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Preface

Purpose
Our objective is to provide a postcalculus introduction to the discipline of statistics

that

• Has mathematical integrity and contains some underlying theory.

• Shows students a broad range of applications involving real data.

• Is very current in its selection of topics.

• Illustrates the importance of statistical software.

• Is accessible to a wide audience, including mathematics and statistics majors

(yes, there are a few of the latter), prospective engineers and scientists, and those

business and social science majors interested in the quantitative aspects of their

disciplines.

A number of currently available mathematical statistics texts are heavily

oriented toward a rigorous mathematical development of probability and statistics,

with much emphasis on theorems, proofs, and derivations. The focus is more on

mathematics than on statistical practice. Even when applied material is included,

the scenarios are often contrived (many examples and exercises involving dice,

coins, cards, widgets, or a comparison of treatment A to treatment B).

So in our exposition we have tried to achieve a balance between mathemati-

cal foundations and statistical practice. Some may feel discomfort on grounds that

because a mathematical statistics course has traditionally been a feeder into gradu-

ate programs in statistics, students coming out of such a course must be well

prepared for that path. But that view presumes that the mathematics will provide

the hook to get students interested in our discipline. This may happen for a few

mathematics majors. However, our experience is that the application of statistics to

real-world problems is far more persuasive in getting quantitatively oriented

students to pursue a career or take further coursework in statistics. Let’s first

draw them in with intriguing problem scenarios and applications. Opportunities

for exposing them to mathematical foundations will follow in due course. We

believe it is more important for students coming out of this course to be able to

carry out and interpret the results of a two-sample t test or simple regression

analysis than to manipulate joint moment generating functions or discourse on

various modes of convergence.

Content
The book certainly does include core material in probability (Chapter 2), random

variables and their distributions (Chapters 3–5), and sampling theory (Chapter 6).

But our desire to balance theory with application/data analysis is reflected in the

way the book starts out, with a chapter on descriptive and exploratory statistical

https://doi.org/10.1007/978-1-4614-0391-3_2
https://doi.org/10.1007/978-1-4614-0391-3
https://doi.org/10.1007/978-1-4614-0391-5
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techniques rather than an immediate foray into the axioms of probability and their

consequences. After the distributional infrastructure is in place, the remaining

statistical chapters cover the basics of inference. In addition to introducing core

ideas from estimation and hypothesis testing (Chapters 7–10), there is emphasis on

checking assumptions and examining the data prior to formal analysis. Modern

topics such as bootstrapping, permutation tests, residual analysis, and logistic

regression are included. Our treatment of regression, analysis of variance, and

categorical data analysis (Chapters 11–13) is definitely more oriented to dealing

with real data than with theoretical properties of models. We also show many

examples of output from commonly used statistical software packages, something

noticeably absent in most other books pitched at this audience and level.

Mathematical Level
The challenge for students at this level should lie with mastery of statistical

concepts as well as with mathematical wizardry. Consequently, the mathematical

prerequisites and demands are reasonably modest. Mathematical sophistication and

quantitative reasoning ability are, of course, crucial to the enterprise. Students with

a solid grounding in univariate calculus and some exposure to multivariate calculus

should feel comfortable with what we are asking of them. The several sections

where matrix algebra appears (transformations in Chapter 5 and thematrix approach

to regression in the last section of Chapter 12) can easily be deemphasized or

skipped entirely.

Our goal is to redress the balance between mathematics and statistics by

putting more emphasis on the latter. The concepts, arguments, and notation

contained herein will certainly stretch the intellects of many students. And a solid

mastery of the material will be required in order for them to solve many of the

roughly 1,300 exercises included in the book. Proofs and derivations are included

where appropriate, but we think it likely that obtaining a conceptual understanding

of the statistical enterprise will be the major challenge for readers.

Recommended Coverage
There should be more than enough material in our book for a year-long course.

Those wanting to emphasize some of the more theoretical aspects of the subject

(e.g., moment generating functions, conditional expectation, transformations, order

statistics, sufficiency) should plan to spend correspondingly less time on inferential

methodology in the latter part of the book. We have opted not to mark certain

sections as optional, preferring instead to rely on the experience and tastes of

individual instructors in deciding what should be presented. We would also like

to think that students could be asked to read an occasional subsection or even

section on their own and then work exercises to demonstrate understanding, so that

not everything would need to be presented in class. Remember that there is never

enough time in a course of any duration to teach students all that we’d like them to

know!

Acknowledgments
We gratefully acknowledge the plentiful feedback provided by reviewers and

colleagues. A special salute goes to Bruce Trumbo for going way beyond his

mandate in providing us an incredibly thoughtful review of 40+ pages containing
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many wonderful ideas and pertinent criticisms. Our emphasis on real data would

not have come to fruition without help from the many individuals who provided us

with data in published sources or in personal communications. We very much

appreciate the editorial and production services provided by the folks at Springer, in

particular Marc Strauss, Kathryn Schell, and Felix Portnoy.

A Final Thought
It is our hope that students completing a course taught from this book will feel as

passionately about the subject of statistics as we still do after so many years in the

profession. Only teachers can really appreciate how gratifying it is to hear from a

student after he or she has completed a course that the experience had a positive

impact and maybe even affected a career choice.

Jay L. Devore
Kenneth N. Berk



C H A P T E R O N E

Overview
and Descriptive
Statistics

Introduction
Statistical concepts and methods are not only useful but indeed often indis-

pensable in understanding the world around us. They provide ways of gaining

new insights into the behavior of many phenomena that you will encounter in your

chosen field of specialization.

The discipline of statistics teaches us how to make intelligent judgments

and informed decisions in the presence of uncertainty and variation. Without

uncertainty or variation, there would be little need for statistical methods or statis-

ticians. If the yield of a crop were the same in every field, if all individuals reacted

the same way to a drug, if everyone gave the same response to an opinion survey,

and so on, then a single observation would reveal all desired information.

An interesting example of variation arises in the course of performing

emissions testing on motor vehicles. The expense and time requirements of the

Federal Test Procedure (FTP) preclude its widespread use in vehicle inspection

programs. As a result, many agencies have developed less costly and quicker tests,

which it is hoped replicate FTP results. According to the journal article “Motor

Vehicle Emissions Variability” (J. Air Waste Manage. Assoc., 1996: 667–675), the

acceptance of the FTP as a gold standard has led to the widespread belief that

repeated measurements on the same vehicle would yield identical (or nearly

identical) results. The authors of the article applied the FTP to seven vehicles

characterized as “high emitters.” Here are the results of four hydrocarbon and

carbon dioxide tests on one such vehicle:

HC (g/mile) 13.8 18.3 32.2 32.5

CO (g/mile) 118 149 232 236



The substantial variation in both the HC and CO measurements casts considerable

doubt on conventional wisdom and makes it much more difficult to make precise

assessments about emissions levels.

How can statistical techniques be used to gather information and draw

conclusions? Suppose, for example, that a biochemist has developed a medication

for relieving headaches. If this medication is given to different individuals, varia-

tion in conditions and in the people themselves will result in more substantial

relief for some individuals than for others. Methods of statistical analysis could

be used on data from such an experiment to determine on the average how much

relief to expect.

Alternatively, suppose the biochemist has developed a headache medication

in the belief that it will be superior to the currently best medication. A comparative

experiment could be carried out to investigate this issue by giving the current

medication to some headache sufferers and the new medication to others. This

must be done with care lest the wrong conclusion emerge. For example, perhaps

really the two medications are equally effective. However, the new medication may

be applied to people who have less severe headaches and have less stressful lives.

The investigator would then likely observe a difference between the two medica-

tions attributable not to the medications themselves, but to a poor choice of test

groups. Statistics offers not only methods for analyzing the results of experiments

once they have been carried out but also suggestions for how experiments can

be performed in an efficient manner to lessen the effects of variation and have a

better chance of producing correct conclusions.

1.1 Populations and Samples
We are constantly exposed to collections of facts, or data, both in our professional

capacities and in everyday activities. The discipline of statistics provides methods

for organizing and summarizing data and for drawing conclusions based on infor-

mation contained in the data.

An investigation will typically focus on a well-defined collection of

objects constituting a population of interest. In one study, the population might

consist of all gelatin capsules of a particular type produced during a specified

period. Another investigation might involve the population consisting of all indi-

viduals who received a B.S. in mathematics during the most recent academic year.

When desired information is available for all objects in the population, we have

what is called a census. Constraints on time, money, and other scarce resources

usually make a census impractical or infeasible. Instead, a subset of the popula-

tion—a sample—is selected in some prescribed manner. Thus we might obtain

a sample of pills from a particular production run as a basis for investigating

whether pills are conforming to manufacturing specifications, or we might select

a sample of last year’s graduates to obtain feedback about the quality of the

curriculum.

2 CHAPTER 1 Overview and Descriptive Statistics



We are usually interested only in certain characteristics of the objects in a

population: the amount of vitamin C in the pill, the gender of a mathematics

graduate, the age at which the individual graduated, and so on. A characteristic

may be categorical, such as gender or year in college, or it may be numerical in

nature. In the former case, the value of the characteristic is a category (e.g., female

or sophomore), whereas in the latter case, the value is a number (e.g., age ¼ 23

years or vitamin C content ¼ 65 mg). A variable is any characteristic whose

value may change from one object to another in the population. We shall initially

denote variables by lowercase letters from the end of our alphabet. Examples

include

x ¼ brand of calculator owned by a student

y ¼ number of major defects on a newly manufactured automobile

z ¼ braking distance of an automobile under specified conditions

Data comes from making observations either on a single variable or simultaneously

on two or more variables. A univariate data set consists of observations on a

single variable. For example, we might consider the type of computer, laptop (L)

or desktop (D), for ten recent purchases, resulting in the categorical data set

D L L L D L L D L L

The following sample of lifetimes (hours) of brand D batteries in flashlights is a

numerical univariate data set:

5:6 5:1 6:2 6:0 5:8 6:5 5:8 5:5

We have bivariate data when observations are made on each of two variables.

Our data set might consist of a (height, weight) pair for each basketball player on

a team, with the first observation as (72, 168), the second as (75, 212), and so on.

If a kinesiologist determines the values of x ¼ recuperation time from an injury and

y ¼ type of injury, the resulting data set is bivariate with one variable numerical

and the other categorical. Multivariate data arises when observations are made

on more than two variables. For example, a research physician might determine

the systolic blood pressure, diastolic blood pressure, and serum cholesterol level

for each patient participating in a study. Each observation would be a triple of

numbers, such as (120, 80, 146). In many multivariate data sets, some variables

are numerical and others are categorical. Thus the annual automobile issue of

Consumer Reports gives values of such variables as type of vehicle (small, sporty,

compact, midsize, large), city fuel efficiency (mpg), highway fuel efficiency

(mpg), drive train type (rear wheel, front wheel, four wheel), and so on.

Branches of Statistics

An investigator who has collected data may wish simply to summarize and

describe important features of the data. This entails using methods from descriptive
statistics. Some of these methods are graphical in nature; the construction of

histograms, boxplots, and scatter plots are primary examples. Other descriptive

methods involve calculation of numerical summary measures, such as means,

1.1 Populations and Samples 3



standard deviations, and correlation coefficients. The wide availability of

statistical computer software packages has made these tasks much easier to

carry out than they used to be. Computers are much more efficient than

human beings at calculation and the creation of pictures (once they have

received appropriate instructions from the user!). This means that the investiga-

tor doesn’t have to expend much effort on “grunt work” and will have more

time to study the data and extract important messages. Throughout this book,

we will present output from various packages such as MINITAB, SAS, and R.

Example 1.1 Charity is a big business in the United States. The website charitynavigator.

com gives information on roughly 5500 charitable organizations, and there are

many smaller charities that fly below the navigator’s radar screen. Some charities

operate very efficiently, with fundraising and administrative expenses that are

only a small percentage of total expenses, whereas others spend a high percentage

of what they take in on such activities. Here is data on fundraising expenses as

a percentage of total expenditures for a random sample of 60 charities:

6.1 12.6 34.7 1.6 18.8 2.2 3.0 2.2 5.6 3.8

2.2 3.1 1.3 1.1 14.1 4.0 21.0 6.1 1.3 20.4

7.5 3.9 10.1 8.1 19.5 5.2 12.0 15.8 10.4 5.2

6.4 10.8 83.1 3.6 6.2 6.3 16.3 12.7 1.3 0.8

8.8 5.1 3.7 26.3 6.0 48.0 8.2 11.7 7.2 3.9

15.3 16.6 8.8 12.0 4.7 14.7 6.4 17.0 2.5 16.2

Without any organization, it is difficult to get a sense of the data’s most promi-

nent features: what a typical (i.e., representative) value might be, whether values

are highly concentrated about a typical value or quite dispersed, whether there

are any gaps in the data, what fraction of the values are less than 20%, and so on.

Figure 1.1 shows a histogram. In Section 1.2 we will discuss construction and

interpretation of this graph. For the moment, we hope you see how it describes the
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Figure 1.1 A MINITAB histogram for the charity fundraising % data
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way the percentages are distributed over the range of possible values from 0 to 100.

Of the 60 charities, 36 use less than 10% on fundraising, and 18 use between 10%

and 20%. Thus 54 out of the 60 charities in the sample, or 90%, spend less than 20%

of money collected on fundraising. How much is too much? There is a delicate

balance; most charities must spend money to raise money, but then money spent on

fundraising is not available to help beneficiaries of the charity. Perhaps each

individual giver should draw his or her own line in the sand. ■

Having obtained a sample from a population, an investigator would fre-

quently like to use sample information to draw some type of conclusion (make an

inference of some sort) about the population. That is, the sample is a means to an

end rather than an end in itself. Techniques for generalizing from a sample to a

population are gathered within the branch of our discipline called inferential
statistics.

Example 1.2 Human measurements provide a rich area of application for statistical methods.

The article “A Longitudinal Study of the Development of Elementary School Chil-

dren’s Private Speech” (Merrill-Palmer Q., 1990: 443–463) reported on a study of

children talking to themselves (private speech). It was thought that private speech

would be related to IQ, because IQ is supposed to measure mental maturity, and it

was known that private speech decreases as students progress through the primary

grades. The study included 33 students whose first-grade IQ scores are given here:

082 096 099 102 103 103 106 107 108 108 108 108 109 110 110 111 113

113 113 113 115 115 118 118 119 121 122 122 127 132 136 140 146

Suppose we want an estimate of the average value of IQ for the first graders

served by this school (if we conceptualize a population of all such IQs, we are

trying to estimate the population mean). It can be shown that, with a high degree

of confidence, the population mean IQ is between 109.2 and 118.2; we call this

a confidence interval or interval estimate. The interval suggests that this is an above
average class, because the nationwide IQ average is around 100. ■

The main focus of this book is on presenting and illustrating methods of

inferential statistics that are useful in research. The most important types of inferen-

tial procedures—point estimation, hypothesis testing, and estimation by confidence

intervals—are introduced in Chapters 7–9 and then used in more complicated settings

in Chapters 10–14. The remainder of this chapter presents methods from descriptive

statistics that are most used in the development of inference.

Chapters 2–6 present material from the discipline of probability. This material

ultimately forms a bridge between the descriptive and inferential techniques.

Mastery of probability leads to a better understanding of how inferential procedures

are developed and used, how statistical conclusions can be translated into everyday

language and interpreted, and when and where pitfalls can occur in applying the

methods. Probability and statistics both deal with questions involving populations

and samples, but do so in an “inverse manner” to each other.

In a probability problem, properties of the population under study are

assumed known (e.g., in a numerical population, some specified distribution of

the population values may be assumed), and questions regarding a sample taken

1.1 Populations and Samples 5



from the population are posed and answered. In a statistics problem, characteristics

of a sample are available to the experimenter, and this information enables the

experimenter to draw conclusions about the population. The relationship between

the two disciplines can be summarized by saying that probability reasons from

the population to the sample (deductive reasoning), whereas inferential statistics

reasons from the sample to the population (inductive reasoning). This is illustrated

in Figure 1.2.

Before we can understand what a particular sample can tell us about the

population, we should first understand the uncertainty associated with taking a

sample from a given population. This is why we study probability before statistics.

As an example of the contrasting focus of probability and inferential statis-

tics, consider drivers’ use of manual lap belts in cars equipped with automatic

shoulder belt systems. (The article “Automobile Seat Belts: Usage Patterns in

Automatic Belt Systems,” Hum. Factors, 1998: 126–135, summarizes usage

data.) In probability, we might assume that 50% of all drivers of cars equipped in

this way in a certain metropolitan area regularly use their lap belt (an assumption

about the population), so we might ask, “How likely is it that a sample of 100 such

drivers will include at least 70 who regularly use their lap belt?” or “How many

of the drivers in a sample of size 100 can we expect to regularly use their lap belt?”

On the other hand, in inferential statistics we have sample information available; for

example, a sample of 100 drivers of such cars revealed that 65 regularly use their lap

belt. We might then ask, “Does this provide substantial evidence for concluding that

more than 50% of all such drivers in this area regularly use their lap belt?” In this

latter scenario, we are attempting to use sample information to answer a question

about the structure of the entire population from which the sample was selected.

Suppose, though, that a study involving a sample of 25 patients is carried out

to investigate the efficacy of a new minimally invasive method for rotator cuff

surgery. The amount of time that each individual subsequently spends in physical

therapy is then determined. The resulting sample of 25 PT times is from a popula-

tion that does not actually exist. Instead it is convenient to think of the population as

consisting of all possible times that might be observed under similar experimental

conditions. Such a population is referred to as a conceptual or hypothetical popula-

tion. There are a number of problem situations in which we fit questions into the

framework of inferential statistics by conceptualizing a population.

Sometimes an investigator must be very cautious about generalizing from

the circumstances under which data has been gathered. For example, a sample of

five engines with a new design may be experimentally manufactured and tested to

investigate efficiency. These five could be viewed as a sample from the conceptual

population of all prototypes that could be manufactured under similar conditions,

but not necessarily as representative of the population of units manufactured once

regular production gets under way. Methods for using sample information to draw

Population

Probability

Inferential

statistics

Sample

Figure 1.2 The relationship between probability and inferential statistics
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conclusions about future production units may be problematic. Similarly, a new

drug may be tried on patients who arrive at a clinic, but there may be some question

about how typical these patients are. They may not be representative of patients

elsewhere or patients at the clinic next year. A good exposition of these issues is

contained in the article “Assumptions for Statistical Inference” by Gerald Hahn and

William Meeker (Amer. Statist., 1993: 1–11).

Collecting Data

Statistics deals not only with the organization and analysis of data once it has been

collected but also with the development of techniques for collecting the data. If data

is not properly collected, an investigator may not be able to answer the questions

under consideration with a reasonable degree of confidence. One common problem

is that the target population—the one about which conclusions are to be drawn—

may be different from the population actually sampled. For example, advertisers

would like various kinds of information about the television-viewing habits of

potential customers. The most systematic information of this sort comes from

placing monitoring devices in a small number of homes across the United States.

It has been conjectured that placement of such devices in and of itself alters viewing

behavior, so that characteristics of the sample may be different from those of the

target population.

When data collection entails selecting individuals or objects from a list, the

simplest method for ensuring a representative selection is to take a simple random
sample. This is one for which any particular subset of the specified size (e.g., a

sample of size 100) has the same chance of being selected. For example, if the list

consists of 1,000,000 serial numbers, the numbers 1, 2, . . . , up to 1,000,000 could

be placed on identical slips of paper. After placing these slips in a box and

thoroughly mixing, slips could be drawn one by one until the requisite sample

size has been obtained. Alternatively (and much to be preferred), a table of random

numbers or a computer’s random number generator could be employed.

Sometimes alternative sampling methods can be used to make the selection

process easier, to obtain extra information, or to increase the degree of confidence

in conclusions. One such method, stratified sampling, entails separating the

population units into nonoverlapping groups and taking a sample from each one.

For example, a manufacturer of DVD players might want information about

customer satisfaction for units produced during the previous year. If three different

models were manufactured and sold, a separate sample could be selected from each

of the three corresponding strata. This would result in information on all three

models and ensure that no one model was over- or underrepresented in the entire

sample.

Frequently a “convenience” sample is obtained by selecting individuals or

objects without systematic randomization. As an example, a collection of bricks

may be stacked in such a way that it is extremely difficult for those in the center to

be selected. If the bricks on the top and sides of the stack were somehow different

from the others, resulting sample data would not be representative of the popula-

tion. Often an investigator will assume that such a convenience sample approx-

imates a random sample, in which case a statistician’s repertoire of inferential

methods can be used; however, this is a judgment call. Most of the methods

discussed herein are based on a variation of simple random sampling described in

Chapter 6.
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Researchers often collect data by carrying out some sort of designed

experiment. This may involve deciding how to allocate several different treatments

(such as fertilizers or drugs) to the various experimental units (plots of land or

patients). Alternatively, an investigator may systematically vary the levels or

categories of certain factors (e.g., amount of fertilizer or dose of a drug) and

observe the effect on some response variable (such as corn yield or blood pressure).

Example 1.3 An article in the New York Times (January 27, 1987) reported that heart attack risk

could be reduced by taking aspirin. This conclusion was based on a designed

experiment involving both a control group of individuals, who took a placebo

having the appearance of aspirin but known to be inert, and a treatment group

who took aspirin according to a specified regimen. Subjects were randomly

assigned to the groups to protect against any biases and so that probability-based

methods could be used to analyze the data. Of the 11,034 individuals in the control

group, 189 subsequently experienced heart attacks, whereas only 104 of the 11,037

in the aspirin group had a heart attack. The incidence rate of heart attacks in the

treatment group was only about half that in the control group. One possible

explanation for this result is chance variation, that aspirin really doesn’t have the

desired effect and the observed difference is just typical variation in the same way

that tossing two identical coins would usually produce different numbers of heads.

However, in this case, inferential methods suggest that chance variation by itself

cannot adequately explain the magnitude of the observed difference. ■

Exercises Section 1.1 (1–9)

1. Give one possible sample of size 4 from each of the

following populations:

a. All daily newspapers published in the United

States

b. All companies listed on the New York Stock

Exchange

c. All students at your college or university
d. All grade point averages of students at your

college or university

2. For each of the following hypothetical populations,

give a plausible sample of size 4:

a. All distances that might result when you throw a

football

b. Page lengths of books published 5 years from

now

c. All possible earthquake-strength measurements

(Richter scale) that might be recorded in Califor-

nia during the next year

d. All possible yields (in grams) from a certain

chemical reaction carried out in a laboratory

3. Consider the population consisting of all DVD

players of a certain brand and model, and focus on

whether a DVD player needs service while under

warranty.

a. Pose several probability questions based on se-

lecting a sample of 100 such DVD players.

b. What inferential statistics question might be

answered by determining the number of such

DVD players in a sample of size 100 that need

warranty service?

4. a. Give three different examples of concrete popu-

lations and three different examples of hypothet-

ical populations.

b. For one each of your concrete and your hypo-

thetical populations, give an example of a prob-

ability question and an example of an inferential

statistics question.

5. Many universities and colleges have instituted sup-

plemental instruction (SI) programs, in which a

student facilitator meets regularly with a small

group of students enrolled in the course to promote

discussion of course material and enhance subject

mastery. Suppose that students in a large statistics

course (what else?) are randomly divided into a

control group that will not participate in SI and a

treatment group that will participate. At the end of

the term, each student’s total score in the course is

determined.
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a. Are the scores from the SI group a sample from

an existing population? If so, what is it? If not,

what is the relevant conceptual population?

b. What do you think is the advantage of randomly

dividing the students into the two groups rather

than letting each student choose which group to

join?

c. Why didn’t the investigators put all students in

the treatment group? [Note: The article “Supple-
mental Instruction: An Effective Component of

Student Affairs Programming” J. Coll. Stud.
Dev., 1997: 577–586 discusses the analysis of

data from several SI programs.]

6. The California State University (CSU) system con-

sists of 23 campuses, from San Diego State in the

south to Humboldt State near the Oregon border.

A CSU administrator wishes to make an inference

about the average distance between the hometowns

of students and their campuses. Describe and dis-

cuss several different sampling methods that might

be employed.

7. A certain city divides naturally into ten district

neighborhoods. A real estate appraiser would like

to develop an equation to predict appraised value

from characteristics such as age, size, number of

bathrooms, distance to the nearest school, and

so on. How might she select a sample of single-

family homes that could be used as a basis for this

analysis?

8. The amount of flow through a solenoid valve in an

automobile’s pollution-control system is an impor-

tant characteristic. An experiment was carried out

to study how flow rate depended on three factors:

armature length, spring load, and bobbin depth.

Two different levels (low and high) of each factor

were chosen, and a single observation on flow was

made for each combination of levels.

a. The resulting data set consisted of how many

observations?

b. Does this study involve sampling an existing

population or a conceptual population?

9. In a famous experiment carried out in 1882,

Michelson and Newcomb obtained 66 observations

on the time it took for light to travel between two

locations in Washington, D.C. A few of the mea-

surements (coded in a certain manner) were 31, 23,

32, 36, 22, 26, 27, and 31.

a. Why are these measurements not identical?

b. Does this study involve sampling an existing

population or a conceptual population?

1.2 Pictorial and Tabular Methods
in Descriptive Statistics
There are two general types of methods within descriptive statistics. In this section

we will discuss the first of these types—representing a data set using visual

techniques. In Sections 1.3 and 1.4, we will develop some numerical summary

measures for data sets. Many visual techniques may already be familiar to you:

frequency tables, tally sheets, histograms, pie charts, bar graphs, scatter diagrams,

and the like. Here we focus on a selected few of these techniques that are most

useful and relevant to probability and inferential statistics.

Notation

Some general notation will make it easier to apply our methods and formulas to

a wide variety of practical problems. The number of observations in a single

sample, that is, the sample size, will often be denoted by n, so that n ¼ 4 for

the sample of universities {Stanford, Iowa State, Wyoming, Rochester} and also

for the sample of pH measurements {6.3, 6.2, 5.9, 6.5}. If two samples are

simultaneously under consideration, either m and n or n1 and n2 can be used to

denote the numbers of observations. Thus if {3.75, 2.60, 3.20, 3.79} and {2.75,

1.20, 2.45} are grade point averages for students on a mathematics floor and the rest

of the dorm, respectively, then m ¼ 4 and n ¼ 3.
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Given a data set consisting of n observations on some variable x,
the individual observations will be denoted by x1, x2, x3, . . . , xn. The subscript

bears no relation to the magnitude of a particular observation. Thus x1 will not

in general be the smallest observation in the set, nor will xn typically be the

largest. In many applications, x1 will be the first observation gathered by

the experimenter, x2 the second, and so on. The ith observation in the data set

will be denoted by xi.

Stem-and-Leaf Displays

Consider a numerical data set x1, x2, . . . , xn for which each xi consists of at least two
digits. A quick way to obtain an informative visual representation of the data set is

to construct a stem-and-leaf display.

STEPS FOR
CONSTRUCT-
ING A STEM-
AND-LEAF
DISPLAY

1. Select one or more leading digits for the stem values. The trailing digits

become the leaves.

2. List possible stem values in a vertical column.

3. Record the leaf for every observation beside the corresponding stem

value.

4. Order the leaves from smallest to largest on each line.

5. Indicate the units for stems and leaves someplace in the display.

If the data set consists of exam scores, each between 0 and 100, the score of 83

would have a stem of 8 and a leaf of 3. For a data set of automobile fuel efficiencies

(mpg), all between 8.1 and 47.8, we could use the tens digit as the stem, so 32.6

would then have a leaf of 2.6. Usually, a display based on between 5 and 20 stems is

appropriate.

For a simple example, assume a sample of seven test scores: 93, 84, 86, 78,

95, 81, 72. Then the first pass stem plot would be

7|82

8|461

9|35

With the leaves ordered this becomes

7|28 stem: tens digit

8|146 leaf: ones digit

9|35

Example 1.4 The use of alcohol by college students is of great concern not only to those in the

academic community but also, because of potential health and safety consequences,

to society at large. The article “Health and Behavioral Consequences of Binge

Drinking in College” (J. Amer. Med. Assoc., 1994: 1672–1677) reported on a

comprehensive study of heavy drinking on campuses across the United States.

A binge episode was defined as five or more drinks in a row for males and
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four or more for females. Figure 1.3 shows a stem-and-leaf display of 140 values

of x ¼ the percentage of undergraduate students who are binge drinkers.

(These values were not given in the cited article, but our display agrees with a

picture of the data that did appear.)

The first leaf on the stem 2 row is 1, which tells us that 21% of the students at

one of the colleges in the sample were binge drinkers. Without the identification of

stem digits and leaf digits on the display, we wouldn’t know whether the stem 2,

leaf 1 observation should be read as 21%, 2.1%, or .21%.

The display suggests that a typical or representative value is in the stem 4

row, perhaps in the mid-40% range. The observations are not highly concentrated

about this typical value, as would be the case if all values were between 20% and

49%. The display rises to a single peak as we move downward, and then declines;

there are no gaps in the display. The shape of the display is not perfectly symmetric,

but instead appears to stretch out a bit more in the direction of low leaves than in

the direction of high leaves. Lastly, there are no observations that are unusually far

from the bulk of the data (no outliers), as would be the case if one of the 26% values

had instead been 86%. The most surprising feature of this data is that, at most

colleges in the sample, at least one-quarter of the students are binge drinkers. The

problem of heavy drinking on campuses is much more pervasive than many had

suspected. ■

A stem-and-leaf display conveys information about the following aspects of

the data:

• Identification of a typical or representative value

• Extent of spread about the typical value

• Presence of any gaps in the data

• Extent of symmetry in the distribution of values

• Number and location of peaks

• Presence of any outlying values

Example 1.5 Figure 1.4 presents stem-and-leaf displays for a random sample of lengths of golf

courses (yards) that have been designated by Golf Magazine as among the most

challenging in the United States. Among the sample of 40 courses, the shortest is

6433 yards long, and the longest is 7280 yards. The lengths appear to be distributed

in a roughly uniform fashion over the range of values in the sample. Notice that a

stem choice here of either a single digit (6 or 7) or three digits (643, . . . , 728) would
yield an uninformative display, the first because of too few stems and the latter

because of too many.

0|4 
1|1345678889
2|1223456666777889999 Stem: tens digit

3|0112233344555666677777888899999 Leaf: ones digit

4|111222223344445566666677788888999
5|00111222233455666667777888899
6|01111244455666778

Figure 1.3 Stem-and-leaf display for percentage binge drinkers at each of 140 colleges
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■

Dotplots

A dotplot is an attractive summary of numerical data when the data set is reason-

ably small or there are relatively few distinct data values. Each observation is

represented by a dot above the corresponding location on a horizontal measurement

scale. When a value occurs more than once, there is a dot for each occurrence, and

these dots are stacked vertically. As with a stem-and-leaf display, a dotplot gives

information about location, spread, extremes, and gaps.

Example 1.6 Figure 1.5 shows a dotplot for the first grade IQ data introduced in Example 1.2 in

the previous section. A representative IQ value is around 110, and the data is fairly

symmetric about the center.

If the data set discussed in Example 1.6 had consisted of the IQ average from

each of 100 classes, each recorded to the nearest tenth, it would have been much

more cumbersome to construct a dotplot. Our next technique is well suited to such

situations.

It should be mentioned that for some software packages (including R) the dot

plot is entirely different.

Histograms

Some numerical data is obtained by counting to determine the value of a variable

(the number of traffic citations a person received during the last year, the number of

persons arriving for service during a particular period), whereas other data is

81 90 99 108 117 126 135 144

First grade IQ

Figure 1.5 A dotplot of the first grade IQ scores ■

64| 33 35 64 70 Stem: Thousands and hundreds digits

65| 06 26 27 83 Leaf: Tens and ones digits

66| 05 14 94
67| 00 13 45 70 70 90 98 
68| 50 70 73 90 
69| 00 04 27 36
70| 05 11 22 40 50 51
71| 05 13 31 65 68 69
72| 09 80 

Leaf Unit = 10
64 3367
65 0228
66 019
67 0147799
68 5779
69 0023
70 012455
71 013666
72 08

a b
Stem-and-leaf of yardage N = 40

Figure 1.4 Stem-and-leaf displays of golf course yardages: (a) two-digit

leaves; (b) display from MINITAB with truncated one-digit leaves

12 CHAPTER 1 Overview and Descriptive Statistics



obtained by taking measurements (weight of an individual, reaction time to a

particular stimulus). The prescription for drawing a histogram is generally different

for these two cases.

Consider first data resulting from observations on a “counting variable” x.
The frequency of any particular x value is the number of times that value occurs in

the data set. The relative frequency of a value is the fraction or proportion of times

the value occurs:

relative frequency of a value ¼ number of times the value occurs

number of observations in the dataset

Suppose, for example, that our data set consists of 200 observations on

x ¼ the number of major defects in a new car of a certain type. If 70 of these x
values are 1, then

frequency of the x value 1 : 70

relative frequency of the x value 1 :
70

200
¼ :35

Multiplying a relative frequency by 100 gives a percentage; in the defect example,

35% of the cars in the sample had just one major defect. The relative frequencies, or

percentages, are usually of more interest than the frequencies themselves. In theory,

the relative frequencies should sum to 1, but in practice the sum may differ slightly

from 1 because of rounding. A frequency distribution is a tabulation of the

frequencies and/or relative frequencies.

A HISTO-
GRAM FOR
COUNTING
DATA

First, determine the frequency and relative frequency of each x value. Then

mark possible x values on a horizontal scale. Above each value, draw a

rectangle whose height is the relative frequency (or alternatively, the fre-

quency) of that value.

This construction ensures that the area of each rectangle is proportional to the

relative frequency of the value. Thus if the relative frequencies of x ¼ 1 and x ¼ 5

are .35 and .07, respectively, then the area of the rectangle above 1 is five times the

area of the rectangle above 5.

Example 1.7 How unusual is a no-hitter or a one-hitter in a major league baseball game, and how

frequently does a team get more than 10, 15, or even 20 hits? Table 1.1 is a

frequency distribution for the number of hits per team per game for all nine-inning

games that were played between 1989 and 1993. Notice that a no-hitter happens

only about once in a 1000 games, and 22 or more hits occurs with about the same

frequency.

The corresponding histogram in Figure 1.6 rises rather smoothly to a single

peak and then declines. The histogram extends a bit more on the right (toward large

values) than it does on the left, a slight “positive skew.”
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Either from the tabulated information or from the histogram itself, we can

determine the following:

proportion of gameswith relative relative relative

atmost two hits ¼ frequency þ frequency þ frequency

for x¼0 for x¼1 for x¼2

¼ :0010 þ :0037 þ :0108 ¼ :0155

Similarly,

proportion of games with

between 5 and 10 hits inclusiveð Þ ¼ :0752þ :1026þ� � �þ:1015¼ :6361

That is, roughly 64% of all these games resulted in between 5 and 10

(inclusive) hits. ■

Table 1.1 Frequency distribution for hits in nine-inning games

Hits/game
Number
of games

Relative
frequency Hits/game

Number
of games

Relative
frequency

0 20 .0010 14 569 .0294

1 72 .0037 15 393 .0203

2 209 .0108 16 253 .0131

3 527 .0272 17 171 .0088

4 1048 .0541 18 97 .0050

5 1457 .0752 19 53 .0027

6 1988 .1026 20 31 .0016

7 2256 .1164 21 19 .0010

8 2403 .1240 22 13 .0007

9 2256 .1164 23 5 .0003

10 1967 .1015 24 1 .0001

11 1509 .0779 25 0 .0000

12 1230 .0635 26 1 .0001

13 834 .0430 27 1 .0001

19,383 1.0005

10

.05

0
0

.10

Hits/game
20

Relative frequency

Figure 1.6 Histogram of number of hits per nine-inning game
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Constructing a histogram for measurement data (observations on a

“measurement variable”) entails subdividing the measurement axis into a suitable

number of class intervals or classes, such that each observation is contained in

exactly one class. Suppose, for example, that we have 50 observations on x ¼ fuel

efficiency of an automobile (mpg), the smallest of which is 27.8 and the largest of

which is 31.4. Then we could use the class boundaries 27.5, 28.0, 28.5, . . . , and 31.5
as shown here:

27.5 28.0 29.0 30.0 31.028.5 29.5 30.5 31.5

One potential difficulty is that occasionally an observation falls on a class boundary

and therefore does not lie in exactly one interval, for example, 29.0. One way to

deal with this problem is to use boundaries like 27.55, 28.05, . . . , 31.55. Adding a

hundredths digit to the class boundaries prevents observations from falling on the

resulting boundaries. The approach that we will follow is to write the class intervals

as 27.5–28, 28–28.5, and so on and use the convention that any observation falling
on a class boundary will be included in the class to the right of the observation.
Thus 29.0 would go in the 29–29.5 class rather than the 28.5–29 class. This is how

MINITAB constructs a histogram. However, the default histogram in R does it the

other way, with 29.0 going into the 28.5–29.0 class.

A HISTO-
GRAM FOR
MEASURE-
MENT DATA:
EQUAL CLASS
WIDTHS

Determine the frequency and relative frequency for each class. Mark the class

boundaries on a horizontalmeasurement axis. Above each class interval, draw a

rectangle whose height is the corresponding relative frequency (or frequency).

Example 1.8 Power companies need information about customer usage to obtain accurate fore-

casts of demands. Investigators from Wisconsin Power and Light determined

energy consumption (BTUs) during a particular period for a sample of 90 gas-

heated homes. An adjusted consumption value was calculated as follows:

adjusted consumption ¼ consumption

(weather in degree days)(house area)

This resulted in the accompanying data (part of the stored data set FURNACE.

MTW available in MINITAB), which we have ordered from smallest to largest.

2.97 4.00 5.20 5.56 5.94 5.98 6.35 6.62 6.72 6.78

6.80 6.85 6.94 7.15 7.16 7.23 7.29 7.62 7.62 7.69

7.73 7.87 7.93 8.00 8.26 8.29 8.37 8.47 8.54 8.58

8.61 8.67 8.69 8.81 9.07 9.27 9.37 9.43 9.52 9.58

9.60 9.76 9.82 9.83 9.83 9.84 9.96 10.04 10.21 10.28

10.28 10.30 10.35 10.36 10.40 10.49 10.50 10.64 10.95 11.09

11.12 11.21 11.29 11.43 11.62 11.70 11.70 12.16 12.19 12.28

12.31 12.62 12.69 12.71 12.91 12.92 13.11 13.38 13.42 13.43

13.47 13.60 13.96 14.24 14.35 15.12 15.24 16.06 16.90 18.26
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We let MINITAB select the class intervals. The most striking feature of the

histogram in Figure 1.7 is its resemblance to a bell-shaped (and therefore symmet-

ric) curve, with the point of symmetry roughly at 10.

Class 1–3 3–5 5–7 7–9 9–11 11–13 13–15 15–17 17–19

Frequency 1 1 11 21 25 17 9 4 1

Relative frequency .011 .011 .122 .233 .278 .189 .100 .044 .011

From the histogram,

proportion of

observations � :01þ :01þ :12þ :23¼ :37 exact value¼ 34

90
¼ :378

� �
less than 9

The relative frequency for the 9–11 class is about .27, so we estimate that roughly

half of this, or .135, is between 9 and 10. Thus

proportion of observations

less than 10 � :37þ :135¼ :505 ðslightlymore than 50%Þ
The exact value of this proportion is 47/90 ¼ .522. ■

There are no hard-and-fast rules concerning either the number of classes or

the choice of classes themselves. Between 5 and 20 classes will be satisfactory for

most data sets. Generally, the larger the number of observations in a data set, the

more classes should be used. A reasonable rule of thumb is

number of classes �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
number of observations

p

Equal-width classes may not be a sensible choice if a data set “stretches out”

to one side or the other. Figure 1.8 shows a dotplot of such a data set. Using a small

number of equal-width classes results in almost all observations falling in just

7 191 173 95 13 1511

30

10

20

0

BTUN

P
er

ce
nt

Figure 1.7 Histogram of the energy consumption data from Example 1.8
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one or two of the classes. If a large number of equal-width classes are used,

many classes will have zero frequency. A sound choice is to use a few wider

intervals near extreme observations and narrower intervals in the region of high

concentration.

A HISTO-
GRAM FOR
MEASURE-
MENT DATA:
UNEQUAL
CLASS
WIDTHS

After determining frequencies and relative frequencies, calculate the height

of each rectangle using the formula

rectangle height ¼ relative frequency of the class

class width

The resulting rectangle heights are usually called densities, and the

vertical scale is the density scale. This prescription will also work when class
widths are equal.

Example 1.9 There were 106 active players on the two Super Bowl teams (Green Bay and

Pittsburgh) of 2011. Here are their weights in order:

180 180 184 185 186 190 190 191 191 191 194 195 195 196 198 199 200 200 200

200 200 202 203 205 205 207 207 207 208 208 208 209 209 213 215 216 216 217

218 219 225 225 225 229 230 230 231 233 234 235 236 238 239 241 242 243 245

245 247 248 250 250 250 252 252 254 255 255 255 256 260 262 263 265 270 280

285 285 290 298 300 300 304 305 305 305 305 306 308 308 314 315 316 318 318

318 319 320 324 325 325 337 338 340 344 365

and here they are in categories:

Class
180

–190

190

–200

200

–210

210

–220

220

–240

240

–260

260

–300

300

–310

310

–320

320

–330

330

–370

Frequency 5 11 17 7 13 17 10 10 7 4 5

Relative
frequency .047 .104 .160 .066 .123 .160 .094 .094 .066 .038 .047

Density .0047 .0104 .0160 .0066 .0061 .0080 .0024 .0094 .0066 .0038 .0012

The resulting histogram appears in Figure 1.9.

a

b

c

Figure 1.8 Selecting class intervals for “stretched-out” dots: (a) many short

equalwidth intervals; (b) a few wide equal-width intervals; (c) unequal-width intervals
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This histogram has three rather distinct peaks: the first corresponding to

lightweight players like defensive backs and wide receivers, the second to “medium

weight” players like linebackers, and the third to the heavyweights who play

offensive or defensive line positions. ■

When class widths are unequal, not using a density scale will give a picture

with distorted areas. For equal-class widths, the divisor is the same in each density

calculation, and the extra arithmetic simply results in a rescaling of the vertical axis

(i.e., the histogram using relative frequency and the one using density will have

exactly the same appearance). A density histogram does have one interesting

property. Multiplying both sides of the formula for density by the class width gives

relative frequency ¼ ðclass widthÞðdensityÞ ¼ ðrectangle widthÞðrectangle heightÞ
¼ rectangle area

That is, the area of each rectangle is the relative frequency of the corresponding
class. Furthermore, because the sum of relative frequencies must be 1.0 (except for

roundoff), the total area of all rectangles in a density histogram is l. It is always
possible to draw a histogram so that the area equals the relative frequency (this is true

also for a histogram of counting data)—just use the density scale. This property will

play an important role in creating models for distributions in Chapter 4.

Histogram Shapes

Histograms come in a variety of shapes. A unimodal histogram is one that rises to a

single peak and then declines. A bimodal histogram has two different peaks.

Bimodality can occur when the data set consists of observations on two quite

different kinds of individuals or objects. For example, consider a large data set

0.018

0.016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000
180 200 220 240 260 280 300 320 340 360
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en
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Figure 1.9 A MINITAB density histogram for the weight data of Example 1.9
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consisting of driving times for automobiles traveling between San Luis Obispo and

Monterey in California (exclusive of stopping time for sightseeing, eating, etc.).

This histogram would show two peaks, one for those cars that took the inland route

(roughly 2.5 h) and another for those cars traveling up the coast (3.5–4 h). However,

bimodality does not automatically follow in such situations. Only if the two

separate histograms are “far apart” relative to their spreads will bimodality occur

in the histogram of combined data. Thus a large data set consisting of heights of

college students should not result in a bimodal histogram because the typical male

height of about 69 in. is not far enough above the typical female height of about

64–65 in. A histogram with more than two peaks is said to be multimodal.
A histogram is symmetric if the left half is a mirror image of the right half.

A unimodal histogram is positively skewed if the right or upper tail is stretched out

compared with the left or lower tail and negatively skewed if the stretching is to the

left. Figure 1.10 shows “smoothed” histograms, obtained by superimposing a

smooth curve on the rectangles, that illustrate the various possibilities.

Qualitative Data

Both a frequency distribution and a histogram can be constructed when the data set is

qualitative (categorical) in nature; in this case, “bar graph” is synonymous with “histo-

gram.” Sometimes there will be a natural ordering of classes (for example, freshmen,

sophomores, juniors, seniors, graduate students) whereas in other cases the order will be

arbitrary (for example, Catholic, Jewish, Protestant, and the like).With such categorical

data, the intervals above which rectangles are constructed should have equal width.

Example 1.10 Each member of a sample of 120 individuals owning motorcycles was asked for

the name of the manufacturer of his or her bike. The frequency distribution for the

resulting data is given in Table 1.2 and the histogram is shown in Figure 1.11.

a b c d

Figure 1.10 Smoothed histograms: (a) symmetric unimodal; (b) bimodal; (c) positively skewed; and

(d) negatively skewed

Table 1.2 Frequency distribution for motorcycle data

Manufacturer Frequency Relative frequency

1. Honda 41 .34

2. Yamaha 27 .23

3. Kawasaki 20 .17

4. Harley-Davidson 18 .15

5. BMW 3 .03

6. Other 11 .09

120 1.01
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Multivariate Data

The techniques presented so far have been exclusively for situations in which each

observation in a data set is either a single number or a single category. Often,

however, the data is multivariate in nature. That is, if we obtain a sample of

individuals or objects and on each one we make two or more measurements, then

each “observation” would consist of several measurements on one individual or

object. The sample is bivariate if each observation consists of two measurements

or responses, so that the data set can be represented as (x1, y1), . . . , (xn, yn). For
example, xmight refer to engine size and y to horsepower, or xmight refer to brand

of calculator owned and y to academic major. We briefly consider the analysis of

multivariate data in several later chapters.

Exercises Section 1.2 (10–29)

10. Consider the IQ data given in Example 1.2.

a. Construct a stem-and-leaf display of the data.

What appears to be a representative IQ value?

Do the observations appear to be highly con-

centrated about the representative value or

rather spread out?

b. Does the display appear to be reasonably sym-

metric about a representative value, or would

you describe its shape in some other way?

c. Do there appear to be any outlying IQ values?

d. What proportion of IQ values in this sample

exceed 100?

11. Every score in the following batch of exam

scores is in the 60’s, 70’s, 80’s, or 90’s.

A stem-and-leaf display with only the four

stems 6, 7, 8, and 9 would not give a very

detailed description of the distribution of scores.

In such situations, it is desirable to use repeated

stems. Here we could repeat the stem 6 twice,

using 6L for scores in the low 60’s (leaves 0, 1, 2,

3, and 4) and 6H for scores in the high 60’s

(leaves 5, 6, 7, 8, and 9). Similarly, the other

stems can be repeated twice to obtain a display

consisting of eight rows. Construct such a display

for the given scores. What feature of the data is

highlighted by this display?

74 89 80 93 64 67 72 70 66 85 89 81 81

71 74 82 85 63 72 81 81 95 84 81 80 70

69 66 60 83 85 98 84 68 90 82 69 72 87

88

12. The accompanying specific gravity values for

various wood types used in construction

appeared in the article “Bolted Connection

Design Values Based on European Yield

Model” (J. Struct. Engrg., 1993: 2169–2186):

.31 .35 .36 .36 .37 .38 .40 .40 .40

.41 .41 .42 .42 .42 .42 .42 .43 .44

.45 .46 .46 .47 .48 .48 .48 .51 .54

.54 .55 .58 .62 .66 .66 .67 .68 .75

.34

.23

.17
.15

.03

.09

(1) (2) (3) (4) (5) (6)

Figure 1.11 Histogram for motorcycle data ■
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Construct a stem-and-leaf display using repeated

stems (see the previous exercise), and comment

on any interesting features of the display.

13. The accompanying data set consists of observa-

tions on shower-flow rate (L/min) for a sample of

n ¼ 129 houses in Perth, Australia (“An Appli-

cation of Bayes Methodology to the Analysis of

Diary Records in a Water Use Study,” J. Amer.
Statist. Assoc., 1987: 705–711):

4.6 12.3 7.1 7.0 4.0 9.2 6.7 6.9 11.5 5.1
11.2 10.5 14.3 8.0 8.8 6.4 5.1 5.6 9.6 7.5
7.5 6.2 5.8 2.3 3.4 10.4 9.8 6.6 3.7 6.4
8.3 6.5 7.6 9.3 9.2 7.3 5.0 6.3 13.8 6.2
5.4 4.8 7.5 6.0 6.9 10.8 7.5 6.6 5.0 3.3
7.6 3.9 11.9 2.2 15.0 7.2 6.1 15.3 18.9 7.2
5.4 5.5 4.3 9.0 12.7 11.3 7.4 5.0 3.5 8.2
8.4 7.3 10.3 11.9 6.0 5.6 9.5 9.3 10.4 9.7
5.1 6.7 10.2 6.2 8.4 7.0 4.8 5.6 10.5 14.6
10.8 15.5 7.5 6.4 3.4 5.5 6.6 5.9 15.0 9.6
7.8 7.0 6.9 4.1 3.6 11.9 3.7 5.7 6.8 11.3
9.3 9.6 10.4 9.3 6.9 9.8 9.1 10.6 4.5 6.2
8.3 3.2 4.9 5.0 6.0 8.2 6.3 3.8 6.0

a. Construct a stem-and-leaf display of the data.

b. What is a typical, or representative, flow rate?

c. Does the display appear to be highly concen-

trated or spread out?

d. Does the distribution of values appear to be

reasonably symmetric? If not, how would you

describe the departure from symmetry?

e. Would you describe any observation as being

far from the rest of the data (an outlier)?

14. Do running times of American movies differ

somehow from times of French movies? The

authors investigated this question by randomly

selecting 25 recent movies of each type, resulting

in the following running times:

Am: 94 90 95 93 128 95 125

91 104 116 162 102 90 110

92 113 116 90 97 103 95

120 109 91 138

Fr: 123 116 90 158 122 119 125

90 96 94 137 102 105 106

95 125 122 103 96 111 81

113 128 93 92

Construct a comparative stem-and-leaf display

by listing stems in the middle of your paper and

then placing the Am leaves out to the left and the

Fr leaves out to the right. Then comment on

interesting features of the display.

15. Temperature transducers of a certain type are

shipped in batches of 50. A sample of 60 batches

was selected, and the number of transducers

in each batch not conforming to design specifi-

cations was determined, resulting in the follo-

wing data:

2 1 2 4 0 1 3 2 0 5 3 3 1 3 2 4 7 0 2 3
0 4 2 1 3 1 1 3 4 1 2 3 2 2 8 4 5 1 3 1
5 0 2 3 2 1 0 6 4 2 1 6 0 3 3 3 6 1 2 3

a. Determine frequencies and relative frequen-

cies for the observed values of x ¼ number of

nonconforming transducers in a batch.

b. What proportion of batches in the sample have

at most five nonconforming transducers?What

proportion have fewer than five? What propor-

tion have at least five nonconforming units?

c. Draw a histogram of the data using relative

frequency on the vertical scale, and comment

on its features.

16. In a study of author productivity (“Lotka’s Test,”

Collection Manage., 1982: 111–118), a large

number of authors were classified according to

the number of articles they had published during

a certain period. The results were presented in

the accompanying frequency distribution:

Number of

papers 1 2 3 4 5 6 7 8

Frequency 784 204 127 50 33 28 19 19

Number of
papers 9 10 11 12 13 14 15 16 17

Frequency 6 7 6 7 4 4 5 3 3

a. Construct a histogram corresponding to this

frequency distribution. What is the most inter-

esting feature of the shape of the distribution?

b. What proportion of these authors published at

least five papers? At least ten papers? More

than ten papers?

c. Suppose the five 15’s, three 16’s, and three

17’s had been lumped into a single category

displayed as “�15.” Would you be able to

draw a histogram? Explain.

d. Suppose that instead of the values 15, 16, and

17 being listed separately, they had been com-

bined into a 15–17 category with frequency

11. Would you be able to draw a histogram?

Explain.

17. The article “Ecological Determinants of Herd

Size in the Thorncraft’s Giraffe of Zambia”

(Afric. J. Ecol., 2010: 962–971) gave the follow-
ing data (read from a graph) on herd size for a

sample of 1570 herds over a 34-year period.

Herd size 1 2 3 4 5 6 7 8

Frequency 589 190 176 157 115 89 57 55

Herd size 9 10 11 12 13 14 15 17

Frequency 33 31 22 10 4 10 11 5

Herd size 18 19 20 22 23 24 26 32

Frequency 2 4 2 2 2 2 1 1
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a. What proportion of the sampled herds had just

one giraffe?

b. What proportion of the sampled herds had six

or more giraffes (characterized in the article

as “large herds”)?

c. What proportion of the sampled herds had

between five and ten giraffes, inclusive?

d. Draw a histogram using relative frequency on

the vertical axis. How would you describe the

shape of this histogram?

18. The article “Determination of Most Representa-

tive Subdivision” (J. Energy Engrg., 1993:

43–55) gave data on various characteristics of

subdivisions that could be used in deciding

whether to provide electrical power using over-

head lines or underground lines. Here are the

values of the variable x ¼ total length of streets

within a subdivision:

1280 5320 4390 2100 1240 3060 4770

1050 360 3330 3380 340 1000 960

1320 530 3350 540 3870 1250 2400

960 1120 2120 450 2250 2320 2400

3150 5700 5220 500 1850 2460 5850

2700 2730 1670 100 5770 3150 1890

510 240 396 1419 2109

a. Construct a stem-and-leaf display using the

thousands digit as the stem and the hundreds

digit as the leaf, and comment on the various

features of the display.

b. Construct a histogram using class boundaries

0, 1000, 2000, 3000, 4000, 5000, and 6000.

What proportion of subdivisions have total

length less than 2000? Between 2000 and

4000? How would you describe the shape of

the histogram?

19. The article cited in Exercise 18 also gave the

following values of the variables y ¼ number of

culs-de-sac and z ¼ number of intersections:

y 1 0 1 0 0 2 0 1 1 1 2 1 0 0 1 1 0 1 1

z 1 8 6 1 1 5 3 0 0 4 4 0 0 1 2 1 4 0 4

y 1 1 0 0 0 1 1 2 0 1 2 2 1 1 0 2 1 1 0

z 0 3 0 1 1 0 1 3 2 4 6 6 0 1 1 8 3 3 5

y 1 5 0 3 0 1 1 0 0

z 0 5 2 3 1 0 0 0 3

a. Construct a histogram for the y data. What

proportion of these subdivisions had no culs-

de-sac? At least one cul-de-sac?

b. Construct a histogram for the z data. What pro-

portion of these subdivisions had at most five

intersections? Fewer than five intersections?

20. How does the speed of a runner vary over the course

of a marathon (a distance of 42.195 km)? Consider

determining both the time to run the first 5 km and

the time to run between the 35-km and 40-kmpoints,

and then subtracting the former time from the latter

time. A positive value of this difference corresponds

to a runner slowing down toward the end of the race.

The accompanying histogram is based on times of

runners who participated in several different Japa-

nese marathons (“Factors Affecting Runners’ Mar-

athon Performance,” Chance, Fall 1993: 24–30).
What are some interesting features of this

histogram? What is a typical difference value?

Roughly what proportion of the runners ran the

late distance more quickly than the early distance?

Histogram for Exercise 20

50

100

150

200

−100 100 2000

Time
difference300 400 500 600 700 800

Frequency
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21. In a study of warp breakage during the weaving of

fabric (Technometrics, 1982: 63), 100 specimens

of yarn were tested. The number of cycles of strain

to breakage was determined for each yarn speci-

men, resulting in the following data:

86 146 251 653 98 249 400 292 131 169

175 176 76 264 15 364 195 262 88 264

157 220 42 321 180 198 38 20 61 121

282 224 149 180 325 250 196 90 229 166

38 337 65 151 341 40 40 135 597 246

211 180 93 315 353 571 124 279 81 186

497 182 423 185 229 400 338 290 398 71

246 185 188 568 55 55 61 244 20 284

393 396 203 829 239 236 286 194 277 143

198 264 105 203 124 137 135 350 193 188

a. Construct a relative frequency histogram based

on the class intervals 0–100, 100–200, . . . , and
comment on features of the distribution.

b. Construct a histogram based on the following

class intervals: 0–50, 50–100, 100–150,

150–200, 200–300, 300–400, 400–500,

500–600, 600–900.

c. If weaving specifications require a breaking

strength of at least 100 cycles, what proportion

of the yarn specimens in this sample would be

considered satisfactory?

22. The accompanying data set consists of observa-

tions on shear strength (lb) of ultrasonic spot

welds made on a type of alclad sheet. Construct

a relative frequency histogram based on ten equal-

width classes with boundaries 4000, 4200, . . . .
[The histogram will agree with the one in “Com-

parison of Properties of Joints Prepared by Ultra-

sonic Welding and Other Means” (J. Aircraft,
1983: 552–556).] Comment on its features.

5434 4948 4521 4570 4990 5702 5241

5112 5015 4659 4806 4637 5670 4381

4820 5043 4886 4599 5288 5299 4848

5378 5260 5055 5828 5218 4859 4780

5027 5008 4609 4772 5133 5095 4618

4848 5089 5518 5333 5164 5342 5069

4755 4925 5001 4803 4951 5679 5256

5207 5621 4918 5138 4786 4500 5461

5049 4974 4592 4173 5296 4965 5170

4740 5173 4568 5653 5078 4900 4968

5248 5245 4723 5275 5419 5205 4452

5227 5555 5388 5498 4681 5076 4774

4931 4493 5309 5582 4308 4823 4417

5364 5640 5069 5188 5764 5273 5042

5189 4986

23. A transformation of data values by means of some

mathematical function, such as
ffiffiffi
x

p
or 1/x, can often

yield a set of numbers that has “nicer” statistical

properties than the original data. In particular, it

may be possible to find a function for which the

histogram of transformed values is more symmetric

(or, even better, more like a bell-shaped curve) than

the original data. As an example, the article “Time

Lapse Cinematographic Analysis of Beryllium–

Lung Fibroblast Interactions” (Environ. Res.,
1983: 34–43) reported the results of experiments

designed to study the behavior of certain individual

cells that had been exposed to beryllium. An impor-

tant characteristic of such an individual cell is its

interdivision time (IDT). IDTs were determined for

a large number of cells both in exposed (treatment)

and unexposed (control) conditions. The authors of

the article used a logarithmic transformation, that is,

transformed value ¼ log10(original value). Con-

sider the following representative IDT data:

28.1 31.2 13.7 46.0 25.8 16.8 34.8

62.3 28.0 17.9 19.5 21.1 31.9 28.9

60.1 23.7 18.6 21.4 26.6 26.2 32.0

43.5 17.4 38.8 30.6 55.6 25.5 52.1

21.0 22.3 15.5 36.3 19.1 38.4 72.8

48.9 21.4 20.7 57.3 40.9

Use class intervals 10–20, 20–30, . . . to construct a

histogram of the original data. Use intervals 1.1–1.2,

1.2–1.3, . . . to do the same for the transformed data.

What is the effect of the transformation?

24. Unlike most packaged food products, alcohol bev-

erage container labels are not required to show

calorie or nutrient content. The article “What Am

I Drinking? The Effects of Serving Facts Informa-

tion on Alcohol Beverage Containers” (J. of
Consumer Affairs, 2008: 81–99) reported on a

pilot study in which each individual in a sample

was asked to estimate the calorie content of a 12 oz

can of light beer known to contain 103 cal. The

following information appeared in the article:

Class Percentage

0 – < 50 7

50 – < 75 9

75 – < 100 23

100 – < 125 31

125 – < 150 12

150 – < 200 3

200 – < 300 12

300 – < 500 3

a. Construct a histogram of the data and comment

on any interesting features.

b. What proportion of the estimates were at least

100? Less than 200?
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25. The article “Study on the Life Distribution of

Microdrills” (J. Engrg. Manuf., 2002: 301–305)
reported the following observations, listed in

increasing order, on drill lifetime (number of

holes that a drill machines before it breaks) when

holes were drilled in a certain brass alloy.

11 14 20 23 31 36 39 44 47 50

59 61 65 67 68 71 74 76 78 79

81 84 85 89 91 93 96 99 101 104

105 105 112 118 123 136 139 141 148 158

161 168 184 206 248 263 289 322 388 513

a. Construct a frequency distribution and histo-

gram of the data using class boundaries 0, 50,

100, . . . , and then comment on interesting

characteristics.

b. Construct a frequency distribution and histo-

gram of the natural logarithms of the lifetime

observations, and comment on interesting

characteristics.

c. What proportion of the lifetime observa-

tions in this sample are less than 100?

What proportion of the observations are at

least 200?

26. Consider the following data on type of health com-

plaint (J ¼ joint swelling, F ¼ fatigue, B ¼ back

pain, M ¼ muscle weakness, C ¼ coughing, N ¼
nose running/irritation, O ¼ other) made by tree

planters. Obtain frequencies and relative frequen-

cies for the various categories, and draw a histo-

gram. (The data is consistent with percentages

given in the article “Physiological Effects of

Work Stress and Pesticide Exposure in Tree Plant-

ing by British Columbia Silviculture Workers,”

Ergonomics, 1993: 951–961.)

O O N J C F B B F O J O O M

O F F O O N O N J F J B O C

J O J J F N O B M O J M O B

O F J O O B N C O O O M B F

J O F N

27. A Pareto diagram is a variation of a histogram for

categorical data resulting from a quality control

study. Each category represents a different type of

product nonconformity or production problem. The

categories are ordered so that the one with the

largest frequency appears on the far left, then the

category with the second largest frequency, and so

on. Suppose the following information on noncon-

formities in circuit packs is obtained: failed com-

ponent, 126; incorrect component, 210; insufficient

solder, 67; excess solder, 54; missing component,

131. Construct a Pareto diagram.

28. The cumulative frequency and cumulative rela-
tive frequency for a particular class interval are

the sum of frequencies and relative frequencies,

respectively, for that interval and all intervals

lying below it. If, for example, there are four

intervals with frequencies 9, 16, 13, and 12, then

the cumulative frequencies are 9, 25, 38, and

50, and the cumulative relative frequencies are

.18, .50, .76, and 1.00. Compute the cumulative

frequencies and cumulative relative frequencies

for the data of Exercise 22.

29. Fire load (MJ/m2) is the heat energy that could be

released per square meter of floor area by com-

bustion of contents and the structure itself. The

article “Fire Loads in Office Buildings” (J. Struct.
Engrg., 1997: 365–368) gave the following cumu-

lative percentages (read from a graph) for fire

loads in a sample of 388 rooms:

Value 0 150 300 450 600

Cumulative % 0 19.3 37.6 62.7 77.5

Value 750 900 1050 1200 1350

Cumulative % 87.2 93.8 95.7 98.6 99.1

Value 1500 1650 1800 1950

Cumulative % 99.5 99.6 99.8 100.0

a. Construct a relative frequency histogram and

comment on interesting features.

b. What proportion of fire loads are less than 600?

At least 1200?

c. What proportion of the loads are between 600

and 1200?

1.3 Measures of Location
Visual summaries of data are excellent tools for obtaining preliminary impressions

and insights. More formal data analysis often requires the calculation and interpre-

tation of numerical summary measures. That is, from the data we try to extract

several summarizing numbers—numbers that might serve to characterize the data

set and convey some of its most important features. Our primary concern will be

with numerical data; some comments regarding categorical data appear at the end

of the section.
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Suppose, then, that our data set is of the form x1, x2, . . . , xn, where each xi is a
number. What features of such a set of numbers are of most interest and deserve

emphasis? One important characteristic of a set of numbers is its location, and in

particular its center. This section presents methods for describing the location of a

data set; in Section 1.4 we will turn to methods for measuring variability in a set of

numbers.

The Mean

For a given set of numbers x1, x2, . . . , xn, the most familiar and useful measure of

the center is the mean, or arithmetic average of the set. Because we will almost

always think of the xi’s as constituting a sample, we will often refer to the

arithmetic average as the sample mean and denote it by �x.

DEFINITION The sample mean �x of observations x1, x2, . . . , xn is given by

�x ¼ x1 þ x2 þ � � � þ xn
n

¼
Pn
i¼1

xi

n

The numerator of �x can be written more informally as
P

xi where the

summation is over all sample observations.

For reporting �x, we recommend using decimal accuracy of one digit more than the

accuracy of the xi’s. Thus if observations are stopping distances with x1 ¼ 125,

x2 ¼ 131, and so on, we might have �x ¼ 127:3 ft.

Example 1.11 A class was assigned to make wingspan measurements at home. The wingspan is

the horizontal measurement from fingertip to fingertip with outstretched arms. Here

are the measurements given by 21 of the students.
x1 ¼ 60 x2 ¼ 64 x3 ¼ 72 x4 ¼ 63 x5 ¼ 66 x6 ¼ 62 x7 ¼ 75

x8 ¼ 66 x9 ¼ 59 x10 ¼ 75 x11 ¼ 69 x12 ¼ 62 x13 ¼ 63 x14 ¼ 61

x15 ¼ 65 x16 ¼ 67 x17 ¼ 65 x18 ¼ 69 x19 ¼ 95 x20 ¼ 60 x21 ¼ 70

Figure 1.12 shows a stem-and-leaf display of the data; a wingspan in the 60’s

appears to be “typical.”

5H|9
6L|00122334
6H|5566799
7L|02
7H|55
8L|
8H|
9L|
9H|5

Figure 1.12 A stem-and-leaf display of the wingspan data
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With
P

xi ¼ 1408, the sample mean is

�x ¼ 1408

21
¼ 67:0

a value consistent with information conveyed by the stem-and-leaf display.■

A physical interpretation of �x demonstrates how it measures the location

(center) of a sample. Think of drawing and scaling a horizontal measurement axis,

and then representing each sample observation by a 1-lb weight placed at the

corresponding point on the axis. The only point at which a fulcrum can be placed

to balance the system of weights is the point corresponding to the value of �x (see

Figure 1.13). The system balances because, as shown in the next section,P ðxi � �xÞ ¼ 0 so the net total tendency to turn about �x is 0.

Just as �x represents the average value of the observations in a sample, the

average of all values in the population can in principle be calculated. This average

is called the population mean and is denoted by the Greek letter m. When there are

N values in the population (a finite population), then m ¼ (sum of the N population

values)/N. In Chapters 3 and 4, we will give a more general definition for m that

applies to both finite and (conceptually) infinite populations. Just as �x is an

interesting and important measure of sample location, m is an interesting and

important (often the most important) characteristic of a population. In the chapters

on statistical inference, we will present methods based on the sample mean for

drawing conclusions about a population mean. For example, we might use the

sample mean �x ¼ 67:0 computed in Example 1.11 as a point estimate (a single

number that is our “best” guess) of m ¼ the true average wingspan for all students

in introductory statistics classes.

The mean suffers from one deficiency that makes it an inappropriate measure

of center under some circumstances: its value can be greatly affected by the

presence of even a single outlier (unusually large or small observation). In Example

1.11, the value x19 ¼ 95 is obviously an outlier. Without this observation,

�x ¼ 1313=20 ¼ 65:7; the outlier increases the mean by 1.3 in. The value 95 is

clearly an error—this student is only 70 in. tall, and there is no way such a student

could have a wingspan of almost 8 ft. As Leonardo da Vinci noticed, wingspan is

usually quite close to height.

Data on housing prices in various metropolitan areas often contains outliers

(those lucky enough to live in palatial accommodations), in which case the use of

average price as a measure of center will typically be misleading. We will momen-

tarily propose an alternative to the mean, namely the median, that is insensitive to

outliers (recent New York City data gave a median price of less than $700,000 and

a mean price exceeding $1,000,000). However, the mean is still by far the most

60 65 70 75 80 85 90 95

Mean = 67.0

Figure 1.13 The mean as the balance point for a system of weights
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widely used measure of center, largely because there are many populations for

which outliers are very scarce. When sampling from such a population (a normal or

bell-shaped distribution being the most important example), outliers are highly

unlikely to enter the sample. The sample mean will then tend to be stable and quite

representative of the sample.

The Median

The word median is synonymous with “middle,” and the sample median is indeed

the middle value when the observations are ordered from smallest to largest. When

the observations are denoted by x1, . . . , xn, we will use the symbol ~x to represent the
sample median.

DEFINITION The sample median is obtained by first ordering the n observations from

smallest to largest (with any repeated values included so that every sample

observation appears in the ordered list). Then,

~x¼

The single

middle

value if n

is odd

¼ nþ1

2

� �th

ordered value

The average

of the two

middle

values if n

is even

¼ average of
n

2

� �th

and
n

2
þ1

� �th

ordered values

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

Example 1.12 People not familiar with classical music might tend to believe that a composer’s

instructions for playing a particular piece are so specific that the duration would not

depend at all on the performer(s). However, there is typically plenty of room for

interpretation, and orchestral conductors and musicians take full advantage of this.

We went to the website ArkivMusic.com and selected a sample of 12 recordings of

Beethoven’s Symphony #9 (the “Choral”, a stunningly beautiful work), yielding

the following durations (min) listed in increasing order:

62.3 62.8 63.6 65.2 65.7 66.4 67.4 68.4 68.8 70.8 75.7 79.0

Since n ¼ 12 is even, the sample median is the average of the n/2 ¼ 6th and

(n/2 + 1) ¼ 7th values from the ordered list:

~x ¼ 66:4þ 67:4

2
¼ 66:90
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Note that if the largest observation 79.0 had not been included in the sample, the

resulting sample median for the n ¼ 11 remaining observations would have been

the single middle value 67.4 (the [n + 1]/2 ¼ 6th ordered value, i.e., the 6th value

in from either end of the ordered list). The sample mean is

�x ¼ P
xi=n ¼ 816:1=12 ¼ 68:01, a bit more than a full minute larger than the

median. The mean is pulled out a bit relative to the median because the sample

“stretches out” somewhat more on the upper end than on the lower end. ■

The data in Example 1.12 illustrates an important property of ~x in contrast to �x.
The sample median is very insensitive to a number of extremely small or extremely

large data values. If, for example, we increased the two largest xi’s from 75.7 and

79.0 to 95.7 and 99.0, respectively, ~x would be unaffected. Thus, in the treatment of

outlying data values, �x and ~x are at opposite ends of a spectrum: �x is sensitive to even
one such value, whereas ~x is insensitive to a large number of outlying values.

Because the large values in the sample of Example 1.12 affect �x more than ~x,
~x < �x for that data. Although �x and ~x both provide a measure for the center of a data

set, they will not in general be equal because they focus on different aspects of the

sample.

Analogous to ~x as the middle value in the sample is a middle value in the

population, the population median, denoted by ~m. As with �x and m, we can think of
using the sample median ~x to make an inference about ~m. In Example 1.12, we

might use ~x ¼ 66:90 as an estimate of the median duration in the entire population

from which the sample was selected. A median is often used to describe income

or salary data (because it is not greatly influenced by a few large salaries). If the

median salary for a sample of statisticians were ~x ¼ $66;416, we might use this as

a basis for concluding that the median salary for all statisticians exceeds $60,000.

The population mean m and median ~m will not generally be identical. If the

population distribution is positively or negatively skewed, as pictured in Figure 1.14,

then m 6¼ ~m. When this is the case, in making inferences we must first decide which of

the two population characteristics is of greater interest and then proceed accordingly.

Other Measures of Location: Quartiles,
Percentiles, and Trimmed Means

The median (population or sample) divides the data set into two parts of equal size.

To obtain finer measures of location, we could divide the data into more than two

such parts. Roughly speaking, quartiles divide the data set into four equal parts,

with the observations above the third quartile constituting the upper quarter of the

data set, the second quartile being identical to the median, and the first quartile

Negative skew Symmetric Positive skew

a b c

Figure 1.14 Three different shapes for a population distribution
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separating the lower quarter from the upper three-quarters. Similarly, a data set

(sample or population) can be even more finely divided using percentiles; the 99th
percentile separates the highest 1% from the bottom 99%, and so on. Unless the

number of observations is a multiple of 100, care must be exercised in obtaining

percentiles. We will use percentiles in Chapter 4 in connection with certain models

for infinite populations and so postpone discussion until that point.

The sample mean and sample median are influenced by outlying values in a

very different manner—the mean greatly and the median not at all. Since extreme

behavior of either type might be undesirable, we briefly consider alternative

measures that are neither as sensitive as �x nor as insensitive as ~x. To motivate

these alternatives, note that �x and ~x are at opposite extremes of the same “family” of

measures. After the data set is ordered, ~x is computed by throwing away as many

values on each end as one can without eliminating everything (leaving just one or

two middle values) and averaging what is left. On the other hand, to compute �x one
throws away nothing before averaging. To paraphrase, the mean involves trimming

0% from each end of the sample, whereas for the median the maximum possible

amount is trimmed from each end. A trimmed mean is a compromise between �x
and ~x. A 10% trimmed mean, for example, would be computed by eliminating the

smallest 10% and the largest 10% of the sample and then averaging what remains.

Example 1.13 Consider the following 20 observations, ordered from smallest to largest, each one

representing the lifetime (in hours) of a type of incandescent lamp:

612 623 666 744 883 898 964 970 983 1003

1016 1022 1029 1058 1085 1088 1122 1135 1197 1201

The average of all 20 observations is �x ¼ 965:0, and ~x ¼ 1009:5. The 10% trimmed

mean is obtained by deleting the smallest two observations (612 and 623) and the

largest two (1197 and 1201) and then averaging the remaining 16 to obtain

�xtrð10Þ ¼ 979:1. The effect of trimming here is to produce a “central value” that is

somewhat above the mean (�x is pulled down by a few small lifetimes) and yet

considerably below the median. Similarly, the 20% trimmed mean averages

the middle 12 values to obtain �xtrð20Þ ¼ 999:9, even closer to the median. (See

Figure 1.15.)

Generally speaking, using a trimmed mean with a moderate trimming

proportion (between 5% and 25%) will yield a measure that is neither as sensitive

to outliers as the mean nor as insensitive as the median. For this reason, trimmed

means have merited increasing attention from statisticians for both descriptive and

inferential purposes. More will be said about trimmed means when point estimation

is discussed in Chapter 7. As a final point, if the trimming proportion is denoted

by a and na is not an integer, then it is not obvious how the 100a% trimmed mean

600 800 1000 1200
x x

xtr(10)

~

Figure 1.15 Dotplot of lifetimes (in hours) of incandescent lamps ■
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should be computed. For example, if a ¼ .10 (10%) and n ¼ 22, then na ¼ (22)

(.10) ¼ 2.2, and we cannot trim 2.2 observations from each end of the ordered

sample. In this case, the 10% trimmed mean would be obtained by first trimming

two observations from each end and calculating �xtr, then trimming three and

calculating �xtr, and finally interpolating between the two values to obtain �xtrð10Þ.

Categorical Data and Sample Proportions

When the data is categorical, a frequency distribution or relative frequency distri-

bution provides an effective tabular summary of the data. The natural numerical

summary quantities in this situation are the individual frequencies and the relative

frequencies. For example, if a survey of individuals who own laptops is undertaken

to study brand preference, then each individual in the sample would identify the

brand of laptop that he or she owned, from which we could count the number

owning Sony, Macintosh, Hewlett-Packard, and so on. Consider sampling a dichot-

omous population—one that consists of only two categories (such as voted or

did not vote in the last election, does or does not own a laptop, etc.). If we let x
denote the number in the sample falling in category A, then the number in category

B is n� x. The relative frequency or sample proportion in category A is x/n and the
sample proportion in category B is 1 � x/n. Let’s denote a response that falls in

category A by a 1 and a response that falls in category B by a 0. A sample size of

n ¼ 10 might then yield the responses 1, 1, 0, 1, 1, 1, 0, 0, 1, 1. The sample mean

for this numerical sample is (because the number of 1’s ¼ x ¼ 7).

x1 þ � � � þ xn
n

¼ 1þ 1þ 0þ � � � þ 1þ 1

n
¼ 7

10
¼ x

n
¼ sample proportion

This result can be generalized and summarized as follows: If in a categorical
data situation we focus attention on a particular category and code the sample
results so that a 1 is recorded for an individual in the category and a 0 for an
individual not in the category, then the sample proportion of individuals in the
category is the sample mean of the sequence of 1’s and 0’s. Thus a sample mean can

be used to summarize the results of a categorical sample. These remarks also apply

to situations in which categories are defined by grouping values in a numerical

sample or population (e.g., we might be interested in knowing whether individuals

have owned their present automobile for at least 5 years, rather than studying the

exact length of ownership).

Analogous to the sample proportion x/n of individuals falling in a particular

category, let p represent the proportion of individuals in the entire population

falling in the category. As with x/n, p is a quantity between 0 and 1. While x/n is

a sample characteristic, p is a characteristic of the population. The relationship

between the two parallels the relationship between ~x and ~m and between �x and m. In
particular, we will subsequently use x/n to make inferences about p. If, for example,

a sample of 100 car owners reveals that 22 owned their cars at least 5 years, then we

might use 22/100 ¼ .22 as a point estimate of the proportion of all owners who

have owned their car at least 5 years. We will study the properties of x/n as an

estimator of p and see how x/n can be used to answer other inferential questions.

With k categories (k > 2), we can use the k sample proportions to answer questions

about the population proportions p1, . . . , pk.
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Exercises Section 1.3 (30–40)

30. The May 1, 2009 issue of The Montclarion

reported the following home sale amounts for a

sample of homes in Alameda, CA that were sold

the previous month (1000s of $):

590 815 575 608 350 1285 408 540 555 679

a. Calculate and interpret the sample mean and

median.

b. Suppose the 6th observation had been 985

rather than 1285. How would the mean and

median change?

c. Calculate a 20% trimmed mean by first

trimming the two smallest and two largest

observations.

d. Calculate a 15% trimmed mean.

31. In Superbowl XXXVII, Michael Pittman of

Tampa Bay rushed (ran with the football) 17

times on first down, and the results were the

following gains in yards:

23 1 4 1 6 5 9 6 2

�1 3 2 0 2 24 1 1

a. Determine the value of the sample mean.

b. Determine the value of the sample median.

Why is it so different from the mean?

c. Calculate a trimmed mean by deleting the

smallest and largest observations. What is

the corresponding trimming percentage?

How does the value of this �xtr compare to

the mean and median?

32. The minimum injection pressure (psi) for injec-

tion molding specimens of high amylose corn

was determined for eight different specimens

(higher pressure corresponds to greater proces-

sing difficulty), resulting in the following obser-

vations (from “Thermoplastic Starch Blends with

a Polyethylene-Co-Vinyl Alcohol: Processability

and Physical Properties,” Polymer Engrg. & Sci.,
1994: 17–23):

15.0 13.0 18.0 14.5 12.0 11.0 8.9 8.0

a. Determine the values of the sample mean,

sample median, and 12.5% trimmed mean,

and compare these values.

b. By how much could the smallest sample

observation, currently 8.0, be increased with-

out affecting the value of the sample median?

c. Suppose we want the values of the sample

mean and median when the observations are

expressed in kilograms per square inch (ksi)

rather than psi. Is it necessary to reexpress

each observation in ksi, or can the values

calculated in part (a) be used directly? [Hint:
1 kg ¼ 2.2 lb.]

33. A sample of 26 offshore oil workers took part in

a simulated escape exercise, resulting in the

accompanying data on time (sec) to complete

the escape (“Oxygen Consumption and Ventila-

tion During Escape from an Offshore Platform,”

Ergonomics, 1997: 281–292):

389 356 359 363 375 424 325 394 402

373 373 370 364 366 364 325 339 393

392 369 374 359 356 403 334 397

a. Construct a stem-and-leaf display of the data.

How does it suggest that the sample mean and

median will compare?

b. Calculate the values of the sample mean and

median. [Hint:
P

xi ¼ 9638.]

c. By howmuch could the largest time, currently

424, be increased without affecting the value

of the sample median? By how much could

this value be decreased without affecting the

value of the sample median?

d. What are the values of �x and ~x when the

observations are reexpressed in minutes?

34. The article “Snow Cover and Temperature Rela-

tionships in North America and Eurasia” (J. Cli-
mate Appl. Meteorol., 1983: 460–469) used

statistical techniques to relate the amount of

snow cover on each continent to average conti-

nental temperature. Data presented there

included the following ten observations on Octo-

ber snow cover for Eurasia during the years

1970–1979 (in million km2):

6.5 12.0 14.9 10.0 10.7 7.9 21.9 12.5 14.5 9.2

What would you report as a representative, or

typical, value of October snow cover for this

period, and what prompted your choice?

35. Blood pressure values are often reported to the

nearest 5 mmHg (100, 105, 110, etc.). Suppose

the actual blood pressure values for nine ran-

domly selected individuals are

118.6 127.4 138.4 130.0 113.7 122.0 108.3 131.5 133.2

a. What is the median of the reported blood

pressure values?

b. Suppose the blood pressure of the second

individual is 127.6 rather than 127.4 (a small

change in a single value). How does this
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affect the median of the reported values?

What does this say about the sensitivity of

the median to rounding or grouping in the

data?

36. The propagation of fatigue cracks in various

aircraft parts has been the subject of extensive

study in recent years. The accompanying data

consists of propagation lives (flight hours/104)

to reach a given crack size in fastener holes

intended for use in military aircraft (“Statistical

Crack Propagation in Fastener Holes under Spec-

trum Loading,” J. Aircraft, 1983: 1028–1032):

.736 .863 .865 .913 .915 .937 .983 1.007

1.011 1.064 1.109 1.132 1.140 1.153 1.253 1.394

a. Compute and compare the values of the sam-

ple mean and median.

b. By how much could the largest sample obser-

vation be decreased without affecting the

value of the median?

37. Compute the sample median, 25% trimmed

mean, 10% trimmed mean, and sample mean

for the microdrill data given in Exercise 25, and

compare these measures.

38. A sample of n ¼ 10 automobiles was selected,

and each was subjected to a 5-mph crash test.

Denoting a car with no visible damage by S (for

success) and a car with such damage by F, results

were as follows:

S S F S S S F F S S

a. What is the value of the sample proportion of

successes x/n?
b. Replace each S with a 1 and each F with a 0.

Then calculate �x for this numerically coded

sample. How does �x compare to x/n?
c. Suppose it is decided to include 15 more cars

in the experiment. How many of these would

have to be S’s to give x/n ¼ .80 for the entire

sample of 25 cars?

39. a. If a constant c is added to each xi in a sample,

yielding yi ¼ xi + c, how do the sample mean

and median of the yi’s relate to the mean and

median of the xi’s? Verify your conjectures.

b. If each xi is multiplied by a constant c, yielding
yi ¼ cxi, answer the question of part (a).

Again, verify your conjectures.

40. An experiment to study the lifetime (in hours) for

a certain type of component involved putting ten

components into operation and observing them for

100 hours. Eight of the components failed during

that period, and those lifetimes were recorded.

Denote the lifetimes of the two components still

functioning after 100 hours by 100+. The resulting

sample observations were

48 79 100+ 35 92 86 57 100+ 17 29

Which of the measures of center discussed in this

section can be calculated, and what are the values

of those measures? [Note: The data from this

experiment is said to be “censored on the right.”]

1.4 Measures of Variability
Reporting a measure of center gives only partial information about a data set or

distribution. Different samples or populations may have identical measures of

center yet differ from one another in other important ways. Figure 1.16 shows

dotplots of three samples with the same mean and median, yet the extent of spread

about the center is different for all three samples. The first sample has the largest

amount of variability, the third has the smallest amount, and the second is interme-

diate to the other two in this respect.

30 40 50

* * * * * * * * *

60 70

1:

2:

3:

Figure 1.16 Samples with identical measures of center but different amounts of

variability
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Measures of Variability for Sample Data

The simplest measure of variability in a sample is the range, which is the difference
between the largest and smallest sample values. Notice that the value of the range

for sample 1 in Figure 1.16 is much larger than it is for sample 3, reflecting more

variability in the first sample than in the third. A defect of the range, though, is that

it depends on only the two most extreme observations and disregards the positions

of the remaining n� 2 values. Samples 1 and 2 in Figure 1.16 have identical ranges,

yet when we take into account the observations between the two extremes, there is

much less variability or dispersion in the second sample than in the first.

Our primary measures of variability involve the deviations from the mean,
x1 � �x; x2 � �x; . . . ; xn � �x. That is, the deviations from the mean are obtained by

subtracting �x from each of the n sample observations. A deviation will be positive if

the observation is larger than the mean (to the right of the mean on the measurement

axis) and negative if the observation is smaller than the mean. If all the deviations

are small in magnitude, then all xi’s are close to the mean and there is little

variability. On the other hand, if some of the deviations are large in magnitude,

then some xi’s lie far from �x, suggesting a greater amount of variability. A simple

way to combine the deviations into a single quantity is to average them (sum them

and divide by n). Unfortunately, there is a major problem with this suggestion:

sum of deviations ¼
Xn
i¼1

ðxi � �xÞ ¼ 0

so that the average deviation is always zero. The verification uses several standard

rules of summation and the fact that
P

�x ¼ �xþ �xþ � � � þ �x ¼ n�x:

X
ðxi � �xÞ ¼

X
xi �

X
�x ¼

X
xi � n�x ¼

X
xi � n

1

n

X
xi

� �
¼ 0

How can we change the deviations to nonnegative quantities so the positive

and negative deviations do not counteract each other when they are combined? One

possibility is to work with the absolute values of the deviations and calculate the

average absolute deviation
P

xi � �xj j=n. Because the absolute value operation

leads to a number of theoretical difficulties, consider instead the squared deviations

ðx1 � �xÞ2; ðx2 � �xÞ2; . . . ; ðxn � �xÞ2. Rather than use the average squared deviationP
xi � �xð Þ2=n, for several reasons we will divide the sum of squared deviations by

n � 1 rather than n.

DEFINITION The sample variance, denoted by s2, is given by

s2 ¼
P

xi � �xð Þ2
n� 1

¼ Sxx
n� 1

The sample standard deviation, denoted by s, is the (positive) square
root of the variance:

s ¼
ffiffiffiffi
s2

p
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The unit for s is the same as the unit for each of the xi’s. If, for example, the

observations are fuel efficiencies in miles per gallon, then we might have s ¼ 2.0

mpg. A rough interpretation of the sample standard deviation is that it is the size of a

typical or representative deviation from the sample mean within the given sample.

Thus if s ¼ 2.0 mpg, then some xi’s in the sample are closer than 2.0 to �x, whereas
others are farther away; 2.0 is a representative (or “standard”) deviation from the

mean fuel efficiency. If s ¼ 3.0 for a second sample of cars of another type, a typical

deviation in this sample is roughly 1.5 times what it is in the first sample, an

indication of more variability in the second sample.

Example 1.14 The website www.fueleconomy.gov contains a wealth of information about fuel

characteristics of various vehicles. In addition to EPA mileage ratings, there are

many vehicles for which users have reported their own values of fuel efficiency

(mpg). Consider Table 1.3 with n ¼ 11 efficiencies for the 2009 Ford Focus

equipped with an automatic transmission (for this model, the EPA reports an

overall rating of 27–24 mpg in city driving and 33 mpg in highway driving).

Effects of rounding account for the sum of deviations not being exactly zero.

The numerator of s2 is Sxx ¼ 314.110, from which

s2 ¼ Sxx
n� 1

¼ 314:110

11� 1
¼ 31:41 s ¼ 5:60

The size of a representative deviation from the sample mean 33.26 is roughly

5.6 mpg.

[Note: Of the nine people who also reported driving behavior, only three did

more than 80% of their driving in highway mode; we bet you can guess which cars

they drove. We haven’t a clue why all 11 reported values exceed the EPA figure –

maybe only drivers with really good fuel efficiencies communicate their results.]

Motivation for s2

To explain why s2 rather than the average squared deviation is used to measure

variability, note first that whereas s2 measures sample variability, there is a measure

of variability in the population called the population variance. We will use s2 (the

Table 1.3 Data for Example 1.14

xi xi � �x ðxi � �xÞ2

1 27.3 �5.96 35.522

2 27.9 �5.36 28.730

3 32.9 �0.36 0.130

4 35.2 1.94 3.764

5 44.9 11.64 135.490

6 39.9 6.64 44.090

7 30.0 �3.26 10.628

8 29.7 �3.56 12.674

9 28.5 �4.76 22.658

10 32.0 �1.26 1.588

11 37.6 4.34 18.836P
xi ¼ 365:9

P ðxi � �xÞ ¼ :04
P ðxi � �xÞ2 ¼ 314:110 �x ¼ 33:26

■
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square of the lowercase Greek letter sigma) to denote the population variance and

s to denote the population standard deviation (the square root of s2). When the

population is finite and consists of N values,

s2 ¼
XN
i¼1

ðxi � mÞ2 N=

which is the average of all squared deviations from the population mean (for the

population, the divisor is N and not N�1). More general definitions of s2 appear in
Chapters 3 and 4.

Just as �x will be used to make inferences about the population mean m, we
should define the sample variance so that it can be used to make inferences about

s2. Now note that s2 involves squared deviations about the population mean m.
If we actually knew the value of m, then we could define the sample variance as the

average squared deviation of the sample xi’s about m. However, the value of m is

almost never known, so the sum of squared deviations about �xmust be used. But the
xi’s tend to be closer to their average �x than to the population average m, so to
compensate for this the divisor n � 1 is used rather than n. In other words, if we

used a divisor n in the sample variance, then the resulting quantity would tend to

underestimate s2 (produce estimated values that are too small on the average),

whereas dividing by the slightly smaller n � 1 corrects this underestimation.

It is customary to refer to s2 as being based on n� 1 degrees of freedom (df).

This terminology results from the fact that although s2 is based on the n quantities

x1 � �x; x2 � �x; . . . ; xn � �x, these sum to 0, so specifying the values of any n � 1 of

the quantities determines the remaining value. For example, if n ¼ 4 and

x1 � �x ¼ 8; x2 � �x ¼ �6; and x4 � �x ¼ �4, then automatically x3 � �x ¼ 2, so

only three of the four values of xi � �x are freely determined (3 df).

A Computing Formula for s2

Computing and squaring the deviations can be tedious, especially if enough

decimal accuracy is being used in �x to guard against the effects of rounding. An

alternative formula for the numerator of s2 circumvents the need for all the

subtraction necessary to obtain the deviations. The formula involves bothP
xið Þ2, summing and then squaring, and

P
x2i , squaring and then summing.

An alternative expression for the numerator of s2 is

Sxx ¼
X

ðxi � �xÞ2 ¼
X

x2i �
P

xið Þ2
n

Proof Because �x ¼ P
xi=n; n�x2 ¼ n

P
xið Þ2 n2 ¼� P

xið Þ2 n= . Then,

X
ðxi� �xÞ2 ¼

X
ðx2i �2�x � xiþ�x2Þ ¼

X
x2i �2�x

X
xiþ

X
ð�x2Þ

¼
X

x2i �2�x �n�xþnð�xÞ2 ¼
X

x2i�nð�xÞ2 ¼
X

x2i �
P

xið Þ2
n ■
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Example 1.15 Traumatic knee dislocation often requires surgery to repair ruptured ligaments. One

measure of recovery is range of motion (measured as the angle formed when,

starting with the leg straight, the knee is bent as far as possible). The given data on

postsurgical range of motion appeared in the article “Reconstruction of the Anterior

and Posterior Cruciate Ligaments After Knee Dislocation” (Amer. J. Sports Med.,
1999: 189–197):

154 142 137 133 122 126 135 135 108 120 127 134 122

The sum of these 13 sample observations is
P

xi ¼ 1695, and the sum of their

squares is X
x2i ¼ 1542 þ 1422 þ � � � þ 1222 ¼ 222; 581

Thus the numerator of the sample variance is

Sxx ¼
X

x2i � ½ð
X

xiÞ2�=n ¼ 222; 581� ð1695Þ2=13 ¼ 1579:0769

from which s2 ¼ 1579.0769/12 ¼ 131.59 and s ¼ 11.47. ■

The shortcut method can yield values of s2 and s that differ from the values

computed using the definitions. These differences are due to effects of rounding

and will not be important in most samples. To minimize the effects of rounding

when using the shortcut formula, intermediate calculations should be done using

several more significant digits than are to be retained in the final answer. Because

the numerator of s2 is the sum of nonnegative quantities (squared deviations), s2 is
guaranteed to be nonnegative. Yet if the shortcut method is used, particularly with

data having little variability, a slight numerical error can result in the numerator

being zero or negative [
P

x2i less than or equal to
P

xið Þ2=n]. Of course, a negative
s2 is wrong, and a zero s2 should occur only if all data values are the same.

As an example of the potential difficulties with the formula, consider the data

1001, 1002, 1003. The formula gives Sxx ¼10012 + 10022 + 10032 � (1001 +

1002 + 1003)2/3 ¼ 3,012,014� 3,012,012 ¼ 2. Thus, we could carry six decimal

digits and still get the wrong answer of 3,012,010 � 3,012,010 ¼ 0. All seven

digits must be carried to get the right answer. The problem occurs because we are

subtracting two numbers of nearly equal size, so the number of accurate digits in the

answer is many fewer than in the numbers being subtracted.

Several other properties of s2 can facilitate its computation.

PROPOSITION Let x1, x2,. . . , xn be a sample and c be a constant.

1. If y1 ¼ x1 + c, y2 ¼ x2 + c,. . . , yn ¼ xn + c, then s2y ¼ s2x , and
2. If y1 ¼ cx1,. . . , yn ¼ cxn, then s2y ¼ c2s2x , sy ¼ jcjsx,

where sx
2 is the sample variance of the x’s and sy

2 is the sample variance of

the y’s.
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In words, Result 1 says that if a constant c is added to (or subtracted from) each data

value, the variance is unchanged. This is intuitive, because adding or subtracting c
shifts the location of the data set but leaves distances between data values

unchanged. According to Result 2, multiplication of each xi by c results in s2

being multiplied by a factor of c2. These properties can be proved by noting in

Result 1 that �y ¼ �xþ c and in Result 2 that �y ¼ c�x (see Exercise 59).

Boxplots

Stem-and-leaf displays and histograms convey rather general impressions about a

data set, whereas a single summary such as the mean or standard deviation focuses

on just one aspect of the data. In recent years, a pictorial summary called a boxplot
has been used successfully to describe several of a data set’s most prominent

features. These features include (1) center, (2) spread, (3) the extent and nature

of any departure from symmetry, and (4) identification of “outliers,” observations

that lie unusually far from the main body of the data. Because even a single outlier

can drastically affect the values of �x and s, a boxplot is based on measures that are

“resistant” to the presence of a few outliers—the median and a measure of spread

called the fourth spread.

DEFINITION Order the n observations from smallest to largest and separate the smallest

half from the largest half; the median ~x is included in both halves if n is odd.

Then the lower fourth is the median of the smallest half and the upper
fourth is the median of the largest half. A measure of spread that is resistant

to outliers is the fourth spread fs, given by

fs ¼ upper fourth� lower fourth

Roughly speaking, the fourth spread is unaffected by the positions of those

observations in the smallest 25% or the largest 25% of the data.

The simplest boxplot is based on the following five-number summary:

smallest xi lower fourth median upper fourth largest xi

First, draw a horizontal measurement scale. Then place a rectangle above this axis;

the left edge of the rectangle is at the lower fourth, and the right edge is at the upper

fourth (so boxwidth ¼ fs). Place a vertical line segment or some other symbol inside

the rectangle at the location of the median; the position of the median symbol

relative to the two edges conveys information about skewness in the middle 50%

of the data. Finally, draw “whiskers” out from either end of the rectangle to the

smallest and largest observations. A boxplot with a vertical orientation can also be

drawn by making obvious modifications in the construction process.

Example 1.16 Ultrasound was used to gather the accompanying corrosion data on the thickness of

the floor plate of an aboveground tank used to store crude oil (“Statistical Analysis

of UT Corrosion Data from Floor Plates of a Crude Oil Aboveground Storage

Tank,” Mater. Eval., 1994: 846–849); each observation is the largest pit depth in

the plate, expressed in milli-in.
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40 52 55 60 70 75 85 85 90 90 92 94 94 95 98 100 115 125 125

The five-number summary is as follows:

~

largest xi = 125
x = 90lower fourth = 72.5 upper fourth = 96.5smallest xi = 40

Figure 1.17 shows the resulting boxplot. The right edge of the box is much closer to

the median than is the left edge, indicating a very substantial skew in the middle

half of the data. The box width (fs) is also reasonably large relative to the range of

the data (distance between the tips of the whiskers).

Figure 1.18 shows MINITAB output from a request to describe the corrosion

data. The trimmed mean is the average of the 17 observations that remain after the

largest and smallest values are deleted (trimming percentage �5%). Q1 and Q3 are

the lower and upper quartiles; these are similar to the fourths but are calculated in a

slightly different manner. SE Mean is s
ffiffiffi
n

p
= ; this will be an important quantity in

our subsequent work concerning inferences about m.

Boxplots That Show Outliers

A boxplot can be embellished to indicate explicitly the presence of outliers.

40 50 60 70 80 90 100 110 120 130
Depth

Figure 1.17 A boxplot of the corrosion data

SEN

19 86.32 90.00

98.00

86.76 23.32

70.0040.00 125.00

Q1 Q3

Variable

Variable

depth

depth

Minimum Maximum

Mean Median TrMean StDev

5.35

Mean

Figure 1.18 MINITAB description of the pit-depth data ■
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DEFINITION Any observation farther than 1.5fs from the closest fourth is an outlier. An
outlier is extreme if it is more than 3fs from the nearest fourth, and it is mild
otherwise.

Let’s now modify our previous construction of a boxplot by drawing a

whisker out from each end of the box to the smallest and largest observations

that are not outliers. Each mild outlier is represented by a closed circle and each

extreme outlier by an open circle. Some statistical computer packages do not

distinguish between mild and extreme outliers.

Example 1.17 The Clean Water Act and subsequent amendments require that all waters in the

United States meet specific pollution reduction goals to ensure that water is

“fishable and swimmable.” The article “Spurious Correlation in the USEPA Rating

Curve Method for Estimating Pollutant Loads” (J. Environ. Eng., 2008: 610–618)
investigated various techniques for estimating pollutant loads in watersheds; the

authors “discuss the imperative need to use sound statistical methods” for this

purpose. Among the data considered is the following sample of TN (total nitrogen)

loads (kg N/day) from a particular Chesapeake Bay location, displayed here in

increasing order.

9.69 13.16 17.09 18.12 23.70 24.07 24.29 26.43

30.75 31.54 35.07 36.99 40.32 42.51 45.64 48.22

49.98 50.06 55.02 57.00 58.41 61.31 64.25 65.24

66.14 67.68 81.40 90.80 92.17 92.42 100.82 101.94

103.61 106.28 106.80 108.69 114.61 120.86 124.54 143.27

143.75 149.64 167.79 182.50 192.55 193.53 271.57 292.61

312.45 352.09 371.47 444.68 460.86 563.92 690.11 826.54

1529.35

Relevant summary quantities are

~x ¼ 92:17 lower fourth ¼ 45:64 upper fourth ¼ 167:79
fs ¼ 122:15 1:5fs ¼ 183:225 3fs ¼ 366:45

Subtracting 1.5fs from the lower fourth gives a negative number, and none of the

observations are negative, so there are no outliers on the lower end of the data.

However,

upper fourth + 1:5fs¼ 351:015 upper fourth + 3fs¼ 534:24

Thus the four largest observations — 563.92, 690.11, 826.54, and 1529.35 — are

extreme outliers, and 352.09, 371.47, 444.68, and 460.86 are mild outliers.

The whiskers in the boxplot in Figure 1.19 extend out to the smallest

observation 9.69 on the low end and 312.45, the largest observation that is not an

outlier, on the upper end. There is some positive skewness in the middle half of the

data (the median line is somewhat closer to the right edge of the box than to the left

edge) and a great deal of positive skewness overall.
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Comparative Boxplots

A comparative or side-by-side boxplot is a very effective way of revealing simila-

rities and differences between two or more data sets consisting of observations on

the same variable.

Example 1.18 In recent years, some evidence suggests that high indoor radon concentration may

be linked to the development of childhood cancers, but many health professionals

remain unconvinced. The article “Indoor Radon and Childhood Cancer” (Lancet,
1991: 1537–1538) presented the accompanying data on radon concentration (Bq/m3)

in two different samples of houses. The first sample consisted of houses in which a

child diagnosed with cancer had been residing. Houses in the second sample had no

recorded cases of childhood cancer. Figure 1.20 presents a stem-and-leaf display of

the data.

Numerical summary quantities are as follows:

�x ~x s fs

Cancer 22.8 16.0 31.7 11.0

No cancer 19.2 12.0 17.0 18.0

0 200 400 600 800 1000 1200 1400 1600

Daily nitrogen load

Figure 1.19 A boxplot of the nitrogen load data showing mild and extreme outliers■
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Figure 1.20 Stem-and-leaf display for Example 1.18
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The values of both the mean and median suggest that the cancer sample is centered

somewhat to the right of the no-cancer sample on the measurement scale. The

values of s suggest more variability in the cancer sample than in the no-cancer

sample, but this impression is contradicted by the fourth spreads. The observation

210, an extreme outlier, is the culprit. Figure 1.21 shows a comparative boxplot

from the R computer package. The no-cancer box is stretched out compared with

the cancer box ( fs ¼ 18 vs. fs ¼ 11), and the positions of the median lines in the

two boxes show much more skewness in the middle half of the no-cancer sample

than the cancer sample. Were the cancer victims exposed to more radon, as you

would expect if there is a relationship between cancer and radon? This is not

evident from the plot, where the cancer box fits well within the no-cancer box

and there is little difference in the highest and lowest values if you ignore outliers.

Because the R package boxplot does not normally distinguish betweenmild and

extreme outliers, a few commands were needed to get the hollow circles and filled

circles in Figure 1.21 (the commands are available on the web pages for this book).

Exercises Section 1.4 (41–59)

41. The article “Oxygen Consumption During Fire

Suppression: Error of Heart Rate Estimation”

(Ergonomics, 1991: 1469–1474) reported the fol-
lowing data on oxygen consumption (mL/kg/

min) for a sample of ten firefighters performing

a fire-suppression simulation:

29.5 49.3 30.6 28.2 28.0 26.3 33.9 29.4 23.5 31.6

Compute the following:

a. The sample range

b. The sample variance s2 from the definition

(by first computing deviations, then squaring

them, etc.)

c. The sample standard deviation

d. s2 using the shortcut method

42. The value of Young’s modulus (GPa) was deter-

mined for cast plates consisting of certain inter-

metallic substrates, resulting in the following

sample observations (“Strength and Modulus of

a Molybdenum-Coated Ti-25Al-10Nb-3U-1Mo

Intermetallic,” J. Mater. Engrg. Perform., 1997:
46–50):

116.4 115.9 114.6 115.2 115.8

a. Calculate �x and the deviations from the mean.
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Figure 1.21 A boxplot of the data in Example 1.18, from R ■

1.4 Measures of Variability 41



b. Use the deviations calculated in part (a) to

obtain the sample variance and the sample

standard deviation.

c. Calculate s2 by using the computational for-

mula for the numerator Sxx.
d. Subtract 100 from each observation to obtain a

sample of transformed values. Now calculate

the sample variance of these transformed

values, and compare it to s2 for the original

data. State the general principle.

43. The accompanying observations on stabilized

viscosity (cP) for specimens of a certain grade

of asphalt with 18% rubber added are from the

article “Viscosity Characteristics of Rubber-

Modified Asphalts” (J. Mater. Civil Engrg.,
1996: 153–156):

2781 2900 3013 2856 2888

a. What are the values of the sample mean and

sample median?

b. Calculate the sample variance using the

computational formula. [Hint: First subtract
a convenient number from each observation.]

44. Calculate and interpret the values of the sample

median, sample mean, and sample standard devi-

ation for the following observations on fracture

strength (MPa, read from a graph in “Heat-Resis-

tant Active Brazing of Silicon Nitride: Mechani-

cal Evaluation of Braze Joints,”Welding J., Aug.
1997):

87 93 96 98 105 114 128 131 142 168

45. Exercise 33 in Section 1.3 presented a sample of

26 escape times for oil workers in a simulated

escape exercise. Calculate and interpret the sam-

ple standard deviation. [Hint:
P

xi ¼ 9638 andP
x2i ¼ 3; 587; 566].

46. A study of the relationship between age and

various visual functions (such as acuity and

depth perception) reported the following obser-

vations on area of scleral lamina (mm2) from

human optic nerve heads (“Morphometry of

Nerve Fiber Bundle Pores in the Optic Nerve

Head of the Human,” Exper. Eye Res., 1988:
559–568):

2.75 2.62 2.74 3.85 2.34 2.74 3.93 4.21 3.88
4.33 3.46 4.52 2.43 3.65 2.78 3.56 3.01

a. Calculate
P

xi and
P

x2i .
b. Use the values calculated in part (a) to com-

pute the sample variance s2 and then the sam-

ple standard deviation s.

47. In 1997 a woman sued a computer keyboard

manufacturer, charging that her repetitive stress

injuries were caused by the keyboard (Genessy
v. Digital Equipment Corp.). The jury awarded

about $3.5 million for pain and suffering, but

the court then set aside that award as being

unreasonable compensation. In making this

determination, the court identified a “norma-

tive” group of 27 similar cases and specified a

reasonable award as one within two standard

deviations of the mean of the awards in the 27

cases. The 27 awards were (in $1000s) 37, 60,

75, 115, 135, 140, 149, 150, 238, 290, 340,

410, 600, 750, 750, 750, 1050, 1100, 1139,

1150, 1200, 1200, 1250, 1576, 1700, 1825, and

2000, from which
P

xi ¼ 20;179,
P

x2i ¼
24;657;511. What is the maximum possible

amount that could be awarded under the two-

standard-deviation rule?

48. The article “A Thin-Film Oxygen Uptake Test

for the Evaluation of Automotive Crankcase

Lubricants” (Lubric. Engrg., 1984: 75–83)

reported the following data on oxidation-induc-

tion time (min) for various commercial oils:

87 103 130 160 180 195 132 145 211 105 145
153 152 138 87 99 93 119 129

a. Calculate the sample variance and standard

deviation.

b. If the observations were reexpressed in hours,

what would be the resulting values of the

sample variance and sample standard devia-

tion? Answer without actually performing the

reexpression.

49. The first four deviations from the mean in a

sample of n ¼ 5 reaction times were .3, .9, 1.0,

and 1.3. What is the fifth deviation from the

mean? Give a sample for which these are the

five deviations from the mean.

50. Reconsider the data on area of scleral lamina

given in Exercise 46.

a. Determine the lower and upper fourths.

b. Calculate the value of the fourth spread.

c. If the two largest sample values, 4.33 and 4.52,

had instead been 5.33 and 5.52, how would this

affect fs? Explain.
d. By how much could the observation 2.34 be

increased without affecting fs? Explain.
e. If an 18th observation, x18 ¼ 4.60, is added to

the sample, what is fs?

51. Reconsider these values of rushing yardage from

Exercise 31 of this chapter:

23 1 4 1 6 5 9 6 2
�1 3 2 0 2 24 1 1

a. What are the values of the fourths, and what is

the value of fs?
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b. Construct a boxplot based on the five-number

summary, and comment on its features.

c. How large or small does an observation have to

be to qualify as an outlier? As an extreme

outlier?

d. By how much could the largest observation be

decreased without affecting fs?

52. Here is a stem-and-leaf display of the escape time

data introduced in Exercise 33 of this chapter.

32 55

33 49

34

35 6699

36 34469

37 03345

38 9

39 2347

40 23

41

42 4

a. Determine the value of the fourth spread.

b. Are there any outliers in the sample? Any

extreme outliers?

c. Construct a boxplot and comment on its features.

d. By how much could the largest observation,

currently 424, be decreased without affecting

the value of the fourth spread?

53. Many people who believe they may be suffering

from the flu visit emergency rooms, where they are

subjected to long waits and may expose others or

themselves be exposed to various diseases. The

article “Drive-Through Medicine: A Novel Pro-

posal for the Rapid Evaluation of Patients During

an Influenza Pandemic” (Ann. Emerg. Med., 2010:
268–273 described an experiment to see whether

patients could be evaluated while remaining in

their vehicles. The following total processing

times (min) for a sample of 38 individuals were

read from a graph that appeared in the cited article:

9 16 16 17 19 20 20 20

23 23 23 23 24 24 24 24

25 25 26 26 27 27 28 28

29 29 29 30 32 33 33 34

37 43 44 46 48 53

a. Calculate several different measures of center

and compare them.

b. Are there any outliers in this sample? Any

extreme outliers?

c. Construct a boxplot and comment on any inter-

esting features.

54. Here is summary information on the alcohol per-

centage for a sample of 25 beers:

lower fourth ¼ 4:35 median ¼ 5 upper fourth ¼ 5:95

The bottom three are 3.20 (Heineken Premium

Light), 3.50 (Amstel light), 4.03 (Shiner Light)

and the top three are 7.50 (Terrapin All-American

Imperial Pilsner), 9.10 (Great Divide Hercules

Double IPA), 11.60 (Rogue Imperial Stout).

a. Are there any outliers in the sample? Any

extreme outliers?

b. Construct a boxplot that shows outliers, and

comment on any interesting features.

55. A company utilizes two different machines to

manufacture parts of a certain type. During a sin-

gle shift, a sample of n ¼ 20 parts produced by

each machine is obtained, and the value of a

particular critical dimension for each part is deter-

mined. The comparative boxplot below is con-

structed from the resulting data. Compare and

contrast the two samples.

85

1

2

95 105 115
Dimension

Machine

56. Blood cocaine concentration (mg/L) was deter-

mined both for a sample of individuals who had

died from cocaine-induced excited delirium

(ED) and for a sample of those who had died

from a cocaine overdose without excited delir-

ium; survival time for people in both groups was

at most 6 h. The accompanying data was read

from a comparative boxplot in the article “Fatal

Excited Delirium Following Cocaine Use” (J.
Forensic Sci., 1997: 25–31).

ED 0 0 0 0 .1 .1 .1 .1 .2 .2 .3 .3
.3 .4 .5 .7 .8 1.0 1.5 2.7 2.8 3.5 4.0 8.9
9.2 11.7 21.0

Non-ED 0 0 0 0 0 .1 .1 .1 .1 .2 .2 .2
.3 .3 .3 .4 .5 .5 .6 .8 .9 1.0 1.2 1.4
1.5 1.7 2.0 3.2 3.5 4.1 4.3 4.8 5.0 5.6 5.9 6.0
6.4 7.9 8.3 8.7 9.1 9.6 9.9 11.0 11.5 12.2 12.7 14.0
16.6 17.8

a. Determine the medians, fourths, and fourth

spreads for the two samples.
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b. Are there any outliers in either sample? Any

extreme outliers?

c. Construct a comparative boxplot, and use it as a

basis for comparing and contrasting the ED and

non-ED samples.

57. At the beginning of the 2007 baseball season each

American League team had nine starting position

players (this includes the designated hitter but not

the pitcher). Here are the salaries for the New

York Yankees and the Cleveland Indians in

thousands of dollars:

Yankees: 12000 600 491 22709 21600
13000 13000 15000 23429

Indians: 3200 3750 396 383 1000
3750 917 3000 4050

Construct a comparative boxplot and comment on

interesting features. Compare the salaries of the

two teams. The Indians won more games than

the Yankees in the regular season and defeated

the Yankees in the playoffs.

58. The comparative boxplot below of gasoline vapor

coefficients for vehicles in Detroit appeared in the

article “ReceptorModelingApproach toVOCEmis-

sion Inventory Validation” (J. Environ. Engrg.,
1995: 483–490). Discuss any interesting features.

59. Let x1, . . . , xn be a sample and let a and b be

constants. If yi ¼ axi + b for i ¼ 1, 2, . . . , n, how
does fs (the fourth spread) for the yi’s relate to fs
for the xi’s? Substantiate your assertion.

Supplementary Exercises (60–80)

60. Consider the following information from a sample

of four Wolferman’s cranberry citrus English

muffins, which are said on the package label to

weigh 116 g: �x ¼ 104:4 g; s ¼ 4.1497 g, smallest

weighs 98.7 g, largest weighs 108.0 g. Determine

the values of the two middle sample observations

(and don’t do it by successive guessing!).

61. Three different C2F6 flow rates (SCCM) were

considered in an experiment to investigate the

effect of flow rate on the uniformity (%) of the

etch on a silicon wafer used in the manufacture

of integrated circuits, resulting in the following

data:

Flow rate
125 2.6 2.7 3.0 3.2 3.8 4.6
160 3.6 4.2 4.2 4.6 4.9 5.0
200 2.9 3.4 3.5 4.1 4.6 5.1

Compare and contrast the uniformity observa-

tions resulting from these three different flow

rates.

Comparative boxplot for Exercise 58
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62. The amount of radiation received at a greenhouse

plays an important role in determining the rate of

photosynthesis. The accompanying observations

on incoming solar radiation were read from a

graph in the article “Radiation Components

over Bare and Planted Soils in a Greenhouse”

(Solar Energy, 1990: 1011–1016).

6.3 6.4 7.7 8.4 8.5 8.8 8.9

9.0 9.1 10.0 10.1 10.2 10.6 10.6

10.7 10.7 10.8 10.9 11.1 11.2 11.2

11.4 11.9 11.9 12.2 13.1

Use some of the methods discussed in this chap-

ter to describe and summarize this data.

63. The following data on HC and CO emissions for

one particular vehicle was given in the chapter

introduction.

HC (g/mile) 13.8 18.3 32.2 32.5

CO (g/mile) 118 149 232 236

a. Compute the sample standard deviations for

the HC and CO observations. Does the wide-

spread belief appear to be justified?

b. The sample coefficient of variation s=�x (or

100 � s=�x) assesses the extent of variability

relative to the mean. Values of this coefficient

for several different data sets can be compared

to determine which data sets exhibit more or

less variation. Carry out such a comparison for

the given data.

64. A sample of 77 individuals working at a particu-

lar office was selected and the noise level (dBA)

experienced by each one was determined, yield-

ing the following data (“Acceptable Noise

Levels for Construction Site Offices, Build.
Serv. Engr. Res. Technol., 2009: 87–94).

55.3 55.3 55.3 55.9 55.9 55.9 55.9 56.1 56.1
56.1 56.1 56.1 56.1 56.8 56.8 57.0 57.0 57.0
57.8 57.8 57.8 57.9 57.9 57.9 58.8 58.8 58.8
59.8 59.8 59.8 62.2 62.2 63.8 63.8 63.8 63.9
63.9 63.9 64.7 64.7 64.7 65.1 65.1 65.1 65.3
65.3 65.3 65.3 67.4 67.4 67.4 67.4 68.7 68.7
68.7 68.7 69.0 70.4 70.4 71.2 71.2 71.2 73.0
73.0 73.1 73.1 74.6 74.6 74.6 74.6 79.3 79.3
79.3 79.3 83.0 83.0 83.0

Use various techniques discussed in this chapter

to organize, summarize, and describe the data.

65. Fifteen air samples from a certain region were

obtained, and for each one the carbon monoxide

concentration was determined. The results (in

ppm) were

9.3 10.7 8.5 9.6 12.2 15.6 9.2 10.5

9.0 13.2 11.0 8.8 13.7 12.1 9.8

Using the interpolation method suggested in Sec-

tion 1.3, compute the 10% trimmed mean.

66. a. For what value of c is the quantityP ðxi � cÞ2 minimized? [Hint: Take the

derivative with respect to c, set equal to 0,

and solve.]

b. Using the result of part (a), which of the two

quantities
P ðxi � �xÞ2 and

P ðxi � mÞ2 will

be smaller than the other (assuming that

�x 6¼ m)?

67. a. Let a and b be constants and let yi ¼ axi + b
for i ¼ 1, 2,. . . , n. What are the relationships

between �x and �y and between s2x and s2y?
b. The Australian army studied the effect of

high temperatures and humidity on human

body temperature (Neural Network Training
on Human Body Core Temperature Data,
Technical Report DSTO TN-0241, Com-

batant Protection Nutrition Branch, Aeronau-

tical and Maritime Research Laboratory).

They found that, at 30�C and 60% relative

humidity, the sample average body tempera-

ture for nine soldiers was 38.21�C, with

standard deviation .318�C. What are the

sample average and the standard deviation

in �F?

68. Elevated energy consumption during exercise

continues after the workout ends. Because cal-

ories burned after exercise contribute to weight

loss and have other consequences, it is important

to understand this process. The paper “Effect of

Weight Training Exercise and Treadmill Exer-

cise on Post-Exercise Oxygen Consumption”

(Med. Sci. Sports Exercise, 1998: 518–522)

reported the accompanying data from a study in

which oxygen consumption (liters) was

measured continuously for 30 min for each of

15 subjects both after a weight training exercise

and after a treadmill exercise.

Subject 1 2 3 4 5 6
Weight (x) 14.6 14.4 19.5 24.3 16.3 22.1
Treadmill (y) 11.3 5.3 9.1 15.2 10.1 19.6

Subject 7 8 9 10 11 12
Weight (x) 23.0 18.7 19.0 17.0 19.1 19.6
Treadmill (y) 20.8 10.3 10.3 2.6 16.6 22.4

Subject 13 14 15
Weight (x) 23.2 18.5 15.9
Treadmill (y) 23.6 12.6 4.4

a. Construct a comparative boxplot of the

weight and treadmill observations, and com-

ment on what you see.
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b. Because the data is in the form of (x, y) pairs,
with x and y measurements on the same vari-

able under two different conditions, it is natu-

ral to focus on the differences within pairs:

d1 ¼ x1 � y1, . . . , dn ¼ xn � yn. Construct a
boxplot of the sample differences. What does

it suggest?

69. Anxiety disorders and symptoms can often be

effectively treated with benzodiazepine medica-

tions. It is known that animals exposed to stress

exhibit a decrease in benzodiazepine receptor

binding in the frontal cortex. The paper

“Decreased Benzodiazepine Receptor Binding in

Prefrontal Cortex in Combat-Related Posttrau-

matic Stress Disorder” (Amer. J. Psychiatry,
2000: 1120–1126) described the first study of

benzodiazepine receptor binding in individuals

suffering from PTSD. The accompanying data on

a receptor binding measure (adjusted distribution

volume) was read from a graph in the paper.

PTSD: 10, 20, 25, 28, 31, 35, 37, 38, 38, 39, 39, 42,
46

Healthy: 23, 39, 40, 41, 43, 47, 51, 58, 63, 66, 67,
69, 72

Use various methods from this chapter to describe

and summarize the data.

70. The article “Can We Really Walk Straight?”

(Amer. J. Phys. Anthropol., 1992: 19–27) reported
on an experiment in which each of 20 healthy men

was asked to walk as straight as possible to a target

60 m away at normal speed. Consider the follow-

ing observations on cadence (number of strides

per second):

.95 .85 .92 .95 .93 .86 1.00 .92 .85 .81

.78 .93 .93 1.05 .93 1.06 1.06 .96 .81 .96

Use the methods developed in this chapter to

summarize the data; include an interpretation or

discussion wherever appropriate. [Note: The

author of the article used a rather sophisticated

statistical analysis to conclude that people cannot

walk in a straight line and suggested several expla-

nations for this.]

71. Themode of a numerical data set is the value that

occurs most frequently in the set.

a. Determine the mode for the cadence data given

in Exercise 70.

b. For a categorical sample, how would you

define the modal category?

72. Specimens of three different types of rope wire

were selected, and the fatigue limit (MPa) was

determined for each specimen, resulting in the

accompanying data.

Type 1 350 350 350 358 370 370 370 371
371 372 372 384 391 391 392

Type 2
350 354 359 363 365 368 369 371
373 374 376 380 383 388 392

Type 3
350 361 362 364 364 365 366 371
377 377 377 379 380 380 392

a. Construct a comparative boxplot, and comment

on similarities and differences.

b. Construct a comparative dotplot (a dotplot for

each sample with a common scale). Comment

on similarities and differences.

c. Does the comparative boxplot of part (a) give

an informative assessment of similarities and

differences? Explain your reasoning.

73. The three measures of center introduced in this

chapter are the mean, median, and trimmed mean.

Two additional measures of center that are occa-

sionally used are the midrange, which is the aver-

age of the smallest and largest observations, and

the midfourth, which is the average of the two

fourths. Which of these five measures of center

are resistant to the effects of outliers and which are

not? Explain your reasoning.

74. The authors of the article “Predictive Model for

Pitting Corrosion in Buried Oil and Gas Pipelines”

(Corrosion, 2009: 332–342) provided the data on

which their investigation was based.

a. Consider the following sample of 61 observa-

tions on maximum pitting depth (mm) of pipe-

line specimens buried in clay loam soil.

0.41 0.41 0.41 0.41 0.43 0.43 0.43 0.48 0.48

0.58 0.79 0.79 0.81 0.81 0.81 0.91 0.94 0.94

1.02 1.04 1.04 1.17 1.17 1.17 1.17 1.17 1.17

1.17 1.19 1.19 1.27 1.40 1.40 1.59 1.59 1.60

1.68 1.91 1.96 1.96 1.96 2.10 2.21 2.31 2.46

2.49 2.57 2.74 3.10 3.18 3.30 3.58 3.58 4.15

4.75 5.33 7.65 7.70 8.13 10.41 13.44

Construct a stem-and-leaf display in which the

two largest values are shown in a last row

labeled HI.

b. Refer back to (a), and create a histogram based

on eight classes with 0 as the lower limit of the

first class and class widths of .5, .5, .5, .5, 1, 2,

5, and 5, respectively.

c. The accompanying comparative boxplot from

MINITAB shows plots of pitting depth for four

different types of soils. Describe its important

features.
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75. Consider a sample x1, x2, . . . , xn and suppose that

the values of �x, s2, and s have been calculated.

a. Let yi ¼ xi � �x for i ¼ 1, . . . , n. How do the

values of s2 and s for the yi’s compare to the

corresponding values for the xi’s? Explain.
b. Let zi ¼ ðxi � �xÞ=s for i ¼ 1, . . . , n. What are

the values of the sample variance and sample

standard deviation for the zi’s?

76. Let �xn and s
2
n denote the sample mean and variance

for the sample x1, . . . , xn and let �xnþ1 and s2nþ1

denote these quantities when an additional obser-

vation xn+1 is added to the sample.

a. Show how �xnþ1 can be computed from �xn and

xn+1.
b. Show that

ns2nþ1 ¼ ðn� 1Þs2n þ
n

nþ 1
ðxnþ1 � �xnÞ2

so that s2nþ1 can be computed from xn+1, �xn,
and s2n.

c. Suppose that a sample of 15 strands of drapery

yarn has resulted in a sample mean thread

elongation of 12.58 mm and a sample standard

deviation of .512 mm. A 16th strand results in

an elongation value of 11.8. What are the

values of the sample mean and sample standard

deviation for all 16 elongation observations?

77. Lengths of bus routes for any particular transit

system will typically vary from one route to

another. The article “Planning of City Bus

Routes” (J. Institut. Engrs., 1995: 211–215)

gives the following information on lengths (km)

for one particular system:

Length 6–8 8–10 10–12 12–14 14–16

Freq. 6 23 30 35 32

Length 16–18 18–20 20–22 22–24 24–26

Freq. 48 42 40 28 27

Length 26–28 28–30 30–35 35–40 40–45

Freq. 26 14 27 11 2

a. Draw a histogram corresponding to these fre-

quencies.

b. What proportion of these route lengths are less

than 20? What proportion of these routes have

lengths of at least 30?

c. Roughly what is the value of the 90th percen-

tile of the route length distribution?

d. Roughly what is the median route length?

78. A study carried out to investigate the distribution of

total braking time (reaction time plus accelerator-

to-brake movement time, in msec) during real

driving conditions at 60 km/h gave the following

summary information on the distribution of times

(“A Field Study on Braking Responses during

Driving,” Ergonomics, 1995: 1903–1910):
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mean ¼ 535 median ¼ 500 mode ¼ 500

sd ¼ 96 minimum ¼ 220 maximum ¼ 925

5th percentile ¼ 400 10th percentile ¼ 430

90th percentile ¼ 640 95th percentile ¼ 720

What can you conclude about the shape of a his-

togram of this data? Explain your reasoning.

79. The sample data x1, x2, . . . , xn sometimes repre-

sents a time series, where xt ¼ the observed value

of a response variable x at time t. Often the

observed series shows a great deal of random

variation, which makes it difficult to study

longer-term behavior. In such situations, it is

desirable to produce a smoothed version of the

series. One technique for doing so involves expo-
nential smoothing. The value of a smoothing

constant a is chosen (0 < a < 1). Then with �xt
¼ smoothed value at time t, we set �x1 ¼ x1, and
for t ¼ 2, 3, . . . , n, �xt ¼ axt þ 1� að Þ�xt�1.

a. Consider the following time series in which

xt ¼ temperature (�F) of effluent at a sewage

treatment plant on day t: 47, 54, 53, 50, 46, 46,
47, 50, 51, 50, 46, 52, 50, 50. Plot each xt
against t on a two-dimensional coordinate sys-

tem (a time-series plot). Does there appear to

be any pattern?

b. Calculate the �xt’s using a ¼ .1. Repeat using

a ¼ .5. Which value of a gives a smoother �xt
series?

c. Substitute �xt�1 ¼ axt�1 þ 1� að Þ�xt�2 on the

right-hand side of the expression for �xt, then
substitute �xt�2 in terms of xt�2 and �xt�3, and so

on. On how many of the values xt, xt�1, . . . , x1
does �xt depend? What happens to the coeffi-

cient on xt�k as k increases?
d. Refer to part (c). If t is large, how sensitive is �xt

to the initialization �x1 ¼ x1? Explain.

[Note: A relevant reference is the article “Simple

Statistics for Interpreting Environmental Data,”

Water Pollution Contr. Fed. J., 1981: 167–175.]

80. Consider numerical observations x1, . . . , xn.
It is frequently of interest to know whether the

xt’s are (at least approximately) symmetrically

distributed about some value. If n is at least

moderately large, the extent of symmetry can be

assessed from a stem-and-leaf display or histo-

gram. However, if n is not very large, such

pictures are not particularly informative. Consider

the following alternative. Let y1 denote the smal-

lest xi, y2 the second smallest xi, and so on.

Then plot the following pairs as points on a two-

dimensional coordinate system: (yn � ~x, ~x� y1),
(yn�1 � ~x, ~x� y2), (yn�2 � ~x, ~x� y3), . . . . There
are n/2 points when n is even and (n � 1)/2 when

n is odd.

a. What does this plot look like when there is

perfect symmetry in the data? What does it

look like when observations stretch out more

above the median than below it (a long upper

tail)?

b. The accompanying data on rainfall (acre-feet)

from 26 seeded clouds is taken from the

article “A Bayesian Analysis of a Multiplica-

tive Treatment Effect in Weather Modi-

fication” (Technometrics, 1975: 161–166).

Construct the plot and comment on the extent

of symmetry or nature of departure from

symmetry.

4.1 7.7 17.5 31.4 32.7 40.6 92.4
115.3 118.3 119.0 129.6 198.6 200.7 242.5
255.0 274.7 274.7 302.8 334.1 430.0 489.1
703.4 978.0 1656.0 1697.8 2745.6
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C H A P T E R T W O

Probability

Introduction
The term probability refers to the study of randomness and uncertainty. In any

situation in which one of a number of possible outcomes may occur, the theory of

probability provides methods for quantifying the chances, or likelihoods, asso-

ciated with the various outcomes. The language of probability is constantly used in

an informal manner in both written and spoken contexts. Examples include such

statements as “It is likely that the Dow Jones Industrial Average will increase by the

end of the year,” “There is a 50–50 chance that the incumbent will seek reelection,”

“There will probably be at least one section of that course offered next year,”

“The odds favor a quick settlement of the strike,” and “It is expected that at least

20,000 concert tickets will be sold.” In this chapter, we introduce some elementary

probability concepts, indicate how probabilities can be interpreted, and show how

the rules of probability can be applied to compute the probabilities of many

interesting events. The methodology of probability will then permit us to express

in precise language such informal statements as those given above.

The study of probability as a branch of mathematics goes back over

300 years, where it had its genesis in connection with questions involving games

of chance. Many books are devoted exclusively to probability and explore in great

detail numerous interesting aspects and applications of this lovely branch of

mathematics. Our objective here is more limited in scope: We will focus on those

topics that are central to a basic understanding and also have the most direct

bearing on problems of statistical inference.



2.1 Sample Spaces and Events
An experiment is any action or process whose outcome is subject to uncertainty.

Although the word experiment generally suggests a planned or carefully controlled
laboratory testing situation, we use it here in a much wider sense. Thus experiments

that may be of interest include tossing a coin once or several times, selecting a card

or cards from a deck, weighing a loaf of bread, ascertaining the commuting time

from home to work on a particular morning, obtaining blood types from a group of

individuals, or calling people to conduct a survey.

The Sample Space of an Experiment

DEFINITION The sample space of an experiment, denoted by S , is the set of all possible
outcomes of that experiment.

Example 2.1 The simplest experiment to which probability applies is one with two possible

outcomes. One such experiment consists of examining a single fuse to see whether

it is defective. The sample space for this experiment can be abbreviated as

S ¼ N;Df g, where N represents not defective, D represents defective, and the

braces are used to enclose the elements of a set. Another such experiment would

involve tossing a thumbtack and noting whether it landed point up or point down,

with sample space S ¼ U;Df g, and yet another would consist of observing the

gender of the next child born at the local hospital, with S ¼ M;Ff g. ■

Example 2.2 If we examine three fuses in sequence and note the result of each examination, then

an outcome for the entire experiment is any sequence of N’s and D’s of length 3, so

S ¼ NNN;NND;NDN;NDD;DNN;DND;DDN;DDDf g
If we had tossed a thumbtack three times, the sample space would be obtained by

replacing N by U in S above. A similar notational change would yield the sample

space for the experiment in which the genders of three newborn children are

observed. ■

Example 2.3 Two gas stations are located at a certain intersection. Each one has six gas pumps.

Consider the experiment in which the number of pumps in use at a particular time

of day is determined for each of the stations. An experimental outcome specifies

how many pumps are in use at the first station and how many are in use at the

second one. One possible outcome is (2, 2), another is (4, 1), and yet another is

(1, 4). The 49 outcomes in S are displayed in the accompanying table. The sample

space for the experiment in which a six-sided die is thrown twice results from

deleting the 0 row and 0 column from the table, giving 36 outcomes.
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Second Station

First Station 0 1 2 3 4 5 6

0 (0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6)

1 (1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

2 (2, 0) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

3 (3, 0) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

4 (4, 0) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

5 (5, 0) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)

6 (6, 0) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

■

Example 2.4 If a new type-D flashlight battery has a voltage that is outside certain limits, that

battery is characterized as a failure (F); if the battery has a voltage within the

prescribed limits, it is a success (S). Suppose an experiment consists of testing each

battery as it comes off an assembly line until we first observe a success. Although it

may not be very likely, a possible outcome of this experiment is that the first 10 (or

100 or 1000 or . . .) are F’s and the next one is an S. That is, for any positive integer
n, we may have to examine n batteries before seeing the first S. The sample space is

S ¼ S; FS; FFS; FFFS; . . .f g, which contains an infinite number of possible

outcomes. The same abbreviated form of the sample space is appropriate for an

experiment in which, starting at a specified time, the gender of each newborn infant

is recorded until the birth of a male is observed. ■

Events

In our study of probability, we will be interested not only in the individual out-

comes of S but also in any collection of outcomes from S .

DEFINITION An event is any collection (subset) of outcomes contained in the sample

space S . An event is said to be simple if it consists of exactly one outcome

and compound if it consists of more than one outcome.

When an experiment is performed, a particular event A is said to occur if the

resulting experimental outcome is contained in A. In general, exactly one simple

event will occur, but many compound events will occur simultaneously.

Example 2.5 Consider an experiment in which each of three vehicles taking a particular freeway

exit turns left (L) or right (R) at the end of the exit ramp. The eight possible

outcomes that comprise the sample space are LLL, RLL, LRL, LLR, LRR, RLR,
RRL, and RRR. Thus there are eight simple events, among which are E1¼ {LLL}
and E5¼ {LRR}. Some compound events include

A¼ {RLL, LRL, LLR}¼ the event that exactly one of the three vehicles turns

right

B¼ {LLL, RLL, LRL, LLR}¼ the event that at most one of the vehicles turns

right

C¼ {LLL, RRR}¼ the event that all three vehicles turn in the same direction
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Suppose that when the experiment is performed, the outcome is LLL. Then the simple

event E1 has occurred and so also have the events B and C (but not A). ■

Example 2.6

(Example 2.3

continued)

When the number of pumps in use at each of two 6-pump gas stations is observed,

there are 49 possible outcomes, so there are 49 simple events: E1¼ {(0, 0)},

E2¼ {(0, 1)}, . . . , E49¼ {(6, 6)}. Examples of compound events are

A¼ {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}¼ the event that the

number of pumps in use is the same for both stations

B¼ {(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)}¼ the event that the total number of

pumps in use is four

C¼ {(0, 0), (0, 1), (1, 0), (1, 1)}¼ the event that at most one pump is in use at

each station ■

Example 2.7

(Example 2.4

continued)

The sample space for the battery examination experiment contains an infinite

number of outcomes, so there are an infinite number of simple events. Compound

events include

A¼ {S, FS, FFS}¼ the event that at most three batteries are examined

E¼ {FS, FFFS, FFFFFS, . . .}¼ the event that an even number of batteries

are examined ■

Some Relations from Set Theory

An event is nothing but a set, so relationships and results from elementary set theory

can be used to study events. The following operations will be used to construct new

events from given events.

DEFINITION 1. The union of two events A and B, denoted by A [ B and read “A or B,” is
the event consisting of all outcomes that are either in A or in B or in both
events (so that the union includes outcomes for which both A and B occur

as well as outcomes for which exactly one occurs)—that is, all outcomes

in at least one of the events.

2. The intersection of two events A and B, denoted by A \ B and read “A and
B,” is the event consisting of all outcomes that are in both A and B.

3. The complement of an event A, denoted by A0, is the set of all outcomes in

S that are not contained in A.

Example 2.8

(Example 2.3

continued)

For the experiment in which the number of pumps in use at a single six-pump

gas station is observed, let A¼ {0, 1, 2, 3, 4}, B¼ {3, 4, 5, 6}, and C¼ {1, 3, 5}.

Then

A [ B ¼ 0; 1; 2; 3; 4; 5; 6f g ¼ S A [ C ¼ 0; 1; 2; 3; 4; 5f g
A \ B ¼ 3; 4f g A \ C ¼ 1; 3f g A0 ¼ 5; 6f g fA [ Cg0 ¼ 6f g ■
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Example 2.9

(Example 2.4

continued)

In the battery experiment, define A, B, and C by

A ¼ S;FS;FFSf g
B ¼ S;FFS;FFFFSf g

and

C ¼ FS;FFFS;FFFFFS; . . .f g
Then

A [ B ¼ S;FS;FFS;FFFFSf g
A \ B ¼ S;FFSf g

A0 ¼ FFFS;FFFFS;FFFFFS; . . .f g
and

C0 ¼ S;FFS;FFFFS; . . .f g ¼ an odd number of batteries are examinedf g
■

Sometimes A and B have no outcomes in common, so that the intersection of

A and B contains no outcomes.

DEFINITION When A and B have no outcomes in common, they are said to be disjoint
or mutually exclusive events. Mathematicians write this compactly as

A \ B¼∅ where∅ denotes the event consisting of no outcomes whatsoever

(the “null” or “empty” event).

Example 2.10 A small city has three automobile dealerships: a GM dealer selling Chevrolets and

Buicks; a Ford dealer selling Fords and Lincolns; and a Chrysler dealer selling

Jeeps and Chryslers. If an experiment consists of observing the brand of the next car

sold, then the events A¼ {Chevrolet, Buick} and B¼ {Ford, Lincoln} are mutually

exclusive because the next car sold cannot be both a GM product and a Ford

product ■

The operations of union and intersection can be extended to more than two

events. For any three events A, B, and C, the event A [ B [ C is the set of outcomes

contained in at least one of the three events, whereas A \ B \ C is the set of

outcomes contained in all three events. Given events A1, A2, A3, . . . , these events
are said to be mutually exclusive (or pairwise disjoint) if no two events have any

outcomes in common.

A pictorial representation of events and manipulations with events is

obtained by using Venn diagrams. To construct a Venn diagram, draw a rectangle

whose interior will represent the sample space S . Then any event A is represented as

the interior of a closed curve (often a circle) contained in S . Figure 2.1 shows

examples of Venn diagrams.
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Exercises Section 2.1 (1–12)

1. Ann and Bev have each applied for several jobs at

a local university. Let A be the event that Ann is

hired and let B be the event that Bev is hired.

Express in terms of A and B the events

a. Ann is hired but not Bev.

b. At least one of them is hired.

c. Exactly one of them is hired.

2. Two voters, Al and Bill, are each choosing

between one of three candidates – 1, 2, and 3 –

who are running for city council. An experimental

outcome specifies both Al’s choice and Bill’s

choice, e.g. the pair (3,2).

a. List all elements of S .
b. List all outcomes in the event A that Al and Bill

make the same choice.

c. List all outcomes in the event B that neither of

them vote for candidate 2.

3. Four universities—1, 2, 3, and 4—are participat-

ing in a holiday basketball tournament. In the first

round, 1 will play 2 and 3 will play 4. Then the two

winners will play for the championship, and the

two losers will also play. One possible outcome

can be denoted by 1324 (1 beats 2 and 3 beats 4

in first-round games, and then 1 beats 3 and

2 beats 4).

a. List all outcomes in S .
b. Let A denote the event that 1 wins the tourna-

ment. List outcomes in A.
c. Let B denote the event that 2 gets into the

championship game. List outcomes in B.
d. What are the outcomes in A [ B and in A \ B?

What are the outcomes in A0?

4. Suppose that vehicles taking a particular freeway

exit can turn right (R), turn left (L), or go straight

(S). Consider observing the direction for each of

three successive vehicles.

a. List all outcomes in the event A that all three

vehicles go in the same direction.

b. List all outcomes in the event B that all three

vehicles take different directions.

c. List all outcomes in the event C that exactly

two of the three vehicles turn right.

d. List all outcomes in the event D that exactly

two vehicles go in the same direction.

e. List outcomes in D0, C [ D, and C \ D.

5. Three components are connected to form a system

as shown in the accompanying diagram. Because

the components in the 2–3 subsystem are

connected in parallel, that subsystem will function

if at least one of the two individual components

functions. For the entire system to function, com-

ponent 1 must function and so must the 2–3 sub-

system.

2

1

3

The experiment consists of determining the condi-

tion of each component [S (success) for a func-

tioning component and F (failure) for a

nonfunctioning component].

a. What outcomes are contained in the event A
that exactly two out of the three components

function?

b. What outcomes are contained in the event B
that at least two of the components function?

c. What outcomes are contained in the event C
that the system functions?

d. List outcomes in C0, A [ C, A \ C, B [ C, and
B \ C.

6. Each of a sample of four home mortgages is clas-

sified as fixed rate (F) or variable rate (V).
a. What are the 16 outcomes in S?
b. Which outcomes are in the event that exactly

three of the selected mortgages are fixed rate?

A B A BA B
A

A B

Venn diagram of 
     events A and B

Shaded region
is A   B

Shaded region
is A   B

Shaded region
is A'

Mutually exclusive
events 

a b c d e

Figure 2.1 Venn diagrams
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c. Which outcomes are in the event that all four

mortgages are of the same type?

d. Which outcomes are in the event that at most

one of the four is a variable-rate mortgage?

e. What is the union of the events in parts (c) and

(d), and what is the intersection of these two

events?

f. What are the union and intersection of the two

events in parts (b) and (c)?

7. A family consisting of three persons—A, B, and
C—belongs to a medical clinic that always has a

doctor at each of stations 1, 2, and 3. During a

certain week, each member of the family visits the

clinic once and is assigned at random to a station.

The experiment consists of recording the station

number for each member. One outcome is (1, 2, 1)

for A to station 1, B to station 2, and C to station 1.

a. List the 27 outcomes in the sample space.

b. List all outcomes in the event that all three

members go to the same station.

c. List all outcomes in the event that all members

go to different stations.

d. List all outcomes in the event that no one goes

to station 2.

8. A college library has five copies of a certain text

on reserve. Two copies (1 and 2) are first print-

ings, and the other three (3, 4, and 5) are second

printings. A student examines these books in ran-

dom order, stopping only when a second printing

has been selected. One possible outcome is 5, and

another is 213.

a. List the outcomes in S .
b. Let A denote the event that exactly one book

must be examined. What outcomes are in A?
c. Let B be the event that book 5 is the one

selected. What outcomes are in B?
d. Let C be the event that book 1 is not examined.

What outcomes are in C?

9. An academic department has just completed vot-

ing by secret ballot for a department head. The

ballot box contains four slips with votes for

candidate A and three slips with votes for candi-

date B. Suppose these slips are removed from the

box one by one.

a. List all possible outcomes.

b. Suppose a running tally is kept as slips are

removed. For what outcomes does A remain

ahead of B throughout the tally?

10. A construction firm is currently working on three

different buildings. Let Ai denote the event that

the ith building is completed by the contract date.

Use the operations of union, intersection, and

complementation to describe each of the follow-

ing events in terms of A1, A2, and A3, draw a Venn

diagram, and shade the region corresponding to

each one.

a. At least one building is completed by the con-

tract date.

b. All buildings are completed by the contract

date.

c. Only the first building is completed by the

contract date.

d. Exactly one building is completed by the con-

tract date.

e. Either the first building or both of the other two
buildings are completed by the contract date.

11. Use Venn diagrams to verify the following two

relationships for any events A and B (these are

called De Morgan’s laws):

a. ðA [ BÞ0 ¼ A0 \ B0

b. ðA \ BÞ0 ¼ A0 [ B0

12. a. In Example 2.10, identify three events that are

mutually exclusive.

b. Suppose there is no outcome common to all

three of the events A, B, and C. Are these three
events necessarily mutually exclusive? If your

answer is yes, explain why; if your answer is

no, give a counterexample using the experi-

ment of Example 2.10.

2.2 Axioms, Interpretations, and Properties
of Probability
Given an experiment and a sample space S , the objective of probability is to assign
to each event A a number P(A), called the probability of the event A, which will give
a precise measure of the chance that A will occur. To ensure that the probability

assignments will be consistent with our intuitive notions of probability, all assign-

ments should satisfy the following axioms (basic properties) of probability.
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AXIOM 1
AXIOM 2
AXIOM 3

For any event A, P(A)� 0.

PðS Þ ¼ 1:
If A1, A2, A3, . . . is an infinite collection of disjoint events, then

PðA1 [ A2 [ A3 � � �Þ ¼
P1
i¼1

PðAiÞ

You might wonder why the third axiom contains no reference to a finite
collection of disjoint events. It is because the corresponding property for a finite

collection can be derived from our three axioms. We want our axiom list to be as

short as possible and not contain any property that can be derived from others on the

list. Axiom 1 reflects the intuitive notion that the chance of A occurring should be

nonnegative. The sample space is by definition the event that must occur when the

experiment is performed (S contains all possible outcomes), so Axiom 2 says that

the maximum possible probability of 1 is assigned to S . The third axiom formalizes

the idea that if we wish the probability that at least one of a number of events will

occur and no two of the events can occur simultaneously, then the chance of at least

one occurring is the sum of the chances of the individual events.

PROPOSITION P(∅)¼ 0 where ∅ is the null event. This in turn implies that the property

contained in Axiom 3 is valid for a finite collection of events.

Proof First consider the infinite collection A1 ¼ �; A2 ¼ �; A3 ¼ �; . . . .
Since � \� ¼ �, the events in this collection are disjoint and [ Ai ¼ �. The

third axiom then gives

Pð�Þ ¼
X

Pð�Þ

This can happen only if Pð�Þ ¼ 0.

Now suppose that A1; A2; . . . ; Ak are disjoint events, and append to these

the infinite collection Akþ1 ¼ �; Akþ2 ¼ �; Akþ3 ¼ �; . . . . Again invoking the

third axiom,

P
[k
i¼1

Ai

 !
¼ P

[1
i¼1

Ai

 !
¼
X1
i¼1

PðAiÞ ¼
Xk
i¼1

PðAiÞ

as desired. ■

Example 2.11 Consider tossing a thumbtack in the air. When it comes to rest on the ground, either

its point will be up (the outcome U) or down (the outcome D). The sample space for

this event is therefore S ¼ U;Df g. The axioms specify PðS Þ ¼ 1, so the probability

assignment will be completed by determining P(U) and P(D). Since U and D are

disjoint and their union is S , the foregoing proposition implies that

1 ¼ PðS Þ ¼ PðUÞ þ PðDÞ
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It follows that PðDÞ ¼ 1� PðUÞ. One possible assignment of probabilities

is PðUÞ ¼ :5; PðDÞ ¼ :5, whereas another possible assignment is PðUÞ ¼ :75;
PðDÞ ¼ :25. In fact, letting p represent any fixed number between 0 and 1,

PðUÞ ¼ p; PðDÞ ¼ 1� p is an assignment consistent with the axioms. ■

Example 2.12 Consider the experiment in Example 2.4, in which batteries coming off an assembly

line are tested one by one until one having a voltage within prescribed limits

is found. The simple events are E1 ¼ Sf g; E2 ¼ FSf g; E3 ¼ FFSf g; E4 ¼
FFFSf g; . . . . Suppose the probability of any particular battery being satisfactory

is .99. Then it can be shown that P E1ð Þ ¼ :99; P E2ð Þ ¼ :01ð Þ :99ð Þ;P E3ð Þ ¼
:01ð Þ2 :99ð Þ; . . . is an assignment of probabilities to the simple events that satisfies

the axioms. In particular, because the Ei’s are disjoint and S ¼ E1 [ E2 [ E3 [ . . . ,
it must be the case that

1 ¼ PðSÞ ¼ P E1ð Þ þ P E2ð Þ þ P E3ð Þ þ � � �
¼ :99½1þ :01þ :01ð Þ2 þ :01ð Þ3 þ � � ��

Here we have used the formula for the sum of a geometric series:

aþ ar þ ar2 þ ar3 þ � � � ¼ a

1� r

However, another legitimate (according to the axioms) probability assign-

ment of the same “geometric” type is obtained by replacing .99 by any other

number p between 0 and 1 (and .01 by 1�p). ■

Interpreting Probability

Examples 2.11 and 2.12 show that the axioms do not completely determine an

assignment of probabilities to events. The axioms serve only to rule out assign-

ments inconsistent with our intuitive notions of probability. In the tack-tossing

experiment of Example 2.11, two particular assignments were suggested. The

appropriate or correct assignment depends on the nature of the thumbtack and

also on one’s interpretation of probability. The interpretation that is most frequently

used and most easily understood is based on the notion of relative frequencies.

Consider an experiment that can be repeatedly performed in an identical and

independent fashion, and let A be an event consisting of a fixed set of outcomes of

the experiment. Simple examples of such repeatable experiments include the tack-

tossing and die-tossing experiments previously discussed. If the experiment is

performed n times, on some of the replications the event A will occur (the outcome

will be in the set A), and on others, A will not occur. Let n(A) denote the number of

replications on which A does occur. Then the ratio n(A)/n is called the relative
frequency of occurrence of the event A in the sequence of n replications. Empirical

evidence, based on the results of many of these sequences of repeatable experi-

ments, indicates that as n grows large, the relative frequency n(A)/n stabilizes, as

pictured in Figure 2.2. That is, as n gets arbitrarily large, the relative frequency

approaches a limiting value we refer to as the limiting relative frequency of the

event A. The objective interpretation of probability identifies this limiting relative

frequency with P(A).
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If probabilities are assigned to events in accordance with their limiting

relative frequencies, then we can interpret a statement such as “The probability

of that coin landing with the head facing up when it is tossed is .5” to mean that in a

large number of such tosses, a head will appear on approximately half the tosses

and a tail on the other half.

This relative frequency interpretation of probability is said to be objective

because it rests on a property of the experiment rather than on any particular

individual concerned with the experiment. For example, two different observers

of a sequence of coin tosses should both use the same probability assignments since

the observers have nothing to do with limiting relative frequency. In practice, this

interpretation is not as objective as it might seem, because the limiting relative

frequency of an event will not be known. Thus we will have to assign probabilities

based on our beliefs about the limiting relative frequency of events under study.

