249 −1.2872 −2.2082

8 0.0143 8.4933 −2.1886 −4.2322

9 0.0580 5.6946 −1.5718 −2.7876

10 0.0690 5.3480 −1.4835 −2.6025

11 0.6572 0.8395 0.4049 0.6509

12 0.0571 5.7268 −1.5798 −2.8046

13 0.0027 11.8190 −2.7805 −5.9068

14 0.0127 8.7273 −2.2343 −4.3508

15 0.4747 1.4900 −0.0634 −0.1012

16 0.1760 3.4741 −0.9306 −1.5434

17 0.2855 2.5071 −0.5666 −0.9174

18 0.0056 10.3659 −2.5357 −5.1773

19 0.2411 2.8452 −0.7028 −1.1467

Sums 90.0237 −20.5700 −38.4852

Table 3.3 Methods for summarizing significance values

Uniform distribution methods Probability transformation methods

Wilkinson Sum of z’s (Stouffer)

Minimum P Weighted sum of z’s

Mean P Sum of logs (Fisher)

Logit

largest P -value), sum of P ’s, sum of logs, and sum of z’s, again Fisher’s test turns

out to be best.

Draper et al. (1992) pointed out that combining P -values can lead to incorrect

conclusions because

• acceptance or rejection can depend more on the choice of the statistic than on

the data and
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• the information in a highly informative experiment can be masked and thereby

largely disregarded.

A P -value itself is not as informative as the estimate and standard error on which it

is based. If this more complete summary information about a study is available, it

makes good sense to use it and avoid P -values altogether. However, methods that

combine P -values have their place when such precise information is unavailable.

An important assumption in the just described combination methods is the inde-

pendence of the P -values of the various trials. Hartung (1999a) argues that, due

to restrictions in randomization in the trials, for instance by the usually nonrandom

choice of the positioning of the trials, a possible correlation structure between the

study results might be present. Hartung (1999a) presents a method for combining

dependent P -values, thereby proposing an extension of the weighted inverse normal

method, where the dependence of the results is parameterized by a single correlation

coefficient. Instead of the inverse normal method, Makambi (2003) suggests a similar

approach using Fisher’s inverse chi-square method.





CHAPTER 4

METHODS OF COMBINING EFFECT

SIZES

In this chapter we describe the standard methods of combining effect sizes from

various independent studies for both point estimation as well as confidence interval

estimation. We refer to Hedges and Olkin (1985) and Rosenthal (1994) for further

reading.

The general principle is the following. Consider k independent studies with the ith
study resulting in the estimated effect size Ti, which is an estimate of the population

effect size θi, and suppose σ̂2(Ti) is the estimated variance of Ti, i = 1, . . . , k.

Usually, Ti is based on a random sample of size ni from the ith population or study,

and, in large samples, Ti has an approximate normal distribution with mean θi and

variance σ2(Ti) = σ2
(θi;ni)

. In most cases the variance σ2
(θi;ni)

indeed depends on θi

so that it is unknown, and σ̂2(Ti) represents an estimate of σ2
(θi;ni)

. In some cases,

Ti may be stochastically independent of σ̂2(Ti) (see Chapter 7).

We assume that (popularly known as the homogeneity assumption)

θ1 = · · · = θk = θ, (4.1)

where θ denotes the common population effect size.
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Then a combined estimate of θ is given by a weighted combination of the Ti’s,

namely,

θ̂ =

∑k
i=1 wi Ti∑k

i=1 wi

, (4.2)

wherewi is a nonnegative weight assigned to the ith study. This very general method

of linearly combining Ti’s to derive an estimate of a common mean effect dates back

to Cochran (1937). Clearly, for any choice of the nonstochastic weights wi’s, θ̂ is an

unbiased estimate of θ, and the weights which make Var(θ̂) the smallest are given by

wi =
1

σ2
(θi;ni)

, i = 1, . . . , k. (4.3)

However, the above optimum weights are typically unknown since the variances

σ2
(θi;ni)

will usually be unknown and hence cannot be used. Whenσ2
(θi;ni)

is estimated

and thus replaced by σ̂2(Ti), this results in the special weighted combination

θ̃ =

∑k
i=1 Ti/σ̂

2(Ti)∑k
i=1 1/σ̂2(Ti)

(4.4)

with the estimated (asymptotic) Var(θ̃) as

σ̂2(θ̃) = V̂ar(θ̃) ≈ 1
∑k

i=1 1/σ̂2(Ti)
. (4.5)

More generally, we can also attach a quality index qi to the ith study along with

the nonnegative weights wi’s, thus yielding an unbiased estimate of θ given by

θ̂∗ =

∑k
i=1 qi wi Ti∑k

i=1 qi wi

(4.6)

with its estimated asymptotic variance as

σ̂2(θ̂∗) = V̂ar(θ̂∗) ≈
∑k

i=1 q
2
i w

2
i σ̂

2(Ti)(∑k
i=1 qi wi

)2 . (4.7)

In any event, when a combined estimate of θ, say T , is thus derived along with its

estimated standard error given by σ̂(T ), a confidence interval for θ with confidence

level 1 − α is approximated by

LB ≈ T − zα/2 σ̂(T ), UB ≈ T + zα/2 σ̂(T ) (4.8)

where zα/2 is the upper α/2 cut-off point obtained from a standard normal table.

Moreover, if the above confidence interval does not contain 0, we reject the null

hypothesisH0 : θ = 0 at level α in favor of the alternativeH1 : θ 6= 0. Equivalently,
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we may test the null hypothesisH0 : θ = 0 at levelα against the alternativeH1 : θ 6= 0
by rejecting H0 if

|Z| =
|T |
σ̂(T )

> zα/2. (4.9)

Finally, based on the data fromk studies, we can also test the validity of the assumption

(4.1) by using an asymptotic chi-square test. Using θ̃, this test is based on the large-

sample chi-square statistic (Cochran, 1937)

χ2 =

k∑

i=1

(Ti − θ̃)2

σ̂2(Ti)
=

k∑

i=1

T 2
i

σ̂2(Ti)
−

[∑k
i=1 Ti/σ̂

2(Ti)
]2

∑k
i=1 1/σ̂2(Ti)

, (4.10)

and we reject the homogeneity hypothesis H0 : θ1 = · · · = θk if χ2 > χ2
k−1,α. We

now discuss a few examples to illustrate the applications of the above methods.

Example 4.1. We refer to the data set from Section 18.1 dealing with validity correla-

tion studies. The data are reproduced in Table 4.1 with sample size n and correlation

coefficient r for each study.

Table 4.1 Validity studies correlating student ratings of the instructor

with student achievement

Study n r Study n r

1 10 0.68 11 36 −0.11

2 20 0.56 12 75 0.27

3 13 0.23 13 33 0.26

4 22 0.64 14 121 0.40

5 28 0.49 15 37 0.49

6 12 −0.04 16 14 0.51

7 12 0.49 17 40 0.40

8 36 0.33 18 16 0.34

9 19 0.58 19 14 0.42

10 12 0.18 20 20 0.16

For this data set, using ri as Ti and recalling that

V̂ar(ri) = σ̂2(Ti) =
(1 − r2i )2

ni − 1
,

we obtain
20∑

i=1

Ti

σ̂2(Ti)
= 337.002,

20∑

i=1

1

σ̂2(Ti)
= 847.185,

and
20∑

i=1

T 2
i

σ̂2(Ti)
= 159.687.
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This leads to

θ̃ =

∑20
i=1 Ti/σ̂

2(Ti)∑20
i=1 1/σ̂2(Ti)

= 0.3978

and

V̂ar(θ̃) ≈
[

20∑

i=1

1

σ̂2(Ti)

]−1

= 0.00118.

Moreover, taking α = 0.05, we get

LB ≈ θ̃ − 1.96

√
V̂ar(θ̃) = 0.3305, UB ≈ θ̃ + 1.96

√
V̂ar(θ̃) = 0.4651.

For testing H0 : θ = 0, we compute |Z| = 11.58, which implies we reject H0 at

level 0.05. Finally, the test for homogeneity of the θi’s is carried out by computing

χ2 = 25.65, which when compared with the table value 30.14 of χ2 with 19 degrees

of freedom leads to acceptance of the assumption (4.1).

Using Fisher’s z transformation for this data set, that is,

zi = 0.5 ln

(
1 + ri
1 − ri

)

and recalling that V̂ar(zi) = vi = 1/(ni − 3), we obtain

20∑

i=1

zi

vi
= 201.3513,

20∑

i=1

1

vi
= 530,

and
20∑

i=1

z2
i

vi
= 97.4695.

This leads to

ζ̃ =

∑20
i=1 zi/vi∑20
i=1 1/vi

= 0.3799

and

V̂ar(ζ̃) ≈
[ 20∑

i=1

1

vi

]−1

= 0.00189.

Moreover, taking α = 0.05, we get

LB ≈ ζ̃ − 1.96

√
V̂ar(ζ̃) = 0.2948, UB ≈ ζ̃ + 1.96

√
V̂ar(ζ̃) = 0.4650.

For testing H0 : ζ = 0, we compute |Z| = 8.74, which implies we reject H0 at

level 0.05. Finally, the test for homogeneity of the ζi’s is carried out by computing

χ2 = 20.97, which when compared with the table value 30.14 ofχ2 with 19 df leads to

acceptance of the assumption (4.1). Converting results to the metric of the correlation

coefficient we obtain θ̃ = 0.3626 with 95% confidence interval [0.2865, 0.4342].
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Table 4.2 Percentage of albumin in plasma protein

Variance 95% CI

Experiment ni Mean s2
i on mean

A 12 62.3 12.986 [60.0104, 64.5896]

B 15 60.3 7.840 [58.7494, 61.8506]

C 7 59.5 33.433 [54.1524, 64.8476]

D 16 61.5 18.513 [59.2073, 63.7927]

Example 4.2. Here we examine the data reported in Meier (1953) about the percentage

of albumin in plasma protein in human subjects. The data set is given in Table 4.2.

For this data set, using the mean as Ti and the variance of Ti as σ̂2(Ti) = s2i /ni,

we obtain
4∑

i=1

Ti

σ̂2(Ti)
= 238.5492,

4∑

i=1

1

σ̂2(Ti)
= 3.9110,

and
4∑

i=1

T 2
i

σ̂2(Ti)
= 14553.47.

This leads to

θ̃ =

∑4
i=1 Ti/σ̂

2(Ti)∑4
i=1 1/σ̂2(Ti)

= 60.9949

and

V̂ar(θ̃) ≈
[ 4∑

i=1

1

σ̂2(Ti)

]−1

= 0.2557.

Moreover, taking α = 0.05, we get

LB ≈ θ̃ − 1.96

√
σ̂2(θ̃) = 60.0038, UB ≈ θ̃ + 1.96

√
σ̂2(θ̃) = 61.9860.

Finally, the test for homogeneity of the θi’s is carried out by computingχ2 = 3.1862,

which when compared with the table value 7.815 of χ2 with 3 df leads to acceptance

of the assumption (4.1).

Example 4.3. These data are quoted from Eberhardt, Reeve, and Spiegelman (1989)

and deal with the problem of estimation of mean selenium in nonfat milk powder by

combining the results of four methods. The data are given in Table 4.3.

For this data set, using the mean as Ti and the variance as σ̂2(Ti) = s2i /ni, we

obtain
4∑

i=1

Ti

σ̂2(Ti)
= 661.9528,

4∑

i=1

1

σ̂2(Ti)
= 6.0396,
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Table 4.3 Selenium in nonfat milk powder

Variance 95% CI

Methods ni Mean s2
i on mean

Atomic absorption spectrometry 8 105.0 85.711 [ 97.2601, 112.7399]

Neutron activation:

1. Instrumental 12 109.75 20.748 [106.8559, 112.6441]

2. Radiochemical 14 109.5 2.729 [108.5462, 110.4538]

Isotope dilution mass spectrometry 8 113.25 33.640 [108.4011, 118.0989]

and
4∑

i=1

T 2
i

σ̂2(Ti)
= 72556.6.

This leads to

θ̃ =

∑4
i=1 Ti/σ̂

2(Ti)∑4
i=1 1/σ̂2(Ti)

= 109.6021

and

V̂ar(θ̃) ≈
[ 4∑

i=1

1

σ̂2(Ti)

]−1

= 0.1656.

Moreover, taking α = 0.05, we get

LB ≈ θ̃ − 1.96

√
σ̂2(θ̃) = 108.8045, UB ≈ θ̃ + 1.96

√
σ̂2(θ̃) = 110.3996.

Finally, the test for homogeneity of the θi’s is carried out by computingχ2 = 5.2076,

which when compared with the table value 7.815 of χ2 with 3 df leads to acceptance

of the assumption (4.1).

Example 4.4. The results of nine randomized controlled trials comparing SMFP

to NaF dentifrices (toothpastes) in the prevention of caries development have been

reanalyzed in Abrams and Sanso (1998). Let us consider the difference of means as

the parameter of interest. Then, Table 4.4 contains the observed differences of means

and corresponding standard errors for the nine studies. More details on this data set

can be found in Section 18.3.

For this data set, using the difference of means as Ti and the variance as the squared

standard error, we obtain

9∑

i=1

Ti

σ̂2(Ti)
= 33.2037,

9∑

i=1

1

σ̂2(Ti)
= 117.2006,

and
9∑

i=1

T 2
i

σ̂2(Ti)
= 14.7873.
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Table 4.4 Nine randomized trials comparing SMFP to NaF

dentifrices in the prevention of caries development

Difference Standard

Study SMFP − NaF error

1 0.86 0.5756

2 0.33 0.5610

3 0.47 0.3507

4 0.50 0.2511

5 −0.28 0.5404

6 0.04 0.2751

7 0.80 0.7826

8 0.19 0.1228

9 0.49 0.2784

This leads to

θ̃ =

∑9
i=1 Ti/σ̂

2(Ti)∑9
i=1 1/σ̂2(Ti)

= 0.2833

and

V̂ar(θ̃) =
[ 9∑

i=1

1

σ̂2(Ti)

]−1

= 0.0085.

Moreover, taking α = 0.05, we get

LB = θ̃ − 1.96

√
V̂ar(θ̃) = 0.1022, UB = θ̃ + 1.96

√
V̂ar(θ̃) = 0.4644.

Finally, the test for homogeneity of the θi’s is carried out by computing χ2 = 5.38,

which when compared with the table value 15.51 of χ2 with 8 df leads to acceptance

of the assumption (4.1).





CHAPTER 5

INFERENCE ABOUT A COMMON MEAN

OF SEVERAL UNIVARIATE NORMAL

POPULATIONS

In this chapter we consider a very special kind of meta-analysis problem, namely,

statistical inference about the common mean of several univariate normal populations

with unknown and possibly unequal variances, and provide a review of this rich

literature.

One of the oldest and interesting problems in statistical meta-analysis is inference

about a common mean of several univariate normal populations with unknown and

possibly unequal variances. The motivation of this problem comes from a balanced

incomplete block design (BIBD) with uncorrelated random block effects and fixed

treatment effects. In this set-up, one has two estimates—namely, the intrablock

estimate τ̂ and the interblock estimate τ̃ of the vector τ of treatment contrasts.

Under the usual assumption of normality and independence, τ̂ and τ̃ are independent,

following normal distributions with a common mean vector τ but unknown and

unequal intrablock and interblock variances (see Montgomery, 1991, pp. 184–186).

The problem thus is to derive an estimate of τ on the basis of τ̂ and τ̃ and also

to provide some tests for hypotheses concerning this common vector of treatment

contrasts. This, of course, is a multivariate version of the standard univariate common

mean problem, which is the subject of discussion of this chapter. The special case of

two populations with equal sample sizes is treated with some detail.
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Another feature of this meta-analysis problem which makes it distinct is that it does

not correspond to the usual set-up of combining data from different studies taking

place at different sources which are not controlled by the statistician. Rather, here the

experiments are designed to provide duplicate information about a parameter. Our

two examples in this chapter make this point clear.

This chapter is organized as follows. After some preliminary discussion about

the model and the inference problem in this section, we consider in Section 5.1

the problem of point estimation of the common mean in details. An asymptotic

comparison of some selected estimates of the common mean in the case of two

normal populations with equal sample sizes is provided in Section 5.2. This section

also contains a discussion about the Bayes estimate of µ under Jeffrey’s invariant

prior. The related problem of test and confidence interval of the common mean

is taken up in Section 5.3. Two illustrative examples showing computations of our

proposed methods are mentioned in Section 5.4. We end this chapter with an Appendix

containing some technical details.

To be specific, let us assume that in general there are k independent univariate

normal populations where the ith population follows the N(µ, σ2
i ) distribution, µ ∈

IR, σ2
i > 0, 1 ≤ i ≤ k. Let Xij , j = 1, 2, . . . , ni (ni ≥ 2), be iid observations from

the ith population, 1 ≤ i ≤ k. Define X̄i and S2
i as

X̄i =
1

ni

ni∑

j=1

Xij and S2
i =

1

ni − 1

ni∑

j=1

(Xij − X̄i)
2, 1 ≤ i ≤ k. (5.1)

Note that (X̄i, S
2
i , 1 ≤ i ≤ k) is minimal sufficient for (µ, σ2

1 , . . . , σ
2
k) even though

it is not complete. Observe that

X̄i ∼ N

(
µ,
σ2

i

ni

)
, (ni − 1)S2

i ∼ σ2
i χ

2
ni−1, 1 ≤ i ≤ k, (5.2)

and they are all mutually independent.

Estimation of the common mean µ in the above context has drawn the attention

of many researchers over the last four decades from both a classical and a decision-

theoretic point of view. We now provide a brief historical perspective of the problem

of point estimation of µ.

If the population variances (σ2
1 , . . . , σ

2
k) are completely known, then the maximum

likelihood estimator (MLE) of µ is given as

µ̂(σ2
1 , . . . , σ

2
k) =

k∑

i=1

ni

σ2
i

X̄i

/
k∑

i=1

ni

σ2
i

. (5.3)

The estimator (5.3) is the unique minimum variance unbiased estimator (UMVUE)

under normality as well as the best linear unbiased estimator (BLUE) without nor-

mality for estimating µ. Note that in the two-population case and for equal sample

sizes ( i.e., k = 2 and n1 = n2 = n ) we only need to know τ = σ2
2/σ

2
1 (apart from

X̄1 and X̄2 ) to obtain µ̂(σ2
1 , σ

2
2).
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If the population variances are completely unknown, the estimation of the common

mean µ becomes nontrivial and more interesting. One can try to find the MLEs of

µ, σ2
1 , . . . , σ

2
k by solving the following system of equations:

µ̂

k∑

i=1

ni

σ̂2
i

=

k∑

i=1

ni

σ̂2
i

X̄i and σ̂2
i =

1

ni

ni∑

j=1

(Xij − µ̂)2, 1 ≤ i ≤ k. (5.4)

Clearly the MLE of µ does not have a closed form. However, one can obtain an

estimator of µ from the expression (5.4) by replacing σ2
i by σ̂2

i = S2
i from Eq. (5.1).

The estimator of µ thus obtained is the well-known Graybill-Deal estimator given by

µ̂GD =

k∑

i=1

ni

S2
i

X̄i

/
k∑

i=1

ni

S2
i

. (5.5)

Using the mutual independence of X̄i’s and Si’s, it is readily verified that µ̂GD is an

unbiased estimator of µ.

Even though Graybill and Deal (1959) pioneered the research on common mean

estimation, it is probably due to Zacks (1966, 1970) that many researchers paid atten-

tion to this age-old problem, especially from a decision-theoretic point of view. Zacks

(1966, 1970) was motivated by the applications and in his own words—“The best of

my papers were motivated by consulting problems. . . . In 1963, I was approached by

a soil engineer. He wanted to estimate the common mean of two populations and he

didn’t know anything about the variances. But, a priori from his theory he said that

the means should be same, and here are the two samples from two different soils. So

I thought about this problem a little bit and I started to investigate. I realized that

there is room for innovation” (see Kempthorne et al., 1991).

A good amount of work has been done dealing with the properties of µ̂GD or its

variations in relation to other estimators. In the next section we review this literature

from both the classical and decision-theoretic points of view.

5.1 RESULTS ON COMMON MEAN ESTIMATION

Broadly speaking, the research on common mean estimation can be categorized as:

(i) a small sample comparison of µ̂GD with other estimators;

(ii) properties of µ̂GD.

We address the above two categories separately.

5.1.1 Small-sample comparison of µ̂GD with other estimators

Note that the estimator µ̂GD is unbiased for µ. But since µ̂GD uses sufficient statistics,

it is expected that this estimator should have smaller variance than the individual

sample means. Obviously

Var(X̄i) =
σ2

i

ni
, 1 ≤ i ≤ k,
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and a standard conditional argument yields

Var(µ̂GD) = E {Var(µ̂GD|S1, . . . , Sk)} + Var {E(µ̂GD|S1, . . . , Sk)}

= E



{

k∑

i=1

ni σ
2
i

S4
i

}/{
k∑

i=1

ni

S2
i

}2

 . (5.6)

The exact variance expression of µ̂GD, the expectation in Eq. (5.6), is not easy to

get. However, Khatri and Shah (1974) derived this exact variance for k = 2 in an

infinite series form involving hypergeometric functions. Unfortunately, this infinite

series form has little use when one wants to compare Var(µ̂GD) against individual

sample mean variances (σ2
i /ni, 1 ≤ i ≤ k). For the two-population case (k = 2),

Graybill and Deal (1959) were the first to derive necessary and sufficient conditions

such that

Var(µ̂GD) ≤ σ2
i

ni
, 1 ≤ i ≤ k and for all σ2

1 , . . . , σ
2
k. (5.7)

The following result is due to Graybill and Deal (1959).

Proposition 5.1. For k = 2, the inequality (5.7) holds if and only if ni ≥ 11, i = 1, 2.

The implication of the above result is far reaching. If either n1 or n2 is less than

11, then µ̂GD does not have a uniformly smaller variance than X̄1 or X̄2, that is, X̄1

or X̄2 can sometimes be better than µ̂GD in terms of having smaller variances. This

was later extended by Norwood and Hinkelmann (1977) for k populations, which is

stated below.

Proposition 5.2. The inequality (5.7) holds if and only if

(a) ni ≥ 11 ∀i or

(b) ni = 10 for some i and nj ≥ 19 ∀j 6= i.

It is possible to generalize Proposition 5.2 further by considering a more general

common mean estimator of µ of the form

µ̂c =

{
k∑

i=1

ci ni

S2
i

X̄i

}/{
k∑

i=1

ci ni

S2
i

}
(5.8)

where c = (c1, . . . , ck)′ is a vector of nonnegative real constants. Obviously c =
(1, . . . , 1)′ produces the estimator µ̂GD. The following result, which is an extension

of Proposition 5.2, is due to Khatri and Shah (1974) (for k = 2) and Shinozaki (1978)

(for general k).

Proposition 5.3. The estimator µ̂c in Eq. (5.8) has a uniformly smaller variance than

each X̄i if and only if

(a)
cj
ci

≤ 2
(ni − 1)(nj − 5)

(ni + 1)(nj − 1)
∀i 6= j;

(b) ni ≥ 8 ∀i; and

(c) (ni − 7)(nj − 7) ≥ 16 ∀i 6= j.
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Even though the estimators (5.8) are more general than µ̂GD, for all practical

purposes µ̂GD seems to be the most natural choice in this class. This is more obvious

when the sample sizes are all equal, that is, when n1 = · · · = nk = n (say), because

then Proposition 5.3 implies that Var(µ̂GD) ≤ σ2
i /n, 1 ≤ i ≤ k, if and only if n ≥ 11.

A question which arises naturally is: Is it possible to improve over X̄i (1 ≤
i ≤ k) for smaller sample sizes by using estimators other than µ̂GD? Investigation

on unbiased estimators other than µ̂GD was stimulated by the works of Cohen and

Sackrowitz (1974) and Brown and Cohen (1974).

Cohen and Sackrowitz (1974) considered the simple case of k = 2 and n1 = n2 =
n. Define T = S2

2/S
2
1 and

Gn(T ) = 2F1

(
1,

3 − n

2
;
n− 1

2
;T

)
for 0 ≤ T ≤ 1;

=

(
n− 3

n− 1

)
T−1

2F1

(
1,

5 − n

2
;
n+ 1

2
;T−1

)
for T > 1.

(5.9)

where 2F1 is a hypergeometric function.

Proposition 5.4. For k = 2 and n1 = n2 = n, consider the common mean estimator

µ̂(an) = [1 − anGn(T )]X̄1 + anGn(T )X̄2, (5.10)

where an = (n−3)2/[(n+1)(n−1)] forn odd and an = (n−4)/(n+2) forn even.

The estimator µ̂(an) is unbiased and minimax for all n ≥ 5. Also, the estimator µ̂(1)
(i.e., replace an by 1) is better than both X̄1 and X̄2 for n ≥ 10.

As n → ∞, Gn(T ) → (1 + T )−1 and an → 1. Therefore, the weights given to

the sample means in Eq. (5.10) are converging strongly to the optimal weights in the

case where the variances are known. Hence, for large values ofn, the estimator µ̂(an)
is essentially the same as the estimator µ̂GD. Note that µ̂(an) is better than X̄1 for

n ≥ 5, whereas µ̂GD is not better than either X̄1 or X̄2 for n < 11. For n = 10, µ̂(1)
has a smaller variance than X̄i(i = 1, 2) and this is clearly an advantage over µ̂GD.

Cohen and Sackrowitz (1974) also provided some other type of unbiased estimators

which are better than X̄1 only for n ≥ 5.

Brown and Cohen (1974) considered the case of unequal sample sizes for k = 2
and obtained the following result.

Proposition 5.5. Assume k = 2 and n1, n2 ≥ 2. The estimator

µ̂a = X̄1 + a(X̄2 − X̄1)

(
S2

1

n1

)/{
S2

1

n1
+

(n2 − 1)S2
2

n2(n2 + 2)
+

(X̄1 − X̄2)
2

(n2 + 2)

}
(5.11)

is unbiased and has a smaller variance than X̄1 provided n2 ≥ 3 and 0 < a ≤
a(n1, n2) where a(n1, n2) = 2(n2 + 2)/[n E{max(V −1, V −2)}], where V has F
distribution with n2 + 2 and n1 − 1 degrees of freedom.
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Exact values of a(n1, n2) are given in Brown and Cohen (1974) for selected values

of (n1, n2). It was also shown that when n2 = 2 the estimator µ̂a in Eq. (5.11) is not

better than X̄1 uniformly for any value of a. Brown and Cohen (1974) also considered

a slight variation of the estimator (5.11) of the form

µ̂a = X̄1 + a(X̄2 − X̄1)

(
S1

n1

)/{
S1

n1
+
S2

n2

}
(5.12)

and showed that µ̂a has a smaller variance than X̄1 for n1 ≥ 2 and n2 ≥ 6 whenever

0 < a < a(n1, n2 − 3).
Unification of all the results presented above appears in an excellent paper by

Bhattacharya (1980).

For the two-population equal-sample-size case, Zacks (1966) considered two quite

different classes of estimators. Note that in a decision-theoretic set-up under the loss

function (µ̂ − µ)2/max(σ2
1 , σ

2
2), the grand mean X̄ = (X̄1 + X̄2)/2 is admissible

as well as minimax; a more general result is due to Kubokawa (1990). Zacks (1966)

combined µ̂GD and X̄ to generate the following two classes of randomized estimators:

µ̂(τo) = I(T, τo)X̄ + {1 − I(T, τo)} µ̂GD (5.13)

and

µ̃(τo) = I(T, τo)X̄ + J1(T, τo)X̄1 + J2(T, τo)X̄2 (5.14)

where

I(T, τo) =

{
1 if τ−1

o ≤ T ≤ τo,
0 otherwise;

J1(T, τo) =

{
1 if T > τ−1

o ,
0 otherwise;

J2(T, τo) =

{
1 if T < τ−1

o ,

0 otherwise;

and τo ∈ [0,∞) is a known constant. The values of τo both in µ̂(τo) and in µ̃(τo) are

the critical values of the F tests of significance (to compare the variances), according

to which one decides whether to apply the estimators X̄, µ̂GD, X̄1, or X̄2. Zacks

(1966) provided variance and efficiency expressions of µ̂(τo) and µ̃(τo). Somewhat

similar classes of estimators have been considered by Mehta and Gurland (1969), but

these estimators have very little practical importance.

5.1.2 Properties of µ̂GD

Earlier we have seen the variance expression of the unbiased estimator µ̂GD, see

Eq. (5.6). The exact probability distribution of µ̂GD is somewhat complicated. How-

ever, for k = 2 and n1 = n2 = n, Nair (1980) gave an approximate cdf of µ̂GD. But

for general k, if we can find an unbiased estimator V̂ar(µ̂GD) of Var(µ̂GD), then the
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studentized version
µ̂GD − µ√
V̂ar(µ̂GD)

follows N(0, 1) asymptotically (i.e., as min1≤i≤k ni → ∞ ). This can be used for

testing as well as interval estimation of µ at least in large samples.

Finding an unbiased estimator V̂ar(µ̂GD) of Var(µ̂GD) is not an easy task. From ex-

pression (5.6), it is enough to define real-valued functionsψi = ψi(S
2
1 , . . . , S

2
k), 1 ≤

i ≤ k, such that

E(ψi) = σ2
i E

[ {
S2

i

k∑

j=1

nj

S2
j

}−2
]

so that an unbiased estimator of Var(µ̂GD) is obtained as

V̂ar(µ̂GD) =

k∑

i=1

niψi. (5.15)

Making use of Haff’s (1979) Wishart identity for the univariate case, Sinha (1985)

derived the expression for ψi with the form

ψi = lim
m→∞

ψi,m, where

ψi,m =
m−1∑

l=0

S
2(l+1)
i 2l(l + 1)!Al

(−i)

(ni + 1)[l](ni +A(−i)S
2
i )l+2

, m ≥ l (5.16)

with A(−i) =
∑

j 6=i nj/S
2
j and (ni + 1)[l] = (ni + 1) · · · (ni + 2l − 1) for l ≥ 1;

(ni + 1)[l] = 1 for l = 0, i = 1, 2, . . . , k. The following result, which approximates

V̂ar(µ̂GD), is due to Sinha (1985).

Proposition 5.6. Let n = min1≤i≤k(ni). Then using ψi,m as in Eq. (5.16),

∣∣∣∣∣ E

(
k∑

i=1

niψi,m

)
− Var(µ̂GD)

∣∣∣∣∣ = O(n−(m+1)).

Using the above result, we get (µ̂GD −µ)/

√∑k
i=1 niψi,m ∼ N(0, 1) as n→ ∞.

A first-order approximation to V̂ar(µ̂GD), say V̂ar(1)(µ̂GD), is obtained as (by taking

m = 1)

V̂ar(1)(µ̂GD) =
(

k∑

i=1

ni

S2
i

)−1 [
1 +

k∑

i=1

4

ni + 1

(
ni / S

2
i∑k

j=1 nj / S2
j

− n2
i / S

4
i(∑k

j=1 nj / S2
j

)2

)]

(5.17)
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which is comparable to the approximation

V̂ar(µ̂GD) ≈
(

k∑

i=1

ni

S2
i

)−1 [
1 +

k∑

i=1

4

ni − 1

(
ni / S

2
i∑k

j=1 nj / S2
j

− n2
i / S

4
i(∑k

j=1 nj / S2
j

)2

)]

(5.18)

due to Meier (1953). Incidentally, Rukhin (2007) used similar ideas to derive an

unbiased estimate of the variance of the characteristic X̄i − µ̂GD, known as degree of

equivalence of the ith study.

Decision-theoretic estimation of the common mean has been addressed by sev-

eral authors. Zacks (1966) pointed out for k = 2 and n1 = n2 that, while X̄1

is minimax under the loss function (µ̂ − µ)2/σ2
1 , a minimax estimator for the loss

(µ̂−µ)2/max(σ2
1 , σ

2
1) is not X̄1 but X̄ = (X̄1+X̄2)/2. Kubokawa (1990) extended

this result for general k and showed the minimaxity as well as admissibility of the

grand mean X̄ =
∑k

i=1 X̄i/k under the loss function (µ̂ − µ)2/(max1≤i≤k σ2
i ).

Zacks (1970) also derived Bayes and fiducial equivariant estimators for k = 2 and

gave their variance expressions.

It may be mentioned that, under the standard squared error loss function (µ̂−µ)2,

the exact admissibility (or otherwise) of µ̂GD is still an open problem. Minimax

estimation under the loss (µ̂−µ)2 is not meaningful since estimators have unbounded

risks under this loss.

Sinha and Mouqadem (1982) considered the special case k = 2 and n1 = n2 = n
and obtained some restricted admissibility results for µ̂GD. Note that µ̂GD can be

written as (with k = 2 and n1 = n2 = n)

µ̂GD = X̄1 + (X̄2 − X̄2)

(
S2

1

S2
1 + S2

2

)
(5.19)

which is affine equivariant, that is, equivariant under the group of transformations

(X̄1, X̄2, S
2
1 , S

2
2) → (aX̄1 + b, aX̄2 + b, a2S2

1 , a
2S2

2), a > 0, b ∈ IR.

Let D = (X̄2 − X̄1) and define the following four classes of estimators:

C0 =
{
µ̂ | µ̂ = X̄1 +Dφ0, 0 ≤ φ0(S

2
2/S

2
1) ≤ 1

}
; (5.20)

C1 =
{
µ̂ | µ̂ = X̄1 +Dφ1, 0 ≤ φ1(S

2
1 , S

2
2) ≤ 1

}
; (5.21)

C2 =
{
µ̂ | µ̂ = X̄1 +Dφ2, 0 ≤ φ2(S

2
1/D

2, S2
2/D

2) ≤ 1
}

; (5.22)

C =
{
µ̂ | µ̂ = X̄1 +Dφ, 0 ≤ φ(S2

1 , S
2
2 , D

2) ≤ 1
}
. (5.23)

Clearly, C0 ⊂ C1 ⊂ C and C0 ⊂ C2 ⊂ C. The classes C0 and C2 are equivariant

under affine transformations whereas the estimators in C1 and C are equivariant under

location transformations only. The following result is due to Sinha and Mouqadem

(1982).
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Proposition 5.7.

(a) The estimator µ̂GD is admissible in C0 and C2.
(b) The estimator µ̂GD is extended admissible in C for n ≥ 5, that is, there does not

exist any µ̂ such that E(µ̂− µ)2 ≤ Var(µ̂GD) − ǫ for all σ2
1 , σ

2
2 and for any ǫ > 0.

(c) An estimator of the form

µ̂ = X̄1 +D

(
S2

1 + c1
S2

1 + S2
2 + c1 + c2

)

is admissible in C1 for any c1, c2 > 0.
Extended admissibility of µ̂GD in C is a strong indication of the true admissibility

of µ̂GD in C, although this is still open. Incidentally, any estimator µ̂ ∈ C has variance

given by

Var(µ̂) =
σ2

1σ
2
2

n(σ2
1 + σ2

2)
+ E

{
D2

(
φ− σ2

1

σ2
1 + σ2

2

)2
}
. (5.24)

If we impose the condition that D is independent of φ, then µ̂ ∈ C becomes an

unbiased estimator of µ with variance

Var(µ̂) =
σ2

1σ
2
2

n(σ2
1 + σ2

2)
+
σ2

1 + σ2
2

n
E

{(
φ− σ2

1

σ2
1 + σ2

2

)2
}
. (5.25)

Therefore, in this context performance of an unbiased estimator µ̂ ∈ C can be

judged by the performance of an estimator φ of σ2
1/(σ

2
1 + σ2

2) , which is a rather

interesting observation. It is clear from the previous discussion that quite generally

we can characterize the unbiased estimators of µ as

µ̂(h1, h2) = X̄1 +Dh1(D)φ
[
S2

1 , S
2
2 , h2(D)

]
(5.26)

where hi(D), i = 1, 2, are any two even functions. Variance of µ̂(h1, h2) is given as

Var[µ̂(h1, h2)] =
σ2

1 σ
2
2

n(σ2
1 + σ2

2)
+ E

[
D2
{
h1φ− σ2

1

σ2
1 + σ2

2

}2]
. (5.27)

Even though the admissibility of µ̂GD seems a near certainty when there is no

a priori information about the population variances, strangely enough this popular

estimator becomes inadmissible if we have some prior knowledge about the unknown

variances. Consider the simple case of k = 2 andn1 = n2 = n. If it is found out (after

data collection) that σ2
1 ≤ σ2

2 (which can be checked through a suitable hypothesis

testing); then one can construct a better estimator of µ as shown by Sinha (1979).

Proposition 5.8. Assume σ2
1 ≤ σ2

2 . For k = 2 and n1 = n2 = n, define

µ̂∗ = X̄1 + (X̄2 − X̄1)min

{
1

2
,

S2
1

S2
1 + S2

2

}
.

Then µ̂∗ is an unbiased estimator of µ and Var(µ̂∗) ≤ Var(µ̂GD) ∀σ2
1 ≤ σ2

2 .

For unequal sample sizesn1 andn2 one can have a similar result providedσ2
1/n1 ≤

σ2
2/n2.
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5.2 ASYMPTOTIC COMPARISON OF SOME ESTIMATES OF COMMON

MEAN FOR k = 2 POPULATIONS

In this section we present some recent results due to Mitra and Sinha (2007) on an

asymptotic comparison of some selected estimates of the common mean µ for k = 2
and n1 = n2 = n.

Let Cu be the general class of unbiased estimates of µ, defined as

Cu = {µ̂φ : µ̂ = x̄1 +Dφ(s21, s
2
2, D

2)}

where D = x̄2 − x̄1. Note that E[D|D2] = 0 (Khuri, Mathew, and Sinha, 1998,

Lemma 7.5.3, pp. 194–195), which implies that all estimates of µ in Cu are unbiased.

We also consider a subclass of Cu defined as

C0 = {µ̂φ0
: µ̂ = x̄1 +Dφ0(s

2
1, s

2
2)}.

Here we assume that both φ and φ0 are smooth in the sense that they admit enough

order derivatives with respect to their arguments.

Four popular estimates of µ in this context are given below:

µ̂1 =

(
1

s21
+

1

s22

)−1(
x̄1

s21
+
x̄2

s22

)
,

µ̂2 = x̄1 +D
s21 +D2

s21 + s22 +D2
(Sinha and Mouqadem, 1982),

µ̂3 = x̄1 +Dmin(0.5,
s21

s21 + s22
) (Sinha, 1979),

µ̂4 = x̄1 +D
s1

s1 + s2
(Sinha and Mouqadem, 1982).

Our comparison of the above estimates is essentially based on an expansion of

their large-sample variances in n−1. In order for an estimate to be first-order efficient

(FOE), we expect the leading term of its variance (i.e., coefficient of n−1) to be equal

to the Rao-Cramer lower bound (Rao, 1973), which can be obtained by inverting

the associated Fisher information matrix. The coefficient of n−2 in the large-sample

variance of an unbiased estimate determines the nature of its second-order efficiency

(SOE). The following result is established in Mitra and Sinha (2007).

Theorem 5.1. In the class C0, µ̂1 is unique FOE. In the extended class Cu, µ̂1 is FOE

(though not unique) and the condition of FOE determines second-order terms in the

expansion of Var(µ̂φ).

As a byproduct of the proof of the above theorem, it is observed in Mitra and Sinha

(2007) that the estimate µ̂4 is not FOE. It is also proved there that the estimate µ̂3 with

φ = min{0.5, s21/(s21 + s22)}, though lacks smoothness, is both FOE and SOE. Thus,

its small-sample dominance over the Graybill-Deal estimate, which holds whenever

σ2
1 ≤ σ2

2 , is not really true in large samples.
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We now discuss the Bayes estimation of the common mean µ under Jeffrey’s

noninformative prior (Berger, 1980, p. 87), π(·), on the parameters θ = (µ, σ2
1 , σ

2
2)

′.

Under this formulation,π(θ) is given by π(θ) =
√

det I(θ), where I(θ) is the Fisher

information matrix.

Note that for a bivariate normal distribution,

I(µ, σ2
1 , σ

2
2) =




n (σ2
1 + σ2

2)
σ2

1 σ
2
2

0 0

0 n
2 σ4

1

0

0 0 n
2 σ4

2


 .

Hence, based on the Fisher information matrix, such a prior is given by

p(µ, σ2
1 , σ

2
2) ∝

(σ2
1 + σ2

2)1/2

(σ2
1 σ

2
2)3/2

where −∞ < µ <∞, σ2
1 , σ

2
2 > 0.

Combining this prior with the likelihood and writing

µ0 =
x̄1/σ

2
1 + x̄2/σ

2
2

1/σ2
1 + 1/σ2

2

,

the posterior distribution of the parameters (µ, σ2
1 , σ

2
2) is given by

p(µ, σ2
1 , σ

2
2 |data)

∝ (σ2
1σ

2
2)−n+ 3

2

√
σ2

1 + σ2
2

× exp

[
−n(x̄1 − µ)2

2σ2
1

− n(x̄2 − µ)2

2σ2
2

− (n− 1)s21
2σ2

1

− (n− 1)s22
2σ2

2

]

= (σ2
1)−(n+3)/2 (σ2

2)
−(n+3)/2

√
σ2

1 + σ2
2 exp

[
− nD2

2(σ2
1 + σ2

2)

]

× exp

[
−n

2
(

1

(σ2
1

+
1

σ2
2

)(µ− µ0)
2

]
exp

[
− (n− 1)s21

2σ2
1

− (n− 1)s22
2σ2

2

]
.

The joint posterior of (µ, σ2
1 , σ

2
2) can be viewed as:

(i) Conditionally given (σ2
1 , σ

2
2), the posterior of µ is N

(
µ0, σ

2
1σ

2
2/[n(σ2

1 + σ2
2)]
)

(ii) Joint marginal posterior of σ2
1 , σ2

2 is given by

p(σ2
1 , σ

2
2 |data) ∝ (σ2

1)−(n/2+1)(σ2
2)−(n/2+1)

× exp

[
− nD2

2(σ2
1 + σ2

2)
− (n− 1)s21

σ2
1

− (n− 1)s22
σ2

2

]
.
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As a Bayes estimate of µ, we choose the posterior mean, which is given by

µ̂B = E(µ| data)

= E [E(µ|σ2
1 , σ

2
2 , data)]

= x̄1 E
[ θ

1 + θ

∣∣∣ data
]

+ x̄2 E
[ 1

1 + θ

∣∣∣ data
]
, where θ =

σ2
2

σ2
1

.

Hence computation of µ̂B boils down to evaluating E[1/(1+θ)| data]. To compute

this term we need to find the posterior density of θ.

Upon making a transformation from (σ2
1 , σ

2
2) 7→ (σ2

1 , θ) in (ii), we get the follow-

ing:

p(σ2
1 , θ) ∝ θ−(n/2+1)(σ2

1)−(n+2) exp

[
− nD2

1 + θ
− (n− 1)s21 −

(n− 1)s22
θ

]
.

Now integrating the above expression with respect to σ2
1 , we get unnormalized pos-

terior density of θ as

p(θ| data) ∝ θn/2(θ + 1)n+1

(aθ2 + bθ + c)n+1

where θ > 0 and a = (n− 1)s21, b = (n− 1)s21 + (n− 1)s22 + nD2, c = (n− 1)s22.

This leads to

E
[ 1

1 + θ

∣∣∣ data
]

=

∫∞

0

θn/2(θ + 1)n

(aθ2 + bθ + c)n+1 dθ

∫∞

0

θn/2(θ + 1)n+1

(aθ2 + bθ + c)n+1 dθ

The above integral is computed using the importance sampling method by choosing

g(θ) = exp(−θ) (Gelman et al., 2004). It is obvious that the Bayes estimate of µ is

unbiased. It is also proved in Mitra and Sinha (2007) that µ̂B is both FOE and SOE.

We end this section with a reference to Mitra and Sinha (2007), who reported

the results of an extensive simulation study to compare the bias and variance of five

unbiased estimates of µ: µ̂1, µ̂2, µ̂3, µ̂4, µ̂B for n = 5, 10, 15 and σ2
1 = 1 and σ2

2 =
0.2(0.2)2.Without any loss of generality, µ = 0 is chosen for the simulation purpose.

These simulation studies reveal that the Graybill-Deal estimate µ̂1 and the Sinha-

Mouqadem estimate µ̂2 perform similarly and these two are better than the others.

However, quite surprisingly, it turns out that the performance of the Bayes estimate

is not satisfactory from the point of view of variance.

5.3 CONFIDENCE INTERVALS FOR THE COMMON MEAN

In this section we address the problem of constructing exact and approximate confi-

dence intervals forµ. Our discussion is based on combinations of relevant component

t or F statistics and also Fisher’s P -values, as discussed in Chapter 3. We also pro-

vide a comparison of various methods based on their expected lengths of confidence
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intervals for µ. It should be noted that tests for µ are not separately discussed here

because of the well-known connection between tests and confidence intervals.

The problem of constructing exact and approximate confidence intervals for the

common mean µ of several normal populations with unequal and unknown variances

arises in various contexts in statistical applications whenever two or more sources

are involved with collecting data on the same basic characteristic of interest. We

refer to Meier (1953), Eberhardt, Reeve, and Spiegelman (1989), and Skinner (1991)

for some applications. However, although a lot of work has been done on point

estimation of µ, as mentioned in Section 5.1, much less attention has been given

to the problem of providing a meaningful confidence interval for µ. Several papers

provide approximate confidence intervals for µ, centered at µ̂GD, which are not quite

useful because of the nature of underlying assumptions (see Meier, 1953; Eberhardt,

Reeve, and Spiegelman, 1989). In one particular context of interblock analysis of a

balanced incomplete block design, similar approximate confidence intervals centered

at some combined estimator are known (see Brown and Cohen, 1974).

Our review of the literature given below includes an old work by Fairweather (1972)

and a relatively recent work by Jordan and Krishnamoorthy (1996), which are based

on inverting weighted linear combinations of Student’s t statistics and F statistics,

respectively, which are used to test hypotheses aboutµ. However, determination of the

exact cut-off points of these test statistics can be done only numerically, and it seems

to us that the full thrust of meta-analysis is not quite accomplished in these procedures.

We mention below some exact confidence intervals for µ based on inverting exact

tests forµ, which are constructed by combining the relevantP -values in a meaningful

way (Yu, Sun, and Sinha, 2002). We also provide a comparison among them on the

basis of their expected lengths. An approximate confidence interval for µ based on

an unbiased estimator of Var(µ̂GD) (see Sinha, 1985) is also given. For some related

results, we refer to Rukhin (2007).

5.3.1 Approximate confidence intervals

Using the Graybill-Deal estimate and its estimated variance as given in Section 5.1,

an approximate 100(1 − α)% confidence interval for µ can be constructed on the

basis of a suitable normalization of µ̂GD and can be expressed as

[
µ̂GD − zα/2

√
V̂ar(µ̂GD), µ̂GD + zα/2

√
V̂ar(µ̂GD)

]
,

where zα/2 is the standard normal upperα/2 point. In practice, however, one can only

use a first few terms from V̂ar(µ̂GD), depending on the sample sizes; see Eqs. (5.17)

and (5.18). For better accuracy, one can use the fact that (Sinha, 1985) truncation of

V̂ar(µ̂GD) at the (m−1)th term results in error not exceedingn
−(m+1)
min (see Proposition

5.6).
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5.3.2 Exact confidence intervals

We now focus our attention on the construction of exact confidence intervals for µ.

Since

ti =

√
ni(X̄i − µ)

Si
∼ tni−1 (5.28)

or, equivalently,

Fi =
ni(X̄i − µ)2

S2
i

∼ F1,ni−1 (5.29)

are standard test statistics for testing hypotheses about µ based on the ith sample,

suitable linear combinations of |ti|’s or Fi’s or other functions thereof can be used

as a pivot to construct exact confidence intervals for µ. This is precisely what is

accomplished in Fairweather (1972), Cohen and Sackrowitz (1984), and Jordan and

Krishnamoorthy (1996).

(a) Confidence interval for µ based on ti’s
Cohen and Sackrowitz (1984) suggested to use Mt = max1≤i≤k{|ti|} as a test

statistic for testing hypotheses about µ. We can use Mt to construct a confidence

interval for µ once the cut-off point of the distribution of Mt is known, which is

independent of any parameter. Thus, if cα/2 satisfies the condition

1 − α = Pr[Mt ≤ cα/2]

=

k∏

i=1

Pr[|ti| ≤ cα/2], (5.30)

an exact confidence interval for µ with confidence level 1 − α is given by
[

max
1≤i≤k

{
X̄i −

cα/2Si√
ni

}
, min
1≤i≤k

{
X̄i +

cα/2Si√
ni

}]
. (5.31)

Determination of the cut-off point cα/2 is not easy in applications, and simulation

may be necessary. An alternative approach is to use the confidence interval

 max

1≤i≤k



X̄i −

c
(i)
α/2Si√
ni



 , min

1≤i≤k



X̄i +

c
(i)
α/2Si√
ni






 , (5.32)

where c
(i)
α/2 satisfies Pr[|ti| ≤ c

(i)
α/2] = (1 − α)1/k. This latter interval clearly also

has an exact coverage probability 1 − α.

Fairweather (1972) suggested using a weighted linear combination of the ti’s,

namely,

Wt =

k∑

i=1

uiti, ui =
[Var(ti)]

−1

∑k
j=1[Var(tj)]−1

(5.33)

which is also a pivot. If bα/2 denotes the cut-off point of the distribution of Wt,

satisfying the equation

1 − α = Pr[|Wt| ≤ bα/2], (5.34)
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then the confidence interval for µ is obtained as

∑k
i=1

√
niuiX̄i/Si∑k

i=1

√
niui/Si

± b
∑k

i=1

√
niui/Si

. (5.35)

It may be noted that

Var(tν) =
ν

ν − 2
, ν > 2. (5.36)

(b) Confidence interval for µ based on Fi’s

Jordan and Krishnamoorthy (1996) suggested using a linear combination of the

Fi’s such as Wf =
∑k

i=1 wiFi for positive weights wi’s, which is again a pivot.

Hence, if we can compute aα/2 such that

Pr[Wf ≤ aα/2] = 1 − α, (5.37)

then, after simplification, an exact confidence interval for µ with confidence level

1 − α is given by [
k∑

i=1

pi X̄i − ∆,

k∑

i=1

pi X̄i + ∆

]
(5.38)

where

pi =
wi ni/S

2
i∑k

j=1 wj nj/S2
j

(5.39)

and

∆2 =
aα/2∑k

i=1 wi ni/S2
i

−
[

k∑

i=1

pi X̄
2
i −

( k∑

i=1

pi X̄i

)2
]
. (5.40)

Jordan and Krishnamoorthy (1996) used wi as inversely proportional to Var(Fi) =
2 m2

i (mi − 1)/[(mi − 2)2 (mi − 4)], where mi = ni − 1, resulting in wi as

wi =
[(mi − 2)2 (mi − 4)]/[m2

i (mi − 1)]
∑k

j=1[(mj − 2)2 (mj − 4)]/[m2
j (mj − 1)]

. (5.41)

Of course, it is assumed that ni > 5 for all the k studies.