Fortunately, there are many experiments for which there will be a consensus with

respect to probability assignments. When we speak of a fair coin, we shall

mean PðHÞ ¼ PðTÞ ¼ :5, and a fair die is one for which limiting relative frequen-

cies of the six outcomes are all equal, suggesting probability assignments

P f1gð Þ ¼ � � � ¼ P f6gð Þ ¼ 1=6.
Because the objective interpretation of probability is based on the notion of

limiting frequency, its applicability is limited to experimental situations that are

repeatable. Yet the language of probability is often used in connection with situa-

tions that are inherently unrepeatable. Examples include: “The chances are good for

a peace agreement;” “It is likely that our company will be awarded the contract;”

and “Because their best quarterback is injured, I expect them to score no more than

10 points against us.” In such situations we would like, as before, to assign

numerical probabilities to various outcomes and events (e.g., the probability is .9

that we will get the contract). We must therefore adopt an alternative interpretation

of these probabilities. Because different observers may have different prior infor-

mation and opinions concerning such experimental situations, probability assign-

ments may now differ from individual to individual. Interpretations in such

situations are thus referred to as subjective. The book by Robert Winkler listed

in the chapter references gives a very readable survey of several subjective inter-

pretations.
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More Probability Properties

PROPOSITION For any event A, P(A) ¼ 1 � P(A0)

Proof Since by definition of A0; A [ A0 ¼ S while A and A’ are disjoint,

1 ¼ PðS Þ ¼ PðA [ A0Þ ¼ PðAÞ þ P A0ð Þ, from which the desired result follows. ■

This proposition is surprisingly useful because there are many situations in

which P(A’) is more easily obtained by direct methods than is P(A).

Example 2.13 Consider a system of five identical components connected in series, as illustrated

in Figure 2.3.

Denote a component that fails by F and one that doesn’t fail by S (for success). Let
A be the event that the system fails. For A to occur, at least one of the individual

components must fail. Outcomes in A include SSFSS (1, 2, 4, and 5 all work, but 3

does not), FFSSS, and so on. There are in fact 31 different outcomes in A. However,
A0, the event that the system works, consists of the single outcome SSSSS. We will

see in Section 2.5 that if 90% of all these components do not fail and different

components fail independently of one another, then P(A0)¼P(SSSSS)¼ .95¼ .59.

Thus PðAÞ ¼ 1� :59 ¼ :41; so among a large number of such systems, roughly

41% will fail. ■

In general, the foregoing proposition is useful when the event of interest can be

expressed as “at least . . . ,” because the complement “less than . . .” may be easier to

workwith. (In some problems, “more than . . .” is easier to deal with than “atmost . . .”)
When you are having difficulty calculating P(A) directly, think of determining P(A0).

PROPOSITION For any event A, P(A) � 1.

This follows from the previous proposition, 1 ¼ PðAÞ þ PðA0Þ � PðAÞ, because
PðA0Þ � 0.

When A and B are disjoint, we know that PðA [ BÞ ¼ PðAÞ þ PðBÞ. How can

this union probability be obtained when the events are not disjoint?

PROPOSITION For any events A and B,

PðA [ BÞ ¼ PðAÞ þ PðBÞ � PðA \ BÞ:

1 2 3 4 5

Figure 2.3 A system of five components connected in series
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Notice that the proposition is valid even if A and B are disjoint, since then

P(A \ B)¼ 0. The key idea is that, in adding P(A) and P(B), the probability of

the intersection A \ B is actually counted twice, so P(A \ B) must be subtracted out.

Proof Note first that A [ B ¼ A [ ðB \ A0Þ, as illustrated in Figure 2.4.

Because A and (B \ A0) are disjoint, PðA [ BÞ ¼ PðAÞ þ PðB \ A0Þ. But

B ¼ ðB \ AÞ [ ðB \ A0Þ (the union of that part of B in A and that part of B not in A).
Furthermore, (B\A) and (B\A0) are disjoint, so thatPðBÞ ¼ PðB \ AÞ þ PðB \ A0Þ.
Combining these results gives

PðA [ BÞ ¼ PðAÞ þ PðB \ A0Þ ¼ PðAÞ þ ½PðBÞ � PðA \ BÞ�
¼ PðAÞ þ PðBÞ � PðA \ BÞ

■

Example 2.14 In a certain residential suburb, 60% of all households get internet service from the

local cable company, 80% get television service from that company, and 50% get

both services from the company. If a household is randomly selected, what is the

probability that it gets at least one of these two services from the company, and

what is the probability that it gets exactly one of the services from the company?

With A¼ {gets internet service from the cable company} and B¼ {gets tele-

vision service from the cable company}, the given information implies thatPðAÞ ¼ :6;
PðBÞ ¼ :8; and PðA \ BÞ ¼ :5. The previous proposition then applies to give

P(gets at least one of these two services from the company)

PðA [ BÞ ¼ PðAÞ þ PðBÞ � PðA \ BÞ ¼ :6þ :8� :5 ¼ :9

The event that a household gets only television service from the company can be

written as A0 \ B [(not internet) and television]. Now Figure 2.4 implies that

:9 ¼ PðA [ BÞ ¼ PðAÞ þ PðA0 \ BÞ ¼ :6þ PðA0 \ BÞ
from which PðA0 \ BÞ ¼ :3. Similarly, PðA \ B0Þ ¼ PðA [ BÞ � PðBÞ ¼ :1. This is
all illustrated in Figure 2.5, from which we see that

P exactly oneð Þ ¼ PðA \ B0Þ þ PðA0 \ BÞ ¼ :1þ :3 ¼ :4

■

The probability of a union of more than two events can be computed

analogously. For three events A, B, and C, the result is

.5.1 .3

B) P(A B') P(A'

Figure 2.5 Probabilities for Example 2.14

A B

Figure 2.4 Representing A [ B as a union of disjoint events
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PðA [ B [ CÞ ¼ PðAÞ þ PðBÞ þ PðCÞ � PðA \ BÞ � PðA \ CÞ
� PðB \ CÞ þ PðA \ B \ CÞ:

This can be seen by examining a Venn diagram of A [ B [ C, which is

shown in Figure 2.6. When P(A), P(B), and P(C) are added, outcomes in certain

intersections are double counted and the corresponding probabilities must be

subtracted. But this results in P(A \ B \ C) being subtracted once too often, so it

must be added back. One formal proof involves applying the previous proposition

to P((A [ B) [ C), the probability of the union of the two events A [ B and C. More

generally, a result concerning PðA1 [ � � � [ AkÞ can be proved by induction or

by other methods.

Determining Probabilities Systematically

When the number of possible outcomes (simple events) is large, there will be many

compound events. A simple way to determine probabilities for these events that

avoids violating the axioms and derived properties is to first determine probabilities

P(Ei) for all simple events. These should satisfy P Eið Þ � 0 and Sall iP Eið Þ ¼ 1.

Then the probability of any compound event A is computed by adding together

the P(Ei)’s for all Ei’s in A.

PðAÞ ¼
X

PðEiÞ
allEi’s inA

Example 2.15 During off-peak hours a commuter train has five cars. Suppose a commuter is twice

as likely to select the middle car (#3) as to select either adjacent car (#2 or #4), and

is twice as likely to select either adjacent car as to select either end car (#1 or #5).

Let pi¼P(car i is selected)¼P(Ei). Then we have p3¼ 2p2¼ 2p4 and p2¼ 2p1¼
2p5¼ p4. This gives

1 ¼
X

PðEiÞ ¼ p1 þ 2p1 þ 4p1 þ 2p1 þ p1 ¼ 10p1

implying p1¼ p5¼ .1, p2¼ p4¼ .2, and p3¼ .4. The probability that one of the

three middle cars is selected (a compound event) is then p2 + p3 + p4¼ .8. ■

Equally Likely Outcomes

In many experiments consisting of N outcomes, it is reasonable to assign equal

probabilities to all N simple events. These include such obvious examples as tossing

a fair coin or fair die once or twice (or any fixed number of times), or selecting one or

several cards from a well-shuffled deck of 52. With p¼P(Ei) for every i,

A B

C

Figure 2.6 A [ B [ C
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1 ¼
XN
i¼1

PðEiÞ ¼
XN
i¼1

p ¼ p � N so p ¼ 1

N

That is, if there are N possible outcomes, then the probability assigned to each is 1/N.
Now consider an event A, with N(A) denoting the number of outcomes

contained in A. Then

PðAÞ ¼
X
Ei inA

PðEiÞ ¼
X
Ei inA

1

N
¼ NðAÞ

N

Once we have counted the number N of outcomes in the sample space, to

compute the probability of any event we must count the number of outcomes

contained in that event and take the ratio of the two numbers. Thus when outcomes

are equally likely, computing probabilities reduces to counting.

Example 2.16 When two dice are rolled separately, there are N¼ 36 outcomes (delete the first row

and column from the table in Example 2.3). If both the dice are fair, all 36 outcomes

are equally likely, so P(Ei)¼ 1/36. Then the event A¼ {sum of two numbers¼ 7}

consists of the six outcomes (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1), so

PðAÞ ¼ NðAÞ
N

¼ 6

36
¼ 1

6 ■

Exercises Section 2.2 (13–30)

13. A mutual fund company offers its customers sev-

eral different funds: a money-market fund, three

different bond funds (short, intermediate, and

long-term), two stock funds (moderate and high-

risk), and a balanced fund. Among customers who

own shares in just one fund, the percentages of

customers in the different funds are as follows:

Money-market 20% High-risk stock 18%

Short bond 15% Moderate-risk stock 25%

Intermediate bond 10% Balanced 7%

Long bond 5%

A customer who owns shares in just one fund is

randomly selected.

a. What is the probability that the selected indi-

vidual owns shares in the balanced fund?

b. What is the probability that the individual

owns shares in a bond fund?

c. What is the probability that the selected indi-

vidual does not own shares in a stock fund?

14. Consider randomly selecting a student at a certain

university, and let A denote the event that the

selected individual has a Visa credit card and B
be the analogous event for a MasterCard. Suppose

that PðAÞ ¼ :5; PðBÞ ¼ :4; and PðA \ BÞ ¼ :25.

a. Compute the probability that the selected indi-

vidual has at least one of the two types of cards

(i.e., the probability of the event A [ B).
b. What is the probability that the selected indi-

vidual has neither type of card?

c. Describe, in terms of A and B, the event that the
selected student has a Visa card but not a Mas-

terCard, and then calculate the probability of

this event.

15. A consulting firm presently has bids out on three

projects. Let Ai¼ {awarded project i}, for i¼
1, 2, 3, and suppose that P(A1)¼ .22, P(A2)¼ .25,

P(A3)¼ .28, P(A1\A2)¼ .11, P(A1\A3)¼ .05,

P(A2\A3)¼ .07, PðA1\A2\A3Þ¼ :01: Express

in words each of the following events, and compute

the probability of each event:

a. A1 [ A2

b. A1
0 \ A2

0 ½Hint : ðA1 [ A2Þ0 ¼ A1
0 \ A2

0�
c. A1 [ A2 [ A3

d. A1
0 \ A2

0 \ A3
0

e. A1
0 \ A2

0 \ A3

f. ðA1
0 \ A2

0Þ [ A3

16. A particular state has elected both a governor and

a senator. Let A be the event that a randomly
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selected voter has a favorable view of a certain

party’s senatorial candidate, and let B be the

corresponding event for that party’s gubernatorial

candidate. Suppose that P A0ð Þ ¼ :44; P B0ð Þ ¼
:57; and PðA [ BÞ ¼ :68 (these figures are sug-

gested by the 2010 general election in California).

a. What is the probability that a randomly

selected voter has a favorable view of both

candidates?

b. What is the probability that a randomly

selected voter has a favorable view of exactly

one of these candidates?

c. What is the probability that a randomly

selected voter has an unfavorable view of at

least one of these candidates.

17. Consider the type of clothes dryer (gas or electric)

purchased by each of five different customers at a

certain store.

a. If the probability that at most one of these

customers purchases an electric dryer is .428,

what is the probability that at least two pur-

chase an electric dryer?

b. If P(all five purchase gas)¼ .116 and P(all
five purchase electric)¼ .005, what is the

probability that at least one of each type is

purchased?

18. An individual is presented with three different

glasses of cola, labeled C, D, and P. He is asked

to taste all three and then list them in order of

preference. Suppose the same cola has actually

been put into all three glasses.

a. What are the simple events in this ranking

experiment, and what probability would you

assign to each one?

b. What is the probability that C is ranked first?

c. What is the probability that C is ranked first

and D is ranked last?

19. Let A denote the event that the next request for

assistance from a statistical software consultant

relates to the SPSS package, and let B be the

event that the next request is for help with SAS.

Suppose that P(A)¼ .30 and P(B)¼ .50.

a. Why is it not the case that PðAÞ þ PðBÞ ¼ 1?

b. Calculate P A0ð Þ.
c. Calculate PðA [ BÞ.
d. Calculate PðA0 \ B0Þ.

20. A box contains four 40-W bulbs, five 60-W bulbs,

and six 75-W bulbs. If bulbs are selected one by

one in random order, what is the probability that at

least two bulbs must be selected to obtain one that

is rated 75 W?

21. Human visual inspection of solder joints on

printed circuit boards can be very subjective.

Part of the problem stems from the numerous

types of solder defects (e.g., pad nonwetting, knee

visibility, voids) and even the degree to which a

joint possesses one or more of these defects. Conse-

quently, even highly trained inspectors can disagree

on the disposition of a particular joint. In one batch

of 10,000 joints, inspector A found 724 that were

judged defective, inspector B found 751 such joints,

and 1159 of the joints were judged defective by at

least one of the inspectors. Suppose that one of the

10,000 joints is randomly selected.

a. What is the probability that the selected joint

was judged to be defective by neither of the

two inspectors?

b. What is the probability that the selected joint

was judged to be defective by inspector B but

not by inspector A?

22. A factory operates three different shifts. Over the

last year, 200 accidents have occurred at the fac-

tory. Some of these can be attributed at least in part

to unsafe working conditions, whereas the others

are unrelated to working conditions. The accompa-

nying table gives the percentage of accidents fall-

ing in each type of accident–shift category.

Shift
Unsafe
Conditions

Unrelated to
Conditions

Day 10% 35%

Swing 8% 20%

Night 5% 22%

Suppose one of the 200 accident reports is ran-

domly selected from a file of reports, and the shift

and type of accident are determined.

a. What are the simple events?

b. What is the probability that the selected acci-

dent was attributed to unsafe conditions?

c. What is the probability that the selected acci-

dent did not occur on the day shift?

23. An insurance company offers four different deduct-

ible levels—none, low, medium, and high—for its

homeowner’s policyholders and three different

levels—low, medium, and high—for its automo-

bile policyholders. The accompanying table gives

proportions for the various categories of policy-

holders who have both types of insurance. For

example, the proportion of individuals with both

low homeowner’s deductible and low auto deduct-

ible is .06 (6% of all such individuals).
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Homeowner’s

Auto N L M H

L .04 .06 .05 .03

M .07 .10 .20 .10

H .02 .03 .15 .15

Suppose an individual having both types of poli-

cies is randomly selected.

a. What is the probability that the individual has a

medium auto deductible and a high home-

owner’s deductible?

b. What is the probability that the individual has a

low auto deductible? A low homeowner’s

deductible?

c. What is the probability that the individual is in

the same category for both auto and home-

owner’s deductibles?

d. Based on your answer in part (c), what is

the probability that the two categories are dif-

ferent?

e. What is the probability that the individual has

at least one low deductible level?

f. Using the answer in part (e), what is the proba-

bility that neither deductible level is low?

24. The route used by a driver in commuting to work

contains two intersections with traffic signals. The

probability that he must stop at the first signal is

.4, the analogous probability for the second signal

is .5, and the probability that he must stop at one or

more of the two signals is .6. What is the probabil-

ity that he must stop

a. At both signals?

b. At the first signal but not at the second one?

c. At exactly one signal?

25. The computers of six faculty members in a certain

department are to be replaced. Two of the faculty

members have selected laptop machines and the

other four have chosen desktop machines. Suppose

that only two of the setups can be done on a partic-

ular day, and the two computers to be set up are

randomly selected from the six (implying 15

equally likely outcomes; if the computers are num-

bered 1, 2, . . . , 6, then one outcome consists of

computers 1 and 2, another consists of computers 1

and 3, and so on).

a. What is the probability that both selected

setups are for laptop computers?

b. What is the probability that both selected

setups are desktop machines?

c. What is the probability that at least one selected

setup is for a desktop computer?

d. What is the probability that at least one

computer of each type is chosen for setup?

26. Use the axioms to show that if one event A is

contained in another event B (i.e., A is a subset

of B), then P(A)�P(B). [Hint: For such A and B, A
and B \ A0 are disjoint and B ¼ A [ ðB \ A0Þ,
as can be seen from a Venn diagram.] For general

A and B, what does this imply about the relation-

ship among PðA \ BÞ; PðAÞ; and PðA [ BÞ?
27. The three major options on a car model are an

automatic transmission (A), a sunroof (B), and an

upgraded stereo (C). If 70% of all purchasers

request A, 80% request B, 75% request C, 85%
request A or B, 90% request A or C, 95% request B
or C, and 98% request A or B or C, compute the

probabilities of the following events. [Hint: “A or

B” is the event that at least one of the two options

is requested; try drawing a Venn diagram and

labeling all regions.]

a. The next purchaser will request at least one of
the three options.

b. The next purchaser will select none of the three

options.

c. The next purchaser will request only an auto-

matic transmission and neither of the other two

options.

d. The next purchaser will select exactly one of

these three options.

28. A certain system can experience three different

types of defects. Let Ai (i¼ 1, 2, 3) denote the

event that the system has a defect of type i.
Suppose that

P A1ð Þ ¼ :12 P A2ð Þ ¼ :07 P A3ð Þ ¼ :05

PðA1 [ A2Þ ¼ :13 PðA1 [ A3Þ ¼ :14

PðA2 [ A3Þ ¼ :10 PðA1 \ A2 \ A3Þ ¼ :01

a. What is the probability that the system does not

have a type 1 defect?

b. What is the probability that the system has both

type 1 and type 2 defects?

c. What is the probability that the system has

both type 1 and type 2 defects but not a type 3

defect?

d. What is the probability that the system has at

most two of these defects?

29. In Exercise 7, suppose that any incoming individ-

ual is equally likely to be assigned to any of the
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three stations irrespective of where other individuals

have been assigned. What is the probability that

a. All three family members are assigned to the

same station?

b. At most two family members are assigned to

the same station?

c. Every family member is assigned to a different

station?

30. Apply the proposition involving the probability of

A [ B to the union of the two events (A [ B) and C
in order to verify the result for PðA [ B [ CÞ.

2.3 Counting Techniques
When the various outcomes of an experiment are equally likely (the same proba-

bility is assigned to each simple event), the task of computing probabilities reduces

to counting. In particular, if N is the number of outcomes in a sample space and

N(A) is the number of outcomes contained in an event A, then

PðAÞ ¼ NðAÞ
N

ð2:1Þ

If a list of the outcomes is available or easy to construct and N is small, then the

numerator and denominator of Equation (2.1) can be obtained without the benefit of

any general counting principles.

There are, however, many experiments for which the effort involved in con-

structing such a list is prohibitive because N is quite large. By exploiting some

general counting rules, it is possible to compute probabilities of the form (2.1)

without a listing of outcomes. These rules are also useful in many problems involving

outcomes that are not equally likely. Several of the rules developed here will be used

in studying probability distributions in the next chapter.

The Product Rule for Ordered Pairs

Our first counting rule applies to any situation in which a set (event) consists of

ordered pairs of objects and we wish to count the number of such pairs. By an

ordered pair, we mean that, if O1 and O2 are objects, then the pair (O1, O2) is

different from the pair (O2, O1). For example, if an individual selects one airline for

a trip from Los Angeles to Chicago and (after transacting business in Chicago) a

second one for continuing on to New York, one possibility is (American, United),

another is (United, American), and still another is (United, United).

PROPOSITION If the first element or object of an ordered pair can be selected in n1 ways, and
for each of these n1 ways the second element of the pair can be selected in n2
ways, then the number of pairs is n1n2.

Example 2.17 A homeowner doing some remodeling requires the services of both a plumbing

contractor and an electrical contractor. If there are 12 plumbing contractors and

9 electrical contractors available in the area, in how many ways can the contractors

be chosen? If we denote the plumbers by P1; . . . ; P12 and the electricians by
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Q1; . . . ; Q9, then we wish the number of pairs of the form (Pi, Qj). With n1¼ 12

and n2¼ 9, the product rule yields N¼ (12)(9)¼ 108 possible ways of choosing the

two types of contractors. ■

In Example 2.17, the choice of the second element of the pair did not depend on

which first element was chosen or occurred. As long as there is the same number of

choices of the second element for each first element, the product rule is valid even

when the set of possible second elements depends on the first element.

Example 2.18 A family has just moved to a new city and requires the services of both an obstetrician

and a pediatrician. There are two easily accessible medical clinics, each having two

obstetricians and three pediatricians. The family will obtain maximum health insur-

ance benefits by joining a clinic and selecting both doctors from that clinic. In how

many ways can this be done? Denote the obstetricians by O1, O2, O3, and O4 and the

pediatricians by P1; . . . ; P6. Then we wish the number of pairs (Oi, Pj) for whichOi

and Pj are associated with the same clinic. Because there are four obstetricians,

n1¼ 4, and for each there are three choices of pediatrician, so n2¼ 3. Applying the

product rule gives N¼ n1n2¼ 12 possible choices. ■

Tree Diagrams

In many counting and probability problems, a configuration called a tree diagram
can be used to represent pictorially all the possibilities. The tree diagram associated

with Example 2.18 appears in Figure 2.7. Starting from a point on the left side of the

diagram, for each possible first element of a pair a straight-line segment emanates

rightward. Each of these lines is referred to as a first-generation branch. Now for

any given first-generation branch we construct another line segment emanating from

the tip of the branch for each possible choice of a second element of the pair.

Each such line segment is a second-generation branch. Because there are four

obstetricians, there are four first-generation branches, and three pediatricians for

each obstetrician yields three second-generation branches emanating from each

first-generation branch.

O1
P1

P4

P4

P6

P5

P5

P3

P2

P2

P3

P1

P6

O2

O3

O4

Figure 2.7 Tree diagram for Example 2.18
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Generalizing, suppose there are n1 first-generation branches, and for each

first-generation branch there are n2 second-generation branches. The total number

of second-generation branches is then n1n2. Since the end of each second-genera-

tion branch corresponds to exactly one possible pair (choosing a first element and

then a second puts us at the end of exactly one second-generation branch), there are

n1n2 pairs, verifying the product rule.

The construction of a tree diagram does not depend on having the same number

of second-generation branches emanating from each first-generation branch. If the

second clinic had four pediatricians, then there would be only three branches ema-

nating from two of the first-generation branches and four emanating from each of the

other two first-generation branches. A tree diagram can thus be used to represent

pictorially experiments when the product rule does not apply.

A More General Product Rule

If a six-sided die is tossed five times in succession rather than just twice, then each

possible outcome is an ordered collection of five numbers such as (1, 3, 1, 2, 4) or

(6, 5, 2, 2, 2). We will call an ordered collection of k objects a k-tuple (so a pair is a
2-tuple and a triple is a 3-tuple). Each outcome of the die-tossing experiment is then

a 5-tuple.

PRODUCT
RULE FOR
K-TUPLES

Suppose a set consists of ordered collections of k elements (k-tuples) and that
there are n1 possible choices for the first element; for each choice of the first

element, there are n2 possible choices of the second element;. . .; for each
possible choice of the first k� 1 elements, there are nk choices of the kth
element. Then there are n1n2 � � � � � nk possible k-tuples.

This more general rule can also be illustrated by a tree diagram; simply

construct a more elaborate diagram by adding third-generation branches emanating

from the tip of each second generation, then fourth-generation branches, and so on,

until finally kth-generation branches are added.

Example 2.19

(Example 2.17

continued)

Suppose the home remodeling job involves first purchasing several kitchen appli-

ances. They will all be purchased from the same dealer, and there are five dealers in

the area. With the dealers denoted by D1; . . . ; D5, there are N¼ n1n2n3¼ (5)(12)(9)

¼ 540 3-tuples of the form (Di, Pj, Qk), so there are 540 ways to choose first an

appliance dealer, then a plumbing contractor, and finally an electrical contractor. ■

Example 2.20

(Example 2.18

continued)

If each clinic has both three specialists in internal medicine and two general

surgeons, there are n1n2n3n4¼ (4)(3)(3)(2)¼ 72 ways to select one doctor of each

type such that all doctors practice at the same clinic. ■

Permutations

So far the successive elements of a k-tuple were selected from entirely different sets

(e.g., appliance dealers, then plumbers, and finally electricians). In several tosses of

a die, the set from which successive elements are chosen is always {1, 2, 3, 4, 5, 6},
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but the choices are made “with replacement” so that the same element can appear

more than once. We now consider a fixed set consisting of n distinct elements and

suppose that a k-tuple is formed by selecting successively from this set without
replacement so that an element can appear in at most one of the k positions.

DEFINITION Any ordered sequence of k objects taken from a set of n distinct objects is

called a permutation of size k of the objects. The number of permutations of

size k that can be constructed from the n objects is denoted by Pk,n.

The number of permutations of size k is obtained immediately from the

general product rule. The first element can be chosen in n ways, for each of these

n ways the second element can be chosen in n� 1 ways, and so on; finally, for each

way of choosing the first k� 1 elements, the kth element can be chosen in

n� k � 1ð Þ ¼ n� k þ 1 ways, so

Pk ;n ¼ nðn� 1Þðn� 2Þ� � � � �ðn� k þ 2Þðn� k þ 1Þ

Example 2.21 Ten teaching assistants are available for grading papers in a particular course.

The first exam consists of four questions, and the professor wishes to select a

different assistant to grade each question (only one assistant per question). In how

many ways can assistants be chosen to grade the exam? Here n¼ the number of

assistants¼ 10 and k¼ the number of questions¼ 4. The number of different

grading assignments is then P4,10¼ (10)(9)(8)(7)¼ 5040. ■

The use of factorial notation allows Pk,n to be expressed more compactly.

DEFINITION For any positive integer m, m! is read “m factorial” and is defined by m!¼
m(m�1)� � � � �(2)(1). Also, 0!¼ 1.

Using factorial notation, (10)(9)(8)(7)¼ (10)(9)(8)(7)(6!)/6!¼ 10!/6!. More

generally,

Pk;n ¼ nðn� 1Þ� � � � �ðn� k þ 1Þ

¼ nðn� 1Þ� � � � �ðn� k þ 1Þðn� kÞðn� k � 1Þ� � � � �ð2Þð1Þ
ðn� kÞðn� k � 1Þ� � � � �ð2Þð1Þ

which becomes

Pk;n ¼ n!

ðn� kÞ!

For example, P3,9¼ 9!/(9� 3)!¼ 9!/6!¼ 9 · 8 · 7 · 6!/6!¼ 9 · 8 · 7. Note also that

because 0!¼ 1, Pn,n¼ n!/(n� n)!¼ n!/0!¼ n!/1¼ n!, as it should.
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Combinations

Often the objective is to count the number of unordered subsets of size k that can be
formed from a set consisting of n distinct objects. For example, in bridge it is only

the 13 cards in a hand and not the order in which they are dealt that is important; in

the formation of a committee, the order in which committee members are listed is

frequently unimportant.

DEFINITION Given a set of n distinct objects, any unordered subset of size k of the objects is
called a combination. The number of combinations of size k that can be formed

from n distinct objects will be denoted by n
k

� �
. (This notation ismore common in

probability than Ck,n, which would be analogous to notation for permutations.)

The number of combinations of size k from a particular set is smaller than

the number of permutations because, when order is disregarded, some of the

permutations correspond to the same combination. Consider, for example, the set

{A, B, C,D, E} consisting of five elements. There are 5!/(5� 3)!¼ 60 permutations

of size 3. There are six permutations of size 3 consisting of the elements A, B, and C
because these three can be ordered 3 · 2 · 1¼ 3!¼ 6 ways: (A, B, C), (A, C, B), (B, A,
C), (B, C, A), (C, A, B), and (C, B, A). These six permutations are equivalent to the

single combination {A, B, C}. Similarly, for any other combination of size 3, there

are 3! permutations, each obtained by ordering the three objects. Thus,

60 ¼ P3;5 ¼ 5

3

� �
� 3! so

5

3

� �
¼ 60

3!
¼ 10

These ten combinations are

A;B;Cf g A;B;Df g A;B;Ef g A;C;Df g A;C;Ef gfA;D;Eg B;C;Df g
B;C;Ef g B;D;Ef g C;D;Ef g

When there are n distinct objects, any permutation of size k is obtained by ordering
the k unordered objects of a combination in one of k! ways, so the number of

permutations is the product of k! and the number of combinations. This gives

n
k

� �
¼ Pk;n

k!
¼ n!

k!ðn� kÞ!

Notice that n
n

� � ¼ 1 and n
0

� � ¼ 1 because there is only one way to choose a set

of (all) n elements or of no elements, and n
1

� � ¼ n since there are n subsets of size 1.

Example 2.22 A bridge hand consists of any 13 cards selected from a 52-card deck without regard

to order. There are 52
13

� � ¼ 52!=ð13! � 39!Þ different bridge hands, which works out to
approximately 635 billion. Since there are 13 cards in each suit, the number of hands

consisting entirely of clubs and/or spades (no red cards) is 26
13

� � ¼ 26!=ð13! � 13!Þ ¼
10; 400; 600. One of these 26

13

� �
hands consists entirely of spades, and one consists

entirely of clubs, so there are 26
13

� �� 2
� �

hands that consist entirely of clubs and
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spades with both suits represented in the hand. Suppose a bridge hand is dealt from a

well-shuffled deck (i.e., 13 cards are randomly selected from among the 52 possi-

bilities) and let

A¼ {the hand consists entirely of spades and clubs with both suits represented}

B¼ {the hand consists of exactly two suits}

The N ¼ 52
13

� �
possible outcomes are equally likely, so

PðAÞ ¼ NðAÞ
N

¼
26

13

� �
� 2

52

13

� � ¼ :0000164

Since there are 4
2

� � ¼ 6 combinations consisting of two suits, of which spades and

clubs is one such combination,

PðBÞ ¼ NðBÞ
N

¼
6

26

13

� �
� 2

� 	

52

13

� � ¼ :0000983

That is, a hand consisting entirely of cards from exactly two of the four suits will

occur roughly once in every 10,000 hands. If you play bridge only once a month, it

is likely that you will never be dealt such a hand. ■

Example 2.23 A university warehouse has received a shipment of 25 printers, of which 10 are

laser printers and 15 are inkjet models. If 6 of these 25 are selected at random to be

checked by a particular technician, what is the probability that exactly 3 of those

selected are laser printers (so that the other 3 are inkjets)?

Let D3¼ {exactly 3 of the 6 selected are inkjet printers}. Assuming that any

particular set of 6 printers is as likely to be chosen as is any other set of 6, we have

equally likely outcomes, so P(D3)¼N(D3)/N, where N is the number of ways of

choosing 6 printers from the 25 and N(D3) is the number of ways of choosing 3 laser

printers and 3 inkjet models. Thus N ¼ 25
6

� �
. To obtain N(D3), think of first

choosing 3 of the 15 inkjet models and then 3 of the laser printers. There are 15
3

� �
ways of choosing the 3 inkjet models, and there are 10

3

� �
ways of choosing the 3

laser printers; N(D3) is now the product of these two numbers (visualize a tree

diagram—we are really using a product rule argument here), so

PðD3Þ ¼ NðD3Þ
N

¼
15

3

� �
10

3

� �

25

6

� � ¼
15!

3!12!
� 10!
3!7!

25!

6!19!

¼ :3083

2.3 Counting Techniques 71



Let D4¼ {exactly 4 of the 6 printers selected are inkjet models} and define

D5 and D6 in an analogous manner. Then the probability that at least 3 inkjet

printers are selected is

PðD3 [ D4 [ D5 [ D6Þ ¼ P D3ð Þ þ P D4ð Þ þ P D5ð Þ þ P D6ð Þ

¼
15

3

� �
10

3

� �

25

6

� � þ
15

4

� �
10

2

� �

25

6

� �

þ
15

5

� �
10

1

� �

25

6

� � þ
15

6

� �
10

0

� �

25

6

� � ¼ :8530

■

Exercises Section 2.3 (31–44)

31. The College of Science Council has one student

representative from each of the five science

departments (biology, chemistry, statistics, math-

ematics, physics). In how many ways can

a. Both a council president and a vice president

be selected?

b. A president, a vice president, and a secretary

be selected?

c. Two members be selected for the Dean’s

Council?

32. A friend is giving a dinner party. Her current wine

supply includes 8 bottles of zinfandel, 10 of mer-

lot, and 12 of cabernet (she drinks only red wine),

all from different wineries.

a. If she wants to serve 3 bottles of zinfandel and

serving order is important, how many ways are

there to do this?

b. If 6 bottles of wine are to be randomly selected

from the 30 for serving, how many ways are

there to do this?

c. If 6 bottles are randomly selected, how many

ways are there to obtain two bottles of each

variety?

d. If 6 bottles are randomly selected, what is the

probability that this results in two bottles of

each variety being chosen?

e. If 6 bottles are randomly selected, what is the

probability that all of them are the same variety?

33. a. Beethoven wrote 9 symphonies and Mozart

wrote 27 piano concertos. If a university radio

station announcer wishes to play first a

Beethoven symphony and then a Mozart con-

certo, in how many ways can this be done?

b. The station manager decides that on each suc-

cessive night (7 days per week), a Beethoven

symphony will be played, followed by a

Mozart piano concerto, followed by a Schubert

string quartet (of which there are 15). For

roughly how many years could this policy be

continued before exactly the same program

would have to be repeated?

34. A chain of stereo stores is offering a special price

on a complete set of components (receiver, com-

pact disc player, speakers). A purchaser is offered

a choice of manufacturer for each component:

Receiver: Kenwood, Onkyo, Pioneer,

Sony, Yamaha

Compact disc

player:

Onkyo, Pioneer, Sony,

Panasonic

Speakers: Boston, Infinity, Polk

A switchboard display in the store allows a cus-

tomer to hook together any selection of compo-

nents (consisting of one of each type). Use the

product rules to answer the following questions:

a. In how many ways can one component of each

type be selected?

b. In howmany ways can components be selected

if both the receiver and the compact disc player

are to be Sony?
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c. In how many ways can components be selected

if none is to be Sony?

d. In how many ways can a selection be made if at

least one Sony component is to be included?

e. If someone flips switches on the selection in a

completely random fashion, what is the proba-

bility that the system selected contains at least

one Sony component? Exactly one Sony com-

ponent?

35. A particular iPod playlist contains 100 songs, of

which 10 are by the Beatles. Suppose the shuffle

feature is used to play the songs in random order

(the randomness of the shuffling process is inves-

tigated in “Does Your iPod Really Play Favor-

ites?” (The Amer. Statistician, 2009: 263 – 268)).

What is the probability that the first Beatles song

heard is the fifth song played?

36. A production facility employs 20 workers on the

day shift, 15 workers on the swing shift, and 10

workers on the graveyard shift. A quality control

consultant is to select 6 of these workers for in-

depth interviews. Suppose the selection is made in

such a way that any particular group of 6 workers

has the same chance of being selected as does any

other group (drawing 6 slips without replacement

from among 45).

a. How many selections result in all 6 workers

coming from the day shift? What is the proba-

bility that all 6 selected workers will be from

the day shift?

b. What is the probability that all 6 selected

workers will be from the same shift?

c. What is the probability that at least two differ-

ent shifts will be represented among the

selected workers?

d. What is the probability that at least one of the

shifts will be unrepresented in the sample of

workers?

37. An academic department with five faculty mem-

bers narrowed its choice for department head to

either candidate A or candidate B. Each member

then voted on a slip of paper for one of the candi-

dates. Suppose there are actually three votes for A
and two for B. If the slips are selected for tallying

in random order, what is the probability that A
remains ahead of B throughout the vote count (for

example, this event occurs if the selected ordering

is AABAB, but not for ABBAA)?

38. An experimenter is studying the effects of temper-

ature, pressure, and type of catalyst on yield from

a chemical reaction. Three different temperatures,

four different pressures, and five different cata-

lysts are under consideration.

a. If any particular experimental run involves the

use of a single temperature, pressure, and cata-

lyst, how many experimental runs are possible?

b. Howmany experimental runs involve use of the

lowest temperature and two lowest pressures?

39. Refer to Exercise 38 and suppose that five differ-

ent experimental runs are to be made on the first

day of experimentation. If the five are randomly

selected from among all the possibilities, so that

any group of five has the same probability of

selection, what is the probability that a different

catalyst is used on each run?

40. A box in a certain supply room contains four 40-W

lightbulbs, five 60-W bulbs, and six 75-W bulbs.

Suppose that three bulbs are randomly selected.

a. What is the probability that exactly two of the

selected bulbs are rated 75 W?

b. What is the probability that all three of the

selected bulbs have the same rating?

c. What is the probability that one bulb of each

type is selected?

d. Suppose now that bulbs are to be selected one

by one until a 75-W bulb is found. What is the

probability that it is necessary to examine at

least six bulbs?

41. Fifteen telephones have just been received at

an authorized service center. Five of these tele-

phones are cellular, five are cordless, and the other

five are corded phones. Suppose that these com-

ponents are randomly allocated the numbers 1,

2, . . . , 15 to establish the order in which they

will be serviced.

a. What is the probability that all the cordless

phones are among the first ten to be serviced?

b. What is the probability that after servicing ten

of these phones, phones of only two of the

three types remain to be serviced?

c. What is the probability that two phones of each

type are among the first six serviced?

42. Three molecules of type A, three of type B, three
of type C, and three of type D are to be linked

together to form a chain molecule. One such chain
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molecule is ABCDABCDABCD, and another is

BCDDAAABDBCC.
a. How many such chain molecules are there?

[Hint: If the three A’s were distinguishable

from one another—A1, A2, A3—and the B’s,
C’s, and D’s were also, how many molecules

would there be? How is this number reduced

when the subscripts are removed from the A’s?]
b. Suppose a chain molecule of the type described

is randomly selected.What is the probability that

all three molecules of each type end up next to

each other (such as in BBBAAADDDCCC)?

43. Three married couples have purchased theater

tickets and are seated in a row consisting of just

six seats. If they take their seats in a completely

random fashion (random order), what is the prob-

ability that Jim and Paula (husband and wife) sit in

the two seats on the far left? What is the probabil-

ity that Jim and Paula end up sitting next to one

another? What is the probability that at least one

of the wives ends up sitting next to her husband?

44. Show that n
k

� � ¼ n
n�k

� �
. Give an interpretation

involving subsets.

2.4 Conditional Probability
The probabilities assigned to various events depend on what is known about the

experimental situation when the assignment is made. Subsequent to the initial

assignment, partial information about or relevant to the outcome of the experiment

may become available. Such information may cause us to revise some of our

probability assignments. For a particular event A, we have used P(A) to represent

the probability assigned to A; we now think of P(A) as the original or unconditional
probability of the event A.

In this section, we examine how the information “an event B has occurred”

affects the probability assigned to A. For example, A might refer to an individual

having a particular disease in the presence of certain symptoms. If a blood test is

performed on the individual and the result is negative (B¼ negative blood test), then

the probability of having the disease will change (it should decrease, but not usually

to zero, since blood tests are not infallible). We will use the notation P(A |B) to
represent the conditional probability of A given that the event B has occurred.

Example 2.24 Complex components are assembled in a plant that uses two different assembly

lines, A and A0. Line A uses older equipment than A0, so it is somewhat slower and

less reliable. Suppose on a given day line A has assembled 8 components, of which

2 have been identified as defective (B) and 6 as nondefective (B0), whereas A0 has
produced 1 defective and 9 nondefective components. This information is summar-

ized in the accompanying table.

Condition

Line B B0

A 2 6

A0 1 9

Unaware of this information, the sales manager randomly selects 1 of these 18

components for a demonstration. Prior to the demonstration

Pðline A component selected) ¼ PðAÞ ¼ NðAÞ
N

¼ 8

18
¼ :444
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However, if the chosen component turns out to be defective, then the event B has

occurred, so the component must have been 1 of the 3 in the B column of the table.

Since these 3 components are equally likely among themselves after B has occurred,

PðAjBÞ ¼ 2

3
¼ 2=18

3=18
¼ PðA \ BÞ

PðBÞ ð2:2Þ
■

In Equation (2.2), the conditional probability is expressed as a ratio of

unconditional probabilities. The numerator is the probability of the intersection

of the two events, whereas the denominator is the probability of the conditioning

event B. A Venn diagram illuminates this relationship (Figure 2.8).

Given that B has occurred, the relevant sample space is no longer S but

consists of just outcomes in B; A has occurred if and only if one of the outcomes in

the intersection occurred, so the conditional probability of A given B is proportional

to P(A \ B). The proportionality constant 1/P(B) is used to ensure that the

probability P(B |B) of the new sample space B equals 1.

The Definition of Conditional Probability

Example 2.24 demonstrates that when outcomes are equally likely, computation of

conditional probabilities can be based on intuition. When experiments are more

complicated, though, intuition may fail us, so we want to have a general definition

of conditional probability that will yield intuitive answers in simple problems. The

Venn diagram and Equation (2.2) suggest the appropriate definition.

DEFINITION For any two events A and B with P(B)> 0, the conditional probability of A
given that B has occurred is defined by

PðA jBÞ ¼ PðA \ BÞ
PðBÞ : ð2:3Þ

Example 2.25 Suppose that of all individuals buying a certain digital camera, 60% include an

optional memory card in their purchase, 40% include an extra battery, and 30%

include both a card and battery. Consider randomly selecting a buyer and let

A¼ {memory card purchased} and B¼ {battery purchased}. Then P(A)¼ .60,

A

B

Figure 2.8 Motivating the definition of conditional probability
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P(B)¼ .40, and P(both purchased)¼P(A \ B)¼ .30. Given that the selected

individual purchased an extra battery, the probability that an optional card was

also purchased is

PðA jBÞ ¼ PðA \ BÞ
PðBÞ ¼ :30

:40
¼ :75

That is, of all those purchasing an extra battery, 75% purchased an optional

memory card. Similarly,

P batteryjmemory cardð Þ ¼ PðB jAÞ ¼ PðA \ BÞ
PðAÞ ¼ :30

:60
¼ :50

Notice that P AjBð Þ 6¼ PðAÞ and P BjAð Þ 6¼ PðBÞ. ■

Example 2.26 A news magazine includes three columns entitled “Art” (A), “Books” (B), and
“Cinema” (C). Reading habits of a randomly selected reader with respect to these

columns are

Read regularly A B C A \ B A \ C B \ C A \ B \ C

Probability .14 .23 .37 .08 .09 .13 .05

(See Figure 2.9.)

We thus have

PðA jBÞ ¼ PðA \ BÞ
PðBÞ ¼ :08

:23
¼ :348

PðAjB [ CÞ ¼ PðA \ ðB [ CÞÞ
PðB [ CÞ ¼ :04þ :05þ :03

:47
¼ :12

:47
¼ :255

PðAjreads at least oneÞ ¼PðAjA [ B [ CÞ ¼ PðA \ ðA [ B [ CÞÞ
PðA [ B [ CÞ

¼ PðAÞ
PðA [ B [ CÞ ¼

:14

:49
¼ :286

and

PðA [ BjCÞ ¼ PððA [ BÞ \ CÞ
PðCÞ ¼ :04þ :05þ :08

:37
¼ :459

■

.05
.0 2 .03 .07

.04 .08

.20
.51

A B

C

Figure 2.9 Venn diagram for Example 2.26
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The Multiplication Rule for P(A \ B)

The definition of conditional probability yields the following result, obtained by

multiplying both sides of Equation (2.3) by P(B).

THE MULTI-
PLICATION
RULE

P(A \ B) ¼ P(AjB) � P(B)

This rule is important because it is often the case that P(A \ B) is desired,
whereas both P(B) and P(A | B) can be specified from the problem description.

Consideration of P(B | A) gives PðA \ BÞ ¼ P BjAð Þ � PðAÞ

Example 2.27 Four individuals have responded to a request by a blood bank for blood donations.

None of them has donated before, so their blood types are unknown. Suppose only

type O+ is desired and only one of the four actually has this type. If the potential

donors are selected in random order for typing, what is the probability that at least

three individuals must be typed to obtain the desired type?

Making the identification B¼ {first type not O+} and A¼ {second type not

O+}, P(B)¼ 3/4. Given that the first type is not O+, two of the three individuals left

are not O+, so P(A | B)¼ 2/3. The multiplication rule now gives

P at least three individuals are typedð Þ ¼ PðA \ BÞ
¼ P AjBð Þ � PðBÞ
¼ 2

3
� 3
4
¼ 6

12

¼ :5 ■

The multiplication rule is most useful when the experiment consists of

several stages in succession. The conditioning event B then describes the outcome

of the first stage and A the outcome of the second, so that P(A | B)—conditioning on

what occurs first—will often be known. The rule is easily extended to experiments

involving more than two stages. For example,

PðA1 \ A2 \ A3Þ ¼ PðA3jA1 \ A2Þ � PðA1 \ A2Þ
¼ PðA3jA1 \ A2Þ � P A2jA1ð Þ � P A1ð Þ ð2:4Þ

where A1 occurs first, followed by A2, and finally A3.

Example 2.28 For the blood typing experiment of Example 2.27,

P third type is Oþð Þ ¼ Pðthird isjfirst isn’t \ second isn’tÞ
� P second isn’tjfirst isn’tð Þ � P first isn’tð Þ

¼ 1

2
� 2
3
� 3
4
¼ 1

4
¼ :25 ■

When the experiment of interest consists of a sequence of several stages, it is

convenient to represent these with a tree diagram. Once we have an appropriate tree

diagram, probabilities and conditional probabilities can be entered on the various

branches; this will make repeated use of the multiplication rule quite straightforward.
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Example 2.29 A chain of video stores sells three different brands of DVD players. Of its DVD

player sales, 50% are brand 1 (the least expensive), 30% are brand 2, and 20% are

brand 3. Each manufacturer offers a 1-year warranty on parts and labor. It is known

that 25% of brand 1’s DVD players require warranty repair work, whereas the

corresponding percentages for brands 2 and 3 are 20% and 10%, respectively.

1. What is the probability that a randomly selected purchaser has bought a

brand 1 DVD player that will need repair while under warranty?

2. What is the probability that a randomly selected purchaser has a DVD

player that will need repair while under warranty?

3. If a customer returns to the store with a DVD player that needs warranty

repair work, what is the probability that it is a brand 1 DVD player? A brand

2 DVD player? A brand 3 DVD player?

The first stage of the problem involves a customer selecting one of the three

brands of DVD player. Let Ai¼ {brand i is purchased}, for i¼ 1, 2, and 3. Then

P(A1)¼ .50, P(A2)¼ .30, and P(A3)¼ .20. Once a brand of DVD player is selected,

the second stage involves observing whether the selected DVD player needs warranty

repair.WithB¼ {needs repair} andB0 ¼ {doesn’t need repair}, the given information

implies that P BjA1ð Þ ¼ :25; P BjA2ð Þ ¼ :20; and P BjA3ð Þ ¼ :10
The tree diagram representing this experimental situation is shown in

Figure 2.10. The initial branches correspond to different brands of DVD players;

there are two second-generation branches emanating from the tip of each

initial branch, one for “needs repair” and the other for “doesn’t need repair.”

Brand 2

Bran
d 1

Brand 3

Repair

No repair

Repair

No repair

No repair

Repair

P(A 1)
 =

 .5
0

P(A2) = .30

P(A
3 ) = .20

P(B  A3) =
 .10

P(B   A2) =
 .20

P(B  A1) =
 .25

P(B�  A
1) = .75

 

P(B�  A
2) = .80

P(B�  A
3) = .90

P(B  A1)  P(A1) = P(B    A1) = .125

P(B  A2)  P(A2) = P(B    A2) = .060

P(B  A3)  P(A3) = P(B    A3) = .020

P(B) = .205

Figure 2.10 Tree diagram for Example 2.29
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The probability P(Ai) appears on the ith initial branch, whereas the conditional

probabilities P(B |Ai) and P(B0 |Ai) appear on the second-generation branches.

To the right of each second-generation branch corresponding to the occurrence

of B, we display the product of probabilities on the branches leading out to that

point. This is simply the multiplication rule in action. The answer to the

question posed in 1 is thus PðA1 \ BÞ ¼ P B jA1Þ � P A1ð Þ ¼ :125ð . The answer to

question 2 is

PðBÞ ¼ P brand 1 and repairð Þ or brand 2 and repairð Þ or brand 3 and repairð Þ½ �
¼ PðA1\BÞþPðA2\BÞþPðA3\BÞ
¼ :125þ :060þ :020¼ :205

Finally,

PðA1 jBÞ ¼ PðA1 \ BÞ
PðBÞ ¼ :125

:205
¼ :61

PðA2 jBÞ ¼ PðA2 \ BÞ
PðBÞ ¼ :060

:205
¼ :29

and

P A3 jBð Þ ¼ 1� P A1 jBð Þ � P A2 jBð Þ ¼ :10

Notice that the initial or prior probability of brand 1 is .50, whereas once it is
known that the selected DVD player needed repair, the posterior probability of

brand 1 increases to .61. This is because brand 1 DVD players are more likely to

need warranty repair than are the other brands. The posterior probability of brand 3

is P(A3|B)¼ .10 which is much less than the prior probability P(A3)¼ .20. ■

Bayes’ Theorem

The computation of a posterior probability P(Aj|B) from given prior probabilities

P(Ai) and conditional probabilities P(B | Ai) occupies a central position in elemen-

tary probability. The general rule for such computations, which is really just

a simple application of the multiplication rule, goes back to the Reverend Thomas

Bayes, who lived in the eighteenth century. To state it we first need another

result. Recall that events A1, . . . , Ak are mutually exclusive if no two have any

common outcomes. The events are exhaustive if one Ai must occur, so that

A1 [ � � � [ Ak ¼ S .

THE LAW
OF TOTAL
PROBABILITY

Let A1, . . . , Ak be mutually exclusive and exhaustive events. Then for any

other event B,

PðBÞ ¼ P B jA1ð Þ � P A1ð Þ þ � � � þ P B jAkð Þ � P Akð Þ

¼
Xk
i¼1

PðB jAiÞPðAiÞ
ð2:5Þ
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Proof Because the Ai’s are mutually exclusive and exhaustive, if B occurs it

must be in conjunction with exactly one of the Ai’s. That is, B¼ (A1 and B) or . . . or
(Ak and B)¼ (A1 \ B) [ � � � [ (Ak \ B), where the events (Ai \ B) are mutually

exclusive. This “partitioning of B” is illustrated in Figure 2.11. Thus

PðBÞ ¼
Xk
i¼1

PðAi \ BÞ ¼
Xk
i¼1

PðB jAiÞPðAiÞ

as desired.

An example of the use of Equation (2.5) appeared in answering question 2 of Exam-

ple 2.29, where A1¼ {brand 1}, A2¼ {brand 2}, A3¼ {brand 3}, and B¼ {repair}.

BAYES’
THEOREM

Let A1, . . . , Ak be a collection of mutually exclusive and exhaustive events

with P(Ai)> 0 for i¼ 1, . . ., k. Then for any other event B, for which P(B)> 0

PðAj jBÞ ¼ PðAj \ BÞ
PðBÞ ¼ PðB jAjÞPðAjÞPk

i¼1

PðB jAiÞPðAiÞ
j ¼ 1; . . . ; k ð2:6Þ

The transition from the second to the third expression in (2.6) rests on using the

multiplication rule in the numerator and the law of total probability in the denominator.

The proliferation of events and subscripts in (2.6) can be a bit intimidating to

probability newcomers. As long as there are relatively few events in the partition, a

tree diagram (as in Example 2.29) can be used as a basis for calculating posterior

probabilities without ever referring explicitly to Bayes’ theorem.

Example 2.30 INCIDENCE OF A RARE DISEASE Only 1 in 1000 adults is afflicted with a

rare disease for which a diagnostic test has been developed. The test is such that

when an individual actually has the disease, a positive result will occur 99% of the

time, whereas an individual without the disease will show a positive test result only

2% of the time. If a randomly selected individual is tested and the result is positive,

what is the probability that the individual has the disease?

[Note: The sensitivity of this test is 99%, whereas the specificity (how specific

positive results are to the disease) is 98%. As an indication of the accuracy of

medical tests, an article in the October 29, 2010 New York Times reported that the

sensitivity and specificity for a new DNA test for colon cancer were 86% and 93%,

respectively. The PSA test for prostate cancer has sensitivity 85% and specificity

about 30%, while the mammogram for breast cancer has sensitivity 75% and

specificity 92%. All tests are less than perfect.]

A1

A2
A4

A3

B

Figure 2.11 Partition of B by mutually exclusive and exhaustive Ai’s ■
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To use Bayes’ theorem, let A1¼ {individual has the disease}, A2¼ {individual

does not have the disease}, and B¼ {positive test result}. Then P A1ð Þ¼ :001;
P A2ð Þ¼ :999; P B jA1ð Þ¼ :99; andP B jA2ð Þ¼ :02. The tree diagram for this problem

is in Figure 2.12.

Next to each branch corresponding to a positive test result, the multiplication

rule yields the recorded probabilities. Therefore, PðBÞ ¼ :00099þ :01998 ¼
:02097, from which we have

PðA1 jBÞ ¼ PðA1 \ BÞ
PðBÞ ¼ :00099

:02097
¼ :047

This result seems counterintuitive; because the diagnostic test appears so

accurate, we expect someone with a positive test result to be highly likely to have

the disease, whereas the computed conditional probability is only .047. However,

because the disease is rare and the test only moderately reliable, most positive test

results arise from errors rather than from diseased individuals. The probability of

having the disease has increased by a multiplicative factor of 47 (from prior .001 to

posterior .047); but to get a further increase in the posterior probability, a diagnostic

test with much smaller error rates is needed. If the disease were not so rare (e.g.,

25% incidence in the population), then the error rates for the present test would

provide good diagnoses.

This example shows why it makes sense to be tested for a rare disease only if

you are in a high-risk group. For example, most of us are at low risk for HIV

infection, so testing would not be indicated, but those who are in a high-risk group

should be tested for HIV. For some diseases the degree of risk is strongly influ-

enced by age. Young women are at low risk for breast cancer and should not be

tested, but older women do have increased risk and need to be tested. There is some

argument about where to draw the line. If we can find the incidence rate for our

group and the sensitivity and specificity for the test, then we can do our own

calculation to see if a positive test result would be informative. ■

An important contemporary application of Bayes’ theorem is in the identifi-

cation of spam e-mail messages. A nice expository article on this appears in

Statistics: A Guide to the Unknown (see the Chapter 1 bibliography).

A1 
= Has d

isea
se

A
2 = Doesn't have disease

.001

.999 .02

.98

.01

.99

B = +Test

B = +Test

B ' = −Test

B ' = −Test

P(A1   B) = .00099

P(A2    B) = .01998

Figure 2.12 Tree diagram for the rare-disease problem
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Exercises Section 2.4 (45–65)

45. The population of a particular country consists of

three ethnic groups. Each individual belongs to

one of the four major blood groups. The accom-

panying joint probability table gives the pro-

portions of individuals in the various ethnic

group–blood group combinations.

Blood Group

Ethnic Group O A B AB

1 .082 .106 .008 .004

2 .135 .141 .018 .006

3 .215 .200 .065 .020

Suppose that an individual is randomly selected

from the population, and define events by A¼
{type A selected}, B¼ {type B selected}, and

C¼ {ethnic group 3 selected}.

a. Calculate P(A), P(C), and P(A \ C).
b. Calculate both P(A | C) and P(C |A) and

explain in context what each of these probabil-

ities represents.

c. If the selected individual does not have type B
blood, what is the probability that he or she is

from ethnic group 1?

46. Suppose an individual is randomly selected from

the population of all adult males living in the

United States. Let A be the event that the selected

individual is over 6 ft in height, and let B be the

event that the selected individual is a professional

basketball player. Which do you think is larger,

P(A |B) or P(B |A)? Why?

47. Return to the credit card scenario of Exercise 14

(Section 2.2), where A¼ {Visa}, B¼ {Master-

Card}, P(A)¼ .5, P(B)¼ .4, and P(A \ B)¼ .25.

Calculate and interpret each of the following prob-

abilities (a Venn diagram might help).

a. P B jAð Þ
b. P B0 jAð Þ
c. P A jBð Þ
d. P A0 jBð Þ
e. Given that the selected individual has at least

one card, what is the probability that he or she

has a Visa card?

48. Reconsider the system defect situation described

in Exercise 28 (Section 2.2).

a. Given that the system has a type 1 defect, what

is the probability that it has a type 2 defect?

b. Given that the system has a type 1 defect, what

is the probability that it has all three types of

defects?

c. Given that the system has at least one type of

defect, what is the probability that it has

exactly one type of defect?

d. Given that the system has both of the first two

types of defects, what is the probability that it

does not have the third type of defect?

49. If two bulbs are randomly selected from the box of

lightbulbs described in Exercise 40 (Section 2.3)

and at least one of them is found to be rated 75 W,

what is the probability that both of them are 75-W

bulbs? Given that at least one of the two selected is

not rated 75 W, what is the probability that both

selected bulbs have the same rating?

50. A department store sells sport shirts in three sizes

(small, medium, and large), three patterns (plaid,

print, and stripe), and two sleeve lengths (long and

short). The accompanying tables give the propor-

tions of shirts sold in the various category combi-

nations.

Short-sleeved

Pattern

Size Pl Pr St

S .04 .02 .05

M .08 .07 .12

L .03 .07 .08

Long-sleeved

Pattern

Size Pl Pr St

S .03 .02 .03

M .10 .05 .07

L .04 .02 .08

a. What is the probability that the next shirt sold

is a medium, long-sleeved, print shirt?

b. What is the probability that the next shirt sold

is a medium print shirt?

c. What is the probability that the next shirt

sold is a short-sleeved shirt? A long-sleeved

shirt?
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d. What is the probability that the size of the next

shirt sold is medium? That the pattern of the

next shirt sold is a print?

e. Given that the shirt just sold was a short-

sleeved plaid, what is the probability that its

size was medium?

f. Given that the shirt just sold was a medium

plaid, what is the probability that it was short-

sleeved? Long-sleeved?

51. One box contains six red balls and four green

balls, and a second box contains seven red balls

and three green balls. A ball is randomly chosen

from the first box and placed in the second box.

Then a ball is randomly selected from the second

box and placed in the first box.

a. What is the probability that a red ball is

selected from the first box and a red ball is

selected from the second box?

b. At the conclusion of the selection process,

what is the probability that the numbers of

red and green balls in the first box are identical

to the numbers at the beginning?

52. A system consists of two identical pumps, #1

and #2. If one pump fails, the system will still

operate. However, because of the added strain,

the extra remaining pump is now more likely

to fail than was originally the case. That is,

r¼P(#2 fails j #1 fails)>P(#2 fails)¼ q. If at

least one pump fails by the end of the pump

design life in 7% of all systems and both pumps

fail during that period in only 1%, what is the

probability that pump #1 will fail during the

pump design life?

53. A certain shop repairs both audio and video com-

ponents. Let A denote the event that the next

component brought in for repair is an audio com-

ponent, and let B be the event that the next com-

ponent is a compact disc player (so the event B is

contained in A). Suppose that P(A)¼ .6 and

P(B)¼ .05. What is P(B | A)?

54. In Exercise 15, Ai¼ {awarded project i}, for i¼ 1,

2, 3. Use the probabilities given there to compute

the following probabilities:

a. P A2 jA1ð Þ
b. PðA2 \ A3 jA1Þ
c. PðA2 [ A3 jA1Þ
d. PðA1 \ A2 \ A3 jA1 [ A2 [ A3Þ

Express in words the probability you have

calculated.

55. For any events A and B with P(B)> 0, show that

P(A |B) +P(A0 |B)¼ 1.

56. If P(B | A)>P(B) show that P(B0 | A)<P(B0).
[Hint: Add P(B0 | A) to both sides of the given

inequality and then use the result of Exercise 55.]

57. Show that for any three events A, B, and C with

P(C)> 0, P(A [ B | C)¼P(A | C) +P(B | C)�
P(A \ B | C).

58. At a gas station, 40% of the customers use regular

gas (A1), 35% use mid-grade gas (A2), and 25%

use premium gas (A3). Of those customers using

regular gas, only 30% fill their tanks (event B).
Of those customers using mid-grade gas, 60% fill

their tanks, whereas of those using premium, 50%

fill their tanks.

a. What is the probability that the next customer

will request mid-grade gas and fill the tank

(A2 \ B)?
b. What is the probability that the next customer

fills the tank?

c. If the next customer fills the tank, what is the

probability that regular gas is requested? mid-

grade gas? Premium gas?

59. Seventy percent of the light aircraft that disappear

while in flight in a certain country are subsequently

discovered. Of the aircraft that are discovered, 60%

have an emergency locator, whereas 90% of the

aircraft not discovered do not have such a locator.

Suppose a light aircraft has disappeared.

a. If it has an emergency locator, what is the

probability that it will not be discovered?

b. If it does not have an emergency locator, what

is the probability that it will be discovered?

60. Components of a certain type are shipped to a

supplier in batches of ten. Suppose that 50% of

all such batches contain no defective components,

30% contain one defective component, and 20%

contain two defective components. Two compo-

nents from a batch are randomly selected and

tested. What are the probabilities associated with

0, 1, and 2 defective components being in the

batch under each of the following conditions?

a. Neither tested component is defective.

b. One of the two tested components is defective.

[Hint: Draw a tree diagram with three first-

generation branches for the three different

types of batches.]

61. Show that P(A \ B | C)¼P(A | B \ C) � P(B | C).
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62. For customers purchasing a full set of tires at a

particular tire store, consider the events

A¼ {tires purchased were made in the United

States}

B¼ {purchaser has tires balanced immediately}

C¼ {purchaser requests front-end alignment}

along with A0, B0, and C0. Assume the following

unconditional and conditional probabilities:

PðAÞ ¼ :75 P BjAð Þ ¼ :9 P BjA0ð Þ ¼ :8

PðCjA \ BÞ ¼ :8 PðCjA \ B0Þ ¼ :6

PðCjA0 \ BÞ ¼ :7 PðCjA0 \ B0Þ ¼ :3

a. Construct a tree diagram consisting of first-,

second-, and third-generation branches and

place an event label and appropriate probabil-

ity next to each branch.

b. Compute PðA \ B \ CÞ.
c. Compute PðB \ CÞ
d. Compute PðCÞ.
e. Compute PðA jB \ CÞ the probability of a pur-

chase of U.S. tires given that both balancing

and an alignment were requested.

63. A professional organization (for statisticians, of

course) sells term life insurance and major medical

insurance. Of those who have just life insurance,

70% will renew next year, and 80% of those with

only a major medical policy will renew next year.

However, 90%of policyholderswho have both types

of policy will renew at least one of them next year.

Of the policy holders 75% have term life insurance,

45% have major medical, and 20% have both.

a. Calculate the percentage of policyholders that

will renew at least one policy next year.

b. If a randomly selected policy holder does in

fact renew next year, what is the probability

that he or she has both life and major medical

insurance?

64. At a large university, in the never-ending quest for

a satisfactory textbook, the Statistics Department

has tried a different text during each of the last

three quarters. During the fall quarter, 500 stu-

dents used the text by Professor Mean; during

the winter quarter, 300 students used the text by

Professor Median; and during the spring quarter,

200 students used the text by Professor Mode.

A survey at the end of each quarter showed that

200 students were satisfied with Mean’s book, 150

were satisfied with Median’s book, and 160 were

satisfied with Mode’s book. If a student who took

statistics during one of these quarters is selected at

random and admits to having been satisfied with

the text, is the student most likely to have used the

book by Mean, Median, or Mode?Who is the least

likely author? [Hint: Draw a tree-diagram or use

Bayes’ theorem.]

65. A friend who lives in Los Angeles makes frequent

consulting trips to Washington, D.C.; 50% of the

time she travels on airline #1, 30% of the time on

airline #2, and the remaining 20% of the time on

airline #3. For airline #1, flights are late into D.C.

30% of the time and late into L.A. 10% of the

time. For airline #2, these percentages are 25%

and 20%, whereas for airline #3 the percentages

are 40% and 25%. If we learn that on a particular

trip she arrived late at exactly one of the two

destinations, what are the posterior probabilities

of having flown on airlines #1, #2, and #3?

Assume that the chance of a late arrival in L.A.

is unaffected by what happens on the flight to D.C.

[Hint: From the tip of each first-generation branch

on a tree diagram, draw three second-generation

branches labeled, respectively, 0 late, 1 late, and

2 late.]

2.5 Independence
The definition of conditional probability enables us to revise the probability P(A)
originally assigned to A when we are subsequently informed that another event B
has occurred; the new probability of A is P(A | B). In our examples, it was frequently

the case that P(A | B) was unequal to the unconditional probability P(A), indicating
that the information “B has occurred” resulted in a change in the chance of A
occurring. There are other situations, though, in which the chance that A will

occur or has occurred is not affected by knowledge that B has occurred, so that

P(A | B)¼P(A). It is then natural to think of A and B as independent events,

meaning that the occurrence or nonoccurrence of one event has no bearing on the

chance that the other will occur.
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DEFINITION Two events A and B are independent if P A jBð Þ ¼ PðAÞ and are dependent
otherwise.

The definition of independence might seem “unsymmetrical” because we do

not demand that P B jAð Þ ¼ PðBÞ also. However, using the definition of conditional
probability and the multiplication rule,

PðB jAÞ ¼ PðA \ BÞ
PðAÞ ¼ PðA jBÞPðBÞ

PðAÞ ð2:7Þ

The right-hand side of Equation (2.7) is P(B) if and only if P A jBð Þ ¼ PðAÞ
(independence), so the equality in the definition implies the other equality (and vice

versa). It is also straightforward to show that if A and B are independent, then so are

the following pairs of events: (1) A0 and B, (2) A and B0, and (3) A0 and B0.

Example 2.31 Consider an ordinary deck of 52 cards comprised of the four “suits” spades, hearts,

diamonds, and clubs, with each suit consisting of the 13 denominations ace, king,

queen, jack, ten, . . . , and two. Suppose someone randomly selects a card from the

deck and reveals to you that it is a face card (that is, a king, queen, or jack). What

now is the probability that the card is a spade? If we let A¼ {spade} and B¼ {face

card}, then P(A)¼ 13/52, P(B)¼ 12/52 (there are three face cards in each of the

four suits), and P(A \ B)¼P(spade and face card)¼ 3/52. Thus

PðA jBÞ ¼ PðA \ BÞ
PðBÞ ¼ 3=52

12=52
¼ 3

12
¼ 1

4
¼ 13

52
¼ PðAÞ

Therefore, the likelihood of getting a spade is not affected by knowledge that

a face card had been selected. Intuitively this is because the fraction of spades

among face cards (3 out of 12) is the same as the fraction of spades in the entire

deck (13 out of 52). It is also easily verified that P(B |A)¼P(B), so knowledge that
a spade has been selected does not affect the likelihood of the card being a jack,

queen, or king. ■

Example 2.32 Let A and B be any two mutually exclusive events with P(A)> 0. For example, for a

randomly chosen automobile, let A¼ {car is blue} and B¼ {car is red}. Since the

events are mutually exclusive, if B occurs, then A cannot possibly have occurred, so

P(A |B)¼ 0 6¼P(A). The message here is that if two events are mutually exclusive,
they cannot be independent. When A and B are mutually exclusive, the information

that A occurred says something about B (it cannot have occurred), so independence

is precluded. ■

P(A \ B) When Events Are Independent

Frequently the nature of an experiment suggests that two events A and B should be

assumed independent. This is the case, for example, if a manufacturer receives

a circuit board from each of two different suppliers, each board is tested on

arrival, and A¼ {first is defective} and B¼ {second is defective}. If P(A)¼ .1,
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it should also be the case that P(A |B)¼ .1; knowing the condition of the second

board shouldn’t provide information about the condition of the first. Our next result

shows how to compute P(A \ B) when the events are independent.

PROPOSITION A and B are independent if and only if

PðA \ BÞ ¼ PðAÞ � PðBÞ ð2:8Þ

To paraphrase the proposition, A and B are independent events iff1 the

probability that they both occur (A \ B) is the product of the two individual

probabilities. The verification is as follows:

PðA \ BÞ ¼ P A jBð Þ � PðBÞ ¼ PðAÞ � PðBÞ ð2:9Þ

where the second equality in Equation (2.9) is valid iff A and B are independent.

Because of the equivalence of independence with Equation (2.8), the latter can be

used as a definition of independence.2

Example 2.33 It is known that 30% of a certain company’s washing machines require service

while under warranty, whereas only 10% of its dryers need such service. If

someone purchases both a washer and a dryer made by this company, what is the

probability that both machines need warranty service?

Let A denote the event that the washer needs service while under warranty,

and let B be defined analogously for the dryer. Then P(A)¼ .30 and P(B)¼ .10.

Assuming that the two machines function independently of each other, the desired

probability is

PðA \ BÞ ¼ PðAÞ � PðBÞ ¼ :30ð Þ :10ð Þ ¼ :03

The probability that neither machine needs service is

PðA0 \ B0Þ ¼ P A0ð Þ � P B0ð Þ ¼ :70ð Þ :90ð Þ ¼ :63

Note that, although the independence assumption is reasonable here, it can be

questioned. In particular, if heavy usage causes a breakdown in one machine,

it could also cause trouble for the other one. ■

Example 2.34 Each day, Monday through Friday, a batch of components sent by a first supplier

arrives at a certain inspection facility. Two days a week, a batch also arrives from a

second supplier. Eighty percent of all supplier 1’s batches pass inspection, and 90%

of supplier 2’s do likewise. What is the probability that, on a randomly selected day,

two batches pass inspection? We will answer this assuming that on days when two

1 Iff is an abbreviation for “if and only if.”
2 However, the multiplication property is satisfied if P(B)¼ 0, yet P(A|B) is not defined in this case. To

make the multiplication property completely equivalent to the definition of independence, we should

append to that definition that A and B are also independent if either P(A)¼ 0 or P(B)¼ 0.
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batches are tested, whether the first batch passes is independent of whether the

second batch does so. Figure 2.13 displays the relevant information.

P two passð Þ ¼ Pðtwo received \ both passÞ
¼ P both pass j two receivedð Þ � P two receivedð Þ
¼ :8ð Þ :9ð Þ½ � :4ð Þ ¼ :288 ■

Independence of More Than Two Events

The notion of independence of two events can be extended to collections of

more than two events. Although it is possible to extend the definition for two

independent events by working in terms of conditional and unconditional prob-

abilities, it is more direct and less cumbersome to proceed along the lines of the

last proposition.

DEFINITION Events A1, . . . , An are mutually independent if for every k (k¼ 2, 3, . . . , n)
and every subset of indices i1, i2, . . . , ik,

PðAi1 \ Ai2 \ � � � \ AikÞ ¼ PðAi1Þ � PðAi2Þ � � � � � PðAikÞ

To paraphrase the definition, the events are mutually independent if the

probability of the intersection of any subset of the n events is equal to the product

of the individual probabilities. As was the case with two events, we frequently

specify at the outset of a problem the independence of certain events. The definition

can then be used to calculate the probability of an intersection.

2 batches

1 batch

.6

.4 .8

1st p
asse

s

.2

1st fails

.2

Fails

.8

Passe
s

.9

2nd passe
s

.1

2nd fails
.9

2nd passes

.1

2nd fails

.4      (.8      .9)

Figure 2.13 Tree diagram for Example 2.34
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Example 2.35 The article “Reliability Evaluation of Solar Photovoltaic Arrays” (Solar Energy,
2002: 129–141) presents various configurations of solar photovoltaic arrays con-

sisting of crystalline silicon solar cells. Consider first the system illustrated in

Figure 2.14a. There are two subsystems connected in parallel, each one containing

three cells. In order for the system to function, at least one of the two parallel

subsystems must work. Within each subsystem, the three cells are connected in

series, so a subsystem will work only if all cells in the subsystem work. Consider a

particular lifetime value t0, and suppose we want to determine the probability that

the system lifetime exceeds t0. Let Ai denote the event that the lifetime of cell i
exceeds t0 (i¼ 1, 2, . . . , 6). We assume that the Ai’s are independent events

(whether any particular cell lasts more than t0 hours has no bearing on whether

any other cell does) and that P(Ai)¼ .9 for every i since the cells are identical. Then

P system lifetime exceeds t0ð Þ ¼ P½ðA1 \ A2 \ A3Þ [ ðA4 \ A5 \ A6Þ�
¼ PðA1 \ A2 \ A3Þ þ PðA4 \ A5 \ A6Þ
� P½ðA1 \ A2 \ A3Þ \ ðA4 \ A5 \ A6Þ�

¼ :9ð Þ :9ð Þ :9ð Þ þ :9ð Þ :9ð Þ :9ð Þ
� :9ð Þ :9ð Þ :9ð Þ :9ð Þ :9ð Þ :9ð Þ ¼ :927

Alternatively,

P system lifetime exceeds t0ð Þ ¼ 1� Pðboth subsystem lives are � t0Þ
¼ 1� ½Pðsubsystem life is � t0Þ�2

¼ 1� ½1� Pðsubsystem life is>t0Þ�2

¼ 1� ½1� :9ð Þ3Þ�2 ¼ :927

Next consider the total-cross-tied system shown in Figure 2.14b, obtained from the

series-parallel array by connecting ties across each column of junctions. Now the

system fails as soon as an entire column fails, and system lifetime exceeds t0 only if
the life of every column does so. For this configuration,

P system lifetime exceeds t0ð Þ¼ ½P column lifetime exceeds t0ð Þ�3

¼ ½1�Pðcolumn lifetime is� t0Þ�3

¼ ½1�Pðboth cells in a column have lifetime� t0Þ�3

¼ 1�½1� :9ð Þ2Þ�3 ¼ :970 ■

1 2 3

4 5 6

1 2 3

4 5 6

a b

Figure 2.14 System configurations for Example 2.35: (a) series-parallel; (b) total-

cross-tied
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Exercises Section 2.5 (66–83)

66. Reconsider the credit card scenario of Exercise 47

(Section 2.4), and show that A and B are depen-

dent first by using the definition of independence

and then by verifying that the multiplication prop-

erty does not hold.

67. An oil exploration company currently has two

active projects, one in Asia and the other in Eur-

ope. Let A be the event that the Asian project is

successful and B be the event that the European

project is successful. Suppose that A and B are

independent events with P(A)¼ .4 and P(B)¼ .7.

a. If the Asian project is not successful, what

is the probability that the European project is

also not successful? Explain your reasoning.

b. What is the probability that at least one of the

two projects will be successful?

c. Given that at least one of the two projects is

successful, what is the probability that only the

Asian project is successful?

68. In Exercise 15, is any Ai independent of any other

Ai? Answer using the multiplication property for

independent events.

69. If A and B are independent events, show that A0

and B are also independent. [Hint: First establish
a relationship among PðA0 \ BÞ; PðBÞ; and
PðA \ BÞ.]

70. Suppose that the proportions of blood phenotypes

in a particular population are as follows:

A B AB O

.42 .10 .04 .44

Assuming that the phenotypes of two randomly

selected individuals are independent of each

other, what is the probability that both phenotypes

are O? What is the probability that the phenotypes

of two randomly selected individuals match?

71. The probability that a grader will make a marking

error on any particular question of a multiple-

choice exam is .1. If there are ten questions and

questions are marked independently, what is the

probability that no errors are made? That at least

one error is made? If there are n questions and the
probability of a marking error is p rather than .1,

give expressions for these two probabilities.

72. An aircraft seam requires 25 rivets. The seam will

have to be reworked if any of these rivets is

defective. Suppose rivets are defective indepen-

dently of one another, each with the same proba-

bility.

a. If 20% of all seams need reworking, what is the

probability that a rivet is defective?

b. How small should the probability of a defec-

tive rivet be to ensure that only 10% of all

seams need reworking?

73. A boiler has five identical relief valves. The prob-

ability that any particular valve will open on

demand is .95. Assuming independent operation

of the valves, calculate P(at least one valve opens)
and P(at least one valve fails to open).

74. Two pumps connected in parallel fail indepen-

dently of each other on any given day. The proba-

bility that only the older pump will fail is .10, and

the probability that only the newer pump will fail

is .05. What is the probability that the pumping

system will fail on any given day (which happens

if both pumps fail)?

75. Consider the system of components connected as

in the accompanying picture. Components 1 and

2 are connected in parallel, so that subsystem

works iff either 1 or 2 works; since 3 and 4 are

connected in series, that subsystem works iff both

3 and 4 work. If components work independently

of one another and P(component works)¼ .9, cal-

culate P(system works).

2

1

3 4

76. Refer back to the series-parallel system configu-

ration introduced in Example 2.35, and suppose

that there are only two cells rather than three in

each parallel subsystem [in Figure 2.14a, elimi-

nate cells 3 and 6, and renumber cells 4 and 5 as 3

and 4]. Using P(Ai)¼ .9, the probability that sys-

tem lifetime exceeds t0 is easily seen to be .9639.

To what value would .9 have to be changed in

order to increase the system lifetime reliability

from .9639 to .99? [Hint: Let P(Ai)¼ p, express
system reliability in terms of p, and then

let x¼ p2.]

77. Consider independently rolling two fair dice, one

red and the other green. Let A be the event that the

red die shows 3 dots, B be the event that the green
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die shows 4 dots, and C be the event that the total

number of dots showing on the two dice is 7. Are

these events pairwise independent (i.e., are A and

B independent events, are A and C independent,

and are B and C independent)? Are the three

events mutually independent?

78. Components arriving at a distributor are checked

for defects by two different inspectors (each com-

ponent is checked by both inspectors). The first

inspector detects 90% of all defectives that are

present, and the second inspector does likewise.

At least one inspector fails to detect a defect on

20% of all defective components. What is the

probability that the following occur?

a. A defective component will be detected only

by the first inspector? By exactly one of the

two inspectors?

b. All three defective components in a batch

escape detection by both inspectors (assuming

inspections of different components are inde-

pendent of one another)?

79. A quality control inspector is inspecting newly

produced items for faults. The inspector searches

an item for faults in a series of independent fixa-

tions, each of a fixed duration. Given that a flaw is

actually present, let p denote the probability that

the flaw is detected during any one fixation (this

model is discussed in “Human Performance in

Sampling Inspection,” Hum. Factors, 1979:

99–105).

a. Assuming that an item has a flaw, what is the

probability that it is detected by the end of the

second fixation (once a flaw has been detected,

the sequence of fixations terminates)?

b. Give an expression for the probability that a

flaw will be detected by the end of the nth
fixation.

c. If when a flaw has not been detected in three

fixations, the item is passed, what is the proba-

bility that a flawed item will pass inspection?

d. Suppose 10% of all items contain a flaw

[P(randomly chosen item is flawed)¼ .1].

With the assumption of part (c), what is the

probability that a randomly chosen item will

pass inspection (it will automatically pass if it

is not flawed, but could also pass if it is

flawed)?

e. Given that an item has passed inspection

(no flaws in three fixations), what is the proba-

bility that it is actually flawed? Calculate for

p¼ .5.

80. a. A lumber company has just taken delivery on a

lot of 10,000 2� 4 boards. Suppose that 20%

of these boards (2000) are actually too green to

be used in first-quality construction. Two

boards are selected at random, one after the

other. Let A¼ {the first board is green} and

B¼ {the second board is green}. Compute

P(A), P(B), and P(A \ B) (a tree diagram

might help). Are A and B independent?

b. With A and B independent and P(A)¼
P(B)¼ .2, what is P(A \ B)? How much

difference is there between this answer and

P(A \ B) in part (a)? For purposes of calculat-

ing P(A \ B), can we assume that A and B of

part (a) are independent to obtain essentially

the correct probability?

c. Suppose the lot consists of ten boards, of which
two are green. Does the assumption of indepen-

dence now yield approximately the correct

answer for P(A \ B)? What is the critical

difference between the situation here and

that of part (a)? When do you think that an

independence assumption would be valid in

obtaining an approximately correct answer to

P(A \ B)?

81. Refer to the assumptions stated in Exercise 75

and answer the question posed there for the system

in the accompanying picture. How would the

probability change if this were a subsystem

connected in parallel to the subsystem pictured

in Figure 2.14a?

2

1

5

3

6

7

4

82. Professor Stander Deviation can take one of two

routes on his way home from work. On the first

route, there are four railroad crossings. The prob-

ability that he will be stopped by a train at any

particular one of the crossings is .1, and trains

operate independently at the four crossings. The

other route is longer but there are only two cross-

ings, independent of each other, with the same

stoppage probability for each as on the first

route. On a particular day, Professor Deviation

has a meeting scheduled at home for a certain

time. Whichever route he takes, he calculates

that he will be late if he is stopped by trains at

least half the crossings encountered.

a. Which route should he take to minimize the

probability of being late to the meeting?

b. If he tosses a fair coin to decide on a route and

he is late, what is the probability that he took

the four-crossing route?
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83. Suppose identical tags are placed on both the left

ear and the right ear of a fox. The fox is then let

loose for a period of time. Consider the two events

C1¼ {left ear tag is lost} and C2¼ {right ear tag is

lost}. Let p¼P(C1)¼P(C2), and assume C1 and

C2 are independent events. Derive an expression

(involving p) for the probability that exactly one

tag is lost given that at most one is lost (“Ear Tag

Loss in Red Foxes,” J. Wildlife Manag., 1976:
164–167). [Hint: Draw a tree diagram in which

the two initial branches refer to whether the left

ear tag was lost.]

Supplementary Exercises (84–109)

84. A small manufacturing company will start

operating a night shift. There are 20 machinists

employed by the company.

a. If a night crew consists of 3 machinists, how

many different crews are possible?

b. If the machinists are ranked 1, 2, . . . , 20 in

order of competence, how many of these crews

would not have the best machinist?

c. How many of the crews would have at least 1

of the 10 best machinists?

d. If one of these crews is selected at random to

work on a particular night, what is the proba-

bility that the best machinist will not work that

night?

85. A factory uses three production lines to manufac-

ture cans of a certain type. The accompanying

table gives percentages of nonconforming cans,

categorized by type of nonconformance, for each

of the three lines during a particular time period.

Line 1 Line 2 Line 3

Blemish 15 12 20

Crack 50 44 40

Pull-Tab Problem 21 28 24

Surface Defect 10 8 15

Other 4 8 2

During this period, line 1 produced 500 noncon-

forming cans, line 2 produced 400 such cans, and

line 3 was responsible for 600 nonconforming

cans. Suppose that one of these 1500 cans is

randomly selected.

a. What is the probability that the can was pro-

duced by line 1? That the reason for noncon-

formance is a crack?

b. If the selected can came from line 1, what is the

probability that it had a blemish?

c. Given that the selected can had a surface defect,
what is the probability that it came from line 1?

86. An employee of the records office at a university

currently has ten forms on his desk awaiting pro-

cessing. Six of these are withdrawal petitions and

the other four are course substitution requests.

a. If he randomly selects six of these forms to

give to a subordinate, what is the probability

that only one of the two types of forms remains

on his desk?

b. Suppose he has time to process only four of

these forms before leaving for the day. If these

four are randomly selected one by one, what is

the probability that each succeeding form is of a

different type from its predecessor?

87. One satellite is scheduled to be launched from

Cape Canaveral in Florida, and another launching

is scheduled for Vandenberg Air Force Base in

California. Let A denote the event that the Van-

denberg launch goes off on schedule, and let B
represent the event that the Cape Canaveral

launch goes off on schedule. If A and B are

independent events with P(A)>P(B) and

P(A [ B)¼ .626, P(A \ B)¼ .144, determine the

values of P(A) and P(B).

88. A transmitter is sending a message by using a

binary code, namely, a sequence of 0’s and 1’s.

Each transmitted bit (0 or 1) must pass through

three relays to reach the receiver. At each relay,

the probability is .20 that the bit sent will be differ-

ent from the bit received (a reversal). Assume that

the relays operate independently of one another.

Transmitter!Relay 1!Relay 2!Relay 3

! Receiver

a. If a 1 is sent from the transmitter, what is the

probability that a 1 is sent by all three relays?

b. If a 1 is sent from the transmitter, what is the

probability that a 1 is received by the receiver?

[Hint: The eight experimental outcomes can be

displayed on a tree diagram with three genera-

tions of branches, one generation for each

relay.]
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c. Suppose 70% of all bits sent from the transmit-

ter are 1’s. If a 1 is received by the receiver,

what is the probability that a 1 was sent?

89. Individual A has a circle of five close friends

(B, C, D, E, and F). A has heard a certain rumor

from outside the circle and has invited the five

friends to a party to circulate the rumor. To begin,

A selects one of the five at random and tells the

rumor to the chosen individual. That individual

then selects at random one of the four remaining

individuals and repeats the rumor. Continuing, a

new individual is selected from those not already

having heard the rumor by the individual who has

just heard it, until everyone has been told.

a. What is the probability that the rumor is

repeated in the order B, C, D, E, and F?

b. What is the probability that F is the third per-

son at the party to be told the rumor?

c. What is the probability that F is the last person

to hear the rumor?

90. Refer to Exercise 89. If at each stage the person

who currently “has” the rumor does not know

who has already heard it and selects the next

recipient at random from all five possible indivi-

duals, what is the probability that F has still not

heard the rumor after it has been told ten times at

the party?

91. A chemist is interested in determining whether a

certain trace impurity is present in a product. An

experiment has a probability of .80 of detecting the

impurity if it is present. The probability of not

detecting the impurity if it is absent is .90. The

prior probabilities of the impurity being present

and being absent are .40 and .60, respectively.

Three separate experiments result in only two

detections. What is the posterior probability that

the impurity is present?

92. Fasteners used in aircraft manufacturing are

slightly crimped so that they lock enough to avoid

loosening during vibration. Suppose that 95% of all

fasteners pass an initial inspection. Of the 5% that

fail, 20% are so seriously defective that they must

be scrapped. The remaining fasteners are sent to a

recrimping operation, where 40% cannot be sal-

vaged and are discarded. The other 60% of these

fasteners are corrected by the recrimping process

and subsequently pass inspection.

a. What is the probability that a randomly

selected incoming fastener will pass inspection

either initially or after recrimping?

b. Given that a fastener passed inspection, what is
the probability that it passed the initial inspec-

tion and did not need recrimping?

93. One percent of all individuals in a certain popula-

tion are carriers of a particular disease. A diagnos-

tic test for this disease has a 90% detection rate for

carriers and a 5% detection rate for noncarriers.

Suppose the test is applied independently to two

different blood samples from the same randomly

selected individual.

a. What is the probability that both tests yield the

same result?

b. If both tests are positive, what is the probability

that the selected individual is a carrier?

94. A system consists of two components. The proba-

bility that the second component functions in a

satisfactory manner during its design life is .9, the

probability that at least one of the two components

does so is .96, and the probability that both compo-

nents do so is .75. Given that the first component

functions in a satisfactory manner throughout its

design life, what is the probability that the second

one does also?

95. A certain company sends 40% of its overnight mail

parcels via express mail service E1. Of these par-

cels, 2% arrive after the guaranteed delivery time

(denote the event “late delivery” by L). If a record
of an overnight mailing is randomly selected from

the company’s file, what is the probability that the

parcel went via E1 and was late?

96. Refer to Exercise 95. Suppose that 50% of the

overnight parcels are sent via express mail ser-

vice E2 and the remaining 10% are sent via E3. Of

those sent via E2, only 1% arrive late, whereas

5% of the parcels handled by E3 arrive late.

a. What is the probability that a randomly

selected parcel arrived late?

b. If a randomly selected parcel has arrived on

time, what is the probability that it was not sent

via E1?

97. A company uses three different assembly lines—A1,

A2, andA3—tomanufacture a particular component.

Of those manufactured by line A1, 5% need rework

to remedy a defect, whereas 8% of A2’s components

need rework and 10% of A3’s need rework. Suppose

that 50% of all components are produced by line A1,

30% are produced by line A2, and 20% come from

line A3. If a randomly selected component needs

rework, what is the probability that it came from

line A1? From line A2? From line A3?
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98. Disregarding the possibility of a February 29

birthday, suppose a randomly selected individual

is equally likely to have been born on any one of

the other 365 days.

a. If ten people are randomly selected, what is the

probability that all have different birthdays?

That at least two have the same birthday?

b. With k replacing ten in part (a), what is the

smallest k for which there is at least a 50–50

chance that two or more people will have the

same birthday?

c. If ten people are randomly selected, what is

the probability that either at least two have

the same birthday or at least two have the

same last three digits of their Social Security

numbers? [Note: The article “Methods for

Studying Coincidences” (F. Mosteller and

P. Diaconis, J. Amer. Statist. Assoc., 1989:

853–861) discusses problems of this type.]

99. Onemethod used to distinguish betweengranitic (G)
and basaltic (B) rocks is to examine a portion of the

infrared spectrum of the sun’s energy reflected from

the rock surface. LetR1,R2, andR3 denote measured

spectrum intensities at three different wavelengths;

typically, for granite R1<R2<R3, whereas for

basalt R3<R1<R2. When measurements are made

remotely (using aircraft), various orderings of the

Ri’s may arise whether the rock is basalt or granite.

Flights over regions of known composition have

yielded the following information:

Granite Basalt

R1<R2<R3 60% 10%

R1<R3<R2 25% 20%

R3<R1<R2 15% 70%

Suppose that for a randomly selected rock in a

certain region, P(granite)¼ .25 and P(basalt)¼ .75.

a. Show that P(granite | R1<R2<R3)>P(basalt
| R1<R2<R3). If measurements yielded R1<
R2<R3, would you classify the rock as granite

or basalt?

b. If measurements yielded R1<R3<R2, how

would you classify the rock? Answer the

same question for R3<R1<R2.

c. Using the classification rules indicated in parts

(a) and (b), when selecting a rock from this

region, what is the probability of an erroneous

classification? [Hint: EitherG could be classified

as B or B as G, and P(B) and P(G) are known.]
d. If P(granite)¼ p rather than .25, are there

values of p (other than 1) for which a rock

would always be classified as granite?

100. In a Little League baseball game, team A’s

pitcher throws a strike 50% of the time and a

ball 50% of the time, successive pitches are inde-

pendent of each other, and the pitcher never hits a

batter. Knowing this, team B’s manager has

instructed the first batter not to swing at any-

thing. Calculate the probability that

a. The batter walks on the fourth pitch.

b. The batter walks on the sixth pitch (so two of

the first five must be strikes), using a counting

argument or constructing a tree diagram.

c. The batter walks.
d. The first batter up scores while no one is out

(assuming that each batter pursues a no-swing

strategy).

101. Four graduating seniors, A, B, C, andD, have been

scheduled for job interviews at 10 a.m. on Friday,

January 13, at RandomSampling, Inc. The person-

nel manager has scheduled the four for interview

rooms 1, 2, 3, and 4, respectively. Unaware of this,

the manager’s secretary assigns them to the four

rooms in a completely random fashion (what

else!). What is the probability that

a. All four end up in the correct rooms?

b. None of the four ends up in the correct room?

102. A particular airline has 10 a.m. flights from Chi-

cago to New York, Atlanta, and Los Angeles. Let

A denote the event that the New York flight is full

and define events B and C analogously for the

other two flights. Suppose P(A)¼ .6, P(B)¼ .5,

P(C)¼ .4 and the three events are independent.

What is the probability that

a. All three flights are full? That at least one

flight is not full?

b. Only the New York flight is full? That exactly

one of the three flights is full?

103. A personnel manager is to interview four candi-

dates for a job. These are ranked 1, 2, 3, and 4 in

order of preference and will be interviewed in

random order. However, at the conclusion of

each interview, the manager will know only how

the current candidate compares to those previ-

ously interviewed. For example, the interview

order 3, 4, 1, 2 generates no information after

the first interview, shows that the second candi-

date is worse than the first, and that the third is

better than the first two. However, the order 3, 4,

2, 1 would generate the same information after

each of the first three interviews. The manager

wants to hire the best candidate but must make

an irrevocable hire/no hire decision after each

interview. Consider the following strategy: Auto-

matically reject the first s candidates and then hire
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the first subsequent candidate who is best among

those already interviewed (if no such candidate

appears, the last one interviewed is hired).

For example, with s¼ 2, the order 3, 4, 1,

2 would result in the best being hired, whereas

the order 3, 1, 2, 4 would not. Of the four possible

s values (0, 1, 2, and 3), which one maximizes

P(best is hired)? [Hint: Write out the 24 equally

likely interview orderings: s¼ 0 means that the

first candidate is automatically hired.]

104. Consider four independent events A1, A2, A3,

and A4 and let pi¼P(Ai) for i¼ 1, 2, 3, 4.

Express the probability that at least one of

these four events occurs in terms of the pi’s,
and do the same for the probability that at least

two of the events occur.

105. A box contains the following four slips of paper,

each having exactly the same dimensions: (1) win

prize 1; (2) win prize 2; (3) win prize 3; (4) win

prizes 1, 2, and 3. One slip will be randomly

selected. Let A1¼ {win prize 1}, A2¼ {win

prize 2}, and A3¼ {win prize 3}. Show that A1

and A2 are independent, that A1 and A3 are inde-

pendent, and that A2 and A3 are also independent

(this is pairwise independence). However, show

thatP(A1\ A2\ A3) 6¼P(A1) ·P(A2) ·P(A3), so the

three events are not mutually independent.

106. Consider a woman whose brother is afflicted

with hemophilia, which implies that the woman’s

mother has the hemophilia gene on one of her

two X chromosomes (almost surely not both,

since that is generally fatal). Thus there is a

50–50 chance that the woman’s mother has

passed on the bad gene to her. The woman has

two sons, each of whom will independently

inherit the gene from one of her two chromo-

somes. If the woman herself has a bad gene, there

is a 50–50 chance she will pass this on to a son.

Suppose that neither of her two sons is afflicted

with hemophilia. What then is the probability

that the woman is indeed the carrier of the hemo-

philia gene? What is this probability if she has a

third son who is also not afflicted?

107. Jurors may be a priori biased for or against the

prosecution in a criminal trial. Each juror is

questioned by both the prosecution and the

defense (the voir dire process), but this may not

reveal bias. Even if bias is revealed, the judge

may not excuse the juror for cause because of the

narrow legal definition of bias. For a randomly

selected candidate for the jury, define events B0,

B1, and B2 as the juror being unbiased, biased

against the prosecution, and biased against the

defense, respectively. Also let C be the event that

bias is revealed during the questioning and D be

the event that the juror is eliminated for cause.

Let bi¼P(Bi) (i¼ 0, 1, 2), c¼P(C|B1)¼P(C |B2)

and d¼P(D|B1 \ C)¼P(D|B2 \ C) [“Fair Num-

ber of Peremptory Challenges in Jury Trials,”

J. Amer. Statist. Assoc., 1979: 747–753].
a. If a juror survives the voir dire process, what

is the probability that he/she is unbiased (in

terms of the bi’s, c, and d)? What is the prob-

ability that he/she is biased against the prose-

cution? What is the probability that he/she is

biased against the defense? [Hint: Represent
this situation using a tree diagram with three

generations of branches.]

b. What are the probabilities requested in (a) if

b0¼ .50, b1¼ .10, b2¼ .40 (all based on data

relating to the famous trial of the Florida

murderer Ted Bundy), c¼ .85 (corresponding

to the extensive questioning appropriate in a

capital case), and d¼ .7 (a “moderate” judge)?

108. Allan and Beth currently have $2 and $3, respec-

tively. A fair coin is tossed. If the result of the

toss is H, Allan wins $1 from Beth, whereas if the

coin toss results in T, then Beth wins $1 from

Allan. This process is then repeated, with a coin

toss followed by the exchange of $1, until one of

the two players goes broke (one of the two

gamblers is ruined). We wish to determine

a2¼P(Allan is the winner j he starts with $2)

To do so, let’s also consider ai¼P(Allan wins j
he starts with $i) for i¼ 0, 1, 3, 4, and 5.

a. What are the values of a0 and a5?
b. Use the law of total probability to obtain an

equation relating a2 to a1 and a3. [Hint: Con-
dition on the result of the first coin toss,

realizing that if it is a H, then from that

point Allan starts with $3.]

c. Using the logic described in (b), develop a

system of equations relating ai (i¼ 1, 2, 3, 4)

to ai–1 and ai+1. Then solve these equations.

[Hint: Write each equation so that ai� ai–1 is
on the left hand side. Then use the result of the

first equation to express each other ai� ai�1

as a function of a1, and add together all four of
these expressions (i¼ 2, 3, 4, 5).]

d. Generalize the result to the situation in which

Allan’s initial fortune is $a and Beth’s is $b.
Note: The solution is a bit more complicated

if p¼P(Allan wins $1) 6¼ .5.
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109. Prove that if P(B |A)>P(B) [in which case we

say that “A attracts B”], then P(A | B)>P(A)
[“B attracts A”].

110. Suppose a single gene determines whether the

coloring of a certain animal is dark or light. The

coloring will be dark if the genotype is either AA
or Aa and will be light only if the genotype is aa
(so A is dominant and a is recessive).

Consider two parents with genotypes Aa and

AA. The first contributes A to an offspring with

probability 1/2 and a with probability 1/2,

whereas the second contributes A for sure. The

resulting offspring will be either AA or Aa, and
therefore will be dark colored. Assume that this

child then mates with an Aa animal to produce a

grandchild with dark coloring. In light of this

information, what is the probability that the

first-generation offspring has the Aa genotype

(is heterozygous)? [Hint: Construct an appropri-

ate tree diagram.]

Bibliography

Durrett, Richard, Elementary Probability for Applica-
tions, Cambridge Univ. Press, London, England,

2009. A concise presentation at a slightly higher

level than this text.

Mosteller, Frederick, Robert Rourke, and George

Thomas, Probability with Statistical Applications
(2nd ed.), Addison-Wesley, Reading, MA, 1970.

A very good precalculus introduction to probabil-

ity, with many entertaining examples; especially

good on counting rules and their application.

Olkin, Ingram, Cyrus Derman, and Leon Gleser,

Probability Models and Application (2nd ed.),

Macmillan, New York, 1994. A comprehensive

introduction to probability, written at a slightly

higher mathematical level than this text but con-

taining many good examples.

Ross, Sheldon, A First Course in Probability (8th ed.),
Prentice Hall, Upper Saddle River, NJ, 2010.

Rather tightly written and more mathematically

sophisticated than this text but contains a wealth

of interesting examples and exercises.

Winkler, Robert, Introduction to Bayesian Inference
and Decision (2nd ed.), Probabilistic Publishing,

Sugar Land, Texas, 2003. A very good introduction

to subjective probability.

Bibliography 95



C H A P T E R T H R E E

Discrete Random
Variables and
Probability
Distributions

Introduction
Whether an experiment yields qualitative or quantitative outcomes, methods of

statistical analysis require that we focus on certain numerical aspects of the data

(such as a sample proportion x/n, mean �x, or standard deviation s). The concept of

a random variable allows us to pass from the experimental outcomes themselves to

a numerical function of the outcomes. There are two fundamentally different types

of random variables—discrete random variables and continuous random variables.

In this chapter, we examine the basic properties and discuss the most important

examples of discrete variables. Chapter 4 focuses on continuous random variables.



3.1 Random Variables
In any experiment, numerous characteristics can be observed or measured, but in

most cases an experimenter will focus on some specific aspect or aspects of a

sample. For example, in a study of commuting patterns in a metropolitan area, each

individual in a sample might be asked about commuting distance and the number of

people commuting in the same vehicle, but not about IQ, income, family size, and

other such characteristics. Alternatively, a researcher may test a sample of compo-

nents and record only the number that have failed within 1000 hours, rather than

record the individual failure times.

In general, each outcome of an experiment can be associated with a number

by specifying a rule of association (e.g., the number among the sample of ten

components that fail to last 1000 h or the total weight of baggage for a sample of

25 airline passengers). Such a rule of association is called a random variable—a

variable because different numerical values are possible and random because the

observed value depends on which of the possible experimental outcomes results

(Figure 3.1).

DEFINITION For a given sample space S of some experiment, a random variable (rv) is
any rule that associates a number with each outcome in S . In mathematical

language, a random variable is a function whose domain is the sample space

and whose range is the set of real numbers.

Random variables are customarily denoted by uppercase letters, such as X
and Y, near the end of our alphabet. In contrast to our previous use of a lowercase

letter, such as x, to denote a variable, we will now use lowercase letters to represent

some particular value of the corresponding random variable. The notation X(s) ¼ x
means that x is the value associated with the outcome s by the rv X.

Example 3.1 When a student attempts to connect to a university computer system, either there is

a failure (F), or there is a success (S). With S ¼ {S, F}, define an rv X by X(S) ¼ 1,

X(F) ¼ 0. The rv X indicates whether (1) or not (0) the student can connect. ■

In Example 3.1, the rv X was specified by explicitly listing each element of S
and the associated number. If S contains more than a few outcomes, such a listing is

tedious, but it can frequently be avoided.

−2 −1 1 20

Figure 3.1 A random variable
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Example 3.2 Consider the experiment in which a telephone number in a certain area code is

dialed using a random number dialer (such devices are used extensively by polling

organizations), and define an rv Y by

Y ¼ 1

0

�
if the selected number is unlisted

if the selected number is listed in the directory

For example, if 5282966 appears in the telephone directory, then Y(5282966) ¼ 0,

whereas Y(7727350) ¼ 1 tells us that the number 7727350 is unlisted. A word

description of this sort is more economical than a complete listing, so we will use

such a description whenever possible. ■

In Examples 3.1 and 3.2, the only possible values of the random variable

were 0 and 1. Such a random variable arises frequently enough to be given a special

name, after the individual who first studied it.

DEFINITION Any random variable whose only possible values are 0 and 1 is called a

Bernoulli random variable.

We will often want to define and study several different random variables

from the same sample space.

Example 3.3 Example 2.3 described an experiment in which the number of pumps in use at each

of two gas stations was determined. Define rv’s X, Y, and U by

X ¼ the total number of pumps in use at the two stations

Y ¼ the difference between the number of pumps in use at station 1 and the

number in use at station 2

U ¼ the maximum of the numbers of pumps in use at the two stations

If this experiment is performed and s ¼ (2, 3) results, then X((2, 3)) ¼ 2 + 3 ¼ 5, so

we say that the observed value ofX is x ¼ 5. Similarly, the observed value of Ywould
be y ¼ 2� 3 ¼ �1, and the observed value ofUwould be u ¼max(2, 3) ¼ 3. ■

Each of the random variables of Examples 3.1–3.3 can assume only a finite

number of possible values. This need not be the case.

Example 3.4 In Example 2.4, we considered the experiment in which batteries were examined

until a good one (S) was obtained. The sample space was S ¼ {S, FS, FFS, . . . }.
Define an rv X by

X ¼ the number of batteries examined before the experiment terminates

Then XðSÞ ¼ 1;XðFSÞ ¼ 2;XðFFSÞ ¼ 3; . . . ;XðFFFFFFSÞ ¼ 7, and so on. Any

positive integer is a possible value of X, so the set of possible values is infinite. ■
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Example 3.5 Suppose that in some random fashion, a location (latitude and longitude) in the

continental United States is selected. Define an rv Y by

Y ¼ the height above sea level at the selected location

For example, if the selected location were (39�500N, 98�350W), then we might have

Y((39�500N, 98�350W)) ¼ 1748.26 ft. The largest possible value of Y is 14,494

(Mt. Whitney), and the smallest possible value is �282 (Death Valley). The set of

all possible values of Y is the set of all numbers in the interval between �282 and

14,494—that is,

y : y is a number;�282 � y � 14; 494f g
and there are an infinite number of numbers in this interval. ■

Two Types of Random Variables

In Section 1.2 we distinguished between data resulting from observations on a

counting variable and data obtained by observing values of a measurement variable.

A slightly more formal distinction characterizes two different types of random

variables.

DEFINITION A discrete random variable is an rv whose possible values either constitute a

finite set or else can be listed in an infinite sequence in which there is a first

element, a second element, and so on.

A random variable is continuous if both of the following apply:

1. Its set of possible values consists either of all numbers in a single interval

on the number line (possibly infinite in extent, e.g., from �1 to 1) or

all numbers in a disjoint union of such intervals ðe:g:; 0; 10½ � [ 20; 30½ �Þ.
2. No possible value of the variable has positive probability, that is,

P(X ¼ c) ¼ 0 for any possible value c.

Although any interval on the number line contains an infinite number of numbers, it

can be shown that there is no way to create an infinite listing of all these values—

there are just too many of them. The second condition describing a continuous

random variable is perhaps counterintuitive, since it would seem to imply a total

probability of zero for all possible values. But we shall see in Chapter 4 that

intervals of values have positive probability; the probability of an interval will

decrease to zero as the width of the interval shrinks to zero.

Example 3.6 All random variables in Examples 3.1–3.4 are discrete. As another example, suppose

we select married couples at random and do a blood test on each person until we

find a husband and wife who both have the same Rh factor. With X ¼ the number of

blood tests to be performed, possible values of X are D ¼ {2, 4, 6, 8, . . . }. Since the
possible values have been listed in sequence, X is a discrete rv. ■

To study basic properties of discrete rv’s, only the tools of discrete mathemat-

ics—summation and differences—are required. The study of continuous variables

requires the continuous mathematics of the calculus—integrals and derivatives.
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Exercises Section 3.1 (1–10)

1. A concrete beam may fail either by shear (S) or
flexure (F). Suppose that three failed beams are

randomly selected and the type of failure is deter-

mined for each one. Let X ¼ the number of beams

among the three selected that failed by shear. List

each outcome in the sample space along with the

associated value of X.

2. Give three examples of Bernoulli rv’s (other than

those in the text).

3. Using the experiment in Example 3.3, define two

more random variables and list the possible values

of each.

4. Let X ¼ the number of nonzero digits in a ran-

domly selected zip code. What are the possible

values of X? Give three possible outcomes and

their associated X values.

5. If the sample space S is an infinite set, does this

necessarily imply that any rv X defined from S will
have an infinite set of possible values? If yes, say

why. If no, give an example.

6. Starting at a fixed time, each car entering an

intersection is observed to see whether it turns

left (L), right (R), or goes straight ahead (A). The
experiment terminates as soon as a car is observed

to turn left. Let X ¼ the number of cars observed.

What are possible X values? List five outcomes

and their associated X values.

7. For each random variable defined here, describe

the set of possible values for the variable, and state

whether the variable is discrete.

a. X ¼ the number of unbroken eggs in a ran-

domly chosen standard egg carton

b. Y ¼ the number of students on a class list for a

particular course who are absent on the

first day of classes

c. U ¼ the number of times a duffer has to swing

at a golf ball before hitting it

d. X ¼ the length of a randomly selected rattle-

snake

e. Z ¼ the amount of royalties earned from the

sale of a first edition of 10,000 textbooks

f. Y ¼ the pH of a randomly chosen soil sample

g. X ¼ the tension (psi) at which a randomly

selected tennis racket has been strung

h. X ¼ the total number of coin tosses required

for three individuals to obtain a match

(HHH or TTT)

8. Each time a component is tested, the trial is a

success (S) or failure (F). Suppose the component

is tested repeatedly until a success occurs on three

consecutive trials. Let Y denote the number of

trials necessary to achieve this. List all outcomes

corresponding to the five smallest possible values

of Y, and state which Y value is associated with

each one.

9. An individual named Claudius is located at the

point 0 in the accompanying diagram.

A2

A1 A4B4

A3

B3B1

B2

0

Using an appropriate randomization device

(such as a tetrahedral die, one having four sides),

Claudius first moves to one of the four locations

B1, B2, B3, B4. Once at one of these locations, he

uses another randomization device to decide

whether he next returns to 0 or next visits one of

the other two adjacent points. This process then

continues; after each move, another move to one

of the (new) adjacent points is determined by

tossing an appropriate die or coin.

a. Let X ¼ the number of moves that Claudius

makes before first returning to 0. What are

possible values of X? Is X discrete or continu-

ous?

b. If moves are allowed also along the

diagonal paths connecting 0 to A1, A2, A3,

and A4, respectively, answer the questions in

part (a).

10. The number of pumps in use at both a six-pump

station and a four-pump station will be deter-

mined. Give the possible values for each of the

following random variables:

a. T ¼ the total number of pumps in use

b. X ¼ the difference between the numbers in use

at stations 1 and 2

c. U ¼ the maximum number of pumps in use at

either station

d. Z ¼ the number of stations having exactly two

pumps in use
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3.2 Probability Distributions for Discrete
Random Variables
When probabilities are assigned to various outcomes in S , these in turn determine

probabilities associated with the values of any particular rv X. The probability
distribution of X says how the total probability of 1 is distributed among (allocated

to) the various possible X values.

Example 3.7 Six lots of components are ready to be shipped by a supplier. The number

of defective components in each lot is as follows:

Lot 1 2 3 4 5 6

Number of defectives 0 2 0 1 2 0

One of these lots is to be randomly selected for shipment to a customer. Let X be the

number of defectives in the selected lot. The three possible X values are 0, 1, and 2.

Of the six equally likely simple events, three result in X ¼ 0, one in X ¼ 1, and the

other two in X ¼ 2. Let p(0) denote the probability that X ¼ 0 and p(1) and p(2)
represent the probabilities of the other two possible values of X. Then

pð0Þ ¼ PðX ¼ 0Þ ¼ Pðlot 1 or 3 or 6 is sentÞ ¼ 3

6
¼ :500

pð1Þ ¼ PðX ¼ 1Þ ¼ Pðlot 4 is sentÞ ¼ 1

6
¼ :167

pð2Þ ¼ PðX ¼ 2Þ ¼ Pðlot 2 or 5 is sentÞ ¼ 2

6
¼ :333

That is, a probability of .500 is distributed to the X value 0, a probability of .167 is

placed on the X value 1, and the remaining probability, .333, is associated with

the X value 2. The values of X along with their probabilities collectively specify

the probability distribution or probability mass function of X. If this experiment

were repeated over and over again, in the long run X ¼ 0 would occur one-half of

the time, X ¼ 1 one-sixth of the time, and X ¼ 2 one-third of the time. ■

DEFINITION The probability distribution or probability mass function (pmf) of a

discrete rv is defined for every number x by pðxÞ ¼ PðX ¼ xÞ ¼
Pðall s 2 S : XðsÞ ¼ xÞ.1

In words, for every possible value x of the random variable, the pmf specifies

the probability of observing that value when the experiment is performed. The

conditions pðxÞ � 0 and SpðxÞ ¼ 1, where the summation is over all possible x,
are required of any pmf.

1P(X ¼ x) is read “the probability that the rv X assumes the value x.” For example, P(X ¼ 2) denotes the

probability that the resulting X value is 2.
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Example 3.8 Consider randomly selecting a student at a large public university, and define a

Bernoulli rv by X ¼ 1 if the selected student does not qualify for in-state tuition

(a success from the university administration’s point of view) and X ¼ 0 if the

student does qualify. If 20% of all students do not qualify, the pmf for X is

pð0Þ ¼ P X ¼ 0ð Þ ¼ P the selected student does qualifyð Þ ¼ :8

p 1ð Þ ¼ P X ¼ 1ð Þ ¼ P the selected student does not qualifyð Þ ¼ :2

pðxÞ ¼ PðX ¼ xÞ ¼ 0 for x 6¼ 0 or 1:

pðxÞ ¼
:8 if x ¼ 0

:2 if x ¼ 1

0 if x 6¼ 0 or 1

8><
>:

Figure 3.2 is a picture of this pmf, called a line graph.

Example 3.9 Consider a group of five potential blood donors—A, B, C, D, and E—of whom only

A and B have type O+ blood. Five blood samples, one from each individual, will be

typed in random order until an O+ individual is identified. Let the rv Y ¼ the

number of typings necessary to identify an O+ individual. Then the pmf of Y is

pð1Þ¼ PðY¼ 1Þ¼PðA or B typed firstÞ¼ 2

5
¼ :4

pð2Þ¼ PðY¼ 2Þ¼PðC;D;or E first;and then A or BÞ
¼ PðC;D;or E firstÞ �PðA or B nextjC;D;or E firstÞ¼ 3

5
�2
4
¼ :3

pð3Þ¼ PðY¼ 3Þ¼PðC; D; or E first and second; and then A or BÞ¼ 3

5
�2
4
�2
3
¼ :2

pð4Þ¼ PðY¼ 4Þ¼PðC; D; and E all done firstÞ¼ 3

5
�2
4
�1
3
¼ :1

pðyÞ¼ 0 for y 6¼ 1;2;3;4:

The pmf can be presented compactly in tabular form:

y 1 2 3 4

p(y) .4 .3 .2 .1

where any y value not listed receives zero probability. This pmf can also be

displayed in a line graph (Figure 3.3).

1

1
x

0

p(x)

Figure 3.2 The line graph for the pmf in Example 3.8 ■
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The name “probability mass function” is suggested by a model used in physics for a

system of “point masses.” In this model, masses are distributed at various locations

x along a one-dimensional axis. Our pmf describes how the total probability mass

of 1 is distributed at various points along the axis of possible values of the random

variable (where and how much mass at each x).
Another useful pictorial representation of a pmf, called a probability histo-

gram, is similar to histograms discussed in Chapter 1. Above each y with p(y) > 0,

construct a rectangle centered at y. The height of each rectangle is proportional to

p(y), and the base is the same for all rectangles. When possible values are equally

spaced, the base is frequently chosen as the distance between successive y values

(though it could be smaller). Figure 3.4 shows two probability histograms.

A Parameter of a Probability Distribution

In Example 3.8, we had p(0) ¼ .8 and p(1) ¼ .2 because 20% of all students

did not qualify for in-state tuition. At another university, it may be the case that

p(0) ¼ .9 and p(1) ¼ .1. More generally, the pmf of any Bernoulli rv can be

expressed in the form p(1) ¼ a and p(0) ¼ 1 � a, where 0 < a < 1. Because the

pmf depends on the particular value of a, we often write p(x; a) rather than just p(x):

pðx; aÞ ¼
1� a if x ¼ 0

a if x ¼ 1

0 otherwise

8><
>: ð3:1Þ

Then each choice of a in Expression (3.1) yields a different pmf.

0 1 1 2 3 4

ba

Figure 3.4 Probability histograms: (a) Example 3.8; (b) Example 3.9

.5

1
y

0 2 3 4

p(y)

Figure 3.3 The line graph for the pmf in Example 3.9 ■
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DEFINITION Suppose p(x) depends on a quantity that can be assigned any one of a number

of possible values, with each different value determining a different proba-

bility distribution. Such a quantity is called a parameter of the distribution.
The collection of all probability distributions for different values of the

parameter is called a family of probability distributions.

The quantity a in Expression (3.1) is a parameter. Each different number a
between 0 and 1 determines a different member of a family of distributions; two

such members are

pðx; :6Þ ¼
:4 if x ¼ 0

:6 if x ¼ 1

0 otherwise

8><
>: and pðx; :5Þ ¼

:5 if x ¼ 0

:5 if x ¼ 1

0 otherwise

8><
>:

Every probability distribution for a Bernoulli rv has the form of Expression (3.1), so

it is called the family of Bernoulli distributions.

Example 3.10 Starting at a fixed time, we observe the gender of each newborn child at a certain

hospital until a boy (B) is born. Let p ¼ P(B), assume that successive births are

independent, and define the rv X by X ¼ number of births observed. Then

pð1Þ ¼ PðX ¼ 1Þ ¼ PðBÞ ¼ p

pð2Þ ¼ PðX ¼ 2Þ ¼ PðGBÞ ¼ PðGÞ � PðBÞ ¼ ð1� pÞp
and

pð3Þ ¼ PðX ¼ 3Þ ¼ PðGGBÞ ¼ PðGÞ � PðGÞ � PðBÞ ¼ ð1� pÞ2p
Continuing in this way, a general formula emerges:

pðxÞ ¼ ð1� pÞx�1p x ¼ 1; 2; 3; . . .

0 otherwise

(
ð3:2Þ

The quantity p in Expression (3.2) represents a number between 0 and 1 and is a

parameter of the probability distribution. In the gender example, p ¼ .51 might be

appropriate, but if we were looking for the first child with Rh-positive blood, then

we might have p ¼ .85. ■

The Cumulative Distribution Function

For some fixed value x, we often wish to compute the probability that the observed

value of X will be at most x. For example, the pmf in Example 3.7 was

pðxÞ ¼

:500 x ¼ 0

:167 x ¼ 1

:333 x ¼ 2

0 otherwise

8>>><
>>>:
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The probability that X is at most 1 is then

PðX � 1Þ ¼ pð0Þ þ p 1ð Þ ¼ :500þ :167 ¼ :667

In this example, X � 1.5 iff X � 1, so P(X � 1.5) ¼ P(X � 1) ¼ .667. Similarly,

P(X � 0) ¼ P(X ¼ 0) ¼ .5, and P(X � .75) ¼ .5 also. Since 0 is the smallest

possible value of X, P(X � �1.7) ¼ 0, P(X � �.0001) ¼ 0, and so on. The

largest possible X value is 2, so P(X � 2) ¼ 1, and if x is any number larger

than 2, P(X � x) ¼ 1; that is, P(X � 5) ¼ 1, P(X � 10.23) ¼ 1, and so on.

Notice that P(X < 1) ¼ .5 6¼ P(X � 1), since the probability of the X value 1 is

included in the latter probability but not in the former. When X is a discrete random

variable and x is a possible value of X, P(X < x) < P(X � x).

DEFINITION The cumulative distribution function (cdf) F(x) of a discrete rv X with pmf

p(x) is defined for every number x by

FðxÞ ¼ PðX � xÞ ¼
X
y:y � x

pðyÞ ð3:3Þ

For any number x, F(x) is the probability that the observed value of X will be

at most x.

Example 3.11 A store carries flash drives with either 1, 2, 4, 8, or 16 GB of memory. The

accompanying table gives the distribution of Y ¼ the amount of memory in a

purchased drive:

y 1 2 4 8 16

p(y) .05 .10 .35 .40 .10

Let’s first determine F(y) for each of the five possible values of Y:

F 1ð Þ ¼ P Y � 1ð Þ ¼ P Y ¼ 1ð Þ ¼ p 1ð Þ ¼ :05

F 2ð Þ ¼ P Y � 2ð Þ ¼ P Y ¼ 1 or 2ð Þ ¼ p 1ð Þ þ p 2ð Þ ¼ :15

F 4ð Þ ¼ P Y � 4ð Þ ¼ P Y ¼ 1 or 2 or 4ð Þ ¼ p 1ð Þ þ p 2ð Þ þ p 4ð Þ ¼ :50

F 8ð Þ ¼ P Y � 8ð Þ ¼ p 1ð Þ þ p 2ð Þ þ p 4ð Þ þ p 8ð Þ ¼ :90

F 16ð Þ ¼ P Y � 16ð Þ ¼ 1

Now for any other number y, F(y) will equal the value of F at the closest possible

value of Y to the left of y. For example,

F 2:7ð Þ ¼ P Y � 2:7ð Þ ¼ P Y � 2ð Þ ¼ F 2ð Þ ¼ :15

F 7:999ð Þ ¼ P Y � 7:999ð Þ ¼ P Y � 4ð Þ ¼ F 4ð Þ ¼ :50

If y is <1, F(y) ¼ 0 [e.g. F(.58) ¼ 0], and if y is at least 16, F( y) ¼ 1 [e.g.

F(25) ¼ 1]. The cdf is thus
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Fð yÞ ¼

0 y< 1

:05 1 � y< 2

:15 2 � y< 4

:50 4 � y< 8

:90 8 � y< 16

1 16 � y

8>>>>>>>>><
>>>>>>>>>:

A graph of this cdf is shown in Figure 3.5.

For X a discrete rv, the graph of F(x) will have a jump at every possible

value of X and will be flat between possible values. Such a graph is called a

step function.

Example 3.12 In Example 3.10, any positive integer was a possible X value, and the pmf was

pðxÞ ¼ 1�pÞx�1p x ¼ 1; 2; 3; . . .

0 otherwise

(

For any positive integer x,

FðxÞ ¼
X
y� x

pðyÞ ¼
Xx
y¼1

ð1� pÞy�1p ¼ p
Xx�1

y¼ 0

ð1� pÞy ð3:4Þ

20151050

1.0

0.8

0.6

0.4

0.2

0.0
y

F(y)

Figure 3.5 A graph of the cdf of Example 3.11 ■
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To evaluate this sum, we use the fact that the partial sum of a geometric series is

Xk
y¼0

ay ¼ 1� akþ1

1� a

Using this in Equation (3.4), with a ¼ 1 � p and k ¼ x � 1, gives

FðxÞ ¼ p � 1� ð1� pÞx
1� ð1� pÞ ¼ 1� ð1� pÞx x a positive integer

Since F is constant in between positive integers,

FðxÞ ¼
0 x< 1

1� ð1� pÞ½x� x � 1

(
ð3:5Þ

where [x] is the largest integer � x (e.g., [2.7] ¼ 2). Thus if p ¼ .51 as in the birth

example, then the probability of having to examine at most five births to see the

first boy is F(5) ¼ 1 � (.49)5 ¼ 1 � .0282 ¼ .9718, whereas F(10) � 1.0000.

This cdf is graphed in Figure 3.6.

In our examples thus far, the cdf has been derived from the pmf. This process

can be reversed to obtain the pmf from the cdf whenever the latter function is

available. Suppose, for example, that X represents the number of defective compo-

nents in a shipment consisting of six components, so that possible X values are

0, 1, . . . , 6. Then

pð3Þ ¼ PðX ¼ 3Þ
¼ pð0Þ þ p 1ð Þ þ p 2ð Þ þ p 3ð Þ½ � � pð0Þ þ p 1ð Þ þ p 2ð Þ½ �
¼ PðX � 3Þ � PðX � 2Þ
¼ Fð3Þ � Fð2Þ

0 21 4 6 8 10

.2

.4

.6

.8

1.0

0

1

x

F(x)

Figure 3.6 A graph of F(x) for Example 3.12 ■
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More generally, the probability that X falls in a specified interval is easily obtained

from the cdf. For example,

Pð2 � X � 4Þ ¼ p 2ð Þ þ p 3ð Þ þ p 4ð Þ
¼ pð0Þ þ � � � þ p 4ð Þ½ � � pð0Þ þ p 1ð Þ½ �
¼ PðX � 4Þ � PðX � 1Þ
¼ Fð4Þ � Fð1Þ

Notice that P(2 � X � 4) 6¼ F(4) � F(2). This is because the X value 2 is

included in 2 � X � 4, so we do not want to subtract out its probability. How-

ever, P(2 < X � 4) ¼ F(4) � F(2) because X ¼ 2 is not included in the interval

2 < X � 4.

PROPOSITION For any two numbers a and b with a � b,

Pða � X � bÞ ¼ FðbÞ � F a�ð Þ

where F(a�) represents the maximum of F(x) values to the left of a.
Equivalently, if a is the limit of values of x approaching from the left, then

F(a�) is the limiting value of F(x). In particular, if the only possible values

are integers and if a and b are integers, then

Pða � X � bÞ ¼ P X ¼ a or aþ 1 or . . . or bð Þ
¼ FðbÞ � F a� 1ð Þ

Taking a ¼ b yields P(X ¼ a) ¼ F(a) � F(a � 1) in this case.

The reason for subtracting F(a�) rather than F(a) is that we want to include

P(X ¼ a); F(b) � F(a) gives P(a < X � b). This proposition will be used

extensively when computing binomial and Poisson probabilities in Sects. 3.5

and 3.7.

Example 3.13 Let X ¼ the number of days of sick leave taken by a randomly selected employee

of a large company during a particular year. If the maximum number of allowable

sick days per year is 14, possible values of X are 0, 1, . . . , 14. With F(0) ¼ .58,

F(1) ¼ .72, F(2) ¼ .76, F(3) ¼ .81, F(4) ¼ .88, and F(5) ¼ .94,

Pð2 � X � 5Þ ¼ PðX ¼ 2; 3; 4; or 5Þ ¼ Fð5Þ � Fð1Þ ¼ :22

and

PðX ¼ 3Þ ¼ Fð3Þ � Fð2Þ ¼ :05 ■
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Another View of Probability Mass Functions

It is often helpful to think of a pmf as specifying a mathematical model for a

discrete population.

Example 3.14 Consider selecting at random a student who is among the 15,000 registered for the

current term at Mega University. Let X ¼ the number of courses for which the

selected student is registered, and suppose that X has the following pmf:

x 1 2 3 4 5 6 7

p(x) .01 .03 .13 .25 .39 .17 .02

One way to view this situation is to think of the population as consisting of 15,000

individuals, each having his or her own X value; the proportion with each X value

is given by p(x). An alternative viewpoint is to forget about the students and think

of the population itself as consisting of the X values: There are some 1’s in the

population, some 2’s, . . . , and finally some 7’s. The population then consists of

the numbers 1, 2, . . . , 7 (so is discrete), and p(x) gives a model for the distribution

of population values. ■

Once we have such a population model, we will use it to compute values of

population characteristics (e.g., the mean m) and make inferences about such

characteristics.

Exercises Section 3.2 (11–27)

11. Let X be the number of students who show up at

a professor’s office hours on a particular day.

Suppose that the only possible values of X are

0, 1, 2, 3, and 4, and that p(0) ¼ .30, p(1) ¼ .25,

p(2) ¼ .20, and p(3) ¼ .15.

a. What is p(4)?
b. Draw both a line graph and a probability

histogram for the pmf of X.
c. What is the probability that at least two stu-

dents come to the office hour? What is the

probability that more than two students come

to the office hour?

d. What is the probability that the professor

shows up for his office hour?

12. Airlines sometimes overbook flights. Suppose

that for a plane with 50 seats, 55 passengers

have tickets. Define the random variable Y as

the number of ticketed passengers who actually

show up for the flight. The probability mass

function of Y appears in the accompanying table.

y 45 46 47 48 49 50 51 52 53 54 55

p(y) .05 .10 .12 .14 .25 .17 .06 .05 .03 .02 .01

a. What is the probability that the flight will

accommodate all ticketed passengers who

show up?

b. What is the probability that not all ticketed pas-

sengers who show up can be accommodated?

c. If you are the first person on the standby list

(which means you will be the first one to get on

the plane if there are any seats available after all

ticketed passengers have been accommodated),

what is the probability that you will be able to

take the flight? What is this probability if you

are the third person on the standby list?

13. A mail-order computer business has six tele-

phone lines. Let X denote the number of lines in

use at a specified time. Suppose the pmf of X is as

given in the accompanying table.

x 0 1 2 3 4 5 6

p(x) .10 .15 .20 .25 .20 .06 .04

Calculate the probability of each of the following

events.

a. {at most three lines are in use}
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b. {fewer than three lines are in use}

c. {at least three lines are in use}

d. {between two and five lines, inclusive, are in

use}

e. {between two and four lines, inclusive, are

not in use}

f. {at least four lines are not in use}

14. A contractor is required by a county planning

department to submit one, two, three, four, or

five forms (depending on the nature of the proj-

ect) in applying for a building permit. Let Y ¼
the number of forms required of the next appli-

cant. The probability that y forms are required is

known to be proportional to y—that is, p(y) ¼ ky
for y ¼ 1, . . . , 5.
a. What is the value of k? [Hint:P5

y¼1 pðyÞ ¼ 1.]

b. What is the probability that at most three

forms are required?

c. What is the probability that between two and

four forms (inclusive) are required?

d. Could p(y) ¼ y2/50 for y ¼ 1, . . . , 5 be the

pmf of Y?

15. Many manufacturers have quality control

programs that include inspection of incoming

materials for defects. Suppose a computer manu-

facturer receives computer boards in lots of five.

Two boards are selected from each lot for inspec-

tion. We can represent possible outcomes of the

selection process by pairs. For example, the pair

(1, 2) represents the selection of boards 1 and

2 for inspection.

a. List the ten different possible outcomes.

b. Suppose that boards 1 and 2 are the only

defective boards in a lot of five. Two boards

are to be chosen at random. Define X to be the

number of defective boards observed among

those inspected. Find the probability distribu-

tion of X.
c. Let F(x) denote the cdf of X. First determine

F(0) ¼ P(X � 0), F(1), and F(2), and then

obtain F(x) for all other x.

16. Some parts of California are particularly earth-

quake-prone. Suppose that in one such area, 30%

of all homeowners are insured against earth-

quake damage. Four homeowners are to be

selected at random; let X denote the number

among the four who have earthquake insurance.

a. Find the probability distribution of X. [Hint:
Let S denote a homeowner who has insurance

and F one who does not. One possible out-

come is SFSS, with probability (.3)(.7)(.3)(.3)

and associated X value 3. There are 15 other

outcomes.]

b. Draw the corresponding probability histogram.

c. What is the most likely value for X?
d. What is the probability that at least two of

the four selected have earthquake insurance?

17. A new battery’s voltage may be acceptable (A) or
unacceptable (U). A certain flashlight requires

two batteries, so batteries will be independently

selected and tested until two acceptable ones

have been found. Suppose that 90% of all bat-

teries have acceptable voltages. Let Y denote the

number of batteries that must be tested.

a. What is p(2), that is, P(Y ¼ 2)?

b. What is p(3)? [Hint: There are two different

outcomes that result in Y ¼ 3.]

c. To have Y ¼ 5, what must be true of the fifth

battery selected? List the four outcomes for

which Y ¼ 5 and then determine p(5).
d. Use the pattern in your answers for parts

(a)–(c) to obtain a general formula for p(y).

18. Two fair six-sided dice are tossed independently.

Let M ¼ the maximum of the two tosses [thus

M(1, 5) ¼ 5, M(3, 3) ¼ 3, etc.].

a. What is the pmf of M? [Hint: First determine

p(1), then p(2), and so on.]

b. Determine the cdf of M and graph it.

19. Suppose that you read through this year’s issues

of the New York Times and record each number

that appears in a news article—the income of a

CEO, the number of cases of wine produced by a

winery, the total charitable contribution of a pol-

itician during the previous tax year, the age of a

celebrity, and so on. Now focus on the leading

digit of each number, which could be 1, 2, . . . , 8,
or 9. Your first thought might be that the leading

digit X of a randomly selected number would be

equally likely to be one of the nine possibilities

(a discrete uniform distribution). However, much

empirical evidence as well as some theoretical

arguments suggest an alternative probability dis-

tribution called Benford’s law:

pðxÞ ¼ P 1st digit is xð Þ ¼ log10
xþ 1

x

� �
;

x ¼ 1; 2; ::: ; 9

a. Without computing individual probabilities

from this formula, show that it specifies a

legitimate pmf.

b. Now compute the individual probabilities and

compare to the corresponding discrete

uniform distribution.
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c. Obtain the cdf of X.
d. Using the cdf, what is the probability that the

leading digit is at most 3? At least 5?

[Note: Benford’s law is the basis for some auditing

procedures used to detect fraud in financial report-

ing—for example, by the Internal Revenue Ser-

vice.]

20. A library subscribes to two different weekly news

magazines, each of which is supposed to arrive

in Wednesday’s mail. In actuality, each one

may arrive on Wednesday, Thursday, Friday, or

Saturday. Suppose the two arrive independently

of one another, and for each one P(Wed.) ¼ .3,

P(Thurs.) ¼ .4, P(Fri.) ¼ .2, and P(Sat.) ¼ .1.

Let Y ¼ the number of days beyond Wednesday

that it takes for both magazines to arrive (so

possible Y values are 0, 1, 2, or 3). Compute the

pmf of Y. [Hint: There are 16 possible outcomes;

Y(W, W) ¼ 0, Y(F, Th) ¼ 2, and so on.]

21. Refer to Exercise 13, and calculate and graph the

cdf F(x). Then use it to calculate the probabilities of
the events given in parts (a)–(d) of that problem.

22. A consumer organization that evaluates new auto-

mobiles customarily reports the number of major

defects in each car examined. Let X denote the

number of major defects in a randomly selected

car of a certain type. The cdf of X is as follows:

FðxÞ ¼

0 x < 0

:06 0 � x < 1

:19 1 � x < 2

:39 2 � x < 3

:67 3 � x < 4

:92 4 � x < 5

:97 5 � x < 6

1 6 � x

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Calculate the following probabilities directly from

the cdf:

a. p(2), that is, P(X ¼ 2)

b. P(X > 3)

c. P(2 � X � 5)

d. P(2 < X < 5)

23. An insurance company offers its policyholders a

number of different premium payment options.

For a randomly selected policyholder, let X ¼ the

number of months between successive payments.

The cdf of X is as follows:

FðxÞ ¼

0 x < 1

:30 1 � x < 3

:40 3 � x < 4

:45 4 � x < 6

:60 6 � x < 12

1 12 � x

8>>>>>>>>><
>>>>>>>>>:

a. What is the pmf of X?
b. Using just the cdf, compute P(3 � X � 6) and

P(4 � X).

24. In Example 3.10, let Y ¼ the number of girls born

before the experiment terminates.Withp ¼ P(B) and
1 � p ¼ P(G), what is the pmf of Y? [Hint: First
list the possible values ofY, startingwith the smallest,

and proceed until you see a general formula.]

25. Alvie Singer lives at 0 in the accompanying dia-

gram and has four friends who live at A, B, C, and
D. One day Alvie decides to go visiting, so he

tosses a fair coin twice to decide which of the four

to visit. Once at a friend’s house, he will either

return home or else proceed to one of the two

adjacent houses (such as 0, A, or C when at B),
with each of the three possibilities having proba-

bility 1=3. In this way, Alvie continues to visit

friends until he returns home.

B

C

A

D

0

a. Let X ¼ the number of times that Alvie visits a

friend. Derive the pmf of X.
b. Let Y ¼ the number of straight-line segments

that Alvie traverses (including those leading to

and from 0). What is the pmf of Y?
c. Suppose that female friends live at A andC and

male friends at B and D. If Z ¼ the number of

visits to female friends, what is the pmf of Z?

26. After all students have left the classroom, a statis-

tics professor notices that four copies of the text

were left under desks. At the beginning of the next

lecture, the professor distributes the four books in

a completely random fashion to each of the four

students (1, 2, 3, and 4) who claim to have left

books. One possible outcome is that 1 receives 2’s

book, 2 receives 4’s book, 3 receives his or her

own book, and 4 receives 1’s book. This outcome

can be abbreviated as (2, 4, 3, 1).
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a. List the other 23 possible outcomes.

b. LetX denote the number of students who receive

their own book. Determine the pmf of X.

27. Show that the cdf F(x) is a nondecreasing func-

tion; that is, x1 < x2 implies that F(x1) � F(x2).
Under what condition will F(x1) ¼ F(x2)?

3.3 Expected Values of Discrete
Random Variables
In Example 3.14, we considered a university having 15,000 students and let X ¼
the number of courses for which a randomly selected student is registered. The pmf

of X follows. Since p(1) ¼ .01, we know that (.01) · (15,000) ¼ 150 of the students

are registered for one course, and similarly for the other x values.

x 1 2 3 4 5 6 7

p(x ) .01 .03 .13 .25 .39 .17 .02 (3.6)

Number registered 150 450 1950 3750 5850 2550 300

To compute the average number of courses per student, or the average value

of X in the population, we should calculate the total number of courses and divide

by the total number of students. Since each of 150 students is taking one course,

these 150 contribute 150 courses to the total. Similarly, 450 students contribute

2(450) courses, and so on. The population average value of X is then

1ð150Þ þ 2ð450Þ þ 3ð1950Þ þ � � � þ 7ð300Þ
15; 000

¼ 4:57 ð3:7Þ

Since 150/15,000 ¼ .01 ¼ p(1), 450/15,000 ¼ .03 ¼ p(2), and so on, an alterna-

tive expression for (3.7) is

1 � p 1ð Þ þ 2 � p 2ð Þ þ � � � þ7 � p 7ð Þ ð3:8Þ

Expression (3.8) shows that to compute the population average value of X,
we need only the possible values of X along with their probabilities (proportions).

In particular, the population size is irrelevant as long as the pmf is given by (3.6).

The average or mean value of X is then a weighted average of the possible values

1, . . . , 7, where the weights are the probabilities of those values.

The Expected Value of X

DEFINITION Let X be a discrete rv with set of possible values D and pmf p(x).
The expected value or mean value of X, denoted by E(X) or mX, is

EðXÞ ¼ mX ¼
X
x 2 D

x � pðxÞ

This expected value will exist provided that
P

x2D jxj � pðxÞ < 1
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When it is clear to which X the expected value refers, m rather than mX is

often used.

Example 3.15 For the pmf in (3.6),

m ¼ 1 � p 1ð Þ þ 2 � p 2ð Þ þ � � � þ7 � p 7ð Þ
¼ 1ð Þ :01ð Þ þ 2ð Þ :03ð Þ þ � � � þ 7ð Þ :02ð Þ
¼ :01þ :06þ :39þ 1:00þ 1:95þ 1:02þ :14 ¼ 4:57

If we think of the population as consisting of the X values 1, 2, . . . , 7, then m ¼ 4.57

is the population mean. In the sequel, we will often refer to m as the population
mean rather than the mean of X in the population. ■

In Example 3.15, the expected value mwas 4.57, which is not a possible value

of X. The word expected should be interpreted with caution because one would not

expect to see an X value of 4.57 when a single student is selected.

Example 3.16 Just after birth, each newborn child is rated on a scale called the Apgar scale. The

possible ratings are 0, 1, . . . , 10, with the child’s rating determined by color,

muscle tone, respiratory effort, heartbeat, and reflex irritability (the best possible

score is 10). Let X be the Apgar score of a randomly selected child born at a certain

hospital during the next year, and suppose that the pmf of X is

x 0 1 2 3 4 5 6 7 8 9 10

p(x) .002 .001 .002 .005 .02 .04 .18 .37 .25 .12 .01

Then the mean value of X is

EðXÞ ¼ m ¼ ð0Þ :002ð Þ þ 1ð Þ :001ð Þ þ � � � þ 8ð Þ :25ð Þ þ 9ð Þ :12ð Þ þ 10ð Þ :01ð Þ
¼ 7:15

Again, m is not a possible value of the variable X. Also, because the variable refers
to a future child, there is no concrete existing population to which m refers. Instead,

we think of the pmf as a model for a conceptual population consisting of the values

0, 1, 2, . . . , 10. The mean value of this conceptual population is then m ¼ 7.15. ■

Example 3.17 Let X ¼ 1 if a randomly selected component needs warranty service and ¼ 0

otherwise. Then X is a Bernoulli rv with pmf

pðxÞ ¼
1� p x ¼ 0

p x ¼ 1

0 x 6¼ 0; 1

8><
>:

from which E(X) ¼ 0 · p(0) + 1 · p(1) ¼ 0(1 � p) + 1(p) ¼ p. That is, the

expected value of X is just the probability that X takes on the value 1. If we

conceptualize a population consisting of 0’s in proportion 1 � p and 1’s in

proportion p, then the population average is m ¼ p. ■
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Example 3.18 From Example 3.10 the general form for the pmf of X ¼ the number of children

born up to and including the first boy is

pðxÞ ¼ ð1� pÞx�1p x ¼ 1; 2; 3; . . .

0 otherwise

(

From the definition,

EðXÞ ¼
X
D

x � pðxÞ ¼
X1
x¼1

xpð1� pÞx�1 ¼ p
X1
x¼1

xð1� pÞx�1

¼ p
X1
x¼1

� d

dp
ð1� pÞx

� �
ð3:9Þ

If we interchange the order of taking the derivative and the summation, the sum is

that of a geometric series. After the sum is computed, the derivative is taken, and

the final result is E(X) ¼ 1/p. If p is near 1, we expect to see a boy very soon,

whereas if p is near 0, we expect many births before the first boy. For p ¼ .5,

E(X) ¼ 2. ■

There is another frequently used interpretation of m. Consider the pmf

pðxÞ ¼ ð:5Þ�ð:5Þx�1 x ¼ 1; 2; 3; . . .

0 otherwise

(

This is the pmf of X ¼ the number of tosses of a fair coin necessary to obtain the

first H (a special case of Example 3.18). Suppose we observe a value x from this

pmf (toss a coin until an H appears), then observe independently another value

(keep tossing), then another, and so on. If after observing a very large number of x
values, we average them, the resulting sample average will be very near to m ¼ 2.

That is, m can be interpreted as the long-run average observed value of X when the

experiment is performed repeatedly.

Example 3.19 Let X, the number of interviews a student has prior to getting a job, have pmf

pðxÞ ¼ k=x2 x ¼ 1; 2; 3; . . .

0 otherwise

(

where k is chosen so that
P1

x¼1 ðk=x2Þ¼ 1. (Because
P1

x¼1 ð1=x2Þ ¼ p2=6, the
value of k is 6/p2.) The expected value of X is

m ¼ EðXÞ ¼
X1
x¼1

x
k

x2
¼ k

X1
x¼1

1

x
ð3:10Þ

The sum on the right of Equation (3.10) is the famous harmonic series

of mathematics and can be shown to equal 1. E(X) is not finite here because

p(x) does not decrease sufficiently fast as x increases; statisticians say that the

probability distribution of X has “a heavy tail.” If a sequence of X values is chosen

using this distribution, the sample average will not settle down to some finite

number but will tend to grow without bound.
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Statisticians use the phrase “heavy tails” in connection with any distribution

having a large amount of probability far from m (so heavy tails do not require

m ¼ 1). Such heavy tails make it difficult to make inferences about m. ■

The Expected Value of a Function

Often we will be interested in the expected value of some function h(X) rather than
X itself.

Example 3.20 Suppose a bookstore purchases ten copies of a book at $6.00 each to sell at $12.00

with the understanding that at the end of a 3-month period any unsold copies can be

redeemed for $2.00. If X represents the number of copies sold, then net revenue ¼
h(X) ¼ 12X + 2(10 � X) � 60 ¼ 10X � 40. ■

An easy way of computing the expected value of h(X) is suggested by the

following example.

Example 3.21 The cost of a certain diagnostic test on a car depends on the number of cylinders

(4, 6, or 8) in the car’s engine. Let X denote the number of cylinders on a randomly

chosen vehicle about to undergo this test, and suppose the cost function is

h(X) ¼ 20 + 3X + .5X2. Since X is a random variable, so is h(X); denote this latter
rv by Y. The pmf’s of X and Y are as follows:

x 4 6 8 y 40 56 76

p(x) .5 .3 .2 p(y) .5 .3 .2

With D* denoting possible values of Y,

EðYÞ ¼ E½hðXÞ� ¼
X
D	

y � pðyÞ

¼ ð40Þð:5Þ þ ð56Þð:3Þ þ ð76Þð:2Þ
¼ hð4Þ � ð:5Þ þ hð6Þ � ð:3Þ þ hð8Þ � ð:2Þ
¼
X
D

hðxÞ � pðxÞ ð3:11Þ

According to Equation (3.11), it was not necessary to determine the pmf of Y to

obtain E(Y); instead, the desired expected value is a weighted average of the

possible h(x) (rather than x) values. ■

PROPOSITION If the rv X has a set of possible valuesD and pmf p(x), then the expected value
of any function h(X), denoted by E[h(X)] or mh(X), is computed by

E½hðXÞ� ¼
X
D

hðxÞ � pðxÞ

assuming that
P

D jhðxÞj � pðxÞ is finite.
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According to this proposition, E[h(X)] is computed in the same way that E(X)
itself is, except that h(x) is substituted in place of x.

Example 3.22 A computer store has purchased three computers at $500 apiece. It will sell them

for $1000 apiece. The manufacturer has agreed to repurchase any computers

still unsold after a specified period at $200 apiece. Let X denote the number of

computers sold, and suppose that p(0) ¼ .1, p(1) ¼ .2, p(2) ¼ .3, and p(3) ¼ .4.

With h(X) denoting the profit associated with selling X units, the given information

implies that h(X) ¼ revenue � cost ¼ 1000X + 200(3 � X) � 1500 ¼ 800X �
900. The expected profit is then

E hðXÞ½ � ¼ hð0Þ � pð0Þ þ h 1ð Þ � p 1ð Þ þ h 2ð Þ � p 2ð Þ þ h 3ð Þ � p 3ð Þ
¼ �900ð Þ :1ð Þ þ �100ð Þ :2ð Þ þ 700ð Þ :3ð Þ þ 1500ð Þ :4ð Þ
¼ $700 ■

The h(X) function of interest is quite frequently a linear function aX + b. In this

case, E[h(X)] is easily computed from E(X).

PROPOSITION E aX þ bð Þ ¼ a � EðXÞ þ b ð3:12Þ

(Or, using alternative notation, maXþb ¼ a � mX þ b:Þ

To paraphrase, the expected value of a linear function equals the linear

function evaluated at the expected value E(X). Since h(X) in Example 3.22 is linear

and E(X) ¼ 2, E[h(X)] ¼ 800(2) � 900 ¼ $700, as before.

Proof

■

EðaX þ bÞ ¼
X
D

ðaxþ bÞ � pðxÞ ¼ a
X
D

x � pðxÞ þ b
X
D

pðxÞ

¼ aEðXÞ þ b

Two special cases of the proposition yield two important rules of expected value.

1. For any constant a, E(aX) ¼ a ·E(X) [take b ¼ 0 in (3.12)].

2. For any constant b, E(X + b) ¼ E(X) + b [take a ¼ 1 in (3.12)].

Multiplication of X by a constant a changes the unit of measurement (from

dollars to cents, where a ¼ 100, inches to cm, where a ¼ 2.54, etc.). Rule 1 says

that the expected value in the new units equals the expected value in the old units

multiplied by the conversion factor a. Similarly, if the constant b is added to

each possible value of X, then the expected value will be shifted by that same

constant amount.
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The Variance of X

The expected value of X describes where the probability distribution is centered.

Using the physical analogy of placing point mass p(x) at the value x on a one-

dimensional axis, if the axis were then supported by a fulcrum placed at m, there
would be no tendency for the axis to tilt. This is illustrated for two different

distributions in Figure 3.7.

Although both distributions pictured in Figure 3.7 have the same center m, the
distribution of Figure 3.7b has greater spread or variability or dispersion than does that

of Figure 3.7a.Wewill use the variance ofX to assess the amount of variability in (the

distribution of) X, just as s2 was used in Chapter 1 to measure variability in a sample.

DEFINITION Let X have pmf p(x) and expected value m. Then the variance of X, denoted
by V(X) or s2X, or just s

2, is

VðXÞ ¼
X
D

ðx� mÞ2 � pðxÞ ¼ EðX � mÞ2

The standard deviation (SD) of X is

sX ¼
ffiffiffiffiffiffi
s2X

p

The quantity h(X) ¼ (X � m)2 is the squared deviation of X from its mean,

and s2 is the expected squared deviation. If most of the probability distribution is

close to m, then s2 will typically be relatively small. However, if there are x values
far from m that have large p(x), then s2 will be quite large.

Example 3.23 Consider again the distribution of the Apgar score X of a randomly selected newborn

described in Example 3.16. The mean value of X was calculated as m ¼ 7.15, so

VðXÞ ¼ s2 ¼
X10
x¼0

ðx� 7:15Þ2 � pðxÞ

¼ ð0� 7:15Þ2ð:002Þ þ ::: þ ð10� 7:15Þ2ð:01Þ ¼ 1:5815

The standard deviation of X is s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:5815

p ¼ 1:26: ■

.5

1 2 3 5

.5

1 2 3 5 6 7 8

a b
p(x) p(x)

Figure 3.7 Two different probability distributions with m ¼ 4
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When the pmf p(x) specifies a mathematical model for the distribution of

population values, both s2 and s measure the spread of values in the population;

s2 is the population variance, and s is the population standard deviation.

A Shortcut Formula for s2

The number of arithmetic operations necessary to compute s2 can be reduced by

using an alternative computing formula.

PROPOSITION

VðXÞ ¼ s2 ¼
X
D

x2 � pðxÞ
" #

� m2 ¼ EðX2Þ � ½EðXÞ�2

In using this formula, E(X2) is computed first without any subtraction; then

E(X) is computed, squared, and subtracted (once) from E(X2).

Example 3.24 Referring back to the Apgar score scenario of Examples 3.16 and 3.23,

EðX2Þ ¼
X10
x¼0

x2 � pðxÞ ¼ ð02Þð:002Þ þ ð12Þð:001Þ þ :::þ ð102Þð:01Þ ¼ 52:704

Thus s2 ¼ 52:704� 7:15ð Þ2 ¼ 1:5815 as before: ■

Proof of the Shortcut Formula Expand (x � m)2 in the definition of s2 to
obtain x2 � 2mx + m2, and then carry S through to each of the three terms:

s2 ¼
X
D

x2 � pðxÞ � 2m �
X
D

x � pðxÞ þ m2
X
D

pðxÞ

¼ EðX2Þ � 2m � mþ m2 ¼ EðX2Þ � m2 ■

Rules of Variance

The variance of h(X) is the expected value of the squared difference between h(X)
and its expected value:

V½hðXÞ� ¼ s2hðXÞ ¼
X
D

fhðxÞ � E½hðxÞ�g2 � pðxÞ ð3:13Þ

When h(x) is a linear function, V[h(X)] is easily related to V(X) (Exercise 40).