(c) Confidence interval for µ based on Pi’s

Since Fi, defined in (5.29), can be used for testing hypotheses about µ, we define

the ith P -value, Pi, as

Pi =

∫ ∞

Fi

hi(x) dx (5.42)

where hi(x) denotes the pdf of the F distribution with 1 and ni − 1 df. Recalling the

fact that P1, . . . , Pk are iid uniformly distributed random variables, we can combine

them using any of the methods described earlier in Chapter 3. In particular, we use

below Tippett’s method, Fisher’s method, the inverse normal method, and the logit

method.



58 INFERENCE ABOUT A COMMON MEAN OF SEVERAL UNIVARIATE NORMAL POPULATIONS

1. Tippett’s method (Tippett, 1931)

As already explained, if P[1] is the minimum of P1, P2, . . . , Pk, then Tippett’s

method rejects the hypothesis about µ if P[1] < c1 = 1 − (1 − α)1/k. By inverting

this rejection region, we have a confidence interval for µ with confidence coefficient

1 − α, given by

CI = {µ : P[1] ≥ c1} (5.43)

= {µ : Pi ≥ c1, i = 1, . . . , k}

=
{
µ :

∫ ∞

ni(x̄i−µ)2/s2

i

fi(x) dx ≥ 1 − (1 − α)1/k, i = 1, . . . , k
}
.

2. Fisher’s method (Fisher, 1932)

Since Fisher’s method rejects hypotheses about µ when −2
∑k

i=1 lnPi > χ2
2k,α,

the confidence interval for µ obtained by inverting the acceptance region of this test

is given by

CI = {µ : −2

k∑

i=1

lnPi ≤ χ2
2k,α} (5.44)

= {µ :

k∏

i=1

Pi ≥ e−2χ2

2k,α}

=
{
µ :

k∏

i=1

∫ ∞

ni(x̄i−µ)2/s2

i

fi(x) dx ≥ e−2χ2

2k,α

}

3. Inverse normal method (Stouffer et al., 1949)

Since this method rejects hypotheses aboutµwhen
[∑k

i=1 Φ−1(Pi)
]
/
√
k < −zα

at level α, the (1 − α)-level confidence interval for µ obtained by inverting this

acceptance region is given by

CI =
{
µ :

∑k
i=1 Φ−1(Pi)√

k
≥ −zα

}
. (5.45)

4. Logit method (George, 1977)

This method rejects H0 if
∑k

i=1 ln[Pi/(1 − Pi)] < c, where c is a predetermined

constant. It was mentioned earlier that the distribution of

G∗ =

[
−

k∑

i=1

ln

(
Pi

1 − Pi

)] [
3

kπ2

]1/2

(5.46)

can be approximated by a standard normal distribution (see Chapter 3). Therefore a

(1 − α)-level confidence interval for µ can be obtained from

CI = {µ : G∗ < zα}. (5.47)
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It is an interesting research problem to settle if the confidence regions forµobtained

from the above four methods are actually genuine intervals. The appendix at the end

of this chapter makes an attempt to establish the same for Fisher’s method on the

basis of an expansion technique. See Yu, Sun, and Sinha (2002) for details.

5.4 APPLICATIONS

In this section we provide two examples to illustrate the methods described above.

Example 5.1. Here we examine the data reported in Meier (1953) and analyzed in

Jordan and Krishnamoorthy (1996) about the percentage of albumin in plasma protein

in human subjects. We would like to combine the results of four experiments in order

to construct a confidence interval for the common mean µ. The data appear in Table

5.1.

Table 5.1 Percentage of albumin in plasma protein

Experiment ni Mean Variance

A 12 62.3 12.986

B 15 60.3 7.840

C 7 59.5 33.433

D 16 61.5 18.513

We have applied all the techniques described in this section and computed the

two-sided confidence intervals with α = 0.05. These are given in Table 5.2. The

critical value for interval (5.31) is c = 3.053. For interval (5.32), the four critical

values are determined as 2.9702, 2.8543, 3.5055, and 2.8272. In interval (5.35), we

have b
.
= 1.102 and, in interval (5.38), a

.
= 3.191. It is interesting to observe that

most of the confidence intervals are centered at around the same value, and the one

based onF turns out to be the best in the sense of having the smallest observed length.

Table 5.2 Interval estimates for µ in the albumin example

Method 95% CI on µ

Cohen and Sackrowitz (1984), interval (5.31) 60.82 ± 1.68

Cohen and Sackrowitz (1984), interval (5.32) 60.78 ± 1.58

Fairweather (1972), interval (5.35) 61.04 ± 1.15

Jordan and Krishnamoorthy (1996), interval (5.38) 61.00 ± 1.44

Fisher, interval (5.44) 61.00 ± 1.42

Inverse normal, interval (5.45) 61.00 ± 1.31

Logit, interval (5.47) 61.00 ± 1.35
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Example 5.2. This is from Eberhardt, Reeve, and Spiegelman (1989) and deals with

the problem of estimation of mean selenium in nonfat milk powder by combining the

results of four methods. Data appear in the Table 5.3.

Table 5.3 Selenium in nonfat milk powder

Methods ni Mean Variance

Atomic absorption spectrometry 8 105.0 85.711

Neutron activation:

1. Instrumental 12 109.75 20.748

2. Radiochemical 14 109.5 2.729

Isotope dilution mass spectrometry 8 113.25 33.640

Here again we have applied all the techniques described in this section and com-

puted the two-sided confidence intervals for the common mean µ with α = 0.05.

These are given in Table 5.4. The critical value for interval (5.31) is here c = 3.128.

For interval (5.32), the four critical values are determined as 3.321, 2.970, 2.886, and

3.321. In interval (5.35), we have b
.
= 1.118 and, in interval (5.38), a

.
= 3.341. It

is rather interesting to observe that most of the confidence intervals are centered at

around the same value, namely, 109.6, and the one based on the normal method turns

out to be the best in the sense of having the smallest observed length.

Table 5.4 Interval estimates for µ in the selenium example

Method 95% CI on µ

Cohen and Sackrowitz (1984), interval (5.31) 109.5 ± 1.38

Cohen and Sackrowitz (1984), interval (5.32) 109.5 ± 1.27

Fairweather (1972), interval (5.35) 109.7 ± 1.11

Jordan and Krishnamoorthy (1996), interval (5.38) 109.6 ± 1.08

Fisher, interval (5.44) 109.6 ± 1.09

Inverse normal, interval (5.45) 109.6 ± 0.93

Logit, interval (5.47) 109.6 ± 1.25

Appendix: Theory of Fisher’s Method

LetTn(µ) = −2
∑k

i=1 lnPi(µ) ∼ χ2
2k underH0, wherePi(µ) is theP -value defined

by

Pi(µ) = Pr[F1,ni−1 > ci(µ)] with ci(µ) =
ni(x̄i − µ)2

s2i
.
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Hence, the 100(1 − α)% confidence interval for µ is

{µ : Tn(µ) ≤ χ2
2k,α}.

Now we approximate Tn by T̃n, which is

T̃n(µ) = Tn(µ̂) +

k∑

i=1

bi(ci − ĉi),

where

µ̂ =

∑k
i=1 nix̄i/s

2
i∑k

i=1 ni/s2i
the Graybill-Deal estimator, ĉi = ci(µ̂),

and bi is chosen such that Tn(µ) ≈ T̃n(µ).
Suppose there exists µ0 such that

ci ≡ c∗i = Fexp[−χ2

2k,α
/(2k)](1, ni − 1)

and define ε(µ) = Tn(µ) − T̃n(µ). Then, we have,

ε(µ) = Tn(µ) − T̃n(µ) −
k∑

i=1

bi(ci − ĉi)

≈ Tn(µ)|ci=c∗
i
− Tn(µ̂) −

k∑

i=1

bi(c
∗
i − ĉi)

+

k∑

i=1

(d Tn

d ci
− bi

)∣∣
ci=c∗

i

(ci − c∗i ).

If we put

bi =
d Tn

d ci

∣∣
ci=c∗

i

= −2
P ′

i (ci)

Pi(ci)

∣∣
ci=c∗

i

,

then

ε(µ̂) = 0 and ε(µ|ci=c∗
i
) ≈ 0 (1st order).

Since

P ′
i (ci) =

d

dci
Pr(F1,ni−1 > ci)

=
d

dci

∫ ∞

ci

( 1
ni−1 )1/2

B(1
2 ,

ni−1
2 )

u−1/2

(1 + u
ni−1 )ni/2

d u

= − Γ(ni/2)

Γ(1/2) Γ[(n− 1)/2]

(
1

ni − 1

)1/2

c
−1/2
i

(
1 +

ci
ni − 1

)−ni/2
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and

Pi(c
∗
i ) = Pr(F1,ni−1 > c∗i ) = exp

(
−
χ2

2k,α

2k

)
.

Therefore,

bi =
2 Γ(ni/2)

Γ(1/2) Γ[(ni − 1)/2]

(
1

ni − 1

)1/2

c
−1/2
i

×
(

1 +
ci

ni − 1

)−ni/2

exp

(
−
χ2

2k,α

2k

)
.

Hence,

Tn(µ) ≤ χ2
2k,α

=⇒ T̃n(µ) ≤ χ2
2k,α

=⇒
k∑

i=1

bi ci ≤ χ2
2k,α − Tn(µ̂) +

k∑

i=1

bi ĉi ≡ a, says.

As a result, the 100(1 − α)% confidence interval for µ is

µ ∈
k∑

i=1

qix̄i ±


 a
∑k

i=1 bi ni/s2i
+

(
k∑

i=1

qi x̄i

)2

−
k∑

i=1

qi x̄
2
i




1/2

,

where

qi =
bi ni/s

2
i∑k

j=1 bj nj/s2j
.



CHAPTER 6

TESTS OF HOMOGENEITY IN

META-ANALYSIS

As has been mentioned earlier, meta-analysis of results from different experiments or

studies is quite common these days. However, as has been emphasized, it is equally

important to make sure that the underlying effect sizes arising out of these experiments

are indeed homogeneous before performing any meta-analysis or pooling of evidence

or data so that an inference on a common effect makes sense.

In this chapter we discuss at length the problem of testing homogeneity of means

in a one-way fixed effects model. We assume throughout that the observations are

drawn from k independent univariate normal populations with means µ1, . . . , µk and

variances σ2
1 , σ2

2 , . . . , σ2
k, and the problem is to test the homogeneity hypothesis with

respect to means, given by H0 : µ1 = · · · = µk, against a general alternative. Once

H0 is accepted, we feel quite comfortable in pooling all the data sets in order to make

suitable inference about the common unknown mean µ. The next chapter, Chapter 7,

deals with the dual problem of testing homogeneity of means in a one-way random

effects model, which indeed also has a long and rich history.

The problem of testing the homogeneity of means in a one-way analysis of vari-

ance (ANOVA) is one of the oldest problems in statistics with applications in many

diverse fields (Cochran, 1937). Under the classical ANOVA assumption of normality,

independence, and homogeneous error variances (σ2
1 = σ2

2 = · · · = σ2
k), one uses
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the standard likelihood ratio F test, which is also known to be the optimum from an

invariance point of view. However, when one or more of these basic assumptions are

violated, the F test ceases to be any good, let alone be optimum! This is especially

true in the case of nonhomogeneous error variances, which is often the situation in

meta-analysis. In the literature (Cochran, 1937; Welch, 1951), several tests of H0

have been proposed and compared in the presence of heterogeneity of error variances.

All these tests are approximate and work quite well in large samples.

The main goal of this chapter is to present a systematic development of these tests

along with results of some simulation studies to compare them (Section 6.1). This

chapter is based mostly on Hartung, Argac, and Makambi (2002). An exact solution

based on a relatively new notion of generalized P -values is also presented in this

chapter (Section 6.2). The chapter concludes with illustrations of four classic data

sets. It should be noted that, for k = 2, the testing problem under consideration boils

down to the famous Behrens-Fisher problem!

6.1 MODEL AND TEST STATISTICS

LetXij be the observation on the jth subject of the ith population/study, i = 1, . . . , k
and j = 1, . . . , ni. Then the standard one-way ANOVA model is given by

Xij = µi + eij = µ+ τi + eij , i = 1, . . . , k, j = 1, . . . , ni,

where µ is the common mean for all the k populations, τi is the effect of population

i with
∑k

i=1 τi = 0, and eij are error terms which are assumed to be mutually

independent and normally distributed with

E(eij) = 0, Var(eij) = σ2
i , i = 1, . . . , k, j = 1, . . . , ni.

Under the above set-up, we are interested in testing the hypothesis

H0 : µ1 = · · · = µk.

To test this hypothesis, we propose the following test statistics.

ANOVA F Test

The test statistics San is given by

San =
N − k

k − 1

∑k
i=1 ni (X̄i. − X̄..)

2

∑k
i=1(ni − 1) S2

i

,

with N =
∑k

i=1 ni, X̄i. =
∑ni

j=1 Xij/ni, X̄.. =
∑k

i=1 niX̄i./N , and S2
i =∑ni

j=1(Xij − X̄i.)/(ni − 1).
This test was originally meant to test for equality of population means under

variance homogeneity and has an F distribution with k − 1 and N − k df under

the null hypothesis. The test rejects H0 at level α if San > Fk−1,N−k;α, where

Fk−1,N−k;α is the upper 100α% point of the F distribution with k− 1 andN − k df.
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This ANOVAF test has the weakness of not being robust with respect to heterogeneity

in the intrapopulation error variances (Brown and Forsythe, 1974).

Cochran’s Test

This test suggested by Cochran in 1937 is based on

Sch =

k∑

i=1

wi

(
X̄i. −

k∑

j=1

hj X̄j.

)2

,

wherewi = ni/S
2
i ,hi = wi/

∑k
i=1 wi. UnderH0, the Cochran statistic is distributed

approximately as a χ2 variable with k − 1 df. The test rejects H0 at level α if

Sch > χ2
k−1;α, where χ2

k−1;α is the upper 100α% point of the chi-square distribution

with k−1 df. Cochran’s test is often used as the standard test for testing homogeneity

in meta-analysis. This test has been already introduced in Chapter 4 as the general

large-sample test of homogeneity.

Welch Test

The Welch test is given by

Swe =

k∑
i=1

wi

(
X̄i. −

k∑
j=1

hj X̄j.

)2

(k − 1) + 2 k − 2
k + 1

k∑
i=1

1
ni − 1 (1 − hi)

2

,

where wi = ni/S
2
i , hi = wi/

∑k
i=1 wi. This test is an extension of testing the

equality of two means to more than two means (see Welch, 1951) in the presence

of variance heterogeneity within populations. The Welch test is a modification of

Cochran’s test. Under H0, the statistic Swe has an approximate F distribution with

k − 1 and νg df, where

νg =
(k2 − 1)/3

∑k
i=1 (1 − hi)

2
/(ni − 1)

.

This test rejects H0 at level α if Swe > Fk−1,νg ;α.

Brown-Forsythe (BF) Test

This test, also known as the modified F test, is based on

Sbf =

∑k
i=1 ni (X̄i. − X̄..)2
∑k

i=1(1 − ni/N) S2
i

.

When H0 is true, Sbf is distributed approximately as an F variable with k − 1 and ν
df, where

ν =

[∑k
i=1(1 − ni/N) S2

i

]2

∑k
i=1(1 − ni/N)2 S4

i /(ni − 1)
.
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The test rejects H0 at level α if Sbf > Fk−1,ν;α. Using a simulation study, Brown

and Forsythe (1974) demonstrated that their statistic is robust under heterogeneity of

variances. If the population variances are close to being homogeneous, the BF test is

closer to the ANOVA F test than to Welch’s test.

Mehrotra (Modified Brown-Forsythe) Test

The test statistic

Sbf(m) =

∑k
i=1 ni(X̄i. − X̄..)

2

∑k
i=1(1 − ni/N)S2

i

was proposed by Mehrotra (1997) in an attempt to correct a ”flaw” in the BF test.

UnderH0, Sbf(m) is distributed approximately as anF variable with ν1 and ν df, where

ν1 =

[∑k
i=1(1 − ni/N)S2

i

]2

∑k
i=1 S

4
i +

(∑k
i=1 ni S2

i /N
)2

− 2
∑k

i=1 ni S4
i /N

and ν is defined in the BF test. The test rejects H0 at level α if Sbf(m) > Fν1,ν;α.

Approximate ANOVA F Test

The test statistic

SaF =
N − k

k − 1

∑k
i=1 ni (X̄i. − X̄..)

2

∑k
i=1 (ni − 1) S2

i

was proposed by Asiribo and Gurland (1990). UnderH0, the statisticSaF is distributed

approximately as an F variable with ν1 and ν2 df, where ν1 is defined under Mehrotra

test above and

ν2 =

[∑k
i=1 (ni − 1) S2

i

]2

∑k
i=1 (ni − 1) S4

i

.

The test rejects H0 at level α if SaF > ĉ · Fν1,ν2;α, where

ĉ =
N − k

N(k − 1)

∑k
i=1 (N − ni) S

2
i∑k

i=1 (ni − 1) S2
i

.

We notice that the numerator df for SaF and Sbf(m) are equal. Further, for ni = n, i =
1, . . . , k, that is, for balanced data, the test statistic and the df for both the numerator

and denominator of these two statistics are also equal.

Adjusted Welch Test

The Welch test uses weights wi = ni/S
2
i . We know that

E(wi) = E

(
ni

S2
i

)
= ci ·

ni

σ2
i

,

where ci = (ni−1)/(ni−3). Therefore, an unbiased estimator ofni/σ
2
i isni/(ciS

2
i ).
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Defining w∗
i = ni/(ciS

2
i ), Hartung, Argac, and Makambi (2002) propose a test

they called the adjusted Welch test, denoted by Saw, which is given by

Saw =

k∑
i=1

w∗
i (X̄i. −

k∑
j=1

h∗j X̄j.)
2

[
(k − 1) + 2 k − 2

k + 1

k∑
i=1

1
ni − 1 (1 − h∗i )

]2 ,

where h∗i = w∗
i /
∑k

j=1 w
∗
j , i = 1, . . . , k. Under H0, the adjusted Welch statistic,

Saw, is distributed approximately as an F variable with k − 1 and ν∗g df, with

ν∗g =
(k2 − 1)/3

∑k
i=1 (1 − h∗i )

2 /(ni − 1)
.

The test rejects H0 at level α if Saw > Fk−1,ν∗

g ;α. When the sample sizes are large,

Saw approaches the Welch test. With small sample sizes, this statistic will help to

correct the overshooting of the Welch test with respect to α.

Extensive simulation studies by Hartung, Argac, and Makambi (2002) for both

size and power under normal and nonnormal populations, under homogeneous and

heterogeneous variances, and under balanced and unbalanced schemes reveal that the

modified Brown-Forsythe test and the approximateF test are relatively least affected

by changes from normal populations with homogeneous variances.

6.2 AN EXACT TEST OF HOMOGENEITY

We conclude this section with a brief discussion of the application of the generalized

P -value for solving the underlying testing problem of homogeneity of means in the

presence of heterogeneity variances. This procedure described below will produce

an exact test. For details, we refer to Tsui and Weerahandi (1989), Thursby (1992),

and Griffiths and Judge (1992).

We first discuss the case k = 2, that is, the Behrens-Fisher problem. Let X =
(X̄1. − X̄2., S

2
1 , S

2
2), x = (x̄1. − x̄2., s

2
1, s

2
2), θ = µ1 − µ2, and η = (σ2

1 , σ
2
2). Here

S2
1 and S2

2 are the two sample variances which are unbiased estimates of σ2
1 and σ2

2 ,

respectively. We then define T (X ;x, θ, η) as

T (X ;x, θ, η) = (X̄1. − X̄2.)

(
σ2

1

n1
+
σ2

2

n2

)−1/2(
s21 σ

2
1

S2
1 n1

+
s22 σ

2
2

S2
2 n2

)1/2

.

Note that the observed value of T is t = x̄1. − x̄2. and that E(T ) increases with

µ1 − µ2. Hence the generalized P -value can be defined as

gen.P = Pr [T ≥ x̄1. − x̄2. |µ1 = µ2]

= Pr

[
Z

(
s21(n1 − 1)

U1 n1
+
s22(n2 − 1)

U2 n2

)1/2

≥ x̄1. − x̄2.

]
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whereZ is standard normal,U1 ∼ χ2
n1−1,U2 ∼ χ2

n2−1, and all three are independent.

The null hypothesis of equality of two normal means is rejected when the generalized

P -value is small. It should be noted that what we have described above is for a

one-sided alternative hypothesis. For the two-sided testing problem, the generalized

P -value would be redefined as

gen.P = Pr

[
Z2

(
s21(n1 − 1)

U1 n1
+
s22(n2 − 1)

U2 n2

)
≥ (x̄1. − x̄2.)

2

]
.

For k > 2, we proceed by defining ai = ni/σ
2
i , bi = S2

i ni/s
2
i σ

2
i , and

S2
0 =

k∑

i=1

ai

[
X̄i. −

∑k
i=1 ai X̄i.∑k

i=1 ai

]2

,

S̃2
0 =

k∑

i=1

bi

[
X̄i. −

∑k
i=1 bi X̄i.∑k

i=1 bi

]2

.

Then, obviously, under the null hypothesis of equal means, S2
0 has a central χ2

distribution with k − 1 df and will tend to be large under the alternative hypothesis.

We now define the test variable as T = S2
0/S̃

2
0 and, noting that the observed value

of T is 1, we compute the generalized P -value as P = Pr[T > 1|H0]. Of course,

the computation of the P -value here and in all such problems is carried out, for fixed

x, often by simulation. We have included details of an R code for computation of

P -values in the general case of k > 1 populations in Chapter 17.

It is evident from the discussion in this chapter that there are many tests for com-

paring normal means with unequal within-study variances. Many tests have also been

compared in terms of size in Thursby (1992) and Gamage and Weerahandi (1998). We

also refer to Weerahandi (1995), Khuri, Mathew, and Sinha (1998), and Ananda and

Weerahandi (1997) for a discussion on generalized P -values and their applications.

6.3 APPLICATIONS

Example 6.1. Our first example is taken from Weerahandi (1995) where the goal is

to compare four means of corn yields by four hybrids: A, B, C, D. The data and the

standard fixed effects ANOVA table are given in Tables 6.1 and 6.2, respectively.

The usual P -value based on the assumption of equal population within hybrid

variances (F statistic 1.841) is 0.176, thus leading to acceptance of the null hypothesis

of equal means. It is however clear from the values of the sample standard deviations

that the assumption of equal population variances may not be tenable for this data set.

The refined approximate test statistics lead to different conclusions in this example.

The Brown-Forsythe test and its derivatives yield P -values in the order of magnitude

as the usual F test. Cochran’s test produces a highly significant result. The P -

value of the Welch test and its adjusted version is 0.045, leading to rejection of the

homogeneity hypothesis at levelα = 0.05. An application of the generalizedP -value
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Table 6.1 Yield of corn from four hybrids: data, means, and standard deviations

Population Data x̄i. si

Hybrid A 7.4, 6.6, 6.7, 6.1, 6.5, 7.2 6.750 0.435

Hybrid B 7.1, 7.3, 6.8, 6.9, 7.0 7.020 0.172

Hybrid C 6.8, 6.3, 6.4, 6.7, 6.5, 6.8 6.583 0.195

Hybrid D 6.4, 6.9, 7.6, 6.8, 7.3 7.000 0.415

Table 6.2 ANOVA table for comparing the four hybrids

Source of Sum of Mean sum

variation df squares of squares F statistic

Between 3 0.728 0.2427 1.841

Error 18 2.372 0.1318

Total 21 3.1

as explained above yields 0.048, leading to marginal significance as the Welch test.

The results of the various test procedures are summarized in Table 6.3.

Table 6.3 Test statistics and P -values in the corn example

Value of

Test test statistic P -value

ANOVA F test 1.840 0.176

Cochran 13.638 0.003

Welch 3.980 0.045

Brown-Forsythe 1.851 0.191

Mehrotra 1.851 0.197

Approximate ANOVA F test 1.851 0.196

Adjusted Welch test 2.180 0.158

Generalized P -value 0.048

We note that for this problem the Cochran test, Welch test, and generalizedP -value

test lead to the same conclusion of rejection of the null hypothesis while other tests

uniformly recommend its acceptance.

Example 6.2. Here we examine the data reported in Meier (1953) about the percentage

of albumin in plasma protein in human subjects. The data are given in Table 6.4 and

values of the test statistics with correspondingP -values are summarized in Table 6.5.

It is interesting to observe that all the different test procedures for this problem

lead to the same conclusion of acceptance of the null hypothesis!
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Table 6.4 Percentage of albumin in plasma protein

Variance

Experiment ni Mean s2
i

A 12 62.3 12.986

B 15 60.3 7.840

C 7 59.5 33.433

D 16 61.5 18.513

Table 6.5 Test statistics and P -values in the albumin example

Value of

Test test statistic P -value

ANOVA F test 0.991 0.405

Cochran 3.186 0.364

Welch 0.993 0.417

Brown-Forsythe 0.833 0.491

Mehrotra 0.833 0.471

Approximate ANOVA F test 0.833 0.465

Adjusted Welch test 0.804 0.507

Generalized P -value 0.367

Example 6.3. Here we examine the data on selenium in nonfat milk powder from

Eberhardt, Reeve, and Spiegelman (1989). The summary statistics are given in Table

6.6 and the values of the test statistics with corresponding P -values are reported in

Table 6.7.

Table 6.6 Selenium in nonfat milk powder

Variance

Methods ni Mean s2
i

Atomic absorption spectrometry 8 105.0 85.711

Neutron activation:

1. Instrumental 12 109.75 20.748

2. Radiochemical 14 109.5 2.729

Isotope dilution mass spectrometry 8 113.25 33.640

Here again all tests except the ANOVA F test lead to acceptance of the null

hypothesis.
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Table 6.7 Test statistics and P -values in the selenium example

Value of

Test test statistic P -value

ANOVA F test 3.169 0.035

Cochran 5.208 0.157

Welch 1.589 0.235

Brown-Forsythe 2.428 0.104

Mehrotra 2.428 0.120

Approximate ANOVA F test 2.428 0.114

Adjusted Welch test 1.137 0.367

Generalized P -value 0.147

Example 6.4. Here we examine the data reported in Weerahandi (2004, p. 43). The

individual data are reported in Table 6.8 and Table 6.9 contains the values of the test

statistics as well as the corresponding P -values.

Table 6.8 Strength of four brands of reinforcing bars

Brand A 21.4, 13.5, 21.1, 13.3, 18.9, 19.2, 18.3

Brand B 27.3, 22.3, 16.9, 11.3, 26.3, 19.8, 16.2, 25.4

Brand C 18.7, 19.1, 16.4, 15.9, 18.7, 20.1, 17.8

Brand D 19.9, 19.3, 18.7, 20.3, 22.8, 20.8, 20.9, 23.6, 21.2

Table 6.9 Test statistics and P -values in the strength of reinforcing bars example

Value of

Test test statistic P -value

ANOVA F test 1.608 0.211

Cochran 14.439 0.002

Welch 4.385 0.023

Brown-Forsythe 1.616 0.232

Mehrotra 1.616 0.234

Approximate ANOVA F test 1.616 0.236

Adjusted Welch test 3.086 0.063

Generalized P -value 0.021

It is interesting to observe that, as in Example 6.1, in this problem the Cochran

test, Welch test, and generalized P -value test share the same conclusion of outright

rejection of the null hypothesis while other tests strongly recommend its acceptance!





CHAPTER 7

ONE-WAY RANDOM EFFECTS MODEL

7.1 INTRODUCTION

As discussed in the previous chapter, tests for homogeneity of means or in general

effect sizes are crucial before performing any meta-analysis or pooling of data. When

tests for homogeneity lead to acceptance of the null hypothesis, thus supporting the

evidence that the underlying population means or effect sizes can be believed to be the

same, one feels quite comfortable in carrying out the meta-analysis in order to draw

appropriate inference about the common mean or effect size. When, however, the tests

lead to rejection of the null hypothesis of homogeneity of means, it is not proper to do

meta-analysis of data unless we find reasons for heterogeneity and make an attempt to

explain them. The lack of homogeneity could be due to several covariates which might

behave differently for different studies or simply because the means themselves might

arise from a so called superpopulation, thus leading to their variability and apparent

differences. In this chapter we discuss at length the latter formulation, which is often

known as the one-way random effects model.

There is a vast literature on the one-way random effects model with its root in

meta-analysis. Under this model with normality assumption, the treatment means

µ1,. . . , µk corresponding to k different studies or experiments are modeled as arising

Statistical Meta-Analysis with Applications. By Joachim Hartung, Guido Knapp, Bimal K. Sinha

Copyright c© 2008 John Wiley & Sons, Inc.
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from a supernormal population with an overall mean µ and an overall variability σ2
a.

The parameters of interest are then the overall mean µ and the interstudy variability

σ2
a in terms of their estimation, tests, and confidence intervals.

In the remainder of this chapter we discuss many results pertaining to the above

problems. Most of the results presented here appear for the first time in a book on sta-

tistical meta-analysis! Recalling that in the context of meta-analysis ANOVA models

existence of heterogeneous within-study variances (also known as error variances) is

very much a possibility, we consider the two cases of homogeneous and heteroge-

neous error variances separately in Sections 7.2 and 7.3, respectively. It turns out that,

as expected, statistical inference about the parameters of interest under the homoge-

neous error structure can be carried out much more easily compared to that under a

heterogenous error structure. It is also true that the analysis of a balanced model is

much easier than the analysis of an unbalanced model. Recall that a balanced model

refers to the case when we have an equal number of observations or replications from

all the populations.

As will be clear from what follows, this particular topic of research has drawn

the attention of many statisticians from all over the world and has prompted the

emergence of new statistical methods. Most notably among them is the method

based on generalized P -values, which itself has a considerable amount of literature

including a few textbooks. We will mention in the sequel some results based on

the notion of generalized P -values. For details on generalized P -values, we refer to

Weerahandi (1995) and Khuri, Mathew, and Sinha (1998).

We end this section with a simple description of the model to be analyzed. We

consider the case of the one-way random effects model of ANOVA, that is,

Yij = µ+ ai + eij , i = 1, . . . , k, j = 1, . . . , ni ≥ 1 , (7.1)

whereYij denotes the observable variable,µ the fixed but unknown grand mean,ai the

unobservable random effect with mean 0 and variance σ2
a, and eij the error term with

mean 0 and varianceσ2
i . We assume that the random variablesa1, . . . , ak, e11, . . . eknk

are normally distributed and mutually stochastically independent. Furthermore, we

denote by N =
∑k

i=1 ni, the total number of observations.

The basic statistics for the above model are the sample means Ȳi. and sample sum

of squares SSi, defined by

Ȳi. =

ni∑

j=1

Yij

ni
, SSi =

ni∑

j=1

(Yij − Ȳi.)
2, i = 1, . . . , k.

Then the overall or grand mean and the two well-known sums of squares, namely,

between sum of squares (BSS) and within sum of squares (WSS), are defined as

Ȳ.. =

k∑

i=1

ni
Ȳi.

N
, BSS =

k∑

i=1

ni(Ȳi. − Ȳ..)
2, WSS = SS1 + · · · + SSk.
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Obviously, under the assumption of normality and independence, it holds that

Ȳ.. ∼ N

(
µ,

k∑

i=1

n2
i (σ

2
a + σ2

i /ni)

N2

)
.

When the homogeneity of error variances holds, that is, σ2
1 = · · · = σ2

k = σ2, this

reduces to

Ȳ.. ∼ N

(
µ,

k∑

i=1

n2
i (σ

2
a + σ2/ni)

N2

)
.

Furthermore, in case of balanced models, that is, n1 = · · · = nk = n, and homo-

geneity of error variances, we get

Ȳ.. ∼ N

(
µ,
σ2

a + σ2/n

k

)
.

For WSS, we readily have

WSS ∼
k∑

i=1

σ2
i χ

2
ni−1 ∼ σ2χ2

N−k, (7.2)

with the latter result holding in case of the homogeneity of error variances.

For BSS, the results are somewhat complicated except for the balanced case with

homogeneous error variances. Quite generally, since BSS can be written as a quadratic

form in the sample means (corrected for the mean µ, without any loss of generality),

we can conclude that the general distribution of BSS can be written as a linear func-

tion of independent chi-square variables with coefficients depending on the variance

components and the replications. Under homogeneous error variances and a balanced

model, we get

BSS ∼ (σ2 + nσ2
a) χ2

k−1. (7.3)

Of course, under normality of errors and random effects, independence of BSS and

WSS follows immediately even under the most general situation of unbalanced mod-

els and heterogeneous error variances. The between-group mean sum of squares

BMS = BSS/(k − 1), denoted as MS1, has the expected value given by (assuming

homogeneity of variances)

E(MS1) = γ σ2
a + σ2 , γ =

1

k − 1

N2 −∑k
i=1 n

2
i

N
. (7.4)

For later reference, we note from Eq. (7.2) that, under the assumption of homo-

geneity of error variances, a (1 − α)-level confidence interval for σ2 is given by

CI(σ2) :

[
(N − k)MS2

χ2
N−k; α/2

;
(N − k)MS2

χ2
N−k; 1−α/2

]
, (7.5)
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where MS2 = WSS/(N − k) and χ2
N−k; α/2 denotes the upper 100(α/2)% point of

a chi-square distribution with N − k df.

It should also be mentioned that the approximation of the distribution of MS1 by

a multiple of a χ2 distribution in the general case is satisfactory only if the between-

group varianceσ2
a is close to 0. This explains why an easy extension of the confidence

interval for σ2
a in the balanced case, independently proposed by Tukey (1951) and

Williams (1962) and discussed later in this chapter, is not possible in the unbalanced

case.

7.2 HOMOGENEOUS ERROR VARIANCES

Under the assumption of homogeneous error variances, that is, σ2
1 = σ2

2 = · · · =
σ2

k = σ2, the above model clearly boils down to the familiar intraclass correlation

model with just three parameters: overall mean µ, between-study variance σ2
a, and

within-study or error variance σ2. For balanced models, that is, when the treatment

replications n1, . . . , nk are the same, there are exactly three sufficient statistics,

namely, the overall sample mean, the between sum of squares, and the within sum

of squares, and it is easy to derive the UMVUEs of the three parameters. In case of

unbalanced models, there are many sufficient statistics and an unbiased estimate of the

between-study variance σ2
a is not unique! Moreover, applying a fundamental result

of LaMotte (1973), it turns out that all unbiased estimates of σ2
a in both balanced

and unbalanced models are bound to assume negative values, thus making them

unacceptable in practice. A lot of research has been conducted in order to derive

nonnegative estimates of σ2
a with good frequentist properties. Because our emphasis

here is more on tests and confidence intervals than on estimation, we omit these details

and refer to the excellent book by Searle, Casella, and McCulloch (1992).

7.2.1 Test for σ2

a
= 0

Although the one-way random effects model postulates the presence of a random

component, it is of interest to test if this random component ai is indeed present in

the model (7.1). Since the null hypothesis here corresponds to the equality of means

in a standard ANOVA set-up, we can use the regular F test based on the ratio of

between and within sums of squares, i.e.,

F =
BSS/(k − 1)

WSS/(N − k)
.

Although this F test is known to have some optimum properties in the balanced case,

in the unbalanced case this F test, though valid, ceases to have optimum properties,

and a locally best invariant test under a natural group of transformations was derived

by Das and Sinha (1987). The test statistic F ∗, whose sampling distribution does not

follow any known tabulated distribution, is given by

F ∗ =

∑k
i=1 n

2
i (Ȳi. − Ȳ..)

2

WSS
.
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7.2.2 Approximate tests for H0 : σ2

a
= δ > 0 and confidence

intervals for σ2

a

When the F test for the nullity of the between-study variability is rejected, it is of

importance to test for other meaningful positive values of this parameter as well as

to construct its appropriate confidence intervals. Quite surprisingly, this particular

problem has been tackled by many researchers over the last 50 years. It is clear from

Eq. (7.3) that even in the case of balanced models there is no obvious test for a positive

value of σ2
a, and also it is not clear how to construct an exact confidence interval forσ2

a.

This is the main reason for a lot of research on this topic. Fortunately, the relatively

new notion of a generalizedP -value can be used to solve these problems exactly even

in the case of unbalanced models. We will discuss this solution in Section 7.2.3.

In this section, however, we provide a survey of some main results on the derivation

of approximate confidence intervals forσ2
a mostly from a classical point of view. Once

an appropriate confidence interval is derived, it can be used to test the significance of

a suggested positive value of the parameter σ2
a in the usual way. It should be noted

that most of the procedures discussed below provide approximate solutions to our

problem, especially in unbalanced models. In the sequel, we discuss the two cases of

balanced and unbalanced models separately.

Balanced models. In the case of a balanced design, one method for constructing a

confidence interval for the between-group varianceσ2
a was proposed by Tukey (1951)

and also independently by Williams (1962). The Tukey-Williams method is based

upon noting the distributional properties of BSS and WSS given in Eqs. (7.2) and

(7.3). Since it is easy to construct confidence intervals for σ2 and σ2 + nσ2
a, exact

1 − α confidence intervals for these parameters can be easily calculated, and by

solving the intersection of these two confidence intervals, a confidence interval of the

between-group varianceσ2
a can be obtained which has a confidence coefficient at least

1 − 2α due to Bonferroni’s inequality. The results of simulation studies conducted

by Boardman (1974) indicated that the confidence coefficient of the Tukey-Williams

interval is nearly 1 − α (cf. also Graybill, 1976, p. 620), and Wang (1990) showed

that the confidence coefficient of this interval is even at least 1 − α for customary

values of α. The explicit Tukey-Williams interval is given as

CI(σ2
a) :

[
1

n χ2
k−1;α/2

(
BSS − k − 1

N − k
WSS Fk−1,N−k;α/2

)
,

1

n χ2
k−1;1−α/2

(
BSS − k − 1

N − k
WSS Fk−1,N−k;1−α/2

)]

Unbalanced models. Following the Tukey-Williams approach, Thomas and Hultquist

(1978) proposed a confidence interval for the between-group varianceσ2
a in the unbal-

anced case. This is based on a suitable χ2 approximation of the distribution of BSS.

However, this approximation is not good if the design is extremely unbalanced or if

the ratio of the between- and within-group variances is less than 0.25. To overcome
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this problem, Burdick, Maqsood, and Graybill (1986) considered a conservative con-

fidence interval for the ratio of between- and within-group variance,which was used in

Burdick and Eickman (1986) to construct a confidence interval for the between-group

variance based on the ideas of the Tukey-Williams method. In Burdick and Eickman

(1986), a comparison of the confidence coefficients of the Thomas-Hultquist interval

and the Burdick-Eickman interval on the basis of some simulation studies is reported.

The results of the simulation studies indicated that the confidence coefficient is near

1−α in most cases. If the approximation to aχ2 distribution in the Thomas-Hultquist

approach is not so good, the resulting confidence interval can be very liberal, while

in these situations the Burdick-Eickman interval can be very conservative.

Hartung and Knapp (2000) proposed a confidence interval for the between-group

variance in the unbalanced design which is constructed from an exact confidence

interval for the ratio of between- and within-group variance derived from Wald (1940)

and an exact confidence interval of the error variance. We also refer the reader to

Searle, Casella, and McCulloch (1992,p. 78) and Burdick and Graybill (1992,p. 186f)

in this connection.

We describe below all the three procedures mentioned above for constructing an

approximate confidence interval for σ2
a based on the two familiar sums of squares,

namely, between and within sums of squares.

Thomas-Hultquist confidence interval for σ2
a. Instead of MS1 from Eq. (7.4),

Thomas and Hultquist (1978) considered the sample variance of the group means

given by

MS3 =
1

k − 1

k∑

i=1

(
Ȳi. −

1

k

k∑

i=1

Ȳi.

)2

.

They showed that it holds approximately

(k − 1)MS3

σ2
a + σ2/ñ

appr.∼ χ2
k−1 , (7.6)

where ñ denotes the harmonic mean of the sample sizes of the k groups. Combining

Eqs. (7.2) and (7.6), it is then easy to conclude that

σ2

σ2
a + σ2/ñ

MS3

MS2

appr.∼ Fk−1, N−k . (7.7)

From Eqs. (7.6) and (7.7), (1−α)-level confidence intervals for σ2
a+σ2/ñ andσ2

a/σ
2

can be constructed, and adopting the ideas of constructing a confidence interval by

Tukey and Williams to the present situation leads to the following confidence interval

for σ2
a:

CITH(σ2
a) :

[
k − 1

χ2
k−1; α/2

(
MS3 −

MS2

ñ
Fk−1, N−k; α/2

)
,

k − 1

χ2
k−1; 1−α/2

(
MS3 −

MS2

ñ
Fk−1, N−k; 1−α/2

)]
. (7.8)
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Due to Bonferroni’s inequality the confidence coefficient of the interval (7.8) is at

least 1− 2α, but one may hope that the actual confidence coefficient is nearly 1−α.

However, as mentioned earlier, Thomas and Hultquist (1978) reported that the χ2

approximation in Eq. (7.6) is not good for extremely unbalanced designs where the

ratio η = σ2
a/σ

2
e is less than 0.25. Thus, in such situations the confidence interval

(7.8) can be a liberal one, that is, the confidence coefficient lies substantially below

1 − α.

Burdick-Eickman confidence interval for σ2
a. Burdick, Maqsood, and Graybill

(1986) suggested a confidence interval for the ratio η = σ2
a/σ

2 which overcomes the

problem with small ratios in the Thomas-Hultquist procedure and has a confidence

coefficient of at least 1 − α. This interval is given by

CI(η) :

[
MS3

MS2

1

Fk−1, N−k; α/2
− 1

nmin
,

MS3

MS2

1

Fk−1, N−k; α/2
− 1

nmax

]
(7.9)

with nmin = min{n1, . . . , nk} and nmax = max{n1, . . . , nk}.

Using interval (7.9) and the confidence interval for σ2
a + σ2/ñ from Eq. (7.6),

Burdick and Eickman (1986) investigated the confidence interval for σ2
a constructed

by the Tukey-Williams method. This interval is given by

CIBE(σ2
a) :

[(
ñL

1 + ñL

)
(k − 1)MS3

χ2
k−1; α/2

,

(
ñU

1 + ñU

)
(k − 1)MS3

χ2
k−1; α/2

]
, (7.10)

with

L = max

{
0,

MS3

MS2

1

Fk−1, N−k; α/2
− 1

nmin

}

and

U = max

{
0,

MS3

MS2

1

Fk−1, N−k; 1−α/2
− 1

nmax

}
.

Hartung-Knapp confidence interval for σ2
a. Instead of approximative confidence

intervals for η as in the Thomas-Hultquist and Burdick-Eickman approaches, Hartung

and Knapp (2000) considered the exact confidence interval for η given in Wald (1940)

to construct a confidence interval for σ2
a.

Following Wald (1940), we observe that

Var(Ȳi.) = σ2
a +

σ2

ni
=
σ2

wi

with wi = ni/(1 + η ni), i = 1, . . . , k. Now, Wald considered the sum of squares

(k − 1)MS4 =

k∑

i=1

wi

(
Ȳi. −

∑k
i=1 wiȲi.∑k

i=1 wi

)2
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and proved that
(k − 1)MS4

σ2
∼ χ2

k−1 .

Furthermore, MS4 and MS2 are stochastically independent so that

Fw(η) =
MS4

MS2
∼ Fk−1, n−k . (7.11)

Obviously, Eq. (7.11) can be used to construct an exact confidence interval for the

ratio η.

Wald showed that (k − 1)MS4 is a strictly monotonously decreasing function in

η, and so the bounds of the exact confidence interval are given as the solutions of the

following two equations:

lower bound: Fw(η) = Fk−1, N−k, α/2,
upper bound: Fw(η) = Fk−1, N−k, 1−α/2.

(7.12)

Since Fw(η) is a strictly monotonously decreasing function in η, the solution of

Eq. (7.12), if it exists, is unique. But due to the fact that η is nonnegative, (k−1)MS4

is bounded at η = 0, namely it holds that

(k − 1)MS4 ≤
k∑

i=1

ni

(
Ȳi. −

∑k
i=1 niȲi.∑k

n=1 ni

)2

.

Thus, a nonnegative solution of Eq. (7.12) may not exist. If such a solution of one

of the equations in (7.12) does not exist, the corresponding bound in the confidence

interval is set equal to zero. Note that the existence of a nonnegative solution in

Eq. (7.12) only depends on the chosen α.

Let us denote by ηL and ηU the solutions of the equations in Eq. (7.12). We

then propose, using the confidence bounds from interval (7.5) for σ2, the following

confidence interval for σ2
a:

CI(σ2
a) :

[
(N − k)MS2

χ2
N−k; α

ηL ,
(N − k)MS2

χ2
N−k; 1−α

ηU

]
, (7.13)

which has a confidence coefficient of at least 1 − 2α according to Bonferroni’s in-

equality. But due to the fact that the confidence coefficient of [σ2 ηL , σ2 ηU ] is

exactly 1−α, the resulting confidence interval (7.13) may be very conservative, that

is, the confidence coefficient is larger than 1 − α. So, we also consider a confidence

interval for σ2
a with the estimator MS2 for σ2 instead of the bounds of the confidence

interval for σ2, that is,

C̃I(σ2
a) : [MS2 ηL , MS2 ηU ] . (7.14)

Through extensive simulation studies conducted by Hartung and Knapp (2000),

the observations of Burdick and Eickman (1986) are confirmed in the sense that the
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Thomas-Hultquist interval may be very liberal for small σ2
a, that is, the confidence

coefficient lies considerably below 1 − α. In these situations, the Burdick-Eickman

interval has a confidence coefficient which is always larger than 1−α, but the interval

can be very conservative. If σ2
a becomes larger, both intervals are very similar. The

confidence interval deduced from Wald’s confidence interval for the ratio η with the

bounds of the confidence interval of the error variance as estimates for the error

variance has always a confidence coefficient at least as great as 1−α, but this interval

can be very conservative for large σ2
a. A good compromise for the whole range of

σ2
a is the confidence interval (7.14), which has a confidence coefficient at least as

great as 1−α for small σ2
a, and for growing σ2

a the confidence interval only becomes

moderately conservative.

7.2.3 Exact test and confidence interval for σ2

a
based on a

generalized P -value approach

In this section we describe the relatively new notion of a generalized P -value and

its applications to our problem. The original ideas are due to Tsui and Weerahandi

(1989) and Weerahandi (1993).

We start with a general description of the notion of a generalized P -value. If X
is a random variable whose distribution depends on the scalar parameter θ of interest

and a set of nuisance parameters η and the problem is to test

H0 : θ ≤ θ0 versus H1 : θ > θ0,

a generalized P -value approach proceeds by judiciously specifying a test variable

T (X ;x, θ, η) which depends on the random variableX , its observed value x, and the

parameters θ and η, satisfying the following three properties:

(i) The sampling distribution of T (X ;x, θ, η) derived from that of X , for fixed x,

is free of the nuisance parameter η.

(ii) The observed value of T (X ;x, θ, η) whenX = x, that is, T (x;x, θ, η), is free

of the nuisance parameter η.

(iii) Pr[T (X ;x, θ, η) ≥ t] is nondecreasing in θ for fixed x and η.

Under the above conditions, a generalized P -value is defined by

gen.P = Pr[T (X ;x, θ0, η) ≥ t],

where t = T (x;x, θ0, η).
In the same spirit as above, Weerahandi (1993) constructed a one-sided confidence

bound for θbased on a test variableT1(X ;x, θ, η) satisfying the above three properties

and also the added constraint that the observed value of T1 is T1(x;x, θ, η) = θ. Let

t1(x) satisfy the condition

Pr[T1 ≤ t1(x)] = 1 − α.

Then t1(x) can be regarded as a (1 − α)-level upper confidence limit for θ.
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We now turn our attention to the applications of this concept to our specific problem.

(a) An exact test for H0 : σ2
a = δ > 0 in the balanced case. This testing problem

is commonly known in the literature as a nonstandard testing problem in the sense

that there are no obvious pivots or exact tests for testing this null hypothesis based

on the two sums of squares: BSS and WSS. Recall that, in the balanced case, this

fact follows from the canonical form of the model based on two independent sums

of squares, BSS ∼ (σ2 + nσ2
a)χ2

(k−1) and WSS ∼ σ2χ2
k(n−1). While it is obvious

that an exact test for σ2
a = 0 or even for σ2

a/σ
2 = δ can be easily constructed simply

by taking the ratio of BSS and WSS, the same is not true for the null hypothesis

H0 : σ2
a = δ for some δ > 0. We now describe a test for this hypothesis in the

balanced case based on a generalized P -value.

In our context, taking X = (BSS,WSS), x = (bss,wss), the observed values of

X , θ = σ2
a and η = σ2, we define

T (BSS,WSS; bss,wss, σ2
a, σ

2) =
n σ2

a + wss (σ2/WSS)

bss [(n σ2
a + σ2)/BSS]

It is easy to verify that T defined above satisfies the conditions (i)–(iii), and hence

the generalized P -value for testing H0 : σ2
a = δ or H0 : σ2

a ≤ δ versus H1 : σ2
a > δ

is given by

gen.P = Pr[T ≥ 1] = Pr

[
nδ + wss/Ue

bss/Ua
≥ 1

]

where Ua = BSS/(σ2 + nσ2
a) ∼ χ2

k−1 and Ue = WSS/σ2 ∼ χ2
k(n−1). The test

procedure rejects H0 if the generalized P -value is small. We should point out that

the computation of the generalized P -values in this and similar other problems can

be easily done by simulation using standard statistical software.

(b) One-sided confidence bound for σ2
a in the balanced case. We define

T1 = T (BSS,WSS; bss,wss, σ2
a, σ

2)

=
1

n

[
bss (nσ2

a + σ2)

BSS
− wss σ2

WSS

]
=

1

n

[
bss

Ua
− wss

Ue

]

It is then easy to verify that the sampling distribution of T1, for fixed x = (bss,wss),
does not depend on σ2 and that the observed value ofT1 is indeedσ2

a. Let t1(bss,wss)
satisfy the condition

Pr[T1 ≤ t1(bss,wss)] = 1 − α.