PROPOSITION
VðaX þ bÞ ¼ s2aXþb ¼ a2 � s2X and saXþb ¼ jaj � sX
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This result says that the addition of the constant b does not affect the

variance, which is intuitive, because the addition of b changes the location (mean

value) but not the spread of values. In particular,

1. s2aX ¼ a2 � s2X saX ¼ jaj � sX
ð3:14Þ

2. s2Xþb ¼ s2X

The reason for the absolute value in saX is that a may be negative, whereas a

standard deviation cannot be negative; a2 results when a is brought outside the term
being squared in Equation 3.13.

Example 3.25 In the computer sales scenario of Example 3.22, E(X) ¼ 2 and

EðX2Þ ¼ ð02Þð:1Þ þ ð12Þð:2Þ þ ð22Þð:3Þ þ ð32Þð:4Þ ¼ 5

so V(X) ¼ 5� (2)2 ¼ 1. The profit function h(X) ¼ 800X� 900 then has variance

(800)2 · V(X) ¼ (640,000)(1) ¼ 640,000 and standard deviation 800. ■

Exercises Section 3.3 (28–43)

28. The pmf for X ¼ the number of major defects on

a randomly selected appliance of a certain type is

x 0 1 2 3 4

p(x) .08 .15 .45 .27 .05

Compute the following:

a. E(X)
b. V(X) directly from the definition

c. The standard deviation of X
d. V(X) using the shortcut formula

29. An individual who has automobile insurance

from a company is randomly selected. Let Y be

the number of moving violations for which the

individual was cited during the last 3 years. The

pmf of Y is

y 0 1 2 3

p(y) .60 .25 .10 .05

a. Compute E(Y).
b. Suppose an individual with Y violations

incurs a surcharge of $100Y2. Calculate the

expected amount of the surcharge.

30. Refer to Exercise 12 and calculate V(Y)
and sY. Then determine the probability that

Y is within 1 standard deviation of its mean

value.

31. An appliance dealer sells three different

models of upright freezers having 13.5, 15.9,

and 19.1 cubic feet of storage space, respec-

tively. Let X ¼ the amount of storage space pur-

chased by the next customer to buy a freezer.

Suppose that X has pmf

x 13.5 15.9 19.1

p(x) .2 .5 .3

a. Compute E(X), E(X2), and V(X).
b. If the price of a freezer having capacity X cubic

feet is 25X � 8.5, what is the expected price

paid by the next customer to buy a freezer?

c. What is the variance of the price 25X � 8.5

paid by the next customer?

d. Suppose that although the rated capacity of a

freezer is X, the actual capacity is h(X) ¼ X�
.01X2. What is the expected actual capacity of

the freezer purchased by the next customer?

32. Let X be a Bernoulli rv with pmf as in Example

3.17.

a. Compute E(X2).

b. Show that V(X) ¼ p(1 � p).
c. Compute E(X79).
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33. Suppose that the number of plants of a particular

type found in a rectangular region (called a quad-

rat by ecologists) in a certain geographic area is

an rv X with pmf

pðxÞ ¼ c=x3

0

�
x ¼ 1; 2; 3; . . .
otherwise

Is E(X) finite? Justify your answer (this is

another distribution that statisticians would call

heavy-tailed).

34. A small market orders copies of a certain

magazine for its magazine rack each week. Let

X ¼ demand for the magazine, with pmf

x 1 2 3 4 5 6

p(x) 1
15

2
15

3
15

4
15

3
15

2
15

Suppose the store owner actually pays $2.00 for

each copy of the magazine and the price to cus-

tomers is $4.00. If magazines left at the end of

the week have no salvage value, is it better to

order three or four copies of the magazine?

[Hint: For both three and four copies ordered,

express net revenue as a function of demand X,
and then compute the expected revenue.]

35. Let X be the damage incurred (in $) in a certain

type of accident during a given year. Possible X
values are 0, 1000, 5000, and 10,000, with prob-

abilities .8, .1, .08, and .02, respectively. A partic-

ular company offers a $500 deductible policy. If

the company wishes its expected profit to be $100,

what premium amount should it charge?

36. The n candidates for a job have been ranked 1, 2,
3, . . . , n. Let X ¼ the rank of a randomly

selected candidate, so that X has pmf

pðxÞ ¼ 1=n
0

x ¼ 1; 2; 3; . . . ; n
otherwise

�

(this is called the discrete uniform distribution).
Compute E(X) and V(X) using the shortcut for-

mula. [Hint: The sum of the first n positive

integers is n(n + 1)/2, whereas the sum of their

squares is n(n + 1)(2n + 1)/6.]

37. Let X ¼ the outcome when a fair die is rolled once.

If before the die is rolled you are offered either

(1/3.5) dollars or h(X) ¼ 1/X dollars, would you

accept the guaranteed amount orwould you gamble?

[Note: It is not generally true that 1/E(X) ¼ E(1/X).]

38. A chemical supply company currently has in stock

100 lb of a chemical, which it sells to customers in

5-lb containers. Let X ¼ the number of containers

ordered by a randomly chosen customer, and sup-

pose that X has pmf

x 1 2 3 4

p(x) .2 .4 .3 .1

Compute E(X) and V(X). Then compute the

expected number of pounds left after the next

customer’s order is shipped and the variance of

the number of pounds left. [Hint: The number of

pounds left is a linear function of X.]
39. a. Draw a line graph of the pmf of X in Exercise

34. Then determine the pmf of�X and draw its

line graph. From these two pictures, what can

you say about V(X) and V(�X)?
b. Use the proposition involving V(aX + b) to

establish a general relationship between V(X)
and V(�X).

40. Use the definition in Expression (3.13) to prove

that VðaX þ bÞ ¼ a2 s2X. [Hint: With h(X) ¼
aX + b, E[h(X)] ¼ am + b where m ¼ E(X).]

41. Suppose E(X) ¼ 5 and E[X(X � 1)] ¼ 27.5.

What is

a. E(X2)? [Hint: E[X(X � 1)] ¼ E[X2 � X] ¼
E(X2) � E(X).]

b. V(X)?
c. The general relationship among the quantities

E(X), E[X(X – 1)], and V(X)?

42. Write a general rule for E(X � c) where c is a

constant. What happens when you let c ¼ m, the
expected value of X?

43. A result called Chebyshev’s inequality states that
for any probability distribution of an rv X and any

number k that is at least 1, Pð X � mj j � ksÞ �
1/k2. In words, the probability that the value of X
lies at least k standard deviations from its mean is

at most 1/k2.
a. What is the value of the upper bound for

k ¼ 2? k ¼ 3? k ¼ 4? k ¼ 5? k ¼ 10?

b. Compute m and s for the distribution of

Exercise 13. Then evaluate Pð X � mj j � ksÞ
for the values of k given in part (a). What

does this suggest about the upper bound rela-

tive to the corresponding probability?

c. Let X have three possible values, �1, 0, and 1,

with probabilities 1=18 , 8=9, and 1=18 respec-
tively. What is Pð X � mj j � 3sÞ, and how does

it compare to the corresponding bound?

d. Give a distribution for which

Pð X � mj j � 5sÞ ¼ :04.
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3.4 Moments and Moment Generating
Functions
Sometimes the expected values of integer powers of X and X � m are called

moments, terminology borrowed from physics. Expected values of powers of X
are called moments about 0 and powers of X � m are called moments about the
mean. For example, E(X2) is the second moment about 0, and E[(X� m)3] is the third
moment about the mean. Moments about 0 are sometimes simply called moments.

Example 3.26 Suppose the pmf of X, the number of points earned on a short quiz, is given by

x 0 1 2 3

p(x) .1 .2 .3 .4

The first moment about 0 is the mean

m ¼ EðXÞ ¼
X
x2D

xpðxÞ ¼ 0ð:1Þ þ 1ð:2Þ þ 2ð:3Þ þ 3ð:4Þ ¼ 2

The second moment about the mean is the variance

s2 ¼ E½ðX � mÞ2� ¼
X
x2D

ðx� mÞ2pðxÞ

¼ ð0� 2Þ2ð:1Þ þ ð1� 2Þ2ð:2Þ þ ð2� 2Þ2ð:3Þ þ ð3� 2Þ2ð:4Þ ¼ 1

The third moment about the mean is also important.

E½ðX � mÞ3� ¼
X
x2D

ðx� mÞ3pðxÞ

¼ ð0� 2Þ3ð:1Þ þ ð1� 2Þ3ð:2Þ þ ð2� 2Þ3ð:3Þ þ ð3� 2Þ3ð:4Þ ¼ �:6

We would like to use this as a measure of lack of symmetry, but E[(X � m)3]
depends on the scale of measurement. That is, if X is measured in feet, the value

is different from what would be obtained if X were measured in inches.

Scale independence results from dividing the third moment about the mean by s3:

E½ðX � mÞ3�
s3

¼ E
X � m
s

� �3
" #

This is our measure of departure from symmetry, called the skewness.
For a symmetric distribution the third moment about the mean would be 0, so

the skewness in that case is 0. However, in the present example the skewness is

E[(X � m)3]/s3 ¼ �.6/1 ¼ �.6. When the skewness is negative, as it is here, we

say that the distribution is negatively skewed or that it is skewed to the left.

Generally speaking, it means that the distribution stretches farther to the left of

the mean than to the right.

If the skewness were positive then we would say that the distribution is

positively skewed or that it is skewed to the right. For example, reverse the order

of the probabilities in the p(x) table above, so the probabilities of the values 0, 1, 2,
and 3 are now .4, .3, .2, and .1, respectively (a much harder quiz). This changes the

sign but not the magnitude of the skewness, so it becomes .6 and the distribution is

skewed right (see Exercise 57). ■
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Moments are not always easy to obtain, as shown by the calculation of E(X)
in Example 3.18. We now introduce the moment generating function, which will

help in the calculation of moments and the understanding of statistical distributions.

We have already discussed the expected value of a function, E[h(X)]. In particular,
let e denote the base of the natural logarithms, with approximate value 2.71828.

Then we may wish to calculate E(e2X) ¼ Se2xp(x), E(e3.75X), or E(e�2.56X). That is,

for any particular number t, the expected value E(etX) is meaningful. When we

consider this expected value as a function of t, the result is called the moment

generating function.

DEFINITION The moment generating function (mgf) of a discrete random variable X is

defined to be

MXðtÞ ¼ EðetXÞ ¼
X
x2D

etxpðxÞ

where D is the set of possible X values. We will say that the moment

generating function exists if MX(t) is defined for an interval of numbers that

includes zero as well as positive and negative values of t (an interval

including 0 in its interior).

If the mgf exists, it will be defined on a symmetric interval of the form

(�t0, t0), where t0 > 0, because t0 can be chosen small enough so the symmetric

interval is contained in the interval of the definition.

When t ¼ 0, for any random variable X

MXð0Þ ¼ Eðe0XÞ ¼
X
x2D

e0xpðxÞ ¼
X
x2D

1pðxÞ ¼ 1

That is,MX(0) is the sum of all the probabilities, so it must always be 1. However, in

order for the mgf to be useful in generating moments, it will need to be defined for

an interval of values of t including 0 in its interior, and that is why we do not bother
with the mgf otherwise. As you might guess, the moment generating function fails

to exist in cases when moments themselves fail to exist, as in Example 3.19. See

Example 3.30 below.

The simplest example of an mgf is for a Bernoulli distribution, where only the

X values 0 and 1 receive positive probability.

Example 3.27 Let X be a Bernoulli random variable with pð0Þ ¼ 1
3
and p 1ð Þ ¼ 2

3
. Then

MXðtÞ ¼ EðetXÞ ¼
X
x2D

etxpðxÞ ¼ et�0
1

3
þ et�1

2

3
¼ 1

3
þ et

2

3

It should be clear that a Bernoulli random variable will always have an mgf of the

form p(0) + p(1)et. This mgf exists because it is defined for all t. ■

122 CHAPTER 3 Discrete Random Variables and Probability Distributions



The idea of the mgf is to have an alternate view of the distribution based on an

infinite number of values of t. That is, the mgf for X is a function of t, and we get a
different function for each different distribution. When the function is of the form

of one constant plus another constant times et, we know that it corresponds to a

Bernoulli random variable, and the constants tell us the probabilities. This is an

example of the following “uniqueness property.”

PROPOSITION If the mgf exists and is the same for two distributions, then the two distribu-

tions are the same. That is, the moment generating function uniquely speci-

fies the probability distribution; there is a one-to-one correspondence

between distributions and mgf’s.

Example 3.28 Let X be the number of claims in a year by someone holding an automobile

insurance policy with a company. The mgf for X is MX(t) ¼ .7 + .2et + .1e2t.
Then we can say that the pmf of X is given by

x 0 1 2

p(x) .7 .2 .1

Why? If we compute E(etX) based on this table, we get the correct mgf. Because X
and the random variable described by the table have the same mgf, the uniqueness

property requires them to have the same distribution. Therefore, X has the given

pmf. ■

Example 3.29 This is a continuation of Example 3.18, except that here we do not consider the

number of births needed to produce a male child. Instead we are looking for a

person whose blood type is Rh+. Set p ¼ .85, which is the approximate probability

that a random person has blood type Rh+. If X is the number of people we need to

check until we find someone who is Rh+, then p(x) ¼ p(1 � p)x�1 ¼ .85(.15)x�1

for x ¼ 1, 2, 3, . . . .
Determination of the moment generating function here requires using the

formula for the sum of a geometric series:

aþ ar þ ar2 þ � � � ¼ a

1� r

where a is the first term, r is the ratio of successive terms, and |r| < 1. The moment

generating function is

MXðtÞ ¼ EðetXÞ ¼
X1
x¼1

etx:85 ð:15Þx�1 ¼ :85et
X1
x¼1

etðx�1Þð:15Þx�1

¼ :85et
X1
x¼1

½etð:15Þ�x�1 ¼ :85et

1� :15et
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The condition on r requires |.15et| < 1. Dividing by .15 and taking logs, this gives

t < �ln(.15) � 1.90. The result is an interval of values that includes 0 in its

interior, so the mgf exists.

What about the value of the mgf at 0? Recall thatMX(0) ¼ 1 always, because

the value at 0 amounts to summing the probabilities. As a check, after computing

an mgf we should make sure that this condition is satisfied. Here MX(0) ¼
.85/(1 � .15) ¼ 1. ■

Example 3.30 Reconsider Example 3.19, where p(x) ¼ k/x2, x ¼ 1, 2, 3, . . . . Recall that E(X)
does not exist, so there might be problems with the mgf, too:

MXðtÞ ¼ EðetXÞ ¼
X1
x¼1

etx
k

x2

With the help of tests for convergence such as the ratio test, we find that the series

converges if and only if et � 1, which means that t � 0. Because zero is on the

boundary of this interval, not the interior of the interval (the interval must include

both positive and negative values), this mgf does not exist. Of course, it could not

be useful for finding moments, because X does not have even a first moment

(mean). ■

How does the mgf produce moments? We will need various derivatives of

MX(t). For any positive integer r, let M
ðrÞ
X ðtÞ denote the rth derivative of MX(t). By

computing this and then setting t ¼ 0, we get the rth moment about 0.

THEOREM If the mgf exists,

EðXrÞ ¼ M
ðrÞ
X ð0Þ

Proof We show that the theorem is true for r ¼ 1 and r ¼ 2. A proof by

mathematical induction can be used for general r. Differentiate

d

dt
MXðtÞ ¼ d

dt

X
x2D

extpðxÞ ¼
X
x2D

d

dt
extpðxÞ ¼

X
x2D

xextpðxÞ

where we have interchanged the order of summation and differentiation. This is

justified inside the interval of convergence, which includes 0 in its interior. Next we

set t ¼ 0 and get the first moment

M0
Xð0Þ ¼ M

ð1Þ
X ð0Þ ¼

X
x2D

xpðxÞ ¼ EðXÞ
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Differentiate again:

d2

dt2
MXðtÞ ¼ d

dt

X
x2D

xextpðxÞ ¼
X
x2D

x
d

dt
extpðxÞ ¼

X
x2D

x2extpðxÞ

Set t ¼ 0 to get the second moment

M00
Xð0Þ ¼ M

ð2Þ
X ð0Þ ¼

X
x2D

x2pðxÞ ¼ EðX2Þ
■

Example 3.31 This is a continuation of Example 3.28, where X represents the number of claims in

a year with pmf and mgf

x 0 1 2 MX(t) ¼ .7 + .2et + .1e2t

p(x) .7 .2 .1

First, find the derivatives

M0
XðtÞ ¼ :2et þ :1ð2Þe2t

M00
XðtÞ ¼ :2et þ :1ð2Þð2Þe2t

Setting t to 0 in the first derivative gives the first moment

EðXÞ ¼ M0
Xð0Þ ¼ M

ð1Þ
X ð0Þ ¼ :2e0 þ :1ð2Þe2ð0Þ ¼ :2þ :1ð2Þ ¼ :4

Setting t to 0 in the second derivative gives the second moment

EðX2Þ ¼ M00
Xð0Þ ¼ M

ð2Þ
X ð0Þ ¼ :2e0 þ :1ð2Þð2Þe2ð0Þ ¼ :2þ :1ð2Þð2Þ ¼ :6

To get the variance recall the shortcut formula from the previous section:

VðXÞ ¼ s2 ¼ EðX2Þ � ½EðXÞ�2 ¼ :6� :42 ¼ :6� :16 ¼ :44

Taking the square root gives s ¼ .66 approximately. Do a mean of .4 and

a standard deviation of .66 seem about right for a distribution concentrated mainly

on 0 and 1? ■

Example 3.32

(Example 3.29

continued)

Recall that p ¼ .85 is the probability of a person having Rh + blood and we keep

checking people until we find one with this blood type. If X is the number of people

we need to check, then p(x) ¼ .85(.15)x�1, x ¼ 1, 2, 3, . . . , and the mgf is

MXðtÞ ¼ EðetXÞ ¼ :85et

1� :15et

Differentiating with the help of the quotient rule,

M0
XðtÞ ¼

:85et

ð1� :15etÞ2
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Setting t ¼ 0,

m ¼ EðXÞ ¼ M0
Xð0Þ ¼

1

:85

Recalling that .85 corresponds to p, we see that this agrees with Example 3.18.

To get the second moment, differentiate again:

M00
XðtÞ ¼

:85etð1þ :15etÞ
ð1� :15etÞ3

Setting t ¼ 0,

EðX2Þ ¼ M00
Xð0Þ ¼

1:15

:852

Now use the shortcut formula for the variance from the previous section:

VðXÞ ¼ s2 ¼ EðX2Þ � ½EðXÞ�2 ¼ 1:15

:852
� 1

:852
¼ :15

:852
¼ :2076

■

There is an alternate way of doing the differentiation that can sometimes

make the effort easier. Define RX(t) ¼ ln[MX(t)], where ln(u) is the natural log

of u. In Exercise 54 you are requested to verify that if the moment generating

function exists,

m ¼ EðXÞ ¼ R0
Xð0Þ

s2 ¼ VðXÞ ¼ R00
Xð0Þ

Example 3.33 Here we apply RX(t) to Example 3.32. Using ln(et) ¼ t,

RXðtÞ ¼ ln½MXðtÞ� ¼ ln
:85et

1� :15et

� �
¼ lnð:85Þ þ t� lnð1� :15etÞ

The first derivative is

R0
XðtÞ ¼

1

1� :15et

and the second derivative is

R00
XðtÞ ¼

:15et

ð1� :15etÞ2

Setting t to 0 gives

m ¼ EðXÞ ¼ R0
Xð0Þ ¼

1

:85

s2 ¼ VðXÞ ¼ R00
Xð0Þ ¼

:15

:852

These are in agreement with the results of Example 3.32. ■
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As mentioned at the end of the previous section, it is common to

transform X using a linear function Y ¼ aX + b. What happens to the mgf when

we do this?

PROPOSITION Let X have the mgf MX(t) and let Y ¼ aX + b. Then MY(t) ¼ ebtMX(at).

Example 3.34 Let X be a Bernoulli random variable with pð0Þ ¼ 20
38

and pð1Þ ¼ 18
38
. Think of X

as the number of wins, 0 or 1, in a single play of roulette. If you play roulette at

an American casino and you bet red, then your chances of winning are 18
38

because

18 of the 38 possible outcomes are red. Then from Example 3.27

MXðtÞ ¼ 20
38
þ et 18

38
. Let your bet be $5 and let Y be your winnings. If X ¼ 0 then

Y ¼ �5, and if X ¼ 1 then Y ¼ +5. The linear equation Y ¼ 10X � 5 gives the

appropriate relationship.

The equation is of the form Y ¼ aX + b with a ¼ 10 and b ¼ �5, so by the

proposition

MYðtÞ ¼ ebtMXðatÞ ¼ e�5tMXð10tÞ

¼ e�5t 20

38
þ e10t

18

38

� �
¼ e�5t 20

38
þ e5t

18

38

From this we can read off the probabilities for Y: p(�5) ¼ 20
38

and p(5) ¼ 18
38
. ■

Exercises Section 3.4 (44–57)

44. For a new car the number of defects X has the

distribution given by the accompanying table.

Find MX(t) and use it to find E(X) and V(X).

x 0 1 2 3 4 5 6

p(x) .04 .20 .34 .20 .15 .04 .03

45. In flipping a fair coin let X be the number of

tosses to get the first head. Then p(x) ¼ .5x for

x ¼ 1, 2, 3, . . . . FindMX(t) and use it to get E(X)
and V(X).

46. GivenMX(t) ¼ .2 + .3et + .5e3t, find p(x), E(X),
V(X).

47. Using a calculation similar to the one in Example

3.29 show that, if X has the distribution of

Example 3.18, then its mgf is

MXðtÞ ¼ pet

1� ð1� pÞet
If Y has mgfMY(t) ¼ .75et/(1� .25et), determine

the probability mass function pY(y) with the help

of the uniqueness property.

48. Let X have the moment generating function

of Example 3.29 and let Y ¼ X � 1. Recall that

X is the number of people who need to be

checked to get someone who is Rh+, so Y is the

number of people checked before the first Rh+
person is found. Find MY(t) using the second

proposition.

49. If MXðtÞ ¼ e5tþ2t2 then find E(X) and V(X) by

differentiating

a. MX(t)
b. RX(t)

50. Prove the result in the second proposition, i.e.,

MaX+b (t) ¼ ebtMX(at).

51. Let MXðtÞ ¼ e5tþ2t2 and let Y ¼ (X � 5)/2. Find

MY(t) and use it to find E(Y) and V(Y).

52. If you toss a fair die with outcome X, pðxÞ ¼ 1
6

for x ¼ 1, 2, 3, 4, 5, 6. Find MX(t).

53. If MX(t) ¼ 1/(1 � t2), find E(X) and V(X) by

differentiating MX(t).

54. Prove that the mean and variance are obtainable

from RX(t) ¼ ln(MX(t)):
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m ¼ EðXÞ ¼ R0
Xð0Þ

s2 ¼ VðXÞ ¼ R00
Xð0Þ

55. Show that g(t) ¼ tet cannot be a moment generat-

ing function.

56. If MXðtÞ ¼ e5ðe
t�1Þthen find E(X) and V(X) by

differentiating

a. MXðtÞ
b. RXðtÞ

57. Let X be the number of points earned by a ran-

domly selected student on a 10 point quiz, with

possible values 0, 1, 2, . . . , 10 and pmf p(x), and
suppose the distribution has a skewness of c. Now
consider reversing the probabilities in the distri-

bution, so that p(0) is interchanged with p(10),
p(1) is interchanged with p(9), and so on. Show

that the skewness of the resulting distribution

is �c. [Hint: Let Y ¼ 10 � X and show that Y
has the reversed distribution. Use this fact to

determine mY and then the value of skewness for

the Y distribution.]

3.5 The Binomial Probability Distribution
Many experiments conform either exactly or approximately to the following list of

requirements:

1. The experiment consists of a sequence of n smaller experiments called trials,
where n is fixed in advance of the experiment.

2. Each trial can result in one of the same two possible outcomes (dichotomous

trials), which we denote by success (S) or failure (F).
3. The trials are independent, so that the outcome on any particular trial does not

influence the outcome on any other trial.

4. The probability of success is constant from trial to trial; we denote this

probability by p.

DEFINITION An experiment for which Conditions 1–4 are satisfied is called a binomial
experiment.

Example 3.35 The same coin is tossed successively and independently n times.We arbitrarily use

S to denote the outcome H (heads) and F to denote the outcome T (tails). Then this

experiment satisfies Conditions 1–4. Tossing a thumbtack n times, with S ¼ point

up and F ¼ point down, also results in a binomial experiment. ■

Some experiments involve a sequence of independent trials for which there

are more than two possible outcomes on any one trial. A binomial experiment can

then be created by dividing the possible outcomes into two groups.

Example 3.36 The color of pea seeds is determined by a single genetic locus. If the two alleles at

this locus are AA or Aa (the genotype), then the pea will be yellow (the phenotype),

and if the allele is aa, the pea will be green. Suppose we pair off 20 Aa seeds and

cross the two seeds in each of the ten pairs to obtain ten new genotypes. Call each

new genotype a success S if it is aa and a failure otherwise. Then with this
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identification of S and F, the experiment is binomial with n ¼ 10 and p ¼ P(aa
genotype). If each member of the pair is equally likely to contribute a or A, then

p ¼ P að Þ � P að Þ ¼ 1
2

� 	 � 1
2

� 	 ¼ 1
4

■

Example 3.37 Suppose a city has 50 licensed restaurants, of which 15 currently have at least

one serious health code violation and the other 35 have no serious violations.

There are five inspectors, each of whom will inspect one restaurant during the

coming week. The name of each restaurant is written on a different slip of paper,

and after the slips are thoroughly mixed, each inspector in turn draws one of the

slips without replacement. Label the ith trial as a success if the ith restaurant

selected (i ¼ 1, . . . , 5) has no serious violations. Then

P S on first trialð Þ ¼ 35

50
¼ :70

and

PðS on second trialÞ¼ PðSSÞþPðFSÞ
¼ Pðsecond Sjfirst SÞPðfirst SÞþPðsecond SjfirstFÞPðfirstFÞ

¼ 34

49
�35
50

þ35

49
�15
50

¼ 35

50

34

49
þ15

49

� �
¼ 35

50
¼ :70

Similarly, it can be shown that P(S on ith trial) ¼ .70 for i ¼ 3, 4, 5. However,

PðS on fifth trialjSSSSÞ ¼ 31

46
¼ :67

whereas

PðS on fifth trialjFFFFÞÞ ¼ 35

46
¼ :76

The experiment is not binomial because the trials are not independent.

In general, if sampling is without replacement, the experiment will not yield

independent trials. If each slip had been replaced after being drawn, then trials

would have been independent, but this might have resulted in the same restaurant

being inspected by more than one inspector. ■

Example 3.38 Suppose a state has 500,000 licensed drivers, of whom 400,000 are insured.

A sample of ten drivers is chosen without replacement. The ith trial is labeled S
if the ith driver chosen is insured. Although this situation would seem identical

to that of Example 3.37, the important difference is that the size of the population

being sampled is very large relative to the sample size. In this case

PðS on 2jS on 1Þ ¼ 399; 999

499; 999
¼ :80000

and

PðS on 10jS on first 9Þ ¼ 399; 991

499; 991
¼ :799996 � :80000
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These calculations suggest that although the trials are not exactly inde-

pendent, the conditional probabilities differ so slightly from one another that

for practical purposes the trials can be regarded as independent with constant

P(S) ¼ .8. Thus, to a very good approximation, the experiment is binomial with

n ¼ 10 and p ¼ .8. ■

We will use the following rule of thumb in deciding whether a “without-

replacement” experiment can be treated as a binomial experiment.

RULE Consider sampling without replacement from a dichotomous population of

size N. If the sample size (number of trials) n is at most 5% of the population

size, the experiment can be analyzed as though it were exactly a binomial

experiment.

By “analyzed,” we mean that probabilities based on the binomial experiment

assumptions will be quite close to the actual “without-replacement” probabilities,

which are typically more difficult to calculate. In Example 3.37, n/N ¼ 5/50 ¼ .1

> .05, so the binomial experiment is not a good approximation, but in Example

3.38, n/N ¼ 10/500,000 < .05.

The Binomial Random Variable and Distribution

In most binomial experiments, it is the total number of S’s, rather than knowledge

of exactly which trials yielded S’s, that is of interest.

DEFINITION Given a binomial experiment consisting of n trials, the binomial random
variable X associated with this experiment is defined as

X ¼ the number of S’s among the n trials

Suppose, for example, that n ¼ 3. Then there are eight possible outcomes for the

experiment:

SSS SSF SFS SFF FSS FSF FFS FFF

From the definition of X, X(SSF) ¼ 2, X(SFF) ¼ 1, and so on. Possible values for X
in an n-trial experiment are x ¼ 0, 1, 2, . . . , n. We will often write X ~ Bin(n, p) to
indicate that X is a binomial rv based on n trials with success probability p.

NOTATION Because the pmf of a binomial rv X depends on the two parameters n and p,
we denote the pmf by b(x; n, p).
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Consider first the case n ¼ 4 for which each outcome, its probability,

and corresponding x value are listed in Table 3.1. For example,

PðSSFSÞ ¼ PðSÞ � PðSÞ � PðFÞ � PðSÞ independent trialsð Þ
¼ p � p � 1� pð Þ � p ½constant PðSÞ�
¼ p3 � 1� pð Þ

In this special case, we wish b(x; 4, p) for x ¼ 0, 1, 2, 3, and 4. For b(3; 4, p),
we identify which of the 16 outcomes yield an x value of 3 and sum the probabilities

associated with each such outcome:

b 3; 4; pð Þ ¼ PðFSSSÞ þ PðSFSSÞ þ PðSSFSÞ þ PðSSSFÞ ¼ 4p3 1� pð Þ

There are four outcomes with x ¼ 3 and each has probability p3(1 � p)

(the probability depends only on the number of S’s, not the order of S’s and F’s), so

b 3; 4; pð Þ ¼ number of outcomes

with X ¼ 3

� 

� probability of any particular

outcome with X ¼ 3

� 


Similarly, b(2; 4, p) ¼ 6p2(1 � p)2, which is also the product of the number of

outcomes with X ¼ 2 and the probability of any such outcome.

In general,

b x; n; pð Þ ¼ number of sequences of

length n consisting of x S’s

� 

� probability of any

particular such sequence

� 


Since the ordering of S’s and F’s is not important, the second factor in the previous

equation is px(1 � p)n�x (e.g., the first x trials resulting in S and the last n � x
resulting in F). The first factor is the number of ways of choosing x of the n trials to
be S’s—that is, the number of combinations of size x that can be constructed from n
distinct objects (trials here).

Table 3.1 Outcomes and probabilities for a binomial experiment with four
trials

Outcome x Probability Outcome x Probability

SSSS 4 p4 FSSS 3 p3(1 � p)
SSSF 3 p3(1 � p) FSSF 2 p2(1 � p)2

SSFS 3 p3(1 � p) FSFS 2 p2(1 � p)2

SSFF 2 p2(1 � p)2 FSFF 1 p(1 � p)3

SFSS 3 p3(1 � p) FFSS 2 p2(1 � p)2

SFSF 2 p2(1 � p)2 FFSF 1 p(1 � p)3

SFFS 2 p2(1 � p)2 FFFS 1 p(1 � p)3

SFFF 1 p(1 � p)3 FFFF 0 (1 � p)4
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THEOREM

bðx; n; pÞ ¼
n

x

 !
pxð1� pÞn�x x ¼ 0; 1; 2; . . . ; n

0 otherwise

8><
>:

Example 3.39 Each of six randomly selected cola drinkers is given a glass containing cola S and one
containing cola F. The glasses are identical in appearance except for a code on the

bottom to identify the cola. Suppose there is no tendency among cola drinkers

to prefer one cola to the other. Then p ¼ P(a selected individual prefers S) ¼ .5,

so with X ¼ the number among the six who prefer S, X ~ Bin(6, .5).

Thus

PðX ¼ 3Þ ¼ bð3; 6; :5Þ ¼ 6

3

� �
ð:5Þ3ð:5Þ3 ¼ 20ð:5Þ6 ¼ :313

The probability that at least three prefer S is

Pð3�XÞ¼
X6
x¼3

bðx;6; :5Þ¼
X6
x¼3

6

x

� �
ð:5Þxð:5Þ6�x ¼ :656

and the probability that at most one prefers S is

PðX � 1Þ ¼
X1
x¼0

bðx; 6; :5Þ ¼ :109
■

Using Binomial Tables

Even for a relatively small value of n, the computation of binomial probabilities can

be tedious. Appendix Table A.1 tabulates the cdf F(x) ¼ P(X � x) for n ¼ 5, 10,

15, 20, 25 in combination with selected values of p. Various other probabilities can
then be calculated using the proposition on cdf’s from Section 3.2.

NOTATION For X ~ Bin(n, p), the cdf will be denoted by

PðX � xÞ ¼ Bðx; n; pÞ ¼
Xx
y¼0

bðy; n; pÞ x ¼ 0; 1; . . . ; n

Example 3.40 Suppose that 20% of all copies of a particular textbook fail a binding strength test.

Let X denote the number among 15 randomly selected copies that fail the test. Then

X has a binomial distribution with n ¼ 15 and p ¼ .2.
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1. The probability that at most 8 fail the test is

PðX � 8Þ ¼
X8
y¼0

b ðy ; 15; :2Þ ¼ Bð8; 15; :2Þ

which is the entry in the x ¼ 8 row and the p ¼ .2 column of the n ¼ 15

binomial table. From Appendix Table A.1, the probability is B(8; 15, .2) ¼ .999.

2. The probability that exactly 8 fail is

PðX ¼ 8Þ ¼ PðX � 8Þ � PðX � 7Þ ¼ Bð8; 15; :2Þ � Bð7; 15; :2Þ
which is the difference between two consecutive entries in the p ¼ .2 column.

The result is .999 � .996 ¼ .003.

3. The probability that at least 8 fail is

PðX � 8Þ ¼ 1� PðX � 7Þ ¼ 1� Bð7; 15; :2Þ

¼ 1� entry in x ¼ 7 row

of p ¼ .2 column

� �

¼ 1� :996 ¼ :004

4. Finally, the probability that between 4 and 7, inclusive, fail is

Pð4�X� 7Þ¼ PðX¼ 4;5;6; or 7Þ¼ PðX� 7Þ�PðX� 3Þ
¼ Bð7;15; :2Þ�Bð3;15; :2Þ ¼ :996� :648¼ :348

Notice that this latter probability is the difference between entries in the x ¼ 7

and x ¼ 3 rows, not the x ¼ 7 and x ¼ 4 rows. ■

Example 3.41 An electronics manufacturer claims that at most 10% of its power supply units need

service during the warranty period. To investigate this claim, technicians at a

testing laboratory purchase 20 units and subject each one to accelerated testing to

simulate use during the warranty period. Let p denote the probability that a power

supply unit needs repair during the period (the proportion of all such units that need

repair). The laboratory technicians must decide whether the data resulting from the

experiment supports the claim that p � .10. Let X denote the number among the 20

sampled that need repair, so X ~ Bin(20, p). Consider the decision rule

Reject the claim that p � .10 in favor of the conclusion that p > .10 if x � 5

(where x is the observed value of X), and consider the claim plausible

if x � 4.

The probability that the claim is rejected when p ¼ .10 (an incorrect conclusion) is

PðX � 5 when p ¼ :10Þ ¼ 1� Bð4; 20; :1Þ ¼ 1� :957 ¼ :043

The probability that the claim is not rejected when p ¼ .20 (a different type of

incorrect conclusion) is

PðX � 4 when p ¼ :2Þ ¼ Bð4; 20; :2Þ ¼ :630
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The first probability is rather small, but the second is intolerably large. When

p ¼ .20, so that the manufacturer has grossly understated the percentage of units

that need service, and the stated decision rule is used, 63% of all samples will result

in the manufacturer’s claim being judged plausible!

One might think that the probability of this second type of erroneous conclu-

sion could be made smaller by changing the cutoff value 5 in the decision rule to

something else. However, although replacing 5 by a smaller number would yield a

probability smaller than .630, the other probability would then increase. The only

way to make both “error probabilities” small is to base the decision rule on an

experiment involving many more units. ■

Note that a table entry of 0 signifies only that a probability is 0 to three

significant digits, for all entries in the table are actually positive. Statistical computer

packages such as MINITABwill generate either b(x; n, p) or B(x; n, p) once values of
n and p are specified. In Chapter 4, we will present a method for obtaining quick and

accurate approximations to binomial probabilities when n is large.

The Mean and Variance of X

For n ¼ 1, the binomial distribution becomes the Bernoulli distribution. From

Example 3.17, the mean value of a Bernoulli variable is m ¼ p, so the expected

number of S’s on any single trial is p. Since a binomial experiment consists of n
trials, intuition suggests that for X ~ Bin(n, p), E(X) ¼ np, the product of the

number of trials and the probability of success on a single trial. The expression

for V(X) is not so intuitive.

PROPOSITION
If X
Binðn; pÞ; thenEðXÞ¼np; VðXÞ¼npð1�pÞ¼npq; andsX¼ ffiffiffiffiffiffiffiffi

npq
p ðwhere

q¼1�pÞ:

Thus, calculating the mean and variance of a binomial rv does not necessitate

evaluating summations. The proof of the result for E(X) is sketched in Exercise

74, and both the mean and the variance are obtained below using the moment

generating function.

Example 3.42 If 75% of all purchases at a store are made with a credit card and X is the number

among ten randomly selected purchases made with a credit card, then

X
Bin 10; :75ð Þ:ThusEðXÞ¼ np¼ 10ð Þ :75ð Þ¼ 7:5; VðXÞ¼ npq¼ 10 :75ð Þ :25ð Þ¼
1:875; and s¼ ffiffiffiffiffiffiffiffiffiffiffi

1:875
p

. Again, even though X can take on only integer values, E(X)
need not be an integer. If we perform a large number of independent binomial

experiments, each with n ¼ 10 trials and p ¼ .75, then the average number of S’s
per experiment will be close to 7.5. ■
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The Moment Generating Function of X

Let’s find the moment generating function of a binomial random variable. Using

the definition, MX(t) ¼ E(etX),

MXðtÞ ¼ EðetXÞ ¼
X
x 2 D

etxpðxÞ ¼
Xn
x¼0

etx
n

x

� �
pxð1� pÞn�x

¼
Xn
x¼0

n

x

� �
ðpetÞxð1� pÞn�x ¼ ðpet þ 1� pÞn

Here we have used the binomial theorem,
Pn

x¼0 a
xbn�x ¼ ðaþ bÞn.

Notice that the mgf satisfies the property required of all moment generating

functions, MX(0) ¼ 1, because the sum of the probabilities is 1. The mean and

variance can be obtained by differentiating MX(t):

M0
XðtÞ ¼ nðpet þ 1� pÞn�1pet and m ¼ M0

Xð0Þ ¼ np

Then the second derivative is

M00
XðtÞ ¼ nðn� 1Þðpet þ 1� pÞn�2petpet þ nðpet þ 1� pÞn�1pet

and

EðX2Þ ¼ M00
Xð0Þ ¼ nðn� 1Þp2 þ np

Therefore,

s2 ¼ VðXÞ ¼ EðX2Þ � ½EðXÞ�2
¼ nðn� 1Þp2 þ np� n2p2 ¼ np� np2 ¼ npð1� pÞ

in accord with the foregoing proposition.

Exercises Section 3.5 (58–79)

58. Compute the following binomial probabilities

directly from the formula for b(x; n, p):
a. b(3; 8, .6)
b. b(5; 8, .6)
c. P(3 � X � 5) when n ¼ 8 and p ¼ .6

d. P(1 � X) when n ¼ 12 and p ¼ .1

59. Use Appendix Table A.1 to obtain the following

probabilities:

a. B(4; 10, .3)
b. b(4; 10, .3)
c. b(6; 10, .7)
d. P(2 � X � 4) when X ~ Bin(10, .3)

e. P(2 � X) when X ~ Bin(10, .3)

f. P(X � 1) when X ~ Bin(10, .7)

g. P(2 < X < 6) when X ~ Bin(10, .3)

60. When circuit boards used in the manufacture

of compact disc players are tested, the

long-run percentage of defectives is 5%. Let X
¼ the number of defective boards in a

random sample of size n ¼ 25, so X ~
Bin(25, .05).

a. Determine P(X � 2).

b. Determine P(X � 5).

c. Determine P(1 � X � 4).

d. What is the probability that none of the 25

boards is defective?
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e. Calculate the expected value and standard

deviation of X.

61. A company that produces fine crystal knows

from experience that 10% of its goblets have

cosmetic flaws and must be classified as “sec-

onds.”

a. Among six randomly selected goblets, how

likely is it that only one is a second?

b. Among six randomly selected goblets, what is

the probability that at least two are seconds?

c. If goblets are examined one by one, what is

the probability that at most five must be

selected to find four that are not seconds?

62. Suppose that only 25% of all drivers come to a

complete stop at an intersection having flashing

red lights in all directions when no other cars are

visible. What is the probability that, of 20 ran-

domly chosen drivers coming to an intersection

under these conditions,

a. At most 6 will come to a complete stop?

b. Exactly 6 will come to a complete stop?

c. At least 6 will come to a complete stop?

d. How many of the next 20 drivers do you

expect to come to a complete stop?

63. Exercise 29 (Section 3.3) gave the pmf of Y, the
number of traffic citations for a randomly

selected individual insured by a company. What

is the probability that among 15 randomly chosen

such individuals

a. At least 10 have no citations?

b. Fewer than half have at least one citation?

c. The number that have at least one citation is

between 5 and 10, inclusive?2

64. A particular type of tennis racket comes in a

midsize version and an oversize version. Sixty

percent of all customers at a store want the over-

size version.

a. Among ten randomly selected customers who

want this type of racket, what is the probabil-

ity that at least six want the oversize version?

b. Among ten randomly selected customers,

what is the probability that the number who

want the oversize version is within 1 standard

deviation of the mean value?

c. The store currently has seven rackets of each

version. What is the probability that all of the

next ten customers who want this racket can

get the version they want from current stock?

65. Twenty percent of all telephones of a certain type

are submitted for service while under warranty.

Of these, 60% can be repaired, whereas the other

40% must be replaced with new units. If a com-

pany purchases ten of these telephones, what is the

probability that exactly two will end up being

replaced under warranty?

66. The College Board reports that 2% of the two

million high school students who take the SAT

each year receive special accommodations

because of documented disabilities (Los Angeles
Times, July 16, 2002). Consider a random sample

of 25 students who have recently taken the test.

a. What is the probability that exactly 1 received

a special accommodation?

b. What is the probability that at least 1 received

a special accommodation?

c. What is the probability that at least 2 received a

special accommodation?

d. What is the probability that the number among

the 25 who received a special accommodation

is within 2 standard deviations of the number

you would expect to be accommodated?

e. Suppose that a student who does not receive a

special accommodation is allowed 3 h for

the exam, whereas an accommodated student

is allowed 4.5 h. What would you expect the

average time allowed the 25 selected students

to be?

67. Suppose that 90% of all batteries from a supplier

have acceptable voltages. A certain type of flash-

light requires two type-D batteries, and the flash-

light will work only if both its batteries have

acceptable voltages. Among ten randomly

selected flashlights, what is the probability that

at least nine will work? What assumptions did

you make in the course of answering the question

posed?

68. A very large batch of components has arrived at a

distributor. The batch can be characterized as

acceptable only if the proportion of defective

components is at most .10. The distributor decides

to randomly select 10 components and to accept

the batch only if the number of defective compo-

nents in the sample is at most 2.

a. What is the probability that the batch will be

accepted when the actual proportion of defec-

tives is .01? .05? .10? .20? .25?

2“Between a and b, inclusive” is equivalent to (a � X � b).
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b. Let p denote the actual proportion of defectives
in the batch. A graph of P(batch is accepted)

as a function of p, with p on the horizontal axis
and P(batch is accepted) on the vertical axis, is
called the operating characteristic curve for

the acceptance sampling plan. Use the results

of part (a) to sketch this curve for 0 � p � 1.

c. Repeat parts (a) and (b) with “1” replacing “2”

in the acceptance sampling plan.

d. Repeat parts (a) and (b) with “15” replacing

“10” in the acceptance sampling plan.

e. Which of the three sampling plans, that of part

(a), (c), or (d), appears most satisfactory, and

why?

69. An ordinance requiring that a smoke detector be

installed in all previously constructed houses has

been in effect in a city for 1 year. The fire depart-

ment is concerned that many houses remain with-

out detectors. Let p ¼ the true proportion of such

houses having detectors, and suppose that a ran-

dom sample of 25 homes is inspected. If the sam-

ple strongly indicates that fewer than 80% of all

houses have a detector, the fire department will

campaign for a mandatory inspection program.

Because of the costliness of the program, the

department prefers not to call for such inspections

unless sample evidence strongly argues for their

necessity. Let X denote the number of homes with

detectors among the 25 sampled. Consider reject-

ing the claim that p � .8 if x � 15.

a. What is the probability that the claim is

rejected when the actual value of p is .8?

b. What is the probability of not rejecting the

claim when p ¼ .7? When p ¼ .6?

c. How do the “error probabilities” of parts (a)

and (b) change if the value 15 in the decision

rule is replaced by 14?

70. A toll bridge charges $1.00 for passenger cars and

$2.50 for other vehicles. Suppose that during day-

time hours, 60% of all vehicles are passenger cars.

If 25 vehicles cross the bridge during a particular

daytime period, what is the resulting expected toll

revenue? [Hint: Let X ¼ the number of passenger

cars; then the toll revenue h(X) is a linear function
of X.]

71. A student who is trying to write a paper for a

course has a choice of two topics, A and B. If

topic A is chosen, the student will order two

books through interlibrary loan, whereas if topic

B is chosen, the student will order four books. The

student believes that a good paper necessitates

receiving and using at least half the books ordered

for either topic chosen. If the probability that a

book ordered through interlibrary loan actually

arrives in time is .9 and books arrive indepen-

dently of one another, which topic should the

student choose to maximize the probability of

writing a good paper? What if the arrival proba-

bility is only .5 instead of .9?

72. Let X be a binomial random variable with fixed n.
a. Are there values of p (0 � p � 1) for which

V(X) ¼ 0? Explain why this is so.

b. For what value of p is V(X) maximized? [Hint:
Either graph V(X) as a function of p or else take
a derivative.]

73. a. Show that b(x; n, 1 � p) ¼ b(n � x; n, p).
b. Show that B(x; n, 1� p) ¼ 1� B(n� x� 1; n,

p). [Hint: At most x S’s is equivalent to at least
(n � x) F’s.]

c. What do parts (a) and (b) imply about the

necessity of including values of p >.5 in

Appendix Table A.1?

74. Show that E(X) ¼ np when X is a binomial ran-

dom variable. [Hint: First express E(X) as a sum

with lower limit x ¼ 1. Then factor out np, let
y ¼ x � 1 so that the remaining sum is from

y ¼ 0 to y ¼ n � 1, and show that it equals 1.]

75. Customers at a gas station pay with a credit card

(A), debit card (B), or cash (C). Assume that suc-

cessive customers make independent choices,

with P(A) ¼ .5, P(B) ¼ .2, and P(C) ¼ .3.

a. Among the next 100 customers, what are the

mean and variance of the number who pay with

a debit card? Explain your reasoning.

b. Answer part (a) for the number among the 100

who don’t pay with cash.

76. An airport limousine can accommodate up to four

passengers on any one trip. The company will

accept a maximum of six reservations for a trip,

and a passenger must have a reservation. From

previous records, 20% of all those making reser-

vations do not appear for the trip. In the following

questions, assume independence, but explain why

there could be dependence.

a. If six reservations are made, what is the proba-

bility that at least one individual with a reser-

vation cannot be accommodated on the trip?

b. If six reservations are made, what is the

expected number of available places when the

limousine departs?

c. Suppose the probability distribution of the

number of reservations made is given in the

accompanying table.
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Number of reservations 3 4 5 6

Probability .1 .2 .3 .4

Let X denote the number of passengers on a ran-

domly selected trip. Obtain the probability mass

function of X.
77. Refer to Chebyshev’s inequality given in Exercise

43 (Section 3.3). Calculate P(|X� m| � ks) for

k ¼ 2 and k ¼ 3 when X ~ Bin(20, .5), and com-

pare to the corresponding upper bounds. Repeat

for X ~ Bin(20, .75).

78. At the end of this section we obtained the mean

and variance of a binomial rv using the mgf.

Obtain the mean and variance instead from

RX(t) ¼ ln[MX(t)].

79. Obtain the moment generating function of the

number of failures n � X in a binomial experi-

ment, and use it to determine the expected number

of failures and the variance of the number of fail-

ures. Are the expected value and variance intui-

tively consistent with the expressions for E(X) and
V(X)? Explain.

3.6 Hypergeometric and Negative
Binomial Distributions
The hypergeometric and negative binomial distributions are both closely related

to the binomial distribution. Whereas the binomial distribution is the approximate

probability model for sampling without replacement from a finite dichotomous

(S�F) population, the hypergeometric distribution is the exact probability

model for the number of S’s in the sample. The binomial rv X is the number of

S’s when the number n of trials is fixed, whereas the negative binomial distribution

arises from fixing the number of S’s desired and letting the number of trials

be random.

The Hypergeometric Distribution

The assumptions leading to the hypergeometric distribution are as follows:

1. The population or set to be sampled consists of N individuals, objects, or

elements (a finite population).

2. Each individual can be characterized as a success (S) or a failure (F), and there

are M successes in the population.

3. A sample of n individuals is selected without replacement in such a way that

each subset of size n is equally likely to be chosen.

The random variable of interest is X ¼ the number of S’s in the sample. The

probability distribution of X depends on the parameters n, M, and N, so we wish

to obtain P(X ¼ x) ¼ h(x; n, M, N).

Example 3.43 During a particular period a university’s information technology office received

20 service orders for problems with printers, of which 8 were laser printers

and 12 were inkjet models. A sample of 5 of these service orders is to be selected

for inclusion in a customer satisfaction survey. Suppose that the 5 are selected in

a completely random fashion, so that any particular subset of size 5 has the

same chance of being selected as does any other subset (think of putting

the numbers 1, 2, . . . , 20 on 20 identical slips of paper, mixing up the slips, and
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choosing 5 of them). What then is the probability that exactly x (x ¼ 0, 1, 2, 3, 4,

or 5) of the selected service orders were for inkjet printers?

In this example, the population size is N ¼ 20, the sample size is n ¼ 5, and

the number of S’s (inkjet ¼ S) and F’s in the population are M ¼ 12 and N �
M ¼ 8, respectively. Consider the value x ¼ 2. Because all outcomes (each con-

sisting of 5 particular orders) are equally likely,

PðX ¼ 2Þ ¼ hð2; 5; 12; 20Þ ¼ number of outcomes having X ¼ 2

number of possible outcomes

The number of possible outcomes in the experiment is the number of ways of

selecting 5 from the 20 objects without regard to order—that is, 20
5

� 	
. To count the

number of outcomes having X ¼ 2, note that there are 12
2

� 	
ways of selecting 2 of

the inkjet orders, and for each such way there are 8
3

� 	
ways of selecting the 3 laser

orders to fill out the sample. The product rule from Chapter 2 then gives
12
2

� 	 � 8
3

� 	
as the number of outcomes with X ¼ 2, so

hð2; 5; 12; 20Þ ¼
12

2

� �
8

3

� �

20

5

� � ¼ 77

323
¼ :238

■

In general, if the sample size n is smaller than the number of successes in the

population (M), then the largest possible X value is n. However, if M < n (e.g.,

a sample size of 25 and only 15 successes in the population), then X can be at most

M. Similarly, whenever the number of population failures (N � M) exceeds the

sample size, the smallest possible X value is 0 (since all sampled individuals

might then be failures). However, if N � M < n, the smallest possible X value

is n � (N � M). Summarizing, the possible values of the hypergeometric rv X
satisfy the restriction max[0, n� (N�M)] � x � min(n,M). An argument parallel

to that of the previous example gives the pmf of X.

PROPOSITION If X is the number of S’s in a completely random sample of size n drawn

from a population consisting of M S’s and (N � M) F’s, then the probability

distribution of X, called the hypergeometric distribution, is given by

PðX ¼ xÞ ¼ hðx; n;M;NÞ ¼
M
x

� �
N �M
n� x

� �

N
n

� � ð3:15Þ

for x an integer satisfying max(0, n � N + M) � x � min(n, M).

In Example 3.43, n ¼ 5, M ¼ 12, and N ¼ 20, so h(x; 5, 12, 20) for x ¼ 0, 1, 2, 3,

4, 5 can be obtained by substituting these numbers into Equation 3.15.
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Example 3.44 Five individuals from an animal population thought to be near extinction in a region

have been caught, tagged, and released to mix into the population. After they have

had an opportunity to mix, a random sample of ten of these animals is selected. Let

X ¼ the number of tagged animals in the second sample. If there are actually 25

animals of this type in the region, what is the probability that (a) X ¼ 2? (b) X � 2?

Application of the hypergeometric distribution here requires assuming that

every subset of 10 animals has the same chance of being captured. This in turn

implies that released animals are no easier or harder to catch than are those not

initially captured. Then the parameter values are n ¼ 10,M ¼ 5 (5 tagged animals

in the population), and N ¼ 25, so

hðx; 10; 5; 25Þ ¼
5

x

� �
20

10� x

� �

25

10

� � x ¼ 0; 1; 2; 3; 4; 5

For part (a),

PðX ¼ 2Þ ¼ hð2; 10; 5; 25Þ ¼
5

2

� �
20

8

� �

25

10

� � ¼ :385

For part (b),

PðX � 2Þ ¼ PðX ¼ 0; 1; or 2Þ ¼
X2
x ¼ 0

hðx; 10; 5; 25Þ

¼ :057þ :257þ :385 ¼ :699

■

Comprehensive tables of the hypergeometric distribution are available, but

because the distribution has three parameters, these tables require much more space

than tables for the binomial distribution. MINITAB, R and other statistical software

packages will easily generate hypergeometric probabilities.

As in the binomial case, there are simple expressions for E(X) and V(X) for
hypergeometric rv’s.

PROPOSITION Themean and variance of the hypergeometric rvX having pmf h(x; n,M,N) are

EðXÞ ¼ n �M
N

VðXÞ ¼ N � n

N � 1

� �
� n �M

N
1�M

N

� �

The proof will be given in Section 6.3. We do not give the moment generating

function for the hypergeometric distribution, because the mgf is more trouble than

it is worth here.
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The ratio M/N is the proportion of S’s in the population. Replacing M/N by

p in E(X) and V(X) gives

EðXÞ ¼ np

ð3:16Þ
VðXÞ ¼ N � n

N � 1

� �
� npð1� pÞ

Expression (3.16) shows that the means of the binomial and hypergeometric rv’s are

equal, whereas the variances of the two rv’s differ by the factor (N � n)/(N � 1),

often called the finite population correction factor. This factor is <1, so the

hypergeometric variable has smaller variance than does the binomial rv. The

correction factor can be written (1 � n/N)/(1 � 1/N), which is approximately 1

when n is small relative to N.

Example 3.45

(Example 3.44

continued)

In the animal-tagging example, n ¼ 10, M ¼ 5, and N ¼ 25, so p ¼ 5
25
¼ :2 and

EðXÞ ¼ 10 :2ð Þ ¼ 2

VðXÞ ¼ 15

24
ð10Þð:2Þð:8Þ ¼ ð:625Þð1:6Þ ¼ 1

If the sampling were carried out with replacement, V(X) ¼ 1.6.

Suppose the population size N is not actually known, so the value x is

observed and we wish to estimate N. It is reasonable to equate the observed sample

proportion of S’s, x/n, with the population proportion, M/N, giving the estimate

N̂ ¼ M � n
x

If M ¼ 100, n ¼ 40, and x ¼ 16, then N̂ ¼ 250. ■

Our general rule of thumb in Section 3.5 stated that if sampling is without

replacement but n/N is at most .05, then the binomial distribution can be used to

compute approximate probabilities involving the number of S’s in the sample. A

more precise statement is as follows: Let the population size, N, and number of

population S’s, M, get large with the ratio M/N approaching p. Then h(x; n, M, N)
approaches b(x; n, p); so for n/N small, the two are approximately equal provided

that p is not too near either 0 or 1. This is the rationale for our rule of thumb.

The Negative Binomial Distribution

The negative binomial rv and distribution are based on an experiment satisfying the

following conditions:

1. The experiment consists of a sequence of independent trials.

2. Each trial can result in either a success (S) or a failure (F).

3. The probability of success is constant from trial to trial, so P(S on trial i) ¼ p for
i ¼ 1, 2, 3 . . . .

4. The experiment continues (trials are performed) until a total of r successes has
been observed, where r is a specified positive integer.
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The random variable of interest is X ¼ the number of failures that precede the rth
success, and X is called a negative binomial random variable. In contrast to the

binomial rv, the number of successes is fixed and the number of trials is random.

Why the name “negative binomial?” Binomial probabilities are related to the terms

in the binomial theorem, and negative binomial probabilities are related to the

terms in the binomial theorem when the exponent is a negative integer. For details

see the proof for the last proposition of this section.

Possible values of X are 0, 1, 2, . . . . Let nb(x; r, p) denote the pmf of X. The
event {X ¼ x} is equivalent to {r � 1 S’s in the first (x + r � 1) trials and an S on

the (x + r)th trial} (e.g., if r ¼ 5 and x ¼ 10, then there must be four S’s in the first
14 trials and trial 15 must be an S). Since trials are independent,

nbðx; r ; pÞ ¼ PðX ¼ xÞ
¼ Pðr � 1 S

;

s on the first xþ r � 1 trialsÞ � PðSÞ ð3:17Þ

The first probability on the far right of Expression (3.17) is the binomial probability

xþ r � 1

r � 1

� �
pr�1ð1� pÞx where PðSÞ ¼ p

PROPOSITION The pmf of the negative binomial rv X with parameters r ¼ number of S’s
and p ¼ P(S) is

nbðx; r; pÞ ¼ xþ r � 1

r � 1

� �
prð1� pÞx x ¼ 0; 1; 2; . . .

Example 3.46 A pediatrician wishes to recruit 5 couples, each of whom is expecting their first

child, to participate in a new natural childbirth regimen. Let p ¼ P(a randomly

selected couple agrees to participate). If p ¼ .2, what is the probability that 15

couples must be asked before 5 are found who agree to participate? That is, with

S ¼ {agrees to participate}, what is the probability that 10 F’s occur before the

fifth S? Substituting r ¼ 5, p ¼ .2, and x ¼ 10 into nb(x; r, p) gives

nbð10; 5; 2Þ ¼ 14

4

� �
:25 :810 ¼ :034

The probability that at most 10 F’s are observed (at most 15 couples are asked) is

PðX � 10Þ ¼
X10
x ¼ 0

nbðx; 5; 2Þ ¼ :25
X10
x ¼ 0

xþ 4

4

� �
:8x ¼ :164

■

In some sources, the negative binomial rv is taken to be the number of trials

X + r rather than the number of failures.
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In the special case r ¼ 1, the pmf is

nbðx; 1; pÞ ¼ ð1� pÞxp x ¼ 0; 1; 2; . . . ð3:18Þ

In Example 3.10, we derived the pmf for the number of trials necessary to obtain the

first S, and the pmf there is similar to Expression (3.18). Both X ¼ number of F’s and
Y ¼ number of trials (¼ 1 + X) are referred to in the literature as geometric random
variables, and the pmf in (3.18) is called the geometric distribution. The name is

appropriate because the probabilities form a geometric series: p, (1� p)p, (1� p)2p,
. . . . To see that the sum of the probabilities is 1, recall that the sum of a geometric

series is a + ar + ar2 + � � � ¼ a/(1 � r) if |r| < 1, so for p > 0,

pþ ð1� pÞpþ ð1� pÞ2pþ � � � ¼ p

1� ð1� pÞ ¼ 1

In Example 3.18, the expected number of trials until the first S was shown to

be 1/p, so that the expected number of F’s until the first S is (1/p) � 1 ¼ (1 � p)/p.
Intuitively, we would expect to see r � (1 � p)/p F’s before the rth S, and this is

indeed E(X). There is also a simple formula for V(X).

PROPOSITION If X is a negative binomial rv with pmf nb(x; r, p), then

MXðtÞ ¼ pr

½1� etð1� pÞ�r EðXÞ ¼ rð1� pÞ
p

VðXÞ ¼ rð1� pÞ
p2

Proof In order to derive the moment generating function, we will use the

binomial theorem as generalized by Isaac Newton to allow negative exponents,

and this will help to explain the name of the distribution. If n is any real number, not

necessarily a positive integer,

ðaþ bÞn ¼
X1
x ¼ 0

n
x

� �
bxan�x

where

n
x

� �
¼ n � ðn� 1Þ � � � � � ðn� xþ 1Þ

x!
except that

n
0

� �
¼ 1

In the special case that x > 0 and n is a negative integer, n ¼ �r,

�r
x

� �
¼ �r � ð�r � 1Þ � � � � � ð�r � xþ 1Þ

x!

¼ ðr þ x� 1Þðr þ x� 2Þ � � � � � r
x!

ð�1Þx ¼ r þ x� 1

r � 1

� �
ð�1Þx
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Using this in the generalized binomial theorem with a ¼ 1 and b ¼ �u,

ð1� uÞ�r ¼
X1
x ¼ 0

r þ x� 1

r � 1

� �
ð�1Þxð�uÞx ¼

X1
x ¼ 0

r þ x� 1

r � 1

� �
ux

Now we can find the moment generating function for the negative binomial

distribution:

MXðtÞ ¼
X1
x ¼ 0

etx
r þ x� 1

r � 1

 !
prð1� pÞx ¼ pr

X1
x ¼ 0

r þ x� 1

r � 1

 !
½etð1� pÞ�x

¼ pr

½1� etð1� pÞ�r

The mean and variance of X can now be obtained from the moment generat-

ing function (Exercise 91). ■
Finally, by expanding the binomial coefficient in front of pr(1 � p)x and

doing some cancellation, it can be seen that nb(x; r, p) is well defined even when r
is not an integer. This generalized negative binomial distribution has been found to
fit observed data quite well in a wide variety of applications.

Exercises Section 3.6 (80–92)

80. A bookstore has 15 copies of a particular text-

book, of which 6 are first printings and the other

9 are second printings (later printings provide an

opportunity for authors to correct mistakes). Sup-

pose that 5 of these copies are randomly selected,

and let X be the number of first printings among

the selected copies.

a. What kind of a distribution does X have

(name and values of all parameters)?

b. Compute P(X ¼ 2), P(X � 2), and P(X � 2).

c. Calculate the mean value and standard devia-

tion of X.

81. Each of 12 refrigerators has been returned to a

distributor because of an audible, high-pitched,

oscillating noise when the refrigerator is running.

Suppose that 7 of these refrigerators have a

defective compressor and the other 5 have less

serious problems. If the refrigerators are exam-

ined in random order, let X be the number among

the first 6 examined that have a defective com-

pressor. Compute the following:

a. P(X ¼ 5)

b. P(X � 4)

c. The probability that X exceeds its mean value

by more than 1 standard deviation.

d. Consider a large shipment of 400 refrigera-

tors, of which 40 have defective compressors.

If X is the number among 15 randomly

selected refrigerators that have defective

compressors, describe a less tedious way to

calculate (at least approximately) P(X � 5)

than to use the hypergeometric pmf.

82. An instructor who taught two sections of statis-

tics last term, the first with 20 students and the

second with 30, decided to assign a term project.

After all projects had been turned in, the instruc-

tor randomly ordered them before grading. Con-

sider the first 15 graded projects.

a. What is the probability that exactly 10 of

these are from the second section?

b. What is the probability that at least 10 of these

are from the second section?

c. What is the probability that at least 10 of these

are from the same section?

d. What are the mean value and standard devia-

tion of the number among these 15 that are

from the second section?

e. What are the mean value and standard devia-

tion of the number of projects not among

these first 15 that are from the second section?

144 CHAPTER 3 Discrete Random Variables and Probability Distributions



83. A geologist has collected 10 specimens of basal-

tic rock and 10 specimens of granite. The geolo-

gist instructs a laboratory assistant to randomly

select 15 of the specimens for analysis.

a. What is the pmf of the number of granite

specimens selected for analysis?

b. What is the probability that all specimens of

one of the two types of rock are selected for

analysis?

c. What is the probability that the number of

granite specimens selected for analysis is

within 1 standard deviation of its mean value?

84. Suppose that 20% of all individuals have an

adverse reaction to a particular drug. A medical

researcher will administer the drug to one indi-

vidual after another until the first adverse reac-

tion occurs. Define an appropriate random

variable and use its distribution to answer the

following questions.

a. What is the probability that when the experi-

ment terminates, four individuals have not

had adverse reactions?

b. What is the probability that the drug is admi-

nistered to exactly five individuals?

c. What is the probability that at most four indi-

viduals do not have an adverse reaction?

d. How many individuals would you expect to

not have an adverse reaction, and to how

many individuals would you expect the drug

to be given?

e. What is the probability that the number of

individuals given the drug is within 1 standard

deviation of what you expect?

85. Twenty pairs of individuals playing in a bridge

tournament have been seeded 1, . . . , 20. In the

first part of the tournament, the 20 are randomly

divided into 10 east–west pairs and 10 north–-

south pairs.

a. What is the probability that x of the top 10

pairs end up playing east–west?

b. What is the probability that all of the top five

pairs end up playing the same direction?

c. If there are 2n pairs, what is the pmf of X ¼
the number among the top n pairs who end

up playing east–west? What are E(X) and

V(X)?

86. A second-stage smog alert has been called in an

area of Los Angeles County in which there are 50

industrial firms. An inspector will visit 10 ran-

domly selected firms to check for violations of

regulations.

a. If 15 of the firms are actually violating at least

one regulation, what is the pmf of the number

of firms visited by the inspector that are in

violation of at least one regulation?

b. If there are 500 firms in the area, of which 150

are in violation, approximate the pmf of part

(a) by a simpler pmf.

c. For X ¼ the number among the 10 visited that

are in violation, compute E(X) and V(X) both
for the exact pmf and the approximating pmf

in part (b).

87. Suppose that p ¼ P(male birth) ¼ .5. A couple

wishes to have exactly two female children in

their family. They will have children until this

condition is fulfilled.

a. What is the probability that the family has x
male children?

b. What is the probability that the family has

four children?

c. What is the probability that the family has at

most four children?

d. How many male children would you expect

this family to have? How many children

would you expect this family to have?

88. A family decides to have children until it has

three children of the same gender. Assuming

P(B) ¼ P(G) ¼ .5, what is the pmf of X ¼ the

number of children in the family?

89. Three brothers and their wives decide to have

children until each family has two female chil-

dren. Let X ¼ the total number of male children

born to the brothers. What is E(X), and how does

it compare to the expected number of male

children born to each brother?

90. Individual A has a red die and B has a green die

(both fair). If they each roll until they obtain five

“doubles” (1�1, . . . , 6�6), what is the pmf of

X ¼ the total number of times a die is rolled?

What are E(X) and V(X)?

91. Use the moment generating function of the neg-

ative binomial distribution to derive

a. The mean

b. The variance

92. If X is a negative binomial rv, then Y ¼ r + X
is the total number of trials necessary to obtain

r S’s. Obtain the mgf of Y and then its mean value

and variance. Are the mean and variance intui-

tively consistent with the expressions for E(X)
and V(X)? Explain.
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3.7 The Poisson Probability Distribution
The binomial, hypergeometric, and negative binomial distributions were all

derived by starting with an experiment consisting of trials or draws and applying

the laws of probability to various outcomes of the experiment. There is no simple

experiment on which the Poisson distribution is based, although we will shortly

describe how it can be obtained by certain limiting operations.

DEFINITION A random variable X is said to have a Poisson distribution with parameter

l (l > 0) if the pmf of X is

pðx; lÞ ¼ e�llx

x!
x ¼ 0; 1; 2; . . .

We shall see shortly that l is in fact the expected value of X, so the pmf

can be written using m in place of l. Because l must be positive, p(x; l) > 0

for all possible x values. The fact that
P1

x¼0 pðx; lÞ ¼ 1 is a consequence of

the Maclaurin infinite series expansion of el, which appears in most calculus texts:

el ¼ 1þ lþ l2

2!
þ l3

3!
þ � � � ¼

X1
x ¼ 0

lx

x!
ð3:19Þ

If the two extreme terms in Expression (3.19) are multiplied by e�l and then e�l is

placed inside the summation, the result is

1 ¼
X1
x ¼ 0

e�l l
x

x!

which shows that p(x; l) fulfills the second condition necessary for specifying a pmf.

Example 3.47 Let X denote the number of creatures of a particular type captured in a trap during a

given time period. Suppose that X has a Poisson distribution with l ¼ 4.5, so on

average traps will contain 4.5 creatures. [The article “Dispersal Dynamics of the

Bivalve Gemma gemma in a Patchy Environment” (Ecol. Monogr., 1995: 1–20)
suggests this model; the bivalve Gemma gemma is a small clam.] The probability

that a trap contains exactly five creatures is

PðX ¼ 5Þ ¼ e�4:5 ð4:5Þ5
5!

¼ :1708

The probability that a trap has at most five creatures is

PðX � 5Þ ¼
X5
x ¼ 0

e�4:5 ð4:5Þx
x!

¼ e�4:5 1þ 4:5þ 4:52

2!
þ � � � þ 4:55

5!

� �
¼ :7029

■
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The Poisson Distribution as a Limit

The rationale for using the Poisson distribution in many situations is provided by

the following proposition.

PROPOSITION Suppose that in the binomial pmf b(x; n, p) we let n ! 1 and p ! 0 in such

a way that np approaches a value l > 0. Then b(x; n, p) ! p(x; l).

Proof Begin with the binomial pmf:

bðx; n; pÞ ¼ n
x

� �
pxð1� pÞn�x ¼ n!

x!ðn� xÞ! p
xð1� pÞn�x

¼ n � ðn� 1Þ � � � � � ðn� xþ 1Þ
x!

pxð1� pÞn�x

Include nx in both the numerator and denominator:

bðx; n; pÞ ¼ n

n

n� 1

n
� � � n� xþ 1

n
� ðnpÞ

x

x!
� ð1� pÞn
ð1� pÞx

Taking the limit as n ! 1 and p ! 0 with np ! l,

lim
n!1 bðx; n; pÞ ¼ 1 � 1 � � � � � 1 � l

x

x!
� lim

n!1
ð1� np=nÞn

1

� �

The limit on the right can be obtained from the calculus theorem that says the limit

of (1 � an/n)
n is e�a if an ! a. Because np ! l,

lim
n!1 bðx; n; pÞ ¼ lx

x!
� lim
n!1 1� np

n

� �n
¼ lxe�l

x!
¼ pðx; lÞ ■

It is interesting that Siméon Poisson discovered his distribution by this approach in

the 1830s, as a limit of the binomial distribution. According to the proposition, in
any binomial experiment for which n is large and p is small, b(x; n, p) � p(x; l)
where l ¼ np. As a rule of thumb, this approximation can safely be applied if

n > 50 and np < 5.

Example 3.48 If a publisher of nontechnical books takes great pains to ensure that its books are

free of typographical errors, so that the probability of any given page containing at

least one such error is .005 and errors are independent from page to page, what is

the probability that one of its 400-page novels will contain exactly one page with

errors? At most three pages with errors?

With S denoting a page containing at least one error and F an error-free page,

the number X of pages containing at least one error is a binomial rv with n ¼ 400

and p ¼ .005, so np ¼ 2. We wish

PðX ¼ 1Þ ¼ bð1; 400; :005Þ � pð1; 2Þ ¼ e�221

1!
¼ :270671

The binomial value is b(1; 400, .005) ¼ .270669, so the approximation is good to

five decimal places here.
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Similarly,

PðX � 3Þ �
X3
x ¼ 0

pðx; 2Þ ¼
X3
x ¼ 0

e�2 2
x

x!

¼ :135335þ :270671 þ :270671þ :180447

¼ :8571

and this again is quite close to the binomial value P(X � 3) ¼ .8576. ■

Table 3.2 shows the Poisson distribution for l ¼ 3 along with three binomial

distributions with np ¼ 3, and Figure 3.8 (from R) plots the Poisson along with the

first two binomial distributions. The approximation is of limited use for n ¼ 30, but

of course the accuracy is better for n ¼ 100 and much better for n ¼ 300.

Table 3.2 Comparing the Poisson and three binomial distributions

x n ¼ 30, p ¼ .1 n ¼ 100, p ¼ .03 n ¼ 300, p ¼ .01 Poisson, l ¼ 3

0 0.042391 0.047553 0.049041 0.049787

1 0.141304 0.147070 0.148609 0.149361

2 0.227656 0.225153 0.224414 0.224042

3 0.236088 0.227474 0.225170 0.224042

4 0.177066 0.170606 0.168877 0.168031

5 0.102305 0.101308 0.100985 0.100819

6 0.047363 0.049610 0.050153 0.050409

7 0.018043 0.020604 0.021277 0.021604

8 0.005764 0.007408 0.007871 0.008102

9 0.001565 0.002342 0.002580 0.002701

10 0.000365 0.000659 0.000758 0.000810

0 2 4 6 8 10

0.20

0.15

0.10

0.05

0.00

Bin,n=30(o); Bin,n=100(x); Poisson(|)

x

P
(x
)

Figure 3.8 Comparing a Poisson and two binomial distributions
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Appendix Table A.2 exhibits the cdf F(x; l) for l ¼ .1, .2, . . . , 1, 2, . . . , 10,
15, and 20. For example, if l ¼ 2, then P(X � 3) ¼ F(3; 2) ¼ .857 as in Example

3.48, whereas P(X ¼ 3) ¼ F(3; 2) – F(2; 2) ¼ .180. Alternatively, many statistical

computer packages will generate p(x; l) and F(x; l) upon request.

The Mean, Variance and MGF of X

Since b(x; n, p) ! p(x; l) as n ! 1, p ! 0, np ! l, the mean and variance of a

binomial variable should approach those of a Poisson variable. These limits are

np ! l and np(1 � p) ! l.

PROPOSITION If X has a Poisson distribution with parameter l, then E(X) ¼ V(X) ¼ l.

These results can also be derived directly from the definitions of mean and variance

(see Exercise 104 for the mean).

Example 3.49

(Example 3.47

continued)

Both the expected number of creatures trapped and the variance of the number

trapped equal 4.5, and sX ¼ ffiffiffi
l

p ¼ ffiffiffiffiffiffiffi
4:5

p ¼ 2:12. ■

The moment generating function of the Poisson distribution is easy to derive,

and it gives a direct route to the mean and variance (Exercise 108).

PROPOSITION The Poisson moment generating function is

MXðtÞ ¼ elðe
t�1Þ

Proof The mgf is by definition

MXðtÞ ¼ EðetxÞ ¼
X1
x ¼ 0

etxe�l l
x

x!
¼ e�l

X1
x ¼ 0

ðletÞx
x!

¼ e�lele
t ¼ ele

t�l

This uses the series expansion
P1
x ¼ 0

ux = x! ¼ eu: ■

The Poisson Process

A very important application of the Poisson distribution arises in connection with

the occurrence of events of a particular type over time. As an example, suppose that

starting from a time point that we label t ¼ 0, we are interested in counting the

number of radioactive pulses recorded by a Geiger counter. We make the following

assumptions about the way in which pulses occur:
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1. There exists a parameter a > 0 such that for any short time interval of length Dt,
the probability that exactly one pulse is received is a � Dt + o(Dt).3

2. The probability of more than one pulse being received during Dt is o(Dt) [which,
along with Assumption 1, implies that the probability of no pulses during Dt is
1 � a � Dt � o(Dt)].

3. The number of pulses received during the time interval Dt is independent of the
number received prior to this time interval.

Informally, Assumption 1 says that for a short interval of time, the probability of

receiving a single pulse is approximately proportional to the length of the time

interval, where a is the constant of proportionality. Now let Pk(t) denote the

probability that k pulses will be received by the counter during any particular

time interval of length t.

PROPOSITION Pk(t) ¼ e�at(at)k/k!, so that the number of pulses during a time interval of

length t is a Poisson rv with parameter l ¼ at. The expected number of pulses

during any such time interval is then at, so the expected number during a unit

interval of time is a.

See Exercise 107 for a derivation.

Example 3.50 Suppose pulses arrive at the counter at an average rate of 6/min, so that a ¼ 6.

To find the probability that in a .5-min interval at least one pulse is received, note

that the number of pulses in such an interval has a Poisson distribution with

parameter at ¼ 6(.5) ¼ 3 (.5 min is used because a is expressed as a rate per

minute). Then with X ¼ the number of pulses received in the 30-s interval,

Pð1 � XÞ ¼ 1� PðX ¼ 0Þ ¼ 1� e�330

0!
¼ :950 ■

If in Assumptions 1–3 we replace “pulse” by “event,” then the number of

events occurring during a fixed time interval of length t has a Poisson distribution

with parameter at. Any process that has this distribution is called a Poisson
process, and a is called the rate of the process. Other examples of situations giving

rise to a Poisson process include monitoring the status of a computer system over

time, with breakdowns constituting the events of interest; recording the number of

accidents in an industrial facility over time; answering calls at a telephone switch-

board; and observing the number of cosmic-ray showers from an observatory over

time.

Instead of observing events over time, consider observing events of some

type that occur in a two- or three-dimensional region. For example, we might select

on a map a certain region R of a forest, go to that region, and count the number of

trees. Each tree would represent an event occurring at a particular point in space.

3A quantity is o(Dt) (read “little o of delta t”) if, as Dt approaches 0, so does o(Dt)/ Dt. That is, o(Dt) is
even more negligible than Dt itself. The quantity (Dt)2 has this property, but sin(Dt) does not.
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Under assumptions similar to 1–3, it can be shown that the number of events

occurring in a region R has a Poisson distribution with parameter a � a(R), where
a(R) is the area or volume of R. The quantity a is the expected number of events per

unit area or volume.

Exercises Section 3.7 (93–109)

93. Let X, the number of flaws on the surface of a

randomly selected carpet of a particular type,

have a Poisson distribution with parameter

l ¼ 5. Use Appendix Table A.2 to compute the

following probabilities:

a. P(X � 8)

b. P(X ¼ 8)

c. P(9 � X)
d. P(5 � X � 8)

e. P(5 < X < 8)

94. Suppose the number X of tornadoes observed in a

particular region during a 1-year period has a

Poisson distribution with l ¼ 8.

a. Compute P(X � 5).

b. Compute P(6 � X � 9).

c. Compute P(10 � X).
d. What is the probability that the observed

number of tornadoes exceeds the expected

number by more than 1 standard deviation?

95. Suppose that the number of drivers who travel

between a particular origin and destination dur-

ing a designated time period has a Poisson distri-

bution with parameter l ¼ 20 (suggested in the

article “Dynamic Ride Sharing: Theory and

Practice,” J. Transp. Engrg., 1997: 308–312).

What is the probability that the number of drivers

will

a. Be at most 10?

b. Exceed 20?

c. Be between 10 and 20, inclusive? Be strictly

between 10 and 20?

d. Be within 2 standard deviations of the mean

value?

96. Consider writing onto a computer disk and then

sending it through a certifier that counts the

number of missing pulses. Suppose this number

X has a Poisson distribution with parameter

l ¼ .2. (Suggested in “Average Sample Number

for Semi-Curtailed Sampling Using the Poisson

Distribution,” J. Qual. Tech., 1983: 126–129.)
a. What is the probability that a disk has exactly

one missing pulse?

b. What is the probability that a disk has at least

two missing pulses?

c. If two disks are independently selected, what

is the probability that neither contains a

missing pulse?

97. An article in the Los Angeles Times (Dec. 3,

1993) reports that 1 in 200 people carry the

defective gene that causes inherited colon can-

cer. In a sample of 1000 individuals, what is

the approximate distribution of the number who

carry this gene? Use this distribution to calcu-

late the approximate probability that

a. Between 5 and 8 (inclusive) carry the gene.

b. At least 8 carry the gene.

98. Suppose that only .10% of all computers of a

certain type experience CPU failure during the

warranty period. Consider a sample of 10,000

computers.

a. What are the expected value and standard

deviation of the number of computers in the

sample that have the defect?

b. What is the (approximate) probability that

more than 10 sampled computers have the

defect?

c. What is the (approximate) probability that no

sampled computers have the defect?

99. Suppose small aircraft arrive at an airport

according to a Poisson process with rate a ¼ 8/h,

so that the number of arrivals during a time

period of t hours is a Poisson rv with parameter

l ¼ 8t.
a. What is the probability that exactly 6 small

aircraft arrive during a 1-h period? At least

6? At least 10?

b. What are the expected value and standard

deviation of the number of small aircraft

that arrive during a 90-min period?

c. What is the probability that at least 20 small

aircraft arrive during a 2 1
2
h period? That at

most 10 arrive during this period?

100. The number of people arriving for treatment at

an emergency room can be modeled by a Pois-

son process with a rate parameter of 5/h.

a. What is the probability that exactly four

arrivals occur during a particular hour?
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b. What is the probability that at least four peo-

ple arrive during a particular hour?

c. How many people do you expect to arrive

during a 45-min period?

101. The number of requests for assistance received

by a towing service is a Poisson process with rate

a ¼ 4/h.

a. Compute the probability that exactly ten

requests are received during a particular 2-h

period.

b. If the operators of the towing service take a 30-

min break for lunch, what is the probability that

they do not miss any calls for assistance?

c. How many calls would you expect during

their break?

102. In proof testing of circuit boards, the probability

that any particular diode will fail is .01. Suppose

a circuit board contains 200 diodes.

a. How many diodes would you expect to fail,

and what is the standard deviation of the

number that are expected to fail?

b. What is the (approximate) probability that at

least four diodes will fail on a randomly

selected board?

c. If five boards are shipped to a particular cus-

tomer, how likely is it that at least four of

them will work properly? (A board works

properly only if all its diodes work.)

103. The article “Reliability-Based Service-Life

Assessment of Aging Concrete Structures” (J.
Struct. Engrg., 1993: 1600–1621) suggests that

a Poisson process can be used to represent the

occurrence of structural loads over time. Suppose

the mean time between occurrences of loads

(which can be shown to be ¼ 1/a) is .5 year.

a. How many loads can be expected to occur

during a 2-year period?

b. What is the probability that more than five

loads occur during a 2-year period?

c. How long must a time period be so that the

probability of no loads occurring during that

period is at most .1?

104. Let X have a Poisson distribution with parameter

l. Show that E(X) ¼ l directly from the defini-

tion of expected value. [Hint: The first term in

the sum equals 0, and then x can be canceled.

Now factor out l and show that what is left

sums to 1.]

105. Suppose that trees are distributed in a forest

according to a two-dimensional Poisson process

with parameter a, the expected number of trees

per acre, equal to 80.

a. What is the probability that in a certain quar-

ter-acre plot, there will be at most 16 trees?

b. If the forest covers 85,000 acres, what is the

expected number of trees in the forest?

c. Suppose you select a point in the forest and

construct a circle of radius .1 mile. Let X ¼ the

number of trees within that circular region.

What is the pmf of X? [Hint: 1 sq mile ¼ 640

acres.]

106. Automobiles arrive at a vehicle equipment inspec-

tion station according to a Poisson process with

rate a ¼ 10/h. Suppose that with probability .5 an

arriving vehicle will have no equipment viola-

tions.

a. What is the probability that exactly ten arrive

during the hour and all ten have no violations?

b. For any fixed y � 10, what is the probability

that y arrive during the hour, of which ten

have no violations?

c. What is the probability that ten “no-violation”

cars arrive during the next hour? [Hint: Sum
the probabilities in part (b) from y ¼ 10 to1.]

107. a. In a Poisson process, what has to happen in

both the time interval (0, t) and the interval
(t, t + Dt) so that no events occur in the

entire interval (0, t + Dt)? Use this and

Assumptions 1–3 to write a relationship

between P0(t + Dt) and P0(t).
b. Use the result of part (a) to write an expres-

sion for the difference P0(t + Dt) � P0(t).
Then divide by Dt and let Dt ! 0 to obtain

an equation involving (d/dt)P0(t), the deriva-
tive of P0(t) with respect to t.

c. Verify that P0(t) ¼ e�at satisfies the equation

of part (b).

d. It can be shown in a manner similar to parts

(a) and (b) that the Pk(t)’s must satisfy the

system of differential equations

d

dt
PkðtÞ ¼ aPk�1ðtÞ � aPkðtÞ k ¼ 1; 2; 3; . . .

Verify that Pk(t) ¼ e�at(at)k/k! satisfies the sys-

tem. (This is actually the only solution.)

108. a. Use derivatives of the moment generating

function to obtain the mean and variance for

the Poisson distribution.

b. As discussed in Section 3.4, obtain the Pois-

son mean and variance from RX(t) ¼ ln

[MX(t)]. In terms of effort, how does this

method compare with the one in part (a)?

109. Show that the binomial moment generating func-

tion converges to the Poisson moment generating
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function if we let n ! 1 and p ! 0 in such a

way that np approaches a value l > 0. [Hint: Use
the calculus theorem that was used in showing

that the binomial probabilities converge to the

Poisson probabilities.] There is in fact a theorem

saying that convergence of the mgf implies con-

vergence of the probability distribution. In par-

ticular, convergence of the binomial mgf to the

Poisson mgf implies b(x; n, p) ! p(x; l).

Supplementary Exercises (110–139)

110. Consider a deck consisting of seven cards,

marked 1, 2, . . . , 7. Three of these cards are

selected at random. Define an rvW byW ¼ the

sum of the resulting numbers, and compute the

pmf of W. Then compute m and s2. [Hint: Con-
sider outcomes as unordered, so that (1, 3, 7)

and (3, 1, 7) are not different outcomes. Then

there are 35 outcomes, and they can be listed.

(This type of rv actually arises in connection

with Wilcoxon’s rank-sum test, in which there

is an x sample and a y sample and W is the sum

of the ranks of the x’s in the combined sample.)]

111. After shuffling a deck of 52 cards, a dealer deals

out 5. Let X ¼ the number of suits represented

in the five-card hand.

a. Show that the pmf of X is

x 1 2 3 4

p(x) .002 .146 .588 .264

[Hint: p(1) ¼ 4P(all spades), p(2) ¼ 6P(only
spades and hearts with at least one of each),

and p(4) ¼ 4P(2 spades \ one of each other

suit).]

b. Compute m, s2, and s.

112. The negative binomial rv X was defined as the

number of F’s preceding the rth S. Let Y ¼ the

number of trials necessary to obtain the rth S. In
the same manner in which the pmf of X was

derived, derive the pmf of Y.

113. Of all customers purchasing automatic garage-

door openers, 75% purchase a chain-driven

model. Let X ¼ the number among the next

15 purchasers who select the chain-driven

model.

a. What is the pmf of X?
b. Compute P(X > 10).

c. Compute P(6 � X � 10).

d. Compute m and s2.
e. If the store currently has in stock 10 chain-

driven models and 8 shaft-driven models,

what is the probability that the requests of

these 15 customers can all be met from exist-

ing stock?

114. A friend recently planned a camping trip. He

had two flashlights, one that required a single 6-

V battery and another that used two size-D

batteries. He had previously packed two 6-V

and four size-D batteries in his camper. Sup-

pose the probability that any particular battery

works is p and that batteries work or fail inde-

pendently of one another. Our friend wants to

take just one flashlight. For what values of

p should he take the 6-V flashlight?

115. A k-out-of-n system is one that will function if

and only if at least k of the n individual compo-

nents in the system function. If individual com-

ponents function independently of one another,

each with probability .9, what is the probability

that a 3-out-of-5 system functions?

116. A manufacturer of flashlight batteries wishes to

control the quality of its product by rejecting

any lot in which the proportion of batteries

having unacceptable voltage appears to be too

high. To this end, out of each large lot (10,000

batteries), 25 will be selected and tested. If at

least 5 of these generate an unacceptable volt-

age, the entire lot will be rejected. What is the

probability that a lot will be rejected if

a. Five percent of the batteries in the lot have

unacceptable voltages?

b. Ten percent of the batteries in the lot have

unacceptable voltages?

c. Twenty percent of the batteries in the lot

have unacceptable voltages?

d. What would happen to the probabilities in

parts (a)–(c) if the critical rejection number

were increased from 5 to 6?

117. Of the people passing through an airport metal

detector, .5% activate it; let X ¼ the number

among a randomly selected group of 500 who

activate the detector.
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a. What is the (approximate) pmf of X?
b. Compute P(X ¼ 5).

c. Compute P(5 � X).

118. An educational consulting firm is trying to

decide whether high school students who have

never before used a hand-held calculator can

solve a certain type of problem more easily

with a calculator that uses reverse Polish logic

or one that does not use this logic. A sample of

25 students is selected and allowed to practice

on both calculators. Then each student is asked

to work one problem on the reverse Polish cal-

culator and a similar problem on the other. Let

p ¼ P(S), where S indicates that a student

worked the problem more quickly using reverse

Polish logic than without, and let X ¼ number

of S’s.
a. If p ¼ .5, what is P(7 � X � 18)?

b. If p ¼ .8, what is P(7 � X � 18)?

c. If the claim that p ¼ .5 is to be rejected when

either X � 7 or X � 18, what is the probabil-

ity of rejecting the claim when it is actually

correct?

d. If the decision to reject the claim p ¼ .5 is

made as in part (c), what is the probability that

the claim is not rejected when p ¼ .6? When

p ¼ .8?

e. What decision rule would you choose for

rejecting the claim p ¼ .5 if you wanted the

probability in part (c) to be at most .01?

119. Consider a disease whose presence can be iden-

tified by carrying out a blood test. Let p denote

the probability that a randomly selected individ-

ual has the disease. Suppose n individuals are

independently selected for testing. One way to

proceed is to carry out a separate test on each of

the n blood samples. A potentially more econom-

ical approach, group testing, was introduced dur-

ing World War II to identify syphilitic men

among army inductees. First, take a part of each

blood sample, combine these specimens, and

carry out a single test. If no one has the disease,

the result will be negative, and only the one test

is required. If at least one individual is diseased,

the test on the combined sample will yield a

positive result, in which case the n individual

tests are then carried out. If p ¼ .1 and n ¼ 3,

what is the expected number of tests using this

procedure? What is the expected number when

n ¼ 5? [The article “Random Multiple-Access

Communication and Group Testing” (IEEE
Trans. Commun., 1984: 769–774) applied these

ideas to a communication system in which the

dichotomy was active/ idle user rather than dis-

eased/nondiseased.]

120. Let p1 denote the probability that any particular

code symbol is erroneously transmitted through a

communication system. Assume that on different

symbols, errors occur independently of one

another. Suppose also that with probability p2
an erroneous symbol is corrected upon receipt.

Let X denote the number of correct symbols in a

message block consisting of n symbols (after the

correction process has ended). What is the prob-

ability distribution of X?

121. The purchaser of a power-generating unit

requires c consecutive successful start-ups before
the unit will be accepted. Assume that the out-

comes of individual start-ups are independent of

one another. Let p denote the probability that any
particular start-up is successful. The random

variable of interest is X ¼ the number of start-

ups that must be made prior to acceptance. Give

the pmf of X for the case c ¼ 2. If p ¼ .9, what is

P(X � 8)? [Hint: For x � 5, express p(x) “recur-
sively” in terms of the pmf evaluated at the

smaller values x � 3, x � 4, . . . , 2.] (This

problem was suggested by the article “Evalua-

tion of a Start-Up Demonstration Test,” J. Qual.
Tech., 1983: 103–106.)

122. A plan for an executive travelers’ club has been

developed by an airline on the premise that 10%

of its current customers would qualify for mem-

bership.

a. Assuming the validity of this premise, among

25 randomly selected current customers, what

is the probability that between 2 and 6 (inclu-

sive) qualify for membership?

b. Again assuming the validity of the premise,

what are the expected number of customers

who qualify and the standard deviation of the

number who qualify in a random sample of

100 current customers?

c. Let X denote the number in a random sample

of 25 current customers who qualify for mem-

bership. Consider rejecting the company’s

premise in favor of the claim that p > .10 if

x � 7. What is the probability that the com-

pany’s premise is rejected when it is actually

valid?

d. Refer to the decision rule introduced in part

(c). What is the probability that the com-

pany’s premise is not rejected even though

p ¼ .20 (i.e., 20% qualify)?
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123. Forty percent of seeds from maize (modern-day

corn) ears carry single spikelets, and the other

60% carry paired spikelets. A seed with single

spikelets will produce an ear with single spikelets

29% of the time, whereas a seed with paired

spikelets will produce an ear with single spikelets

26% of the time. Consider randomly selecting

ten seeds.

a. What is the probability that exactly five of

these seeds carry a single spikelet and pro-

duce an ear with a single spikelet?

b. What is the probability that exactly five of the

ears produced by these seeds have single spi-

kelets? What is the probability that at most

five ears have single spikelets?

124. A trial has just resulted in a hung jury because

eightmembers of the jury were in favor of a guilty

verdict and the other four were for acquittal. If the

jurors leave the jury room in random order and

each of the first four leaving the room is accosted

by a reporter in quest of an interview, what is the

pmf of X ¼ the number of jurors favoring acquit-

tal among those interviewed? Howmany of those

favoring acquittal do you expect to be inter-

viewed?

125. A reservation service employs five information

operators who receive requests for information

independently of one another, each according to

a Poisson process with rate a ¼ 2/min.

a. What is the probability that during a given

1-min period, the first operator receives no

requests?

b. What is the probability that during a given

1-min period, exactly four of the five opera-

tors receive no requests?

c. Write an expression for the probability that

during a given 1-min period, all of the opera-

tors receive exactly the same number of

requests.

126. Grasshoppers are distributed at random in a large

field according to a Poisson distribution with

parameter a ¼ 2 per square yard. How large

should the radius R of a circular sampling region

be taken so that the probability of finding at least

one in the region equals .99?

127. A newsstand has ordered five copies of a certain

issue of a photography magazine. Let X ¼ the

number of individuals who come in to purchase

this magazine. If X has a Poisson distribution

with parameter l ¼ 4, what is the expected num-

ber of copies that are sold?

128. Individuals A and B begin to play a sequence of

chess games. Let S ¼ {A wins a game}, and sup-

pose that outcomes of successive games are inde-

pendent with P(S) ¼ p and P(F) ¼ 1 � p (they

never draw). Theywill play until one of themwins

ten games. Let X ¼ the number of games played

(with possible values 10, 11, . . . , 19).
a. For x ¼ 10, 11, . . . , 19, obtain an expression

for p(x) ¼ P(X ¼ x).
b. If a draw is possible, with p ¼ P(S), q ¼ P(F),

1 � p � q ¼ P(draw), what are the possible

values of X? What is P(20 � X)? [Hint:
P(20 � X) ¼ 1 � P(X < 20).]

129. A test for the presence of a disease has probabil-

ity .20 of giving a false-positive reading (indicat-

ing that an individual has the disease when this is

not the case) and probability .10 of giving a false-

negative result. Suppose that ten individuals are

tested, five of whom have the disease and five of

whom do not. Let X ¼ the number of positive

readings that result.

a. Does X have a binomial distribution? Explain

your reasoning.

b. What is the probability that exactly three of

the ten test results are positive?

130. The generalized negative binomial pmf is given

by

nb x; r; pð Þ ¼ k r; xð Þ � pr 1� pð Þx
x ¼ 0; 1; 2; . . .

where

k r; xð Þ ¼
ðxþr�1Þðxþr�2Þ:::ðxþr�xÞ

x!
1

�
x ¼ 1; 2; . . .
x ¼ 0

Let X, the number of plants of a certain species

found in a particular region, have this distribu-

tion with p ¼ .3 and r ¼ 2.5. What is P(X ¼ 4)?

What is the probability that at least one plant is

found?

131. Define a function p(x; l, m) by

pðx; l; mÞ

¼
1

2
e�l l

x

x!
þ 1

2
e�m m

x

x!

0

:
x ¼ 0; 1; 2; . . .

otherwise

8<
:

a. Show that p(x; l, m) satisfies the two condi-

tions necessary for specifying a pmf. [Note: If
a firm employs two typists, one of whom

makes typographical errors at the rate of l
per page and the other at rate m per page

and they each do half the firm’s typing, then
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p(x; l, m) is the pmf of X ¼ the number of

errors on a randomly chosen page.]

b. If the first typist (rate l) types 60% of all

pages, what is the pmf of X of part (a)?

c. What is E(X) for p(x; l, m) given by the dis-

played expression?

d. What is s2 for p(x; l, m) given by that expres-
sion?

132. The mode of a discrete random variable X with

pmf p(x) is that value x* for which p(x) is largest
(the most probable x value).
a. Let X ~ Bin(n, p). By considering the ratio

b(x + 1; n, p)/b(x; n, p), show that b(x; n, p)
increases with x as long as x < np � (1 � p).
Conclude that the mode x* is the integer

satisfying (n + 1)p � 1 � x* � (n + 1)p.
b. Show that if X has a Poisson distribution with

parameter l, the mode is the largest integer

less than l. If l is an integer, show that both

l � 1 and l are modes.

133. For a particular insurance policy the number of

claims by a policy holder in 5 years is Poisson

distributed. If the filing of one claim is four times

as likely as the filing of two claims, find the

expected number of claims.

134. If X is a hypergeometric rv, show directly from

the definition that E(X) ¼ nM/N (consider only

the case n < M). [Hint: Factor nM/N out of the

sum for E(X), and show that the terms inside the

sum are of the form h(y; n � 1, M � 1, N � 1),

where y ¼ x � 1.]

135. Use the fact that

X
allx

ðx� mÞ2pðxÞ �
X

x:jx�mj�ks

ðx� mÞ2pðxÞ

to prove Chebyshev’s inequality, given in

Exercise 43 (Sect, 3.3).

136. The simple Poisson process of Section 3.7 is char-

acterized by a constant rate a at which events

occur per unit time. A generalization is to suppose

that the probability of exactly one event occur-

ring in the interval (t, t + Dt) is a(t) � Dt + o(Dt).
It can then be shown that the number of events

occurring during an interval [t1, t2] has a Poisson
distribution with parameter

l ¼
Z t2

t1

aðtÞdt

The occurrence of events over time in this situa-

tion is called a nonhomogeneous Poisson pro-
cess. The article “Inference Based on

Retrospective Ascertainment,” J. Amer. Statist.

Assoc., 1989: 360–372, considers the intensity

function

aðtÞ ¼ eaþbt

as appropriate for events involving transmission

of HIV (the AIDS virus) via blood transfusions.

Suppose that a ¼ 2 and b ¼ .6 (close to values

suggested in the paper), with time in years.

a. What is the expected number of events in the

interval [0, 4]? In [2, 6]?

b. What is the probability that at most 15 events

occur in the interval [0, .9907]?

137. Suppose a store sells two different coffee makers

of a particular brand, a basic model selling for

$30 and a fancy one selling for $50. Let X be the

number of people among the next 25 purchasing

this brand who choose the fancy one. Then

h(X) ¼ revenue ¼ 50X + 30(25 � X) ¼ 20X +
750, a linear function. If the choices are inde-

pendent and have the same probability, then how

is X distributed? Find the mean and standard

deviation of h(X). Explain why the choices

might not be independent with the same proba-

bility.

138. Let X be a discrete rv with possible values 0, 1, 2,

. . . or some subset of these. The function

hðsÞ ¼ EðsXÞ ¼
X1
x ¼ 0

sx � pðxÞ

is called the probability generating function [e.g.,

h(2) ¼ S2xp(x), h(3.7) ¼ S(3.7)xp(x), etc.].
a. Suppose X is the number of children born

to a family, and p(0) ¼ .2, p(1) ¼ .5, and

p(2) ¼ .3. Determine the pgf of X.
b. Determine the pgf when X has a Poisson

distribution with parameter l.
c. Show that h(1) ¼ 1.

d. Show that h0ðsÞ s¼0j ¼ pð1Þ (assuming that the

derivative can be brought inside the summa-

tion, which is justified). What results from

taking the second derivative with respect to

s and evaluating at s ¼ 0? The third deriva-

tive? Explain how successive differentiation

of h(s) and evaluation at s ¼ 0 “generates the

probabilities in the distribution.” Use this to

recapture the probabilities of (a) from the pgf.

[Note: This shows that the pgf contains all the
information about the distribution—knowing

h(s) is equivalent to knowing p(x).]

139. Three couples and two single individuals have

been invited to a dinner party. Assume indepen-

dence of arrivals to the party, and suppose that

the probability of any particular individual or
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any particular couple arriving late is .4 (the

two members of a couple arrive together).

Let X ¼ the number of people who show up

late for the party. Determine the pmf of X.

140. Consider a sequence of identical and indepen-

dent trials, each of which will be a success S or

failure F. Let p ¼ P(S) and q ¼ P(F).
a. Define a random variable X as the number of

trials necessary to obtain the first S. In Exam-

ple 3.18 we determined E(X) directly from

the definition. Here is another approach. Just

as P(B) ¼ P(B|A)P(A) + P(B|A0)P(A0), it can
be shown that E(X) ¼ E(X|A)P(A) +
E(X|A0)P(A0), where E(X|A) denotes the

expected value of X given that the event A
has occurred. Now let A ¼ {S on 1st trial}.

Show again that E(X) ¼ 1/p. [Hint: Denote E
(X) by m. Then given that the first trial is a

failure, one trial has been performed and,

starting from the second trial, we are still

looking for the first S. This implies that E(X|
A0) ¼ E(X|F) ¼ 1 + m.]

b. The expected value property in (a) can

be extended as follows. Let A1, A2, . . . , Ak

be a partition of the sample space (so

when the experiment is performed, exactly

one of these Ais will occur). Then E(X) ¼
E(X | A1) ∙ P(A1) + E(X | A2) ∙ P(A2) + � � � +
E(X | Ak) ∙ P(Ak). Let X ¼ the number of trials

necessary to obtain two consecutive Ss,
and determine E(X). [Hint: Consider the parti-
tion with k ¼ 3 and A1 ¼ {F}, A2 ¼ {SS},
A3 ¼ {SF}.] [Note: It is not possible to deter-

mine E(X) directly from the definition because

there is no formula for the pmf of X; the

complication is the word consecutive.]
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C H A P T E R F O U R

Continuous
Random Variables
and Probability
Distributions

Introduction
As mentioned at the beginning of Chapter 3, the two important types of random

variables are discrete and continuous. In this chapter, we study the second general

type of random variable that arises in many applied problems. Sections 4.1 and 4.2

present the basic definitions and properties of continuous random variables, their

probability distributions, and their moment generating functions. In Section 4.3,

we study in detail the normal random variable and distribution, unquestionably the

most important and useful in probability and statistics. Sections 4.4 and 4.5 discuss

some other continuous distributions that are often used in applied work. In

Section 4.6, we introduce a method for assessing whether given sample data is

consistent with a specified distribution. Section 4.7 discusses methods for finding

the distribution of a transformed random variable.



4.1 Probability Density Functions
and Cumulative Distribution Functions
A discrete random variable (rv) is one whose possible values either constitute a

finite set or else can be listed in an infinite sequence (a list in which there is a first

element, a second element, etc.). A random variable whose set of possible values is

an entire interval of numbers is not discrete.

Recall from Chapter 3 that a random variable X is continuous if (1) possible

values comprise either a single interval on the number line (for some A < B, any
number x between A and B is a possible value) or a union of disjoint intervals, and

(2) P(X ¼ c) ¼ 0 for any number c that is a possible value of X.

Example 4.1 If in the study of the ecology of a lake, we make depth measurements at randomly

chosen locations, then X ¼ the depth at such a location is a continuous rv. Here A is

the minimum depth in the region being sampled, and B is the maximum depth. ■

Example 4.2 If a chemical compound is randomly selected and its pH X is determined, then X is a

continuous rv because any pH value between 0 and 14 is possible. If more is known

about the compound selected for analysis, then the set of possible values might be a

subinterval of [0, 14], such as 5.5 � x � 6.5, but X would still be continuous. ■

Example 4.3 Let X represent the amount of time a randomly selected customer spends waiting

for a haircut before his/her haircut commences. Your first thought might be that X is

a continuous random variable, since a measurement is required to determine its

value. However, there are customers lucky enough to have no wait whatsoever

before climbing into the barber’s chair. So it must be the case that P(X ¼ 0) > 0.

Conditional on no chairs being empty, though, the waiting time will be continuous

since X could then assume any value between some minimum possible time A and a

maximum possible time B. This random variable is neither purely discrete nor

purely continuous but instead is a mixture of the two types. ■

One might argue that although in principle variables such as height, weight,

and temperature are continuous, in practice the limitations of our measuring

instruments restrict us to a discrete (though sometimes very finely subdivided)

world. However, continuous models often approximate real-world situations very

well, and continuous mathematics (the calculus) is frequently easier to work with

than the mathematics of discrete variables and distributions.

Probability Distributions for Continuous Variables

Suppose the variable X of interest is the depth of a lake at a randomly chosen point

on the surface. LetM ¼ the maximum depth (in meters), so that any number in the

interval [0, M] is a possible value of X. If we “discretize” X by measuring depth to

the nearest meter, then possible values are nonnegative integers less than or equal

toM. The resulting discrete distribution of depth can be pictured using a probability

histogram. If we draw the histogram so that the area of the rectangle above any

possible integer k is the proportion of the lake whose depth is (to the nearest meter)

k, then the total area of all rectangles is 1. A possible histogram appears in

Figure 4.1(a).

4.1 Probability Density Functions and Cumulative Distribution Functions 159



If depth is measured much more accurately and the same measurement axis

as in Figure 4.1(a) is used, each rectangle in the resulting probability histogram is

much narrower, although the total area of all rectangles is still 1. A possible

histogram is pictured in Figure 4.1(b); it has a much smoother appearance than

the histogram in Figure 4.1(a). If we continue in this way to measure depth more

and more finely, the resulting sequence of histograms approaches a smooth curve,

as pictured in Figure 4.1(c). Because for each histogram the total area of all

rectangles equals 1, the total area under the smooth curve is also 1. The probability

that the depth at a randomly chosen point is between a and b is just the area under

the smooth curve between a and b. It is exactly a smooth curve of the type pictured

in Figure 4.1(c) that specifies a continuous probability distribution.

DEFINITION Let X be a continuous rv. Then a probability distribution or probability
density function (pdf) of X is a function f(x) such that for any two numbers a
and b with a � b,

Pða � X � bÞ ¼
ðb
a

f ðxÞdx

That is, the probability that X takes on a value in the interval [a, b] is the area
above this interval and under the graph of the density function, as illustrated

in Figure 4.2. The graph of f(x) is often referred to as the density curve.

a b
x

 f(x)

Figure 4.2 P(a � X � b) ¼ the area under the density curve between a and b

a b c

0 M 0 M 0 M

Figure 4.1 (a) Probability histogram of depth measured to the nearest meter; (b) probability histogram

of depth measured to the nearest centimeter; (c) a limit of a sequence of discrete histograms
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For f(x) to be a legitimate pdf, it must satisfy the following two conditions:

1. f(x) � 0 for all x

2.
Ð1
�1 f ðxÞdx ¼ area under the entire graph of f ðxÞ½ � ¼ 1

Example 4.4 The direction of an imperfection with respect to a reference line on a circular object

such as a tire, brake rotor, or flywheel is, in general, subject to uncertainty.

Consider the reference line connecting the valve stem on a tire to the center

point, and let X be the angle measured clockwise to the location of an imperfection.

One possible pdf for X is

f ðxÞ ¼
1

360
0 � x <360

0 otherwise

8<
:

The pdf is graphed in Figure 4.3. Clearly f(x) � 0. The area under the density curve

is just the area of a rectangle: ðheightÞðbaseÞ ¼ 1
360

� �ð360Þ ¼ 1. The probability

that the angle is between 90� and 180� is

Pð90 � X � 180Þ ¼
ð180
90

1

360
dx ¼ x

360

���x¼180

x¼90
¼ 1

4
¼ :25

The probability that the angle of occurrence is within 90� of the reference line is

Pð0 � X � 90Þ þ Pð270 � X<360Þ ¼ :25þ :25 ¼ :50

Because whenever 0 � a � b � 360 in Example 4.4, P(a � X � b) depends only
on the width b � a of the interval, X is said to have a uniform distribution.

DEFINITION A continuous rv X is said to have a uniform distribution on the interval [A, B]
if the pdf of X is

f ðx;A;BÞ ¼
1

B� A
A � X � B

0 otherwise

8<
:

x

1

360

0 360
x

36027018090

f(x) f(x)

Shaded area = P(90 ≤ X ≤ 180)

Figure 4.3 The pdf and probability for Example 4.4 ■
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The graph of any uniform pdf looks like the graph in Figure 4.3 except that the

interval of positive density is [A, B] rather than [0, 360].

In the discrete case, a probability mass function (pmf) tells us how little

“blobs” of probability mass of various magnitudes are distributed along the mea-

surement axis. In the continuous case, probability density is “smeared” in a

continuous fashion along the interval of possible values. When density is smeared

uniformly over the interval, a uniform pdf, as in Figure 4.3, results.

When X is a discrete random variable, each possible value is assigned

positive probability. This is not true of a continuous random variable (that is,

the second condition of the definition is satisfied) because the area under a density

curve that lies above any single value is zero:

PðX ¼ cÞ ¼
ðc
c

f ðxÞ dx ¼ lim
e ! 0

ðcþe

c�e
f ðxÞ dx ¼ 0

The fact that P(X ¼ c) ¼ 0 when X is continuous has an important practical

consequence: The probability that X lies in some interval between a and b does not
depend on whether the lower limit a or the upper limit b is included in the

probability calculation:

Pða � X � bÞ ¼ Pða<X< bÞ ¼ Pða<X � bÞ ¼ Pða � X< bÞ ð4:1Þ

If X is discrete and both a and b are possible values (e.g., X is binomial with n ¼ 20

and a ¼ 5, b ¼ 10), then all four of these probabilities are different.

The zero probability condition has a physical analog. Consider a solid

circular rod with cross-sectional area ¼ 1 in2. Place the rod alongside a measure-

ment axis and suppose that the density of the rod at any point x is given by the value
f(x) of a density function. Then if the rod is sliced at points a and b and this segment

is removed, the amount of mass removed is
Ð b
a f ðxÞdx; if the rod is sliced just at the

point c, no mass is removed. Mass is assigned to interval segments of the rod but

not to individual points.

Example 4.5 “Time headway” in traffic flow is the elapsed time between the time that one car

finishes passing a fixed point and the instant that the next car begins to pass that point.

Let X ¼ the time headway for two randomly chosen consecutive cars on a freeway

during a period of heavy flow. The following pdf of X is essentially the one suggested

in “The Statistical Properties of Freeway Traffic” (Transp. Res., 11: 221–228):

f ðxÞ ¼ :15e�:15ðx�:5Þ x � :5
0 otherwise

�

The graph of f(x) is given in Figure 4.4; there is no density associated with

headway times less than .5, and headway density decreases rapidly (exponentially

fast) as x increases from .5. Clearly, f(x) � 0; to show that
Ð1
�1 f ðxÞdx ¼ 1 we use

the calculus result
Ð1
a e�kx dx ¼ 1=kð Þe�ka. Then

ð1
�1

f ðxÞ dx ¼
ð1
:5

:15e�:15ðx�:5Þ dx ¼ :15e:075
ð1
:5

e�:15x dx

¼ :15e:075 � 1

:15
e�:15ð:5Þ ¼ 1
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The probability that headway time is at most 5 s is

PðX � 5Þ ¼
ð5
�1

f ðxÞ dx ¼
ð5
:5

:15e�:15ðx�:5Þ dx ¼ :15e:075
ð5
:5

e�:15x dx

¼ :15e:075 � �1

:15
e�:15x

����
x¼5

x¼:5

¼ e:075ð�e�:75 þ e�:075Þ

¼ 1:078ð�:472þ :928Þ ¼ :491 ¼ Pðless than 5 sÞ ¼ PðX<5Þ ■

Unlike discrete distributions such as the binomial, hypergeometric, and

negative binomial, the distribution of any given continuous rv cannot usually be

derived using simple probabilistic arguments. Instead, one must make a judicious

choice of pdf based on prior knowledge and available data. Fortunately, some

general pdf families have been found to fit well in a wide variety of experimental

situations; several of these are discussed later in the chapter.

Just as in the discrete case, it is often helpful to think of the population of

interest as consisting of X values rather than individuals or objects. The pdf is then a

model for the distribution of values in this numerical population, and from this

model various population characteristics (such as the mean) can be calculated.

Several of the most important concepts introduced in the study of discrete

distributions also play an important role for continuous distributions. Definitions

analogous to those in Chapter 3 involve replacing summation by integration.

The Cumulative Distribution Function

The cumulative distribution function (cdf) F(x) for a discrete rv X gives, for

any specified number x, the probability P(X � x). It is obtained by summing the

pmf p(y) over all possible values y satisfying y � x. The cdf of a continuous rv

gives the same probabilities P(X � x) and is obtained by integrating the pdf f(y)
between the limits �1 and x.

DEFINITION The cumulative distribution function F(x) for a continuous rv X is defined

for every number x by

FðxÞ ¼ PðX � xÞ ¼
ðx
�1

f ðyÞdy

For each x, F(x) is the area under the density curve to the left of x. This is
illustrated in Figure 4.5, where F(x) increases smoothly as x increases.

x

 .15

.5 5 10 15

f (x)
P (X ≤ 5)

0

Figure 4.4 The density curve for headway time in Example 4.5
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Example 4.6 Let X, the thickness of a membrane, have a uniform distribution on [A, B]. The
density function is shown in Figure 4.6. For x < A, F(x) ¼ 0, since there is no area

under the graph of the density function to the left of such an x. For x � B, F(x) ¼ 1,

since all the area is accumulated to the left of such an x. Finally, for A � x � B,

FðxÞ ¼
ðx
�1

f ðyÞdy ¼
ðx
A

1

B� A
dy ¼ 1

B� A
� y
����
y¼x

y¼A

¼ x� A

B� A

The entire cdf is

FðxÞ ¼
0 x < A

x� A

B� A
A � x < B

1 x � B

8>><
>>:

The graph of this cdf appears in Figure 4.7.

1

A B A Bxx

f(x )

B − A
1

B − A

Shaded area = F (x )

Figure 4.6 The pdf for a uniform distribution

A B x

1

F(x)

Figure 4.7 The cdf for a uniform distribution ■

Figure 4.5 A pdf and associated cdf
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Using F(x) to Compute Probabilities

The importance of the cdf here, just as for discrete rv’s, is that probabilities of

various intervals can be computed from a formula or table for F(x).

PROPOSITION Let X be a continuous rv with pdf f(x) and cdf F(x). Then for any number a,

P X > að Þ ¼ 1� FðaÞ
and for any two numbers a and b with a < b,

P a � X � bð Þ ¼ FðbÞ � FðaÞ

Figure 4.8 illustrates the second part of this proposition; the desired probability is

the shaded area under the density curve between a and b, and it equals the

difference between the two shaded cumulative areas.

Example 4.7 Suppose the pdf of the magnitude X of a dynamic load on a bridge (in newtons) is

given by

f ðxÞ ¼
1

8
þ 3

8
x 0 � x � 2

0 otherwise

8<
:

For any number x between 0 and 2,

FðxÞ ¼
ðx
�1

f ðyÞdy ¼
ðx
0

1

8
þ 3

8
y

� �
dy ¼ x

8
þ 3x2

16

Thus

FðxÞ ¼
0 x < 0

x

8
þ 3x2

16
0 � x � 2

1 2 < x

8>><
>>:

The graphs of f(x) and F(x) are shown in Figure 4.9. The probability that the load is
between 1 and 1.5 is

Pð1 � X � 1:5Þ ¼ Fð1:5Þ � Fð1Þ ¼ 1

8
ð1:5Þ þ 3

16
ð1:5Þ2

� 	
� 1

8
ð1Þ þ 3

16
ð1Þ2

� 	

¼ 19

64
¼ :297

a b b a

f(x)

= −

Figure 4.8 Computing P(a � X � b) from cumulative probabilities
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The probability that the load exceeds 1 is

PðX > 1Þ ¼ 1� PðX � 1Þ ¼ 1� Fð1Þ ¼ 1� 1

8
ð1Þ þ 3

16
ð1Þ2

� 	
¼ 11

16
¼ :688

■

Once the cdf has been obtained, any probability involving X can easily be

calculated without any further integration.

Obtaining f (x) from F(x)

For X discrete, the pmf is obtained from the cdf by taking the difference between

two F(x) values. The continuous analog of a difference is a derivative. The

following result is a consequence of the Fundamental Theorem of Calculus.

PROPOSITION If X is a continuous rv with pdf f(x) and cdf F(x), then at every x at which the

derivative F0(x) exists, F0(x) ¼ f(x).

Example 4.8

(Example 4.6

continued)

When X has a uniform distribution, F(x) is differentiable except at x ¼ A and

x ¼ B, where the graph of F(x) has sharp corners. Since F(x) ¼ 0 for x < A
and F(x) ¼ 1 for x > B, F0(x) ¼ 0 ¼ f(x) for such x. For A < x < B,

F0ðxÞ ¼ d

dx

x� A

B� A

� �
¼ 1

B� A
¼ f ðxÞ

■

Percentiles of a Continuous Distribution

When we say that an individual’s test score was at the 85th percentile of the

population, we mean that 85% of all population scores were below that score and

15% were above. Similarly, the 40th percentile is the score that exceeds 40% of all

scores and is exceeded by 60% of all scores.

1
8

7
8

20 2

1

xx

f(x) F(x)

Figure 4.9 The pdf and cdf for Example 4.7
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DEFINITION Let p be a number between 0 and 1. The (100p)th percentile of the distribu-
tion of a continuous rv X, denoted by �(p), is defined by

p ¼ F½�ðpÞ� ¼
ð�ðpÞ
�1

f ðyÞdy ð4:2Þ

According to Expression (4.2), �(p) is that value on the measurement axis such that

100p% of the area under the graph of f(x) lies to the left of �(p) and 100(1 � p)%
lies to the right. Thus �(.75), the 75th percentile, is such that the area under the

graph of f(x) to the left of �(.75) is .75. Figure 4.10 illustrates the definition.

Example 4.9 The distribution of the amount of gravel (in tons) sold by a construction supply

company in a given week is a continuous rv X with pdf

f ðxÞ ¼
3

2
ð1� x2Þ 0 � x � 1

0 otherwise

(

The cdf of sales for any x between 0 and 1 is

FðxÞ ¼
ðx
0

3

2
ð1� y2Þdy ¼3

2
y� y3

3

� �����
y¼x

y¼0

¼ 3

2
x� x3

3

� �

The graphs of both f(x) and F(x) appear in Figure 4.11. The (100p)th percentile of

this distribution satisfies the equation

p ¼ F½�ðpÞ� ¼ 3

2
�ðpÞ � �ðpÞ½ �3

3

" #

Figure 4.10 The (100p)th percentile of a continuous distribution

4.1 Probability Density Functions and Cumulative Distribution Functions 167



that is,

�ðpÞ½ �3 � 3�ðpÞ þ 2p ¼ 0

For the 50th percentile, p ¼ .5, and the equation to be solved is �3 � 3� + 1 ¼ 0;

the solution is � ¼ �(.5) ¼ .347. If the distribution remains the same from week to

week, then in the long run 50% of all weeks will result in sales of less than .347 tons

and 50% in more than .347 tons.

■

DEFINITION Themedian of a continuous distribution, denoted by ~m, is the 50th percentile,
so ~m satisfies :5 ¼ Fð~mÞ. That is, half the area under the density curve is to the
left of ~m and half is to the right of ~m:

A continuous distribution whose pdf is symmetric—which means that the graph of

the pdf to the left of some point is a mirror image of the graph to the right of that

point—has median ~m equal to the point of symmetry, since half the area under

the curve lies to either side of this point. Figure 4.12 gives several examples.

The amount of error in a measurement of a physical quantity is often assumed to

have a symmetric distribution.

Figure 4.11 The pdf and cdf for Example 4.9

xx x
A B

f (x) f (x) f (x)

Figure 4.12 Medians of symmetric distributions
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Exercises Section 4.1 (1–17)

1. Let X denote the amount of time for which a book

on 2-hour reserve at a college library is checked

out by a randomly selected student and suppose

that X has density function

f ðxÞ ¼ :5x 0 � x � 2

0 otherwise

�

Calculate the following probabilities:

a. P(X � 1)

b. P(.5 � X � 1.5)

c. P(1.5 < X)

2. Suppose the reaction temperature X (in �C) in a

chemical process has a uniform distribution with

A ¼ �5 and B ¼ 5.

a. Compute P(X < 0).

b. Compute P(�2.5 < X < 2.5).

c. Compute P(�2 � X � 3).

d. For k satisfying�5 < k < k + 4 < 5, compute

P(k < X < k + 4). Interpret this in words.

3. Suppose the error involved in making a measure-

ment is a continuous rv X with pdf

f ðxÞ ¼ :09375ð4� x2Þ
0

� �2 � x � 2

otherwise

a. Sketch the graph of f(x).
b. Compute P(X > 0).

c. Compute P(�1 < X < 1).

d. Compute P(X < �.5 or X > .5).

4. Let X denote the vibratory stress (psi) on a wind

turbine blade at a particular wind speed in a wind

tunnel. The article “Blade Fatigue Life Assessment

with Application to VAWTS” (J. Solar Energy
Engrg., 1982: 107–111) proposes the Rayleigh

distribution, with pdf

f ðx; yÞ ¼
x

y2
� e�x2=ð2y2Þ

0

(
x > 0

otherwise

as a model for the X distribution.

a. Verify that f(x; y) is a legitimate pdf.

b. Suppose y ¼ 100 (a value suggested by a

graph in the article). What is the probability

that X is at most 200? Less than 200? At least

200?

c. What is the probability that X is between 100

and 200 (again assuming y ¼ 100)?

d. Give an expression for P(X � x).

5. A college professor never finishes his lecture

before the end of the hour and always finishes

his lectures within 2 min after the hour. Let

X ¼ the time that elapses between the end of the

hour and the end of the lecture and suppose the pdf

of X is

f ðxÞ ¼ kx2 0 � x � 2

0 otherwise

�

a. Find the value of k. [Hint: Total area under the
graph of f(x) is 1.]

b. What is the probability that the lecture ends

within 1 min of the end of the hour?

c. What is the probability that the lecture con-

tinues beyond the hour for between 60 and

90 s?

d. What is the probability that the lecture con-

tinues for at least 90 s beyond the end of the

hour?

6. The grade point averages (GPA’s) for graduating

seniors at a college are distributed as a continuous

rv X with pdf

f ðxÞ ¼ k½1� ðx� 3Þ2�
0

�
2 � x � 4

otherwise

a. Sketch the graph of f(x).
b. Find the value of k.
c. Find the probability that a GPA exceeds 3.

d. Find the probability that a GPA is within .25

of 3.

e. Find the probability that a GPA differs from 3

by more than .5.

7. The time X (min) for a lab assistant to prepare the

equipment for a certain experiment is believed to

have a uniform distribution with A ¼ 25 and

B ¼ 35.

a. Write the pdf of X and sketch its graph.

b. What is the probability that preparation time

exceeds 33 min?

c. What is the probability that preparation time is

within 2 min of the mean time? [Hint: Identify
m from the graph of f(x).]

d. For any a such that 25 < a < a + 2 < 35,

what is the probability that preparation time is

between a and a + 2 min?

8. Commuting to work requires getting on a bus near

home and then transferring to a second bus. If the
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waiting time (in minutes) at each stop has a

uniform distribution with A ¼ 0 and B ¼ 5, then

it can be shown that the total waiting time Y has

the pdf

f ðyÞ ¼

1

25
y 0 � y < 5

2

5
� 1

25
y 5 � y � 10

0 y < 0 or y > 10

8>>>>><
>>>>>:

a. Sketch the pdf of Y.
b. Verify that

Ð1
�1 f ðyÞdy ¼ 1:

c. What is the probability that total waiting time is

at most 3 min?

d. What is the probability that total waiting time

is at most 8 min?

e. What is the probability that total waiting time is

between 3 and 8 min?

f. What is the probability that total waiting time is

either less than 2 min or more than 6 min?

9. Consider again the pdf of X ¼ time headway

given in Example 4.5. What is the probability

that time headway is

a. At most 6 s?

b. More than 6 s? At least 6 s?

c. Between 5 and 6 s?

10. A family of pdf’s that has been used to approxi-

mate the distribution of income, city population

size, and size of firms is the Pareto family. The

family has two parameters, k and y, both > 0, and

the pdf is

f ðx; k; yÞ ¼
k � yk
xkþ1

x � y

0 x< y

8<
:

a. Sketch the graph of f(x; k, y).
b. Verify that the total area under the graph

equals 1.

c. If the rv X has pdf f(x; k, y), for any fixed

b > y, obtain an expression for P(X � b).
d. For y < a < b, obtain an expression for the

probability P(a � X � b).

11. The cdf of checkout duration X as described in

Exercise 1 is

FðxÞ ¼

0 x < 0

x2

4
0 � x < 2

1 2 � x

8>>>><
>>>>:

Use this to compute the following:

a. P(X � 1)

b. P(.5 � X � 1)

c. P(X > .5)

d. The median checkout duration ~m ½solve :5 ¼
Fð~mÞ�

e. F0(x) to obtain the density function f(x)

12. The cdf for X (¼measurement error) of Exercise 3

is

FðxÞ ¼
0 x <� 2

1

2
þ 3

32
4x� x3

3

� �
� 2 � x < 2

1 2 � x

8>><
>>:

a. Compute P(X < 0).

b. Compute P(�1 < X < 1).

c. Compute P(.5 < X).
d. Verify that f(x) is as given in Exercise 3 by

obtaining F0(x).
e. Verify that ~m ¼ 0:

13. Example 4.5 introduced the concept of time

headway in traffic flow and proposed a

particular distribution for X ¼ the headway

between two randomly selected consecutive cars

(sec). Suppose that in a different traffic environ-

ment, the distribution of time headway has

the form

f ðxÞ ¼
k

x4
x> 1

0 x � 1

8<
:

a. Determine the value of k for which f(x) is a

legitimate pdf.

b. Obtain the cumulative distribution function.

c. Use the cdf from (b) to determine the prob-

ability that headway exceeds 2 s and also the

probability that headway is between 2 and 3 s.

14. Let X denote the amount of space occupied by an

article placed in a 1-ft3 packing container. The pdf

of X is

f ðxÞ ¼ 90x8ð1� xÞ 0< x< 1

0 otherwise

(

a. Graph the pdf. Then obtain the cdf of X and

graph it.

b. What is P(X � .5) [i.e., F(.5)]?
c. Using part (a), what is P(.25 < X � .5)? What

is P(.25 � X � .5)?

d. What is the 75th percentile of the distribution?
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15. Answer parts (a)–(d) of Exercise 14 for the

random variable X, lecture time past the hour,

given in Exercise 5.

16. Let X be a continuous rv with cdf

FðxÞ ¼

0 x � 0

x

4
1þ ln

4

x

� �� 	
0< x � 4

1 x> 4

8>>>><
>>>>:

[This type of cdf is suggested in the article “Varia-

bility in Measured Bedload-Transport Rates”

(Water Resources Bull., 1985:39–48) as a model

for a hydrologic variable.] What is

a. P(X � 1)?

b. P(1 � X � 3)?

c. The pdf of X?

17. Let X be the temperature in �C at which a chemical

reaction takes place, and let Y be the temperature

in �F (so Y ¼ 1.8X + 32).

a. If the median of the X distribution is ~m, show that

1:8~mþ 32 is the median of the Y distribution.

b. How is the 90th percentile of the Y distribution

related to the 90th percentile of the X distribu-

tion? Verify your conjecture.

c. More generally, if Y ¼ aX + b, how is any

particular percentile of the Y distribution

related to the corresponding percentile of the

X distribution?

4.2 Expected Values and Moment
Generating Functions
In Section 4.1 we saw that the transition from a discrete cdf to a continuous cdf

entails replacing summation by integration. The same thing is true in moving from

expected values and mgf’s of discrete variables to those of continuous variables.

Expected Values

For a discrete random variable X, E(X) was obtained by summing x · p(x) over
possible X values. Here we replace summation by integration and the pmf by the

pdf to get a continuous weighted average.

DEFINITION The expected or mean value of a continuous rv X with pdf f(x) is

mX ¼ EðXÞ ¼
ð1
�1

x � f ðxÞ dx

This expected value will exist provided that
Ð1
�1 jxj f ðxÞ dx < 1

Example 4.10

(Example 4.9

continued)

The pdf of weekly gravel sales X was

f ðxÞ ¼
3

2
ð1� x2Þ 0 � x � 1

0 otherwise

8<
:
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so

EðXÞ ¼
ð1
�1

x � f ðxÞdx ¼
ð1
0

x � 3
2
ð1� x2Þdx

¼ 3

2

ð1
0

ðx� x3Þdx ¼ 3

2

x2

2
� x4

4

� �����
x¼1

x¼0

¼ 3

8

If gravel sales are determined week after week according to the given pdf, then the

long-run average value of sales per week will be .375 ton. ■

When the pdf f(x) specifies a model for the distribution of values in a

numerical population, then m is the population mean, which is the most frequently

used measure of population location or center.

Often we wish to compute the expected value of some function h(X) of the
rv X. If we think of h(X) as a new rv Y, methods from Section 4.7 can be used to

derive the pdf of Y, and E(Y) can be computed from the definition. Fortunately, as

in the discrete case, there is an easier way to compute E[h(X)].

PROPOSITION If X is a continuous rv with pdf f(x) and h(X) is any function of X, then

E½hðXÞ� ¼ mhðXÞ ¼
ð1
�1

hðxÞ � f ðxÞ dx

This expected value will exist provided that
Ð1
�1 jhðxÞj f ðxÞ dx < 1

Example 4.11 Two species are competing in a region for control of a limited amount of a resource.

Let X ¼ the proportion of the resource controlled by species 1 and suppose X
has pdf

f ðxÞ ¼ 1 0 � x � 1

0 otherwise

�

which is a uniform distribution on [0, 1]. (In her book Ecological Diversity, E. C.
Pielou calls this the “broken-stick” model for resource allocation, since it is

analogous to breaking a stick at a randomly chosen point.) Then the species that

controls the majority of this resource controls the amount

hðXÞ ¼ maxðX; 1� XÞ ¼
1� X if 0 � X <

1

2

X if
1

2
� X � 1

8><
>:

The expected amount controlled by the species having majority control is then

E½hðXÞ� ¼
ð1
�1

maxðx; 1� xÞ � f ðxÞdx ¼
ð1
0

maxðx; 1� xÞ � 1 dx

¼
ð1=2
0

ð1� xÞ � 1 dxþ
ð1
1=2

x � 1 dx ¼ 3

4 ■
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The Variance and Standard Deviation

DEFINITION The variance of a continuous random variable Xwith pdf f(x) and mean value

m is

s2X ¼ VðXÞ ¼
ð1
�1

ðx� mÞ2 � f ðxÞ dx ¼ E½ðX � mÞ2�

The standard deviation (SD) of X is sX ¼ ffiffiffiffiffiffiffiffiffiffi
VðXÞp

:

As in the discrete case, s2X is the expected or average squared deviation about the

mean m, and sX can be interpreted roughly as the size of a representative deviation

from the mean value m. The easiest way to compute s2 is again to use a shortcut

formula.

PROPOSITION VðXÞ ¼ E X2
� �� EðXÞ½ �2

The derivation is similar to the derivation for the discrete case in Section 3.3.

Example 4.12

(Example 4.10

continued)

For X ¼ weekly gravel sales, we computed EðXÞ ¼ 3
8
. Since

EðX2Þ ¼
ð1
�1

x2 � f ðxÞdx ¼
ð1
0

x2 � 3
2
ð1� x2Þdx ¼ 3

2

ð1
0

ðx2 � x4Þdx ¼ 1

5
;

VðXÞ ¼ 1

5
� 3

8

� �2

¼ 19

320
¼ :059 and sX ¼ :244; ■

Often in applications it is the case that h(X) ¼ aX + b, a linear function of X.
For example, h(X) ¼ 1.8X + 32 gives the transformation of temperature from the

Celsius scale to the Fahrenheit scale. When h(X) is linear, its mean and variance are

easily related to those of X itself, as discussed for the discrete case in Section 3.3.

The derivations in the continuous case are the same. We have

EðaX þ bÞ ¼ aEðXÞ þ b VðaX þ bÞ ¼ a2s2X saXþb ¼ aj jsX

Example 4.13 When a dart is thrown at a circular target, consider the location of the landing point

relative to the bull’s eye. Let X be the angle in degrees measured from the

horizontal, and assume that X is uniformly distributed on [0, 360]. By Exercise 23,

E(X) ¼ 180 and sX ¼ 360=
ffiffiffiffiffi
12

p
. Define Y to be the transformed variable Y ¼

h(X) ¼ (2p/360)X � p, so Y is the angle measured in radians and Y is between

�p and p. Then

EðYÞ ¼ 2p
360

EðXÞ � p ¼ 2p
360

180� p ¼ 0:
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and

sY ¼ 2p
360

sX ¼ 2p
360

360ffiffiffiffiffi
12

p ¼ 2pffiffiffiffiffi
12

p ■

As a special case of the result E(aX + b) ¼ aE(X) + b, set a ¼ 1 and b ¼
�m, giving E(X � m) ¼ E(X) � m ¼ 0. This can be interpreted as saying that the

expected deviation from m is 0;
Ð1
�1 ðx� mÞf ðxÞdx ¼ 0: The integral suggests a

physical interpretation: With (x � m) as the lever arm and f(x) as the weight

function, the total torque is 0. Using a seesaw as a model with weight distributed

in accord with f(x), the seesaw will balance at m. Alternatively, if the region

bounded by the pdf curve and the x-axis is cut out of cardboard, then it will balance
if supported at m. If f(x) is symmetric, then it will balance at its point of symmetry,

which must be the mean m, assuming that the mean exists. The point of symmetry

for X in Example 4.13 is 180, so it follows that m ¼ 180. Recall from Section 4.1

that the median is also the point of symmetry, so the median of X in Example 4.13 is

also 180. In general, if the distribution is symmetric and the mean exists, then it

is equal to the median.

Approximating the Mean Value and Standard Deviation

Let X be a random variable with mean value m and variance s2. Then we have

already seen that the new random variable Y ¼ h(X) ¼ aX + b, a linear function

of X, has mean value am + b and variance a2s2. But what can be said about the

mean and variance of Y if h(x) is a nonlinear function? The following result is

referred to as the “delta method”.

PROPOSITION Suppose h(x) is differentiable and that its derivative evaluated at m satisfies

h0ðmÞ 6¼ 0. Then if the variance of X is small, so that the distribution of X is

largely concentrated on an interval of values close to m, the mean value and

variance of Y ¼ h(X) can be approximated as follows:

E½hðXÞ� � hðmÞ; V½hðXÞ� � ½h0ðmÞ�2s2

The justification for these approximations is a first-order Taylor series expansion of

h(X) about m; that is, we approximate the function for values near m by the tangent

line to the function at the point (m, h(m)):

Y ¼ hðXÞ � hðmÞ þ h0ðmÞðX � mÞ
Taking the expected value of this gives E½hðXÞ� � hðmÞ, which validates the first

part of the proposition. The variance of the linear approximation is V½hðXÞ� �
½h0ðmÞ�2s2X as stated in the second part of the proposition.
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Example 4.14 A chemistry student determined the mass m and volume X of an aluminum chunk

and took the ratio to obtain the density Y ¼ h(X) ¼ m/X. The mass is measured

much more accurately, so for an approximate calculation it can be regarded as a

constant. The derivative of h(X) is �m/X2, so

s2Y � �m

m2X

� 	2
s2X

Taking the square root, this gives the standard deviation sY � m m2X
�� 

sX. A partic-

ular aluminum chunk had measurements m ¼ 18.19 g and X ¼ 6.6 cm3, which

gives an estimated density Y ¼ m/X ¼ 18.19/6.6 ¼ 2.76. A rough value for the

standard deviation sX is sX ¼ .3 cm3. Our best guess for the mean of the X
distribution is the measured value, so mY � h(mX) ¼ 18.19/6.6 ¼ 2.76, and the

estimated standard deviation for the estimated density is

sY � m

m2X
sX ¼ 18:19

6:62
ð:3Þ ¼ :125

Compare the estimate of 2.76, standard deviation .125, with the official value 2.70

for the density of aluminum. ■

Moment Generating Functions

Moments and moment generating functions for discrete random variables were

introduced in Section 3.4. These concepts carry over to the continuous case.

DEFINITION Themoment generating function (mgf) of a continuous random variable X is

MXðtÞ ¼ E etX
� � ¼

ð1
�1

etxf ðxÞdx:

As in the discrete case, we will say that the moment generating function

exists if MX(t) is defined for an interval of numbers that includes zero in its

interior, which means that it includes both positive and negative values of t.

Just as before, when t ¼ 0 the value of the mgf is always 1:

MXð0Þ ¼ E e0X
� � ¼

ð1
�1

e0xf ðxÞdx ¼
ð1
�1

f ðxÞdx ¼ 1:

Example 4.15 At a store the checkout time X in minutes has the pdf f(x) ¼ 2e�2x, x � 0; f(x) ¼ 0

otherwise. Then

MXðtÞ ¼
ð1
�1

etxf ðxÞdx ¼
ð1
0

etxð2e�2xÞdx ¼
ð1
0

2e�ð2�tÞxdx

¼ �2

2� t
e�ð2�tÞx 1

0

���� ¼ 2

2� t
if t < 2:
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This mgf exists because it is defined for an interval of values including 0 in its

interior.

Notice thatMX(0) ¼ 2/(2�0) ¼ 1. Of course, from the calculation preceding

this example we know thatMX(0) ¼ 1 must always be the case, but it is useful as a

check to set t ¼ 0 and see if the result is 1. ■

Recall that in the discrete case we had a proposition stating the uniqueness

principle: The mgf uniquely identifies the distribution. This proposition is equally

valid in the continuous case. Two distributions have the same pdf if and only if they

have the same moment generating function, assuming that the mgf exists.

Example 4.16 Let X be a random variable with mgfMX(t) ¼ 2/(2 � t), t < 2. Can we find the pdf

f(x)? Yes, because we know from Example 4.15 that if f(x) ¼ 2e�2x when x � 0,

and f(x) ¼ 0 otherwise, then MX(t) ¼ 2/(2 � t), t < 2. The uniqueness principle

implies that this is the only pdf with the given mgf, and therefore f(x) ¼ 2e�2x,

x � 0, f(x) ¼ 0 otherwise. ■

In the discrete case we had a theorem on how to get moments from the mgf,

and this theorem applies also in the continuous case: E Xrð Þ ¼ M
ðrÞ
X ð0Þ, the rth

derivative of the mgf with respect to t evaluated at t ¼ 0, if the mgf exists.

Example 4.17 In Example 4.15 for the pdf f(x) ¼ 2e�2x when x � 0, and f(x) ¼ 0 otherwise, we

found MX(t) ¼ 2/(2 � t) ¼ 2(2 � t)�1, t < 2. To find the mean and variance, first

compute the derivatives.

M0
XðtÞ ¼ � 2ð2� tÞ�2ð�1Þ ¼ 2

ð2� tÞ2

M00
XðtÞ ¼ ð�2Þð�2Þð2� tÞ�3ð�1Þð�1Þ ¼ 4

ð2� tÞ3

Setting t to 0 in the first derivative gives the expected checkout time as

EðXÞ ¼ M0
Xð0Þ ¼ M

ð1Þ
X ð0Þ ¼ :5:

Setting t to 0 in the second derivative gives the second moment

EðX2Þ ¼ M00
Xð0Þ ¼ M

ð2Þ
X ð0Þ ¼ :5:

The variance of the checkout time is then:

VðXÞ ¼ s2 ¼ EðX2Þ � ½EðXÞ�2 ¼ :5� :52 ¼ :25 ■

As mentioned in Section 3.4, there is another way of doing the differentiation

that is sometimes more straightforward. Define RX(t) ¼ ln[MX(t)], where ln(u) is
the natural log of u. Then if the moment generating function exists,

m ¼ EðXÞ ¼ R0
Xð0Þ

s2 ¼ VðXÞ ¼ R00
Xð0Þ
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The derivation for the discrete case in Exercise 54 of Section 3.4 also applies here

in the continuous case.

We will sometimes need to transform X using a linear function Y ¼ aX + b.
As discussed in the discrete case, if X has the mgf MX(t) and Y ¼ aX + b, then
MY(t) ¼ ebtMX(at).

Example 4.18 Let X have a uniform distribution on the interval [A, B], so its pdf is f(x) ¼ 1/(B� A),
A � x � B; f(x) ¼ 0 otherwise. As verified in Exercise 32, the moment generating

function of X is

MXðtÞ ¼
eBt � eAt

ðB� AÞt t 6¼ 0

1 t ¼ 0

8<
:

In particular, consider the situation in Example 4.13. Let X, the angle

measured in degrees, be uniform on [0, 360], so A ¼ 0 and B ¼ 360. Then

MXðtÞ ¼ e360t � 1

360t
t 6¼ 0; MXð0Þ ¼ 1

Now let Y ¼ (2p/360)X� p, so Y is the angle measured in radians and Y is between

�p and p. Using the mgf rule for linear transformations with a ¼ 2p/360 and

b ¼ �p, we get

MYðtÞ ¼ ebtMXðatÞ ¼ e�ptMX
2p
360

t

� �

¼ e�pt e
360ð2p=360Þt � 1

360 2p
360

t
� �

¼ ept � e�pt

2pt
t 6¼ 0; MYð0Þ ¼ 1

This matches the general form of the moment generating function for a uniform

random variable with A ¼ �p and B ¼ p. Thus, by the uniqueness principle, Y is

uniformly distributed on [�p,p]. ■

Exercises Section 4.2 (18–38)

18. Reconsider the distribution of checkout duration X
described in Exercises 1 and 11. Compute the

following:

a. E(X)
b. V(X) and sX
c. If the borrower is charged an amount h(X) ¼ X2

when checkout duration is X, compute the

expected charge E[h(X)].

19. Recall the distribution of time headway used in

Example 4.5.

a. Obtain the mean value of headway and the

standard deviation of headway.

b. What is the probability that headway is within

1 standard deviation of the mean value?

20. The article “Modeling Sediment and Water

Column Interactions for Hydrophobic Pollutants”

(Water Res., 1984: 1169–1174) suggests the

uniform distribution on the interval (7.5, 20) as a

model for depth (cm) of the bioturbation layer in

sediment in a certain region.

a. What are the mean and variance of depth?

b. What is the cdf of depth?

c. What is the probability that observed depth is

at most 10? Between 10 and 15?

d. What is the probability that the observed depth

is within 1 standard deviation of the mean

value? Within 2 standard deviations?
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21. For the distribution of Exercise 14,

a. Compute E(X) and sX.
b. What is the probability that X is more than

2 standard deviations from its mean value?

22. Consider the pdf of X ¼ grade point average

given in Exercise 6.

a. Obtain and graph the cdf of X.
b. From the graph of f(x), what is ~m?
c. Compute E(X) and V(X).

23. Let X have a uniform distribution on the interval

[A, B].
a. Obtain an expression for the (100p)th percentile.
b. Compute E(X), V(X), and sX.
c. For n a positive integer, compute E(Xn).

24. Consider the pdf for total waiting time Y for two

buses

f ðyÞ ¼

1

25
y 0 � y< 5

2

5
� 1

25
y 5 � y � 10

0 otherwise

8>>>><
>>>>:

introduced in Exercise 8.

a. Compute and sketch the cdf of Y. [Hint: Con-
sider separately 0 � y < 5 and 5 � y � 10 in

computing F(y). A graph of the pdf should be

helpful.]

b. Obtain an expression for the (100p)th percen-

tile. (Hint: Consider separately 0 < p < .5 and

.5 � p < 1.)

c. Compute E(Y) and V(Y). How do these com-

pare with the expected waiting time and vari-

ance for a single bus when the time is

uniformly distributed on [0, 5]?

d. Explain how symmetry can be used to obtain

E(Y).

25. An ecologist wishes to mark off a circular sam-

pling region having radius 10 m. However, the

radius of the resulting region is actually a random

variable R with pdf

f ðrÞ ¼
3

4
½1� ð10� rÞ2� 9 � r � 11

0 otherwise

(

What is the expected area of the resulting circular

region?

26. The weekly demand for propane gas (in 1000’s

of gallons) from a particular facility is an rv X
with pdf

f ðxÞ ¼ 2 1� 1

x2

� �
1 � x � 2

0 otherwise

8<
:

a. Compute the cdf of X.

b. Obtain an expression for the (100p)th percen-

tile. What is the value of ~m?
c. Compute E(X) and V(X).
d. If 1.5 thousand gallons are in stock at the

beginning of the week and no new supply is

due in during the week, how much of the 1.5

thousand gallons is expected to be left at the

end of the week? [Hint: Let h(x) ¼ amount left

when demand ¼ x.]

27. If the temperature at which a compound melts is a

random variable with mean value 120�C and stan-

dard deviation 2�C, what are the mean tempera-

ture and standard deviation measured in �F? [Hint:
�F ¼ 1.8�C + 32.]

28. LetX have the Pareto pdf introduced in Exercise 10.

f ðx; k; yÞ ¼
k � yk
xkþ1

x � y

0 x< y

8<
:

a. If k > 1, compute E(X).
b. What can you say about E(X) if k ¼ 1?

c. If k > 2, show that V(X) ¼
ky2(k � 1)�2 (k � 2)�1.

d. If k ¼ 2, what can you say about V(X)?
e. What conditions on k are necessary to ensure

that E(Xn) is finite?

29. At a website, the waiting time X (in minutes)

between hits has pdf f(x) ¼ 4e�4x, x � 0; f(x) ¼
0 otherwise. Find MX(t) and use it to obtain E(X)
and V(X).

30. Suppose that the pdf of X is

f ðxÞ ¼ :5� x

8
0 � x � 4

0 otherwise

(

a. Show that EðXÞ ¼ 4

3
; VðXÞ ¼ 8

9
:

b. The coefficient of skewness is defined as

E[(X � m)3]/s3. Show that its value for the

given pdf is .566. What would the skewness

be for a perfectly symmetric pdf?

31. Let R have mean 10 and standard deviation 1.5.

Find the approximate mean and standard deviation

for the area of the circle with radius R.

32. Let X have a uniform distribution on the interval

[A, B], so its pdf is f(x) ¼ 1/(B � A), A � x � B,
f(x) ¼ 0 otherwise. Show that the moment gener-

ating function of X is

MXðtÞ ¼
eBt � eAt

ðB� AÞt t 6¼ 0

1 t ¼ 0

8<
:
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33. Use Exercise 32 to find the pdf f(x) of X if its

moment generating function is

MXðtÞ ¼
e5t � e�5t

10t
t 6¼ 0

1 t ¼ 0

8<
:

Explain why you know that your f(x) is uniquely
determined by MX(t).

34. If the pdf of a measurement error X is f(x) ¼ .5e�|x|,

�1 < x < 1, show that

MXðtÞ ¼ 1

1� t2
for tj j< 1:

35. In Example 4.5 the pdf of X is given as

f ðxÞ ¼ :15e�:15ðx�:5Þ x � :5
0 otherwise

�

a. Find the moment generating function and use it

to find the mean and variance.

b. Obtain the mean and variance by differentiat-

ing RX(t). Compare the answers with the results

of (a).

36. Let X be uniformly distributed on [0, 1]. Find a

linear function Y ¼ g(X) such that the interval

[0, 1] is transformed into [�5, 5]. Use the relation-

ship for linear functions MaX + b(t) ¼ ebtMX(at) to
obtain the mgf of Y from the mgf of X. Compare

your answer with the result of Exercise 32, and use

this to obtain the pdf of Y.

37. Suppose the pdf of X is

f ðxÞ ¼ :15e�:15x x � 0

0 otherwise

�

Find the moment generating function and use

it to find the mean and variance. Compare with

Exercise 35, and explain the similarities and dif-

ferences.

38. Let X be the random variable of Exercise 35. Let

Y ¼ X � .5 and use the relationship for linear

functions MaX + b(t) ¼ ebtMX(at) to obtain the

mgf of Y from the mgf of Exercise 35. Compare

with the result of Exercise 37 and explain.

4.3 The Normal Distribution
The normal distribution is the most important one in all of probability and statistics.

Many numerical populations have distributions that can be fit very closely by an

appropriate normal curve. Examples include heights, weights, and other physical

characteristics, measurement errors in scientific experiments, measurements on

fossils, reaction times in psychological experiments, measurements of intelligence

and aptitude, scores on various tests, and numerous economic measures and

indicators. Even when the underlying distribution is discrete, the normal curve

often gives an excellent approximation. In addition, even when individual variables

themselves are not normally distributed, sums and averages of the variables will

under suitable conditions have approximately a normal distribution; this is the

content of the Central Limit Theorem discussed in Chapter 6.

DEFINITION A continuous rv X is said to have a normal distribution with parameters m
and s (or m and s2), where �1 < m < 1 and 0 < s, if the pdf of X is

f ðx; m; sÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
e�ðx�mÞ2=ð2s2Þ �1< x<1 ð4:3Þ

Again e denotes the base of the natural logarithm system and equals approximately

2.71828, and p represents the familiar mathematical constant with approximate

value 3.14159. The statement that X is normally distributed with parameters m and

s2 is often abbreviated X ~ N(m, s2).
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Here is a proof that the normal curve satisfies the requirementÐ1
�1 f ðxÞdx ¼ 1 (courtesy of Professor Robert Young of Oberlin College). Con-

sider the special case where m ¼ 0 and s ¼ 1, so f ðxÞ ¼ ð1= ffiffiffiffiffiffi
2p

p Þe�x2=2, and defineÐ1
�1 1

ffiffiffiffiffiffi
2p

p�� �
e�x2=2dx ¼ A. Let g(x, y) be the function of two variables

gðx; yÞ ¼ f ðxÞ � f ðyÞ ¼ 1ffiffiffiffiffiffi
2p

p e�x2=2 1ffiffiffiffiffiffi
2p

p e�y2=2 ¼ 1

2p
e�ðx2þy2Þ=2

Using the rotational symmetry of g(x, y), let’s evaluate the volume under it by the

shell method, which adds up the volumes of shells from rotation about the y-axis:

V ¼
ð1
0

2px
1

2p
e�x2=2dx ¼ �e�x2=2

h i1
0
¼ 1

Now evaluate V by the usual double integral

V ¼
ð1
�1

ð1
�1

f ðxÞf ðyÞdxdy ¼
ð1
�1

f ðxÞdx �
ð1
�1

f ðyÞdy ¼
ð1
�1

f ðxÞdx
� 	2

¼ A2

Because 1 ¼ V ¼ A2, we have A ¼ 1 in this special case where m ¼ 0 and s ¼ 1.

How about the general case? Using a change of variables, z ¼ (x � m)/s,

ð1
�1

f ðxÞdx ¼
ð1
�1

1ffiffiffiffiffiffi
2p

p
s
e�ðx�mÞ2=ð2s2Þdx ¼

ð1
�1

1ffiffiffiffiffiffi
2p

p e�z2=2dz ¼1:
■

It can be shown (Exercise 68) that E(X) ¼ m and V(X) ¼ s2, so the para-

meters are the mean and the standard deviation of X. Figure 4.13 presents graphs of
f(x;m,s) for several different (m, s2) pairs. Each resulting density curve is symmetric

about m and bell-shaped, so the center of the bell (point of symmetry) is both the

mean of the distribution and the median. The value of s is the distance from m to the

inflection points of the curve (the points at which the curve changes between

turning downward to turning upward). Large values of s yield density curves that

are quite spread out about m, whereas small values of s yield density curves with a

high peak above m and most of the area under the density curve quite close to m.
Thus a large s implies that a value of X far from m may well be observed, whereas

such a value is quite unlikely when s is small.

σ σ σ

Figure 4.13 Normal density curves
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The Standard Normal Distribution

To compute P(a � X � b) when X is a normal rv with parameters m and s, we must

evaluate

ðb
a

1ffiffiffiffiffiffi
2p

p
s
e�ðx�mÞ2=ð2s2Þdx ð4:4Þ

None of the standard integration techniques can be used to evaluate Expression (4.4).

Instead, for m ¼ 0 and s ¼ 1, Expression (4.4) has been numerically evaluated and

tabulated for certain values of a and b. This table can also be used to compute

probabilities for any other values of m and s under consideration.

DEFINITION The normal distribution with parameter values m ¼ 0 and s ¼ 1 is called the

standard normal distribution. A random variable that has a standard

normal distribution is called a standard normal random variable and will

be denoted by Z. The pdf of Z is

f ðz; 0; 1Þ ¼ 1ffiffiffiffiffiffi
2p

p e�z2=2 �1< z<1

The cdf of Z is PðZ � zÞ ¼ Ð z
�1 f ðy; 0; 1Þdy, which we will denote by F(z).

The standard normal distribution does not frequently serve as a model for a

naturally arising population. Instead, it is a reference distribution from which

information about other normal distributions can be obtained. Appendix Table A.3

givesF(z) ¼ P(Z � z), the area under the graph of the standard normal pdf to the left

of z, for z ¼ �3.49, �3.48, . . ., 3.48, 3.49. Figure 4.14 illustrates the type of

cumulative area (probability) tabulated in Table A.3. From this table, various other

probabilities involving Z can be calculated.

0 z

Standard normal (z) curve

Shaded area = Φ(z)

Figure 4.14 Standard normal cumulative areas tabulated in Appendix Table A.3
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Example 4.19 Compute the following standard normal probabilities: (a)P(Z� 1.25), (b)P(Z> 1.25),

(c) P(Z � �1.25), and (d) P(�.38 � Z � 1.25).

a. P(Z � 1.25) ¼ F(1.25), a probability that is tabulated in Appendix Table A.3 at
the intersection of the row marked 1.2 and the column marked .05. The number

there is .8944, so P(Z � 1.25) ¼ .8944. See Figure 4.15(a).

b. P(Z > 1.25) ¼ 1 � P(Z � 1.25) ¼ 1 � F(1.25), the area under the standard
normal curve to the right of 1.25 (an upper-tail area). Since F(1.25) ¼ .8944,

it follows that P(Z > 1.25) ¼ .1056. Since Z is a continuous rv, P(Z � 1.25)

also equals .1056. See Figure 4.15(b).

c. P(Z � �1.25) ¼ F(�1.25), a lower-tail area. Directly fromAppendix Table A.3,

F(�1.25) ¼ .1056. By symmetry of the normal curve, this is the same answer as

in part (b).

d. P(�.38 � Z � 1.25) is the area under the standard normal curve above the

interval whose left endpoint is �.38 and whose right endpoint is 1.25. From

Section 4.1, if X is a continuous rv with cdf F(x), then P(a � X � b) ¼ F(b) �
F(a). This gives P(�.38 � Z � 1.25) ¼ F(1.25) � F(�.38) ¼ .8944 �
.3520 ¼ .5424. (See Figure 4.16.)

Percentiles of the Standard Normal Distribution

For any p between 0 and 1, Appendix Table A.3 can be used to obtain the (100p)th
percentile of the standard normal distribution.

Example 4.20 The 99th percentile of the standard normal distribution is that value on the

horizontal axis such that the area under the curve to the left of the value is .9900.

Now Appendix Table A.3 gives for fixed z the area under the standard normal curve

0 1.25−.38 0−.38

−=

0 1.25

z curve

Figure 4.16 P(�.38 � Z � 1.25) as the difference between two cumulative areas ■

z curve z curve

0

a b

1.25 1.250

Shaded area = Φ(1.25)

Figure 4.15 Normal curve areas (probabilities) for Example 4.19
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to the left of z, whereas here we have the area and want the value of z. This is the
“inverse” problem to P(Z � z) ¼ ? so the table is used in an inverse fashion: Find

in the middle of the table .9900; the row and column in which it lies identify the

99th z percentile. Here .9901 lies in the row marked 2.3 and column marked .03, so

the 99th percentile is (approximately) z ¼ 2.33. (See Figure 4.17.) By symmetry,

the first percentile is the negative of the 99th percentile, so it equals�2.33 (1% lies

below the first and above the 99th). (See Figure 4.18.)

In general, the (100p)th percentile is identified by the row and column of

Appendix Table A.3 in which the entry p is found (e.g., the 67th percentile is

obtained by finding .6700 in the body of the table, which gives z ¼ .44). If p does

not appear, the number closest to it is often used, although linear interpolation gives

a more accurate answer. For example, to find the 95th percentile, we look for .9500

inside the table. Although .9500 does not appear, both .9495 and .9505 do,

corresponding to z ¼ 1.64 and 1.65, respectively. Since .9500 is halfway between

the two probabilities that do appear, we will use 1.645 as the 95th percentile

and �1.645 as the 5th percentile.

za Notation
In statistical inference, we will need the values on the measurement axis that

capture certain small tail areas under the standard normal curve.

z curve

99th percentile

0

Shaded area = .9900

Figure 4.17 Finding the 99th percentile

Shaded area = .01

z curve

0

−2.33 = 1st percentile 2.33 = 99th percentile

Figure 4.18 The relationship between the 1st and 99th percentiles ■
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NOTATION zawill denote the value on the measurement axis for which a of the area under
the z curve lies to the right of za. (See Figure 4.19.)

For example, z.10 captures upper-tail area .10 and z.01 captures upper-tail

area .01.

Since a of the area under the standard normal curve lies to the right of za, 1� a
of the area lies to the left of za. Thus za is the 100(1� a)th percentile of the standard
normal distribution. By symmetry the area under the standard normal curve to the

left of �za is also a. The za’s are usually referred to as z critical values. Table 4.1
lists the most useful standard normal percentiles and za values.

Example 4.21 The 100(1 � .05)th ¼ 95th percentile of the standard normal distribution is z.05,
so z.05 ¼ 1.645. The area under the standard normal curve to the left of �z.05 is

also .05. (See Figure 4.20.)

Table 4.1 Standard normal percentiles and critical values

Percentile 90 95 97.5 99 99.5 99.9 99.95

a (tail area) .1 .05 .025 .01 .005 .001 .0005

za ¼ 100(1 � a)th percentile 1.28 1.645 1.96 2.33 2.58 3.08 3.27

Shaded area = P(ZÏ zα ) = αz curve

zα

0

Figure 4.19 za notation illustrated

Shaded area = .05 Shaded area = .05
z curve

0

−1.645 = −z.05 z.05 = 95th percentile = 1.645

Figure 4.20 Finding z.05 ■
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Nonstandard Normal Distributions

When X ~ N(m, s2), probabilities involving X are computed by “standardizing.”

The standardized variable is (X � m)/s. Subtracting m shifts the mean from m to

zero, and then dividing by s scales the variable so that the standard deviation is 1

rather than s.

PROPOSITION If X has a normal distribution with mean m and standard deviation s, then

Z ¼ X � m
s

has a standard normal distribution. Thus

Pða � X � bÞ ¼ P
a� m
s

� Z � b� m
s

� �

¼ F
b� m
s

� �
� F

a� m
s

� �

PðX � aÞ ¼ F
a� m
s

� �
PðX � bÞ ¼ 1� F

b� m
s

� �

The key idea of the proposition is that by standardizing, any probability involving X
can be expressed as a probability involving a standard normal rv Z, so that

Appendix Table A.3 can be used. This is illustrated in Figure 4.21. The proposition

can be proved by writing the cdf of Z ¼ (X � m)/s as

PðZ � zÞ ¼ PðZ � szþ mÞ ¼
ðszþm

�1
f ðx; m; sÞdy

Using a result from calculus, this integral can be differentiated with respect to z to
yield the desired pdf f(z; 0, 1).

xm 0

(x − m )/s

N( m, s 2) N(0, 1)

Figure 4.21 Equality of nonstandard and standard normal curve areas
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Example 4.22 The time that it takes a driver to react to the brake lights on a decelerating vehicle is

critical in avoiding rear-end collisions. The article “Fast-Rise Brake Lamp as a

Collision-Prevention Device” (Ergonomics, 1993: 391–395) suggests that reaction
time for an in-traffic response to a brake signal from standard brake lights can be

modeled with a normal distribution having mean value 1.25 s and standard devia-

tion of .46 s. What is the probability that reaction time is between 1.00 and 1.75 s?

If we let X denote reaction time, then standardizing gives

1:00 � X � 1:75

if and only if

1:00� 1:25

:46
� x� 1:25

:46
� 1:75� 1:25

:46

Thus

Pð1:00 � X � 1:75Þ ¼ P
1:00� 1:25

:46
� Z � 1:75� 1:25

:46

� �

¼ P �:54 � Z � 1:09ð Þ ¼ Fð1:09Þ � Fð�:54Þ
¼ :8621� :2946 ¼ :5675

This is illustrated in Figure 4.22. Similarly, if we view 2 s as a critically long-

reaction time, the probability that actual reaction time will exceed this value is

PðX> 2Þ ¼ P Z>
2� 1:25

:46

� �
¼ PðZ> 1:63Þ ¼ 1� Fð1:63Þ ¼ :0516

Standardizing amounts to nothing more than calculating a distance from

the mean value and then re-expressing the distance as some number of standard

deviations. For example, if m ¼ 100 and s ¼ 15, then x ¼ 130 corresponds to

z ¼ (130 � 100)/15 ¼ 30/15 ¼ 2.00. Thus 130 is 2 standard deviations above (to

the right of) the mean value. Similarly, standardizing 85 gives (85 � 100)/15

¼ �1.00, so 85 is 1 standard deviation below the mean. The z table applies to

any normal distribution provided that we think in terms of number of standard

deviations away from the mean value.

1.25

1.751.00

0

1.09−.54

z curve

Normal, m = 1.25, s  = .46 P(1.00 ≤ X ≤ 1.75)

Figure 4.22 Normal curves for Example 4.22 ■
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Example 4.23 The return on a diversified investment portfolio is normally distributed. What is the

probability that the return is within 1 standard deviation of its mean value? This

question can be answered without knowing either m or s, as long as the distribution
is known to be normal; in other words, the answer is the same for any normal

distribution:

P
X is within one standard

deviation of its mean

� �
¼ Pðm� s � X � mþ sÞ

¼ P
m� s� m

s
� Z � mþ s� m

s

� �

¼ P �1:00 � Z � 1:00ð Þ
¼ Fð1:00Þ � Fð�1:00Þ ¼ :6826

The probability that X is within 2 standard deviations of the mean is P(�2.00 �
Z � 2.00) ¼ .9544 and the probability that X is within 3 standard deviations of the

mean is P(�3.00 � Z � 3.00) ¼ .9974. ■

The results of Example 4.23 are often reported in percentage form and

referred to as the empirical rule (because empirical evidence has shown that

histograms of real data can very frequently be approximated by normal curves).

If the population distribution of a variable is (approximately) normal, then

1. Roughly 68% of the values are within 1 SD of the mean.

2. Roughly 95% of the values are within 2 SDs of the mean.

3. Roughly 99.7% of the values are within 3 SDs of the mean.

It is indeed unusual to observe a value from a normal population that is much

farther than 2 standard deviations from m. These results will be important in the

development of hypothesis-testing procedures in later chapters.

Percentiles of an Arbitrary Normal Distribution
The (100p)th percentile of a normal distribution with mean m and standard devia-

tion s is easily related to the (100p)th percentile of the standard normal distribution.

PROPOSITION ð100pÞth percentile

for normalðm; sÞ ¼ mþ ð100pÞth percentile

for standard normal

� 	
� s

Another way of saying this is that if z is the desired percentile for the standard

normal distribution, then the desired percentile for the normal (m, s) distribution is z
standard deviations from m. For justification, see Exercise 65.
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Example 4.24 The amount of distilled water dispensed by a machine is normally distributed with

mean value 64 oz and standard deviation .78 oz. What container size c will ensure
that overflow occurs only .5% of the time? If X denotes the amount dispensed, the

desired condition is that P(X > c) ¼ .005, or, equivalently, that P(X � c) ¼ .995.

Thus c is the 99.5th percentile of the normal distribution with m ¼ 64 and s ¼ .78.

The 99.5th percentile of the standard normal distribution is 2.58, so

c ¼ �ð:995Þ ¼ 64þ ð2:58Þð:78Þ ¼ 64þ 2:0 ¼ 66 oz

This is illustrated in Figure 4.23.

The Normal Distribution and Discrete Populations

The normal distribution is often used as an approximation to the distribution of

values in a discrete population. In such situations, extra care must be taken to

ensure that probabilities are computed in an accurate manner.

Example 4.25 IQ (asmeasured by a standard test) is known to be approximately normally distributed

withm ¼ 100 and s ¼ 15.What is the probability that a randomly selected individual

has an IQ of at least 125? Letting X ¼ the IQ of a randomly chosen person, we wish

P(X � 125). The temptation here is to standardize X � 125 immediately as in

previous examples. However, the IQ population is actually discrete, since IQs are

integer-valued, so the normal curve is an approximation to a discrete probability

histogram, as pictured in Figure 4.24.

c = 99.5th percentile = 66.0

Shaded area = .995

m = 64

Figure 4.23 Distribution of amount dispensed for Example 4.24 ■

125

Figure 4.24 A normal approximation to a discrete distribution
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The rectangles of the histogram are centered at integers, so IQs of at least 125
correspond to rectangles beginning at 124.5, as shaded in Figure 4.24. Thus we

really want the area under the approximating normal curve to the right of 124.5.

Standardizing this value gives P(Z � 1.63) ¼ .0516. If we had standardized

X � 125, we would have obtained P(Z � 1.67) ¼ .0475. The difference is not

great, but the answer .0516 is more accurate. Similarly, P(X ¼ 125) would be

approximated by the area between 124.5 and 125.5, since the area under the normal

curve above the single value 125 is zero. ■

The correction for discreteness of the underlying distribution in Example 4.25

is often called a continuity correction. It is useful in the following application of

the normal distribution to the computation of binomial probabilities. The normal

distribution was actually created as an approximation to the binomial distribution

(by Abraham De Moivre in the 1730s).

Approximating the Binomial Distribution

Recall that the mean value and standard deviation of a binomial random variable X
are mX ¼ np and sX ¼ ffiffiffiffiffiffiffiffi

npq
p

, respectively. Figure 4.25 displays a probability

histogram for the binomial distribution with n ¼ 20, p ¼ .6 [so m ¼ 20(.6) ¼ 12

and s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20ð:6Þð:4Þp ¼ 2:19]. A normal curve with mean value and standard

deviation equal to the corresponding values for the binomial distribution has been

superimposed on the probability histogram. Although the probability histogram is a

bit skewed (because p 6¼ .5), the normal curve gives a very good approximation,

especially in the middle part of the picture. The area of any rectangle (probability of

any particular X value) except those in the extreme tails can be accurately approxi-

mated by the corresponding normal curve area. Thus P(X ¼ 10) ¼ B(10; 20, .6)
� B(9; 20, .6) ¼ .117, whereas the area under the normal curve between 9.5 and

10.5 is P(�1.14 � Z � �.68) ¼ .120.

More generally, as long as the binomial probability histogram is not too

skewed, binomial probabilities can be well approximated by normal curve areas.

It is then customary to say that X has approximately a normal distribution.

0 2 4 6 8 10 12 14 16 18 20

Normal curve,
m = 12, s = 2.19.20

.15

.10

.05

Figure 4.25 Binomial probability histogram for n ¼ 20, p ¼ .6 with normal approxi-

mation curve superimposed
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PROPOSITION Let X be a binomial rv based on n trials with success probability p. Then if the
binomial probability histogram is not too skewed, X has approximately a

normal distribution with m ¼ np and s ¼ ffiffiffiffiffiffiffiffi
npq

p
. In particular, for x ¼ a

possible value of X,

PðX � xÞ ¼ B x; n; pð Þ � area under the normal curve to the left of xþ :5ð Þ

¼ F
xþ :5� npffiffiffiffiffiffiffiffi

npq
p

� �

In practice, the approximation is adequate provided that both np � 10 and

nq � 10.

If either np < 10 or nq < 10, the binomial distribution may be too skewed

for the (symmetric) normal curve to give accurate approximations.

Example 4.26 Suppose that 25% of all licensed drivers in a state do not have insurance. Let X be

the number of uninsured drivers in a random sample of size 50 (somewhat per-

versely, a success is an uninsured driver), so that p ¼ .25. Then m ¼ 12.5 and

s ¼ 3.062. Since np ¼ 50(.25) ¼ 12.5 � 10 and nq ¼ 37.5 � 10, the approxima-

tion can safely be applied:

PðX � 10Þ ¼ Bð10; 50; :25Þ � F
10þ :5� 12:5

3:062

� �

¼ Fð�:65Þ ¼ :2578

Similarly, the probability that between 5 and 15 (inclusive) of the selected drivers

are uninsured is

Pð5 � X � 15Þ ¼ Bð15; 50; :25Þ � Bð4; 50; :25Þ

� F
15:5� 12:5

3:062

� �
� F

4:5� 12:5

3:062

� �
¼ :8320

The exact probabilities are .2622 and .8348, respectively, so the approximations are

quite good. In the last calculation, the probability P(5 � X � 15) is being approxi-

mated by the area under the normal curve between 4.5 and 15.5—the continuity

correction is used for both the upper and lower limits. ■

When the objective of our investigation is to make an inference about a

population proportion p, interest will focus on the sample proportion of successes

X/n rather than on X itself. Because this proportion is just X multiplied by the

constant 1/n, it will also have approximately a normal distribution (with mean

m ¼ p and standard deviation s ¼ ffiffiffiffiffiffiffiffiffiffi
pq=n

p
) provided that both np � 10 and

nq � 10. This normal approximation is the basis for several inferential procedures

to be discussed in later chapters.

It is quite difficult to give a direct proof of the validity of this normal

approximation (the first one goes back about 270 years to de Moivre). In Chapter 6,

we’ll see that it is a consequence of an important general result called the Central

Limit Theorem.
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The Normal Moment Generating Function

The moment generating function provides a straightforward way to verify that the

parameters m and s2 are indeed the mean and variance of X (Exercise 68).

PROPOSITION Themoment generating function of a normally distributed random variable X is

MXðtÞ ¼ emtþs2t2=2

Proof Consider first the special case of a standard normal rv Z. Then

MZðtÞ ¼ EðetZÞ ¼
ð1
�1

etz
1ffiffiffiffiffiffi
2p

p e�z2=2dz ¼
ð1
�1

1ffiffiffiffiffiffi
2p

p e�ðz2�2tzÞ=2dz

Completing the square in the exponent, we have

MZðtÞ ¼ et
2=2

ð1
�1

1ffiffiffiffiffiffi
2p

p e�ðz2�2tzþt2Þ=2dz ¼ e t2=2

ð1
�1

1ffiffiffiffiffiffi
2p

p e�ðz�tÞ2=2dz

The last integral is the area under a normal density with mean t and standard

deviation 1, so the value of the integral is 1. Therefore, MzðtÞ ¼ et
2 2= .

Now let X be any normal rv with mean m and standard deviation s. Then, by
the first proposition in this section, (X � m)/s ¼ Z, where Z is standard normal.

That is, X ¼ m + sZ. Now use the property MaY+b(t) ¼ ebtMY(at):

MXðtÞ ¼ MmþsZðtÞ ¼ emtMZðstÞ ¼ emtes
2t2=2 ¼ emtþs2t2=2 ■

Exercises Section 4.3 (39–68)

39. Let Z be a standard normal random variable and

calculate the following probabilities, drawing pic-

tures wherever appropriate.

a. P(0 � Z � 2.17)

b. P(0 � Z � 1)

c. P(�2.50 � Z � 0)

d. P(�2.50 � Z � 2.50)

e. P(Z � 1.37)

f. P(�1.75 � Z)
g. P(�1.50 � Z � 2.00)

h. P(1.37 � Z � 2.50)

i. P(1.50 � Z)
j. P(|Z | � 2.50)

40. In each case, determine the value of the constant c
that makes the probability statement correct.

a. F(c) ¼ .9838

b. P(0 � Z � c) ¼ .291

c. P(c � Z) ¼ .121

d. P(�c � Z � c) ¼ .668

e. P(c � |Z |) ¼ .016

41. Find the following percentiles for the standard nor-

mal distribution. Interpolate where appropriate.

a. 91st
b. 9th
c. 75th
d. 25th
e. 6th

42. Determine za for the following:
a. a ¼ .0055

b. a ¼ .09

c. a ¼ .663
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43. If X is a normal rv with mean 80 and standard

deviation 10, compute the following probabilities

by standardizing:

a. P(X � 100)

b. P(X � 80)

c. P(65 � X � 100)

d. P(70 � X)
e. P(85 � X � 95)

f. P(|X � 80 | � 10)

44. The plasma cholesterol level (mg/dL) for patients

with no prior evidence of heart disease who expe-

rience chest pain is normally distributed with

mean 200 and standard deviation 35. Consider

randomly selecting an individual of this type.

What is the probability that the plasma cholesterol

level

a. Is at most 250?

b. Is between 300 and 400?

c. Differs from the mean by at least 1.5 standard

deviations?

45. The article “Reliability of Domestic-Waste Bio-

film Reactors” (J. Envir. Engrg., 1995: 785–790)
suggests that substrate concentration (mg/cm3) of

influent to a reactor is normally distributed with

m ¼ .30 and s ¼ .06.

a. What is the probability that the concentration

exceeds .25?

b. What is the probability that the concentration

is at most .10?

c. How would you characterize the largest 5% of

all concentration values?

46. Suppose the diameter at breast height (in.) of trees

of a certain type is normally distributed with

m ¼ 8.8 and s ¼ 2.8, as suggested in the article

“Simulating a Harvester-Forwarder Softwood

Thinning” (Forest Products J., May 1997:

36–41).

a. What is the probability that the diameter of a

randomly selected tree will be at least 10 in.?

Will exceed 10 in.?

b. What is the probability that the diameter of a

randomly selected tree will exceed 20 in.?

c. What is the probability that the diameter of a

randomly selected tree will be between 5 and

10 in.?

d. What value c is such that the interval (8.8 � c,
8.8 + c) includes 98% of all diameter

values?

e. If four trees are independently selected, what is
the probability that at least one has a diameter

exceeding 10 in.?

47. There are two machines available for cutting

corks intended for use in wine bottles. The first

produces corks with diameters that are normally

distributed with mean 3 cm and standard deviation

.1 cm. The second machine produces corks with

diameters that have a normal distribution with

mean 3.04 cm and standard deviation .02 cm.

Acceptable corks have diameters between 2.9 and

3.1 cm. Which machine is more likely to produce

an acceptable cork?

48. Human body temperatures for healthy individuals

have approximately a normal distribution with

mean 98.25�F and standard deviation .75�F. (The
past accepted value of 98.6� Fahrenheit was

obtained by converting the Celsius value of 37�,
which is correct to the nearest integer.)

a. Find the 90th percentile of the distribution.

b. Find the 5th percentile of the distribution.

c. What temperature separates the coolest 25%

from the others?

49. The article “Monte Carlo Simulation—Tool for

Better Understanding of LRFD” (J. Struct. Engrg.,
1993: 1586–1599) suggests that yield strength (ksi)

for A36 grade steel is normally distributed with

m ¼ 43 and s ¼ 4.5.

a. What is the probability that yield strength is at

most 40? Greater than 60?

b. What yield strength value separates the stron-

gest 75% from the others?

50. The automatic opening device of a military cargo

parachute has been designed to open when the para-

chute is 200 m above the ground. Suppose opening

altitude actually has a normal distributionwithmean

value 200 m and standard deviation 30 m. Equip-

ment damage will occur if the parachute opens at an

altitude of less than 100 m. What is the probability

that there is equipment damage to the payload of at

least 1 of 5 independently dropped parachutes?

51. The temperature reading from a thermocouple

placed in a constant-temperature medium is nor-

mally distributed with mean m, the actual temper-

ature of the medium, and standard deviation s.
What would the value of s have to be to ensure

that 95% of all readings are within .1� of m?

52. The distribution of resistance for resistors of a

certain type is known to be normal, with 10%

of all resistors having a resistance exceeding

10.256 ohms and 5% having a resistance smaller

than 9.671 ohms. What are the mean value and

standard deviation of the resistance distribution?
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53. If adult female heights are normally distributed,

what is the probability that the height of a ran-

domly selected woman is

a. Within 1.5 SDs of its mean value?

b. Farther than 2.5 SDs from its mean value?

c. Between 1 and 2 SDs from its mean value?

54. Amachine that produces ball bearings has initially

been set so that the true average diameter of

the bearings it produces is .500 in. A bearing is

acceptable if its diameter is within .004 in. of this

target value. Suppose, however, that the setting

has changed during the course of production, so

that the bearings have normally distributed dia-

meters with mean value .499 in. and standard

deviation .002 in. What percentage of the bearings

produced will not be acceptable?

55. The Rockwell hardness of a metal is determined

by impressing a hardened point into the surface

of the metal and then measuring the depth of

penetration of the point. Suppose the Rockwell

hardness of an alloy is normally distributed with

mean 70 and standard deviation 3. (Rockwell

hardness is measured on a continuous scale.)

a. If a specimen is acceptable only if its hardness

is between 67 and 75, what is the probability

that a randomly chosen specimen has an accep-

table hardness?

b. If the acceptable range of hardness is (70 � c,
70 + c), for what value of c would 95% of all

specimens have acceptable hardness?

c. If the acceptable range is as in part (a) and the

hardness of each of ten randomly selected spe-

cimens is independently determined, what is

the expected number of acceptable specimens

among the ten?

d. What is the probability that at most 8 of 10

independently selected specimens have a hard-

ness of less than 73.84? [Hint: Y ¼ the number

among the ten specimens with hardness less

than 73.84 is a binomial variable; what is p?]

56. The weight distribution of parcels sent in a certain

manner is normal with mean value 12 lb and stan-

dard deviation 3.5 lb. The parcel service wishes to

establish a weight value c beyond which there will

be a surcharge. What value of c is such that 99% of

all parcels are at least 1 lb under the surcharge

weight?

57. Suppose Appendix Table A.3 contained F(z)
only for z � 0. Explain how you could still

compute

a. P(�1.72 � Z � �.55)

b. P(�1.72 � Z � .55)

Is it necessary to table F(z) for z negative? What

property of the standard normal curve justifies

your answer?

58. Consider babies born in the “normal” range of

37–43 weeks of gestational age. Extensive data

supports the assumption that for such babies born

in the United States, birth weight is normally

distributed with mean 3432 g and standard devia-

tion 482 g. [The article “Are Babies Normal?”

(Amer. Statist., 1999: 298–302) analyzed data

from a particular year. A histogram with a sensible

choice of class intervals did not look at all normal,

but further investigation revealed this was because

some hospitals measured weight in grams and

others measured to the nearest ounce and then

converted to grams. Modifying the class intervals

to allow for this gave a histogram that was well

described by a normal distribution.]

a. What is the probability that the birth weight of

a randomly selected baby of this type exceeds

4000 g? Is between 3000 and 4000 g?

b. What is the probability that the birth weight of

a randomly selected baby of this type is either

less than 2000 g or greater than 5000 g?

c. What is the probability that the birth weight of

a randomly selected baby of this type exceeds

7 lb?

d. How would you characterize the most extreme

.1% of all birth weights?

e. If X is a random variable with a normal distri-

bution and a is a numerical constant (a 6¼ 0),

then Y ¼ aX also has a normal distribution.

Use this to determine the distribution of birth

weight expressed in pounds (shape, mean, and

standard deviation), and then recalculate the

probability from part (c). How does this com-

pare to your previous answer?

59. In response to concerns about nutritional contents

of fast foods, McDonald’s announced that it would

use a new cooking oil for its french fries that

would decrease substantially trans fatty acid levels

and increase the amount of more beneficial poly-

unsaturated fat. The company claimed that 97 out

of 100 people cannot detect a difference in taste

between the new and old oils. Assuming that this

figure is correct (as a long-run proportion), what is

the approximate probability that in a random sam-

ple of 1,000 individuals who have purchased fries

at McDonald’s,

a. At least 40 can taste the difference between the
two oils?

b. At most 5% can taste the difference between

the two oils?
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60. Chebyshev’s inequality, introduced in Exercise 43

(Chapter 3), is valid for continuous as well as

discrete distributions. It states that for any number

k satisfying k � 1, PðjX � mj � ksÞ � 1/k2. (see
Exercise 43 in Section 3.3 for an interpretation

and Exercise 135 in Chapter 3 Supplementary

Exercises for a proof). Obtain this probability in

the case of a normal distribution for k ¼ 1, 2, and

3, and compare to the upper bound.

61. Let X denote the number of flaws along a 100-m

reel of magnetic tape (an integer-valued variable).

Suppose X has approximately a normal distribu-

tion with m ¼ 25 and s ¼ 5. Use the continuity

correction to calculate the probability that the

number of flaws is

a. Between 20 and 30, inclusive.

b. At most 30. Less than 30.

62. Let X have a binomial distribution with parameters

n ¼ 25 and p. Calculate each of the following prob-
abilities using the normal approximation (with the

continuity correction) for the cases p ¼ .5, .6, and .8

and compare to the exact probabilities calculated

from Appendix Table A.1.

a. P(15 � X � 20)

b. P(X � 15)

c. P(20 � X)

63. Suppose that 10% of all steel shafts produced by a

process are nonconforming but can be reworked

(rather than having to be scrapped). Consider

a random sample of 200 shafts, and let X denote

the number among these that are nonconforming

and can be reworked. What is the (approximate)

probability that X is

a. At most 30?

b. Less than 30?

c. Between 15 and 25 (inclusive)?

64. Suppose only 70% of all drivers in a state regu-

larly wear a seat belt. A random sample of 500

drivers is selected. What is the probability that

a. Between 320 and 370 (inclusive) of the drivers

in the sample regularly wear a seat belt?

b. Fewer than 325 of those in the sample regularly

wear a seat belt? Fewer than 315?

65. Show that the relationship between a general nor-

mal percentile and the corresponding z percentile
is as stated in this section.

66. a. Show that if X has a normal distribution with

parameters m and s, then Y ¼ aX + b (a linear

function of X) also has a normal distribution.

What are the parameters of the distribution of Y
[i.e., E(Y) and V(Y)]? [Hint: Write the cdf of Y,
P(Y � y), as an integral involving the pdf

of X, and then differentiate with respect to y
to get the pdf of Y.]

b. If when measured in �C, temperature is nor-

mally distributed with mean 115 and standard

deviation 2, what can be said about the distri-

bution of temperature measured in �F?

67. There is no nice formula for the standard normal

cdf F(z), but several good approximations have

been published in articles. The following is from

“Approximations for Hand Calculators Using

Small Integer Coefficients” (Math. Comput.,
1977: 214–222). For 0 < z � 5.5,

PðZ � zÞ ¼ 1� FðzÞ

� :5 exp � ð83zþ 351Þzþ 562

ð703=zÞ þ 165

� 	� �

The relative error of this approximation is less

than .042%. Use this to calculate approximations

to the following probabilities, and compare when-

ever possible to the probabilities obtained from

Appendix Table A.3.

a. P(Z � 1)

b. P(Z < �3)

c. P(�4 < Z < 4)

d. P(Z > 5)

68. The moment generating function can be used

to find the mean and variance of the normal distri-

bution.

a. Use derivatives ofMX(t) to verify that E(X) ¼ m
and V(X) ¼ s2.

b. Repeat (a) using RX(t) ¼ ln[MX(t)], and com-

pare with part (a) in terms of effort.

4.4 The Gamma Distribution and Its Relatives
The graph of any normal pdf is bell-shaped and thus symmetric. In many practical

situations, the variable of interest to the experimenter might have a skewed distri-

bution. A family of pdf’s that yields a wide variety of skewed distributional shapes is

the gamma family. To define the family of gamma distributions, we first need to

introduce a function that plays an important role in many branches of mathematics.
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DEFINITION For a > 0, the gamma function G(a) is defined by

GðaÞ ¼
ð1
0

xa�1e�xdx ð4:5Þ

The most important properties of the gamma function are the following:

1. For any a > 1, G(a) ¼ (a � 1) · G(a � 1) (via integration by parts)

2. For any positive integer, n, G(n) ¼ (n � 1)!

3. G 1
2

� � ¼ ffiffiffi
p

p

By Expression (4.5), if we let

f ðx; aÞ ¼
xa�1e�x

GðaÞ x>0

0 otherwise

8><
>: ð4:6Þ

then f(x; a) � 0 and
Ð1
0

f ðx; aÞdx ¼ GðaÞ=GðaÞ ¼ 1, so f(x; a) satisfies the two

basic properties of a pdf.

The Family of Gamma Distributions

DEFINITION A continuous random variable X is said to have a gamma distribution if the

pdf of X is

f ðx; a; bÞ ¼
1

baGðaÞ x
a�1e�x=b x> 0

0 otherwise

8<
: ð4:7Þ

where the parameters a and b satisfy a > 0, b > 0. The standard gamma
distribution has b ¼ 1, so the pdf of a standard gamma rv is given by (4.6).

Figure 4.26(a) illustrates the graphs of the gamma pdf for several (a, b) pairs, whereas
Figure 4.26(b) presents graphs of the standard gamma pdf. For the standard pdf,

when a � 1, f(x; a) is strictly decreasing as x increases; when a > 1, f(x; a) rises to a
maximum and then decreases. The parameter b in (4.7) is called the scale parameter
because values other than 1 either stretch or compress the pdf in the x direction.

PROPOSITION The moment generating function of a gamma random variable is

MXðtÞ ¼ 1

ð1� btÞa
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Proof By definition, the mgf is

MXðtÞ ¼ EðetXÞ ¼
ð1
0

etx
xa�1

GðaÞba e
�x=bdx ¼

ð1
0

xa�1

GðaÞba e
�xð�tþ1=bÞdx

One way to evaluate the integral is to express the integrand in terms of a gamma

density. This means writing the exponent in the form �x/b and having b take the

place of b. We have �x(�t + 1/b) ¼ �x[(�bt + 1)/b] ¼ �x/[b/(1 � bt)]. Now
multiplying and at the same time dividing the integrand by 1/(1�bt)a gives

MXðtÞ ¼ 1

ð1� btÞa
ð1
0

xa�1

GðaÞ½b=ð1� btÞ�a e
�x=½b=ð1�btÞ�dx

But now the integrand is a gamma pdf, so it integrates to 1. This establishes the

result. ■
The mean and variance can be obtained from the moment generating func-

tion (Exercise 80), but they can also be obtained directly through integration

(Exercise 81).

PROPOSITION The mean and variance of a random variable X having the gamma distribution

f(x; a, b) are

EðXÞ ¼ m ¼ ab VðXÞ ¼ s2 ¼ ab2

When X is a standard gamma rv, the cdf of X, which is

Fðx; aÞ ¼
ðx
0

ya�1e�y

GðaÞ dy x> 0 ð4:8Þ

is called the incomplete gamma function [sometimes the incomplete gamma

function refers to Expression (4.8) without the denominator G(a) in the integrand].
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Figure 4.26 (a) Gamma density curves; (b) standard gamma density curves
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There are extensive tables of F(x; a) available; in Appendix Table A.4, we present a
small tabulation for a ¼ 1, 2, . . . , 10 and x ¼ 1, 2, . . . , 15.

Example 4.27 Suppose the reaction time X of a randomly selected individual to a certain stimulus

has a standard gamma distribution with a ¼ 2. Since

Pða � X � bÞ ¼ FðbÞ � FðaÞ
when X is continuous,

Pð3 � X � 5Þ ¼ Fð5; 2Þ � Fð3; 2Þ ¼ :960� :801 ¼ :159

The probability that the reaction time is more than 4 s is

PðX> 4Þ ¼ 1� PðX � 4Þ ¼ 1� Fð4; 2Þ ¼ 1� :908 ¼ :092 ■

The incomplete gamma function can also be used to compute probabilities

involving nonstandard gamma distributions.

PROPOSITION Let X have a gamma distribution with parameters a and b. Then for any

x > 0, the cdf of X is given by

PðX � xÞ ¼ Fðx; a; bÞ ¼ F
x

b
; a

� �

the incomplete gamma function evaluated at x/b.1

Proof Calculate, with the help of the substitution y ¼ u/b,

PðX � xÞ ¼
ðx
0

ua�1

GðaÞba e
�u b= du ¼

ðx b=

0

ya�1

GðaÞ e
�ydy ¼ F

x

b
; a

� �
■

Example 4.28 Suppose the survival time X in weeks of a randomly selected male mouse exposed

to 240 rads of gamma radiation has a gamma distribution with a ¼ 8 and b ¼ 15.

(Data in Survival Distributions: Reliability Applications in the Biomedical Services,
by A. J. Gross and V. Clark, suggests a � 8.5 and b � 13.3.) The expected survival

time is E(X) ¼ (8)(15) ¼ 120 weeks, whereas V(X) ¼ (8)(15)2 ¼ 1,800 and sX ¼ffiffiffiffiffiffiffiffiffiffi
1800

p ¼ 42:43 weeks. The probability that a mouse survives between 60 and

120 weeks is

Pð60 � X � 120Þ ¼ PðX � 120Þ � PðX � 60Þ
¼ F 120=15; 8ð Þ � 60=5; 8ð Þ
¼ F 8; 8ð Þ � F 4; 8ð Þ ¼ :547�:051 ¼ :496

1MINITAB, R and other statistical packages calculate F(x; a, b) once values of x, a, and b are specified.
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The probability that a mouse survives at least 30 weeks is

PðX � 30Þ ¼ 1� PðX < 30Þ ¼ 1� PðX � 30Þ
¼ 1� Fð30 15= ; 8Þ ¼ :999 ■

The Exponential Distribution

The family of exponential distributions provides probability models that are widely

used in engineering and science disciplines.

DEFINITION X is said to have an exponential distribution with parameter l (l > 0) if the

pdf of X is

f ðx; lÞ ¼ le�lx x � 0

0 otherwise:

(
ð4:9Þ

The exponential pdf is a special case of the general gamma pdf (4.7) in which a ¼ 1

and b has been replaced by 1/l [some authors use the form (1/b)e�x/b]. The mean

and variance of X are then

m ¼ ab ¼ 1

l
s2 ¼ ab2 ¼ 1

l2

Both the mean and standard deviation of the exponential distribution equal 1/l.
Graphs of several exponential pdf’s appear in Figure 4.27.
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λ = 2
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Figure 4.27 Exponential density curves
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Unlike the general gamma pdf, the exponential pdf can be easily integrated.

In particular, the cdf of X is

Fðx; lÞ ¼ 0 x < 0

1� e�lx x � 0

�

Example 4.29 The response time X at an on-line computer terminal (the elapsed time between the

end of a user’s inquiry and the beginning of the system’s response to that inquiry)

has an exponential distribution with expected response time equal to 5 s. ThenE(X) ¼
1/l ¼ 5, so l ¼ .2. The probability that the response time is at most 10 s is

PðX � 10Þ ¼ Fð10; :2Þ ¼ 1� e�ð:2Þð10Þ ¼ 1� e�2 ¼ 1� :135 ¼ :865

The probability that response time is between 5 and 10 s is

Pð5 � X � 10Þ ¼ Fð10; :2Þ � Fð5; :2Þ ¼ 1� e�2
� �� 1� e�1

� � ¼ :233 ■

The exponential distribution is frequently used as a model for the distribution of

times between the occurrence of successive events, such as customers arriving at a

service facility or calls coming in to a switchboard. The reason for this is that the

exponential distribution is closely related to thePoisson process discussed inChapter 3.

PROPOSITION Suppose that the number of events occurring in any time interval of length t
has a Poisson distribution with parameter at (where a, the rate of the event

process, is the expected number of events occurring in 1 unit of time) and that

numbers of occurrences in nonoverlapping intervals are independent of one

another. Then the distribution of elapsed time between the occurrence of

two successive events is exponential with parameter l ¼ a.

Although a complete proof is beyond the scope of the text, the result is easily

verified for the time X1 until the first event occurs:

PðX1 � tÞ ¼ 1� PðX1 > tÞ ¼ 1� P½no events in (0, tÞ�

¼ 1� e�at � ðatÞ0
0!

¼ 1� e�at

which is exactly the cdf of the exponential distribution.

Example 4.30 Calls are received at a 24-h “suicide hotline” according to a Poisson process with

rate a ¼ .5 call per day. Then the number of days X between successive calls has an

exponential distribution with parameter value .5, so the probability that more than

2 days elapse between calls is

PðX> 2Þ ¼ 1� PðX � 2Þ ¼ 1� Fð2; :5Þ ¼ e�ð:5Þð2Þ ¼ :368

The expected time between successive calls is 1/.5 ¼ 2 days. ■
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Another important application of the exponential distribution is to model

the distribution of component lifetime. A partial reason for the popularity of such

applications is the “memoryless” property of the exponential distribution.

Suppose component lifetime is exponentially distributed with parameter l. After
putting the component into service, we leave for a period of t0 h and then return to

find the component still working; what now is the probability that it lasts at least an

additional t hours? In symbols, we wish P(X � t + t0 | X � t0). By the definition

of conditional probability,

PðX � tþ t0 jX � t0Þ ¼ P½ðX � tþ t0Þ \ ðX � t0Þ�
PðX � t0Þ

But the event X � t0 in the numerator is redundant, since both events can occur if

and only if X � t + t0. Therefore,

PðX � tþ t0 jX � t0Þ ¼ PðX � tþ t0Þ
PðX � t0Þ ¼ 1� Fðtþ t0; lÞ

1� Fðt0; lÞ ¼ e�lðtþt0Þ

e�lt0
¼ e�lt

This conditional probability is identical to the original probability P(X � t) that the
component lasted t hours. Thus the distribution of additional lifetime is exactly the
same as the original distribution of lifetime, so at each point in time the component

shows no effect of wear. In other words, the distribution of remaining lifetime is

independent of current age.

Although the memoryless property can be justified at least approximately in

many applied problems, in other situations components deteriorate with age or

occasionally improve with age (at least up to a certain point). More general lifetime

models are then furnished by the gamma, Weibull, and lognormal distributions

(the latter two are discussed in the next section).

The Chi-Squared Distribution

DEFINITION Let n be a positive integer. Then a random variable X is said to have a chi-
squared distribution with parameter n if the pdf of X is the gamma density

with a ¼ n/2 and b ¼ 2. The pdf of a chi-squared rv is thus

f ðx; nÞ ¼
1

2n=2Gðn=2Þ x
ðn=2Þ�1e�x=2 x � 0

0 x< 0

8<
: ð4:10Þ

The parameter n is called the number of degrees of freedom (df) of X.
The symbol w2 is often used in place of “chi-squared.”

The chi-squared distribution is important because it is the basis for a number

of procedures in statistical inference. The reason for this is that chi-squared

distributions are intimately related to normal distributions (see Exercise 79).

We will discuss the chi-squared distribution in more detail in Section 6.4 and the

chapters on inference.
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Exercises Section 4.4 (69–81)

69. Evaluate the following:

a. G(6)
b. G(5/2)
c. F(4; 5) (the incomplete gamma function)

d. F(5; 4)
e. F(0; 4)

70. Let X have a standard gamma distribution with

a ¼ 7. Evaluate the following:

a. P(X � 5)

b. P(X < 5)

c. P(X > 8)

d. P(3 � X � 8)

e. P(3 < X < 8)

f. P(X < 4 or X > 6)

71. Suppose the time spent by a randomly selected stu-

dent at a campus computer lab has a gamma distri-

bution with mean 20 min and variance 80 min2.

a. What are the values of a and b?
b. What is the probability that a student uses the

lab for at most 24 min?

c. What is the probability that a student spends

between 20 and 40 min at the lab?

72. Suppose that when a type of transistor is subjected

to an accelerated life test, the lifetime X (in weeks)

has a gamma distribution with mean 24 weeks and

standard deviation 12 weeks.

a. What is the probability that a transistor will last

between 12 and 24 weeks?

b. What is the probability that a transistor will

last at most 24 weeks? Is the median of the

lifetime distribution less than 24? Why or why

not?

c. What is the 99th percentile of the lifetime

distribution?

d. Suppose the test will actually be terminated

after t weeks. What value of t is such that

only .5% of all transistors would still be

operating at termination?

73. Let X ¼ the time between two successive arrivals

at the drive-up window of a local bank. If X has an

exponential distribution with l ¼ 1 (which is

identical to a standard gamma distribution with

a ¼ 1), compute the following:

a. The expected time between two successive

arrivals

b. The standard deviation of the time between

successive arrivals

c. P(X � 4)

d. P(2 � X � 5)

74. Let X denote the distance (m) that an animal

moves from its birth site to the first territorial

vacancy it encounters. Suppose that for banner-

tailed kangaroo rats, X has an exponential distri-

bution with parameter l ¼ .01386 (as suggested

in the article “Competition and Dispersal from

Multiple Nests,” Ecology, 1997: 873–883).
a. What is the probability that the distance is

at most 100 m? At most 200 m? Between 100

and 200 m?

b. What is the probability that distance exceeds

the mean distance by more than 2 standard

deviations?

c. What is the value of the median distance?

75. In studies of anticancer drugs it was found that if

mice are injected with cancer cells, the survival

time can be modeled with the exponential distri-

bution. Without treatment the expected survival

time was 10 h. What is the probability that

a. A randomly selected mouse will survive at

least 8 h? At most 12 h? Between 8 and 12 h?

b. The survival time of a mouse exceeds the mean

value by more than 2 standard deviations?

More than 3 standard deviations?

76. The special case of the gamma distribution in

which a is a positive integer n is called an Erlang

distribution. If we replace b by 1/l in Expression

(4.7), the Erlang pdf is

f ðx; l; nÞ ¼
lðlxÞn�1e�lx

ðn� 1Þ! x � 0

0 x< 0

8<
:

It can be shown that if the times between succes-

sive events are independent, each with an expo-

nential distribution with parameter l, then the

total time X that elapses before all of the next n
events occur has pdf f(x; l, n).
a. What is the expected value of X? If the time (in

minutes) between arrivals of successive custo-

mers is exponentially distributed with l ¼ .5,

how much time can be expected to elapse

before the tenth customer arrives?

b. If customer interarrival time is exponentially

distributed with l ¼ .5, what is the probability

that the tenth customer (after the one who has

just arrived) will arrive within the next

30 min?

c. The event {X � t} occurs if and only if at least n
events occur in the next t units of time. Use the
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fact that the number of events occurring in an

interval of length t has a Poisson distribution

with parameter lt to write an expression (involv-
ing Poisson probabilities) for the Erlang

cumulative distribution function F(t; l, n) ¼
P(X � t).

77. A system consists of five identical components

connected in series as shown:

1 2 3 4 5

As soon as one component fails, the entire system

will fail. Suppose each component has a lifetime

that is exponentially distributed with l ¼ .01 and

that components fail independently of one

another. Define events Ai ¼ {ith component lasts

at least t hours}, i ¼ 1, . . . , 5, so that the Ai’s are

independent events. Let X ¼ the time at which the

system fails— that is, the shortest (minimum)

lifetime among the five components.

a. The event {X � t} is equivalent to what event

involving A1, . . . , A5?

b. Using the independence of the five Ai’s, com-

pute P(X � t). Then obtain F(t) ¼ P(X � t)
and the pdf of X. What type of distribution

does X have?

c. Suppose there are n components, each having

exponential lifetime with parameter l. What

type of distribution does X have?

78. IfX has an exponential distributionwith parameter l,
derive a general expression for the (100p)th per-

centile of the distribution. Then specialize to

obtain the median.

79. a. The event {X2 � y} is equivalent to what event
involving X itself?

b. If X has a standard normal distribution, use part

(a) to write the integral that equals P(X2 � y).
Then differentiate this with respect to y to obtain
the pdf of X2 [the square of a N(0, 1) variable].
Finally, show that X2 has a chi-squared distribu-

tion with n ¼ 1 df [see Expression (4.10)].

[Hint: Use the following identity.]

d

dy

ðbðyÞ
aðyÞ

f ðxÞdx
( )

¼ f ½bðyÞ� � b0ðyÞ � f ½aðyÞ� � a0ðyÞ

80. a. Find the mean and variance of the gamma

distribution by differentiating the moment gen-

erating function MX(t).
b. Find the mean and variance of the gamma dis-

tribution by differentiating RX(t) ¼ ln[MX(t)].

81. Find the mean and variance of the gamma distri-

bution using integration to obtain E(X) and E(X2).

[Hint: Express the integrand in terms of a gamma

density.]

4.5 Other Continuous Distributions
The normal, gamma (including exponential), and uniform families of distributions

provide a wide variety of probability models for continuous variables, but there are

many practical situations in which no member of these families fits a set of

observed data very well. Statisticians and other investigators have developed

other families of distributions that are often appropriate in practice.

The Weibull Distribution

The family ofWeibull distributions was introduced by the Swedish physicistWaloddi

Weibull in 1939; his 1951 article “A Statistical Distribution Function of Wide

Applicability” (J. Appl.Mech., 18: 293–297) discusses a number of applications.

DEFINITION A random variable X is said to have a Weibull distribution with parameters

a and b (a > 0, b > 0) if the pdf of X is

f ðx; a; bÞ ¼
a
ba

xa�1e�ðx=bÞa x � 0

0 x < 0

8<
: ð4:11Þ
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In some situations there are theoretical justifications for the appropriateness

of the Weibull distribution, but in many applications f(x; a, b) simply provides a

good fit to observed data for particular values of a and b. When a ¼ 1, the pdf

reduces to the exponential distribution (with l ¼ 1/b), so the exponential distribu-

tion is a special case of both the gamma and Weibull distributions. However, there

are gamma distributions that are not Weibull distributions and vice versa, so one

family is not a subset of the other. Both a and b can be varied to obtain a number of

different distributional shapes, as illustrated in Figure 4.28. Note that b is a scale

parameter, so different values stretch or compress the graph in the x-direction.

Integrating to obtain E(X) and E(X2) yields

m ¼ bG 1þ 1

a

� �
s2 ¼ b2 G 1þ 2

a

� �
� G 1þ 1

a

� �� 	2( )
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Figure 4.28 Weibull density curves
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The computation of m and s2 thus necessitates using the gamma function.

The integration
Ð x
0
f ðy; a; bÞdy is easily carried out to obtain the cdf of X.

The cdf of a Weibull rv having parameters a and b is

Fðx; a;bÞ ¼
0 x < 0

1� e�ðx=bÞa x � 0

(
ð4:12Þ

Example 4.31 In recent years the Weibull distribution has been used to model engine emissions

of various pollutants. Let X denote the amount of NOx emission (g/gal) from a

randomly selected four-stroke engine of a certain type, and suppose that X has

a Weibull distribution with a ¼ 2 and b ¼ 10 (suggested by information in the

article “Quantification of Variability and Uncertainty in Lawn and Garden

Equipment NOx and Total Hydrocarbon Emission Factors,” J. Air Waste Manag.
Assoc., 2002: 435–448). The corresponding density curve looks exactly like the one
in Figure 4.28 for a ¼ 2, b ¼ 1 except that now the values 50 and 100 replace 5 and

10 on the horizontal axis (because b is a “scale parameter”). Then

PðX � 10Þ ¼ Fð10; 2; 10Þ ¼ 1� e�ð10=10Þ2 ¼ 1� e�1 ¼ :632

Similarly, P(X � 25) ¼ .998, so the distribution is almost entirely concentrated on

values between 0 and 25. The value c, which separates the 5% of all engines having

the largest amounts of NOx emissions from the remaining 95%, satisfies

:95 ¼ 1� e�ðc=10Þ2

Isolating the exponential termon one side, taking logarithms, and solving the resulting

equation gives c � 17.3 as the 95th percentile of the emission distribution. ■

Frequently, in practical situations, a Weibull model may be reasonable except

that the smallest possible X value may be some value g not assumed to be zero (this

would also apply to a gamma model). The quantity g can then be regarded as a third
parameter of the distribution, which is what Weibull did in his original work. For,

say, g ¼ 3, all curves in Figure 4.28 would be shifted 3 units to the right. This is

equivalent to saying that X� g has the pdf (4.11), so that the cdf of X is obtained by

replacing x in (4.12) by x � g.

Example 4.32 An understanding of the volumetric properties of asphalt is important in designing

mixtures that will result in high-durability pavement. The article “Is a Normal

Distribution the Most Appropriate Statistical Distribution for Volumetric Proper-

ties in Asphalt Mixtures” J. of Testing and Evaluation, Sept. 2009: 1–11 used the

analysis of some sample data to recommend that for a particular mixture, X ¼ air

void volume (%) be modeled with a three-parameter Weibull distribution. Suppose

the values of the parameters are g ¼ 4, a ¼ 1.3, and b ¼ .8 (quite close to

estimates given in the article).

For x � 4, the cumulative distribution function is

Fðx; a; b; gÞ ¼ Fðx; 1:3; :8; 4Þ ¼ 1� e�½ðx�4Þ=:8�1:3
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The probability that the air void volume of a specimen is between 5% and 6% is

Pð5 � X � 6Þ ¼ Fð6; 1:3; :8; 4Þ � Fð5; 1:3; :8; 4Þ ¼ e�½ð5�4Þ=:8�1:3 � e�½ð6�4Þ=:8�1:3

¼ :263� :037 ¼ :226 ■

The Lognormal Distribution

Lognormal distributions have been used extensively in engineering, medicine, and

more recently, finance.

DEFINITION A nonnegative rvX is said to have a lognormal distribution if the rv Y ¼ ln(X)
has a normal distribution. The resulting pdf of a lognormal rv when ln(X) is
normally distributed with parameters m and s is

f ðx;m; sÞ ¼
1ffiffiffiffiffiffi
2p

p
sx

e�½lnðxÞ�m�2=ð2s2Þ x � 0

0 x < 0

8<
:

Be careful here; the parameters m and s are not the mean and standard deviation

of X but of ln(X). The mean and variance of X can be shown to be

EðXÞ ¼ emþs2=2 VðXÞ ¼ e2mþs2 � ðes2 � 1Þ

In Chapter 6, we will present a theoretical justification for this distribution

in connection with the Central Limit Theorem, but as with other distributions, the

lognormal can be used as a model even in the absence of such justification.

Figure 4.29 illustrates graphs of the lognormal pdf; although a normal curve is

symmetric, a lognormal curve has a positive skew.
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Figure 4.29 Lognormal density curves
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Because ln(X) has a normal distribution, the cdf of X can be expressed in

terms of the cdf F(z) of a standard normal rv Z. For x � 0,

Fðx; m; sÞ ¼ PðX � xÞ ¼ P½lnðXÞ � lnðxÞ� ¼ P
lnðXÞ � m

s
� lnðxÞ � m

s

� 	

¼ P Z � lnðxÞ � m
s

� 	
¼ F

lnðxÞ � m
s

� 	 ð4:13Þ

Example 4.33 According to the article “Predictive Model for Pitting Corrosion in Buried Oil and

Gas Pipelines” (Corrosion, 2009: 332–342), the lognormal distribution has been

reported as the best option for describing the distribution of maximum pit depth

data from cast iron pipes in soil. The authors suggest that a lognormal distribution

with m ¼ .353 and s ¼ .754 is appropriate for maximum pit depth (mm) of buried

pipelines. For this distribution, the mean value and variance of pit depth are

EðXÞ ¼ e:353þð:754Þ2=2 ¼ e:6383 ¼ 1:893

VðXÞ ¼ e2ð:353Þþð:754Þ2 � ðeð:754Þ2 � 1Þ ¼ ð3:57697Þð:765645Þ ¼ 2:7387

The probability that maximum pit depth is between 1 and 2 mm is

Pð1 � X � 2Þ ¼ Pðlnð1Þ � lnðXÞ � lnð2ÞÞ
¼ Pð0 � lnðXÞ � :693Þ

¼ P
0� :353

:754
� Z � :693� :353

:754

� �

¼ Fð:45Þ � Fð�:47Þ ¼:354

What value c is such that only 1% of all specimens have a maximum pit depth

exceeding c? The desired value satisfies

:99 ¼ PðX � cÞ ¼ P Z � lnðcÞ � :353

:754

� �

The z critical value 2.33 captures an upper-tail area of .01 (z.01 ¼ 2.33), and thus

a cumulative area of .99. This implies that

lnðcÞ � :353

:754
¼ 2:33

from which ln(c) ¼ 2.1098 and c ¼ 8.247. Thus 8.247 is the 99th percentile of the

maximum pit depth distribution. ■

The Beta Distribution

All families of continuous distributions discussed so far except for the uniform

distribution have positive density over an infinite interval (although typically the

density function decreases rapidly to zero beyond a few standard deviations from

the mean). The beta distribution provides positive density only for X in an interval

of finite length.
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DEFINITION A random variable X is said to have a beta distribution with parameters a, b
(both positive), A, and B if the pdf of X is

f ðx; a; b;A;BÞ ¼
1

B� A
� Gðaþ bÞ
GðaÞ � GðbÞ

x� A

B� A

� �a�1 B� x

B� A

� �b�1

A � x � B

0 otherwise

8<
:

The case A ¼ 0, B ¼ 1 gives the standard beta distribution.

Figure 4.30 illustrates several standard beta pdf’s. Graphs of the general pdf are

similar, except they are shifted and then stretched or compressed to fit over [A, B].
Unless a and b are integers, integration of the pdf to calculate probabilities is difficult,
so either a table of the incomplete beta function or software is generally used.

The mean and variance of X are

m ¼ Aþ ðB� AÞ � a
aþ b

s2 ¼ ðB� AÞ2ab
ðaþ bÞ2ðaþ bþ 1Þ

Example 4.34 Project managers often use a method labeled PERT—for program evaluation and

review technique—to coordinate the various activities making up a large project.

(One successful application was in the construction of the Apollo spacecraft.)

A standard assumption in PERT analysis is that the time necessary to complete

any particular activity once it has been started has a beta distribution with A ¼ the

optimistic time (if everything goes well) and B ¼ the pessimistic time (if every-

thing goes badly). Suppose that in constructing a single-family house, the time X
(in days) necessary for laying the foundation has a beta distribution with A ¼ 2,

B ¼ 5, a ¼ 2, and b ¼ 3. Then a/(a + b) ¼ .4, so E(X) ¼ 2 + (3)(.4) ¼ 3.2.

.8.6.4.2 1

1

2

3

4

5

0

a = b = .5

a = 2
b = .5

a = 5
b = 2

x

f(x; α, β)

Figure 4.30 Standard beta density curves
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For these values of a and b, the pdf of X is a simple polynomial function. The

probability that it takes at most 3 days to lay the foundation is

PðX � 3Þ ¼
ð3
2

1

3
� 4!

1! � 2!
x� 2

3

� �
5� x

3

� �2
dx

¼ 4

27

ð3
2

ðx� 2Þð5� xÞ2dx ¼ 4

27
� 11
4

¼ 11

27
¼ :407

■

The standard beta distribution is commonly used to model variation in the

proportion or percentage of a quantity occurring in different samples, such as the

proportion of a 24-h day that an individual is asleep or the proportion of a certain

element in a chemical compound.

Exercises Section 4.5 (82–96)

82. The lifetime X (in hundreds of hours) of a type of

vacuum tube has a Weibull distribution with para-

meters a ¼ 2 and b ¼ 3. Compute the following:

a. E(X) and V(X)
b. P(X � 6)

c. P(1.5 � X � 6)

(This Weibull distribution is suggested as a model

for time in service in “On the Assessment of

Equipment Reliability: Trading Data Collection

Costs for Precision,” J. Engrg. Manuf., 1991:

105–109).

83. The authors of the article “A Probabilistic Insula-

tion Life Model for Combined Thermal-Electrical

Stresses” (IEEE Trans. Electr. Insul., 1985:

519–522) state that “the Weibull distribution is

widely used in statistical problems relating to

aging of solid insulating materials subjected

to aging and stress.” They propose the use of the

distribution as a model for time (in hours) to failure

of solid insulating specimens subjected to ac volt-

age. The values of the parameters depend on the

voltage and temperature; suppose a ¼ 2.5 and

b ¼ 200 (values suggested by data in the article).

a. What is the probability that a specimen’s life-

time is at most 250? Less than 250? More than

300?

b. What is the probability that a specimen’s life-

time is between 100 and 250?

c. What value is such that exactly 50% of all

specimens have lifetimes exceeding that value?

84. Let X ¼ the time (in 10�1 weeks) from shipment

of a defective product until the customer returns

the product. Suppose that the minimum return

time is g ¼ 3.5 and that the excess X � 3.5 over

the minimum has a Weibull distribution with

parameters a ¼ 2 and b ¼ 1.5 (see the article

“Practical Applications of the Weibull Distribu-

tion,” Indust. Qual. Control, 1964: 71–78).
a. What is the cdf of X?
b. What are the expected return time and variance

of return time? [Hint: First obtain E(X � 3.5)

and V(X � 3.5).]

c. Compute P(X > 5).

d. Compute P(5 � X � 8).

85. Let X have a Weibull distribution with the pdf from

Expression (4.11). Verify that m ¼ bG(1 þ 1/a).
[Hint: In the integral for E(X), make the change of

variable y ¼ (x/b)a, so that x ¼ by1/a.]

86. a. In Exercise 82, what is the median lifetime of

such tubes? [Hint: Use Expression (4.12).]

b. In Exercise 84, what is the median return time?

c. If X has a Weibull distribution with the cdf

from Expression (4.12), obtain a general

expression for the (100p)th percentile of the

distribution.

d. In Exercise 84, the company wants to refuse to

accept returns after t weeks. For what value of
t will only 10% of all returns be refused?

87. Let X denote the ultimate tensile strength (ksi) at

�200� of a randomly selected steel specimen of a

certain type that exhibits “cold brittleness” at low

temperatures. Suppose that X has a Weibull distri-

bution with a ¼ 20 and b ¼ 100.
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a. What is the probability that X is at most

105 ksi?

b. If specimen after specimen is selected, what is

the long-run proportion having strength values

between 100 and 105 ksi?

c. What is the median of the strength distribution?

88. The authors of a paper from which the data in

Exercise 25 of Chapter 1 was extracted suggested

that a reasonable probability model for drill life-

time was a lognormal distribution with m ¼ 4.5

and s ¼ .8.

a. What are the mean value and standard devia-

tion of lifetime?

b. What is the probability that lifetime is at

most 100?

c. What is the probability that lifetime is at least

200? Greater than 200?

89. Let X ¼ the hourly median power (in decibels) of

received radio signals transmitted between two

cities. The authors of the article “Families of Dis-

tributions for Hourly Median Power and Instanta-

neous Power of Received Radio Signals” (J. Res.
Nat. Bureau Standards, vol. 67D, 1963: 753–762)
argue that the lognormal distribution provides a

reasonable probability model for X. If the param-

eter values are m ¼ 3.5 and s ¼ 1.2, calculate the

following:

a. The mean value and standard deviation of

received power.

b. The probability that received power is between
50 and 250 dB.

c. The probability that X is less than its mean

value. Why is this probability not .5?

90. a. Use Equation (4.13) to write a formula for the

median ~m of the lognormal distribution. What

is the median for the power distribution of

Exercise 89?

b. Recalling that za is our notation for the

100(1 � a) percentile of the standard normal

distribution, write an expression for the

100(1� a) percentile of the lognormal distribu-

tion. In Exercise 89, what value will received

power exceed only 5% of the time?

91. A theoretical justification based on a material

failure mechanism underlies the assumption that

ductile strength X of a material has a lognormal

distribution. Suppose the parameters are m ¼ 5

and s ¼ .1.

a. Compute E(X) and V(X).

b. Compute P(X > 125).

c. Compute P(110 � X � 125).

d. What is the value of median ductile strength?

e. If ten different samples of an alloy steel of this

type were subjected to a strength test, how

many would you expect to have strength of at

least 125?

f. If the smallest 5% of strength values were un-

acceptable, what would the minimum accept-

able strength be?

92. The article “The Statistics of Phytotoxic Air

Pollutants” (J. Roy. Statist Soc., 1989: 183–198)
suggests the lognormal distribution as a model for

SO2 concentration above a forest. Suppose the

parameter values are m ¼ 1.9 and s ¼ .9.

a. What are the mean value and standard devia-

tion of concentration?

b. What is the probability that concentration is at

most 10? Between 5 and 10?

93. What condition on a and b is necessary for the

standard beta pdf to be symmetric?

94. Suppose the proportion X of surface area in a

randomly selected quadrate that is covered by a

certain plant has a standard beta distribution with

a ¼ 5 and b ¼ 2.

a. Compute E(X) and V(X).
b. Compute P(X � .2).

c. Compute P(.2 � X � .4).

d. What is the expected proportion of the sam-

pling region not covered by the plant?

95. Let X have a standard beta density with parameters

a and b.
a. Verify the formula for E(X) given in the

section.

b. Compute E[(1 � X)m]. If X represents the pro-

portion of a substance consisting of a particular

ingredient, what is the expected proportion that

does not consist of this ingredient?

96. Stress is applied to a 20-in. steel bar that is

clamped in a fixed position at each end. Let Y ¼
the distance from the left end at which the bar

snaps. Suppose Y/20 has a standard beta distribu-

tion with E(Y) ¼ 10 and VðYÞ ¼ 100 7= :
a. What are the parameters of the relevant stan-

dard beta distribution?

b. Compute P(8 � Y � 12).

c. Compute the probability that the bar snaps more

than 2 in. from where you expect it to snap.
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4.6 Probability Plots
An investigator will often have obtained a numerical sample x1, x2, . . ., xn and wish
to know whether it is plausible that it came from a population distribution of some

particular type (e.g., from a normal distribution). For one thing, many formal

procedures from statistical inference are based on the assumption that the popula-

tion distribution is of a specified type. The use of such a procedure is inappropriate

if the actual underlying probability distribution differs greatly from the assumed

type. Also, understanding the underlying distribution can sometimes give insight

into the physical mechanisms involved in generating the data. An effective way to

check a distributional assumption is to construct what is called a probability plot.
The essence of such a plot is that if the distribution on which the plot is based is

correct, the points in the plot will fall close to a straight line. If the actual

distribution is quite different from the one used to construct the plot, the points

should depart substantially from a linear pattern.

Sample Percentiles

The details involved in constructing probability plots differ a bit from source to

source. The basis for our construction is a comparison between percentiles of the

sample data and the corresponding percentiles of the distribution under consider-

ation. Recall that the (100p)th percentile of a continuous distribution with cdf F(x)
is the number �(p) that satisfies F[�(p)] ¼ p. That is, �(p) is the number on the

measurement scale such that the area under the density curve to the left of �(p) is p.
Thus the 50th percentile �(.5) satisfies F[�(.5)] ¼ .5, and the 90th percentile

satisfies F[�(.9)] ¼ .9. Consider as an example the standard normal distribution,

for which we have denoted the cdf by F(z). From Appendix Table A.3, we find the

20th percentile by locating the row and column in which .2000 (or a number as

close to it as possible) appears inside the table. Since .2005 appears at the intersec-

tion of the �.8 row and the .04 column, the 20th percentile is approximately �.84.

Similarly, the 25th percentile of the standard normal distribution is (using linear

interpolation) approximately �.675.

Roughly speaking, sample percentiles are defined in the same way that

percentiles of a population distribution are defined. The 50th-sample percentile

should separate the smallest 50% of the sample from the largest 50%, the 90th

percentile should be such that 90% of the sample lies below that value and 10% lies

above, and so on. Unfortunately, we run into problems when we actually try to

compute the sample percentiles for a particular sample of n observations. If, for

example, n ¼ 10, we can split off 20% of these values or 30% of the data, but there

is no value that will split off exactly 23% of these ten observations. To proceed

further, we need an operational definition of sample percentiles (this is one place

where different people do slightly different things). Recall that when n is odd, the

sample median or 50th-sample percentile is the middle value in the ordered list,

for example, the sixth largest value when n ¼ 11. This amounts to regarding the

middle observation as being half in the lower half of the data and half in the upper

half. Similarly, suppose n ¼ 10. Then if we call the third smallest value the 25th

percentile, we are regarding that value as being half in the lower group (consisting

of the two smallest observations) and half in the upper group (the seven largest

observations). This leads to the following general definition of sample percentiles.
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DEFINITION Order the n sample observations from smallest to largest. Then the ith
smallest observation in the list is taken to be the [100(i � .5)/n]th sample
percentile.

Once the percentage values 100(i � .5)/n (i ¼ 1, 2, . . ., n) have been calcu-

lated, sample percentiles corresponding to intermediate percentages can be obtained

by linear interpolation. For example, if n ¼ 10, the percentages corresponding to the

ordered observations are 100(1 � .5)/10 ¼ 5%, 100(2 � .5)/10 ¼ 15%, 25%, . . .,
and 100(10 � .5)/10 ¼ 95%. The 10th percentile is then halfway between the 5th

percentile (smallest sample observation) and the 15th percentile (second smallest

observation). For our purposes, such interpolation is not necessary because a proba-

bility plot will be based only on the percentages 100(i � .5)/n corresponding to

the n sample observations.

A Probability Plot

Suppose now that for percentages 100(i � .5)/n (i ¼ 1, . . ., n) the percentiles are

determined for a specified population distribution whose plausibility is being

investigated. If the sample was actually selected from the specified distribution,

the sample percentiles (ordered sample observations) should be reasonably close to

the corresponding population distribution percentiles. That is, for i ¼ 1, 2, . . ., n
there should be reasonable agreement between the ith smallest sample observation

and the [100(i � .5)/n]th percentile for the specified distribution. Consider the

(population percentile, sample percentile) pairs—that is, the pairs

½100ði� :5Þ=n�th percentile

of the distribution
;

ith smallest sample

observation

� �

for i ¼ 1, . . ., n. Each such pair can be plotted as a point on a two-dimensional

coordinate system. If the sample percentiles are close to the corresponding popula-

tion distribution percentiles, the first number in each pair will be roughly equal to

the second number. The plotted points will then fall close to a 45� line. Substantial
deviations of the plotted points from a 45� line suggest that the assumed distribu-

tion might be wrong.

Example 4.35 The value of a physical constant is known to an experimenter. The experimenter

makes n ¼ 10 independent measurements of this value using a measurement

device and records the resulting measurement errors (error ¼ observed value �
true value). These observations appear in the accompanying table.

Percentage 5 15 25 35 45

z percentile �1.645 �1.037 �.675 �.385 �.126

Sample observation �1.91 �1.25 �.75 �.53 .20

Percentage 55 65 75 85 95

z percentile .126 .385 .675 1.037 1.645

Sample observation .35 .72 .87 1.40 1.56
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Is it plausible that the random variable measurement error has a standard

normal distribution? The needed standard normal (z) percentiles are also dis-

played in the table. Thus the points in the probability plot are (�1.645, �1.91),

(�1.037, �1.25), . . ., and (1.645, 1.56). Figure 4.31 shows the resulting plot.

Although the points deviate a bit from the 45� line, the predominant impression

is that this line fits the points very well. The plot suggests that the standard normal

distribution is a reasonable probability model for measurement error.

Figure 4.32 shows a plot of pairs (z percentile, observation) for a second sample of

ten observations. The 45� line gives a good fit to the middle part of the sample but

not to the extremes. The plot has a well-defined S-shaped appearance. The two

smallest sample observations are considerably larger than the corresponding z
percentiles (the points on the far left of the plot are well above the 45� line).

Observed
value

z percentile

45° line1.6

1.2

.8

.4

.4 .8 1.2 1.6

−.4

−.4−.8−1.2−1.6

−.8

−1.2

−1.6

−1.8

Figure 4.31 Plots of pairs (z percentile, observed value) for the data of Example 4.35:

first sample

Observed
value

z percentile

1.2

.8

−.4

−.4

−.8

−1.2

−.8−1.2−1.6 .4 .8 1.2 1.6

.4

S-shaped
curve

458 line

Figure 4.32 Plots of pairs (z percentile, observed value) for the data of Example 4.35:

second sample
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Similarly, the two largest sample observations are much smaller than the associated

z percentiles. This plot indicates that the standard normal distribution would not be

a plausible choice for the probability model that gave rise to these observed

measurement errors. ■

An investigator is typically not interested in knowing whether a specified

probability distribution, such as the standard normal distribution (normal with

m ¼ 0 and s ¼ 1) or the exponential distribution with l ¼ .1, is a plausible

model for the population distribution from which the sample was selected. Instead,

the investigator will want to know whether somemember of a family of probability

distributions specifies a plausible model—the family of normal distributions, the

family of exponential distributions, the family of Weibull distributions, and so on.

The values of the parameters of a distribution are usually not specified at the outset.

If the family of Weibull distributions is under consideration as a model for lifetime

data, the issue is whether there are any values of the parameters a and b for which

the corresponding Weibull distribution gives a good fit to the data. Fortunately, it is

almost always the case that just one probability plot will suffice for assessing the

plausibility of an entire family. If the plot deviates substantially from a straight line,

no member of the family is plausible. When the plot is quite straight, further work is

necessary to estimate values of the parameters (e.g., find values for m and s) that
yield the most reasonable distribution of the specified type.

Let’s focus on a plot for checking normality. Such a plot can be very useful

in applied work because many formal statistical procedures are appropriate (give

accurate inferences) only when the population distribution is at least approximately

normal. These procedures should generally not be used if the normal probability

plot shows a very pronounced departure from linearity. The key to constructing an

omnibus normal probability plot is the relationship between standard normal (z)
percentiles and those for any other normal distribution:

percentile for a normal

ðm;s) distribution ¼ mþ s � (corresponding z percentile)

Consider first the case m ¼ 0. Then if each observation is exactly equal to the corres-

ponding normal percentile for a particular value of s, the pairs (s · [z percentile],
observation) fall on a 45� line, which has slope 1. This implies that the pairs

(z percentile, observation) fall on a line passing through (0, 0) (i.e., one with

y-intercept 0) but having slope s rather than 1. The effect of a nonzero value of m is

simply to change the y-intercept from 0 to m.

A plot of the n pairs

ð½100ði� :5Þ=n�th z percentile; ith smallest observationÞ

on a two-dimensional coordinate system is called a normal probability plot.
If the sample observations are in fact drawn from a normal distribution with

mean value m and standard deviation s, the points should fall close to a
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straight line with slope s and intercept m. Thus a plot for which the points fall
close to some straight line suggests that the assumption of a normal popula-

tion distribution is plausible.

Example 4.36 The accompanying sample consisting of n ¼ 20 observations on dielectric break-

down voltage of a piece of epoxy resin appeared in the article “Maximum Likeli-

hood Estimation in the 3-Parameter Weibull Distribution” (IEEE Trans.Dielectrics
Electr. Insul., 1996: 43–55). Values of (i � .5)/n for which z percentiles are needed
are (1 � .5)/20 ¼ .025, (2 � .5)/20 ¼ .075, . . ., and .975.

Observation 24.46 25.61 26.25 26.42 26.66 27.15 27.31 27.54 27.74 27.94

z percentile �1.96 �1.44 �1.15 �.93 �.76 �.60 �.45 �.32 �.19 �.06

Observation 27.98 28.04 28.28 28.49 28.50 28.87 29.11 29.13 29.50 30.88

z percentile .06 .19 .32 .45 .60 .76 .93 1.15 1.44 1.96

Figure 4.33 shows the resulting normal probability plot. The pattern in the plot is

quite straight, indicating it is plausible that the population distribution of dielectric

breakdown voltage is normal.

There is an alternative version of a normal probability plot in which the z
percentile axis is replaced by a nonlinear probability axis. The scaling on this axis is

constructed so that plotted points should again fall close to a line when the sampled

distribution is normal. Figure 4.34 shows such a plot from MINITAB for the

breakdown voltage data of Example 4.36. Here the z values are replaced by the

corresponding normal percentiles. The plot remains the same, and it is just the

labeling of the axis that changes. Note that MINITAB and various other software

packages use the refinement (i � .375)/(n + .25) of the formula (i � .5)/n in order

to get a better approximation to what is expected for the ordered values of the

standard normal distribution. Also notice that the axes in Figure 4.34 are reversed

relative to those in Figure 4.33.
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Figure 4.33 Normal probability plot for the dielectric breakdown voltage sample ■
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A nonnormal population distribution can often be placed in one of the

following three categories:

1. It is symmetric and has “lighter tails” than does a normal distribution; that is, the

density curve declines more rapidly out in the tails than does a normal curve.

2. It is symmetric and heavy-tailed compared to a normal distribution.

3. It is skewed.

A uniform distribution is light-tailed, since its density function drops to zero outside

a finite interval. The density function f(x) ¼ 1/[p(1 + x2)], for �1 < x < 1,

is one example of a heavy-tailed distribution, since 1/(1 + x2) declines much less

rapidly than does e�x2=2. Lognormal and Weibull distributions are among those that

are skewed. When the points in a normal probability plot do not adhere to a straight

line, the pattern will frequently suggest that the population distribution is in a

particular one of these three categories.

If the sample is selected from a light-tailed distribution, the largest and

smallest observations are usually not as extreme as would be expected from a

normal random sample. Visualize a straight line drawn through the middle part of

the plot; points on the far right tend to be below the line (observed value < z
percentile), whereas points on the left end of the plot tend to fall above the straight

line (observed value > z percentile). The result is an S -shaped pattern of the type

pictured in Figure 4.32.

A sample from a heavy-tailed distribution also tends to produce an S-shaped

plot. However, in contrast to the light-tailed case, the left end of the plot curves

downward (observed < z percentile), as shown in Figure 4.35(a). If the underlying

distribution is positively skewed (a short left tail and a long right tail), the smallest

sample observations will be larger than expected from a normal sample and so will

the largest observations. In this case, points on both ends of the plot will fall above a

Figure 4.34 Normal probability plot of the breakdown voltage data from MINITAB
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straight line through the middle part, yielding a curved pattern, as illustrated in

Figure 4.35(b). A sample from a lognormal distribution will usually produce such a

pattern. A plot of [z percentile, ln(x)] pairs should then resemble a straight line.

Even when the population distribution is normal, the sample percentiles will

not coincide exactly with the theoretical percentiles because of sampling variabil-

ity. How much can the points in the probability plot deviate from a straight-line

pattern before the assumption of population normality is no longer plausible? This

is not an easy question to answer. Generally speaking, a small sample from a

normal distribution is more likely to yield a plot with a nonlinear pattern than is a

large sample. The book Fitting Equations to Data (see the Chapter 12 bibliography)
presents the results of a simulation study in which numerous samples of different

sizes were selected from normal distributions. The authors concluded that there is

typically greater variation in the appearance of the probability plot for sample sizes

smaller than 30, and only for much larger sample sizes does a linear pattern

generally predominate. When a plot is based on a small sample size, only a very

substantial departure from linearity should be taken as conclusive evidence of

nonnormality. A similar comment applies to probability plots for checking the

plausibility of other types of distributions.

Given the limitations of probability plots, there is need for an alternative.

In Section 13.2 we introduce a formal procedure for judging whether the pattern of

points in a normal probability plot is far enough from linear to cast doubt on

population normality.

Beyond Normality

Consider a family of probability distributions involving two parameters, y1 and y2,
and let F(x; y1, y2) denote the corresponding cdf’s. The family of normal distribu-

tions is one such family, with y1 ¼ m, y2 ¼ s, and Fðx; m; sÞ ¼ F ðx� mÞ=s½ �.
Another example is the Weibull family, with y1 ¼ a, y2 ¼ b, and

Fðx; a; bÞ ¼ 1� e�ðx=bÞa

z percentile z percentile
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Figure 4.35 Probability plots that suggest a nonnormal distribution: (a) a plot consistent with a

heavytailed distribution; (b) a plot consistent with a positively skewed distribution
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Still another family of this type is the gamma family, for which the cdf is an

integral involving the incomplete gamma function that cannot be expressed in any

simpler form.

The parameters y1 and y2 are said to be location and scale parameters,
respectively, if F(x; y1, y2) is a function of (x � y1)/ y2. The parameters m and s of

the normal family are location and scale parameters, respectively. Changing m
shifts the location of the bell-shaped density curve to the right or left, and changing

s amounts to stretching or compressing the measurement scale (the scale on the

horizontal axis when the density function is graphed). Another example is given by

the cdf

Fðx; y1; y2Þ ¼ 1� e�eðx�y1Þ=y2 �1< x<1

A random variable with this cdf is said to have an extreme value distribution. It is
used in applications involving component lifetime and material strength.

Although the form of the extreme value cdf might at first glance suggest

that y1 is the point of symmetry for the density function, and therefore the

mean and median, this is not the case. Instead, P(X � y1) ¼ F(y1; y1, y2) ¼
1 � e�1 ¼ .632, and the density function f(x; y1, y2) ¼ F0(x; y1, y2) is negatively
skewed (a long lower tail). Similarly, the scale parameter y2 is not the standard

deviation (m ¼ y1 � .5772y2 and s ¼ 1.283y2). However, changing the value of y1
does change the location of the density curve, whereas a change in y2 rescales the
measurement axis.

The parameter b of the Weibull distribution is a scale parameter, but a is

not a location parameter. The parameter a is usually referred to as a shape
parameter. A similar comment applies to the parameters a and b of the gamma

distribution. In the usual form, the density function for any member of either the

gamma or Weibull distribution is positive for x > 0 and zero otherwise. A location

parameter can be introduced as a third parameter g (we did this for the Weibull

distribution) to shift the density function so that it is positive if x > g and zero

otherwise.

When the family under consideration has only location and scale

parameters, the issue of whether any member of the family is a plausible population

distribution can be addressed via a single, easily constructed probability plot.

One first obtains the percentiles of the standard distribution, the one with y1 ¼ 0

and y2 ¼ 1, for percentages 100(i � .5)/n (i ¼ 1, . . ., n). The n (standardized

percentile, observation) pairs give the points in the plot. This is, of course, exactly

what we did to obtain an omnibus normal probability plot. Somewhat surprisingly,

this methodology can be applied to yield an omnibus Weibull probability plot.

The key result is that if X has a Weibull distribution with shape parameter a and

scale parameter b, then the transformed variable ln(X) has an extreme value

distribution with location parameter y1 ¼ ln(b) and scale parameter a. Thus a

plot of the [extreme value standardized percentile, ln(x)] pairs that shows a strong
linear pattern provides support for choosing the Weibull distribution as a popula-

tion model.

Example 4.37 The accompanying observations are on lifetime (in hours) of power apparatus

insulation when thermal and electrical stress acceleration were fixed at particular

values (“On the Estimation of Life of Power Apparatus Insulation Under Combined
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Electrical and Thermal Stress,” IEEE Trans. Electr. Insul., 1985: 70–78).

A Weibull probability plot necessitates first computing the 5th, 15th, . . ., and
95th percentiles of the standard extreme value distribution. The (100p)th percentile
�(p) satisfies

p ¼ F½�ðpÞ� ¼ 1� e�e�ðpÞ

from which �(p) ¼ ln[�ln(1 � p)].

Percentile �2.97 �1.82 �1.25 �.84 �.51

x 282 501 741 851 1,072

ln(x) 5.64 6.22 6.61 6.75 6.98

Percentile �.23 .05 .33 .64 1.10

x 1,122 1,202 1,585 1,905 2,138

ln(x) 7.02 7.09 7.37 7.55 7.67

The pairs (�2.97, 5.64), (�1.82, 6.22), . . ., (1.10, 7.67) are plotted as points in

Figure 4.36. The straightness of the plot argues strongly for using the Weibull

distribution as a model for insulation life, a conclusion also reached by the author of

the cited article.

The gamma distribution is an example of a family involving a shape parame-

ter for which there is no transformation h(x) such that h(X) has a distribution that

depends only on location and scale parameters. Construction of a probability plot

necessitates first estimating the shape parameter from sample data (some methods

for doing this are described in Chapter 7).

Sometimes an investigator wishes to know whether the transformed

variable Xy has a normal distribution for some value of y (by convention, y ¼ 0

is identified with the logarithmic transformation, in which case X has a lognormal

distribution). The book Graphical Methods for Data Analysis, listed in the

Chapter 1 bibliography, discusses this type of problem as well as other refinements

of probability plotting.

−3 −2 −1 0 1
5

8

7

6

Percentile

ln(x)

Figure 4.36 A Weibull probability plot of the insulation lifetime data ■
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Exercises Section 4.6 (97–107)

97. The accompanying normal probability plot was

constructed from a sample of 30 readings on

tension for mesh screens behind the surface of

video display tubes. Does it appear plausible that

the tension distribution is normal?

−2 −1 0 1 2

200

250

300

350

z percentile

Tension

98. A sample of 15 female collegiate golfers was

selected and the clubhead velocity (km/h) while

swinging a driver was determined for each one,

resulting in the following data (“Hip Rotational

Velocities during the Full Golf Swing,” J. of
Sports Science and Medicine, 2009: 296–299):

69.0 69.7 72.7 80.3 81.0

85.0 86.0 86.3 86.7 87.7

89.3 90.7 91.0 92.5 93.0

The corresponding z percentiles are
�1.83 �1.28 �0.97 �0.73 �0.52

�0.34 �0.17 0.0 0.17 0.34

0.52 0.73 0.97 1.28 1.83

Construct a normal probability plot and a dotplot.

Is it plausible that the population distribution is

normal?

99. Construct a normal probability plot for the fol-

lowing sample of observations on coating thick-

ness for low-viscosity paint (“Achieving a Target

Value for a Manufacturing Process: A Case

Study,” J. Qual. Tech., 1992: 22–26). Would

you feel comfortable estimating population

mean thickness using a method that assumed a

normal population distribution?

.83 .88 .88 1.04 1.09 1.12 1.29 1.31

1.48 1.49 1.59 1.62 1.65 1.71 1.76 1.83

100. The article “A Probabilistic Model of Fracture in

Concrete and Size Effects on Fracture Tough-

ness” (Mag. Concrete Res., 1996: 311–320)

gives arguments for why fracture toughness

in concrete specimens should have a Weibull

distribution and presents several histograms

of data that appear well fit by superimposed

Weibull curves. Consider the following sample

of size n ¼ 18 observations on toughness for

high-strength concrete (consistent with one of

the histograms); values of pi ¼ (i � .5)/18 are

also given.

Observation .47 .58 .65 .69 .72 .74

pi .0278 .0833 .1389 .1944 .2500 .3056

Observation .77 .79 .80 .81 .82 .84

pi .3611 .4167 .4722 .5278 .5833 .6389

Observation .86 .89 .91 .95 1.01 1.04

pi .6944 .7500 .8056 .8611 .9167 .9722

Construct aWeibull probability plot and comment.

101. Construct a normal probability plot for the

escape time data given inExercise 33 of Chapter 1.

Does it appear plausible that escape time has a

normal distribution? Explain.

102. The article “The Load-Life Relationship for M50

Bearings with Silicon Nitride Ceramic Balls”

(Lubricat. Engrg., 1984: 153–159) reports the

accompanying data on bearing load life (million

revs.) for bearings tested at a 6.45-kN load.

47.1 68.1 68.1 90.8 103.6 106.0 115.0

126.0 146.6 229.0 240.0 240.0 278.0 278.0

289.0 289.0 367.0 385.9 392.0 505.0

a. Construct a normal probability plot. Is nor-

mality plausible?

b. Construct a Weibull probability plot. Is the

Weibull distribution family plausible?

103. Construct a probability plot that will allow you to

assess the plausibility of the lognormal distribu-

tion as a model for the rainfall data of Exercise 80

in Chapter 1.

104. The accompanying observations are precipita-

tion values during March over a 30-year period

in Minneapolis–St. Paul.

.77 1.20 3.00 1.62 2.81 2.48

1.74 .47 3.09 1.31 1.87 .96

.81 1.43 1.51 .32 1.18 1.89

1.20 3.37 2.10 .59 1.35 .90

1.95 2.20 .52 .81 4.75 2.05

a. Construct and interpret a normal probability

plot for this data set.
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b. Calculate the square root of each value and

then construct a normal probability plot based

on this transformed data. Does it seem plau-

sible that the square root of precipitation is

normally distributed?

c. Repeat part (b) after transforming by cube

roots.

105. Use a statistical software package to construct

a normal probability plot of the shower-flow

rate data given in Exercise 13 of Chapter 1, and

comment.

106. Let the ordered sample observations be denoted

by y1, y2, . . ., yn (y1 being the smallest and yn the
largest). Our suggested check for normality is to

plot the (F�1[(i � .5)/n], yi) pairs. Suppose we

believe that the observations come from a distri-

bution with mean 0, and let w1, . . ., wn be

the ordered absolute values of the xi’s. A half-
normal plot is a probability plot of the wi’s.
More specifically, since P(|Z | � w) ¼ P(�w �
Z � w) ¼ 2F(w)� 1, a half-normal plot is a plot

of the (F�1[(pi + 1)/2], wi) pairs, where pi ¼ (i
� .5)/n. The virtue of this plot is that small or

large outliers in the original sample will now

appear only at the upper end of the plot rather

than at both ends. Construct a half-normal plot

for the following sample of measurement errors,

and comment: �3.78, �1.27, 1.44, �.39, 12.38,

�43.40, 1.15, �3.96, �2.34, 30.84.

107. The following failure time observations (1,000’s

of hours) resulted from accelerated life testing of

16 integrated circuit chips of a certain type:

82.8 11.6 359.5 502.5 307.8 179.7

242.0 26.5 244.8 304.3 379.1 212.6

229.9 558.9 366.7 204.6

Use the corresponding percentiles of the exponen-

tial distribution with l ¼ 1 to construct a proba-

bility plot. Then explain why the plot assesses the

plausibility of the sample having been generated

from any exponential distribution.

4.7 Transformations of a Random Variable
Often we need to deal with a transformation Y ¼ g(X) of the random variable X.
Here g(X) could be a simple change of time scale. If X is in hours and Y is in

minutes, then Y ¼ 60X. What happens to the pdf when we do this? Can we get the

pdf of Y from the pdf of X? Consider first a simple example.

Example 4.38 The interval X in minutes between calls to a 911 center is exponentially distributed

with mean 2 min, so has pdf fXðxÞ ¼ 1
2
e�x=2 for x > 0. Can we find the pdf of

Y ¼ 60X, so Y is the number of seconds? In order to get the pdf, we first find the

cdf. The cdf of Y is

FYðyÞ ¼ PðY � yÞ ¼ Pð60X � yÞ ¼ PðX � y=60Þ ¼ FXðy=60Þ

¼
ðy=60
0

1

2
e�u=2du ¼ 1� e�y=120:

Differentiating this with respect to y gives fY(y) ¼ (1/120)e�y/120 for y > 0.

The distribution of Y is exponential with mean 120 s (2 min).

Sometimes it isn’t possible to evaluate the cdf in closed form. Could we still

find the pdf of Ywithout evaluating the integral? Yes, and it involves differentiating

the integral with respect to the upper limit of integration. The rule, which is

sometimes presented as part of the Fundamental Theorem of Calculus, is

d

dx

ð x

a

hðuÞdu ¼ hðxÞ:
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Now, setting x ¼ y/60 and using the chain rule, we get the pdf using the rule for

differentiating integrals:

fYðyÞ ¼ d

dy
FYðyÞ ¼ d

dy
FXðxÞ

����
x¼y=60

¼ dx

dy

d

dx
FXðxÞ

����
x¼y=60

¼ 1

60

d

dx

ð x

0

1

2
e�u=2du ¼ 1

60
� 1
2
e�x=2 ¼ 1

120
e�y=120

y > 0:

Although it is useful to have the integral expression of the cdf here for clarity, it is

not necessary. A more abstract approach is just to use differentiation of the cdf to

get the pdf. That is, with x ¼ y/60 and again using the chain rule,

fYðyÞ¼ d

dy
FYðyÞ¼ d

dy
FXðxÞ

����
x¼y=60

¼ dx

dy

d

dx
FXðxÞ¼ 1

60
fXðxÞ

¼ 1

60
� 1
2
e�x=2 ¼ 1

120
e�y=120 y> 0:

Is it plausible that, if X ~ exponential with mean 2, then 60X ~ exponential

with mean 120? In terms of time between calls, if it is exponential with mean 2 min,

then this should be the same as exponential with mean 120 s. Generalizing, there is

nothing special here about 2 and 60, so it should be clear that if we multiply an

exponential random variable with mean m by a positive constant c we get another
exponential random variable with mean cm. This is also easily verified using a

moment generating function argument. ■

The method illustrated above can be applied to other transformations.

THEOREM Let X have pdf fX(x) and let Y ¼ g(X), where g is monotonic (either strictly

increasing or strictly decreasing) so it has an inverse function X ¼ h(Y).
Assume that h has a derivative h0(y). Then fY(y) ¼ fX(h(y)) |h

0(y)|

Proof Here is the proof assuming that g is monotonically increasing. The proof

for g monotonically decreasing is similar. We follow the last method in Example

4.38. First find the cdf.

FYðyÞ ¼ PðY � yÞ ¼ P gðXÞ � y½ � ¼ P X � hðyÞ½ � ¼ FX½hðyÞ�:

Now differentiate the cdf, letting x ¼ h(y).

fYðyÞ ¼ d

dy
FYðyÞ ¼ d

dy
FX½hðyÞ� ¼ dx

dy

d

dx
FXðxÞ ¼ h0ðyÞfXðxÞ ¼ h0ðyÞfX½hðyÞ�

The absolute value is needed on the derivative only in the other case where g is

decreasing. The set of possible values for Y is obtained by applying g to the set of

possible values for X. ■
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A heuristic view of the theorem (and a good way to remember it) is to say that

fXðxÞdx ¼ fYðyÞdy

fYðyÞ ¼ fXðxÞ dx
dy

¼ fXðhðyÞÞh0ðyÞ

Of course, because the pdf’s must be nonnegative, the absolute value is required on

the derivative if it is negative.

Sometimes it is easier to find the derivative of g than to find the derivative of
h. In this case, remember that

dx

dy
¼ 1

dy

dx

Example 4.39 Let’s apply the theorem to the situation introduced in Example 4.38. There

Y ¼ g(X) ¼ 60X and X ¼ h(Y) ¼ Y/60.

fYðyÞ ¼ fX½hðyÞ� h0ðyÞj j ¼ 1

2
e�x=2 1

60
¼ 1

120
e�y=120 y > 0 ■

Example 4.40 Here is an even simpler example. Suppose the arrival time of a delivery truck will

be somewhere between noon and 2:00. We model this with a random variable X that

is uniform on [0, 2], so fXðxÞ ¼ 1
2
on that interval. Let Y be the time in minutes,

starting at noon, Y ¼ g(X) ¼ 60X so X ¼ h(Y) ¼ Y/60.

fYðyÞ ¼ fX½hðyÞ� h0ðyÞj j ¼ 1

2
� 1
60

¼ 1

120
0 < y < 120

Is this intuitively reasonable? Beginning with a uniform distribution on [0, 2],

we multiply it by 60, and this spreads it out over the interval [0, 120]. Notice that

the pdf is divided by 60, not multiplied by 60. Because the distribution is spread

over a wider interval, the density curve must be lower if the total area under the

curve is to be 1. ■

Example 4.41 This being a special day (an A in statistics!), you plan to buy a steak (substitute five

Portobello mushrooms if you are a vegetarian) for dinner. The weight X of the steak

is normally distributed with mean m and variance s2. The steak costs a dollars per

pound, and your other purchases total b dollars. Let Y be the total bill at the cash

register, so Y ¼ aX + b. What is the distribution of the new variable Y? Let

X 	 Nðm; s2Þ and Y ¼ aX + b, where a 6¼ 0. In our example a is positive, but we

will do a more general calculation that allows negative a. Then the inverse function
is x ¼ h(y) ¼ (y � b)/a.

fYðyÞ ¼ fX½hðyÞ�jh0ðyÞj ¼ 1ffiffiffiffiffiffi
2p

p
s
e� f½ðy�bÞ=a��mg=sð Þ2 1

jaj ¼
1ffiffiffiffiffiffi

2p
p jajs e

�½ðy�b�amÞ=ðajsjÞ�2

222 CHAPTER 4 Continuous Random Variables and Probability Distributions



Thus, Y is normally distributed with mean am + b and standard deviation |a|s.
The mean and standard deviation did not require the new theory of this section

because we could have just calculated E(Y) ¼ E(aX + b) ¼ am + b, V(Y) ¼
V(aX + b) ¼ a2s2, and therefore sY ¼ |a|s.

As a special case, take Y ¼ (X � m)/s, so b ¼ �m/s and a ¼ 1/s. Then Y is

normal with mean value am + b ¼ m/s � m/s ¼ 0 and standard deviation |a|s ¼
|1/s| s ¼ 1. Thus the transformation Y ¼ (X � m)/s creates a new normal random

variable with mean 0 and standard deviation 1. That is, Y is standard normal. This is

the first proposition in Section 4.3.

On the other hand, suppose that X is already standard normal, X ~ N(0, 1).
If we let Y ¼ m + sX, then a ¼ s and b ¼ m, so Y will have mean 0 ·s + m ¼ m,
and standard deviation |a| · 1 ¼ s. If we start with a standard normal, we can obtain

any other normal distribution by means of a linear transformation. ■

Example 4.42 Here we want to see what can be done with the simple uniform distribution. Let

X have uniform distribution on [0, 1], so fX(x) ¼ 1 for 0 < x < 1. We want to

transform X so that g(X) ¼ Y has a specified distribution. Let’s specify that fY(y)
¼ y/2 for 0 < y < 2. Integrating this, we get the cdf FY(y) ¼ y2/4, 0 < y < 2.

The trick is to set this equal to the inverse function h(y). That is, x ¼ h(y) ¼ y2/4.
Inverting this (solving for y, and using the positive root), we get

y ¼ gðxÞ ¼ F�1
Y ðxÞ ¼ ffiffiffiffiffi

4x
p ¼ 2

ffiffiffi
x

p
. Let’s apply the foregoing theorem to see if

Y ¼ gðXÞ ¼ 2
ffiffiffiffi
X

p
has the desired pdf:

fYðyÞ ¼ fX½hðyÞ�jh0ðyÞj ¼ ð1Þ 2y
4

¼ y

2
0 < y < 2

A graphical representation may help in understanding why the transform

Y ¼ 2
ffiffiffiffi
X

p
yields fY(y) ¼ y/2 if X is uniform on [0, 1]. Figure 4.37(a) shows the

uniform distribution with [0, 1] partitioned into ten subintervals. In Figure 4.37(b)

the endpoints of these intervals are shown after transforming according to y ¼ 2
ffiffiffi
x

p
.

The heights of the rectangles are arranged so each rectangle still has area .1, and

therefore the probability in each interval is preserved. Notice the close fit of the

dashed line, which has the equation fY(y) ¼ y/2.
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Figure 4.37 The effect on the pdf if X is uniform on [0, 1] and Y ¼ 2
ffiffiffiffi
X

p
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Can the method be generalized to produce a random variable with any desired

pdf? Let the pdf fY(y) be specified along with the corresponding cdf FY(y). Define g
to be the inverse function of FY, so h(y) ¼ FY(y). If X is uniformly distributed on

[0, 1], then using the theorem, the pdf of Y ¼ gðXÞ ¼ F�1
Y ðXÞ is

fX½hðyÞ� h0ðyÞj j ¼ ð1Þ fYðyÞ ¼ fYðyÞ
This says that you can build any random variable you want from humble uniform

variates. Uniformly distributed random variables are available from almost any

calculator or computer language, so our method enables you to produce values of

any continuous random variable, as long as you know its cdf.

To get a sequence of random values with the pdf fY(y) ¼ y/2, 0 < y < 2, start

with a sequence of random values from the uniform distribution on [0, 1]: .529, .043,

.294, . . .. Then take Y ¼ gðXÞ ¼ F�1
Y ðXÞ ¼ 2

ffiffiffiffi
X

p
to get 1.455, .415, 1.084, . . .. ■

Can the process be reversed, so we start with any continuous random variable

and transform to a uniform variable? Let X have pdf fX(x) and cdf FX(x). Transform
X to Y ¼ g(X) ¼ FX(X), so g is FX. The inverse function of g ¼ FX is h. Again
apply the theorem to show that Y is uniform:

fYðyÞ ¼ fX hðyÞ½ � h0ðyÞj j ¼ fXðxÞ=fXðxÞ ¼ 1 0 � x � 1

This works because h and F are inverse functions, so their derivatives are reciprocals.

Example 4.43 To illustrate the transformation to uniformity, assume that X has pdf fX(x) ¼
x/2, 0 < x < 2. Integrating this, we get the cdf FX(x) ¼ x2/4, 0 < x < 2. Let

Y ¼ g(X) ¼ FX(X) ¼ X2/4. Then the inverse function is hðyÞ ¼ ffiffiffiffiffi
4y

p ¼ 2
ffiffiffi
y

p
and

fYðyÞ ¼ fXðxÞ dx
dy

����
���� ¼ fXðxÞ

dy
dx

�� �� ¼ x=2

x=2
¼ 1 0 < y < 1 ■

The foregoing theorem requires a monotonic transformation, but there are

important applications in which the transformation is not monotonic. Nevertheless,

it may be possible to use the theorem anyway with a little trickery.

Example 4.44 In this example, we start with a standard normal random variable X, and we transform
to Y ¼ X2. Of course, this is not monotonic over the interval for X, (�1, 1).

However, consider the transformation U ¼ |X|. Can we obtain the pdf of this intui-

tively, without recourse to any theory? Because X has a symmetric distribution, the

pdf of U is fU(u) ¼ fX(u) + fX(�u) ¼ 2 fX(u). Don’t despair if this is not intuitively
clear, because we’ll verify it shortly. For the time being, assume it to be true. Then

Y ¼ X2 ¼ |X|2 ¼ U2, and the transformation in terms of U is monotonic because

its set of possible values is [0, 1). Thus we can use the theorem with h(y) ¼ y.5:

fYðyÞ ¼ fU½hðyÞ� h0ðyÞ ¼ 2fX½hðyÞ� h0ðyÞ
¼ 2ffiffiffiffiffiffi

2p
p e�:5ðy:5Þ2ð:5y�:5Þ ¼ 1ffiffiffiffiffiffiffiffi

2py
p e�y=2 y>0

This is the chi-squared distribution (with 1 degree of freedom) introduced in Sec-

tion 4.4. The squares of normal random variables are important because the sample

variance is built from squares, and we will need the distribution of the variance. The

variance for normal data is proportional to a chi-squared rv.
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You were asked to believe intuitively that fU(u) ¼ 2 fX(u) on an intuitive

basis. Here is a little derivation that works as long as fX(x) is an even function, [i.e.

fX(�x) ¼ fX(x)]. If u > 0,

FUðuÞ ¼ PðU � uÞ ¼ Pð Xj j � uÞ ¼ Pð�u � X � uÞ ¼ 2Pð0 � X � uÞ
¼ 2 FXðuÞ � FXð0Þ½ �:

Differentiating this with respect to u gives fU(u) ¼ 2 fX(u). ■

Example 4.45 Sometimes the theorem cannot be used at all, and you need to use the cdf. Let

fX(x) ¼ (x + 1)/8, �1 < x < 3, and Y ¼ X2. The transformation is not monotonic

and fX(x) is not an even function. Possible values of Y are {y: 0 � y � 9}.

Considering first 0 � y � 1,

FYðyÞ ¼ PðY � yÞ ¼ PðX2 � yÞ ¼ Pð� ffiffiffi
y

p � X � ffiffiffi
y

p Þ ¼
ð ffiffi

y
p

� ffiffi
y

p
uþ 1

8
du ¼

ffiffiffi
y

p
4

Then, on the other subinterval, 1 < y � 9,

FYðyÞ ¼ PðY � yÞ ¼ PðX2 � yÞ ¼ P � ffiffiffi
y

p � X � ffiffiffi
y

p� � ¼ P �1 � X � ffiffiffi
y

p� �

¼
ð ffiffi

y
p

�1

uþ 1

8
du ¼ ð1þ yþ 2

ffiffiffi
y

p Þ=16

Differentiating, we get

fYðyÞ ¼

1

8
ffiffiffi
y

p 0 < y < 1

yþ ffiffiffi
y

p
16y

1 < y < 9

0 otherwise

8>>>>><
>>>>>:

■

If X is discrete, what happens to the pmf when we do a monotonic trans-

formation?

Example 4.46 Let X have the geometric distribution, with pmf pX(x) ¼ (1� p)x p, x ¼ 0, 1, 2, . . .,
and define Y ¼ X/3. Then the pmf of Y is

pYðyÞ ¼ PðY ¼ yÞ ¼ P
X

3
¼ y

� �
¼ PðX ¼ 3yÞ ¼ pXð3yÞ ¼ ð1� pÞ3yp

y ¼ 0; 1=3; 2=3; :::

Notice that there is no need for a derivative in finding the pmf for transfor-

mations of discrete random variables.

To put this on a more general basis in the discrete case, if Y ¼ g(X) with
inverse X ¼ h(Y), then

pYðyÞ ¼ PðY ¼ yÞ ¼ P gðXÞ ¼ hðyÞ½ � ¼ P X ¼ hðyÞ½ � ¼ pX hðyÞ½ �;
and the set of possible values of Y is obtained by applying g to the set of possible

values of X. ■
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Exercises Section 4.7 (108–126)

108. Relative to the winning time, the time X of

another runner in a 10 km race has pdf fX(x) ¼
2/x3, x > 1. The reciprocal Y ¼ 1/X represents

the ratio of the time for the winner divided by the

time of the other runner. Find the pdf of Y.
Explain why Y also represents the speed of the

other runner relative to the winner.

109. If X has the pdf fX(x) ¼ 2x, 0 < x < 1, find the

pdf of Y ¼ 1/X. The distribution of Y is a special

case of the Pareto distribution (see Exercise 10).

110. Let X have the pdf fX(x) ¼ 2/x3, x > 1. Find the

pdf of Y ¼ ffiffiffiffi
X

p
.

111. Let X have the chi-squared distribution with

2 degree of freedom, so fXðxÞ ¼ 1
2
e�x=2; x>0.

Find the pdf of Y ¼ ffiffiffiffi
X

p
. Suppose you choose

a point in two dimensions randomly, with the

horizontal and vertical coordinates chosen inde-

pendently from the standard normal distribution.

Then X has the distribution of the squared dis-

tance from the origin and Y has the distribution

of the distance from the origin. Because Y is

the length of a vector with normal components,

there are lots of applications in physics, and its

distribution has the name Rayleigh.

112. If X is distributed as N(m, s2), find the pdf of

Y ¼ eX. The distribution of Y is lognormal, as

discussed in Section 4.5.

113. If the side of a square X is random with the pdf

fX(x) ¼ x/8, 0 < x < 4, and Y is the area of the

square, find the pdf of Y.

114. Let X have the uniform distribution on [0, 1].

Find the pdf of Y ¼ �ln(X).

115. Let X be uniformly distributed on [0, 1]. Find the

pdf of Y ¼ tan[p(X � .5)]. The random variable

Y has the Cauchy distribution after the famous

mathematician.

116. If X is uniformly distributed on [0, 1], find a

linear transformation Y ¼ cX + d such that Y is

uniformly distributed on [a, b], where a and b are

any two numbers such that a < b. Is there

another solution? Explain.

117. If X has the pdf fX(x) ¼ x/8, 0 < x < 4, find a

transformation Y ¼ g(X) such that Y is uniformly

distributed on [0, 1].

118. If X is uniformly distributed on [�1, 1], find the

pdf of Y ¼ |X|.

119. If X is uniformly distributed on [�1, 1], find the

pdf of Y ¼ X2.

120. Ann is expected at 7:00 pm after an all-day drive.

She may be as much as 1 h early or as much as

3 h late. Assuming that her arrival time X is

uniformly distributed over that interval, find the

pdf of |X � 7|, the unsigned difference between

her actual and predicted arrival times.

121. If X is uniformly distributed on [�1, 3], find the

pdf of Y ¼ X2.

122. If X is distributed as N(0, 1), find the pdf of |X|.

123. A circular target has radius 1 ft. Assume that you

hit the target (we shall ignore misses) and that the

probability of hitting any region of the target is

proportional to the region’s area. If you hit the

target at a distance Y from the center, then let

X ¼ p Y2 be the corresponding area. Show that

(a) X is uniformly distributed on [0, p]. [Hint:
Show that FX(x) ¼ P(X � x) ¼ x/p.]

(b) Y has pdf fY(y) ¼ 2y, 0 < y < 1.

124. In Exercise 123 suppose instead that Y is

uniformly distributed on [0,1]. Find the pdf of

X ¼ p Y2. Geometrically speaking, why should X
have a pdf that is unbounded near 0?

125. Let X have the geometric distribution with pmf

pX(x) ¼ (1 � p)xp, x ¼ 0, 1, 2, . . .. Find the pmf

of Y ¼ X + 1. The resulting distribution is also

referred to as geometric (see Example 3.10).

126. Let X have binomial distribution with n ¼ 1, (a

Bernoulli rv). That is, X has pmf b(x; 1, p).
If Y ¼ 2X � 1, find the pmf of Y.
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Supplementary Exercises (127–155)

127. Let X ¼ the time it takes a read/write head to

locate a desired record on a computer disk mem-

ory device once the head has been positioned over

the correct track. If the disks rotate once every

25 ms, a reasonable assumption is that X is uni-

formly distributed on the interval [0, 25].

a. Compute P(10 � X � 20).

b. Compute P(X � 10).

c. Obtain the cdf F(X).
d. Compute E(X) and sX.

128. A 12-in. bar clamped at both ends is subjected to

an increasing amount of stress until it snaps. Let

Y ¼ the distance from the left end at which the

break occurs. Suppose Y has pdf

f ðyÞ ¼
y

24
1� y

12

� �
0 � y � 12

0 otherwise

8<
:

Compute the following:

a. The cdf of Y, and graph it.

b. P(Y � 4), P(Y > 6), and P(4 � Y � 6).

c. E(Y), E(Y2), and V(Y).
d. The probability that the break point occurs

more than 2 in. from the expected break

point.

e. The expected length of the shorter segment

when the break occurs.

129. Let X denote the time to failure (in years) of a

hydraulic component. Suppose the pdf of X is

f(x) ¼ 32/(x + 4)3 for x > 0.

a. Verify that f(x) is a legitimate pdf.

b. Determine the cdf.

c. Use the result of part (b) to calculate the

probability that time to failure is between

2 and 5 years.

d. What is the expected time to failure?

e. If the component has a salvage value equal to

100/(4 + x) when its time to failure is x, what
is the expected salvage value?

130. The completion time X for a task has cdf F(x)
given by

0 x < 0

x3

3
0 � x < 1

1� 1

2

7

3
� x

� �
7

4
� 3

4
x

� �
1 � x � 7

3

1 x � 7

3

8>>>>>>>><
>>>>>>>>:

a. Obtain the pdf f(x) and sketch its graph.

b. Compute P(.5 � X � 2).

c. Compute E(X).

131. The breakdown voltage of a randomly chosen

diode of a certain type is known to be normally

distributed with mean value 40 V and standard

deviation 1.5 V.

a. What is the probability that the voltage of a

single diode is between 39 and 42?

b. What value is such that only 15% of all

diodes have voltages exceeding that value?

c. If four diodes are independently selected,

what is the probability that at least one has a

voltage exceeding 42?

132. The article “Computer Assisted Net Weight

Control” (Qual. Prog., 1983: 22–25) suggests a
normal distribution with mean 137.2 oz and stan-

dard deviation 1.6 oz, for the actual contents of

jars of a certain type. The stated contents was

135 oz.

a. What is the probability that a single jar con-

tains more than the stated contents?

b. Among ten randomly selected jars, what is

the probability that at least eight contain

more than the stated contents?

c. Assuming that the mean remains at 137.2, to

what value would the standard deviation have

to be changed so that 95% of all jars contain

more than the stated contents?

133. When circuit boards used in the manufacture of

compact disc players are tested, the long-run

percentage of defectives is 5%. Suppose that a

batch of 250 boards has been received and that

the condition of any particular board is indepen-

dent of that of any other board.

a. What is the approximate probability that at least

10% of the boards in the batch are defective?

b. What is the approximate probability that

there are exactly ten defectives in the batch?

134. Let X be a non-negative continuous random var-

iable with pdf f(x), cdf F(x), and mean E(X).
a. Show that EðXÞ ¼ Ð1

0
1� FðyÞ½ �dy. [Hint: In

the expression for E(X), write x in the inte-

grand as
Ð x
0
1 dy, and then reverse the order in

the double integration.]

b. Use the result of (a) to verify that the

expected value of an exponentially

distributed rv with parameter l is 1/l.
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135. The reaction time (in seconds) to a stimulus is a

continuous random variable with pdf

f ðxÞ ¼
3

2x2
1 � x � 3

0 otherwise

(

a. Obtain the cdf.

b. What is the probability that reaction time is at

most 2.5 s? Between 1.5 and 2.5 s?

c. Compute the expected reaction time.

d. Compute the standard deviation of reaction

time.

e. If an individual takes more than 1.5 s to react,

a light comes on and stays on either until one

further second has elapsed or until the person

reacts (whichever happens first). Determine

the expected amount of time that the light

remains lit. [Hint: Let h(X) ¼ the time that

the light is on as a function of reaction time

X.]

136. Let X denote the temperature at which a certain

chemical reaction takes place. Suppose that X
has pdf

f ðxÞ ¼
1
9
ð4� x2Þ � 1 � x � 2

0 otherwise

�

a. Sketch the graph of f(x).
b. Determine the cdf and sketch it.

c. Is 0 the median temperature at which the

reaction takes place? If not, is the median

temperature smaller or larger than 0?

d. Suppose this reaction is independently carried

out once in each of ten different labs and that

the pdf of reaction time in each lab is as given.

Let Y ¼ the number among the ten labs at

which the temperature exceeds 1. What kind

of distribution does Y have? (Give the name

and values of any parameters.)

137. The article “Determination of the MTF of Posi-

tive Photoresists Using the Monte Carlo Method”

(Photographic Sci. Engrg., 1983: 254–260) pro-
poses the exponential distribution with parameter

l ¼ .93 as a model for the distribution of a

photon’s free path length (mm) under certain

circumstances. Suppose this is the correct model.

a. What is the expected path length, and what is

the standard deviation of path length?

b. What is the probability that path length

exceeds 3.0? What is the probability that

path length is between 1.0 and 3.0?

c. What value is exceeded by only 10% of all

path lengths?

138. The article “The Prediction of Corrosion by

Statistical Analysis of Corrosion Profiles” (Cor-
rosion Sci., 1985: 305–315) suggests the follow-
ing cdf for the depth X of the deepest pit in an

experiment involving the exposure of carbon

manganese steel to acidified seawater.

Fðx; a; bÞ ¼ e�e�ðx�aÞ=b �1 < x < 1

The authors propose the values a ¼ 150 and

b ¼ 90. Assume this to be the correct model.

a. What is the probability that the depth of the

deepest pit is at most 150? At most 300?

Between 150 and 300?

b. Below what value will the depth of the maxi-

mum pit be observed in 90% of all such

experiments?

c. What is the density function of X?
d. The density function can be shown to be

unimodal (a single peak). Above what value

on the measurement axis does this peak

occur? (This value is the mode.)

e. It can be shown that E(X) � .5772b + a.
What is the mean for the given values of a
and b, and how does it compare to the median

and mode? Sketch the graph of the density

function. [Note: This is called the largest
extreme value distribution.]

139. Let t ¼ the amount of sales tax a retailer owes the

government for a certain period. The article “Sta-

tistical Sampling in Tax Audits” (Statistics and
the Law, 2008: 320–343) proposes modeling the

uncertainty in t by regarding it as a normally

distributed random variable with mean value m
and standard deviation s (in the article, these

two parameters are estimated from the results of

a tax audit involving n sampled transactions). If a
represents the amount the retailer is assessed, then

an underassessment results if t > a and an over-

assessment if a > t. We can express this in terms

of a loss function, a function that shows zero loss

if t ¼ a but increases as the gap between t and a
increases. The proposed loss function is L(a,t) ¼
t � a if t > a and ¼ k(a � t) if t � a (k > 1 is

suggested to incorporate the idea that overassess-

ment is more serious than underassessment).

a. Show that a
 ¼ mþ sF�1 1=ðk þ 1Þð Þ is the

value of a that minimizes the expected loss,

where F�1 is the inverse function of the stan-

dard normal cdf.

b. If k ¼ 2 (suggested in the article),

m ¼ $100,000, and s ¼ $10,000, what is the

optimal value of a, and what is the resulting

probability of overassessment?

228 CHAPTER 4 Continuous Random Variables and Probability Distributions



140. A mode of a continuous distribution is a value x*
that maximizes f(x).
a. What is the mode of a normal distribution

with parameters m and s?
b. Does the uniform distribution with para-

meters A and B have a single mode? Why or

why not?

c. What is the mode of an exponential distribu-

tion with parameter l? (Draw a picture.)

d. If X has a gamma distribution with parameters

a and b, and a > 1, find the mode. [Hint:
ln[f(x)] will be maximized if and only if f(x)
is, and it may be simpler to take the derivative

of ln[f(x)].]
e. What is the mode of a chi-squared distribution

having n degrees of freedom?

141. The article “Error Distribution in Navigation”

(J. Institut. Navigation, 1971: 429–442) suggests
that the frequency distribution of positive errors

(magnitudes of errors) is well approximated by

an exponential distribution. Let X ¼ the lateral

position error (nautical miles), which can be

either negative or positive. Suppose the pdf of

X is

f ðxÞ ¼ ð:1Þe�:2jxj � 1 < x < 1

a. Sketch a graph of f(x) and verify that f(x) is a
legitimate pdf (show that it integrates to 1).

b. Obtain the cdf of X and sketch it.

c. Compute P(X � 0), P(X � 2), P(�1 � X
� 2), and the probability that an error of

more than 2 miles is made.

142. In some systems, a customer is allocated to one

of two service facilities. If the service time for a

customer served by facility i has an exponential

distribution with parameter li (i ¼ 1, 2) and p is

the proportion of all customers served by facility 1,

then the pdf ofX ¼ the service time of a randomly

selected customer is

f ðx; l1; l2; pÞ

¼ pl1e�l1x þ ð1� pÞl2e�l2x x � 0

0 otherwise

(

This is often called the hyperexponential or

mixed exponential distribution. This distribution

is also proposed as a model for rainfall amount in

“Modeling Monsoon Affected Rainfall of Paki-

stan by Point Processes” (J. Water Resources
Planning Manag., 1992: 671–688).
a. Verify that f(x; l1, l2, p) is indeed a pdf.

b. What is the cdf F(x; l1, l2, p)?

c. If X has f(x; l1, l2, p) as its pdf, what is E(X)?
d. Using the fact that E(X2) ¼ 2/l2 when X has

an exponential distribution with parameter l,
compute E(X2) when X has pdf f(x; l1, l2, p).
Then compute V(X).

e. The coefficient of variation of a random vari-

able (or distribution) is CV ¼ s/m. What is the

CV for an exponential rv? What can you say

about the value of CV when X has a hyper-

exponential distribution?

f. What is the CV for an Erlang distribution with

parameters l and n as defined in Exercise 76?

[Note: In applied work, the sample CV is used

to decide which of the three distributions

might be appropriate.]

143. Suppose a state allows individuals filing tax

returns to itemize deductions only if the total of

all itemized deductions is at least $5,000. Let X
(in 1,000’s of dollars) be the total of itemized

deductions on a randomly chosen form. Assume

that X has the pdf

f ðx; aÞ ¼ k=xa

0

�
x � 5

otherwise

a. Find the value of k. What restriction on a is

necessary?

b. What is the cdf of X?
c. What is the expected total deduction on a

randomly chosen form? What restriction on

a is necessary for E(X) to be finite?

d. Show that ln(X/5) has an exponential distri-

bution with parameter a � 1.

144. Let Ii be the input current to a transistor and Io be
the output current. Then the current gain is pro-

portional to ln(Io/Ii). Suppose the constant of

proportionality is 1 (which amounts to choosing

a particular unit of measurement), so that current

gain ¼ X ¼ ln(Io/Ii). Assume X is normally

distributed with m ¼ 1 and s ¼ .05.

a. What type of distribution does the ratio Io/Ii
have?

b. What is the probability that the output current

is more than twice the input current?

c. What are the expected value and variance of

the ratio of output to input current?

145. The article “Response of SiCf/Si3N4 Composites

Under Static and Cyclic Loading—An Experi-

mental and Statistical Analysis” (J. Engrg.Mate-
rials Tech., 1997: 186–193) suggests that tensile
strength (MPa) of composites under specified

conditions can be modeled by a Weibull distri-

bution with a ¼ 9 and b ¼ 180.
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a. Sketch a graph of the density function.

b. What is the probability that the strength of a

randomly selected specimen will exceed 175?

Will be between 150 and 175?

c. If two randomly selected specimens are cho-

sen and their strengths are independent of

each other, what is the probability that at

least one has strength between 150 and 175?

d. What strength value separates the weakest

10% of all specimens from the remaining

90%?

146. a. Suppose the lifetime X of a component, when

measured in hours, has a gamma distribution

with parameters a and b. Let Y ¼ lifetime

measured in minutes. Derive the pdf of Y.
b. If X has a gamma distribution with parameters

a and b, what is the probability distribution of
Y ¼ cX?

147. Based on data from a dart-throwing experiment,

the article “Shooting Darts” (Chance, Summer

1997: 16–19) proposed that the horizontal and

vertical errors from aiming at a point target

should be independent of each other, each with

a normal distribution having mean 0 and vari-

ance s2. It can then be shown that the pdf of the

distance V from the target to the landing point is

f ðnÞ ¼ n
s2

� e�n2=ð2s2Þ n > 0

a. This pdf is a member of what family intro-

duced in this chapter?

b. If s ¼ 20 mm (close to the value suggested in

the paper), what is the probability that a dart

will land within 25 mm (roughly 1 in.) of the

target?

148. The article “Three Sisters Give Birth on the

Same Day”(Chance, Spring 2001: 23–25) used

the fact that three Utah sisters had all given

birth on March 11, 1998, as a basis for posing

some interesting questions regarding birth coin-

cidences.

a. Disregarding leap year and assuming that the

other 365 days are equally likely, what is the

probability that three randomly selected births

all occur on March 11? Be sure to indicate

what, if any, extra assumptions you are

making.

b. With the assumptions used in part (a), what is

the probability that three randomly selected

births all occur on the same day?

c. The author suggested that, based on extensive

data, the length of gestation (time between

conception and birth) could be modeled as

having a normal distribution with mean

value 280 days and standard deviation 19.88

days. The due dates for the three Utah sisters

were March 15, April 1, and April 4, respec-

tively. Assuming that all three due dates are at

the mean of the distribution, what is the prob-

ability that all births occurred on March 11?

[Hint: The deviation of birth date from due

date is normally distributed with mean 0.]

d. Explain how you would use the information

in part (c) to calculate the probability of a

common birth date.

149. Let X denote the lifetime of a component, with

f(x) and F(x) the pdf and cdf of X. The proba-

bility that the component fails in the interval

(x, x + Dx) is approximately f(x) · Dx. The condi-
tional probability that it fails in (x, x + Dx) given
that it has lasted at least x is f(x) · Dx/[1 � F(x)].
Dividing this by Dx produces the failure rate

function:

rðxÞ ¼ f ðxÞ
1� FðxÞ

An increasing failure rate function indicates

that older components are increasingly likely to

wear out, whereas a decreasing failure rate is

evidence of increasing reliability with age. In

practice, a “bathtub-shaped” failure is often

assumed.

a. If X is exponentially distributed, what is r(x)?
b. If X has a Weibull distribution with para-

meters a and b, what is r(x)? For what param-

eter values will r(x) be increasing? For what

parameter values will r(x) decrease with x?
c. Since r(x) ¼ �(d/dx)ln[1 � F(x)],

ln[1 � F(x)] ¼ �R
r(x) dx. Suppose

rðxÞ ¼ a 1� x
b

� �
0 � x � b

0 otherwise

(

so that if a component lasts b hours, it will last

forever (while seemingly unreasonable, this

model can be used to study just “initial wear-

out”). What are the cdf and pdf of X?

150. Let U have a uniform distribution on the interval

[0, 1]. Then observed values having this distribu-

tion can be obtained from a computer’s random

number generator. Let X ¼ �(1/l)ln(1 � U).
a. Show that X has an exponential distribution

with parameter l.
b. How would you use part (a) and a random

number generator to obtain observed values
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from an exponential distribution with param-

eter l ¼ 10?

151. If the voltage v across a medium is fixed but

current I is random, then resistance will also be

a random variable related to I by R ¼ v/I. If
mI ¼ 20 and sI ¼ .5, calculate approximations

to mR and sR.

152. A function g(x) is convex if the chord connecting
any two points on the function’s graph lies above

the graph. When g(x) is differentiable, an equiv-

alent condition is that for every x, the tangent line
at x lies entirely on or below the graph. (See the

figure below.) How does g(m) ¼ g[E(X)] com-

pare to E[g(X)]? [Hint: The equation of the tan-

gent line at x ¼ m is y ¼ g(m) + g0(m) · (x � m).
Use the condition of convexity, substitute X
for x, and take expected values. Note: Unless

g(x) is linear, the resulting inequality (usually

called Jensen’s inequality) is strict (< rather

than �); it is valid for both continuous and dis-

crete rv’s.]

x

Tangent
line

153. Let X have a Weibull distribution with parameters

a ¼ 2 and b. Show that Y ¼ 2X2/b2 has a chi-

squared distribution with n ¼ 2.

154. Let X have the pdf f(x) ¼ 1/[p(1 + x2)] for �1
< x < 1 (a central Cauchy distribution), and

show that Y ¼ 1/X has the same distribution.

[Hint: Consider P(|Y| � y), the cdf of |Y|, then

obtain its pdf and show it is identical to the pdf

of |X|.]

155. A store will order q gallons of a liquid product to
meet demand during a particular time period.

This product can be dispensed to customers in

any amount desired, so demand during the period

is a continuous random variable X with cdf F(x).
There is a fixed cost c0 for ordering the product

plus a cost of c1 per gallon purchased. The per-

gallon sale price of the product is d. Liquid left

unsold at the end of the time period has a salvage

value of e per gallon. Finally, if demand exceeds

q, there will be a shortage cost for loss of good-
will and future business; this cost is f per gallon
of unfulfilled demand. Show that the value of q
that maximizes expected profit, denoted by q*,
satisfies

Pðsatisfying demand) ¼ Fðq
Þ ¼ d � c1 þ f

d � eþ f

Then determine the value of F(q*) if d ¼ $35,

c0 ¼ $25, c1 ¼ $15, e ¼ $5, and f ¼ $25. [Hint:
Let x denote a particular value of X. Develop an

expression for profit when x � q and another

expression for profit when x > q. Now write an

integral expression for expected profit (as a func-

tion of q) and differentiate.]

156. An insurance company issues a policy covering

losses up to 5 (in thousands of dollars). The loss,

X, follows a distribution with density function:

f ðxÞ ¼
3

x4
x � 1

0 x < 1

8<
:

What is the expected value of the amount paid

under the policy?
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C H A P T E R F I V E

Joint Probability
Distributions

Introduction
In Chapters 3 and 4, we studied probability models for a single random variable.

Many problems in probability and statistics lead to models involving several

random variables simultaneously. In this chapter, we first discuss probability

models for the joint behavior of several random variables, putting special emphasis

on the case in which the variables are independent of each other. We then

study expected values of functions of several random variables, including covari-

ance and correlation as measures of the degree of association between two

variables.

The third section considers conditional distributions, the distributions of

random variables given the values of other random variables. The next section is

about transformations of two or more random variables, generalizing the results of

Section 4.7. In the last section of this chapter we discuss the distribution of order

statistics: the minimum, maximum, median, and other statistics that can be found

by arranging the observations in order.



5.1 Jointly Distributed Random Variables
There are many experimental situations in which more than one random variable

(rv) will be of interest to an investigator. We shall first consider joint probability

distributions for two discrete rv’s, then for two continuous variables, and finally for

more than two variables.

The Joint Probability Mass Function
for Two Discrete Random Variables

The probability mass function (pmf) of a single discrete rv X specifies how much

probability mass is placed on each possible X value. The joint pmf of two discrete

rv’s X and Y describes how much probability mass is placed on each possible pair

of values (x, y).

DEFINITION Let X and Y be two discrete rv’s defined on the sample space S of an

experiment. The joint probability mass function p(x, y) is defined for each

pair of numbers (x, y) by

p x; yð Þ ¼ PðX ¼ x and Y ¼ yÞ

Let A be any set consisting of pairs of (x, y) values. Then the probability that

the random pair (X, Y) lies in A is obtained by summing the joint pmf over

pairs in A:

P½ðX; YÞ 2 A� ¼
X
ðx;yÞ

X
2A

pðx; yÞ

Example 5.1 A large insurance agency services a number of customers who have purchased both

a homeowner’s policy and an automobile policy from the agency. For each type of

policy, a deductible amount must be specified. For an automobile policy, the

choices are $100 and $250, whereas for a homeowner’s policy, the choices are 0,

$100, and $200. Suppose an individual with both types of policy is selected at

random from the agency’s files. Let X ¼ the deductible amount on the auto policy

and Y¼ the deductible amount on the homeowner’s policy. Possible (X, Y) pairs are
then (100, 0), (100, 100), (100, 200), (250, 0), (250, 100), and (250, 200); the joint

pmf specifies the probability associated with each one of these pairs, with any other

pair having probability zero. Suppose the joint pmf is given in the accompanying

joint probability table:

y
p(x, y) 0 100 200

x
100 .20 .10 .20

250 .05 .15 .30
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Then p(100, 100)¼ P(X¼ 100 and Y¼ 100)¼ P($100 deductible on both policies)
¼ .10. The probability P(Y � 100) is computed by summing probabilities of all

(x, y) pairs for which y � 100:

PðY� 100Þ¼ p 100;100ð Þþp 250;100ð Þþp 100;200ð Þþp 250;200ð Þ¼ :75 ■

A function p(x, y) can be used as a joint pmf provided that p(x, y)� 0 for all x
and y and

P
x

P
y pðx; yÞ ¼ 1:

The pmf of one of the variables alone is obtained by summing p(x, y)
over values of the other variable. The result is called a marginal pmf because
when the p(x, y) values appear in a rectangular table, the sums are just marginal

(row or column) totals

DEFINITION The marginal probability mass functions of X and of Y, denoted by pX(x)
and pY(y), respectively, are given by

pXðxÞ ¼
X
y

pðx; yÞ pYðyÞ ¼
X
x

pðx; yÞ

Thus to obtain the marginal pmf of X evaluated at, say, x ¼ 100, the probabilities

p(100, y) are added over all possible y values. Doing this for each possible X value

gives the marginal pmf of X alone (without reference to Y). From the marginal pmf’s,

probabilities of events involving only X or only Y can be computed.

Example 5.2

(Example 5.1

continued)

The possible X values are x¼ 100 and x¼ 250, so computing row totals in the joint

probability table yields

pX 100ð Þ ¼ p 100; 0ð Þ þ p 100; 100ð Þ þ p 100; 200ð Þ ¼ :50

And

pX 250ð Þ ¼ p 250; 0ð Þ þ p 250; 100ð Þ þ p 250; 200ð Þ ¼ :50

The marginal pmf of X is then

pXðxÞ ¼ :5
0

�
x ¼ 100; 250

otherwise

Similarly, the marginal pmf of Y is obtained from column totals as

pYðyÞ ¼
:25
:50
0

8<
:

y ¼ 0; 100

y ¼ 20

otherwise

so PðY � 100Þ ¼ pY 100ð Þ þ pY 200ð Þ ¼ :75 as before. ■
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The Joint Probability Density Function for Two
Continuous Random Variables

The probability that the observed value of a continuous rv X lies in a one-

dimensional set A (such as an interval) is obtained by integrating the pdf f(x) over
the set A. Similarly, the probability that the pair (X, Y) of continuous rv’s falls in a

two-dimensional set A (such as a rectangle) is obtained by integrating a function

called the joint density function.

DEFINITION Let X and Y be continuous rv’s. Then f(x, y) is the joint probability density
function for X and Y if for any two-dimensional set A

P½ðX; YÞ 2 A� ¼
ð
A

ð
f ðx; yÞdx dy

In particular, if A is the two-dimensional rectangle fðx; yÞ :
a � x � b; c � y � dg; then

P½ðX; YÞ 2 A� ¼ Pða � X � b; c � Y � dÞ ¼
ðb
a

ðd
c

f ðx; yÞdy dx

For f(x, y) to be a candidate for a joint pdf, it must satisfy f(x, y) � 0

and
Ð1
�1

Ð1
�1 f ðx; yÞdx dy ¼ 1: We can think of f(x, y) as specifying a surface at

height f(x, y) above the point (x, y) in a three-dimensional coordinate system. Then

P[(X, Y) 2 A] is the volume underneath this surface and above the region A,
analogous to the area under a curve in the one-dimensional case. This is illustrated

in Figure 5.1.

Example 5.3 A bank operates both a drive-up facility and a walk-up window. On a randomly

selected day, let X ¼ the proportion of time that the drive-up facility is in use (at

least one customer is being served or waiting to be served) and Y ¼ the proportion

of time that the walk-up window is in use. Then the set of possible values for (X, Y)

y

x

f (x, y)

Surface f (x, y)

A = Shaded
 rectangle

Figure 5.1 P[(X, Y) 2 A] ¼ volume under density surface above A
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is the rectangle D ¼ fðx; yÞ : 0 � x � 1; 0 � y � 1g: Suppose the joint pdf of

(X, Y) is given by

f ðx; yÞ ¼
6

5
ðxþ y2Þ 0 � x � 1; 0 � y � 1

0 otherwise

8<
:

To verify that this is a legitimate pdf, note that f(x, y) � 0 and

ð1
�1

ð1
�1

f ðx; yÞ dx dy ¼
ð1
0

ð1
0

6

5
ðxþ y2Þdx dy

¼
ð1
0

ð1
0

6

5
x dx dyþ

ð1
0

ð1
0

6

5
y2dx dy

¼
ð1
0

6

5
x dxþ

ð1
0

6

5
y2 dy ¼ 6

10
þ 6

15
¼ 1

The probability that neither facility is busy more than one-quarter of the time is

P 0 � X � 1

4
; 0 � Y � 1

4

� �
¼

ð1=4
0

ð1=4
0

6

5
ðxþ y2Þ dx dy

¼ 6

5

ð1=4
0

ð1=4
0

x dx dyþ 6

5

ð1=4
0

ð1=4
0

y2 dx dy

¼ 6

20
� x

2

2

����
x¼1=4

x¼0

þ 6

20
� y

3

3

����
y¼1=4

y¼0

¼ 7

640

¼ :0109 ■

As with joint pmf’s, from the joint pdf of X and Y, each of the two marginal

density functions can be computed.

DEFINITION The marginal probability density functions of X and Y, denoted by fX(x)
and fY(y), respectively, are given by

fXðxÞ ¼
ð1
�1

f ðx; yÞ dy for �1 < x < 1

fYðyÞ ¼
ð1
�1

f ðx; yÞ dx for �1 < y < 1

Example 5.4

(Example 5.3

continued)

The marginal pdf of X, which gives the probability distribution of busy time for the

drive-up facility without reference to the walk-up window, is

fXðxÞ ¼
ð1
�1

f ðx; yÞ dy ¼
ð1
0

6

5
ðxþ y2Þ dy ¼ 6

5
xþ 2

5
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for 0 � x � 1 and 0 otherwise. The marginal pdf of Y is

fYðyÞ ¼
6

5
y2 þ 3

5
0 � y � 1

0 otherwise

8<
:

Then

P
1

4
� Y � 3

4

� �
¼

ð3=4
1=4

6

5
y2 þ 3

5

� �
dy ¼ 37

80
¼ :4625: ■

In Example 5.3, the region of positive joint density was a rectangle, which

made computation of the marginal pdf’s relatively easy. Consider now an example

in which the region of positive density is a more complicated figure.

Example 5.5 A nut company markets cans of deluxe mixed nuts containing almonds, cashews, and

peanuts. Suppose the net weight of each can is exactly 1 lb, but theweight contribution

of each type of nut is random. Because the three weights sum to 1, a joint probability

model for any two gives all necessary information about the weight of the third

type. Let X¼ the weight of almonds in a selected can and Y¼ the weight of cashews.

Then the region of positive density is D ¼ fðx; yÞ : 0 � x � 1; 0 � y � 1;
xþ y � 1g, the shaded region pictured in Figure 5.2.

Now let the joint pdf for (X, Y) be

f ðx; yÞ ¼ 24xy 0 � x � 1; 0 � y � 1; xþ y � 1

0 otherwise

(

For any fixed x, f(x, y) increases with y; for fixed y, f(x, y) increases with x. This is
appropriate because the word deluxe implies that most of the can should consist of

almonds and cashews rather than peanuts, so that the density function should be

large near the upper boundary and small near the origin. The surface determined by

f(x, y) slopes upward from zero as (x, y) moves away from either axis.

Clearly, f(x, y)� 0. To verify the second condition on a joint pdf, recall that a

double integral is computed as an iterated integral by holding one variable fixed

(such as x as in Figure 5.2), integrating over values of the other variable lying along

x

(0, 1)

x(1, 0)

y

(x, 1−x)

Figure 5.2 Region of positive density for Example 5.5
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the straight line passing through the value of the fixed variable, and finally

integrating over all possible values of the fixed variable. Thus

ð1
�1

ð1
�1

f ðx; yÞ dy dx ¼
ðð
D

f ðx; yÞ dy dx ¼
ð1
0

ð1�x

0

24xy dy

� �
dx

¼
ð1
0

24x
y2

2

����
y¼1�x

y¼0

( )
dx ¼

ð1
0

12xð1� xÞ2dx ¼ 1

To compute the probability that the two types of nuts together make up at most

50% of the can, let A ¼ fðx; yÞ : 0 � x � 1; 0 � y � 1; and xþ y � :5g; as shown
in Figure 5.3. Then

P½ðX; YÞ 2 AÞ ¼
ðð
A

f ðx; yÞ dx dy ¼
ð:5
0

ð:5�x

0

24xy dy dx ¼ :0625

The marginal pdf for almonds is obtained by holding X fixed at x and integrating

f(x, y) along the vertical line through x:

fXðxÞ ¼
ð1
�1

f ðx; yÞ dy ¼
Ð 1�x
0

24xy dy ¼ 12xð1� xÞ2 0 � x � 1

0 otherwise

�

By symmetry of f(x, y) and the region D, the marginal pdf of Y is obtained by

replacing x and X in fX(x) by y and Y, respectively. ■

Independent Random Variables

In many situations, information about the observed value of one of the two vari-

ablesX and Y gives information about the value of the other variable. In Example 5.1,

the marginal probability of X at x¼ 250 was .5, as was the probability that X¼ 100.

If, however, we are told that the selected individual had Y ¼ 0, then X ¼ 100 is

four times as likely as X ¼ 250. Thus there is a dependence between the two

variables.

x 1.50

1

.5

0

  
y = .5 − x

A = Shaded region

x
 +y = 1x

 +y = .5

Figure 5.3 Computing P[(X, Y) 2 A] for Example 5.5
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In Chapter 2 we pointed out that one way of defining independence of two

events is to say that A and B are independent if PðA \ BÞ ¼ PðAÞ � PðBÞ. Here is an
analogous definition for the independence of two rv’s.

DEFINITION Two random variables X and Y are said to be independent if for every pair of
x and y values,

p x; yð Þ ¼ pXðxÞ � pYðyÞ when X and Y are discrete

or (5.1)

f x; yð Þ ¼ fXðxÞ � fYðyÞ when X and Y are continuous

If (5.1) is not satisfied for all (x, y), then X and Y are said to be dependent.

The definition says that two variables are independent if their joint pmf or pdf is the

product of the two marginal pmf’s or pdf’s.

Example 5.6 In the insurance situation of Examples 5.1 and 5.2,

p 100; 100ð Þ ¼ :10 6¼ :5ð Þ :25ð Þ ¼ pX 100ð Þ � pY 100ð Þ
so X and Y are not independent. Independence of X and Y requires that every entry
in the joint probability table be the product of the corresponding row and column

marginal probabilities. ■

Example 5.7

(Example 5.5

continued)

Because f(x, y) in the nut scenario has the form of a product, X and Y would appear to

be independent. However, although fX
3
4

� � ¼ fY
3
4

� � ¼ 9
16
; f 3

4
; 3
4

� � ¼ 0 6¼ 9
16
� 9
16

so the

variables are not in fact independent. To be independent, f(x, y) must have the form

g(x) · h(y) and the region of positive density must be a rectangle whose sides are

parallel to the coordinate axes. ■

Independence of two random variables is most useful when the description of

the experiment under study tells us that X and Y have no effect on each other. Then

once the marginal pmf’s or pdf’s have been specified, the joint pmf or pdf is simply

the product of the two marginal functions. It follows that

P a � X � b; c � Y � dð Þ ¼ P a � X � bð Þ � P c � Y � dð Þ

Example 5.8 Suppose that the lifetimes of two components are independent of each other and

that the first lifetime, X1, has an exponential distribution with parameter l1 whereas
the second, X2, has an exponential distribution with parameter l2. Then the joint

pdf is

f ðx1; x2Þ ¼ fX1
ðx1Þ � fX2

ðx2Þ

¼
l1e�l1x1 � l2e�l2x2 ¼ l1l2e�l1x1�l2x2 x1 > 0; x2 > 0

0 otherwise

(
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Let l1 ¼ 1/1000 and l2 ¼ 1/1200, so that the expected lifetimes are 1000 h and

1200 h, respectively. The probability that both component lifetimes are at least

1500 h is

Pð1500 � X1; 1500 � X2Þ ¼ Pð1500 � X1Þ � Pð1500 � X2Þ
¼ e�l1ð1500Þ � e�l2ð1500Þ

¼ ð:2231Þð:2865Þ ¼ :0639 ■

More than Two Random Variables

To model the joint behavior of more than two random variables, we extend the

concept of a joint distribution of two variables.

DEFINITION If X1, X2, . . ., Xn are all discrete random variables, the joint pmf of the

variables is the function

p x1; x2; . . . ; xnð Þ ¼ P X1 ¼ x1;X2 ¼ x2; . . . ;Xn ¼ xnð Þ

If the variables are continuous, the joint pdf of X1;X2; . . . ;Xn is the function

f ðx1; x2; . . . ; xnÞ such that for any n intervals ½a1; b1 ; . . . ;� ½an; bn�;

Pða1 � X1 � b1; . . . ; an � Xn � bnÞ ¼
ðb1
a1

. . .

ðbn
an

f ðx1; . . . ; xnÞ dxn . . . dx1

In a binomial experiment, each trial could result in one of only two possible

outcomes. Consider now an experiment consisting of n independent and identical

trials, in which each trial can result in any one of r possible outcomes. Let pi ¼
P(outcome i on any particular trial), and define random variables by Xi ¼ the

number of trials resulting in outcome i (i¼ 1, . . ., r). Such an experiment is called a

multinomial experiment, and the joint pmf of X1, . . ., Xr is called themultinomial
distribution. By using a counting argument analogous to the one used in deriving

the binomial distribution, the joint pmf of X1, . . ., Xr can be shown to be

pðx1; . . . ;xrÞ

¼
n!

ðx1!Þðx2!Þ � � � � � ðxr!Þp
x1
1 � � � � �pxrr ; xi ¼ 0;1;2; . . . ; with x1þ�� �þ xr ¼ n

0 otherwise

8><
>:

The case r ¼ 2 gives the binomial distribution, with X1 ¼ number of successes and

X2 ¼ n � X1 ¼ number of failures.

In the case r ¼ 3, the leading part of the expression for the joint pmf comes

from the number of ways of choosing x1 of the n trials to be outcomes of the

first type and then x2 of the remaining n � x1 trials to be outcomes of the second

type:
n
x1

� �
� n� x1

x2

� �
¼ n!

x1!ðn� x1Þ! �
ðn� x1Þ!

x2!ðn� x1 � x2Þ! ¼
n!

x1!x2!ðn� x1 � x2Þ!
¼ n!

x1!x2!x3!
:
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Example 5.9 If the allele of each of ten independently obtained pea sections is determined and p1
¼ P(AA), p2¼ P(Aa), p3¼ P(aa), X1¼ number of AA’s, X2¼ number of Aa’s, and

X3 ¼ number of aa’s, then

pðx1;x2;x3Þ¼ 10!

ðx1!Þðx2!Þðx3!Þp
x1
1 p

x2
2 p

x3
3 ; xi ¼ 0;1;2; . . . and x1þ x2þ x3 ¼ 10

If p1 ¼ p3 ¼ .25, p2 ¼ .5, then

PðX1 ¼ 2;X2 ¼ 5;X3 ¼ 3Þ ¼ pð2; 5; 3Þ ¼ 10!