Then t1(bss,wss) can be regarded as a (1 − α)-level upper confidence limit for σ2
a.

We now provide an example from Verbeke and Molenberghs (1997) to illustrate

the application of this approach.

Example 7.1. This example demonstrating the application of a generalized P -value

to find an upper confidence limit ofσ2
a is taken from Verbeke and Molenberghs (1997).

To measure the efficiency of an antibiotic after it has been stored for two years, eight

batches of the drug are randomly selected from a population of available batches and
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a random sample of size 2 is taken from each selected batch (balanced design). Data

representing the concentration of the active component are given in Table 7.1.

Table 7.1 Concentration of the active component

Batch: 1 2 3 4 5 6 7 8

Observations 40 33 46 55 63 35 56 34

42 34 47 52 59 38 56 29

Employing the very natural one-way balanced random effects model here and

doing some routine computations, the ANOVA in Table 7.2 is obtained. It is evident

from the ANOVA table that a batch-to-batch variability is very much in existence in

this problem, implying σ2
a > 0.

Table 7.2 ANOVA table for the active component example

Sum of Mean Expected

squares df squares mean squares

Batches BSS = 1708 7 BMS = 244.1 2σ2
a + σ2

Error WSS = 32.5 8 WMS = 4.062 σ2

In order to derive a 95% upper confidence interval for the parameter σ2
a, it is

indeed possible to use the familiar Satterthwaite approximation which is as follows.

The estimate of σ2
a is

σ̂2
a =

BMS − WMS

2
.

Consider the approximation ν σ̂2
a/σ

2
a ∼ χ2

ν and equating the second moments yields

ν̂ =
(BMS/2 − WMS/2)2

BMS2/7 + WMS2/8
= 1.69.

This leads to the interval

σ2
a ≤ ν̂ σ̂2

a/χ
2
ν̂;0.05 = 3707.50,

which is just useless for this problem.

On the other hand, the application of a generalized confidence interval to this

problem, as developed here, based on T1 = (1708/Ua − 32.5/Ue)/2, yields σ2
a ≤

392.27, which is much more informative than the previous bound.
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(c) An exact test for H0 : σ2
a = δ > 0 and a confidence bound for σ2

a in the

unbalanced case. For testing H0 : σ2
a = δ > 0 versus the alternative H1 : σ2

a > δ,

a potential generalized test variable can be defined as follows.

Define

ρ =
σ2

a

σ2
, wi(ρ) =

ni

1 + ρ ni
,

and

Ȳw(ρ) =

k∑

i=1

wi(ρ) Ȳi.

/ k∑

i=1

wi(ρ) ∼ N
(
µ, σ2

/ k∑

i=1

wi(ρ)
)
.

Let

SwB(ρ) =

k∑

i=1

wi(ρ)
[
Ȳi. − Ȳw(ρ)

]2 ∼ σ2χ2
k−1.

Define W1 = WSS/σ2 ∼ χ2
N−k and W2 = SwB(ρ)/σ2 ∼ χ2

k−1, which are inde-

pendent. Finally, let

T (SwB(ρ),WSS; swB,wss, σ2
a, σ

2)

=
wss SwB(ρ)

WSS swB

(σ2
a WSS

σ2 wss

) =
W2 wss

W1 swB

(σ2
a W1
wss

)

It is easily seen from the second equality above that the distribution of the test vari-

able T (SwB(ρ),WSS; swB,wss, σ2
a, σ

2) depends only on the parameter of interest,

namely, σ2
a, and is independent of the nuisance parameter σ2! It also follows from the

first equality above that the observed value of T (SwB(ρ),WSS; swB,wss, σ2
a, σ

2) is

1. Hence, the generalized P -value for testingH0 : σ2
a = δ > 0 versus the alternative

H1 : σ2
a > δ is given by

gen.P = Pr[T (SwB(ρ),WSS; swB,wss, σ2
a, σ

2) ≥ 1 | σ2
a = δ]

= Pr

[
W2 ≥ W1

wss
swB

W2δ

wss

]

The generalized confidence bounds for σ2
a can be obtained by solving the equations

Pr

[
W2 ≥ W1

wss
swB

W2 δ1
wss

]
=

α

2

Pr

[
W2 ≥ W1

wss
swB

W2 δ2
wss

]
= 1 − α

2

in which case [δ2, δ1] is the 100(1 − α)% generalized confidence interval for σ2
a.



HETEROGENEOUS ERROR VARIANCES 85

7.2.4 Tests and confidence intervals for µ

In this section we discuss some tests and confidence intervals for the overall mean

parameter µ. Clearly, an unbiased estimate of µ is given by the overall sample

mean ȳ =
∑
ȳi/k whose distribution is normal with mean µ and variance η2 =∑

(σ2
a + σ2/ni)/k

2. In the balanced case when n1 = · · · = nk = n, Ȳi’s are iid

with a common mean µ and a common variance σ2
a + σ2/n so that a t test can be

carried out to test hypotheses aboutµ and also the usual t statistic can be used to derive

confidence limits forµ. In the unbalanced case, however, only some approximate tests

and confidence intervals for µ can be developed. We can easily estimate the common

within-study variance σ2 by just combining the within-sample variances MS2 with a

combined dfN−k. As for the other variance component, namely, the between-study

variance σ2
a, since the usual ANOVA estimate can assume negative values, many

modifications of it are available in the literature. A normal approximation is then

used for the distribution of the so-called studentized variable t = (Ȳ − µ)/σ̂(Ȳ )
to obtain approximate tests and confidence intervals for µ. Details can be found in

Rukhin and Vangel (1998) and Rukhin, Biggerstaff, and Vangel (2000).

An exact test for µ in the unbalanced case is described in Iyer, Wang, and Mathew

(2004) using the notion of the generalized P -value. However, the solution is rather

complicated and we omit the details.

7.3 HETEROGENEOUS ERROR VARIANCES

In this section we discuss the problem of drawing appropriate inferences about the

overall mean µ and the between-study variability σ2
a under the more realistic scenario

of heterogeneous error or within-study variances. It is obvious that one can estimate

a within-study variance σ2
i from replicated observations from the ith study. How-

ever, the associated inference problems for µ and σ2
a here are quite hard and some

satisfactory solutions have been offered only recently.

7.3.1 Tests for H0 : σ2

a
= 0

It is of course clear that testing the nullity of the between-study variance H0 : σ2
a =

0 is easy to carry out because, under the null hypothesis, one has the usual fixed

effects model with heterogeneous error or within-study variances. Thus, all the test

procedures described in Chapter 6 are applicable here. Argac, Makambi, and Hartung

(2001) performed some simulation in the context of this problem in an attempt to

compare the proposed tests in terms of power and recommended the use of an adjusted

Welch test (see Chapter 6) in most cases.

7.3.2 Tests for H0 : σ2

a
= δ > 0

In many situations it is known a priori that some positive level of between-study

variability may be present and it is desired to prescribe a test for a designated positive

value for this parameter. Due to the heterogeneous error variances, it is clear that
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the testing problem here is quite difficult. We provide below two solutions to this

problem.

Solution 1. Hartung, Makambi, and Argac (2001) proposed a test statistic for this

problem which they called an extended ANOVA test statistic, and this is given by

F ∗
A =

∑k
i=1 hi

(
Ȳi. −

∑k
j=1 hj Ȳj.

)2

/(k − 1)

δ
∑k

i=1 h
2
i +

∑k
i=1 h

2
i S

2
i /ni

with hi = wi/
∑k

j=1 wj ,wi = 1/τ̃2
i , and τ̃2

i = δ+S2
i /ni. Under the null hypothesis

H0 : σ2
a = δ, the test statistic F ∗

A is approximately F distributed with k − 1 and ν̂A

degrees of freedom, where

ν̂A =

(∑k
i=1 h

2
i τ̃

2
i

)2

∑k
i=1 h

4
i S

4
i / [n2

i (ni + 1)]
− 2.

So, we reject H0 : σ2
a = δ at level α if F ∗ > Fm−1,ν̂R;α.

Solution 2. Hartung and Argac (2002) derived an extension of the Welch test statistic

given by

F ∗
W =

∑k
i=1 wi

(
ȳi. −

∑k
j=1 hj ȳj.

)2

(k − 1) + 2(k − 2)(k − 1)−1
∑k

i=1(1 − hi)2/ν̂i

with hi = wi/
∑k

j=1 wj , wi = 1/(δ + S2
i /ni), and

ν̂i =
2(δ + S2

i /ni)
2

2S2
i /[n

2
i (ni + 1)]

.

The test statistic F ∗
W is approximately F distributed under the null hypothesis with

k − 1 and ν̂W degrees of freedom, where

ν̂W =
k2 − 1

3
∑k

i=1(1 − hi)2/ν̂i

.

The null hypothesis is rejected at level α if F ∗
W > Fk−1,ν̂W ;α.

In the next section, appropriate confidence intervals of σ2
a will be presented, which

in turn can also be used to test the significance of a designated positive value of this

parameter.
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7.3.3 Nonnegative estimation of σ2

a
and confidence intervals

In this section we discuss various procedures to derive nonnegative estimates of the

central parameter of interest, namely, σ2
a, and also procedures to derive its confidence

interval. We point out that the estimators are based either on quadratic forms of y or

on likelihood methods.

Rao, Kaplan, and Cochran (1981) discussed extensively the parameter estimation

in the one-way random effects models. We present here three estimators of σ2
a from

this paper that are generally eligible for use in meta-analysis. With the between- and

within-class sum of squares, the unbiased ANOVA-type estimator of σ2
a has the form

σ̂2
a =

(
N

N2 −∑k
i=1 n

2
i

)(
k∑

i=1

ni(Ȳi. − Ȳ..)
2 −

k∑

i=1

(
1 − ni

n

)
S2

i

)
. (7.15)

Based on the unweighted sum of squares, the unbiased ANOVA-type estimator of the

between-group variance is given by

σ̂2
a =

1

k − 1

k∑

i=1

(
Ȳi − Ȳ ∗

)2 − 1

k

k∑

i=1

S2
i

ni
(7.16)

with Ȳ ∗ =
∑k

i=1 Ȳi/k as the mean of the group means. Both estimators (7.15) and

(7.16) are unbiased estimators of σ2
a. However, both estimators can yield negative

values. Based on Rao’s (1972) MINQUE principle without the condition of unbi-

asedness, Rao, Kaplan, and Cochran (1981) also provided an always nonnegative

estimator of σ2
a as

σ̂2
a =

1

k

k∑

i=1

ℓ2i

(
Ȳi. − ¯̄Y..

)2

, (7.17)

where ℓi = ni/(ni + 1) and ¯̄Y.. = (
∑k

i=1 ℓi Ȳi.)/(
∑k

i=1 ℓi).
In the biomedical literature, an estimator proposed by DerSimonian and Laird

(1986) is widely used. Based on Cochran’s homogeneity statistic (see Chapters 4 and

6) and using the method-of-moment approach in the one-way random effects model

assuming known within-group variances σ2
i , they derived the estimator

σ̂2
a =

∑k
i=1 wi(Ȳi. − Ỹ..)

2 − (k − 1)
∑k

i=1 wi −
∑k

i=1 w
2
i /
∑k

i=1 wi

, (7.18)

where Ỹ.. =
∑k

i=1 wiȲi./
∑k

i=1 wi and in the present model wi = ni/σ
2
i . The

estimator (7.18) is an unbiased estimator of σ2
a given knownσ2

i . In practice, estimates

of the within-group variances have to be plugged in and then, naturally, the resultant

estimator of σ2
a is no longer unbiased. Moreover, like the unbiased ANOVA-type

estimators (7.15) and (7.16), the DerSimonian-Laird estimator can yield negative

estimates with positive probability.

Using the general approach of nonnegative minimum-biased invariant quadratic

estimation of variance components proposed by Hartung (1981),Heine (1993) derived
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the nonnegative minimum-biased estimator of σ2
a in the present model. IfN −2ni ≥

0, i = 1, . . . , k, this estimator reads

σ̂2
a =

n2
∑k

i=1 n
2
i

∏
ℓ′ 6=ℓ(N − 2nℓ′)(Ȳi. − Ȳ..)

2

(∑k
ℓ=1 n

2
ℓ + 1

)∑k
ℓ=1 nℓ(N − nℓ)

∏
ℓ′ 6=ℓ(N − 2nℓ′)

.

Hartung and Makambi (2002) proposed two further nonnegative estimators of σ2
a.

We present their ideas here in more detail. Let b = (b1, . . . , bk)′ be weights such that∑k
i=1 bi = 1. Then, µ̂(b) =

∑k
i=1 biȲi. is an unbiased estimator of µ. Define the

quadratic form

Q(b) =

k∑

i=1

γi

[
Ȳi. − µ̂(b)

]2
,

where γi = b2i /{(1 − 2 bi)
∑k

j=1 bj(1 − bj)/(1 − 2 bj)}. Note that none of the

weights is allowed to be equal to 0.5. Hartung and Makambi (2002) then show that

σ̂2
a =

1
∑k

j=1 b
2
j

(
Q(b) −

k∑

i=1

b2i
S2

i

ni

)
(7.19)

is an unbiased estimator forσ2
a given that the weights bi are known. In case the weights

bi depend on unknown parameters which have to be estimated, then, by plugging in

the estimated weights in (7.19), the resulting estimator is no longer unbiased for σ2
a.

Like the unbiased ANOVA-type estimators and the DerSimonian-Laird estimator,

the estimator (7.19) also can yield negative estimates. Thus, Hartung and Makambi

are led to derive a nonnegative estimator of σ2
a. Starting with the quadratic form

Q1(b) = Q(b)/
∑k

i=1 b
2
i as a possible nonnegative estimator of σ2

a and bias adjusting

this estimator according to the uniformly minimum-bias principle by Hartung (1981),

they obtain the estimator

σ̂2
a =

Q1(b)

Q1(b) + 2
∑k

i=1 riσ̂
2
i /ni

Q1(b)

where ri = b2i /
∑k

j=1 b
2
j .

Using the same principle as above, Hartung and Makambi (2002) also derive a

nonnegative estimator based on Cochran’s homogeneity statistic

QC =
k∑

i=1

wi(Ȳi. − Ỹ..)
2,

which is the basic quadratic form in the DerSimonian-Laird estimator (7.18). Their

second nonnegative estimator is given by

σ̂2
a =

λ
∑k

i=1 wi −
∑k

i=1 w
2
i /
∑k

i=1 wi

QC , (7.20)
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where

λ =
QC

2(k − 1) +QC
.

Maximum likelihood estimation in the present model has already been discussed

by Cochran (1954). Rukhin, Biggerstaff, and Vangel (2000) provide the estimation

equations of the maximum likelihood (ML) and the restricted maximum likelihood es-

timator (REML) estimator of σ2
a. Moreover, Rukhin, Biggerstaff, and Vangel (2000)

show that the REML estimator of σ2
a is closed to the Mandel-Paule (1970) estimator.

The Mandel-Paule estimator is based on the quadratic form

Q =

k∑

i=1

ωi

(
Ȳi. − Ȳω

)2

with Ȳω =
∑k

i=1 ωiȲi./
∑k

i=1 ωi and ωi = (σ2
a + σ2

i /ni)
−1. For known variance

components,Q is a chi-square distributed random variable with k−1 df. By plugging

in estimates of σ2
i in Q, we obtain

Q̃(σ2
a) =

k∑

i=1

ω̃i

(
Ȳi. − Ȳω̃

)2
(7.21)

with Ȳω̃ =
∑k

i=1 ω̃iȲi./
∑k

i=1 ω̃i and ω̃i = (σ2
a + S2

i /ni)
−1. The quadratic form

Q̃(σ2
a) is a strictly monotone decreasing function in σ2

a, so that Q̃(0) > Q̃(σ2
a) for

σ2
a > 0. Furthermore, Q̃(σ2

a) can be well approximated by a chi-square random

variable with k − 1 df. The Mandel-Paule estimator for σ2
a is then given as the

solution of the equation

Q̃(σ2
a) = k − 1. (7.22)

In case, Q(0) < k − 1, the estimate is set to zero.

In the one-way random effects model, usually all the data are available. Some-

times, only summary statistics are available and then we obtain the following model,

which can be seen as a special case of the one-way random effects model. Let

(Ȳ1., S
2
1), (Ȳ2., S

2
2), . . . , (Ȳk., S

2
k) be independent observations representing sum-

mary estimates Ȳi. of some parameter µ of interest from k independent sources,

together with estimates S2
i /ni of the variances of Ȳi., and ni denotes the correspond-

ing sample size. Then we consider the model

Ȳi. = µ+ ai + ei, i = 1, . . . , k, (7.23)

where ai are normally distributed random variables with mean zero and variance

σ2
a, representing the between-group variance, and ei are normally distributed random

variables with mean zero and variance σ2
i /ni. In model (7.23), we assume that the

variances σ2
i are reasonably well estimated by the S2

i within the independent groups.

So, we assume the σ2
i are known and simply replace them by their estimates s2i .
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Taking the σ2
i as known, the estimating equations of the maximum likelihood

estimators of µ and σ2
a are given by

µ =

∑k
i=1 wi(σ

2
a) Ȳi.∑k

i=1 wi(σ2
a)

, (7.24)

k∑

i=1

w2
i (σ2

a) (Ȳi. − µ)2 =

k∑

i=1

wi(σ
2
a), (7.25)

where wi(σ
2
a) = (σ2

a + s2i /ni)
−1. A convenient form of Eq. (7.25) for iterative

solution is given by

σ2
a =

∑k
i=1 w

2
i (σ2

a)[(Ȳi. − µ)2 − s2i /ni]∑k
i=1 w

2
i (σ2

a)
. (7.26)

The restricted likelihood estimate of σ2
a is found numerically by iterating

σ2
a =

∑k
i=1 w

2
i (σ2

a)[(Ȳi. − µ̂(σ2
a))2 − s2i /ni]∑k

i=1 w
2
i (σ2

a)
+

1
∑k

i=1 wi(σ2
a)
. (7.27)

We conclude the discussion on point estimation with a classical example quoted

from Snedecor and Cochran (1967,p. 290). The observed sample means and variances

of the means are given in Table 7.3.

Table 7.3 Summary data on artificial insemination of cows

Bull Sample size Mean Variance

number ni Ȳi S2
i /ni

1 5 41.2 35.14

2 2 64.5 30.25

3 7 56.3 18.99

4 5 39.6 101.06

5 7 67.1 38.64

6 9 53.2 27.72

Applying most of the estimators presented in this section to the data set, we obtain

the estimates given in Table 7.4. There is substantial variation between the point

estimates. The maximum likelihood estimate (7.26) yields the smallest value with

51.35 and the ANOVA-type estimate (7.16) the largest one with 89.68.

Recently, Hartung and Knapp (2005a) as well as Viechtbauer (2007) proposed a

confidence interval using the quadratic form (7.21) which Mandel and Paule (1970)

have used for their estimate of σ2
a in Eq. (7.22). Hartung and Knapp (2005a) derived

the first two moments of Q̃(σ2
a) and discussed the accuracy of the approximation to

the χ2 distribution with k − 1 df.
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Table 7.4 Estimates for the variation between the bulls

Formula Estimate Formula Estimate

Eq. (7.15 ) 76.42 Eq. (7.20) 58.44

Eq. (7.16 ) 89.68 Eq. (7.22) 81.40

Eq. (7.17 ) 73.43 Eq. (7.26) 51.35

Eq. (7.18 ) 64.80 Eq. (7.27) 72.83

Hartung and Knapp (2005a) showed that Q̃(σ2
a) is a monotone decreasing function

in σ2
a and thus proposed a 1 − α confidence region for the among-group variance

defined by

CI(σ2
a) =

{
σ2

a ≥ 0
∣∣ χ2

k−1;1−α/2 ≤ Q̃(σ2
a) ≤ χ2

k−1;α/2

}
. (7.28)

Since Q̃(σ2
a) is a monotone decreasing function in σ2

a ≥ 0, the function Q̃(σ2
a) has its

maximal value at Q̃(0). For Q̃(0) < χ2
k−1;α/2, we define C1(σ

2
a) = {0}; otherwise

the confidence region C1(σ
2
a) is a genuine interval. Note that the validity of the

inequality Q̃(0) < χ2
k−1;α/2 only depends on the choice of α. To determine the

bounds of the confidence interval one has to solve the two equations for σ2
a, namely

lower bound: Q̃(σ2
a) = χ2

k−1;α/2,

upper bound: Q̃(σ2
a) = χ2

k−1;1−α/2.
(7.29)

Likelihood-based confidence intervals have been proposed by Hardy and Thomp-

son (1996), Biggerstaff and Tweedie (1997), and Viechtbauer (2007). Recall that

Ȳi ∼ N

(
µ , σ2

a +
σ2

i

ni

)
, i = 1, . . . , k;

then it holds for the log-likelihood function of µ and σ2
a,

l(µ, τ2) ∝ −1

2

k∑

i=1

ln

(
τ2 +

σ2
i

ni

)
− 1

2

k∑

i=1

(Ȳi − µ)2

σ2
a + σ2

i

.

The two estimating equations for µ and σ2
a are

µ̂ =

∑k
i=1 wiȲi∑k
i=1 wi

(7.30)

and

σ̂2
a =

w2
i

[
(Ȳi − µ̂)2 − σ2

i /ni

]
∑k

i=1 w
2
i

(7.31)

with wi = 1/(σ2
a + σ2

i /ni), i = 1, . . . , k. Let µ̂ML and σ̂2
a,ML denote the ML esti-

mators. A confidence interval for σ2
a can then be obtained by profiling the likelihood
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ratio statistic; see Hardy and Thompson (1996). Denote µ̃ as that value of (7.30) with

wi = 1/(σ̃2
a + σ2

i /ni). Then, a 100(1 − α)% confidence interval for σ2
a is given by

CI(σ2
a) :

{
σ̃2

a | − 2
[
l(µ̃, σ̃2

a) − l(µ̂ML, σ̂
2
a,ML)

]
< χ2

1;α

}

=
{
σ̃2

a | l(µ̃, σ̃2
a) > l(µ̂ML, σ̂

2
a,ML) − χ2

1;α/2
}
. (7.32)

Alternatively, one can base the confidence interval on the restricted log-likelihood.

Following Viechtbauer (2007), it holds for the restricted log-likelihood for σ2
a,

lR(σ2
a) ∝ −1

2

k∑

i=1

ln

(
σ2

a +
σ2

i

ni

)
− 1

2

k∑

i=1

1

σ2
a + σ2

i /ni

− 1

2

k∑

i=1

(Ȳi − µ̂)2

σ2
a + σ2

i /ni

.

The estimating equation for σ2
a is given by

σ̂2
a =

∑k
i=1 w

2
i

[
(Ȳi − µ̂)2 − σ2

i /ni

]
∑k

i=1 w
2
i

+
1

∑k
i=1 wi

.

Let σ̂2
a,REML denote the REML estimate. Then, a 100(1 − α)% confidence interval

for σ2
a is given by

CI(σ2
a) :

{
σ̃2

a | − 2
[
lR(σ̃2

a) − lR(σ̂2
a,REML)

]
< χ2

1;α

}

=
{
σ̃2

a | lR(σ̃2
a) > lR(σ̂2

a,REML) − χ2
1;α/2

}
(7.33)

The asymptotic sampling variances of the ML and REML estimates of σ2
a can

be obtained by taking the inverse of the Fisher information. Following Viechtbauer

(2007), these variances are, respectively, equal to

Var
(
σ̂2

a,ML

)
= 2
( k∑

i=1

wi

)−1

(7.34)

and

Var
(
σ̂2

a,REML

)
= 2




k∑

i=1

w2
i − 2

∑k
i=1 w

3
i∑k

i=1 wi

+

(∑k
i=1 w

2
i

)2

(∑k
i=1 wi

)2




−1

. (7.35)

Estimates of the sampling variances are obtained by settingwi = 1/(σ̂2
a,ML +σ2

i /ni)

and wi = 1/(σ̂2
a,REML + σ2

i /ni) in Eqs. (7.34) and (7.35), respectively.

Based on the asymptotic normality assumption of ML and REML estimates,

100(1− α)% Wald-type confidence intervals for σ2
a are given by

CI(σ2
a) : σ̂2

a,ML ±
√

V̂ar
(
σ̂2

a,ML

)
zα/2 (7.36)
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Table 7.5 95% confidence intervals for σ2
a in the artificial insemination example

Method 95% CI

Confidence interval (7.29) [5.739, 737.953]

Confidence interval (7.32) [< 0.001, 346.477]

Confidence interval (7.33) [< 0.001, 523.007]

Confidence interval (7.36) [0, 148.593]

Confidence interval (7.37) [0, 208.206]

and

CI(σ2
a) : σ̂2

REML ±
√

V̂ar (σ̂2
REML) zα/2. (7.37)

Applying the five confidence intervals to the data set from Table 7.3, we obtain the

approximate 95% confidence intervals for σ2
a given in Table 7.5.

The Q-profiling confidence interval (7.29) is the widest one and clearly excludes

the value zero, and the profile REML confidence interval (7.33) is the second widest

in this example. The two Wald-type confidence intervals include the value zero; the

lower bounds of the profile-type confidence intervals are tight to zero but positive.

Extensive simulation studies by Hartung and Knapp (2005a) and Viechtbauer

(2007) have shown that the confidence interval (7.29) has, in general, the best ac-

tual confidence coefficient compared to the nominal one, so that this interval can

generally be recommended.

7.3.4 Inference about µ

In the last section of this chapter, we present some results on estimation, tests, and

confidence intervals of the overall mean µ.

Let us recall Ȳi ∼ N(µ, σ2
a + σ2

i /ni). Then, when the within-study variances are

known, the uniformly minimum variance unbiased estimator of µ is given by

µ̂ =

∑k
i=1 wi Ȳi∑k

i=1 wi

,

wherewi = (σ2
a+σ2

i /ni)
−1, i = 1, . . . , k.Then it holds for the standardized variable

Z =
µ̂

(
∑k

i=1 wi)−1/2
∼ N(µ, 1).

However, in practice, we have to estimate the usually unknown variances. The

within-population variances σ2
i are estimated by their sample counterparts, and the

between-population varianceσ2
a can be estimated using an estimator from the previous

section. Finally, we obtain an approximate 100(1−α)% confidence interval for µ as

ˆ̂µ =

∑k
i=1 ŵi Ȳi∑k

i=1 ŵi

±
( k∑

i=1

ŵi

)−1/2

zα/2 (7.38)
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with ŵi = (σ̂2
a + σ̂2

i /ni)
−1.

As is well known, in small to moderate samples, which is mostly the case in

applications, this confidence interval suffers from the same weaknesses as its fixed

effects counterpart. Namely, the actual confidence coefficient is below the nominal

one. Consequently, the corresponding test on the overall mean yields too many

unjustified significant results.

Several modifications of the above normal test and confidence interval have been

suggested in the literature (Hartung, 1999b; Hartung and Knapp; 2001a,b; Sidik and

Jonkman, 2002; Hartung, Böckenhoff, and Knapp, 2003). We should mention that

most of the modifications are very similar. We present below some results from

Hartung and Knapp (2001a,b).

The basic results for the improved test are that the quadratic form

k∑

i=1

wi (Ȳi. − µ̂)2

is a chi-square random variable with k − 1 df, stochastically independent of µ̂, and

that

q := V̂ar(µ̂) =
1

k − 1

∑k
i=1 wi (Ȳi. − µ̂)2
∑k

i=1 wi

(7.39)

is an unbiased estimator of the variance of µ̂. Consequently, under H0 : µ = 0,

T =
µ̂

V̂ar(µ̂)
(7.40)

is a t-distributed random variable with k − 1 degrees of freedom. The test statis-

tic T depends on the unknown variance components which have to be replaced by

appropriate estimates in practice. By substituting the variance components by their

estimates, the resulting test statistic is then approximately t distributed with k− 1 df.

So, the alternative approximate 100(1 − α)% confidence interval for µ reads

ˆ̂µ =

∑k
i=1 ŵi Ȳi∑k

i=1 ŵi

±
√
q̂ tk−1,α/2 (7.41)

with q̂ the estimate according (7.39) with wi replaced by ŵi.

Hartung and Knapp (2001a,b) conducted an extensive simulation study to compare

the attained type I error rates for the commonly used confidence interval (7.38) and

the proposed modified confidence interval (7.41). It turns out that the interval (7.41)

greatly improves the attained confidence coefficient. Moreover, the good performance

of the interval (7.41) does not heavily depend on the choice of the between-group

variance estimator.

An exact test for µ in the present model is described in Iyer, Wang, and Mathew

(2004) using the notion of the generalized P -value. However, the solution is rather

complicated and we omit the details.
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To conclude this chapter, let us analyze the data set from Table 7.3 and compute

the approximate 95% confidence intervals for µ. The results are given in Table 7.6,

where we have used three different estimates of the between-group variance from

Table 7.4.

Table 7.6 Confidence intervals for µ in the artificial insemination example

Method for Estimate 95% CI for µ 95% CI for µ

estimating σ2
a for µ based on (7.38) based on (7.41)

DSL from Eq. (7.18) 54.70 [46.62, 62.77] [43.34, 66.05]

MLE from Eq. (7.26) 54.80 [47.30, 62.29] [43.54, 66.05]

REML from Eq. (7.27) 54.64 [46.25, 63.04] [43.25, 66.04]

Recall from Table 7.4 that the estimate for σ2
a from Eq. (7.18) is 64.80, from

Eq. (7.26) is 51.35, and from Eq. (7.27) is 72.83. The overall estimate for µ is not

so much affected by the choice of the between-group variance estimate. However,

the confidence interval (7.38) is more affected by the estimate of σ2
a. The larger the

estimate of σ2
a, the wider the interval. In contrast, the length of the interval (7.41) is

relatively stable with respect to the estimate of σ2
a.





CHAPTER 8

COMBINING CONTROLLED TRIALS

WITH NORMAL OUTCOMES

The fundamentals for combining results from several independent studies or exper-

iments have been extensively discussed in Chapters 5 to 7. The methods presented

there heavily rely on the assumptions that we have normal means and variance esti-

mators of the means which are stochastically independent of the means and follow

exactly independent scaled chi-square distributions. Moreover, the methods have

been presented for one-sample studies or experiments only.

In this chapter we demonstrate how and which methods from Chapters 5 to 7 can

be extended to combining results from comparative trials, say treatment (T) versus

control (C), with normal outcomes. In Section 2.1 we already introduced an effect

size based on means, that is, the standardized difference of two means. At the end of

this section we briefly mentioned the difference of means as a further possible effect

size. Obviously, the difference of means is the ideal effect size which can be analyzed

by using most of the methods of the previous three chapters.

This chapter is organized as follows: First we will discuss in detail the meta-

analysis of comparative trials with normal outcome if the difference of means is the

parameter of interest. Then, some further results for the standardized mean difference

will be provided in the random effects model. Finally, the meta-analysis for combining

Statistical Meta-Analysis with Applications. By Joachim Hartung, Guido Knapp, Bimal K. Sinha

Copyright c© 2008 John Wiley & Sons, Inc.
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response ratios is indicated which is of independent interest, for instance, in the field

of ecology.

8.1 DIFFERENCE OF MEANS

Let us assume that in general there are k independent trials comparing a treatment (T)

versus a control (C). Let XTij , j = 1, . . . , nTi, i = 1, . . . , k, be iid observations in

the treatment group from a normal distribution with mean µTi and variance σ2
Ti and

XCij , j = 1, . . . , nCi, i = 1, . . . , k, be iid observations in the control group from a

normal distribution with mean µCi and variance σ2
Ci. Define X̄Ti and S2

Ti as well as

X̄Ci and S2
Ci as

X̄Ti =
1

nTi

nT i∑

j=1

XTij , S2
Ti =

1

nTi − 1

nT i∑

j=1

(
XTij − X̄Ti

)2
,

and

X̄Ci =
1

nCi

nCi∑

j=1

XCij , S2
Ci =

1

nCi − 1

nCi∑

j=1

(
XCij − X̄Ci

)2
.

Then it follows that

X̄Ti ∼ N

(
µTi,

σ2
Ti

nTi

)
, (nTi − 1)S2

Ti ∼ σ2
Ti χ

2
nTi−1, (8.1)

and

X̄Ci ∼ N

(
µCi,

σ2
Ci

nCi

)
, (nCi − 1)S2

Ci ∼ σ2
Ci χ

2
nCi−1. (8.2)

Note that the statistics (8.1) and (8.2) are all mutually independent. Assuming that

in each trial the population variances are identical, that is, σ2
i = σ2

Ti = σ2
Ci, i =

1, . . . , k, then the pooled sample variance is given by

S∗2

i =
1

nTi + nCi − 2

[
(nTi − 1)S2

Ti + (nCi − 1)S2
Ci

]
(8.3)

and it follows that

(nTi + nCi − 2)S∗2

i ∼ σ2
i χ

2
nT i+nCi−2. (8.4)

Let µDi = µTi − µCi, i = 1, . . . , k, be the parameter of interest in each study;

then

Di = X̄Ti − X̄Ci

is an unbiased estimator of µDi with

Di ∼ N

(
µDi,

σ2
Ti

nTi
+
σ2

Ci

nCi

)
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in general or

Di ∼ N

(
µDi,

nTi + nCi

nTi nCi
σ2

i

)

for identical population variances in each trial.

The variance of Di can be unbiasedly estimated either by

V̂ar(Di) =
S2

Ti

nTi
+
S2

Ci

nCi

or by

V̂ar(Di) =
nTi + nCi

nTi nCi
S∗2

i .

Note that the latter variance estimator is an exactly scaled chi-square distributed

random variable [see Eq. (8.4)], whereas the distribution of S2
Ti/nTi + S2

Ci/nCi,

which is a linear combination of two independent chi-square variables, can only be

approximated, for instance, by Satterthwaite’s (1946) approximation if the population

variances are different. In this case, the Satterthwaite approximation yields

S2
Ti

nTi
+
S2

Ci

nCi

approx.∼
(
σ2

Ti

nTi
+
σ2

Ci

nCi

)
χ2

νi

with

νi =
σ2

Ti

nTi − 1
+

σ2
Ci

nCi − 1
.

Since the degrees of freedom depend on the unknown variances, they must be esti-

mated in practice, say by ν̂i = S2
Ti/(nTi − 1) + S2

Ci/(nCi − 1).
In the rest of this section, for ease of presentation, we consider the case that the

variances of the two populations are identical in each trial and we always use the

pooled variance estimator (8.4). If the assumption of equal variances is not fulfilled

in a trial, the estimator (8.4) has to be replaced by S2
Ti/nTi + S2

Ci/nCi. Note that

exact statements using Eq. (8.4) only approximately hold if S2
Ti/nTi+S

2
Ci/nCi must

be used.

Under the assumption of equality of difference of means in all the trials, that is, it

holds that

µD1 = µD2 = · · · = µDk = µD, (8.5)

we have the common mean problem from Chapter 5. Based on (Di, S
∗
i
2), i =

1, . . . , k, the analogous estimator to the Graybill-Deal estimator (see Chapter 5) has

the form

µ̂D =

k∑

i=1

nTi nCi

nTi + nCi

Di

S∗2

i

/ k∑

i=1

nTi nCi

nTi + nCi

1

S∗2

i

.

Using the mutual independence of Di and S∗
i , it is readily verified that µ̂D is an

unbiased estimator of µD.
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8.1.1 Approximate confidence intervals for the common mean

difference

If we can find an unbiased estimator, say V̂ar(µ̂D), of Var(µ̂), then the studentized

version (µ̂D − µD)/

√
V̂ar(µ̂D) follows N(0, 1) asymptotically. This can be used

for testing as well as for interval estimation of µD at least in large samples.

Following the lines of Proposition 5.6 (see Chapter 5) and writing V̂ar(Di) =
S∗

i
2/fi with fi = nTi nci/(nTi + nCi), i = 1, . . . , k, a first order approximation of

V̂ar(µ̂D), say V̂ar(1)(µ̂D), is obtained as

V̂ar(1)(µ̂D) =
(

k∑

i=1

fi

S∗
i
2

)−1[
1 +

k∑

i=1

4

nTi + nCi

(
fi/S

∗
i
2

∑k
j=1 fj/S∗

j
2
− f2

i /S
∗
i
4

(∑k
j=1 fj/S∗

j
2
)2

)]
.

(8.6)

This approximation is comparable to the approximation when Meier’s (1953) general

result is applied in the present model. Meier’s approximation yields

V̂ar(2)(µ̂D) =
(

k∑

i=1

fi

S∗
i
2

)−1[
1 +

k∑

i=1

4

nTi + nCi − 2

(
fi/S

∗
i
2

∑k
j=1 fj/S∗

j
2
− f2

i /S
∗
i
4

(∑k
j=1 fj/S∗

j
2
)2

)]
.

(8.7)

Note that the general estimated (asymptotic) variance ( see Chapter 4) is

V̂ar(3)(µ̂D) =
( k∑

i=1

fi

S∗
i
2

)−1

. (8.8)

Using the above variance estimators, an approximate 100(1 − α)% confidence

interval for µD can be constructed as

[
µ̂D − zα/2

√
V̂ar(µ̂D) , µ̂D + zα/2

√
V̂ar(µ̂D)

]
. (8.9)

8.1.2 Exact confidence intervals for the common mean difference

All the exact confidence intervals for the common mean (see Section 5.3.2) can also

be applied in the present situation. Recall that

ti =

√
fi (Di − µD)

S∗
i

∼ tnT i+nCi−2
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and, equivalently,

Fi =
fi(Di − µD)2

S∗
i
2

∼ F1,nT i+nCi−2 (8.10)

are standard test statistics for testing hypotheses about µD in the ith trial. Conse-

quently, suitable linear combinations of |ti|’s orFi’s can be used as a pivot to construct

exact confidence intervals for µD .

By replacing throughout X̄i by Di, S
2
i by S∗

i
2, and ni by fi, we obtain exact

confidence intervals in analogy to the intervals (5.31), (5.32), and (5.35) as

[
max
1≤i≤k

{
Di −

cα/2 S
∗
i√

fi

}
, min

1≤i≤k

{
Di +

cα/2 S
∗
i√

fi

}]
, (8.11)

where cα/2 satisfies

1 − α =
k∏

i=1

Pr
(
|ti| ≤ cα/2

)
,


max

1≤i≤k



Di −

c
(i)
α/2 S

∗
i√

fi



 , min

1≤i≤k



Di +

c
(i)
α/2 S

∗
i√

fi






 , (8.12)

where c
(i)
α/2 satisfies

Pr
(
|ti| ≤ cα/2

)
= (1 − α)

1/k
,

and ∑k
i=1

√
fi ui Di/S

∗
i∑k

i=1

√
fi ui/S∗

i

± bα/2∑k
i=1

√
fi ui/S∗

i

, (8.13)

where ui = Var(ti)
−1/

∑k
j=1 Var(tj)

−1, i = 1, . . . , k, and bα/2 satisfies

1 − α = Pr

(
k∑

i=1

ui |ti| ≤ bα/2

)
.

Similarly, the exact confidence interval (5.38) for the common mean can be applied

by additionally settingmi = nTi+nCi−2 in the present context. We omit the detailed

presentation here.

Using Fi defined in (8.10), one can construct the exact confidence intervals (5.43),

(5.44), (5.45), and (5.47) based on the P -values after calculating the P -values as

Pi =

∫ ∞

Fi

hi(x) dx

where here hi(x) denote the pdf of the F distribution with 1 and (nTi +nCi − 2) df.
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Example 8.1. Let us reanalyze the dentifrice data from Example 4.4. Recall that

the homogeneity test does not reject the homogeneity assumption. The estimate of

the common difference of means is µ̂D = 0.2833 with large-sample 95% confi-

dence interval of [0.1022, 0.4644]. Using the estimates (8.6) or (8.7) instead of (8.8),

the resulting bounds of the interval (8.9) only slightly change. Applying the exact

confidence intervals to this data set, we obtain the results in Table 8.1.

Table 8.1 Interval estimates for µD in the dentifrice example

Method 95% CI on µ

Cohen and Sackrowitz (1984), in analogy to interval (5.31) [−0.1815, 0.5615]

Cohen and Sackrowitz (1984), in analogy to interval (5.32) [−0.1800, 0.5600]

Fairweather (1972), in analogy to interval (5.35) [ 0.1193, 0.5365]

Jordan and Krishnamoorthy (1996), in analogy to interval (5.38) [−0.2495, 1.1377]

Fisher, in analogy to interval (5.44) [−0.0186, 0.6141]

Inverse normal, in analogy to interval (5.45) [ 0.0024, 0.6777]

Logit, in analogy to interval (5.47) [−0.0036, 0.6396]

It is interesting to observe that the exact interval based on Fairweather (1972) is

the shortest one and clearly excludes the value zero like the approximate confidence

intervals. The lower bounds of the exact intervals based on P -values are around the

value zero, whereas the other three intervals clearly include this value.

8.1.3 Testing homogeneity

The crucial assumption of the underlying meta-analysis in the Sections 8.1.1 and 8.1.2

is the assumption (8.5) of identical mean differences in all the trials. Formally, we

can test this homogeneity hypothesis

H0 : µD1 = µD2 = · · · = µDk (8.14)

using test statistics from Section 6.1. However, note that we cannot extend all test

statistics from this section but can extend only those which depend on the sample

means and not on the overall mean. This restriction leads to the use of Cochran’s test,

Welch’s test, and the adjusted Welch test in the present situation. These are described

below.

Define wi = fi/S
∗
i
2, i = 1, . . . , k, and hi = wi/

∑k
j=1 wj ; then Cochran’s

statistic for testing H0 is given as

Sch =

k∑

i=1

wi

(
Di −

k∑

j=1

hjDj

)2

, (8.15)

which is approximately chi-square distributed with k − 1 degrees of freedom under

H0.
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The Welch test is given as

Swe =

∑k
i=1 wi

(
Di −

∑k
j=1 hjDj

)2

(k − 1) + 2[(k − 2)/(k + 1)]
∑k

i=1 (1 − hi)
2
/(nTi + nCi − 2)

Under H0, the statistic Swe has an approximate F distribution with k − 1 and νg

degrees of freedom, where

νg =
(k2 − 1)/3

∑k
i=1 (1 − hi)

2
/(nTi + nCi − 2)

.

Following the lines of Hartung, Argac, and Makambi (2002), we know that

E

(
fi

S∗
i
2

)
=
ci fi

S∗
i
2

with ci = (nTi + nCi − 2)/(nTi + nCi − 4). Defining w∗
i = fi/(ci S

∗
i
2) and

hi∗ = w∗
i /
∑k

j=1 wj∗, i = 1, . . . , k, leads to the adjusted Welch test statistic

Saw =

∑k
i=1 w

∗
i

(
Di −

∑k
j=1 h

∗
jDj

)2

(k − 1) + 2[(k − 2)/(k + 1)]
∑k

i=1 (1 − h∗i )
2
/(nTi + nCi − 2)

.

Under H0, the statistic Saw is approximately distributed as an F variate with k − 1
and ν∗g degrees of freedom, where

ν∗g =
(k2 − 1)/3

∑k
i=1 (1 − h∗i )

2
/(nTi + nCi − 2)

.

8.1.4 Analysis in the random effects model

In case the homogeneity assumption (8.5) is not fulfilled, the meta-analysis using the

random effects model is appropriate and methods from Chapter 7 may be appealing to

extend to the present model. Since the heteroscedastic error case is the usual scenario

in practice, we restrict the presentation here to the model

Di ∼ N

(
µD , σ2

a +
σ2

i

fi

)
,

where σ2
a is the parameter for the variability between the studies. Recall that the

pooled within-study variance estimator of σ2
i is given as

S∗2

i =
1

nTi + nCi − 2

[
(nTi − 1)S2

Ti + (nCi − 1)S2
Ci

]
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with

(nTi + nCi − 2)S∗2

i ∼ σ2
i χ

2
nT i+nCi−2.

Estimates of σ2
a are available from the methods of Chapter 7 and we restrict the

discussion of estimating σ2
a in the present model to four methods which are often

used in practice.

In analogy to the estimator (7.16), an unbiased ANOVA-type estimator of σ2
a is

given as

σ̂2
a =

1

k − 1

k∑

i=1

(
Di − D̄

)2 − 1

k

k∑

i=1

S∗
i
2

fi
(8.16)

with D̄ =
∑k

i=1Di/k as the overall mean of the group mean differences. Recall that

although estimator (8.16) is an unbiased one, it can yield negative values which are

usually truncated to zero in practice. The truncated estimator, of course, is no longer

an unbiased estimator.

Following the DerSimonian-Laird (1986) approach [see Eq. (7.18] we obtain the

estimator

σ̂2
a =

∑k
i=1 wi(Di − D̃)2 − (k − 1)

∑k
i=1 wi −

∑k
i=1 w

2
i /
∑k

i=1 wi

, (8.17)

where D̃ =
∑k

i=1 wiDi/
∑k

i=1 wi, and in the present model, wi = fi/σ
2
i . Again,

the estimator (8.17) is an unbiased estimator of σ2
a given known σ2

i . In practice,

estimates of the within-group variances have to be plugged in and then, naturally, the

resultant estimator of σ2
a is no longer unbiased. Moreover, like the unbiased ANOVA-

type estimator (8.16), the DerSimonian-Laird estimator can yield negative estimates

with positive probability.

The Mandel-Paule (1970) estimator for σ2
a [see Eqs. (7.21) and (7.22)] is based on

the quadratic form

Q̃(σ2
a) =

k∑

i=1

ω̃i

(
Di − D̄ω̃

)2
(8.18)

with D̄ω̃ =
∑k

i=1 ω̃iDi/
∑k

i=1 ω̃i and ω̃i = (σ2
a + S∗

i
2/fi)

−1. Since Q̃(σ2
a) can be

well approximated by a chi-square random variable with k−1 degrees of freedom, the

Mandel-Paule estimator for σ2
a is then given as the solution of the following equation:

Q̃(σ2
a) = k − 1.

In case Q(0) < k − 1, the estimate is set to zero.

Taking the σ2
i ’s as known, the estimating equations of the maximum likelihood

estimators of µ and σ2
a are given by

µ =

∑k
i=1 wi(σ

2
a)Di∑k

i=1 wi(σ2
a)

, (8.19)

k∑

i=1

w2
i (σ2

a) (Di − µD)2 =

k∑

i=1

wi(σ
2
a), (8.20)
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where wi(σ
2
a) = (σ2

a + s∗i
2/fi)

−1. A convenient form of Eq. (8.20) for iterative

solution is given by

σ2
a =

∑k
i=1 w

2
i (σ2

a)[(Di − µD)2 − s∗i
2/fi]∑k

i=1 w
2
i (σ2

a)
. (8.21)

The restricted maximum likelihood estimate of σ2
a is found numerically by iterating

σ2
a =

∑k
i=1 w

2
i (σ2

a)[(Di − µ̂D(σ2
a))2 − s∗i

2/fi]∑k
i=1 w

2
i (σ2

a)
+

1
∑k

i=1 wi(σ2
a)
. (8.22)

By profiling the restricted log-likelihood for σ2
a, we can construct a 100(1− α)%

confidence interval for σ2
a. Recall that the restricted log-likelihood function can be

written as

lR(σ2
a) ∝ −1

2

k∑

i=1

ln

(
σ2

a +
s∗i

2

fi

)
− 1

2

k∑

i=1

1

σ2
a + s∗i

2/fi

− 1

2

k∑

i=1

(Di − µ̂D)2

σ2
a + s∗i

2/fi

Let σ̂2
a,REML denote the REML estimate according to Eq. (8.22). Then, a 100(1−α)%

confidence interval for σ2
a is given by

CI(σ2
a) :

{
σ̃2

a | − 2
[
lR(σ̃2

a) − lR(σ̂2
a,REML)

]
< χ2

1;α

}

=
{
σ̃2

a | lR(σ̃2
a) > lR(σ̂2

a,REML) − χ2
1;α/2

}
.

Using the quadratic form (8.18) and following Hartung and Knapp (2005a) or

Viechtbauer (2007), a further approximate 100(1 − α)% confidence interval can be

obtained as

CI(σ2
a) =

{
σ2

a ≥ 0
∣∣ χ2

k−1;1−α/2 ≤ Q̃(σ2
a) ≤ χ2

k−1;α/2

}
.

To determine the bounds of the confidence interval explicitly one has to solve the two

equations for σ2
a, namely:

lower bound: Q̃(σ2
a) = χ2

k−1;α/2,

upper bound: Q̃(σ2
a) = χ2

k−1;1−α/2.

Finally, we can consider the statistical inference for µD , the primary parameter

of interest. Let us recall Di ∼ N(µD, σ
2
a + σ2

i /fi). Then, when the between-study

variance and the within-study variances are known, the uniformly minimum variance

unbiased estimator of µD is given by

µ̂D =

∑k
i=1 wi Di∑k

i=1 wi

,
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wherewi = (σ2
a +σ2

i /fi)
−1, i = 1, . . . , k.Then it holds for the standardized variable

Z =
µ̂D

(
∑k

i=1 wi)−1/2
∼ N(µD, 1),

Since we have to plug in estimates of all the unknown variances in practice, we obtain

an approximate 100(1− α)% confidence interval for µD as

ˆ̂µD =

∑k
i=1 ŵi Di∑k

i=1 ŵi

±
( k∑

i=1

ŵi

)−1/2

zα/2 (8.23)

with ŵi = (σ̂2
a + σ̂2

i /fi)
−1.

As is well known, in small to moderate samples, this confidence interval suffers

from the same weaknesses as its fixed effects counterpart. Namely, the actual confi-

dence coefficient is below the nominal one. Consequently, the corresponding test on

the overall mean yields too many unjustified significant results.

Using the modification proposed by Hartung and Knapp (2001a,b), an unbiased

estimator of the variance of µ̂D is given as

q := V̂ar(µ̂D) =
1

k − 1

∑k
i=1 wi (Di − µ̂D)2
∑k

i=1 wi

. (8.24)

By replacing the unknown variances by their appropriate estimates, we finally obtain

the improved approximate 100(1 − α)% confidence interval for µD,

ˆ̂µD =

∑k
i=1 ŵi Di∑k

i=1 ŵi

±
√
q̂ tk−1,α/2, (8.25)

with q̂ being the estimate (8.24) where wi is replaced by ŵi.

Example 8.2. As an example let us consider the amlodipine data set from Section

18.4. Using a pooled variance estimate in each trial, the observed mean differences

with corresponding standard errors are given in Table 8.2.