2!5!3!
:252
� �

:505
� �

:253
� � ¼ :0769

■

Example 5.10 When a certain method is used to collect a fixed volume of rock samples in a

region, there are four resulting rock types. Let X1, X2, and X3 denote the proportion

by volume of rock types 1, 2, and 3 in a randomly selected sample (the proportion

of rock type 4 is 1� X1� X2� X3, so a variable X4 would be redundant). If the joint

pdf of X1, X2, X3 is

f ðx1;x2;x3Þ¼
kx1x2ð1� x3Þ

0

8>><
>>:

0� x1 � 1; 0� x2 � 1; 0� x3 � 1;

x1þ x2þ x3 � 1

otherwise

then k is determined by

1 ¼
ð1
�1

ð1
�1

ð1
�1

f ðx1; x2; x3Þ dx3 dx2 dx1

¼
ð1
0

ð1�x1

0

ð1�x1�x2

0

kx1x2ð1� x3Þ dx3
	 


dx2

� �
dx1

This iterated integral has value k/144, so k ¼ 144. The probability that rocks of

types 1 and 2 together account for at most 50% of the sample is

PðX1 þ X2 � :5Þ ¼
ð ð ð

0 � xi � 1 for i ¼ 1; 2; 3

x1 þ x2 þ x3 � 1; x1 þ x2 � :5

� �
f ðx1; x2; x3Þ dx3 dx2 dx1

¼
ð:5
0

ð:5�x1

0

ð1�x1�x2

0

144x1x2ð1� x3Þ dx3
	 


dx2

� �
dx1

¼ :6066 ■

The notion of independence of more than two random variables is similar to

the notion of independence of more than two events.

DEFINITION The random variables X1;X2; :::;Xn are said to be independent if for every
subsetXi1 ;Xi2 ; . . . ;Xikof the variables (each pair, each triple, and so on), the joint

pmf or pdf of the subset is equal to the product of the marginal pmf’s or pdf’s.
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Thus if the variables are independent with n¼ 4, then the joint pmf or pdf of any two

variables is the product of the two marginals, and similarly for any three variables

and all four variables together. Most important, once we are told that n variables are

independent, then the joint pmf or pdf is the product of the n marginals.

Example 5.11 If X1, . . ., Xn represent the lifetimes of n components, the components operate

independently of each other, and each lifetime is exponentially distributed with

parameter l, then

f ðx1; x2; . . . ; xnÞ ¼ le�lx1
� � � le�lx2

� � � � � � � le�lxn
� �

¼ lne�lSxi x1 � 0; x2 � 0; . . . ; xn � 0

0 otherwise

(

If these n components are connected in series, so that the system will fail

as soon as a single component fails, then the probability that the system lasts past

time t is

PðX1 > t; . . . ;Xn > tÞ ¼
ð1
t

. . .

ð1
t

f ðx1; . . . ; xnÞ dx1 . . . dxn

¼
ð1
t

le�lx1dx1

� �
� � �

ð1
t

le�lxndxn

� �

¼ e�lt� �n ¼ e�nlt

Therefore,

Pðsystem lifetime � tÞ ¼ 1� e�nlt for t � 0

which shows that system lifetime has an exponential distribution with parameter nl;
the expected value of system lifetime is 1/nl. ■

In many experimental situations to be considered in this book, independence

is a reasonable assumption, so that specifying the joint distribution reduces to

deciding on appropriate marginal distributions.

Exercises Section 5.1 (1–17)

1. A service station has both self-service and full-

service islands. On each island, there is a single

regular unleaded pump with two hoses. Let X
denote the number of hoses being used on the

self-service island at a particular time, and let Y
denote the number of hoses on the full-service

island in use at that time. The joint pmf of X and

Y appears in the accompanying tabulation.

y

p(x, y) 0 1 2

0 .10 .04 .02

x 1 .08 .20 .06

2 .06 .14 .30

a. What is PðX ¼ 1 and Y ¼ 1Þ?

b. Compute PðX � 1 and Y � 1Þ:
c. Give a word description of the event

fX 6¼ 0 and Y 6¼ 0g; and compute the proba-

bility of this event.

d. Compute the marginal pmf of X and of Y.
Using pX(x), what is PðX � 1Þ?

e. Are X and Y independent rv’s? Explain.

2. When an automobile is stopped by a roving safety

patrol, each tire is checked for tire wear, and each

headlight is checked to see whether it is properly

aimed. Let X denote the number of headlights that

need adjustment, and let Y denote the number of

defective tires.

a. If X and Y are independent with pXð0Þ ¼ :5;
pX 1ð Þ ¼ :3; pX 2ð Þ ¼ :2; and pYð0Þ ¼ :6; pY 1ð Þ
¼ :1; pY 2ð Þ ¼ pY 3ð Þ ¼ :05; pY 4ð Þ ¼ :2; display
the joint pmf of (X, Y) in a joint probability table.
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b. Compute PðX � 1 and Y � 1Þ from the joint

probability table, and verify that it equals the

product PðX � 1Þ � PðY � 1Þ
c. What is PðX þ Y ¼ 0Þ (the probability of no

violations)?

d. Compute PðX þ Y � 1Þ
3. A market has both an express checkout line and a

superexpress checkout line. Let X1 denote the num-

ber of customers in line at the express checkout at a

particular time of day, and let X2 denote the number

of customers in line at the superexpress checkout at

the same time. Suppose the joint pmf of X1 and X2

is as given in the accompanying table.

x2
0 1 2 3

0 .08 .07 .04 .00

1 .06 .15 .05 .04

x1 2 .05 .04 .10 .06

3 .00 .03 .04 .07

4 .00 .01 .05 .06

a. What is PðX1 ¼ 1; X2 ¼ 1Þ; that is, the probabil-
ity that there is exactly one customer in each line?

b. What is PðX1 ¼ X2Þ; that is, the probability

that the numbers of customers in the two lines

are identical?

c. Let A denote the event that there are at least two

more customers in one line than in the other

line. Express A in terms of X1 and X2, and

calculate the probability of this event.

d. What is the probability that the total number of

customers in the two lines is exactly four? At

least four?

e. Determine the marginal pmf of X1, and then

calculate the expected number of customers in

line at the express checkout.

f. Determine the marginal pmf of X2.

g. By inspection of the probabilities PðX1 ¼ 4Þ;
PðX2 ¼ 0Þ; and PðX1 ¼ 4;X2 ¼ 0Þ; are X1

and X2 independent random variables? Explain.

4. According to the Mars Candy Company, the long-

run percentages of various colors of M&M milk

chocolate candies are as follows:

Blue:

24%

Orange:

20%

Green:

16%

Yellow:

14%

Red:

13%

Brown:

13%

a. In a random sample of 12 candies, what is the

probability that there are exactly two of each

color?

b. In a random sample of 6 candies, what is the

probability that at least one color is not included?

c. In a random sample of 10 candies, what is the

probability that there are exactly 3 blue candies

and exactly 2 orange candies?

d. In a random sample of 10 candies, what is the

probability that there are at most 3 orange

candies? [Hint: Think of an orange candy as a

success and any other color as a failure.]

e. In a random sample of 10 candies, what is the

probability that at least 7 are either blue,

orange, or green?

5. The number of customers waiting for gift-wrap ser-

vice at a department store is an rv X with possible

values 0, 1, 2, 3, 4 and corresponding probabilities

.1, .2, .3, .25, .15. A randomly selected customerwill

have 1, 2, or 3 packages for wrapping with prob-

abilities .6, .3, and .1, respectively. Let Y¼ the total

number of packages to bewrapped for the customers

waiting in line (assume that the number of packages

submitted by one customer is independent of the

number submitted by any other customer).

a. Determine PðX ¼ 3; Y ¼ 3Þ; that is, p(3, 3).
b. Determine p(4, 11).

6. Let X denote the number of Canon digital cameras

sold during a particular week by a certain store.

The pmf of X is

x 0 1 2 3 4

pX(x) .1 .2 .3 .25 .15

Sixty percent of all customers who purchase these

cameras also buy an extended warranty. Let Y
denote the number of purchasers during this

week who buy an extended warranty.

a. What is PðX ¼ 4; Y ¼ 2Þ? [Hint: This proba-
bility equals PðY ¼ 2jX ¼ 4Þ � PðX ¼ 4Þ; now
think of the four purchases as four trials of a

binomial experiment, with success on a trial

corresponding to buying an extended war-

ranty.]

b. Calculate PðX ¼ YÞ
c. Determine the joint pmf of X and Y and then the

marginal pmf of Y.

7. The joint probability distribution of the number X
of cars and the number Y of buses per signal cycle

at a proposed left-turn lane is displayed in the

accompanying joint probability table.

y

p(x, y) 0 1 2

x

0 .025 .015 .010

1 .050 .030 .020

2 .125 .075 .050

3 .150 .090 .060

4 .100 .060 .040

5 .050 .030 .020
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a. What is the probability that there is exactly one

car and exactly one bus during a cycle?

b. What is the probability that there is at most one

car and at most one bus during a cycle?

c. What is the probability that there is exactly one

car during a cycle? Exactly one bus?

d. Suppose the left-turn lane is to have a capacity

of five cars, and one bus is equivalent to three

cars. What is the probability of an overflow

during a cycle?

e. Are X and Y independent rv’s? Explain.

8. A stockroom currently has 30 components of a

certain type, of which 8 were provided by supplier

1, 10 by supplier 2, and 12 by supplier 3. Six of

these are to be randomly selected for a particular

assembly. Let X ¼ the number of supplier 1’s

components selected, Y ¼ the number of supplier

2’s components selected, and p(x, y) denote the

joint pmf of X and Y.
a. What is p(3, 2)? [Hint: Each sample of size 6 is

equally likely to be selected. Therefore, p(3, 2)
¼ (number of outcomes with X¼ 3 and Y¼ 2)/

(total number of outcomes). Now use the prod-

uct rule for counting to obtain the numerator

and denominator.]

b. Using the logic of part (a), obtain p(x, y). (This
can be thought of as a multivariate hypergeo-

metric distribution – sampling without replace-

ment from a finite population consisting of

more than two categories.)

9. Each front tire of a vehicle is supposed to be filled

to a pressure of 26 psi. Suppose the actual air

pressure in each tire is a random variable � X
for the right tire and Y for the left tire, with

joint pdf

f ðx; yÞ ¼ Kðx2 þ y2Þ 20 � x � 30; 20 � y � 30

0 otherwise

(

a. What is the value of K?
b. What is the probability that both tires are

underfilled?

c. What is the probability that the difference in air

pressure between the two tires is at most 2 psi?

d. Determine the (marginal) distribution of air

pressure in the right tire alone.

e. Are X and Y independent rv’s?

10. Annie and Alvie have agreed to meet between

5:00 p.m. and 6:00 p.m. for dinner at a local

health-food restaurant. Let X ¼ Annie’s arrival

time and Y ¼ Alvie’s arrival time. Suppose X
and Y are independent with each uniformly

distributed on the interval [5, 6].

a. What is the joint pdf of X and Y?

b. What is the probability that they both arrive

between 5:15 and 5:45?

c. If the first one to arrive will wait only 10 min

before leaving to eat elsewhere, what is the

probability that they have dinner at the health-

food restaurant? [Hint: The event of interest is

A ¼ ðx; yÞ : jx� yj � 1
6

� �
.]

11. Two different professors have just submitted final

exams for duplication. Let X denote the number of

typographical errors on the first professor’s exam

and Y denote the number of such errors on the

second exam. Suppose X has a Poisson distribu-

tion with parameter l, Y has a Poisson distribution

with parameter y, and X and Y are independent.

a. What is the joint pmf of X and Y?
b. What is the probability that at most one error is

made on both exams combined?

c. Obtain a general expression for the probability

that the total number of errors in the two exams

is m (where m is a nonnegative integer). [Hint:
A¼ fðx; yÞ : xþ y¼ mg ¼ fðm; 0Þ; ðm� 1;1Þ;
:::; ð1;m� 1Þ; ð0;mÞg. Now sum the joint pmf

over (x, y) 2 A and use the binomial theorem,

which says that

Xm
k¼0

m
k

� �
akbm�k ¼ ðaþ bÞm

for any a, b.]

12. Two components of a computer have the follow-

ing joint pdf for their useful lifetimes X and Y:

f ðx; yÞ ¼ xe�xð1þyÞ x � 0 and y � 0

0 otherwise

�

a. What is the probability that the lifetime X of

the first component exceeds 3?

b. What are the marginal pdf’s of X and Y? Are

the two lifetimes independent? Explain.

c. What is the probability that the lifetime of at

least one component exceeds 3?

13. You have two lightbulbs for a particular lamp. Let

X ¼ the lifetime of the first bulb and Y ¼ the

lifetime of the second bulb (both in 1000’s of

hours). Suppose that X and Y are independent

and that each has an exponential distribution

with parameter l ¼ 1.

a. What is the joint pdf of X and Y?
b. What is the probability that each bulb lasts at

most 1000 h (i.e., X � 1 and Y � 1)?

c. What is the probability that the total lifetime

of the two bulbs is at most 2? [Hint: Draw a

picture of the region A ¼ fðx; yÞ : x � 0;
y � 0; xþ y � 2g before integrating.]
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d. What is the probability that the total lifetime is

between 1 and 2?

14. Suppose that you have ten lightbulbs, that the

lifetime of each is independent of all the other

lifetimes, and that each lifetime has an exponen-

tial distribution with parameter l.
a. What is the probability that all ten bulbs fail

before time t?
b. What is the probability that exactly k of the ten

bulbs fail before time t?
c. Suppose that nine of the bulbs have lifetimes

that are exponentially distributed with parame-

ter l and that the remaining bulb has a lifetime

that is exponentially distributed with parameter

y (it is made by another manufacturer). What is

the probability that exactly five of the ten bulbs

fail before time t?

15. Consider a system consisting of three components

as pictured. The system will continue to function

as long as the first component functions and

either component 2 or component 3 functions.

Let X1, X2, and X3 denote the lifetimes of compo-

nents 1, 2, and 3, respectively. Suppose the

Xi’s are independent of each other and each

Xi has an exponential distribution with

parameter l.

1

3

2

a. Let Y denote the system lifetime. Obtain

the cumulative distribution function of Y
and differentiate to obtain the pdf. [Hint:
FðyÞ ¼ PðY � yÞ; express the event fY � yg

in terms of unions and/or intersections of

the three events fX1 � yg; fX2 � yg; and

fX3 � yg:]
b. Compute the expected system lifetime.

16. a. For f ðx1; x2; x3Þ as given in Example 5.10,

compute the joint marginal density function
of X1 and X3 alone (by integrating over x2).

b. What is the probability that rocks of types 1

and 3 together make up at most 50% of the

sample? [Hint: Use the result of part (a).]
c. Compute the marginal pdf of X1 alone. [Hint:

Use the result of part (a).]

17. An ecologist selects a point inside a circular sam-

pling region according to a uniform distribution.

Let X ¼ the x coordinate of the point selected and

Y ¼ the y coordinate of the point selected. If the

circle is centered at (0, 0) and has radius R, then
the joint pdf of X and Y is

f ðx; yÞ ¼
1

pR2
x2 þ y2 � R2

0 otherwise

8<
:

a. What is the probability that the selected point is

within R/2 of the center of the circular region?

[Hint: Draw a picture of the region of positive

density D. Because f(x,y) is constant on D,
computing a probability reduces to computing

an area.]

b. What is the probability that both X and Y differ

from 0 by at most R/2?
c. Answer part (b) for R=

ffiffiffi
2

p
replacing R=2

d. What is the marginal pdf of X? Of Y? Are X and

Y independent?

5.2 Expected Values, Covariance,
and Correlation
We previously saw that any function h(X) of a single rv X is itself a random

variable. However, to compute E[h(X)], it was not necessary to obtain the proba-

bility distribution of h(X); instead, E[h(X)] was computed as a weighted average of

h(X) values, where the weight function was the pmf p(x) or pdf f(x) of X. A similar

result holds for a function h(X, Y) of two jointly distributed random variables.

PROPOSITION Let X and Y be jointly distributed rv’s with pmf p(x, y) or pdf f(x, y) according
to whether the variables are discrete or continuous. Then the expected value

of a function h(X, Y), denoted by E½hðX; YÞ� or mhðX;YÞ is given by
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E½hðX; YÞ� ¼

X
x

X
y

hðx; yÞ � pðx; yÞ if X and Y are discrete

ð1
�1

ð1
�1

hðx; yÞ � f ðx; yÞ dx dy if X and Y are continuous

8>><
>>:

Example 5.12 Five friends have purchased tickets to a concert. If the tickets are for seats 1–5 in a

particular row and the tickets are randomly distributed among the five, what is the

expected number of seats separating any particular two of the five? Let X and Y
denote the seat numbers of the first and second individuals, respectively. Possible

(X, Y) pairs are 1; 2ð Þ; 1; 3ð Þ; :::; 5; 4ð Þf g; and the joint pmf of (X, Y) is

pðx; yÞ ¼
1

20
x ¼ 1; . . . ; 5; y ¼ 1; . . . ; 5; x 6¼ y

0 otherwise

8><
>:

The number of seats separating the two individuals is hðX; YÞ ¼ jX � Yj � 1:.
The accompanying table gives h(x, y) for each possible (x, y) pair.

x
h(x, y) 1 2 3 4 5

1 – 0 1 2 3

2 0 – 0 1 2

y 3 1 0 – 0 1

4 2 1 0 – 0

5 3 2 1 0 –

Thus

E½hðX; YÞ� ¼
X

ðx;

X
yÞ

hðx; yÞ � pðx; yÞ ¼
X5
x¼1

X5
y¼1

x 6¼y

ðjx� yj � 1Þ � 1
20

¼ 1
■

Example 5.13 In Example 5.5, the joint pdf of the amount X of almonds and amount Y of cashews

in a 1�lb can of nuts was

f ðx; yÞ ¼ 24xy 0 � x � 1; 0 � y � 1; xþ y � 1

0 otherwise

(

If 1 lb of almonds costs the company $2.00, 1 lb of cashews costs $3.00, and 1 lb of

peanuts costs $1.00, then the total cost of the contents of a can is

hðX; YÞ ¼ 2X þ 3Y þ 1ð1� X � YÞ ¼ 1þ X þ 2Y

(since 1 �X � Y of the weight consists of peanuts). The expected total cost is

E½hðX; YÞ� ¼
ð1
�1

ð1
�1

hðx; yÞ � f ðx; yÞ dx dy

¼
ð1
0

ð1�x

0

ð1þ xþ 2yÞ � 24xy dy dx ¼ $2:20
■
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The method of computing the expected value of a function hðX1; :::;XnÞ of
n random variables is similar to that for two random variables. If the Xi’s are

discrete, E½hðX1; :::;XnÞ� is an n-dimensional sum; if the Xi’s are continuous, it is an

n-dimensional integral.

When h(X, Y) is a product of a function of X and a function of Y, the expected
value simplifies in the case of independence. In particular, let X and Y be continu-

ous independent random variables and suppose h(X, Y) ¼ XY. Then

EðXYÞ ¼
ð1
�1

ð1
�1

xyfðx; yÞ dx dy ¼
ð1
�1

ð1
�1

xyfXðxÞ fYðyÞ dx dy

¼
ð1
�1

y fYðyÞ½
ð1
�1

x fXðxÞ dx � dy ¼ EðXÞEðYÞ

The discrete case is similar. More generally, essentially the same derivation works

for several functions of random variables.

PROPOSITION Let X1, X2, . . ., Xn be independent random variables and assume that the

expected values of h1 X1ð Þ; h2 X2ð Þ; . . . ; hn Xnð Þ all exist. Then

E h1 X1ð Þ � h2 X2ð Þ � � � � � hn Xnð Þ½ � ¼ E h1 X1ð Þ½ � � E h2 X2ð Þ½ � � � � � � E hn Xnð Þ½ �

Covariance

When two random variables X and Y are not independent, it is frequently of interest

to assess how strongly they are related to each other.

DEFINITION The covariance between two rv’s X and Y is

CovðX;YÞ¼ E½ðX�mXÞðY�mYÞ�

¼

X
x

X
y

ðx�mXÞðy�mYÞpðx;yÞ if X and Y are discrete

ð1
�1

ð1
�1

ðx�mXÞðy�mYÞf ðx;yÞdx dy if X and Y are continuous

8>>><
>>>:

The rationale for the definition is as follows. Suppose X and Y have a strong

positive relationship to each other, by which we mean that large values of X tend

to occur with large values of Y and small values of X with small values of Y.
Then most of the probability mass or density will be associated with (x � mX) and
(y � mY) either both positive (both X and Y above their respective means) or both

negative, so the product (x� mX) (y� mY) will tend to be positive. Thus for a strong
positive relationship, Cov(X, Y) should be quite positive. For a strong negative

relationship, the signs of (x � mX) and (y � mY) will tend to be opposite, yielding a

5.2 Expected Values, Covariance, and Correlation 247



negative product. Thus for a strong negative relationship, Cov(X, Y) should be quite
negative. If X and Y are not strongly related, positive and negative products

will tend to cancel each other, yielding a covariance near 0. Figure 5.4 illustrates

the different possibilities. The covariance depends on both the set of possible pairs
and the probabilities. In Figure 5.4, the probabilities could be changed without

altering the set of possible pairs, and this could drastically change the value of

Cov(X, Y).

Example 5.14 The joint and marginal pmf’s for X ¼ automobile policy deductible amount and

Y ¼ homeowner policy deductible amount in Example 5.1 were

p(x, y)
y

0 100 200 x 100 250 y 0 100 200

x
100 .20 .10 .20 pX(x) .5 .5 pY(y) .25 .25 .50

250 .05 .15 .30

from which mX ¼ SxpXðxÞ ¼ 175 and mY ¼ 125. Therefore,

CovðX;YÞ¼
X

ðx;

X
yÞ

ðx�175Þðy�125Þpðx;yÞ

¼ ð100�175Þð0�125Þð:20Þþ �� �þð250�175Þð200�125Þð:30Þ
¼ 1875 ■

The following shortcut formula for Cov(X, Y) simplifies the computations.

PROPOSITION CovðX; YÞ ¼ E XYð Þ � mX � mY

According to this formula, no intermediate subtractions are necessary; only at the

end of the computation is mX · mY subtracted from E(XY). The proof involves

expanding ðX � mXÞðY � mYÞ and then taking the expected value of each term

separately. Note that CovðX;XÞ ¼ EðX2Þ � m2X ¼ VðXÞ.

y
a b c

x

y y

x x

mY mY mY

mX mX mX

Figure 5.4 p(x,y) ¼ 1
10 for each of ten pairs corresponding to indicated points;

(a) positive covariance; (b) negative covariance; (c) covariance near zero
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Example 5.15

(Example 5.5

continued)

The joint and marginal pdf’s of X¼ amount of almonds and Y¼ amount of cashews

were

f ðx; yÞ ¼ 24xy 0 � x � 1; 0 � y � 1; xþ y � 1

0 otherwise

(

fXðxÞ ¼ 12xð1� xÞ2 0 � x � 1

0 otherwise

�

with fY(y) obtained by replacing x by y in fX(x). It is easily verified that

mX ¼ mY ¼ 2
5
, and

EðXYÞ ¼
ð1
�1

ð1
�1

xyf ðx; yÞ dx dy ¼
ð1
0

ð1�x

0

xy � 24xy dy dx

¼ 8

ð1
0

x2ð1� xÞ3dx ¼ 2

15

Thus CovðX; YÞ ¼ 2
15
� 2

5

� �
2
5

� � ¼ 2
15
� 4

25
¼ � 2

75
. A negative covariance is reason-

able here because more almonds in the can implies fewer cashews. ■

The covariance satisfies a useful linearity property (Exercise 33).

PROPOSITION If X, Y, and Z are rv’s and a and b are constants then

Cov aX þ bY; Zð Þ ¼ a Cov X; Zð Þ þ b Cov Y; Zð Þ

It would appear that the relationship in the insurance example is quite strong

since Cov(X, Y)¼ 1875, whereas in the nut example CovðX; YÞ ¼ � 2
75
would seem

to imply quite a weak relationship. Unfortunately, the covariance has a serious

defect that makes it impossible to interpret a computed value of the covariance. In

the insurance example, suppose we had expressed the deductible amount in cents

rather than in dollars. Then 100X would replace X, 100Y would replace Y, and
the resulting covariance would be Cov(100X, 100Y) ¼ (100)(100)Cov(X, Y) ¼
18,750,000. If, on the other hand, the deductible amount had been expressed in

hundreds of dollars, the computed covariance would have been (.01)(.01)(1875) ¼
.1875. The defect of covariance is that its computed value depends critically on the
units of measurement. Ideally, the choice of units should have no effect on a

measure of strength of relationship. This is achieved by scaling the covariance.

Correlation

DEFINITION The correlation coefficient of X and Y, denoted by Corr(X, Y), or rX,Y,
or just r, is defined by

rX;Y ¼ CovðX; YÞ
sX � sY
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Example 5.16 It is easily verified that in the insurance problem of Example 5.14, EðX2Þ ¼
36; 250;s2X ¼ 36; 250� 175ð Þ2 ¼ 5625;sX ¼ 75;EðY2Þ ¼ 22; 500;s2Y ¼ 6875;
and sY ¼ 82:92: This gives

r ¼ 1875

ð75Þð82:92Þ ¼ :301 ■

The following proposition shows that r remedies the defect of Cov(X, Y) and also

suggests how to recognize the existence of a strong (linear) relationship.

PROPOSITION 1. If a and c are either both positive or both negative,

Corr aX þ b; cY þ dð Þ ¼ Corr X; Yð Þ

2. For any two rv’s X and Y;�1 � Corr X; Yð Þ � 1

Statement 1 says precisely that the correlation coefficient is not affected by a linear

change in the units of measurement (if, say, X ¼ temperature in �C, then 9X/5 +

32 ¼ temperature in �F). According to Statement 2, the strongest possible positive

relationship is evidenced by r ¼ +1, whereas the strongest possible negative

relationship corresponds to r ¼ �1. The proof of the first statement is sketched

in Exercise 31, and that of the second appears in Exercise 35 and also Supplemen-

tary Exercise 76 at the end of the next chapter. For descriptive purposes, the

relationship will be described as strong if |r| � .8, moderate if .5 < |r| <.8, and

weak if |r| � .5.

If we think of p(x, y) or f(x, y) as prescribing a mathematical model for how

the two numerical variables X and Y are distributed in some population (height and

weight, verbal SAT score and quantitative SAT score, etc.), then r is a population

characteristic or parameter that measures how strongly X and Y are related in

the population. In Chapter 12, we will consider taking a sample of pairs

x1; y1ð Þ; :::; xn; ynð Þ from the population. The sample correlation coefficient r
will then be defined and used to make inferences about r.

The correlation coefficient r is actually not a completely general measure of

the strength of a relationship.

PROPOSITION 1. If X and Y are independent, then r ¼ 0, but r ¼ 0 does not imply

independence.

2. r ¼ 1 or �1 iff Y ¼ aX + b for some numbers a and b with a 6¼ 0.

Exercise 29 and Example 5.17 relate to Property 1, and Property 2 is investigated

in Exercises 32 and 35.

This proposition says that r is a measure of the degree of linear
relationship between X and Y, and only when the two variables are perfectly
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related in a linear manner will r be as positive or negative as it can be. A r
less than 1 in absolute value indicates only that the relationship is not

completely linear, but there may still be a very strong nonlinear relation. Also,

r¼ 0 does not imply that X and Y are independent, but only that there is complete

absence of a linear relationship. When r¼ 0, X and Y are said to be uncorrelated.
Two variables could be uncorrelated yet highly dependent because of a strong

nonlinear relationship, so be careful not to conclude too much from knowing

that r ¼ 0.

Example 5.17 Let X and Y be discrete rv’s with joint pmf

pðx; yÞ ¼
1

4
ðx; yÞ ¼ ð�4; 1Þ; ð4;�1Þ; ð2; 2Þ; ð�2;�2Þ

0 otherwise

8<
:

The points that receive positive probability mass are identified on the (x, y)
coordinate system in Figure 5.5. It is evident from the figure that the value of X
is completely determined by the value of Y and vice versa, so the two variables

are completely dependent. However, by symmetry mX ¼ mY ¼ 0 and EðXYÞ ¼
ð�4Þ 1

4
þ ð�4Þ 1

4
þ ð4Þ 1

4
þ ð4Þ 1

4
¼ 0 so Cov X; Yð Þ ¼ E XYð Þ � mX � mY ¼ 0 and thus

rX,Y ¼ 0. Although there is perfect dependence, there is also complete absence of

any linear relationship!

A value of r near 1 does not necessarily imply that increasing the value of

X causes Y to increase. It implies only that large X values are associated with

large Y values. For example, in the population of children, vocabulary size and

number of cavities are quite positively correlated, but it is certainly not true

that cavities cause vocabulary to grow. Instead, the values of both these variables

tend to increase as the value of age, a third variable, increases. For children of a

fixed age, there is probably a very low correlation between number of cavities

and vocabulary size. In summary, association (a high correlation) is not the same

as causation.

2

1

1 2 3 4−1

−1

−2

−2

−3−4

Figure 5.5 The population of pairs for Example 5.17 ■
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Exercises Section 5.2 (18–35)

18. An instructor has given a short quiz consisting of

two parts. For a randomly selected student, let X¼
the number of points earned on the first part and

Y ¼ the number of points earned on the second

part. Suppose that the joint pmf of X and Y is given

in the accompanying table.

y
p(x, y) 0 5 10 15

x
0 .02 .06 .02 .10

5 .04 .15 .20 .10

10 .01 .15 .14 .01

a. If the score recorded in the grade book is the

total number of points earned on the two parts,

what is the expected recorded score EðX þ YÞ?
b. If the maximum of the two scores is recorded,

what is the expected recorded score?

19. The difference between the number of customers

in line at the express checkout and the number in

line at the superexpress checkout in Exercise 3 is

X1 � X2. Calculate the expected difference.

20. Six individuals, including A and B, take seats

around a circular table in a completely random

fashion. Suppose the seats are numbered 1, . . ., 6.
Let X ¼ A’s seat number and Y ¼ B’s seat num-

ber. If A sends a written message around the table

to B in the direction in which they are closest, how

many individuals (including A and B) would you

expect to handle the message?

21. A surveyor wishes to lay out a square region

with each side having length L. However, because
of measurement error, he instead lays out a rect-

angle in which the north–south sides both have

length X and the east–west sides both have length

Y. Suppose that X and Y are independent and that

each is uniformly distributed on the interval

½L� A; Lþ A� (where 0 < A < L). What is the

expected area of the resulting rectangle?

22. Consider a small ferry that can accommodate cars

and buses. The toll for cars is $3, and the toll for

buses is $10. Let X and Y denote the number of

cars and buses, respectively, carried on a single

trip. Suppose the joint distribution of X and Y is as

given in the table of Exercise 7. Compute the

expected revenue from a single trip.

23. Annie and Alvie have agreed to meet for lunch

between noon (0:00 p.m.) and 1:00 p.m. Denote

Annie’s arrival time by X, Alvie’s by Y, and sup-

pose X and Y are independent with pdf’s

fXðxÞ ¼ 3x2 0 � x � 1

0 otherwise

�

fYðyÞ ¼ 2y
0

�
0 � y � 1

otherwise

What is the expected amount of time that the one

who arrives first must wait for the other person?

[Hint: hðX; YÞ ¼ jX � Yj:]
24. Suppose that X and Y are independent rv’s with

moment generating functions MX(t) and MY(t),
respectively. If Z ¼ X þ Y, show that

MZðtÞ ¼ MXðtÞMYðtÞ. [Hint: Use the proposition

on the expected value of a product.]

25. Compute the correlation coefficient r for X and Y
of Example 5.15 (the covariance has already been

computed).

26. a. Compute the covariance for X and Y in

Exercise 18.

b. Compute r for X and Y in the same exercise.

27. a. Compute the covariance between X and Y in

Exercise 9.

b. Compute the correlation coefficient r for this X
and Y.

28. Reconsider the computer component lifetimes

X and Y as described in Exercise 12. Determine

E XYð Þ. What can be said about CovðX; YÞ and r?

29. Use the proposition on the expected product to

show that when X and Y are independent,

CovðX; YÞ ¼ CorrðX; YÞ ¼ 0

30. a. Recalling the definition of s2 for a single rv

X, write a formula that would be appropriate

for computing the variance of a function h(X, Y)
of two random variables. [Hint:Remember that

variance is just a special expected value.]

b. Use this formula to compute the variance of the

recorded score h(X, Y) [¼ max(X, Y)] in part

(b) of Exercise 18.

31. a. Use the rules of expected value to show that

CovðaX þ b; cY þ dÞ ¼ acCovðX; YÞ:
b. Use part (a) along with the rules of variance

and standard deviation to show that

CorrðaX þ b; cY þ dÞ ¼ CorrðX; YÞ when a
and c have the same sign.

c. What happens if a and c have opposite signs?
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32. Show that if Y¼ aXþb ða 6¼ 0Þ, then CorrðX;YÞ¼
þ1 or �1. Under what conditions will r¼þ1?

33. Show that if X, Y, and Z are rv’s and a and b are

constants, then Cov aX þ bY; Zð Þ ¼ a Cov X; Zð Þþ
b Cov Y; Zð Þ

34. Let ZX be the standardized X; ZX ¼ ðX � mXÞ=sX,
and let ZY be the standardized Y; ZY ¼
ðY � mYÞ=sY . Use Exercise 31 to show that

Corr X; Yð Þ ¼ Cov ZX; ZYð Þ ¼ E ZXZYð Þ

35. Let ZX be the standardized X, ZX ¼ (X � mX)/sX,
and let ZY be the standardized Y, ZY¼ (Y� mY)/sY.
a. Show with the help of Exercise 34 that

Ef½ðZY � rZXÞ�2g ¼ 1� r2

b. Use part (a) to show that �1 � r � 1.

c. Use part (a) to show that r ¼ 1 implies that

Y ¼ aX þ b where a > 0, and r ¼ �1 implies

that Y ¼ aX þ b where a < 0.

5.3 Conditional Distributions
The distribution of Y can depend strongly on the value of another variable X. For
example, if X is height and Y is weight, the distribution of weight for men who are

6 ft tall is very different from the distribution of weight for short men. The

conditional distribution of Y given X ¼ x describes for each possible x how

probability is distributed over the set of possible y values. We define the conditional

distribution of Y given X, but the conditional distribution of X given Y can be

obtained by just reversing the roles of X and Y. Both definitions are analogous to

that of the conditional probability P(A|B) as the ratio PðA \ BÞ=PðBÞ.

DEFINITION Let X and Y be two discrete random variables with joint pmf p(x,y) and

marginal X pmf pX(x). Then for any x value such that pX(x) > 0, the

conditional probability mass function of Y given X ¼ x is

pYjXðyjxÞ ¼ pðx; yÞ
pXðxÞ

An analogous formula holds in the continuous case. Let X and Y be two

continuous random variables with joint pdf f(x,y) and marginal X pdf fX(x).
Then for any x value such that fX(x)> 0, the conditional probability density
function of Y given X ¼ x is

fYjXðyjxÞ ¼ f ðx; yÞ
fXðxÞ

Example 5.18 For a discrete example, reconsider Example 5.1, where X represents the deductible

amount on an automobile policy and Y represents the deductible amount on a

homeowner’s policy. Here is the joint distribution again.

y
p(x, y) 0 100 200

x 100 .20 .10 .20

250 .05 .15 .30
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The distribution of Y depends on X. In particular, let’s find the conditional

probability that Y is 200, given that X is 250, using the definition of conditional

probability from Section2.4.

PðY ¼ 200jX ¼ 250Þ ¼ PðY ¼ 200 and X ¼ 250Þ
PðX ¼ 250Þ ¼ :3

:05þ :15þ :3
¼ :6

With our new definition we obtain the same result

pYjXð200j250Þ ¼ pð250; 200Þ
pXð250Þ ¼ :3

:05þ :15þ :3
¼ :6

The conditional probabilities for the two other possible values of Y are

pYjXð0j250Þ ¼ pð250; 0Þ
pXð250Þ ¼ :05

:05þ :15þ :3
¼ :1

pYjXð100j250Þ ¼ pð250; 100Þ
pXð250Þ ¼ :15

:05þ :15þ :3
¼ :3

Thus, pYjX 0j250ð Þ þ pYjX 100j250ð Þ þ pYjX 200j250ð Þ ¼ :1þ :3þ :6 ¼ 1. This is no

coincidence; conditional probabilities satisfy the properties of ordinary probabil-

ities. They are nonnegative and they sum to 1. Essentially, the denominator in the

definition of conditional probability is designed to make the total be 1.

Reversing the roles of X and Y, we find the conditional probabilities for X,
given that Y ¼ 0:

pXjYð100j0Þ ¼
pð100; 0Þ
pYð0Þ ¼ :20

:20þ :05
¼ :8

pXjYð250j0Þ ¼ pð250; 0Þ
pYð0Þ ¼ :05

:20þ :05
¼ :2

Again, the conditional probabilities add to 1. ■

Example 5.19 For a continuous example, recall Example 5.5, where X is the weight of almonds

and Y is the weight of cashews in a can of mixed nuts. The sum of X + Y is at most

one pound, the total weight of the can of nuts. The joint pdf of X and Y is

f ðx; yÞ ¼ 24xy
0

�
0 � x � 1; 0 � y � 1; xþ y � 1

otherwise

In Example 5.5 it was shown that

fXðxÞ ¼ 12xð1� xÞ2 0 � x � 1

0 otherwise

�

The conditional pdf of Y given that X ¼ x is

fYjXðyjxÞ ¼ f ðx; yÞ
fXðxÞ ¼ 24xy

12xð1� xÞ2 ¼
2y

ð1� xÞ2 0 � y � 1� x
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This can be used to get conditional probabilities for Y. For example,

PðY � :25jX ¼ :5Þ ¼
ð:25
�1

fYjXðyj:5Þ dy ¼
ð:25
0

2y

ð1� :5Þ2 dy ¼ 4y2
� �:25

0
¼ :25

Recall that X is the weight of almonds and Y is the weight of cashews, so this says

that, given that the weight of almonds is .5 pound, the probability is .25 for the

weight of cashews to be less than .25 pound.

Just as in the discrete case, the conditional distribution assigns a total

probability of 1 to the set of all possible Y values. That is, integrating the condi-

tional density over its set of possible values should yield 1:

ð1
�1

fYjXðyjxÞ dy ¼
ð1�x

0

2y

ð1� xÞ2 dy ¼
y2

ð1� xÞ2
	 
1�x

0

¼ 1

Whenever you calculate a conditional density, we recommend doing this integra-

tion as a validity check. ■

Because the conditional distribution is a valid probability distribution, it

makes sense to define the conditional mean and variance.

DEFINITION Let X and Y be two discrete random variables with conditional probability

mass function pY|X(y |x). Then the conditional mean or expected value of Y
given that X ¼ x is

mYjX¼x ¼ EðYjX ¼ xÞ ¼
X
y2DY

y pYjXðyjxÞ

An analogous formula holds in the continuous case. Let X and Y be

two continuous random variables with conditional probability density func-

tion fY|X(y |x). Then

mYjX¼x ¼ EðYjX ¼ xÞ ¼
ð1
�1

y fYjXðyjxÞ dy

The conditional mean of any function g(Y) can be obtained similarly. In

the discrete case,

EðgðYÞjX ¼ xÞ ¼
X
y2DY

gðyÞ pYjXðyjxÞ

In the continuous case

EðgðYÞjX ¼ xÞ ¼
ð1
�1

gðyÞ fYjXðyjxÞ dy

The conditional variance of Y given X ¼ x is

s2YjX¼x ¼ V YjX ¼ xð Þ ¼ E Y � E YjX ¼ xð Þ½ �2jX ¼ x
n o

5.3 Conditional Distributions 255



There is a shortcut formula for the conditional variance analogous to that

for V(Y) itself:

s2YjX¼x ¼ VðYjX ¼ xÞ ¼ EðY2jX ¼ xÞ � m2YjX¼x

Example 5.20 Having found the conditional distribution of Y given X ¼ 250 in Example 5.18, we

compute the conditional mean and variance.

mYjX¼250 ¼ E YjX ¼ 250ð Þ ¼ 0pYjX 0j250ð Þ þ 100pYjX 100j250ð Þ
þ 200pYjX 200j250ð Þ ¼ 0 :1ð Þ þ 100 :3ð Þ þ 200 :6ð Þ ¼ 150:

Given that the possibilities for Y are 0, 100, and 200 and most of the probability is

on 100 and 200, it is reasonable that the conditional mean should be between 100

and 200.

Let’s use the alternative formula for the conditional variance.

E Y2jX ¼ 250
� � ¼ 02pYjX 0j250ð Þ þ 1002pYjX 100j250ð Þ þ 2002pYjX 200j250ð Þ

¼ 02 :1ð Þ þ 1002 :3ð Þ þ 2002 :6ð Þ ¼ 27; 000:

Thus,

s2YjX¼250 ¼ V YjX¼ 250ð Þ ¼ E Y2jX¼ 250
� �� m2YjX¼250 ¼ 27;000� 1502 ¼ 4500:

Taking the square root, we get sYjX¼250 ¼ 67:08, which is in the right ballpark when
we recall that the possible values of Y are 0, 100, and 200.

It is important to realize that E(Y|X ¼ x) is one particular possible value

of a random variable E(Y|X), which is a function of X. Similarly, the conditional

variance V(Y|X ¼ x) is a value of the rv V(Y|X). The value of X might be 100

or 250. So far, we have just E(Y|X ¼ 250) ¼ 150 and V(Y|X ¼ 250) ¼ 4500.

If the calculations are repeated for X¼ 100, the results are E(Y|X¼ 100)¼ 100 and

V(Y|X ¼ 100) ¼ 8000. Here is a summary in the form of a table:

x P(X ¼ x) E(Y|X ¼ x) V(Y|X ¼ x)

100 .5 100 8000

250 .5 150 4500

Similarly, the conditional mean and variance of X can be computed for

specific Y. Taking the conditional probabilities from Example 5.18,

mXjY¼0 ¼ E XjY ¼ 0ð Þ ¼ 100pXjY 100j0ð Þ þ 250pXjY 250j0ð Þ
¼ 100 :8ð Þ þ 250 :2ð Þ ¼ 130

s2XjY¼0 ¼ V XjY ¼ 0ð Þ ¼ E X � E XjY ¼ 0ð Þ½ �2jY ¼ 0
� �

¼ 100� 130ð Þ2pXjY 100j0ð Þ þ 250� 130ð Þ2pXjY 250j0ð Þ
¼ 302 :8ð Þ þ 1202 :2ð Þ ¼ 3600:
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Similar calculations give the other entries in this table:

y P(Y ¼ y) E(X|Y ¼ y) V(X|Y ¼ y)

0 .25 130 3600

100 .25 190 5400

200 .50 190 5400

Again, the conditional mean and variance are random because they depend on the

random value of Y. ■

Example 5.21

(Example 5.19

continued)

For any given weight of almonds, let’s find the expected weight of cashews. Using

the definition of conditional mean,

mYjX¼x ¼ EðYjX ¼ xÞ ¼
ð1
�1

y fYjXðyjxÞ dy ¼
ð1�x

0

y
2y

ð1� xÞ2 dy

¼ 2

3
ð1� xÞ 0 � x � 1

The conditional mean is a linear decreasing function of x. When there are

more almonds, we expect less cashews. This is in accord with Figure 5.2, which

shows that for large X the domain of Y is restricted to small values. To get the

corresponding variance, compute first

EðY2jX¼ xÞ¼
ð1
�1

y2fYjXðyjxÞdy¼
ð1�x

0

y2
2y

ð1� xÞ2 dy¼
ð1� xÞ2

2
0 � x � 1

Then the conditional variance is

s2YjX¼x¼V YjX¼xð Þ¼E Y2jX¼x
� ��m2YjX¼x¼

ð1�xÞ2
2

�4ð1�xÞ2
9

¼ð1�xÞ2
18

and the conditional standard deviation is

sYjX¼x ¼ 1� xffiffiffiffiffi
18

p

This says that the variance gets smaller as the weight of almonds approaches 1.

Does this make sense? When the weight of almonds is 1, the weight of cashews is

guaranteed to be 0, implying that the variance is 0. This is clarified by Figure 5.2,

which shows that the set of y-values narrows to 0 as x approaches 1. ■

Independence

Recall that in Section 5.1 two random variables were defined to be independent if

their joint pmf or pdf factors into the product of the marginal pmf’s or pdf’s. We

can understand this definition better with the help of conditional distributions. For

example, suppose there is independence in the discrete case. Then

pYjXðyjxÞ ¼ pðx; yÞ
pXðxÞ ¼ pXðxÞpYðyÞ

pXðxÞ ¼ pYðyÞ
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That is, independence implies that the conditional distribution of Y is the same as

the unconditional distribution. The implication works in the other direction, too. If

pYjXðyjxÞ ¼ pYðyÞ

then

pðx; yÞ
pXðxÞ ¼ pYðyÞ

so

p x; yð Þ ¼ pXðxÞpYðyÞ

and therefore X and Y are independent. Is this intuitively reasonable? Yes,

because independence means that knowing X does not change our probabilities

for Y.
In Example 5.7 we said that independence necessitates the region of positive

density being a rectangle (possibly infinite in extent). In terms of conditional

distribution this region tells us the domain of Y for each X. For independence we

need to have the domain of Y not be dependent on X. That is, the conditional

distributions must all be the same, so the interval of positive density must be the

same for each x, implying a rectangular region.

The Bivariate Normal Distribution

Perhaps the most useful example of a joint distribution is the bivariate normal.

Although the formula may seem rather messy, it is based on a simple quadratic

expression in the standardized variables (subtract the mean and then divide by the

standard deviation). The bivariate normal density is

f ðx; yÞ ¼ 1

2ps1s2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p e�f½ðx�m1Þ=s1�2�2rðx�m1Þðy�m2Þ=s1s2þ½ðy�m2Þ=s2�2g=½2ð1�r2Þ�

There are five parameters, including the mean m1 and the standard deviation s1 of X
and the mean m2 and the standard deviation s2 of Y. The fifth parameter r is the

correlation between X and Y. The integration required to do bivariate normal

probability calculations is quite difficult. Computer code is available for calculat-

ing P(X< x, Y< y) approximately using numerical integration, and some statistical

software packages (e.g., R, SAS, Stata) include this feature.

What does the density look like when plotted as a function of x and y? If we
set f(x, y) to a constant to investigate the contours, this is setting the exponent to a

constant, and it will give ellipses centered at (x, y) ¼ (m1, m2). That is, all of the
contours are concentric ellipses. The plot in three dimensions looks like a mountain

with elliptical cross-sections. The vertical cross-sections are all proportional to

normal densities. See Figure 5.6.
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If r ¼ 0, then f x; yð Þ ¼ fXðxÞ fYðyÞ, where X is normal with mean m1 and

standard deviation s1, and Y is normal with mean m2 and standard deviation s2. That
is, X and Y have independent normal distributions. In this case the plot in three

dimensions has elliptical contours that reduce to circles. Recall that in Section 5.2

we emphasized that independence of X and Y implies r ¼ 0 but, in general, r ¼
0 does not imply independence. However, we have just seen that when X and Y are

bivariate normal r¼ 0 does imply independence. Therefore, in the bivariate normal

case r ¼ 0 if and only if the two rv’s are independent.

What do we get for the marginal distributions? As you might guess, the

marginal distribution fX(x) is just a normal distribution with mean m1 and standard

deviation s1:

fXðxÞ ¼ 1

s1
ffiffiffiffiffiffi
2p

p e�f½ðx�m1Þ=s1�2g=2

The integration to show this [integrating f(x,y) on y from�1 to1] is rather messy.

More generally, any linear combination of the form aX + bY, where a and b are

constants, is normally distributed.

We get the conditional density by dividing the marginal density of X into

f(x,y). Unfortunately, the algebra is again a mess, but the result is fairly simple.

The conditional density fY|X(y|x) is a normal density with mean and variance

given by

mY jX¼x ¼ E YjX ¼ xð Þ ¼ m2 þ rs2
x� m1
s1

s2YjX¼x ¼ V YjX ¼ xð Þ ¼ s22ð1� r2Þ

Notice that the conditional mean is a linear function of x and the conditional

variance doesn’t depend on x at all. When r ¼ 0, the conditional mean is the

mean of Y and the conditional variance is just the variance of Y. In other words,

if r ¼ 0, then the conditional distribution of Y is the same as the unconditional

distribution of Y. This says that if r ¼ 0 then X and Y are independent, but we

already saw that previously in terms of the factorization of f(x,y) into the product of
the marginal densities.

When r is close to 1 or �1 the conditional variance will be much smaller

than V(Y), which says that knowledge of X will be very helpful in predicting Y.

x

y

f (x, y)

Figure 5.6 A graph of the bivariate normal pdf
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If r is near 0 then X and Y are nearly independent and knowledge of X is not very

useful in predicting Y.

Example 5.22 Let X be mother’s height and Y be daughter’s height. A similar situation was one

of the first applications of the bivariate normal distribution, by Francis Galton

in 1886, and the data was found to fit the distribution very well. Suppose a bivariate

normal distribution with mean m1 ¼ 64 in. and standard deviation s1 ¼ 3 in. for X
and mean m2 ¼ 65 in. and standard deviation s2 ¼ 3 in. for Y. Here m2 > m1, which
is in accord with the increase in height from one generation to the next. Assume

r ¼ .4. Then

mYjX¼x ¼ m2 þ rs2
x� m1
s1

¼ 65þ :4ð3Þ x� 64

3
¼ 65þ :4ðx� 64Þ ¼ :4xþ 39:4

s2YjX¼x ¼ V YjX ¼ xð Þ ¼ s22 ð1� r2Þ ¼ 9 ð1� :42Þ ¼ 7:56 and sYjX¼x ¼ 2:75

Notice that the conditional variance is 16% less than the variance of Y.
Squaring the correlation gives the percentage by which the conditional variance

is reduced relative to the variance of Y. ■

Regression to the Mean

The formula for the conditional mean can be re-expressed as

mYjX¼x � m2
s2

¼ r � x� m1
s1

In words, when the formula is expressed in terms of standardized variables, the

standardized conditional mean is just r times the standardized x. In particular,

for the example of heights,

mYjX¼x � 65

3
¼ :4 � x� 64

3

If the mother is 5 in. above the mean of 64 in. for mothers, then the daughter’s

conditional expected height is just 2 in. above the mean for daughters. In this

example, with equal standard deviations for Y and X, the daughter’s conditional

expected height is always closer to its mean than the mother’s height is to its mean.

In general, the conditional expected Y is closer when it is measured in terms of

standard deviations. One can think of the conditional expectation as being pulled

back toward the mean, and that is why Galton called this regression to the mean.
Regression to the mean occurs in many contexts. For example, let X be a

baseball player’s average for the first half of the season and let Y be the average for

the second half. Most of the players with a high X (above .300) will not have such a

high Y. The same kind of reasoning applies to the “sophomore jinx,” which says

that if a player has a very good first season, then the player is unlikely to do as well

in the second season.

260 CHAPTER 5 Joint Probability Distributions



The Mean and Variance Via the Conditional
Mean and Variance

From the conditional mean we can obtain the mean of Y. From the conditional mean

and the conditional variance, the variance of Y can be obtained. The following

theorem uses the idea that the conditional mean and variance are themselves

random variables, as illustrated in the tables of Example 5.20.

THEOREM a. EðYÞ ¼ E E YjXð Þ½ �
b. VðYÞ ¼ V E YjXð Þ½ � þ E V YjXð Þ½ �

The result in (a) says that E(Y) is a weighted average of the conditional means

E(Y|X ¼ x), where the weights are given by the pmf or pdf of X. We give the

proof of just part (a) in the discrete case:

E½EðYjXÞ� ¼
X
x2DX

EðYjX¼ xÞpXðxÞ¼
X
x2DX

X
y2DY

ypYjXðyjxÞpXðxÞ

¼
X
x2DX

X
y2DY

y
pðx;yÞ
pXðxÞ pXðxÞ¼

X
y2DY

y
X
x2DX

pðx;yÞ¼
X
y2DY

ypYðyÞ¼EðYÞ

Example 5.23 To try to get a feel for the theorem, let’s apply it to Example 5.20. Here again is the

table for the conditional mean and variance of Y given X.

x P(X ¼ x) E(Y|X ¼ x) V(Y|X ¼ x)

100 .5 100 8000

250 .5 150 4500

Compute

E E YjXð Þ½ � ¼ E YjX ¼ 100ð ÞP X ¼ 100ð Þ þ E Yj X ¼ 250ð ÞP X ¼ 250ð Þ
¼ 100 :5ð Þ þ 150 :5ð Þ ¼ 125

Compare this with E(Y) computed directly:

EðYÞ ¼ 0P Y ¼ 0ð Þ þ 100P Y ¼ 100ð Þ þ 200P Y ¼ 200ð Þ
¼ 0 :25ð Þ þ 100 :25ð Þ þ 200 :5ð Þ ¼ 125

For the variance first compute the mean of the conditional variance:

E V YjXð Þ½ � ¼ V YjX ¼ 100ð ÞP X ¼ 100ð Þ þ V YjX ¼ 250ð ÞP X ¼ 250ð Þ
¼ 4500 :5ð Þ þ 8000 :5ð Þ ¼ 6250

Then comes the variance of the conditional mean. We have already computed

the mean of this random variable to be 125. The variance is

V E YjXð Þ½ � ¼ :5 100� 125ð Þ2 þ :5 150� 125ð Þ2 ¼ 625
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Finally, do the sum in part (b) of the theorem:

VðYÞ ¼ V E YjXð Þ½ � þ E V YjXð Þ½ � ¼ 625þ 6250 ¼ 6875

To compare this with V(Y) calculated from the pmf of Y, compute first

E Y2
� � ¼ 02P Y ¼ 0ð Þ þ 1002P Y ¼ 100ð Þ þ 2002P Y ¼ 200ð Þ

¼ 0 :25ð Þ þ 10; 000 :25ð Þ þ 40; 000 :5ð Þ ¼ 22; 500

Thus, VðYÞ ¼ E Y2ð Þ � EðYÞ½ �2 ¼ 22; 500� 1252 ¼ 6875, in agreement with the

calculation based on the theorem. ■

Here is an example where the theorem is helpful in finding the mean and

variance of a random variable that is neither discrete nor continuous.

Example 5.24 The probability of a claim being filed on an insurance policy is .1, and

only one claim can be filed. If a claim is filed, the amount is exponentially

distributed with mean $1000. Recall from Section 4.4 that the mean and standard

deviation of the exponential distribution are the same, so the variance is the

square of this value. We want to find the mean and variance of the amount

paid. Let X be the number of claims (0 or 1) and let Y be the payment. We know

that E(Y| X¼ 0)¼ 0 and E(Y| X¼ 1)¼ 1000. Also, V(Y| X¼ 0)¼ 0 and V(Y|X¼ 1)

¼ 10002 ¼ 1,000,000. Here is a table for the distribution of E(Y|X ¼ x) and

V(Y|X ¼ x):

x P(X ¼ x) E(Y|X ¼ x) V(Y|X ¼ x)

0 .9 0 0

1 .1 1000 1,000,000

Therefore,

EðYÞ ¼ E E YjXð Þ½ � ¼ E YjX ¼ 0ð ÞP X ¼ 0ð Þ þ E YjX ¼ 1ð ÞP X ¼ 1ð Þ
¼ 0 :9ð Þ þ 1000 :1ð Þ ¼ 100

The variance of the conditional mean is

V E YjXð Þ½ � ¼ :9 0� 100ð Þ2 þ :1 1000� 100ð Þ2 ¼ 90; 000

The expected value of the conditional variance is

E V YjXð Þ½ � ¼ :9ð0Þ þ :1 1; 000; 000ð Þ ¼ 100; 000

Finally, use part (b) of the theorem to get V(Y):

VðYÞ ¼ V E YjXð Þ½ � þ E V YjXð Þ½ � ¼ 90; 000þ 100; 000 ¼ 190; 000

Taking the square root gives the standard deviation, sY ¼ $435.89.

Suppose that we want to compute the mean and variance of Y directly.

Notice that X is discrete, but the conditional distribution of Y given X ¼ 1

is continuous. The random variable Y itself is neither discrete nor continuous, because
it has probability .9 of being 0, but the other .1 of its probability is spread out from

0 to1. Such “mixed” distributions may require a little extra effort to evaluate means

and variances, although it is not especially hard in this case. Compute
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mY ¼ EðYÞ ¼ ð:1Þ
ð1
0

y
1

1000
e�y=1000dy ¼ ð:1Þð1000Þ ¼ 100

EðY2Þ ¼ ð:1Þ
ð1
0

y2
1

1000
e�y=1000dy ¼ ð:1Þ2ð10002Þ ¼ 200;000

VðYÞ ¼ EðY2Þ � ½EðYÞ�2 ¼ 200;000� 10;000 ¼ 190;000

These agree with what we found using the theorem. ■

Exercises Section 5.3 (36–57)

36. According to an article in the August 30, 2002

issue of the Chronicle of Higher Education,
30% of first-year college students are liberals,

20% are conservatives, and 50% characterize

themselves as middle-of-the-road. Choose two

students at random, let X be the number of liber-

als, and let Y be the number of conservatives.

a. Using the multinomial distribution from

Section 5.1, give the joint probability mass func-

tion p(x, y) of X and Y. Give the joint probability
table showing all nine values, of which three

should be 0.

b. Determine the marginal probability mass func-

tions by summing p(x, y) numerically. How

could these be obtained directly? [Hint: What

are the univariate distributions of X and Y?]
c. Determine the conditional probability mass

function of Y given X ¼ x for x ¼ 0, 1, 2.

Compare with the Bin[2�x, .2/(.2 + .5)] distri-

bution. Why should this work?

d. Are X and Y independent? Explain.

e. Find E(Y|X ¼ x) for x¼ 0, 1, 2. Do this numer-

ically and then compare with the use of the

formula for the binomial mean, using the bino-

mial distribution given in part (c). Is E(Y|X¼ x)
a linear function of x?

f. Determine V(Y|X ¼ x) for x ¼ 0, 1, 2. Do this

numerically and then compare with the use of

the formula for the binomial variance, using the

binomial distribution given in part (c).

37. Teresa and Allison each have arrival times uni-

formly distributed between 12:00 and 1:00. Their

times do not influence each other. If Y is the first

of the two times and X is the second, on a scale of

0–1, then the joint pdf of X and Y is f(x, y) ¼ 2 for

0 < y < x < 1.

a. Determine the marginal density of X.
b. Determine the conditional density of Y given

X ¼ x.
c. Determine the conditional probability that Y is

between 0 and .3, given that X is .5.

d. Are X and Y independent? Explain.

e. Determine the conditional mean of Y given

X ¼ x. Is E(Y|X ¼ x) a linear function of x?
f. Determine the conditional variance of Y given

X ¼ x.

38. Refer back to Exercise 37.

a. Determine the marginal density of Y.
b. Determine the conditional density of X given

Y ¼ y.
c. Determine the conditional mean of X given

Y ¼ y. Is E(X|Y ¼ y) a linear function of y?
d. Determine the conditional variance of X given

Y ¼ y.

39. A pizza place has two phones. On each phone the

waiting time until the first call is exponentially

distributed with mean one minute. Each phone is

not influenced by the other. Let X be the shorter of

the two waiting times and let Y be the longer.

It can be shown that the joint pdf of X and Y is

f x; yð Þ ¼ 2e�ðxþyÞ; 0< x< y<1
a. Determine the marginal density of X.
b. Determine the conditional density of Y given

X ¼ x.
c. Determine the probability that Y is greater

than 2, given that X ¼ 1.

d. Are X and Y independent? Explain.

e. Determine the conditional mean of Y given

X ¼ x. Is E(Y|X ¼ x) a linear function of x?
f. Determine the conditional variance of Y given

X ¼ x.

40. A class has 10 mathematics majors, 6 computer

science majors, and 4 statistics majors. A committee

of two is selected at random to work on a problem.

LetX be the number ofmathematicsmajors and letY
be the number of computer science majors chosen.

a. Determine the joint probability mass function

p(x,y). This generalizes the hypergeometric

distribution studied in Section 3.6. Give the

joint probability table showing all nine values,

of which three should be 0.
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b. Determine the marginal probability mass

functions by summing numerically. How could

these be obtained directly? [Hint: What are the

univariate distributions of X and Y?]
c. Determine the conditional probability mass

function of Y given X ¼ x for x ¼ 0, 1, 2.

Compare with the h(y; 2�x, 6, 10) distribution.
Intuitively, why should this work?

d. Are X and Y independent? Explain.

e. Determine E(Y|X ¼ x), x ¼ 0, 1, 2. Do this

numerically and then compare with the use of

the formula for the hypergeometric mean,

using the hypergeometric distribution given in

part (c). Is E(Y|X ¼ x) a linear function of x?
f. Determine V(Y|X ¼ x), x ¼ 0, 1, 2. Do this

numerically and then compare with the use of

the formula for the hypergeometric variance,

using the hypergeometric distribution given in

part (c).

41. A stick is one foot long. You break it at a point X
(measured from the left end) chosen randomly

uniformly along its length. Then you break the

left part at a point Y chosen randomly uniformly

along its length. In other words, X is uniformly

distributed between 0 and 1 and, given X ¼ x, Y is

uniformly distributed between 0 and x.
a. Determine E(Y|X ¼ x) and then V(Y|X ¼ x). Is

E(Y|X ¼ x) a linear function of x?
b. Determine f(x,y) using fX(x) and fY|X(y|x).
c. Determine fY(y).
d. Use fY(y) from (c) to get E(Y) and V(Y).
e. Use (a) and the theorem of this section to get

E(Y) and V(Y).

42. A system consisting of two components will con-

tinue to operate only as long as both components

function. Suppose the joint pdf of the lifetimes

(months) of the two components in a system

is given by f x; yð Þ ¼ c 10� xþ yð Þ½ � for x > 0;
y > 0; xþ y < 10

a. If the first component functions for exactly

3 months, what is the probability that the sec-

ond functions for more than 2 months?

b. Suppose the system will continue to work only

as long as both components function. Among 20

of these systems that operate independently of

each other, what is the probability that at least

half work for more than 3 months?

43. Refer to Exercise 1 and answer the following

questions:

a. Given that X ¼ 1, determine the conditional

pmf of Y�that is, pY|X(0|1), pY|X(1|1), and

pY|X(2|1).

b. Given that two hoses are in use at the

self-service island, what is the conditional

pmf of the number of hoses in use on the full-

service island?

c. Use the result of part (b) to calculate the con-

ditional probability P(Y � 1|X ¼ 2).

d. Given that two hoses are in use at the full-

service island, what is the conditional pmf of

the number in use at the self-service island?

44. The joint pdf of pressures for right and left front

tires is given in Exercise 9.

a. Determine the conditional pdf of Y given that

X ¼ x and the conditional pdf of X given that

Y ¼ y.
b. If the pressure in the right tire is found to be 22

psi, what is the probability that the left tire has

a pressure of at least 25 psi? Compare this to

P(Y � 25).

c. If the pressure in the right tire is found to be

22 psi, what is the expected pressure in the left

tire, and what is the standard deviation of pres-

sure in this tire?

45. Suppose that X is uniformly distributed between

0 and 1. Given X ¼ x, Y is uniformly distributed

between 0 and x2

a. Determine E(Y|X ¼ x) and then V(Y|X ¼ x).
Is E(Y|X ¼ x) a linear function of x?

b. Determine f(x,y) using fX(x) and fY|X(y|x).
c. Determine fY(y).

46. This is a continuation of the previous exercise.

a. Use fY(y) from Exercise 45(c) to get E(Y) and
V(Y).

b. Use Exercise 45(a) and the theorem of this

section to get E(Y) and V(Y).

47. David and Peter independently choose at random a

number from 1, 2, 3, with each possibility equally

likely. Let X be the larger of the two numbers, and

let Y be the smaller.

a. Determine p(x, y).
b. Determine pX(x), x ¼ 1, 2, 3.

c. Determine pY|X(y|x).
d. Determine E(Y|X ¼ x). Is this a linear function

of x?
e. Determine V(Y|X ¼ x).

48. In Exercise 47 find

a. E(X).

b. pY(y).
c. E(Y) using pY(y).

d. E(Y) using E(Y|X).
e. E(X) + E(Y). Intuitively, why should this be 4?
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49. In Exercise 47 find

a. pX|Y(x|y).
b. E(X|Y ¼ y). Is this a linear function of y?
c. V(X|Y ¼ y).

50. For a Calculus I class, the final exam score Y and

the average of the four earlier tests X are bivariate

normal with mean m1 ¼ 73, standard deviation

s1 ¼ 12, mean m2 ¼70, standard deviation s2 ¼
15. The correlation is r ¼.71. Determine

a. mY|X¼x

b. s2YjX¼x

c. sY|X¼x

d. P(Y > 90|X ¼ 80), i.e., the probability that the

final exam score exceeds 90 given that the

average of the four earlier tests is 80

51. Let X and Y, reaction times (sec) to two different

stimuli, have a bivariate normal distribution with

mean m1 ¼ 20 and standard deviation s1 ¼ 2 for X
and mean m2 ¼30 and standard deviation s2 ¼ 5

for Y. Assume r ¼.8. Determine

a. mY|X¼x

b. s2YjX¼x

c. sY|X¼x

d. P(Y > 46|X ¼ 25)

52. Consider three ping pong balls numbered 1, 2, and 3.

Two balls are randomly selected with replacement.

If the sum of the two resulting numbers exceeds 4,

two balls are again selected. This process continues

until the sum is at most 4. Let X and Y denote the

last two numbers selected. Possible (X, Y) pairs are
{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)}.

a. Determine pX,Y(x,y).
b. Determine pY|X(y|x).
c. Determine E(Y|X ¼ x). Is this a linear function

of x?
d. Determine E(X|Y ¼ y). What special property

of p(x, y) allows us to get this from (c)?

e. Determine V(Y|X ¼ x).

53. Let X be a random digit (0, 1, 2, . . ., 9 are equally

likely) and let Y be a random digit not equal to X.

That is, the nine digits other than X are equally

likely for Y.
a. Determine pX(x), pY|X(y|x), pX,Y(x,y).
b. Determine a formula for E(Y|X ¼ x). Is this a

linear function of x?

54. In our discussion of the bivariate normal, there is

an expression for E(Y|X ¼ x).
a. By reversing the roles of X and Y give a similar

formula for E(X|Y ¼ y).
b. Both E(Y|X ¼ x) and E(X|Y ¼ y) are linear

functions. Show that the product of the two

slopes is r2.

55. This week the number X of claims coming into an

insurance office is Poisson with mean 100. The

probability that any particular claim relates to

automobile insurance is .6, independent of any

other claim. If Y is the number of automobile

claims, then Y is binomial with X trials, each

with “success” probability .6.

a. Determine E(Y|X ¼ x) and V(Y|X ¼ x).
b. Use part (a) to find E(Y).
c. Use part (a) to find V(Y).

56. In Exercise 55 show that the distribution of Y is

Poisson with mean 60. You will need to recognize

the Maclaurin series expansion for the exponential

function. Use the knowledge that Y is Poisson with

mean 60 to find E(Y) and V(Y).

57. Let X and Y be the times for a randomly selected

individual to complete two different tasks, and

assume that (X,Y) has a bivariate normal distribution

with mX ¼ 100, sX ¼ 50, mY ¼ 25, sY ¼ 5, r ¼ .5.

From statistical software we obtain P(X < 100,

Y < 25) ¼ .3333, P(X < 50, Y < 20) ¼ .0625,

P(X < 50, Y < 25) ¼ .1274, and P(X < 100, Y <
20) ¼ .1274.

(a) Determine P(50 < X < 100, 20 < Y < 25).

(b) Leave the other parameters the same but

change the correlation to r ¼ 0 (indepen-

dence). Now recompute the answer to part

(a). Intuitively, why should the answer to

part (a) be larger?

5.4 Transformations of Random Variables
In the previous chapter we discussed the problem of starting with a single random

variable X, forming some function of X, such as X2 or eX, to obtain a new random

variable Y ¼ h(X), and investigating the distribution of this new random variable.

We now generalize this scenario by starting with more than a single random

variable. Consider as an example a system having a component that can be replaced

just once before the system itself expires. Let X1 denote the lifetime of the original
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component and X2 the lifetime of the replacement component. Then any of the

following functions of X1 and X2 may be of interest to an investigator:

1. The total lifetime X1 + X2

2. The ratio of lifetimes X1/X2 ; for example, if the value of this ratio is 2, the

original component lasted twice as long as its replacement

3. The ratio X1/(X1 + X2), which represents the proportion of system lifetime during

which the original component operated

The Joint Distribution of Two New Random Variables

Given two random variables X1 and X2, consider forming two new random vari-

ables Y1 ¼ u1(X1, X2) and Y2 ¼ u2(X1, X2). We now focus on finding the joint

distribution of these two new variables. Since most applications assume that the

Xi’s are continuous we restrict ourselves to that case. Some notation is needed

before a general result can be given. Let

f(x1, x2) ¼ the joint pdf of the two original variables

g(y1, y2) ¼ the joint pdf of the two new variables

The u1(·) and u2(·) functions express the new variables in terms of the original ones.

The general result presumes that these functions can be inverted to solve for the

original variables in terms of the new ones:

X1 ¼ v1 Y1; Y2ð Þ ; X2 ¼ v2 Y1; Y2ð Þ
For example, if

y1 ¼ x1 þ x2 and y2 ¼ x1
x1 þ x2

then multiplying y2 by y1 gives an expression for x1, and then we can substitute this
into the expression for y1 and solve for x2:

x1 ¼ y1y2 ¼ v1 y1; y2ð Þ x2 ¼ y1 1� y2ð Þ ¼ v2 y1; y2ð Þ
In a final burst of notation, let

S ¼ x1; x2ð Þ : f x1; x2ð Þ> 0f g T ¼ y1; y2ð Þ : g y1; y2ð Þ> 0f g
That is, S is the region of positive density for the original variables and T is the

region of positive density for the new variables; T is the “image” of S under the

transformation.

THEOREM Suppose that the partial derivative of each vi(y1, y2) with respect to both y1
and y2 exists for every (y1, y2) pair in T and is continuous. Form the 2 � 2

matrix

M ¼
@v1ðy1; y2Þ

@y1

@v1ðy1; y2Þ
@y2

@v2ðy1; y2Þ
@y1

@v2ðy1; y2Þ
@y2

0
BBB@

1
CCCA
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The determinant of this matrix, called the Jacobian, is

detðMÞ ¼ @v1
@y1

� @v2
@y2

� @v1
@y2

� @v2
@y1

The joint pdf for the new variables then results from taking the joint pdf

f(x1, x2) for the original variables, replacing x1 and x2 by their expressions in

terms of y1 and y2, and finally multiplying this by the absolute value of the

Jacobian:

g y1; y2ð Þ ¼ f v1 y1; y2ð Þ; v2 y1; y2ð Þ½ � � jdetðMÞj y1; y2ð Þ 2 T

The theorem can be rewritten slightly by using the notation

detðMÞ ¼ @ðx1; x2Þ
@ðy1; y2Þ
����

����
Then we have

gðy1; y2Þ ¼ f ðx1; x2Þ � @ðx1; x2Þ
@ðy1; y2Þ
����

����
which is the natural extension of the univariate result (transforming a single rv X to

obtain a single new rv Y) g(y) ¼ f(x) � |dx/dy| discussed in Chapter 4.

Example 5.25 Continuing with the component lifetime situation, suppose that X1 and X2 are

independent, each having an exponential distribution with parameter l. Let’s

determine the joint pdf of

Y1 ¼ u1 X1;X2ð Þ ¼ X1 þ X2 and Y2 ¼ u2 X1;X2ð Þ ¼ X1

X1 þ X2

We have already inverted this transformation:

x1 ¼ v1 y1; y2ð Þ ¼ y1y2 x2 ¼ v2 y1; y2ð Þ ¼ y1 1� y2ð Þ
The image of the transformation, i.e. the set of (y1, y2) pairs with positive density,

is 0 < y1 and 0 < y2 < 1. The four relevant partial derivatives are

@v1
@y1

¼ y2
@v1
@y2

¼ y1
@v2
@y1

¼ 1� y2
@v2
@y2

¼ �y1

from which the Jacobian is � y1y2 � y1 1� y2ð Þ ¼ �y1
Since the joint pdf of X1 and X2 is

f ðx1; x2Þ ¼ le�lx1 � le�lx2 ¼ l2e�lðx1þx2Þ x1 > 0; x2 > 0

we have

gðy1; y2Þ ¼ l2e�ly1 � y1 ¼ l2y1e�ly1 � 1 0< y1; 0< y2 < 1

The joint pdf thus factors into two parts. The first part is a gamma pdf with

parameters a ¼ 2 and b ¼ 1/l, and the second part is a uniform pdf on (0, 1).
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Since the pdf factors and the region of positive density is rectangular, we have

demonstrated that

1. The distribution of system lifetime X1 + X2 is gamma(a ¼ 2, b ¼ 1/l)

2. The distribution of the proportion of system lifetime during which the original

component functions is uniform on (0, 1)

3. Y1 ¼ X1 + X2 and Y2 ¼ X1/(X1 + X2) are independent of each other ■

In the foregoing example, because the joint pdf factored into one pdf

involving y1 alone and another pdf involving y2 alone, the individual (i.e. marginal)

pdf’s of the two new variables were obtained from the joint pdf without any further

effort. Often this will not be the case – that is, Y1 and Y2 will not be independent.
Then to obtain the marginal pdf of Y1, the joint pdf must be integrated over all

values of the second variable. In fact, in many applications an investigator wishes to

obtain the distribution of a single function u1(X1, X2) of the original variables. To

accomplish this, a second function u2(X1, X2) is selected, the joint pdf is obtained,

and then y2 is integrated out. There are of course many ways to select the second

function. The choice should be made so that the transformation can be easily

inverted and the integration in the last step is straightforward.

Example 5.26 Consider a rectangular coordinate system with a horizontal x1 axis and a vertical x2
axis as shown in Figure 5.7(a). First a point (X1, X2) is randomly selected, where the

joint pdf of X1, X2 is

f ðx1; x2Þ ¼
x1 þ x2 0 < x1 < 1; 0 < x2 < 1

0 otherwise

(

Then a rectangle with vertices (0, 0), (X1, 0), (0, X2), and (X1, X2) is formed. What is

the distribution of X1X2, the area of this rectangle? To answer this question, let

Y1 ¼ X1X2 Y2 ¼ X2

so

y1 ¼ u1 x1; x2ð Þ ¼ x1x2 y2 ¼ u2 x1; x2ð Þ ¼ x2

Then

x1 ¼ n1ðy1; y2Þ ¼ y1
y2

x2 ¼ n2ðy1; y2Þ ¼ y2

Notice that because x2 (¼ y2) is between 0 and 1 and y1 is the product of the two xi’s,
it must be the case that 0 < y1 < y2. The region of positive density for the new

variables is then

T ¼ y1; y2ð Þ : 0 < y1 < y2; 0 < y2 < 1f g
which is the triangular region shown in Figure 5.7(b).
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Since ∂v2/∂y1¼ 0, the product of the two off-diagonal elements in the matrix

M will be 0, so only the two diagonal elements contribute to the Jacobian:

M ¼
1

y2
?

0 1

0
@

1
A j detðMÞj ¼ 1

y2

The joint pdf of the two new variables is now

gðy1; y2Þ ¼ f
y1
y2

; y2

� �
� detðMÞj j ¼

y1
y2

þ y2

� �
� 1
y2

0 < y1 < y2; 0 < y2 < 1

0 otherwise

8><
>:

To obtain the marginal pdf of Y1 alone, we must now fix y1 at some arbitrary

value between 0 and 1, and integrate out y2. Figure 5.7b shows that we must

integrate along the vertical line segment passing through y1 whose lower limit is

y1 and whose upper limit is 1:

g1ðy1Þ ¼
ð1

y1

y1
y2

þ y2

� �
� 1

y2
dy2 ¼ 2ð1� y1Þ 0 < y1 < 1

This marginal pdf can now be integrated to obtain any desired probability involving

the area. For example, integrating from 0 to .5 gives P(area < .5) ¼ .75. ■

The Joint Distribution of More than Two New Variables

Consider now starting with three random variables X1, X2, and X3, and forming

three new variables Y1, Y2, and Y3. Suppose again that the transformation can be

inverted to express the original variables in terms of the new ones:

x1 ¼ v1 y1; y2; y3ð Þ; x2 ¼ v2 y1; y2; y3ð Þ; x3 ¼ v3 y1; y2; y3ð Þ
Then the foregoing theorem can be extended to this new situation. The Jacobian

matrix has dimension 3� 3, with the entry in the ith row and jth column being∂vi/∂yj.
The joint pdf of the new variables results from replacing each xi in the original pdf f(·)
by its expression in terms of the yj’s and multiplying by the absolute value of the

Jacobian.

10

x2 y2

1

0 x1 y1

10

1

0

A possible
rectangle

For (X1, X2) For (Y1, Y2)

a b

Figure 5.7 Regions of positive density for Example 5.26
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Example 5.27 Consider n ¼ 3 identical components with independent lifetimes X1, X2, X3, each

having an exponential distribution with parameter l. If the first component is used

until it fails, replaced by the second one which remains in service until it fails, and

finally the third component is used until failure, then the total lifetime of these

components is Y3¼ X1 + X2 + X3. To find the distribution of total lifetime, let’s first

define two other new variables: Y1 ¼ X1 and Y2 ¼ X1 + X2 (so that Y1 < Y2 < Y3).
After finding the joint pdf of all three variables, we integrate out the first two

variables to obtain the desired information. Solving for the old variables in terms of

the new gives

x1 ¼ y1 x2 ¼ y2 � y1 x3 ¼ y3 � y2

It is obvious by inspection of these expressions that the three diagonal elements of

the Jacobian matrix are all 1’s and that the elements above the diagonal are all 0’s,

so the determinant is 1, the product of the diagonal elements. Since

f ðx1; x2; x3Þ ¼ l3e�lðx1þx2þx3Þ x1 > 0; x2 > 0; x3 > 0

by substitution,

gðy1; y2; y3Þ ¼ l3e�ly3 0 < y1 < y2 < y3

Integrating this joint pdf first with respect to y1 between 0 and y2 and then with

respect to y2 between 0 and y3 (try it!) gives

g3ðy3Þ ¼ l3

2
y23e

�ly3 y3 > 0

This is a gamma pdf. The result is easily extended to n components. It can also be

obtained (more easily) by using a moment generating function argument. ■

Exercises Section 5.4 (58–64)

58. Consider two components whose lifetimes X1 and

X2 are independent and exponentially distributed

with parameters l1 and l2, respectively. Obtain
the joint pdf of total lifetime X1 + X2 and the

proportion of total lifetime X1/(X1 + X2) during

which the first component operates.

59. Let X1 denote the time (hr) it takes to perform a

first task and X2 denote the time it takes to perform

a second one. The second task always takes at

least as long to perform as the first task. The

joint pdf of these variables is

f ðx1; x2Þ ¼ 2ðx1 þ x2Þ 0 � x1 � x2 � 1

0 otherwise

�

a. Obtain the pdf of the total completion time for

the two tasks.

b. Obtain the pdf of the difference X2�X1

between the longer completion time and the

shorter time.

60. An exam consists of a problem section and a short-

answer section. Let X1 denote the amount of time

(hr) that a student spends on the problem section

and X2 represent the amount of time the same

student spends on the short-answer section.

Suppose the joint pdf of these two times is

f ðx1; x2Þ ¼
cx1x2

x1
3

< x2 <
x1
2
; 0< x1 < 1

0 otherwise

8<
:

a. What is the value of c?
b. If the student spends exactly .25 h on the short-

answer section, what is the probability that at

most .60 h was spent on the problem section?

[Hint: First obtain the relevant conditional dis-

tribution.]

c. What is the probability that the amount of time

spent on the problem part of the exam exceeds

the amount of time spent on the short-answer

part by at least .5 hr?
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d. Obtain the joint distribution of Y1 ¼ X2/X1, the

ratio of the two times, and Y2 ¼ X2. Then

obtain the marginal distribution of the ratio.

61. Consider randomly selecting a point (X1, X2, X3) in

the unit cube {(x1, x2, x3): 0 < x1 < 1, 0 < x2 < 1,

0 < x3 < 1}according to the joint pdf

f ðx1; x2; x3Þ

¼
8x1x2x3 0 < x1 < 1; 0 < x2 < 1; 0 < x3 < 1

0 otherwise

(

(so the three variables are independent). Then

form a rectangular solid whose vertices are (0, 0, 0),

(X1, 0, 0), (0, X2, 0), (X1, X2, 0), (0, 0, X3), (X1, 0, X3),

(0, X2, X3), and (X1, X2, X3). The volume of this cube

is Y3¼ X1X2X3. Obtain the pdf of this volume. [Hint:
Let Y1 ¼ X1 and Y2 ¼ X1X2.]

62. Let X1 and X2 be independent, each having a

standard normal distribution. The pair (X1, X2)

corresponds to a point in a two-dimensional coor-

dinate system. Consider now changing to polar

coordinates via the transformation,

Y1 ¼ X2
1 þ X2

2

Y2 ¼

arctan
X2

X1

� �
X1 > 0;X2 � 0

arctan
X2

X1

� �
þ 2p X1 > 0;X2 < 0

arctan
X2

X1

� �
þ p X1 < 0

0 X1 ¼ 0

8>>>>>>>>>>><
>>>>>>>>>>>:

from which X1 ¼
ffiffiffiffiffi
Y1

p
cosðY2Þ; X2 ¼

ffiffiffiffiffi
Y1

p
sinðY2Þ.

Obtain the joint pdf of the new variables and then

the marginal distribution of each one. [Note: It
would be nice if we could simply let Y2 ¼ arctan

(X2/X1), but in order to insure invertibility of the

arctan function, it is defined to take on values

only between � p/2 and p/2. Our specification
of Y2 allows it to assume any value between

0 and 2p.]
63. The result of the previous exercise suggests how

observed values of two independent standard nor-

mal variables can be generated by first generating

their polar coordinates with an exponential rv with

l ¼ 1
2
and an independent uniform(0, 2p) rv: Let

U1 and U2 be independent uniform(0, 1) rv’s, and

then let

Y1 ¼ �2ln U1ð Þ Y2 ¼ 2pU2

Z1 ¼
ffiffiffiffiffi
Y1

p
cosðY2Þ Z2 ¼

ffiffiffiffiffi
Y1

p
sinðY2Þ

Show that the Zi’s are independent standard nor-

mal. [Note: This is called the Box-Muller transfor-
mation after the two individuals who discovered

it. Now that statistical software packages will

generate almost instantaneously observations

from a normal distribution with any mean and

variance, it is thankfully no longer necessary for

people like you and us to carry out the transforma-

tions just described – let the software do it!]

64. Let X1 and X2 be independent random variables,

each having a standard normal distribution. Show

that the pdf of the ratio Y ¼ X1/X2 is given by f(y)
¼ 1/[p(1 + y2)] for � 1 < y < 1 (this is called

the standard Cauchy distribution).

5.5 Order Statistics
Many statistical procedures involve ordering the sample observations from smallest

to largest and then manipulating these ordered values in various ways. For example,

the sample median is either the middle value in the ordered list or the average

of the two middle values depending on whether the sample size n is odd or even.

The sample range is the difference between the largest and smallest values. And a

trimmed mean results from deleting the same number of observations from each

end of the ordered list and averaging the remaining values.

Suppose that X1, X2, . . ., Xn is a random sample from a continuous distribu-

tion with cumulative distribution function F(x) and density function f(x). Because
of continuity, for any i, j with i 6¼ j, P(Xi ¼ Xj) ¼ 0. This implies that with

probability 1, the n sample observations will all be different (of course, in practice

all measuring instruments have accuracy limitations, so tied values may in fact

result).
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DEFINITION The order statistics from a random sample are the random variables Y1, . . .
Yn given by

Y1 ¼ the smallest among X1, X2, . . ., Xn

Y2 ¼ the second smallest among X1, X2, . . ., Xn

..
.

Yn ¼ the largest among X1, X2, . . ., Xn

so that with probability 1, Y1 < Y2 < . . . < Yn � 1 < Yn.

The sample median is then Y(n + 1)/2 when n is odd, the sample range is Yn� Y1, and
for n ¼ 10 the 20% trimmed mean is

P8
i¼3 Yi=6. The order statistics are defined as

random variables (hence the use of uppercase letters); observed values are denoted

by y1, . . ., yn.

The Distributions of Yn and Y1

The key idea in obtaining the distribution of the largest order statistic is that Yn is at
most y if and only if every one of the Xi’s is at most y. Similarly, the distribution of

Y1 is based on the fact that it will be at least y if and only if all Xi’s are at least y.

Example 5.28 Consider 5 identical components connected in parallel, as illustrated in Figure 5.8(a).

Let Xi denote the lifetime (hr) of the ith component (i ¼ 1, 2, 3, 4, 5). Suppose that

the Xi’s are independent and that each has an exponential distribution with l ¼ .01,

so the expected lifetime of any particular component is 1/l¼ 100 h. Because of the

parallel configuration, the system will continue to function as long as at least one

component is still working, and will fail as soon as the last component functioning

ceases to do so. That is, the system lifetime is just Y5, the largest order statistic in a
sample of size 5 from the specified exponential distribution. Now Y5 will be at most

y if and only if every one of the five Xi’s is at most y. With G5(y) denoting the

cumulative distribution function of Y5,

G5ðyÞ ¼ P Y5 � yð Þ ¼ P X1 � y; X2 � y; :::;X5 � yð Þ
¼ P X1 � yð Þ � P X2 � yð Þ � � � � � P X5 � yð Þ ¼ FðyÞ½ �5 ¼ 1� e�:01y

� �5
The pdf of Y5 can now be obtained by differentiating the cdf with respect to y.

Suppose instead that the five components are connected in series rather than

in parallel (Figure 5.8(b)). In this case the system lifetime will be Y1, the smallest of
the five order statistics, since the system will crash as soon as a single one of the

individual components fails. Note that system lifetime will exceed y hr if and only

if the lifetime of every component exceeds y hr. Thus

G1ðyÞ ¼ P Y1 � yð Þ ¼ 1� P Y1 > yð Þ ¼ 1� P X1 > y; X2 > y; :::;X5 > yð Þ
¼ 1� P X1 > yð Þ � P X2 > yð Þ � � � � � P X5 > yð Þ ¼ 1� e�:01y

� �5 ¼ 1� e�:05y

This is the form of an exponential cdf with parameter .05. More generally, if the

n components in a series connection have lifetimes that are independent, each

exponentially distributed with the same parameter l, then system lifetime will be
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exponentially distributed with parameter nl. The expected system lifetime will then

be 1/nl, much smaller than the expected lifetime of an individual component. ■

An argument parallel to that of the previous example for a general sample

size n and an arbitrary pdf f(x) gives the following general results.

PROPOSITION Let Y1 and Yn denote the smallest and largest order statistics, respectively,

based on a random sample from a continuous distribution with cdf F(x) and
pdf f(x). Then the cdf and pdf of Yn are

GnðyÞ ¼ FðyÞ½ �n gnðyÞ ¼ n FðyÞ½ �n�1 � f ðyÞ

The cdf and pdf of Y1 are

G1ðyÞ ¼ 1� 1� FðyÞ n g1ðyÞ ¼ n� ½1� FðyÞ½ �n�1 � f ðyÞ

Example 5.29 Let X denote the contents of a one-gallon container, and suppose that its pdf is f(x)
¼ 2x for 0 � x � 1 (and 0 otherwise) with corresponding cdf F(x) ¼ x2 in the

interval of positive density. Consider a random sample of four such containers.

Let’s determine the expected value of Y4 � Y1, the difference between the contents
of the most-filled container and the least-filled container; Y4 � Y1 is just the sample

range. The pdf’s of Y4 and Y1 are

g4ðyÞ ¼ 4 y2ð Þ3 � 2y 0 � y � 1

g1ðyÞ ¼ 4 1� y2ð Þ3 � 2y 0 � y � 1

The corresponding density curves appear in Figure 5.9

a

b

Figure 5.8 Systems of components for Example 5.28: (a) parallel connection;

(b) series connection
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EðY4 � Y1Þ ¼ EðY4Þ � EðY1Þ ¼
ð1
0

y � 8y7dy�
ð1
0

y � 8yð1� y2Þ3dy

¼ 8

9
� 384

945
¼ :889� :406 ¼ :483

If random samples of four containers were repeatedly selected and the sample

range of contents determined for each one, the long run average value of the range

would be .483. ■

The Joint Distribution of the n Order Statistics

We now develop the joint pdf of Y1, Y2, . . ., Yn. Consider first a random sample

X1, X2, X3 of fuel efficiency measurements (mpg). The joint pdf of this random

sample is

f x1; x2; x3ð Þ ¼ f x1ð Þ � f x2ð Þ � f x3ð Þ
The joint pdf of Y1, Y2, Y3 will be positive only for values of y1, y2, y3 satisfying
y1 < y2 < y3. What is this joint pdf at the values y1 ¼ 28.4, y2 ¼ 29.0, y3 ¼ 30.5?

There are six different ways to obtain these ordered values:

X1¼ 28.4 X2 ¼ 29.0 X3¼ 30.5

X1¼ 28.4 X2 ¼ 30.5 X3¼ 29.0

X1¼ 29.0 X2 ¼ 28.4 X3¼ 30.5

X1¼ 29.0 X2 ¼ 30.5 X3¼ 28.4

X1¼ 30.5 X2 ¼ 28.4 X3¼ 29.0

X1¼ 30.5 X2 ¼ 29.0 X3¼ 28.4

These six possibilities come from the 3! ways to order the three numerical observa-

tions once their values are fixed. Thus

g 28:4;29:0;30:5ð Þ¼ f 28:4ð Þ � f 29:0ð Þ � f 30:5ð Þþ���þ f 30:5ð Þ � f 29:0ð Þ � f 28:4ð Þ
¼3!f 28:4ð Þ � f 29:0ð Þ � f 30:5ð Þ

Figure 5.9 Density curves for the order statistics (a) Y1 and (b) Y4 in Example 5.29
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Analogous reasoning with a sample of size n yields the following result:

PROPOSITION Let g(y1, y2, . . ., yn) denote the joint pdf of the order statistics Y1, Y2, . . ., Yn
resulting from a random sample of Xi’s from a pdf f(x). Then

gðy1; y2; . . . ; ynÞ ¼ n!f ðy1Þ � f ðy2Þ � � � � � f ðynÞ y1 < y2 < � � � < yn
0 otherwise

�

For example, if we have a random sample of component lifetimes and the lifetime

distribution is exponential with parameter l, then the joint pdf of the order statistics is

gðy1; . . . ; ynÞ ¼ n!lne�lðy1þ���þynÞ 0 < y1 < y2 < � � � < yn

Example 5.30 Suppose X1, X2, X3, and X4 are independent random variables, each uniformly

distributed on the interval from 0 to 1. The joint pdf of the four corresponding order

statistics Y1, Y2, Y3, and Y4 is f(y1, y2, y3, y4) ¼ 4!∙1 for 0 < y1 < y2 < y3 < y4 < 1.

The probability that every pair of Xis is separated by more than .2 is the same as the

probability that Y2 � Y1 > .2, Y3 � Y2 > .2, and Y4 � Y3 > .2. This latter

probability results from integrating the joint pdf of the Yis over the region .6 < y4
< 1, .4 < y3 < y4 � .2, .2 < y2 < y3 � .2, 0 < y1 < y2 � .2:

PðY2 � Y1 > :2;Y3 � Y2 > :2;Y4 � Y3 > :2Þ ¼
ð1
:6

ðy4�:2

:4

ðy3�:2

:2

ðy2�:2

0

4!dy1dy2dy3dy4

The inner integration gives 4!(y2 � .2), and this must then be integrated between .2

and y3� .2. Making the change of variable z2¼ y2� .2, the integration of z2 is from
0 to y3 � .4. The result of this integration is 4!∙(y3 � .4)2/2. Continuing with the 3rd

and 4th integration, each time making an appropriate change of variable so that the

lower limit of each integration becomes 0, the result is

PðY2 � Y1 > :2; Y3 � Y2 > :2; Y4 � Y3 > :2Þ ¼ :44 ¼ :0256

A more general multiple integration argument for n independent uniform (0, B)
rvs shows that the probability that at all values are separated by at least d is 0 if d�
B/(n � 1) and

Pðall values are separated by more than dÞ

¼ ½1� ðn� 1Þd=B�n 0 � d � B=ðn� 1Þ
0 d > B=ðn� 1Þ

�

As an application, consider a year that has 365 days, and suppose that the birth time

of someone born in that year is uniformly distributed throughout the 365-day

period. Then in a group of 10 independently selected people born in that year, the

probability that all of their birth times are separated by more than 24 h (d ¼1 day)

is (1 � 9/365)10 ¼ .779. Thus the probability that at least two of the 10 birth times

are separated by at most 24 h is .221. As the group size n increases, it becomes more

likely that at least two people have birth times that are within 24 h of each other
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(but not necessarily on the same day). For n ¼ 16, this probability is .467, and for

n¼ 17 it is .533. So with as few as 17 people in the group, it is more likely than not

that at least two of the people were born within 24 h of each other. Coincidences

such as this are not as surprising as one might think. The probability that at least

two people are born on the same day (assuming equally likely birthdays) is much

easier to calculate than what we have shown here; see Exercise 2.98. ■

The Distribution of a Single Order Statistic

We have already obtained the (marginal) distribution of the largest order statistic Yn
and also that of the smallest order statistic Y1. Let’s now focus on an intermediate

order statistic Yi where 1 < i < n. For concreteness, consider a random sample X1,

X2, . . . , X6 of n ¼ 6 component lifetimes, and suppose we wish the distribution of

the 3rd smallest lifetime Y3. Now the joint pdf of all six order statistics is

gðy1; y2; ::: ; y6Þ ¼ 6! f y1ð Þ � � � � � f y6ð Þ y1 < y2 < y3 < y4 < y5 < y6

To obtain the pdf of Y3 alone, we must hold y3 fixed in the joint pdf and integrate

out all the other yi’s. One way to do this is to

1. Integrate y1 from �1 to y2, and then integrate y2 from � 1 to y3.
2. Integrate y6 from y5 to1, then integrate y5 from y4 to1, and finally integrate y4

from y3 to 1.

That is,

gðy3Þ¼
ð1
y3

ð1
y4

ð1
y5

ðy3
�1

ðy2
�1

6!f ðy1Þ � f ðy2Þ � � � � � f ðy6Þ dy1dy2dy6dy5dy4

¼ 6!

ðy3
�1

ðy2
�1

f ðy1Þf ðy2Þ dy1dy2
	 


�
ð1
y3

ð1
y4

ð1
y5

f ðy4Þf ðy5Þf ðy6Þ dy6dy5dy4
	 


� f ðy3Þ

In these integrations we use the following general results:

ð
½FðxÞ�kf ðxÞdx ¼ 1

k þ 1
½FðxÞ�kþ1 þ c ½let u ¼ FðxÞ�

ð
½1� FðxÞ�kf ðxÞdx ¼ � 1

k þ 1
½1� FðxÞ�kþ1 þ c ½let u ¼ 1� FðxÞ�

Therefore

ðy3
�1

ðy2
�1

f ðy1Þf ðy2Þ dy1dy2 ¼
ðy3
�1

Fðy2Þf ðy2Þ dy2 ¼ 1

2
½Fðy3Þ�2
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andð1
y3

ð1
y4

ð1
y5

f ðy6Þf ðy5Þf ðy4Þ dy6dy5dy4 ¼
ð1
y3

ð1
y4

½1� Fðy5Þ�f ðy5Þf ðy4Þ dy5dy4

¼ �
ð1
y3

1

2
½1� Fðy4Þ�2f ðy4Þ dy4

¼ 1

3 � 2 ½1� Fðy3Þ�3

Thus

gðy3Þ ¼ 6!

2!3!
½Fðy3Þ�2½1� Fðy3Þ�3f ðy3Þ �1 < y3 <1

A generalization of the foregoing argument gives the following expression

for the pdf of any single order statistic.

PROPOSITION The pdf of the ith smallest order statistic Yi is

gðyiÞ ¼ n!

ði� 1Þ! � ðn� iÞ! ½FðyiÞ�
i�1½1� FðyiÞ�n�if ðyiÞ �1 < yi < 1

Example 5.31 Suppose that component lifetime is exponentially distributed with parameter l. For
a random sample of n ¼ 5 components, the expected value of the sample median

lifetime is

EðY3Þ ¼
ð1
0

y � 5!

2! � 2! ð1� e�lyÞ2ðe�lyÞ2 � le�lydy

Expanding out the integrand and integrating term by term, the expected

value is .783/l. The median of the exponential distribution is, from solving

Fð~mÞ ¼ :5; ~m ¼ :693=l. Thus if sample after sample of five components is

selected, the long run average value of the sample median will be somewhat larger

than the value of the lifetime population distribution median. This is because the

exponential distribution has a positive skew. ■

The Joint Distribution of Two Order Statistics

We now focus on the joint distribution of two order statistics Yi and Yj with i < j.
Consider first n ¼ 6 and the two order statistics Y3 and Y5. We must then take the

joint pdf of all six order statistics, hold y3 and y5 fixed, and integrate out y1, y2, y4,
and y6. That is,

gðy3; y5Þ ¼
ð1
y5

ðy5
y3

ðy3
�1

ðy3
y1

6! f ðy1Þ � � � � � f ðy6Þ dy2 dy1 dy4 dy6
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The result of this integration is

g3;5ðy3; y5Þ ¼ 6!

2!1!1!
½Fðy3Þ�2½Fðy5Þ � Fðy3Þ�1½1� Fðy5Þ�1f ðy3Þf ðy5Þ

�1 < y3 < y5 < 1

In the general case, the numerator in the leading expression involving factorials

becomes n! and the denominator becomes i� 1ð Þ! j� i� 1ð Þ! n� jð Þ!: The three

exponents on bracketed terms change in a corresponding way.

An Intuitive Derivation of Order Statistic PDF’s

Let D be a number quite close to 0, and consider the three class intervals

�1; yð �; y; yþ Dð �, and yþ D;1ð Þ. For a single X, the probabilities of these

three classes are

p1 ¼ FðyÞ p2 ¼
ðyþD

y

f ðxÞ dx 	 f ðyÞ � D p3 ¼ 1� Fðyþ DÞ

For a random sample of size n, it is very unlikely that two or more X’s will fall in
the second interval. The probability that the ith order statistic falls in the second

interval is then approximately the probability that i � 1 of the X’s are in the

first interval, one is in the second, and the remaining n � i X’s are in the third

class. This is just a multinomial probability:

Pðy < Yi � yþ DÞ 	 n!

ði� 1Þ!1!ðn� iÞ! ½FðyiÞ�
i�1 � f ðyÞ � D½1� Fðyþ DÞ�n�i

Dividing both sides by D and taking the limit as D ! 0 gives exactly the pdf of Yi
obtained earlier via integration.

Similar reasoning works with the joint pdf of Yi and Yj (i < j). In this

case there are five relevant class intervals: ð�1; yi�; yi; yi þ D1ð �; yi þ D1; yj
� �

;

yj; yj þ D2

� �
; and ðyj þ D2; 1Þ

Exercises Section 5.5 (65–77)

65. A friend of ours takes the bus five days per week

to her job. The five waiting times until she can

board the bus are a random sample from a uniform

distribution on the interval from 0 to 10 min.

a. Determine the pdf and then the expected

value of the largest of the five waiting times.

b. Determine the expected value of the differ-

ence between the largest and smallest times.

c. What is the expected value of the sample

median waiting time?

d. What is the standard deviation of the largest

time?

66. Refer back to example 5.29. Because n ¼ 4, the

sample median is (Y2 + Y3)/2. What is the

expected value of the sample median, and how

does it compare to the median of the population

distribution?

67. Referring back to Exercise 65, suppose you learn

that the smallest of the five waiting times is 4

min. What is the conditional density function of

the largest waiting time, and what is the expected

value of the largest waiting time in light of this

information?

68. Let X represent a measurement error. It is natural

to assume that the pdf f(x) is symmetric about 0, so

that the density at a value �c is the same as the

density at c (an error of a given magnitude is
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equally likely to be positive or negative). Consider

a random sample of n measurements, where n ¼
2k + 1, so that Yk+1 is the sample median. What

can be said about E(Yk + 1)? If the X distribution

is symmetric about some other value, so that

value is the median of the distribution, what

does this imply about E(Yk+1)? [Hints: For

the first question, symmetry implies that

1� FðxÞ ¼ P X> xð Þ ¼ P X < � xð Þ ¼ F �xð Þ.
For the second question, consider W ¼ X � ~m;
what is the median of the distribution of W?]

69. A store is expecting n deliveries between the

hours of noon and 1 p.m. Suppose the arrival

time of each delivery truck is uniformly

distributed on this one-hour interval and that the

times are independent of each other. What are the

expected values of the ordered arrival times?

70. Suppose the cdf F(x) is strictly increasing and let
F �1(u) denote the inverse function for 0< u< 1.

Show that the distribution of F(Yi) is the same as

the distribution of the ith smallest order statistic

from a uniform distribution on (0,1). [Hint: Start
with PðF Yið Þ � uÞ and apply the inverse function
to both sides of the inequality.] [Note: This result
should not be surprising to you, since we have

already noted that F(X) has a uniform distribu-

tion on (0, 1). The result also holds when the cdf

is not strictly increasing, but then extra care is

necessary in defining the inverse function.]

71. Let X be the amount of time an ATM is in use

during a particular one-hour period, and suppose

that X has the cdf F(x) ¼ xy for 0 < x < 1 (where

y > 1). Give expressions involving the gamma

function for both the mean and variance of the ith
smallest amount of time Yi from a random sam-

ple of n such time periods.

72. The logistic pdf f ðxÞ ¼ e�x= 1þ e�xð Þ2
for�1< x<1 is sometimes used to describe

the distribution of measurement errors.

a. Graph the pdf. Does the appearance of the

graph surprise you?

b. For a random sample of size n, obtain an

expression involving the gamma function for

the moment generating function of the ith
smallest order statistic Yi. This expression

can then be differentiated to obtain moments

of the order statistics. [Hint: Set up the appro-
priate integral, and then let u ¼ 1/(1 + e�x).]

73. An insurance policy issued to a boat owner has a

deductible amount of $1000, so the amount of

damage claimed must exceed this deductible

before there will be a payout. Suppose the

amount (1000s of dollars) of a randomly selected

claim is a continuous rv with pdf f(x) ¼ 3/x4 for
x> 1. Consider a random sample of three claims.

a. What is the probability that at least one of the

claim amounts exceeds $5000?

b. What is the expected value of the largest

amount claimed?

74. Conjecture the form of the joint pdf of three order

statistics Yi, Yj, Yk in a random sample of size n.

75. Use the intuitive argument sketched in this section

to obtain a general formula for the joint pdf of two

order statistics

76. Consider a sample of size n ¼ 3 from the standard

normal distribution, and obtain the expected value

of the largest order statistic. What does this say

about the expected value of the largest order sta-

tistic in a sample of this size from any normal

distribution? [Hint: With f(x) denoting the stan-

dard normal pdf, use the fact that

d=dxð ÞfðxÞ ¼ �xfðxÞ along with integration by

parts.]

77. Let Y1 and Yn be the smallest and largest order

statistics, respectively, from a random sample of

size n, and let W2 ¼ Yn � Y1 (this is the sample

range).

a. Let W1 ¼ Y1, obtain the joint pdf of the Wi’s

(use the method of Section 5.4), and then

derive an expression involving an integral for

the pdf of the sample range.

b. For the case in which the random sample is

from a uniform (0, 1) distribution, carry out the

integration of (a) to obtain an explicit formula

for the pdf of the sample range.
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Supplementary Exercises (78–91)

78. Suppose the amount of rainfall in one region

during a particular month has an exponential dis-

tribution with mean value 3 in., the amount of

rainfall in a second region during that same

month has an exponential distribution with mean

value 2 in., and the two amounts are independent

of each other. What is the probability that the

second region gets more rainfall during this

month than does the first region?

79. Two messages are to be sent. The time (min)

necessary to send each message has an exponen-

tial distribution with parameter l ¼ 1, and the two

times are independent of each other. It costs $2 per

minute to send the first message and $1 per minute

to send the second. Obtain the density function of

the total cost of sending the two messages. [Hint:
First obtain the cumulative distribution function

of the total cost, which involves integrating the

joint pdf.]

80. A restaurant serves three fixed-price dinners cost-

ing $20, $25, and $30. For a randomly selected

couple dining at this restaurant, let X ¼ the cost of

the man’s dinner and Y ¼ the cost of the woman’s

dinner. The joint pmf of X and Y is given in the

following table:

y
p(x, y) 20 25 30

x
20 .05 .05 .10

25 .05 .10 .35

30 0 .20 .10

a. Compute the marginal pmf’s of X and Y.
b. What is the probability that the man’s and the

woman’s dinner cost at most $25 each?

c. Are X and Y independent? Justify your answer.

d. What is the expected total cost of the dinner for

the two people?

e. Suppose that when a couple opens fortune

cookies at the conclusion of the meal, they

find the message “You will receive as a refund

the difference between the cost of the more

expensive and the less expensive meal that

you have chosen.” How much does the restau-

rant expect to refund?

81. A health-food store stocks two different brands of

a type of grain. Let X¼ the amount (lb) of brand A

on hand and Y ¼ the amount of brand B on hand.

Suppose the joint pdf of X and Y is

f ðx; yÞ

¼
kxy x � 0; y � 0; 20 � xþ y � 30

0 otherwise

(

a. Draw the region of positive density and deter-

mine the value of k.
b. Are X and Y independent? Answer by first

deriving the marginal pdf of each variable.

c. Compute P(X + Y � 25).

d. What is the expected total amount of this grain

on hand?

e. Compute Cov(X, Y) and Corr(X, Y).
f. What is the variance of the total amount of

grain on hand?

82. Let X1, X2, . . ., Xn be random variables denoting n
independent bids for an item that is for sale. Sup-

pose each Xi is uniformly distributed on the inter-

val [100, 200]. If the seller sells to the highest

bidder, how much can he expect to earn on the

sale? [Hint: Let Y ¼ maxðX1;X2; :::;XnÞ. Find

FY(y) by using the results of Section 5.5 or else

by noting that Y� y iff each Xi is� y. Then obtain
the pdf and E(Y).]

83. Suppose a randomly chosen individual’s verbal

score X and quantitative score Y on a nationally

administered aptitude examination have joint pdf

f ðx; yÞ

¼
2

5
ð2xþ 3yÞ 0 � x � 1; 0 � y � 1

0 otherwise

8><
>:

You are asked to provide a prediction t of the

individual’s total score X + Y. The error of predic-
tion is the mean squared error E[(X + Y � t)2].
What value of tminimizes the error of prediction?

84. Let X1 and X2 be quantitative and verbal

scores on one aptitude exam, and let Y1 and Y2
be corresponding scores on another exam. If

Cov(X1, Y1)¼ 5, Cov(X1, Y2)¼ 1, Cov(X2, Y1)¼ 2,

and Cov(X2, Y2) ¼ 8, what is the covariance

between the two total scores X1 + X2 and Y1 + Y2?

85. Simulation studies are important in investigating

various characteristics of a system or process.

They are generally employed when the mathe-

matical analysis necessary to answer important
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questions is too complicated to yield closed-form

solutions. For example, in a system where the

time between successive customer arrivals has a

particular pdf and the service time of any particu-

lar customer has another pdf, simulation can pro-

vide information about the probability that the

system is empty when a customer arrives, the

expected number of customers in the system, and

the expected waiting time in queue. Such studies

depend on being able to generate observations

from a specified probability distribution.

The rejection method gives a way of generating an
observation from a pdf f(·) when we have a way of
generating an observation from g(·) and the ratio

f(x)/g(x) is bounded, that is, � c for some finite c.
The steps are as follows:

1. Use a software package’s random number

generator to obtain a value u from a uniform

distribution on the interval from 0 to 1.

2. Generate a value y from the distribution with

pdf g(y).
3. If u � f(y)/cg(y), set x ¼ y (“accept” x); other-

wise return to step 1. That is, the procedure is

repeated until at some stage u � f(y)/cg(y).
a. Argue that c� 1. [Hint: If c< 1, then f(y)<

g(y) for all y; why is this bad?]

b. Show that this procedure does result in

an observation from the pdf f(·); that is,

P(accepted value � x) ¼ F(x). [Hint:
This probability is PðfU � f ðyÞ=cgðyÞg \
fY � xgÞ; to calculate, first integrate with

respect to u for fixed y and then integrate

with respect to y.]
c. Show that the probability of “accepting” at

any particular stage is 1/c. What does this

imply about the expected number of stages

necessary to obtain an acceptable value?

What kind of value of c is desirable?
d. Let f(x) ¼ 20x(1 � x)3 for 0 < x < 1,

a particular beta distribution. Show that

taking g(y) to be a uniform pdf on (0, 1)

works. What is the best value of c in this

situation?

86. You are driving on a highway at speed X1. Cars

entering this highway after you travel at speeds

X2, X3, . . . . Suppose these Xi’s are independent

and identically distributed with pdf f(x) and cdf

F(x). Unfortunately there is no way for a faster car
to pass a slower one – it will catch up to the slower

one and then travel at the same speed. For exam-

ple, if X1 ¼ 52.3, X2 ¼ 37.5, and X3 ¼ 42.8, then

no car will catch up to yours, but the third car will

catch up to the second. Let N¼ the number of cars

that ultimately travel at your speed (in your

“cohort”), including your own car. Possible values

of N are 1, 2, 3, . . . . Show that the pmf of N is

p(n) ¼ 1/[n(n + 1)], and then determine the

expected number of cars in your cohort. [Hint: N
¼ 3 requires that X1 < X2, X1 < X3, X4 < X1.]

87. Suppose the number of children born to an indi-

vidual has pmf p(x). A Galton–Watson branching
process unfolds as follows: At time t ¼ 0, the

population consists of a single individual. Just

prior to time t ¼ 1, this individual gives birth to

X1 individuals according to the pmf p(x), so there

are X1 individuals in the first generation. Just prior

to time t ¼ 2, each of these X1 individuals gives

birth independently of the others according to the

pmf p(x), resulting in X2 individuals in the second

generation (e.g., if X1 ¼ 3, then X2 ¼ Y1 + Y2 + Y3,
where Yi is the number of progeny of the ith
individual in the first generation). This process

then continues to yield a third generation of size

X3, and so on.

a. If X1 ¼ 3, Y1 ¼ 4, Y2 ¼ 0, Y3 ¼ 1, draw a tree

diagram with two generations of branches to

represent this situation.

b. Let A be the event that the process ultimately

becomes extinct (one way for A to occur would

be to have X1 ¼ 3 with none of these three

second-generation individuals having any

progeny) and let p* ¼ P(A). Argue that p*
satisfies the equation

p
 ¼
X

ðp
Þx � pðxÞ

That is, p*¼ h(p*) where h(s) is the probability
generating function introduced in Exercise 138

from Chapter 3. Hint: A ¼ [x (A \ {X1 ¼ x}),
so the law of total probability can be applied.

Now given that X1¼ 3, Awill occur if and only

if each of the three separate branching pro-

cesses starting from the first generation ulti-

mately becomes extinct; what is the

probability of this happening?

c. Verify that one solution to the equation in (b)

is p* ¼ 1. It can be shown that this equation

has just one other solution, and that the proba-

bility of ultimate extinction is in fact the smal-
ler of the two roots. If p(0) ¼ .3, p(1) ¼ .5, and

p(2)¼ .2, what is p*? Is this consistent with the
value of m, the expected number of progeny

from a single individual? What happens if

p(0) ¼ .2, p(1) ¼ .5, and p(2) ¼ .3?

88. Let f(x) and g(y) be pdf’s with corresponding cdf’s
F(x) and G(y), respectively. With c denoting a

numerical constant satisfying |c| � 1, consider

f ðx; yÞ ¼ f ðxÞgðyÞf1þ c½2FðxÞ � 1�½2GðyÞ � 1�g
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Show that f(x, y) satisfies the conditions necessary
to specify a joint pdf for two continuous rv’s.

What is the marginal pdf of the first variable X?
Of the second variable Y? For what values of c are
X and Y independent? If f(x) and g(y) are normal

pdf’s, is the joint distribution of X and Y bivariate

normal?

89. The joint cumulative distribution function
of two random variables X and Y, denoted by

F(x, y), is defined by

Fðx; yÞ ¼ P½ðX � xÞ \ ðY � yÞ�
�1 < x < 1; �1 < y < 1

a. Suppose that X and Y are both continuous vari-

ables. Once the joint cdf is available, explain

how it can be used to determine the probability

P½ðX; YÞ 2 A�, where A is the rectangular

region fðx; yÞ : a � x � b; c � y � dg
b. Suppose the only possible values of X and Y

are 0, 1, 2, . . . and consider the values a ¼ 5,

b ¼ 10, c ¼ 2, and d ¼ 6 for the rectangle

specified in (a). Describe how you would use

the joint cdf to calculate the probability that

the pair (X, Y) falls in the rectangle. More

generally, how can the rectangular probability

be calculated from the joint cdf if a, b, c, and d
are all integers?

c. Determine the joint cdf for the scenario of Exam-

ple 5.1. [Hint: First determineF(x, y) for x¼ 100,

250 and y ¼ 0, 100, and 200. Then describe the

joint cdf for various other (x, y) pairs.]
d. Determine the joint cdf for the scenario of

Example 5.3 and use it to calculate the proba-

bility that X and Y are both between .25 and

.75. [Hint: For 0 � x � 1 and 0 � y � 1,

Fðx; yÞ ¼ Ð x
0

Ð y
0
f ðu; vÞdvdu]

e. Determine the joint cdf for the scenario of

Example 5.5. [Hint: Proceed as in (d), but be

careful about the order of integration and con-

sider separately (x, y) points that lie inside the

triangular region of positive density and then

points that lie outside this region.]

90. A circular sampling region with radius X is chosen

by a biologist, where X has an exponential distri-

bution with mean value 10 ft. Plants of a certain

type occur in this region according to a (spatial)

Poisson process with “rate” .5 plant per square

foot. Let Y denote the number of plants in the

region.

a. Find E YjX ¼ xð Þ and V YjX ¼ xð Þ
b. Use part (a) to find E(Y).
c. Use part (a) to find V(Y).

91. The number of individuals arriving at a post office

to mail packages during a certain period is a

Poisson random variable X with mean value 20.

Independently of the others, any particular cus-

tomer will mail either 1, 2, 3, or 4 packages with

probabilities .4, .3, .2, and .1, respectively. Let Y
denote the total number of packages mailed during

this time period.

a. Find E YjX ¼ xð Þ and V YjX ¼ xð Þ.
b. Use part (a) to find E(Y).
c. Use part (a) to find V(Y).

92. Consider a sealed-bid auction in which each of the

n bidders has his/her valuation (assessment of

inherent worth) of the item being auctioned. The

valuation of any particular bidder is not known

to the other bidders. Suppose these valuations

constitute a random sample X1; :::;Xn from a dis-

tribution with cdf F(x), with corresponding order

statistics Y1 � Y2 � � � � � Yn. The rent of the

winning bidder is the difference between the win-

ner’s valuation and the price. The article “Mean

Sample Spacings, Sample Size and Variability in

an Auction-Theoretic Framework” (Oper. Res.
Lett., 2004: 103–108) argues that the rent is just

Yn � Yn�1 (why?)

a. Suppose that the valuation distribution is

uniform on [0, 100]. What is the expected

rent when there are n ¼ 10 bidders?

b. Referring back to (a), what happens when there

are 11 bidders? More generally, what is the

relationship between the expected rent for n
bidders and for n + 1 bidders? Is this intuitive?

[Note: The cited article presents a counter-

example.]

93. Suppose two identical components are connected

in parallel, so the system continues to function as

long as at least one of the components does so.

The two lifetimes are independent of each other,

each having an exponential distribution with mean

1000 h. Let W denote system lifetime. Obtain the

moment generating function of W, and use it to

calculate the expected lifetime.
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C H A P T E R S I X

Statistics and
Sampling
Distributions

Introduction
This chapter helps make the transition between probability and inferential

statistics. Given a sample of n observations from a population, we will be calculat-

ing estimates of the population mean, median, standard deviation, and various

other population characteristics (parameters). Prior to obtaining data, there is

uncertainty as to which of all possible samples will occur. Because of this, estimates

such as �x, ~x, and s will vary from one sample to another. The behavior of such

estimates in repeated sampling is described by what are called sampling distribu-

tions. Any particular sampling distribution will give an indication of how close the

estimate is likely to be to the value of the parameter being estimated.

The first three sections use probability results to study sampling distribu-

tions. A particularly important result is the Central Limit Theorem, which shows

how the behavior of the sample mean can be described by a particular normal

distribution when the sample size is large. The last section introduces several

distributions related to normal samples. These distributions play a major role in

the rest of the book.

The original version of this chapter was revised. An erratum to this chapter can be found at

https://doi.org/10.1007/978-1-4614-0391-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4614-0391-3_6&domain=pdf
https://doi.org/10.1007/978-1-4614-0391-3_15


6.1 Statistics and Their Distributions
The observations in a single sample were denoted in Chapter 1 by x1, x2, . . ., xn.
Consider selecting two different samples of size n from the same population

distribution. The xi’s in the second sample will virtually always differ at least a

bit from those in the first sample. For example, a first sample of n ¼ 3 cars of a

particular model might result in fuel efficiencies x1 ¼ 30.7, x2 ¼ 29.4, x3 ¼ 31.1,

whereas a second sample may give x1 ¼ 28.8, x2 ¼ 30.0, and x3 ¼ 31.1. Before we

obtain data, there is uncertainty about the value of each xi. Because of this

uncertainty, before the data becomes available we view each observation as a

random variable and denote the sample by X1, X2, . . ., Xn (uppercase letters for

random variables).

This variation in observed values in turn implies that the value of any

function of the sample observations—such as the sample mean, sample standard

deviation, or sample fourth spread—also varies from sample to sample. That is,

prior to obtaining x1, . . ., xn, there is uncertainty as to the value of �x, the value of s,
and so on.

Example 6.1 Suppose that material strength for a randomly selected specimen of a particular

type has a Weibull distribution with parameter values a ¼ 2 (shape) and b ¼ 5

(scale). The corresponding density curve is shown in Figure 6.1. Formulas from

Section 4.5 give

m ¼ EðXÞ ¼ 4:4311 ~m ¼ 4:1628 s2 ¼ VðXÞ ¼ 5:365 s ¼ 2:316

The mean exceeds the median because of the distribution’s positive skew.

We used MINITAB to generate six different samples, each with n ¼ 10,

from this distribution (material strengths for six different groups of ten specimens

each). The results appear in Table 6.1, followed by the values of the sample mean,

sample median, and sample standard deviation for each sample. Notice first that the

ten observations in any particular sample are all different from those in any

other sample. Second, the six values of the sample mean are all different from

each other, as are the six values of the sample median and the six values of

the sample standard deviation. The same is true of the sample 10% trimmed

means, sample fourth spreads, and so on.

0 5 10
0

15

.05

.10

.15

x 

f (x)

Figure 6.1 The Weibull density curve for Example 6.1
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Furthermore, the value of the sample mean from any particular sample can be

regarded as a point estimate (“point” because it is a single number, corresponding

to a single point on the number line) of the population mean m, whose value is

known to be 4.4311. None of the estimates from these six samples is identical to

what is being estimated. The estimates from the second and sixth samples are much

too large, whereas the fifth sample gives a substantial underestimate. Similarly,

the sample standard deviation gives a point estimate of the population standard

deviation. All six of the resulting estimates are in error by at least a small amount.

In summary, the values of the individual sample observations vary from

sample to sample, so in general the value of any quantity computed from sample

data, and the value of a sample characteristic used as an estimate of the

corresponding population characteristic, will virtually never coincide with what

is being estimated. ■

DEFINITION A statistic is any quantity whose value can be calculated from sample data.

Prior to obtaining data, there is uncertainty as to what value of any particular

statistic will result. Therefore, a statistic is a random variable and will be

denoted by an uppercase letter; a lowercase letter is used to represent the

calculated or observed value of the statistic.

Thus the sample mean, regarded as a statistic (before a sample has been

selected or an experiment has been carried out), is denoted by X; the calculated

value of this statistic is �x. Similarly, S represents the sample standard deviation

thought of as a statistic, and its computed value is s. Suppose a drug is given to a

Table 6.1 Samples from the Weibull distribution of Example 6.1

Sample

1 2 3 4 5 6

Observation

1 6.1171 5.07611 3.46710 1.55601 3.12372 8.93795

2 4.1600 6.79279 2.71938 4.56941 6.09685 3.92487

3 3.1950 4.43259 5.88129 4.79870 3.41181 8.76202

4 0.6694 8.55752 5.14915 2.49759 1.65409 7.05569

5 1.8552 6.82487 4.99635 2.33267 2.29512 2.30932

6 5.2316 7.39958 5.86887 4.01295 2.12583 5.94195

7 2.7609 2.14755 6.05918 9.08845 3.20938 6.74166

8 10.2185 8.50628 1.80119 3.25728 3.23209 1.75468

9 5.2438 5.49510 4.21994 3.70132 6.84426 4.91827

10 4.5590 4.04525 2.12934 5.50134 4.20694 7.26081

Statistic

Mean 4.401 5.928 4.229 4.132 3.620 5.761

Median 4.360 6.144 4.608 3.857 3.221 6.342

SD 2.642 2.062 1.611 2.124 1.678 2.496
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sample of patients, another drug is given to a second sample, and the cholesterol

levels are denoted by X1, . . ., Xm and Y1, . . ., Yn, respectively. Then the statistic

X � Y, the difference between the two sample mean cholesterol levels, may be

important.

Any statistic, being a random variable, has a probability distribution.

In particular, the sample mean X has a probability distribution. Suppose, for

example, that n ¼ 2 components are randomly selected and the number of break-

downs while under warranty is determined for each one. Possible values for the

sample mean number of breakdowns X are 0 (if X1 ¼ X2 ¼ 0), .5 (if either X1 ¼ 0

and X2 ¼ 1 or X1 ¼ 1 and X2 ¼ 0), 1, 1.5, . . .. The probability distribution of X
specifies PðX ¼ 0Þ, PðX ¼ :5Þ and so on, from which other probabilities such as

Pð1 � X � 3Þ and PðX � 2:5Þ can be calculated. Similarly, if for a sample of size

n ¼ 2, the only possible values of the sample variance are 0, 12.5, and 50 (which is

the case if X1 and X2 can each take on only the values 40, 45, and 50), then

the probability distribution of S2 gives P(S2 ¼ 0), P(S2 ¼ 12.5), and P(S2 ¼ 50).

The probability distribution of a statistic is sometimes referred to as its sampling

distribution to emphasize that it describes how the statistic varies in value across

all samples that might be selected.

Random Samples

The probability distribution of any particular statistic depends not only on the

population distribution (normal, uniform, etc.) and the sample size n but also on

the method of sampling. Consider selecting a sample of size n ¼ 2 from a popula-

tion consisting of just the three values 1, 5, and 10, and suppose that the statistic of

interest is the sample variance. If sampling is done “with replacement,” then S2 ¼ 0

will result if X1 ¼ X2. However, S
2 cannot equal 0 if sampling is “without replace-

ment.” So P(S2 ¼ 0) ¼ 0 for one sampling method, and this probability is positive

for the other method. Our next definition describes a sampling method often

encountered (at least approximately) in practice.

DEFINITION The rv’s X1, X2, . . ., Xn are said to form a (simple) random sample of size n if

1. The Xi’s are independent rv’s.

2. Every Xi has the same probability distribution.

Conditions 1 and 2 can be paraphrased by saying that the Xi’s are independent and
identically distributed (iid). If sampling is either with replacement or from an

infinite (conceptual) population, Conditions 1 and 2 are satisfied exactly. These

conditions will be approximately satisfied if sampling is without replacement,

yet the sample size n is much smaller than the population size N. In practice,

if n/N � .05 (at most 5% of the population is sampled), we can proceed as if

the Xi’s form a random sample. The virtue of this sampling method is that the

probability distribution of any statistic can be more easily obtained than for any

other sampling method.
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There are two general methods for obtaining information about a statistic’s

sampling distribution. One method involves calculations based on probability rules,

and the other involves carrying out a simulation experiment.

Deriving the Sampling Distribution of a Statistic

Probability rules can be used to obtain the distribution of a statistic provided that it

is a “fairly simple” function of the Xi’s and either there are relatively few different

X values in the population or else the population distribution has a “nice” form. Our

next two examples illustrate such situations.

Example 6.2 A certain brand of MP3 player comes in three configurations: with 2 GB of

memory, costing $80, a 4 GB model priced at $100, and an 8 GB version with a

price tag of $120. If 20% of all purchasers choose the 2 GB model, 30% choose the

4 GB, and 50% choose the 8 GB model, then the probability distribution of the cost

of a single randomly selected MP3 player purchase is given by

x 80 100 120

p(x) .2 .3 .5
with m = 106, s2 = 244 (6.1)

Suppose only two MP3 players are sold today. Let X1 ¼ the cost of the first player

and X2 ¼ the cost of the second. Suppose that X1 and X2 are independent, each with

the probability distribution shown in (6.1), so that X1 and X2 constitute a random

sample from the distribution (6.1). Table 6.2 lists possible (x1, x2) pairs, the

probability of each computed using (6.1) and the assumption of independence,

and the resulting �x and s2 values. (When n ¼ 2, s2 ¼ ðx1 � �xÞ2 þ ðx2 � �xÞ2.)

Now to obtain the probability distribution of X, the sample average cost per

MP3 player, we must consider each possible value �x and compute its probability.

For example, �x ¼ 100 occurs three times in the table with probabilities .10, .09,

and .10, so

PðX ¼ 100Þ ¼ :10þ :09þ :10 ¼ :29

Table 6.2 Outcomes, probabilities, and values
of �x and s2 for Example 6.2

x1 x2 p(x1, x2) �x s2

80 80 (.2)(.2) ¼ .04 80 0

80 100 (.2)(.3) ¼ .06 90 200

80 120 (.2)(.5) ¼ .10 100 800

100 80 (.3)(.2) ¼ .06 90 200

100 100 (.3)(.3) ¼ .09 100 0

100 120 (.3)(.5) ¼ .15 110 200

120 80 (.5)(.2) ¼ .10 100 800

120 100 (.5)(.3) ¼ .15 110 200

120 120 (.5)(.5) ¼ .25 120 0

288 CHAPTER 6 Statistics and Sampling Distributions



Similarly, s2 ¼ 800 appears twice in the table with probability .10 each time, so

PðS2 ¼ 800Þ ¼ PðX1 ¼ 80;X2 ¼ 120Þ þ PðX1 ¼ 120;X2 ¼ 80Þ
¼ :10þ :10 ¼ :20

The complete sampling distributions of X and S2 appear in (6.2) and (6.3).

�x 80 90 100 110 120

pXð�xÞ .2 .12 .29 .30 .5
(6.2)

s2 0 200 800

pS2ðs2Þ .38 .42 .20
(6.3)

Figure 6.2 pictures a probability histogram for both the original distribution of

X (6.1) and the X distribution (6.2). The figure suggests first that the mean

(i.e. expected value) of X is equal to the mean $106 of the original distribution,

since both histograms appear to be centered at the same place. Indeed, from (6.2),

EðXÞ ¼
X

�xpXð�xÞ ¼ 80ð:04Þ þ � � � þ 120ð:25Þ ¼ 106 ¼ m

Second, it appears that the X distribution has smaller spread (variability) than the

original distribution, since the values of �x are more concentrated toward the mean.

Again from (6.2),

VðXÞ ¼
X

ð�x� mÞ2pXð�xÞ ¼
X

ð�x� 106Þ2pXð�xÞ
¼ ð80� 106Þ2ð:04Þ þ � � � þ ð120� 106Þ2ð:25Þ ¼ 122

Notice that the VðXÞ ¼ 122 ¼ 244=2 ¼ s2=2, is exactly half the population vari-

ance; the division by 2 here is a consequence of the fact that n ¼ 2.

Finally, the mean value of S2 is

EðS2Þ ¼
X

s2pS2ðs2Þ ¼ 0ð:38Þ þ 200ð:42Þ þ 800ð:20Þ ¼ 244 ¼ s2

That is, the X sampling distribution is centered at the population mean m, and the S2

sampling distribution (histogram not shown) is centered at the population variance s2.
If four MP3 players had been purchased on the day of interest, the sample

average cost X would be based on a random sample of four Xis, each having

the distribution (6.1). More calculation eventually yields the distribution of X for

n ¼ 4 as

�x 80 85 90 95 100 105 110 115 120

pXð�xÞ .0016 .0096 .0376 .0936 .1761 .2340 .2350 .1500 .0625

.3

.2

.5

.04
.12

.29 .30
.25

10080

x

120 80 90 100 110 120

xa b

Figure 6.2 Probability histograms for (a) the underlying population distribution

and (b) the sampling distribution of X in Example 6.2
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From this, EðXÞ ¼ 106 ¼ m and VðXÞ ¼ 61 ¼ s2=4. Figure 6.3 is a probability

histogram of this distribution.

Example 6.2 should suggest first of all that the computation of pXð�xÞ and pS2ðs2Þ
can be tedious. If the original distribution (6.1) had allowed for more than three

possible values 80, 100, and 120, then even for n ¼ 2 the computations would have

been more involved. The example should also suggest, however, that there are some

general relationships between EðXÞ; VðXÞ; EðS2Þ, and themean m and variance s2 of
the original distribution. These are stated in the next section. Now consider an

example in which the random sample is drawn from a continuous distribution.

Example 6.3 The time that it takes to serve a customer at the cash register in a minimarket is a

random variable having an exponential distribution with parameter l. Suppose X1

and X2 are service times for two different customers, assumed independent of each

other. Consider the total service time To ¼ X1 þ X2 for the two customers, also a

statistic. The cdf of To is, for t � 0,

FT0ðtÞ ¼ PðX1 þ X2 � tÞ ¼
ðð

fðx1;x2Þ:x1þx2�tg

f ðx1; x2Þ dx1 dx2

¼
ðt
0

ðt�x1

0

le�lx1 � le�lx2 dx2 dx1

¼
ðt
0

ðle�lx1 � le�ltÞ dx1 ¼ 1� e�lt � lte�lt

The region of integration is pictured in Figure 6.4.

Figure 6.3 Probability histogram for X based on n ¼ 4 in Example 6.2 ■

x1

x2

x1

(x1, t − x1)

x
1  + x

2  = t

Figure 6.4 Region of integration to obtain cdf of To in Example 6.3
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The pdf of To is obtained by differentiating FT0ðtÞ:

fT0ðtÞ ¼ l2te�lt t � 0

0 t < 0

�
ð6:4Þ

This is a gamma pdf (a ¼ 2 and b ¼ 1/l). This distribution for To can also be

derived by a moment generating function argument.

The pdf of X ¼ T0=2 can be obtained by the method of Section 4.7 as

fXð�xÞ ¼ 4l2�xe�2l�x �x � 0

0 �x < 0

�
ð6:5Þ

The mean and variance of the underlying exponential distribution are m ¼ 1/l and

s2 ¼ 1/l2. Using Expressions (6.4) and (6.5), it can be verified that EðXÞ ¼
1=l; VðXÞ ¼ 1=ð2l2Þ; EðT0Þ ¼ 2=l, and VðT0Þ ¼ 2=l2. These results again sug-

gest some general relationships between means and variances of X, T0, and the

underlying distribution. ■

Simulation Experiments

The second method of obtaining information about a statistic’s sampling distribu-

tion is to perform a simulation experiment. This method is usually used when a

derivation via probability rules is too difficult or complicated to be carried out.

Such an experiment is virtually always done with the aid of a computer.

The following characteristics of an experiment must be specified:

1. The statistic of interest (X, S, a particular trimmed mean, etc.)

2. The population distribution (normal with m ¼ 100 and s ¼ 15, uniform with

lower limit A ¼ 5 and upper limit B ¼ 10, etc.)

3. The sample size n (e.g., n ¼ 10 or n ¼ 50)

4. The number of replications k (e.g., k ¼ 1000)

Then use a computer to obtain k different random samples, each of size n, from the

designated population distribution. For each such sample, calculate the value of the

statistic and construct a histogram of the k calculated values. This histogram gives

the approximate sampling distribution of the statistic. The larger the value of k,
the better the approximation will tend to be (the actual sampling distribution

emerges as k ! 1). In practice, k ¼ 1000 may be enough for a “fairly simple”

statistic and population distribution, but modern computers allow a much larger

number of replications.

Example 6.4 The population distribution for our first simulation study is normal with m ¼ 8.25

and s ¼ .75, as pictured in Figure 6.5. [The article “Platelet Size in Myocardial

Infarction” (British Med. J., 1983: 449–451) suggests this distribution for platelet

volume in individuals with no history of serious heart problems.]

We actually performed four different experiments, with 500 replications for

each one. In the first experiment, 500 samples of n ¼ 5 observations each were

generated using MINITAB, and the sample sizes for the other three were n ¼ 10,

n ¼ 20, and n ¼ 30, respectively. The sample mean was calculated for each

sample, and the resulting histograms of �x values appear in Figure 6.6.
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m = 8.25

s = .75

⎧⎨⎩
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Figure 6.5 Normal distribution, with m ¼ 8.25 and s ¼ .75
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Figure 6.6 Sample histograms for X based on 500 samples, each consisting of n

observations: (a) n ¼ 5; (b) n ¼ 10; (c) n ¼ 20; (d) n ¼ 30
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The first thing to notice about the histograms is their shape. To a reasonable

approximation, each of the four looks like a normal curve. The resemblance would

be even more striking if each histogram had been based on many more than 500 �x
values. Second, each histogram is centered approximately at 8.25, the mean of the

population being sampled. Had the histograms been based on an unending sequence

of �x values, their centers would have been exactly the population mean, 8.25.

The final aspect of the histograms to note is their spread relative to each

other. The smaller the value of n, the greater the extent to which the sampling

distribution spreads out about the mean value. This is why the histograms for

n ¼ 20 and n ¼ 30 are based on narrower class intervals than those for the two

smaller sample sizes. For the larger sample sizes, most of the �x values are quite

close to 8.25. This is the effect of averaging. When n is small, a single unusual x
value can result in an �x value far from the center. With a larger sample size, any

unusual x values, when averaged in with the other sample values, still tend to yield

an �x value close to m. Combining these insights yields a result that should appeal

to your intuition: X based on a large n tends to be closer to m than does X based on a
small n. ■

Example 6.5 Consider a simulation experiment in which the population distribution is quite

skewed. Figure 6.7 shows the density curve for lifetimes of a certain type of

electronic control (This is actually a lognormal distribution with E[ln(X)] ¼ 3

and V[ln(X)] ¼ .16; that is, ln(X) is normal with mean 3 and variance .16.).

Again the statistic of interest is the sample mean X. The experiment utilized

500 replications and considered the same four sample sizes as in Example 6.4.

The resulting histograms along with a normal probability plot from MINITAB for

the 500 �x values based on n ¼ 30 are shown in Figure 6.8.

Unlike the normal case, these histograms all differ in shape. In particular,

they become progressively less skewed as the sample size n increases. The averages
of the 500 �x values for the four different sample sizes are all quite close to the mean

value of the population distribution. If each histogram had been based on an

0 25 50 75
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.04

.05

x

f (x)

Figure 6.7 Density curve for the simulation experiment of Example 6.5 [E(X) ¼
m ¼ 21.7584, V(X) ¼ s2 ¼ 82.1449]
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unending sequence of �x values rather than just 500, all four would have been

centered at exactly 21.7584. Thus different values of n change the shape but not

the center of the sampling distribution of X. Comparison of the four histograms in

Figure 6.8 also shows that as n increases, the spread of the histograms decreases.

Increasing n results in a greater degree of concentration about the population mean

value and makes the histogram look more like a normal curve. The histogram of

Figure 6.8(d) and the normal probability plot in Figure 6.8(e) provide convincing

evidence that a sample size of n ¼ 30 is sufficient to overcome the skewness of the

population distribution and give an approximately normal X sampling distribution.
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Figure 6.8 Results of the simulation experiment of Example 6.5: (a) X histogram for n ¼ 5;

(b) X histogram for n ¼ 10; (c) X histogram for n ¼ 20; (d) X histogram for n ¼ 30; (e) normal

probability plot for n ¼ 30 (from MINITAB) ■
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Exercises Section 6.1 (1–10)

1. A particular brand of dishwasher soap is sold in

three sizes: 25 oz, 40 oz, and 65 oz. Twenty

percent of all purchasers select a 25-oz box, 50%

select a 40-oz box, and the remaining 30% choose

a 65-oz box. Let X1 and X2 denote the package

sizes selected by two independently selected pur-

chasers.

a. Determine the sampling distribution of X, cal-
culate E(X), and compare to m.

b. Determine the sampling distribution of the

sample variance S2, calculate E(S2), and com-

pare to s2.

2. There are two traffic lights on the way to work.

Let X1 be the number of lights that are red, requir-

ing a stop, and suppose that the distribution of X1

is as follows:

x1 0 1 2

p(x1) .2 .5 .3
m ¼ 1.1, s2 ¼ .49

Let X2 be the number of lights that are red on

the way home; X2 is independent of X1. Assume

that X2 has the same distribution as X1, so that X1,

X2 is a random sample of size n ¼ 2.

a. Let To ¼ X1 þ X2, and determine the probabil-

ity distribution of To.
b. Calculate mT0 . How does it relate to m, the

population mean?

c. Calculate s2T0 . How does it relate to s2, the
population variance?

3. It is known that 80% of all brand A DVD players

work in a satisfactory manner throughout the

warranty period (are “successes”). Suppose that

n ¼ 10 players are randomly selected. Let X ¼
the number of successes in the sample. The statis-

tic X/n is the sample proportion (fraction) of suc-

cesses. Obtain the sampling distribution of this

statistic. [Hint: One possible value of X/n is .3,

corresponding to X ¼ 3. What is the probability of

this value (what kind of random variable is X)?]

4. A box contains ten sealed envelopes numbered 1,

. . ., 10. The first five contain no money, the next

three each contain $5, and there is a $10 bill in

each of the last two. A sample of size 3 is selected

with replacement (so we have a random sample),

and you get the largest amount in any of the

envelopes selected. If X1, X2, and X3 denote the

amounts in the selected envelopes, the statistic of

interest is M ¼ the maximum of X1, X2, and X3.

a. Obtain the probability distribution of this

statistic.

b. Describe how you would carry out a simulation

experiment to compare the distributions of M
for various sample sizes. How would you guess

the distribution would change as n increases?

5. Let X be the number of packages being mailed by

a randomly selected customer at a shipping facil-

ity. Suppose the distribution of X is as follows:

x 1 2 3 4

p(x) .4 .3 .2 .1

a. Consider a random sample of size n ¼ 2 (two

customers), and let X be the sample mean num-

ber of packages shipped. Obtain the probability

distribution of X.
b. Refer to part (a) and calculate PðX � 2:5Þ.
c. Again consider a random sample of size n ¼ 2,

but now focus on the statistic R ¼ the sample

range (difference between the largest and smal-

lest values in the sample). Obtain the distribu-

tion of R. [Hint: Calculate the value of R for

each outcome and use the probabilities from

part (a).]

d. If a random sample of size n ¼ 4 is selected,

what is PðX � 1:5Þ? [Hint: You should not

have to list all possible outcomes, only those

for which �x � 1:5.]

6. A company maintains three offices in a region,

each staffed by two employees. Information con-

cerning yearly salaries (1000’s of dollars) is as

follows:

Office 1 1 2 2 3 3

Employee 1 2 3 4 5 6

Salary 29.7 33.6 30.2 33.6 25.8 29.7

a. Suppose two of these employees are randomly

selected from among the six (without replace-

ment). Determine the sampling distribution of

the sample mean salary X.
b. Suppose one of the three offices is randomly

selected. Let X1 and X2 denote the salaries of

the two employees. Determine the sampling

distribution of X.
c. How does EðXÞ from parts (a) and (b) compare

to the population mean salary m?
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7. The number of dirt specks on a randomly selected

square yard of polyethylene film of a certain type

has a Poisson distribution with a mean value of 2

specks per square yard. Consider a random sample

of n ¼ 5 film specimens, each having area 1

square yard, and let X be the resulting sample

mean number of dirt specks. Obtain the first 21

probabilities in the X sampling distribution. [Hint:
What does a moment generating function argument

say about the distribution of X1 þ · · · þ X5?]

8. Suppose the amount of liquid dispensed by a

machine is uniformly distributed with lower limit

A ¼ 8 oz and upper limit B ¼ 10 oz. Describe

how you would carry out simulation experiments

to compare the sampling distribution of the

(sample) fourth spread for sample sizes n ¼ 5,

10, 20, and 30.

9. Carry out a simulation experiment using a statistical

computer package or other software to study the

sampling distribution of X when the population dis-

tribution is Weibull with a ¼ 2 and b ¼ 5, as in

Example 6.1. Consider the four sample sizes n ¼ 5,

10, 20, and 30, and in each case use 500 replications.

For which of these sample sizes does theX sampling

distribution appear to be approximately normal?

10. Carry out a simulation experiment using a statisti-

cal computer package or other software to study

the sampling distribution of X when the popula-

tion distribution is lognormal with E[ln(X)] ¼ 3

and V[ln(X)] ¼ 1. Consider the four sample sizes

n ¼ 10, 20, 30, and 50, and in each case use 500

replications. For which of these sample sizes does

the X sampling distribution appear to be approxi-

mately normal?

6.2 The Distribution of the Sample Mean
The importance of the sample mean X springs from its use in drawing conclusions

about the population mean m. Some of the most frequently used inferential proce-

dures are based on properties of the sampling distribution of X. A preview of these

properties appeared in the calculations and simulation experiments of the previous

section, where we noted relationships between EðXÞ and m and also among VðXÞ,
s2, and n.

PROPOSITION Let X1, X2, . . ., Xn be a random sample from a distribution with mean value m
and standard deviation s. Then

1. EðXÞ ¼ mX ¼ m

2. VðXÞ ¼ s2
X
¼ s2=n and sX ¼ s=

ffiffiffi
n

p

In addition, with To ¼ X1 þ · · · þ Xn (the sample total), E(To) ¼ nm,
V(To) ¼ ns2, and sT0 ¼

ffiffiffi
n

p
s.

Proofs of these results are deferred to the next section. According to Result 1, the

sampling (i.e., probability) distribution of X is centered precisely at the mean of

the population from which the sample has been selected. Result 2 shows that the X
distribution becomes more concentrated about m as the sample size n increases. In

marked contrast, the distribution of To becomes more spread out as n increases.

Averaging moves probability in toward the middle, whereas totaling spreads

probability out over a wider and wider range of values.
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Example 6.6 The amount of time that a patient spends in a certain outpatient surgery center

is a random variable with a mean value of 4.5 h. and a standard deviation of 2 h.

Let X1, . . ., X25 be the times for a random sample of 25 patients. Then the expected

value of the sample mean amount of time is EðXÞ ¼ m ¼ 4:5, and the expected total
time for the 25 patients is E(T0) ¼ nm ¼ 25(4.5) ¼ 112.5. The standard deviations

of X and T0 are

sX ¼ s=
ffiffiffi
n

p ¼ 2ffiffiffiffiffi
25

p ¼ :4

sT0 ¼
ffiffiffi
n

p
s ¼

ffiffiffiffiffi
25

p
ð2Þ ¼ 10

If the sample size increases to n ¼ 100, EðXÞ is unchanged, but sX ¼ :2, half of its
previous value (the sample size must be quadrupled to halve the standard deviation

of X). ■

The Case of a Normal Population Distribution

Looking back to the simulation experiment of Example 6.4, we see that when

the population distribution is normal, each histogram of �x values is well approxi-

mated by a normal curve. The precise result follows (see the next section for a

derivation).

PROPOSITION Let X1, X2, . . . , Xn be a random sample from a normal distribution with mean

m and standard deviation s. Then for any n, X is normally distributed (with

mean m and standard deviation s=
ffiffiffi
n

p
), as is To (with mean nm and standard

deviation
ffiffiffi
n

p
s).

We know everything there is to know about the X and To distributions when the

population distribution is normal. In particular, probabilities such as Pða � X � bÞ
and P c � To � dð Þ can be obtained simply by standardizing. Figure 6.9 illustrates

the proposition.

X distribution
when  n = 10

X distribution
when  n = 4

Population
distribution

Figure 6.9 A normal population distribution and X sampling distributions
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Example 6.7 The time that it takes a randomly selected rat of a certain subspecies to find its way

through a maze is a normally distributed rv with m ¼ 1.5 min and s ¼ .35 min.

Suppose five rats are selected. Let X1, . . ., X5 denote their times in the maze.

Assuming the Xi’s to be a random sample from this normal distribution, what is the

probability that the total time To ¼ X1 þ · · · þ X5 for the five is between 6 and

8 min? By the proposition, To has a normal distribution with mT0 ¼ nm ¼
5ð1:5Þ ¼ 7:5 and variance s2T0 ¼ ns2 ¼ 5ð:1225Þ ¼ :6125, so sT0 ¼ :783. To stan-

dardize To, subtract mT0 and divide by sT0 :

Pð6 � T0 � 8Þ ¼ P
6� 7:5

:783
� Z � 8� 7:5

:783

� �
¼ P �1:92 � Z � :64ð Þ

¼ Fð:64Þ � Fð�1:92Þ ¼ :7115

Determination of the probability that the sample average time X (a normally

distributed variable) is at most 2.0 min requires mX ¼ m ¼ 1:5 and sX ¼ s=
ffiffiffi
n

p ¼
:35=

ffiffiffi
5

p ¼ :1565. Then

PðX � 2:0Þ ¼ P Z � 2:0� 1:5

:1565

� �
¼ P Z � 3:19ð Þ ¼ Fð3:19Þ ¼ :9993

■

The Central Limit Theorem

When the Xi’s are normally distributed, so is X for every sample size n. The
simulation experiment of Example 6.5 suggests that even when the population

distribution is highly nonnormal, averaging produces a distribution more bell-

shaped than the one being sampled. A reasonable conjecture is that if n is large, a

suitable normal curve will approximate the actual distribution of X. The formal

statement of this result is the most important theorem of probability.

THEOREM The Central Limit Theorem (CLT)

Let X1, X2, . . ., Xn be a random sample from a distribution with mean m and

variance s2. Then, in the limit as n ! 1, the standardized versions of X and

T0 have the standard normal distribution. That is,

lim
n!1P

X � m
s=

ffiffiffi
n

p � z

� �
¼ PðZ � zÞ ¼ FðzÞ

and

lim
n!1P

T0 � nmffiffiffi
n

p
s

� z

� �
¼ PðZ � zÞ ¼ FðzÞ

where Z is a standard normal rv. As an alternative to saying that the standardized

versions ofX and T0 have limiting standard normal distributions, it is customary

to say that X and T0 are asymptotically normal. Thus when n is sufficiently

large, X has approximately a normal distribution with mean mX ¼ m and

variance s2
X
¼ s2=n. Equivalently, for large n the sum T0 has approximately a

normal distribution with mean mT0 ¼ nm and variance s2T0 ¼ ns2.

298 CHAPTER 6 Statistics and Sampling Distributions



A partial proof of the CLT appears in the appendix to this chapter. It is shown

that, if the moment generating function exists, then the mgf of the standardized X
(and T0) approaches the standard normal mgf. With the aid of an advanced

probability theorem, this implies the CLT statement about convergence of prob-

abilities.

Figure 6.10 illustrates the Central Limit Theorem. According to the CLT,

when n is large and we wish to calculate a probability such as Pða � X � bÞ, we
need only “pretend” that X is normal, standardize it, and use the normal table. The

resulting answer will be approximately correct. The exact answer could be obtained

only by first finding the distribution of X, so the CLT provides a truly impressive

shortcut.

Example 6.8 When a batch of a certain chemical product is prepared, the amount of a particular

impurity in the batch is a random variable with mean value 4.0 g and standard

deviation 1.5 g. If 50 batches are independently prepared, what is the (approximate)

probability that the sample average amount of impurity X is between 3.5 and 3.8 g?