The meta-analysis results are summarized in Table 8.3. In the random effects

model, we have used the DerSimonian-Laird (DSL) estimate (8.17) and the REML

estimate solving Eq. (8.22) for estimating the between-study variance. Since the

estimate of the heterogeneity parameter is close to zero, the results in the fixed effects

and random effects model are nearly same. Note that the interval (8.25) is always

wider than the interval (8.23). But in all the intervals the value zero is not included

so we can reject the null hypothesis of no treatment difference.
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Table 8.2 Mean differences and standard errors (s.e.)

in the amlodipine example

Study Mean difference s.e.

1 0.2343 0.0686

2 0.2541 0.0967

3 0.1451 0.0968

4 −0.1347 0.1251

5 0.1566 0.0762

6 0.0894 0.0980

7 0.6669 0.2506

8 0.1423 0.0734

Table 8.3 Meta-analysis results in the amlodipine example

95% CI for µD 95% CI for µD

Model Method τ̂ 2 µ̂D based on (8.23) based on (8.25)

Fixed effects 0 0.1624 [0.0994, 0.2254] [0.0613, 0.2634]

Random effects DSL 0.0066 0.1590 [0.0713, 0.2467] [0.0390, 0.2790]

REML 0.0003 0.1620 [0.0978, 0.2262] [0.0600, 0.2641]

8.2 STANDARDIZED DIFFERENCE OF MEANS

The standardized mean difference as an effect size based on means has already been

introduced in Section 2.1. Several estimators of this effect size have also been dis-

cussed there. In this section, we will discuss the combination of estimates of this

effect size in the random effects model of meta-analysis, where the results can be

easily applied to the fixed effects model of meta-analysis by setting the value of the

between-study variability equal to zero. For i = 1, . . . , k independent experiments

or studies, let X̄Ti, S
2
Ti, and nTi denote sample mean, sample variance, and sample

size in the ith experimental (treatment) group, respectively, and likewise X̄Ci, S
2
Ci,

and nCi the sample mean, sample variance, and sample size in the ith control group,

respectively, as defined in (8.1) and (8.2).

Recall from Section 2.1 that the standardized mean difference in the ith study is

defined as

θi =
µTi − µCi

σ
,

where σ denotes either the standard deviation σCi of the population control group or

an average population standard deviation (namely, an average of σTi and σCi).

In the remainder of this section we will exclusively consider Hedges’s g from

Section 2.1 as the estimate of θi, i = 1, . . . , k. Using the notation in the present
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chapter, this estimator is given by

gi =
X̄Ti − X̄Ci

S∗
i

with S∗
i
2 being the pooled sample variance from Eq. (8.3). Since gi is biased for θi,

an approximately unbiased estimate of θi (see Section 2.1) is given as

g∗i =

(
1 − 3

4ni − 9

)
gi

with ni = nTi + nCi, i = 1, . . . , k, the total sample size in the ith study.

The variance of gi in large samples is given as

Var(gi) ≈
nTi + nCi

nTi nCi
+

θ2i
2 (nTi + nCi − 2)

,

which can be estimated by

V̂ar(gi) =
nTi + nCi

nTi nCi
+

g2
i

2 (nTi + nCi − 2)
.

The homogeneity hypothesis

H0 : θ1 = θ2 = · · · = θk,

that is, all standardized mean differences are identical, can be tested using Cochran’s

homogeneity statistic. In analogy to (8.15), defining now wi = 1/V̂ar(gi) and hi =

wi/
∑k

j=1 wj , i = 1, . . . , k, the test statistic can be obtained as

Q =

k∑

i=1

wi

(
gi −

k∑

j=1

hj gi

)2

. (8.26)

UnderH0, Q is approximately chi-square distributed with k− 1 degrees of freedom.

If the homogeneity assumption holds, the fixed effects meta-analysis model is quite

appropriate; otherwise, the combination of the results should be carried out in a

random effects model.

Recall that the random effects model is given here as

gi ∼ N

[
θ, σ2

a +

(
nTi + nCi

nTi nCi
+

θ2i
2 (nTi + nCi − 2)

)]
, (8.27)

where θ denotes the overall effect size and σ2
a stands for the between-study variability.
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Following the DerSimonian-Laird (1986) approach [see also (8.17)] an estimate

of σ2
a can be obtained as

σ̂2
a =

Q− (k − 1)∑
wi −

∑
w2

i /
∑
wi

(8.28)

with Q from Eq. (8.26), where negative estimates are set to zero.

Let w∗
i = 1/[σ̂2

a + V̂ar(gi)], i = 1, . . . , k, denote the estimate of the inverse of the

variance in model (8.27); then the estimate of the overall effect θ is given by

θ̂ =

∑k
i=1 w

∗
i gi∑k

i=1 wi

.

The large-sample variance of θ̂ is given as

V̂ar(1)(θ̂) =
( k∑

i=1

w∗
i

)−1

.

Following Hartung (1999b), another estimator of the variance of θ̂ is given as

V̂ar(2)(θ̂) =
1

k − 1

∑k
i=1 w

∗
i (gi − θ̂)2

∑k
i=1 w

∗
i

.

Consequently, a large-sample 100(1 − α)% confidence interval for θ is given as

θ̂ ±
√

V̂ar(1)(θ̂) zα/2, (8.29)

which can be improved with respect to the actual coverage probability for a small

number of studies through

θ̂ ±
√

V̂ar(2)(θ̂) tk−1;α/2. (8.30)

See Hartung and Knapp (2001a) for details.

Example 8.3. Let us again consider the amlodipine data set from Section 18.4.

Now assume that the standardized mean difference is the parameter of interest. The

observed standardized mean differences with corresponding standard errors are given

in Table 8.4.

The meta-analysis results are summarized in Table 8.5. Again we have used the

DSL estimate (8.28) and the REML estimate solving Eq. (8.22) for estimating the

between-study variance in the random effects model. Since the estimates of the

heterogeneity parameter is close to zero, the results in the fixed effects and random

effects models are rather close together. The interval (8.29) is again always wider

than the interval (8.30), but in all the intervals the value zero is not included so we

can reject the null hypothesis of no treatment difference.
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Table 8.4 Standardized mean differences and standard errors (s.e.)

in the amlodipine example

Study Mean difference s.e.

1 0.6987 0.2125

2 0.6946 0.2759

3 0.2459 0.1656

4 −0.4245 0.4128

5 0.5000 0.2501

6 0.2287 0.2548

7 0.7139 0.2807

8 0.3989 0.2095

Table 8.5 Meta-analysis results in the amlodipine example

95% CI for θ 95% CI for θ

Model Method τ̂ 2 θ̂ based on (8.29) based on (8.30)

Fixed effects 0 0.4204 [0.2574, 0.5835] [0.1880, 0.6529]

Random effects DSL 0.0227 0.4238 [0.2259, 0.6218] [0.1757, 0.6720]

REML 0.0076 0.4229 [0.2469, 0.5987] [0.1841, 0.6614]

8.3 RATIO OF MEANS

The response ratio, that is, the ratio of mean outcome in the experimental group to

that in the control group, and closely related measures of proportionate change are

often used as measures of effect sizes in ecology; see Hedges, Gurevitch, and Curtis

(1999).

For i = 1, . . . , k independent experiments, let X̄Ti, S
2
Ti, and nTi denote sample

mean, sample variance, and sample size (number of replicates) in the ith experimental

(treatment) group, respectively, and likewise X̄Ci, S
2
Ci, and nCi the sample mean,

sample variance, and sample size in the ith control group, respectively, as defined in

Eqs. (8.1) and (8.2). The parameter of interest is the ratio of the population means,

that is, ρi = µTi/µCi. The sample response ratio Ri = X̄Ti/X̄Ci is an estimate of

ρi in the ith experiment. Usually, the combination of the response ratiosRi is carried

out on the metric of the natural logarithm for two reasons. First, the natural logarithm

linearizes the metric, that is, deviations in the numerator are treated the same as

deviations in the denominator. Second, the sampling distribution ofRi is skewed and

the sampling distribution of ln(Ri) is much more normal in small sample sizes than

that of Ri. For further discussion on this topic, we refer to Hedges, Gurevitch, and

Curtis (1999).
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Let ζi = ln(µTi) − ln(µCi) be the natural logarithm of the ratio of population

means in the ith experiment. Then, ζi can be estimated by

ζ̂i = ln(X̄Ti) − ln(X̄Ci)

with

Var(ζ̂i) ≈
σ2

Ti

nTi µ2
Ti

+
σ2

Ci

nCi µ2
Ci

or

Var(ζ̂i) ≈ σ2
i

(
1

nTi µ2
Ti

+
1

nCi µ2
Ci

)
,

where the latter holds for σ2
i = σ2

Ti = σ2
Ci.

Let us assume in the rest of this section that σ2
i = σ2

Ti = σ2
Ci holds. Then, the

variance of ζ̂i can be estimated as

V̂ar(ζ̂i) = S∗
i
2

(
1

nTi X̄2
Ti

+
1

nCi X̄2
Ci

)
,

where S∗
i
2 is the pooled sample variance (8.3).

The homogeneity hypothesis that all the ratios of population means are equal, that

is,

H0 : ρ1 = ρ2 = · · · = ρk or equivalently H∗
0 : ζ1 = ζ2 = · · · = ζk,

can be tested using Cochran’s homogeneity statistic. In analogy to the test statistic

(8.15), defining now wi = 1/V̂ar(ζ̂i) and hi = wi/
∑k

j=1 wj , i = 1, . . . , k, the test

statistic can be obtained as

Q =

k∑

i=1

wi

(
ζ̂i −

k∑

j=1

hj ζ̂j

)2

. (8.31)

UnderH0 andH∗
0 , respectively,Q is approximately chi-square distributed with k−1

degrees of freedom. If the homogeneity assumption holds, the fixed effects meta-

analysis model is quite appropriate; otherwise, the combination of the results should

be carried out in a random effects model.

Recall that the random effects model is given here as

ζ̂i ∼ N

[
ζ, σ2

a + σ2
i

(
1

nTi µ2
Ti

+
1

nCi µ2
Ci

)]
, (8.32)

where ζ denotes the overall effect size on the logarithmic scale and σ2
a stands for the

between-study variability.

Following the DerSimonian-Laird (1986) approach, an estimate of σ2
a can be ob-

tained as

σ̂2
a =

Q− (k − 1)∑
wi −

∑
w2

i /
∑
wi
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withQ obtained from Eq. (8.31). This estimator may yield negative values which are

set to zero in practice.

Let w∗
i = 1/[σ̂2

a + V̂ar(ζ̂i)], i = 1, . . . , k, denote the estimate of the inverse of the

variance in model (8.32); then the estimate of the overall effect ζ is given by

ζ̂ =

∑k
i=1 w

∗
i ζ̂i∑k

i=1 wi

.

The large-sample variance of ζ̂ is given as

V̂ar(1)(ζ̂) =
( k∑

i=1

w∗
i

)−1

.

For a small number of studies, Hedges, Gurevitch, and Curtis (1999) recommend the

use of the variance estimator

V̂ar(2)(ζ̂) =
(

k∑

i=1

w∗
i

)−1(
1 + 4

k∑

i=1

1

nTi + nCi − 2

(w∗
i

wi

)2 w∗
i [
∑k

j=1 w
∗
j − w∗

i ]

(
∑k

j=1 w
∗
j )2

)
.

Following Hartung (1999b), another estimator of the variance of ζ̂ is given as

V̂ar(3)(ζ̂) =
1

k − 1

∑k
i=1 w

∗
i (ζ̂i − ζ̂)2

∑k
i=1 w

∗
i

.

A large-sample 100(1 − α)% confidence interval for ζ is given as

ζ̂ ±
√

V̂ar(1)(ζ̂) zα/2,

which can be improved with respect to the actual coverage probability for a small

number of studies through

ζ̂ ±
√

V̂ar(2)(ζ̂) zα/2.

Following Hartung and Knapp (2001a), an alternative 100(1 − α)% confidence in-

terval for ζ can be obtained as

ζ̂ ±
√

V̂ar(3)(ζ̂) tk−1,α/2.

After combining the results on the log scale, the results will naturally be trans-

formed to the original scale using antilogs. Backtransforming the mean of logs

introduces a bias into the estimate of the mean response ratio due to the convexity of

the log transform. This bias also arises, for example, in the averaging of correlation

coefficients by backtransforming the average of several Fisher’s z transforms, or in

the averaging of odds ratios by backtransforming the average of several log-odds

ratios. However, since the magnitude of the bias depends upon the variance of the

weighted mean, this bias is usually expected to be slight.



CHAPTER 9

COMBINING CONTROLLED TRIALS

WITH DISCRETE OUTCOMES

An important application of meta-analysis, especially in biometry and epidemiology,

is the combination of results from comparative trials with binary outcomes. Often in

clinical trials or observational studies, the outcome can be generally characterized as

success and failure or as positive and negative. The effect size measures for binary

outcomes have already been introduced in Chapter 2. The meta-analytical methods

described in Chapter 4 as well as the methods of the one-way random effects model

presented in Chapter 7 can be generally applied to the case of binary data. In the

first section of this chapter, we discuss some additional features of meta-analysis

of binary data. In the second section, we consider a natural extension, namely, the

meta-analysis of outcomes with more than two classification categories or, in other

words, the meta-analysis of ordinal data.

First, we briefly summarize the crucial results from Chapters 4 and 7 which can

be directly used for combining results from controlled trials with binary or ordinal

outcome.

Let θi be the parameter of interest in the ith trial and let us assume that each

independent trial provides an estimate of θi, say θ̂i, i = 1, . . . , k, as well as an

estimate of Var(θ̂i) = σ2
i (θi), say σ̂2

i (θi). Note that quite often the variance σ2
i (θi)

may functionally depend on the parameter of interest. In the random effects model
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of meta-analysis, we have, at least approximatively,

θ̂i ∼ N
[
θ , τ2 + σ2

i (θi)
]
, i = 1, . . . , k. (9.1)

Here θ stands for the overall effect size and τ2 denotes the parameter for the between-

study variance, also called the heterogeneity parameter. If τ2 = 0, we have the fixed

effects model of meta-analysis and θ is then the common effect size in all the studies;

see Chapter 4.

For testing the homogeneity hypothesis, H0 : τ2 = 0, we can use Cochran’s

homogeneity test (see Chapters 4 and 6), which is given here as

Q =

k∑

i=1

v̂i

(
θ̂i − θ̃

)2

(9.2)

with v̂i = 1/σ̂2
i (θi), i = 1, . . . , k, and θ̃ =

∑k
i=1 v̂i θ̂i/

∑k
i=1 v̂i. Under H0, the

statisticQ is approximately chi-square distributed with k−1 degrees of freedom and

H0 is rejected at level α if Q > χ2
k−1;α with χ2

k−1;α being the upper α percentage

point of the chi-square distribution with k − 1 degrees of freedom.

For estimating the heterogeneity parameter τ2, the DSL estimator or the REML es-

timator (see Chapter 7) are commonly used in the present setting. The DSL estimator

of τ2 is given here as

τ̂2
DSL =

Q− (k − 1)
∑k

i=1 v̂i −
∑k

i=1 v̂
2
i /
∑k

i=1 v̂i

(9.3)

with Q from Eq. (9.2).

Let wi(τ
2) = 1/[τ2 + σ̂2

i (θi)], i = 1, . . . , k, and

θ̂(τ2) =

∑k
i=1 wi(τ

2) θ̂i∑k
i=1 wi(τ2)

.

Then, the REML estimate of τ2 can be found numerically by iterating

τ2 =

∑k
i=1 w

2
i (τ2)

{
[θ̂ − θ̂(τ2)]2 − σ̂2

i (θi)
}

∑k
i=1 w

2
i (τ2)

+
1

∑k
i=1 wi(τ2)

(9.4)

starting with an initial guess of τ2, say τ2
0 , on the right-hand side of the above equation.

By profiling the restricted log-likelihood for τ2, we can construct a 100(1− α)%
confidence interval for τ2 as follows. Recall that the restricted log-likelihood function

can be written as

lR(τ2) ∝ −1

2

k∑

i=1

ln[τ2 + σ̂2
i (θi)] −

1

2

k∑

i=1

1

τ2 + σ̂2
i (θi)

− 1

2

k∑

i=1

[θ̂i − θ̂(τ2)]2

τ2 + σ̂2
i (θi)

.
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Let τ̂2
REML denote the REML estimate; see Eq. (9.4). Then, a 100(1−α)% confidence

interval for τ2 is given by

CI(τ2) :
{
τ̃2 | − 2

[
lR(τ̃2) − lR(τ̂2

REML)
]
< χ2

1;α

}

=
{
τ̃2 | lR(τ̃2) > lR(τ̂2

REML) − χ2
1;α/2

}

with χ2
1;α being the upper α percentage point of the chi-square distribution with 1 df.

Using the quadratic form

Q̃(τ2) =

k∑

i=1

w̃i

(
θ̂i − θ̂w̃

)2

with θ̂w̃ =
∑k

i=1 w̃i θ̂i/
∑k

i=1 w̃i and w̃i = [τ2 + σ̂2
i (θi)]

−1 and following Har-

tung and Knapp (2005a) or Viechtbauer (2007), a further approximate 100(1− α)%
confidence interval for τ2 can be obtained as

CI(τ2) =
{
τ2 ≥ 0

∣∣ χ2
k−1;1−α/2 ≤ Q̃(τ2) ≤ χ2

k−1;α/2

}
.

To determine the bounds of the confidence interval explicitly one has to solve the two

equations for τ2, namely:

lower bound: Q̃(τ2) = χ2
k−1;α/2,

upper bound: Q̃(τ2) = χ2
k−1;1−α/2.

Let ŵi = 1/[τ̂2 + σ̂2
i (θ̂i)] be the inverse of the estimated variance in model (9.1),

with τ̂2 being a suitable estimate of τ2. Then the estimate of the overall effect size is

given as

θ̂ =

∑k
i=1 ŵi θ̂i∑k

i=1 ŵi

.

The standard approximate 100(1 − α)% confidence interval of θ is then given as

θ̂ ±
( k∑

i=1

ŵi

)−1/2

zα/2 (9.5)

whereas the modified approximate 100(1 − α)% confidence interval according to

Hartung and Knapp (2001b) is obtained as

θ̂ = ±
√
q̂ tk−1,α/2 with q̂ =

1

k − 1

∑k
i=1 ŵi

(
θ̂i − θ̂

)2

∑k
i=1 ŵi

(9.6)

and tk−1,α/2 the upper α/2 percentage point of the t distribution with k − 1 df.
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9.1 BINARY DATA

Recalling from Chapter 2, let πT and πC denote the population proportions of two

groups, say treatment and control groups. The observed frequencies on the two binary

characteristics can then be arranged in a 2 × 2-table; see Table 9.1. Hereby,mT and

mC are the number of successes in the treatment and control group, respectively, and

nT and nC are the corresponding samples sizes.

Table 9.1 Observed frequencies on two binary characteristics

Success Failure Total

Treatment mT nT − mT nT

Control mC nC − mC nC

9.1.1 Effect size estimates

Three prominent parameters of the difference of two groups with binary outcome,

namely, probability difference, relative risk, and odds ratio, and their estimates have

already been introduced in Chapter 2. Standard large-sample meta-analysis results

are summarized in Chapter 4. In this section, we discuss some properties of the

estimates with emphasis on sparse data situations. Given zero cells in Table 9.1,

some estimates and their variances cannot be computed.

Probability difference. The probability difference is defined as θ1 = πT − πC and

can be unbiasedly estimated by the difference of the observed success probabilities

θ̂1 =
mT

nT
− mC

nC
. (9.7)

The unbiased estimate of the variance of (9.7) is

V̂ar(θ̂1) =
mT (nT −mT )

n2
T (nT − 1)

+
mC (nC −mC)

n2
C (nC − 1)

. (9.8)

Critical data situations occur only in extreme cases, namely, when mT = mC = 0
ormT = nT and mC = 0 ormT = 0 and mC = nC . In the first case, the estimated

difference is zero, in the second case the estimate is+1, and in the last case it is−1. But

in all the three cases, the variance estimate is zero! Hence, the inverse of the variance

is infinity and a trial with such an extreme data situation cannot be incorporated in

the usual way in the meta-analysis. The two extreme cases with estimates +1 and

−1 may be only of theoretical interest. But the case of mT = mC = 0 may be

of practical interest. Consider a controlled clinical trial and suppose the number of

adverse events is of interest. Especially for small sample sizes, the situation might

occur that no adverse events were observed in both treatment groups.



BINARY DATA 117

Relative risk. Setting θ2 = ln(πT /πC), the logarithm of the relative risk, an

estimate of θ2 may be defined as

θ̂2 = ln

(
mT / nT

mC / nC

)
. (9.9)

However, estimate (9.9) cannot be computed when mT = 0 or mC = 0. Moreover,

there does not exist an unbiased estimate of the log relative risk. So, different proposals

exist in the literature for estimating this parameter. Pettigrew, Gart, and Thomas

(1986) discuss the proposed estimators with respect to bias and variance, and there is

no optimal solution. The "optimal" solution always depends on the true,but unknown,

success probabilities. One widely used estimate in this context is

θ̂2 = ln

[
(mT + 0.5) / (nT + 0.5)

(mC + 0.5) / (nC + 0.5)

]
. (9.10)

The variance of estimate (9.10) is estimated without bias except for terms of order

O(n−3) by

V̂ar(θ̂2) =
1

mT + 0.5
− 1

nT + 0.5
+

1

mC + 0.5
− 1

nC + 0.5
.

This variance estimate is always positive if mT 6= nT or mC 6= nC . If mT = nT

or mC = nC , then the value 0.5 will not be added to nT and nC to ensure the

positiveness of the variance estimate.

Odds ratio. Setting θ3 = ln{[πT /(1 − πT )]/[πC/(1 − πC)]}, the logarithm of the

odds ratio, an estimate of θ3 is obtained as

θ̂3 = ln

[
mT / (nT −mT )

mC / (nC −mC)

]
= ln

[
mT (nC −mC)

(nT −mT ) mC

]
. (9.11)

As in the case of the log relative risk, the estimate (9.11) cannot be computed when

there are no successes or only successes in at least one group. Again, no unbiased

estimate of the log odds ratio exists and Gart and Zweifel (1967) investigate several

estimates of this parameter with respect to bias and variance. One estimate, originally

proposed by Haldane (1955), is widely used, namely,

θ̂3 = ln

[
(mT + 0.5) / (nT −mT + 0.5)

(mC + 0.5) / (nC −mC + 0.5)

]

= ln

[
(mT + 0.5) (nC −mC + 0.5)

(nT −mT + 0.5) (mC + 0.5)

]
. (9.12)

The variance of estimate (9.12) is unbiasedly estimated, except terms of orderO(n−3),
by

V̂ar(θ̂3) =
1

mT + 0.5
+

1

nT −mT + 0.5
+

1

mC + 0.5
+

1

nC −mC + 0.5
.
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9.1.2 Homogeneity tests

Before combining the results from the available experiments, a test of homogeneity of

treatment effects should be carried out. In experiments with binary outcome,however,

the choice of the measure of treatment difference may introduce a variability between

the study results. For instance, homogeneity on the risk difference scale does not in

general imply homogeneity on the log odds scale and vice versa.

The test of homogeneity is usually carried out in the framework of the fixed effects

model for testing the equality of the means, but the hypothesis of homogeneity can be

equivalently formulated in the random effects model for testing the hypothesis that

no between-study variance is present; see Chapters 6 and 7.

The commonly used test of homogeneity in meta-analysis is Cochran’s (1954)

test; see Chapter 4 and Eq. (9.2). The test is based on a weighted least-squares

statistic and compares the study-specific estimates of the effect measure with an

estimate of the common homogeneous effect measure. For the effect measure log

odds ratio, Cochran’s test can be very conservative. Consequently, this test does

not have sufficient power to detect heterogeneity. However, for the effect measure

probability difference, Cochran’s test can be very liberal so that the null hypothesis of

homogeneity is falsely rejected too often. Based on the random effects meta-analysis

approach, Hartung and Knapp (2004) suggest another test of homogeneity which is

derived from an unbiased estimator of the variance of the common effect measure in

the random effects model, proposed by Hartung (1999b); see Chapter 7. Hartung and

Knapp (2004) discuss tests of homogeneity for both the outcome measures probability

difference and log odds ratio and work out some improvements with respect to level

and power of their new test.

In different areas of application there exist further tests of homogeneity for binary

outcome measures. For instance, Lipsitz et al. (1998) consider homogeneity tests

for the risk difference and Liang and Self (1985) for the (logarithmic) odds ratio. We

omit the details here.

9.1.3 Binomial-normal hierarchical models in meta-analysis

A critical assumption in the fixed effects or random effects model is perhaps the

assumption that the estimator of the treatment difference is normally distributed,

especially for small sample sizes. When the number of successes in the treatment

groups are known, that is, the observed 2× 2 table is given, one can make direct use

of the binomially distributed number of successes. In the random effects approach

this can be done in a binomial-normal hierarchical model that can be analyzed within

the Bayesian framework using Markov chain Monte Carlo (MCMC) methods. Here

we will only present the basic ideas of the model formulations.

Smith, Spiegelhalter, and Thomas (1995) first present the formulation for the

log odds ratio that is straightforward. Then Warn, Thompson, and Spiegelhalter

(2002) also consider the binomial-normal hierarchical model for the risk difference.

All three models have one common feature, namely, that the number of successes

mTi and mCi are both binomially distributed with parameters nTi and πTi and nCi
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and πCi, respectively in each study i, i = 1, . . . , k. Then let µi = logit(πCi) =
ln[πCi/(1 − πCi)] be the logarithmic odds in the control group and assume that the

logarithmic odds in the treatment group is µi + θi. Consequently, θi is the study-

specific treatment difference on the log odds ratio scale. Finally, assume that θi comes

from a normal distribution with mean θ, the overall effect of treatment difference, and

variance τ2, the heterogeneity parameter.

In summary, we may write the binomial-normal hierarchical model for the log

odds ratio as

mCi ∼ Bin (nCi, πCi) ,

mTi ∼ Bin (nTi, πTi) ,

µi = logit(πCi), (9.13)

logit(πTi) = µi + θi,

θi ∼ N(θ, τ2).

Note that each value of θi from the normal distribution yields admissible values of

the success probabilities πTi and πCi.

For the log relative risk, we set µi = ln(πCi), that is, the logarithm of the success

probability in the control group. Then the logarithm of the success probability in the

treatment group is parameterized as ln(πTi) = µi + θi and θi is the log relative risk.

Again, assume that θi comes from a normal distribution with mean θ, the overall effect

of treatment difference, and variance τ2, the heterogeneity parameter. But now, the

value θi needs to be constrained so thatπTi ∈ [0, 1]. Following Warn, Thompson, and

Spiegelhalter (2002) this is equivalent to constraining ln(πTi) to the interval (−∞, 0],
which is achieved by confining θi to be less than − ln(πCi). Let θU

i be the minimum

of θi and − ln(πCi); then θU
i can take any value in the range (−∞,− ln(πCi)). The

full model can then be summarized as

mCi ∼ Bin (nCi, πCi) ,

mTi ∼ Bin (nTi, πTi) ,

µi = ln(πCi), (9.14)

ln(πTi) = µi + min {θi,− ln(πCi)} ,
θi ∼ N(θ, τ2).

Finally, we consider the third effect measure probability difference. Let µi = πCi

be the success probability in the control group. Then the success probability in the

treatment group is parameterized as πTi = µi+θi, and as before assume that θi arises

from a normal distribution with mean θ, the overall effect of treatment difference, and

variance τ2, the heterogeneity parameter. As in the previous case, the value θi needs

to be constrained so that πTi ∈ [0, 1], that is, θi ∈ [−πCi, 1 − πCi]. Define two new

parameters θU
i and θL

i , corresponding to upper and lower bounds for θi. Let θL
i be

the maximum of θi and −πCi; then θL
i can take any value in the range [−πCi,∞).

Similarly, let θU
i be the minimum of θL

i and 1−πCi; then θi is confined to the required
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range [−πCi, 1 − πCi]. The full model is then given by

mCi ∼ Bin (nCi, πCi) ,

mTi ∼ Bin (nTi, πTi) ,

µi = πCi, (9.15)

πTi = µi + min {max {θi,−πCi} , 1 − πCi} ,
θi ∼ N(θ, τ2).

For a full Bayesian analysis in the models (9.13), (9.14), and (9.15), appropriate prior

distributions have to be determined for the hyperparameters θ and τ2 as well as for

the success probabilities pCi in the control groups, which may also be called baseline

risk. A Bayesian meta-analysis can be conducted using the software WinBUGS.

9.1.4 An example for combining results from controlled clinical trials

Hartung and Knapp (2001b) put together the results of 13 controlled trials of a drug

named cisapride compared to placebo for the treatment of nonulcer dyspepsia. The

data are given in Section 18.5 with further information of the research problem. The

originally conducted meta-analysis was done with the probability difference as the

effect size; see Allescher et al. (2001). Besides the probability difference, we also

consider here the log odds ratio as effect size for demonstration purposes. Table

9.2 contains the estimates of the probability difference (PD) and the log odds ratio

[ln(OR)] with corresponding standard errors.

Table 9.2 Estimates of probability difference and log odds ratio with

corresponding standard errors for the 13 cisapride studies

Study PD s.e.(PD) ln(OR) s.e.[ln(OR)]

1 0.3750 0.1425 2.4567 1.1492

2 0.6875 0.1281 3.8067 1.1832

3 0.3235 0.1065 1.6401 0.5937

4 0.1964 0.0889 0.8835 0.4093

5 0.3636 0.1431 1.5404 0.6524

6 0.5057 0.0825 2.2860 0.4559

7 0.3569 0.1639 1.6740 0.8201

8 0.1034 0.0927 0.4200 0.3755

9 0.5143 0.1647 2.3026 0.8756

10 0.4316 0.1253 1.8888 0.6199

11 0.5970 0.0848 2.8574 0.5537

12 -0.0782 0.1217 -0.3697 0.5684

13 0.0526 0.1159 0.2113 0.4601

Let us first combine the results for the probability difference. Cochran’s homo-

geneity statistic [see Eq. (9.2)] yields Q = 49.44 and, compared to 21.03, the 5%
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cut-off point of the chi-square distribution with 12 degrees of freedom, leads to a

rejection of the homogeneity hypothesis. This indicates that the use of the ran-

dom effects meta-analysis model is appropriate. The DerSimonian-Laird estimate

of the heterogeneity parameter is τ̂2
DSL = 0.0391 and the REML estimate of τ2 is

τ̂2
REML = 0.0376. Both estimates are rather close, so we will use the value of τ̂2

DSL

for further analysis. The overall estimate for the probability difference is 0.3375 with

95% confidence interval [0.2119, 0.4632] using interval (9.5) and 95% confidence

interval [0.2021, 0.4730] using interval (9.6). For applying the binomial-hierarchical

model for the probability difference [see model (9.15)], we use as prior distributions

for θ the uniform distribution on the interval [−1, 1] and for τ , the standard deviation

between the studies, the uniform distribution on the interval [0, 2]. Finally, we have

to specify priors for pCi, the underlying or baseline risk. We use two different ap-

proaches. First, we use the noninformative prior U [0, 1], the uniform distribution on

the interval [0, 1] (method A) and, second, we use as prior for pCi the beta distribution

with parameters α and β and as priors for both parameters of the beta distribution

the uniform distribution on the intervals [1, 100] (method B). Method A produces

an estimate of τ2 as 0.034. Then, the estimate of the overall probability difference

is 0.300 with 95% credible interval [0.174, 0.425]. With method B, the estimate of

τ2 is 0.014, and the estimate of the overall probability difference is 0.310 with 95%

credible interval [0.221, 0.405].
On the log odds ratio scale, Cochran’s homogeneity statistic is Q = 41.67 and

again the homogeneity hypothesis is rejected. The DerSimonian-Laird estimate is

τ̂2
DSL = 0.8086 and the REML estimate τ̂2

REML = 0.8155. Again using τ̂2
DSL for

further analysis leads to an overall estimate of the log odds ratio of 1.4911 with

95% confidence interval [0.8881, 2.0941] using interval (9.5) and 95% confidence

interval [0.8206, 2.1617] using interval (9.6). To apply the binomial-hierarchical

model (9.13), we use the same priors as above except that we now take N(0, 10) as

the prior for θ. Method A produces an estimate of τ2 as 1.122, and the estimate of

the overall log odds ratio is 1.445 with 95% credible interval [0.782, 2.206]. With

method B, the estimate of τ2 is 0.494, and the estimate of the overall log odds ratio

difference is 1.491 with 95% credible interval [1.039, 1.963].

9.1.5 An example for combining results from observational studies

As an example for combining results of observational studies we use the studies on

second-hand smoking from Section 18.6. Since only estimates of relative risk with

corresponding 95% confidence intervals are provided, we have to extract the standard

error of the estimates using the general method described in Section 17.1. Usually

the effects are estimated on the log scale and then the estimates are transformed to

the original scale. Consequently, we first use the logarithms of the bounds of the

confidence limits and then extract the standard error of the logarithm of the estimate.

The results are summarized in Table 9.3.

For testing homogeneity on the logarithmic relative risk scale, Cochran’s homo-

geneity test yields a value of 17.204 corresponding to a P -value of 0.509. Thus, the

homogeneity assumption cannot be rejected and we feel quite confident to apply the
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Table 9.3 Nineteen studies on second-hand smoking

Study Relative risk 95% CI on RR ln(RR) s.e.(ln(RR))

1 1.52 [0.88 − 2.63] 0.419 0.279

2 1.52 [0.39 − 5.99] 0.419 0.697

3 0.81 [0.34 − 1.90] −0.211 0.439

4 0.75 [0.43 − 1.30] −0.288 0.282

5 2.07 [0.82 − 5.25] 0.728 0.477

6 1.19 [0.82 − 1.73] 0.174 0.190

7 1.31 [0.87 − 1.98] 0.270 0.210

8 2.16 [1.08 − 4.29] 0.770 0.352

9 2.34 [0.81 − 6.75] 0.850 0.541

10 2.55 [0.74 − 8.78] 0.936 0.631

11 0.79 [0.25 − 2.45] −0.236 0.582

12 1.55 [0.90 − 2.67] 0.438 0.277

13 1.65 [1.16 − 2.35] 0.501 0.180

14 2.01 [1.09 − 3.71] 0.698 0.312

15 1.03 [0.41 − 2.55] 0.030 0.466

16 1.28 [0.76 − 2.15] 0.247 0.265

17 1.26 [0.57 − 2.82] 0.231 0.408

18 2.13 [1.19 − 3.83] 0.756 0.298

19 1.41 [0.54 − 3.67] 0.344 0.489

results in the fixed effects model from Chapter 4. The overall estimate of the log

relative risk is 0.351 with 95% confidence interval [0.212, 0.490] using interval (9.5),

which yields an estimate of exp(0.351) = 1.421 on the relative risk scale with 95%

confidence interval [exp(0.212), exp(0.490)] = [1.236, 1.633]. The DerSimonian-

Laird estimator for the between-study variance is equal to zero, as expected from the

result of the homogeneity test, but the restricted maximum likelihood estimator of the

between-study variance is slightly positive, namely, τ2
REML = 0.00089, but this does

not essentially change the overall meta-analysis result. Moreover, applying interval

(9.6) to the present data situation results in a slightly wider 95% confidence inter-

val for the relative risk, namely, [1.228, 1.643], but this does not change the overall

conclusion from this meta-analysis.

9.2 ORDINAL DATA

The data from a controlled trial with ordinal outcome can be arranged in a 2 × r
contingency table as in Table 9.4, where r denotes the number of categories of the

response variable. In Table 9.4, nTj denotes the number of subjects in the first group

with response in the jth category and nCj the corresponding number of subject in
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the control group. The sample sizes in the two groups are nT. =
∑r

j=1 nTj and

nC. =
∑r

j=1 nCj , respectively.

Table 9.4 Data from a controlled trial with ordinal outcome

Category

1 2 · · · r Total

Treatment nT1 nT2 · · · nTr nT.

Control nC1 nC2 · · · nCr nC.

Let π1j > 0, j = 1, . . . , r, be the probability of observing a response in the jth
category in the first group and π2j > 0 be the corresponding probability in the second

group. Note that
∑r

j=1 π1j =
∑r

j=1 π2j = 1. We assume that the categories are

ordered in terms of desirability: category 1 is the best and category r is the worst.

LetYT denote the response variable in the first sample andYC the one in the second

sample. Then, in view of the ordering of the categories, the treatment is superior to

the control when YC is stochastically larger than YT . If YC is stochastically larger

than YT , then it holds that Pr(YC > YT ) ≥ Pr(YC < YT ). However, if the inequality

is true, then it does not necessarily follow that YC is stochastically larger than YT .

In the following two sections, we consider two effect measures that may be used

to describe the difference of the response variables in a controlled trial with ordinal

outcome.

9.2.1 Proportional odds model

The proportional odds model was introduced by McCullagh (1980). Consider the

cumulative probabilities q1j =
∑j

i=1 π1i and q2j =
∑j

i=1 π2i, respectively, up to

category j, j = 1, . . . , r − 1; then the odds ratio given cut-off point category j is

θj =
q1j (1 − q2j)

(1 − q1j) q2j
, j = 1, . . . , r − 1. (9.16)

The proportional odds assumption reads

θ1 = θ2 = · · · = θr−1 =: θ. (9.17)

If θ > 1, then the treatment is superior to the control in view of the above ordering

of the categories. This implies that YC is stochastically larger than YT . But, through

the model assumption of proportional odds, the nature of how YC is stochastically

larger than YT is restricted. The proportional odds model can be analyzed using

standard statistical software packages for linear logistic regression like SAS or R.

These software packages usually yield the maximum likelihood estimate of the log

odds ratio and the corresponding standard error. Additional remarks for the analysis

in the proportional odds model can be found in Whitehead and Jones (1994). Note

that the proportional odds model can be considered as arising from a latent continuous
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variable, where this latent variable has a logistic distribution; see Whitehead et al.

(2001) for further details.

9.2.2 Agresti’s α

Agresti (1980) proposed a measure of association, here briefly named Agresti’s α,

which, in case of a 2 × r contingency table, can be seen as a generalized odds ratio.

Agresti’s α is the ratio of Pr(YC > YT ) and Pr(YC < YT ), that is, in the present

context, the probability to observe a worse response in the control group than in the

treatment group divided by the probability to observe a better response in the control

group than in the treatment group. In symbols, Agresti’s α can be written as

α =

∑
j>i πTi πCj∑
j<i πTi πCj

. (9.18)

Note that, if YC is stochastically larger than Yt, thenα > 1. However,α > 1 does not

necessarily mean that YC is stochastically larger than YT . In case YC is stochastically

larger than YT , Agresti’s α is a meaningful measure of the difference of all possible

distributions of YT and YC . If the distributions of YT and YC are identical, then

α = 1 and θ = 1. However, α = 1 again does not necessarily mean that the two

distributions are identical. It only means that the two probabilities, Pr(YC > YT ) and

Pr(YC < YT ), are identical. Of course, for 2× 2 tables, Agresti’s α is the odds ratio.

Agresti’s α is easily estimated by plugging in the observed proportions p̂Ti =
nTi/nT and p̂Ci = nCi/nC , i = 1, . . . , r, in Eq. (9.18) and we denote this estimator

by α̂. Note that α̂ does not exist when ”zeros occur”.

Agresti (1980) provided a large-sample estimator of the variance of the estimator

of α. This variance estimator reads

σ̂(α̂) =
(∑

i>j

p̂Tip̂Ci

)−2[ 1

nT

∑

j

p̂Tj

(
α̂
∑

i<j

p̂Ci −
∑

i>j

p̂Ci

)2

+
1

nC

∑

j

p̂Cj

(
α̂
∑

i>j

p̂Ti −
∑

i<j

p̂Ti

)2

.
]

(9.19)

For constructing confidence intervals for Agresti’s α, it is convenient to make the

inference first on ln(α) since the distribution of ln(α̂) tends to be more symmetric

and is likely to converge to normality faster than the distribution of α̂. According

to Agresti (1980), the large-sample 1 − κ confidence interval for α is then given as

exp
(
ln(α̂) ± zκ/2 σ̂(α̂) / α̂

)
with zγ being the γ cut-off point of the standard normal

distribution.

9.2.3 An example of combining results from controlled clinical trials

For illustration purposes, we take an example from Whitehead and Jones (1994).

The data as well as a more detailed description of the research problem are given in

Section 18.7. Briefly, the extent of gastrointestinal damage was assessed for patients
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suffering from arthritis using a drug named misoprostol compared to patients not

using this drug. In the different studies, the number of classification categories were

different ranging from two to five. Score tests on proportional odds assumptions

do not reveal any violation of this assumption in all the trials; see Whitehead and

Jones (1994). Besides the meta-analysis on the log odds ratio scale, we describe the

meta-analysis using Agresti’s α as the measure of effect size. Table 9.5 contains the

study-specific estimates along with standard errors as well as the corresponding 95%

confidence intervals for both effect size measures considered here.

Table 9.5 Study-specific estimates, their standard errors, and

95% confidence intervals in the misoprostol example

Proportional odds Agresti’s α

Study ln(θ̂) s.e.[ln(θ̂)] 95% CI ln(α̂) s.e.[ln(α̂)] 95% CI

1 3.55 0.66 [ 2.25, 4.84] 3.04 0.56 [ 1.95, 4.14]

2 4.05 0.72 [ 2.64, 5.46] 3.58 0.62 [ 2.36, 4.79]

3 1.91 0.53 [ 0.87, 2.95] 1.69 0.46 [ 0.78, 2.60]

4 3.75 0.69 [ 2.40, 5.10] 3.04 0.59 [ 1.88, 4.19]

5 6.51 2.28 [ 2.04, 10.98] 4.02 1.96 [ 0.19, 7.86]

6 1.18 0.40 [ 0.40, 1.95] 1.12 0.38 [ 0.38, 1.86]

7 1.19 0.39 [ 0.43, 1.96] 1.19 0.39 [ 0.43, 1.94]

8 1.84 1.07 [−0.26, 3.94] 1.84 1.07 [−0.25, 3.92]

9 2.96 1.04 [ 0.93, 5.00] 2.96 1.04 [ 0.93, 5.00]

10 2.49 0.75 [ 1.01, 3.96] 2.49 0.75 [ 1.01, 3.96]

11 2.57 0.80 [ 1.00, 4.13] 2.37 0.78 [ 0.83, 3.91]

12 0.65 0.34 [−0.02, 1.31] 0.60 0.31 [−0.01, 1.21]

13 1.11 0.71 [−0.28, 2.50] 1.04 0.65 [−0.24, 2.31]

For both effect measures, the meta-analysis in a random effects model is appro-

priate. The values of Cochran’s homogeneity statistic are 49.49 (log odds ratio) and

42.30 (logα), leading toP -values less than 0.0001. The DerSimonian-Laird estimate

for the heterogeneity parameter is 1.1074 on the log odds ratio scale and 0.7672 on the

log Agresti’s α scale. The combined estimate is 2.2614 (95% CI: [1.4665, 3.0561])
for the log odds ratio and 2.0160 (95% CI: [1.3906, 2.6413]) for log Agresti’s α,

where the confidence intervals have been computed using interval (9.6).





CHAPTER 10

META-REGRESSION

As mentioned in the introduction, in case of substantial heterogeneity between the

studies, possible causes of the heterogeneity should be explored. In the context of

meta-analysis this can be done by either covariates on the study level that could explain

the differences between the studies or covariates on the subject level. However, the

latter approach is only possible when individual data are available. Since often only

information on the study level is available, explaining and investigating heterogeneity

by covariates on the study level have drawn much attention in applied sciences. The

term meta-regression used to describe such analysis goes back to papers by Bashore,

Osman, and Heffley (1989), Jones (1992), Greenland (1994), and Berlin and Antman

(1994).

Since the number of studies in a meta-analysis is usually quite small, there is a

great danger of overfitting. So, there is only room for a few explanatory variables

in a meta-regression, whereas a lot of characteristics of the studies may be identified

as potential causes of heterogeneity. Higgins and Thompson (2004) remark that

explorations of heterogeneity are noted to be potentially misleading. Investigations

of differences between the studies and their results are observational associations and

are subject to biases (such as aggregation bias) and confounding (resulting from

correlation between study characteristics). Consequently, there is a clear danger
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of misleading conclusions if P -values from multiple meta-regression analyses are

interpreted naı̈vely.

This chapter is organized as follows. In Section 10.1 we describe in detail the

analysis of the fixed and random effects meta-regression with one covariate. Section

10.2 contains the general analysis of meta-regression with more than one covariate.

At the end of Section 10.2, an example with three covariates is worked out in detail.

Finally, in Section 10.3, several meta-regression-type models will be presented which

deal with other aspects of meta-analysis than explaining heterogeneity. However, the

general analysis methods from Section 10.2 can be used to fit these models.

10.1 MODEL WITH ONE COVARIATE

In the fixed effects meta-regression we write

Yi ∼ N
(
θi , σ

2
i

)
, i = 1, . . . , k,

where Yi is the statistic in the ith study. The study-specific mean θi is parameterized

as

θi = θ + βxi,

where xi denotes a quantitative covariate or an indicator variable for a factor with

only two levels, that is, xi = 0 or xi = 1. In case of a factor with two levels, θ
represents the treatment effect given xi = 0 and β is the difference of the treatment

effect given xi = 1 compared to xi = 0. For a quantitative covariate, β stands for

the change in the treatment effect given a unit change in the covariate. When the

quantitative covariate is centered around its mean, θ represents the treatment effect

given the mean of the quantitative covariate.

Additionally to the parameterization of the mean of the study-specific treatment

effect, we can allow for a parameter of the still unexplained variation between the

trials. That is, we can consider, in analogy to the random effects model of meta-

analysis (see Chapter 7) the following two-stage model:

Yi ∼ N
(
θi , σ

2
i

)
,

θi ∼ N
(
θ + βxi , σ

2
a

)
.

The random effects meta-regression with one covariate is given as the marginal two-

stage model, that is,

Yi ∼ N
(
θ + βxi , σ

2
a + σ2

i

)
. (10.1)

In the following, we will present the analysis in the random effects meta-regression.

The corresponding analysis in the fixed effects meta-regression can be performed by

setting σ2
a = 0.

Let wi = 1/
(
σ2

a + σ2
i

)
, i = 1, . . . , k, be the true inverse of the variance of Yi,

w =
∑k

i=1 wi, and λi = wi/w, i = 1, . . . , k, the normed weights; then the weighted
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least-squares estimators of θ and β are given by

β̃ =

∑k
i=1 λi xi Yi −

∑k
i=1 λi xi

∑k
i=1 λi Yi

∑k
i=1 λi x2

i −
(∑k

i=1 λixi

)2 (10.2)

and

θ̃ =

k∑

i=1

λi Yi − β̃

k∑

i=1

λi xi. (10.3)

The variances and the covariance of the estimators θ̃ and β̃ are

Var(θ̃) =
[ k∑

i=1

wi −
( k∑

i=1

wi xi

)2/ k∑

i=1

wi x
2
i

]−1

, (10.4)

Var(β̃) =
[ k∑

i=1

wi x
2
i −

( k∑

i=1

wi xi

)2/ k∑

i=1

wi

]−1

, (10.5)

and

Cov(θ̃ , β̂) =
−∑k

i=1 wi xi

∑k
i=1 wi

∑k
i=1 wi x2

i −
(∑k

i=1 wi xi

)2 . (10.6)

Usually, every study provides an estimate of the within-study variance σ2
i . The

between-study varianceσ2
a can be estimated using the different estimation procedures

discussed in Chapter 7 adapted for the meta-regression model with one covariate. In

the following we will confine ourselves to the extension of the DerSimonian-Laird

estimator and to the restricted maximum likelihood estimator; see Chapter 7.

Let ŵi = 1/(σ̂2
a + σ̂2

i ), i = 1, . . . , k, denote the consistent estimators of wi, and

by plugging in these estimators in Eqs. (10.2) and (10.3), we obtain the weighted

least-squares estimators, denoted by θ̂ and β̂.

The method of moments (MM) estimator of the between-study variance σ2
a can

be derived from the statistic Q1 =
∑k

i=1 w
∗
i (Yi − θ̂∗ − β̂∗xi)

2, where θ̂∗ and β̂∗

are weighted least-squares estimators of θ and β with known weights w∗
i = 1/σ2

i ,

i = 1, . . . , k, that is, the weighted least-squares estimators in the fixed effects meta-

regression. So, the quadratic formQ1 can also be seen as the residual sum of squares

in the fixed effects meta-regression model. The MM estimator is given in its truncated

form as

σ̂2
a = max

{
0 ;

Q1 − (k − 2)

F (w∗,x)

}
(10.7)

with

F (w∗,x) =
k∑

i=1

w∗
i −
∑
w∗2

i

∑
w∗

i x
2
i − 2

∑
w∗2

i xi

∑
w∗

i xi +
∑
w∗

i

∑
w∗2

i x2
i∑

w∗
i

∑
w∗

i x
2
i − (

∑
w∗

i xi)
2 .

In practice, the usually unknown variances σ2
i have to be replaced by their estimates

in Eq. (10.7).
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The (approximate) REML estimator for σ2
a in model (10.1) is the solution of the

estimating equation:

σ̂2
a =

∑k
i=1 ŵ

2
i

{
[k/(k − 2)](Yi − θ̂ − β̂xi)

2 − ξ̂i

}

∑k
i=1 ŵ

2
i

. (10.8)

This equation is iteratively solved using a starting value of σ2
a, say σ2

a = σ2
a0, on the

right-hand side of Eq. (10.8). With the weights ŵi = 1/(σ2
a0 + σ̂2

i ), the initial values

of θ̂ and β̂ are given. Then the right-hand side of Eq. (10.8) can be evaluated to yield

a new value of σ̂2
a. This provides new weights ŵi and leads to new estimates of θ and

β and finally to a new value of σ̂2
a. The procedure continues until convergence under

the restriction that σ̂2
a is nonnegative.

The commonly used (large-sample) 1 − α confidence intervals on the parameters

θ and β are then given by

θ̂ ±
√

V̂ar(θ̂) zα/2 (10.9)

and

β̂ ±
√

V̂ar(β̂) zα/2 , (10.10)

where V̂ar(θ̂) and V̂ar(β̂) are obtained by putting ŵi, i = 1, . . . , k, in Eqs. (10.4) and

(10.5), respectively, and zα/2 is the upper α/2 cut-off point of the standard normal

distribution.

Like in the random effects model of meta-analysis discussed in Chapter 7, the

use of the standard normal distribution in Eqs. (10.9) and (10.10) is questionable,

especially when the number of studies is small. Based on simulation results, Berkey

et al. (1995) recommend the use of a t distribution with 4 degrees of freedom, where

they consider the log relative risk as an outcome measure in the simulation.

Knapp and Hartung (2003) consider the quadratic form

Q2 =
1

k − 2

k∑

i=1

wi (Yi − θ̃ − β̃ xi)
2 , k > 2 . (10.11)

This quadratic form can be seen as a mean sum of the weighted least-squares residuals

with known variance components. Knapp and Hartung (2003) show that, under

normality of Yi, the quadratic formQ2 from Eq. (10.11) is stochastically independent

of the weighted least-squares estimators θ̃ and β̃ and that (k−2)Q2 is χ2 distributed

with k− 2 degrees of freedom. Consequently, the expected value of Q2 is equal to 1

for known variance components.

Hence, unbiased and nonnegative estimators of the variances of θ̃ and β̃ are given

by

Q2(θ̃) =
1

k − 2

k∑

i=1

gi (Yi − θ̃ − β̃ xi)
2 (10.12)
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with gi = wi / [
∑
wj − (

∑
wj xj)

2/
∑
wj x

2
j ], i = 1, . . . , k, and

Q2(β̃) =
1

k − 2

k∑

i=1

hi (Yi − θ̃ − β̃ xi)
2 (10.13)

with hi = wi / [
∑
wj x

2
j − (

∑
wj xj)

2/
∑
wj ], i = 1, . . . , k.

Replacing the unknown variance components in Eqs. (10.12) and (10.13) by ap-

propriate estimates, Knapp and Hartung (2003) propose the following approximate

1 − α confidence intervals on θ and β:

θ̂ ±
√
Q̂2(θ̂) tk−2,α/2 (10.14)

and

β̂ ±
√
Q̂2(β̂) tk−2,α/2 , (10.15)

where tk−2,α/2 denotes the upper α/2 cut-off point of the t distribution with k − 2
degrees of freedom.

Using either the MM estimator or the REML estimator of the between-trial vari-

ance, the confidence intervals (10.14) and (10.15) are smaller than the corresponding

intervals (10.9) and (10.10) when the realized value of the quadratic form Q2 from

Eq. (10.11) is less than 1 given equal test distributions in both cases. Therefore,

Knapp and Hartung (2003) consider an ad hoc modification of the variance estimates

Q̂2(θ̂) and Q̂2(β̂) in the limits of the confidence intervals (10.14) and (10.15) to the

effect that they force the realized value of Q2 to be at least 1. That is, the modified

confidence intervals are given by

θ̂ ±
√
Q̂∗

2(θ̂) tk−2,α/2 (10.16)

with

Q̂∗
2(θ̂) =

1∑
ŵi − (

∑
ŵixi)2/

∑
ŵix2

i

max

{
1 ;

1

k − 2

∑
ŵi(Yi − θ̂ − β̂xi)

2

}

and

β̂ ±
√
Q̂∗

2(β̂) tk−2,α/2 (10.17)

with

Q̂∗
2(β̂) =

1∑
ŵix2

i − (
∑
ŵixi)2/

∑
ŵi

max

{
1 ;

1

k − 2

∑
ŵi(Yi − θ̂ − β̂xi)

2

}
.

In a simulation study, Knapp and Hartung (2003) consider the log relative risk as

outcome measure in a meta-regression setting. The main result of their simulation

study is that the intervals (10.16) and (10.17) outperform the other corresponding

intervals with respect to the nominal confidence coefficient.
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10.2 MODEL WITH MORE THAN ONE COVARIATE

The extension of model (10.1) to the case with more than one covariate is given as

Yi ∼ N
(
θ + xi

′β, σ2
a + σ2

i

)
, i = 1 . . . , k,

where xi is now a vector of covariates and β a vector of corresponding regression

parameters. In matrix notation, the general random effects meta-regression for meta-

analysis with r − 1 covariates can be described as

Y ∼ N(Xγ, σ2
aIk + ∆) (10.18)

with Y = (Y1, . . . , Yk)′, X the (k × r)-dimensional known regressor matrix with

rank(X) = r < k − 1, γ = (θ, β1, . . . , βr−1)
′ the unknown parameter vector of

the fixed effects, σ2
a the between-trial variance, Ik the (k × k)-dimensional identity

matrix, and ∆ a (k × k)-dimensional diagonal matrix with entries σ2
i , i = 1, . . . , k,

that is, ∆ contains the within-trial variances. Note that the case of a factor with more

than two levels can be included in model (10.18) by defining appropriate indicator

variables equal to the number of factor levels minus 1.

The residual sum of squares in model (10.18) with σ2
a = 0 can be expressed as a

quadratic form in Y and has the matrix representation

Q = Y ′P ′∆−1PY with P = [Ik − X(X ′∆−1X)−1X ′∆−1] .

Since PX = 0, the expected value of Q is given as

E(Q) = trace[P ′∆−1P Cov(Y )]

= trace[P ′∆−1P ∆] + σ2
a trace[P ′∆−1P ]

= k − r + σ2
a f(X,∆−1)

with f(X,∆−1) = trace(∆−1)− trace[(X ′∆−1X)−1X ′∆−2X] . Consequently,

the MM estimator of σ2
a is given in its truncated form as

σ̂2
a = max

{
0 ,

Q− (k − r)

f(X,∆−1)

}
.

The (approximate) REML can be determined by solving iteratively the equation

σ̂2
a =

∑k
i=1 ŵ

2
i

{
[k/(k − r)](yi − θ̂ − xi

′β̂)2 − σ̂2
i

}
)

∑k
i=1 ŵ

2
i

.

Let Λ̂ = σ̂2
aIk + ∆̂ be the estimated covariance matrix; then the estimate of γ is

given by

γ̂ =
(
X ′Λ̂

−1
X
)−1

X ′Λ̂
−1

Y
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with estimated covariance matrix

Ĉov(γ̂) =
(
X ′Λ̂

−1
X
)−1

.

With the estimated variances on the main diagonal of Ĉov(γ̂), confidence intervals

and hypothesis tests on the fixed effects can be constructed in the usual manner. To

carry forward the approach by Knapp and Hartung (2003) to the case of more than

one covariate, let us consider the matrix

P1 = Ik − X
(
X ′Λ̂

−1
X
)−1

X ′Λ̂
−1

and calculate the quadratic form

Q̂r =
Y ′P1

′Λ̂
−1

P1Y

k − r
.

The improved variance estimate of a fixed effect estimate is then given by multiplying

the corresponding diagonal element in Ĉov(γ̂) with Q̂r. For constructing confidence

intervals on the fixed effects the t distribution with k − r degrees of freedom should

be used.

For illustrating the methods presented above we consider the data of 13 trials from

Colditz et al. (1994), also used in Berkey et al. (1995), van Houwelingen, Arends,

and Stijnen (2002), and Knapp and Hartung (2003). In these 13 trials the effect of

Bacillus Calmette-Guérin (BCG) vaccination has been investigated on the prevention

of tuberculosis. Possible covariates that may explain the heterogeneity between the

trials are latitude, year of study, and type of allocation. Three different methods of

treatment allocation were used: alternate, random, or systematic. All the necessary

data are put together in Table 10.1; see Section 18.8 for more information about the

data and the research problem.

The effect size measure used here is the relative risk. The study results on the

logarithmic scale along with the corresponding 95% confidence intervals are sum-

marized in Table 10.2. Studies 8 and 12 have positive but nonsignificant log relative

risk estimates, and studies 1, 5, and 13 negative but nonsignificant estimates. The re-

maining eight studies yield significant results in favor of the vaccination in preventing

tuberculosis. Obviously, the study results are heterogeneous and the random effects

approach of meta-analysis is the appropriate one.

First, ignoring covariates, the DerSimonian-Laird estimate of σ2
a is 0.304 and the

REML estimate is 0.298. Both heterogeneity estimates lead to the estimate−0.700 of

the overall log relative risk with 95% confidence interval [−1.084,−0.317], a signif-

icant result in favor of the vaccination. Throughout this example, the estimates of the

heterogeneity parameter using either the DerSimonian-Laird approach or the REML

approach are pretty similar and do not influence the conclusions of the inference on

further parameters. Therefore, we omit the results using the REML estimate of σ2
a.

In the following, we provide analyses of the data in different random effects meta-

regression models. For calculating confidence intervals we always use formulas
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Table 10.1 Data on 13 trials on the prevention of tuberculosis using BCG vaccination

Vaccinated Not vaccinated

Trial Disease No disease Disease No disease Latitude Year Allocation

1 4 119 11 128 44 1948 Random

2 6 300 29 274 55 1949 Random

3 3 228 11 209 42 1960 Random

4 62 13,536 248 12,619 52 1977 Random

5 33 5,036 47 5,761 13 1973 Alternate

6 180 1,361 372 1,079 44 1953 Alternate

7 8 2,537 10 619 19 1973 Random

8 505 87,886 499 87,892 13 1980 Random

9 29 7,470 45 7,232 27* 1968 Random

10 17 1,699 65 1,600 42 1961 Systematic

11 186 50,448 414 27,197 18 1974 Systematic

12 5 2,493 3 2,338 33 1969 Systematic

13 27 16,886 29 17,825 33 1976 Systematic

*This was actually a negative number; we used the absolute value in the analysis.

Table 10.2 Results of the tuberculosis trials: estimates of log relative

risk and corresponding 95% confidence intervals

Trial Estimate 95% CI

1 −0.8164 [−1.8790, 0.2461]

2 −1.5224 [−2.3567,−0.6881]

3 −1.2383 [−2.4205,−0.0561]

4 −1.4355 [−1.7118,−1.1592]

5 −0.2131 [−0.6537, 0.2275]

6 −0.7847 [−0.9473,−0.6220]

7 −1.6085 [−2.5086,−0.7084]

8 0.0119 [−0.1114, 0.1352]

9 −0.4634 [−0.9255,−0.0012]

10 −1.3500 [−1.8731,−0.8269]

11 −0.3402 [−0.5582,−0.1222]

12 0.3871 [−0.9519, 1.7261]

13 −0.0161 [−0.5352, 0.5030]

(10.16) and (10.17) in case of one covariate and the corresponding intervals in case

of more than one covariate.

The first covariate we consider is the latitude centered around its mean. The

estimate of the heterogeneity parameter is 0.062 using Eq. (10.7) in the random
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effects meta-regression. This leads to an estimate of the overall log relative risk at the

mean latitude of the trials of −0.708. The standard error is 0.1179 and, with 2.201,

the upper 2.5 percentage point of a t variate with 11 df, the 95% confidence interval

is [−0.967,−0.448]. The estimate of the slope parameter is β̂ = −0.0286 with 95%

confidence interval [−0.046,−0.011] given a standard error of 0.0079.

When we consider the year centered around its mean as a covariate, the estimate of

the heterogeneity parameter is 0.297, which is only a small reduction of the between-

trial variance compared to the random effects model without covariates. The estimate

of the overall log relative risk at the mean year of the trials is −0.723 with standard

error 0.176. The corresponding 95% confidence interval is [−1.117,−0.342]. The

estimated slope parameter is 0.025 with 95% confidence interval [−0.062, 0.012].
Consequently, the year of the trial has no significant impact on the study results.

Considering both the covariates, latitude and year, each centered around its own

mean in a random effects meta-regression, the estimate of the between-trial variance

is 0.077. This estimate is larger than the estimate of the heterogeneity parameter

in the model with latitude as the only covariate. The estimated log relative risk at

mean latitude and mean year is −0.711 with standard error 0.123. With 2.228, the

upper 2.5 percentage point of a t variate with 10 df, this leads to a 95% confidence

interval of [−1.000,−0.423]. The estimate of the latitude parameter is −0.0285,

nearly the same value as in the model with latitude as the only covariate, but now the

standard error is larger, namely 0.0106. Larger standard error and larger critical value

lead to the wider 95% confidence interval [−0.052,−0.005]. Still, the covariate is

significant even in this model. The estimate of the year parameter is −0.0002 with

95% confidence interval [−0.034, 0.034], clearly again a nonsignificant result.

When we consider the treatment allocation as covariate, note that the treatment

allocation was random in seven studies, systematic in four studies, and alternate in only

two studies. In the computation, we have used a coding with two indicator variables.

The first indicator variable is x1 = 1 when the allocation in the trial is random and

x1 = 0 otherwise. The second indicator variable is x2 = 1 when the allocation

is systematic and x2 = 0 otherwise. Consequently, the estimate of the intercept is

an estimate of the treatment effect for the trials with alternate treatment allocation

and the estimates the two regression parameters are estimates of the difference of the

trials with random and systematic treatment allocation, respectively, compared to the

trials with alternate treatment allocation. In the present model, the estimate of the

between-trial variance is 0.5452. That is nearly 80% larger than the estimate of the

between-trial in the model ignoring any covariates. Note that this estimate does not

depend on the choice of the indicator variables. Clearly, the treatment allocation does

not help to explain between-trial variability and we omit further analysis.

Summarizing, the latitude is the most important covariate to explain heterogeneity

in this example. The inclusion of this covariate in the meta-regression model boils

down the between-trial variance to about 80%.
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10.3 FURTHER EXTENSIONS AND APPLICATIONS

In the above sections we considered the random effects meta-regression model for

explaining a certain of amount of heterogeneity between the study results using co-

variates on the study level. However, the model as well as the described analysis

in Sections 10.1 and 10.2 can be used in a variety of different applications in meta-

analysis. Some of these applications are described in this section.

Witte and Victor (2004) consider meta-regression for combining results of clinical

noninferiority trials where the results of either one of two different analysis sets are

published. They use model (10.1) and the value of the covariate xi indicates which

of the two analysis sets has been used.

Hartung and Knapp (2005b) use a meta-regression approach for combining the

results of groups with different means which includes the Witte and Victor approach

as a special case. Suppose that the k studies can be divided in L groups, L < k, that

is, k = k1 + k2 + · · · + kL, and kℓ is the number of studies in the ℓth group. Let

Yi,ℓ, i = 1, . . . , kℓ, be an estimator of the treatment effect in the ith study and the

ith study uniquely belongs to the ℓth group, ℓ = 1, . . . , L. Then, the mean of Yi,ℓ is

µ + αℓ and αℓ is the effect of the ℓth group. The random effects model in this case

can be written as

Yi,ℓ ∼ N(µ+ αℓ, σ
2
a + σ2

i,ℓ), i = 1, . . . , kℓ, ℓ = 1, . . . , L.

Begg and Pilote (1991) consider the combination of results from controlled and

uncontrolled studies. Let (Xi, Yi), i = 1, . . . , n, be pairs of estimators of the effect of

treatments 1 and 2 fromn comparative trials withXi ∼ N(θi, σ
2
i,X) andYi ∼ N(θi+

δ, σ2
i,X). The parameter δ stands for the baseline risk in the ith trial and δ is the effect

of the treatment difference,which is assumed to be equal for all comparative trials. Let

Ui, i = n+1, . . . , n+k, be estimators of the effect of treatment 1 fromk uncontrolled

(or historical) trials with Ui ∼ N(θi, σ
2
i,U ) and let Vi, i = n+ k+1, . . . , n+ k+m,

be estimators of the effect of treatment 2 from m uncontrolled (or historical) trials

with Vi ∼ N(θi + δ, σ2
i,V ). Similar to the random effects meta-analysis model (see

Chapter 7), in which the treatment effects may vary from study to study, Begg and

Pilote (1991) allow that the baseline effects θi may vary from study to study and

assume θi ∼ N(µ, σ2). These assumptions lead to the model




X

Y

U

V


 ∼ N







1n 0
1n 1n

1k 0
1m 1m



(
µ
δ

)
, Σ


 (10.19)

with

Σ =




diag(σ2 + σ2
i,X) σ2In 0 0

σ2In diag(σ2 + σ2
i,Y ) 0 0

0 0 diag(σ2 + σ2
i,U ) 0

0 0 0 diag(σ2 + σ2
i,V )



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and X = (X1, . . . , Xn)′, Y = (Y1, . . . , Yn)′, U = (U1, . . . , Uk)′, and V =
(V1, . . . , Vm)′.

Begg and Pilote (1991) use maximum likelihood methods for analyzing model

(10.19). Each study provides an estimator of the variability within the treatment

groups and these estimators are treated as the known variances. Consequently, the

variability of the baseline risk σ2 is the only unknown covariance parameter. In a sub-

sequent paper, Li and Begg (1994) consider weighted least-squares estimation of the

fixed effects parameters and estimation of σ2 following the lines of the DerSimonian-

Laird estimator; see Chapter 7.

Begg and Pilote (1991) discuss two generalizations of model (10.19). In their first

generalization, they assume also that the results of the uncontrolled studies may be

biased due to selection or publication bias. Therefore, they introduce two further

parameters, one for the bias of the uncontrolled studies of treatment 1 and a second

one for the bias of the uncontrolled studies of treatment 2. Finally, Begg and Pilote

(1991) consider the generalization that also the effect of the treatment difference may

vary from study to study and introduce a further variance component. We omit the

details.





CHAPTER 11

MULTIVARIATE META-ANALYSIS

In this chapter we discuss techniques for multivariate meta-analysis with some ex-

amples. It will be seen that the methods of multivariate meta-analysis can be applied

quite generally, irrespective of the nature of effect of interest, be it based on means,

proportions, odds ratio, or correlations. Moreover, in the context of multivariate

synthesis of data, it is possible to study within-study differences between effects for

different outcomes as well as different relations of potential predictors with study

outcomes.

Multivariate data can arise in meta-analysis due to several reasons. First, the pri-

mary studies can be multivariate in nature because these studies may measure multiple

outcomes for each subject and are typically known as multiple-endpoint studies. For

example, a systematic review of prognostic marker MYCN in neuroblastoma seeks

to extract two outcomes: log hazard ratio estimates for overall survival and disease-

free survival (Riley et al., 2004). Berkey et al. (1998) reported results of five studies

assessing the difference in a surgical and nonsurgical procedure for treating periodon-

tal disease with two outcomes: improvement in probing depth and improvement in

attachment level. It should however be noted that not all studies in a review would

have the same outcomes. For example, studies of Scholastic Aptitude Tests (SATs)
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do not all report math and verbal scores. In fact, only about half of the studies dealt

with in Becker (1990) provided coaching results for both math and verbal!

Second, multivariate data may arise when primary studies involve several com-

parisons among groups based on a single outcome. As an example, Ryan, Blakeslee,

and Furst (1986) studied the effects of practice on motor skill levels on the basis of a

five-group design, four different kinds of practice groups and one no-practice group,

thus leading to comparisons of multivariate data. These kinds of studies are usually

known as multiple-treatment studies.

Meta-analysis of multivariate data can be accomplished in a number of ways. Each

approach has its benefits and disadvantages, depending on the nature of outcomes and

effect sizes. When meta-analysis of multivariate data is performed either by ignoring

dependence or handling it inadequately or by trying to model it fully, some difficulties

arise (Hedges and Olkin, 1985) in regard to a possible effect on Type I error rate and

accuracy of probability statements made on the observed data. Moreover, ignoring

dependence may affect the bias and precision in underlying estimation problems as

well.

Treating multivariate data arising out of multiple outcomes as independent and

hence creating a separate data record for each outcome and carrying out separate

analyses, without linking these records, have been a practice in some multivariate

meta-analysis studies. The reasons for this oversimplification are tradition, the in-

creased complexity of the multivariate approach, and also a lack of proper under-

standing as to why and when a genuine multivariate meta-analysis is beneficial over

separate univariate meta-analyses. A significant problem that may arise in this con-

text by ignoring dependence is due to the fact that studies reporting more outcomes

have in general more data records and hence should be appropriately weighted. The

simple procedure of weighting each outcome of a study by the inverse of the count

of outcomes within each study may not take into account dependence among the

outcomes.

Rosenthal and Rubin (1986) argue that one can eliminate dependence in the data

by first summarizing data within studies to produce one outcome, often by applying

standard data reduction techniques, and then pooling estimates across studies. Obvi-

ously, there is some information loss associated with data reduction, especially when

the results differ systematically across meaningfully different outcomes. In spite of

this shortcoming, their procedure is outlined in Section 11.1.

Another suggestion to reduce dependence is due to Steinkamp and Maehr (1983)

and Greenwald, Hedges, and Laine (1996). These authors recommend creation of

independent subsets of data for analysis and carrying out separate analyses for each

subset (construct or time point). Obviously, such an approach does not permit a

comparison of results across the data subsets due to inherent dependence existing in

the original data set and would be reasonable only if there is low intercorrelations

within studies. These methods are not described in this book.

An accepted approach that acknowledges the issue and importance of dependence

is to conduct appropriate sensitivity analyses, essentially by carrying out separate

analyses with and without multiple outcomes per study (Greenhouse and Iyengar,

1994). Quite generally, one starts with analyzing data sets consisting of only one
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outcome per study and then keeps on adding the extra outcomes to the data set and

analyzing afresh. If the results of the analyses appear similar, then the dependence

due to multiple outcomes is not severe and can be ignored. This is however not

pursued here any more.

It is clear from the previous discussion that the most complete and accurate study of

multivariate meta-analysis needs to address the nature and magnitude of dependence

in study outcomes. This is precisely where most studies fail because they do not

provide the relevant information to handle the nature of dependence. Becker (1990),

Chiu (1997), and Kim (1998) provide important examples of multiple outcome studies

where information about some vital correlations are missing. Of course, as advocated

by Little and Rubin (1987) and Piggott (1994), various data imputation schemes can

be applied to insert estimates for missing correlations, and one can then carry out

sensitivity analyses to examine a range of correlation values. This is also not pursued

here.

The rest of the chapter is organized as follows. Following pioneering works of

Hedges and Olkin (1985), Rosenthal and Rubin (1986), Raudenbush, Becker and

Kalaian (1988), Gleser and Olkin (1994), Berkey, Anderson, and Hoaglin (1996),

Timm (1999), and Becker (2000), we present in the following sections various meta-

analytic procedures for combining studies with multiple effect sizes, taking into ac-

count possible intercorrelations of multiple outcomes within each study, be they mul-

tiple endpoints or multiple treatments. This is done primarily keeping in mind the

measures of effect sizes based on standardized means as developed in Chapter 2.

We conclude this section with the important observation that Berkey et al. (1995,

1998) and Riley et al. (2007a,b) reported results of a bivariate random effects meta-

analysis with a novel application involving an experiment on two outcomes related to

improvement in probing depth and improvement in attachment level, each outcome

being obtained as the difference between two procedures for treating periodontal

disease: surgical and nonsurgical. Since this analysis is essentially Bayesian in

nature, we report details of this example in Chapter 12. This example serves as

an illustration of the point that often bivariate meta-analysis taking into account the

correlation between the two outcomes leads to better inference than individual meta-

analysis which ignores such correlation.

11.1 COMBINING MULTIPLE DEPENDENT VARIABLES FROM A

SINGLE STUDY

The object of this section is to suggest procedures to define a single summary statistic

for each study entering into a meta-analysis. This is based on incorporating the

information from all possibly dependent effect sizes relevant to the hypothesis being

tested for the single study under consideration. Obviously such a summary statistic

can then be combined with similar independent statistics arising out of other studies by

means of standard meta-analysis procedures requiring independence of effect sizes.

Such procedures are already described in Chapter 4.
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A popular procedure for summarizing the possibly dependent effect sizes arising

from a single study is to use the mean effect size! While the mean effect size is

very easy to compute, without requiring any knowledge of intercorrelations of the

variables involved in the study, and may make sense to provide a representative per

dependent variable effect size estimate, unless the dependent variables are almost

perfectly correlated, the mean effect size provides too low an estimate compared to

the one based on a composite variable. We refer to Rosenthal and Rubin (1986) for

some examples to this effect. A typical example in the realm of education involves

combining effect sizes of SAT-M and SAT-V scores (two dependent variables), each

arising out of an experimental (coached) and a control (uncoached) group. This can

be done for each study and then combined across studies.

A new procedure based on some assumptions leading to much more accurate and

useful summaries can be obtained when the degrees of freedom of the component

effect sizes as well as the intercorrelations among the dependent variables are avail-

able. The assumptions essentially require a large sample size and very few missing

values of the dependent variables, and in case of assigning unequal weights to com-

bine the measurements on the dependent variables, it is necessary that the weights

are predetermined and also assigned before data examination.

To describe this procedure, suppose there are p dependent variables in a study, I
denotes an index of the effect size of the study (in most cases this is related to the

sample size), ti denotes the value of a test statistic used for testing the significance of

the effect of the independent variable on the ith dependent variable, λi is the a priori

weight assigned to the ith dependent variable, and ρ denotes the intercorrelation

among the p dependent variables in the study. Then, following Rosenthal and Rubin

(1986), the combined or composite effect size ec is defined as

ec =

∑p
i=1 λiti/I[

ρ
(∑p

i=1 λi

)2

+ (1 − ρ)
∑p

i=1 λ
2
i

]1/2
. (11.1)

In the above, ti/I can be considered as the exclusive effect size of the ith dependent

variable so that ec can be expressed in terms of effect sizes, their weights, and ρ and

interpreted as a suitably defined linear combination of the dependent effect sizes.

When the effect size is based on the standardized mean difference and taken as

Glass’s estimate (see Chapter 2), we can take I as (n/2)1/2. However, if we use

Cohen’s estimate (see Chapter 2), we take I as [(n− 1)/2]1/2. Here n is the sample

size of the two groups being compared (independent and dependent) within a study

and, as mentioned earlier in Chapter 2, with studies of unequal sample sizes, one can

choose n as an average (harmonic mean) of the sample sizes.

On the other hand, if the effect size is based on a partial correlation ri between the

response variable and the ith dependent variable, ti is defined as

ti =
ri
√
ν√

1 − r2i
,

where ν is the degree of freedom of the residual mean square. Then ti’s are combined

as in ec given above in Eq. (11.1), and an overall composite effect size expressed as
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a correlation is given by

rc =
ec

[e2c + ν/I2]1/2
.

Once ec is defined as above, under a large-sample theory assumption, a test of

significance of the composite effect size ec can be easily tested based on tc defined

as

tc =

∑p
i=1 λiti[

ρ
(∑p

i=1 λi

)2

+ (1 − ρ)
(∑p

i=1 λ
2
i

)
+ (1 − ρ2)

(∑p
i=1 λ

2
i t

2
i / 2ν

)]1/2
.

Example 11.1. Let us consider an example from Rosenthal and Rubin (1986). Table

11.1 contains the results of a two-group experiment with four subjects in each con-

dition and three dependent variables,A, B, and C. In the control group, the mean of

Table 11.1 Experimental results for three dependent variables

Dependent variable

Subjects A B C

Control

S1 3 3 3

S2 1 -1 -1

S3 -1 -1 1

S4 -1 1 -1

Experimental

S5 6 6 6

S6 4 2 2

S7 2 2 4

S8 2 4 2

all the three dependent variables is 0.5 and the mean is 3.5 for all dependent variables

in the treatment group. The intercorrelations among the three dependent variables

are all 0.64 in this example. The effect size estimates are 0.67 when effect sizes are

defined in terms of r, the correlation coefficient, and 1.81 when defined in terms of

Cohen’s d.

We refer to Rosenthal and Rubin (1986) for further discussions about choice of ρ,

and details about the above results and for some more examples.

11.2 MODELING MULTIVARIATE EFFECT SIZES

Rather than combining dependent effect sizes arising out of a single study to define a

single summary statistic as done in the previous section, here we describe a flexible
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and widely applicable procedure which allows suitable meaningful combinations of

different sets of outcomes for each study. In essence, this is a procedure for modeling

multivariate effect size data using a generalized least-squares regression approach.

Our model uses a variance-covariance matrix for the effect size estimates to account

for interdependence in outcomes and it also allows different outcomes to be measured

across studies. Additionally, different predictor variables can be used in the suggested

regression models to explain the variation in effect sizes for each outcome. It should

be mentioned that Hedges and Olkin (1985) developed methods for analyzing vectors

of effect sizes when all studies use the same outcome variables.

11.2.1 Multiple-endpoint studies

To fix ideas, suppose a series of k studies are performed to compare treatment and

control means on one or more of p outcome variables. A standard example would be

to compare the mean difference of coached and uncoached groups of students for their

performance in SAT-M and SAT-V for a series of studies where some studies record

performance in both SAT-M and SAT-V while some other studies record performance

on only one of SAT-M and SAT-V. The studies may also differ in terms of some

predictor variables such as duration and nature of the coaching treatment. An example

of this type appears at the end of this section. The regression model proposed below

can accommodate such flexibility.

In the notation of Chapter 2, referring to Glass’s estimate ∆ of an effect size based

on means, let ∆ij denote the standardized effect size of the jth outcome variable in

the ith study, j = 1, . . . , p, i = 1, . . . , k. It may be recalled that based on original

data from the ith study on the jth outcome variable, ∆ij is computed as

∆ij =
Ȳ E

ij − Ȳ C
ij

SC
ij

,

where Ȳ E
ij and Ȳ C

ij are the experimental and control group sample means on the jth

outcome variable from the ith study and SC
ij is the square root of the control group

sample variance of the jth outcome variable from the ith study.

In this context one can also use Cohen’s dij or its variation, namely, Hedges’s gij ,

a biased estimate of the population effect size θij , or even a first-order bias corrected

estimate of θij which is given by g∗ij = [1−3/(4Ni−9)] gij , whereNi = nE
i +nC

i ,

and nE
i is the experimental group sample size and nC

i is the control group sample

size for the ith study.

Returning to ∆ij , its large-sample variance is given by

σ2(∆ij) =
1

nE
i

+
1

nC
i

+
θ2ij
2nC

i

.

Moreover, the large-sample covariance between the estimated effect sizes ∆ij and

∆ij′ based on measures j and j′ from study i is given by (Gleser and Olkin, 1994)

σ(∆ij ,∆ij′ ) = ρijj′

(
1

nE
i

+
1

nC
i

)
+
θijθij′ρ

2
ijj′

2nC
i

,
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where ρijj′ is the population correlation between jth and j′th outcome variables in

the ith study.

If one chooses to use Cohen’s dij or Hedges’s gij or a modification of Hedges’s

gij , namely g∗ij , the large-sample variance of dij or gij or g∗ij , which are the same, is

given by

σ2(dij) =
1

nE
i

+
1

nC
i

+
θ2ij

2(nE
i + nC

i )
. (11.2)

Moreover, the large-sample covariance between the estimated effect sizes dij and

dij′ based on measures j and j′ from study i is given by (Gleser and Olkin, 1994)

σ(dij , dij′ ) = ρijj′

(
1

nE
i

+
1

nC
i

)
+

θijθij′ρ
2
ijj′

2(nE
i + nC

i )
, (11.3)

where as before ρijj′ is the population correlation between the jth and j′th outcome

variables in the ith study. In general, the above variances and covariances will be

unknown and can be estimated based on sample data. When correlations are found to

be homogeneous across studies, following an idea of Hedges and Olkin (1985) which

is essentially a variance-stabilizing transformation, a pooled correlation estimate can

be used.

It should be noted that the above formulas of large-sample variances and covari-

ances of estimated effect sizes are based on the assumption of homogeneous covari-

ance matrices of experimental and control group measurements within studies. When

complete homogeneity of these two types of matrices does not hold, a partial homo-

geneity in the sense of σC
jj = σE

jj for j = 1, . . . , p may still hold. Obviously in this

case what is required is a knowledge of the correlations of the p outcome variables

in both the control and experimental groups. The large-sample covariance between

∆ij and ∆ij′ is then recalculated as (Gleser and Olkin, 1994)

σ(∆ij ,∆ij′ ) = ρE
ijj′

1

nE
i

+ ρC
ijj′

1

nC
i

+
θijθij′ρ

E
ijj′ρ

C
ijj′

2nC
i

.

In case no homogeneity assumption holds, the large-sample covariance between the

estimated effect sizes ∆ij and ∆ij′ is given by (Gleser and Olkin, 1994)

σ(∆ij ,∆ij′ ) =
1

nE
i

ρE
ijj′τijτij′ +

ρC
ijj′

nC
i

+
θijθij′ρ

E
ijj′ρ

C
ijj′

2nC
i

,

where τ2
ij = σE

ijj/σ
C
ijj . Similar modifications of variances and covariances can be

derived when one uses Cohen’s d or Hedges’s g.

In most cases the population variances and covariances will be unknown and

are estimated based on sample data. Having constructed an estimated variance-

covariance matrix of the estimated effect sizes for each study and noting that the

order of the variance-covariance matrix can be unequal depending on what kind of
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outcome measures are available in each study, we are now in a position to formulate

a model for variation in effect sizes. Basically, we model each g∗ij as

g∗ij = θij + eij , (11.4)

where eij’s are error components such that their variances are given by Eq. (11.2)

and their covariances are given by Eq. (11.3). If there are mi outcome variables (out

of a total of p outcome variables) recorded in the ith study, allowing flexibility in the

number of outcome variables across studies, then the variance-covariance matrix of

eij’s is of order mi ×mi and we denote it by Si.

We now collect all the outcome measures g∗ij’s and represent them by g∗ using

a standard vector notation which is of order M × M where M = m1 + · · · +
mk. Similarly, we write θ and e for the vectors of population effect sizes and error

components, respectively.

A test for the homogeneity of population effect sizes across studies for the jth
outcome variable can then be carried out as follows. Assume that there are kj studies

out of k studies, providing information on the j outcome variable, and let us denote

by Cj the index set of these kj studies. Then a test for homogeneity of the population

effect sizes belonging to Cj can be carried out based on a χ2 test statistic with kj − 1
df, given by

χ2
j =

∑

i∈Cj

(g∗ij − g∗w)2

σ̂2(dij)
, (11.5)

where

g∗w =

∑
i∈Cj

g∗ij/σ̂
2(dij)∑

i∈Cj
1/σ̂2(dij)

. (11.6)

The justification of the above test statistic in large samples follows from independence

of the kj studies.

To represent variation in effect sizes due to presence of some predictor variables,

we can express θ as

θ = Xβ, (11.7)

where X is the design matrix of covariates or predictor variables and β is the vector

of covariate effects. Combining model (11.4) and model (11.7), we can write in the

notation of a standard linear model set-up

g∗ = Xβ + e, (11.8)

and well known results on estimation and tests of βcan be easily applied. In particular,

the significance of the model (11.8) can be easily tested as well as the significance

of individual regression coefficients. It should however be noted that the variance-

covariance matrix of e is an unknown block-diagonal matrix and needs to be estimated

from the data.

Thus, an overall estimate of the vector β of covariate effects is given by

β̂ = (X ′S−1X)−1X ′S−1g∗
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with an estimated variance-covariance matrix as

Cov(β̂) =
(
X ′S−1X

)−1
,

where S is a block-diagonal matrix with (i, i)th entry as Si. Large-sample normal-

theory-based inference for any linear combination of the elements of β can be carried

out in the usual fashion (see Searle, 1971; Graybill, 1976). Finally, a test for homo-

geneity of population effect sizes across studies, whose validity makes meta-analysis

or a combination of information from different studies meaningful, can be carried out

based on the χ2 statistic, defined as

χ2 = d′S−1d − β̂
′
(X ′S−1X)β̂,

where d is the vector of Cohen’s estimates of population effect sizes and rejecting the

null hypothesis of homogeneity of population effect sizes when χ2 exceeds the table

value with df = M − d, where d is the dimension of β.

We conclude this section with an example taken from Raudenbush, Becker, and

Kalaian (1988).

Example 11.2. Kalaian and Becker (1986) reported results on SAT coaching from 38
studies. A selection of six such studies appears in Table 11.2. There are two possible

endpoints in these studies, SAT-M and SAT-V, and one treatment (coaching) and one

control (noncoaching). It should be noted that not all studies provide reports on both

the endpoints. Obviously, m1 = m2 = m3 = 2, m4 = m5 = m6 = 1, p = 2, and

k = 6.

Table 11.2 Results of the SAT coaching studies

Outcome Sample size Effect size

Study measured Coached (E) Uncoached (C) d

1 SAT-M 71 37 0.626

SAT-V 71 37 0.129

2 SAT-M 225 193 0.269

SAT-V 225 193 0.100

3 SAT-M 45 45 0.297

SAT-V 45 45 0.238

4 SAT-V 28 22 0.453

5 SAT-V 39 40 0.178

6 SAT-M 145 129 0.229

Note: SAT-M = Scholastic Aptitude Test, math subtest; SAT-V = Scholastic Aptitude Test, verbal subtest.

There are nine estimated effect sizes in our example. Using the approximately

unbiased version g∗ of Hedges’s estimate g, these are given by

g∗ = (0.626, 0.129, 0.269, 0.100, 0.297, 0.238, 0.453, 0.178, 0.229).
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The estimated variance-covariance matrix of the estimated effect sizes are given in

Table 11.3. Obviously, some covariances cannot be computed because of lack of data

on both endpoints.

Table 11.3 Estimated variances and covariances in the SAT coaching studies

Covariance between

Variance of SAT-M Variance of SAT-V SAT-M and SAT-V

Study no. effect size effect size effect sizes

1 0.043 0.041 0.028

2 0.010 0.010 0.006

3 0.045 0.045 0.030

4 — 0.083 —

5 — 0.051 —

6 0.015 — —

Note: SAT-M = Scholastic Aptitude Test, math subtest; SAT-V = Scholastic Aptitude Test, verbal subtest.

To carry out a test for the homogeneity of SAT-M effects across studies, following

Eqs. (11.5) and (11.6),we compute g∗Mw = 0.2985 andχ2
M = 2.90 with 3 df, which is

nonsignificant. Similarly, to test the homogeneity of SAT-V effects across studies, we

compute g∗V w = 0.1536 and χ2
V = 0.5523 with 3 df, which is again nonsignificant.

Hence we can conclude that the SAT-M and SAT-V effect sizes across studies are

homogeneous.

Under the assumption of homogeneous SAT-M and SAT-V effects, in order to

study if the effects of the covariate representing the number of hours of coaching is

significant, we can write model (11.8) with X given by (see Raudenbush, Becker,

and Kalaian, 1988, p. 116)

X =




1 0 12.0 0
0 1 0 12.0
1 0 12.0 0
0 1 0 7.5
1 0 30.0 0
0 1 0 30.0
0 1 0 7.5
0 1 0 10.0
1 0 21.0 0




and β = (θ1, θ2, η1, η2). Here η1 and η2 represent the covariate coaching effects for

SAT-M and SAT-V. Estimates of β and the estimated variance-covariance matrix are

given by

β̂ = (0.467, 0.152,−0.009,−0.001) (11.9)



MODELING MULTIVARIATE EFFECT SIZES 149

and

Cov(β̂) =




0.0368 0.0158 −0.0019 −0.0001
0.0178 0.0001 −0.0001

0.0001 0.0004
0.0001


 . (11.10)

The significance of the two covariate coaching effects η1 and η2 can now be easily

tested by computing Z1 = η̂1/σ̂(η̂1) = (−0.01/0.01) = −1 and Z2 = η̂2/σ̂(η̂2) =
(−0.001/0.01) = −0.1, implying that both the covariate effects are nonsignificant.

A similar computation shows that the main effects θ1 and θ2 are significant. We refer

to Raudenbush, Becker, and Kalaian (1988) for details.

In the context of multiple-endpoint studies, Timm (1999) suggested that an alter-

native measure of an overall study effect size by combining the information in all

the variables in a study can be provided by what is known as a noncentral parameter.

For study i, such a measure can be defined as ∆2
i = δi

′
Σ−1

i δi, where Σi is the

population variance-covariance matrix for the ith study. As mentioned before, ∆2
i

will be unknown in applications and can be estimated by ∆̂2
i = d′

iΨ
−1
i di, where

di is an estimate of δi and Ψi is an estimate of Si. Using well-known results from

multivariate analysis (Timm, 1975; Anderson, 1984), the distribution of ∆̂2
i is given

by a multiple of a noncentral F distribution whose first two moments can be readily

computed (see Johnson and Kotz, 1970). A test for the significance of ∆2
i for study i

can be based on a central F distribution. A test for the homogeneity of such overall

effect size measures across all studies can be developed based on a multivariate F
distribution. Once homogeneity is established, an overall effect size can be proposed

and its significance can be tested based on a multivariate chi-square distribution. We

refer to Timm (1999) for details.

11.2.2 Multiple-treatment studies

As mentioned earlier, this section deals with combining data or information from

several studies where each study is designed to compare several treatments with a

control. Most of the material here appears in Gleser and Olkin (1994). We denote

the control group by C and treatment groups by T1, . . . , Tm. It should however be

noted that not all studies will involve the same set of treatments, thus allowing for

some flexibility in the design of experiments. An example at the end of this section

will illustrate this point.

Denoting the means of control and treatment groups by µ0, µ1, . . . , µm and the

standard deviations of control and treatment groups byσ0, σ1, . . . , σm, the population

effect sizes are obviously defined by

δi =
µi − µ0

σ0
, i = 1, . . . ,m.

Our object is to combine information from several studies, each providing

information about the population effect sizes based on samples collected from con-

trol and treatment groups. For a given study, denoting by Ȳ0, Ȳ1, . . . , Ȳm the sample
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means of control and treatment groups and by S0, S1, . . . , Sm the sample standard

deviations of control and treatment groups, the population effect sizes are estimated

by

δ̂i = di =
Ȳi − Ȳ0

S0
, i = 1, . . . ,m.

It should be noted that it is the common control sample mean Ȳ0 and the common

control sample standard deviation S0 appearing in all the estimated effect sizes that

make the estimated effect sizes correlated. Under the assumption of large sample

sizes, the variance of ith estimated effect size di is given by

σ2(di) =
1

ni
+

1

n0
+

δ2i
2n0

,

where ni is the sample size of treatment i and n0 is the control group sample size.

The large-sample covariance between the estimated effect sizes di and d′i is given by

σ(di, d
′
i) =

1

n0
+
δi δ

′
i

2n0
.

It should be noted that the above expressions of large-sample variances and co-

variances are derived based on the assumption of homogeneity of variances, namely,

σ0 = σ1 = · · · = σm. However, when this assumption holds, population effect sizes

δi can be more accurately estimated by using a pooled sample standard deviation sp

rather than just s0 where

S2
p =

(n0 − 1)S2
0 +

∑m
i=1(ni − 1)S2

i

n0 + 1 +
∑m

i=1(ni − 1)
.

Denoting the modified effect size estimates by d∗i = (Ȳi − Ȳ0)/Sp, its large-sample

variance is given by

σ(d∗i ) =
1

ni
+

1

n0
+

δ2i
2n∗

and the covariance between d∗i and d∗′i is given by

σ(d∗i , d
∗′
i ) =

1

n0
+
δi δ

′
i

2n∗
,

where n∗ = n0 + n1 + · · · + nm.

When the assumption of homogeneity of variances mentioned above does not hold,

the large-sample variances of di are modified as

σ2
mod(di) =

σ2
i

ni σ2
0

+
1

n0
+

δ2i
2n0

.

However, the expression for the large-sample covariance between di and d′i remains

the same as before.
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Obviously, in practical applications, all the variances and covariances will be

unknown because they involve population effect sizes δi and need to be estimated. It

is done simply by replacing δi by di, σi by Si, and σ0 by S0.

Having obtained from each study anm×1 vector of estimated effect sizes di along

with its estimated variance-covariance matrix Ψi of order m×m, i = 1, . . . , k, we

can proceed as in the previous section to formulate a linear regression model approach

in order to combine the information from allkstudies. It should however be noted that,

depending on the nature of information obtained from the ith study, the dimension of

the vector di and the estimated variance-covariance matrix Ψi may vary. We denote

the dimension of di by qi ≤ m. Nevertheless, we can always choose to denote the

dimensions by m× 1 and m×m, respectively, leaving blanks at places where there

is no information from a study.

Writing d′ = (d′

1
, . . . ,d′

k
) and δ = (δ1, . . . , δk)′, under the assumption of

homogeneous population effect sizes across studies, we now have the linear model

d = Xδ + e, (11.11)

where X is the associated design matrix which is readily obtained from the configura-

tion of the study designs and e can be regarded as an error component which has mean

0 and a block-diagonal variance-covariance matrix Ψ whose elements corresponding

to the ith block is Ψi and correspond to the estimated variances and covariances of

the estimated effect sizes from study i. From the representation (11.11), applying

standard results from linear models theory, we can readily get combined estimates of

all the effect sizes δ and carry out relevant inference about them. Thus, an overall

estimate of the vector of population effect sizes is given by

δ̂ = (X ′Ψ−1X)−1X ′Ψ−1d (11.12)

with an estimated variance-covariance matrix as

Cov(δ̂) = (X ′Ψ−1X)−1.

Large-sample normal-theory-based inference for any linear combination of the ele-

ments of δ can be carried out in the usual fashion (see Searle, 1971; Graybill, 1976).

Finally, a test for homogeneity of population effect sizes across studies,whose validity

makes meta-analysis or combination of information from different studies meaning-

ful, can be carried out based on the χ2 statistic, defined as

χ2 = d′Ψ−1d − δ̂
′
(X ′Ψ−1X)−1δ̂, (11.13)

and rejecting the null hypothesis of homogeneity of population effect sizes when χ2

exceeds the table value with df = q1 + · · · + qk −m.

Example 11.3. We conclude this section with an example drawn from Gleser and

Olkin (1994) in which there are six studies and five treatments are compared with a

control. Data appear in Table 11.4, which shows that not all treatments appear in each

study. Obviously, in this data set, q1 = 3, q2 = 3, q3 = 2, q4 = 2, q5 = 4, q6 = 1.
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Table 11.4 Summary information for studies of the effect of exercise

on systolic blood pressure

Study C E1 E2 E3 E4 E5

Sample sizes

1 25 22 25 23 — —

2 40 — 38 37 40 —

3 30 — 30 — 28 —

4 50 — 50 — — 50

5 30 30 30 28 26 —

6 100 100 — — — —

Means

1 150.96 144.14 139.92 139.32 — —

2 149.94 — 141.23 137.36 136.44 —

3 152.45 — 140.80 — 136.14 —

4 149.49 — 140.69 — — 135.39

5 150.36 144.55 140.32 138.34 134.69 —

6 150.19 145.62 — — — —

Standard deviation

1 8.44 4.25 5.06 3.60 — —

2 6.88 — 5.11 5.29 3.34 —

3 6.35 — 4.52 — 3.35 —

4 6.92 — 5.33 — — 3.35

5 4.96 5.58 4.16 5.76 4.05 —

6 6.71 5.06 — — — —

From study 1, we have the vector of estimated effect sizes as (0.808, 1.308, 1.379,−,−)
with estimated variance-covariance matrix as

Ψ̂1 =




0.0985 0.0611 0.0623 − −
0.1142 0.0761 − −

0.1215 − −
− −

−



.

From study 2, we have the vector of estimated effect sizes as (−, 1.266, 1.828, 1.962,−)
with estimated variance-covariance matrix as

Ψ̂2 =




− − − − −
0.0713 0.0539 0.0561 −

0.0938 0.0698 −
0.0981 −

−



.
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From study 3, we have the vector of estimated effect sizes as (−, 1.835,−, 2.568,−)
with estimated variance-covariance matrix as

Ψ̂3 =




− − − − −
0.1228 − 0.1119 −

− − −
0.1790 −

−



.

From study 4, we have the vector of estimated effect sizes as (−, 1.272,−,−, 2.038)
with estimated variance-covariance matrix as

Ψ̂4 =




− − − − −
0.0562 − − 0.0459

− − −
− −

0.0815



.

From study 5, we have the vector of estimated effect sizes as (1.171, 2.024, 2.423,
3.159,−) with estimated variance-covariance matrix as

Ψ̂5 =




0.0895 0.0729 0.0806 0.0950 −
0.1350 0.1151 0.1394 −

0.1669 0.1609 −
0.2381 −

−



.

From study 6, we have the vector of estimated effect sizes as (0.681,−,−,−,−)
with estimated variance-covariance matrix as

Ψ̂6 =




0.0223 − − − −
− − − −

− − −
− −

−



.

Using Eq. (11.12), a combined estimate of the population effect sizes is obtained as

δ̂ = (0.756, 1.398, 1.746, 2.146, 2.141)

with its estimated variance-covariance matrix as

Cov(β̂) =




0.0131 0.0038 0.0051 0.0048 0.0031
0.0038 0.0160 0.0113 0.0134 0.0131
0.0051 0.0113 0.0271 0.0172 0.0092
0.0048 0.0134 0.0172 0.0332 0.0109
0.0031 0.0131 0.0092 0.0109 0.0547



.

The value ofχ2 statistic defined in Eq. (11.13) turns out to be 10.102, which is smaller

than the 5% table value of 18.30 with q1 + · · · + q6 − 5 = 10 df. Hence, we can

conclude that the homogeneity hypothesis cannot be rejected for the given data set.





CHAPTER 12

BAYESIAN META-ANALYSIS

Most statistical methods of meta-analysis focus on deriving and studying properties

of a common estimated effect which is supposed to exist across all studies. However,

when heterogeneity across studies is believed to exist,a meta-analyst ought to estimate

the extent and sources of heterogeneity among studies. While fixed effects models

discussed in this book under the assumption of homogeneous effects sizes continue

to be the most common method of meta-analysis, the assumption of homogeneity

given variability among studies due to varying research and evaluation protocols may

be unrealistic. In such cases, a random effects model which avoids the homogeneity

assumption, and models effects as random and coming from a distribution is rec-

ommended. The various study effects are believed to arise from a population and

random effects models borrow strength across studies in providing estimates of both

study-specific effects and underlying population effects.

Whether a fixed effects model or a random effects model, a Bayesian approach

considers all parameters (population effect sizes for fixed effects models, in particular)

as random and coming from a superpopulation with its own parameters. There are

two standard approaches to estimate the parameters of the superpopulation: empirical

Bayes and hierarchical Bayes. In the first, the parameters are estimated based on the

available data from all studies, considering marginal distributions of sample study

Statistical Meta-Analysis with Applications. By Joachim Hartung, Guido Knapp, Bimal K. Sinha

Copyright c© 2008 John Wiley & Sons, Inc.

155



156 BAYESIAN META-ANALYSIS

effects and using well-known frequentist methods of estimating parameters such as

the maximum likelihood or moment method. In the latter, prior distributions are

placed on the parameters of the superpopulation in several layers (hierarchy) often

using expert opinions. Obviously, as one moves upward in the hierarchy, less and

less information is known about the parameters and the prior eventually becomes

diffuse. When the parameters of the superpopulation are all estimated, it is possible

to estimate study-specific effect sizes along with their standard errors.

There are several advantages for a Bayesian approach to meta-analysis. The

Bayesian paradigm provides in a very natural way a method for data synthesis from

all studies by incorporating model and parameter uncertainty. Moreover, a predictive

distribution for future observations coming from any study, which may be a quantity

of central interest to some decision makers, can be easily developed based on what

have been already observed. The use of Bayesian hierarchical models often leads to

more appropriate estimates of parameters compared to the asymptotic ones arising

from maximum likelihood, especially in case of small sample sizes of component

studies, which is typical in meta-analysis.