According to the rule of thumb to be stated shortly, n ¼ 50 is large enough for the

CLT to be applicable. The mean X then has approximately a normal distribution

with mean value mX ¼ 4:0 and sX ¼ 1:5=
ffiffiffiffiffi
50

p ¼ :2121, so

Pð3:5 � X � 3:8Þ ¼ P
3:5� 4:0

:2121
� Z � 3:8� 4:0

:2121

� �
¼ Fð�:94Þ � Fð�2:36Þ ¼ :1645 ■

Example 6.9 Suppose the number of times a randomly selected customer of a large bank uses the

bank’s ATM during a particular period is a random variable with a mean value of

3.2 and a standard deviation of 2.4. Among 100 randomly selected customers, how

likely is it that the sample mean number of times the bank’s ATM is used exceeds 4?

Let Xi denote the number of times the ith customer in the sample uses the

bank’s ATM. Notice that Xi is a discrete rv, but the CLT is not limited to

continuous random variables. Also, although the fact that the standard deviation

of this nonnegative variable is quite large relative to the mean value suggests

X distribution for
small to moderate n

Population
distribution

X distribution for
large n (approximately normal)

Figure 6.10 The Central Limit Theorem illustrated
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that its distribution is positively skewed, the large sample size implies that X does

have approximately a normal distribution. Using mX ¼ 3:2 and sX ¼ :24,

PðX> 4Þ � P Z>
4� 3:2

:24

� �
¼ 1� Fð3:33Þ ¼ :0004

■

Example 6.10 Consider the distribution shown in Figure 6.11 for the amount purchased (rounded

to the nearest dollar) by a randomly selected customer at a particular gas station

(a similar distribution for purchases in Britain (in £) appeared in the article “Data

Mining for Fun and Profit”, Statistical Science, 2000: 111–131; there were big

spikes at the values 10, 15, 20, 25, and 30). The distribution is obviously quite non-

normal.

We asked MINITAB to select 1000 different samples, each consisting of

n ¼ 15 observations, and calculate the value of the sample mean X for each one.

Figure 6.12 is a histogram of the resulting 1000 values; this is the approximate

sampling distribution of X under the specified circumstances. This distribution is

clearly approximately normal even though the sample size is not all that large. As

further evidence for normality, Figure 6.13 shows a normal probability plot of the

1000 �x values; the linear pattern is very prominent. It is typically not non-normality

in the central part of the population distribution that causes the CLT to fail, but

instead very substantial skewness.
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Figure 6.11 Probability distribution of X ¼ amount of gasoline purchased ($)
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A practical difficulty in applying the CLT is in knowing when n is suffi-

ciently large. The problem is that the accuracy of the approximation for a particular

n depends on the shape of the original underlying distribution being sampled. If the

underlying distribution is symmetric and there is not much probability in the tails,

then the approximation will be good even for a small n, whereas if it is highly

skewed or there is a lot of probability in the tails, then a large n will be required.

For example, if the distribution is uniform on an interval, then it is symmetric with

no probability in the tails, and the normal approximation is very good for n as
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Figure 6.12 Approximate sampling distribution of the sample mean amount

purchased when n ¼ 15 and the population distribution is as shown in Figure 6.11
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Figure 6.13 Normal probability plot from MINITAB of the 1000 �x values based on

samples of size n ¼ 15 ■
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small as 10. However, at the other extreme, a distribution can have such fat tails

that the mean fails to exist and the Central Limit Theorem does not apply, so no n is
big enough. We will use the following rule of thumb, which is frequently somewhat

conservative.

RULE OF
THUMB

If n > 30, the Central Limit Theorem can be used.

Of course, there are exceptions, but this rule applies to most distributions of

real data.

Other Applications of the Central Limit Theorem

The CLT can be used to justify the normal approximation to the binomial distribu-

tion discussed in Chapter 4. Recall that a binomial variable X is the number of

successes in a binomial experiment consisting of n independent success/failure

trials with p ¼ P(S) for any particular trial. Define new rv’s X1, X2, . . ., Xn by

Xi ¼
1 if the ith trial results in a success

0 if the ith trial results in a failure

(
ði ¼ 1; . . . ; nÞ

Because the trials are independent and P(S) is constant from trial to trial, the Xi’s

are iid (a random sample from a Bernoulli distribution). The CLT then implies that

if n is sufficiently large, both the sum and the average of the Xi’s have approxi-

mately normal distributions. When the Xi’s are summed, a 1 is added for every S
that occurs and a 0 for every F, so X1 þ · · · þ Xn ¼ X ¼ T0. The sample mean of

the Xi’s is X ¼ X n= , the sample proportion of successes. That is, both X and X/n
are approximately normal when n is large. The necessary sample size for this

approximation depends on the value of p: When p is close to .5, the distribution

of each Xi is reasonably symmetric (see Figure 6.14), whereas the distribution is

quite skewed when p is near 0 or 1. Using the approximation only if both np � 10

and n(1 – p) � 10 ensures that n is large enough to overcome any skewness in the

underlying Bernoulli distribution.

Recall from Section 4.5 that X has a lognormal distribution if ln(X) has a

normal distribution.

0 1 0 1

a b

Figure 6.14 Two Bernoulli distributions: (a) p ¼ .4 (reasonably symmetric);

(b) p ¼ .1 (very skewed)
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PROPOSITION Let X1, X2, . . ., Xn be a random sample from a distribution for which only

positive values are possible [P(Xi > 0) ¼ 1]. Then if n is sufficiently large,

the product Y ¼ X1 X2 · · · · · Xn has approximately a lognormal distribution;

that is, ln(Y) has a normal distribution.

To verify this, note that

lnðYÞ ¼ ln X1ð Þ þ ln X2ð Þ þ � � � þ lnðXnÞ

Since ln (Y) is a sum of independent and identically distributed rv’s [the ln(Xi)’s], it

is approximately normal when n is large, so Y itself has approximately a lognormal

distribution. As an example of the applicability of this result, it has been argued that

the damage process in plastic flow and crack propagation is a multiplicative

process, so that variables such as percentage elongation and rupture strength have

approximately lognormal distributions.

The Law of Large Numbers

Recall the first proposition in this section: If X1, X2, . . ., Xn is a random sample

from a distribution with mean m and variance s2, then EðXÞ ¼ m and VðXÞ ¼ s2 n= .

What happens to X as the number of observations becomes large? The expected

value of X remains at m but the variance approaches zero. That is,

VðXÞ ¼ E½ðX � mÞ�2 ! 0. We say that X converges in mean square to m because

the mean of the squared difference between X and m goes to zero. This is one form

of the Law of Large Numbers, which says that X ! m as n ! 1.

The law of large numbers should be intuitively reasonable. For example,

consider a fair die with equal probabilities for the values 1, 2, . . ., 6 so m ¼ 3.5.

After many repeated throws of the die x1, x2, . . ., xn, we should be surprised if �x is
not close to 3.5.

Another form of convergence can be shown with the help of Chebyshev’s

inequality (Exercises 43 and 135 in Chapter 3), which states that for any random

variable Y, P( jY� m j � ks) � 1/k2 whenever k � 1. In words, the probability that

Y is at least k standard deviations away from its mean value is at most 1/k2; as k
increases, the probability gets closer to 0. Apply this to the mean Y ¼ X of a

random sample X1, X2, . . ., Xn from a distribution with mean m and variance s2.
Then EðYÞ ¼ EðXÞ ¼ m and VðYÞ ¼ VðXÞ ¼ s2 n= , so the s in Chebyshev’s

inequality needs to be replaced by s
ffiffiffi
n

p
= . Now let e be a positive number close

to 0, such as .01 or .001, and consider Pð X � mj j � eÞ, the probability that X differs

from m by at least e (at least .01, at least .001, etc.). What happens to this probability

as n ! 1? Setting e ¼ ks
ffiffiffi
n

p
= and solving for k gives k ¼ e

ffiffiffi
n

p
s= . Thus

Pð X � mj j � eÞ ¼ P X � mj j � e
ffiffiffi
n

p
s

� sffiffiffi
n

p
� �

� 1

e
ffiffiffi
n

p
s

� �2 ¼
s2

ne2

so as n gets arbitrarily large, the probability will approach 0 regardless of how

small e is. That is, for any e, the chance that X will differ from m by at least e
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decreases to 0 as the sample size increases. Because of this, statisticians say that X
converges to m in probability.

We can summarize the two forms of the Law of Large Numbers in the

following theorem.

THEOREM If X1, X2, . . ., Xn is a random sample from a distribution with mean m and

variance s2, then X converges to m

a. In mean square: E X � mð Þ½ �2 ! 0 as n ! 1
b. In probability: P X � mj j � eð Þ ! 0 as n ! 1 for any e > 0

Often we do not know m so we use X to estimate it. According to the theorem,

X will be an accurate estimator if n is large. Estimators that are close for large n are
called consistent.

Example 6.11 Let’s apply the Law of Large Numbers to the repeated flipping of a fair coin.

Intuitively, the fraction of heads should approach 1
2
as we get more and more coin

flips. For i ¼ 1, . . .n, let Xi ¼ 1 if the ith toss is a head and ¼ 0 if it is a tail. Then

the Xi ’s are independent and each Xi is a Bernoulli rv with m ¼ .5 and standard

deviation s ¼ .5. Furthermore, the sum X1 þ X2 þ . . . þ Xn is the total number of

heads, so X is the fraction of heads. Thus, the fraction of heads approaches the

mean, m ¼ .5, by the Law of Large Numbers. ■

Exercises Section 6.2 (11–26)

11. The inside diameter of a randomly selected pis-

ton ring is a random variable with mean value

12 cm and standard deviation .04 cm.

a. If X is the sample mean diameter for a random

sample of n ¼ 16 rings, where is the sampling

distribution of X centered, and what is the

standard deviation of the X distribution?

b. Answer the questions posed in part (a) for a

sample size of n ¼ 64 rings.

c. For which of the two random samples, the one

of part (a) or the one of part (b), is X more

likely to be within .01 cm of 12 cm? Explain

your reasoning.

12. Refer to Exercise 11. Suppose the distribution of

diameter is normal.

a. CalculatePð11:99 � X � 12:01Þwhen n ¼ 16.

b. How likely is it that the sample mean diame-

ter exceeds 12.01 when n ¼ 25?

13. The National Health Statistics Reports dated Oct.

22, 2008 stated that for a sample size of 277 18-

year-old American males, the sample mean waist

circumference was 86.3 cm. A somewhat compli-

catedmethod was used to estimate various popula-
tion percentiles, resulting in the following values:

5th 10th 25th 50th 75th 90th 95th

69.6 70.9 75.2 81.3 95.4 107.1 116.4

a. Is it plausible that the waist size distribution is

at least approximately normal? Explain your

reasoning. If your answer is no, conjecture the

shape of the population distribution.

b. Suppose that the population mean waist size

is 85 cm and that the population standard

deviation is 15 cm. How likely is it that a

random sample of 277 individuals will result

in a samplemeanwaist size of at least 86.3 cm?

c. Referring back to (b), suppose now that the

population mean waist size is 82 cm (closer to

the median than the mean). Now what is the

(approximate) probability that the sample

mean will be at least 86.3? In light of this

calculation, do you think that 82 is a reason-

able value for m?
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14. There are 40 students in an elementary statistics

class. On the basis of years of experience, the

instructor knows that the time needed to grade a

randomly chosen first examination paper is a

random variable with an expected value of

6 min and a standard deviation of 6 min.

a. If grading times are independent and the

instructor begins grading at 6:50 p.m. and

grades continuously, what is the (approxi-

mate) probability that he is through grading

before the 11:00 p.m. TV news begins?

b. If the sports report begins at 11:10, what is the

probability that he misses part of the report if

he waits until grading is done before turning

on the TV?

15. The tip percentage at a restaurant has a mean

value of 18% and a standard deviation of 6%.

a. What is the approximate probability that the

sample mean tip percentage for a random

sample of 40 bills is between 16% and 19%?

b. If the sample size had been 15 rather than 40,

could the probability requested in part (a) be

calculated from the given information?

16. The time taken by a randomly selected applicant

for a mortgage to fill out a certain form has a

normal distribution with mean value 10 min and

standard deviation 2 min. If five individuals fill

out a form on 1 day and six on another, what is

the probability that the sample average amount

of time taken on each day is at most 11 min?

17. The lifetime of a type of battery is normally

distributed with mean value 10 h and standard

deviation 1 h. There are four batteries in a pack-

age. What lifetime value is such that the total

lifetime of all batteries in a package exceeds that

value for only 5% of all packages?

18. Let X represent the amount of gasoline (gallons)

purchased by a randomly selected customer

at a gas station. Suppose that the mean value

and standard deviation of X are 11.5 and 4.0,

respectively.

a. In a sample of 50 randomly selected custo-

mers, what is the approximate probability that

the sample mean amount purchased is at least

12 gallons?

b. In a sample of 50 randomly selected custo-

mers, what is the approximate probability that

the total amount of gasoline purchased is at

most 600 gallons.

c. What is the approximate value of the 95th

percentile for the total amount purchased by

50 randomly selected customers.

19. Suppose the sediment density (g/cm) of a ran-

domly selected specimen from a region is nor-

mally distributed with mean 2.65 and standard

deviation .85 (suggested in “Modeling Sediment

and Water Column Interactions for Hydrophobic

Pollutants,” Water Res., 1984: 1169–1174).
a. If a random sample of 25 specimens is selected,

what is the probability that the sample average

sediment density is at most 3.00? Between 2.65

and 3.00?

b. How large a sample size would be required to

ensure that the first probability in part (a) is at

least .99?

20. The first assignment in a statistical computing class

involves running a short program. If past experience

indicates that 40% of all students will make no

programming errors, compute the (approximate)

probability that in a class of 50 students

a. At least 25 will make no errors [Hint: Normal

approximation to the binomial]

b. Between 15 and 25 (inclusive) will make no

errors

21. The number of parking tickets issued in a certain

city on any given weekday has a Poisson distribu-

tion with parameter l ¼ 50. What is the approxi-

mate probability that

a. Between 35 and 70 tickets are given out on a

particular day? [Hint: When l is large, a Poisson
rv has approximately a normal distribution.]

b. The total number of tickets given out during a

5-day week is between 225 and 275?

22. Suppose the distribution of the time X (in hours)

spent by students at a certain university on a partic-

ular project is gamma with parameters a ¼ 50 and

b ¼ 2. Because a is large, it can be shown thatX has

approximately a normal distribution.Use this fact to

compute the probability that a randomly selected

student spends at most 125 h on the project.

23. The Central Limit Theorem says that X is approx-

imately normal if the sample size is large. More

specifically, the theorem states that the standar-

dized X has a limiting standard normal distribu-

tion. That is, ðX � mÞ=ðs= ffiffiffi
n

p Þ has a distribution

approaching the standard normal. Can you recon-

cile this with the Law of Large Numbers? If the

standardized X is approximately standard normal,

then what about X itself?

24. Assume a sequence of independent trials, each

with probability p of success. Use the Law of

Large Numbers to show that the proportion of suc-

cesses approaches p as the number of trials becomes

large.
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25. Let Yn be the largest order statistic in a sample of

size n from the uniform distribution on [0, y].
Show that Yn converges in probability to y, that
is, that PðjYn � yj � eÞ ! 0 as n approaches 1.

[Hint: The pdf of the largest order statistic appears
in Section 5.5, so the relevant probability can be

obtained by integration (Chebyshev’s inequality is

not needed).]

26. A friend commutes by bus to and from work

6 days/week. Suppose that waiting time is uni-

formly distributed between 0 and 10 min, and

that waiting times going and returning on various

days are independent of each other. What is the

approximate probability that total waiting time

for an entire week is at most 75 min? [Hint:
Carry out a simulation experiment using statistical

software to investigate the sampling distribu-

tion of To under these circumstances. The idea of

this problem is that even for an n as small as 12,

To and X should be approximately normal when

the parent distribution is uniform. What do

you think?]

6.3 The Mean, Variance, and MGF
for Several Variables
The sample mean X and sample total To are special cases of a type of random

variable that arises very frequently in statistical applications.

DEFINITION Given a collection of n random variables X1, X2, . . ., Xn and n numerical

constants a1, . . ., an, the rv

Y ¼ a1X1 þ � � � þ anXn ¼
Xn
i¼1

aiXi ð6:6Þ

is called a linear combination of the Xi’s.

Taking a1 ¼ a2 ¼ · · · ¼ an ¼ 1 gives Y ¼ X1 þ · · · þ Xn ¼ To, and

a1 ¼ a2 ¼ � � � � � � �� ¼ an ¼ 1
n yields Y ¼ 1

n X1 þ � � � þ 1
n Xn ¼ 1

n X1 þ � � � þ Xnð Þ ¼
1
n To ¼ X. Notice that we are not requiring the Xi’s to be independent or identically

distributed. All the Xi’s could have different distributions and therefore different

mean values and variances. We first consider the expected value and variance of a

linear combination.

PROPOSITION Let X1, X2, . . ., Xn have mean values m1, . . ., mn, respectively, and variances

s21; . . . ; s
2
n, respectively.

1. Whether or not the Xi’s are independent,

Eða1X1 þ � � � þ anXnÞ ¼ a1EðX1Þ þ � � � þ anEðXnÞ
¼ a1m1 þ � � � þ anmn

ð6:7Þ
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2. If X1, . . ., Xn are independent,

Vða1X1 þ � � � þ anXnÞ ¼ a21VðX1Þ þ � � � þ a2nVðXnÞ
¼ a21s

2
1 þ � � � þ a2ns

2
n

ð6:8Þ

and

sa1X1þ���þanXn
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21s21 þ � � � þ a2ns2n

q
ð6:9Þ

3. For any X1, X2, . . ., Xn,

Vða1X1 þ � � � þ anXnÞ ¼
Xn
i¼1

Xn
j¼1

aiajcovðXi;XjÞ ð6:10Þ

Proofs are sketched out later in the section. A paraphrase of (6.7) is that the

expected value of a linear combination is the same linear combination of the

expected values—for example, E(2X1 þ 5X2) ¼ 2m1 þ 5m2. The result (6.8) in

Statement 2 is a special case of (6.10) in Statement 3; when the Xi’s are indepen-

dent, Cov(Xi, Xj) ¼ 0 for i 6¼ j and ¼ V(Xi) for i ¼ j (this simplification actually

occurs when the Xi’s are uncorrelated, a weaker condition than independence).

Specializing to the case of a random sample (Xi’s iid) with ai ¼ 1/n for every i
gives EðXÞ ¼ m and VðXÞ ¼ s2 n= , as discussed in Section 6.2. A similar comment

applies to the rules for To

Example 6.12 A gas station sells three grades of gasoline: regular, plus, and premium. These are

priced at $3.50, $3.65, and $3.80 per gallon, respectively. Let X1, X2, and X3 denote

the amounts of these grades purchased (gallons) on a particular day. Suppose the

Xi’s are independent with m1 ¼ 1000, m2 ¼ 500, m3 ¼ 300, s1 ¼ 100, s2 ¼ 80,

and s3 ¼ 50. The revenue from sales is Y ¼ 3.5X1 þ 3.65X2 þ 3.8X3, and

EðYÞ ¼ 3:5m1 þ 3:65m2 þ 3:8m3 ¼ $6465

VðYÞ ¼ 3:52s21 þ 3:652s22 þ 3:82s23 ¼ 243; 864

sY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
243; 864

p
¼ $493:83 ■

Example 6.13 The results of the previous proposition allow for a straightforward derivation of

the mean and variance of a hypergeometric rv, which were given without proof in

Section 3.6. Recall that the distribution is defined in terms of a population with N
items, of whichM are successes and N –M are failures. A sample of size n is drawn,
of which X are successes. It is equivalent to view this as random arrangement of all

N items, followed by selection of the first n. Let Xi be 1 if the ith item is a success

and 0 if it is a failure, i ¼ 1, 2, . . ., N. Then

X ¼ X1 þ X2 þ � � � þ Xn

According to the proposition, we can find the mean and variance of X if

we can find the means, variances, and covariances of the terms in the sum.
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By symmetry, all N of the Xi’s have the same mean and variance, and all of their

covariances are the same. Because each Xi is a Bernoulli random variable with

success probability p ¼ M/N,

EðXiÞ ¼ p ¼ M

N
VðXiÞ ¼ pð1� pÞ ¼ M

N
1�M

N

� �

Therefore,

EðXÞ ¼ E
Xn
i¼1

Xi

 !
¼ np:

Here is a trick for finding the covariances Cov(Xi, Xj) for i 6¼ j, all of which
equal Cov(X1, X2). The sum of all N of the Xi’s is M, which is a constant, so its

variance is 0. We can use Statement 3 of the proposition to express the variance in

terms of N identical variances and N(N – 1) identical covariances:

0 ¼ VðMÞ ¼ V
XN
i¼1

Xi

 !
¼ NVðX1Þ þ NðN � 1ÞCovðX1;X2Þ

¼ Npð1� pÞ þ NðN � 1ÞCovðX1;X2Þ:
Solving this equation for the covariance,

CovðX1;X2Þ ¼ �pð1� pÞ
N � 1

:

Thus, using Statement 3 of the proposition with n identical variances and n(n – 1)

identical covariances,

VðXÞ ¼ V
Xn
i¼1

Xi

 !
¼ nVðX1Þ þ nðn� 1ÞCovðX1;X2Þ

¼ npð1� pÞ þ nðn� 1Þ�pð1� pÞ
N � 1

¼ npð1� pÞ 1� n� 1

N � 1

� �

¼ npð1� pÞ N � n

N � 1

� �
■

The Difference Between Two Random Variables

An important special case of a linear combination results from taking n ¼ 2,

a1 ¼ 1, and a2 ¼ �1:

Y ¼ a1X1 þ a2X2 ¼ X1 � X2

We then have the following corollary to the proposition.

COROLLARY E(X1 � X2) ¼ E(X1)� E(X2) and, if X1 and X2 are independent, V(X1 � X2) ¼
V(X1) þ V(X2).
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The expected value of a difference is the difference of the two expected

values, but the variance of a difference between two independent variables is

the sum, not the difference, of the two variances. There is just as much variability

in X1 � X2 as in X1 þ X2 [writing X1 � X2 ¼ X1 þ (�1)X2, (�1)X2 has the same

amount of variability as X2 itself].

Example 6.14 An automobile manufacturer equips a particular model with either a six-cylinder

engine or a four-cylinder engine. Let X1 and X2 be fuel efficiencies for indepen-

dently and randomly selected six-cylinder and four-cylinder cars, respectively.

With m1 ¼ 22, m2 ¼ 26, s1 ¼ 1.2, and s2 ¼ 1.5,

EðX1 � X2Þ ¼ m1 � m2 ¼ 22� 26 ¼ �4

VðX1 � X2Þ ¼ s21 þ s22 ¼ 1:22 þ 1:52 ¼ 3:69

sX1�X2
¼

ffiffiffiffiffiffiffiffiffi
3:69

p
¼ 1:92

If we relabel so that X1 refers to the four-cylinder car, then E(X1 – X2) ¼ 4, but the

variance of the difference is still 3.69. ■

The Case of Normal Random Variables

When the Xi’s form a random sample from a normal distribution, X and To are both
normally distributed. Here is a more general result concerning linear combinations.

The proof will be given toward the end of the section.

PROPOSITION If X1, X2, . . ., Xn are independent, normally distributed rv’s (with possibly

different means and/or variances), then any linear combination of the Xi’s

also has a normal distribution. In particular, the difference X1 – X2 between

two independent, normally distributed variables is itself normally distributed.

Example 6.15

(Example 6.12

continued)

The total revenue from the sale of the three grades of gasoline on a particular day

was Y ¼ 3.5X1 þ 3.65X2 þ 3.8X3, and we calculated mY ¼ 6465 and (assuming

independence) sY ¼ 493.83. If the Xi’s are normally distributed, the probability

that revenue exceeds 5000 is

PðY>5000Þ ¼ P Z>
5000� 6465

493:83

� �
¼ P Z>� 2:967ð Þ

¼ 1� Fð�2:967Þ ¼ :9985 ■

The CLT can also be generalized so it applies to certain linear combinations.

Roughly speaking, if n is large and no individual term is likely to contribute too

much to the overall value, then Y has approximately a normal distribution.
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Proofs for the Case n ¼ 2 For the result concerning expected values,

suppose that X1 and X2 are continuous with joint pdf f(x1, x2). Then

Eða1X1 þ a2X2Þ ¼
ð1
�1

ð1
�1

ða1x1 þ a2x2Þf ðx1; x2Þ dx1 dx2

¼ a1

ð1
�1

ð1
�1

x1f ðx1; x2Þ dx2 dx1 þ a2

ð1
�1

ð1
�1

x2f ðx1; x2Þ dx1 dx2

¼ a1

ð1
�1

x1fX1
ðx1Þ dx1 þ a2

ð1
�1

x2fX2
ðx2Þ dx2

¼ a1EðX1Þ þ a2EðX2Þ

Summation replaces integration in the discrete case. The argument for the variance

result does not require specifying whether either variable is discrete or continuous.

Recalling that V(Y) ¼ E[(Y – mY)
2],

Vða1X1 þ a2X2Þ ¼ Ef½a1X1 þ a2X2 � ða1m1 þ a2m2Þ�2g
¼ Efa21ðX1 � m1Þ2 þ a22ðX2 � m2Þ2 þ 2a1a2ðX1 � m1ÞðX2 � m2Þg

The expression inside the braces is a linear combination of the variables Y1 ¼
(X1 – m1)

2, Y2 ¼ (X2 – m2)
2, and Y3 ¼ (X1 – m1)(X2 – m2), so carrying the E operation

through to the three terms gives a21VðX1Þ þ a22VðX2Þ þ 2a1a2CovðX1;X2Þ as

required. ■

The previous proposition has a generalization to the case of two linear

combinations:

PROPOSITION Let U and V be linear combinations of the independent normal rv’s X1, X2,

. . ., Xn. Then the joint distribution of U and V is bivariate normal. The

converse is also true: if U and V have a bivariate normal distribution then

they can be expressed as linear combinations of independent normal rv’s.

The proof uses the methods of Section 5.4 together with a little matrix theory.

Example 6.16 How can we create two bivariate normal rv’s X and Y with a specified correlation

r? Let Z1 and Z2 be independent standard normal rv’s and let

X ¼ Z1 Y ¼ r � Z1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
Z2

Then X and Y are linear combinations of independent normal random variables,

so their joint distribution is bivariate normal. Furthermore, they each have standard

deviation 1 (verify this for Y) and their covariance is r, so their correlation is r. ■

Moment Generating Functions for Linear Combinations

We shall use moment generating functions to prove the proposition on linear

combinations of normal random variables, but we first need a general proposition

on the distribution of linear combinations. This will be useful for normal random

variables and others.
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Recall that the second proposition in Section 5.2 shows how to simplify the

expected value of a product of functions of independent random variables. We now

use this to simplify the moment generating function of a linear combination of

independent random variables.

PROPOSITION Let X1, X2, . . ., Xn be independent random variables with moment generating

functions MX1
ðtÞ;MX2

ðtÞ; . . . ;MXn
ðtÞ, respectively. Define Y ¼ a1X1 þ

a2X2 þ · · · þ anXn, where a1, a2, . . ., an are constants. Then

MYðtÞ ¼ MX1
ða1tÞ �MX2

ða2tÞ � � � � �MXn
ðantÞ

In the special case that a1 ¼ a2 ¼ · · · ¼ an ¼ 1,

MYðtÞ ¼ MX1
ðtÞ �MX2

ðtÞ � � � � �MXn
ðtÞ

That is, the mgf of a sum of independent rv’s is the product of the individual

mgf’s.

Proof First, we write the moment generating function of Y as the expected value

of a product.

MYðtÞ ¼ EðetYÞ ¼ Eðetða1X1þa2X2þ���þanXnÞÞ
¼ Eðeta1X1þta2X2þ���þtanXnÞ ¼ Eðeta1X1 � eta2X2 � � � � � etanXnÞ

Next, we use the second Proposition in Section 5.2, which says that the expected

value of a product of functions of independent random variables is the product of

the expected values:

Eðeta1X1 � eta2X2 � � � � � etanXnÞ ¼ Eðeta1X1Þ � Eðeta2X2Þ � � � � � EðetanXnÞ
¼ MX1

ða1tÞ �MX2
ða2tÞ � � � � �MXn

ðantÞ ■

Now let’s apply this to prove the previous proposition about normality for a linear

combination of independent normal random variables. If Y ¼ a1X1 þ a2X2 þ � � �
þ anXn, where Xi is normally distributed with mean mi and standard deviation si,
and ai is a constant, i ¼ 1, 2, . . ., n, then MXi

ðtÞ ¼ emitþs2i t
2 2= . Therefore,

MYðtÞ ¼ MX1
ða1tÞ �MX2

ða2tÞ � � � � �MXn
ðantÞ

¼ em1a1tþs2
1
a2
1
t2=2em2a2tþs2

2
a2
2
t2=2 � � � � � emnantþs2na

2
nt
2=2

¼ eðm1a1þm2a2þ���þmnanÞtþðs2
1
a2
1
þs2

2
a2
2
þ���þs2na

2
nÞt2=2

Because the moment generating function of Y is the moment generating function

of a normal random variable, it follows that Y is normally distributed by the

uniqueness principle for moment generating functions. In agreement with the first

proposition in this section, the mean is the coefficient of t,

EðYÞ ¼ a1m1 þ a2m2 þ � � � þ anmn

and the variance is the coefficient of t2/2,

VðYÞ ¼ a21s
2
1 þ a22s

2
2 þ � � � þ a2ns

2
n
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Example 6.17 Suppose X and Y are independent Poisson random variables, where X has mean l
and Y has mean n. We can show that X þ Y also has the Poisson distribution and its

mean is l þ n, with the help of the proposition on the moment generating function

of a linear combination. According to the proposition,

MXþYðtÞ ¼ MXðtÞ �MYðtÞ ¼ elðe
t�1Þenðe

t�1Þ ¼ eðlþnÞðet�1Þ

Here we have used for both X and Y the moment generating function of the Poisson

distribution from Section 3.7. The resulting moment generating function for X þ Y
is the moment generating function of a Poisson random variable with mean l þ n.
By the uniqueness property of moment generating functions, X þ Y is Poisson

distributed with mean l þ n. ■

Exercises Section 6.3 (27–45)

27. A shipping company handles containers in three

different sizes: (1) 27 ft3 (3 � 3 � 3), (2) 125 ft3,

and (3) 512 ft3. Let Xi (i ¼ 1, 2, 3) denote the

number of type i containers shipped during a

given week. With mi ¼ E(Xi) and s2i ¼ VðXiÞ,
suppose that the mean values and standard devia-

tions are as follows:

m1 ¼ 200 m2 ¼ 250 m3 ¼ 100

s1 ¼ 10 s2 ¼ 12 s3 ¼ 8

a. Assuming that X1, X2, X3 are independent, cal-

culate the expected value and variance of the

total volume shipped. [Hint: Volume ¼
27X1 þ 125X2 þ 512X3.]

b. Would your calculations necessarily be correct

if the Xi’s were not independent? Explain.

c. Suppose that the Xi’s are independent with

each one having a normal distribution. What

is the probability that the total volume shipped

is at most 100,000 ft3?

28. Let X1, X2, and X3 represent the times necessary to

perform three successive repair tasks at a service

facility. Suppose they are independent, normal

rv’s with expected values m1, m2, and m3 and var-

iances s21; s
2
2; and s23, respectively.

a. If m1 ¼ m2 ¼ m3 ¼ 60 and s21 ¼ s22 ¼
s23 ¼ 15, calculate P(X1 þ X2 þ X3 � 200).

What is P(150 � X1 þ X2 þ X3 � 200)?

b. Using the mi’s and si’s given in part (a), calcu-

late Pð55 � XÞ and Pð58 � X � 62Þ.
c. Using the mi’s and si’s given in part (a), calcu-

late P(–10 � X1 – .5X2 – .5X3 � 5).

d. If m1 ¼ 40, m2 ¼ 50, m3 ¼ 60, s21 ¼ 10;

s22 ¼ 12; and s23 ¼ 14 , calculate P(X1 þ
X2 þ X3 � 160) and P(X1 þ X2 � 2X3).

29. Five automobiles of the same type are to be

driven on a 300-mile trip. The first two will use

an economy brand of gasoline, and the other

three will use a name brand. Let X1, X2, X3, X4,

and X5 be the observed fuel efficiencies (mpg)

for the five cars. Suppose these variables are

independent and normally distributed with m1 ¼
m2 ¼ 20, m3 ¼ m4 ¼ m5 ¼ 21, and s2 ¼ 4 for the

economy brand and 3.5 for the name brand.

Define an rv Y by

Y ¼ X1 þ X2

2
� X3 þ X4 þ X5

3

so that Y is a measure of the difference in effi-

ciency between economy gas and name-brand

gas. Compute P(0 � Y) and P(–1 � Y � 1).

[Hint: Y ¼ a1X1 þ � � � þ a5X5, with a1 ¼ 1
2
; . . . ;

a5 ¼ � 1
3
.]

30. Exercise 22 in Chapter 5 introduced random vari-

ables X and Y, the number of cars and buses,

respectively, carried by a ferry on a single trip.

The joint pmf of X and Y is given in the table in

Exercise 7 of Chapter 5. It is readily verified that

X and Y are independent.

a. Compute the expected value, variance, and

standard deviation of the total number of vehi-

cles on a single trip.

b. If each car is charged $3 and each bus $10,

compute the expected value, variance, and

standard deviation of the revenue resulting

from a single trip.

31. A concert has three pieces of music to be played

before intermission. The time taken to play each
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piece has a normal distribution. Assume that the

three times are independent of each other. Themean

times are 15, 30, and 20 min, respectively, and the

standard deviations are 1, 2, and 1.5 min, respec-

tively. What is the probability that this part of the

concert takes at most 1 h? Are there reasons to

question the independence assumption? Explain.

32. Refer to Exercise 3 in Chapter 5.

a. Calculate the covariance between X1 ¼ the

number of customers in the express checkout

and X2 ¼ the number of customers in the

superexpress checkout.

b. Calculate V(X1 + X2). How does this com-

pare to V(X1) + V(X2)?

33. Suppose your waiting time for a bus in the morn-

ing is uniformly distributed on [0, 8], whereas

waiting time in the evening is uniformly

distributed on [0, 10] independent of morning

waiting time.

a. If you take the bus each morning and evening

for a week, what is your total expected wait-

ing time? [Hint: Define rv’s X1, . . ., X10 and

use a rule of expected value.]

b. What is the variance of your total waiting

time?

c. What are the expected value and variance of

the difference between morning and evening

waiting times on a given day?

d. What are the expected value and variance of

the difference between total morning waiting

time and total evening waiting time for a

particular week?

34. An insurance office buys paper by the ream,

500 sheets, for use in the copier, fax, and printer.

Each ream lasts an average of 4 days, with

standard deviation 1 day. The distribution is

normal, independent of previous reams.

a. Find the probability that the next ream out-

lasts the present one by more than 2 days.

b. How many reams must be purchased if they

are to last at least 60 days with probability at

least 80%?

35. If two loads are applied to a cantilever beam as

shown in the accompanying drawing, the bend-

ing moment at 0 due to the loads is a1X1 + a2X2.

X1 X2

a1 a2

0

a. Suppose that X1 and X2 are independent rv’s

with means 2 and 4 kips, respectively, and

standard deviations .5 and 1.0 kip, respec-

tively. If a1 ¼ 5 ft and a2 ¼ 10 ft, what is

the expected bending moment and what is the

standard deviation of the bending moment?

b. If X1 and X2 are normally distributed, what is

the probability that the bending moment will

exceed 75 kip-ft?

c. Suppose the positions of the two loads are

random variables. Denoting them by A1 and

A2, assume that these variables have means of

5 and 10 ft, respectively, that each has a

standard deviation of .5, and that all Ai’s and

Xi’s are independent of each other. What is the

expected moment now?

d. For the situation of part (c), what is the vari-

ance of the bending moment?

e. If the situation is as described in part (a)

except that Corr(X1, X2) ¼ .5 (so that the

two loads are not independent), what is the

variance of the bending moment?

36. One piece of PVC pipe is to be inserted inside

another piece. The length of the first piece is

normally distributed with mean value 20 in. and

standard deviation .5 in. The length of the second

piece is a normal rv with mean and standard devi-

ation 15 and .4 in., respectively. The amount of

overlap is normally distributed with mean value

1 in. and standard deviation .1 in. Assuming that

the lengths and amount of overlap are indepen-

dent of each other, what is the probability that the

total length after insertion is between 34.5 and

35 in.?

37. Two airplanes are flying in the same direction

in adjacent parallel corridors. At time t ¼ 0, the

first airplane is 10 km ahead of the second one.

Suppose the speed of the first plane (km/h) is

normally distributed with mean 520 and standard

deviation 10 and the second plane’s speed, inde-

pendent of the first, is also normally distributed

with mean and standard deviation 500 and 10,

respectively.

a. What is the probability that after 2 h of flying,

the second plane has not caught up to the first

plane?

b. Determine the probability that the planes are

separated by at most 10 km after 2 h.

38. Three different roads feed into a particular free-

way entrance. Suppose that during a fixed time

period, the number of cars coming from each road

onto the freeway is a random variable, with
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expected value and standard deviation as given in

the table.

Road 1 Road 2 Road 3

Expected value 800 1000 600

Standard deviation 16 25 18

a. What is the expected total number of cars

entering the freeway at this point during the

period? [Hint: Let Xi ¼ the number from

road i.]
b. What is the variance of the total number of

entering cars? Have you made any assumptions

about the relationship between the numbers of

cars on the different roads?

c. With Xi denoting the number of cars entering

from road i during the period, suppose that

Cov(X1, X2) ¼ 80, Cov(X1, X3) ¼ 90, and

Cov(X2, X3) ¼ 100 (so that the three streams

of traffic are not independent). Compute the

expected total number of entering cars and the

standard deviation of the total.

39. Suppose we take a random sample of size n from a

continuous distribution having median 0 so that

the probability of any one observation being posi-

tive is .5. We now disregard the signs of the

observations, rank them from smallest to largest

in absolute value, and then letW ¼ the sum of the

ranks of the observations having positive signs.

For example, if the observations are –.3, +.7,
+2.1, and –2.5, then the ranks of positive observa-
tions are 2 and 3, soW ¼ 5. In Chapter 14,W will

be called Wilcoxon’s signed-rank statistic. W can

be represented as follows:

W ¼ 1 � Y1 þ 2 � Y2 þ 3 � Y3 þ � � � þ n � Yn
¼
Xn
i¼1

i � Yi

where the Yi’s are independent Bernoulli

rv’s, each with p ¼ .5 (Yi ¼ 1 corresponds

to the observation with rank i being positive).
Compute the following:
a. E(Yi) and then E(W) using the equation for W

[Hint: The first n positive integers sum to

n(n + 1)/2.]

b. V(Yi) and then V(W) [Hint: The sum of the

squares of the first n positive integers is

n(n + 1)(2n + 1)/6.]

40. In Exercise 35, the weight of the beam itself

contributes to the bending moment. Assume that

the beam is of uniform thickness and density so

that the resulting load is uniformly distributed

on the beam. If the weight of the beam is random,

the resulting load from the weight is also random;

denote this load by W (kip-ft).

a. If the beam is 12 ft long, W has mean 1.5 and

standard deviation .25, and the fixed loads are

as described in part (a) of Exercise 35, what are

the expected value and variance of the bending

moment? [Hint: If the load due to the beam

were w kip-ft, the contribution to the bending

moment would be w
Ð 12
0

xdx.]
b. If all three variables (X1, X2, and W) are nor-

mally distributed, what is the probability that

the bending moment will be at most 200 kip-ft?

41. A professor has three errands to take care of in the

Administration Building. Let Xi ¼ the time that

it takes for the ith errand (i ¼ 1, 2, 3), and let

X4 ¼ the total time in minutes that she spends

walking to and from the building and between

each errand. Suppose the Xi’s are independent,

normally distributed, with the following means

and standard deviations: m1 ¼ 15, s1 ¼ 4,

m2 ¼ 5, s2 ¼ 1, m3 ¼ 8, s3 ¼ 2, m4 ¼ 12,

s4 ¼ 3. She plans to leave her office at precisely

10:00 a.m. and wishes to post a note on her door

that reads, “I will return by t a.m.” What time

t should she write down if she wants the probabil-

ity of her arriving after t to be .01?

42. For males the expected pulse rate is 70/m and

the standard deviation is 10/m. For women the

expected pulse rate is 77/m and the standard devi-

ation is 12/m. Let X ¼ the sample average pulse

rate for a random sample of 40 men and let Y ¼
the sample average pulse rate for a random sample

of 36 women

a. What is the approximate distribution of X?
Of Y?

b. What is the approximate distribution of X– Y?
Justify your answer.

c. Calculate (approximately) the probability

Pð�2 � X � Y � 1Þ.
d. Calculate (approximately) PðX � Y � �15Þ.

If you actually observed X � Y � �15, would

you doubt that m1 – m2 ¼ –7? Explain.

43. In an area having sandy soil, 50 small trees of a

certain type were planted, and another 50 trees

were planted in an area having clay soil. Let X ¼
the number of trees planted in sandy soil that

survive 1 year and Y ¼ the number of trees planted

in clay soil that survive 1 year. If the probability

that a tree planted in sandy soil will survive 1 year

is .7 and the probability of 1-year survival in clay
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soil is .6, compute P(–5 � X – Y � 5) (use

an approximation, but do not bother with the

continuity correction).

44. Let X and Y be independent gamma random

variables, both with the same scale parameter b.
The value of the other parameter is a1 for X and a2
for Y. Use moment generating functions to show

that X + Y is also gamma distributed with scale

parameter b, and with the other parameter equal to

a1 + a2. Is X + Y gamma distributed if the scale

parameters are different? Explain.

45. The proof of the Central Limit Theorem requires

calculating the moment generating function for

the standardized mean from a random sample of

any distribution, and showing that it approaches

the moment generating function of the standard

normal distribution. Here we look at a particular

case of the Laplace distribution, for which the

calculation is simpler.

a. LettingX have pdf f ðxÞ ¼ 1
2
e�jxj,–1 < x < 1,

show thatMX(t) ¼ 1/(1 – t2), –1 < t < 1.

b. Find the moment generating functionMY(t) for
the standardized mean Y of a random sample

from this distribution.

c. Show that the limit of MY(t) is et
2=2, the

moment generating function of a standard

normal random variable. [Hint: Notice that

the denominator of MY(t) is of the form

(1 + a/n)n and recall that the limit of this is ea.]

6.4 Distributions Based on a Normal
Random Sample
This section is about three distributions that are related to the sample variance S2.
The chi-squared, t, and F distributions all play important roles in statistics. For

normal data we need to be able to work with the distribution of the sample variance,

which is built from squares, and this will require finding the distribution for sums of

squares of normal variables. The chi-squared distribution, defined in Section 4.4 as

a special case of the gamma distribution, turns out to be just what is needed. Also,

in order to use the sample standard deviation in a measure of precision for the mean

X, we will need a distribution that combines the square root of a chi-squared variable

with a normal variable, and this is the t distribution. Finally,wewill need a distribution
to compare two independent sample variances, and for this we will define the F
distribution in terms of the ratio of two independent chi-squared variables.

The Chi-Squared Distribution

Recall from Section 4.4 that the chi-squared distribution is a special case of the

gamma distribution. It has one parameter, n, called the number of degrees of freedom
of the distribution. Possible values of n are 1, 2, 3, . . . . The chi-squared pdf is

f ðxÞ ¼
1

2ðn=2ÞGðn=2Þ x
ðn=2Þ�1e�x=2 x > 0

0 x � 0

8<
:

Weuse the notation w2v to indicate a chi-squared variablewith n df (degrees of freedom).

The mean, variance, and moment generating function of a chi-squared rv

follow from the fact that the chi-squared distribution is a special case of the gamma

distribution with a ¼ n/2 and b ¼ 2:

m ¼ ab ¼ n s2 ¼ ab2 ¼ 2n MXðtÞ ¼ ð1� 2tÞ�n 2=
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Here is a result that is not at all obvious, a proposition showing that the square

of a standard normal variable has the chi–squared distribution.

PROPOSITION If Z has a standard normal distribution and X ¼ Z2, then the pdf of X is

f ðxÞ ¼
1

21=2Gð1=2Þ x
ð1=2Þ�1e�x=2 x > 0

0 x � 0

8<
:

That is, X is chi–squared with 1 df, X 	 w21.

Proof The proof involves determining the cdf of X and differentiating to get the

pdf. If x > 0,

PðX � xÞ ¼ PðZ2 � xÞ ¼ Pð� ffiffiffi
x

p � Z � ffiffiffi
x

p Þ ¼ 2Pð0 � Z � ffiffiffi
x

p Þ
¼ 2Fð ffiffiffi

x
p Þ � 2Fð0Þ

where F is the cdf of the standard normal distribution. Differentiating, and using f
for the pdf of the standard normal distribution, we obtain the pdf

f ðxÞ ¼ 2fð ffiffiffi
x

p Þð:5x�:5Þ ¼ 2
1ffiffiffiffiffiffi
2p

p e�:5xð:5x�:5Þ ¼ 1

21=2Gð1=2Þ x
ð1=2Þ�1e�x=2

The last equality makes use of the relationship G 1=2ð Þ ¼ ffiffiffi
p

p
.

See Example 4.44 for an alternative proof. ■

The next proposition tells us what happens when two independent chi-

squared rvs are added together.

PROPOSITION If X1 	 w2v1 , X2 	 w2v2 , and they are independent, then X1 þ X2 	 w2v1þv2
.

Proof The proof uses moment generating functions. Recall from Section 6.3

that, if random variables are independent, then the moment generating function of

their sum is the product of their moment generating functions. Therefore,

MX1þX2
ðtÞ ¼ MX1

ðtÞMX2
ðtÞ ¼ ð1� 2tÞ�n1=2ð1� 2tÞ�n2=2 ¼ ð1� 2tÞ�ðn1þn2Þ=2

Because the sum has the moment generating function of a chi-squared variable with

n1 + n2 degrees of freedom, the uniqueness principle implies that the sum has the

chi-squared distribution with n1 + n2 degrees of freedom. ■

By combining the previous two propositions we can see that the sum of two

independent standard normal squares is chi-squared with two degrees of freedom,

the sum of three independent standard normal squares is chi-squared with three

degrees of freedom, and so on.
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PROPOSITION If Z1, Z2, . . ., Zn are independent and each has the standard normal distribu-

tion, then Z2
1 þ Z2

2 þ � � � þ Z2
n 	 w2n

Now the meaning of the degrees of freedom parameter is clear. It is the number

of independent standard normal squares that are added to build a chi-squared

variable.

Figure 6.15 shows graphs of the chi-squared pdf for 1, 2, 3, and 5 degrees of

freedom. Notice that the pdf is unbounded for 1 df and the pdf is exponentially

decreasing for 2 df. Indeed, the chi-squared for 2 df is exponential with mean 2,

f ðxÞ ¼ 1
2
e�x=2 for x > 0. If n > 2 the pdf is unimodal with a peak at x ¼ n – 2, as

shown in Exercise 49. The distribution is skewed, but it becomes more symmetric

as the degrees of freedom increase, and for large df values the distribution is

approximately normal (see Exercise 47).

Except for a few special cases, it is difficult to integrate a chi-squared pdf,

so Table A.6 in the appendix has critical values for chi-squared distributions.

For example, the second row of the table is for 2 df, and under the heading .01

the value 9.210 indicates that Pðw22 > 9:210Þ ¼ :01. We use the notation

w2:01;2 ¼ 9:210 , where in general w2a;v ¼ c means that Pðw2v > cÞ ¼ a.
In Section 1.4 we defined the sample variance in terms of �x,

s2 ¼ 1

n� 1

Xn
i¼1

ðxi � �xÞ2

which gives an estimate of s2 when the population mean m is unknown. If we

happen to know the value of m, then the appropriate estimate is

ŝ2 ¼ 1

n

Xn
i¼1

ðxi � mÞ2
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Figure 6.15 The Chi-Squared pdf for 1, 2, 3, and 5 DF
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Replacing xi’s by Xi’s results in S2 and ŝ2 becoming statistics (and therefore

random variables). A simple function of ŝ2 is a chi-squared rv. First recall that

if X is normally distributed, then (X � m)/s is a standard normal rv. Thus

nŝ2

s2
¼
Xn
i¼1

Xi � m
s

� �2

is the sum of n independent standard normal squares, so it is w2n.
A similar relationship connects the sample variance S2 to the chi-squared

distribution. First, compute

X
ðXi � mÞ2 ¼

X
½ðXi � XÞ þ ðX � mÞ�2

¼
X

ðXi � XÞ2 þ 2ðX � mÞ
X

ðXi � XÞ þ
X

ðX � mÞ2

The middle term on the second line vanishes (why?). Dividing through by s2,

X Xi � m
s

� �2

¼
X Xi � X

s

� �2

þ
X X � m

s

� �2

¼
X Xi � X

s

� �2

þ n
X � m
s

� �2

:

The last term can be written as the square of a standard normal rv, and therefore as a

w21 rv.

X Xi � m
s

� �2

¼
X Xi � X

s

� �2

þ n
X � m
s

� �2

¼
X Xi � X

s

� �2

þ X � m
s=

ffiffiffi
n

p
� �2

ð6:11Þ

It is crucial here that the two terms on the right be independent. This is equivalent to

saying that S2 and X are independent. Although it is a bit much to show rigorously,

one approach is based on the covariances between the sample mean and the

deviations from the sample mean. Using the linearity of the covariance operator,

CovðXi � X;XÞ ¼ CovðXi;XÞ � CovðX;XÞ

¼ CovðXi;
1

n

X
XiÞ � VðXÞ ¼ s2

n
� s2

n
¼ 0:

This shows that X is uncorrelated with all the deviations of the observations from

their mean. In general, this does not imply independence, but in the special case of

the bivariate normal distribution, being uncorrelated is equivalent to independence.

Both X and Xi � X are linear combinations of the independent normal observations,

so they are bivariate normal, as discussed in Section 5.3. Because the sample

variance S2 is composed of the deviations Xi � X, we have this result.

PROPOSITION If X1, X2, . . ., Xn are a random sample from a normal distribution, then X and

S2 are independent.
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To understand this proposition better we can look at the relationship between

the sample standard deviation and mean for a large number of samples. In particu-

lar, suppose we select sample after sample of size n from a particular population

distribution, calculate �x and s for each one, and then plot the resulting (�x, s) pairs.
Figure 6.16(a) shows the result for 1000 samples of size n ¼ 5 from a standard

normal population distribution. The elliptical pattern, with axes parallel to the

coordinate axes, suggests no relationship between �x and s, that is, independence
of the statistics X and S (equivalently X and S2). However, this independence fails
for data from a nonnormal distribution, and Figure 6.16(b) illustrates what happens

for samples of size 5 from an exponential distribution with mean 1. This plot shows

a strong relationship between the two statistics, which is what might be expected

for data from a highly skewed distribution.

We will use the independence of X and S2 together with the following

proposition to show that S2 is proportional to a chi-squared random variable.

PROPOSITION If X3 ¼ X1 þ X2, and X1 	 w2v1 , X3 	 w2v3 , n3 > n1, and X1 and X2 are inde-

pendent, then X2 	 w2v3�v1
.

The proof is similar to that of the proposition involving the sum of indepen-

dent chi-squared variables, and it is left as an exercise (Exercise 51).

From Equation 6.11

X Xi � m
s

� �2

¼
X Xi � X

s

� �2

þ X � m
s=

ffiffiffi
n

p
� �2

¼ ðn� 1ÞS2
s2

þ X � m
s=

ffiffiffi
n

p
� �2

Assuming a random sample from the normal distribution, the term on the left

is w2n, and the last term is the square of a standard normal variable, so it is w21.
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Figure 6.16 Plot of (�x, s) pairs
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Putting the last two propositions together gives the following:

PROPOSITION If X1, X2, . . ., Xn are a random sample from a normal distribution, then

ðn� 1ÞS2 s2 	 w2n�1

�
:

Intuitively, the degrees of freedom make sense because s2 is built from the devia-

tions ðx1 � �xÞ; ðx2 � �xÞ; :::; ðxn � �xÞ, which sum to zero:

X
ðxi � �xÞ ¼

X
xi �

X
�x ¼ n�x� n�x ¼ 0:

The last deviation is determined by the first (n – 1) deviations, so it is reasonable

that s2 has only (n – 1) degrees of freedom.

The degrees of freedom help to explain why the definition of s2 has (n – 1)

and not n in the denominator.

Knowing that ðn� 1ÞS2 s2 	 w2n�1

�
, it can be shown (see Exercise 50) that

the expected value of S2 is s2, and also that the variance of S2 approaches 0 as n
becomes large.

The t Distribution

Let Z be a standard normal rv and let X be a w2v rv independent of Z. Then the

t distribution with degrees of freedom n is defined to be the distribution of the ratio

T ¼ Zffiffiffiffiffiffiffiffi
X=n

p
Sometimes we will include a subscript to indicate the df, t ¼ tn. From the definition

it is not obvious how the t distribution can be applied to data, but the next result puts
the distribution in more directly usable form.

THEOREM If X1, X2, . . ., Xn is a random sample from a normal distribution N(m,s2), then

T ¼ X � m
S=

ffiffiffi
n

p

has the t distribution with (n – 1) degrees of freedom, tn–1.

Proof First we express T in a slightly different way,

T ¼ X � m
S=

ffiffiffi
n

p ¼ ðX � mÞ=ðs= ffiffiffi
n

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�1ÞS2

s2 ðn� 1Þ=
q

The numerator on the right is standard normal because the mean of a random

sample from N(m, s2) is normal with population mean m and variance s2/n.
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The denominator is the square root of a chi-squared variable with (n – 1) degrees of

freedom, divided by its degrees of freedom. This chi-squared variable is independent

of the numerator, so the ratio has the t distributionwith (n�1) degrees of freedom. ■

It is not hard to obtain the pdf for T.

PROPOSITION The pdf of a random variable T having a t distribution with n degrees of

freedom is

f ðtÞ ¼ 1ffiffiffi
p

p
n
G½ðnþ 1Þ=2�

Gðn=2Þ
1

ð1þ t2=nÞðnþ1Þ=2 ; �1 < t < 1

Proof We first find the cdf of T and then differentiate to obtain the pdf.

A t variable is defined in terms of a standard normal Z and a chi-squared variable

X with n degrees of freedom. They are independent, so their joint pdf f(x, z) is the
product of their individual pdfs.

PðT � tÞ ¼ P
Zffiffiffiffiffiffiffiffi
X=n

p � t

 !
¼ P Z � t

ffiffiffiffi
X

n

r !
¼
ð1
0

ðt ffiffiffiffiffix=n
p

�1
f ðx; zÞ dz dx

Differentiating with respect to t using the Fundamental Theorem of Calculus,

f ðtÞ ¼ d

dt
PðT � tÞ ¼

ð1
0

d

dt

ðt ffiffiffiffiffix=n
p

�1
f ðx; zÞ dz dx ¼

ð1
0

ffiffiffi
x

n

r
f x; t

ffiffiffi
x

n

r� �
dx

Now substitute the joint pdf and integrate

f ðtÞ ¼
ð1
0

ffiffiffi
x

n

r
xn=2�1

2n=2Gðn=2Þ e
�x=2 1ffiffiffiffiffiffi

2p
p e�t2x=ð2nÞdx

The integral can be evaluated by writing the integrand in terms of a gamma pdf.

f ðtÞ ¼ G½ðnþ 1Þ=2�ffiffiffiffiffiffiffiffi
2pn

p
Gðn=2Þ½1=2þ t2=ð2nÞ�½ðnþ1Þ=2�

2n=2

�
ð1
0

1

2
þ t2

2n

� �ðnþ1Þ=2
xðnþ1Þ=2�1

G½ðnþ 1Þ=2� e
�½1=2þt2=ð2nÞ�xdx

The integral of the gamma pdf is 1, so

f ðtÞ ¼ G½ðnþ 1Þ=2�ffiffiffiffiffiffiffiffi
2pn

p
Gðn=2Þ½1=2þ t2=ð2nÞ�½ðnþ1Þ=2�

2n=2

¼ G½ðnþ 1Þ=2�ffiffiffiffiffi
pn

p
Gðn=2Þ

1

ð1þ t2=nÞ½ðnþ1Þ=2� ; �1 < t < 1 ■
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The pdf has a maximum at 0 and decreases symmetrically as |t| increases. As
n becomes large the t pdf approaches the standard normal pdf, as shown in Exercise

54. It makes sense that the t distribution would be close to the standard normal for

large n, because T ¼ Z
ffiffiffiffiffiffiffiffiffi
w2v v=

p�
, and w2v v= converges to 1 by the law of large

numbers, as shown in Exercise 48.

Figure 6.17 shows t density curves for n ¼ 1, 5, and 20 along with the

standard normal curve. Notice how fat the tails are for 1 df, as compared to the

standard normal. However, as the degrees of freedom increase, the t pdf becomes

more like the standard normal. For 20 df there is not much difference.

Integration of the t pdf is difficult except for low degrees of freedom, so

values of upper tail areas are given in Table A.7. For example, the value in the

column labeled 2 and the row labeled 3.0 is .048, meaning that for two degrees of

freedom P(T > 3.0) ¼ .048. We write this as t.048,2 ¼ 3.0, and in general we write

ta,n ¼ c if P(Tn > c) ¼ a. A tabulation of these t critical values (i.e. ta,n) for

frequently used tail areas a appears in Table A.5.

Using n ¼ 1 and Gð1 2= Þ ¼ ffiffiffi
p

p
in the chi-squared pdf, we obtain the pdf for

the t distribution with one degree of freedom as 1/[p(1 + t2)]. It has another name,

the Cauchy distribution. This distribution has such fat tails that the mean does not

exist (Exercise 55).

The mean and variance of a t variable can be obtained directly from the pdf,

but there is another route, through the definition in terms of independent standard

normal and chi-squared variables, T ¼ Z=
ffiffiffiffiffiffiffiffi
X=v

p
. Recall from Section 5.2 that

E(UV) ¼ E(U)E(V) if U and V are independent. Thus, EðTÞ ¼ EðZÞEð1 ffiffiffiffiffiffiffiffi
X v=

p� Þ.
Of course, E(Z) ¼ 0, so E(T) ¼ 0 if the second expected value on the right exists.

Let’s compute it from amore general expectation,E(Xk) for any k ifX is chi-squared:

EðXkÞ ¼
ð1
0

xk
xðn=2Þ�1

2n=2Gðn=2Þ e
�x=2dx

¼ 2kþn=2Gðk þ n=2Þ
2n=2Gðn=2Þ

ð1
0

xðkþn=2Þ�1

2kþn=2Gðk þ n=2Þ e
�x=2dx

.2
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Figure 6.17 Comparison of t curves to the z curve
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The second integrand is a gamma pdf so its integral is 1 if k + n/2 > 0, and

otherwise the integral does not exist. Therefore,

EðXkÞ ¼ 2kGðk þ n=2Þ
Gðn=2Þ ð6:12Þ

if k + n/2 > 0, and otherwise the expectation does not exist. The requirement

k + n/2 > 0 translates when k ¼ � 1
2

[recall that we need the existence of

Eð1 ffiffiffiffiffiffiffiffi
X v=

p� Þ] into n > 1. The mean of a t variable fails to exist if n ¼ 1 and the

mean is indeed 0 otherwise.

For the variance of Twe need E(T2) ¼ E(Z2) E[1/(X/n)] ¼ 1 ·n/E(1/X). Using
k ¼ –1 in Equation (6.12), we obtain, with the help of G(a + 1) ¼ aG(a),

EðX�1Þ ¼ 2�1Gð�1þ n=2Þ
Gðn=2Þ ¼ 2�1

n=2� 1
¼ 1

n� 2
if n > 2

and therefore V(T) ¼ n/(n – 2). For 1 or 2 degrees of freedom the variance does not

exist. The variance always exceeds 1, and for large df the variance is close to 1.

This is appropriate because any t curve spreads out more than the z curve, but for
large df the t curve approaches the z curve.

The F Distribution

Let X1 and X2 be independent chi-squared random variables with n1 and n2 degrees
of freedom, respectively. The F distribution with n1 numerator degrees of freedom

and n2 denominator degrees of freedom is defined to be the distribution of the ratio

F ¼ X1 v1=

X2 v2=
; ð6:13Þ

Sometimes the degrees of freedom will be indicated with subscripts Fv1;v2 .

Suppose that we have a random sample of m observations from the normal

population Nðm1; s21Þ and an independent random sample of n observations from a

second normal population N m2; s
2
2

	 

. Then for the sample variance from the first

group we know ðm� 1ÞS21 s21
�

is w2m�1, and similarly for the second group

n� 1ð ÞS22 s22
�

is w2n�1. Thus, according to Equation (6.13),

Fm�1;n�1 ¼
ðm� 1ÞS21 s21

�
m� 1

ðn� 1ÞS21 s22
�

n� 1

¼ S21 s21
�

S22 s22
� : ð6:14Þ

The F distribution, via Equation (6.14), will be used in Chapter 10 to compare the

variances from two independent groups. Also, for several independent groups, in

Chapter 11 we will use the F distribution to see if the differences among sample

means are bigger than would be expected by chance.

What happens to F if the degrees of freedom are large? Suppose that n2 is
large. Then, using the law of large numbers we can see (Exercise 48) that the
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denominator of Equation (6.13) will be close to 1, and approximately the F will be

just the numerator chi-squared over its degrees of freedom. Similarly, if both n1 and
n2 are large, then both the numerator and denominator will be close to 1, and the

F ratio therefore will be close to 1.

The pdf of a random variable having an F distribution is

gðxÞ ¼
G½ðn1 þ n2Þ=2�
Gðn1=2ÞGðn2=2Þ

n1
n2

� �n1=2

� xn1=2�1

ð1þ n1x=n2Þðn1þn2Þ=2 x > 0

0 x � 0

8<
:

Its derivation (Exercise 60) is similar to the derivation of the t pdf. Figure 6.18

shows the F density curves for several choices of n1 and n2 ¼ 10. It should be clear

by comparison with Figure 6.15 that the numerator degrees of freedom determine a

lot about the shapes in Figure 6.18. For example, with n1 ¼ 1, the pdf is unbounded

at x ¼ 0, just as in Figure 6.15 with n ¼ 1. For n1 ¼ 2, the pdf is positive at x ¼ 0,

just as in Figure 6.15 with n ¼ 2. For n1 > 2, the pdf is 0 at x ¼ 0, just as in

Figure 6.15 with n > 2. However, the F pdf has a fatter tail, especially for low

values of n2. This should be evident because the F pdf does not decrease to

0 exponentially as the chi-squared pdf does.

Except for a few special choices of degrees of freedom, integration of the F
pdf is difficult, so F critical values (values that capture specified F distribution tail

areas) are given in Table A.8. For example, the value in the column labeled 1 and

the row labeled 2 and .100 is 8.53, meaning that for one numerator degree of

freedom and two denominator degrees of freedom P(F > 8.53) ¼ .100. We can

express this as F.1,1,2 ¼ 8.53, where Fa;v1;v2 ¼ c means that PðFv1;v2 > cÞ ¼ a.
What about lower tail areas? Since 1/F ¼ (X2/n2)/(X1/n1), the reciprocal

of an F variable also has an F distribution, but with the degrees of freedom

reversed, and this can be used to obtain lower tail critical values. For example,

.100 ¼ P(F1,2 > 8.53) ¼ P(1/F1,2 < 1/8.53) ¼ P(F2,1 < .117). This can be writ-

ten as F.9,2,1 ¼ .117 because .9 ¼ P(F2,1 > .117). In general we have

.4

.2

0

.8

.6

1.0

0 1 2 3 4 5
x

3, 10 df

1, 10 df

5, 10 df

2, 10 df

f (x)

Figure 6.18 F density curves
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Fp;n1;n2 ¼
1

F1�p;n2;n1
: ð6:15Þ

Recalling that T ¼ Z
ffiffiffiffiffiffiffiffi
X v=

p�
, it follows that the square of this t random

variable is an F random variable with 1 numerator degree of freedom and n
denominator degrees of freedom, t2v ¼ F1;v. We can use this to obtain tail areas.

For example,

:100 ¼ PðF1;2 > 8:53Þ ¼ PðT2
2 > 8:53Þ ¼ Pð T2j j >

ffiffiffiffiffiffiffiffiffi
8:53

p
Þ ¼ 2PðT2 > 2:92Þ;

and therefore .05 ¼ P(T2 > 2.92). We previously determined that .048 ¼
P(T2 > 3.0), which is very nearly the same statement. In terms of our notation,

t:05;2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
F:10;1;2

p
, and we can similarly show that in general ta;v ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

F2a;1;v
p

if 0 <
a < .5.

Themean of theF distribution can be obtainedwith the help of Equation (6.12):

E(F) ¼ n2/(n2 – 2) if n2 > 2, and it does not exist if n2 � 2 (Exercise 57).

Summary of Relationships

Is it clear how the standard normal, chi-squared, t, and F distributions are related?

Starting with a sequence of n independent standard normal random variables (let’s

use five, Z1, Z2, . . ., Z5, to be specific) can we construct random variables having the

other distributions? For example, the chi-squared distribution with n degrees of

freedom is the sum of n independent standard normal squares, so Z2
1 þ Z2

2 þ Z2
3 has

the chi-squared distribution with 3 degrees of freedom.

Recall that the ratio of a standard normal rv to the square root of an

independent chi-squared rv, divided by its df n, has the t distribution with n df.

This implies that Z4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
1 þ Z2

2 þ Z2
3

	 

3=

q.
has the t distribution with 3 degrees of

freedom. Why would it be wrong to use Z1 in place of Z4?
Building a random variable with the F distribution requires two independent

chi-squared rvs. We already have Z2
1 þ Z2

2 þ Z2
3 with 3 df, and similarly we obtain

Z2
4 þ Z2

5, chi-squared with 2 df. Dividing each chi-square rv by its df and taking the

ratio gives an F2,3 random variable, Z2
4 þ Z2

5

	 

2=

� �
Z2
1 þ Z2

2 þ Z2
3

	 

3=

� ��
.

Exercises Section 6.4 (46–66)

46. a. Use Table A.6 to find w2:05;2.
b. Verify the answer to (a) by integrating the pdf.

c. Verify the answer to (a) by using software

(e.g., TI 89 calculator or MINITAB)

47. Why should w2v be approximately normal for large

n? What theorem applies here, and why?

48. Apply the Law of Large Numbers to show that

w2v v= approaches 1 as n becomes large.

49. Show that the w2v pdf has a maximum at n – 2 if

n > 2.

50. Knowing that ðn� 1ÞS2 s2 	 w2n�1

�
for a normal

random sample,

a. Show that E(S2) ¼ s2

b. Show that V(S2) ¼ 2s4/(n–1). What happens

to this variance as n gets large?

c. Apply Equation (6.12) to show that

EðSÞ ¼ s

ffiffiffi
2

p
Gðn=2Þffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

G½ðn� 1Þ=2� :

Then show that EðSÞ ¼ s
ffiffiffiffiffiffiffiffi
2 p=

p
if n ¼ 2. Is it true

that E(S) ¼ s for normal data?
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51. Use moment generating functions to show that if

X3 ¼ X1 þ X2, with X1 	 w2v1 , X3 	 w2v3 , n3 > n1,
and X1 and X2 are independent, then X2 	 w2v3�v1

.

52. a. Use Table A.7 to find t:102;1.
b. Verify the answer to part (a) by integrating

the pdf.

c. Verify the answer to part (a) using software

(e.g., TI 89 calculator or MINITAB)

53. a. Use Table A.7 to find t:005;10.
b. Use Table A.8 to find F:01;1;10 and relate this to

the value you obtained in part (a).

c. Verify the answer to part (b) using software

(e.g., TI 89 calculator or MINITAB).

54. Show that the t pdf approaches the standard

normal pdf for large df values. [Hint: Use

(1 + a/x)x ! ea and Gðxþ 1=2Þ=½ ffiffiffixp
GðxÞ� ! 1

as x ! 1.]

55. Show directly from the pdf that the mean of a t1
(Cauchy) random variable does not exist.

56. Show that the ratio of two independent standard

normal random variables has the t1 distribution.

Apply the method used to derive the t pdf in this

section. [Hint: Split the domain of the denomina-

tor into positive and negative parts.]

57. Let X have an F distribution with n1 numerator df

and n2 denominator df.

a. Determine the mean value of X.
b. Determine the variance of X.

58. Is it true that EðFv1;v2Þ ¼ Eðw2v1 v1= Þ Eðw2v2 v2= Þ
.

?

Explain.

59. Show that Fp;v1 ;v2 ¼ 1 F1�p;v2 ;v1

�
.

60. Derive the F pdf by applying the method used to

derive the t pdf.

61. a. Use Table A.8 to find F:1;2;4.

b. Verify the answer to part (a) using the pdf.

c. Verify the answer to part (a) using software

(e.g., TI 89 calculator or MINITAB).

62. a. Use Table A.7 to find t:25;10.
b. Use (a) to find the median of F1;10.

c. Verify the answer to part (b) using software

(e.g., TI 89 calculator or MINITAB).

63. Show that if X has a gamma distribution and c
(> 0) is a constant, then cX has a gamma distribu-

tion. In particular, if X is chi-squared distributed,

then cX has a gamma distribution.

64. Let Z1, Z2, . . ., Z10 be independent standard nor-

mal. Use these to construct

a. A w24 random variable.

b. A t4 random variable.

c. An F4,6 random variable.

d. A Cauchy random variable.

e. An exponential random variable with mean 2.

f. An exponential random variable with mean 1.

g. A gamma random variable with mean 1 and

variance 1
2
. [Hint: Use part (a) and Exercise

63.]

65. a. Use Exercise 47 to approximate Pðw250 > 70Þ,
and compare the result with the answer given

by software, .03237.

b. Use the formula given at the bottom of Table

A.6, w2ða;vÞ � v 1� 2 9vð Þ þ za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 9vð Þ=

p�	 
3
, to

approximate Pðw250 > 70Þ, and compare with

part (a).

66. The difference of two independent normal variables

itself has a normal distribution. Is it true that the

difference between two independent chi-squared

variables has a chi-squared distribution? Explain.

Supplementary Exercises (67–81)

67. In cost estimation, the total cost of a project is the

sum of component task costs. Each of these costs

is a random variable with a probability distribu-

tion. It is customary to obtain information about

the total cost distribution by adding together

characteristics of the individual component cost

distributions—this is called the “roll-up” proce-

dure. For example, E(X1 + � � � + Xn) ¼
E(X1) + � � �+ E(Xn), so the roll-up procedure is

valid for mean cost. Suppose that there are two

component tasks and that X1 and X2 are indepen-

dent, normally distributed random variables. Is

the roll-up procedure valid for the 75th percen-

tile? That is, is the 75th percentile of the distribu-

tion of X1 + X2 the same as the sum of the 75th

percentiles of the two individual distributions?

If not, what is the relationship between the per-

centile of the sum and the sum of percentiles? For

what percentiles is the roll-up procedure valid in

this case?
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68. Suppose that for a certain individual, calorie intake

at breakfast is a random variable with expected

value 500 and standard deviation 50, calorie intake

at lunch is random with expected value 900 and

standard deviation 100, and calorie intake at din-

ner is a random variable with expected value 2000

and standard deviation 180. Assuming that intakes

at different meals are independent of each other,

what is the probability that average calorie intake

per day over the next (365-day) year is at most

3500? [Hint: Let Xi, Yi, and Zi denote the three

calorie intakes on day i. Then total intake is

given by S(Xi þ Yi + Zi).]

69. The mean weight of luggage checked by a ran-

domly selected tourist-class passenger flying

between two cities on a certain airline is 40 lb,

and the standard deviation is 10 lb. The mean and

standard deviation for a business-class passenger

are 30 lb and 6 lb, respectively.

a. If there are 12 business-class passengers and

50 tourist-class passengers on a particular

flight, what are the expected value of total

luggage weight and the standard deviation of

total luggage weight?

b. If individual luggage weights are indepen-

dent, normally distributed rv’s, what is the

probability that total luggage weight is at

most 2500 lb?

70. If X1, X2 , . . . , Xn are independent rvs, each with

the same mean value m and variance s2, then we

have seen that E(X1 + X2 + � � � + Xn) ¼ nm and

V(X1 + X2 + � � � + Xn) ¼ ns2. In some applica-

tions, the number of Xi’s under consideration is

not a fixed number n but instead a rv N. For
example, let N be the number of components of

a certain type brought into a repair shop on a

particular day and let Xi represent the repair time

for the ith component. Then the total repair time is

SN ¼ X1 + X2 + � � �+ XN, the sum of a random
number of rvs.

a. Suppose that N is independent of the Xi’s.

Obtain an expression for E(SN) in terms of m
and E(N). Hint: [Refer back to the theorem

involving the conditional mean and variance

in Section 5.3, and let Y ¼ SN and X ¼ N.]
b. Obtain an expression for V(SN) in terms of m,

s2, E(N), and V(N) (again use the hint of (a))

c. Customers submit orders for stock purchases at

a certain online site according to a Poisson

process with a rate of 3/h. The amount pur-

chased by any particular customer (in 1000 s

of dollars) has an exponential distribution with

mean 30. What is the expected total amount ($)

purchased during a particular 4-h period, and

what is the standard deviation of this total

amount?

71. Suppose the proportion of rural voters in a certain

state who favor a particular gubernatorial candi-

date is .45 and the proportion of suburban and

urban voters favoring the candidate is .60. If a

sample of 200 rural voters and 300 urban and

suburban voters is obtained, what is the approxi-

mate probability that at least 250 of these voters

favor this candidate?

72. Let m denote the true pH of a chemical compound.

A sequence of n independent sample pH determi-

nations will be made. Suppose each sample pH is

a random variable with expected value m and

standard deviation .1. How many determinations

are required if we wish the probability that the

sample average is within .02 of the true pH to be at

least .95? What theorem justifies your probability

calculation?

73. The amount of soft drink that Ann consumes on

any given day is independent of consumption on

any other day and is normally distributed with

m ¼ 13 oz and s ¼ 2. If she currently has two

six-packs of 16-oz bottles, what is the probability

that she still has some soft drink left at the end of

2 weeks (14 days)? Why should we worry about

the validity of the independence assumption here?

74. A large university has 500 single employees who

are covered by its dental plan. Suppose the num-

ber of claims filed during the next year by such an

employee is a Poisson rv with mean value 2.3.

Assuming that the number of claims filed by any

such employee is independent of the number filed

by any other employee, what is the approximate

probability that the total number of claims filed is

at least 1200?

75. A student has a class that is supposed to end at

9:00 a.m. and another that is supposed to begin

at 9:10 a.m. Suppose the actual ending time of

the 9 a.m. class is a normally distributed rv X1

with mean 9:02 and standard deviation 1.5 min

and that the starting time of the next class is also a

normally distributed rv X2 with mean 9:10

and standard deviation 1 min. Suppose also that

the time necessary to get from one classroom

to the other is a normally distributed rv X3 with

mean 6 min and standard deviation 1 min.

What is the probability that the student makes it

to the second class before the lecture starts?
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(Assume independence of X1, X2, and X3, which is

reasonable if the student pays no attention to the

finishing time of the first class.)

76. a. Use the general formula for the variance of

a linear combination to write an expression

for V(aX + Y). Then let a ¼ sY/sX, and show

that r � –1. [Hint: Variance is always� 0, and

Cov(X, Y) ¼ sX · sY ·r.]
b. By considering V(aX – Y), conclude that

r � 1.

c. Use the fact that V(W) ¼ 0 only if W is a

constant to show that r ¼ 1 only if Y ¼ aX + b.

77. A rock specimen from a particular area is ran-

domly selected and weighed two different times.

Let W denote the actual weight and X1 and X2

the two measured weights. Then X1 ¼ W + E1

and X2 ¼ W + E2, where E1 and E2 are the two

measurement errors. Suppose that the Ei’s are

independent of each other and of W and that

V E1ð Þ ¼ V E2ð Þ ¼ s2E.
a. Express r, the correlation coefficient between

the two measured weights X1 and X2, in terms

of s2W , the variance of actual weight, and s2X,
the variance of measured weight.

b. Compute r when sW ¼ 1 kg and sE ¼ .01 kg.

78. Let A denote the percentage of one constituent in a

randomly selected rock specimen, and let B denote

the percentage of a second constituent in that same

specimen. Suppose D and E are measurement

errors in determining the values of A and B so that

measured values are X ¼ A + D and Y ¼ B + E,
respectively. Assume that measurement errors are

independent of each other and of actual values.

a. Show that

CorrðX; YÞ ¼ CorrðA;BÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CorrðX1;X2Þ

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CorrðY1; Y2Þ

p
where X1 and X2 are replicate measurements on

the value of A, and Y1 and Y2 are defined

analogously with respect to B. What effect

does the presence of measurement error have

on the correlation?

b. What is the maximum value of Corr(X, Y)
when Corr(X1, X2) ¼ .8100, Corr(Y1, Y2) ¼
.9025? Is this disturbing?

79. Let X1, . . ., Xn be independent rv’s with mean

values m1, . . ., mn and variances s21, . . ., s
2
n. Con-

sider a function h(x1, . . ., xn), and use it to define a
new rv Y ¼ h(X1, . . ., Xn). Under rather general

conditions on the h function, if the si’s are all

small relative to the corresponding mi’s, it can be

shown that E(Y) � h(m1, . . ., mn) and

VðYÞ � @h

@x1

� �2

� s21 þ � � � þ @h

@xn

� �2

� s2n

where each partial derivative is evaluated at (x1,
. . ., xn) ¼ (m1, . . ., mn). Suppose three resistors

with resistances X1, X2, X3 are connected in paral-

lel across a battery with voltage X4. Then by

Ohm’s law, the current is

Y ¼ X4

1

X1

þ 1

X2

þ 1

X3

� �

Letm1 ¼ 10 ohms,s1 ¼ 1.0 ohms, m2 ¼ 15 ohms,

s2 ¼ 1.0 ohms, m3 ¼ 20 ohms, s3 ¼ 1.5 ohms,

m4 ¼ 120 V, s4 ¼ 4.0 V. Calculate the approxi-

mate expected value and standard deviation of the

current (suggested by “Random Samplings,”

CHEMTECH, 1984: 696–697).

80. A more accurate approximation to E[h(X1, . . .,
Xn)] in Exercise 79 is

hðm1; . . . ; mnÞ þ
1

2
s21

@2h

@x21

� �
þ � � � þ 1

2
s2n

@2h

@x2n

� �

Compute this for Y ¼ h(X1, X2, X3, X4) given in

Exercise 79, and compare it to the leading term

h(m1, . . ., mn).

81. Explain how you would use a statistical soft-

ware package capable of generating independent

standard normal observations to obtain observed

values of (X, Y), where X and Y are bivariate

normal with means 100 and 50, standard devia-

tions 5 and 2, and correlation .5. [Hint: Exam-

ple 6.16.]
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Appendix: Proof of the Central Limit
Theorem
First, here is a restatement of the theorem. Let X1, X2, . . ., Xn be a random sample

from a distribution with mean m and variance s2. Then, if Z is a standard normal

random variable,

lim
n!1P

X � m
s=

ffiffiffi
n

p < z

� �
¼ PðZ < zÞ

The theorem says that the distribution of the standardized X approaches the

standard normal distribution. Our proof is only for the special case in which the

moment generating function exists, which implies also that all its derivatives exist

and that they are continuous. We will show that the moment generating function of

the standardized X approaches the moment generating function of the standard

normal distribution. However, convergence of the moment generating function

does not by itself imply the desired convergence of the distribution. This requires

a theorem, which we will not prove, showing that convergence of the moment

generating function implies the convergence of the distribution.

The standardized X can be written as

Y ¼ X � m
s=

ffiffiffi
n

p ¼ ð1=nÞ½ðX1 � mÞ=sþ ðX2 � mÞ=sþ � � � þ ðXn � mÞ=s� � 0

1=
ffiffiffi
n

p

The mean and standard deviation for the first ratio come from the first proposition

of Section 6.2, and the second ratio is algebraically equivalent to the first. It says

that, if we define W to be the standardized X, so Wi ¼ (Xi – m)/s, i ¼ 1, 2,. . ., n,
then the standardized X can be written as the standardized �W,

Y ¼ X � �m
s

ffiffiffi
n

p
=

¼ W � 0

1
ffiffiffi
n

p
=

:

This allows a simplification of the proof because we can work with the simpler

variable W, which has mean 0 and variance 1. We need to obtain the moment

generating function of

Y ¼ W � 0

1=
ffiffiffi
n

p ¼ ffiffiffi
n

p
W ¼ ðW1 þW2 þ � � � þWnÞ=

ffiffiffi
n

p
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from the moment generating function M(t) of W. With the help of the Section 6.3

proposition on moment generating functions of linear combinations of independent

random variables, we getMYðtÞ ¼ M t
ffiffiffi
n

p
=ð Þn. We want to show that this converges

to the moment generating function of a standard normal random variable,

MZðtÞ ¼ et
2 2= . It is easier to take the logarithm of both sides and show instead

that ln½MYðtÞ� ¼ n ln½Mðt= ffiffiffi
n

p � ! t2=2. This is equivalent because the logarithm

and its inverse are continuous functions.

The limit can be obtained from two applications of L’Hôpital’s rule if we set

x ¼ 1
ffiffiffi
n

p
= , ln½MYðtÞ� ¼ n ln½Mðt= ffiffiffi

n
p Þ� ¼ ln½MðtxÞ�=x2. Both the numerator and the

denominator approach 0 as n gets large and x gets small (recall that M(0) ¼ 1 and

M(t) is continuous), so L’Hôpital’s rule is applicable. Thus, differentiating the

numerator and denominator with respect to x,

lim
x!0

ln½MðtxÞ�
x2

¼ lim
x!0

M0ðtxÞt=MðtxÞ
2x

¼ lim
x!0

M0ðtxÞt
2xMðtxÞ

Recall that M(0) ¼ 1, M0(0) ¼ E(W) ¼ 0 and M(t) and its derivative M0(t) are

continuous, so both the numerator and denominator of the limit on the right

approach 0. Thus we can use L’Hôpital’s rule again.

lim
x!0

M0ðtxÞt
2xMðtxÞ ¼ lim

x!0

M00ðtxÞt2
2MðtxÞ þ 2xM0ðtxÞt ¼

1ðt2Þ
2ð1Þ þ 2ð0Þð0Þt ¼ t2=2

In evaluating the limit we have used the continuity of M(t) and its derivatives and

M(0) ¼ 1, M0(0) ¼ E(W) ¼ 0, M00(0) ¼ E(W2) ¼ 1. We conclude that the mgf

converges to the mgf of a standard normal random variable.
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C H A P T E R S E V E N

Point Estimation

Introduction
Given a parameter of interest, such as a population mean m or population propor-

tion p, the objective of point estimation is to use a sample to compute a number

that represents in some sense a good guess for the true value of the parameter.

The resulting number is called a point estimate. In Section 7.1, we present some

general concepts of point estimation. In Section 7.2, we describe and illustrate two

important methods for obtaining point estimates: the method of moments and

the method of maximum likelihood.

Obtaining a point estimate entails calculating the value of a statistic such

as the sample mean X or sample standard deviation S. We should therefore be

concerned that the chosen statistic contains all the relevant information about

the parameter of interest. The idea of no information loss is made precise by the

concept of sufficiency, which is developed in Section 7.3. Finally, Section 7.4

further explores the meaning of efficient estimation and properties of maximum

likelihood.



7.1 General Concepts and Criteria
Statistical inference is frequently directed toward drawing some type of conclusion

about one or more parameters (population characteristics). To do so requires that

an investigator obtain sample data from each of the populations under study.

Conclusions can then be based on the computed values of various sample quan-

tities. For example, let m (a parameter) denote the average duration of anesthesia

for a short-acting anesthetic. A random sample of n ¼ 10 patients might be

chosen, and the duration for each one determined, resulting in observed durations

x1, x2, . . ., x10. The sample mean duration �x could then be used to draw a conclusion

about the value of m. Similarly, if s2 is the variance of the duration distribution

(population variance, another parameter), the value of the sample variance s2 can be
used to infer something about s2.

When discussing general concepts and methods of inference, it is conve-

nient to have a generic symbol for the parameter of interest. We will use the Greek

letter y for this purpose. The objective of point estimation is to select a single

number, based on sample data, that represents a sensible value for y. Suppose,
for example, that the parameter of interest is m, the true average lifetime of

batteries of a certain type. A random sample of n ¼ 3 batteries might yield

observed lifetimes (hours) x1 ¼ 5.0, x2 ¼ 6.4, x3 ¼ 5.9. The computed value of

the sample mean lifetime is �x ¼ 5:77, and it is reasonable to regard 5.77 as a very

plausible value of m, our “best guess” for the value of m based on the available

sample information.

Suppose we want to estimate a parameter of a single population (e.g., m or s)
based on a random sample of size n. Recall from the previous chapter that before

data is available, the sample observations must be considered random variables

(rv’s) X1, X2, . . ., Xn. It follows that any function of the Xi’s—that is, any statistic—

such as the sample mean X or sample standard deviation S is also a random variable.

The same is true if available data consists of more than one sample. For example,

we can represent duration of anesthesia of m patients on anesthetic A and n patients
on anesthetic B by X1, . . ., Xm and Y1, . . ., Yn, respectively. The difference between
the two sample mean durations is X � Y, the natural statistic for making inferences

about m1 – m2, the difference between the population mean durations.

DEFINITION A point estimate of a parameter y is a single number that can be regarded as a

sensible value for y. A point estimate is obtained by selecting a suitable

statistic and computing its value from the given sample data. The selected

statistic is called the point estimator of y.

In the battery example just given, the estimator used to obtain the point

estimate of m was X, and the point estimate of m was 5.77. If the three observed

lifetimes had instead been x1 ¼ 5.6, x2 ¼ 4.5, and x3 ¼ 6.1, use of the estimator X
would have resulted in the estimate �x ¼ ð5:6þ 4:5þ 6:1Þ=3 ¼ 5:40. The symbol ŷ
(“theta hat”) is customarily used to denote both the estimator of y and the point
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estimate resulting from a given sample.1 Thus m̂ ¼ X is read as “the point estimator

of m is the sample mean X.” The statement “the point estimate of m is 5.77” can be

written concisely as m̂ ¼ 5:77. Notice that in writing ŷ ¼ 72:5, there is no indica-

tion of how this point estimate was obtained (what statistic was used). It is

recommended that both the estimator and the resulting estimate be reported.

Example 7.1 An automobile manufacturer has developed a new type of bumper, which is

supposed to absorb impacts with less damage than previous bumpers. The manu-

facturer has used this bumper in a sequence of 25 controlled crashes against a wall,

each at 10 mph, using one of its compact car models. Let X ¼ the number of

crashes that result in no visible damage to the automobile. The parameter to be

estimated is p ¼ the proportion of all such crashes that result in no damage

[alternatively, p ¼ P(no damage in a single crash)]. If X is observed to be

x ¼ 15, the most reasonable estimator and estimate are

estimator p̂ ¼ X

n
estimate ¼ x

n
¼ 15

25
¼ :60 ■

If for each parameter of interest there were only one reasonable point

estimator, there would not be much to point estimation. In most problems, though,

there will be more than one reasonable estimator.

Example 7.2 Reconsider the accompanying 20 observations on dielectric breakdown voltage for

pieces of epoxy resin introduced in Example 4.36 (Section 4.6).

24.46 25.61 26.25 26.42 26.66 27.15 27.31 27.54 27.74 27.94

27.98 28.04 28.28 28.49 28.50 28.87 29.11 29.13 29.50 30.88

The pattern in the normal probability plot given there is quite straight, so we now

assume that the distribution of breakdown voltage is normal with mean value m.
Because normal distributions are symmetric, m is also the median lifetime of the

distribution. The given observations are then assumed to be the result of a random

sample X1, X2, . . ., X20 from this normal distribution. Consider the following

estimators and resulting estimates for m:

a. Estimator ¼ X, estimate ¼ �x ¼ P
xi n= ¼ 555:86=20 ¼ 27:793

b. Estimator ¼ eX, estimate ¼ ex ¼ ð27:94þ 27:98Þ=2 ¼ 27:960

c. Estimator ¼ Xe ¼ ½min Xið Þ þmax Xið Þ�=2 ¼ the midrange, (average of the two

extreme lifetimes), estimate ¼ [min(xi) + max(xi)]/2 ¼ (24.46 þ 30.88)/2

¼ 27.670

d. Estimator ¼ Xtrð10Þ, the 10% trimmed mean (discard the smallest and largest

10% of the sample and then average),

estimate ¼ �xtrð10Þ ¼ 555:86� 24:46� 25:61� 29:50� 30:88

16
¼ 27:838

1 Following earlier notation, we could use Ŷ (an uppercase theta) for the estimator, but this is cumber-

some to write.
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Each one of the estimators (a)–(d) uses a different measure of the center

of the sample to estimate m. Which of the estimates is closest to the true value?

We cannot answer this without knowing the true value. A question that can

be answered is, “Which estimator, when used on other samples of Xi’s, will tend

to produce estimates closest to the true value?” We will shortly consider this type of

question. ■

Example 7.3 Studies have shown that a calorie-restricted diet can prolong life. Of course,

controlled studies are much easier to do with lab animals. Here is a random sample

of eight lifetimes (days) taken from a population of 106 rats that were fed

a restricted diet (from “Tests and Confidence Sets for Comparing Two Mean

Residual Life Functions,” Biometrics, 1988: 103–115)

716 1144 1017 1138 389 1221 530 958

Let X1, . . ., X8 denote the lifetimes as random variables, before the observed values

are available. We want to estimate the population variance s2. A natural estimator

is the sample variance:

ŝ2 ¼ S2 ¼
P ðXi � XÞ2

n� 1
¼

P
X2
i �

P
Xið Þ2=n

n� 1

The corresponding estimate is

ŝ2 ¼ s2 ¼
P

x2i �
P

xið Þ2=8
7

¼ 6;991;551� ð7113Þ2=8
7

¼ 667;205

7
¼ 95;315

The estimate of s would then be ŝ ¼ s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
95;315

p ¼ 309

An alternative estimator would result from using divisor n instead of n – 1

(i.e., the average squared deviation):

ŝ2 ¼
P ðXi � XÞ2

n
estimate ¼ 667;205

8
¼ 83; 401

We will indicate shortly why many statisticians prefer S2 to the estimator with

divisor n. ■

In the best of all possible worlds, we could find an estimator ŷ for which

ŷ ¼ y always. However, ŷ is a function of the sample Xi’s, so it is a random

variable. For some samples, ŷ will yield a value larger than y, whereas for other
samples ŷ will underestimate y. If we write

ŷ ¼ yþ error of estimation

then an accurate estimator would be one resulting in small estimation errors, so that

estimated values will be near the true value.

Mean Squared Error

A popular way to quantify the idea of ŷ being close to y is to consider the squared

error ðŷ� yÞ2. Another possibility is the absolute error jŷ� yj, but this is more
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difficult to work with mathematically. For some samples, ŷ will be quite close to y
and the resulting squared error will be very small, whereas the squared error will be

quite large whenever a sample produces an estimate ŷ that is far from the target.

An omnibus measure of accuracy is the mean squared error (expected squared

error), which entails averaging the squared error over all possible samples and

resulting estimates.

DEFINITION The mean squared error of an estimator ŷ is E½ðŷ� yÞ2�:

A useful result when evaluating mean squared error is a consequence of the

following rearrangement of the shortcut for evaluating a variance V(Y):

VðYÞ ¼ E Y2
� �� EðYÞ½ �2 ) E Y2

� � ¼ VðYÞ þ EðYÞ½ �2

That is, the expected value of the square of Y is the variance plus the square of

the mean value. Letting Y ¼ ŷ� y, the estimation error, the left-hand side is just

the mean squared error. The first term on the right-hand side is Vðŷ� yÞ ¼ VðŷÞ
since y is just a constant. The second term involves Eðŷ� yÞ ¼ EðŷÞ � y, the
difference between the expected value of the estimator and the value of the

parameter. This difference is called the bias of the estimator. Thus

MSE ¼ VðŷÞ þ ½EðŷÞ � y�2 ¼ variance of estimator þ biasð Þ2

Example 7.4

(Example 7.1

continued)

Consider once again estimating a population proportion of “successes” p. The
natural estimator of p is the sample proportion of successes p̂ ¼ X=n. The number

of successes X in the sample has a binomial distribution with parameters n and p, so
E(X) ¼ np and V(X) ¼ np(1 � p). The expected value of the estimator is

Eðp̂Þ ¼ E
X

n

� �
¼ 1

n
EðXÞ ¼ 1

n
np ¼ p

Thus the bias of p̂ is p � p ¼ 0, giving the mean squared error as

E½ðp̂� pÞ2� ¼ Vðp̂Þ þ 02 ¼ V
X

n

� �
¼ 1

n2
VðXÞ ¼ pð1� pÞ

n

Now consider the alternative estimator p̂ ¼ ðX þ 2Þ=ðnþ 4Þ . That is, add two

successes and two failures to the sample and then calculate the sample proportion

of successes. One intuitive justification for this estimator is that

X

n
� :5

����
���� ¼ X � :5n

n

����
���� X þ 2

nþ 4
� :5

����
���� ¼ X � :5n

nþ 4

����
����

from which we see that the alternative estimator is always somewhat closer to .5

than is the usual estimator. It seems particularly reasonable to move the estimate

toward .5 when the number of successes in the sample is close to 0 or n. For
example, if there are no successes at all in the sample, is it sensible to estimate the

population proportion of successes as zero, especially if n is small?
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The bias of the alternative estimator is

E
X þ 2

nþ 4

� �
� p ¼ 1

nþ 4
EðX þ 2Þ � p ¼ npþ 2

nþ 4
� p ¼ 2=n� 4p=n

1þ 4=n

This bias is not zero unless p ¼ .5. However, as n increases the numerator

approaches zero and the denominator approaches 1, so the bias approaches zero.

The variance of the estimator is

V
X þ 2

nþ 4

� �
¼ 1

ðnþ 4Þ2 VðX þ 2Þ ¼ VðXÞ
ðnþ 4Þ2 ¼ npð1� pÞ

ðnþ 4Þ2 ¼ pð1� pÞ
nþ 8þ 16=n

This variance approaches zero as the sample size increases. The mean

squared error of the alternative estimator is

MSE ¼ pð1� pÞ
nþ 8þ 16=n

þ 2=n� 4p=n

1þ 4=n

� �2

So how does the mean squared error of the usual estimator, the sample

proportion, compare to that of the alternative estimator? If one MSE were smaller

than the other for all values of p, then we could say that one estimator is always

preferred to the other (using MSE as our criterion). But as Figure 7.1 shows, this is

not the case at least for the sample sizes n ¼ 10 and n ¼ 100, and in fact is not true

for any other sample size.

According to Figure 7.1, the two MSE’s are quite different when n is small.

In this case the alternative estimator is better for values of p near .5 (since it moves

the sample proportion toward .5) but not for extreme values of p. For large n the two
MSE’s are quite similar, but again neither dominates the other.
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Figure 7.1 Graphs of MSE for the usual and alternative estimators of p ■
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Seeking an estimator whose mean squared error is smaller than that of

every other estimator for all values of the parameter is generally too ambitious

a goal. One common approach is to restrict the class of estimators under

consideration in some way, and then seek the estimator that is best in that restricted

class. A very popular restriction is to impose the condition of unbiasedness.

Unbiased Estimators

Suppose we have two measuring instruments; one instrument has been accurately

calibrated, but the other systematically gives readings smaller than the true value

being measured. When each instrument is used repeatedly on the same object,

because of measurement error, the observed measurements will not be identical.

However, the measurements produced by the first instrument will be distributed

about the true value in such a way that on average this instrument measures what it

purports to measure, so it is called an unbiased instrument. The second instrument

yields observations that have a systematic error component or bias.

DEFINITION A point estimator ŷ is said to be an unbiased estimator of y if E(ŷ) ¼ y for

every possible value of y. If ŷ is not unbiased, the difference EðŷÞ � y is

called the bias of ŷ.

That is, ŷ is unbiased if its probability (i.e., sampling) distribution is always

“centered” at the true value of the parameter. Suppose ŷ is an unbiased estimator;

then if y ¼ 100, the ŷ sampling distribution is centered at 100; if y ¼ 27.5, then

the ŷ sampling distribution is centered at 27.5, and so on. Figure 7.2 pictures the

distributions of several biased and unbiased estimators. Note that “centered”

here means that the expected value, not the median, of the distribution of ŷ
is equal to y.

It may seem as though it is necessary to know the value of y (in which case

estimation is unnecessary) to see whether ŷ is unbiased. This is usually not the case,
however, because unbiasedness is a general property of the estimator’s sampling

distribution—where it is centered—which is typically not dependent on any partic-

ular parameter value. For example, in Example 7.4 we showed that Eðp̂Þ ¼ p
when p̂ is the sample proportion of successes. Thus if p ¼ .25, the sampling

⎧ ⎨ ⎩ ⎧ ⎨ ⎩

Bias of q1

q q
Bias of q1

pdf of q2
pdf of q2

pdf of q1

pdf of q1

Figure 7.2 The pdf’s of a biased estimator ŷ1 and an unbiased estimator ŷ2 for a

parameter y
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distribution of p̂ is centered at .25 (centered in the sense of mean value), when

p ¼ .9 the sampling distribution is centered at .9, and so on. It is not necessary to

know the value of p to know that p̂ is unbiased.

PROPOSITION When X is a binomial rv with parameters n and p, the sample proportion

p̂ ¼ X=n is an unbiased estimator of p.

Example 7.5 Suppose that X, the reaction time to a stimulus, has a uniform distribution on

the interval from 0 to an unknown upper limit y (so the density function of X
is rectangular in shape with height 1/y for 0 � x � y). An investigator wants to

estimate y on the basis of a random sample X1, X2, . . ., Xn of reaction times. Since y
is the largest possible time in the entire population of reaction times, consider as a

first estimator the largest sample reaction time: ŷb ¼ maxðX1; . . . ; XnÞ. If n ¼ 5

and x1 ¼ 4.2, x2 ¼ 1.7, x3 ¼ 2.4, x4 ¼ 3.9, x5 ¼ 1.3, the point estimate of y is

ŷb ¼ maxð4:2; 1:7; 2:4; 3:9; 1:3Þ ¼ 4:2:
Unbiasedness implies that some samples will yield estimates that exceed y and

other samples will yield estimates smaller than y — otherwise y could not possibly

be the center (balance point) of ŷb’s distribution. However, our proposed estimator

will never overestimate y (the largest sample value cannot exceed the largest

population value) and will underestimate y unless the largest sample value equals

y. This intuitive argument shows that ŷb is a biased estimator. More precisely, using

our earlier results on order statistics, it can be shown (see Exercise 50) that

EðŷbÞ ¼ n

nþ 1
� y < y since

n

nþ 1
<1

� �

The bias of ŷb is given by ny/(n + 1) – y ¼ �y/(n + 1), which approaches 0 as n
gets large.

It is easy to modify ŷb to obtain an unbiased estimator of y. Consider the
estimator

ŷu ¼ nþ 1

n
� ŷb ¼ nþ 1

n
�maxðX1; . . . ;XnÞ

Using this estimator on the data gives the estimate (6/5)(4.2) ¼ 5.04. The fact that

(n + 1)/n > 1 implies that ŷu will overestimate y for some samples and underesti-

mate it for others. The mean value of this estimator is

EðŷuÞ ¼ E
nþ 1

n
�maxðX1; . . . ;XnÞ

� 	
¼ nþ 1

n
� E½maxðX1; . . . ;XnÞ�

¼ nþ 1

n
� n

nþ 1
y ¼ y

If ŷu is used repeatedly on different samples to estimate y, some estimates

will be too large and others will be too small, but in the long run there will be no

systematic tendency to underestimate or overestimate y. ■
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Statistical practitioners who buy into the Principle of Unbiased Estimation
would employ an unbiased estimator in preference to a biased estimator. On this

basis, the sample proportion of successes should be preferred to the alternative

estimator of p, and the unbiased estimator ŷu should be preferred to the biased

estimator ŷb in the uniform distribution scenario of the previous example.

Example 7.6 Let’s turn now to the problem of estimating s2 based on a random sample X1, . . .,
Xn. First consider the estimator S2 ¼ P ðXi � X

2Þ=ðn� 1Þ, the sample variance as

we have defined it. Applying the result E(Y2) ¼ V(Y) + [E(Y)]2 to

S2 ¼ 1

n� 1

X
X2
i �

P
Xið Þ2
n

" #

from Section 1.4 gives

EðS2Þ ¼ 1

n� 1

X
EðX2

i Þ�
1

n
E

X
Xi


 �2
� 	� 

¼ 1

n� 1

X
ðs2 þ m2Þ� 1

n
V

X
Xi


 �
þ E

X
Xi


 �h i2� � 

¼ 1

n� 1
ns2 þ nm2 � 1

n
ns2 � 1

n
nmð Þ2

� 

¼ 1

n� 1
ns2 � s2

� � ¼ s2

Thus we have shown that the sample variance S2 is an unbiased estimator of s2.

The estimator that uses divisor n can be expressed as (n – 1)S2/n, so

E
ðn� 1ÞS2

n

� 	
¼ n� 1

n
E S2
� � ¼ n� 1

n
s2

This estimator is therefore biased. The bias is (n – 1)s2/n – s2 ¼ �s2/n. Because
the bias is negative, the estimator with divisor n tends to underestimate s2, and this
is why the divisor n – 1 is preferred by many statisticians (although when n is large,
the bias is small and there is little difference between the two).

This is not quite the whole story, however. Suppose the random sample

has come from a normal distribution. Then from Section 6.4 , we know that the

rv (n – 1)S2/s2 has a chi-squared distribution with n – 1 degree of freedom. The

mean and variance of a chi-squared variable are df and 2 df, respectively. Let’s now

consider estimators of the form

ŝ2 ¼ c
X

ðXi � XÞ2

The expected value of the estimator is

E c
X

ðXi � XÞ2
h i

¼ cðn� 1ÞEðS2Þ ¼ cðn� 1Þs2

so the bias is cðn� 1Þs2 � s2. The only unbiased estimator of this type is the

sample variance, with c ¼ 1/(n – 1).
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Similarly, the variance of the estimator is

V c
X

ðXi � XÞ2
h i

¼ V cs2
ðn� 1ÞS2

s2

� 	
¼ c2s4½2ðn� 1Þ�

Substituting these expressions into the relationship MSE ¼ variance + (bias)2, the

value of c for which MSE is minimized can be found by taking the derivative with

respect to c, equating the resulting expression to zero, and solving for c. The result
is c ¼ 1/(n + 1). So in this situation, the principle of unbiasedness and the principle

of minimum MSE are at loggerheads.

As a final blow, even though S2 is unbiased for estimating s2, it is not true
that the sample standard deviation S is unbiased for estimating s. This is because
the square root function is not linear, so the expected value of the square root is

not the square root of the expected value. Well, if S is biased, why not find an

unbiased estimator for s and use it rather than S? Unfortunately there is no

estimator of s that is unbiased irrespective of the nature of the population distribu-

tion (although in special cases, e.g., a normal distribution, an unbiased estimator

does exist). Fortunately the bias of S is not serious unless n is quite small. So we

shall generally employ it as an estimator. ■

In Example 7.2, we proposed several different estimators for the mean m of a

normal distribution. If there were a unique unbiased estimator for m, the estimation

dilemma could be resolved by using that estimator. Unfortunately, this is not

the case.

PROPOSITION If X1, X2, . . ., Xn is a random sample from a distribution with mean m, then X
is an unbiased estimator of m. If in addition the distribution is continuous and
symmetric, then eX and any trimmed mean are also unbiased estimators of m.

The fact that X is unbiased is just a restatement of one of our rules of expected

value: EðXÞ ¼ m for every possible value of m (for discrete as well as continuous

distributions). The unbiasedness of the other estimators is more difficult to verify;

the argument requires invoking results on distributions of order statistics from

Section 5.5.

According to this proposition, the principle of unbiasedness by itself does not

always allow us to select a single estimator. When the underlying population is

normal, even the third estimator in Example 7.2 is unbiased, and there are many

other unbiased estimators. What we now need is a way of selecting among unbiased

estimators.

Estimators with Minimum Variance

Suppose ŷ1 and ŷ2 are two estimators of y that are both unbiased. Then, although

the distribution of each estimator is centered at the true value of y, the spreads of the
distributions about the true value may be different.
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PRINCIPLE
OF MINIMUM
VARIANCE
UNBIASED
ESTIMATION

Among all estimators of y that are unbiased, choose the one that has

minimum variance. The resulting ŷ Is called the minimum variance unbi-
ased estimator (MVUE) of y. Since MSE ¼ variance + (bias)2, seeking

an unbiased estimator with minimum variance is the same as seeking an

unbiased estimator that has minimum mean squared error.

Figure 7.3 pictures the pdf’s of two unbiased estimators, with the first ŷ
having smaller variance than the second estimator. Then the first ŷ is more likely

than the second one to produce an estimate close to the true y. The MVUE is, in a

certain sense, the most likely among all unbiased estimators to produce an estimate

close to the true y.

Example 7.7 We argued in Example 7.5 that when X1, . . ., Xn is a random sample from a uniform

distribution on [0, y], the estimator

ŷ1 ¼ nþ 1

n
�maxðX1; . . . ;XnÞ

is unbiased for y (we previously denoted this estimator by ŷu). This is not the only
unbiased estimator of y. The expected value of a uniformly distributed rv is just the

midpoint of the interval of positive density, so E(Xi) ¼ y/2. This implies that

EðXÞ ¼ y=2, fromwhichEð2XÞ ¼ y. That is, the estimator ŷ2 ¼ 2X is unbiased for y.
IfX is uniformly distributed on the interval [A,B], thenV(X) ¼ s2 ¼ (B –A)2/12

(Exercise 23 in Chapter 4). Thus, in our situation, V(Xi) ¼ y2/12, VðXÞ ¼
s2=n ¼ y2=ð12nÞ, and Vðŷ2Þ ¼ Vð2XÞ ¼ 4VðXÞ ¼ y2=ð3nÞ. The results of Exercise
50 can be used to show that Vðŷ1Þ ¼ y2=½nðnþ 2Þ�. The estimator ŷ1 has smaller

variance than does ŷ2 if 3n < n(n + 2)—that is, if 0 < n2 – n ¼ n(n – 1). As long as
n > 1, V(ŷ1) < V(ŷ2), so ŷ1 is a better estimator than ŷ2. More advanced methods

can be used to show that ŷ1 is the MVUE of y—every other unbiased estimator of y
has variance that exceeds y 2/[n(n + 2)]. ■

One of the triumphs of mathematical statistics has been the development of

methodology for identifying the MVUE in a wide variety of situations. The most

important result of this type for our purposes concerns estimating the mean m of a

normal distribution. For a proof in the special case that s is known, see Exercise 45.

THEOREM Let X1, . . ., Xn be a random sample from a normal distribution with

parameters m and s. Then the estimator m̂ ¼ X is the MVUE for m.

pdf of second estimator

pdf of first estimator

Figure 7.3 Graphs of the pdf’s of two different unbiased estimators
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Whenever we are convinced that the population being sampled is normal, the result

says that X should be used to estimate m. In Example 7.2, then, our estimate would

be �x ¼ 27:793.
Once again, in some situations such as the one in Example 7.6, it is possible

to obtain an estimator with small bias that would be preferred to the best unbiased

estimator. This is illustrated in Figure 7.4. However, MVUEs are often easier to

obtain than the type of biased estimator whose distribution is pictured.

More Complications

The last theorem does not say that in estimating a population mean m, the estimator

X should be used irrespective of the distribution being sampled.

Example 7.8 Suppose we wish to estimate the number of calories y in a certain food. Using

standard measurement techniques, we will obtain a random sample X1, . . ., Xn of n
calorie measurements. Let’s assume that the population distribution is a member of

one of the following three families:

f ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps2

p e�ðx�yÞ2=ð2s2Þ � 1 < x < 1 ð7:1Þ

f ðxÞ ¼ 1

p½1þ ðx� yÞ2� �1 < x < 1 ð7:2Þ

f ðxÞ ¼
1

2c
� c � x� y � c

0 otherwise

8<
: ð7:3Þ

The pdf (7.1) is the normal distribution, (7.2) is called the Cauchy distribution, and

(7.3) is a uniform distribution. All three distributions are symmetric about y, which is
therefore the median of each distribution. The value y is also the mean for the normal

and uniform distributions, but the mean of the Cauchy distribution fails to exist. This

happens because, even though the Cauchy distribution is bell-shaped like the normal

distribution, it has much heavier tails (more probability far out) than the normal curve.

The uniform distribution has no tails. The four estimators for m considered earlier are

X, eX, Xe (the average of the two extreme observations), and Xtrð10Þ, a trimmed mean.

The very important moral here is that the best estimator for m depends

crucially on which distribution is being sampled. In particular,

1. If the random sample comes from a normal distribution, then X is the best of the

four estimators, since it has minimum variance among all unbiased estimators.

pdf of q1, a biased estimator

ô

ô

pdf of q2, the MVUE

Figure 7.4 A biased estimator that is preferable to the MVUE
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2. If the random sample comes from a Cauchy distribution, then X and Xe are

terrible estimators for m, whereas eX is quite good (the MVUE is not known); X is

bad because it is very sensitive to outlying observations, and the heavy tails of

the Cauchy distribution make a few such observations likely to appear in any

sample.

3. If the underlying distribution is the particular uniform distribution in (7.3), then

the best estimator is Xe; in general, this estimator is greatly influenced by

outlying observations, but here the lack of tails makes such observations

impossible.

4. The trimmed mean is best in none of these three situations but works
reasonably well in all three. That is, Xtrð10Þ does not suffer too much in

comparison with the best procedure in any of the three situations. ■

More generally, recent research in statistics has established that when esti-

mating a point of symmetry m of a continuous probability distribution, a trimmed

mean with trimming proportion 10% or 20% (from each end of the sample)

produces reasonably behaved estimates over a very wide range of possible models.

For this reason, a trimmed mean with small trimming percentage is said to be a

robust estimator.
Until now, we have focused on comparing several estimators based on the

same data, such as X and eX for estimating mwhen a sample of size n is selected from
a normal population distribution. Sometimes an investigator is faced with a choice

between alternative ways of gathering data; the form of an appropriate estimator

then may well depend on how the experiment was carried out.

Example 7.9 Suppose a type of component has a lifetime distribution that is exponential with

parameter l so that expected lifetime is m ¼ 1/l. A sample of n such components is

selected, and each is put into operation. If the experiment is continued until all n
lifetimes, X1, . . ., Xn, have been observed, then X is an unbiased estimator of m.

In some experiments, though, the components are left in operation only until

the time of the rth failure, where r < n. This procedure is referred to as censoring.
Let Y1 denote the time of the first failure (the minimum lifetime among the n
components), Y2 denote the time at which the second failure occurs (the second

smallest lifetime), and so on. Since the experiment terminates at time Yr, the total
accumulated lifetime at termination is

Tr ¼
Xr

i¼1

Yi þ ðn� rÞYr

We now demonstrate that m̂ ¼ Tr=r is an unbiased estimator for m. To do so,

we need two properties of exponential variables:

1. The memoryless property (see Section 4.4) says that at any time point,

remaining lifetime has the same exponential distribution as original lifetime.

2. If X1, . . ., Xk are independent, each exponentially distributed with parameter

l, then min (X1, . . ., Xk) is exponential with parameter kl and has expected

value 1/(kl). See Example 5.28.
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Since all n components last until Y1, n – 1 last an additional Y2 – Y1, n – 2 an

additional Y3 – Y2 amount of time, and so on, another expression for Tr is

Tr ¼ nY1þðn�1ÞðY2�Y1Þþðn�2ÞðY3�Y2Þþ �� �þ ðn� rþ1ÞðYr�Yr�1Þ
But Y1 is the minimum of n exponential variables, so E(Y1) ¼ 1/(nl). Simi-

larly, Y2 – Y1 is the smallest of the n – 1 remaining lifetimes, each exponential with

parameter l (by the memoryless property), so E(Y2 – Y1) ¼ 1/[(n – 1)l].
Continuing, E(Yi+1 – Yi) ¼ 1/[(n – i)l], so

EðTrÞ ¼ nEðY1Þ þ ðn� 1ÞEðY2 � Y1Þ þ � � � þ ðn� r þ 1ÞEðYr � Yr�1Þ
¼ n � 1

nl
þ ðn� 1Þ � 1

ðn� 1Þlþ � � � þ ðn� r þ 1Þ � 1

ðn� r þ 1Þl ¼ r

l

Therefore, E(Tr/r) ¼ (1/r)E(Tr) ¼ (1/r) · (r/l) ¼ 1/l ¼ m as claimed.

As an example, suppose 20 components are put on test and r ¼ 10. Then if

the first ten failure times are 11, 15, 29, 33, 35, 40, 47, 55, 58, and 72, the estimate

of m is

m̂ ¼ 11þ 15þ � � � þ 72þ ð10Þð72Þ
10

¼ 111:5

The advantage of the experiment with censoring is that it terminates

more quickly than the uncensored experiment. However, it can be shown that

V(Tr/r) ¼ 1/(l2r), which is larger than 1/(l2n), the variance of X in the uncensored

experiment. ■

Reporting a Point Estimate: The Standard Error

Besides reporting the value of a point estimate, some indication of its precision

should be given. The usual measure of precision is the standard error of the

estimator used.

DEFINITION The standard error of an estimator ŷ is its standard deviation sŷ ¼
ffiffiffiffiffiffiffiffiffiffi
VðŷÞ

q
.

If the standard error itself involves unknown parameters whose values can be

estimated, substitution of these estimates into sŷ yields the estimated stan-
dard error (estimated standard deviation) of the estimator. The estimated

standard error can be denoted either by ŝŷ (the ˆ over s emphasizes that sŷ is
being estimated) or by sŷ.

Example 7.10

(Example 7.2

continued)

Assuming that breakdown voltage is normally distributed, m̂ ¼ X is the best

estimator of m. If the value of s is known to be 1.5, the standard error of X is

sX ¼ s=
ffiffiffi
n

p ¼ 1:5=
ffiffiffiffiffi
20

p ¼ :335. If, as is usually the case, the value of s is

unknown, the estimate ŝ ¼ s ¼ 1:462 is substituted into sX to obtain the estimated

standard error ŝX ¼ sX ¼ s=
ffiffiffi
n

p ¼ 1:462=
ffiffiffiffiffi
20

p ¼ :327 ■
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Example 7.11

(Example 7.1

continued)

The standard error of p̂ ¼ X=n is

sp̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V X=nð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffi
VðXÞ
n2

r
¼

ffiffiffiffiffiffiffiffi
npq

n2

r
¼

ffiffiffiffiffi
pq

n

r

Since p and q ¼ 1 – p are unknown (else why estimate?), we substitute p̂ ¼ x=n and
q̂ ¼ 1� x=n into sp̂, yielding the estimated standard error

ŝp̂ ¼
ffiffiffiffiffiffiffiffiffiffi
p̂q̂=n

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið:6Þð:4Þ=25p ¼ :098. Alternatively, since the largest value of pq

is attained when p ¼ q ¼ .5, an upper bound on the standard error isffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð4nÞp ¼ :10. ■

When the point estimator ŷ has approximately a normal distribution, which will

often be the case when n is large, then we can be reasonably confident that the true

value of y lies within approximately 2 standard errors (standard deviations) of ŷ. Thus
if measurement of prothrombin (a blood-clotting protein) in 36 individuals gives

m̂ ¼ �x ¼ 20:5 and s ¼ 3.6 mg/100 ml, then s=
ffiffiffi
n

p ¼ :60, so “within 2 estimated

standard errors of m̂” translates to the interval 20.50 � (2)(.60) ¼ (19.30, 21.70).

If ŷ is not necessarily approximately normal but is unbiased, then it can be

shown (using Chebyshev’s inequality, introduced in Exercises 43, 77, and 135 of

Chapter 3) that the estimate will deviate from y by as much as 4 standard errors at

most 6% of the time. We would then expect the true value to lie within 4 standard

errors of ŷ (and this is a very conservative statement, since it applies to any
unbiased ŷ). Summarizing, the standard error tells us roughly within what distance

of ŷ we can expect the true value of y to lie.

The Bootstrap

The form of the estimator ŷ may be sufficiently complicated so that standard

statistical theory cannot be applied to obtain an expression for sŷ. This is true, for
example, in the case y ¼ s, ŷ ¼ S; the standard deviation of the statistic S, sS, cannot
in general be determined. In recent years, a new computer-intensive method called

the bootstrap has been introduced to address this problem. Suppose that the popula-

tion pdf is f (x; y), a member of a particular parametric family, and that data x1, x2, . . .,
xn gives ŷ ¼ 21:7. We now use the computer to obtain “bootstrap samples” from the

pdf f (x; 21.7), and for each sample we calculate a “bootstrap estimate” ŷ�:

First bootstrap sample: x�1; x
�
2; . . . ; x

�
n; estimate ¼ ŷ�1

Second bootstrap sample: x�1; x
�
2; . . . ; x

�
n; estimate ¼ ŷ�2

..
.

Bth bootstrap sample: x�1; x
�
2; . . . ; x

�
n; estimate ¼ ŷ�B

B ¼ 100 or 200 is often used. Now let �y� ¼ P
ŷ�i =B, the sample mean of the

bootstrap estimates. The bootstrap estimate of ŷ’s standard error is now just the

sample standard deviation of the ŷ�i ’s:

Sŷ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B� 1

X
ŷ�i � �y�


 �2
r

(In the bootstrap literature, B is often used in place of B – 1; for typical values of B,
there is usually little difference between the resulting estimates.)
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Example 7.12 A theoretical model suggests that X, the time to breakdown of an insulating fluid

between electrodes at a particular voltage, has f(x; l) ¼ le–lx, an exponential distri-
bution. A random sample of n ¼ 10 breakdown times (min) gives the following data:

41.53 18.73 2.99 30.34 12.33 117.52 73.02 223.63 4.00 26.78

Since E(X) ¼ 1/l, EðXÞ ¼ 1=l, so a reasonable estimate of l is l̂ ¼
1=�x ¼ 1=55:087 ¼ :018153. We then used a statistical computer package to obtain

B ¼ 100 bootstrap samples, each of size 10, from f(x; .018153). The first such

sample was 41.00, 109.70, 16.78, 6.31, 6.76, 5.62, 60.96, 78.81, 192.25, 27.61,

from which
P

x�i ¼ 545:8 and l̂�1 ¼ 1=54:58 ¼ :01832. The average of the 100

bootstrap estimates is l� ¼ .02153, and the sample standard deviation of these 100

estimates is sl̂ ¼ :0091, the bootstrap estimate of l̂’s standard error. A histogram of

the 100 l̂�i ’s was somewhat positively skewed, suggesting that the sampling

distribution of l̂ also has this property. ■

Sometimes an investigator wishes to estimate a population characteristic

without assuming that the population distribution belongs to a particular parametric

family. An instance of this occurred in Example 7.8, where a 10% trimmed mean

was proposed for estimating a symmetric population distribution’s center y. The
data of Example 7.2 gave ŷ ¼ Xtrð10Þ ¼ 27:838, but now there is no assumed f(x; y),
so how can we obtain a bootstrap sample? The answer is to regard the sample itself

as constituting the population (the n ¼ 20 observations in Example 7.2) and take B
different samples, each of size n, with replacement from this population. We

expand on this idea in Section 8.5.

Exercises Section 7.1 (1–20)

1. The accompanying data on IQ for first-graders at a

university lab schoolwas introduced inExample 1.2.

82 96 99 102 103 103 106 107 108 108 108
108 109 110 110 111 113 113 113 113 115 115
118 118 119 121 122 122 127 132 136 140 146

a. Calculate a point estimate of the mean value of

IQ for the conceptual population of all first

graders in this school, and state which estima-

tor you used. [Hint: Sxi ¼ 3753]

b. Calculate a point estimate of the IQ value that

separates the lowest 50% of all such students

from the highest 50%, and state which estima-

tor you used.

c. Calculate and interpret a point estimate of the

population standard deviation s. Which esti-

mator did you use? [Hint: Sx2i ¼ 432; 015]
d. Calculate a point estimate of the proportion of

all such students whose IQ exceeds 100. [Hint:
Think of an observation as a “success” if it

exceeds 100.]

e. Calculate a point estimate of the population

coefficient of variation s/m, and state which

estimator you used.

2. A sample of 20 students who had recently taken

elementary statistics yielded the following infor-

mation on brand of calculator owned (T ¼ Texas

Instruments, H ¼ Hewlett-Packard, C ¼ Casio,

S ¼ Sharp):

T T H T C T T S C H
S S T H C T T T H T

a. Estimate the true proportion of all such stu-

dents who own a Texas Instruments calculator.

b. Of the ten students who owned a TI calculator,

4 had graphing calculators. Estimate the pro-

portion of students who do not own a TI graph-

ing calculator.

3. Consider the following sample of observations on

coating thickness for low-viscosity paint (“Achiev-

ing a Target Value for a Manufacturing Process:

A Case Study,” J. Qual. Technol., 1992: 22–26):

.83 .88 .88 1.04 1.09 1.12 1.29 1.31
1.48 1.49 1.59 1.62 1.65 1.71 1.76 1.83

Assume that the distribution of coating thickness

is normal (a normal probability plot strongly sup-

ports this assumption).
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a. Calculate a point estimate of the mean value of

coating thickness, and state which estimator

you used.

b. Calculate a point estimate of the median of the

coating thickness distribution, and state which

estimator you used.

c. Calculate a point estimate of the value that

separates the largest 10% of all values in the

thickness distribution from the remaining 90%,

and state which estimator you used. [Hint:
Express what you are trying to estimate in

terms of m and s]
d. Estimate P(X < 1.5), i.e., the proportion of all

thickness values less than 1.5. [Hint: If you

knew the values of m and s, you could calculate
this probability. These values are not available,

but they can be estimated.]

e. What is the estimated standard error of the

estimator that you used in part (b)?

4. The data set mentioned in Exercise 1 also includes

these third grade verbal IQ observations for males:

117 103 121 112 120 132 113 117 132

149 125 131 136 107 108 113 136 114

and females

114 102 113 131 124 117 120 90

114 109 102 114 127 127 103

Prior to obtaining data, denote the male values by

X1, . . ., Xm and the female values by Y1, . . ., Yn.
Suppose that the Xi’s constitute a random sample

from a distribution with mean m1 and standard

deviation s1 and that the Yi’s form a random sample

(independent of the Xi’s) from another distribution

with mean m2 and standard deviation s2.
a. Use rules of expected value to show that X � Y

is an unbiased estimator of m1 – m2. Calculate
the estimate for the given data.

b. Use rules of variance from Chapter 6 to obtain

an expression for the variance and standard

deviation (standard error) of the estimator in

part (a), and then compute the estimated stan-

dard error.

c. Calculate a point estimate of the ratio s1/s2 of
the two standard deviations.

d. Suppose one male third-grader and one female

third-grader are randomly selected. Calculate a

point estimate of the variance of the difference

X – Y between male and female IQ.

5. As an example of a situation in which several

different statistics could reasonably be used to

calculate a point estimate, consider a population

of N invoices. Associated with each invoice is its

“book value,” the recorded amount of that invoice.

Let T denote the total book value, a known

amount. Some of these book values are erroneous.

An audit will be carried out by randomly selecting

n invoices and determining the audited (correct)

value for each one. Suppose that the sample gives

the following results (in dollars).

Invoice

1 2 3 4 5

Book value 300 720 526 200 127

Audited value 300 520 526 200 157

Error 0 200 0 0 �30

Let X ¼ the sample mean audited value, Y¼ the

sample mean book value, and D¼ the sample

mean error. Propose three different statistics for

estimating the total audited (i.e. correct) value y
— one involving just N and X, another involving
N, T, and D, and the last involving T and X=Y.
Then calculate the resulting estimates when

N ¼ 5,000 and T ¼ 1,761,300 (The article “Sta-

tistical Models and Analysis in Auditing,”, Statis-
tical Science, 1989: 2 – 33 discusses properties of

these estimators).

6. Consider the accompanying observations on

stream flow (1000’s of acre-feet) recorded at a

station in Colorado for the period April 1–August

31 over a 31-year span (from an article in the 1974

volume of Water Resources Res.).

127.96 210.07 203.24 108.91 178.21

285.37 100.85 89.59 185.36 126.94

200.19 66.24 247.11 299.87 109.64

125.86 114.79 109.11 330.33 85.54

117.64 302.74 280.55 145.11 95.36

204.91 311.13 150.58 262.09 477.08

94.33

An appropriate probability plot supports the use of

the lognormal distribution (see Section 4.5) as a

reasonable model for stream flow.

a. Estimate the parameters of the distribution.

[Hint: Remember that X has a lognormal

distribution with parameters m and s2 if ln(X)
is normally distributed with mean m and vari-

ance s2.]
b. Use the estimates of part (a) to calculate an

estimate of the expected value of stream flow.

[Hint: What is E(X)?]

7. a. A random sample of 10 houses in a particular

area, each of which is heated with natural gas,
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is selected and the amount of gas (therms) used

during the month of January is determined for

each house. The resulting observations are 103,

156, 118, 89, 125, 147, 122, 109, 138, 99. Let m
denote the average gas usage during January by

all houses in this area. Compute a point esti-

mate of m.
b. Suppose there are 10,000 houses in this area

that use natural gas for heating. Let t denote

the total amount of gas used by all of these

houses during January. Estimate t using the

data of part (a). What estimator did you use

in computing your estimate?

c. Use the data in part (a) to estimate p, the pro-

portion of all houses that used at least 100

therms.

d. Give a point estimate of the population median

usage (the middle value in the population of all

houses) based on the sample of part (a). What

estimator did you use?

8. In a random sample of 80 components of a certain

type, 12 are found to be defective.

a. Give a point estimate of the proportion of all

such components that are not defective.
b. A system is to be constructed by randomly

selecting two of these components and con-

necting them in series, as shown here.

The series connection implies that the system

will function if and only if neither component is

defective (i.e., both components work properly).

Estimate the proportion of all such systems that

work properly. [Hint: If p denotes the probabil-

ity that a component works properly, how can

P(system works) be expressed in terms of p?]

c. Let p̂ be the sample proportion of successes.

Is p̂2 an unbiased estimator for p2? [Hint:
For any rv Y, E(Y2) ¼ V(Y) + [E(Y)]2.]

9. Each of 150 newly manufactured items is exam-

ined and the number of scratches per item is

recorded (the items are supposed to be free of

scratches), yielding the following data:

Number of
scratches per item

0 1 2 3 4 5 6 7

Observed
frequency

18 37 42 30 13 7 2 1

Let X ¼ the number of scratches on a randomly

chosen item, and assume that X has a Poisson

distribution with parameter l.

a. Find an unbiased estimator of l and compute

the estimate for the data. [Hint: E(X) ¼ l for X
Poisson, so E(X ¼ ?)]

b. What is the standard deviation (standard error)

of your estimator? Compute the estimated stan-

dard error. [Hint: s2X ¼ l for X Poisson.]

10. Using a long rod that has length m, you are going

to lay out a square plot in which the length of each

side is m. Thus the area of the plot will be m2.
However, you do not know the value of m, so
you decide to make n independent measurements

X1, X2, . . . Xn of the length. Assume that each Xi

has mean m (unbiased measurements) and vari-

ance s2.
a. Show that X

2
is not an unbiased estimator

for m2. [Hint: For any rv Y, E(Y2) ¼
V(Y) + [E(Y)]2. Apply this with Y ¼ X.]

b. For what value of k is the estimator X
2 � kS2

unbiased for m2? [Hint: Compute E(X
2 � kS2).]

11. Of n1 randomly selected male smokers, X1 smoked

filter cigarettes, whereas of n2 randomly selected

female smokers, X2 smoked filter cigarettes. Let

p1 and p2 denote the probabilities that a randomly

selected male and female, respectively, smoke

filter cigarettes.

a. Show that (X1/n1) – (X2/n2) is an unbiased

estimator for p1 – p2. [Hint: E(Xi) ¼ nipi for
i ¼ 1, 2.]

b. What is the standard error of the estimator in

part (a)?

c. Howwould you use the observed values x1 and x2
to estimate the standard error of your estimator?

d. If n1 ¼ n2 ¼ 200, x1 ¼ 127, and x2 ¼ 176,

use the estimator of part (a) to obtain an esti-

mate of p1 – p2.
e. Use the result of part (c) and the data of part (d)

to estimate the standard error of the estimator.

12. Suppose a certain type of fertilizer has an expected

yield per acre of m1 with variance s2, whereas the
expected yield for a second type of fertilizer is

m2 with the same variance s2. Let S21 and S
2
2 denote

the sample variances of yields based on sample

sizes n1 and n2, respectively, of the two fertilizers.
Show that the pooled (combined) estimator

ŝ2 ¼ ðn1 � 1ÞS21 þ ðn2 � 1ÞS22
n1 þ n2 � 2

is an unbiased estimator of s2.

13. Consider a random sample X1, . . ., Xn from the pdf

f ðx; yÞ ¼ :5ð1þ yxÞ � 1 � x � 1
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where �1 � y � 1 (this distribution arises in

particle physics). Show that ŷ ¼ 3X is an unbiased

estimator of y. [Hint: First determine

m ¼ EðXÞ ¼ EðXÞ.]
14. A sample of n captured Pandemonium jet fighters

results in serial numbers x1, x2, x3, . . ., xn. The CIA
knows that the aircraft were numbered consecu-

tively at the factory starting with a and ending

with b, so that the total number of planes manu-

factured is b – a + 1 (e.g., if a ¼ 17 and b ¼ 29,

then 29�17 + 1 ¼ 13 planes having serial num-

bers 17, 18, 19, . . ., 28, 29 were manufactured).

However, the CIA does not know the values of

a or b. A CIA statistician suggests using the esti-

mator max(Xi) – min(Xi) + 1 to estimate the total

number of planes manufactured.

a. If n ¼ 5, x1 ¼ 237, x2 ¼ 375, x3 ¼ 202,

x4 ¼ 525, and x5 ¼ 418, what is the

corresponding estimate?

b. Under what conditions on the sample will the

value of the estimate be exactly equal to the

true total number of planes? Will the estimate

ever be larger than the true total? Do you think

the estimator is unbiased for estimating b –
a + 1? Explain in one or two sentences.

(A similar method was used to estimate German

tank production in World War II.)

15. Let X1, X2, . . ., Xn represent a random sample from

a Rayleigh distribution with pdf

f ðx; yÞ ¼ x

y
e�x2=ð2yÞ x>0

a. It can be shown that E(X2) ¼ 2y. Use this fact
to construct an unbiased estimator of y based

on
P

X2
i (and use rules of expected value to

show that it is unbiased).

b. Estimate y from the following measurements

of blood plasma beta concentration (in pmol/L)

for n ¼ 10 men.

16.88 10.23 4.59 6.66 13.68

14.23 19.87 9.40 6.51 10.95

16. Suppose the true average growth m of one type

of plant during a 1-year period is identical to that

of a second type, but the variance of growth for

the first type is s2, whereas for the second type,

the variance is 4s2. Let X1, . . ., Xm be m indepen-

dent growth observations on the first type [so

E(Xi) ¼ m, V(Xi) ¼ s2], and let Y1, . . ., Yn be

n independent growth observations on the

second type [E(Yi) ¼ m, V(Yi) ¼ 4s2]. Let c be a

numerical constant and consider the estimator

m̂ ¼ cX þ ð1� cÞY. For any c between 0 and 1

this is a weighted average of the two sample

means, e.g., :7X þ :3Y
a. Show that for any c the estimator is unbiased.

b. For fixed m and n, what value c minimizes

Vðm̂Þ? [Hint: The estimator is a linear combi-

nation of the two sample means and these

means are independent. Once you have an

expression for the variance, differentiate with

respect to c.]

17. In Chapter 3, we defined a negative binomial rv as

the number of failures that occur before the rth
success in a sequence of independent and identical

success/failure trials. The probability mass func-

tion (pmf) of X is

nbðx; r; pÞ

¼
xþ r � 1

x

0
@

1
Aprð1� pÞx x ¼ 0; 1; 2; . . .

0 otherwise

8>>><
>>>:

a. Suppose that r � 2. Show that

p̂ ¼ ðr � 1Þ=ðX þ r � 1Þ
is an unbiased estimator for p. [Hint: Write out

Eð p̂Þ and cancel x + r – 1 inside the sum.]

b. A reporter wishing to interview five indivi-

duals who support a certain candidate begins

asking people whether (S) or not (F) they sup-

port the candidate. If the sequence of responses

is SFFSFFFSSS, estimate p ¼ the true propor-

tion who support the candidate.

18. Let X1, X2, . . ., Xn be a random sample from a pdf

f(x) that is symmetric about m, so that eX is an

unbiased estimator of m. If n is large, it can be

shown that VðeXÞ 	 1=f4n½ f ðmÞ�2g. When the

underlying pdf is Cauchy (see Example 7.8),

VðXÞ ¼ 1, so X is a terrible estimator. What is

VðeXÞ in this case when n is large?

19. An investigator wishes to estimate the proportion

of students at a certain university who have vio-

lated the honor code. Having obtained a random

sample of n students, she realizes that asking each,
“Have you violated the honor code?” will proba-

bly result in some untruthful responses. Consider

the following scheme, called a randomized
response technique. The investigator makes up a

deck of 100 cards, of which 50 are of type I and 50

are of type II.
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Type I: Have you violated the honor code (yes or

no)?

Type II: Is the last digit of your telephone number

a 0, 1, or 2 (yes or no)?

Each student in the random sample is asked to mix

the deck, draw a card, and answer the resulting

question truthfully. Because of the irrelevant ques-

tion on type II cards, a yes response no longer

stigmatizes the respondent, so we assume that

responses are truthful. Let p denote the proportion

of honor-code violators (i.e., the probability of a

randomly selected student being a violator), and

let l ¼ P(yes response). Then l and p are related

by l ¼ .5p + (.5)(.3).

a. Let Y denote the number of yes responses, so

Y ~ Bin(n, l). Thus Y/n is an unbiased estimator

of l. Derive an estimator for p based on Y. If
n ¼ 80 and y ¼ 20, what is your estimate?

[Hint: Solve l ¼ .5p + .15 for p and then sub-

stitute Y/n for l.]

b. Use the fact that E(Y/n) ¼ l to show that your

estimator p̂ is unbiased.

c. If there were 70 type I and 30 type II cards,

what would be your estimator for p?

20. Return to the problem of estimating the population

proportion p and consider another adjusted esti-

mator, namely

p̂ ¼ X þ ffiffiffiffiffiffiffiffi
n=4

p
nþ ffiffiffi

n
p

The justification for this estimator comes from the

Bayesian approach to point estimation to be intro-

duced in Section 14.4.

a. Determine the mean squared error of this esti-

mator. What do you find interesting about this

MSE?

b. Compare the MSE of this estimator to the

MSE of the usual estimator (the sample

proportion).

7.2 Methods of Point Estimation
So far the point estimators we have introduced were obtained via intuition and/or

educated guesswork. We now discuss two “constructive” methods for obtaining

point estimators: the method of moments and the method of maximum likelihood.

By constructive we mean that the general definition of each type of estimator

suggests explicitly how to obtain the estimator in any specific problem. Although

maximum likelihood estimators are generally preferable to moment estimators

because of certain efficiency properties, they often require significantly more

computation than do moment estimators. It is sometimes the case that these

methods yield unbiased estimators.

The Method of Moments

The basic idea of this method is to equate certain sample characteristics, such as the

mean, to the corresponding population expected values. Then solving these equa-

tions for unknown parameter values yields the estimators.

DEFINITION Let X1, . . ., Xn be a random sample from a pmf or pdf f(x). For k ¼ 1, 2, 3, . . . ,

the kth populationmoment, or kthmoment of the distribution f(x), isE(Xk).

The kth sample moment is ð1=nÞPn
i¼1 X

k
i :

Thus the first population moment is E(X) ¼ m and the first sample moment isP
Xi=n ¼ X: The second population and sample moments are E(X2) andP
X2
i =n, respectively. The population moments will be functions of any unknown

parameters y1, y2, . . . .
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DEFINITION Let X1, X2, . . ., Xn be a random sample from a distribution with pmf or pdf

f(x; y1, . . ., ym), where y1, . . ., ym are parameters whose values are unknown.

Then themoment estimators ŷ1; . . . ; ŷm are obtained by equating the first m
sample moments to the corresponding first m population moments and

solving for y1, . . ., ym.

If, for example, m ¼ 2, E(X) and E(X2) will be functions of y1 and y2. Setting
EðXÞ ¼ ð1=nÞPXi ð¼ XÞ and E X2ð Þ ¼ ð1=nÞPX2

i gives two equations in y1 and
y2. The solution then defines the estimators. For estimating a population mean m,
the method gives m ¼ X, so the estimator is the sample mean.

Example 7.13 Let X1, . . ., Xn represent a random sample of service times of n customers at a

certain facility, where the underlying distribution is assumed exponential with

parameter l. Since there is only one parameter to be estimated, the estimator is

obtained by equating E(X) to X. Since E(X) ¼ 1/l for an exponential distribution,

this gives 1=l ¼ X or l ¼ 1=X. The moment estimator of l is then l̂ ¼ 1=X. ■

Example 7.14 Let X1, . . ., Xn be a random sample from a gamma distribution with parameters a
and b. From Section 4.4 , E(X) ¼ ab and E(X2) ¼ b2G(a + 2)/G(a) ¼ b2(a + 1)a.
The moment estimators of a and b are obtained by solving

X ¼ ab
1

n

X
X2
i ¼ aðaþ 1Þb2

Since aðaþ 1Þb2 ¼ a2b2 þ ab2 and the first equation implies a2b2 ¼ Xð Þ2, the
second equation becomes

1

n

X
X2
i ¼ Xð Þ2 þ ab2

Now dividing each side of this second equation by the corresponding side of the

first equation and substituting back gives the estimators

â ¼ Xð Þ2
1
n

P
X2
i � Xð Þ2 b̂ ¼

1
n

P
X2
i � Xð Þ2
X

To illustrate, the survival time data mentioned in Example 4.28 is

152 115 109 94 88 137 152 77 160 165

125 40 128 123 136 101 62 153 83 69

with �x ¼ 113:5 and ð1=20ÞP x2i ¼ 14; 087:8. The estimates are

â ¼ 113:5ð Þ2
14; 087:8� 113:5ð Þ2 ¼ 10:7 b̂ ¼ 14; 087:8� 113:5ð Þ2

113:5
¼ 10:6

These estimates of a and b differ from the values suggested by Gross and Clark

because they used a different estimation technique. ■
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Example 7.15 Let X1, . . ., Xn be a random sample from a generalized negative binomial

distribution with parameters r and p (Section 3.6). Since E(X) ¼ r(1 – p)/p and

V(X) ¼ r(1 – p)/p2, E(X2) ¼ V(X) + [E(X)]2 ¼ r(1 – p) (r – rp + 1)/p2. Equating
E(X) to X and E(X2) to ð1=nÞPX2

i eventually gives

p̂ ¼ X
1
n

P
X2
i � Xð Þ2 r̂ ¼ Xð Þ2

1
n

P
X2
i � Xð Þ2 � X

As an illustration, Reep, Pollard, and Benjamin (“Skill and Chance in Ball

Games,” J. Roy. Statist. Soc. Ser. A, 1971: 623–629) consider the negative bino-

mial distribution as a model for the number of goals per game scored by National

Hockey League teams. The data for 1966–1967 follows (420 games):

Goals 0 1 2 3 4 5 6 7 8 9 10

Frequency 29 71 82 89 65 45 24 7 4 1 3

Then,

�x ¼
X

xi=420 ¼ ½ð0Þð29Þ þ ð1Þð71Þþ � � � þ ð10Þð3Þ�=420 ¼ 2:98

and X
x2i =420 ¼ ½ð0Þ2ð29Þ þ ð1Þ2ð71Þþ � � � þ ð10Þ2ð3Þ�=420 ¼ 12:40

Thus,

p̂ ¼ 2:98

12:40� 2:98ð Þ2 ¼ :85 r̂ ¼ 2:98ð Þ2
12:40� 2:98ð Þ2 � 2:98

¼ 16:5

Although r by definition must be positive, the denominator of r̂ could be negative,

indicating that the negative binomial distribution is not appropriate (or that the

moment estimator is flawed). ■

Maximum Likelihood Estimation

The method of maximum likelihood was first introduced by R. A. Fisher, a

geneticist and statistician, in the 1920s. Most statisticians recommend this method,

at least when the sample size is large, since the resulting estimators have certain

desirable efficiency properties (see the proposition on large sample behavior

toward the end of this section).

Example 7.16 A sample of ten new bike helmets manufactured by a company is obtained. Upon

testing, it is found that the first, third, and tenth helmets are flawed, whereas the

others are not. Let p ¼ P(flawed helmet) and define X1, . . ., X10 by Xi ¼ 1 if the ith
helmet is flawed and zero otherwise. Then the observed xi’s are 1, 0, 1, 0, 0, 0, 0, 0,
0, 1, so the joint pmf of the sample is

f ðx1; x2; . . . ; x10; pÞ ¼ pð1� pÞp � � � � � p ¼ p3ð1� pÞ7 ð7:4Þ
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We now ask, “For what value of p is the observed sample most likely to have

occurred?” That is, we wish to find the value of p that maximizes the pmf (7.4) or,

equivalently, maximizes the natural log of (7.4).2 Since

ln½f ðx1; x2; . . . ; x10; pÞ� ¼ 3 lnðpÞ þ 7 lnð1� pÞ ð7:5Þ

and this is a differentiable function of p, equating the derivative of (7.5) to zero

gives the maximizing value3:

d

dp
ln½ f ðx1; x2; . . . ; x10; pÞ� ¼ 3

p
� 7

1� p
¼ 0 ) p ¼ 3

10
¼ x

n

where x is the observed number of successes (flawed helmets). The estimate

of p is now p̂ ¼ 3
10
. It is called the maximum likelihood estimate because

for fixed x1, . . ., x10, it is the parameter value that maximizes the likelihood

(joint pmf) of the observed sample. The likelihood and log likelihood are

graphed in Figure 7.5. Of course, the maximum on both graphs occurs at the

same value, p ¼ .3.

Note that if we had been told only that among the ten helmets there were

three that were flawed, Equation (7.4) would be replaced by the binomial pmf

10

3

� �
p3ð1� pÞ7, which is also maximized for p̂ ¼ 3

10
.

2 Since ln[g(x)] is a monotonic function of g(x), finding x to maximize ln[g(x)] is equivalent to

maximizing g(x) itself. In statistics, taking the logarithm frequently changes a product to a sum, which

is easier to work with.
3 This conclusion requires checking the second derivative, but the details are omitted.
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Figure 7.5 Likelihood and log likelihood plotted against p ■
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DEFINITION Let X1, . . ., Xn have joint pmf or pdf

f ðx1; x2; :::; xn; y1; :::; ymÞ ð7:6Þ
where the parameters y1, . . ., ym have unknown values. When x1, . . ., xn are the
observed sample values and (7.6) is regarded as a function of y1, . . ., ym, it is
called the likelihood function. The maximum likelihood estimates ŷ1; . . . ; ŷm
are those values of the yi’s that maximize the likelihood function, so that

f(x1, x2,. . ., xn; ŷ1; . . . ; ŷm) � f(x1, x2,. . ., xn; y1, . . ., ym) for all y1, . . ., ym

When the Xi’s are substituted in place of the xi’s, the maximum likelihood
estimators (mle’s) result.

The likelihood function tells us how likely the observed sample is as a function

of the possible parameter values. Maximizing the likelihood gives the parameter

values for which the observed sample is most likely to have been generated, that is,

the parameter values that “agree most closely” with the observed data.

Example 7.17 Suppose X1, . . ., Xn is a random sample from an exponential distribution with

parameter l. Because of independence, the likelihood function is a product of the

individual pdf’s:

f ðx1; . . . ; xn; lÞ ¼ ðle�lx1Þ � � � � � ðle�lxnÞ ¼ lne�lSxi

The ln(likelihood) is

ln f ðx1; . . . ; xn; lÞ½ � ¼ n lnðlÞ � l
X

xi

Equating (d/dl)[ln(likelihood)] to zero results in n/l – Sxi ¼ 0, or l ¼
n=Sxi ¼ 1=�x. Thus the mle is l̂ ¼ 1=X; it is identical to the method of moments

estimator but it is not an unbiased estimator, since Eð1=XÞ 6¼ 1=EðXÞ. ■

Example 7.18 Let X1, . . ., Xn be a random sample from a normal distribution. The likelihood

function is

f ðx1; . . . ; xn; m; s2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps2

p e�ðx1�mÞ2=ð2s2Þ � � � � � 1ffiffiffiffiffiffiffiffiffiffi
2ps2

p e�ðxn�mÞ2=ð2s2Þ

¼ 1

2ps2

� �n=2

e�
Pðxi�mÞ2=ð2s2Þ

so

ln½f ðx1; . . . ; xn; m; s2Þ� ¼ � n

2
lnð2ps2Þ � 1

2s2
X

ðxi � mÞ2

To find the maximizing values of m and s2, we must take the partial derivatives of

ln( f ) with respect to m and s2, equate them to zero, and solve the resulting two

equations. Omitting the details, the resulting mle’s are
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m̂ ¼ X ŝ2 ¼
P ðXi � XÞ2

n

The mle of s2 is not the unbiased estimator, so two different principles of estimation

(unbiasedness and maximum likelihood) yield two different estimators. ■

Example 7.19 In Chapter 3, we discussed the use of the Poisson distribution for modeling the

number of “events” that occur in a two-dimensional region. Assume that when the

region R being sampled has area a(R), the number X of events occurring in R has a

Poisson distribution with parameter la(R) (where l is the expected number of

events per unit area) and that nonoverlapping regions yield independent X’s.
Suppose an ecologist selects n nonoverlapping regions R1, . . ., Rn and counts

the number of plants of a certain species found in each region. The joint pmf

(likelihood) is then

pðx1; . . . ; xn; lÞ ¼ l � aðR1Þ½ �x1e�l�aðR1Þ

x1!
� � � � � l � aðRnÞ½ �xne�l�aðRnÞ

xn!

¼ aðR1Þ½ �x1 � � � � � aðRnÞ½ �xn � lSxi � e�lSaðRiÞ

x1! � � � � � xn!
The ln(likelihood) is

ln½pðx1; . . . ; xn; lÞ� ¼
X

xi � ln½aðRiÞ� þ lnðlÞ �
X

xi � l
X

aðRiÞ �
X

lnðxi!Þ
Taking d/dl ln( p) and equating it to zero yieldsX

xi

l
�
X

aðRiÞ ¼ 0

so

l ¼
P

xiP
aðRiÞ

The mle is then l̂ ¼ P
Xi=

P
aðRiÞ. This is intuitively reasonable because l is the

true density (plants per unit area), whereas l̂ is the sample density since
P

aðRiÞ is
just the total area sampled. Because E(Xi) ¼ l · a(Ri), the estimator is unbiased.

Sometimes an alternative sampling procedure is used. Instead of fixing

regions to be sampled, the ecologist will select n points in the entire region of

interest and let yi ¼ the distance from the ith point to the nearest plant. The

cumulative distribution function (cdf) of Y ¼ distance to the nearest plant is

FYðyÞ ¼ PðY � yÞ ¼ 1� PðY > yÞ ¼ 1� P
no plants in a

circle of radius y

� �

¼ 1� e�lpy2 lpy2ð Þ0
0!

¼ 1� e�lpy2

Taking the derivative of FY(y) with respect to y yields

fYðy; lÞ ¼ 2plye�lpy2 y � 0

0 otherwise

(

If we now form the likelihood fY(y1; l) · ··· · fY(yn; l), differentiate ln(likelihood),

and so on, the resulting mle is
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l̂ ¼ n

p
P

Y2
i

¼ number of plants observed

total area sampled

which is also a sample density. It can be shown that in a sparse environment (small l),
the distance method is in a certain sense better, whereas in a dense environment, the

first sampling method is better. ■

Example 7.20 Let X1, . . ., Xn be a random sample from a Weibull pdf

f ðx; a; bÞ ¼
a
ba

� xa�1 � e�ðx=bÞa x � 0

0 otherwise

(

Writing the likelihood and ln(likelihood), then setting both ð@=@aÞ½lnðf Þ� ¼ 0 and

ð@=@bÞ½lnð f Þ� ¼ 0 yields the equations

a ¼
P ½xai � lnðxiÞ�P

xai
�
P

lnðxiÞ
n

� 	�1

b ¼
P

xai
n

� �1=a

These two equations cannot be solved explicitly to give general formulas for the

mle’s â and b̂. Instead, for each sample x1, . . ., xn, the equations must be solved

using an iterative numerical procedure. Even moment estimators of a and b are

somewhat complicated (see Exercise 22).