This chapter is designed as follows. A general Bayesian model for meta-analysis

under normality with some examples is presented in Section 12.1. Further examples

of Bayesian meta-analysis are discussed in Section 12.2. A unified Bayesian approach

to meta-analysis is attempted in Section 12.3 with some further results on Bayesian

meta-analysis in Section 12.4. An example is worked out in detail to explicitly show

how the Bayesian methods work in applications.

12.1 A GENERAL BAYESIAN MODEL FOR META-ANALYSIS UNDER
NORMALITY

In this section we provide a very general setting of a Bayesian model for meta-analysis

under the usual assumption of normality. Consider k studies with the ith study

reporting a study effectXi and assume thatX1, . . . , Xk are statistically independent

and Xi ∼ N(θi, σ
2
i ), i = 1, . . . , k. Here θi’s are the population effect sizes. The

reader may recall the definitions of the various effect sizes and how these are estimated

from the discussion in Chapter 2.

A Bayesian approach now assumes that θi’s are independent with

θi ∼ N(µ, τ2),

where µ represents the mean of the study effects and τ2 represents the between-study

variability. Obviously, marginally, Xi ∼ N(µ, τ2 + σ2
i ). When τ2 is known, µ is

estimated by

µ̂ =

∑k
i=1(τ

2 + σ2
i )−1Xi∑k

i=1(τ
2 + σ2

i )−1
.

Here we have assumed that the variances σ2
i ’s are either known or estimated based on

sample data if these are unknown. When τ is unknown, there are standard approaches
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to estimate it (see Chapter 7). It may be noted that what we have described so far is

essentially a random effects model.

A fully Bayesian approach would model the unknown parameters as

µ ∼ N(a, b), τ2 ∼ IG(c, d), σ2
i ∼ IG(ui, vi),

where IG stands for an inverse gamma distribution and a, b, c, d, ui, vi are known as

hyperparameters and estimated following either an empirical Bayes approach or a

hierarchical approach. Methods of Markov chain Monte Carlo and Gibbs sampling

can be used in this context (Bernardo and Smith, 1993; Berger, 1985). Of course,

whenever a diffuse information is available about a parameter, one can specify a large

variance in the corresponding prior to take this into account. We refer to Abrams et

al. (2000) for an application of the above methods to perform a meta-analysis of six

studies on levels of long-term anxiety.

Quite generally, given a prior π(µ, τ2), the Bayesian approach is based on infer-

ence from the posterior distribution π(µ, τ2|X), which is proportional to L(µ, τ2)×
π(µ, τ2), where L(µ, τ2) denotes the likelihood for (µ, τ2). It is rather common to

assume an improper prior for µ and independence of µ and τ2 in which case φ(µ, τ2)
is proportional to π(τ2). The marginal posterior of τ2, π(τ2|data), then turns out to

be proportional toLR(τ2)×π(τ2), whereLR(τ2), known as the restricted likelihood,

is given, apart from a constant, by

LR(τ2) =

(∑ 1

τ2 + σ2
i

)−1/2∏
(τ2 +σ2

i )−1/2 exp

{
−1

2

∑ [Xi − µ∗(τ2)]2

τ2 + σ2
i

}
.

Here

µ∗(τ2) =

(∑ Xi

τ2 + σ2
i

)(∑ 1

τ2 + σ2
i

)−1

is the weighted mean of study effects with weights proportional to the precision of

each data point.

A rejection algorithm, as described in Pauler and Wakefield (2000), can then be

used to generate samples on τ2 from the above posterior. Once τ2 values have been

generated, it is straightforward to generate values of the average treatment effect µ
and random effects θi because, conditional on τ2,

µ|τ2, data ∼ N

[
µ∗(τ2),

(∑ 1

τ2 + σ2
i

)−1
]

and

θi|µ, τ2, data ∼ N

(
Xi wi + µ/τ2

wi + 1/τ2
,

τ2

1 + wiτ2

)
,

where wi = 1/σ2
i .

It is also possible to easily extend the above model to include study-level covariates

z′
i = (zi1, . . . , zip) from the ith study for p < k − 1. The model for θi in this case

changes to

θi|µ,β, τ2 ∼ N
(
µ+ z′

iβ, τ
2
)
,
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where β is the vector of population regression coefficients. Assuming as before

improper priors for γ = (µ,β), the restricted likelihoodLR(τ2) in this case is given,

apart from a constant, by

LR(τ2) =
∣∣∣
∑

(τ2 + σ2
i )−1ziz

′
i

∣∣∣
−1/2∏

(τ2 + σ2
i )−1/2 D,

where

D = exp

{
−1

2

∑ [Xi − z′
iγ

∗(τ2)]2

τ2 + σ2
i

}

and

γ∗(τ2) =
[∑

(τ2 + σ2
i )−1ziz

′
i

]−1∑
(τ2 + σ2

i )−1Xizi.

As before, once posterior marginal values of τ2 are generated from this distribution,

the regression coefficients γ and random effects θi can be easily simulated by using

the following facts:

γ|τ2, data ∼ N

(
γ∗(τ2),

[∑
(τ2 + σ2

i )−1ziz
′
i

]−1
)

and

θi|τ2, data ∼ N

(
Xi wi + z′

iγ/τ
2

wi + 1/τ2
,

τ2

1 + wi τ2

)
.

We now present one example from Pauler and Wakefield (2000) involving den-

trifice data (see also Section 18.3) to explain the Bayesian analysis discussed above.

We also refer to Pauler and Wakefield (2000) for two other examples involving anti-

hypertension data and preeclampsia data.

The data set given in Table 12.1 represents the outcome measureX = NaF−SMFP,

the difference in changes from baseline in the decayed/missing/filled-surface dental

index between sodium fluoride (NaF) and sodium monofluorophosphate (SMFP) at

three years follow-up, from nine studies. We also present their associated precisions

w’s.

Choosing two forms of inverse gamma priors, IG(0, 0.5) and IG(0.5, 0.11), and

using the likelihood LR(τ2), one can employ the rejection algorithm suggested in

Pauler and Wakefield (2000) to generate the posterior distributions of τ2 for the given

data set. Pauler and Wakefield (2000) carried out this analysis and reported the

following results:

IG(0, 0.5) prior: posterior median of τ2 = 0.28 with 95% posterior distribution

interval (0.10, 1.12).

IG(0.5, 0.11) prior: posterior median of τ2 = 0.08 with 95% posterior distribution

interval (0.03, 0.39).
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Table 12.1 Treatment effects Yi and precisions wi

for the dentifrice data set

Study Yi wi

1 −0.86 3.07

2 −0.33 3.25

3 −0.47 8.09

4 −0.50 15.88

5 0.28 3.43

6 −0.04 13.21

7 −0.80 1.63

8 −0.19 55.97

9 −0.49 12.92

Using

µ|τ2, data ∼ N

[
µ∗(τ2),

(∑ 1

τ2 + σ2
i

)−1
]
,

one can generate values of µ for a given generated value of τ2 and the data set and

compute some measures of the posterior distribution ofµ by averaging over the values

of τ2. The following summary statistics are reported in Pauler and Wakefield (2000):

IG(0, 0.5) prior: posterior median of µ = −0.35 with 95% posterior distribution

interval (−0.83, 0.12).

IG(0.5, 0.11) prior: posterior median of µ = −0.33 with 95% posterior distribution

interval (−0.66,−0.01).

It is clear from the above results that the posterior measures of µ are somewhat

sensitive to the choice of the prior of τ2. However, there exists a negative difference

between the results of the two dental treatment plans.

12.2 FURTHER EXAMPLES OF BAYESIAN ANALYSES

In a novel application of Bayesian analysis which involves questions about benefits

and risks of mammography of women based on six studies (Berry, 2000), a Poisson

model is assumed forXi and Yi, which represent the number of breast cancer deaths in

control and mammography groups in study i out ofni andmi life years (in thousands),

respectively. To be specific, it is assumed that

Xi ∼ Poisson(ni θi), Yi ∼ Poisson(mi θi ρi),

where θi is the mean number of breast cancer deaths per thousand life years and ρi

represents the relative risk between the control and the mammography group in study

i.
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Under the simplest assumption of total homogeneity of θi’s and ρi’s, being equal

to θ0 and ρ0, respectively, a routine Bayesian analysis can be carried out under the

prior independent distributional choice

θ0 ∼ LN(µ, σ2), ρ0 ∼ LN(τ, δ2),

where LN stands for a lognormal distribution. The posterior distributions of θ0 and

ρ0 are readily derived based on the above priors and likelihoods. The hyperparame-

ters µ, σ2, τ, δ2 can again be estimated either on the basis of empirical (data-based)

evidence or by applying a hierarchical prior distribution. The posterior distribution of

ρ0 which captures the relative risk between control and mammography groups across

studies is most relevant in this context.

Since the assumption of total homogeneity can hardly be tenable, allowing θi’s to

be different and assuming only the equality of ρi’s, we can model θi’s as

θi ∼ LN(µ, σ2)

and the hyperparameters µ and σ2 are modeled as

µ ∼ N(µ0, η
2), σ2 ∼ IG(α, β).

The lognormal assumption

θ0 ∼ LN(µ, σ2), ρ0 ∼ LN(τ, δ2)

allows the control rates and mammography rates to vary across trials although their

ratios are held constant. This model is generally referred to as additively heteroge-

neous and interactively homogeneous with similarities as in Mantel and Haenszel

(1959). The hyperparameters µ0, η
2, α, β, τ, δ2 can again be estimated based on ei-

ther empirical evidence or hierarchical priors, and as before the posterior distribution

of the common relative risk ρ0 is the most relevant quantity in this context.

Lastly, it is possible to let ρi’s vary in addition to θi’s and one can use the distri-

butions

ρi ∼ LN(τ, δ2), τ ∼ LN(τ0, δ
2
0), δ2 ∼ IG(p, q).

The above model allows control and mammography group rates as well as their ratios

to vary and is the most flexible of all. The hyperparameters can be estimated based

on the data or are assumed to be known from expert opinions, and the posterior

distributions of ρi’s as well as the posterior distribution of τ are relevant here.

Another Bayesian application which also appears in Berry (2000) involves inde-

pendent binomial variablesXi and Yi corresponding to control and treatment groups,

respectively, in study i, where

Xi ∼ B(ni, pi), Yi ∼ B(mi, qi),

and the following log-linear models are assumed for pi and qi:

ln
pi

1 − pi
= θi, ln

qi
1 − qi

= θi ρi,
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suggesting that both additive and interactive heterogeneity are present. Incidentally,

the parameter ρ is called the log odds ratio in this context (see Chapter 2). A Bayesian

analysis is now performed by modeling θi’s and ρi’s as conditionally independent and

assuming that

θi ∼ N(µ, σ2), ρi ∼ N(τ, δ2).

The variability in the θi’s accounts for control variation across studies while the

variation in the ρi’s takes into account possible treatment variation across studies.

It is possible to estimate the four hyperparameters µ, σ2, τ, δ2 based on empirical

(data-based) evidence or by putting hierarchical priors on them. In the former case,

the posterior distributions of ρi’s are relevant while in the latter case the posterior

distribution of τ is the most relevant.

We refer to Brophy and Joseph (2000) for an example dealing with an application

of the above binomial model involving three studies. The studies are used to compare

streptokinase and tissue-plasminogen activator to reduce mortality following an acute

myocardial infarction.

The problem of combining information from studies which report outcomes in two

distinct ways can indeed be quite challenging. An application of this type in which

outcomes are reported on continuous variables for some medical outcomes in some

studies and on binary variables on similar medical outcomes in some other studies

appears in Dominici and Parmigiani (2000). A common approach in this situation is

to dichotomize the continuous outcomes; however, a better approach is to do the other

way around and assume that the binary responses are the results of dichotomizing

some underlying but unobserved continuous variables. Using an appropriate Bayesian

analysis, it is then possible to reconstruct the values of the unobserved continuous

variables and one can then apply standard meta-analysis procedures to combine results

of all the studies

To describe the main ideas, suppose there are k studies reporting continuous re-

sponses on a treatment and a control andm studies reporting only binary responses on

the same treatment and control using points of dichotomy. Assume that the responses

yT from the treatment effect are normally distributed with mean θT and variance

σ2 and responses yC from the control are normally distributed with mean θC and

variance σ2. Assume also that the binary responses xT and xC from treatment and

control, respectively, are based on a common point of dichotomy α in the sense that

xT ∼ Bernoulli

[
Φ

(
α− θT

σ

)]
, xC ∼ Bernoulli

[
Φ

(
α− θC

σ

)]
,

where Φ is the standard normal cdf and α is the point of dichotomy.

The joint likelihood based on data from all four types of studies (treatment: con-

tinuous, binary; control: continuous, binary) can then be written as

L(θT , θC , σ
2|data) = L1 × L2 × L3 × L4,
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where

L1 =

n1∏

i=1

1

σ
φ

(
yTi − θT

σ

)
,

L2 =

n2∏

i=1

1

σ
φ

(
yCi − θC

σ

)
,

L3 =

n3∏

i=1

pB

[
xTi|Φ

(
α− θT

σ

)]
,

L4 =

n4∏

i=1

pB

[
xCi|Φ

(
α− θC

σ

)]
.

Here ni’s are the respective sample sizes and pB stands for the Bernoulli probability.

It is indeed possible to use the above expression of the joint likelihood to derive

suitable estimates of all the unknown parameters and study their properties from a

likelihood perspective view. However, as is well known, deriving exact inference

about the parameters of interest is quite difficult in this case unless of course one uses

large-sample approximations.

It turns out, however, that using a Bayesian approach it is relatively easy to de-

rive the joint and hence the marginal posteriors of all the relevant parameters. This

approach proceeds by specifying the prior distributions of θT , θC , and σ2 and are

usually chosen as conjugate priors given by

θT ∼ N(τ1, η
2
1), θC ∼ N(τ0, η

2
0), σ2 ∼ IG(a, b),

where one can choose η2
1 and η2

0 to be very large to allow huge dispersion and IG

stands for an inverse gamma distribution. It is then possible to study the posterior

distributions of the basic parameters and, in particular, that of the effect size ∆ =
(θT − θC)/σ to draw suitable inferences. The hyperparameters τ ’s and η’s can be

either assumed to be known (from past experience or expert opinion) or estimated

based on an empirical Bayes approach or one can specify a hierarchical prior on them.

Of course, as is evident from this kind of Bayesian analysis, one needs to freely use

MCMC and Gibbs sampler to generate posterior distributions and posterior moments

of the parameters. We refer to Dominici and Parmigiani (2000) for details along with

an example involving a study of efficacy of calcium channel blocking agents for

migraine headache.

As mentioned in the previous chapter, following Berkey et al. (1995, 1998) and

Riley et al. (2007a), we now provide a novel application of a bivariate random effects

meta-analysis. In this motivating example, the experimenter collects data on two out-

comes related to improvement in probing depth (PD) and improvement in attachment

level (AL), each outcome being obtained as the difference between two procedures

for treating periodontal disease: surgical and nonsurgical. Bivariate fixed effects

meta-analysis procedures taking into account the dependence between the two out-

comes described in the previous chapter are not appropriate in this example because
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the relevant tests of homogeneity of univariate effect sizes lead to rejection (Berkey

et al., 1998). To use random effects meta-analysis procedures, we have a choice

of using either two separate univariate random effects models or a single bivariate

random effects meta-analysis model. We describe below our analysis from both of

these perspectives.

To fix notation, let Yij denote the summary statistic from study i = 1, . . . , n on

outcome j = 1, 2 and assume that θij denotes the underlying true values of the effect

sizes. We also assume normality of both Yij and θij .

Under independent univariate random effects meta-analysis (URMA), we assume

the following distributional models:

Outcome 1: Yi1 ∼ N(θi1, s
2
i1), θi1 ∼ N(β1, τ

2
1 ).

Outcome 2: Yi2 ∼ N(θi2, s
2
i2), θi2 ∼ N(β2, τ

2
2 ).

Note that there are no correlation terms linking the two outcomes. Following the

general discussion of Bayesian analysis, the pooled estimate for outcome j can be

written as

β̂j =

n∑

i=1

Yij

s2ij + τ̂2
j

(
n∑

i=1

1

s2ij + τ̂2
j

)−1

with its estimated variance as

V̂ar(β̂j) =

(
n∑

i=1

1

s2ij + τ̂2
j

)−1

.

It should be noted that the methods to estimate the so-called between-treatment vari-

ability τ2 have been described earlier.

Under a bivariate random effects meta-analysis (BRMA), we consider the bivariate

normal distribution of the underlying random variables as follows:
(
Yi1

Yi2

)
∼ N

[(
θi1

θi2

)
, δi

]
, δi =

(
s2i1 λi

λi s2i2

)
,

(
θi1

θi2

)
∼ N

[(
β1

β2

)
,∆

]
, ∆ =

(
τ2
1 τ12
τ12 τ2

2

)
.

It may be noted that the above model follows from a general Bayesian frame-

work using summary statistics and δi and ∆ are, respectively, the within-study and

between-study covariance matrices. The inclusion of the terms λi and τ12 makes the

distinction between univariate and bivariate meta-analysis models. Naturally when

these parameters are 0, the two models coincide. We assume the elements of δi to be

known and those of ∆ to be unknown and must be estimated from the data. One can

use the standard SAS Proc Mixed in conjunction with restricted iterative generalized

least squares (RIGLS) for this purpose. Analytic expressions for the estimates of

β1 and β2 along with their estimated variances and covariance appear in Riley et al.

(2007a). We refer the interested reader to this excellent paper for details.

The Berkey et al. (1998) data set and its URMA and BRMA analyses, as performed

by Riley et al. (2007a), are given in Tables 12.2 and 12.3.
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Table 12.2 Details of meta-analysis data set (’Berkey data’)

Study Outcome Yij s2
ij λi

1 PD 0.47 0.0075 0.0030

1 AL -0.32 0.0077

2 PD 0.20 0.0057 0.0009

2 AL -0.60 0.0008

3 PD 0.40 0.0021 0.0007

3 Al -0.12 0.0014

4 PD 0.26 0.0029 0.0009

4 AL -0.31 0.0015

5 PD 0.56 0.0148 0.0072

5 AL -0.39 0.0304

Table 12.3 Details of URMA and BRMA meta-analysis of ’Berkey data’

Outcome PD AL

β̂i (s.e) β̂2 (s.e)

Model [95% CI] τ̂ 2
1 [95% CI] τ̂ 2

2 τ̂12

URMA 0.361 (0.0592) 0.0119 -0.346 (0.0885) 0.0331 —

[0.196,0.525] [-0.591,-0.100]

BRMA 0.353 (0.0589) 0.0117 -0.339 (0.0879) 0.0327 0.0119

[0.190,0.517] [-0.583,-0.095]

12.3 A UNIFIED BAYESIAN APPROACH TO META-ANALYSIS

Statistical meta-analysis may often involve nonstandard data structures and assump-

tions associated with the studies to be combined. Thus, each study may have its own

measure of effect size and precision along with design covariates and within-study

predictors. Here, following DuMouchel and Normand (2000), we present a unified

modeling approach to meta-analysis, integrating fixed, random, and mixed effect

models as well as Bayesian hierarchical models.

Assume that there are k studies and the ith study results in an effect size Yi with

its mean µi and variance s2i , which is known. One can think of s2i as the estimated

variance of Yi based on large samples (see Chapter 2 for various measures of effect

sizes and their estimated variances). Also, assume that the characteristics of the ith
study can be denoted by the vector of covariates xi = (xi1, . . . , xiJ )′, i = 1, . . . , k.

Before conducting the meta-analysis, we should recall that there are at least three

sources of variation which may exist in the results of the k studies. First, sampling
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errors (population variances σ2
i ) occurring within a study may vary across the k

studies. Second, actual treatment effects may vary across studies, often leading to

random effect models. Third, a treatment effect within a study may vary across

its subgroups defined by study design covariates such as investigator differences

and uncontrolled conditions. Naturally these sources of variation are not mutually

exclusive in nature.

Under a fixed effects model, it is assumed that the k studies provide summary

information about a common effect across studies, that is, each summary statistic

provides an estimate of the same underlying parameter µ (say). As mentioned in

a previous chapter, it is indeed desirable that one performs a test for homogeneity

of the population effect sizes µ1, . . . , µk to make sure that this is indeed the case

before performing a meta-analysis. Thus, in our notation, Yi can be modeled as

N(µ, σ2
i ) under the homogeneity assumption, where µ is the common effect. In case

study design covariates are present, this can be taken into account by designating

E(Yi) = µi = x′
iβ.

In case interstudy variation is believed to be present, a random effects approach is

undertaken to allow existence of such a variance component τ2 (say), and we model

E(Yi) = µi as N(µ, τ2). We refer to Chapter 7 for a detailed discussion on this

model and related materials for estimation of τ2.

A unified approach using the concept of a hierarchical Bayes linear model which

integrates fixed effects and random effects models into one framework can be given

as follows. We model in a hierarchy Yi ∼ N(µi, s
2
i ), µi ∼ N(x′

iβ, τ
2), and β ∼

N(b,D) with τ ∼ π(τ). In case of no covariates, we model µi ∼ N(µ, τ2) and

µ ∼ N(b, d2). The Bayesian specification is completed by assigning suitable prior

distributions to µ, β, and τ as above under the assumption of independence of µ,

β, and τ . In the absence of specific prior information on β, one can use what is

known as a diffuse prior for β by allowing the diagonal elements of D to approach

∞. The same is true of d, which can be made to tend to ∞ if a priori no value of µ
is preferred over other values. Clearly it is rather important to specify a prior for τ
with some caution. A prior for τ with a small variation would almost lead to a fixed

effects model while one with a large variation means the model is far from being a

fixed effects model.

Keeping the above points in mind, DuMouchel and Normand (2000) proposed

the prior π(τ) = s0/(s0 + τ)2, where s20 = k/[
∑k

i=1 s
−2
i ] is the harmonic mean

of the sampling variances. As observed by these authors, this distribution is highly

dispersed because both τ and τ−1 have infinite means.

Having specified the priors of all parameters as above, once the data have been

observed, the Bayesian analysis proceeds by computing the posterior distributions of

the relevant parameters. In this context, one can first derive the marginal posterior

of τ and then the conditional posteriors of β, µi, and µ, as appropriate, conditional

on τ . We should also mention that typically the posterior means and variances of the

parameters are computed and reported.

We describe below the various results on posteriors. We refer to DuMouchel and

Normand (2000) for details.
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1. In case of no covariates, the posterior mean and variance of µ conditional on

τ :

E(µ|Y , τ) = µ∗(τ) =

∑
Yi(s

2
i + τ2)−1

∑
(s2i + τ2)−1

,

Var(µ|Y , τ) = µ∗∗(τ) =
1∑

(s2i + τ2)−1
.

2. In case of no covariates, the posterior mean and variance of µi conditional on

τ :

E(µi|Y , τ) = [1 −Bi(τ)] Yi +Bi µ
∗(τ),

Var(µi|Y , τ) = Bi(τ) [τ2 +Bi(τ) µ
∗∗(τ)],

where Bi(τ) = s2i /(s
2
i + τ2) is known as the shrinkage factor.

3. In case of presence of covariates, the posterior mean and covariance of β

conditional on τ :

E(β|Y , τ) = β∗(τ) = [X ′W (τ)X + D−1]−1(X ′W (τ)Y + D−1b),

Cov(β|Y , τ) = β∗∗(τ) = [X ′W (τ) X + D−1]−1,

where W (τ) = [diag(s21, . . . , s
2
k) + τ2 Ik]−1.

Of course, when the information on β is diffuse, β∗(τ) and β∗∗(τ) reduce to

β∗(τ) = [X ′W (τ)X ]−1(X ′W (τ)Y )

and

β∗∗(τ) = [X ′W (τ)X ]−1.

Here X ′ = [x1 : x2 : · · · : xk].

4. In case of presence of covariates, the posterior mean and covariance of µi

conditional on τ :

E(µi|Y , τ) = µ∗
i (τ) = Yi[1 −Bi(τ)] +Bi(τ)x

′
iβ

∗(τ),

Var(µi|Y , τ) = Bi(τ)[τ
2 +Bi(τ)x

′
iβ

∗∗(τ)xi].

5. To compute the unconditional mean and variance of various quantities listed

above, it is necessary to integrate with respect to the marginal posterior of τ
given Y . In the case of presence of covariates with diffuse prior information,

once the parameters β are integrated out, the resulting log-likelihood lnL(τ |Y )
can be expressed, apart from constants, as

−2 lnL(τ |Y ) =
∑

ln(τ2 + s2i ) + ln[det(X ′W τX)] + S2
τ ,
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where

W τ = diag[(τ2 + s21)
−1, . . . , (τ2 + s2k)−1],

S2
τ =

∑
[Yi − x′

iβ(τ)]2/(τ2 + s2i ),

and

β(τ) = (X ′W τX)−1X ′W τY .

It may be noted that the REML estimate of τ is based on the above log-likelihood

(see Chapter 7).

The above likelihood L(τ |Y ) combined with the prior π(τ) provides the marginal

posterior distribution π(τ |Y ) of τ , given the data Y , which is used to compute the

unconditional mean and variance of the quantities listed under 1–4 above, often using

Gauss-Hermite integration methods.

12.4 FURTHER RESULTS ON BAYESIAN META-ANALYSIS

A different type of Bayesian analysis in the context of examining possible association

between estrogen exposure and endometrial cancer is reported in Larose (2000). This

is based on 17 published studies reporting the effect size log relative risk of contracting

cancer for users of estrogen at various duration levels compared to never-users. We

refer to Chapter 2 for definition and properties of this effect size.

Denoting by yi the vector of sample means of log relative risk observed at several

duration levels, di the known duration vector of midpoints of the intervals corre-

sponding to each duration level in the ith study, and Si the diagonal matrix of sample

standard errors, within-study dependence is then modeled as

yi|di, βi,Si,Σi ∼ N(diβi,SiΣiSi), (12.1)

where the scalar βi represents the unknown exposure-response slope arising from the

ith study, which is to be estimated. Obviously, the dependence of the elements of the

vector yi arising from the ith study is captured by Σi.

A Bayesian formulation now proceeds by assuming the following:

(i) βi|µ, σ2 ∼ N [µ, σ2] .

(ii) Σi
−1 ∼ Wishart(νi,R0) .

(iii) µ ∼ N [0, V ] and σ2 ∼ IG(b, c).

In the above, the hyperparameters µ and σ2 denote, respectively, the underlying

mean slope and the between-study variation. Typically, R0, V , b, and c are chosen so

that the priors are diffuse. One now computes the posteriors of the various parameters,

given the data vectors and duration vectors, by deriving the marginal posteriors of

βi and conditional posteriors of Σi from the complete Bayesian model (likelihood
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multiplied by priors). It turns out that the conditional posterior of Σi is again inverted

Wishart with νi + 1 df and precision matrix

C = [yi − diβi)(yi − diβi)
′ + R0

−1]−1.

Standard Gibbs sampling using MCMC can be used to generate data from the pos-

teriors.

We now present an example from Larose (2000) to discuss this application. To

study a possible link between duration of estrogen exposure and development of

endometrial cancer among women, Table 12.4 provides results of 17 studies on

exposure-response information. Midpoints in the table represent midpoints of ex-

posure duration classified into several groups. Log relative risks are computed by

comparing two groups of women, those using estrogen at different duration levels

and those who never use it. We refer to Chapters 2 and 9 for formulas to compute log

relative risks and their standard errors.

It is generally believed that the longer the duration, the larger is the risk, suggesting

a linear relationship of log relative risk with exposure. For study i, we denote by yi

the vector of log relative risks. We model yi as having the mean vector diβi where βi

represents the unknown exposure-response slope for study i and di denotes the vector

of the midpoints of exposure duration times. Since the relative risk estimates within

a study use the same reference group (never users of estrogen), the components of yi

are correlated and we assume that Σi represents the variance-covariance matrix of

yi. We mention that the standard errors reported in Table 12.4 for different studies

provide estimates of the diagonal elements of such covariance matrices. Denoting by

Si the diagonal matrix of standard errors from study i, we assume that Σi is calibrated

by Si in the sense that the variance-covariance matrix of yi is given by SiΣiSi.

To complete the Bayesian approach to modeling, we assume the following:

(i) yi ∼ N [diβi,SiΣiSi].

(ii) βi|µ, σ2 ∼ N [µ, σ2].

(iii) µ ∼ N [0, V ].

(iv) σ2 ∼ IG(0.001, 1000).

(v) Σi
−1|νi,R ∼ Wishart(νi, R).

Here the hyperparameters V , νi, and R are chosen so that the resultant prior is

diffuse. Based on the above model and data given in Table 12.4, it is possible to write

down the likelihood and compute the joint and hence marginal/conditional posteriors

of µ, σ2, and individual study slopes βi by applying the usual MCMC technique.

Some important features of these posteriors are given in Table 12.5.

It follows from the posterior distribution of µ that there is evidence that the mean

slope across all studies is positive, a significant exposure-response relationship un-

covered by meta-analysis! The between-study variability as shown in the posterior

distribution of σ2 is also nonneglible. Lastly, the posterior distributions of individual

slope parameters reveal that some of them are nonsignificant because the associated

95% posterior intervals contain the value 0! For details, we refer to Larose (2000).
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Table 12.4 Duration midpoints, log relative risks, and standard errors

Mid- Mid-

Study points Log RR s.e. Study points Log RR s.e.

Antunes 0.5 0.79 0.24 Mack 0.5 1.03 0.22

3.0 1.06 0.19 3.0 1.50 0.10

6.0 2.71 0.37 6.5 2.23 0.26

Brinton 2.5 0.34 0.25 9.6 2.17 0.11

6.0 1.79 0.15 McDonald 0.25 -0.45 0.24

Buring 0.5 0.15 0.11 0.75 1.15 0.46

2.5 0.69 0.12 2.0 0.86 0.55

7.0 1.86 0.15 3.6 1.78 0.29

12.0 2.03 0.34 Paganini-Hill 1.0 1.65 0.52

Gray 2.0 0.18 0.26 5.0 1.95 0.52

7.0 1.41 0.66 11.0 1.39 0.52

12.0 2.45 1.11 18.0 3.00 0.52

Hoogerland 0.25 0.18 0.22 Shapiro 0.5 -0.11 0.13

0.75 0.59 0.21 2.5 1.06 0.07

2.0 1.16 0.15 7.0 1.72 0.08

4.0 1.36 0.22 12.0 2.30 0.09

7.5 1.22 0.19 Spengler 0.3 0.34 0.33

12.0 1.90 0.59 1.25 0.96 0.22

Hulka 1.75 -0.22 0.12 3.5 0.79 0.32

4.2 1.41 0.24 6.0 2.15 0.25

Jelovsek 1.75 0.34 0.20 Stavracky 1.0 -0.36 0.18

4.0 0.34 0.59 3.0 0.00 0.12

7.5 1.57 0.31 7.0 0.53 0.13

12.0 0.96 0.19 12.0 1.86 0.25

Kelsey 0.5 0.10 0.11 Weiss 1.5 0.18 0.81

1.75 0.00 0.30 3.5 1.69 0.45

3.75 1.06 0.14 6.0 1.55 0.24

6.25 1.46 0.18 9.0 2.46 0.28

8.75 2.10 0.19 12.5 3.19 0.44

12.0 0.99 0.15 17.0 2.32 0.39

Levi 2.5 0.53 0.06 24.0 2.12 1.31

6.0 1.44 0.09 Ziel 2.0 1.53 0.18

14.0 2.22 0.13
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Table 12.5 Posterior statistics for the overall mean slope µ, between-study

variance σ2, and individual study slopes βi, i = 1, . . . , 17

Parameter 2.5th Percentile Median 97.5th Percentile Mean SD

Overall mean slope µ 0.013 0.220 0.442 0.222 0.106

Between-study var σ2 0.028 0.104 0.759 0.174 0.257

1. Antunes 0.124 0.398 0.664 0.387 0.142

2. Brinton −0.004 0.263 0.535 0.258 0.140

3. Buring 0.069 0.195 0.330 0.196 0.069

4. Gray 0.088 0.195 0.334 0.197 0.061

5. Hoogerland 0.069 0.171 0.310 0.180 0.062

6. Hulka −0.113 0.257 0.602 0.252 0.177

7. Jelovsek −0.007 0.106 0.281 0.109 0.059

8. Kelsey 0.059 0.166 0.266 0.160 0.045

9. Levi −0.039 0.243 0.537 0.244 0.141

10. Mack 0.087 0.290 0.460 0.281 0.098

11. McDonald 0.063 0.366 1.137 0.390 0.230

12. Paganini-Hill 0.084 0.174 0.260 0.173 0.045

13. Shapiro 0.048 0.211 0.365 0.202 0.068

14. Spengler 0.026 0.325 0.571 0.300 0.122

15. Stavracky −0.003 0.134 0.259 0.132 0.068

16. Weiss 0.078 0.154 0.188 0.148 0.029

17. Ziel 0.055 0.176 0.316 0.176 0.067



CHAPTER 13

PUBLICATION BIAS

As mentioned in the introduction, if a meta-analyst is restricted only to the published

studies, then there is a risk that it will lead to biased conclusions because there may be

many nonsignificant studies which are often unpublished and hence are ignored, and

it is quite possible that their combined effect, significant and nonsignificant studies

together, may change the overall conclusion. Publication bias thus results from ignor-

ing unavailable nonsignificant studies, and this is the familiar file-drawer problem. In

this chapter, which is patterned after Rosenthal (1979) and Begg (1994), we describe

some statistical methods to identify the presence of publication bias and how to deal

with it in case it is present.

A general principle is that one ought to perform a preliminary analysis to assess the

chances that publication bias could be playing a role in the selection of studies before

the component studies are assembled for meta-analysis purposes. This assessment

can be done informally by using what is known as a funnel graph, which is merely

a plot of the sample size (sometimes the standard error) versus the effect size of the

k studies (Light and Pillemer, 1984). If no bias is present, this plot would look like

a funnel, with the spout pointing up. This is because there will be a broad spread

of points for the highly variable small studies (due to a small sample size) at the
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bottom and decreasing spread as the sample size increases, with the indication that

publication bias is unlikely to be a factor for this meta-analysis.

For illustration, let us consider the data sets in Tables 13.1 and 13.2. Table 13.1

contains the results from 20 validity studies where the correlation between student

ratings of the instructor and student achievement is examined; see Cohen (1983). The

effect size is the correlation coefficient r and the measure of precision is the sample

size n.

Table 13.1 Validity studies correlating student ratings of the instructor

with student achievement

Study n r P -value

1 10 0.68 0.0153

2 20 0.56 0.0051

3 13 0.23 0.2248

4 22 0.64 0.0007

5 28 0.49 0.0041

6 12 −0.04 0.5491

7 12 0.49 0.0529

8 36 0.33 0.0247

9 19 0.58 0.0046

10 12 0.18 0.2878

11 36 −0.11 0.7385

12 75 0.27 0.0096

13 33 0.26 0.0720

14 121 0.40 < 0.0000
15 37 0.49 0.0010

16 14 0.51 0.0312

17 40 0.40 0.0053

18 16 0.34 0.0988

19 14 0.42 0.0674

20 20 0.16 0.2502

In Table 13.2, we have taken a data set from Raudenbush and Bryk (1985), in which

the results of 19 studies are reported studying the effects of teacher expectancy on

pupil IQ. The effect size is Cohen’s d (see Chapter 2), and the inverse of the reported

standard error can be used as the measure of precision.

Referring to the data set from Table 13.1, the validity correlation studies, and the

resulting graph, in Figure 13.1, we observe a funnel graph consistent with the pattern

mentioned above. On the other hand, for the data set from Table 13.2, the teacher

expectancy studies, and the associated graph (Figure 13.2), the contrast is clear. The

large studies at the top (with small standard errors) are clustered around the null value

while the small studies at the bottom (with large standard errors) show a positive

effect, suggesting that there could be a number of small studies with positive effects,

which might remain unpublished. We refer to Begg (1994) for details.
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Table 13.2 Studies of the effects of teacher expectancy on pupil IQ

Cohen’s Standard

Study d Error P -value

1 0.03 0.125 0.4052

2 0.12 0.147 0.2072

3 −0.14 0.167 0.7991

4 1.18 0.373 0.0008

5 0.26 0.369 0.2405

6 −0.06 0.103 0.7199

7 −0.02 0.103 0.5770

8 −0.32 0.220 0.9271

9 0.27 0.164 0.0498

10 0.80 0.251 0.0007

11 0.54 0.302 0.0369

12 0.18 0.223 0.2098

13 −0.02 0.289 0.5276

14 0.23 0.290 0.2139

15 −0.18 0.159 0.8712

16 −0.06 0.167 0.6403

17 0.30 0.139 0.0155

18 0.07 0.094 0.2282

19 −0.07 0.174 0.6563

There are two general strategies to deal with publication bias: sampling meth-

ods and analytic methods. Sampling methods are designed to eliminate publication

bias as far as possible by directly addressing the manner in which the studies are

selected for inclusion in the meta-analysis and attempting by all reasonable means to

get hold of relevant unpublished studies on the topic. This method, which has been

advocated by Peto and his colleagues at Oxford (see Collins et al.,1987), strongly sug-

gests following up on published abstracts on the particular topic and contacting lead-

ing researchers in the field for leads on relevant studies being conducted worldwide

with the hope that such an attempt would reveal many or some hitherto unpublished

nonsignificant articles. The criticism of this method is that accuracy of some of these

sought-after studies may be questionable and also the quality of some of these studies

may not be acceptable.

The second method, the well-known file-drawer method (Rosenthal, 1979), is de-

signed to provide a simple qualification on a summaryP -value from a meta-analysis.

Assume that the meta-analysis of k available studies leads to a significant result, that

is, the combination of k P -values by one of the methods described earlier leads to

rejection of H0. Recall the method of computation of the P -values described in

Chapter 3 and also that small P -values lead to a significance of the null hypothesis,

that is, rejection of H0. We are then wondering if a set of k0 nonsignificant studies,

which remain unpublished and hence unknown to us, would have made a difference
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Figure 13.2 Funnel plot for teacher expectancy studies

in the overall conclusion, that is, would have made rejection ofH0 on the basis of all

the k + k0 studies impossible. The file-drawer method provides a technique to get

some idea about k0. Once such a value of k0 is determined, we then use our judgment

to see if so many nonsignificant studies on the particular problem under consideration

could possibly exist!

To describe the file-drawer method, suppose we have used Stouffer et al.’s (1949)

inverse normal method to combine the k P -values. This method suggests that we

first convert the individual P -values P1, . . . , Pk of the k published studies to normal
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Z scores, Z1, . . . , Zk, defined by

Zi = Φ−1(Pi), i = 1, . . . , k,

and then use the overall Z defined by

Z =
1√
k

k∑

i=1

Zi

to test the significance of H0. Since Z behaves like N(0, 1) under H0 and H0 is

rejected for small values of Z , the assumed rejection of H0 at the significance level

α essentially implies that Z < −zα, or, |Z| > zα. To determine a plausible value of

k0, we assume that the average observed effect of the k0 unpublished (or unavailable)

studies is 0, that is, the sum of the Z scores corresponding to these k0 studies is

0. Under this assumption, even if these k0 studies were available, the value of the

combined sum of all theZi’s remains the same as before (i.e.,
∑k

i=1 Zi =
∑k+k0

i=1 Zi).

Therefore, this combined sum would have led to the acceptance ofH0, thus reversing

our original conclusion, if

1√
k + k0

∣∣∣
k∑

i=1

Zi

∣∣∣ < zα,

which happens if

k0 > −k +

(∑k
i=1 Zi

)2

(zα)2
. (13.1)

The above equation provides us with an expression about the number k0 of unpub-

lished studies with nonsignificant conclusions which, when combined with the results

of k published studies, would have made a difference in the overall conclusion. The

rationale behind the method is that, considering the relevant research domain, if k0 is

judged to be sufficiently large, it is unlikely that so many unpublished studies exist,

and hence we can conclude that the significance of the observed studies is not affected

by publication bias.

The determination of the value k0 in Eq. (13.1) heavily relies on the assumption

that the average observed effect of the k0 unpublished (or unavailable) studies is 0,

that is, the sum of the Z scores corresponding to these k0 studies is 0. Relaxing this

assumption to Pk+1 = Pk+2 = · · · = Pk+k0
= P̃ , we can write Zk+1 = Zk+2 =

· · · = Zk+k0
= Z̃ . If the k0 unpublished studies were available, the Z value would

be given by

Z =
1√

k + k0

{
k∑

i=1

Zi +

k+k0∑

i=k+1

Zi

}
=

1√
k + k0

{(
k∑

i=1

Zi

)
+ k0Z̃

}
.

Suppose that, based on the published P -values P1, P2, . . . , Pk, the hypothesis H0

was rejected. Then the conclusion based on a combination of k+ k0 P -values would
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be reversed if

1√
k + k0

{(
k∑

i=1

Zi

)
+ k0Z̃

}
≥ −zα. (13.2)

It is indeed possible to determinek∗0, the smallest value ofk0 which satisfies Eq. (13.2),

and use our judgment to verify if that could be a possibility.

We have descried above the file-drawer method based on Stouffer et al.’s (1949)

way of combination of P -values. It is quite possible to derive similar conditions on

k0 for other combination methods as well. We describe below two such methods.

Under Tippett’s method, if we observe just the publishedP -valuesP1, P2, . . . , Pk,

then the overall test of H0 versus H1 would reject H0 at significance level α if

min(P1, P2, . . . , Pk) < 1 − (1 − α)1/k. (13.3)

Now suppose that based on the publishedP -valuesP1, P2, . . . , Pk the hypothesisH0

was rejected. Then the P -values Pk+1, Pk+2, . . . , Pk+k0
would reverse the original

decision and hence lead to an overall conclusion of nonsignificance if and only if

min(P1, P2, . . . , Pk, Pk+1, Pk+2, . . . , Pk+k0
) ≥ 1 − (1 − α)1/(k+k0). (13.4)

Now since the P -values Pk+1, Pk+2, . . . , Pk+k0
correspond to unpublished and

nonsignificant studies, we may assume that all of these P -values are large, which

would naturally imply

min(P1, P2, . . . , Pk, Pk+1, Pk+2, . . . , Pk+k0
) = min(P1, P2, . . . , Pk). (13.5)

Looking at Eqs. (13.3) and (13.4) we see that the original decision of significance

would be reversed if and only if

min(P1, P2, . . . , Pk) ≥ 1 − (1 − α)1/(k+k0),

which occurs if and only if

k0 ≥ ln[1 − α)

ln(1 − min(P1, P2, . . . , Pk)]
− k. (13.6)

From the above equation it follows that

k∗0 =

⌈
ln(1 − α)

ln[1 − min(P1, P2, . . . , Pk)]
− k

⌉
. (13.7)

Note that under Tippett’s method k∗0 does not depend on the values of the unpublished

P -values as long as these unpublished P -values are large enough so that Eq. (13.5)

holds, that is, even a certain number of significant unpublished studies could change

the overall conclusion.

Under Fisher’s method, if we observe just the published P -values P1, P2, . . . , Pk,

then the overall test of H0 versus H1 would reject H0 at significance level α if and

only if

−2

k∑

i=1

lnPi > χ2
α,2k,
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where χ2
α,2k is the upper α percentile of the chi-square distribution with 2k degrees

of freedom. Now suppose that based on the published P -values P1, P2, . . . , Pk

the hypothesis H0 was rejected. Then the P -values Pk+1, Pk+2, . . . , Pk+k0
would

reverse the original decision and hence lead to an overall conclusion of nonsignificance

if and only if

−2

k+k0∑

i=1

lnPi ≤ χ2
α,2(k+k0).

To simplify things let us assume as before that

Pk+1 = Pk+2 = · · · = Pk+k0
= P̃

so that

−2

k+k0∑

i=1

lnPi = −2

k∑

i=1

lnPi − 2

k+k0∑

i=k+1

lnPi = −2

(
k∑

i=1

lnPi

)
− 2k0 ln P̃ .

Hence we would reverse the original decision and conclude nonsignificance if and

only if

−2

(
k∑

i=1

lnPi

)
− 2k0 ln P̃ ≤ χ2

α,2(k+k0). (13.8)

Then k∗0 is given by the smallest value of k0 which satisfies Eq. (13.8). This value can

easily be computed numerically. We now apply the above methods to two examples.

Example 13.1. We can apply the file-drawer method to the data set dealing with

teacher expectancy studies; see Table 13.2. The individual Z scores are computed

by dividing the effect sizes by the corresponding standard errors, details of which

appear in Chapter 4. This leads to
∑19

i=1 Zi = 11.017, which yields Z = 2.527,

a significant value at the 5% level. Using Eq. (13.1) we find that k0 ≥ 26. This

means if there are at least 26 unpublished nonsignificant studies, then the conclusion

obtained by ignoring them would have been wrong. The plausibility of the existence

of so many unpublished studies is of course a judgment call and would depend on

the search technique used by the meta-analyst. Using Fisher’s method with P̃ = 0.5,

at least 21 nonsignificant results would change the overall conclusion. For P̃ = 0.4,

ignoring at least 44 unpublished studies, the overall result obtained would have been

wrong. Increasing P̃ to 0.6, then 10 unpublished studies using Stouffer’s method

and 15 studies using Fisher’s method would change the overall conclusion if the P -

values were available. Irrespective of the true P -values of the nonpublished studies,

as long as Eq. (13.5) is fulfilled, 53 studies would change the overall result into

nonsignificance with Tippett’s method.

Example 13.2. We can also apply this method to the data set dealing with validity

correlation studies; see Table 13.1. In this case the individual Z scores are com-

puted from P -values, which in turn are obtained from the t values. This leads to∑20
i=1 Zi = 36.632, which yields Z = 8.191, a highly significant value at the 5%
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level. Again, using the formula given above, we find that k0 ≥ 476. This means if

there are at least 476 unpublished nonsignificant studies, then the conclusion obtained

by ignoring them would have been wrong. Using Tippett’s method, an additional

18,706 unpublished studies are necessary to change the overall result into nonsignif-

icance as long as the P -values of the unpublished studies fulfill Eq. (13.5). Using

Fisher’s method with P̃ = 0.5, 129 studies would change the overall conclusion to

nonsignificance. For P̃ = 0.4, 339 studies would be necessary and for P̃ ≤ 0.35, an

infinite number of studies would not change the overall result.

The plausibility of the existence of so many unpublished nonsignificant studies

seems very remote, and we can therefore conclude that publication bias is unlikely to

make a difference in this problem.

If the meta-analysis of k available studies leads to a nonsignificant conclusion,

then of course the issue of publication bias does not arise!

The advantage of the file-drawer method is that it is very simple and easily inter-

pretable. A disadvantage is the assumption that the results of the missing studies are

centered on the null hypothesis.

Several methods have been suggested in the literature which translate the graph-

ical approach of the funnel plot into a statistical model. In the statistical model, the

associations between study size (or other measures of precision) and estimated treat-

ment effects are examined. Begg and Mazumdar (1994) proposed an adjusted rank

correlation method to examine the association between the effect estimates and their

variances (or, equivalently, their standard errors). This correlation test is based on

Kendall’s tau. Egger et al. (1997) introduced a linear regression approach in which

the standardized effect size, say T/σ̂(T ), is regressed onto a measure of precision,

for example, 1/σ̂(T ). For k studies, the statistical model is given as

Ti

σ̂(Ti)
= β0 + β1

1

σ̂(T )
+ ei, i = 1, . . . , k, (13.9)

with ei a normally distributed random error with mean 0 and variance σ2. The null

hypothesis of no publication bias is stated as H0 : β1 = 0, that is, there is no

association between the precision 1/σ̂(Ti) and the standardized effect size. The test

statistic β̂1/σ̂(β̂1) is compared to the t distribution with k− 2 df to obtain a P -value.

Usually the test is assessed at the 10% level of significance because of the usually

small number of studies in a meta-analysis.

More sophisticated methods for adjusting the meta-analysis for publication bias

have been developed using weighted distribution theory (Patil and Rao, 1977) and a

Bayesian data augmentation approach (Givens, Smith, and Tweedie, 1997). These

methods lead to a much more complicated analysis and are omitted. We also refer to

Iyengar and Greenhouse (1988) for some related results.



CHAPTER 14

RECOVERY OF INTERBLOCK

INFORMATION

In this chapter we provide a different kind of application of meta-analysis which arises

in the context of analysis of data obtained from specially designed experiments.

In block designs with fixed treatment effects and no interaction, it is a well-known

(and an easily verifiable) fact that the usual least-squares estimator of the treatment

effects, computed assuming that the block effects are fixed, continues to provide an

unbiased estimator of the treatment effects even when the block effects are random.

This least-squares estimator of the treatment effects is referred to as the intrablock

estimator since it is based on contrasts among the observations within the blocks,

thereby eliminating the block effects. Similarly, the usual F test (known as the

intrablock F test) can always be used to test the equality of the treatment effects ir-

respective of whether the block effects are fixed effects or random effects. However,

when the block effects are random as opposed to being fixed and are independently

and identically distributed as normal, additional information is available for inference

concerning the treatment effects. Such information is referred to as interblock infor-

mation and this information is based on the sum of the observations in each block.

An important problem in this context is that of suitably combining the intrablock and

interblock information to obtain a combined estimator of the treatment effects or to

obtain a combined test for the equality of the treatment effects. Such a problem of

Statistical Meta-Analysis with Applications. By Joachim Hartung, Guido Knapp, Bimal K. Sinha
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obtaining a combined estimator was first addressed by Yates (1939, 1940) for certain

special designs and later by Rao (1947) for general incomplete block designs. Since

then, there has been considerable research activity on the problem of combining the

intrablock and interblock information about the treatment effects. We refer to Shah

(1975, 1992) for a review of these results. This problem is very much in the spirit of

statistical meta-analysis.

In spite of the fairly extensive literature on the problem of obtaining a combined

estimator, the problem of deriving a combined test has received very little attention.

An obvious way of combining the intrablock and interblockF tests is by using Fisher’s

procedure described in Chapter 3, namely, by combining the two individualP -values

via the sum of the log P -values multiplied by the factor −2. The null distribution

of the statistic so obtained is a chi-squared distribution with 4 degrees of freedom,

since the individualP -values are independent. Thus the combined test is very easy to

implement. However, it is obvious that this procedure of combiningP -values ignores

the underlying structure of the problem.

Some tests that do take into account the underlying structure of the problem are

proposed in Feingold (1985, 1988). However, Feingold’s tests are not exact and are

applicable only for testing whether a single contrast among the treatment effects is

zero. The first satisfactory solution to the problem of combining the intrablock and

interblock F tests appears to be due to Cohen and Sackrowitz (1989). These authors

derived a simple and exact combined test for balanced incomplete block designs

(BIBDs). Through simulation, they also showed that their test was superior to the

usual intrablock F test. Their results were generalized and extended by Mathew,

Sinha, and Zhou (1993) and Zhou and Mathew (1993) by proposing and comparing

a variety of exact tests and also by considering designs other than BIBDs.

It turns out that the problem of combining interblock and intrablock F tests also

arises in random effects models, that is, when, in addition to the block effects, the

treatment effects are also independent identically distributed normal random vari-

ables, distributed independently of the block effects and the experimental error terms,

and the problem is to test the significance of the treatment variance component. We

provide a brief description of some of these results in this chapter and refer to the

excellent textbook by Khuri, Mathew, and Sinha (1998) for details. A technical tool

used in this chapter is invariance.

14.1 NOTATION AND TEST STATISTICS

Consider a block design for comparing v treatments in b blocks of k plots each and

let yij denote the observation from the ith plot in the jth block. When the blocks and

treatments do not interact, which is the set-up we are considering in this chapter, we

have the following two-way classification model for the observations yij ’s:

yij = µ+

v∑

s=1

δs
ijτs + βj + eij , i = 1, 2, . . . , k; j = 1, 2, . . . , b, (14.1)
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where µ is a general mean, τs is the effect due to the sth treatment, βj is the effect

due to the jth block, eij is the experimental error term, and δs
ij takes the value 1

if the sth treatment occurs in the ith plot of the jth block and 0 otherwise. Writ-

ing y = (y11, . . . , y1k, y21, . . . , y2k, . . . , yb1, . . . , ybk)′, τ = (τ1, . . . , τv)′, and β =

(β1, . . . , βb)
′, model (14.1) can be written as

y = µ1bk + X1τ + (Ib ⊗ 1k)β + e, (14.2)

where e is defined similarly to y, X1 is an appropriate design matrix (with the δs
ij’s

as entries), and ⊗ denotes Kronecker product. We assume that τ is a vector of fixed

effects satisfying
∑v

s=1 τs = 0, β is a vector of random effects, and β and e are

independently distributed with

β ∼ N
(
0, σ2

βIb

)
and e ∼ N

(
0, σ2

eIbk

)
. (14.3)

We now give the expressions for certain estimators and sums of squares under

model (14.1), where assumption (14.3) is satisfied. Derivations of these quantities

are omitted here, since they are available in standard books on analysis of variance.

Let nsj =
∑k

i=1 δ
s
ij . Then nsj is clearly the number of times the sth treatment

occurs in the jth block and N = (nsj) is the v × b incidence matrix of the design. It

is readily verified that

N = X ′
1(Ib ⊗ 1k). (14.4)

LetTs andBj denote the sum of the observations corresponding to the sth treatment

and the jth block, respectively. Write T = (T1, . . . , Tv)
′ and B =(B1, . . . , Bb)

′.

Then

q1 = T − 1

k
NB (14.5)

is referred to as the vector of adjusted treatment totals. Let rs be the number of times

the sth treatment occurs in the design and define

C1 = diag(r1, . . . , rv) − 1

k
NN ′. (14.6)

Then

q1 ∼ N(C1τ , σ
2
eC1). (14.7)

The random vector q1 is an intrablock quantity, since each component of q1 can

be written as a linear combination of contrasts among observations within blocks.

When the τi’s are fixed effects, the estimator of τ based on q1 is referred to as its

intrablock estimator. It is well known that for the estimability of all the treatment

contrasts based on intrablock information, we must have rank(C1) = v − 1. We

assume that this rank condition holds, since this condition is also necessary in order

that we can test the equality of all the treatment effects. If s21 denotes the intrablock

error sum of squares [i.e., the error sum of squares based on model (14.1) when β is

a vector of fixed effects], we then have

s21 ∼ σ2χ2
bk−b−v+1. (14.8)
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Let

F1 =
q′

1C
−
1 q1/(v − 1)

s21/(bk − b− v + 1)
. (14.9)

Then F1 is the intrablock F ratio for testing the equality of the treatment effects.

Recall that for any matrix A, A− denotes a generalized inverse.

From model (14.1) we get the following model forBj , the sum of the observations

from the jth block,

Bj = kµ+

v∑

s=1

nsjτs + gj , (14.10)

where gj = kβj +
∑k

i=1 eij . Writing g = (g1, g2, . . . , gb)
′, Eq. (14.10) can be

expressed as

B = kµ1b + N ′τ + g (14.11)

with

g ∼ N
(
0, k (k σ2

β + σ2
e)Ib

)
. (14.12)

Interblock information is the information regarding the treatment effects that can

be obtained using B based on model (14.11). It is easy to verify that under the

distributional assumption (14.3), B is distributed independently of q1 and s21. Define

q2 = N

(
Ib −

1

b
1b1

′
b

)
B, C2 = N

(
Ib −

1

b
1b1

′
b

)
N ′. (14.13)

Then,

q2 ∼ N
(
C2τ , k(kσ

2
β + σ2

e)C2

)
. (14.14)

In order to be able to estimate all the treatment contrasts using B, we need the

condition rank(C2) = v − 1, which will be assumed in this chapter. Note that this

condition implies b ≥ v. If s22 is the error sum of squares based on model (14.11),

then

s22 ∼ k(kσ2
β + σ2

e)χ2
b−v. (14.15)

Let

F2 =
q′

2C
−
2 q2/(v − 1)

s22/(b− v)
. (14.16)

ThenF2 is referred to as the interblockF ratio for testing the equality of the treatment

effects. Note that when b = v, s22 and the F ratio F2 are nonexistent, even though the

treatment contrasts can be estimated using q2 in Eq. (14.13). Our meta-analysis in this

section will be based on the quantities q1, s21, q2, and s22 having the distributions as

specified, respectively, in Eqs. (14.7), (14.8), (14.14), and (14.15). These quantities

are all independently distributed. Note that in order to obtain the expressions for

the above quantities and to arrive at their distributions, we have explicitly used the

assumption of equal block sizes.

Assuming that rank(C1) = rank(C2) = v − 1 and b > v, the problem we shall

address is that of combining theF tests based onF1 andF2 in order to test the equality

of the treatment effects. It will also be of interest to see whether q2 can be used in
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this testing problem when b = v, that is, when s22 and F2 are nonexistent. When the

block design is a BIBD, this problem is analyzed in detail in Section 14.2 and we

have derived and compared several tests.

We refer to Khuri, Mathew, and Sinha (1998) for related results for a general

incomplete block design with equal block sizes and also for the situation when the

treatment effects are random, distributed independently and identically as normal.

14.2 BIBD WITH FIXED TREATMENT EFFECTS

Consider a BIBD with parameters v, b, r, k, and λ, where v, b, and k are as in

the previous section and r and λ, respectively, denote the number of times each

treatment is replicated and the number of blocks in which every pair of treatments

occur together. Using the facts that the incidence matrix N of a BIBD satisfies

NN ′ = (r − λ)Iv + λ1v
′
v and N1b = r1v , the matrices C1 and C2 simplify to

C1 =
λv

k

(
Iv − 1

v
1v1

′
v

)
, C2 = (r − λ)

(
Iv − 1

v
1v1

′
v

)
. (14.17)

Note that C2 is a multiple of C1 and the matrix Iv − (1/v)1v1
′
v that occurs in both

C1 and C2 is a symmetric idempotent matrix of rank v − 1 satisfying
(

Iv − 1

v
1v1

′
v

)
1v = 0.

These facts will be used in the analysis that follows. Let O be any v × v orthogonal

matrix whose last column is the vector (1/
√
v)1v. Then we can write O = [O1 :

(1/
√
v)1v], where O1 is a v× (v− 1) matrix denoting the first v− 1 columns of O.

The orthogonality of O gives O′
1O1 = Iv−1 and O′

11v = 0. Consequently,

O′

(
Iv − 1

v
1v1

′
v

)
O = diag(Iv−1, 0).

Hence

O′C1O =
λv

k
diag(Iv−1, 0), O′C2O = (r − λ)diag(Iv−1, 0). (14.18)

In view of Eq. (14.18), we have

O′q1 ∼ N

[
λv

k
diag(Iv−1, 0) O′τ , σ2

e

λv

k
diag(Iv−1, 0)

]

and

O′q2 ∼ N
[
(r − λ) diag(Iv−1, 0) O′τ , k (k σ2

β + σ2
e) (r − λ) diag(Iv−1, 0)

]
,

where q1 and q2 are as in Eqs. (14.5) and (14.13), respectively. Define

x1 =
k

λv
O′

1q1, x2 =
1

(r − λ)
O′

1q2, τ ∗ = O′
1τ , (14.19)
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and let s21 and s22 be as in Eqs. (14.8) and (14.15), respectively. We then have the

canonical form

x1 ∼N
(
τ ∗, k

λv
σ2

eIv−1

)
, x2 ∼N

(
τ ∗, k

(r − λ)
(kσ2

β + σ2
e)Iv−1

)
,

s21 ∼σ2
e χ

2
bk−b−v+1, s22 ∼ k (kσ2

β + σ2
e) χ2

b−v.
(14.20)

Note that since O′
11v = 0, τ ∗ in model (14.20) is a (v − 1) × 1 vector of treatment

contrasts and the equality of the treatment effects is equivalent to τ ∗ = 0. The F
ratios F1 and F2 in Eqs. (14.9) and (14.16) simplify to

F1 =
[k/(λv)] q′

1q1/(v − 1)

s21/(bk − b − v + 1)
=

(λv/k) x′
1x1/(v − 1)

s21/(bk − b− v + 1)
,

F2 =
[1/(r − λ)] q′

2q2/(v − 1)

s22/(b− v)
=

(r − λ) x′
2x2/(v − 1)

s22/(b− v)
.

Note that if b = v, that is, for a symmetrical BIBD, s22 and F2 are nonexistent. We

shall first consider the case b > v. The situation b = v will be considered later.

14.2.1 Combined tests when b > v

We shall work with the canonical form (14.20) since it is easy to identify a group

that leaves the testing problem invariant. The tests that we shall derive can be easily

expressed in terms of the original variables. In terms of model (14.20), the testing

problem is H0: τ ∗ = 0. Consider the group G = {g = (Γ, c): Γ is a p× p orthogonal

matrix and c is a positive scalar}, whose action on (x1,x2, s
2
1, s

2
2) is given by

g(x1,x2, s
2
1, s

2
2) =

(
cΓx1, cΓx2, c

2s21, c
2s22
)
. (14.21)

It is clear that the testing problem H0: τ ∗ = 0 in model (14.20) is invariant under

the above group action. In order to derive invariant tests, we shall first compute a

maximal invariant statistic. Recall that a maximal invariant statistic, say D, under

the group action (14.21) is a statistic satisfying two conditions: (i) D is invariant

under the group action (14.21) and (ii) any statistic that is invariant under the group

action (14.21) must be a function of D. A maximal invariant parameter is similarly

defined. A maximal invariant statistic and a maximal invariant parameter under the

group action (14.21) are given in the following lemma whose proof is omitted. See

Khuri, Mathew, and Sinha (1998) for details.

Lemma 14.1. Consider model (14.20) and the testing problem H0: τ ∗ = 0. Let

U =
U1

U2
and R =

x′
1x2

‖x1‖‖x2‖
(14.22)

with

U1 =
λv

k
x′

1x1 + s21 and U2 =
1

k

[
(r − λ)x′

2x2 + s22
]
.
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Then a maximal invariant statistic, say D, under group action (14.21) is given by

D = (F1, F2, R, U), (14.23)

where F1 and F2 are the F ratios given in Eq. (14.21) and R and U are given in

Eq. (14.22). Furthermore, a maximal invariant parameter is
[

τ ∗′τ ∗

σ2
e

,
σ2

e + kσ2
β

σ2
e

]
.

Obviously, a maximal invariant statistic can be expressed in other forms using

functions of x1, x2, s21, and s22, different from those in D given in Eq. (14.23). The

reason for expressing the maximal invariant as in Eq. (14.23) is that the tests we shall

describe below are directly in terms of F1, F2, R, and U . Note that underH0: τ ∗ =
0,U1/{(v−1)+(bk−b−v+1)} andU2/{(v−1)+(b−1)} are unbiased estimators

of σ2
e and σ2

e + kσ2
β . This is a property that we shall eventually use. The following

lemma establishes some properties of the quantities F1, F2, R, U1, and U2. Again,

its proof is omitted. See Khuri, Mathew, and Sinha (1998) for details.

Lemma 14.2. Let F1, F2, R, U1, and U2 be as in Eqs. (14.21) and (14.22).

Then, under H0: τ ∗ = 0,

(a) U1 and U2 are complete and sufficient for σ2
e and σ2

β and

(b) F1, F2, R, U1, and U2 are mutually independent.

The statistic R defined in Eq. (14.22), which is a part of the maximal invariant

statisticD in Eq. (14.23), plays a major role in some of the tests that we shall propose

below. The reason for this is that the test that rejects H0: τ ∗ = 0 for large values

of R is a valid and meaningful one-sided test. This is implied by the properties

E(R|H0 : τ ∗ = 0) = 0 and E(R|H1 : τ ∗ 6= 0) > 0. The first property follows

trivially from the definition of R in Eq. (14.22) since x1 and x2, and hence R, are

distributed symmetrically around zero under H0: τ ∗ = 0. For a proof of the second

property, see Khuri, Mathew, and Sinha (1998). From the definition of R, it is also

clear that the null distribution ofR is the same as that of the ordinary product moment

correlation under independence in samples of sizes v − 1 from a bivariate normal

population with mean zero. Recall that under H0: τ ∗ = 0, R is independent of F1

and F2 (see Lemma 14.2). Thus there are three independent tests, one each based

on F1, F2, and R, for testing H0: τ ∗ = 0 in model (14.20). We shall now explore

various methods for combining these tests.

Fisher’s (1932) idea of combining independent tests is to suitably combine the

P -values of the tests; see Chapter 3.

Let P1, P2, and P3 denote the P -values of the tests that reject H0: τ ∗ = 0 for

large values of F1, F2, and R. Define

Zi = − lnPi (i = 1, 2, 3), Z =

2∑

i=1

Zi, Z∗ =

3∑

i=1

Zi. (14.24)

Since we reject H0: τ ∗ = 0 for small values of the Pi’s, large values of Z and Z∗

indicate evidence againstH0. Furthermore, using the fact that Pi’s have independent
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uniform distributions underH0, it can be easily shown that, underH0, 2Z has a chi-

squared distribution with 4 degrees of freedom and 2Z∗ has a chi-squared distribution

with 6 degrees of freedom. Here,Z andZ∗ are the test statistics resulting from Fisher’s

idea of combining tests. We thus have the following rejection regions Φ1 and Φ2 of

the size α tests based on Z and Z∗:

Φ1 : 2Z > χ2
4,α, Φ2 : 2Z∗ > χ2

6,α, (14.25)

whereχ2
m,α is the upperα cut-off point of the chi-squared distribution withm df. The

test based on Φ1 combines those based on F1 and F2; the one based on Φ2 combines

those based on F1, F2, and R.

A drawback of the tests based on Φ1 and Φ2 is that they put equal weights to the

individual tests. From model (14.20), it is intuitively clear that a combined test should

attach a smaller weight to F2 as σ2
β gets larger. One way of achieving this is by taking

a weighted combination of the Zi’s defined in Eq. (14.24) with weights that suitably

reflect the magnitude of σ2
β relative to σ2

e . Since these variances are unknown, one

has to use estimated weights. Thus, let

θ2 =
σ2

e

k σ2
β + σ2

e

(14.26)

and let θ̂2 be an estimator of θ2. Define

γ1 =
1

1 + θ̂2
, γ2 = 1 − γ1,

δ1 =
1

(1 + θ̂2)2
, δ2 =

θ̂4

(1 + θ̂2)2
, δ3 =

2 θ̂2

(1 + θ̂2)2
, (14.27)

W =
2∑

i=1

γi Zi, W
∗ =

3∑

i=1

δi Zi.

Several choices of θ̂2 are possible for computing the γi’s and the δi’s. Cohen and

Sackrowitz (1989) recommended the following choice for θ̂2:

θ̂2(1) = min

{
U1

U2
, 1

}
. (14.28)

As pointed out earlier, underH0: τ ∗ = 0, unbiased estimators of σ2
e and σ2

e +kσ2
β

are, respectively, given by σ̂2
e = U1/(bk − b) and kσ̂2

β + σ̂2
e = U2/(b− 1). Note that

since θ2 ≤ 1, a natural estimator of θ2 is θ̂2(2) given by

θ̂2(2) = min

{
σ̂2

e

kσ̂2
β + σ̂2

e

, 1

}
. (14.29)

We note that the estimators of θ2 given above are functions of only U1 and U2. This

fact is crucial in the proof of the following theorem, which appears in Khuri, Mathew,

and Sinha (1998).
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Theorem 14.1. Let W and W ∗ be as defined in Eq. (14.27). Furthermore, let θ̂2 be

a function of U1 and U2 defined in Eq. (14.22). Then, Φ3 and Φ4, the critical regions

of the size α tests that rejectH0: τ ∗ = 0 for large values ofW andW ∗, respectively,

are given by

Φ3 :
γ1e

−W/γ1 − γ2e
−W/γ2

2γ1 − 1
≤ α,

Φ4 :

3∑

i=1

δie
−W∗/δi

∏3
j=1;j 6=i(δj − δi)

≤ α.

(14.30)

Note that the test based on the critical region Φ4 combines the tests based on F1,

F2, and R. Another way of combining these three tests was suggested by Cohen

and Sackrowitz (1989). Their test is obtained by modifying Φ3 and is given in the

following theorem.

Theorem 14.2. Consider the critical region Φ5 given by

Φ5 :
γ1e

−W/γ1 − γ2e
−W/γ2

2γ1 − 1
≤ α(1 +R), (14.31)

where R is given in Eq. (14.22) and α satisfies 0 < α < 1/2. Then Φ5 is the critical

region of a size α test for testing H0: τ ∗ = 0 in model (14.20).

14.2.2 Combined tests when b = v

In a BIBD with b = v, that is, a symmetrical BIBD, the interblock error sum of

squares s22 in Eq. (14.15) is nonexistent and, consequently, the interblock F ratio F2

in Eq. (14.16) is not available. The canonical form (14.20) now reduces to

x1 ∼ N

(
τ ∗,

k

λv
σ2

eIv−1

)
, x2 ∼ N

(
τ ∗,

k

(r − λ)
(kσ2

β + σ2
e)Iv−1

)
,

(14.32)

s21 ∼ σ2
eχ

2
vk−2v+1,

where the above quantities are as defined in model (14.20) and we have used b = v in

order to express the degrees of freedom associated with s21. For testing H0: τ ∗ = 0

in model (14.32), we shall now derive and compare several tests. This is similar to

what was done in Section 14.2.1. In this context, an interesting observation is that

even though F2 is nonexistent and an estimator of kσ2
β + σ2

e is not available, x2 can

still be used to test H0 through the quantity R given in Eq. (14.22). The choice of

the following three critical regions should be obvious from our discussion in Section

14.2.1:
Ψ1 : 2Z1 ≥ χ2

α,2,

Ψ2 : 2(Z1 + Z3) ≥ χ2
α,4,

Ψ3 : e−Z1 ≤ α(1 +R),
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where Z1 and Z3 are as given in Eq. (14.24). We should point out that Ψ3 is also

derived in Zhang (1992). There is another additional test Ψ4 which is not discussed

here.

Simulated powers of the four tests Ψ1 − Ψ4 described above appear in Khuri,

Mathew, and Sinha (1998) and are given in Table 14.1 for a symmetrical BIBD with

b = v = 16 and k = 6. The simulations were carried out using α = 0.05 and σ2
e = 1.

The numerical results in Table 14.1 indicate that we should prefer the test Ψ3 in this

testing problem.

Table 14.1 Simulated powers (based on 100,000 simulations) of the tests Ψ1 − Ψ4

for testing the equality of the treatment effects in a symmetrical BIBD

with v = b = 16 and k = 6 (α = 0.05 and σ2
e = 1)

σ2
e + kσ2

β τ ∗′τ ∗ Ψ1 Ψ2 Ψ3 Ψ4

1 0.0 0.0509 0.0502 0.0509 0.0496

0.1 0.0623 0.0613 0.0628 0.0609

0.4 0.0997 0.1008 0.1030 0.1001

1.0 0.1984 0.2070 0.2123 0.2030

4.0 0.7717 0.8073 0.8043 0.7723

2 0.0 0.0509 0.0502 0.0509 0.0496

0.1 0.0623 0.0602 0.0625 0.0596

0.4 0.0997 0.0953 0.1019 0.0927

1.0 0.1984 0.1891 0.2081 0.1783

4.0 0.7717 0.7617 0.7949 0.6799

4 0.0 0.0509 0.0502 0.0509 0.0497

0.1 0.0623 0.0595 0.0623 0.0587

0.4 0.0997 0.0914 0.1011 0.0879

1.0 0.1984 0.1772 0.2050 0.1621

4.0 0.7717 0.7269 0.7869 0.6031

14.2.3 A numerical example

We shall now apply the results in Section 14.2.1 to a numerical example taken from

Lentner and Bishop (1986, pp. 428–429). The example deals with comparing the

effects of six diets on the weight gains of domestic rabbits using litters as blocks. The

litter effects are assumed to be random. The data given in Table 14.2 are the weight

gains (in ounces) for rabbits from 10 litters. In the table, the six treatments, that is,

the six diets, are denoted by ti (i = 1, 2, . . . , 6) and the weight gains are given within

parentheses. Note that the design is a BIBD with b = 10, v = 6, r = 5, k = 3, and

λ = 2.
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Table 14.2 Weight gains (in ounces) of domestic rabbits from 10 litters

based on six diets ti, i = 1, 2, . . . , 6

Litters Treatments and observations

1 t6 (42.2) t2 (32.6) t3 (35.2)

2 t3 (40.9) t1 (40.1) t2 (38.1)

3 t3 (34.6) t6 (34.3) t4 (37.5)

4 t1 (44.9) t5 (40.8) t3 (43.9)

5 t5 (32.0) t3 (40.9) t4 (37.3)

6 t2 (37.3) t6 (42.8) t5 (40.5)

7 t4 (37.9) t1 (45.2) t2 (40.6)

8 t1 (44.0) t5 (38.5) t6 (51.9)

9 t4 (27.5) t2 (30.6) t5 (20.6)

10 t6 (41.7) t4 (42.3) t1 (37.3)

We have applied the test Φ5 in this example; see Eq. (14.31). Direct computations

using the expressions in Section 14.2.1 give

F1 = 3.14, F2 = 0.3172,

P1 = 0.04, P2 = 0.70,

Z1 = 3.2189, Z2 = 0.3425,

U1 = 309.46, U2 = 2796.90, R = 0.25,

θ̂2(1) = min

{
U1

U2
, 1

}
= 0.1106,

γ1 =
1

1 + θ̂2(1)
= 0.90, γ2 = 1 − γ1 = 0.10,

and

W = γ1Z1 + γ2Z2 = 2.93.

From Eq. (14.31), the rejection region Φ5 simplifies to

Φ5 : 0.0433 ≤ α× 1.25,

which holds for α = 0.05. Thus, for α = 0.05, the test based on Φ5 rejects the null

hypothesis of equality of the six treatment effects. We therefore conclude that there

are significant differences among the six diets.





CHAPTER 15

COMBINATION OF POLLS

The basic motivation of this chapter, which is taken from Dasgupta and Sinha (2006),

essentially arises from an attempt to understand various poll results conducted by

several competing agencies and to meaningfully combine such results. As an example,

consider the 1996 U.S. presidential election poll results, which are reproduced in

Table 15.1 and were reported in leading newspapers back then, regarding several

presidential candidates.

Table 15.1 Gallup poll results, August 18–20, 1996

President Robert

Poll Clinton Dole Others

ABC-Washington Post 44 40 16

Newsweek 44 42 14

CNN-Gallup 48 41 11

CBS-New York Times 50 39 11

Statistical Meta-Analysis with Applications. By Joachim Hartung, Guido Knapp, Bimal K. Sinha
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It is clear that depending on which poll one looks at, the conclusion in terms of

margin of variation can be different, sometimes widely. Similar phenomena exist

in various other contexts, such as results of a series of studies comparing different

brands of cereals, TV ratings, ratings of athletes by different judges, and so on. In

studies of this type, one is bound to observe different levels of margin of variation

between two suitably selected leading candidates, and one often wonders how much

variation between polls would be considered as normal, that is, can be attributed to

chance! Clearly, such a question would not arise had there been only one study,

and in such a situation one could apply standard statistical techniques to estimate

the margin of difference as well as test relevant hypotheses about the margin of

difference. In the presence of several independent studies all with a common goal,

what is needed is a data fusion or data synthesis technique, which can be used to

meaningfully combine results of all the studies in order to come up with efficient

inference regarding parameters of interest. It is the purpose of this chapter to describe

appropriate statistical methods to deal with the above problems.

A general mathematical formulation of the problem involving k candidates andm
polls (judges) is given in Section 15.1. This section also provides a solution to the

problem posed earlier, namely, how much variation between two selected candidates

can be expected as normal.

The major issue of combining polls is addressed in Section 15.2. Section 15.2.1

is devoted to estimation of the difference θ between the true proportions P1 and

P2 of two selected candidates. Section 15.2.2 deals with providing a confidence

interval for θ, and lastly Section 15.2.3 is concerned with a test for the significance

of θ. Throughout, whenever applicable, we have discussed relevant asymptotics with

applications.

We have also discussed the special case of two candidates (i.e., k = 2) and noted

that often this leads to amazingly simple results.

15.1 FORMULATION OF THE PROBLEM

Assume that m independent polls are conducted to study the effectiveness of k can-

didates, and the results presented in Table 15.2 are obtained.

Table 15.2 General set-up

Study Subject 1 Subject 2 · · · Subject k Total

1 X11 X12 · · · X1k n1

2 X21 X22 · · · X2k n2

...
...

...
. . .

...
...

m Xm1 Xm2 · · · Xmk nm

Total X.1 X.2 · · · X.k N
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Denoting by Xij the number of votes received by the jth candidate (subject)

in the ith poll (study), so that
∑k

j=1Xij = ni, i = 1, . . . ,m, it follows readily

that Xi1, . . . , Xik follows a multinomial distribution with the parameters ni and

Pi1, . . . , Pik with
∑k

j=1 Pij = 1 for all i. The underlying probability structure

is thus essentially m independent multinomials each with k classes and possibly

unequal sample sizes n1, . . . , nm. Here Pij denotes the chance that a response in the

ith study belongs to the jth subject. Clearly, an unbiased estimate of Pij is provided

by pij = Xij/ni, i = 1, . . . ,m, j = 1, . . . , k. Moreover, it is well known that

E(pij) = Pij ,

Var(pij) =
Pij (1 − Pij)

ni
,

Cov(pij , pij′) = −Pij Pij′

ni
, j 6= j′.

(15.1)

Although there are k candidates, quite often we are interested in only two of them,

namely, the two leading candidates, such as a sitting candidate and a close runner-

up. Assuming without any loss of generality that we are interested in candidates

1 and 2, poll i reports an unbiased estimate of the difference between Pi1 and Pi2

as pi1 − pi2 = Yi, say, for i = 1, . . . ,m. Obviously, Y1, . . . , Ym are independent

but not identically distributed random variables. A measure of variation among the

polls can then be taken as Zm = Y(m) − Y(1), where Y(m) = max(Y1, . . . , Ym) and

Y(1) = min(Y1, . . . , Ym).
We now address the question of how much variation one should expect as normal.

Obviously, any such measure would require us to compute at least the mean and

the variance of Zm. An exact computation of these quantities seems to be extremely

complicated, and we therefore take recourse to asymptotics, which is quite reasonable

since the sample sizes of them polls are typically large in practical applications. We

also assume that P1j = · · ·Pmj = Pj , j = 1, . . . , k, the unknown true values in the

entire population. This is justified because the voters usually have a definite opinion

about the candidates no matter who is conducting the gallup poll, thus making meta-

analysis viable and useful. Using Eq. (15.1), we then get

E(Yi) = P1 − P2, Var(Yi) =
P1 + P2 − (P1 − P2)

2

ni
. (15.2)

Hence, under the assumption of a large sample size, we get
√
ni [Yi − (P1 − P2)] ∼ N

[
0, P1 + P2 − (P1 − P2)

2
]
.

Let us write θ = P1 − P2 and σ2
i =

[
P1 + P2 − (P1 − P2)

2
]
/ni. In view of

independence and uniform integrability of the Yi’s, for m fixed, we readily get

E(Y(m)) ≈ E(Wm), E(Y(1)) ≈ E(W1),

where Wm is a random variable with the cdf

Fm(w) =

m∏

i=1

Φ

(
w − θ

σi

)
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and W1 is a random variable having the cdf

F1(w) = 1 −
m∏

i=1

Φ̄

(
w − θ

σi

)
,

where Φ(·) is the standard normal cdf and Φ̄(·) = 1 − Φ(·). Moreover,

Var(Y(m)) ≈ Var(Wm),

Var(Y(1)) ≈ Var(W1),

Cov(Y(m), Y(1)) ≈ Cov(Wm,W1).

By arguing probabilistically, the above expectations, namely, E(Wm) and E(W1),
can be computed without much difficulty for m up to 4 and are given below.

E(Wm|m = 2) = P1 − P2

+

[(
1

2π

){
P1 + P2 − (P1 − P2)

2
}( 1

n1
+

1

n2

)]1/2

,

E(W1|m = 2) = P1 − P2

−
[(

1

2π

){
P1 + P2 − (P1 − P2)

2
}( 1

n1
+

1

n2

)]1/2

,

E(Wm|m = 3) = P1 − P2 +

[(
1

8π

){
P1 + P2 − (P1 − P2)

2
}]1/2

×
([

1

n1
+

1

n2

]1/2

+

[
1

n1
+

1

n3

]1/2

+

[
1

n2
+

1

n3

]1/2
)
,

E(W1|m = 3) = P1 − P2 −
[(

1

8π

){
P1 + P2 − (P1 − P2)

2
}]1/2

×
([

1

n1
+

1

n2

]1/2

+

[
1

n1
+

1

n3

]1/2

+

[
1

n2
+

1

n3

]1/2
)
,

E(Wm|m = 4) = P1 − P2 +

[(
1

2π

){
P1 + P2 − (P1 − P2)

2
}]1/2

×
∑

i

∑

j 6=i

∑

k<lk,l 6=j,i

√
nj

ni(ni + nj)

×
{

1

4
+

1

2π
sin−1

√
nknl

(ni + nk)(ni + nl)

}
,
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E(W1|m = 4) = P1 − P2 −
[(

1

2π

){
P1 + P2 − (P1 − P2)

2
}]1/2

×
∑

i

∑

j 6=i

∑

k<lk,l 6=j,i

√
nj

ni(ni + nj)

×
{

1

4
+

1

2π
sin−1

√
nknl

(ni + nk)(ni + nl)

}
.

Returning to the original problem,for large sample sizes,we then get the following:

E[Y(m) − Y(1)|m = 2] ≈
[(

2

π

){
P1 + P2 − (P1 − P2)

2
}( 1

n1
+

1

n2

)]1/2

,

E[Y(m) − Y(1)|m = 3] ≈
[(

1

2π

){
P1 + P2 − (P1 − P2)

2
}]1/2

×
([

1

n1
+

1

n2

]1/2

+

[
1

n1
+

1

n3

]1/2

+

[
1

n2
+

1

n3

]1/2
)
,

E[Y(m) − Y(1)|m = 4] ≈
[

2

π

{
P1 + P2 − (P1 − P2)

2
}]1/2

×
∑

i

∑

j 6=i

∑

k<lk,l 6=j,i

√
nj

ni(ni + nj)
(15.3)

×
{

1

4
+

1

2π
sin−1

√
nknl

(ni + nk)(ni + nl)

}
.

Table 15.3 provides the values of E[Y(m) − Y(1)] for m = 2, 3, 4 and for various

values of P1 and P2 when ni’s are equal.

Table 15.3 Values of E[Y(m) − Y(1)]

P1 = 0.40, P1 = 0.50, P1 = 0.60,

m n P2 = 0.35 P2 = 0.40 P2 = 0.30

2 n1 = n2 = 500 0.04514 0.04754 0.04399

n1 = n2 = 600 0.04120 0.04340 0.04016

n1 = n2 = 700 0.03815 0.04018 0.03718

3 n1 = n2 = n3 = 500 0.06770 0.07131 0.06599

n1 = n2 = n3 = 600 0.06180 0.06510 0.06024

n1 = n2 = n3 = 700 0.05722 0.06027 0.05577

4 n1 = n2 = n3 = n4 = 500 0.09027 0.09508 0.08798

n1 = n2 = n3 = n4 = 600 0.08241 0.08679 0.08032

n1 = n2 = n3 = n4 = 700 0.07629 0.08036 0.07436
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Example 15.1. Returning to the data in Table 15.1, we find that m = 4, n1 = n2 =
n3 = n4 = 100, Y1 = 4%, Y2 = 2%, Y3 = 7%, and Y4 = 11% so that Y(4) = 11%
and Y(1) = 2%, giving Y(4) − Y(1) = 9%. To check if this amount of variation

between polls is normal, we note from Eq. (15.3) that E[Y(4) − Y(1)] ≈ 0.2133 when

P1 + P2 = 0.9, P1 − P2 = 0.08. Thus we can conclude that, under this scenario,

what we have observed can be treated as below normal. Again, if P1 +P2 = 0.9 and

P1−P2 = 0.4, then E[Y(4)−Y(1)] ≈ 0.1941, which again suggests that the observed

difference can be regarded as below normal. On the other hand, if P1 = 0.95 and

P2 = 0.05, then E[Y(4) − Y(1)] ≈ 0.098, implying that the observed difference can

be taken as normal.

Assume k = 2 so that P1 + P2 = 1. In this case, it is interesting to observe that

E(Y(m) − Y(1)) is a maximum when P1 = P2, and the above formulas simplify to

the following:

E[Y(m) − Y(1)|m = 2] =

[(
2

π

)(
1

n1
+

1

n2

)]1/2

,

E[Y(m) − Y(1)|m = 3] =

[(
1

2π

)]1/2
([

1

n1
+

1

n2

]1/2

+

[
1

n1
+

1

n3

]1/2

+

[
1

n2
+

1

n3

]1/2
)
,

E[Y(m) − Y(1)|m = 4] =

[
2

π

]1/2∑

i

∑

j 6=i

∑

k<lk,l 6=j,i

√
nj

ni(ni + nj)

×
{

1

4
+

1

2π
sin−1

√
nknl

(ni + nk)(ni + nl)

}
.

15.2 META-ANALYSIS OF POLLS

We now describe various meta-analysis procedures to estimate θ, provide a confidence

interval for θ, and test hypotheses about θ.

15.2.1 Estimation of θ

In this section we discuss the important issue of how to combine the results of in-

dependent polls to arrive at some meaningful conclusions. To fix ideas, referring to

Table 15.2, we address the problem of combining independent estimates pi1 − pi2 of

θ = P1 − P2 based on a sample of size ni for i = 1, . . . ,m. As already noted, we

have assumed that the differencesPi1−Pi2 are the same for all i, and the parameter θ
stands for the common population difference. Basically, there are two standard ways

of combining the (pi1 − pi2)’s to arrive at a pooled estimate of θ. The first, popularly
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known as the commentators’s estimate, is given by

θ̂C =

m∑

i=1

pi1 − pi2

m
, (15.4)

while the second, which is essentially the uniformly minimum variance unbiased

estimate (UMVUE) and also the maximum likelihood estimate (MLE) based on all

the data, is given by

θ̂MLE =

∑m
i=1 ni(pi1 − pi2)∑m

i=1 ni
. (15.5)

It may be noted that the two estimates θ̂C and θ̂MLE coincide when the sample sizes

are all equal. Also, the computation of θ̂C does not directly require knowledge of the

sample sizes and so can be readily used (by the commentators!). Using Eq. (15.2)

and independence of the m studies, we get

E(θ̂C) = θ, Var(θ̂C) =
(P1 + P2 − θ2)(

∑m
i=1 1/ni)

m2
(15.6)

and

E(θ̂MLE) = θ, Var(θ̂MLE) =
P1 + P2 − θ2∑m

i=1 ni
. (15.7)

It is therefore easy to verify that the efficiency (E) of θ̂C with respect to θ̂MLE, as

measured by the ratio of their variances, is given by

E =
m2

(
∑m

i=1 ni)(
∑m

i=1 1/ni)
, (15.8)

which is always less than 1 by the well-known arithmetic mean–harmonic mean

(AM-HM) inequality. Hence the MLE θ̂MLE is always preferred to θ̂C .

For large m, by the strong law of large numbers (SLLN), one can approximateE
by E ≈ 1/[E(n)E(1/n)]. Thus, assuming that ni is uniform over [a, b], we readily

getE = [2(b−a)]/[(a+b)(ln b− ln a)]. In particular, choosing [a, b] = [675, 1200],
we getE ≈ 0.97, which is very high. Table 15.4 provides values ofE form = 2, 3, 4
and various values of ni.

Table 15.4 Values of E

m n E

2 n1 = 500, n2 = 600 0.9917

3 n1 = 400, n2 = 500, n3 = 600 0.9730

4 n1 = 300, n2 = 400, n3 = 500, n4 = 600 0.9357
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15.2.2 Confidence interval for θ

A more challenging and informative answer to provide in this context is a confidence

interval for θ. This can be done on the basis of one of the following two point estimates

of θ:

d̄ = θ̂C =

m∑

i=1

pi1 − pi2

m
(15.9)

and

d̂ = θ̂MLE =

∑m
i=1 ni(pi1 − pi2)∑m

i=1 ni
. (15.10)

The exact distributions of the above two estimates again are quite difficult, and

asymptotics seem to be the only recourse. One can think of two kinds of asymptotics

in this context: (i) m fixed and each ni tends to ∞ and (ii) each ni is taken as fixed

while m tends to ∞. It turns out, however, that under either type of asymptotic, the

same result holds, and we get [see Eqs. (15.6) and (15.7)],

m(d̄− θ)√∑m
i=1 1/ni

∼ N
[
0, P1 + P2 − (P1 − P2)

2
]

(15.11)

and

(d̂− θ)

√√√√
m∑

i=1

ni ∼ N
[
0, P1 + P2 − (P1 − P2)

2
]
. (15.12)

It should be noted that the use of d̄ for inference purposes for θ requires that we

know the sample sizes ni’s (just as for the use of d̂) although computation of d̄ does

not require any direct knowledge of the sample sizes. From Eqs. (15.11) and (15.12),

we find that P1 + P2 appears as a nuisance parameter for drawing inference about

P1−P2 unless k = 2, in which case P1 +P2 = 1. For k = 2, a two-sided confidence

interval for θ based on d̂ is easily obtained from the probability statement:

1 − α = Pr

(
|d̂− θ| < zα/2

√
1 − θ2∑m

i=1 ni

)
, (15.13)

where 1 − α is the level of confidence and zα/2 is the upper α/2 cut-off point from

a standard normal distribution. A straightforward computation yields the confidence

bounds of θ as

LB =
Nd̂− zα/2

[
N + z2

α/2 −Nd̂2
]1/2

N + z2
α/2

,

UB =
Nd̂+ zα/2

[
N + z2

α/2 −Nd̂2
]1/2

N + z2
α/2

,
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whereN =
∑m

i=1 ni. Analogously, for k = 2, a two-sided confidence interval for θ
based on d̄ is obtained from the probability statement:

1 − α = Pr


 m|d̄− θ| < zα/2

√√√√(1 − θ2)

m∑

i=1

1

ni


 . (15.14)

This yields the confidence bounds of θ as

LB =
d̄ m2N∗ − zα/2

[
z2

α/2 +m2N∗ −m2N∗(d̄)2
]1/2

m2N∗ + z2
α/2

,

UB =
d̄ m2N∗ + zα/2

[
z2

α/2 +m2N∗ −m2N∗(d̄)2
]1/2

m2N∗ + z2
α/2

,

where N∗ = 1/[
∑m

i=1 1/ni].

Example 15.2. For the polling data in Table 15.1, we compute

d̂ =
186 − 162

400
= 0.06.

Taking α = 0.05 so that zα/2 = 1.96, we find that

LB = −0.038 and UB = 0.157.

Hence, a 95% confidence interval for θ based on d̂ is given by −0.038 < θ < 0.157.

Of course, in this data set, d̂ = d̄, so that the two methods provide identical confidence

intervals. Finally, since this interval contains 0, we accept the null hypothesis H0 :
θ = 0.

For k > 2, since P1 + P2 < 1, we get the same inequality as above, given in

Eqs. (15.13) and (15.14), with confidence level≥ 1−α. Of course, any known upper

bound η of P1 + P2 can also be used. Alternatively, instead of replacing P1 +P2 by

an upper bound, we can estimate it based on the data by p1 + p2, where

p1 =

∑m
i=1 ni pi1∑m

i=1 ni
, p2 =

∑m
i=1 ni pi2∑m

i=1 ni
.

Then, in large samples, by Slutsky’s theorem (see Rao, 1973)

m[(d̄− θ)]

[(
∑m

i=1 1/ni)(p1 + p2 − θ2)]
1/2

∼ N(0, 1)

and
(d̂− θ)

√∑m
i=1 ni

(p1 + p2 − θ2)
1/2

∼ N(0, 1).
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The above two results can be readily used to provide an approximate 100(1−α)%
confidence interval for θ. These are given below:

LB =
Nd̂− zα/2

[
(p1 + p2)(N + z2

α/2) −Nd̂2
]1/2

N + z2
α/2

,

UB =
Nd̂+ zα/2

[
(p1 + p2)(N + z2

α/2) −Nd̂2
]1/2

N + z2
α/2

and

LB =
d̄ m2N∗ − zα/2

[
(p1 + p2)(z

2
α/2 +m2N∗) −m2N∗(d̄)2

]1/2

m2N∗ + z2
α/2

,

(15.15)

UB =
d̄ m2N∗ + zα/2

[
(p1 + p2)(z

2
α/2 +m2N∗) −m2N∗(d̄)2

]1/2

m2N∗ + z2
α/2

.

Obviously, one can also use the variance-stabilizing transformation in the above two

cases.

Example 15.3. For the data in Table 15.1, we compute p1 = 186/400 = 0.465 and

p2 = 162/400 = 0.405, and hence, using interval (15.15), we readily obtain the 95%
confidence interval for θ as [−0.031, 0.150].

15.2.3 Hypothesis testing for θ

We now discuss the problem of hypothesis testing about the difference θ = P1 − P2

based on all the data given in Table 15.2. Let us consider the problem of testing

H0 : θ ≤ δ versus H1 : θ > δ,

where δ ≥ 0 is a given constant. Clearly, for k = 2, this is a trivial problem of testing

hypotheses about a single binomial proportion and is well known. In the following,

we deal with the case when k > 2.

One can consider two classical tests in this context, namely, an intuitive test which

rejectsH0 when p1−p2, an estimate of θ, is large, and the likelihood ratio test (LRT),

which rejects H0 when

λ =
supθ≤δ P

X.1

1 · · ·PX.k

k

supunrestricted P
X.1

1 · · ·PX.k

k

is small. As to the choice of p1 − p2, we can choose either d̄ or d̂, described in

Eqs. (15.9) and (15.10), respectively. In any event, the intuitive test can be carried
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out using standard asymptotic theory and by suitably standardizing p1 − p2 so that

the test rejects H0 when p1 − p2 > c, where c satisfies

α = sup
θ≤δ

Pr

(
N∗∗{(p1 − p2) − θ}√

P1 + P2 − θ2
>

N∗∗(c− θ)√
P1 + P2 − θ2

)

= sup
θ≤δ

Pr

(
N(0, 1) >

N∗∗(c− θ)√
P1 + P2 − θ2

)
,

whereN∗∗ is a suitable normalizing constant. In the above,α is the level of the test. It

can be shown that the supremum of the above probability occurs whenP1 = (1+δ)/2,

P2 = (1 − δ)/2, so that the above equation reduces to

α = Pr

(
N(0, 1) >

N∗∗(c− δ)√
1 − δ2

)
.

Hence, c is readily obtained as

c = δ +
zα

(
1 − δ2

)1/2

N∗∗
. (15.16)

It may be noted from Eqs. (15.11) and (15.12) that when d̄ is used in place of

p1 − p2, we take N∗∗ = m[N∗]1/2, while if d̂ is used in place of p1 − p2, we take

N∗∗ = N1/2. Recall that N =
∑m

i=1 ni and N∗ = 1/[
∑m

i=1 1/ni].

Example 15.4. For the data in Table 15.1, to test

H0 : P1 − P2 ≤ 0 versus H1 : P1 − P2 > 0

at level 0.05, note from Eq. (15.16) that c= 1.64/N∗∗. Using d̂ = 0.06 andN = 400,

we get N∗∗ = 20 so that c = 0.082. We therefore accept the null hypothesis H0.

The LRT, on the other hand, is in general highly nontrivial because of the compu-

tations involved in the numerator of λ, and we do not pursue it here.





CHAPTER 16

VOTE COUNTING PROCEDURES

We now describe the method of vote counting procedures which is used when we

have scanty or incomplete information from the studies to be combined for statistical

meta-analysis. This chapter, which contains standard materials on this topic, is mostly

based on Hedges and Olkin (1985) and Cooper and Hedges (1994). Some new

results are also added at the end. The nature of data from primary research sources

which are available to a meta-analyst generally falls into three broad categories: (i)

complete information (e.g., raw data, summary statistics) that can be used to calculate

relevant effect size estimates such as means, proportions, correlations, and test statistic

values; (ii) results of hypothesis tests for population effect sizes about statistically

significant or nonsignificant relations; and (iii) information about the direction of

relevant outcomes (i.e., conclusions of significant tests) without their actual values

(i.e., without the actual values of the test statistics).

Vote counting procedures are useful for the second and third types of data, that is,

when complete information about the results of primary studies are not available in

the sense that effect size estimates cannot be calculated. In such situations often the

information from a primary source is in the form of a report of the decision obtained

from a significance test (i.e., significant positive relation or nonsignificant positive

relation) or in the form of a direction (positive or negative) of the effect without regard
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to its statistical significance. In other words, all is known is whether a test statistic

exceeds a certain critical value at a given significance level (such as α∗ = 0.05) or

if an estimated effect size is positive or negative, which amounts to the observation

that the test statistic exceeds the special critical value at significance level α∗ = 0.5.

Actual values of the test statistics are not available.

To fix ideas, recall that often a meta-analyst is interested in determining whether

a relation exists between an independent variable and a dependent variable for each

study, that is, whether the effect size is zero for each study. LetT1, . . . , Tk be indepen-

dent estimates from k studies of the corresponding population effect sizes θ1, . . . , θk

(i.e., difference of two means, difference/ratio of two proportions, difference of two

correlations, or z-values). Under the assumption that the population effect sizes are

equal, that is, θ1 = · · · = θk = θ, the appropriate null and alternative hypotheses are

H0 : θ = 0 (no relation) against H1 : θ > 0 (relation exists). The test rejects H0 if

an estimate T of the common effect size θ, when standardized, exceeds the one-sided

critical value ψα. Typically, in large samples, one invokes the large-sample approx-

imation of the distribution of T , resulting in the normal distribution of T , and we

can then use ψα = zα, the cut-off point from a standard normal distribution. On the

other hand, if a 100(1 − α)% level confidence interval for θ is desired, it is usually

provided by

T − ψα/2 σ̂(T ) ≤ θ ≤ T + ψα/2 σ̂(T ),

where σ̂(T ) is the (estimated, if necessary) standard error of T . Quite generally, the

standard error σ(θ) of T will be a function of θ and can be estimated by σ̂(T ), and a

normal approximation can be used in large samples. We refer to Chapter 4 for details.

When the individual estimates T1, . . . , Tk as well as their (estimated) standard

errors σ̂(T1), . . . , σ̂(Tk) are available, the solutions to these testing and confidence

interval problems are trivial (as discussed in previous lectures). However, the essential

feature of a vote counting procedure is that the values of T1, . . . , Tk are not observed,

and hence none of the estimated standard errors of the Ti’s are available. What is

known to us is not the exact values of the Ti’s, but just the number of them which are

positive or how many of them exceed the one-sided critical value ψα∗ . The question

then arises if we can test H0 : θ = 0 or estimate the common effect size θ based on

just this very incomplete information.

The sign test, which is the oldest of all nonparametric tests, can be used to test the

hypothesis that the effect sizes from a collection of k independent studies are all zero

when only the signs of estimated effect sizes from the primary sources are known. If

the population effect sizes are all zero, the probability of getting a positive result for

the estimated effect size is 0.5. If, on the other hand, the treatment has an effect, the

probability of getting a positive result for the estimated effect size is greater than 0.5.

Hence, the appropriate null and alternative hypotheses can be described as

H0 : π = 0.5 versus H1 : π > 0.5, (16.1)

where π is the probability of a positive effect size in the population. The test can

be carried out in the usual fashion based on a binomial distribution and rejects H0 if

X/k exceeds the desired level of significance, where X is the number of studies out

of a total of k studies with positive estimated effect sizes.
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Example 16.1. Suppose that a meta-analyst finds exactly 10 positive results in 15
independent studies. The estimate of π is p = 10/15 = 0.67, and the corresponding

tail area from the binomial table is 0.1509. Thus, we would fail to reject H0 at the

0.05 overall significance level or even at the 0.10 overall significance level. On the

other hand, if exactly 12 of the 15 studies had positive results, the tail area would

become 0.0176, and we would reject H0 at the 0.05 overall level of significance.