The iterativemle computations can bedoneon a computer, and they are available

in some statistical packages. MINITAB gives maximum likelihood estimates for both

the Weibull and the gamma distributions (under “Quality Tools”). Stata has a general

procedure that can be used for these and other distributions. For the data of Example

7.14 the maximum likelihood estimates for the Weibull distribution are â ¼ 3:799
and b̂ ¼ 125:88. (Themle’s for thegammadistributionare â ¼ 8:799 and b̂ ¼ 12:893,
a little different from the moment estimates in Example 7.14). Figure 7.6 shows the

Weibull log likelihood as a function of a and b. The surface near the top has a rounded
shape, allowing themaximum to be found easily, but for some distributions the surface

can be much more irregular, and the maximum may be hard to find.

L
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Figure 7.6 Weibull log likelihood for Example 7.20 ■
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Some Properties of MLEs

In Example 7.18, we obtained the mle of s2 when the underlying distribution is

normal. The mle of s ¼
ffiffiffiffiffi
s2

p
, as well as many other mle’s, can be easily derived

using the following proposition.

PROPOSITION The Invariance Principle

Let ŷ1; ŷ2; . . . ; ŷm be the mle’s of the parameters y1, y2, . . ., ym. Then the mle

of any function h(y1, y2, . . ., ym) of these parameters is the function

hðŷ1; ŷ2; . . . ; ŷmÞ, of the mle’s.

Proof For an intuitive idea of the proof, consider the special case m ¼ 1, with

y1 ¼ y, and assume that h(·) is a one-to-one function. On the graph of the likelihood
as a function of the parameter y, the highest point occurs where y ¼ ŷ. Now consider

the graph of the likelihood as a function of h(y). In the new graph the same heights

occur, but the height that was previously plotted at y ¼ a is now plotted at

hðyÞ ¼ hðaÞ, and the highest point is now plotted at hðyÞ ¼ hðŷÞ. Thus, the maxi-

mum remains the same, but it now occurs at hðŷÞ. ■

Example 7.21

(Example 7.18

continued)

In the normal case, the mle’s of m and s2 are m̂ ¼ X and ŝ2 ¼ P ðXi � XÞ2=n. To
obtain the mle of the function hðm; s2Þ ¼

ffiffiffiffiffi
s2

p
¼ s, substitute the mle’s into the

function:

ŝ ¼
ffiffiffiffiffi
ŝ2

p
¼ 1

n

X
ðXi � XÞ2

� 	1=2

The mle of s is not the sample standard deviation S, although they are close unless n
is quite small. Similarly, the mle of the population coefficient of variation 100m/s
is 100m̂=ŝ. ■

Example 7.22

(Example 7.20

continued)

The mean value of an rv X that has a Weibull distribution is

m ¼ b � Gð1þ 1=aÞ
The mle of m is therefore m̂ ¼ b̂ � Gð1þ 1=âÞ, where â and b̂ are the mle’s of a and
b. In particular, X is not the mle of m, although it is an unbiased estimator. At least

for large n, m̂ is a better estimator than X. ■

Large-Sample Behavior of the MLE

Although the principle of maximum likelihood estimation has considerable intui-

tive appeal, the following proposition provides additional rationale for the use

of mle’s. (See Section 7.4 for more details.)

PROPOSITION Under very general conditions on the joint distribution of the sample, when

the sample size is large, the maximum likelihood estimator of any parameter

y is close to y (consistency), is approximately unbiased [EðŷÞ 	 y], and has
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variance that is nearly as small as can be achieved by any unbiased estimator.

Stated another way, the mle ŷ is approximately the MVUE of y.

Because of this result and the fact that calculus-based techniques can usually be

used to derive the mle’s (although often numerical methods, such as Newton’s

method, are necessary), maximum likelihood estimation is the most widely used

estimation technique among statisticians. Many of the estimators used in the

remainder of the book are mle’s. Obtaining an mle, however, does require that

the underlying distribution be specified.

Note that there is no similar result formethod ofmoments estimators. In general,

if there is a choice between maximum likelihood and moment estimators, the mle is

preferable. For example, the maximum likelihood method applied to estimating

gamma distribution parameters tends to give better estimates (closer to the parameter

values) than does the method of moments, so the extra computation is worth the price.

Some Complications

Sometimes calculus cannot be used to obtain mle’s.

Example 7.23 Suppose the waiting time for a bus is uniformly distributed on [0, y] and the results
x1, . . ., xn of a random sample from this distribution have been observed. Since

f(x; y) ¼ 1/y for 0 � x � y and 0 otherwise,

f ðx1; . . . ; xn; yÞ ¼ 1=yn 0 � x1 � y; . . . ; 0 � xn � y
0 otherwise

�

As long as max(xi) � y, the likelihood is 1/yn, which is positive, but as soon as

y < max(xi), the likelihood drops to 0. This is illustrated in Figure 7.7. Calculus will
not work because the maximum of the likelihood occurs at a point of discontinuity,

but the figure shows that ŷ ¼ max xið Þ. Thus if my waiting times are 2.3, 3.7, 1.5, .4,

and 3.2, then the mle is ŷ ¼ 3:7. Note that the mle is biased (see Example 7.5).

Example 7.24 A method that is often used to estimate the size of a wildlife population involves

performing a capture/recapture experiment. In this experiment, an initial sample of

M animals is captured, each of these animals is tagged, and the animals are then

returned to the population. After allowing enough time for the tagged individuals to

mix into the population, another sample of size n is captured. With X ¼ the number

of tagged animals in the second sample, the objective is to use the observed x to

estimate the population size N.

Likelihood

max(xi)

Figure 7.7 The likelihood function for Example 7.23 ■
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The parameter of interest is y ¼ N, which can assume only integer values, so

even after determining the likelihood function (pmf of X here), using calculus to

obtain N would present difficulties. If we think of a success as a previously tagged

animal being recaptured, then sampling is without replacement from a population

containingM successes and N –M failures, so that X is a hypergeometric rv and the

likelihood function is

pðx;NÞ ¼ hðx; n;M;NÞ ¼
M
x

� �
� N �M

n� x

� �

N
n

� �

The integer-valued nature of N notwithstanding, it would be difficult to take the

derivative of p(x; N). However, let’s consider the ratio of p(x; N) to p(x; N – 1):

pðx;NÞ
pðx;N � 1Þ ¼

ðN �MÞ � ðN � nÞ
NðN �M � nþ xÞ

This ratio is larger than 1 if and only if (iff) N < Mn/x. The value of N for which

p(x; N) is maximized is therefore the largest integer less than Mn/x. If we use

standard mathematical notation [r] for the largest integer less than or equal to r,
the mle of N is N̂ ¼ ½Mn=x�. As an illustration, if M ¼ 200 fish are taken from a

lake and tagged, subsequently n ¼ 100 fish are recaptured, and among the 100

there are x ¼ 11 tagged fish, then N̂ ¼ ½ð200Þð100Þ=11� ¼ ½1818:18� ¼ 1818. The

estimate is actually rather intuitive; x/n is the proportion of the recaptured sample

that is tagged, whereasM/N is the proportion of the entire population that is tagged.

The estimate is obtained by equating these two proportions (estimating a population

proportion by a sample proportion). ■

Suppose X1, X2, . . ., Xn is a random sample from a pdf f(x; y) that is

symmetric about y, but the investigator is unsure of the form of the f function. It
is then desirable to use an estimator ŷ that is robust, that is, one that performs well

for a wide variety of underlying pdf’s. One such estimator is a trimmed mean. In

recent years, statisticians have proposed another type of estimator, called an M-
estimator, based on a generalization of maximum likelihood estimation. Instead of

maximizing the log likelihood Sln[f(x; y)] for a specified f, one seeks to maximize

Sr(xi; y). The “objective function” r is selected to yield an estimator with good

robustness properties. The book by David Hoaglin et al. (see the bibliography)

contains a good exposition on this subject.

Exercises Section 7.2 (21–31)

21. A random sample of n bike helmets manufactured

by a company is selected. Let X ¼ the number

among the n that are flawed, and let p ¼ P
(flawed). Assume that only X is observed, rather

than the sequence of S’s and F’s.
a. Derive the maximum likelihood estimator of p.

If n ¼ 20 and x ¼ 3, what is the estimate?

b. Is the estimator of part (a) unbiased?

c. If n ¼ 20 and x ¼ 3, what is the mle of the

probability (1 – p)5 that none of the next five

helmets examined is flawed?

22. Let X have a Weibull distribution with parameters

a and b, so

EðXÞ ¼ b � Gð1þ 1=aÞ
VðXÞ ¼ b2fGð1þ 2=aÞ � ½Gð1þ 1=aÞ�2g
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a. Based on a random sample X1, . . ., Xn, write

equations for the method of moments estimators

of b and a. Show that, once the estimate of a has
been obtained, the estimate of b can be found

from a table of the gamma function and that the

estimate of a is the solution to a complicated

equation involving the gamma function.

b. If n ¼ 20, �x ¼ 28:0, and
P

x2i ¼ 16; 500;
compute the estimates. [Hint: [G(1.2)]2/G(1.4)
¼ .95.]

23. Let X denote the proportion of allotted time that a

randomly selected student spends working on a

certain aptitude test. Suppose the pdf of X is

f ðx; yÞ ¼ ðyþ 1Þxy 0 � x � 1

0 otherwise

�

where �1 < y. A random sample of ten students

yields data x1 ¼ .92, x2 ¼ .79, x3 ¼ .90,

x4 ¼ .65, x5 ¼ .86, x6 ¼ .47, x7 ¼ .73, x8 ¼ .97,

x9 ¼ .94, x10 ¼ .77.

a. Use the method of moments to obtain an esti-

mator of y, and then compute the estimate for

this data.

b. Obtain the maximum likelihood estimator of y,
and then compute the estimate for the given

data.

24. Two different computer systems are monitored for

a total of n weeks. Let Xi denote the number of

breakdowns of the first system during the ith week,
and suppose the Xi’s are independent and drawn

from a Poisson distribution with parameter l1. Sim-

ilarly, let Yi denote the number of breakdowns of

the second system during the ith week, and assume

independence with each Yi Poisson with parameter

l2. Derive the mle’s of l1, l2, and l1 – l2. [Hint:
Using independence, write the joint pmf (likeli-

hood) of the Xi’s and Yi’s together.]

25. Refer to Exercise 21. Instead of selecting n ¼ 20

helmets to examine, suppose we examine helmets

in succession until we have found r ¼ 3 flawed

ones. If the 20th helmet is the third flawed one (so

that the number of helmets examined that were not

flawed is x ¼ 17), what is the mle of p? Is this the
same as the estimate in Exercise 21? Why or why

not? Is it the same as the estimate computed from

the unbiased estimator of Exercise 17?

26. Six Pepperidge Farm bagels were weighed, yield-

ing the following data (grams):

117.6 109.5 111.6 109.2 119.1 110.8

(Note: 4 oz ¼ 113.4 g)

a. Assuming that the six bagels are a random

sample and the weight is normally distributed,

estimate the true average weight and standard

deviation of the weight using maximum likeli-

hood.

b. Again assuming a normal distribution, estimate

the weight below which 95% of all bagels will

have their weights. [Hint: What is the 95th

percentile in terms of m and s? Now use the

invariance principle.]

c. Suppose we choose another bagel and weigh it.
Let X ¼ weight of the bagel. Use the given

data to obtain the mle of P(X � 113.4). (Hint:
P(X � 113.4) ¼ F[(113.4 – m)/s)].)

27. Suppose a measurement is made on some physical

characteristic whose value is known, and let X
denote the resulting measurement error. For an

unbiased measuring instrument or technique, the

mean value of X is 0. Assume that any particular

measurement error is normally distributed with

variance s2. Let X1, . . . Xn be a random sample

of measurement errors.

a. Obtain the method of moments estimator of s2.
b. Obtain the maximum likelihood estimator

of s2.

28. Let X1, . . ., Xn be a random sample from a gamma

distribution with parameters a and b.
a. Derive the equations whose solution yields the

maximum likelihood estimators of a and b. Do
you think they can be solved explicitly?

b. Show that the mle of m ¼ ab is m̂ ¼ X.

29. Let X1, X2, . . ., Xn represent a random sample from

the Rayleigh distribution with density function

given in Exercise 15. Determine

a. The maximum likelihood estimator of y and

then calculate the estimate for the vibratory

stress data given in that exercise. Is this estima-

tor the same as the unbiased estimator sug-

gested in Exercise 15?

b. The mle of the median of the vibratory stress

distribution. [Hint: First express the median in

terms of y.]

30. Consider a random sample X1, X2, . . ., Xn from the

shifted exponential pdf

f ðx; l; yÞ ¼ le�lðx�yÞ x � y
0 otherwise

�

Taking y ¼ 0 gives the pdf of the exponential

distribution considered previously (with positive

density to the right of zero). An example of the
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shifted exponential distribution appeared in

Example 4.5, in which the variable of interest

was time headway in traffic flow and y ¼ .5 was

the minimum possible time headway.

a. Obtain the maximum likelihood estimators of

y and l.
b. If n ¼ 10 time headway observations are

made, resulting in the values 3.11, .64, 2.55,

2.20, 5.44, 3.42, 10.39, 8.93, 17.82, and 1.30,

calculate the estimates of y and l.

31. At time t ¼ 0, 20 identical components are

put on test. The lifetime distribution of each is

exponential with parameter l. The experimenter

then leaves the test facility unmonitored. On

his return 24 h later, the experimenter immedi-

ately terminates the test after noticing that

y ¼ 15 of the 20 components are still in operation

(so 5 have failed). Derive the mle of l.
[Hint: Let Y ¼ the number that survive 24 h.

Then Y ~ Bin(n, p). What is the mle of p?
Now notice that p ¼ P(Xi � 24), where Xi is

exponentially distributed. This relates l to p, so
the former can be estimated once the latter

has been.]

7.3 Sufficiency
An investigator who wishes to make an inference about some parameter y will base
conclusions on the value of one or more statistics – the sample mean X, the sample

variance S2, the sample range Yn � Y1, and so on. Intuitively, some statistics will

contain more information about y than will others. Sufficiency, the topic of this

section, will help us decide which functions of the data are most informative for

making inferences.

As a first point, we note that a statistic T ¼ t(X1, . . ., Xn) will not be useful for

drawing conclusions about y unless the distribution of T depends on y. Consider, for
example, a random sample of size n ¼ 2 from a normal distribution with mean m
and variance s2, and let T ¼ X1 � X2. Then T has a normal distribution with mean

0 and variance 2s2, which does not depend on m. Thus this statistic cannot be used
as a basis for drawing any conclusions about m, although it certainly does carry

information about the variance s2.

The relevance of this observation to sufficiency is as follows. Suppose an

investigator is given the value of some statistic T, and then examines the condi-
tional distribution of the sample X1, X2, . . ., Xn given the value of the statistic – for

example, the conditional distribution given that X ¼ 28:7. If this conditional

distribution does not depend upon y, then it can be concluded that there is no

additional information about y in the data over and above what is provided by T.
In this sense, for purposes of making inferences about y, it is sufficient to know

the value of T, which contains all the information in the data relevant to y.

Example 7.25 An investigation of major defects on new vehicles of a certain type involved

selecting a random sample of n ¼ 3 vehicles and determining for each one the

value of X ¼ the number of major defects. This resulted in observations x1 ¼ 1,

x2 ¼ 0, and x3 ¼ 3. You, as a consulting statistician, have been provided with a

description of the experiment, from which it is reasonable to assume that X has a

Poisson distribution, and told only that the total number of defects for the three

sampled vehicles was four.

Knowing that T ¼ ∑Xi ¼ 4, would there be any additional advantage in

having the observed values of the individual Xi’s when making an inference

about the Poisson parameter l? Or rather is it the case that the statistic T contains

all relevant information about l in the data? To address this issue, consider the

conditional distribution of X1, X2, X3 given that∑Xi ¼ 4. First of all, there are only
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a few possible (x1, x2, x3) triples for which x1 + x2 + x3 ¼ 4. For example, (0, 4, 0)

is a possibility, as are (2, 2, 0) and (1, 0, 3), but not (1, 2, 3) or (5, 0, 2). That is,

PðX1 ¼ x1;X2 ¼ x2;X3 ¼ x3j
P3
i¼1

Xi ¼ 4Þ ¼ 0 unless x1 þ x2 þ x3 ¼ 4

Now consider the triple (2, 1, 1), which is consistent with ∑Xi ¼ 4. If we let

A denote the event that X1 ¼ 2, X2 ¼ 1, and X3 ¼ 1 and B denote the event that

∑Xi ¼ 4, then the event A implies the event B (i.e., A is contained in B), so the

intersection of the two events is just the smaller event A. Thus

PðX1 ¼ 2;X2 ¼ 1;X3 ¼ 1jP3
i¼1

Xi ¼ 4Þ ¼ PðAjBÞ ¼ PðA \ BÞ
PðBÞ

¼ PðX1 ¼ 2;X2 ¼ 1;X3 ¼ 1Þ
P SXi ¼ 4ð Þ

A moment generating function argument shows that∑Xi has a Poisson distribution

with parameter 3l. Thus the desired conditional probability is

e�l � l2
2!

� e
�l � l1
1!

� e
�l � l1
1!

e�3l � 3lð Þ4
4!

¼ 4!

34 � 2! ¼
4

27

Similarly,

PðX1 ¼ 1;X2 ¼ 0;X3 ¼ 3jP3
i¼1

Xi ¼ 4Þ ¼ 4!

34 � 3! ¼
4

81

The complete conditional distribution is as follows:

PðX1 ¼ x1;X2 ¼ x2;X3 ¼ x3j
P3
i¼1

Xi ¼ 4Þ

¼

6

81
ðx1; x2; x3Þ ¼ ð2; 2; 0Þ; ð2; 0; 2Þ; ð0; 2; 2Þ

12

81
ðx1; x2; x3Þ ¼ ð2; 1; 1Þ; ð1; 2; 1Þ; ð1; 1; 2Þ

1

81
ðx1; x2; x3Þ ¼ ð4; 0; 0Þ; ð0; 4; 0Þ; ð0; 0; 4Þ

4

81
ðx1; x2; x3Þ ¼ ð3; 1; 0Þ; ð1; 3; 0Þ; ð3; 0; 1Þ; ð1; 0; 3Þ; ð0; 1; 3Þ; ð0; 3; 1Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

This conditional distribution does not involve l. Thus once the value of the statistic
∑Xi has been provided, there is no additional information about l in the individual

observations.

To put this another way, think of obtaining the data from the experiment in

two stages:

1. Observe the value of T ¼ X1 + X2 + X3 from a Poisson distribution with

parameter 3l.
2. Having observed T ¼ 4, now obtain the individual xi’s from the conditional

distribution
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PðX1 ¼ x1;X2 ¼ x2;X3 ¼ x3j
P3
i¼1

Xi ¼ 4Þ

Since the conditional distribution in step 2 does not involve l, there is no additional
information about l resulting from the second stage of the data generation process.

This argument holds more generally for any sample size n and any value t other
than 4 (e.g., the total number of defects among ten randomly selected vehicles

might be ∑Xi ¼ 16). Once the value of ∑Xi is known, there is no further informa-

tion in the data about the Poisson parameter. ■

DEFINITION A statistic T ¼ t(X1, . . ., Xn) is said to be sufficient for making inferences

about a parameter y if the joint distribution of X1, X2, . . ., Xn given that T ¼ t
does not depend upon y for every possible value t of the statistic T.

The notion of sufficiency formalizes the idea that a statistic T contains all relevant

information about y. Once the value of T for the given data is available, it is of no

benefit to know anything else about the sample.

The Factorization Theorem

How can a sufficient statistic be identified? It may seem as though one would have

to select a statistic, determine the conditional distribution of the Xi’s given any

particular value of the statistic, and keep doing this until hitting paydirt by finding

one that satisfies the defining condition. This would be terribly time-consuming,

and when the Xi’s are continuous there are additional technical difficulties in

obtaining the relevant conditional distribution. Fortunately, the next result provides

a relatively straightforward way of proceeding.

THE NEYMAN
FACTORI-
ZATION
THEOREM

Let f(x1, x2, . . ., xn; y) denote the joint pmf or pdf of X1, X2, . . ., Xn. Then

T ¼ t(X1, . . ., Xn) is a sufficient statistic for y if and only if the joint pmf or

pdf can be represented as a product of two factors in which the first factor

involves y and the data only through t(x1, . . ., xn) whereas the second factor

involves x1, . . ., xn but does not depend on y:

f x1; x2; :::; xn; yð Þ ¼ g t x1; :::; xnð Þ; yð Þ � h x1; :::; xnð Þ

Before sketching a proof of this theorem, we consider several examples.

Example 7.26 Let’s generalize the previous example by considering a random sample X1, X2, . . .,
Xn from a Poisson distribution with parameter l, for example, the numbers of

blemishes on n independently selected DVD’s or the numbers of errors in n batches
of invoices where each batch consists of 200 invoices. The joint pmf of these

variables is

7.3 Sufficiency 363



f ðx1; . . . ; xn; lÞ ¼ e�llx1

x1!
� e

�llx2

x2!
� � � � � e

�llxn

xn!
¼ e�nl � lx1þx2þ���þxn

x1! � x2! � � � � � xn!
¼ e�nl � lSxi� � 1

x1! � x2! � � � � � xn!
� �

The factor inside the first set of parentheses involves the parameter l and the

data only through ∑xi, whereas the factor inside the second set of parentheses

involves the data but not l. So we have the desired factorization, and the sufficient

statistic is T ¼ ∑Xi as we previously ascertained directly from the definition of

sufficiency. ■

A sufficient statistic is not unique; any one-to-one function of a sufficient

statistic is itself sufficient. In the Poisson example, the sample mean

X ¼ ð1=nÞPXi is a one-to-one function of ∑Xi (knowing the value of the sum

of the n observations is equivalent to knowing their mean), so the sample mean is

also a sufficient statistic.

Example 7.27 Suppose that the waiting time for a bus on a weekday morning is uniformly

distributed on the interval from 0 to y, and consider a random sample X1, . . ., Xn

of waiting times (i.e., times on n independently selected mornings). The joint pdf of

these times is

f ðx1; . . . ; xn; yÞ ¼
1

y
� 1
y
� � � � � 1

y
¼ 1

yn
0 � x1 � y; . . . ; 0 � xn � y

0 otherwise

8<
:

To obtain the desired factorization, we introduce notation for an indicator function

of an event A: I(A) ¼ 1 if (x1, x2, . . ., xn) lies in A and I(A) ¼ 0 otherwise. Now let

A ¼ x1; x2; :::; xnð Þ : 0 � x1 � y; 0 � x2 � y; :::; 0 � xn � yf g
That is, A is the indicator for the event that all xi’s are between 0 and y. But all n of
the xi’s will be between 0 and y if and only if the smallest of the xi’s is at least 0 and
the largest is at most y. Thus

IðAÞ ¼ I 0 � minfx1; :::; xngð Þ � I max x1; :::; xnf g � ygð Þ
We can now use this indicator function notation to write a one-line expression for

the joint pdf:

f ðx1; x2; . . . ; xn; yÞ ¼ 1

yn
� Iðmaxfx1; . . . ; xng � yÞ

� 	
� Ið0 � minfx1; . . . ; xngÞ

The factor inside the square brackets involves y and the xi’s only through the

function t(x1, . . ., xn) ¼ max{x1, . . ., xn}. Voila, we have our desired factorization,
and the sufficient statistic for the uniform parameter y is T ¼ max{X1, . . ., Xn}, the

largest order statistic. All the information about y in this uniform random sample is

contained in the largest of the n observations. This result is much more difficult to

obtain directly from the definition of sufficiency. ■

Proof of the Factorization Theorem A general proof when the Xi’s

constitute a random sample from a continuous distribution is fraught with technical

details that are beyond the level of our text. So we content ourselves with a proof in
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the discrete case. For the sake of concise notation, denote X1, X2, . . ., Xn by X and

x1, x2, . . ., xn by x.
Suppose first that T ¼ t(x) is sufficient, so that P(X ¼ x | T ¼ t) does not

depend upon y. Focus on a value t for which t(x) ¼ t (e.g., x ¼ 3, 0, 1, t(x) ¼ ∑xi,
so t ¼ 4). The event that X ¼ x is then identical to the event that both X ¼ x and

T ¼ t because the former equality implies the latter one. Thus

f x; yð Þ ¼ P X; yð Þ ¼ P X ¼ x; T ¼ t; yð Þ
¼ P X ¼ x T ¼ t; yjð Þ � P T ¼ t; yð Þ ¼ P X ¼ x T ¼ tjð Þ � P T ¼ t; yð Þ

Since the first factor in this latter product does not involve y and the second one

involves the data only through t, we have our desired factorization.

Now let’s go the other way: assume a factorization, and show that T is

sufficient, i.e., that the conditional probability that X ¼ x given that T ¼ t does
not involve y.

PðX¼ xjT¼ t;yÞ¼ PðX¼ x;T¼ t;yÞ
PðT¼ t;yÞ ¼PðX¼ x;yÞ

PðT¼ t;yÞ
¼ gðt;yÞ �hðxÞP

u:tðuÞ¼t

PðX¼ u;yÞ¼
gðt;yÞ �hðxÞP

u:tðuÞ¼t

g½tðu;yÞ� �hðuÞ¼
hðxÞP

u:tðuÞ¼t

hðuÞ

Sure enough, this latter ratio does not involve y. ■

Jointly Sufficient Statistics

When the joint pmf or pdf of the data involves a single unknown parameter y, there is
frequently a single statistic (single function of the data) that is sufficient. However,

when there are several unknown parameters—for example, the mean m and standard

deviation s of a normal distribution, or the shape parameter a and scale parameter b
of a gamma distribution—we must expand our notion of sufficiency.

DEFINITION Suppose the joint pmf or pdf of the data involves k unknown parameters y1,
y2, . . ., yk. The m statistics T1 ¼ t1(X1, . . ., Xn), T2 ¼ t2(X1, . . ., Xn), . . .,

Tm ¼ tm(X1, . . ., Xn) are said to be jointly sufficient for the parameters if the

conditional distribution of the Xi’s given that T1 ¼ t1, T2 ¼ t2, . . ., Tm ¼ tm
does not depend on any of the unknown parameters, and this is true for all

possible values t1, t2, . . ., tm of the statistics.

Example 7.28 Consider a random sample of size n ¼ 3 from a continuous distribution, and let T1, T2,
andT3 be the three order statistics – that is,T1 ¼ the smallest of the threeXi’s,T2 ¼ the

second smallest Xi, and T3 ¼ the largest Xi (these order statistics were previously

denoted by Y1, Y2, and Y3.). Then for any values t1, t2, and t3 satisfying t1 < t2 < t3,
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P X1 ¼ x1;X2 ¼ x2;X3 ¼ x3jT1 ¼ t1; T2 ¼ t2; T3 ¼ t3ð Þ

¼
1

3!
x1; x2; x3 ¼ t1; t2; t3; t1; t3; t2; t2; t1; t3; t2; t3; t1; t3; t1; t2; t3; t2; t1

0 otherwise

8><
>:

For example, if the three ordered values are 21.4, 23.8, and 26.0, then the condi-

tional probability distribution of the three Xi’s places probability
1
6
on each of the 6

permutations of these three numbers (23.8, 21.4, 26.0, and so on). This conditional

distribution clearly does not involve any unknown parameters.

Generalizing this argument to a sample of size n, we see that for a random

sample from a continuous distribution, the order statistics are jointly sufficient for

y1, y2, . . ., yk regardless of whether k ¼ 1 (e.g., the exponential distribution has a

single parameter) or 2 (the normal distribution) or even k > 2. ■

The factorization theorem extends to the case of jointly sufficient statistics:

T1, T2, . . ., Tm are jointly sufficient for y1, y2, . . ., yk if and only if the joint pmf or

pdf of the Xi’s can be represented as a product of two factors, where the first

involves the yi’s and the data only through t1, t2, . . ., tm and the second does not

involve the yi’s.

Example 7.29 Let X1, . . ., Xn be a random sample from a normal distribution with mean m and

variance s2. The joint pdf is

f ðx1; . . . ; xn; m;s2Þ ¼
Yn
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2ps2

p e�ðxi�mÞ2=ð2s2Þ

¼ 1

sn
� e� Sx2i �2mSxiþnm2ð Þ=ð2s2Þ

� 	
� 1

2p

� �n=2

This factorization shows that the two statistics SXi and SX2
i are jointly sufficient for

the two parameters m and s2. Since SðXi � XÞ2 ¼ SX2
i � n Xð Þ2 there is a one-to-

one correspondence between the two sufficient statistics and the statistics X
and SðXi � XÞ2; that is, values of the two original sufficient statistics uniquely
determine values of the latter two statistics, and vice-versa. This implies that the

latter two statistics are also jointly sufficient, which in turn implies that the sample

mean and sample variance (or sample standard deviation) are jointly sufficient

statistics. The sample mean and sample variance encapsulate all the information

about m and s2 that is contained in the sample data. ■

Minimal Sufficiency

When X1, . . ., Xn constitute a random sample from a normal distribution, the n order
statistics Y1, . . ., Yn are jointly sufficient for m and s2, and the sample mean and

sample variance are also jointly sufficient. Both the order statistics and the pair

ðX; S2Þ reduce the data without any information loss, but the sample mean and

variance represent a greater reduction. In general, we would like the greatest

possible reduction without information loss. A minimal (possibly jointly) suffi-
cient statistic is a function of every other sufficient statistic. That is, given the

value(s) of any other sufficient statistic(s), the value(s) of the minimal sufficient

statistic(s) can be calculated. The minimal sufficient statistic is the sufficient
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statistic having the smallest dimensionality, and thus represents the greatest possi-

ble reduction of the data without any information loss.

A general discussion of minimal sufficiency is beyond the scope of our text.

In the case of a normal distribution with values of both m and s2 unknown, it can be
shown that the sample mean and sample variance are jointly minimal sufficient (so

the same is true of
P

Xi and
P

X2
i ). It is intuitively reasonable that because there

are two unknown parameters, there should be a pair of sufficient statistics. It is

indeed often the case that the number of the (jointly) sufficient statistic(s) matches

the number of unknown parameters. But this is not always true. Consider a random

sample X1, . . ., Xn from the pdf f(x;y) ¼ 1/{p[1 + (x � y)]2} for � 1 < x < 1,

i.e., from a Cauchy distribution with location parameter y. The graph of this pdf

is bell shaped and centered at y, but its tails decrease much more slowly than those

of a normal density curve. Because the Cauchy distribution is continuous, the order

statistics are jointly sufficient for y. It would seem, though, that a single sufficient

statistic (one-dimensional) could be found for the single parameter. Unfortunately

this is not the case; it can be shown that the order statistics are minimal sufficient!
So going beyond the order statistics to any single function of the Xi’s as a point

estimator of y entails a loss of information from the original data.

Improving an Estimator

Because a sufficient statistic contains all the information the data has to offer

about the value of y, it is reasonable that an estimator of y or any function of y
should depend on the data only through the sufficient statistic. A general result

due to Rao and Blackwell shows how to start with an unbiased statistic that is

not a function of sufficient statistics and create an improved estimator that is

sufficient.

THEOREM Suppose that the joint distribution of X1, . . ., Xn depends on some

unknown parameter y and that T is sufficient for y. Consider estimating

h(y), a specified function of y. If U is an unbiased statistic for estimating

h(y) that does not involve T, then the estimator U* ¼ E(U | T) is also

unbiased for h(y) and has variance no greater than the original unbiased

estimator U.

Proof First of all, we must show that U* is indeed an estimator—that it is a

function of the Xi’s which does not depend on y. This follows because, given that T
is sufficient, the distribution of U conditional on T does not involve y, so the

expected value calculated from the conditional distribution will of course not

involve y. The fact that U* has smaller variance than U is a consequence of a

conditional expectation-conditional variance formula for V(U) introduced in Sec-

tion 5.3:

VðUÞ ¼ V E UjTð Þ½ � þ E V UjTð Þ½ � ¼ V U�ð Þ þ E V UjTð Þ½ �

Because V(U | T), being a variance, is positive, it follows that V(U) � V(U*) as
desired. ■
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Example 7.30 Suppose that the number of major defects on a randomly selected new vehicle of a

certain type has a Poisson distribution with parameter l, Consider estimating e�l,

the probability that a vehicle has no such defects, based on a random sample of n
vehicles. Let’s start with the estimator U ¼ I(X1 ¼ 0), the indicator function of the

event that the first vehicle in the sample has no defects. That is,

U ¼ 1 if X1 ¼ 0

0 if X1 > 0

�

Then

EðUÞ ¼ 1 � P X1 ¼ 0ð Þ þ 0 � P X1 > 0ð Þ ¼ P X1 ¼ 0ð Þ ¼ e�l � l0=0! ¼ e�l

Our estimator is therefore unbiased for estimating the probability of no defects. The

sufficient statistic here is T ¼ ∑Xi, so of course the estimator U is not a function of

T. The improved estimator is U* ¼ E(U | ∑Xi) ¼ P(X1 ¼ 0 | ∑Xi). Let’s consider

P(X1 ¼ 0 | ∑Xi ¼ t) where t is some non-negative integer. The event that X1 ¼ 0

and ∑Xi ¼ t is identical to the event that the first vehicle has no defects and the

total number of defects on the last n�1 vehicles is t. Thus

PðX1 ¼ 0 jSn
i¼1Xi ¼ tÞ ¼

P X1 ¼ 0f g \ Pn
i¼1

Xi ¼ t

� � �

P
Pn
i¼1

Xi ¼ t

� 	

¼
P X1 ¼ 0f g \ Pn

i¼2

Xi ¼ t

� � �

P
Pn
i¼1

Xi ¼ t

� 	

A moment generating function argument shows that the sum of all n Xi’s has a

Poisson distribution with parameter nl and the sum of the last n � 1 Xi’s has a

Poisson distribution with parameter (n � 1)l. Furthermore, X1 is independent of

the other n � 1 Xi’s so it is independent of their sum, from which

PðX1 ¼ 0 jSn
i¼1Xi ¼ tÞ ¼

e�ll0

0!
� e

�ðn�1Þl½ðn� 1Þl�t
t!

e�nlðnlÞt
t!

¼ n� 1

n

� �t

The improved unbiased estimator is then U* ¼ (1�1/n)T. If, for example, there are a

total of 15 defects among 10 randomly selected vehicles, then the estimate is

ð1� 1
10
Þ15 ¼ :206. For this sample, l̂ ¼ �x ¼ 1:5, so the maximum likelihood esti-

mate of e�l is e�1.5 ¼ .223. Here as in some other situations the principles of

unbiasedness and maximum likelihood are in conflict. However, if n is large, the

improved estimate is ð1� 1=nÞt ¼ ½ð1� 1=nÞn��x 	 e��x, which is the mle. That is,

the unbiased and maximum likelihood estimators are “asymptotically equivalent.”■

We have emphasized that in general there will not be a unique sufficient

statistic. Suppose there are two different sufficient statistics T1 and T2 such that the
first one is not a one-to-one function of the second (e.g., we are not considering

T1 ¼ ∑Xi and T2 ¼ X). Then it would be distressing if we started with an unbiased
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estimator U and found that E(U | T1) 6¼ E(U | T2), so our improved estimator

depended on which sufficient statistic we used. Fortunately there are general

conditions under which, starting with a minimal sufficient statistic T, the improved

estimator is the MVUE (minimum variance unbiased estimator). That is, the new

estimator is unbiased and has smaller variance than any other unbiased estimator.

Please consult one of the chapter references for more detail.

Further Comments

Maximum likelihood is by far the most popular method for obtaining point esti-

mates, so it would be disappointing if maximum likelihood estimators did not make

full use of sample information. Fortunately the mle’s do not suffer from this defect.

If T1, . . ., Tm are jointly sufficient statistics for parameters y1, . . ., yk, then the joint
pmf or pdf factors as follows:

f x1; :::; xn; y1; :::; ykð Þ ¼ g t1; :::; tm; y1; :::; ykð Þ � h x1; :::; xnð Þ

The maximum likelihood estimates result from maximizing f(�) with respect to the

yi’s. Because the h(�) factor does not involve the parameters, this is equivalent to

maximizing the g(�) factor with respect to the yi’s. The resulting ŷi’s will involve
the data only through the ti’s. Thus it is always possible to find a maximum

likelihood estimator that is a function of just the sufficient statistic(s). There are

contrived examples of situations where the mle is not unique, in which case an mle

that is not a function of the sufficient statistics can be constructed—but there is also

one that is a function of the sufficient statistics.

The concept of sufficiency is very compelling when an investigator is sure

the underlying distribution that generated the data is a member of some particular

family (normal, exponential, etc.). However, two different families of distributions

might each furnish plausible models for the data in a particular application, and yet

the sufficient statistics for these two families might be different (an analogous

comment applies to maximum likelihood estimation). For example, there are data

sets for which a gamma probability plot suggests that a member of the gamma

family would give a reasonable model and also a lognormal probability plot

(normal probability plot of the logs of the observations) indicates that lognormality

is plausible. Yet the jointly sufficient statistics for the parameters of the gamma

family are not the same as those for the parameters of the lognormal family. When

estimating some parameter y in such situations (e.g., the mean m or median ~m), one
would look for a robust estimator that performs well for a wide variety of underly-

ing distributions, as discussed in Section 7.1. Please consult a more advanced

source for additional information.

Exercises Section 7.3 (32–41)

32. The long run proportion of vehicles that pass a

certain emissions test is p. Suppose that three

vehicles are independently selected for testing.

Let Xi ¼ 1 if the ith vehicle passes the test and

Xi ¼ 0 otherwise (i ¼ 1, 2, 3), and let X ¼ X1 +

X2 + X3. Use the definition of sufficiency to

show that X is sufficient for p by obtaining the

conditional distribution of the Xi’s given that

X ¼ x for each possible value x. Then generalize
by giving an analogous argument for the case of

n vehicles.
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33. Components of a certain type are shipped in

batches of size k. Suppose that whether or not

any particular component is satisfactory is inde-

pendent of the condition of any other component,

and that the long run proportion of satisfactory

components is p. Consider n batches, and let Xi

denote the number of satisfactory components in

the ith batch (i ¼ 1, 2, . . ., n). Statistician A is

provided with the values of all the Xi’s, whereas

statistician B is given only the value of X ¼ ∑Xi.

Use a conditional probability argument to decide

whether statistician A has more information

about p than does statistician B.

34. Let X1, . . ., Xn be a random sample of component

lifetimes from an exponential distribution with

parameter l. Use the factorization theorem to

show that ∑Xi is a sufficient statistic for l.

35. Identify a pair of jointly sufficient statistics for

the two parameters of a gamma distribution

based on a random sample of size n from that

distribution.

36. Suppose waiting time for delivery of an item is

uniform on the interval from y1 to y2 (so f(x; y1, y2)
¼ 1/(y2 � y1) for y1 < x < y2 and is 0 other-

wise). Consider a random sample of n waiting

times, and use the factorization theorem to show

that min(Xi), max(Xi) is a pair of jointly sufficient

statistics for y1 and y2. [Hint: Introduce an appro-
priate indicator function as we did in Example

7.27.]

37. For y > 0 consider a random sample from a

uniform distribution on the interval from y to

2y (pdf 1/y for y < x < 2y), and use the factori-

zation theorem to determine a sufficient statistic

for y.

38. Suppose that survival time X has a lognormal

distribution with parameters m and s (which are

the mean and standard deviation of ln(X), not of
X itself). Are∑Xi and

P
X2
i jointly sufficient for

the two parameters? If not, what is a pair of

jointly sufficient statistics?

39. The probability that any particular component of

a certain type works in a satisfactory manner is p.
If n of these components are independently

selected, then the statistic X, the number among

the selected components that perform in a satis-

factory manner, is sufficient for p. You must

purchase two of these components for a particu-

lar system. Obtain an unbiased statistic for the

probability that exactly one of your purchased

components will perform in a satisfactory man-

ner. [Hint: Start with the statistic U, the indicator
function of the event that exactly one of the first

two components in the sample of size n performs

as desired, and improve on it by conditioning on

the sufficient statistic.]

40. In Example 7.30, we started with U ¼ I(X1 ¼ 0)

and used a conditional expectation argument to

obtain an unbiased estimator of the zero-defect

probability based on the sufficient statistic. Con-

sider now starting with a different statistic: U ¼
[∑I(Xi ¼ 0)]/n. Show that the improved esti-

mator based on the sufficient statistic is identical

to the one obtained in the cited example.

[Hint: Use the general property E(Y + Z | T) ¼
E(Y | T) + E(Z | T).]

41. A particular quality characteristic of items pro-

duced using a certain process is known to be

normally distributed with mean m and standard

deviation 1. Let X denote the value of the charac-

teristic for a randomly selected item. An unbiased

estimator for the parameter y ¼ P(X � c), where
c is a critical threshold, is desired. The estimator

will be based on a random sample X1, . . ., Xn.

a. Obtain a sufficient statistic for m.
b. Consider the estimator ŷ ¼ IðX1 � cÞ. Obtain

an improved unbiased estimator based on the

sufficient statistic (it is actually the minimum

variance unbiased estimator). [Hint: You may

use the following facts: (1) The joint distribu-

tion of X1 and X is bivariate normal with means

m and m, respectively, variances 1 and 1/n,
respectively, and correlation r (which you

should determine). (2) If Y1 and Y2 have a

bivariate normal distribution, then the condi-

tional distribution of Y1 given that Y2 ¼ y2 is

normal with mean m1 + (rs1/s2)(y2 � m2) and
variance s21ð1� rÞ2.]
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7.4 Information and Efficiency
In this section we introduce the idea of Fisher information and two of its applica-

tions. The first application is to find the minimum possible variance for an unbiased

estimator. The second application is to show that the maximum likelihood estima-

tor is asymptotically unbiased and normal (that is, for large n it has expected value

approximately y and it has approximately a normal distribution) with the minimum

possible variance.

Here the notation f(x; y) will be used for a probability mass function or a

probability density function with unknown parameter y. The Fisher information is

intended to measure the precision in a single observation. Consider the random

variable U obtained by taking the partial derivative of ln[f(x;y)] with respect to y
and then replacing x by X: U ¼ @[ln[f(X;y)]/@y. For example, if the pdf is yxy�1

for 0 < x < 1 (y > 0), then @[ln(yxy�1)]/@y ¼ @[ln(y) + (y�1)ln(x)]/@y ¼
1/y + ln(x), so U ¼ ln(X) + 1/y.

DEFINITION The Fisher information I(u) in a single observation from a pmf or pdf
f(x;u) is the variance of the random variable U ¼ @[ln[f(X;y)]/@y :

IðyÞ ¼ V
@

@y
lnðf ðX; yÞÞ

� 	
ð7:7Þ

It may seem strange to differentiate the logarithm of the pmf or pdf, but

this is exactly what is often done in maximum likelihood estimation. In what

follows we will assume that f(x; y) is a pmf, but everything that we do will apply

also in the continuous case if appropriate assumptions are made. In particular, it is

important to assume that the set of possible x’s does not depend on the value of the

parameter.

When f(x; y) is a pmf, we know that 1 ¼ P
x f ðx; yÞ. Therefore, differentiat-

ing both sides with respect to y and using the fact that [ln(f)]0 ¼ f 0/f, we find that the
mean of U is 0:

0 ¼ @

@y

X
x

f ðx; yÞ ¼
X
x

@

@y
f ðx; yÞ

¼
X
x

@

@y
½ln f ðx; yÞ� f ðx; yÞ ¼ E½ @

@y
lnðf ðX; yÞÞ� ¼ EðUÞ

ð7:8Þ

This involves interchanging the order of differentiation and summation, which

requires certain technical assumptions if the set of possible x values is infinite.

We will omit those assumptions here and elsewhere in this section, but we

emphasize that switching differentiation and summation (or integration) is not

allowed if the set of possible values depends on y. For example, if the summation

were from –y to y there would be additional variability, and therefore terms for the

limits of summation would be needed.
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There is an alternative expression for I(y) that is sometimes easier to compute

than the variance in the definition:

IðyÞ ¼ �E
@2

@y2
lnð f ðX; yÞÞ

� 	
ð7:9Þ

This is a consequence of taking another derivative in (7.8):

0¼
X
x

@2

@y2
ln f ðx;yÞ½ �f ðx;yÞþ

X
x

@

@y
ln f ðx;yÞ½ � @

@y
½ln f ðx;yÞ�f ðx;yÞ

¼ E
@2

@y2
½ln f ðX;y�

� 
þE

@

@y
ln f ðX;y

� 	2( )
ð7:10Þ

To complete the derivation of (7.9), recall that U has mean 0, so its variance is

IðyÞ ¼ V
@

@y
½ln f ðX; yÞ�

� 
¼ E

@

@y
ln f ðX; yÞ

� 	2( )
¼ �E

@2

@y2
½ln f ðX; yÞ�

� 

where Equation (7.10) is used in the last step.

Example 7.31 Let X be a Bernoulli rv, so f(x; p) ¼ px(1–p)1–x, x ¼ 0, 1. Then

@

@p
lnðf ðX; pÞÞ ¼ @

@p
½Xln pþ ð1� XÞlnð1� pÞ� ¼ X

p
� 1� X

1� p
¼ X � p

pð1� pÞ ð7:11Þ

This has mean 0, in accord with Equation (7.8), because E(X) ¼ p. Computing the

variance of the partial derivative, we get the Fisher information:

IðpÞ ¼ V
@

@p
lnðf ðX; pÞÞ

� 	
¼ VðX � pÞ

½pð1� pÞ�2 ¼
VðXÞ

½pð1� pÞ�2 ¼
pð1� pÞ
½pð1� pÞ�2

¼ 1

pð1� pÞ ð7:12Þ

The alternative method uses Equation (7.9). Differentiating Equation (7.11) with

respect to p gives

@2

@p2
lnðf ðX; pÞÞ ¼ �X

p2
� 1� X

ð1� pÞ2 ð7:13Þ

Taking the negative of the expected value in Equation (7.13) gives the information

in an observation:

IðpÞ ¼ �E
@2

@p2
lnðf ðX; pÞÞ

� 	
¼ p

p2
þ 1� p

ð1� pÞ2 ¼
1

p
þ 1

ð1� pÞ ¼
1

pð1� pÞ ð7:14Þ
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Both methods yield the answer I(p) ¼ 1/[p(1 – p)], which says that the information

is the reciprocal of V(X). It is reasonable that the information is greatest when the

variance is smallest. ■

Information in a Random Sample

Now assume a random sample X1, X2, . . ., Xn from a distribution with pmf or pdf

f(x; y). Let f(X1, X2, . . ., Xn; y) ¼ f(X1; y) � f(X2; y) � � � � � f(Xn; y) be the likelihood
function. The Fisher information In(y) for the random sample is the variance of the

score function

@

@y
ln f ðX1;X2; . . . ;Xn; yÞ ¼ @

@y
ln½f ðX1; yÞ � f ðX2; yÞ � � � � � f ðXn; yÞ�

The log of a product is the sum of the logs, so the score function is a sum:

@

@y
ln f ðX1;X2; . . . ;Xn; yÞ ¼ @

@y
ln f ðX1; yÞ þ @

@y
ln f ðX2; yÞ þ � � �

þ @

@y
ln f ðXn; yÞ ð7:15Þ

This is a sum of terms for which the mean is zero, by Equation (7.8), and therefore

E
@

@y
ln f ðX1;X2; . . . ;Xn; yÞ

� 	
¼ 0 ð7:16Þ

The right-hand-side of Equation (7.15) is a sum of independent identically

distributed random variables, and each has variance I(y). Taking the variance of

both sides of Equation (7.15) gives the information In(y) in the random sample

InðyÞ ¼ V
@

@y
ln f ðX1;X2; . . . ;Xn; yÞ

� 	
¼ nV

@

@y
ln f ðX1; yÞ

� 	
¼ nIðyÞ: ð7:17Þ

Therefore, the Fisher information in a random sample is just n times the information

in a single observation. This should make sense intuitively, because it says that

twice as many observations yield twice as much information.

Example 7.32 Continuing with Example 7.31, let X1, X2, . . ., Xn be a random sample from the

Bernoulli distribution with f(x; p) ¼ px(1 – p)1–x, x ¼ 0, 1. Suppose the purpose is

to estimate the proportion p of drivers who are wearing seat belts. We saw that the

information in a single observation is I(p) ¼ 1/[p(1 – p)], and therefore the Fisher

information in the random sample is In(p) ¼ nI(p) ¼ n/[p(1 – p)]. ■

The Cramér-Rao Inequality

We will use the concept of Fisher information to show that if t(X1, X2, . . ., Xn) is an

unbiased estimator of y, then its minimum possible variance is the reciprocal of

In(y). Harald Cramér in Sweden and C. R. Rao in India independently derived this
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inequality during World War II, but R. A. Fisher had some notion of it 20 years

previously.

THEOREM
(CRAMÉR-
RAO
INEQUALITY)

Assume a random sample X1, X2, . . ., Xn from the distribution with pmf or pdf

f(x; y) such that the set of possible values does not depend on y. If the statistic
T ¼ t(X1, X2, . . ., Xn) is an unbiased estimator for the parameter y, then

VðTÞ � 1

V @
@y ½ln f ðX1; . . . ;Xn; yÞ�

� � ¼ 1

nIðyÞ ¼
1

InðyÞ

Proof The basic idea here is to consider the correlation r between T and the

score function, and the desired inequality will result from �1 � r � 1. If T ¼
t(X1, X2, . . ., Xn) is an unbiased estimator of y, then

y ¼ EðTÞ ¼
X

x1;...;xn

tðx1; . . . ; xnÞf ðx1; . . . ; xn; yÞ

Differentiating this with respect to y,

1 ¼ @

@y

X
x1;...;xn

tðx1; . . . ; xnÞf ðx1; . . . ; xn; yÞ ¼
X

x1;...;xn

tðx1; . . . ; xnÞ @

@y
f ðx1; . . . ; xn; yÞ

Multiplying and dividing the last term by the likelihood f(x1, . . ., xn;y) gives

1 ¼
X

x1;...;xn

tðx1; . . . ; xnÞ
@
@y f ðx1; . . . ; xn; yÞ
f ðx1; . . . ; xn; yÞ f ðx1; . . . ; xn; yÞ

which is equivalent to

1 ¼
X

x1;...;xn

tðx1; . . . ; xnÞ @

@y
½ln f ðx1; . . . ; xn; yÞ� f ðx1; . . . ; xn; yÞ

¼ E tðX1; :::;XnÞ @

@y
½lnf ðX1; :::;Xn; yÞ�

� 

Therefore, because of Equation 7.16, the covariance of T with the score function is

1:

1 ¼ Cov T;
@

@y
½ln f ðX1; . . . ;Xn; yÞ�

� 
ð7:18Þ

Recall from Section 5.2 that the correlation between two rv’s X and Y is rX,Y ¼
Cov(X, Y)/(sXsY), and that �1 � rX,Y � 1. Therefore,

Cov(X; YÞ2 ¼ r2X;Ys
2
Xs

2
Y � s2Xs

2
Y
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Apply this to Equation 7.18:

1 ¼ Cov T;
@

@y
½ln f ðX1; . . . ;Xn; yÞ�

� � �2

� VðTÞ � V @

@y
½ln f ðX1; . . . ;Xn; yÞ�

�  ð7:19Þ

Dividing both sides by the variance of the score function and using the fact that this

variance equals nI(y), we obtain the desired result. ■

Because the variance of T must be at least 1/nI(y), it is natural to call T an

efficient estimator of y if V(T) ¼ 1/[nI(y)].

DEFINITION Let T be an unbiased estimator of y. The ratio of the lower bound to the

variance of T is its efficiency. Then T is said to be an efficient estimator if

T achieves the Cramér–Rao lower bound (the efficiency is 1). An efficient

estimator is a minimum variance unbiased (MVUE) estimator, as discussed

in Section 7.1.

Example 7.33 Continuing with Example 7.32, let X1, X2, . . ., Xn be a random sample from the

Bernoulli distribution, where the purpose is to estimate the proportion p of drivers

who are wearing seat belts. We saw that the information in the sample is In(p) ¼
n/[p(1 – p)], and therefore the Cramér–Rao lower bound is 1/In(p) ¼ p(1 – p)/n. Let
T(X1, X2, . . ., Xn)¼ p̂ ¼ X ¼ P

Xi=n. Then EðTÞ ¼ EðPXiÞ=n ¼ np=n ¼ p so T is

unbiased, and VðTÞ ¼ VðPXiÞ=n2 ¼ npð1� pÞ=n2 ¼ pð1� pÞ=n. Because T is

unbiased and V(T) is equal to the lower bound, T has efficiency 1 and therefore it

is an efficient estimator. ■

Large Sample Properties of the MLE

As discussed in Section 7.2, the maximum likelihood estimator ŷ has some nice

properties. First of all it is consistent, which means that it converges in probability

to the parameter y as the sample size increases. A verification of this is beyond the

level of this book, but we can use it as a basis for showing that the mle is

asymptotically normal with mean y (asymptotic unbiasedness) and variance equal

to the Cramér–Rao lower bound.

THEOREM Given a random sample X1, X2, . . ., Xn from a distribution with pmf or pdf

f(x; y), assume that the set of possible x values does not depend on y.
Then for large n the maximum likelihood estimator ŷ has approximately

a normal distribution with mean y and variance 1/[nI(y)]. More precisely,

the limiting distribution of
ffiffiffi
n

p ðŷ� yÞ is normal with mean 0 and

variance 1/I(y).
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Proof Consider the score function

SðyÞ ¼ @

@y
ln f ðX1;X2; . . . ;Xn; yÞ

Its derivative S0(y) at the true y is approximately equal to the difference quotient

S0ðyÞ ¼ SðŷÞ � SðyÞ
ŷ� y

ð7:20Þ

and the error approaches zero asymptotically because ŷ approaches y (consistency).
Equation (7.20) connects the mle ŷ to the score function, so the asymptotic

behavior of the score function can be applied to ŷ. Because ŷ is the maximum

likelihood estimate, SðŷÞ ¼ 0, so in the limit,

ŷ� y ¼ SðyÞ
�S0ðyÞ

Multiplying both sides by
ffiffiffi
n

p
, then dividing numerator and denominator by

n
ffiffiffiffiffiffiffiffi
IðyÞp

,

ffiffiffi
n

p ðŷ� yÞ ¼
ffiffiffi
n

p
=½n ffiffiffiffiffiffiffiffi

IðyÞp �� �
SðyÞ

� 1=½n ffiffiffiffiffiffiffiffi
IðyÞp �� �

S0ðyÞ ¼
SðyÞ= ffiffiffiffiffiffiffiffiffiffiffi

nIðyÞp
�ð1=nÞS0ðyÞ= ffiffiffiffiffiffiffiffi

IðyÞp

Now rewrite S(y) and S0(y) as sums using Equation 7.15:

ffiffiffi
n

p ðŷ� yÞ ¼
1
n

@
@y ln f ðX1; yÞ½ � þ � � � þ @

@y ln f ðXn; yÞ½ �� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
IðyÞ=np�

1
n � @2

@y2
ln f ðX1; yÞ½ � � � � � � @2

@y2
ln f ðXn; yÞ½ �

n o ffiffiffiffiffiffiffiffi
IðyÞp� ð7:21Þ

The denominator braces contain a sum of independent identically distributed rv’s

each with mean

IðyÞ ¼ �E
@2

@y2
½ln f ðX; yÞ�

� 

by Equation (7.9). Therefore, by the law of large numbers, the denominator average
1
n fg converges to I(y). Thus the denominator converges to

ffiffiffiffiffiffiffiffi
IðyÞp

. The numerator

average 1
n fg is the mean of independent identically distributed rv’s with mean 0 [by

Equation (7.8)] and variance I(y), so the numerator ratio is an average minus its

expected value, divided by its standard deviation. Therefore, by the Central Limit

Theorem it is approximately normal with mean 0 and standard deviation 1. Thus, the

ratio in Equation (7.21) has a numerator that is approximately N(0, 1) and a denomi-

nator that is approximately
ffiffiffiffiffiffiffiffi
IðyÞp

, so the ratio is approximately N(0, 1/
ffiffiffiffiffiffiffiffi
IðyÞp 2

) ¼
N(0, 1/I(y)). That is,

ffiffiffi
n

p ðŷ� yÞ is approximately N(0, 1/I(y)), and it follows that ŷ
is approximately normal with mean y and variance 1/[nI(y)], the Cramér–Rao

lower bound. ■
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Example 7.34 Continuing with the previous example, let X1, X2, . . ., Xn be a random sample from

the Bernoulli distribution. The objective is to estimate the proportion p of drivers

who are wearing seat belts. The pmf is f(x; p) ¼ px(1 – p)1–x, x ¼ 0, 1 so the

likelihood is

f ðx1; x2; . . . ; xn; pÞ ¼ px1þx2þ...þxnð1� pÞn�ðx1þx2þ...þxnÞ

Then the log likelihood is

ln½ f ðx1; x2; . . . ; xn; pÞ� ¼
P

xi lnðpÞ þ ðn�P
xiÞ lnð1� pÞ

and therefore its derivative, the score function, is

@

@p
ln½f ðx1; x2; . . . ; xn; pÞ� ¼

P
xi

p
� n�P

xi
1� p

¼
P

xi � np

pð1� pÞ
Conclude that the maximum likelihood estimator is p̂ ¼ X ¼ P

Xi=n. Recall from
Example 7.33 that this is unbiased and efficient with the minimum variance of the

Cramér–Rao inequality. It is also asymptotically normal by the Central Limit

Theorem. These properties are in accord with the asymptotic distribution given

by the theorem, p̂ 
 Nð p; 1=½nIð pÞ�Þ. ■

Example 7.35 Let X1, X2, . . ., Xn be a random sample from the distribution with pdf f(x; y)¼ yxy�1

for 0 < x < 1, assuming y > 0. Here Xi, i ¼ 1, 2, . . ., n, represents the fraction of a
perfect score assigned to the ith applicant by a recruiting team. The Fisher infor-

mation is the variance of

U ¼ @

@y
ln½ f ðX; yÞ� ¼ @

@y
½ln yþ ðy� 1Þ lnðXÞ� ¼ 1

y
þ lnðXÞ

However, it is easier to use the alternative method of Equation (7.9):

IðyÞ ¼ �E
@2

@y2
ln½ f ðX; yÞ�

� 
¼ �E

@

@y
1

y
þ lnðXÞ

� 	� 
¼ �E

�1

y2

� 
¼ 1

y2

To obtain the maximum likelihood estimator, we first find the log likelihood:

ln½ f ðx1; x2; . . . ; xn; yÞ� ¼ lnðyn Q xy�1
i Þ ¼ n lnðyÞ þ ðy� 1ÞP lnðxiÞ

Its derivative, the score function, is

@

@y
ln½ f ðx1; x2; . . . ; xn; yÞ� ¼ n

y
þ
X

lnðxiÞ

Setting this to 0, we find that the maximum likelihood estimate is

ŷ ¼ �1P
lnðxiÞ=n ð7:22Þ

The expected value of ln(X) is �1/y, because E(U) ¼ 0, so the denominator

of (7.22) converges in probability to�1/y by the law of large numbers. Therefore ŷ
converges in probability to y, which means that ŷ is consistent. We knew

this because the mle is always consistent, but it is also nice to show it directly.

By the theorem, the asymptotic distribution of ŷ is normal with mean y and

variance 1/[nI(y)] ¼ y2/n. ■
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Exercises Section 7.4 (42–48)

42. Assume that the number of defects in a car

has a Poisson distribution with parameter l.
To estimate l we obtain the random sample X1,

X2, . . ., Xn.

a. Find the Fisher information in a single obser-

vation using two methods.

b. Find the Cramér–Rao lower bound for the var-

iance of an unbiased estimator of l.
c. Use the score function to find the mle of l and

show that the mle is an efficient estimator.

d. Is the asymptotic distribution of the mle in

accord with the second theorem? Explain.

43. In Example 7.23 f(x; y) ¼ 1/y for 0 � x � y and

0 otherwise. Given a random sample, the maxi-

mum likelihood estimate ŷ is the largest observa-

tion.

a. Letting ~y ¼ ½ðnþ 1Þ=n�ŷ, show that ~y is unbi-

ased and find its variance.

b. Find the Cramér–Rao lower bound for the var-

iance of an unbiased estimator of y.
c. Compare the answers in parts (a) and (b) and

explain why it is apparent that they disagree.

What assumption is violated, causing the theo-

rem not to apply here?

44. Survival times have the exponential distribution

with pdf f(x; l) ¼ le–lx, x � 0, and f(x; l) ¼ 0

otherwise, where l > 0. However, we wish to

estimate the mean m ¼ 1/l based on the random

sample X1, X2, . . ., Xn, so let’s re-express the pdf in

the form (1/m)e–x/m.
a. Find the information in a single observation

and the Cramér–Rao lower bound.

b. Use the score function to find the mle of m.
c. Find the mean and variance of the mle.

d. Is the mle an efficient estimator? Explain.

45. Let X1, X2, . . ., Xn be a random sample from the

normal distribution with known standard devia-

tion s.
a. Find the mle of m.
b. Find the distribution of the mle.

c. Is the mle an efficient estimator? Explain.

d. How does the answer to part (b) compare with

the asymptotic distribution given by the second

theorem?

46. Let X1, X2, . . ., Xn be a random sample from the

normal distribution with known mean m but with

the variance s2as the unknown parameter.

a. Find the information in a single observation

and the Cramér–Rao lower bound.

b. Find the mle of s2.
c. Find the distribution of the mle.

d. Is the mle an efficient estimator? Explain.

e. Is the answer to part (c) in conflict with the

asymptotic distribution of the mle given by the

second theorem? Explain.

47. Let X1, X2, . . ., Xn be a random sample from the

normal distribution with known mean m but with

the standard deviation s as the unknown parame-

ter.

a. Find the information in a single observation.

b. Compare the answer in part (a) to the answer in

part (a) of Exercise 46. Does the information

depend on the parameterization?

48. Let X1, X2, . . ., Xn be a random sample from a

continuous distribution with pdf f(x; y). For large
n, the variance of the sample median is approxi-

mately 1/{4n[f(~m;y)]2}. If X1, X2, . . ., Xn is a ran-

dom sample from the normal distribution with

known standard deviation s and unknown m,
determine the efficiency of the sample median.

Supplementary Exercises (49–63)

49. At time t ¼ 0, there is one individual alive in a

certain population. A pure birth process then

unfolds as follows. The time until the first birth is

exponentially distributed with parameter l. After
the first birth, there are two individuals alive. The

time until the first gives birth again is exponen-

tial with parameter l, and similarly for the sec-

ond individual. Therefore, the time until the next

birth is the minimum of two exponential (l)

variables, which is exponential with parameter

2l. Similarly, once the second birth has

occurred, there are three individuals alive, so

the time until the next birth is an exponential rv

with parameter 3l, and so on (the memoryless

property of the exponential distribution is being

used here). Suppose the process is observed until

the sixth birth has occurred and the successive

birth times are 25.2, 41.7, 51.2, 55.5, 59.5, 61.8
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(from which you should calculate the times

between successive births). Derive the mle of l.
[Hint: The likelihood is a product of exponential

terms.]

50. Let X1,. . ., Xn be a random sample from a

uniform distribution on the interval [�y, y].
a. Determine the mle of y. [Hint: Look back at

what we did in Example 7.23.]

b. Give an intuitive argument for why the mle is

either biased or unbiased.

c. Determine a sufficient statistic for y. [Hint:
See Example 7.27.]

d. Determine the joint pdf of the smallest order

statistic Y1 (¼ min(Xi)) and the largest order

statistic Yn (¼ max(Xi)) [Hint: In Section 5.5

we determined the joint pdf of two particular

order statistics]. Then use it to obtain the

expected value of the mle. [Hint: Draw the

region of joint positive density for Y1 and Yn,
and identify what the mle is for each part of

this region.]

e. What is an unbiased estimator for y?

51. Carry out the details for minimizing MSE in

Example 7.6: show that c ¼ 1/(n + 1) minimizes

the MSE of ŝ2 ¼ c
P ðXi � XÞ2 when the popu-

lation distribution is normal.

52. Let X1, . . ., Xn be a random sample from a pdf

that is symmetric about m. An estimator for m that

has been found to perform well for a variety of

underlying distributions is the Hodges–Lehmann
estimator. To define it, first compute for each

i � j and each j ¼ 1, 2, . . ., n the pairwise

average Xi;j ¼ ðXi þ XjÞ=2. Then the estimator

is m̂ ¼ the median of the Xi;j’s. Compute the

value of this estimate using the data of Exercise

41 of Chapter 1. [Hint: Construct a square table

with the xi’s listed on the left margin and on top.

Then compute averages on and above the diago-

nal.]

53. For a normal population distribution, the statistic

median fjX1 � eXÞj; . . . ; jXn � eXÞjg=:6745 can be
used to estimate s. This estimator is more resis-

tant to the effects of outliers (observations far

from the bulk of the data) than is the sample

standard deviation. Compute both the corres-

ponding point estimate and s for the data of

Example 7.2.

54. When the sample standard deviation S is based

on a random sample from a normal population

distribution, it can be shown that

EðSÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðn� 1Þ

p
Gðn=2Þs=G½ðn� 1Þ=2�

Use this to obtain an unbiased estimator for s of

the form cS. What is c when n ¼ 20?

55. Each of n specimens is to be weighed twice on

the same scale. Let Xi and Yi denote the two

observed weights for the ith specimen. Suppose

Xi and Yi are independent of each other, each

normally distributed with mean value mi (the

true weight of specimen i) and variance s2.
a. Show that the maximum likelihood

estimator of s2 is ŝ2¼PðXi�YiÞ2=ð4nÞ
[Hint: If �z¼ðz1þz2Þ=2, then

Pðzi��zÞ2¼
ðz1�z2Þ2=2.]

b. Is the mle ŝ2 an unbiased estimator of s2?
Find an unbiased estimator of s2. [Hint: For
any rv Z, E(Z2) ¼ V(Z) + [E(Z)]2. Apply this

to Z ¼ Xi – Yi.]

56. For 0 < y < 1 consider a random sample from a

uniform distribution on the interval from y to 1/y.
Identify a sufficient statistic for y.

57. Let p denote the proportion of all individuals who
are allergic to a particular medication. An inves-

tigator tests individual after individual to obtain a

group of r individuals who have the allergy. Let

Xi ¼ 1 if the ith individual tested has the allergy

and Xi ¼ 0 otherwise (i ¼ 1, 2, 3, . . .). Recall

that in this situation, X ¼ the number of nonaller-

gic individuals tested prior to obtaining the

desired group has a negative binomial distribu-

tion. Use the definition of sufficiency to show that

X is a sufficient statistic for p.

58. The fraction of a bottle that is filled with a particu-

lar liquid is a continuous random variable X with

pdf f(x; y) ¼ y xy�1 for 0 < x < 1 (where y > 0).

a. Obtain the method of moments estimator for y.
b. Is the estimator of (a) a sufficient statistic? If

not, what is a sufficient statistic, and what is

an estimator of y (not necessarily unbiased)

based on a sufficient statistic?

59. Let X1, . . ., Xn be a random sample from a normal

distribution with both m and s unknown. An

unbiased estimator of y ¼ P(X � c) based on

the jointly sufficient statistics is desired. Let

k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðn� 1Þp

and w ¼ ðc� �xÞ=s. Then it

can be shown that the minimum variance unbi-

ased estimator for y is

ŷ ¼
0 kw � �1

P T<
kw

ffiffiffiffiffiffiffiffiffiffiffi
n� 2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2w2

p
� �

� 1 < kw < 1

1 kw � 1

8><
>:

9>=
>;

where T has a t distribution with n – 2 df. The

article “Big and Bad: How the S.U.V. Ran over

Automobile Safety” (The New Yorker, Jan. 24,
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2004) reported that when an engineer with

Consumers Union (the product testing and rating

organization that publishes Consumer Reports)
performed three different trials in which a

Chevrolet Blazer was accelerated to 60 mph

and then suddenly braked, the stopping distances

(ft) were 146.2, 151.6, and 153.4, respectively.

Assuming that braking distance is normally

distributed, obtain the minimum variance unbi-

ased estimate for the probability that distance is

at most 150 ft, and compare to the maximum

likelihood estimate of this probability.

60. Here is a result that allows for easy identification

of a minimal sufficient statistic: Suppose there

is a function t(x1, . . ., xn) such that for any two

sets of observations x1, . . ., xn and y1, . . ., yn, the
likelihood ratio f(x1, . . ., xn; y)/f(y1, . . ., yn; y)
doesn’t depend on y if and only if t(x1, . . ., xn)
¼ t(y1, . . ., yn). Then T ¼ t(X1, . . .,Xn) is a minimal

sufficient statistic. The result is also valid if y is

replaced by y 1, . . ., y k, in which case there will

typically be several jointly minimal sufficient sta-

tistics. For example, if the underlying pdf is expo-

nential with parameter l, then the likelihood ratio is
lSxi�Syi , which will not depend on l if and only ifP

xi ¼
P

yi, so T ¼P
xi is a minimal sufficient

statistic for l (and so is the sample mean).

a. Identify a minimal sufficient statistic when the

Xi’s are a random sample from a Poisson distri-

bution.

b. Identify a minimal sufficient statistic or jointly

minimal sufficient statistics when the Xi’s are a

random sample from a normal distribution with

mean y and variance y.
c. Identify a minimal sufficient statistic or jointly

minimal sufficient statistics when the Xi’s are a

random sample from a normal distribution with

mean y and standard deviation y.

61. The principle of unbiasedness (prefer an unbiased

estimator to any other) has been criticized on the

grounds that in some situations the only unbiased

estimator is patently ridiculous. Here is one such

example. Suppose that the number of major

defects X on a randomly selected vehicle has a

Poisson distribution with parameter l. You are

going to purchase two such vehicles and wish to

estimate y ¼ P(X1 ¼ 0, X2 ¼ 0) ¼ e�2l, the

probability that neither of these vehicles has any

major defects. Your estimate is based on observ-

ing the value of X for a single vehicle. Denote this

estimator by ŷ ¼ dðXÞ. Write the equation implied

by the condition of unbiasedness, E[d(X)] ¼ e�2l,

cancel e–l from both sides, then expand what

remains on the right-hand side in an infinite series,

and compare the two sides to determine d(X). If
X ¼ 200, what is the estimate? Does this seem

reasonable? What is the estimate if X ¼ 199? Is

this reasonable?

62. Let X, the payoff from playing a certain game,

have pmf

f ðx; yÞ ¼ y x ¼ �1

ð1� yÞ2yx x ¼ 0; 1; 2; . . .

�

a. Verify that f(x; y) is a legitimate pmf, and

determine the expected payoff. [Hint: Look

back at the properties of a geometric random

variable discussed in Chapter 3.]

b. Let X1, . . ., Xn be the payoffs from n indepen-

dent games of this type. Determine the mle

of y. [Hint: Let Y denote the number of obser-

vations among the n that equal �1 {that is,

Y ¼ SI(Yi ¼ �1), where I(A) ¼ 1 if the

event A occurs and 0 otherwise}, and write

the likelihood as a single expression in terms

of
P

xi and y.]
c. What is the approximate variance of the mle

when n is large?

63. Let x denote the number of items in an order and y

denote time (min) necessary to process the order.

Processing time may be determined by various

factors other than order size. So for any particular

value of x, we now regard the value of total pro-

duction time as a random variable Y. Consider the

following data obtained by specifying various

values of x and determining total production time

for each one.

x 10 15 18 20 25 27 30 35 36 40

y 301 455 533 599 750 810 903 1054 1088 1196

a. Plot each observed (x, y) pair as a point on a

two-dimensional coordinate system with a hor-

izontal axis labeled x and vertical axis labeled y.
Do all points fall exactly on a line passing

through (0, 0)? Do the points tend to fall close

to such a line?

b. Consider the following probability model for

the data. Values x1, x2, . . ., xn are specified, and
at each xi we observe a value of the dependent
variable y. Prior to observation, denote the y
values by Y1, Y2, . . ., Yn, where the use of

uppercase letters here is appropriate because

we are regarding the y values as random vari-

ables. Assume that the Yi’s are independent and
normally distributed, with Yi having mean
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value bxi and variance s2. That is, rather than
assume that y ¼ bx, a linear function of x
passing through the origin, we are assuming

that the mean value of Y is a linear function

of x and that the variance of Y is the same for

any particular x value. Obtain formulas for the

maximum likelihood estimates of b and s2, and
then calculate the estimates for the given data.

How would you interpret the estimate of b?
What value of processing time would you pre-

dict when x ¼ 25? [Hint: The likelihood is a

product of individual normal likelihoods with

different mean values and the same variance.

Proceed as in the estimation via maximum

likelihood of the parameters m and s2 based

on a random sample from a normal population

distribution (but here the data does not consti-

tute a random sample as we have previously

defined it, since the Yi’s have different mean

values and therefore don’t have the same dis-

tribution).] [Note: This model is referred to as

regression through the origin.]
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C H A P T E R E I G H T

Statistical Intervals
Based on a Single
Sample

Introduction
A point estimate, because it is a single number, by itself provides no information

about the precision and reliability of estimation. Consider, for example, using the

statistic X to calculate a point estimate for the true average breaking strength (g) of

paper towels of a certain brand, and suppose that x ¼ 9322:7. Because of sam-

pling variability, it is virtually never the case that x ¼ m. The point estimate says

nothing about how close it might be to m. An alternative to reporting a single

sensible value for the parameter being estimated is to calculate and report an entire

interval of plausible values—an interval estimate or confidence interval (CI).

A confidence interval is always calculated by first selecting a confidence level,

which is a measure of the degree of reliability of the interval. A confidence interval

with a 95% confidence level for the true average breaking strength might have a

lower limit of 9162.5 and an upper limit of 9482.9. Then at the 95% confidence

level, any value of m between 9162.5 and 9482.9 is plausible. A confidence level of

95% implies that 95% of all samples would give an interval that includes m, or
whatever other parameter is being estimated, and only 5% of all samples would

yield an erroneous interval. The most frequently used confidence levels are 95%,

99%, and 90%. The higher the confidence level, the more strongly we believe that

the value of the parameter being estimated lies within the interval (an interpreta-

tion of any particular confidence level will be given shortly).

Information about the precision of an interval estimate is conveyed by the

width of the interval. If the confidence level is high and the resulting interval is

quite narrow, our knowledge of the value of the parameter is reasonably precise.

A very wide confidence interval, however, gives the message that there is a great

deal of uncertainty concerning the value of what we are estimating. Figure 8.1

shows 95% confidence intervals for true average breaking strengths of two



different brands of paper towels. One of these intervals suggests precise knowledge

about m, whereas the other suggests a very wide range of plausible values.

8.1 Basic Properties of Confidence Intervals
The basic concepts and properties of confidence intervals (CIs) are most easily

introduced by first focusing on a simple, albeit somewhat unrealistic, problem

situation. Suppose that the parameter of interest is a population mean m and that

1. The population distribution is normal.

2. The value of the population standard deviation s is known.

Normality of the population distribution is often a reasonable assumption. However,

if the value of m is unknown, it is unlikely that the value of s would be available

(knowledge of a population’s center typically precedes information concerning

spread). In later sections, we will develop methods based on less restrictive

assumptions.

Example 8.1 Industrial engineers who specialize in ergonomics are concerned with designing

workspace and devices operated by workers so as to achieve high productivity and

comfort. The article “Studies on Ergonomically Designed Alphanumeric Key-

boards” (Hum. Factors, 1985: 175–187) reports on a study of preferred height for

an experimental keyboard with large forearm–wrist support. A sample of n ¼ 31

trained typists was selected, and the preferred keyboard height was determined for

each typist. The resulting sample average preferred height was x ¼ 80 cm. Assum-

ing that the preferred height is normally distributed with s ¼ 2.0 cm (a value

suggested by data in the article), obtain a CI for m, the true average preferred height
for the population of all experienced typists. ■

The actual sample observations x1, x2, . . . , xn are assumed to be the result of a

random sample X1, . . . , Xn from a normal distribution with mean value m and

standard deviation s. The results of Chapter 6 then imply that irrespective of the

sample size n, the sample mean X is normally distributed with expected value m and

standard deviation s=
ffiffiffi
n

p
. Standardizing X by first subtracting its expected value

and then dividing by its standard deviation yields the variable

Z ¼ X � m
s=

ffiffiffi
n

p ð8:1Þ

which has a standard normal distribution. Because the area under the standard

normal curve between �1.96 and 1.96 is .95,

Brand 1:

Brand 2:

Strength

Strength

( )

( )

Figure 8.1 Confidence intervals indicating precise (brand 1) and imprecise (brand 2)

information about m
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P �1:96<
X � m
s=

ffiffiffi
n

p < 1:96

� �
¼ :95 ð8:2Þ

The next step in the development is to manipulate the inequalities inside the

parentheses in (8.2) so that they appear in the equivalent form l < m < u, where the
endpoints l and u involve X and s=

ffiffiffi
n

p
. This is achieved through the following

sequence of operations, each one yielding inequalities equivalent to those we

started with:

1. Multiply through by s=
ffiffiffi
n

p
to obtain

� 1:96 � sffiffiffi
n

p <X � m< 1:96 � sffiffiffi
n

p

2. Subtract X from each term to obtain

� X � 1:96 � sffiffiffi
n

p < � m< � X þ 1:96 � sffiffiffi
n

p

3. Multiply through by�1 to eliminate the minus sign in front of m (which reverses

the direction of each inequality) to obtain

X þ 1:96 � sffiffiffi
n

p > m>X � 1:96 � sffiffiffi
n

p

that is,

X � 1:96 � sffiffiffi
n

p < m<X þ 1:96 � sffiffiffi
n

p

Because each set of inequalities in the sequence is equivalent to the original

one, the probability associated with each is .95. In particular,

P X � 1:96 � sffiffiffi
n

p < m< X þ 1:96 � sffiffiffi
n

p
� �

¼ :95 ð8:3Þ

The event inside the parentheses in (8.3) has a somewhat unfamiliar appearance;

always before, the random quantity has appeared in the middle with constants on

both ends, as in a � Y � b. In (8.3) the random quantity appears on the two ends,

whereas the unknown constant m appears in the middle. To interpret (8.3), think of a

random interval having left endpoint X � 1:96 � s= ffiffiffi
n

p
and right endpoint

X þ 1:96 � s= ffiffiffi
n

p
, which in interval notation is

X � 1:96 � sffiffiffi
n

p ; X þ 1:96 � sffiffiffi
n

p
� �

ð8:4Þ

The interval (8.4) is random because the two endpoints of the interval involve a

random variable (rv). Note that the interval is centered at the sample mean X and
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extends 1:96 � s= ffiffiffi
n

p
to each side of X. Thus the interval’s width is 2 � 1:96 � s= ffiffiffi

n
p

,

which is not random; only the location of the interval (its midpoint X) is random
(Figure 8.2). Now (8.3) can be paraphrased as “the probability is .95 that the
random interval (8.4) includes or covers the true value of m.” Before any experi-

ment is performed and any data is gathered, it is quite likely (probability .95) that m
will lie inside the interval in Expression (8.4).

DEFINITION If after observing X1 ¼ x1, X2 ¼ x2, . . . , Xn ¼ xn, we compute the observed

sample mean x and then substitute x into (8.4) in place of X, the resulting

fixed interval is called a 95% confidence interval for m. This CI can be

expressed either as

x� 1:96 � sffiffiffi
n

p ; xþ 1:96 � sffiffiffi
n

p
� �

is a 95% confidence interval for m

or as

x� 1:96 � sffiffiffi
n

p < m< xþ 1:96 � sffiffiffi
n

p with 95% confidence

A concise expression for the interval is x� 1:96 � s= ffiffiffi
n

p
, where – gives the

left endpoint (lower limit) and + gives the right endpoint (upper limit).

Example 8.2

(Example 8.1

continued)

The quantities needed for computation of the 95% CI for true average preferred

height are s ¼ 2.0, n ¼ 31, and x ¼ 80:0. The resulting interval is

x� 1:96 � sffiffiffi
n

p ¼ 80:0� 1:96 � 2:0ffiffiffiffiffi
31

p ¼ 80:0� :7 ¼ ð79:3; 80:7Þ

That is, we can be highly confident, at the 95% confidence level, that 79.3 < m <
80.7. This interval is relatively narrow, indicating that m has been rather precisely

estimated. ■

Interpreting a Confidence Level

The confidence level 95% for the interval just defined was inherited from the

probability .95 for the random interval (8.4). Intervals having other levels of

confidence will be introduced shortly. For now, though, consider how 95% confi-

dence can be interpreted.

Because we started with an event whose probability was .95—that the

random interval (8.4) would capture the true value of m—and then used the data

in Example 8.1 to compute the fixed interval (79.3, 80.7), it is tempting to conclude

that m is within this fixed interval with probability .95. But by substituting x ¼ 80

for X, all randomness disappears; the interval (79.3, 80.7) is not a random interval,

X X

1.96s / 1.96s /n

 − 1.96s / n X + 1.96s / n

n

Figure 8.2 The random interval (8.4) centered at X
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and m is a constant (unfortunately unknown to us). So it is incorrect to write the

statement P[m lies in (79.3, 80.7)] ¼ .95.

A correct interpretation of “95% confidence” relies on the long-run relative

frequency interpretation of probability: To say that an event A has probability .95 is

to say that if the experiment on which A is defined is performed over and over

again, in the long run A will occur 95% of the time. Suppose we obtain another

sample of typists’ preferred heights and compute another 95% interval. Then we

consider repeating this for a third sample, a fourth sample, and so on. Let A be the

event that X � 1:96 � s= ffiffiffi
n

p
< m<X þ 1:96 � s= ffiffiffi

n
p

. Since P(A) ¼ .95, in the long

run 95% of our computed CIs will contain m. This is illustrated in Figure 8.3, where
the vertical line cuts the measurement axis at the true (but unknown) value of m.
Notice that of the 11 intervals pictured, only intervals 3 and 11 fail to contain m. In
the long run, only 5% of the intervals so constructed would fail to contain m.

According to this interpretation, the confidence level 95% is not so much a

statement about any particular interval such as (79.3, 80.7), but pertains to what

would happen if a very large number of like intervals were to be constructed using

the same formula. Although this may seem unsatisfactory, the root of the difficulty

lies with our interpretation of probability—it applies to a long sequence of replica-

tions of an experiment rather than just a single replication. There is another

approach to the construction and interpretation of CIs that uses the notion of

subjective probability and Bayes’ theorem, as discussed in Section 14.4. The

interval presented here (as well as each interval presented subsequently) is called

a “classical” CI because its interpretation rests on the classical notion of probability

(although the main ideas were developed as recently as the 1930s).

Other Levels of Confidence

The confidence level of 95% was inherited from the probability .95 for the initial

inequalities in (8.2). If a confidence level of 99% is desired, the initial probability

of .95 must be replaced by .99, which necessitates changing the z critical value from
1.96 to 2.58. A 99% CI then results from using 2.58 in place of 1.96 in the formula

for the 95% CI.

This suggests that any desired level of confidence can be achieved by

replacing 1.96 or 2.58 with the appropriate standard normal critical value. As

Figure 8.4 shows, a probability of 1 � a is achieved by using za/2 in place of 1.96.

Interval
number

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)

True value of m

Figure 8.3 Repeated construction of 95% CIs
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DEFINITION A 100(1 � a)% confidence interval for the mean m of a normal population

when the value of s is known is given by

x� za=2 �
sffiffiffi
n

p ; xþ za=2 �
sffiffiffi
n

p
� �

ð8:5Þ

or, equivalently, by x� za=2 � s=
ffiffiffi
n

p
.

Example 8.3 A finite mathematics course has recently been changed, and the homework is now

done online via computer instead of from the textbook exercises. How can we see if

there has been improvement? Past experience suggests that the distribution of final

exam scores is normally distributed with mean 65 and standard deviation 13. It is

believed that the distribution is still normal with standard deviation 13, but the

mean has likely changed. A sample of 40 students has a mean final exam score of

70.7. Let’s calculate a confidence interval for the population mean using a confi-

dence level of 90%. This requires that 100(1 � a) ¼ 90, from which a ¼ .10 and

za/2 ¼ z.05 ¼ 1.645 (corresponding to a cumulative z-curve area of .9500).

The desired interval is then

70:7� 1:645 � 13ffiffiffiffiffi
40

p ¼ 70:7� 3:4 ¼ ð67:3; 74:1Þ

With a reasonably high degree of confidence, we can say that 67.3 < m < 74.1.

Furthermore, we are confident that the population mean has improved over the

previous value of 65. ■

Confidence Level, Precision, and Choice of Sample Size

Why settle for a confidence level of 95% when a level of 99% is achievable?

Because the price paid for the higher confidence level is a wider interval. The

95% interval extends 1:96 � s= ffiffiffi
n

p
to each side of x, so the width of the interval is

2ð1:96Þ � s= ffiffiffi
n

p ¼ 3:92 � s= ffiffiffi
n

p
. Similarly, the width of the 99% interval is

2ð2:58Þ � s= ffiffiffi
n

p ¼ 5:16 � s= ffiffiffi
n

p
. That is, we have more confidence in the 99%

interval precisely because it is wider. The higher the desired degree of confidence,

the wider the resulting interval. In fact, the only 100% CI for m is (�1,1), which

is not terribly informative because, even before sampling, we knew that this

interval covers m.

0

z curve

1 − a Shaded area = a /2

−za/2 za/2

Figure 8.4 P(-za/2 � Z � za/2) ¼ 1�a
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If we think of the width of the interval as specifying its precision or accuracy,

then the confidence level (or reliability) of the interval is inversely related to its

precision. A highly reliable interval estimate may be imprecise in that the endpoints

of the interval may be far apart, whereas a precise interval may entail relatively low

reliability. Thus it cannot be said unequivocally that a 99% interval is to be

preferred to a 95% interval; the gain in reliability entails a loss in precision.

An appealing strategy is to specify both the desired confidence level and

interval width and then determine the necessary sample size.

Example 8.4 Extensive monitoring of a computer time-sharing system has suggested that

response time to a particular editing command is normally distributed with standard

deviation 25 ms. A new operating system has been installed, and we wish to

estimate the true average response time m for the new environment. Assuming

that response times are still normally distributed with s ¼ 25, what sample size is

necessary to ensure that the resulting 95% CI has a width of (at most) 10? The

sample size n must satisfy

10 ¼ 2 � ð1:96Þ � ð25= ffiffiffi
n

p Þ
Rearranging this equation gives

ffiffiffi
n

p ¼ 2 � ð1:96Þ � ð25Þ=10 ¼ 9:80

so

n ¼ 9:802 ¼ 96:04

Since n must be an integer, a sample size of 97 is required. ■

The general formula for the sample size n necessary to ensure an interval

width w is obtained from w ¼ 2 � za=2 � s=
ffiffiffi
n

p
as

n ¼ 2za=2 �
s
w

� �2
ð8:6Þ

The smaller the desired width w, the larger nmust be. In addition, n is an increasing
function of s (more population variability necessitates a larger sample size) and of

the confidence level 100(1 � a) (as a decreases, za/2 increases).
The half-width 1:96 � s= ffiffiffi

n
p

of the 95% CI is sometimes called the bound on
the error of estimation associated with a 95% confidence level; that is, with 95%

confidence, the point estimate x will be no farther than this from m. Before

obtaining data, an investigator may wish to determine a sample size for which a

particular value of the bound is achieved. For example, with m representing the

average fuel efficiency (mpg) for all cars of a certain type, the objective of an

investigation may be to estimate m to within 1 mpg with 95% confidence. More

generally, if we wish to estimate m to within an amount B (the specified bound on

the error of estimation) with 100(1 � a)% confidence, the necessary sample size

results from replacing 2/w by 1/B in (8.6).

388 CHAPTER 8 Statistical Intervals Based on a Single Sample



Deriving a Confidence Interval

Let X1, X2, . . . , Xn denote the sample on which the CI for a parameter y is to be

based. Suppose a random variable satisfying the following two properties can be

found:

1. The variable depends functionally on both X1, . . . , Xn and y.
2. The probability distribution of the variable does not depend on y or on any other

unknown parameters.

Let h(X1, X2, . . . , Xn; y) denote this random variable. For example, if the

population distribution is normal with known s and y ¼ m, the variable

hðX1; . . . ;Xn; yÞ ¼ X � mð Þ= s=
ffiffiffi
n

pð Þ satisfies both properties; it clearly depends

functionally on m, yet has the standard normal probability distribution, which

does not depend on m. In general, the form of the h function is usually suggested

by examining the distribution of an appropriate estimator ŷ.
For any a between 0 and 1, constants a and b can be found to satisfy

P½a< hðX1; . . . ;Xn; yÞ< b� ¼ 1� a ð8:7Þ

Because of the second property, a and b do not depend on y. In the normal example,

a ¼ �za/2 and b ¼ za/2. Now suppose that the inequalities in (8.7) can be manipu-

lated to isolate y, giving the equivalent probability statement

P½l X1; . . . ;Xnð Þ< y< u X1; . . . ;Xnð Þ� ¼ 1� a

Then l(x1, x2, . . . , xn) and u(x1, . . . , xn) are the lower and upper confidence limits,

respectively, for a 100(1 � a)% CI. In the normal example, we saw that

l X1; . . . ;Xnð Þ ¼ X � za=2 � s=
ffiffiffi
n

p
and u X1; . . . ;Xnð Þ ¼ X þ za=2 � s=

ffiffiffi
n

p
.

Example 8.5 A theoretical model suggests that the time to breakdown of an insulating fluid

between electrodes at a particular voltage has an exponential distribution with

parameter l (see Section 4.4). A random sample of n ¼ 10 breakdown times yields

the following sample data (in min): x1 ¼ 41.53, x2 ¼ 18.73, x3 ¼ 2.99, x4 ¼ 30.34,

x5 ¼ 12.33, x6 ¼ 117.52, x7 ¼ 73.02, x8 ¼ 223.63, x9 ¼ 4.00, x10 ¼ 26.78.

A 95% CI for l and for the true average breakdown time are desired.

Let h(X1, X2, . . . , Xn; l) ¼ 2lSXi. Using a moment generating function

argument, it can be shown that this random variable has a chi-squared distribution

with 2n degrees of freedom (df) (v ¼ 2n, as discussed in Section 6.4). Appendix

Table A.6 pictures a typical chi-squared density curve and tabulates critical values

that capture specified tail areas. The relevant number of degrees of freedom here is

2(10) ¼ 20. The n ¼ 20 row of the table shows that 34.170 captures upper-tail area

.025 and 9.591 captures lower-tail area .025 (upper-tail area .975). Thus for n ¼ 10,

Pð9:591 < 2lSXi < 34:170Þ ¼ :95

Division by 2SXi isolates l, yielding

P 9:591= 2SXið Þ< l< 34:170= 2SXið Þ½ � ¼ :95
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The lower limit of the 95% CI for l is 9.591/(2Sxi), and the upper limit is 34.170/

(2Sxi). For the given data, Sxi ¼ 550.87, giving the interval (.00871, .03101).

The expected value of an exponential rv is m ¼ 1/l. Since

P 2SXi=34:170< 1=l< 2SXi=9:591ð Þ ¼ :95

the 95% CI for true average breakdown time is (2Sxi/34.170, 2Sxi/9.591) ¼
(32.24, 114.87). This interval is obviously quite wide, reflecting substantial varia-

bility in breakdown times and a small sample size. ■

In general, the upper and lower confidence limits result from replacing each

< in (8.7) by ¼ and solving for y. In the insulating fluid example just considered,

2lSxi ¼ 34.170 gives l ¼ 34.170/(2Sxi) as the upper confidence limit, and the

lower limit is obtained from the other equation. Notice that the two interval limits

are not equidistant from the point estimate, since the interval is not of the form ŷ� c.

Exercises Section 8.1 (1–11)

1. Consider a normal population distribution with the

value of s known.

a. What is the confidence level for the interval

x� 2:81s=
ffiffiffi
n

p
?

b. What is the confidence level for the interval

x� 1:44s=
ffiffiffi
n

p
?

c. What value of za/2 in the CI formula (8.5)

results in a confidence level of 99.7%?

d. Answer the question posed in part (c) for a

confidence level of 75%.

2. Each of the following is a confidence interval for

m ¼ true average (i.e., population mean) reso-

nance frequency (Hz) for all tennis rackets of a

certain type:

(114.4, 115.6) (114.1, 115.9)

a. What is the value of the sample mean reso-

nance frequency?

b. Both intervals were calculated from the same

sample data. The confidence level for one of

these intervals is 90% and for the other is 99%.

Which of the intervals has the 90% confidence

level, and why?

3. Suppose that a random sample of 50 bottles of

a particular brand of cough syrup is selected and

the alcohol content of each bottle is determined.

Let m denote the average alcohol content for the

population of all bottles of the brand under study.

Suppose that the resulting 95% confidence inter-

val is (7.8, 9.4).

a. Would a 90% confidence interval calculated

from this same sample have been narrower or

wider than the given interval? Explain your

reasoning.

b. Consider the following statement: There is a

95% chance that m is between 7.8 and 9.4. Is

this statement correct? Why or why not?

c. Consider the following statement: We can be

highly confident that 95% of all bottles of this

type of cough syrup have an alcohol content

that is between 7.8 and 9.4. Is this statement

correct? Why or why not?

d. Consider the following statement: If the pro-

cess of selecting a sample of size 50 and then

computing the corresponding 95% interval is

repeated 100 times, 95 of the resulting intervals

will include m. Is this statement correct?Why or

why not?

4. A CI is desired for the true average stray-load loss

m (watts) for a certain type of induction motor

when the line current is held at 10 amps for a

speed of 1,500 rpm. Assume that stray-load loss

is normally distributed with s ¼ 3.0.

a. Compute a 95% CI for m when n ¼ 25 and

x ¼ 58:3.
b. Compute a 95% CI for m when n ¼ 100 and

x ¼ 58:3.
c. Compute a 99% CI for m when n ¼ 100 and

x ¼ 58:3.
d. Compute an 82% CI for m when n ¼ 100 and

x ¼ 58:3.
e. How large must n be if the width of the 99%

interval for m is to be 1.0?

5. Assume that the helium porosity (in percentage)

of coal samples taken from any particular seam is

normally distributed with true standard devia-

tion .75.
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a. Compute a 95%CI for the true average porosity

of a certain seam if the average porosity for 20

specimens from the seam was 4.85.

b. Compute a 98% CI for true average porosity of

another seam based on 16 specimens with a

sample average porosity of 4.56.

c. How large a sample size is necessary if the

width of the 95% interval is to be .40?

d. What sample size is necessary to estimate true

average porosity to within .2 with 99% confi-

dence?

6. On the basis of extensive tests, the yield point of a

particular type of mild steel reinforcing bar is

known to be normally distributed with s ¼ 100.

The composition of the bar has been slightly mod-

ified, but the modification is not believed to have

affected either the normality or the value of s.
a. Assuming this to be the case, if a sample of 25

modified bars resulted in a sample average

yield point of 8439 lb, compute a 90% CI for

the true average yield point of the modified bar.

b. How would you modify the interval in part (a)

to obtain a confidence level of 92%?

7. By how much must the sample size n be increased
if the width of the CI (8.5) is to be halved? If the

sample size is increased by a factor of 25, what

effect will this have on the width of the interval?

Justify your assertions.

8. Let a1 > 0, a2 > 0, with a1 + a2 ¼ a. Then

P �za1 <
X � m
s=

ffiffiffi
n

p < za2

� �
¼ 1� a

a. Use this equation to derive a more general

expression for a 100(1 � a)% CI for m of

which the interval (8.5) is a special case.

b. Let a ¼ .05 and a1 ¼ a/4, a2 ¼ 3a/4. Does

this result in a narrower or wider interval than

the interval (8.5)?

9. a. Under the same conditions as those leading to

the CI (8.5), P X�mð Þ= s=
ffiffiffi
n

pð Þ<1:645½ � ¼ :95.
Use this to derive a one-sided interval for m
that has infinite width and provides a lower

confidence bound on m. What is this interval

for the data in Exercise 5(a)?

b. Generalize the result of part (a) to obtain

a lower bound with a confidence level of

100(1 � a)%.

c. What is an analogous interval to that of part (b)

that provides an upper bound on m? Compute

this 99% interval for the data of Exercise 4(a).

10. A random sample of n ¼ 15 heat pumps of a

certain type yielded the following observations

on lifetime (in years):

2.0 1.3 6.0 1.9 5.1 .4 1.0 5.3

15.7 .7 4.8 .9 12.2 5.3 .6

a. Assume that the lifetime distribution is expo-

nential and use an argument parallel to that of

Example 8.5 to obtain a 95% CI for expected

(true average) lifetime.

b. How should the interval of part (a) be altered to

achieve a confidence level of 99%?

c. What is a 95% CI for the standard deviation of

the lifetime distribution? [Hint: What is the

standard deviation of an exponential random

variable?]

11. Consider the next 1,000 95% CIs for m that a

statistical consultant will obtain for various

clients. Suppose the data sets on which the inter-

vals are based are selected independently of one

another. How many of these 1,000 intervals do

you expect to capture the corresponding value of

m? What is the probability that between 940 and

960 of these intervals contain the corresponding

value of m? [Hint: Let Y ¼ the number among

the 1,000 intervals that contain m. What kind of

random variable is Y?]

8.2 Large-Sample Confidence Intervals
for a Population Mean and Proportion
The CI for m given in the previous section assumed that the population distribution

is normal and that the value of s is known. We now present a large-sample CI

whose validity does not require these assumptions. After showing how the argu-

ment leading to this interval generalizes to yield other large-sample intervals, we

focus on an interval for a population proportion p.
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A Large-Sample Interval for m
Let X1, X2, . . . , Xn be a random sample from a population having a mean m and

standard deviation s. Provided that n is large, the Central Limit Theorem (CLT)

implies that X has approximately a normal distribution whatever the nature of the

population distribution. It then follows that Z ¼ ðX � mÞ=ðs= ffiffiffi
n

p Þ has approxi-

mately a standard normal distribution, so that

P �za=2 <
X � m
s=

ffiffiffi
n

p < za=2

� �
� 1� a

An argument parallel with that given in Section 8.1 yields x� za=2 � s=
ffiffiffi
n

p
as a

large-sample CI for m with a confidence level of approximately 100(1 � a)%. That

is, when n is large, the CI for m given previously remains valid whatever the

population distribution, provided that the qualifier “approximately” is inserted in

front of the confidence level.

One practical difficulty with this development is that computation of the

interval requires the value of s, which will almost never be known. Consider the

standardized variable

Z ¼ X � m
S=

ffiffiffi
n

p

in which the sample standard deviation S replaces s. Previously there was random-

ness only in the numerator of Z (by virtue of X). Now there is randomness in both

the numerator and the denominator—the values of both X and S vary from sample

to sample. However, when n is large, the use of S rather than s adds very little extra

variability to Z. More specifically, in this case the new Z also has approximately a

standard normal distribution. Manipulation of the inequalities in a probability

statement involving this new Z yields a general large-sample interval for m.

PROPOSITION If n is sufficiently large, the standardized variable

Z ¼ X � m
S=

ffiffiffi
n

p

has approximately a standard normal distribution. This implies that

x� za=2 � sffiffiffi
n

p ð8:8Þ

is a large-sample confidence interval for m with confidence level approxi-

mately 100(1 � a)%. This formula is valid regardless of the shape of the

population distribution.

Generally speaking, n > 40 will be sufficient to justify the use of this interval. This

is somewhat more conservative than the rule of thumb for the CLT because of the

additional variability introduced by using S in place of s.
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Example 8.6 Haven’t you always wanted to own a Porsche? One of the authors thought maybe he

could afford a Boxster, the cheapest model. So he went to www.cars.com on Nov.

18, 2009 and found a total of 1,113 such cars listed. Asking prices ranged from

$3,499 to $130,000 (the latter price was one of only two exceeding $70,000). The

prices depressed him, so he focused instead on odometer readings (miles). Here are

reported readings for a sample of 50 of these Boxsters:

2948 2996 7197 8338 8500 8759 12710 12925

15767 20000 23247 24863 26000 26210 30552 30600

35700 36466 40316 40596 41021 41234 43000 44607

45000 45027 45442 46963 47978 49518 52000 53334

54208 56062 57000 57365 60020 60265 60803 62851

64404 72140 74594 79308 79500 80000 80000 84000

113000 118634

A boxplot of the data (Figure 8.5) shows that, except for the two mild outliers at the

upper end, the distribution of values is reasonably symmetric (in fact, a normal

probability plot exhibits a reasonably linear pattern, though the points

corresponding to the two smallest and two largest observations are somewhat

removed from a line fit through the remaining points).

Summary quantities include n ¼ 50, x ¼ 45;679:4; ~x ¼ 45;013:5;
s ¼ 26;641:675; fs ¼ 34;265. The mean and median are reasonably close (if the

two largest values were each reduced by 30,000, the mean would fall to 44,479.4

while the median would be unaffected). The boxplot and the magnitudes of s and fs
relative to the mean and median both indicate a substantial amount of variability.

A confidence level of about 95% requires z.025 ¼ 1.96, and the interval is

45;679:4� ð1:96Þ 26;641:675ffiffiffiffiffi
50

p
� �

¼ 45;679:4� 7384:7 ¼ ð38;294:7; 53;064:1Þ

That is, 38,294.7 < m < 53,064.1 with 95% confidence. This interval is rather

wide because a sample size of 50, even though large by our rule of thumb, is not

large enough to overcome the substantial variability in the sample. We do not have

a very precise estimate of the population mean odometer reading.

Is the interval we’ve calculated one of the 95% that in the long run includes

the parameter being estimated, or is it one of the “bad” 5% that does not do so?

Without knowing the value of m, we cannot tell. Remember that the confidence

0 20000 40000 60000 80000 100000 120000

mileage

Figure 8.5 A boxplot of the odometer reading data from Example 8.6
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level refers to the long run capture percentage when the formula is used repeatedly

on various samples; it cannot be interpreted for a single sample and the resulting

interval. ■

Unfortunately, the choice of sample size to yield a desired interval width is

not as straightforward here as it was for the case of known s. This is because the

width of (8.8) is 2za=2s=
ffiffiffi
n

p
. Since the value of s is not available before data

collection, the width of the interval cannot be determined solely by the choice of

n. The only option for an investigator who wishes to specify a desired width is to

make an educated guess as to what the value of s might be. By being conservative

and guessing a larger value of s, an n larger than necessary will be chosen. The

investigator may be able to specify a reasonably accurate value of the population

range (the difference between the largest and smallest values). Then if the popula-

tion distribution is not too skewed, dividing the range by four gives a ballpark value

of what s might be. The idea is that roughly 95% of the data lie within �2s of the

mean, so the range is roughly 4s (range/6 might be too optimistic).

Example 8.7 An investigator wishes to estimate the true average score on an algebra placement

test. Suppose she believes that virtually all values in the population are between 10

and 30. Then (30 � 10)/4 ¼ 5 gives a reasonable value for s. The appropriate

sample size for estimating the true average mileage to within one with confidence

level 95%—that is, for the 95% CI to have a width of 2—is

n ¼ 1:96ð Þ 5ð Þ=1½ �2 � 96 ■

A General Large-Sample Confidence Interval

The large-sample intervals x� za=2 � s=
ffiffiffi
n

p
and x� za=2 � s=

ffiffiffi
n

p
are special cases of

a general large-sample CI for a parameter y. Suppose that ŷ is an estimator satisfying

the following properties: (1) It has approximately a normal distribution; (2) it is (at

least approximately) unbiased; and (3) an expression for sŷ, the standard deviation

of ŷ, is available. For example, in the case y ¼ m, m̂ ¼ X is an unbiased estimator

whose distribution is approximately normal when n is large and sm̂ ¼ sx ¼ s=
ffiffiffi
n

p
.

Standardizing ŷ yields the rv Z ¼ ðŷ� yÞ=sŷ, which has approximately a standard

normal distribution. This justifies the probability statement

P �za=2 <
ŷ� y
sŷ

< za=2

 !
� 1� a ð8:9Þ

Suppose, first, that sŷ does not involve any unknown parameters (e.g., known

s in the case y ¼ m). Then replacing each < in (8.9) by ¼ results in

y ¼ ŷ� za=2 � sŷ, so the lower and upper confidence limits are ŷ� za=2 � sŷ and

ŷþ za=2 � sŷ, respectively. Now suppose that sŷ does not involve y but does involve
at least one other unknown parameter. Let sŷ be the estimate of sŷ obtained by using
estimates in place of the unknown parameters (e.g., s=

ffiffiffi
n

p
estimates s=

ffiffiffi
n

p
). Under

general conditions (essentially that sŷ be close to sŷ for most samples), a valid CI is

ŷ� za=2 � sŷ. The interval x� za=2 � s=
ffiffiffi
n

p
is an example.
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Finally, suppose that sŷ does involve the unknown y. This is the case, for

example, when y ¼ p, a population proportion. Then ðŷ� yÞ=sŷ ¼ za=2 can be

difficult to solve. An approximate solution can often be obtained by replacing y in

sŷ by its estimate ŷ. This results in an estimated standard deviation sŷ, and the

corresponding interval is again ŷ� za=2 � sŷ.

A Confidence Interval for a Population Proportion

Let p denote the proportion of “successes” in a population, where success identifies
an individual or object that has a specified property. A random sample of n
individuals is to be selected, and X is the number of successes in the sample.

Provided that n is small compared to the population size, X can be regarded as a

binomial rv with E(X) ¼ np and sX ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp

. Furthermore, if n is large

(np � 10 and nq � 10), X has approximately a normal distribution.

The natural estimator of p is p̂ ¼ X=n, the sample fraction of successes. Since

p̂ is just X multiplied by a constant 1/n, p̂ also has approximately a normal

distribution. As shown in Section 7.1, Eðp̂Þ ¼ p (unbiasedness) and

sp̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=np

. The standard deviation sp̂ involves the unknown parameter

p. Standardizing p̂ by subtracting p and dividing by sp̂ then implies that

P �za=2 <
p̂� pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1� pÞ=np < za=2

 !
� 1� a

Proceeding as suggested in the subsection “Deriving a Confidence Interval”

(Section 8.1), the confidence limits result from replacing each < by ¼ and solving

the resulting quadratic equation for p. With q̂ ¼ 1� p̂, this gives the two roots

p ¼ p̂þ z2a=2=2n

1þ z2a=2=n
� za=z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ=nþ z2a=2=4n

2
q

1þ z2a=2=n

¼ ~p� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ=nþ z2a=2=4n

2
q

1þ z2a=2=n

PROPOSITION
Let ~p ¼ p̂þ z2a=2=2n

1þ z2a=2=n
. Then a confidence interval for a population propor-

tion p with confidence level approximately 100(1 � a)% is

~p � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂q̂=nþ z2a=2=4n

2
q

1þ z2a=2=n
ð8:10Þ

where q̂ ¼ 1� p̂ and, as before, the � in (8.10) corresponds to the lower

confidence limit and the + to the upper confidence limit.

This is often referred to as the “score CI” for p.
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If the sample size n is very large, then z2/2n is generally quite negligible

(small) compared to p̂ and z2/n is quite negligible compared to 1, from which ~p � p̂.
In this case z2/4n2 is also negligible compared to p̂q̂=n (n2 is a much larger divisor

than is n); as a result, the dominant term in the � expression is za=2
ffiffiffiffiffiffiffiffiffiffi
p̂q̂=n

p
and the

score interval is approximately

p̂� za=2
ffiffiffiffiffiffiffiffiffiffi
p̂q̂=n

p
ð8:11Þ

This latter interval has the general form ŷ� za=2ŝŷ of a large-sample interval

suggested in the last subsection. The approximate CI (8.11) is the one that for

decades has appeared in introductory statistics textbooks. It clearly has a much

simpler and more appealing form than the score CI. So why bother with the latter?

First of all, suppose we use z.025 ¼ 1.96 in the traditional formula (8.11).

Then our nominal confidence level (the one we think we’re buying by using that z
critical value) is approximately 95%. So before a sample is selected, the probability

that the random interval includes the actual value of p (i.e., the coverage probabil-
ity) should be about .95. But as Figure 8.6 shows for the case n ¼ 100, the actual

coverage probability for this interval can differ considerably from the nominal

probability .95, particularly when p is not close to .5 (the graph of coverage

probability versus p is very jagged because the underlying binomial probability

distribution is discrete rather than continuous). This is generally speaking a defi-

ciency of the traditional interval – the actual confidence level can be quite different

from the nominal level even for reasonably large sample sizes. Recent research has

shown that the score interval rectifies this behavior – for virtually all sample sizes

and values of p, its actual confidence level will be quite close to the nominal level

specified by the choice of za/2. This is due largely to the fact that the score interval is
shifted a bit toward .5 compared to the traditional interval. In particular, the

midpoint ~p of the score interval is always a bit closer to .5 than is the midpoint p̂
of the traditional interval. This is especially important when p is close to 0 or 1.

In addition, the score interval can be used with nearly all sample sizes and

parameter values. It is thus not necessary to check the conditions np̂ � 10 and

nð1� p̂Þ � 10 which would be required were the traditional interval employed. So

rather than asking when n is large enough for (8.11) to yield a good approximation

Figure 8.6 Actual coverage probability for the interval (8.11) for varying values of

p when n ¼ 100
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to (8.10), our recommendation is that the score CI should always be used. The slight
additional tediousness of the computation is outweighed by the desirable properties

of the interval.

Example 8.8 The article “Repeatability and Reproducibility for Pass/Fail Data” (J. Testing Eval.,
1997: 151–153) reported that in n ¼ 48 trials in a particular laboratory, 16 resulted

in ignition of a particular type of substrate by a lighted cigarette. Let p denote the

long-run proportion of all such trials that would result in ignition. A point estimate

for p is p̂ ¼ 16=48 ¼ :333. A confidence interval for p with a confidence level of

approximately 95% is

:333þ 1:962=96

1þ 1:962=48
� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:333Þð:667Þ=48þ 1:962=ð4 � 482Þ

p
1þ 1:962=48

¼ :346� :129 ¼ ð:217; :475Þ
The traditional interval is

:333� 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:333Þð:667Þ=48

p
¼ :333� :133 ¼ ð:200; :466Þ

These two intervals would be in much closer agreement were the sample size

substantially larger. ■

Equating the width of the CI for p to a prespecified width w gives a quadratic

equation for the sample size n necessary to give an interval with a desired degree of
precision. Suppressing the subscript in za/2, the solution is

n ¼ 2z2p̂q̂� z2w2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z4p̂q̂ðp̂q̂� w2Þ þ w2z4

p
w2

ð8:12Þ

Neglecting the terms in the numerator involving w2 gives

n ¼ 4z2p̂q̂

w2

This latter expression is what results from equating the width of the traditional

interval to w.
These formulas unfortunately involve the unknown p. The most conservative

approach is to take advantage of the fact that p̂q̂½¼ p̂ð1� p̂Þ� is a maximum when

p̂ ¼ :5. Thus if p̂ ¼ q̂ ¼ :5 is used in (8.12), the width will be at most w regardless

of what value of p̂ results from the sample. Alternatively, if the investigator

believes strongly, based on prior information, that p � p0 � .5, then p0 can be

used in place of p̂. A similar comment applies when p � p0 � .5.

Example 8.9 The width of the 95% CI in Example 8.8 is .258. The value of n necessary to ensure
a width of .10 irrespective of the value of p is

n ¼ 2ð1:96Þ2ð:25Þ � ð1:96Þ2ð:01Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1:96Þ4ð:25Þð:25� :01Þ þ ð:01Þð1:96Þ4

q
:01

¼ 380:3
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Thus a sample size of 381 should be used. The expression for n based on the

traditional CI gives a slightly larger value of 385. ■

One-Sided Confidence Intervals (Confidence Bounds)

The confidence intervals discussed thus far give both a lower confidence bound and
an upper confidence bound for the parameter being estimated. In some circum-

stances, an investigator will want only one of these two types of bounds. For

example, a psychologist may wish to calculate a 95% upper confidence bound for

true average reaction time to a particular stimulus, or a surgeon may want only a

lower confidence bound for true average remission time after colon cancer

surgery. Because the cumulative area under the standard normal curve to the left

of 1.645 is .95,

P
X � m
S=

ffiffiffi
n

p < 1:645

� �
� :95

Manipulating the inequality inside the parentheses to isolate m on one side and

replacing rv’s by calculated values gives the inequality m> x� 1:645s=
ffiffiffi
n

p
; the

expression on the right is the desired lower confidence bound. Starting with

P(�1.645 < Z) � .95 and manipulating the inequality results in the upper confi-

dence bound. A similar argument gives a one-sided bound associated with any

other confidence level.

PROPOSITION A large-sample upper confidence bound for m is

m< xþ za � sffiffiffi
n

p

and a large-sample lower confidence bound for m is

m> x� za � sffiffiffi
n

p

A one-sided confidence bound for p results from replacing za/2 by za and �
by either + or – in the CI formula (8.10) for p. In all cases the confidence

level is approximately 100(1 � a)%.

Example 8.10 A random sample of 50 patients who had been seen at an outpatient clinic was

selected, and the waiting time to see a physician was determined for each one,

resulting in a sample mean time of 40.3 min and a sample standard deviation of

28.0 min (suggested by the article “An Example of Good but Partially Successful

OR Engagement: Improving Outpatient Clinic Operations”, Interfaces 28, #5).

An upper confidence bound for true average waiting time with a confidence level

of roughly 95% is
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40:3þ ð1:645Þð28:0Þ=
ffiffiffiffiffi
50

p
¼ 40:3þ 6:5 ¼ 46:8

That is, with a confidence level of about 95%, m < 46.8. Note that the sample

standard deviation is quite large relative to the sample mean. If these were the

values of s and m, respectively, then population normality would not be sensible

because there would then be quite a large probability of obtaining a negative

waiting time. But because n is large here, our confidence bound is valid even

though the population distribution is probably positively skewed. ■

Exercises Section 8.2 (12–28)

12. A random sample of 110 lightning flashes in a

region resulted in a sample average radar echo

duration of .81 s and a sample standard deviation

of .34 s (“Lightning Strikes to an Airplane in a

Thunderstorm,” J. Aircraft, 1984: 607–611).

Calculate a 99% (two-sided) confidence interval

for the true average echo duration m, and inter-

pret the resulting interval.

13. The article “Extravisual Damage Detection?

Defining the Standard Normal Tree” (Photogram-
metric Engrg. Remote Sensing, 1981: 515–522)
discusses the use of color infrared photography in

identification of normal trees in Douglas fir

stands. Among data reported were summary sta-

tistics for green-filter analytic optical densitomet-

ric measurements on samples of both healthy and

diseased trees. For a sample of 69 healthy trees,

the samplemean dye-layer density was 1.028, and

the sample standard deviation was .163.

a. Calculate a 95% (two-sided) CI for the true

average dye-layer density for all such trees.

b. Suppose the investigators had made a rough

guess of .16 for the value of s before collect-
ing data. What sample size would be neces-

sary to obtain an interval width of .05 for a

confidence level of 95%?

14. The article “Evaluating Tunnel Kiln Perfor-

mance” (Amer. Ceramic Soc. Bull., Aug. 1997:
59–63) gave the following summary information

for fracture strengths (MPa) of n ¼ 169 ceramic

bars fired in a particular kiln: x ¼ 89:10;
s ¼ 3:73.
a. Calculate a (two-sided) confidence interval

for true average fracture strength using a con-

fidence level of 95%. Does it appear that true

average fracture strength has been precisely

estimated?

b. Suppose the investigators had believed a

priori that the population standard deviation

was about 4 MPa. Based on this supposition,

how large a sample would have been required

to estimate m to within .5 MPa with 95%

confidence?

15. Determine the confidence level for each of the

following large-sample one-sided confidence

bounds:

a. Upper bound: xþ :84s=
ffiffiffi
n

p
b. Lower bound: x� 2:05s=

ffiffiffi
n

p
c. Upper bound: xþ :67s=

ffiffiffi
n

p

16. A sample of 66 obese adults was put on a low-

carbohydrate diet for a year. The average weight

loss was 11 lb and the standard deviation was

19 lb. Calculate a 99% lower confidence bound

for the true average weight loss. What does the

bound say about confidence that the mean weight

loss is positive?

17. A study was done on 41 first-year medical stu-

dents to see if their anxiety levels changed during

the first semester. One measure used was the

level of serum cortisol, which is associated with

stress. For each of the 41 students the level was

compared during finals at the end of the semester

against the level in the first week of classes. The

average difference was 2.08 with a standard

deviation of 7.88. Find a 95% lower confidence

bound for the population mean difference m.
Does the bound suggest that the mean population

stress change is necessarily positive?

18. The article “Ultimate Load Capacities of Expan-

sion Anchor Bolts” (J. Energy Engrg., 1993:

139–158) gave the following summary data on

shear strength (kip) for a sample of 3/8-in. anchor

bolts: n ¼ 78; x ¼ 4:25; s ¼ 1:30. Calculate a

lower confidence bound using a confidence

level of 90% for true average shear strength.

19. The article “Limited Yield Estimation for Visual

Defect Sources” (IEEE Trans. Semicon. Manuf.,
1997: 17–23) reported that, in a study of a
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particular wafer inspection process, 356 dies

were examined by an inspection probe and 201

of these passed the probe. Assuming a stable

process, calculate a 95% (two-sided) confidence

interval for the proportion of all dies that pass the

probe.

20. The Associated Press (October 9, 2002) reported

that in a survey of 4722 American youngsters aged

6–19, 15% were seriously overweight (a body

mass index of at least 30; this index is a measure

of weight relative to height). Calculate and inter-

pret a confidence interval using a 99% confidence

level for the proportion of all American youngsters

who are seriously overweight.

21. A random sample of 539 households from a mid-

western city was selected, and it was determined

that 133 of these households owned at least one

firearm (“The Social Determinants of Gun Own-

ership: Self-Protection in an Urban Environment,”

Criminology, 1997: 629–640). Using a 95% con-

fidence level, calculate a lower confidence bound

for the proportion of all households in this city that

own at least one firearm.

22. In a sample of 1000 randomly selected consumers

who had opportunities to send in a rebate claim

form after purchasing a product, 250 of these

people said they never did so (“Rebates: Get

What You Deserve”, Consumer Reports, May

2009: 7). Reasons cited for their behavior included

too many steps in the process, amount too small,

missed deadline, fear of being placed on a mailing

list, lost receipt, and doubts about receiving the

money. Calculate an upper confidence bound at

the 95% confidence level for the true proportion of

such consumers who never apply for a rebate.

Based on this bound, is there compelling evidence

that the true proportion of such consumers is smal-

ler than 1/3? Explain your reasoning.

23. The article “An Evaluation of Football Helmets

Under Impact Conditions” (Amer. J. Sports Med.,
1984: 233–237) reports that when each football

helmet in a random sample of 37 suspension-type

helmets was subjected to a certain impact test, 24

showed damage. Let p denote the proportion of all
helmets of this type that would show damage

when tested in the prescribed manner.

a. Calculate a 99% CI for p.
b. What sample size would be required for the

width of a 99% CI to be at most .10, irrespec-

tive of p̂?

24. A sample of 56 research cotton samples resulted

in a sample average percentage elongation of 8.17

and a sample standard deviation of 1.42 (“An

Apparent Relation Between the Spiral Angle f,
the Percent Elongation E1, and the Dimensions of

the Cotton Fiber,” Textile Res. J., 1978: 407–410).
Calculate a 95% large-sample CI for the true aver-

age percentage elongation m. What assumptions

are you making about the distribution of percent-

age elongation?

25. A state legislator wishes to survey residents of her

district to see what proportion of the electorate is

aware of her position on using state funds to pay

for abortions.

a. What sample size is necessary if the 95% CI

for p is to have width of at most .10 irrespective

of p?
b. If the legislator has strong reason to believe

that at least 2
3
of the electorate know of her

position, how large a sample size would you

recommend?

26. The superintendent of a large school district, hav-

ing once had a course in probability and statistics,

believes that the number of teachers absent on any

given day has a Poisson distribution with parame-

ter l. Use the accompanying data on absences for

50 days to derive a large-sample CI for l. [Hint:
The mean and variance of a Poisson variable both

equal l, so

Z ¼ X � lffiffiffiffiffiffiffiffi
l=n

p

has approximately a standard normal distri-

bution. Now proceed as in the derivation of

the interval for p by making a probability

statement (with probability 1 � a) and solv-
ing the resulting inequalities for l (see the

argument just after (8.10))].

Number of
absences 0 1 2 3 4 5 6 7 8 9 10

Frequency 1 4 8 10 8 7 5 3 2 1 1

27. Reconsider the CI (8.10) for p, and focus on a

confidence level of 95%. Show that the confi-

dence limits agree quite well with those of the

traditional interval (8.11) once two successes and

two failures have been appended to the sample

[i.e., (8.11) based on (x + 2) S’s in (n + 4) trials].

[Hint: 1.96 � 2.] [Note: Agresti and Coull showed
that this adjustment of the traditional interval

also has actual confidence level close to the nomi-

nal level.]
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28. Young people may feel they are carrying the

weight of the world on their shoulders, when

what they are actually carrying too often is an

excessively heavy backpack. The article “Effec-

tiveness of a School-Based Backpack Health Pro-

motion Program” (Work, 2003: 113–123) reported
the following data for a sample of 131 sixth

graders: for backpack weight lbð Þ; x ¼ 13:83;
s ¼ 5:05; for backpack weight as a percentage

of body weight, a 95% CI for the population

mean was (13.62, 15.89).

a. Calculate and interpret a 99% CI for population

mean backpack weight.

b. Obtain a 99% CI for population mean weight

as a percentage of body weight.

c. The American Academy of Orthopedic Sur-

geons recommends that backpack weight be at

most 10% of body weight. What does your

calculation of (b) suggest, and why?

8.3 Intervals Based on a Normal Population
Distribution
The CI for m presented in Section 8.2 is valid provided that n is large. The resulting
interval can be used whatever the nature of the population distribution. The CLT

cannot be invoked, however, when n is small. In this case, one way to proceed is to

make a specific assumption about the form of the population distribution and then

derive a CI tailored to that assumption. For example, we could develop a CI for m
when the population is described by a gamma distribution, another interval for the

case of a Weibull population, and so on. Statisticians have indeed carried out this

program for a number of different distributional families. Because the normal

distribution is more frequently appropriate as a population model than is any

other type of distribution, we will focus here on a CI for this situation.

ASSUMPTION The population of interest is normal, so that X1, . . . , Xn constitutes a random

sample from a normal distribution with both m and s unknown.

The key result underlying the interval in Section 8.2 is that for large n, the rv
Z ¼ ðX � mÞ=ðS= ffiffiffi

n
p Þ has approximately a standard normal distribution. When n is

small, S is no longer likely to be close to s, so the variability in the distribution of Z
arises from randomness in both the numerator and the denominator. This implies

that the probability distribution of ðX � mÞ=ðS= ffiffiffi
n

p Þ will be more spread out than

the standard normal distribution. Inferences are based on the following result from

Section 6.4 using the family of t distributions:

THEOREM When X is the mean of a random sample of size n from a normal distribution

with mean m, the rv

T ¼ X � m
S=

ffiffiffi
n

p ð8:13Þ

has the t distribution with n � 1 degrees of freedom (df ).
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Properties of t Distributions

Before applying this theorem, a review of properties of t distributions is in order.

Although the variable of interest is still ðX � mÞ=ðS= ffiffiffi
n

p Þ, we now denote it by T to

emphasize that it does not have a standard normal distribution when n is small.

Recall that a normal distribution is governed by two parameters, the mean m and the

standard deviation s. A t distribution is governed by only one parameter, the

number of degrees of freedom of the distribution, abbreviated df and denoted

by n. Possible values of n are the positive integers 1, 2, 3, . . . . Each different value

of n corresponds to a different t distribution.
The density function for a random variable having a t distribution was derived

in Section 6.4. It is quite complicated, but fortunately we need concern ourselves only

with several of the more important features of the corresponding density curves.

PROPERTIES
OF T DISTRI-
BUTIONS

1. Each tn curve is bell-shaped and centered at 0.

2. Each tn curve is more spread out than the standard normal (z) curve.

3. As n increases, the spread of the tn curve decreases.

4. As n ! 1, the sequence of tn curves approaches the standard normal

curve (so the z curve is often called the t curve with df ¼ 1).

Recall the notation for values that capture particular upper-tail t-curve areas.

NOTATION Let ta,n ¼ the number on the measurement axis for which the area under the

t curve with n df to the right of ta,n, is a; ta,n is called a t critical value.

This notation is illustrated in Figure 8.7. Appendix Table A.5 gives ta,n for selected
values of a and n. The columns of the table correspond to different values of a.
To obtain t.05,15, go to the a ¼ .05 column, look down to the n ¼ 15 row, and

read t.05,15 ¼ 1.753. Similarly, t.05,22 ¼ 1.717 (.05 column, n ¼ 22 row), and

t.01,22 ¼ 2.508.

The values of ta,n exhibit regular behavior as we move across a row or down a

column. For fixed n, ta,n increases as a decreases, since we must move farther to the

0

Shaded area = a

ta,n

tn curve

Figure 8.7 A pictorial definition of ta,n

402 CHAPTER 8 Statistical Intervals Based on a Single Sample



right of zero to capture area a in the tail. For fixed a, as n is increased (i.e., as we

look down any particular column of the t table) the value of ta,n decreases. This is
because a larger value of n implies a t distribution with smaller spread, so it is not

necessary to go so far from zero to capture tail area a. Furthermore, ta,n, decreases
more slowly as n increases. Consequently, the table values are shown in increments

of 2 between 30 and 40 df and then jump to n ¼ 50, 60, 120, and finally 1.

Because t1 is the standard normal curve, the familiar za values appear in the last

row of the table. The rule of thumb suggested earlier for use of the large-sample CI

(if n > 40) comes from the approximate equality of the standard normal and

t distributions for n � 40.

The One-Sample t Confidence Interval

The standardized variable T has a t distribution with n � 1 df, and the area

under the corresponding t density curve between �ta/2,n�1 and ta/2,n�1 is 1 � a
(area a/2 lies in each tail), so

Pð�ta=2;n�1 < T< ta=2;n�1Þ ¼ 1� a ð8:14Þ

Expression (8.14) differs from expressions in previous sections in that T and ta/2,n�1

are used in place of Z and za/2, but it can be manipulated in the same manner to

obtain a confidence interval for m.

PROPOSITION Let x and s be the sample mean and sample standard deviation computed

from the results of a random sample from a normal population with mean m.
Then a 100(1 � a)% confidence interval for m, the one-sample t CI, is

x� ta=2;n�1 � sffiffiffi
n

p ; xþ ta=2;n�1 � sffiffiffi
n

p
� �

ð8:15Þ

or, more compactly, x� ta=2;n�1 � s=
ffiffiffi
n

p
.

An upper confidence bound for m is

xþ ta;n�1 � sffiffiffi
n

p

and replacing + by � in this latter expression gives a lower confidence
bound for m; both have confidence level 100(1 � a)%.

Example 8.11 Here are the alcohol percentages for a sample of 16 beers (light beers excluded):

4.68 4.13 4.80 4.63 5.08 5.79 6.29 6.79

4.93 4.25 5.70 4.74 5.88 6.77 6.04 4.95

Figure 8.8 shows a normal probability plot obtained from SAS. The plot is

sufficiently straight for the percentage to be assumed approximately normal.
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The mean is x ¼ 5:34 and the standard deviation is s ¼ .8483. The sample

size is 16, so a confidence interval for the population mean percentage is based on

15 df. A confidence level of 95% for a two-sided interval requires the t critical
value of 2.131. The resulting interval is

x� t:025;15 � sffiffiffi
n

p ¼ 5:34� ð2:131Þ :8483ffiffiffiffiffi
16

p

¼ 5:34� :45 ¼ ð4:89; 5:79Þ
A 95% lower bound would use �1.753 in place of �2.131. It is interesting that the

95% confidence interval is consistent with the usual statement about the equiva-

lence of wine and beer in terms of alcohol content. That is, assuming an alcohol

percentage of 13% for wine, a 5-oz serving yields .65 oz of alcohol, while,

assuming 5.34% alcohol, a 12-oz serving of beer has .64 oz of alcohol.

Unfortunately, it is not easy to select n to control the width of the t interval.
This is because the width involves the unknown (before data collection) s and

because n enters not only through 1=
ffiffiffi
n

p
but also through ta/2,n�1. As a result, an

appropriate n can be obtained only by trial and error.

In Chapter 14, we will discuss a small-sample CI for m that is valid provided

only that the population distribution is symmetric, a weaker assumption than

normality. However, when the population distribution is normal, the t interval
tends to be shorter than would be any other interval with the same confidence level.

A Prediction Interval for a Single Future Value

In many applications, an investigator wishes to predict a single value of a variable to
be observed at some future time, rather than to estimate the mean value of that

variable.

Example 8.12 Consider the following sample of fat content (in percentage) of n ¼ 10 randomly

selected hot dogs (“Sensory and Mechanical Assessment of the Quality of Frank-

furters,” J. Texture Stud., 1990: 395–409):

25.2 21.3 22.8 17.0 29.8 21.0 25.5 16.0 20.9 19.5

−2 −1 0 1 2

7.0

6.5

6.0

5.5

5.0

4.5

4.0

Normal Quantiles

p
e
r
c
e
n
t

Figure 8.8 A normal probability plot of the alcohol percentage data ■
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Assuming that these were selected from a normal population distribution, a 95% CI

for (interval estimate of) the population mean fat content is

x� t:025;9 � sffiffiffi
n

p ¼ 21:90� 2:262 � 4:134ffiffiffiffiffi
10

p ¼ 21:90� 2:96 ¼ ð18:94; 24:86Þ

Suppose, however, you are going to eat a single hot dog of this type and want a

prediction for the resulting fat content. A point prediction, analogous to a point
estimate, is just x ¼ 21:90. This prediction unfortunately gives no information

about reliability or precision. ■

The general setup is as follows: We will have available a random sample X1,

X2, . . ., Xn from a normal population distribution, and we wish to predict the value

of Xn+1, a single future observation. A point predictor is X, and the resulting

prediction error is X � Xnþ1. The expected value of the prediction error is

EðX � Xnþ1Þ ¼ EðXÞ � E Xnþ1ð Þ ¼ m� m ¼ 0

Since Xn+1 is independent of X1, . . . , Xn, it is independent of X, so the variance of

the prediction error is

VðX � Xnþ1Þ ¼ VðXÞ þ V Xnþ1ð Þ ¼ s2

n
þ s2 ¼ s2 1þ 1

n

� �

The prediction error is a linear combination of independent normally distributed

rv’s, so itself is normally distributed. Thus

Z ¼ ðX � Xnþ1Þ � 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 1þ 1

n

� �q ¼ X � Xnþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 1þ 1

n

� �q

has a standard normal distribution. As in the derivation of the distribution of

ðX � mÞ=ðS= ffiffiffi
n

p Þ in Section 6.4, it can be shown (Exercise 43) that replacing s by

the sample standard deviation S (of X1, . . . , Xn) results in

T ¼ X � Xnþ1

S
ffiffiffiffiffiffiffiffiffiffi
1þ 1

n

q 	 t distribution with n � 1 df

Manipulating this T variable as T ¼ ðX � mÞ=ðS= ffiffiffi
n

p Þ was manipulated in the

development of a CI gives the following result.

PROPOSITION A prediction interval (PI) for a single observation to be selected from a

normal population distribution is

x� ta=2;n�1 � s
ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
ð8:16Þ

The prediction level is 100(1 � a)%.

The interpretation of a 95% prediction level is similar to that of a 95% confidence

level; if the interval (8.16) is calculated for sample after sample, in the long run

95% of these intervals will include the corresponding future values of X.
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Example 8.13

(Example 8.12

continued)

With n ¼ 10, x ¼ 21:90, s ¼ 4.134, and t.025,9 ¼ 2.262, a 95% PI for the fat

content of a single hot dog is

21:90� ð2:262Þð4:134Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

10

r
¼ 21:90� 9:81 ¼ 12:09; 31:71Þð

This interval is quite wide, indicating substantial uncertainty about fat content.

Notice that the width of the PI is more than three times that of the CI. ■

The error of prediction is X � Xnþ1, a difference between two random vari-

ables, whereas the estimation error is X � m, the difference between a random

variable and a fixed (but unknown) value. The PI is wider than the CI because

there is more variability in the prediction error (due to Xn+1) than in the estimation

error. In fact, as n gets arbitrarily large, the CI shrinks to the single value m, and
the PI approaches m � za/2·s. There is uncertainty about a single X value even

when there is no need to estimate.

Tolerance Intervals

In addition to confidence intervals and prediction intervals, statisticians are some-

times called upon to obtain a third type of interval called a tolerance interval (TI).
A TI is an interval that with a high degree of reliability captures at least a specified

percentage of the x values in a population distribution. For example, if the popula-

tion distribution of fuel efficiency is normal, then the interval from m � 1.645s to

m + 1.645s captures 90% of the fuel efficiency values in the population. It can then

be shown that if m and s are replaced by their natural estimates x and s based on a

sample of size n ¼ 20 and the z critical value 1.645 is replaced by a tolerance
critical value 2.310, the resulting interval contains at least 90% of the population

values with a confidence level of 95%.

Please consult one of the chapter references for more information on TIs. And

before you calculate a particular statistical interval, be sure that it is the correct type

of interval to fulfill your objective!

Intervals Based on Nonnormal Population Distributions

The one-sample t CI for m is robust to small or even moderate departures from

normality unless n is quite small. By this we mean that if a critical value for 95%

confidence, for example, is used in calculating the interval, the actual confidence

level will be reasonably close to the nominal 95% level. If, however, n is small and

the population distribution is highly nonnormal, then the actual confidence level

may be considerably different from the one you think you are using when you

obtain a particular critical value from the t table. It would certainly be distressing to
believe that your confidence level is about 95% when in fact it was really more like

88%! The bootstrap technique, discussed in the last section of this chapter, has been

found to be quite successful at estimating parameters in a wide variety of non-

normal situations.

In contrast to the confidence interval, the validity of the prediction intervals

described in this section is closely tied to the normality assumption. These latter

intervals should not be used in the absence of compelling evidence for normality.

The excellent reference Statistical Intervals, cited in the bibliography at the end of

this chapter, discusses alternative procedures of this sort for various other situations.
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Exercises Section 8.3 (29–43)

29. Determine the values of the following quantities:

a. t.1,15
b. t.05,15
c. t.05,25
d. t.05,40
e. t.005,40

30. Determine the t critical value that will capture

the desired t curve area in each of the following

cases:

a. Central area ¼ .95, df ¼ 10

b. Central area ¼ .95, df ¼ 20

c. Central area ¼ .99, df ¼ 20

d. Central area ¼ .99, df ¼ 50

e. Upper-tail area ¼ .01, df ¼ 25

f. Lower-tail area ¼ .025, df ¼ 5

31. Determine the t critical value for a two-sided

confidence interval in each of the following

situations:

a. Confidence level ¼ 95%, df ¼ 10

b. Confidence level ¼ 95%, df ¼ 15

c. Confidence level ¼ 99%, df ¼ 15

d. Confidence level ¼ 99%, n ¼ 5

e. Confidence level ¼ 98%, df ¼ 24

f. Confidence level ¼ 99%, n ¼ 38

32. Determine the t critical value for a lower or an

upper confidence bound for each of the situations

described in Exercise 31.

33. A sample of ten guinea pigs yielded the follow-

ing measurements of body temperature in

degrees Celsius (Statistical Exercises in Medical
Research, New York: Wiley, 1979, p. 26):

38.1 38.4 38.3 38.2 38.2 37.9 38.7 38.6

38.0 38.2

a. Verify graphically that it is reasonable to

assume the normal distribution.

b. Compute a 95% confidence interval for the

population mean temperature.

c. What is the CI if temperature is re-expressed

in degrees Fahrenheit? Are guinea pigs

warmer on average than humans?

34. Here is a sample of ACT scores (average of the

Math, English, Social Science, and Natural Sci-

ence scores) for students taking college freshman

calculus:

24.00 28.00 27.75 27.00 24.25 23.50 26.25
24.00 25.00 30.00 23.25 26.25 21.50 26.00
28.00 24.50 22.50 28.25 21.25 19.75

a. Using an appropriate graph, see if it is plausible
that the observations were selected from a

normal distribution.

b. Calculate a two-sided 95% confidence inter-

val for the population mean.

c. The university ACT average for entering

freshmen that year was about 21. Are the

calculus students better than average, as

measured by the ACT?

35. A sample of 14 joint specimens of a particular

type gave a sample mean proportional limit

stress of 8.48 MPa and a sample standard devia-

tion of .79 MPa (“Characterization of Bearing

Strength Factors in Pegged Timber Connec-

tions,” J. Struct. Engrg., 1997: 326–332).
a. Calculate and interpret a 95% lower confi-

dence bound for the true average proportional

limit stress of all such joints. What, if any,

assumptions did you make about the distribu-

tion of proportional limit stress?

b. Calculate and interpret a 95% lower predic-

tion bound for the proportional limit stress of

a single joint of this type.

36. Even as traditional markets for sweetgum lumber

have declined, large section solid timbers tradi-

tionally used for construction bridges and mats

have become increasingly scarce. The article

“Development of Novel Industrial Laminated

Planks from Sweetgum Lumber” (J. of Bridge
Engr., 2008: 64–66) described the manufacturing

and testing of composite beams designed to add

value to low-grade sweetgum lumber. Here is

data on the modulus of rupture (psi; the article

contained summary data expressed in MPa):

6807.99 7637.06 6663.28 6165.03 6991.41 6992.23
6981.46 7569.75 7437.88 6872.39 7663.18 6032.28
6906.04 6617.17 6984.12 7093.71 7659.50 7378.61
7295.54 6702.76 7440.17 8053.26 8284.75 7347.95
7422.69 7886.87 6316.67 7713.65 7503.33 7674.99

a. Verify the plausibility of assuming a normal

population distribution.

b. Estimate the true average modulus of rupture

in a way that conveys information about pre-

cision and reliability.

c. Predict the modulus for a single beam in a

way that conveys information about precision

and reliability. How does the resulting predic-

tion compare to the estimate in (b).
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37. The n ¼ 26 observations on escape time given in

Exercise 33 of Chapter 1 give a sample mean and

sample standard deviation of 370.69 and 24.36,

respectively.

a. Calculate an upper confidence bound for pop-
ulation mean escape time using a confidence

level of 95%.

b. Calculate an upper prediction bound for the

escape time of a single additional worker

using a prediction level of 95%. How does

this bound compare with the confidence

bound of part (a)?

c. Suppose that two additional workers will be

chosen to participate in the simulated escape

exercise. Denote their escape times by X27 and

X28, and let Xnew denote the average of these

two values. Modify the formula for a PI for a

single x value to obtain a PI for Xnew, and

calculate a 95% two-sided interval based on

the given escape data.

38. A study of the ability of individuals to walk in a

straight line (“Can We Really Walk Straight?”

Amer. J. Phys. Anthropol., 1992: 19–27) reported
the accompanying data on cadence (strides per

second) for a sample of n ¼ 20 randomly selected

healthy men.

.95 .85 .92 .95 .93 .86 1.00 .92 .85 .81

.78 .93 .93 1.05 .93 1.06 1.06 .96 .81 .96

A normal probability plot gives substantial sup-

port to the assumption that the population distri-

bution of cadence is approximately normal. A

descriptive summary of the data from MINITAB

follows:

Variable N Mean Median TrMean StDev SEMean

Cadence 20 0.9255 0.9300 0.9261 0.0809 0.0181

Variable Min Max Q1 Q3

Cadence 0.7800 1.0600 0.8525 0.9600

a. Calculate and interpret a 95% confidence inter-

val for population mean cadence.

b. Calculate and interpret a 95% prediction inter-

val for the cadence of a single individual ran-

domly selected from this population.

39. A sample of 25 pieces of laminate used in the

manufacture of circuit boards was selected and

the amount of warpage (in.) under particular con-

ditions was determined for each piece, resulting in

a sample mean warpage of .0635 and a sample

standard deviation of .0065. Calculate a prediction

for the amount of warpage of a single piece of

laminate in a way that provides information about

precision and reliability.

40. Exercise 69 of Chapter 1 gave the following

observations on a receptor binding measure

(adjusted distribution volume) for a sample of 13

healthy individuals: 23, 39, 40, 41, 43, 47, 51, 58,

63, 66, 67, 69, 72.

a. Is it plausible that the population distribution

from which this sample was selected is nor-

mal?

b. Predict the adjusted distribution volume of a

single healthy individual by calculating a 95%

prediction interval.

41. Here are the lengths (in minutes) of the 63 nine-

inning games from the first week of the 2001

major league baseball season:

194 160 176 203 187 163 162 183 152 177
177 151 173 188 179 194 149 165 186 187
187 177 187 186 187 173 136 150 173 173
136 153 152 149 152 180 186 166 174 176
198 193 218 173 144 148 174 163 184 155
151 172 216 149 207 212 216 166 190 165
176 158 198

Assume that this is a random sample of nine-

inning games (the mean differs by 12 s from the

mean for the whole season).

a. Give a 95% confidence interval for the popula-

tion mean.

b. Give a 95% prediction interval for the length of

the next nine-inning game. On the first day of

the next week, Boston beat Tampa Bay 3–0 in

a nine-inning game of 152 min. Is this within

the prediction interval?

c. Compare the two intervals and explain why one

is much wider than the other.

d. Explore the issue of normality for the data and

explain how this is relevant to parts (a) and (b).

42. A more extensive tabulation of t critical values
than what appears in this book shows that for the

t distribution with 20 df, the areas to the right of

the values .687, .860, and 1.064 are .25, .20, and

.15, respectively. What is the confidence level for

each of the following three confidence intervals

for the mean m of a normal population distribu-

tion? Which of the three intervals would you rec-

ommend be used, and why?

a. ðx� :687s=
ffiffiffiffiffi
21

p
; xþ 1:725s=

ffiffiffiffiffi
21

p Þ
b. ðx� :860s=

ffiffiffiffiffi
21

p
; xþ 1:325s=

ffiffiffiffiffi
21

p Þ
c. ðx� 1:064s=

ffiffiffiffiffi
21

p
; xþ 1:064s=

ffiffiffiffiffi
21

p Þ
43. Use the results of Section 6.4 to show that the

variable T on which the PI is based does in fact

have a t distribution with n � 1 df.
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8.4 Confidence Intervals for the Variance
and Standard Deviation of a Normal
Population
Although inferences concerning a population variance s2 or standard deviation

s are usually of less interest than those about a mean or proportion, there are

occasions when such procedures are needed. In the case of a normal population

distribution, inferences are based on the following result from Section 6.4

concerning the sample variance S2.

THEOREM Let X1, X2, . . . , Xn be a random sample from a normal distribution with

parameters m and s2. Then the rv

ðn� 1ÞS2
s2

¼
P ðXi � XÞ2

s2

has a chi-squared (w2) probability distribution with n � 1 df.

As discussed in Sections 4.4 and 6.4, the chi-squared distribution is a continu-

ous probability distribution with a single parameter n, the number of degrees of

freedom, with possible values 1, 2, 3, . . . . To specify inferential procedures that use
the chi-squared distribution, recall the notation for critical values from Section 6.4.

NOTATION Let w2a;n, called a chi-squared critical value, denote the number on the

measurement axis such that a of the area under the chi-squared curve with

n df lies to the right of w2a;n.

Because the t distribution is symmetric, it was necessary to tabulate only

upper-tail critical values (ta,n for small values of a). The chi-squared distribution is

not symmetric, so Appendix Table A.6 contains values of w2a;n for a both near 0 and
near 1, as illustrated in Figure 8.9(b). For example, w2:025;14 ¼ 26:119 and w2:95;20 (the
5th percentile) ¼ 10.851.

  2 pdf

Shaded area = a

 2,   2.99,   
 2
.01,   

Each shaded
area = .01a b

Figure 8.9 w2a;u notation illustrated
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The rv (n � 1)S2/s2 satisfies the two properties on which the general method

for obtaining a CI is based: It is a function of the parameter of interest s2, yet its
probability distribution (chi-squared) does not depend on this parameter. The area

under a chi-squared curve with n df to the right of w2a=2;n is a/2, as is the area to the

left of w21�a=2;n. Thus the area captured between these two critical values is 1 � a.
As a consequence of this and the theorem just stated,

P w21�a=2;n�1 <
ðn� 1ÞS2

s2
< w2a=2;n�1

� �
¼ 1� a ð8:17Þ

The inequalities in (8.17) are equivalent to

ðn� 1ÞS2
w2a=2;n�1

< s2 <
ðn� 1ÞS2
w21�a=2;n�1

Substituting the computed value s2 into the limits gives a CI for s2, and taking
square roots gives an interval for s.

A 100(1 � a)% confidence interval for the variance s2 of a normal
population has lower limit

ðn� 1Þs2=w2a=2;n�1

and upper limit

ðn� 1Þs2=w21�a=2;n�1

A confidence interval for s has lower and upper limits that are the square

roots of the corresponding limits in the interval for s2.

Example 8.14 Recall the beer alcohol percentage data from Example 8.11, where the normal plot

was acceptably straight and the standard deviation was found to be s ¼ .8483.

Then the sample variance is s2 ¼ .84832 ¼ .7196, and we wish to estimate the

population variance s2. With df ¼ n � 1 ¼ 15, a 95% confidence interval requires

w2:975;15 ¼ 6:262 and w2:025;15 ¼ 27:488. The interval for s2 is

15ð:7196Þ
27:488

;
15ð:7196Þ
6:262

� �
¼ ð:393; 1:724Þ

Taking the square root of each endpoint yields (.627, 1.313) as the 95% confidence

interval for s. With lower and upper limits differing by more than a factor of two,

this interval is quite wide. Precise estimates of variability require large samples.■

Unfortunately, our confidence interval requires that the data be normal or nearly

normal. In the case of nonnormal data the interval could be very far from valid; for

example, the true confidence level could be 70%where 95% is intended. See Exercise

57 in the next section for a method that does not require the normal distribution.
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Exercises Section 8.4 (44–48)

44. Determine the values of the following quantities:

a. w2:1;15
b. w2:1;25
c. w2:01;25
d. w2:005;25
e. w2:99;25
f. w2:995;25

45. Determine the following:

a. The 95th percentile of the chi-squared distribu-
tion with n ¼ 10

b. The 5th percentile of the chi-squared distribu-

tion with n ¼ 10

c. P(10.98 � w2 � 36.78), where w2 is a chi-

squared rv with n ¼ 22

d. P(w2 < 14.611 or w2 > 37.652), where w2 is a
chi-squared rv with n ¼ 25

46. Exercise 34 gave a random sample of 20 ACT

scores from students taking college freshman calcu-

lus. Calculate a 99%CI for the standard deviation of

the population distribution. Is this interval valid

whatever the nature of the distribution? Explain.

47. Here are the names of 12 orchestra conductors and

their performance times in minutes for Beetho-

ven’s Ninth Symphony:

Bernstein 71.03 Furtw€angler 74.38

Leinsdorf 65.78 Ormandy 64.72

Solti 74.70 Szell 66.22

Bohm 72.68 Karajan 66.90

Masur 69.45 Rattle 69.93

Steinberg 68.62 Tennstedt 68.40

a. Check to see that normality is a reasonable

assumption for the performance time distribu-

tion.

b. Compute a 95% CI for the population standard

deviation, and interpret the interval.

c. Supposedly, classical music is 100% deter-

mined by the composer’s notation, including

all timings. Based on your results, is this true

or false?

48. Refer to the baseball game times in Exercise 41.

Calculate an upper confidence bound with

confidence level 95% for the population

standard deviation of game time. Interpret your

interval. Explore the issue of normality for the

data and explain how this is relevant to your

interval.

8.5 Bootstrap Confidence Intervals
How can we find a confidence interval for the mean if the population distribution is

not normal and the sample size n is not large? Can we find confidence intervals for
other parameters such as the population median or the 90th percentile of the

population distribution? The bootstrap, developed by Bradley Efron in the late

1970s, allows us to calculate estimates in situations where statistical theory does

not produce a formula for a confidence interval. The method substitutes heavy

computation for theory, and it has been feasible only fairly recently with the

availability of fast computers. The bootstrap was introduced in Section 7.1 for

applications with known distribution (the parametric bootstrap), but here we are

concerned with the case of unknown distribution (the nonparametric bootstrap).