The main criticism against the sign test is that it does not take into account the

sample sizes of the different studies,which are likely to be unequal,and also it does not

provide an estimate of the underlying common effect size θ or provide a confidence

interval for the common effect size. Under the simplifying assumption that each

study in a collection of k independent studies has an identical sample size n, we now

describe a procedure to establish a point estimate as well as a confidence interval for

the common effect size θ based on a knowledge of the number of positive results. If

a study involves an experimental (E) as well as a control (C) group, we assume that

the sample sizes for each such group are the same, that is, nE
i = nC

i = n for all k
studies. In case k studies have different sample sizes, we may use an average value,

namely,

n̄ =

[√
n1 + · · · + √

nk

k

]2
. (16.2)

Based on a knowledge of the signs of Ti’s, an unbiased estimate of π is given by

p = X/k, where X is the number of positive Ti’s. It is also well known that

a 100(1 − α)% level approximate confidence interval for π (based on the normal

approximation) is given by

[πL, πU ] =

[
p− zα/2

√
p(1 − p)

k
, p+ zα/2

√
p(1 − p)

k

]
, (16.3)

where zα/2 is the two-sided critical value of the standard normal distribution. A

second method uses the fact that

z2 =
k(p− π)2

π(1 − π)

has an approximate chi-square distribution with 1 df, which leads to the two-sided

interval

[πL, πU ] =

[
(2p+ b) −

√
b2 + 4bp(1 − p)

2(1 + b)
,
(2p+ b) +

√
b2 + 4bp(1 − p)

2(1 + b)

]
,

(16.4)

where b = χ2
1,α/k and χ2

1,α is the upper 100α% point of the chi-square distribution

with 1 df.
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Once a two-sided confidence interval [πL, πU ] has been obtained forπ, a two-sided

confidence interval for θ can be constructed by using the relation

π = Pr[T > ψα]

= Pr

[
T − θ

Sθ
>
ψα − θ

Sθ

]

≈ 1 − Φ

(
ψα − θ

Sθ

)

where Φ(·) is the standard normal cdf. Solving the above equation yields

θ = ψα − S(θ)Φ−1(1 − π), (16.5)

which provides a relation between the effect size θ and the population proportion π
of a positive effect size. A point estimate of θ is then obtained by replacing π by

p = X/k in the above equation and solving for θ. To obtain a two-sided confidence

interval for θ, we substitute πL and πU for π and solve for the two bounds for θ.

Example 16.2. Let us consider the case when an effect size is measured by the

standardized mean difference given by

θi =
µE

i − µC
i

σi
, i = 1, . . . , k,

whereµE
i is the population mean for the experimental group in the ith study, µC

i is the

population mean for the control group in the ith study,andσi is the population standard

deviation in the ith study, which is assumed to be the same for the experimental and

the control groups. The corresponding estimates Ti’s are given by (Hedges’s g)

Ti =
Ȳ E

i − Ȳ C
i

Si
, i = 1, . . . , k, (16.6)

where Ȳ E
i is the sample mean for the experimental group in the ith study, Ȳ C

i is the

sample mean for the control group in the ith study, and Si is the pooled within-group

sample standard deviation in the ith study. In large samples, the approximate variance

Si(θi) of Ti is given by

σ2(Ti) = Si(θi) ≈
2

n
+
θ2i
4n
,

where n denotes the common sample size for all the studies. Equation (16.5) in this

case then reduces to

θ = ψα −
[

2

n
+
θ2

4n

]
Φ−1(1 − π). (16.7)

Let us consider a real data example from Raudenbush and Bryk (1985). The data are

given in Table 16.1.
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Table 16.1 Studies of the effects of teacher expectancy on pupil IQ

Study nE nC n̄ d

1 77 339 208.0 0.03

2 60 198 129.0 0.12

3 72 72 72.0 −0.14

4 11 22 16.5 1.18

5 11 22 16.5 0.26

6 129 348 238.5 −0.06

7 110 636 373.0 −0.02

8 26 99 62.5 −0.32

9 75 74 74.5 0.27

10 32 32 32.0 0.80

11 22 22 22.0 0.54

12 43 38 40.5 0.18

13 24 24 24.0 −0.02

14 19 32 25.5 0.23

15 80 79 79.5 −0.18

16 72 72 72.0 −0.06

17 65 255 160.0 0.30

18 233 224 228.5 0.07

19 65 67 66.0 −0.07

nE = experimental group sample size, nC = control group sample size,

n̄ = (nE + nC)/2 = mean group sample size.

For this data set, n is approximated as 84, using the mean group sample sizes

n̄ in Eq. (16.2), and the estimate of π based on the proportion of positive results is

p = 11/19 = 0.579. Solving for θ, using ψα = 0, we obtain θ̂ = 0.032, which is the

proposed point estimate of the population effect size. To obtain a 95% confidence

interval for θ, we note that the confidence interval for π based on the Eq. (16.3)

is [0.357, 0.801] and that based on Eq. (16.4) is [0.363, 0.769], which is slightly

narrower. Using these latter values in Eq. (16.7), we find that the 95% confidence

interval for θ is given by [−0.056, 0.121]. Since this confidence interval contains the

value 0, we conclude that we can accept the null hypothesis that the population effect

size is 0 for all the studies.

For the same data set, we can also obtain a point estimate and a confidence interval

for θ based on the proportion of significant positive results. Since 3 of the 19 studies

result in statistically significant values at α = 0.05, with the corresponding value

of ψα = 1.64, our estimate of π is p = 3/19 = 0.158, and this results in the

point estimate of θ as θ̂ = 0.013. Again, the confidence interval for π based on the

normal theory is obtained as [−0.006, 0.322] and based on the chi-square distribution

is given by [0.055, 0.376]. Using the latter bounds and Eq. (16.7), we obtain the 95%
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confidence bounds for θ as [0.032, 0.212]. Since this interval does not contain 0, we

can conclude that the common effect size θ is significantly greater than 0.

Example 16.3. We next consider the situation when both the variables X and Y are

continuous, and a measure of effect size is provided by the correlation coefficient

ρ. Typically, the population correlation coefficients ρ1, . . . , ρk of the k studies are

estimated by the sample correlation coefficients r1, . . . , rk , which represent the θi’s

and the Ti’s, respectively.

It is well known that, in large samples, Var(ri) ≈ (1 − ρ2
i )

2/(n − 1), where n
is the sample size. We thus have all the ingredients to apply formula (16.5) to any

specific problem.

As an example, we consider the data set from Cohen (1983) on validity studies

correlating student ratings of the instruction with student achievement. The relevant

data are given in Table 16.2.

Table 16.2 Validity studies correlating student ratings of the instructor

with student achievement

Study n r Study n r

1 10 0.68 11 36 −0.11

2 20 0.56 12 75 0.27

3 13 0.23 13 33 0.26

4 22 0.64 14 121 0.40

5 28 0.49 15 37 0.49

6 12 −0.04 16 14 0.51

7 12 0.49 17 40 0.40

8 36 0.33 18 16 0.34

9 19 0.58 19 14 0.42

10 12 0.18 20 20 0.16

Suppose we wish to obtain a point estimate and a confidence interval for ρ, the

assumed common population correlation, based on the proportion of positive results.

Obviously, here p = 18/20 = 0.9, and, using Eq. (16.2), n̄ = 26. Taking ψα = 0,

we then get ρ̂ = 0.264 as the point estimate of ρ. The 95% approximate two-sided

confidence interval for ρ based on the normal theory is given by [0.769, 1.031] while

that based on the chi-square theory is obtained as [0.699, 0.972]. Using the latter,

the confidence bounds for ρ turn out as [0.107, 0.381]. Because this interval does

not contain the value 0, we can conclude that there is a positive correlation between

student ratings of the instructor and student achievement.

For the same data set, we can proceed to obtain point estimates and confidence

bounds for ρ based on only significantly positive results. Taking α = 0.05, so that

ψα = 1.64, and noting that p = 12/20 = 0.6, we obtain the point estimate of ρ as

ρ̂ = 0.372. Similarly, using the chi-square-based confidence interval for π, namely,

[0.387, 0.781], the bounds for ρ are obtained as [0.271, 0.464], leading to the same

conclusion.



VOTE COUNTING PROCEDURES 209

We now present a new and exact result pertaining to the estimation of the effect size

θ when the sample sizes are unequal and these are not replaced by an average sample

size! As before, we assume that the effect sizes T1, T2, . . . , Tk are not observed, and

instead we observe Z1, Z2, . . . , Zk, where

Zi =

{
1, Ti > 0,

0, Ti ≤ 0.

Our goal then is to draw inference upon θ using the data Z1, Z2, . . . , Zk. Let

σ2
i (θ, ni) denote the variance of Ti. Note that even though T1, T2, . . . , Tk are not

observed, we typically know how they were computed (i.e., for each i we know

whether Ti is a sample correlation, Cohen’s d, Hedges’s g, Glass’s ∆, etc.) and so we

at least have an approximate expression for σ2
i (θ, ni) for each i. Note that σ2

i (θ, ni)
depends on θ and on ni. NowZ1, Z2, . . . , Zk are independent random variables such

that Zi ∼ Bernoulli(πi), where

πi = Pr[Ti > 0]

= Pr

[
Ti − θ

σi(θ, ni)
>

−θ
σi(θ, ni)

]

= 1 − Pr

[
Ti − θ

σi(θ, ni)
≤ −θ
σi(θ, ni)

]

≈ 1 − Φ

( −θ
σi(θ, ni)

)

and where Φ(·) denotes the standard normal cumulative distribution function. Hence

πi ≈ 1 − Φ

( −θ
σi(θ, ni)

)
. (16.8)

When the ni’s are assumed to be equal (or approximated by an average sample size),

π’s coincide and result in the simplified likelihood. By looking at Eq. (16.8) we

easily note how πi depends on the sample size ni through the standard deviation

σi(θ, ni). Thus if the ni’s are unequal, then the πi’s will also be unequal. Now let

z1, z2, . . . , zk denote the observed values of the random variables Z1, Z2, . . . , Zk.

Then the likelihood function for θ can be written as follows:

k∏

i=1

πzi

i (1 − πi)
(1−zi)

≈
k∏

i=1

[
1 − Φ

( −θ
σi(θ, ni)

)]zi
[
1 −

{
1 − Φ

( −θ
σi(θ, ni)

)}](1−zi)

=

k∏

i=1

[
1 − Φ

( −θ
σi(θ, ni)

)]zi
[
Φ

( −θ
σi(θ, ni)

)](1−zi)

.



210 VOTE COUNTING PROCEDURES

Using the approximate likelihood L(θ) defined as

L(θ) =

k∏

i=1

[
1 − Φ

( −θ
σi(θ, ni)

)]zi
[
Φ

( −θ
σi(θ, ni)

)](1−zi)

, (16.9)

we can then obtain the maximum likelihood estimate of θ.

Example 16.4. To illustrate this procedure we revisit the data in Example 16.3 and

displayed in Table 16.2. Let us pretend that r1, r2, . . . , rk are not observed; instead

we observe Z1, Z2, . . . , Zk, where

Zi =

{
1, ri > 0,

0, ri ≤ 0.

We then use the likelihood function defined in Eq. (16.9) to draw inference upon

ρ based on Z1, Z2, . . . , Zk. Using the expression for L(θ) given in Eq. (16.9) the

likelihood function for ρ can be written as

L(ρ) =

k∏

i=1

[
1 − Φ

( −ρ
σi(ρ, ni)

)]zi
[
Φ

( −ρ
σi(ρ, ni)

)](1−zi)

, (16.10)

where

σ2
i (ρ, ni) ≈

(1 − ρ2)2

ni − 1
. (16.11)

Using a numeric optimization routine we find that for this exampleL(ρ) is maximized

when ρ = 0.2064, which is the maximum likelihood estimate of ρ. It is interesting

to note that this estimate of ρ differs considerably from the earlier value 0.264.

An alternative way to perform the analysis in this example is instead of tak-

ing θ = ρ we take θ = ρ∗ = 1
2 ln {(1 + ρ)/(1 − ρ)}. Then we let Ti = r∗i =

1
2 ln {(1 + ri)/(1 − ri)}. Note that 1

2 ln {(1 + ri)/(1 − ri)} is the well-known variance-

stabilizing transformation of ri. Since r∗i > 0 ⇔ ri > 0, we observe that

Zi =

{
1, r∗i > 0
0, r∗i ≤ 0

}
=

{
1, ri > 0
0, ri ≤ 0

}
.

Following the general expression (16.9), we can then write down the following like-

lihood function for ρ∗:

L(ρ∗) =

k∏

i=1

[
1 − Φ

( −ρ∗
σ∗

i (ρ∗, ni)

)]zi
[
Φ

( −ρ∗
σ∗

i (ρ∗, ni)

)](1−zi)

,

where

σ∗
i (ρ∗, ni) ≈

√
1

ni − 3

and where z1, z2, ..., zk denote the observed values ofZ1, Z2, ..., Zk. Using a numeric

optimization routine we find that for this example L(ρ∗) is maximized when ρ∗ =
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0.2718, implying ρ̂ = 0.2653. It is rather interesting to observe the stern dissimilarity

between the two estimates of ρ (namely, 0.2064 and 0.2653), obtained by using two

approaches based on r and r∗, and the rather strange similarity between the two

values (0.264 and 0.265), obtained by using the exact likelihood based on r∗ and

the approximate likelihood based on r and an average sample size! One wonders if

this remarkable difference vanishes when the sample sizes are large, and here is our

finding. Keeping the observed values of Zi’s the same, and just changing the sample

sizes of the available studies, we have considered three scenarios and in each case

applied the exact method based on r and r∗.

Case (i): n1 = 55, n2 = 60, n3 = 65, . . . , n20 = 150. Here we find that

ρ̂MLE(r) = 0.1158 and ρ̂MLE(r∗) = 0.1315.

Case (ii): n1 = 505, n2 = 510, n3 = 515, . . . , n20 = 600. Here we find that

ρ̂MLE(r) = 0.0520 and ρ̂MLE(r∗) = 0.0549.

Case (iii): n1 = 1005, n2 = 1010, n3 = 1015, . . . , n20 = 1100. In this case of

extreme large sample sizes, we find that

ρ̂MLE(r) = 0.0381 and ρ̂MLE(r∗) = 0.0397.

Looking at the results above it appears that for large sample sizes the methods of

analysis based on r and r∗ give nearly the same results.

We conclude this chapter with the observation that although the procedures de-

scribed above provide quick estimates of an overall effect size along with its estimated

standard error, their uses are quite limited due to the requirement of large sample sizes.

For details, we refer to Hedges and Olkin (1985).





CHAPTER 17

COMPUTATIONAL ASPECTS

In this chapter, we consider various computational aspects of the meta-analytical

methods discussed in this book. First, we describe some methods of extracting sum-

mary statistics from a set of publications relevant for a meta-analysis study. Then,

we indicate how to conduct meta-analysis using existing statistical softwares. For-

tunately, several commercial and freely available meta-analysis softwares are now

available. An overview of these available softwares is given by Sterne, Egger, and

Sutton (2001). Here, we only consider the general and commonly used statistical

softwares SAS and R and indicate how these softwares can be used in applying the

methods described in various previous chapters.

17.1 EXTRACTING SUMMARY STATISTICS

Usually, the different publications do not deliver the same precise information on the

results of trials. The ideal situation would be if each publication reports the estimate

of the effect size, say θ̂, and its estimated standard error, say σ̂(θ̂). Whereas one

can expect that θ̂ will in general be reported, the information on the precision of this

estimate is often given indirectly.

Statistical Meta-Analysis with Applications. By Joachim Hartung, Guido Knapp, Bimal K. Sinha
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Consider the situation in which θ̂ and a 100(1 − α)% confidence interval, say

[θ̂L; θ̂U ], are reported. Assuming that the confidence interval is based on (approxi-

mate) normality, that is,

[θ̂L; θ̂U ] = [θ̂ ± σ̂(θ̂) zα/2], (17.1)

we can extract the information on the estimated standard error by

σ̂(θ̂) =
θ̂U − θ̂L

2 zα/2
. (17.2)

In case only the estimate of the effect size in combination with a one-sided P -value

is reported, we can proceed as follows. Assuming that the calculation of the P -value

is based on the (approximate) normal test statistic θ̂/σ̂(θ̂) and large values of the test

statistic are in favor of the alternative, that is,

P = Pr
(
N(0, 1) >

θ̂

σ̂(θ̂)

∣∣H0

)
, (17.3)

then we can extract the standard error as

σ̂(θ̂) =
θ̂

z1−P
. (17.4)

Given a two-sided P -value and the effect size estimate θ̂, the standard error can be

computed as

σ̂(θ̂) =
|θ̂|

z1−P/2
(17.5)

since in this case

P = 2 Pr
(
N(0, 1) >

|θ̂|
σ̂(θ̂)

∣∣H0

)
. (17.6)

17.2 COMBINING TESTS

In Chapter 3, we presented various methods of combining tests via a combination

of P -values. Given the P -values of the component tests, the methods can be easily

programmed using functions for the cdf and quantiles of beta, chi-square, normal,

and t distributions. Table 17.1 contains a summary of the syntax of the necessary

functions in both software packages.

As an example of the use of R code, let us consider the fiveP -values from Examples

3.1 to 3.5, that is, 0.015, 0.077, 0.025, 0.045, 0.079. We calculate the combined

test statistics and combined P -values of Tippett’s, Stouffer’s (inverse normal), and

Fisher’s methods in the following. In contrast to the examples in Chapter 3, we do

not calculate the critical values but provide the P -values of the combined tests. Given
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Table 17.1 Probability and quantile functions in R and SAS

Distribution R function SAS function

Beta pbeta(x, a, b) cdf(’beta’, x, a, b)

qbeta(prob, a, b) quantile(’beta’, x, a, b)

χ2 pchisq(x, df) cdf(’chisquare’, x, df)

qchisq(prob, df) quantile(’chisquare’, prob, df)

Normal pnorm(x, mean, sd) cdf(’normal’, x, mean, sd)

qnorm(prob, mean, sd) quantile(’normal’, prob, mean, sd)

t pt(x,df) cdf(’t’, x)

qt(prob,df) quantile(’t’, prob)

a significance level of α = 0.05, Tippett’s test fails to reject H0, whereas the other

two combined tests reject H0.

R code for combined test statistics:

> # Data

> pvalues <- c(0.015, 0.077, 0.025, 0.045, 0.079)

> # Number of trials

> k <- length(pvalues)

> # Test statistics

> (tippett <- min(pvalues))

[1] 0.015

> (stouffer <- sum(qnorm(pvalues)) / sqrt(k))

[1] -3.874134

> (fisher <- sum(-2 * log(pvalues)))

[1] 32.18387

> # Alternative calculation of Fisher’s method

> (fisher.2 <- sum(qchisq(1 - pvalues, 2)))

[1] 32.18387

> # P-values of the three tests}

> (pv.tippett <- pbeta(tippett, 1, k))

[1] 0.0727835

> (pv.stouffer <- pnorm(stouffer))

[1] 5.350234e-05

> (pv.fisher <- 1 - pchisq(fisher, 2*k))

[1] 0.0003731391

17.3 GENERALIZED P -VALUES

In Chapters 5 to 7 we used the notion of generalized P -values for exact inference in

some nonstandard testing problems. The determination of a generalized P -value can

often easily be done using Monte Carlo simulation. As an example the R code pre-
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sented below shows how the generalizedP -value can be computed in the homogeneity

testing problem in Example 6.4.

# Below we input the data

k <- 4

y1 <- c(21.4, 13.5, 21.1, 13.3, 18.9, 19.2, 18.3)

y2 <- c(27.3, 22.3, 16.9, 11.3, 26.3, 19.8, 16.2, 25.4)

y3 <- c(18.7, 19.1, 16.4, 15.9, 18.7, 20.1, 17.8)

y4 <- c(19.9, 19.3, 18.7, 20.3, 22.8, 20.8, 20.9, 23.6, 21.2)

# Computing the means

y1_bar <- mean(y1)

y2_bar <- mean(y2)

y3_bar <- mean(y3)

y4_bar <- mean(y4)

# Computing the variances

s1 <- var(y1)

s2 <- var(y2)

s3 <- var(y3)

s4 <- var(y4)

# Defining the sample sizes

n1 <- length(y1)

n2 <- length(y2)

n3 <- length(y3)

n4 <- length(y4)

# Below we run the simulation which computes an approximate value

# of the generalized P-value.

set.seed(20080129)

numSims <- 1000000

U <- rchisq(n=numSims, df=(k-1))

V1 <- rchisq(n=numSims, df=(n1-1))

V2 <- rchisq(n=numSims, df=(n2-1))

V3 <- rchisq(n=numSims, df=(n3-1))

V4 <- rchisq(n=numSims, df=(n4-1))

b1 <- ( n1 / ((n1-1)*s1)) * V1

b2 <- ( n2 / ((n2-1)*s2)) * V2

b3 <- ( n3 / ((n3-1)*s3)) * V3

b4 <- ( n4 / ((n4-1)*s4)) * V4

c1 <- b1*y1_bar + b2*y2_bar + b3*y3_bar + b4*y4_bar

c2 <- b1 + b2 + b3 + b4

term1 <- b1*(y1_bar - c1/c2)^2

term2 <- b2*(y2_bar - c1/c2)^2

term3 <- b3*(y3_bar - c1/c2)^2

term4 <- b4*(y4_bar - c1/c2)^2

( GPValue <- mean(U > (term1 + term2 + term3 + term4)) )

[1] 0.021089
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17.4 COMBINING EFFECT SIZES

The general results for combining effect sizes described in Chapters 4 and 7 can be

obtained by statistical software using weighted least-squares regression. Often, the

general method described in Chapter 4 (fixed effects model) or in Chapter 7 (random

effects model) is referred to as the generic inverse variance method.

Recall that the overall effect size is estimated by

θ̂ =

∑k
i=1 ŵi θ̂i∑k

i=1 ŵi

(17.7)

given k studies with θ̂i the study-specific effect size estimate and ŵi appropriate

nonnegative weights. In the fixed effects model, the weight ŵi = 1/σ̂2(θ̂i) is the

inverse of the within-study variance, and in the random effects model, the weight

ŵi = 1/[σ̂2
a + σ̂2(θ̂i)] is the inverse of the sum of between-study and within-study

variance. The standard 100(1−α)% confidence interval for the overall effect size is

then computed as

θ̂ ± (

k∑

i=1

ŵi)
−1/2 z1−α/2. (17.8)

Whitehead (2002) shows the use of SAS PROC GLM for fitting a weighted least-

squares regression. For k trials, the observed responses are the study estimates, say

θ̂i, i = 1, . . . , k, and there are no explanatory variables, only a constant term. The

weights are the inverse of the estimated variances, saywi = 1/σ̂2(θ̂i). The estimated

intercept of this weighted least-squares regression is the estimate of the common effect

size. However, as Whitehead (2002) noted, the standard error and the test statistics

displayed for the intercept parameter are incorrect for the required model, because

the model assumption is σ2(θ̂) = σ2/wi, where σ2 is to be estimated from the data,

instead of being equal to 1. This will also be the case for other statistical packages.

Van Houwelingen, Arends, and Stijnen (2002) show the use of SAS PROC MIXED

for fitting a weighted least-squares regression. Moreover, they show how to use SAS

PROC MIXED for the meta-analysis in the random effects model, that is, how to

implement the standard method from Section 7.3. However, in the random effects

model, SAS PROC MIXED computes (restricted) maximum likelihood estimates

of the between-trial variance. Other estimates of the between-trial variance, like

the DerSimonian-Laird estimate, are not available. Van Houwelingen, Arends, and

Stijnen (2002) also discuss advanced methods in meta-analysis like multivariate meta-

analysis and meta-regression and the implementation of these methods in SAS PROC

MIXED. A SAS example program is given below.

There are two R packages available in which several meta-analysis methods have

been implemented. The packages rmeta and meta provide methods for simple

fixed and random effects meta-analysis for two-sample comparisons and cumula-

tive meta-analyses and compute summaries and tests for association and heterogene-

ity. In both packages, functions are implemented for conducting a random effects

model meta-analysis with the DerSimonian-Laird estimate as the choice of estimate
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of between-study variance. More or less, the functions of both packages are identical.

Additionally, in rmeta, combining binary data via the Mantel-Haenszel method is

possible, whereas meta provides tests for funnel plot asymmetry or, equivalently,

for publication bias. Both packages provide standard graphics for meta-analysis de-

scribed below and an R example program is given below as well.

17.4.1 Graphics

A graphical representation of the results of a meta-analysis is the confidence interval

plot, sometimes also referred as a forest plot. The confidence interval plot displays a

study-specific estimate and corresponding 100(1−α)% confidence interval for each

study as well as the meta-analytical estimate of the common effect size and corre-

sponding 100(1 − α)% confidence interval. The two above-mentioned R packages

provide functions for drawing confidence interval plots. Also funnel plots (see Chap-

ter 13) for detecting or assessing publication bias can be drawn in both packages.

17.4.2 Sample program in R

Let us demonstrate the use of some functions of the R package meta in this section.

We analyze a data set with continuous outcome using the functions metagen and

metacont. The function metagen can be generally applied to all types of data when

estimates of the effect size and corresponding estimated standard errors are given.

As an example we consider the dentifrice data set from Section 18.3. Part of the

R code for the data set is given below:

> # Data

> # NaF

> n.naf <- c( 134, 175, ..., 679)

> mean.naf <- c(5.96, 4.74, ..., 3.88)

> std.naf <- c(4.24, 4.64, ..., 4.85)

> # SMFP

> n.smfp <- c( 113, 151, ..., 673)

> mean.smfp <- c(6.82, 5.07, ..., 4.37)

> std.smfp <- c(4.72, 5.38, ..., 5.37)

The parameter of interest here is the difference between normal means. In the

programming code below, we first compute the treatment differences NaF − SMFP

with corresponding estimated standard errors:

> # Calculation of effect size estimates and standard errors

> meandiff <- mean.naf - mean.smfp

> std.error <- sqrt(std.naf**2 / n.naf + std.smfp**2 / n.smfp)

Using the R package meta and the function metagen we obtain the following

output:
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> # Loading package meta

> library(meta)

> # Generic function for meta-analysis

> # requires effect size estimates and standard errors

> dentifrice <- metagen(meandiff, std.error)

> print(dentifrice)

95%-CI %W(fixed) %W(random)

1 -0.86 [-1.9882; 0.2682] 2.58 2.58

2 -0.33 [-1.4295; 0.7695] 2.71 2.71

3 -0.47 [-1.1575; 0.2175] 6.94 6.94

4 -0.50 [-0.9922; -0.0078] 13.53 13.53

5 0.28 [-0.7792; 1.3392] 2.92 2.92

6 -0.04 [-0.5793; 0.4993] 11.27 11.27

7 -0.80 [-2.3340; 0.7340] 1.39 1.39

8 -0.19 [-0.4523; 0.0723] 47.65 47.65

9 -0.49 [-1.0356; 0.0556] 11.01 11.01

Number of trials combined: 9

95%-CI z p.value

Fixed effects model -0.2833 [-0.4644; -0.1023] -3.0671 0.0022

Random effects model -0.2833 [-0.4644; -0.1023] -3.0671 0.0022

Quantifying heterogeneity:

tau^2 = 0; H = 1 [1; 1.38]; I^2 = 0% [0%; 47.7%]

Test of heterogeneity:

Q d.f. p.value

5.38 8 0.7162

Method: Inverse variance method

First the study-specific estimates together with corresponding 95% confidence

interval are reported, indicating here that only in study 4 do we observe a significant

result whereas all the other confidence intervals include the value zero. Moreover,

the weight each trial contributes to the overall estimate is given for the fixed effects

as well as for the random effects model. In this example, the estimate of the between-

study variance is zero, called here τ2 = 0, so that the analyses in the fixed effects and

random effects models are identical, hence the weights are identical, too. The overall

estimate is given here as −0.2833 with 95% confidence interval [−0.4644,−0.1023].
The P value for the test that the overall effect size is zero is 0.0022. So, for any

convenient significance level,we reject the null hypothesis that there is no effect. Note

that the confidence interval as well as the P -value is calculated using the standard

large-sample test from Chapter 4. The test of heterogeneity is the large-sample test
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of homogeneity described in Chapter 4, also called Cochran’s homogeneity test; see

also Chapter 6.

Alternatively, we can use the function metacont for analyzing the dentifrice data

set. Using the programming code below, we obtain the same output. The function

metacont can handle the parameters difference of means (called weighted mean dif-

ference here) and standardized difference of means. Moreover, one can directly use

the observed summary statistics; no prior calculation of the effect size and its standard

error is required.

> # Function for meta-analysis of continuous data

> # option sm = "WMD": weighted mean difference

> # option sm = "SMD": standardized mean difference

> dent.alternate <- metacont(n.naf, mean.naf, std.naf,

n.smfp, mean.smfp, std.smfp, sm ="WMD")

> print(dent.alternate)

We omit the repeated presentation of the known output.

Finally, let us consider the graphical representation of the meta-analysis using the

confidence interval plot. The programming code below forces us to show the result

for the fixed effects as well as for the random effects model.

> # Confidence interval plot

> plot(dentifrice, comb.f = TRUE, comb.r=TRUE)

The confidence interval plot is displayed in Figure 17.1. Presented are the point

estimates of the trials with corresponding 95% confidence intervals as well as the

meta-analysis results. The size of the shown point estimates is proportional to the

precision of the estimates.

17.4.3 Sample program in SAS

Van Houwelingen, Arends, and Stijnen (2002) presented some advanced methods of

meta-analysis and also provided a sample SAS program for carrying out fixed effects

and random effects meta-analysis as well as meta-regression. Here we report their

programs with some comments. The example data set is the vaccination example

on the prevention of tuberculosis, which we also already used in our meta-regression

chapter; see also Section 18.8. For illustration purposes we consider the log odds ratio

as the parameter of interest. Possible covariates that may explain the heterogeneity

between the trials are latitude, year of study, and type of allocation. The coding of

the type of allocation is as follows: 1 = random, 2 = alternate, and 3 = systematic.

First, we consider the SAS data step. From the data, we calculate the log odds

ratio with corresponding variance and define the weight variable as the inverse of the

variance.
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Figure 17.1 Confidence interval plot for dentifrice data

DATA bcg;

INPUT trial vd vwd nvd nvwd latitude year allocation;

logor = log(vd/vwd) - log(nvd/nvwd);

est = 1/vd + 1/vwd + 1/nvd + 1/nvwd;

weight = 1/est;

DATALINES;

1 4 119 11 128 44 48 1

2 6 300 29 274 55 49 1

3 3 228 11 209 42 60 1

4 62 13536 248 12619 52 77 1

5 33 5036 47 5761 13 73 2

6 180 1361 372 1079 44 53 2

7 8 2537 10 619 19 73 1

8 505 87886 499 87892 13 80 1

9 29 7470 45 7232 27 68 1

10 17 1699 65 1600 42 61 3

11 186 50448 141 27197 18 74 3

12 5 2493 3 2338 33 69 3

13 27 16886 29 17825 33 76 3

;

RUN;

In the fixed effects analysis, referring to the programming code below, it is important

that the variable of the variances is called est, since the variances are assumed to be

known. The weighted regression analysis model is only an intercept model.
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PROC MIXED METHOD=ml DATA=bcg;

CLASS trial; * trial’ classification variable;

MODEL logor = / S CL; * intercept only model;

REPEATED / GROUP = trial; * each trial has own variance;

* parmsdata option reads the variable est from data set BCG

and the within-trial variances are kept constant;

PARMS / PARMSDATA = bcg EQCONS = 1 to 13; RUN;

A part of the output is presented below. The common log odds ratio estimated is

−0.4361 with 95% confidence interval [−0.5282,−0.3441].

Solution for Fixed Effects

Standard

Estimate Error DF t Value Lower Upper

-0.4361 0.04227 12 -10.32 -0.5282 -0.3441

The confidence interval provided by SAS PROC MIXED as above is based on the t
distribution rather than on the standard normal distribution. To mimic the standard

normal distribution, we can force SAS PROC MIXED to use a t distribution with a

large number of degrees of freedom; this is done in the alternative program below with

DDF=1000. Note that the variable intercept has to be a self-made intercept variable

equal to 1.

* Alternative in PROC MIXED;

* Normality approximation because of DDF =1000;

PROC MIXED METHOD = ml DATA=bcg;

CLASS trial;

MODEL logor = intercept / S CL NOINT DDF = 1000;

REPEATED / GROUP = trial;

PARMS / PARMSDATA = bcg EQCONS = 1 to 13; RUN;

The 95% confidence interval for the common log odds ratio is now [−0.5191,−0.3532].

Solution for Fixed Effects

Standard

Estimate Error DF t Value Lower Upper

-0.4361 0.04227 1000 -10.32 -0.5191 -0.3532

For the random effects model we have to specify that there is an additional variation

between the trials and this is done in the RANDOM statement below. We choose the

maximum likelihood method for estimating the between-trial variance; alternatively

one can use restricted maximum likelihood.

PROC MIXED CL METHOD=ml DATA=bcg;

CLASS trial;

MODEL logor = / S CL;

* trial is specified as random effect;

RANDOM int / SUBJECT = trial S;
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REPEATED / GROUP = trial;

* defining grid value for between trial variances,

followed by the 13 within-trial variance which are

assumed known and must be kept fixed;

PARMS (0.01 to 2.00 by 0.01) (0.35712)

(0.20813)(0.43341)(0.02031)(0.05195)

(0.00991)(0.22701)(0.00401)(0.05698)

(0.07542)(0.01253)(0.53416)(0.07164)

/ EQCONS = 2 to 14; RUN;

Part of the output is given below. The estimate of the between-trial variability is

0.3025 with large-sample 95% confidence interval [0.1350, 1.1810], clearly indicating

that heterogeneity between the trials is present. The overall estimate of the log

odds ratio is −0.7420 with 95% confidence interval [−1.1297,−0.3542], where the

confidence interval uses again the critical value from the t distribution with 12 df.

Covariance Parameter Estimates

Subject Group Estimate Lower Upper

trial 0.3025 0.1350 1.1810

Solution for Fixed Effects

Standard

Estimate Error DF t Value Lower Upper

-0.7420 0.1780 12 -4.17 -1.1297 -0.3542

Finally, we can add explanatory variables into the model, for example, the covariate

latitude in the example below:

PROC MIXED CL METHOD=ml DATA=bcg;

CLASS trial;

* Latitude is explanatory variable;

MODEL logor = latitude / S CL;

RANDOM int / SUBJECT = trial S;

REPEATED / GROUP = trial;

PARMS (0.01 to 2.00 by 0.01) (0.35712)

(0.20813)(0.43341)(0.02031)(0.05195)

(0.00991)(0.22701)(0.00401)(0.05698)

(0.07542)(0.01253)(0.53416)(0.07164)

/eqcons = 2 to 14;

RUN;

Summarizing the essential results, we obtain an estimate of the between-trial variabil-

ity of 0.00393 showing that the explanatory variable latitude explains a large amount

of the heterogeneity. The estimated intercept of the regression line is 0.3711 and the

slope parameter is −0.03272, indicating the vaccine is more effective the larger the

distance of the study population from the equator.





CHAPTER 18

DATA SETS

In this chapter we have put together the main data sets which have been used through-

out the book for illustrating various meta-analysis techniques. The first two data sets

are taken from the field of education, the other ones from biometry and epidemiology.

The reader should note that, in addition to these main data sets, we have also provided

meta-analysis of many other data sets in different chapters.

18.1 VALIDITY STUDIES

Cohen (1983) reviewed studies of the validity of student ratings of instructors. The

studies were usually conducted in multisection courses in which the sections had

different instructors but all sections used a common final examination. The index

of validity was a correlation coefficient (a partial correlation coefficient, controlling

for a measure of student ability) between the section mean instructor ratings and the

section mean examination score. Thus, the effective sample size was the number of

sections. Table 18.1 gives the effect size (product moment correlation coefficient)

and a summary of each study with a sample size of 10 or greater.
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Table 18.1 Validity studies correlating student ratings of the instructor

with student achievement

Study Sample n r

Bolton et al. (1979) General psychology 10 0.68

Bryson (1974) College algebra 20 0.56

Centra (1977)[1] General biology 13 0.23

Centra (1977)[2] General psychology 22 0.64

Crooks and Smock (1974) General physics 28 0.49

Doyle and Crichton (1978) Introductory communications 12 −0.04

Doyle and Whitely (1974) Beginning French 12 0.49

Elliot (1950) General chemistry 36 0.33

Ellis and Richard (1977) General psychology 19 0.58

Frey, Leonard, and Beatty (1975) Introductory calculus 12 0.18

Greenwood et al. (1976) Analytic geometry and calculus 36 −0.11

Hoffman (1978) Introductory math 75 0.27

McKeachie et al. (1971) General psychology 33 0.26

Marsh et al. (1956) Aircraft mechanics 121 0.40

Remmer et al. (1949) General chemistry 37 0.49

Sullivan and Skanes (1974)[1] First-year science 14 0.51

Sullivan and Skanes (1974)[2] Introductory psychology 40 0.40

Sullivan and Skanes (1974)[3] First-year math 16 0.34

Sullivan and Skanes (1974)[4] First-year biology 14 0.42

Wherry (1952) Introductory psychology 20 0.16

Note: See Cohen (1983) for the references cited.

18.2 EFFECTS OF TEACHER EXPECTANCE ON PUPIL IQ

Raudenbush (1984) reviewed randomized experiments of the effects of teacher ex-

pectancy on pupil IQ (see also Raudenbush and Bryk, 1985). The experiments usually

involve the researcher administering a test to a sample of students. A randomly se-

lected portion of the students (the treatment group) are identified to their teachers as

"likely to experience substantial intellectual growth." All students are tested again,

and the standardized difference between the mean treatment group and that of the

other students is the effect size. The theory underlying the treatment is that the

identification of students as showing promise of exceptional growth changes teacher

expectations about those students, which may turn affect outcomes such as intelli-

gence (possibly through intermediate variables). Raudenbush (1984) proposed that

an important characteristic of studies that was likely to be related to effect size was the

amount of contact that teachers had with the students prior to the attempt to change

expectations. He reasoned that teachers who had more contact would have already

formed more stable expectations of students—expectations that would prove more

difficult to change via the experimental treatment. A summary of the studies and
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their effect sizes is given in Table 18.2. The effect size is the standardized difference

between the means of the expectancy group and the control group on an intelligence

test. Positive values of the effect size imply a higher mean score for the experimental

(high-expectancy) group.

Table 18.2 Studies of the effects of teacher expectancy on pupil IQ

Estimated weeks of

teacher-student contact prior Standard

Study to expectancy induction d error

Rosenthal et al. (1974) 2 0.03 0.125

Conn et al. (1968) 21 0.12 0.147

Jose and Cody (1971) 19 −0.14 0.167

Pellegrini and Hicks (1972)[1] 0 1.18 0.373

Pellegrini and Hicks (1972)[2] 0 0.26 0.369

Evans and Rosenthal (1968) 3 −0.06 0.103

Fiedler et al. (1971) 17 −0.02 0.103

Claiborn (1969) 24 −0.32 0.220

Kester (1969) 0 0.27 0.164

Maxwell (1970) 1 0.80 0.251

Carter (1970) 0 0.54 0.302

Flowers (1966) 0 0.18 0.223

Keshock (1970) 1 −0.02 0.289

Henrikson (1970) 2 0.23 0.290

Fine (1972) 17 −0.18 0.159

Greiger (1970) 5 −0.06 0.167

Rosenthal and Jacobsen (1968) 1 0.30 0.139

Fleming and Anttonen (1971) 2 0.07 0.094

Ginsburg (1970) 7 −0.07 0.174

Note: See Raudenbush (1984) for the references cites.

18.3 DENTIFRICE DATA

The data set is taken from Abrams and Sanso (1998) and concerns a previously pub-

lished meta-analysis which was conducted of all randomized controlled trials com-

paring sodium monofluorophosphate (SMFP) to sodium fluoride (NaF) dentifrices

(toothpastes) in the prevention of caries; see Johnson (1993). The outcome in each

trial was the change from baseline in the decayed missing (due to caries) filled surface

(DMFS) dental index at three years follow-up. Of 12 studies identified as meeting

the inclusion criteria, 9 considered a straight comparison of NaF and SMFP. Table

18.3 displays the data from these 9 studies in terms of mean change in DMFS index

for each treatment.
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Table 18.3 Randomized evidence comparing NaF with SMFP dentrifices

in terms of differences from baseline in DMFS dental index

Study N NaF Mean SD N SMFP Mean SD

1 134 5.96 4.24 113 6.82 4.72

2 175 4.74 4.64 151 5.07 5.38

3 137 2.04 2.59 140 2.51 3.22

4 184 2.70 2.32 179 3.20 2.46

5 174 6.09 4.86 169 5.81 5.14

6 754 4.72 5.33 736 4.76 5.29

7 209 10.10 8.10 209 10.90 7.90

8 1151 2.82 3.05 1122 3.01 3.32

9 679 3.88 4.85 673 4.37 5.37

18.4 EFFECTIVENESS OF AMLODIPINE ON WORK CAPACITY

The following data set is taken from Li, Shi, and Roth (1994). A drug called am-

lodipine has been developed for the treatment of angina. To test its effectiveness,

several randomized controlled trials have compared the changes in work capacity for

patients who received either the drug or a placebo. The change in work capacity for

each patient is the ratio of the exercise time after the patient receives the intervention

(drug or placebo) to before the patient receives the intervention. The logarithms of

the observed changes are assumed to be normally distributed. Table 18.4 contains the

results of eight trials. Reported are sample size, observed sample mean, and observed

sample variance for treatment and control group.

Table 18.4 Randomized controlled trials on the effectiveness of amlodipine

for the treatment of angina

Amlodipine 10 mg (E) Placebo (C)

Protocol nEi x̄Ei s2
Ei nCi x̄Ci s2

Ci

154 46 0.2316 0.2254 48 −0.0027 0.0007

156 30 0.2811 0.1441 26 0.0270 0.1139

157 75 0.1894 0.1981 72 0.0443 0.4972

162A 12 0.0930 0.1389 12 0.2277 0.0488

163 32 0.1622 0.0961 34 0.0056 0.0955

166 31 0.1837 0.1246 31 0.0943 0.1734

303A 27 0.6612 0.7060 27 −0.0057 0.9891

306 46 0.1366 0.1211 47 −0.0057 0.1291
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18.5 EFFECTIVENESS OF CISAPRIDE ON THE TREATMENT OF

NONULCER DYSPEPSIA

Nonulcer dyspepsia is characterized by a variety of upper abdominal symptoms in

the absence of an organic disease. Due to the high frequency of these symptoms an

empirical probative therapy of nonulcer dyspepsia without prior diagnostic procedures

has been recommended for the management of these patients. For this empirical

therapy either acid blocking substances such as histamine H2-receptor antagonists or

gastroprokinetics such as cisapride or domperidone have been suggested.

A major problem in treatment studies of nonulcer dyspepsia is the relatively high

and variable rate of placebo responders. The reason for this variability is unclear, but

based on this placebo response rate, it becomes difficult to draw valid conclusions on

the treatment recommendations. This highly variable response rate can be overcome

if available clinical studies are put together and evaluated with appropriate statistical

methods in a meta-analysis. Only those placebo-controlled studies were included

which used similar criteria for "treatment success" and which documented their results

sufficiently for a possible reanalysis.

The data displayed in Table 18.5 are taken from Hartung and Knapp (2001b)

where the references for the original studies are given. Reported here are the number

of successes and the number of patients in the treatment group as well as in the control

group.

Table 18.5 Placebo-controlled trials on the effect of cisapride

in the treatment of nonulcer dyspepsia

Cisapride Placebo

No. of Sample No. of Sample

Study successes size successes size

Creytens (1984) 15 16 9 16

Milo (1984) 12 16 1 16

Francois and De Nutte (1986) 29 34 18 34

Deruyttere et al. (1987) 42 56 31 56

Hannon (1987) 14 22 6 22

Roesch (1987) 44 54 17 55

De Nutte et al. (1989) 14 17 7 15

Hausken and Bestad (1992) 29 58 23 58

Chung (1993) 10 14 3 15

Van Outryve et al. (1993) 17 26 6 27

Al-Quorain. Larbi, and Al-Shedoki (1995) 38 44 12 45

Kellow et al. (1995) 19 29 22 30

Yeoh et al. (1997) 21 38 19 38

Note: See Hartung and Knapp (2001b) for the references cited.
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18.6 SECOND-HAND SMOKING

The effect of exposure to environmental tobacco smoke on lung cancer risk is a topic

of considerable public health importance. By 1991, there were 19 case-control studies

of lung cancer in which information on exposure to environmental tobacco smoke

was available in addition to information on active smoking. The strong effect of

active cigarette smoking on lung cancer made it impossible to separate the effect of

active smoking from other sources of environmental tobacco smoke in smokers, and

the question of an effect of environmental tobacco smoke on lung cancer risk had to

be addressed using lung cancer cases in nonsmokers. The possibility of confounding

due to occupational exposure made it desirable to restrict analysis to women. As

shown in Table 18.6 taken from Pettiti (1994), the number of cases of lung cancer in

women who never smoked cigarettes was small in each of the 19 case-control studies.

Fifteen studies found an estimated relative risk greater than 1; 3 found an estimated

relative risk less than 1; 1 study found essentially no increase or decrease in estimated

relative risk.

In a meta-analysis of these data by scientists at the U.S. Environmental Protection

Agency (EPA 1990), the relative risk of lung cancer in women exposed to environ-

mental tobacco smoke was estimated to be 1.42 with 95% confidence limits of 1.24

and 1.63. This information was the basis for a decision by an advisory committee of

the EPA to designate environmental tobacco smoke as a carcinogen.

18.7 EFFECTIVENESS OF MISOPROSTOL IN PREVENTING
GASTROINTESTINAL DAMAGE

Thirteen controlled trials were undertaken to investigate whether concurrent treatment

with the synthetic prostaglandin misoprostol would prevent or at least reduce the

degree of gastrointestinal damage without reducing the anti-inflammatory effect of

nonsteroidal anti-inflammatory drugs (NSAIDs). Patients suffering from arthritis are

often prescribed NSAIDs. In the trials, different scoring systems were used to assess

the extent of gastrointestinal damage. The number of categories ranges from two up

to five. The data with the different classification schemes are put together in Table

18.7. For a more detailed description of the trials refer to Whitehead and Jones (1994)

Since the number of categories are not identical for all the trials, the definition of the

categories may differ from trial to trial. But classification category 1 in Table 18.7

always stands for the best category in each trial, category 2 for the second best, and

so on.

18.8 PREVENTION OF TUBERCULOSIS

The data set taken from van Houwelingen, Arends, and Stijnen (2002) consists of

randomized controlled trials of a vaccine, Bacillus Calmette-Guérin (BCG), for the

prevention of tuberculosis (TB). This vaccine has been in use outside the United States

since 1921 for routine vaccination at birth in many countries worldwide, yet debate
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Table 18.6 For 19 case-control studies, number of cases of lung cancer in women

who did not actively smoke cigarettes and estimated relative risk

of lung cancer in relation exposure to environmental tobacco smoke

Number of Estimated relative risk

cases (95% confidence interval)

Akiba, Kato, and Blot (1986) 94 1.52 (0.88 – 2.63)

Brownson et al. (1987) 19 1.52 (0.39 – 5.99)

Buffler et al. (1984) 41 0.81 (0.34 – 1.90)

Chan et al. (1979) 84 0.75 (0.43 – 1.30)

Correa et al. (1983) 22 2.07 (0.82 – 5.25)

Gao et al. (1978) 246 1.19 (0.82 – 1.73)

Garfinkel, Auerbach, and Joubert (1985) 134 1.31 (0.87 – 1.98)

Geng, Liang, and Zhang (1988) 54 2.16 (1.08 – 4.29)

Humble, Samet, and Pathak (1987) 20 2.34 (0.81 – 6.75)

Inoue and Hirayama (1988) 22 2.55 (0.74 – 8.78)

Kabat and Wynder (1984) 24 0.79 (0.25 – 2.45)

Koo et al. (1987) 86 1.55 (0.90 – 2.67)

Lam et al. (1987) 199 1.65 (1.16 – 2.35)

Lam (1985) 60 2.01 (1.09 – 3.71)

Lee, Chamberlain, and Alderson (1986) 32 1.03 (0.41 – 2.55)

Pershagen, Hrubec, and Svensson (1987) 67 1.28 (0.76 – 2.15)

Svensson, Pershagen, and Klominek (1988) 34 1.26 (0.57 – 2.82)

Trichopoulos, Kalandidi, and Sparros (1983) 62 2.13 (1.19 – 3.83)

Wu et al. (1985) 28 1.41 (0.54 – 3.67)

Note: See United States Environmental Protection Agency (1990) for the references cited.

over its efficacy continues. The data presented in Table 18.8 consist of the sample size

and the number of cases of tuberculosis. Furthermore some covariates are available

that might explain the heterogeneity among studies: geographic latitude of the place

where the study was done, year of publication, and method of treatment allocation

(random, alternate, or systematic). Latitude is one of several factors historically sus-

pected as associated with true vaccine efficacy because the distance of each trial from

the equator may serve as a surrogate for the presence of environmental mycobacteria

that provide a certain level of natural immunity against TB.
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Table 18.7 Controlled randomized trials of misoprostol by endoscopic classification

Endoscopic classification
Study Treatment 1 2 3 4 5

Lanza et al. (1988)[1] Misoprostol 21 2 4 2 0
Placebo 2 2 4 9 13

Jiranenk et al. (1989) Misoprostol 17 8 3 2 0
Placebo 0 3 4 10 13

Lanza et al. (1989) Misoprostol 20 4 6 0 0
Placebo 8 4 9 4 5

Lanza (1987) Misoprostol 20 4 6 0 0
Placebo 0 2 5 5 17

Lanza et al. (1988)[2] Misoprostol 1 4 5 0 0
Placebo 0 0 0 4 6

Bardhan et al. (1991) Misoprostol 93 5 3 1 1
Placebo 85 10 10 4 5

Saggiori and Vaiani (1988) Misoprostol 61 12 0
Placebo 49 28 3

Delmas et al. (1988) Misoprostol 45 1 0
Placebo 65 6 3

Graham, Agrawal, and Roth (1988) Misoprostol 138 1
Placebo 121 17

Agrawal, Stromatt, and Brown (1990) Misoprostol 126 2
Placebo 110 21

Elliot et al. (1990) Misoprostol 30 1 1
Placebo 20 11 7

Searle & Co. Misoprostol 56 12 8 0
Placebo 50 15 12 5

Searle & Co. Misoprostol 12 3 1 0
Placebo 11 5 2 3

Note: See Whitehead and Jones (1994) for the references cited.

Table 18.8 Data on 13 trials on the prevention of tuberculosis

Vaccinated Not vaccinated
Trial Disease No disease Disease No disease Latitude Year Allocation

1 4 119 11 128 44 1948 Random
2 6 300 29 274 55 1949 Random
3 3 228 11 209 42 1960 Random
4 62 13536 248 12619 52 1977 Random
5 33 5036 47 5761 13 1973 Alternate
6 180 1361 372 1079 44 1953 Alternate
7 8 2537 10 619 19 1973 Random
8 505 87886 499 87892 13 1980 Random
9 29 7470 45 7232 27* 1968 Random

10 17 1699 65 1600 42 1961 Systematic
11 186 50448 414 27197 18 1974 Systematic
12 5 2493 3 2338 33 1969 Systematic
13 27 16886 29 17825 33 1976 Systematic

*This was actually a negative number; we used the absolute value in the analysis
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