Example 8.15 In a student project, Erich Brandt studied tips at a restaurant. Here is a random

sample of 30 observed tip percentages:

22.7, 16.3, 13.6, 16.8, 29.9, 15.9, 14.0, 15.0, 14.1, 18.1, 22.8, 27.6, 16.4, 16.1, 19.0,

13.5, 18.9, 20.2, 19.7, 18.2, 15.4, 15.7, 19.0, 11.5, 18.4, 16.0, 16.9, 12.0, 40.1, 19.2

We would like to get a confidence interval for the population mean tip percentage at

this restaurant. However, this is not a large sample and there is a problem with

positive skewness, as shown in the normal probability plot of Figure 8.10.
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Most of the tips are between 10% and 20%, but a few big tips cause enough

skewness to invalidate the normality assumption. The sample mean is 18.43% and

the sample standard deviation is 5.76%.

If population normality were plausible, then we could form a confidence

interval using the mean and standard deviation calculated from the sample. From

Section 8.3, the resulting 95% confidence interval for the population mean would

be

x� t:025;n�1

sffiffiffi
n

p ¼ 18:43� 2:045
5:76ffiffiffiffiffi
30

p ¼ 18:43� 2:15 ¼ ð16:3; 20:6Þ

How does the bootstrap approach differ from this? For the moment, we

regard the 30 observations as constituting a population, and take a large number

of random samples (999 is a common choice), each of size 30, from this population.

These are samples with replacement, so repetitions are allowed. For each of these

samples we compute the mean (or the median or whatever statistic estimates the

population parameter). Then we use the distribution of these 999 means to get a

confidence interval for the population mean. To help get a feeling for how this

works, here is the first of the 999 samples:

22.8, 16.8, 16.0, 19.0, 19.2, 20.2, 13.6, 15.9, 22.8, 11.5, 15.9, 14.0, 29.9, 19.2, 16.0,

27.6, 14.1, 13.5, 16.8, 15.4, 20.2, 16.4, 20.2, 16.9, 16.8, 22.8, 19.7, 18.2, 22.7, 18.2

This sample has mean x
1 ¼ 18:41, where the asterisk emphasizes that this is

the mean of a bootstrap sample.

Of course, when we take a random sample with replacement, repetitions

usually occur as they do here, and this implies that not all of the 30 observations

will appear in each sample. After doing this 998 more times and computing the

means x 

2 ; :::; x



999 for these 999 samples, we construct Figure 8.11, the histogram of

the 999 x 
 values.
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Figure 8.10 Normal probability plot from MINITAB of the tip percentages
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This describes approximately the sampling distribution of X for samples of 30

from the true tip population. That is, if we could draw the pdf for the true population

distribution of x values, then it should look something like the histogram in

Figure 8.11. Does the distribution appear to be normal? The histogram is not

exactly symmetric, and the distribution looks skewed to the right. Figure 8.12 has

the normal probability plot from MINITAB:

The pattern in this plot gives evidence of slight positive skewness (see

Section 4.6). If this plot were straighter, then we could form a 95% confidence

interval for the population mean in the following way. Let sboot denote the sample

standard deviation of the 999 bootstrap means. That is, defining x
 to be the mean

of the 999 bootstrap means,

s2boot ¼
P ðx
i � x
Þ2

999� 1
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Figure 8.11 Histogram of the tip bootstrap distribution, from MINITAB
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The value of sboot turns out to be 1.043. The sample mean of the original 30 tip

percentages is x ¼ 18:43, giving the 95% confidence interval

x� z:025sboot ¼ 18:43� 1:96ð1:043Þ ¼ 18:43� 2:04 ¼ ð16:4; 20:5Þ
Notice that this is very similar to the previous interval based on the method of

Section 8.3. The difference is mainly due to using the z critical value instead of the
t critical value, because the bootstrap standard deviation sboot ¼ 1.043 is close to

the estimated standard error s=
ffiffiffi
n

p ¼ 1:052. There should be good agreement if the

original data set looks normal. Even if the normality assumption is not satisfied,

there should be good agreement if the sample size n is big enough. ■

The Percentile Interval

In the case that the bootstrap distribution (as represented here by the histogram of

Figure 8.11) is normal, the foregoing interval uses the middle 95% of the bootstrap

distribution. Because the 999 bootstrap means do not fit a normal curve, we need an

alternative approach to finding a confidence interval. To allow for a nonnormal

bootstrap distribution, we need to use something other than the standard deviation

and the t table to determine the confidence limits. The percentile interval uses the
2.5 percentile and the 97.5 percentile of the bootstrap distribution for confidence

limits of a 95% confidence interval. Computationally, one way to find the two

percentiles is to sort the 999 means and then use the 25th value from each end.

DEFINITION The bootstrap percentile interval with a confidence level of 100(1 � a)%
for a specified parameter is obtained by first generating B bootstrap

samples, for each one calculating the value of some particular statistic that

estimates the parameter, and sorting these values from smallest to largest.

Then we compute k ¼ a(B + 1)/2 and choose the kth value from each end

of the sorted list. These two values form the confidence limits for the

confidence interval. If k is not an integer, then interpolation can be used,

but this is not crucial. As an example, if a ¼ .05 and B ¼ 999, then

k ¼ a(B + 1)/2 ¼ (.05)(999 + 1)/2 ¼ 25.

Example 8.16

(Example 8.15

continued)

For the tip data the 2.5 percentile is 16.7 and the 97.5 percentile is 20.8, so the 95%

bootstrap percentile interval (16.65, 20.80). Because the bootstrap distribution is

positively skewed, the percentile interval is shifted slightly to the right compared to

the interval based on a normal bootstrap distribution. ■

A Refined Interval

When the percentile method is used to obtain a confidence interval, under some

circumstances the actual confidence level may differ substantially from the nomi-

nal level (the level you think you are getting); in our example, the nominal level

was 95%, and the actual level could be quite different from this. There are refined

bootstrap intervals that often yield an improvement in this respect. In particular,
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the BCa (bias corrected and accelerated) interval, implemented in the R, Stata, and

Systat software packages, is a method that corrects for bias. Here bias refers to the

difference between the mean of the bootstrap distribution compared to the value of

the estimate based on the original sample. For example, in estimating the mean for

the tip data, the mean of the 30 tips in the original sample is 18.43 but the mean of

the 999 bootstrap sample means is 18.46, so there is just a slight bias of

18.46 � 18.43 ¼ .03.

The acceleration aspect of the BCa interval is an adjustment for dependence

of the standard error of the estimator on the parameter that is being estimated. For

example, suppose we are trying to estimate the mean in the case of exponential

data. In this case the standard deviation is equal to the mean, and the standard error

of X is s=
ffiffiffi
n

p ¼ m=
ffiffiffi
n

p
, so the standard error of the estimator X depends strongly on

the parameter m that is being estimated. If the histogram in Figure 8.11 resembled

the exponential pdf, we would expect the BCa method to make a substantial

correction to the percentile interval.

Example 8.17

(Example 8.16

continued)

Recall that the percentile interval for the mean of the tip data is (16.7, 20.8).

Compared to this, the BCa interval (16.9, 21.8) is shifted a little to the right. ■

Is the bootstrap guaranteed to work, or is it possible that the method can give

grossly incorrect estimates? The key here is how closely the original sample

represents the whole distribution of the random variable X. When the sample is

small, then there is a possibility that important features of the distribution are not

included in the data set. In terms of our 30 observations, the value 40.1% is highly

influential. If we drew another sample of 30 observations independent of this

sample, the luck of the draw might give no values above 25, and the sample

would yield very different conclusions. The bootstrap is a useful method for

making inferences from data, but it is dependent on a good sample. If this is all

the data that we can get, we will never know how well our sample represents the

distribution, and therefore how good our answer is. Of course, no statistical method

will give good answers if the sample is not representative of the population.

Bootstrapping the Median

We do have a statistic that is less sensitive to the influence of individual observa-

tions. For the 30 tip percentages, the median is 16.85, substantially less than the

mean of 18.43. The mean is pulled upward by the few large values, but these

extremes have little effect on the median. In general, the median is less affected by

outliers than the mean. However, it is more difficult to get confidence intervals for

the median. There is a nice statistic to estimate the standard deviation of the mean

ðS= ffiffiffi
n

p Þ, but unfortunately there is nothing like this for the median.

Example 8.18

(Example 8.15

continued)

Let’s use the bootstrap method to get a confidence interval for the median of the tip

data. We can use the same 999 samples of 30 as we did previously, but now we

instead look at the 999 medians. The first sample has mean x
1 ¼ 18:41, whereas its
median is ~x
1 ¼ 17:55. The histogram of this and the other 998 bootstrap medians

~x
2; . . . ; ~x


999 is shown in Figure 8.13.
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It should be apparent that the distribution of the 999 bootstrap medians is not

normal. As is often the case with the median, the bootstrap distribution takes on just

a few values and there are many repeats. Instead of 999 different values, as would

be expected if we took 999 samples from a true continuous distribution, here there

are only 72 values, and some appear more than 50 times. These are apparent in the

normal probability plot, shown in Figure 8.14. In contrast to what MINITAB does,

the values here are plotted vertically, so the horizontal segments indicate repeats.

The mean of the 999 bootstrap medians is 17.20 with standard deviation .917.

Even though the procedure is inappropriate because of nonnormality, we can for

comparative purposes use the median ~x ¼ 16:85 of the original 30 observations
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together with the bootstrap standard deviation ~sboot ¼ :917 to get a confidence

interval based on the normal distribution:

~x� z:025~sboot ¼ 16:85� 1:96ð:917Þ ¼ 16:85� 1:80 ¼ ð15:1; 18:6Þ
Because the bootstrap distribution is so nonnormal, it is more appropriate to

use the percentile interval in which the confidence limits for a 95% confidence

interval are taken from the 2.5 and 97.5 percentiles of the bootstrap distribution.

When the 999 bootstrap medians are sorted, the 25th value is 15.94 and the 25th

value from the top is 18.98, so the 95% confidence interval for the population

median is (15.94, 18.98). In accord with the nonnormal bootstrap distribution, this

interval differs from the interval that assumes normality.

The bias corrected and accelerated BCa refinement gives only a slight change

to the percentile interval for the median. To estimate the bias, subtract the median

of the original sample from the mean of the bootstrap medians, which is

17.20 � 16.85 ¼ .35. The percentile interval gives only a slight refinement from

(15.94, 18.98) to (15.87, 18.94). ■

We should be a bit uncomfortable with the results of bootstrapping the

median. Given that the bootstrap distribution takes on just a few values but the

true sampling distribution is continuous, we should worry a little about how well

the bootstrap distribution approximates the true sampling distribution. On the other

hand, the situation here is nowhere near as bad as it could be. Sometimes, especially

when the sample size is smaller, the bootstrap distribution has far fewer values.

What can be done to see if the bootstrap results are valid for the median? We

performed a simulation experiment with data from the exponential distribution, a

distribution that is more strongly skewed than the tip percentages. We generated

100 samples, each of size 30, and then took 999 bootstrap samples from each of

them. In this way we obtained 95% percentile confidence intervals for the mean and

the median from each of the 100 samples. We used the exponential distribution

with mean m ¼ 1/l ¼ 1, for which the median ~m ¼ lnð2Þ ¼ :693. In checking each
of the 100 confidence intervals for the mean, we found that 93 of them contained

the true mean. Similarly, we found that 93 of the confidence intervals for the

median contained the true median. It is gratifying to see that, in spite of the strange

distribution of the bootstrapped medians, the performance of the percentile confi-

dence intervals is reasonably on target.

The Mean Versus the Median

For the tip percentages is it better to use the mean or the median? The median is

much less affected by the extreme observations in this skewed data set. This

suggests that the mean will vary a lot depending on whether a particular sample

has outliers. Here, the variability shows up in a higher standard deviation 1.043 for

the 999 bootstrap means as compared to the standard deviation .917 for the 999

bootstrap medians. Furthermore, the percentile interval with 95% confidence for

the mean has width 4.15 whereas the interval for the median has a width of only

3.04. In terms of precision, we are better off with the median. For a prospective

server at this restaurant, it might also be more meaningful to give the median, the

middle tip value in the sense that roughly half are above and half are below.
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Of course, it is not always necessary to choose one statistic over the other.

Sometimes a case can be made for presenting both the mean and the median. In the

case of salaries, the median salary may be more relevant to an employee, but

the mean may be more useful to the employer because the mean is proportional

to the total payroll.

Exercises Section 8.5 (49–57)

49. In a survey, students gave their study time per

week (h), and here are the 22 values:

15.0 10.0 10.0 15.0 25.0 7.0 3.0 8.0 10.0

10.0 11.0 7.0 5.0 15.0 7.5 7.5 12.0 7.0

10.5 6.0 10.0 7.5

We would like to get a 95% confidence interval

for the population mean.

a. Compute the t-based confidence interval of

Section 8.3.

b. Display a normal plot. Is it apparent that the

data set is not normal, so the t-based interval is
of questionable validity?

c. Generate a bootstrap sample of 999 means.

d. Use the standard deviation for part (c) to get a

95% confidence interval for the population

mean.

e. Investigate the distribution of the bootstrap

means to see if the CI of part (d) is valid.

f. Use part (c) to form the 95% confidence inter-

val using the percentile method.

g. Say which interval should be used and explain

why.

50. Wewould like to obtain a 95% confidence interval

for the population median of the study hours data

in Exercise 49.

a. Obtain a bootstrap sample of 999 medians.

b. Use the standard deviation for part (a) to get a

95% confidence interval for the population

median.

c. Investigate the distribution of the bootstrap

medians and discuss the validity of part (b).

Does the distribution take on just a few values?

d. Use part (a) to form a 95% confidence interval

for the median using the percentile method.

e. For the study hours data, state your preference

between the median and the mean and explain

your reasoning.

51. Here are 68 weight gains in pounds for pregnant

women from conception to delivery (“Classifying

Data Displays with an Assessment of Displays

Found in Popular Software,” Teach. Statist.,
Autumn 2002: 96–101).

25 14 20 38 21 22 36 38 35 37

35 24 31 28 25 32 23 30 39 26

38 20 21 11 35 42 31 25 59 23

43 38 21 76 22 26 10 19 25 25

15 31 34 36 35 33 24 44 35 43

7 32 25 27 31 14 25 16 25 47

35 �14 65 40 35 45 27 24

We would like to get a 95% confidence interval

for the population mean.

a. Compute the t–based confidence interval of

Section 8.3.

b. Check for normality to see if part (a) is valid. Is

the sample large enough that the interval might

be valid anyway?

c. Generate a bootstrap sample of 999 means.

d. Use the standard deviation for part (c) to get a

95% confidence interval for the population

mean.

e. Investigate the distribution of the bootstrap

means to see if the CI of part (d) is valid.

f. Use part (c) to form the 95% confidence inter-

val using the percentile method.

g. Compare the intervals. If they are all close,

then the bootstrap supports the CI of part (a).

52. Wewould like to obtain a 95% confidence interval

for the population median weight gain using the

data in Exercise 51.

a. Obtain a bootstrap sample of 999 medians.

b. Use the standard deviation for part (a) to get a

95% confidence interval for the population

median.

c. Investigate the distribution of the bootstrap

medians and discuss the validity of part (b).

Does the distribution take on just a few values?

d. Use part (a) to form a 95% confidence interval

for the median using the percentile method.

e. For the weight gain data, state your preference

between the median and the mean and explain

your reasoning.

53. Nine Australian soldiers were subjected to

extreme conditions, which involved a 100-min

418 CHAPTER 8 Statistical Intervals Based on a Single Sample



walk with a 25-lb pack when the temperature was

40�C (104�F). One of them overheated (above

39�C) and was removed from the study. Here are

the rectal Celsius temperatures of the other eight

at the end of the walk (“Neural Network Training

on Human Body Core Temperature Data,” Com-

batant Protection and Nutrition Branch, Aeronau-

tical and Maritime Research Laboratory of

Australia, DSTO TN-0241, 1999):

38.4 38.7 39.0 38.5 38.5 39.0 38.5 38.6

We would like to get a 95% confidence interval

for the population mean.

a. Compute the t-based confidence interval of

Section 8.3.

b. Check for the validity of part (a).

c. Generate a bootstrap sample of 999 means.

d. Use the standard deviation for part (c) to get a

95% confidence interval for the population

mean.

e. Investigate the distribution of the bootstrap

means to see if part (d) is valid.

f. Use part (c) to form the 95% confidence inter-

val using the percentile method.

g. Compare the intervals and explain your prefer-

ence.

h. Based on your knowledge of normal body tem-

perature, would you say that body temperature

can be influenced by environment?

54. Wewould like to obtain a 95% confidence interval

for the population median temperature using the

data in Exercise 53.

a. Obtain a bootstrap sample of 999 medians.

b. Use the standard deviation for part (a) to get a

95% confidence interval for the population

median.

c. Investigate the distribution of the bootstrap

medians and discuss the validity of part (b).

Does the distribution take on just a few values?

d. Use part (a) to form a 95% confidence interval

for the median using the percentile method.

e. Compare all the intervals for the mean and

median. Are they fairly similar? How do you

explain that?

55. If you go to a major league baseball game, how

long do you expect the game to be? From the

2,429 games played in 2001, here is a random

sample of 25 times in minutes:

352 150 164 167 225 159 142 182 229 163

188 197 189 235 161 195 177 166 195 160

154 130 189 188 225

This is one of those rare instances in which we can

do a confidence interval and compare with the true

population mean. The mean of all 2,429 lengths is

178.29 (almost 3 h).

a. Compute the t-based confidence interval of

Section 8.3.

b. Use a normal plot to see if part (a) is valid.

c. Generate a bootstrap sample of 999 means.

d. Use the standard deviation for part (c) to get a

95% confidence interval for the population

mean.

e. Investigate the distribution of the bootstrap

means to see if the CI of part (d) is valid.

f. Use part (c) to form the 95% confidence inter-

val using the percentile method.

g. Say which interval should be used and explain

why. Does your interval include the true value,

178.29?

56. The median might be a more meaningful statistic

for the length-of-game data in Exercise 55. The

median of all 2,429 lengths is 175 min.

a. Obtain a bootstrap sample of 999 medians.

b. Use the standard deviation for part (a) to get a

95% confidence interval for the population

median.

c. Investigate the distribution of the bootstrap

medians and discuss the validity of part (b).

Does the distribution take on just a few

values?

d. Use part (a) to form a 95% confidence interval

for the median using the percentile method.

Compare your answer with the population

median, 175.

e. Comparing the percentile intervals for the

mean and the median, is there much difference

in their widths? If not, and you are forced to

choose between them for the length-of-game

data, which do you choose and why?

57. Wewould like to obtain a 95% confidence interval

for the study time population standard deviation

using the data in Exercise 49.

a. Obtain a bootstrap sample of 999 standard

deviations and use it to form a 95% confidence

interval for the population standard deviation

using the percentile method.

b. Recalling that it requires normal data, use the

method of Section 8.4 to obtain a 95% confi-

dence interval for the population standard devi-

ation. Discuss normality for the study hours

data. How does this interval compare with the

percentile interval?
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Supplementary Exercises (58–79)

58. According to the article “Fatigue Testing of

Condoms” (Polymer Testing, 2009: 567–571),

“tests currently used for condoms are surrogates

for the challenges they face in use”, including a

test for holes, an inflation test, a package seal

test, and tests of dimensions and lubricant quality

(all fertile territory for the use of statistical meth-

odology!). The investigators developed a new

test that adds cyclic strain to a level well below

breakage and determines the number of cycles to

break. A sample of 20 condoms of one particular

type resulted in a sample mean number of 1584

and a sample standard deviation of 607. Calcu-

late and interpret a confidence interval at the

99% confidence level for the true average num-

ber of cycles to break. [Note: The article pre-

sented the results of hypothesis tests based on

the t distribution; the validity of these depends

on assuming normal population distributions.]

59. The reaction time (RT) to a stimulus is the interval

of time commencing with stimulus presentation

and ending with the first discernible movement of

a certain type. The article “Relationship of Reac-

tion Time and Movement Time in a Gross Motor

Skill” (Percept. Motor Skills, 1973: 453–454)

reports that the sample average RT for 16 experi-

enced swimmers to a pistol start was .214 s and the

sample standard deviation was .036 s.

a. Making any necessary assumptions, derive a

90% CI for true average RT for all experi-

enced swimmers.

b. Calculate a 90% upper confidence bound for

the standard deviation of the reaction time

distribution.

c. Predict RT for another such individual in a

way that conveys information about precision

and reliability.

60. For each of 18 preserved cores from oil-wet

carbonate reservoirs, the amount of residual gas

saturation after a solvent injection was measured

at water flood-out. Observations, in percentage

of pore volume, were

23.5 31.5 34.0 46.7 45.6 32.5

41.4 37.2 42.5 46.9 51.5 36.4

44.5 35.7 33.5 39.3 22.0 51.2

(See “Relative Permeability Studies of Gas-Water

Flow Following Solvent Injection in Carbonate

Rocks,” Soc. Petrol. Eng. J., 1976: 23–30.)

a. Construct a boxplot of this data, and comment

on any interesting features.

b. Is it plausible that the sample was selected

from a normal population distribution?

c. Calculate a 98% CI for the true average

amount of residual gas saturation.

61. Amanufacturer of college textbooks is interested

in estimating the strength of the bindings pro-

duced by a particular binding machine. Strength

can be measured by recording the force required

to pull the pages from the binding. If this force is

measured in pounds, how many books should be

tested to estimate the average force required to

break the binding to within .1 lb with 95% confi-

dence? Assume that s is known to be .8.

62. The Pew Forum on Religion and Public Life

reported on Dec. 9, 2009 that in a survey of

2003 American adults, 25% said they believed

in astrology.

a. Calculate and interpret a confidence interval at
the 99% confidence level for the proportion of

all adult Americans who believe in astrology.

b. What sample size would be required for the

width of a 99% CI to be at most .05 irrespec-

tive of the value of p̂?
c. The upper limit of the CI in (a) gives an upper

confidence bound for the proportion being

estimated. What is the corresponding confi-

dence level?

63. There were 12 first-round heats in the men’s

100-m race at the 1996 Atlanta Summer Olym-

pics. Here are the reaction times in seconds (time

to first movement) of the top four finishers of

each heat. The first 12 are the 12 winners, then

the second-place finishers, and so on.

1st .187 .152 .137 .175 .172 .165

.184 .185 .147 .189 .172 .156

2nd .168 .140 .214 .163 .202 .173

.175 .154 .160 .169 .148 .144

3rd .159 .145 .187 .222 .190 .158

.202 .162 .156 .141 .167 .155

4th .156 .164 .160 .145 .163 .170

.182 .187 .148 .183 .162 .186

Because reaction time has little if any relation-

ship to the order of finish, it is reasonable to view

the times as coming from a single population.
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a. Estimate the population mean in a way that

conveys information about precision and

reliability. [Note:
P

xi ¼ 8:08100;
P

x2i ¼
1:37813:] Do the runners seem to react faster

than the swimmers in Exercise 59?

b. Calculate a 95% confidence interval for the

population proportion of reaction times that

are below .15. Reaction times below .10 are

regarded as false starts, meaning that the run-

ner anticipates the starter’s gun, because such

times are considered physically impossible.

Linford Christie, who had a reaction time of

.160 in placing second in his first-round heat,

had two such false starts in the finals and was

disqualified.

64. Aphid infestation of fruit trees can be controlled

either by spraying with pesticide or by inunda-

tion with ladybugs. In a particular area, four

different groves of fruit trees are selected for

experimentation. The first three groves are

sprayed with pesticides 1, 2, and 3, respectively,

and the fourth is treated with ladybugs, with the

following results on yield:

Treatment ni (number of
trees)

xi (bushels/
tree)

si

1 100 10.5 1.5

2 90 10.0 1.3

3 100 10.1 1.8

4 120 10.7 1.6

Let mi ¼ the true average yield (bushels/tree)

after receiving the ith treatment. Then

y ¼ 1

3
ðm1 þ m2 þ m3Þ � m4

measures the difference in true average yields

between treatment with pesticides and treatment

with ladybugs. When n1, n2, n3, and n4 are all

large, the estimator ŷ obtained by replacing each

mi by Xi is approximately normal. Use this to

derive a large-sample 100(1 � a)% CI for y,
and compute the 95% interval for the given data.

65. It is important that face masks used by firefigh-

ters be able to withstand high temperatures

because firefighters commonly work in tempera-

tures of 200–500�F. In a test of one type of mask,

11 of 55 masks had lenses pop out at 250�.
Construct a 90% CI for the true proportion of

masks of this type whose lenses would pop out

at 250�.

66. A journal article reports that a sample of size 5

was used as a basis for calculating a 95% CI for

the true average natural frequency (Hz) of dela-

minated beams of a certain type. The resulting

interval was (229.764, 233.504). You decide that

a confidence level of 99% is more appropriate

than the 95% level used. What are the limits of

the 99% interval? [Hint: Use the center of the

interval and its width to determine x and s.]

67. Chronic exposure to asbestos fiber is a well-

known health hazard. The article “The Acute

Effects of Chrysotile Asbestos Exposure on

Lung Function” (Envir. Res., 1978: 360–372)

reports results of a study based on a sample of

construction workers who had been exposed to

asbestos over a prolonged period. Among the

data given in the article were the following

(ordered) values of pulmonary compliance

(cm3/cm H2O) for each of 16 subjects 8 months

after the exposure period (pulmonary compliance

is a measure of lung elasticity, or how effectively

the lungs are able to inhale and exhale):

167.9 180.8 184.8 189.8 194.8 200.2

201.9 206.9 207.2 208.4 226.3 227.7

228.5 232.4 239.8 258.6

a. Is it plausible that the population distribution

is normal?

b. Compute a 95% CI for the true average pul-

monary compliance after such exposure.

68. In Example 7.9, we introduced the concept of a

censored experiment in which n components are

put on test and the experiment terminates as soon

as r of the components have failed. Suppose

component lifetimes are independent, each hav-

ing an exponential distribution with parameter l.
Let Y1 denote the time at which the first failure

occurs, Y2 the time at which the second failure

occurs, and so on, so that Tr ¼ Y1 + ·� � �· + Yr +
(n � r)Yr is the total accumulated lifetime at

termination. Then it can be shown that 2lTr has
a chi-squared distribution with 2r df. Use this fact
to develop a 100(1 � a)% CI formula for true

average lifetime 1/l. Compute a 95% CI from the

data in Example 7.9.

69. Exercise 63 from Chapter 7 introduced “regres-

sion through the origin” to relate a dependent

variable y to an independent variable x. The

assumption there was that for any fixed x value,

the dependent variable is a random variable Y
with mean value bx and variance s2 (so that Y
has mean value zero when x ¼ 0). The data
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consists of n independent (xi, Yi) pairs, where

each Yi is normally distributed with mean bxi
and variance s2. The likelihood is then a product

of normal pdf’s with different mean values but

the same variance.

a. Show that the mle of b is b̂ ¼ SxiYi=Sx2i .
b. Verify that the mle of (a) is unbiased.

c. Obtain an expression for Vðb̂Þ and then for sb̂.
d. For purposes of obtaining a precise estimate

of b, is it better to have the xi’s all close to

0 (the origin) or quite far from 0? Explain

your reasoning.

e. The natural prediction of Yi is b̂xi. Let

S2 ¼ SðYi � b̂xiÞ2=ðn� 1Þ which is analo-

gous to our earlier sample variance

S2 ¼ SðXi � XÞ2=ðn� 1Þ for a univariate

sample X1, . . . , Xn (in which case X is a

natural prediction for each Xi). Then it can

be shown that T ¼ ðb̂� bÞ= S=
ffiffiffiffiffiffiffiffi
Sx2i

p� �
has a

t distribution based on n � 1 df. Use this to

obtain a CI formula for estimating b, and

calculate a 95% CI using the data from the

cited exercise.

70. Let X1, X2, . . . , Xn be a random sample from a

uniform distribution on the interval [0, y], so that

f ðxÞ ¼
1

y
0 � x � y

0 otherwise

8<
:

Then if Y ¼ max(Xi), by the first proposition in

Section 5.5, U ¼ Y/y has density function

fUðuÞ ¼ nun�1 0 � u � 1

0 otherwise

	

a. Use fU(u) to verify that

P ða=2Þ1=n � Y

y
� ð1� a=2Þ1=n


 �
¼ 1� a

and use this to derive a 100(1 � a)% CI for y.
b. Verify that P(a1/n � Y/ y � 1) ¼ 1 � a, and

derive a 100(1 � a)% CI for y based on this

probability statement.

c. Which of the two intervals derived previously

is shorter? If your waiting time for a morning

bus is uniformly distributed and observed wait-

ing times are x1 ¼ 4.2, x2 ¼ 3.5, x3 ¼ 1.7,

x4 ¼ 1.2, and x5 ¼ 2.4, derive a 95% CI for y
by using the shorter of the two intervals.

71. Let 0 < g < a. Then a 100(1 � a)% CI for m
when n is large is

x� zg � sffiffiffi
n

p ; xþ za�g � sffiffiffi
n

p
� �

The choice g ¼ a/2 yields the usual interval

derived in Section 8.2; if g 6¼ a/2, this confidence
interval is not symmetric about x. The width of the
interval is w ¼ sðzg þ za�gÞ= ffiffiffi

n
p

. Show that w is

minimized for the choice g ¼ a/2, so that the

symmetric interval is the shortest. [Hints: (a) By
definition of za, F(za) ¼ 1 � a, so that za ¼
F�1(1 � a); (b) the relationship between the

derivative of a function y ¼ f(x) and the inverse

function x ¼ f�1(y) is (d/dy) f�1(y) ¼ 1/f 0(x).]

72. Suppose x1, x2, . . . , xn are observed values resulting
from a random sample from a symmetric but possi-

bly heavy-tailed distribution. Let ~x and fs denote
the sample median and fourth spread, respectively.

Chapter 11 of Understanding Robust and Explor-
atory Data Analysis (see the bibliography in

Chapter 7) suggests the following robust 95% CI

for the population mean (point of symmetry):

~x� conservative t critical value

1:075

� �
� fsffiffiffi

n
p

The value of the quantity in parentheses is 2.10 for

n ¼ 10, 1.94 for n ¼ 20, and 1.91 for n ¼ 30.

Compute this CI for the restaurant tip data of

Example 8.15, and compare to the t CI appropriate
for a normal population distribution.

73. a. Use the results of Example 8.5 to obtain a 95%

lower confidence bound for the parameter l of

an exponential distribution, and calculate the

bound based on the data given in the example.

b. If lifetime X has an exponential distribution,

the probability that lifetime exceeds t is given
by P(X > t) ¼ e�lt. Use the result of part (a) to

obtain a 95% lower confidence bound for

the probability that lifetime exceeds 100 min.

74. Let y1 and y2 denote the mean weights for animals

of two different species. An investigator wishes to

estimate the ratio y1/y2. Unfortunately the species

are extremely rare, so the estimate will be based

on finding a single animal of each species. Let Xi

denote the weight of the species i animal (i ¼ 1, 2),

assumed to be normally distributed with mean yi
and standard deviation 1.

a. What is the distribution of the variable

hðX1;X2; y1; y2Þ ¼ ðy2X1 � y1X2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ y22

q
?

Show that this variable depends on y1 and

y2 only through y1/y2 (divide numerator and

denominator by y2).
b. Consider Expression (8.7) from the first sec-

tion of this chapter with a ¼ �1.96 and

b ¼ 1.96. Now replace < by ¼ and solve for

y1/y2. Then show that a confidence interval

results if x21 þ x22 � 1:962, whereas if this
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inequality is not satisfied, the resulting confi-
dence set is the complement of an interval.

75. The one-sample CI for a normal mean and PI for a

single observation from a normal distribution

were both based on the central t distribution.

A CI for a particular percentile (e.g., the 1st per-

centile or the 95th percentile) of a normal popula-

tion distribution is based on the noncentral
t distribution. A particular distribution of this

type is specified by both df and the value of the

noncentrality parameter d (d ¼ 0 gives the central

t distribution). The key result is that the variable

T ¼
X�m
s=
ffiffi
n

p � ðz percentileÞ ffiffiffi
n

p

S=s

has a noncentral t distribution with df ¼ n� 1

and d ¼ � z percentileð Þ ffiffiffi
n

p
.

Let t.025,n,d and t.975,n,d denote the critical values

that capture upper-tail area .025 and lower-tail

area .025, respectively, under the noncentral

t curve with n df and noncentrality parameter d
(when d ¼ 0, t.975 ¼ �t.025, since central t distri-
butions are symmetric about 0).

a. Use the given information to obtain a formula

for a 95% confidence interval for the (100p)th
percentile of a normal population distribution.

b. For d ¼ 6.58 and df ¼ 15, t.975 and t.025 are

(from MINITAB) 4.1690 and 10.9684, respec-

tively. Use this information to obtain a 95% CI

for the 5th percentile of the beer alcohol distri-

bution considered in Example 8.11.

76. The one-sample t CI for m is also a confidence

interval for the population median ~m when the

population distribution is normal. We now

develop a CI for ~m that is valid whatever the

shape of the population distribution as long as it

is continuous. Let X1, . . . , Xn be a random sample

from the distribution and Y1, . . . , Yn denote the

corresponding order statistics (smallest observa-

tion, second smallest, and so on).

a. What is PðX1 < ~mÞ? What is PðfX1 < ~mg\
fX2 < ~mgÞ?

b. What is PðYn < ~mÞ? What is PðY1 > ~mÞ? [Hint:
What condition involving all of the Xi’s is

equivalent to the largest being smaller than

the population median?]

c. What is PðY1 < ~m< YnÞ? What does this imply

about the confidence level associated with the

CI (y1, yn) for ~m?
d. An experiment carried out to study the time

(min) necessary for an anesthetic to produce

the desired result yielded the following data:

31.2, 36.0, 31.5, 28.7, 37.2, 35.4, 33.3, 39.3,

42.0, 29.9. Determine the confidence interval

of (c) and the associated confidence level. Also

calculate the one-sample t CI using the same

level and compare the two intervals.

77. Consider the situation described in the previous

exercise.

a. What is PðfX1 < ~mg \ fX2 > ~mg \ � � �\
fXn > ~mgÞ, that is, the probability that only the

first observation is smaller than the median?

b. What is the probability that exactly one of the n
observations is smaller than the median?

c. What is Pð~m< Y2Þ? [Hint: The event in par-

entheses occurs if all n of the observations

exceed the median. How else can it occur?

What does this imply about the confidence

level associated with the CI (y2, yn�1) for ~m?
Determine the confidence level and CI for the

data given in the previous exercise.]

78. The previous two exercises considered a CI for a

population median ~m based on the n order statistics
from a random sample. Let’s now consider a pre-

diction interval for the next observation Xn+1.

a. What isP(Xn+1 < X1)?What isP({Xn+1 < X1}

\ {Xn+1 < X2})?

b. What is P(Xn+1 < Y1)? What is P(Xn+1 > Yn)?
c. What is P(Y1 < Xn+1 < Yn)? What does this

say about the prediction level for the PI (y1,
yn)? Determine the prediction level and interval

for the data given in the previous exercise.

79. Consider 95% CI’s for two different parameters y1
and y2, and let Ai (i ¼ 1, 2) denote the event that

the value of yi is included in the random interval

that results in the CI. Thus P(Ai) ¼ .95.

a. Suppose that the data on which the CI for y1 is
based is independent of the data used to obtain

the CI for y2 (e.g., we might have y1 ¼ m, the
population mean height for American females,

and y2 ¼ p, the proportion of all Kodak digital
cameras that don’t need warranty service).

What can be said about the simultaneous (i.e.,
joint) confidence level for the two intervals?

That is, how confident can we be that the first

interval contains the value of y1 and that the

second contains the value of y2? [Hint: Con-
sider P(A1 \ A2).]

b. Now suppose the data for the first CI is not

independent of that for the second one. What

now can be said about the simultaneous confi-

dence level for both intervals? [Hint: Consider
PðA0

1 [ A0
2Þ, the probability that at least one

interval fails to include the value of what it

is estimating. Now use the fact that
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PðA0
1 [ A0

2Þ � PðA0
1Þ þ PðA0

2Þ [why?] to show

that the probability that both random intervals

include what they are estimating is at least .90.

The generalization of the bound on PðA0
1 [ A0

2Þ
to the probability of a k-fold union is one

version of the Bonferroni inequality.]

c. What can be said about the simultaneous

confidence level if the confidence level for

each interval separately is 100(1 � a)%?

What can be said about the simultaneous con-

fidence level if a 100(1 – a)% CI is computed

separately for each of k parameters y1, . . . , yk?
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C H A P T E R N I N E

Tests of
Hypotheses Based
on a Single Sample

Introduction
A parameter can be estimated from sample data either by a single number (a point

estimate) or an entire interval of plausible values (a confidence interval). Fre-

quently, however, the objective of an investigation is not to estimate a parameter

but to decide which of two contradictory claims about the parameter is correct.

Methods for accomplishing this comprise the part of statistical inference called

hypothesis testing. In this chapter, we first discuss some of the basic concepts and

terminology in hypothesis testing and then develop decision procedures for the

most frequently encountered testing problems based on a sample from a single

population.



9.1 Hypotheses and Test Procedures
A statistical hypothesis, or just hypothesis, is a claim or assertion either about the

value of a single parameter (population characteristic or characteristic of a proba-

bility distribution), about the values of several parameters, or about the form of an

entire probability distribution. One example of a hypothesis is the claim m ¼ $311,

where m is the true average one–term textbook expenditure for students at a

university. Another example is the statement p < .50, where p is the proportion of

adults who approve of the job that the President is doing. If m1 and m2 denote the true
average decreases in systolic blood pressure for two different drugs, one hypothesis

is the assertion that m1 � m2 ¼ 0, and another is the statement m1 � m2 > 5.

Yet another example of a hypothesis is the assertion that the stopping distance

for a car under particular conditions has a normal distribution. Hypotheses of this

latter sort will be considered in Chapter 13. In this and the next several chapters, we

concentrate on hypotheses about parameters.

In any hypothesis-testing problem, there are two contradictory hypotheses

under consideration. One hypothesis might be the claim m ¼ $311 and the other

m 6¼ $311, or the two contradictory statements might be p � .50 and p < .50. The

objective is to decide, based on sample information, which of the two hypotheses is

correct. There is a familiar analogy to this in a criminal trial. One claim is the assertion

that the accused individual is innocent. In theU.S. judicial system, this is the claim that

is initially believed to be true. Only in the face of strong evidence to the contrary

should the jury reject this claim in favor of the alternative assertion that the accused

is guilty. In this sense, the claim of innocence is the favored or protected hypothesis,

and the burden of proof is placed on those who believe in the alternative claim.

Similarly, in testing statistical hypotheses, the problem will be formulated so

that one of the claims is initially favored. This initially favored claim will not be

rejected in favor of the alternative claim unless sample evidence contradicts it and

provides strong support for the alternative assertion.

DEFINITION The null hypothesis, denoted by H0, is the claim that is initially assumed to

be true (the “prior belief” claim). The alternative hypothesis, denoted byHa,

is the assertion that is contradictory to H0.

The null hypothesis will be rejected in favor of the alternative hypoth-

esis only if sample evidence suggests that H0 is false. If the sample does not

strongly contradict H0, we will continue to believe in the plausibility of the

null hypothesis. The two possible conclusions from a hypothesis-testing

analysis are then reject H0 or fail to reject H0.

A test of hypotheses is a method for using sample data to decide whether the null

hypothesis should be rejected. Thus we might test H0: m ¼ .75 against the alterna-

tive Ha: m 6¼ .75. Only if sample data strongly suggests that m is something other

than .75 should the null hypothesis be rejected. In the absence of such evidence, H0

should not be rejected, since it is still quite plausible.

Sometimes an investigator does not want to accept a particular assertion unless

and until data can provide strong support for the assertion. As an example, suppose a

company is considering putting a new additive in the dried fruit that it produces.
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The true average shelf life with the current additive is known to be 200 days. With m
denoting the true average life for the new additive, the company would not want to

make a change unless evidence strongly suggested that m exceeds 200. An appropri-

ate problem formulation would involve testing H0: m ¼ 200 against Ha: m > 200.

The conclusion that a change is justified is identified with Ha, and it would take

conclusive evidence to justify rejecting H0 and switching to the new additive.

Scientific research often involves trying to decide whether a current theory

should be replaced by a more plausible and satisfactory explanation of the phenome-

non under investigation. A conservative approach is to identify the current theory

withH0 and the researcher’s alternative explanation with Ha. Rejection of the current

theory will then occur only when evidence is much more consistent with the new

theory. In many situations, Ha is referred to as the “research hypothesis,” since it is

the claim that the researcher would really like to validate. The word null means “of

no value, effect, or consequence,” which suggests that H0 should be identified with

the hypothesis of no change (from current opinion), no difference, no improvement,

and so on. Suppose, for example, that 10% of all computer circuit boards produced by

a manufacturer during a recent period were defective. An engineer has suggested a

change in the production process in the belief that it will result in a reduced defective

rate. Let p denote the true proportion of defective boards resulting from the changed

process. Then the research hypothesis, on which the burden of proof is placed, is the

assertion that p < .10. Thus the alternative hypothesis is Ha: p < .10.

In our treatment of hypothesis testing, H0 will generally be stated as an

equality claim. If y denotes the parameter of interest, the null hypothesis will

have the form H0: y ¼ y0, where y0 is a specified number called the null value of
the parameter (value claimed for y by the null hypothesis). As an example, consider

the circuit board situation just discussed. The suggested alternative hypothesis was

Ha: p < .10, the claim that the defective rate is reduced by the process modifica-

tion. A natural choice of H0 in this situation is the claim that p � .10, according to

which the new process is either no better or worse than the one currently used. We

will instead consider H0: p ¼ .10 versus Ha: p < .10. The rationale for using this

simplified null hypothesis is that any reasonable decision procedure for deciding

between H0: p ¼ .10 and Ha: p < .10 will also be reasonable for deciding between

the claim that p � .10 and Ha. The use of a simplified H0 is preferred because it has

certain technical benefits, which will be apparent shortly.

The alternative to the null hypothesis H0: y ¼ y0 will look like one of the

following three assertions:

1. Ha: y > y0 (in which case the implicit null hypothesis is y � y0)

2. Ha: y < y0 (so the implicit null hypothesis states that y � y0)

3. Ha: y 6¼ y0.

For example, lets denote the standard deviation of the distribution of outside diameters

(inches) for an engine piston. If the decision was made to use the piston unless sample

evidence conclusively demonstrated that s > .0001 in., the appropriate hypotheses

would beH0: s ¼ .0001 versusHa: s > .0001. The number y0 that appears in bothH0

and Ha (separates the alternative from the null) is called the null value.

Test Procedures

A test procedure is a rule, based on sample data, for deciding whether to reject H0.

A test of H0: p ¼ .10 versus Ha: p < .10 in the circuit board problem might be
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based on examining a random sample of n ¼ 200 boards. Let X denote the number

of defective boards in the sample, a binomial random variable; x represents the

observed value of X. If H0 is true, E(X) ¼ np ¼ 200(.10) ¼ 20, whereas we can

expect fewer than 20 defective boards if Ha is true. A value x just a bit below 20

does not strongly contradict H0, so it is reasonable to reject H0 only if x is

substantially < 20. One such test procedure is to reject H0 if x � 15 and not reject

H0 otherwise. This procedure has two constituents: (1) a test statistic or function of
the sample data used to make a decision and (2) a rejection region consisting of

those x values for which H0 will be rejected in favor of Ha. For the rule just

suggested, the rejection region consists of x ¼ 0, 1, 2, . . . , 15. H0 will not be

rejected if x ¼ 16, 17, . . . , 199, or 200.

A test procedure is specified by the following:

1. A test statistic, a function of the sample data on which the decision (reject

H0 or do not reject H0) is to be based

2. A rejection region, the set of all test statistic values for which H0 will be

rejected

The null hypothesis will then be rejected if and only if the observed or

computed test statistic value falls in the rejection region.

As another example, suppose a cigarette manufacturer claims that the aver-

age nicotine content m of brand B cigarettes is (at most) 1.5 mg. It would be unwise

to reject the manufacturer’s claim without strong contradictory evidence, so an

appropriate problem formulation is to test H0: m ¼ 1.5 versus Ha: m > 1.5. Con-

sider a decision rule based on analyzing a random sample of 32 cigarettes. Let X
denote the sample average nicotine content. If H0 is true, EðXÞ ¼ m ¼ 1:5, whereas
if H0 is false, we expect X to exceed 1.5. Strong evidence against H0 is provided by

a value x that considerably exceeds 1.5. Thus we might use X as a test statistic along

with the rejection region x � 1:60.
In both the circuit board and nicotine examples, the choice of test statistic and

form of the rejection region make sense intuitively. However, the choice of cutoff

value used to specify the rejection region is somewhat arbitrary. Instead of rejecting

H0: p ¼ .10 in favor of Ha: p < .10 when x � 15, we could use the rejection region

x � 14. For this region, H0 would not be rejected if 15 defective boards are

observed, whereas this occurrence would lead to rejection of H0 if the initially

suggested region is employed. Similarly, the rejection region x � 1:55 might be

used in the nicotine problem in place of the region x � 1:60.

Errors in Hypothesis Testing

The basis for choosing a particular rejection region lies in an understanding of

the errors that one might be faced with in drawing a conclusion. Consider the

rejection region x � 15 in the circuit board problem. Even when H0: p ¼ .10 is

true, it might happen that an unusual sample results in x ¼ 13, so that H0

is erroneously rejected. On the other hand, even when Ha: p < .10 is true,
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an unusual sample might yield x ¼ 20, in which case H0 would not be rejected,

again an incorrect conclusion. Thus it is possible that H0 may be rejected when it

is true or that H0 may not be rejected when it is false. These possible errors are not

consequences of a foolishly chosen rejection region. Either one of these two

errors might result when the region x � 14 is employed, or indeed when any

other sensible region is used.

DEFINITION A type I error consists of rejecting the null hypothesis H0 when it is true.

A type II error involves not rejecting H0 when H0 is false.

In the nicotine scenario, a type I error consists of rejecting the manufacturer’s claim

that m ¼ 1.5 when it is actually true. If the rejection region x � 1:60 is employed,

it might happen that x ¼ 1:63 even when m ¼ 1.5, resulting in a type I error.

Alternatively, it may be that H0 is false and yet x ¼ 1:52 is observed, leading to

H0 not being rejected (a type II error).

In the best of all possible worlds, test procedures for which neither type of

error is possible could be developed. However, this ideal can be achieved only by

basing a decision on an examination of the entire population, which is almost

always impractical. The difficulty with using a procedure based on sample data

is that because of sampling variability, an unrepresentative sample may result.

Even though EðXÞ ¼ m, the observed value x may differ substantially from m
(at least if n is small). Thus when m ¼ 1.5 in the nicotine situation, x may be

much larger than 1.5, resulting in erroneous rejection of H0. Alternatively, it

may be that m ¼ 1.6 yet an x much smaller than this is observed, leading to a

type II error.

Instead of demanding error-free procedures, we must look for procedures for

which either type of error is unlikely to occur. That is, a good procedure is one for

which the probability of making either type of error is small. The choice of a

particular rejection region cutoff value fixes the probabilities of type I and type II

errors. These error probabilities are traditionally denoted by a and b, respectively.
Because H0 specifies a unique value of the parameter, there is a single value of a.
However, there is a different value of b for each value of the parameter consistent

with Ha.

Example 9.1 An automobile model is known to sustain no visible damage 25% of the time in

10-mph crash tests. A modified bumper design has been proposed in an effort to

increase this percentage. Let p denote the proportion of all 10-mph crashes with this

new bumper that result in no visible damage. The hypotheses to be tested are H0:

p ¼ .25 (no improvement) versus Ha: p > .25. The test will be based on an

experiment involving n ¼ 20 independent crashes with prototypes of the new

design. Intuitively, H0 should be rejected if a substantial number of the crashes

show no damage. Consider the following test procedure:

Test statistic: X ¼ the number of crashes with no visible damage

Rejection region: R8 ¼ {8, 9, 10, . . . , 19, 20}; that is, reject H0 if x � 8,

where x is the observed value of the test statistic

This rejection region is called upper-tailed because it consists only of large values

of the test statistic.
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When H0 is true, X has a binomial probability distribution with n ¼ 20 and

p ¼ .25. Then

a ¼ P(type I errorÞ ¼ PðH0 is rejected when it is trueÞ
¼ P½X � 8 when X � Binð20; :25Þ� ¼ 1� B 7; 20; :25ð Þ
¼ 1� :898 ¼ :102

That is, when H0 is actually true, roughly 10% of all experiments consisting of

20 crashes would result in H0 being incorrectly rejected (a type I error).

In contrast to a, there is not a single b. Instead, there is a different b for each

different p that exceeds .25. Thus there is a value of b for p ¼ .3 [in which case

X ~ Bin(20, .3)], another value of b for p ¼ .5, and so on. For example,

bð:3Þ ¼ Pðtype II error when p ¼ :3Þ
¼ PðH0 is not rejected when it is false because p ¼ :3Þ
¼ P½X � 7 when X � Bin(20, .3)] = B(7; 20, .3) = .772

When p is actually .3 rather than .25 (a “small” departure from H0), roughly 77% of

all experiments of this type would result in H0 being incorrectly not rejected!

The accompanying table displays b for selected values of p (each calculated

for the rejection region R8). Clearly, b decreases as the value of p moves farther

to the right of the null value .25. Intuitively, the greater the departure from H0,

the more likely it is that such a departure will be detected.

p .3 .4 .5 .6 .7 .8

b(p) .772 .416 .132 .021 .001 .000

The proposed test procedure is still reasonable for testing the more realistic null

hypothesis that p � .25. In this case, there is no longer a single a, but instead there
is an a for each p that is at most .25: a(.25), a(.23), a(.20), a(.15), and so on. It is

easily verified, though, that a(p) < a(.25) ¼ .102 if p < .25. That is, the largest

value of a occurs for the boundary value .25 between H0 and Ha. Thus if a is small

for the simplified null hypothesis, it will also be as small as or smaller for the more

realistic H0. ■

Example 9.2 The drying time of a type of paint under specified test conditions is known to

be normally distributed with mean value 75 min and standard deviation 9 min.

Chemists have proposed a new additive designed to decrease average drying time.

It is believed that drying times with this additive will remain normally distributed

with s ¼ 9. Because of the expense associated with the additive, evidence should

strongly suggest an improvement in average drying time before such a conclusion

is adopted. Let m denote the true average drying time when the additive is used.

The appropriate hypotheses are H0: m ¼ 75 versus Ha: m < 75. Only if H0 can be

rejected will the additive be declared successful and used.

Experimental data is to consist of drying times from n ¼ 25 test specimens.

Let X1, . . . , X25 denote the 25 drying times—a random sample of size 25 from a

normal distribution with mean value m and standard deviation s ¼ 9. The sample

mean drying time X then has a normal distribution with expected value mX ¼ m and

standard deviation sX ¼ s=
ffiffiffi
n

p ¼ 9=
ffiffiffiffiffi
25

p ¼ 1:80. When H0 is true, mX ¼ 75, so

only an x value substantially < 75 would strongly contradict H0. A reasonable
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rejection region has the form x � c, where the cutoff value c is suitably chosen.

Consider the choice c ¼ 70.8, so that the test procedure consists of test statistic X
and rejection region x � 70:8. Because the rejection region consists only of small

values of the test statistic, the test is said to be lower-tailed. Calculation of a and b
now involves a routine standardization of X followed by reference to the standard

normal probabilities of Appendix Table A.3:

a ¼ Pðtype I errorÞ ¼ PðH0 is rejected when it is trueÞ
¼ PðX � 70:8 when X � normal with mX ¼ 75; sX ¼ 1:8Þ

¼ F
70:8� 75

1:8

� �
¼ Fð�2:33Þ ¼ :01

b 72ð Þ ¼ Pðtype II error when m ¼ 72Þ
¼ PðH0 is not rejected when it is false because m ¼ 72Þ
¼ PðX> 70:8 when X � normal with mX ¼ 72; sX ¼ 1:8Þ

¼ 1� F
70:8� 72

1:8

� �
¼ 1� Fð�:67Þ ¼ 1� :2514 ¼ :7486

bð70Þ ¼ 1� F
70:8� 70

1:8

� �
¼ :3300 bð67Þ ¼ :0174

For the specified test procedure, only 1% of all experiments carried out as described

will result in H0 being rejected when it is actually true. However, the chance of a

type II error is very large when m ¼ 72 (only a small departure from H0), somewhat

less when m ¼ 70, and quite small when m ¼ 67 (a very substantial departure

from H0). These error probabilities are illustrated in Figure 9.1 on the next page.

Notice that a is computed using the probability distribution of the test statistic

when H0 is true, whereas determination of b requires knowing the test statistic’s

distribution when H0 is false.

As in Example 9.1, if the more realistic null hypothesis m � 75 is considered,

there is an a for each parameter value for which H0 is true: a(75), a(75.8), a(76.5),
and so on. It is easily verified, though, that a(75) is the largest of all these type I

error probabilities. Focusing on the boundary value amounts to working explicitly

with the “worst case.” ■

The specification of a cutoff value for the rejection region in the examples

just consideredwas somewhat arbitrary.Use of the rejection regionR8 ¼ {8, 9, . . ., 20}
in Example 9.1 resulted in a ¼ .102, b(.3) ¼ .772, and b(.5) ¼ .132. Many would

think these error probabilities intolerably large. Perhaps they can be decreased by

changing the cutoff value.

Example 9.3

(Example 9.1

continued)

Let us use the same experiment and test statistic X as previously described in the

automobile bumper problem but now consider the rejection region R9 ¼ {9, 10,

. . ., 20}. Since X still has a binomial distribution with parameters n ¼ 20 and p,

a ¼ PðH0 is rejected when p ¼ :25Þ
¼ P½X � 9 when X � Bin(20, .25)] = 1� B 8; 20; :25ð Þ ¼ :041
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The type I error probability has been decreased by using the new rejection region.

However, a price has been paid for this decrease:

b :3ð Þ ¼ PðH0 is not rejected when p ¼ :3Þ
¼ P½X � 8 when X � Binð20; :3Þ� ¼ B 8; 20; :3ð Þ ¼ :887

b :5ð Þ ¼ B 8; 20; :5ð Þ ¼ :252

Both these b’s are larger than the corresponding error probabilities .772 and .132

for the region R8. In retrospect, this is not surprising; a is computed by summing

over probabilities of test statistic values in the rejection region, whereas b is

the probability that X falls in the complement of the rejection region. Making the

rejection region smaller must therefore decrease a while increasing b for any fixed

alternative value of the parameter. ■

Example 9.4

(Example 9.2

continued)

The use of cutoff value c ¼ 70.8 in the paint-drying example resulted in a very

small value of a (.01) but rather large b’s. Consider the same experiment and test

statistic X with the new rejection region x � 72. Because X is still normally

distributed with mean value mX ¼ m and sX ¼ 1:8,

70.8

73 75

a

b

c

72 75

70.8

70 75

70.8

Shaded
area = a = .01

Shaded area = b (72)

Shaded area = b (70)

Figure 9.1 a and b illustrated for Example 9.2: (a) the distribution of X when

m ¼ 75 (H0 true); (b) the distribution of X when m ¼ 72 (H0 false); (c) the distribution

of X when m ¼ 70 (H0 false)
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a¼ PðH0 is rejected when it is trueÞ
¼ P½X� 72whenX�Nð75;1:82Þ�

¼F
72�75

1:8

� �
¼Fð�1:67Þ¼ :0475� :05

b 72ð Þ ¼ PðH0 is not rejected when m¼ 72Þ
¼ PðX>72 when X is a normal rv with mean 72 and standard deviation 1:8Þ

¼ 1�F
72� 72

1:8

� �
¼ 1�Fð0Þ ¼ :5

bð70Þ ¼ 1� F
72� 70

1:8

� �
¼ :1335 bð67Þ ¼ :0027

The change in cutoff value has made the rejection region larger (it includes more x
values), resulting in a decrease in b for each fixed m less than 75. However, a for

this new region has increased from the previous value .01 to approximately .05. If a

type I error probability this large can be tolerated, though, the second region

(c ¼ 72) is preferable to the first (c ¼ 70.8) because of the smaller b’s. ■

The results of these examples can be generalized in the following manner.

PROPOSITION Suppose an experiment and a sample size are fixed and a test statistic is

chosen. Then decreasing the size of the rejection region to obtain a smaller

value of a results in a larger value of b for any particular parameter value

consistent with Ha.

This proposition says that once the test statistic and n are fixed, there is no rejection
region that will simultaneously make both a and all b’s small. A region must be

chosen to effect a compromise between a and b.
Because of the suggested guidelines for specifying H0 and Ha, a type I error is

usually more serious than a type II error (this can always be achieved by proper

choice of the hypotheses). The approach adhered to by most statistical practitioners

is then to specify the largest value of a that can be tolerated and find a rejection

region having that value of a rather than anything smaller. This makes b as small as

possible subject to the bound on a. The resulting value of a is often referred to as the
significance level of the test. Traditional levels of significance are .10, .05, and .01,
although the level in any particular problem will depend on the seriousness of a

type I error—the more serious this error, the smaller should be the significance

level. The corresponding test procedure is called a level a test (e.g., a level .05 test
or a level .01 test). A test with significance level a is one for which the type I error

probability is controlled at the specified level.

Example 9.5 Consider the situation mentioned previously in which m was the true average

nicotine content of brand B cigarettes. The objective is to test H0: m ¼ 1.5 versus

Ha: m > 1.5 based on a random sample X1, X2, . . . , X32 of nicotine contents.

Suppose the distribution of nicotine content is known to be normal with s ¼ .20.

It follows that X is normally distributed with mean value mX ¼ m and standard

deviation sX ¼ :20=
ffiffiffiffiffi
32

p ¼ :0354:
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Rather than use X itself as the test statistic, let’s standardize X assuming that

H0 is true.

Test statistic : Z ¼ X � 1:5

s=
ffiffiffi
n

p ¼ X � 1:5

:0354

Z expresses the distance between X and its expected value when H0 is true as some

number of standard deviations. For example, z ¼ 3 results from an x that is 3

standard deviations larger than we would have expected it to be were H0 true.

Rejecting H0 when x “considerably” exceeds 1.5 is equivalent to rejecting H0

when z “considerably” exceeds 0. That is, the form of the rejection region is z � c.
Let’s now determine c so that a ¼ .05. When H0 is true, Z has a standard normal

distribution. Thus

a ¼ Pðtype I error) = P(rejecting H0 when it is trueÞ
¼ P½Z � c when Z � N 0; 1ð Þ�

The value c must capture upper-tail area .05 under the z curve. Either from
Section 4.3 or directly from Appendix Table A.3, c ¼ z.05 ¼ 1.645.

Notice that z � 1.645 is equivalent to x� 1:5 � ð:0354Þð1:645Þ; that is,

x � 1:56. Then b is the probability that X< 1:56 and can be calculated for any

m >1.5. ■

Exercises Section 9.1 (1–14)

1. For each of the following assertions, state whether

it is a legitimate statistical hypothesis and why:

a. H: s > 100

b. H: ~x ¼ 45

c. H: s � .20

d. H: s1/s2 < 1

e. H: X � Y ¼ 5

f. H: l � .01, where l is the parameter of an

exponential distribution used to model compo-

nent lifetime

2. For the following pairs of assertions, indicate

which do not comply with our rules for setting

up hypotheses and why (the subscripts 1 and 2 dif-

ferentiate between quantities for two different

populations or samples):

a. H0: m ¼ 100, Ha: m > 100

b. H0: s ¼ 20, Ha: s � 20

c. H0: p 6¼ .25, Ha: p ¼ .25

d. H0: m1 � m2 ¼ 25, Ha: m1 � m2 > 100

e. H0 : S
2
1 ¼ S22; Ha : S

2
1 6¼ S22

f. H0: m ¼ 120, Ha: m ¼ 150

g. H0: s1/s2 ¼ 1, Ha: s1/s2 6¼ 1

h. H0: p1 � p2 ¼ �.1, Ha: p1 � p2 <�.1

3. To determine whether the girder welds in a

new performing arts center meet specifications,

a random sample of welds is selected, and tests

are conducted on each weld in the sample. Weld

strength is measured as the force required to break

the weld. Suppose the specifications state that

mean strength of welds should exceed 100 lb/in2;

the inspection team decides to test H0: m ¼ 100

versus Ha: m > 100. Explain why it might be

preferable to use this Ha rather than m < 100.

4. Let m denote the true average radioactivity level

(picocuries per liter). The value 5 pCi/L is consid-

ered the dividing line between safe and unsafe

water. Would you recommend testing H0: m ¼ 5

versus Ha: m > 5 or H0: m ¼ 5 versus Ha: m < 5?

Explain your reasoning. [Hint: Think about the

consequences of a type I and type II error for

each possibility.]

5. Before agreeing to purchase a large order of

polyethylene sheaths for a particular type of

high-pressure oil-filled submarine power cable,

a company wants to see conclusive evidence that

the true standard deviation of sheath thickness is

< .05 mm. What hypotheses should be tested, and

why? In this context, what are the type I and

type II errors?
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6. Many older homes have electrical systems that use

fuses rather than circuit breakers. A manufacturer

of 40-amp fuses wants to make sure that the mean

amperage at which its fuses burn out is in fact 40.

If the mean amperage is lower than 40, customers

will complain because the fuses require replace-

ment too often. If the mean amperage is higher

than 40, the manufacturer might be liable for

damage to an electrical system due to fuse mal-

function. To verify the amperage of the fuses, a

sample of fuses is to be selected and inspected. If a

hypothesis test were to be performed on the result-

ing data, what null and alternative hypotheses

would be of interest to the manufacturer? Describe

type I and type II errors in the context of this

problem situation.

7. Water samples are taken from water used for cool-

ing as it is being discharged from a power plant

into a river. It has been determined that as long as

the mean temperature of the discharged water is at

most 150�F, there will be no negative effects on

the river’s ecosystem. To investigate whether the

plant is in compliance with regulations that pro-

hibit a mean discharge-water temperature above

150�, 50 water samples will be taken at randomly

selected times, and the temperature of each sample

recorded. The resulting data will be used to test the

hypotheses H0: m ¼ 150� versus Ha: m > 150�. In
the context of this situation, describe type I and

type II errors. Which type of error would you

consider more serious? Explain.

8. A regular type of laminate is currently being used

by a manufacturer of circuit boards. A special

laminate has been developed to reduce warpage.

The regular laminate will be used on one sample

of specimens and the special laminate on another

sample, and the amount of warpage will then be

determined for each specimen. The manufacturer

will then switch to the special laminate only if it

can be demonstrated that the true average amount

of warpage for that laminate is less than for the

regular laminate. State the relevant hypotheses,

and describe the type I and type II errors in the

context of this situation.

9. Two different companies have applied to provide

cable television service in a region. Let p denote

the proportion of all potential subscribers who

favor the first company over the second. Consider

testing H0: p ¼ .5 versus Ha: p 6¼ .5 based on a

random sample of 25 individuals. Let X denote the

number in the sample who favor the first company

and x represent the observed value of X.

a. Which of the following rejection regions is

most appropriate and why?

R1 ¼ x : x � 7 or x � 18f g;
R2 ¼ x : x � 8f g;R3 ¼ x : x � 17f g

b. In the context of this problem situation,

describe what type I and type II errors are.

c. What is the probability distribution of the test

statistic X when H0 is true? Use it to compute

the probability of a type I error.

d. Compute the probability of a type II error for

the selected region when p ¼ .3, again when

p ¼ .4, and also for both p ¼ .6 and p ¼ .7.

e. Using the selected region, what would you

conclude if 6 of the 25 queried favored com-

pany 1?

10. For healthy individuals the level of prothrombin in

the blood is approximately normally distributed

with mean 20 mg/100 mL and standard deviation

4 mg/100 mL. Low levels indicate low clotting

ability. In studying the effect of gallstones on pro-

thrombin, the level of each patient in a sample is

measured to see if there is a deficiency. Let m be the

true average level of prothrombin for gallstone

patients.

a. What are the appropriate null and alternative

hypotheses?

b. Let X denote the sample average level of pro-

thrombin in a sample of n ¼ 20 randomly

selected gallstone patients. Consider the test

procedure with test statistic X and rejection

region x � 17:92. What is the probability dis-

tribution of the test statistic when H0 is true?

What is the probability of a type I error for the

test procedure?

c. What is the probability distribution of the test

statistic when m ¼ 16.7? Using the test proce-

dure of part (b), what is the probability that

gallstone patients will be judged not deficient

in prothrombin, when in fact m ¼ 16.7 (a type

II error)?

d. How would you change the test procedure of

part (b) to obtain a test with significance level

.05? What impact would this change have on

the error probability of part (c)?

e. Consider the standardized test statistic Z ¼
ðX � 20Þ=ðs= ffiffiffiffiffi

nÞp ¼ ðX � 20Þ=:8944. What

are the values of Z corresponding to the rejec-

tion region of part (b)?

11. The calibration of a scale is to be checked by

weighing a 10-kg test specimen 25 times. Suppose

that the results of different weighings are
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independent of one another and that the weight on

each trial is normally distributed with s ¼ .200 kg.

Let m denote the true average weight reading on

the scale.

a. What hypotheses should be tested?

b. Suppose the scale is to be recalibrated if either

x � 10:1032 or x � 9:8968. What is the prob-

ability that recalibration is carried out when it

is actually unnecessary?

c. What is the probability that recalibration is

judged unnecessary when in fact m ¼ 10.1?

When m ¼ 9.8?

d. Let z ¼ ðx� 10Þ=ðs= ffiffiffiffiffi
nÞp
. For what value c is

the rejection region of part (b) equivalent to the

“two-tailed” region either z � c or z � �c?
e. If the sample size were only 10 rather than 25,

how should the procedure of part (d) be altered

so that a ¼ .05?

f. Using the test of part (e), what would you

conclude from the following sample data?

9.981 10.006 9.857 10.107 9.888

9.728 10.439 10.214 10.190 9.793

g. Re-express the test procedure of part (b) in

terms of the standardized test statistic

Z ¼ ðX � 10Þ=ðs= ffiffiffiffiffi
nÞp
:

12. A new design for the braking system on a certain

type of car has been proposed. For the current

system, the true average braking distance at 40

mph under specified conditions is known to be

120 ft. It is proposed that the new design be

implemented only if sample data strongly indi-

cates a reduction in true average braking distance

for the new design.

a. Define the parameter of interest and state the

relevant hypotheses.

b. Suppose braking distance for the new system is

normally distributed with s ¼ 10. Let X

denote the sample average braking distance

for a random sample of 36 observations.

Which of the following rejection regions

is appropriate: R1 ¼fx : x� 124:80g; R2 ¼
fx : x� 115:20g; R3 ¼fx : either x� 125:13 or
x� 114:87g?

c. What is the significance level for the appropri-

ate region of part (b)? How would you change

the region to obtain a test with a ¼ .001?

d. What is the probability that the new design is

not implemented when its true average braking

distance is actually 115 ft and the appropriate

region from part (b) is used?

e. Let Z ¼ ðX � 120Þ=ðs= ffiffiffiffiffi
nÞp
. What is the sig-

nificance level for the rejection region {z:
z � �2.33}? For the region {z: z � �2.88}?

13. Let X1, . . . , Xn denote a random sample from a

normal population distribution with a known

value of s.
a. For testing the hypotheses H0: m ¼ m0 versus

Ha: m > m0 (where m0 is a fixed number), show

that the test with test statistic X and rejection

region x � m0 þ 2:33s=
ffiffiffi
n

p
has significance

level .01.

b. Suppose the procedure of part (a) is used to test

H0: m � m0 versus Ha: m > m0. If m0 ¼ 100,

n ¼ 25, and s ¼ 5, what is the probability of

committing a type I error when m ¼ 99? When

m ¼ 98? In general, what can be said about

the probability of a type I error when the

actual value of m is less than m0? Verify your

assertion.

14. Reconsider the situation of Exercise 11 and sup-

pose the rejection region is x : x � 10:1004 or

x � 9:8940g ¼ fz : z � 2:51 or z � �2:65g:
a. What is a for this procedure?

b. What is b when m ¼ 10.1? When m ¼ 9.9? Is

this desirable?

9.2 Tests About a Population Mean
The general discussion in Chapter 8 of confidence intervals for a population mean m
focused on three different cases. We now develop test procedures for these same

three cases.

Case I: A Normal Population with Known s

Although the assumption that the value of s is known is rarely met in practice, this

case provides a good starting point because of the ease with which general

procedures and their properties can be developed. The null hypothesis in all three

cases will state that m has a particular numerical value, the null value, which we will
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denote by m0. Let X1, . . . , Xn represent a random sample of size n from the normal

population. Then the sample mean X has a normal distribution with expected value

mX ¼ m and standard deviation sX ¼ s=
ffiffiffi
n

p
. When H0 is true, mX ¼ m0. Consider

now the statistic Z obtained by standardizing X under the assumption thatH0 is true:

Z ¼ X � m0
s=

ffiffiffi
n

p

Substitution of the computed sample mean x gives z, the distance between x and

m0 expressed in “standard deviation units.” For example, if the null hypothesis is

H0: m ¼ 100, sX ¼ s=
ffiffiffi
n

p ¼ 10=
ffiffiffiffiffi
25

p ¼ 2:0 and x ¼ 103, then the test statistic

value is given by z ¼ (103 � 100)/2.0 ¼ 1.5. That is, the observed value of x
is 1.5 standard deviations (of X) above what we expect it to be when H0 is true.

The statistic Z is a natural measure of the distance between X, the estimator of m,
and its expected value when H0 is true. If this distance is too great in a direction

consistent with Ha, the null hypothesis should be rejected.

Suppose first that the alternative hypothesis has the formHa: m > m0. Then an x
value less than m0 certainly does not provide support forHa. Such an x corresponds to
a negative value of z (since x� m0 is negative and the divisor s=

ffiffiffi
n

p
is positive).

Similarly, an x value that exceeds m0 by only a small amount (corresponding to z
which is positive but small) does not suggest that H0 should be rejected in favor

ofHa. The rejection ofH0 is appropriate only when x considerably exceeds m0—that

is, when the z value is positive and large. In summary, the appropriate rejection

region, based on the test statistic Z rather than X, has the form z � c.
As discussed in Section 9.1, the cutoff value c should be chosen to control the

probability of a type I error at the desired level a. This is easily accomplished because

the distribution of the test statistic Z when H0 is true is the standard normal distribu-

tion (that’s why m0 was subtracted in standardizing). The required cutoff c is the z
critical value that captures upper-tail area a under the standard normal curve. As an

example, let c ¼ 1.645, the value that captures tail area .05 (z.05 ¼ 1.645). Then,

a ¼ Pðtype I errorÞ ¼ PðH0 is rejected when H0 is trueÞ
¼ P½Z � 1:645 when Z � Nð0; 1Þ� ¼ 1� Fð1:645Þ ¼ :05

More generally, the rejection region z � za has type I error probability a. The test
procedure is upper-tailed because the rejection region consists only of large values

of the test statistic.

Analogous reasoning for the alternative hypothesis Ha: m < m0 suggests a

rejection region of the form z � c, where c is a suitably chosen negative number

(x is far below m0 if and only if z is quite negative). Because Z has a standard normal

distribution when H0 is true, taking c ¼ �za yields P(type I error) ¼ a. This is a
lower-tailed test. For example, z.10 ¼ 1.28 implies that the rejection region

z � �1.28 specifies a test with significance level .10.

Finally, when the alternative hypothesis is Ha: m 6¼ m0, H0 should be rejected

if x is too far to either side of m0. This is equivalent to rejecting H0 either if z � c or
if z � �c. Suppose we desire a ¼ .05. Then,

:05 ¼ PðZ � c or Z � �c when Z has a standard normal distributionÞ
¼ F �cð Þ þ 1� FðcÞ ¼ 2½1� FðcÞ�
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Thus c is such that 1 � F(c), the area under the standard normal curve to the right

of c, is .025 (and not .05!). From Section 4.3 or Appendix Table A.3, c ¼ 1.96, and

the rejection region is z � 1.96 or z � �1.96. For any a, the two-tailed rejection

region z � za/2 or z � �za/2 has type I error probability a (since area a/2 is captured
under each of the two tails of the z curve). Again, the key reason for using the

standardized test statistic Z is that because Z has a known distribution when H0 is

true (standard normal), a rejection region with desired type I error probability is

easily obtained by using an appropriate critical value.

The test procedure for Case I is summarized in the accompanying box, and

the corresponding rejection regions are illustrated in Figure 9.2.

Null hypothesis: H0: m ¼ m0

Test statistic value: z ¼ x� m0
s=

ffiffiffi
n

p

Alternative Hypothesis Rejection Region for Level a Test

Ha: m > m0 z � za (upper-tailed test)

Ha: m < m0 z � �za (lower-tailed test)

Ha: m 6¼ m0 either z � za/2 or z � �za/2 (two-tailed test)

Use of the following sequence of steps is recommended when testing hypotheses

about a parameter.

1. Identify the parameter of interest and describe it in the context of the problem

situation.

0 0za −za −za/2 za/2
0    

Rejection region: either

z curve (probability distribution of test statistic Z  when H0 is true)

a b c

Shaded area
= a = P(type I error)

Total shaded area
= a = P(type I error)

Shaded area
= a /2

Shaded 
area = a /2

Rejection region: z Ï za

Rejection region: z £ −za
z Ï za/2 or z £ −za/2

Figure 9.2 Rejection regions for z tests: (a) upper-tailed test; (b) lower-tailed test; (c) two-tailed test
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2. Determine the null value and state the null hypothesis.

3. State the appropriate alternative hypothesis.

4. Give the formula for the computed value of the test statistic (substituting the null

value and the known values of any other parameters, but not those of any
sample-based quantities).

5. State the rejection region for the selected significance level a.
6. Compute any necessary sample quantities, substitute into the formula for the test

statistic value, and compute that value.

7. Decide whether H0 should be rejected and state this conclusion in the problem

context.

The formulation of hypotheses (steps 2 and 3) should be done before

examining the data.

Example 9.6 Amanufacturer of sprinkler systems used for fire protection in office buildings claims

that the true average system-activation temperature is 130�. A sample of n ¼ 9

systems, when tested, yields a sample average activation temperature of 131.08�F.
If the distribution of activation times is normal with standard deviation 1.5�F, does
the data contradict the manufacturer’s claim at significance level a ¼ .01?

1. Parameter of interest: m ¼ true average activation temperature.

2. Null hypothesis: H0: m ¼ 130 (null value ¼ m0 ¼ 130).

3. Alternative hypothesis: Ha: m 6¼ 130 (a departure from the claimed value in

either direction is of concern).

4. Test statistic value:

z ¼ x� m0
s=

ffiffiffi
n

p ¼ x� 130

1:5=
ffiffiffi
n

p

5. Rejection region: The form of Ha implies use of a two-tailed test with rejection

region either z � z.005 or z � �z.005. From Section 4.3 or Appendix Table A.3,

z.005 ¼ 2.58, so we reject H0 if either z � 2.58 or z � �2.58.

6. Substituting n ¼ 9 and x ¼ 131:08;

z ¼ 131:08� 130

1:5=
ffiffiffi
9

p ¼ 1:08

:5
¼ 2:16

That is, the observed sample mean is a bit more than 2 standard deviations above

what would have been expected were H0 true.

7. The computed value z ¼ 2.16 does not fall in the rejection region

(�2.58 < 2.16 < 2.58), so H0 cannot be rejected at significance level .01. The

data does not give strong support to the claim that the true average differs from

the design value of 130. ■

Another view of the analysis in the previous example involves calculating a 99% CI

for m based on Equation 8.5:

x	 2:58s=
ffiffiffi
n

p ¼ 131:08	 2:58ð1:5=
ffiffiffi
9

p
Þ ¼ 131:08	 1:29 ¼ ð129:79; 132:37Þ

9.2 Tests About a Population Mean 439



Notice that the interval includes m0 ¼ 130, and it is not hard to see that the 99% CI

excludes m0 if and only if the two-tailed hypothesis test rejects H0 at level .01.

In general, the 100(1 � a)% CI excludes m0 if and only if the two-tailed hypothesis
test rejects H0 at level a. Although we will not always call attention to it, this kind

of relationship between hypothesis tests and confidence intervals will occur over

and over in the remainder of the book. It should be intuitively reasonable that the

CI will exclude a value when the corresponding test rejects the value. There is a

similar relationship between lower-tailed tests and upper confidence bounds, and

also between upper-tailed tests and lower confidence bounds.

b and Sample Size Determination The z tests for Case I are among the few in

statistics for which there are simple formulas available for b, the probability of a

type II error. Consider first the upper-tailed test with rejection region z � za. This is
equivalent to x � m0 þ za 
 s= ffiffiffi

n
p

, so H0 will not be rejected if x< m0 þ za 
 s= ffiffiffi
n

p
.

Now let m0 denote a particular value of m that exceeds the null value m0. Then,

bðm0Þ ¼ PðH0 is not rejected when m ¼ m0Þ
¼ PðX< m0 þ za 
 s=

ffiffiffi
n

p
when m ¼ m0Þ

¼ P
X � m0

s=
ffiffiffi
n

p < za þ m0 � m0

s=
ffiffiffi
n

p when m ¼ m0
� �

¼ F za þ m0 � m0

s=
ffiffiffi
n

p
� �

As m0 increases, m0 � m0 becomes more negative, so b(m0) will be small when m0

greatly exceeds m0 (because the value at which F is evaluated will then be quite

negative). Error probabilities for the lower-tailed and two-tailed tests are derived in

an analogous manner.

If s is large, the probability of a type II error can be large at an alternative

value m0 that is of particular concern to an investigator. Suppose we fix a and also

specify b for such an alternative value. In the sprinkler example, company officials

might view m0 ¼ 132 as a very substantial departure from H0: m ¼ 130 and

therefore wish b(132) ¼ .10 in addition to a ¼ .01. More generally, consider the

two restrictions P(type I error) ¼ a and b(m0) ¼ b for specified a, m0, and b. Then
for an upper-tailed test, the sample size n should be chosen to satisfy

F za þ m0 � m0

s=
ffiffiffi
n

p
� �

¼ b

This implies that

� zb ¼ z critical value that

captures lower tail area b
¼ za þ m0 � m0

s=
ffiffiffi
n

p

It is easy to solve this equation for the desired n. A parallel argument yields the

necessary sample size for lower- and two-tailed tests as summarized in the next

box.
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Alternative Hypothesis Type II Error Probability b(m0) for a Level a Test

Ha: m > m0 F za þ m0 � m0

s=
ffiffiffi
n

p
� �

Ha: m < m0
1� F �za þ m0 � m0

s=
ffiffiffi
n

p
� �

Ha: m 6¼ m0 F za=2 þ m0 � m0

s=
ffiffiffi
n

p
� �

� F �za=2 þ m0 � m0

s=
ffiffiffi
n

p
� �

where F(z) ¼ the standard normal cdf.

The sample size n for which a level a test also has b(m0) ¼ b at the alternative

value m0 is

n ¼
sðza þ zbÞ
m0 � m0

� �2
for a one - tailed

(upper or lower) test

sðza=2 þ zbÞ
m0 � m0

� �2
for a two - tailed test

(an approximate solution)

8>>><
>>>:

Example 9.7 Let m denote the true average tread life of a type of tire. Consider testing H0:

m ¼ 30,000 versusHa: m > 30,000 based on a sample of size n ¼ 16 from a normal

population distribution with s ¼ 1500. A test with a ¼ .01 requires za ¼ z.01
¼ 2.33. The probability of making a type II error when m ¼ 31,000 is

bð31;000Þ ¼ F 2:33þ 30;000� 31;000

1500=
ffiffiffiffiffi
16

p
� �

¼ F �:34ð Þ ¼ :3669

Since z.1 ¼ 1.28, the requirement that the level .01 test also have b(31,000) ¼ .1

necessitates

n ¼ 1500ð2:33þ 1:28Þ
30;000� 31;000

� �2
¼ ð�5:42Þ2 ¼ 29:32

The sample size must be an integer, so n ¼ 30 tires should be used. ■

Case II: Large-Sample Tests

When the sample size is large, the z tests for Case I are easily modified to yield

valid test procedures without requiring either a normal population distribution or

known s. The key result was used in Chapter 8 to justify large-sample confidence

intervals: A large n implies that the sample standard deviation s will be close to s
for most samples, so that the standardized variable

Z ¼ X � m
S=

ffiffiffi
n

p
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has approximately a standard normal distribution. Substitution of the null value

m0 in place of m yields the test statistic

Z ¼ X � m0
S=

ffiffiffi
n

p

which has approximately a standard normal distribution when H0 is true. The use of

rejection regions given previously for Case I (e.g., z � za when the alternative

hypothesis is Ha: m > m0) then results in test procedures for which the significance

level is approximately (rather than exactly) a. The rule of thumb n > 40 will again

be used to characterize a large sample size.

Example 9.8 A sample of bills for meals was obtained at a restaurant (by Erich Brandt). For each

of 70 bills the tip was found as a percentage of the raw bill (before taxes). Does it

appear that the population mean tip percentage for this restaurant exceeds the

standard 15%? Here are the 70 tip percentages:

14.21 20.24 20.10 14.94 15.69 15.04 12.04 20.16 17.85 16.35

19.12 20.37 15.29 18.39 27.55 16.01 10.94 13.52 17.42 14.48

29.87 17.92 19.74 22.73 14.56 15.16 16.09 16.42 19.07 13.74

13.46 16.79 19.03 19.19 19.23 12.39 16.89 18.93 13.56 17.70

11.48 13.96 21.58 11.94 19.02 17.73 20.07 40.09 19.88 22.79

15.23 16.09 19.19 11.91 18.21 15.37 16.31 16.03 48.77 12.31

21.53 12.76 18.07 14.11 15.86 20.67 15.66 18.54 27.88 13.81

Figure 9.3 shows a descriptive summary obtained fromMINITAB. The sample mean

tip percentage is>15. Notice that the distribution is positively skewed because there

are some very large tips (and a normal probability plot therefore does not exhibit a

linear pattern), but the large-sample z tests do not require a normal population

distribution.

1. m ¼ true average tip percentage

2. H0: m ¼ 15

22.515.0 45.037.530.0

2716 1918

Mean

Median

95% Confidence Intervals

Anderson-Darting Normality Test

A-Squared 4.17
P-Value < 0.005
Mean 17.986
StDev 5.937
Variance 35.247
Skewness 2.9391
Kurtosis 12.0154

70N
Minimum 10.940
1st Quartile

3rd Quartile

 14.540
Median 16.840

19.358
Maximum 48.770

95% Confidence Interval for Mean
16.571 19.402

95% Confidence Interval for Median
15.913 18.402

95% Confidence Interval for StDev
5.090 7.124

*****

Figure 9.3 MINITAB descriptive summary for the tip data of Example 9.8
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3. Ha: m > 15

4. z ¼ x� 15

s=
ffiffiffi
n

p
5. Using a test with a significance level .05, H0 will be rejected if z � 1.645 (an

upper tailed test).

6. With n ¼ 70, x ¼ 17:99, and s ¼ 5.937,

z ¼ 17:99� 15

5:937=
ffiffiffiffiffi
70

p ¼ 2:99

:7096
¼ 4:21

7. Since 4.21 > 1.645, H0 is rejected. There is evidence that the population mean

tip percentage exceeds 15%. ■
Determination of b and the necessary sample size for these large-sample tests

can be based either on specifying a plausible value of s and using the Case I

formulas (even though s is used in the test) or on using the methods to be introduced

shortly in connection with Case III.

Case III: A Normal Population Distribution
with Unknown s

When n is small, the Central Limit Theorem (CLT) can no longer be invoked to

justify the use of a large-sample test. We faced this same difficulty in obtaining a

small-sample confidence interval (CI) for m in Chapter 8. Our approach here will be

the same one used there: We will assume that the population distribution is at least

approximately normal and describe test procedures whose validity rests on this

assumption. If an investigator has good reason to believe that the population

distribution is quite nonnormal, a distribution-free test from Chapter 14 can be

used. Alternatively, a statistician can be consulted regarding procedures valid for

specific families of population distributions other than the normal family. Or a

bootstrap procedure can be developed.

The key result on which tests for a normal population mean are based was

used in Chapter 8 to derive the one-sample t CI: If X1, X2, . . . , Xn is a random

sample from a normal distribution, the standardized variable

T ¼ X � m
S=

ffiffiffi
n

p

has a t distribution with n � 1 degrees of freedom (df). Consider testing H0:

m ¼ m0 against Ha: m > m0 by using the test statistic ðX � m0Þ=ðS=
ffiffiffi
n

p Þ. That is,
the test statistic results from standardizing X under the assumption that H0 is true

(using S=
ffiffiffi
n

p
, the estimated standard deviation of X, rather than s=

ffiffiffi
n

p
). When H0 is

true, the test statistic has a t distribution with n � 1 df. Knowledge of the test

statistic’s distribution when H0 is true (the “null distribution”) allows us to con-

struct a rejection region for which the type I error probability is controlled at the

desired level. In particular, use of the upper-tail t critical value ta,n�1 to specify the

rejection region t � ta,n�1 implies that
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P type I errorð Þ ¼ P H0 is rejected when it is trueð Þ
¼ PðT � ta;n�1 when T has a t distribution with n� 1 dfÞ
¼ a

The test statistic is really the same here as in the large-sample case but is

labeled T to emphasize that its null distribution is a t distribution with n � 1 df

rather than the standard normal (z) distribution. The rejection region for the t test
differs from that for the z test only in that a t critical value ta,n�1 replaces the

z critical value za. Similar comments apply to alternatives for which a lower-tailed

or two-tailed test is appropriate.

THE
ONE-SAMPLE
t TEST

Null hypothesis: H0: m ¼ m0

Test statistic value: t ¼ x� m0
s=

ffiffiffi
n

p

Alternative Hypothesis Rejection Region for a Level a Test

Ha: m > m0 t � ta,n�1 (upper-tailed)

Ha: m < m0 t � �ta,n�1 (lower-tailed)

Ha: m 6¼ m0 either t � ta/2,n�1 or t � �ta/2,n�1 (two-tailed)

Example 9.9 A well-designed and safe workplace can contribute greatly to increased productiv-

ity. It is especially important that workers not be asked to perform tasks, such as

lifting, that exceed their capabilities. The accompanying data on maximum weight

of lift (MAWL, in kg) for a frequency of four lifts/min was reported in the article

“The Effects of Speed, Frequency, and Load on Measured Hand Forces for a

Floor-to-Knuckle Lifting Task” (Ergonomics, 1992: 833–843); subjects were

randomly selected from the population of healthy males age 18–30. Assuming

that MAWL is normally distributed, does the following data suggest that the

population mean MAWL exceeds 25?

25.8 36.6 26.3 21.8 27.2

Let’s carry out a test using a significance level of .05.

1. m ¼ population mean MAWL

2. H0: m ¼ 25

3. Ha: m > 25

4. t ¼ x� 25

s=
ffiffiffi
n

p
5. Reject H0 if t � ta, n�1 ¼ t.05,4 ¼ 2.132.

6. Sxi ¼ 137.7 and Sx2i ¼ 3911:97, from which x ¼ 27:54, s ¼ 5.47, and
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t ¼ 27:54� 25

5:47=
ffiffiffi
5

p ¼ 2:54

2:45
¼ 1:04

The accompanying MINITAB output from a request for a one-sample t test has
the same calculated values (the P-value is discussed in Section 9.4).

Test of mu ¼ 25.00 vs mu > 25.00

Variable N Mean StDev SE Mean T P-Value
mawl 5 27.54 5.47 2.45 1.04 0.18

7. Since 1.04 does not fall in the rejection region (1.04 < 2.132), H0 cannot be

rejected at significance level .05. It is still plausible that m is (at most) 25. ■

b and Sample Size Determination The calculation of b at the alternative value m0

in Case I was carried out by expressing the rejection region in terms of x (e.g.,

x � m0 þ za 
 s= ffiffiffi
n

p
) and then subtracting m0 to standardize correctly. An equivalent

approach involves noting that when m ¼ m0, the test statistic Z ¼ ðX � m0Þ=ðs=
ffiffiffi
n

p Þ
still has a normal distribution with variance 1, but now the mean value of Z is

given by ðm0 � m0Þ=ðs=
ffiffiffi
n

p Þ. That is, when m ¼ m0, the test statistic still has a

normal distribution though not the standard normal distribution. Because of this,

b(m0) is an area under the normal curve corresponding to mean value

ðm0 � m0Þ=ðs=
ffiffiffi
n

p Þ and variance 1. Both a and b involve working with normally

distributed variables.

The calculation of b(m0) for the t test is much less straightforward. This

is because the distribution of the test statistic T ¼ ðX � m0Þ=ðS=
ffiffiffi
n

p Þ is quite

complicated when H0 is false and Ha is true. Thus, for an upper-tailed test,

determining

bðm0Þ ¼ PðT< ta;n�1 when m ¼ m0 rather than m0Þ

involves integrating a very unpleasant density function. This must be done numeri-

cally, but fortunately it has been done by research statisticians for both one- and

two-tailed t tests. The results are summarized in graphs of b that appear in

Appendix Table A.16. There are four sets of graphs, corresponding to one-tailed

tests at level .05 and level .01 and two-tailed tests at the same levels.

To understand how these graphs are used, note first that both b and the

necessary sample size n in Case I are functions not just of the absolute difference

|m0 � m0| but of d ¼ |m0 � m0|/s. Suppose, for example, that |m0 � m0| ¼ 10.

This departure from H0 will be much easier to detect (smaller b) when s ¼ 2,

in which case m0 and m0 are 5 population standard deviations apart, than when

s ¼ 10. The fact that b for the t test depends on d rather than just |m0 � m0| is
unfortunate, since to use the graphs one must have some idea of the true value of s.
A conservative (large) guess for s will yield a conservative (large) value of

b(m0) and a conservative estimate of the sample size necessary for prescribed

a and b(m0).
Once the alternative m0 and value of s are selected, d is calculated and its

value located on the horizontal axis of the relevant set of curves. The value of b
is the height of the n � 1 df curve above the value of d (visual interpolation is

necessary if n � 1 is not a value for which the corresponding curve appears), as

illustrated in Figure 9.4.
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Rather than fixing n (i.e., n � 1, and thus the particular curve from which b is

read), one might prescribe both a (.05 or .01 here) and a value of b for the chosen m0

and s. After computing d, the point (d, b) is located on the relevant set of graphs.

The curve below and closest to this point gives n � 1 and thus n (again, interpola-

tion is often necessary).

Example 9.10 The true average voltage drop from collector to emitter of insulated gate bipolar

transistors of a certain type is supposed to be at most 2.5 V. An investigator selects a

sample of n ¼ 10 such transistors and uses the resulting voltages as a basis for testing

H0: m ¼ 2.5 versus Ha: m > 2.5 using a t test with significance level a ¼ .05. If the

standard deviation of the voltage distribution is s ¼ .100, how likely is it thatH0 will

not be rejected when m ¼ 2.6? With d ¼ |2.5 � 2.6|/.100 ¼ 1.0, the point on the b
curve at 9 df for a one-tailed test with a ¼ .05 above 1.0 has height approximately .1,

so b � .1. The investigator might think that this is too large a value of b for such a

substantial departure fromH0 and may wish to have b ¼ .05 for this alternative value

of m. Since d ¼ 1.0, the point (d, b) ¼ (1.0, .05) must be located. This point is very

close to the 14 df curve, so using n ¼ 15 will give both a ¼ .05 and b ¼ .05 when

the value of m is 2.6 and s ¼ .10. A larger value of s would give a larger b for this

alternative, and an alternative value of m closer to 2.5 would also result in an

increased value of b. ■

Most of the widely used statistical computer packages will also calculate

type II error probabilities and determine necessary sample sizes. As an example, we

asked MINITAB to do the calculations from Example 9.10. Its computations are

based on power, which is simply 1 � b. We want b to be small, which is equivalent

to asking that the power of the test be large. For example, b ¼ .05 corresponds to a

value of .95 for power. Here is the resulting MINITAB output.

Power and Sample Size

Testing mean ¼ null (versus > null)

Calculating power for mean ¼ null + 0.1

1

0 d

Value of d corresponding to specified alternative m�

b curve for n − 1 df 

b when m = m�

Figure 9.4 A typical b curve for the t test
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Alpha ¼ 0.05 Sigma ¼ 0.1

Sample
Size Power
10 0.8975

Power and Sample Size

1-Sample t Test

Testing mean ¼ null (versus > null)

Calculating power for mean ¼ null + 0.1

Alpha ¼ 0.05 Sigma ¼ 0.1

Sample
Size

Target
Power

Actual
Power

13 0.9500 0.9597

Notice from the second part of the output that the sample size necessary to obtain a

power of .95 (b ¼ .05) for an upper-tailed test with a ¼ .05 when s ¼ .1 and m0 is
.1 larger than m0 is only n ¼ 13, whereas eyeballing our b curves gave 15. When

available, this type of software is more trustworthy than the curves.

Exercises Section 9.2 (15–35)

15. Let the test statistic Z have a standard normal

distribution when H0 is true. Give the significance

level for each of the following situations:

a. Ha: m > m0, rejection region z � 1.88

b. Ha: m < m0, rejection region z � �2.75

c. Ha: m 6¼ m0, rejection region z � 2.88 or z �
�2.88

16. Let the test statistic T have a t distribution when

H0 is true. Give the significance level for each of

the following situations:

a. Ha: m > m0, df ¼ 15, rejection region

t � 3.733

b. Ha: m < m0, n ¼ 24, rejection region

t � �2.500

c. Ha: m 6¼ m0, n ¼ 31, rejection region t � 1.697

or t � �1.697

17. Answer the following questions for the tire prob-

lem in Example 9.7.

a. If x ¼ 30; 960 and a level a ¼ .01 test is used,

what is the decision?

b. If a level .01 test is used, what is b(30,500)?
c. If a level .01 test is used and it is also required

that b(30,500) ¼ .05, what sample size n is

necessary?

d. If x ¼ 30; 960, what is the smallest a at which

H0 can be rejected (based on n ¼ 16)?

18. Reconsider the paint-drying situation of Example

9.2, in which drying time for a test specimen is

normally distributed with s ¼ 9. The hypotheses

H0: m ¼ 75 versus Ha: m < 75 are to be tested

using a random sample of n ¼ 25 observations.

a. How many standard deviations (of X) below
the null value is x ¼ 72:3?

b. If x ¼ 72:3, what is the conclusion using

a ¼ .01?

c. What is a for the test procedure that rejects H0

when z � �2.88?

d. For the test procedure of part (c), what is

b(70)?
e. If the test procedure of part (c) is used, what n

is necessary to ensure that b(70) ¼ .01?

f. If a level .01 test is used with n ¼ 100, what is

the probability of a type I error when m ¼ 76?

19. The melting point of each of 16 samples of a brand

of hydrogenated vegetable oil was determined,

resulting in x ¼ 94:32. Assume that the distribution

of melting point is normal with s ¼ 1.20.

a. Test H0: m ¼ 95 versus Ha: m 6¼ 95 using a

two-tailed level .01 test.

b. If a level .01 test is used, what is b(94), the
probability of a type II error when m ¼ 94?

c. What value of n is necessary to ensure that

b(94) ¼ .1 when a ¼ .01?
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20. Lightbulbs of a certain type are advertised as having

an average lifetime of 750 h. The price of these

bulbs is very favorable, so a potential customer

has decided to go ahead with a purchase arrange-

ment unless it can be conclusively demonstrated

that the true average lifetime is smaller than what

is advertised. A random sample of 50 bulbs was

selected, the lifetime of each bulb determined, and

the appropriate hypotheses were tested usingMINI-

TAB, resulting in the accompanying output.

Variable N Mean StDev SEMean Z P-Value

lifetime 50 738.44 38.20 5.40 �2.14 0.016

What conclusion would be appropriate for a

significance level of .05? A significance level

of .01? What significance level and conclusion

would you recommend?

21. The true average diameter of ball bearings of a

certain type is supposed to be .5 in. A one-sample

t test will be carried out to see whether this is the

case. What conclusion is appropriate in each of

the following situations?

a. n ¼ 13, t ¼ 1.6, a ¼ .05

b. n ¼ 13, t ¼ �1.6, a ¼ .05

c. n ¼ 25, t ¼ �2.6, a ¼ .01

d. n ¼ 25, t ¼ �3.9

22. The article “The Foreman’s View of Quality Con-

trol” (Quality Engrg., 1990: 257–280) described
an investigation into the coating weights for large

pipes resulting from a galvanized coating pro-

cess. Production standards call for a true average

weight of 200 lb per pipe. The accompanying

descriptive summary and boxplot are from

MINITAB.

Variable N Mean Median TrMean StDev SEMean

ctg wt 30 206.73 206.00 206.81 6.35 1.16

Variable Min Max Q1 Q3

ctg wt 193.00 218.00 202.75 212.00

200 210190 220

Coating weight

a. What does the boxplot suggest about the status

of the specification for true average coating

weight?

b. A normal probability plot of the data was quite

straight. Use the descriptive output to test the

appropriate hypotheses.

23. Exercise 33 in Chapter 1 gave n ¼ 26 observations

on escape time (sec) for oil workers in a simulated

exercise, from which the sample mean and sample

standard deviation are 370.69 and 24.36, respec-

tively. Suppose the investigators had believed a

priori that true average escape time would be at

most 6 min. Does the data contradict this prior

belief? Assuming normality, test the appropriate

hypotheses using a significance level of .05.

24. Reconsider the sample observations on stabilized

viscosity of asphalt specimens introduced in

Exercise 43 in Chapter 1 (2781, 2900, 3013,

2856, and 2888). Suppose that for a particular

application, it is required that true average viscosity

be 3000. Does this requirement appear to have been

satisfied? State and test the appropriate hypotheses.

25. Recall the first-grade IQ scores of Example 1.2.

Here is a random sample of 10 of those scores:

107 113 108 127 146 103 108 118 111 119

The IQ test score has approximately a normal

distribution with mean 100 and standard deviation

15 for the entire U.S. population of first-graders.

Here we are interested in seeing whether the pop-

ulation of first-graders at this school is different

from the national population. Assume that the

normal distribution with standard deviation 15 is

valid for the school, and test at the .05 level to see

whether the school mean differs from the national

mean. Summarize your conclusion in a sentence

about these first-graders.

26. In recent years major league baseball games have

averaged 3 h in duration. However, because games

in Denver tend to be high-scoring, it might be

expected that the games would be longer there.

In 2001, the 81 games in Denver averaged

185.54 min with standard deviation 24.6 min.

What would you conclude?

27. On the label, Pepperidge Farm bagels are said to

weigh four ounces each (113 g). A random sample

of six bagels resulted in the following weights (in

grams):

117.6 109.5 111.6 109.2 119.1 110.8

a. Based on this sample, is there any reason to

doubt that the population mean is at least 113 g?
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b. Assume that the population mean is actually

110 g and that the distribution is normal with

standard deviation 4 g. In a z test of H0:

m ¼ 113 against Ha: m < 113 with a ¼ .05,

find the probability of rejecting H0 with six

observations.

c. Under the conditions of part (b) with a ¼ .05,

how many more observations would be needed

in order for the power to be at least .95?

28. Minor surgery on horses under field conditions

requires a reliable short-term anesthetic producing

good muscle relaxation, minimal cardiovascular

and respiratory changes, and a quick, smooth

recovery with minimal aftereffects so that horses

can be left unattended. The article “A Field Trial

of Ketamine Anesthesia in the Horse” (Equine
Vet. J., 1984: 176–179) reports that for a sample

of n ¼ 73 horses to which ketamine was adminis-

tered under certain conditions, the sample average

lateral recumbency (lying-down) time was

18.86 min and the standard deviation was

8.6 min. Does this data suggest that true average

lateral recumbency time under these conditions is

less than 20 min? Test the appropriate hypotheses

at level of significance .10.

29. The amount of shaft wear (.0001 in.) after a fixed

mileage was determined for each of n ¼ 8 internal

combustion engines having copper lead as a bear-

ing material, resulting in x ¼ 3:72 and s ¼ 1.25.

a. Assuming that the distribution of shaft wear is

normal with mean m, use the t test at level .05 to
test H0: m ¼ 3.50 versus Ha: m > 3.50.

b. Using s ¼ 1.25, what is the type II error prob-

ability b(m0) of the test for the alternative

m0 ¼ 4.00?

30. The recommended daily dietary allowance for zinc

among males older than age 50 years is 15 mg/day.

The article “Nutrient Intakes and Dietary Patterns

of Older Americans: A National Study” (J. Geron-
tol., 1992: M145–150) reports the following sum-

mary data on intake for a sample of males age

65–74 years: n ¼ 115, x ¼ 11:3, and s ¼ 6.43.

Does this data indicate that average daily zinc

intake in the population of all males age 65–74

falls below the recommended allowance?

31. In an experiment designed to measure the time

necessary for an inspector’s eyes to become used

to the reduced amount of light necessary for pene-

trant inspection, the sample average time for

n ¼ 9 inspectors was 6.32 s and the sample stan-

dard deviation was 1.65 s. It has previously been

assumed that the average adaptation time was at

least 7 s. Assuming adaptation time to be normally

distributed, does the data contradict prior belief?

Use the t test with a ¼ .1.

32. A sample of 12 radon detectors of a certain

type was selected, and each was exposed to

100 pCi/L of radon. The resulting readings were

as follows:

105.6 90.9 91.2 96.9 96.5 91.3

100.1 105.0 99.6 107.7 103.3 92.4

a. Does this data suggest that the population mean

reading under these conditions differs from

100? State and test the appropriate hypotheses

using a ¼ .05.

b. Suppose that prior to the experiment, a value of

s ¼ 7.5 had been assumed. How many deter-

minations would then have been appropriate to

obtain b ¼ .10 for the alternative m ¼ 95?

33. Show that for any D > 0, when the population

distribution is normal and s is known, the two-

tailed test satisfies b(m0 � D) ¼ b(m0 + D), so

that b(m0) is symmetric about m0.

34. For a fixed alternative value m0, show that

b(m0) ! 0 as n ! 1 for either a one-tailed or a

two-tailed z test in the case of a normal population

distribution with known s.

35. The industry standard for the amount of alcohol

poured into many types of drinks (e.g., gin for a

gin and tonic, whiskey on the rocks) is 1.5 oz.

Each individual in a sample of 8 bartenders with

at least 5 years of experience was asked to pour

rum for a rum and coke into a short, wide (tum-

bler) glass, resulting in the following data:

2.00 1.78 2.16 1.91 1.70 1.67 1.83 1.48

(Summary quantities agree with those given in the

article “BottomsUp!The Influence of Elongation on

Pouring and Consumption Volume,” J. Consumer
Res., 2003: 455–463.)
a. What does a boxplot suggest about the distri-

bution of the amount poured?

b. Carry out a test of hypotheses to decide

whether there is strong evidence for conclud-

ing that the true average amount poured differs

from the industry standard.

c. Does the validity of the test you carried out in

(b) depend on any assumptions about the pop-

ulation distribution? If so, check the plausibil-

ity of such assumptions.

d. Suppose the actual standard deviation of the

amount poured is .20 oz. Determine the proba-

bility of a type II error for the test of (b) when

the true average amount poured is actually

(1) 1.6, (2) 1.7, (3) 1.8.
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9.3 Tests Concerning a Population Proportion
Let p denote the proportion of individuals or objects in a population who possess

a specified property (e.g., cars with manual transmissions or smokers who smoke a

filter cigarette). If an individual or object with the property is labeled a success (S),
then p is the population proportion of successes. Tests concerning p will be based

on a random sample of size n from the population. Provided that n is small relative

to the population size, X (the number of S’s in the sample) has (approximately) a

binomial distribution. Furthermore, if n itself is large, both X and the estimator

p̂ ¼ X=n are approximately normally distributed. We first consider large-sample

tests based on this latter fact and then turn to the small-sample case that directly

uses the binomial distribution.

Large-Sample Tests

Large-sample tests concerning p are a special case of the more general large-sample

procedures for a parameter y. Let ŷ be an estimator of y that is (at least approxi-

mately) unbiased and has approximately a normal distribution. The null hypothesis

has the form H0: y ¼ y0, where y0 denotes a number (the null value) appropriate

to the problem context. Suppose that when H0 is true, the standard deviation of

ŷ, sŷ, involves no unknown parameters. For example, if y ¼ m and ŷ ¼ X,

sŷ ¼ sX ¼ s=
ffiffiffi
n

p
, which involves no unknown parameters only if the value of s

is known. A large-sample test statistic results from standardizing ŷ under the

assumption that H0 is true [so that EðŷÞ ¼ y0]:

Test statistic:
ŷ� y0
sŷ

If the alternative hypothesis is Ha: y > y0, an upper-tailed test whose significance

level is approximately a is specified by the rejection region z � za. The other two
alternatives, Ha: y < y0 and Ha: y 6¼ y0, are tested using a lower-tailed z test and a

two-tailed z test, respectively.
In the case y ¼ p, sŷ will not involve any unknown parameters when H0 is

true, but this is atypical. When sŷ does involve unknown parameters, it is often

possible to use an estimated standard deviation Sŷ in place of sŷ and still have Z
approximately normally distributed when H0 is true (because when n is large,

sŷ � sŷ for most samples). The large-sample test of the previous section furnishes

an example of this: Because s is usually unknown, we use sŷ ¼ sX ¼ s=
ffiffiffi
n

p
in place

of s=
ffiffiffi
n

p
in the denominator of z.

The estimator p̂ ¼ X=n is unbiased [Eðp̂Þ ¼ p], has approximately a normal

distribution, and its standard deviation is sp̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=np

. These facts were

used in Section 8.2 to obtain a confidence interval for p. WhenH0 is true, Eðp̂Þ ¼ p0
and sp̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ=n

p
, so sp̂ does not involve any unknown parameters. It then

follows that when n is large and H0 is true, the test statistic

Z ¼ p̂� p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ=n

p
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has approximately a standard normal distribution. If the alternative hypothesis is

Ha: p > p0 and the upper-tailed rejection region z � za is used, then

Pðtype I errorÞ¼ PðH0 is rejected when it is trueÞ
¼ PðZ� za when Z has approximately a standard normal

distributionÞ� a

Thus the desired level of significance a is attained by using the critical value that

captures area a in the upper tail of the z curve. Rejection regions for the other two

alternative hypotheses, lower-tailed for Ha: p < p0 and two-tailed for Ha: p 6¼ p0,
are justified in an analogous manner.

Null hypothesis: H0: p ¼ p0

Test statistic value: z ¼ p̂� p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ=n

p

Alternative Hypothesis Rejection Region

Ha: p > p0 z � za (upper-tailed)
Ha: p < p0 z � �za (lower-tailed)
Ha: p 6¼ p0 either z � za/2 or z � �za/2 (two-tailed)

These test procedures are valid provided that np0 � 10 and n(1 � p0) � 10.

Example 9.11 Recent information suggests that obesity is an increasing problem in America

among all age groups. The Associated Press (Oct. 9, 2002) reported that 1276

individuals in a sample of 4115 adults were found to be obese (a body mass index

exceeding 30; this index is a measure of weight relative to height). A 1998 survey

based on people’s own assessment revealed that 20% of adult Americans consid-

ered themselves obese. Does the recent data suggest that the true proportion of

adults who are obese is more than 1.5 times the percentage from the self-assessment

survey? Let’s carry out a test of hypotheses using a significance level of .10.

1. p ¼ the proportion of all American adults who are obese.

2. Saying that the current percentage is 1.5 times the self-assessment percentage is

equivalent to the assertion that the current percentage is 30%, from which we

have the null hypothesis as H0: p ¼ .30.

3. The phrase “more than” in the problem description implies that the alternative

hypothesis is Ha: p > .30.

4. Since np0 ¼ 4115(.3) � 10 and nq0 ¼ 4115(.7) � 10, the large-sample z test
can certainly be used. The test statistic value is

z ¼ ðp̂� :3Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:3Þð:7Þ=n

p
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5. The form of Ha implies that an upper-tailed test is appropriate: Reject H0

if z � z.10 ¼ 1.28.

6. p̂ ¼ 1276=4115 ¼ :310, from which

z ¼ ð:310� :3Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið:3Þð:7Þ=4115p ¼ :010=:0071 ¼ 1:40:

7. Since 1.40 exceeds the critical value 1.28, z lies in the rejection region. This

justifies rejecting the null hypothesis. Using a significance level of .10, it does

appear that more than 30% of American adults are obese. ■

b and Sample Size Determination When H0 is true, the test statistic Z has

approximately a standard normal distribution. Now suppose that H0 is not true
and that p ¼ p0. Then Z still has approximately a normal distribution (because it is a

linear function of p̂), but its mean value and variance are no longer 0 and 1,

respectively. Instead,

EðZÞ ¼ p0 � p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ=n

p VðZÞ ¼ p0ð1� p0Þ=n
p0ð1� p0Þ=n

The probability of a type II error for an upper-tailed test is b(p0) ¼ P(Z < za when
p ¼ p0). This can be computed by using the given mean and variance to standardize

and then referring to the standard normal cdf. In addition, if it is desired that

the level a test also have b(p0) ¼ b for a specified value of b, this equation can

be solved for the necessary n as in Section 9.2. General expressions for b(p0) and n
are given in the accompanying box.

Alternative Hypothesis b(p0)

Ha: p > p0
F

p0 � p0 þ za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ=n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ=np

" #

Ha: p < p0
1� F

p0 � p0 � za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ=n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ=np

" #

Ha: p 6¼ p0
F

p0 � p0 þ za=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ=n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ=np

" #

�F
p0 � p0 � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ=n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ=np

" #

The sample size n for which the level a test also satisfies b(p0) ¼ b is

n ¼

za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ

p þ zb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þp

p0 � p0

" #2
one� tailed test

za=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ

p þ zb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þp

p0 � p0

" #2
two� tailed test (an

approximate solution)

8>>>>><
>>>>>:
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Example 9.12 A package-delivery service advertises that at least 90% of all packages brought to its

office by 9 a.m. for delivery in the same city are delivered by noon that day. Let

p denote the true proportion of such packages that are delivered as advertised and

consider the hypotheses H0: p ¼ .9 versus Ha: p < .9. If only 80% of the packages

are delivered as advertised, how likely is it that a level .01 test based on n ¼ 225

packages will detect such a departure from H0? What should the sample size be to

ensure that b(.8) ¼ .01? With a ¼ .01, p0 ¼ .9, p0 ¼ .8, and n ¼ 225,

bð:8Þ ¼ 1� F
:9� :8� 2:33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið:9Þð:1Þ=225p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið:8Þð:2Þ=225p

" #
¼ 1� Fð2:00Þ ¼ :0228

Thus the probability that H0 will be rejected using the test when p ¼ .8 is .9772—

roughly 98% of all samples will result in correct rejection of H0.

Using za ¼ zb ¼ 2.33 in the sample size formula yields

n ¼ 2:33
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið:9Þð:1Þp þ 2:33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið:8Þð:2Þp
:8� :9

" #2
� 266

■

Small-Sample Tests

Test procedures when the sample size n is small are based directly on the binomial

distribution rather than the normal approximation. Consider the alternative hypoth-

esis Ha: p > p0 and again let X be the number of successes in the sample. Then X
is the test statistic, and the upper-tailed rejection region has the form x � c. When

H0 is true, X has a binomial distribution with parameters n and p0, so

Pðtype I errorÞ ¼ PðH0 is rejected when it is trueÞ
¼ P½X � c when X � Binðn; p0Þ�
¼ 1� P½X � c� 1 when X � Binðn; p0Þ�
¼ 1� Bðc� 1; n; p0Þ

As the critical value c decreases, more x values are included in the rejection

region and P(type I error) increases. Because X has a discrete probability distribu-

tion, it is usually not possible to find a value of c for which P(type I error) is exactly
the desired significance level a (e.g., .05 or .01). Instead, the largest rejection region
of the form {c, c + 1, . . . , n} satisfying 1 � B(c � 1; n, p0) � a is used.

Let p0 denote an alternative value of p p0>p0ð Þ. When p ¼ p0;X � Bin n; p0ð Þ,
so

bðp0Þ ¼ Pðtype II error when p ¼ p0Þ ¼ P½X< c when X � Binðn; p0Þ�
¼ Bðc� 1; n; p0Þ

That is, b(p0) is the result of a straightforward binomial probability calculation.

The sample size n necessary to ensure that a level a test also has specified b at a

particular alternative value p0 must be determined by trial and error using the

binomial cdf.

Test procedures for Ha: p < p0 and for Ha: p 6¼ p0 are constructed in a similar

manner. In the former case, the appropriate rejection region has the form x � c (a lower-
tailed test). The critical value c is the largest number satisfying B(c; n, p0) � a.
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The rejection regionwhen the alternative hypothesis isHa: p 6¼ p0 consists of both large
and small x values.

Example 9.13 A plastics manufacturer has developed a new type of plastic trash can and

proposes to sell them with an unconditional 6-year warranty. To see whether this

is economically feasible, 20 prototype cans are subjected to an accelerated life

test to simulate 6 years of use. The proposed warranty will be modified only if

the sample data strongly suggests that fewer than 90% of such cans would survive

the 6-year period. Let p denote the proportion of all cans that survive the acceler-

ated test. The relevant hypotheses are thenH0: p ¼ .9 versusHa: p < .9. A decision

will be based on the test statistic X, the number among the 20 that survive.

If the desired significance level is a ¼ .05, c must satisfy B(c; 20, .9) � .05.

From Appendix Table A.1, B(15; 20, .9) ¼ .043, and B(16; 20, .9) ¼ .133. The

appropriate rejection region is therefore x � 15. If the accelerated test results in

x ¼ 14, H0 would be rejected in favor of Ha, necessitating a modification of

the proposed warranty. The probability of a type II error for the alternative value

p0 ¼ .8 is

bð:8Þ ¼ P½H0 is not rejected when X � Binð20; :8Þ�
¼ P½X � 16 when X � Binð20; :8Þ�
¼ 1� Bð15; 20; :8Þ � 1� :370 ¼ :630

That is, when p ¼ .8, 63% of all samples consisting of n ¼ 20 cans would result in

H0 being incorrectly not rejected. This error probability is high because 20 is a

small sample size and p0 ¼ .8 is close to the null value p0 ¼ .9. ■

Exercises Section 9.3 (36–44)

36. State DMV records indicate that of all vehicles

undergoing emissions testing during the previous

year, 70% passed on the first try. A random sam-

ple of 200 cars tested in a particular county during

the current year yields 124 that passed on the

initial test. Does this suggest that the true propor-

tion for this county during the current year differs

from the previous statewide proportion? Test the

relevant hypotheses using a ¼ .05.

37. A manufacturer of nickel–hydrogen batteries ran-

domly selects 100 nickel plates for test cells,

cycles them a specified number of times, and

determines that 14 of the plates have blistered.

a. Does this provide compelling evidence for con-

cluding that more than 10% of all plates blister

under such circumstances? State and test the

appropriate hypotheses using a significance

level of .05. In reaching your conclusion,

what type of error might you have committed?

b. If it is really the case that 15% of all plates

blister under these circumstances and a sample

size of 100 is used, how likely is it that the null

hypothesis of part (a) will not be rejected by

the level .05 test? Answer this question for a

sample size of 200.

c. How many plates would have to be tested to

have b(.15) ¼ .10 for the test of part (a)?

38. A random sample of 150 recent donations at a

blood bank reveals that 82 were type A blood.

Does this suggest that the actual percentage of

type A donations differs from 40%, the percentage

of the population having type A blood? Carry out

a test of the appropriate hypotheses using a signif-

icance level of .01. Would your conclusion have

been different if a significance level of .05 had

been used?

39. A university library ordinarily has a complete

shelf inventory done once every year. Because of

new shelving rules instituted the previous year, the

head librarian believes it may be possible to save

money by postponing the inventory. The librarian

decides to select at random 1000 books from the
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library’s collection and have them searched in a

preliminary manner. If evidence indicates strongly

that the true proportion of misshelved or unloca-

table books is <.02, then the inventory will be

postponed.

a. Among the 1000 books searched, 15 were mis-

shelved or unlocatable. Test the relevant

hypotheses and advise the librarian what to do

(use a ¼ .05).

b. If the true proportion of misshelved and lost

books is actually .01, what is the probability

that the inventory will be (unnecessarily) taken?

c. If the true proportion is .05, what is the proba-

bility that the inventory will be postponed?

40. The article “Statistical Evidence of Discrimina-

tion” (J. Amer. Statist. Assoc., 1982: 773–783)

discusses the court case Swain v. Alabama
(1965), in which it was alleged that there was

discrimination against blacks in grand jury selec-

tion. Census data suggested that 25% of those

eligible for grand jury service were black, yet a

random sample of 1050 people called to appear for

possible duty yielded only 177 blacks. Using a

level .01 test, does this data argue strongly for a

conclusion of discrimination?

41. A plan for an executive traveler’s club has been

developed by an airline on the premise that 5% of

its current customers would qualify for member-

ship. A random sample of 500 customers yielded

40 who would qualify.

a. Using this data, test at level .01 the null hypoth-
esis that the company’s premise is correct

against the alternative that it is not correct.

b. What is the probability that when the test of

part (a) is used, the company’s premise will be

judged correct when in fact 10% of all current

customers qualify?

42. Each of a group of 20 intermediate tennis players

is given two rackets, one having nylon strings and

the other synthetic gut strings. After several weeks

of playing with the two rackets, each player will

be asked to state a preference for one of the two

types of strings. Let p denote the proportion of all

such players who would prefer gut to nylon, and

let X be the number of players in the sample who

prefer gut. Because gut strings are more expen-

sive, consider the null hypothesis that at most 50%

of all such players prefer gut. We simplify this to

H0: p ¼ .5, planning to reject H0 only if sample

evidence strongly favors gut strings.

a. Which of the rejection regions {15, 16, 17, 18,

19, 20}, {0, 1, 2, 3, 4, 5}, or {0, 1, 2, 3, 17, 18,

19, 20} is most appropriate, and why are the

other two not appropriate?

b. What is the probability of a type I error for the

chosen region of part (a)? Does the region spec-

ify a level .05 test? Is it the best level .05 test?

c. If 60% of all enthusiasts prefer gut, calculate

the probability of a type II error using the

appropriate region from part (a). Repeat if

80% of all enthusiasts prefer gut.

d. If 13 out of the 20 players prefer gut, should H0

be rejected using a significance level of .10?

43. A manufacturer of plumbing fixtures has devel-

oped a new type of washerless faucet. Let p ¼ P(a
randomly selected faucet of this type will develop

a leak within 2 years under normal use). The

manufacturer has decided to proceed with produc-

tion unless it can be determined that p is too large;
the borderline acceptable value of p is specified as
.10. The manufacturer decides to subject n of these
faucets to accelerated testing (approximating

2 years of normal use). With X ¼ the number

among the n faucets that leak before the test con-

cludes, production will commence unless the

observed X is too large. It is decided that if

p ¼ .10, the probability of not proceeding should

be at most .10, whereas if p ¼ .30 the probability

of proceeding should be at most .10. Can n ¼ 10

be used? n ¼ 20? n ¼ 25?What is the appropriate

rejection region for the chosen n, and what are the
actual error probabilities when this region is used?

44. Scientists have recently become concerned about

the safety of Teflon cookware and various food

containers because perfluorooctanoic acid (PFOA)

is used in the manufacturing process. An article in

the July 27, 2005, New York Times reported that of
600 children tested, 96% had PFOA in their blood.

According to the FDA, 90% of all Americans have

PFOA in their blood.

a. Does the data on PFOA incidence among chil-

dren suggest that the percentage of all children

who have PFOA in their blood exceeds the

FDA percentage for all Americans? Carry out

an appropriate test of hypotheses.

b. If 95% of all children have PFOA in their

blood, how likely is it that the null hypothesis

tested in (a) will be rejected when a signifi-

cance level of .01 is employed?

c. Referring back to (b), what sample sizewould be

necessary for the relevant probability to be .10?
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9.4 P-Values
Using the rejection region method to test hypotheses entails first selecting a

significance level a. Then after computing the value of the test statistic, the null

hypothesis H0 is rejected if the value falls in the rejection region and is otherwise

not rejected. We now consider another way of reaching a conclusion in a hypothesis

testing analysis. This alternative approach is based on calculation of a certain

probability called a P-value. One advantage is that the P-value provides an intuitive
measure of the strength of evidence in the data against H0

DEFINITION The P-value is the probability, calculated assuming that the null hypothesis is

true, of obtaining a value of the test statistic at least as contradictory to H0 as

the value calculated from the available sample.

The definition is quite a mouthful. Here are some key points:

• The P-value is a probability.

• This probability is calculated assuming that the null hypothesis is true.

• To determine the P-value, we must first decide which values of the test

statistic are at least as contradictory toH0 as the value obtained from our sample.

Example 9.14 Urban storm water can be contaminated by many sources, including discarded

batteries.When ruptured, these batteries releasemetals of environmental significance.

The paper “Urban Battery Litter” (J. Environ. Engr., 2009: 46–57) presented sum-

mary data for characteristics of a variety of batteries found in urban areas around

Cleveland. A sample of 51 Panasonic AAAbatteries gave a samplemean zincmass of

2.06 g. and a sample standard deviation of .141 g. Does this data provide compelling

evidence for concluding that the population mean zinc mass exceeds 2.0 g.?

With m denoting the true average zinc mass for such batteries, the relevant

hypotheses are H0: m ¼ 2.0 versus Ha: m > 2.0. The sample size is large enough so

that a z test can be used without making any specific assumption about the shape of

the population distribution. The test statistic value is

z ¼ x� 2:0

s=
ffiffiffi
n

p ¼ 2:06� 2:0

:141=
ffiffiffiffiffi
51

p ¼ 3:04

Now we must decide which values of z are at least as contradictory to H0. Let’s first

consider an easier task: Which values of x are at least as contradictory to the null

hypothesis as 2.06, the mean of the observations in our sample? Because > appears

in Ha, it should be clear that 2.10 is at least as contradictory to H0 as is 2.06, so is

2.25, and so in fact is any x value that exceeds 2.06. But an x value that exceeds 2.06
corresponds to a value of z that exceeds 3.04. Thus the P-value is

P-value ¼ PðZ � 3:04 when m ¼ 2:0Þ
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Since the test statistic Z was created by subtracting the null value 2.0 in the

numerator, when m ¼ 2.0 (i.e., when H0 is true) Z has approximately a standard

normal distribution. As a result,

P-value ¼ PðZ � 3:04 when m ¼ 2:0Þ
� area under the z curve to the right of 3:04

¼ 1� F 3:04ð Þ ¼ :0012 ■

We will shortly illustrate how to determine the P-value for any z or t test; that is,
any test where the reference distribution is the standard normal distribution (and z
curve) or some t distribution (and corresponding t curve). For the moment, though,

let’s focus on reaching a conclusion once the P-value is available. Because it is a

probability, the P-value must be between 0 and 1. What kinds of P-values provide
evidence against the null hypothesis? Consider two specific instances:

• P-value ¼ .250: In this case, fully 25% of all possible test statistic values are

more contradictory toH0 than the one that came out of our sample. So our data is

not that contradictory to the null hypothesis.

• P-value ¼ .0018: Here, only .18%, much less than 1%, of all possible test

statistic values, are at least as contradictory to H0 as what we obtained. Thus the

sample appears to be highly contradictory to the null hypothesis.

More generally, the smaller the P-value, the more evidence there is in the sample
data against the null hypothesis and for the alternative hypothesis. That is,

H0 should be rejected in favor of Ha when the P-value is sufficiently small.

So what constitutes “sufficiently small”?

DECISION
RULE BASED
ON THE
P-VALUE

Select a significance level a (as before, the desired type I error probability).

Then reject H0 if P-value � a; do not reject H0 if P-value> a

Thus if the P-value exceeds the chosen significance level, the null hypothesis cannot
be rejected at that level. But if the P-value is equal to or < a, then there is enough

evidence to justify rejecting H0. In Example 8.14, we calculated P-value ¼ .0012.

Then using a significance level of .01, wewould reject the null hypothesis in favor of

the alternative hypothesis because .0012 � .01. However, suppose we select a

significance level of only .001, which requires more substantial evidence from the

data before H0 can be rejected. In this case we would not reject H0 because

.0012 > .001.

How does the decision rule based on the P-value compare to the decision

rule employed in the rejection region approach? The two procedures—the
rejection region method and the P-value method—are in fact identical. Whatever

the conclusion reached by employing the rejection region approach with a particular

a, the same conclusion will be reached via the P-value approach using that same a.

Example 9.15 The nicotine content problem discussed in Example 9.5 involved testing H0:

m ¼ 1.5 versus Ha: m > 1.5 using a z test (i.e., a test which utilizes the z curve

as the reference distribution). The inequality in Ha implies that the upper-tailed
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rejection region z � za is appropriate. Suppose z ¼ 2.10. Then using exactly the

same reasoning as in Example 8.14 gives P-value ¼ 1 � F(2.10) ¼ .0179. Con-

sider now testing with several different significance levels:

a ¼ :10 ) za ¼ z:10 ¼ 1:28 ) 2:10 � 1:28 ) reject H0

a ¼ :05 ) za ¼ z:05 ¼ 1:645 ) 2:10 � 1:645 ) reject H0

a ¼ :01 ) za ¼ z:01 ¼ 2:33 ) 2:10 < 2:33 ) do not reject H0

Because P-value ¼ .0179 � .10 and also .0179 � .05, using the P-value approach
results in rejection of H0 for the first two significance level. However, for a ¼ :01,
2.10 is not in the rejection region and .0179 is larger than .01. More generally,

whenever a is smaller than the P-value .0179, the critical value za will be beyond
the P-value and H0 cannot be rejected by either method. This is illustrated in

Figure 9.5.

Let’s reconsider the P-value .0012 in Example 9.14 once again. H0 can be

rejected only if :0012 � a. Thus the null hypothesis can be rejected if a ¼ .05 or

.01 or .005 or .0015 or .00125. What is the smallest significance level a here for

which H0 can be rejected? It is the P-value .0012.

PROPOSITION The P-value is the smallest significance level a at which the null hypothesis

can be rejected. Because of this, the P-value is alternatively referred to as the
observed significance level (OSL) for the data.

It is customary to call the data significant when H0 is rejected and not
significant otherwise. The P-value is then the smallest level at which the data is

0

a

b c

Shaded
area = .0179

Standard normal (z) curve

0 2.10

zaza

0

Shaded
area = a

Shaded
area = a

z curvez curve

2.10

2.10 = computed z

Figure 9.5 Relationship between a and tail area captured by computed z: (a) tail

area captured by computed z; (b) when a > .0179, za < 2.10 and H0 is rejected;

(c) when a < .0179, za > 2.10 and H0 is not rejected ■
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significant. An easy way to visualize the comparison of the P-value with the chosen
a is to draw a picture like that of Figure 9.6. The calculation of the P-value depends
on whether the test is upper-, lower-, or two-tailed. However, once it has been

calculated, the comparison with a does not depend on which type of test was used.

Example 9.16 The true average time to initial relief of pain for a best-selling pain reliever is

known to be 10 min. Let m denote the true average time to relief for a company’s

newly developed reliever. Suppose that when data from an experiment involving

the new pain reliever was analyzed, the P-value for testing H0: m ¼ 10 versus Ha:

m < 10 was calculated as .0384. Since a ¼ .05 is larger than the P-value [.05 lies in
the interval (a) of Figure 9.6], H0 would be rejected by anyone carrying out the test

at level .05. However, at level .01, H0 would not be rejected because .01 is smaller

than the smallest level (.0384) at which H0 can be rejected. ■

The most widely used statistical computer packages automatically include

a P-value when a hypothesis-testing analysis is performed. A conclusion can then

be drawn directly from the output, without reference to a table of critical values.

With the P-value in hand, an investigator can see at a quick glance for which

significance levels H0 would or would not be rejected. Also, each individual can

then select his or her own significance level. In addition, knowing the P-value allows
a decision maker to distinguish between a close call (e.g., a ¼ .05, P-value ¼ .0498)

and a very clear-cut conclusion (e.g., a ¼ .05, P-value ¼ .0003), something that

would not be possible just from the statement “H0 can be rejected at significance

level .05.”

P-Values for z Tests

The P-value for a z test (one based on a test statistic whose distribution when H0

is true is at least approximately standard normal) is easily determined from

the information in Appendix Table A.3. Consider an upper-tailed test and let z
denote the computed value of the test statistic Z. The null hypothesis is rejected if

z � za, and the P-value is the smallest a for which this is the case. Since za increases
as a decreases, the P-value is the value of a for which z ¼ za. That is, the P-value
is just the area captured by the computed value z in the upper tail of the standard

normal curve. The corresponding cumulative area is F(z), so in this case

P-value ¼ 1 � F(z).
An analogous argument for a lower-tailed test shows that the P-value is the area

captured by the computed value z in the lower tail of the standard normal curve. More

care must be exercised in the case of a two-tailed test. Suppose first that z is positive.
Then the P-value is the value of a satisfying z ¼ za/2 (i.e., computed z ¼ upper-tail

(b) (a) 10

P−value = smallest level at which
 H0 can be rejected

Figure 9.6 Comparing a and the P-value: (a) reject H0 when a lies here; (b) do not

reject H0 when a lies here
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critical value). This says that the area captured in the upper tail is half the P-value, so
that P-value ¼ 2[1 � F(z)]. If z is negative, the P-value is the a for which z ¼ �za/2,
or, equivalently, �z ¼ za/2, so P-value ¼ 2[1 � F(�z)]. Since �z ¼ |z| when z is
negative, the P-value ¼ 2[1 � F(|z|)] for either positive or negative z.

P-value: P ¼
1� FðzÞ for an upper -tailed test

FðzÞ for a lower -tailed test

2 1� F zj jð Þ½ � for a two -tailed test

8><
>:

Each of these is the probability of getting a value at least as extreme as what was

obtained (assuming H0 true). The three cases are illustrated in Figure 9.7.

The next example illustrates the use of the P-value approach to hypothesis

testing by means of a sequence of steps modified from our previously recom-

mended sequence.

Example 9.17 The target thickness for silicon wafers used in a type of integrated circuit is

245 mm. A sample of 50 wafers is obtained and the thickness of each one is

determined, resulting in a sample mean thickness of 246.18 mm and a sample

standard deviation of 3.60 mm. Does this data suggest that true average wafer

thickness is something other than the target value?

z curve

z curve

z curve

Calculated z

Calculated z

Calculated z, −z

0

0

0

1.  Upper-tailed test
Ha contains the inequality >

Ha contains the inequality <

Ha contains the inequality ≠

2. Lower-tailed test

3.  Two-tailed test

P-value = area in upper tail

P-value = area in lower tail

= 1 – Φ(z)

= Φ(z)

P-value = sum of area in two tails = 2[1 – Φ(|z|)]

Figure 9.7 Determination of the P-value for a z test
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1. Parameter of interest: m ¼ true average wafer thickness

2. Null hypothesis: H0: m ¼ 245

3. Alternative hypothesis: Ha: m 6¼ 245

4. Formula for test statistic value: z ¼ x� 245

s
ffiffiffi
n

p
=

5. Calculation of test statistic value: z ¼ 246:18� 245

3:60
ffiffiffiffiffi
50

p� ¼ 2:32

6. Determination of P-value: Because the test is two-tailed,

P-value¼ 2½1�Fð2:32Þ� ¼ :0204

7. Conclusion: Using a significance level of .01, H0 would not be rejected since

.0204> .01. At this significance level, there is insufficient evidence to conclude

that true average thickness differs from the target value. ■

P-Values for t Tests

Just as the P-value for a z test is a z curve area, the P-value for a t test will be a

t curve area. Figure 9.8 illustrates the three different cases. The number of df for the

one-sample t test is n � 1.

The table of t critical values used previously for confidence and prediction

intervals doesn’t contain enough information about any particular t distribution to

allow for accurate determination of desired areas. So we have included another

t table in Appendix Table A.7, one that contains a tabulation of upper-tail t curve
areas. Each different column of the table is for a different number of df, and the

rows are for calculated values of the test statistic t ranging from 0.0 to 4.0 in

increments of .1. For example, the number .074 appears at the intersection of the 1.6

row and the 8 df column, so the area under the 8 df curve to the right of 1.6 (an

upper-tail area) is .074. Because t curves are symmetric, .074 is also the area under

the 8 df curve to the left of �1.6 (a lower-tail area).

Suppose, for example, that a test of H0: m ¼ 100 versus Ha: m > 100 is based

on the 8 df t distribution. If the calculated value of the test statistic is t ¼ 1.6, then

the P-value for this upper-tailed test is .074. Because .074 exceeds .05, we would

not be able to reject H0 at a significance level of .05. If the alternative hypothesis is

Ha: m < 100 and a test based on 20 df yields t ¼ �3.2, then Appendix Table A.7

shows that the P-value is the captured lower-tail area .002. The null hypothesis can
be rejected at either level .05 or .01. Consider testing H0: m1 � m2 ¼ 0 versus

Ha: m1 � m2 6¼ 0; the null hypothesis states that the means of the two populations

are identical, whereas the alternative hypothesis states that they are different

without specifying a direction of departure from H0. If a t test is based on 20 df

and t ¼ 3.2, then the P-value for this two-tailed test is 2(.002) ¼ .004. This would

also be the P-value for t ¼ �3.2. The tail area is doubled because values both

larger than 3.2 and smaller than �3.2 are more contradictory to H0 than what was

calculated (values farther out in either tail of the t curve).
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Example 9.18 In Example 9.9, we carried out a test of H0: m ¼ 25 versus Ha: m > 25 based on

4 df. The calculated value of t was 1.04. Looking to the 4 df column of Appendix

Table A.7 and down to the 1.0 row, we see that the entry is .187, so the

P-value � .187. This P-value is clearly larger than any reasonable significance

level a (.01, .05, and even .10), so there is no reason to reject the null hypothesis.

The MINITAB output included in Example 9.9 has P-value ¼ .18. P-values from
software packages will bemore accurate than what results fromAppendix Table A.7

since values of t in our table are accurate only to the tenths digit. ■

More on Interpreting P-Values

The P-value resulting from carrying out a test on a selected sample is not the
probability that H0 is true, nor is it the probability of rejecting the null hypothesis.

Once again, it is the probability, calculated assuming that H0 is true, of obtaining a

test statistic value at least as contradictory to the null hypothesis as the value that

actually resulted. For example, consider testing H0: m ¼ 50 against H0: m < 50

using a lower-tailed z test. If the calculated value of the test statistic is z ¼ �2.00,

then

1.  Upper-tailed test
Ha contains the inequality >

Ha contains the inequality <

Ha contains the inequality ≠

2.  Lower-tailed test

3.  Two-tailed test

t curve for relevant df

t curve for relevant df

t curve for relevant df

Calculated t

Calculated t

0

0

0

P-value = area in upper tail

P-value = area in lower tail

P-value = sum of area in two tails

Calculated t, −t

Figure 9.8 P-values for t tests

462 CHAPTER 9 Tests of Hypotheses Based on a Single Sample



P-value ¼ P Z <�2:00 when m ¼ 50ð Þ
¼ area under the z curve to the left of �2:00 ¼ :0228

But if a second sample is selected, the resulting value of z will almost surely be

different from �2.00, so the corresponding P-value will also likely differ from

.0228. Because the test statistic value itself varies from one sample to another, the

P-value will also vary from one sample to another. That is, the test statistic is a

random variable, and so the P-value will also be a random variable. A first sample

may give a P-value of .0228, a second sample result in a P-value of .1175, a third
yield .0606 as the P-value, and so on.

If H0 is false, we hope the P-value will be close to 0 so that the null

hypothesis can be rejected. On the other hand, when H0 is true, we’d like the

P-value to exceed the selected significance level so that the correct decision to not

reject H0 is made. The next example presents simulations to show how the P-value
behaves both when the null hypothesis is true and when it is false.

Example 9.19 The fuel efficiency (mpg) of any particular new vehicle under specified driving

conditions may not be identical to the EPA figure that appears on the vehicle’s

sticker. Suppose that four different vehicles of a particular type are to be selected

and driven over a certain course, after which the fuel efficiency of each one is to be

determined. Let m denote the true average fuel efficiency under these conditions.

Consider testing H0: m ¼ 20 versus H0: m > 20 using the one-sample t test
based on the resulting sample. Since the test is based on n � 1 ¼ 3 degrees of

freedom, the P-value for an upper-tailed test is the area under the t curve with 3 df

to the right of the calculated t.
Let’s first suppose that the null hypothesis is true. We asked MINITAB to

generate 10,000 different samples, each containing 4 observations, from a normal

population distribution with mean value m ¼ 20 and standard deviation s ¼ 2. The

first sample and resulting summary quantities were

x1 ¼ 20:830; x2 ¼ 22:232; x3 ¼ 20:276; x4 ¼ 17:718

x ¼ 20:264 s ¼ 1:8864 t ¼ 20:264� 20

:1:8864=
ffiffiffi
4

p ¼ :2799

The P-value is the area under the 3-df t curve to the right of .2799, which according
toMINITAB is .3989. Using a significance level of .05, the null hypothesis would of

course not be rejected. The values of t for the next four samples were �1.7591,

.6082,�.7020, and 3.1053, with correspondingP-values .912, .293, .733, and .0265.
Figure 9.9(a) shows a histogram of the 10,000 P-values from this simulation

experiment. About 4.5% of these P-values are in the first class interval from 0 to

.05. Thus when using a significance level of .05, the null hypothesis is rejected in

roughly 4.5% of these 10,000 tests. If we continue to generate samples and carry

out the test for each one at significance level .05, in the long run 5% of the P-values
would be in the first class interval—because when H0 is true and a test with

significance level .05 is used, by definition the probability of rejecting H0 is .05.

Looking at the histogram, it appears that the distribution of P-values is

relatively flat. In fact, it can be shown that when H0 is true, the probability

distribution of the P-value is a uniform distribution on the interval from 0 to 1.

That is, the density curve is completely flat on this interval, and thus must have a
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Figure 9.9 P-value simulation results for Example 9.19
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height of 1 if the total area under the curve is to be 1. Since the area under such a

curve to the left of .05 is (.05)(1) ¼ .05, we again have that the probability of

rejecting H0 when it is true is .05, the chosen significance level.

Now consider what happens when H0 is false because m ¼ 21. We again had

MINITAB generate 10,000 different samples of size 4, each from a normal

distribution with m ¼ 21 and s ¼ 2, calculate t ¼ ðx� 20Þ=ðs= ffiffiffi
4

p Þ for each one,

and then determine the P-value. The first such sample resulted in x ¼ 20:6411;
s ¼ :49637; t ¼ 2:5832; P-value¼ :0408. Figure 9.9(b) gives a histogram of the

10,000 resulting P-values. The shape of this histogram is quite different from that

of Figure 9.9(a): there is a much greater tendency for the P-value to be small (closer

to 0) when m ¼ 21 than when m ¼ 20. Again H0 is rejected at significance level .05

whenever the P-value is at most .05 (in the first class interval). Unfortunately this is

the case for only about 19% of the 10,000 P-values. So only about 19% of the

10,000 tests correctly reject the null hypothesis; for the other 81%, a type II error is

committed. The difficulty is that the sample size is quite small and 21 is not very

different from the value asserted by the null hypothesis.

Figure 9.9(c) illustrates what happens to the P-value whenH0 is false because

m ¼ 22 (still with n ¼ 4 and s ¼ 2). The histogram is even more concentrated

toward values close to 0 than was the case when m ¼ 21. In general, as m moves

further to the right of the null value 20, the distribution of the P-value will become

more and more concentrated on values close to 0. Even here a bit fewer than 50% of

the 10,000 P-values are smaller than .05. So it is still slightly more likely than

not that the null hypothesis is incorrectly not rejected. Only for values of m much

larger than 20 (e.g., at least 24 or 25) is it highly likely that the P-value will be

smaller than .05 and thus give the correct conclusion.

The big idea of this example is that because the value of any test statistic is

random, the P-value will also be a random variable and thus have a distribution.

The farther the actual value of the parameter is from the value specified by the null

hypothesis, the more the distribution of the P-value will be concentrated on values

close to 0 and the greater the chance that the test will correctly reject H0

(corresponding to smaller b). ▄

Exercises Section 9.4 (45–59)

45. For which of the given P-values would the null

hypothesis be rejected when performing a level

.05 test?

a. .001
b. .021
c. .078
d. .047
e. .148

46. Pairs of P-values and significance levels, a, are
given. For each pair, state whether the observed P-
value would lead to rejection of H0 at the given

significance level.

a. P-value ¼ .084, a ¼ .05

b. P-value ¼ .003, a ¼ .001

c. P-value ¼ .498, a ¼ .05

d. P-value ¼ .084, a ¼ .10

e. P-value ¼ .039, a ¼ .01

f. P-value ¼ .218, a ¼ .10

47. Let m denote the mean reaction time to a certain

stimulus. For a large-sample z test of H0: m ¼ 5

versus Ha: m > 5, find the P-value associated with
each of the given values of the z test statistic.
a. 1.42
b. .90
c. 1.96
d. 2.48
e. �.11
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48. Newly purchased tires of a certain type are sup-

posed to be filled to a pressure of 30 lb/in2. Let

m denote the true average pressure. Find theP-value
associated with each given z statistic value for test-
ing H0: m ¼ 30 versus Ha: m 6¼ 30.

a. 2.10
b. �1.75

c. �.55

d. 1.41
e. �5.3

49. Give as much information as you can about the

P-value of a t test in each of the following situa-

tions:

a. Upper-tailed test, df ¼ 8, t ¼ 2.0

b. Lower-tailed test, df ¼ 11, t ¼ �2.4

c. Two-tailed test, df ¼ 15, t ¼ �1.6

d. Upper-tailed test, df ¼ 19, t ¼ �.4

e. Upper-tailed test, df ¼ 5, t ¼ 5.0

f. Two-tailed test, df ¼ 40, t ¼ �4.8

50. The paint used to make lines on roads must

reflect enough light to be clearly visible at night.

Let m denote the true average reflectometer

reading for a new type of paint under consider-

ation. A test of H0: m ¼ 20 versus Ha: m > 20 will

be based on a random sample of size n from a

normal population distribution. What conclusion

is appropriate in each of the following situations?

a. n ¼ 15, t ¼ 3.2, a ¼ .05

b. n ¼ 9, t ¼ 1.8, a ¼ .01

c. n ¼ 24, t ¼ �.2

51. Let m denote true average serum receptor concen-

tration for all pregnant women. The average for all

women is known to be 5.63. The article “Serum

Transferrin Receptor for the Detection of Iron Defi-

ciency in Pregnancy” (Amer. J. Clin. Nutrit., 1991:
1077–1081) reports that P-value > .10 for a test of

H0: m ¼ 5.63 versus Ha: m 6¼ 5.63 based on

n ¼ 176 pregnant women. Using a significance

level of .01, what would you conclude?

52. An aspirin manufacturer fills bottles by weight

rather than by count. Since each bottle should

contain 100 tablets, the average weight per tablet

should be 5 grains. Each of 100 tablets taken from

a very large lot is weighed, resulting in a sample

average weight per tablet of 4.87 grains and a

sample standard deviation of .35 grain. Does this

information provide strong evidence for conclud-

ing that the company is not filling its bottles as

advertised? Test the appropriate hypotheses using

a ¼ .01 by first computing the P-value and then

comparing it to the specified significance level.

53. Because of variability in the manufacturing pro-

cess, the actual yielding point of a sample of mild

steel subjected to increasing stress will usually

differ from the theoretical yielding point. Let

p denote the true proportion of samples that

yield before their theoretical yielding point. If on

the basis of a sample it can be concluded that more

than 20% of all specimens yield before the theo-

retical point, the production process will have to

be modified.

a. If 15 of 60 specimens yield before the theoreti-

cal point, what is the P-value when the appro-

priate test is used, and what would you advise

the company to do?

b. If the true percentage of “early yields” is actu-

ally 50% (so that the theoretical point is the

median of the yield distribution) and a level .01

test is used, what is the probability that the

company concludes a modification of the pro-

cess is necessary?

54. Many consumers are turning to generics as a way

of reducing the cost of prescription medications.

The article “Commercial Information on Drugs:

Confusing to the Physician?” (J. Drug Issues,
1988: 245–257) gives the results of a survey of

102 doctors. Only 47 of those surveyed knew the

generic name for the drug methadone. Does this

provide strong evidence for concluding that fewer

than half of all physicians know the generic name

for methadone? Carry out a test of hypotheses

with a significance level of .01 using the P-value
method.

55. A random sample of soil specimens was obtained,

and the amount of organic matter (%) in the soil

was determined for each specimen, resulting in the

accompanying data (from “Engineering Properties

of Soil,” Soil Sci., 1998: 93–102).

1.10 5.09 0.97 1.59 4.60 0.32 0.55 1.45

0.14 4.47 1.20 3.50 5.02 4.67 5.22 2.69

3.98 3.17 3.03 2.21 0.69 4.47 3.31 1.17

0.76 1.17 1.57 2.62 1.66 2.05

The values of the sample mean, sample standard

deviation, and (estimated) standard error of the

mean are 2.481, 1.616, and .295, respectively.

Does this data suggest that the true average per-

centage of organic matter in such soil is something

other than 3%? Carry out a test of the appropriate

hypotheses at significance level .10 by first deter-

mining the P-value. Would your conclusion be

different if a ¼ .05 had been used? [Note: A nor-

mal probability plot of the data shows an
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acceptable pattern in light of the reasonably large

sample size.]

56. The times of first sprinkler activation for a series

of tests with fire prevention sprinkler systems

using an aqueous film-forming foam were (in sec)

27 41 22 27 23 35 30 33 24 27 28 22 24

(see “Use of AFFF in Sprinkler Systems,” Fire
Tech., 1976: 5). The system has been designed so

that true average activation time is at most 25 s

under such conditions. Does the data strongly

contradict the validity of this design specification?

Test the relevant hypotheses at significance level

.05 using the P-value approach.

57. A pen has been designed so that true average

writing lifetime under controlled conditions

(involving the use of a writing machine) is at

least 10 h. A random sample of 18 pens is selected,

the writing lifetime of each is determined, and a

normal probability plot of the resulting data sup-

ports the use of a one-sample t test.
a. What hypotheses should be tested if the inves-

tigators believe a priori that the design specifi-

cation has been satisfied?

b. What conclusion is appropriate if the hypoth-

eses of part (a) are tested, t ¼ �2.3, and

a ¼ .05?

c. What conclusion is appropriate if the hypoth-

eses of part (a) are tested, t ¼ �1.8, and

a ¼ .01?

d. What should be concluded if the hypotheses of

part (a) are tested and t ¼ �3.6?

58. A spectrophotometer used for measuring CO con-

centration [ppm (parts per million) by volume] is

checked for accuracy by taking readings on a

manufactured gas (called span gas) in which the

CO concentration is very precisely controlled at

70 ppm. If the readings suggest that the spectro-

photometer is not working properly, it will have to

be recalibrated. Assume that if it is properly cali-

brated, measured concentration for span gas sam-

ples is normally distributed. On the basis of the six

readings—85, 77, 82, 68, 72, and 69—is recali-

bration necessary? Carry out a test of the relevant

hypotheses using the P-value approach with

a ¼ .05.

59. The relative conductivity of a semiconductor

device is determined by the amount of impurity

“doped” into the device during its manufacture.

A silicon diode to be used for a specific purpose

requires an average cut-on voltage of .60 V, and if

this is not achieved, the amount of impurity must

be adjusted. A sample of diodes was selected and

the cut-on voltage was determined. The accompa-

nying SAS output resulted from a request to test

the appropriate hypotheses.
N Mean Std Dev T Prob > |T|
15 0.0453333 0.0899100 1.9527887 0.0711

[Note: SAS explicitly tests H0: m ¼ 0, so to test

H0: m ¼ .60, the null value .60 must be subtracted

from each xi; the reported mean is then the average

of the (xi � .60) values. Also, SAS’s P-value is

always for a two-tailed test.] What would be con-

cluded for a significance level of .01? .05? .10?

9.5 Some Comments on Selecting
a Test Procedure
Once the experimenter has decided on the question of interest and the method for

gathering data (the design of the experiment), construction of an appropriate test

procedure consists of three distinct steps:

1. Specify a test statistic (the decision is based on this function of the data).

2. Decide on the general form of the rejection region (typically, reject H0 for

suitably large values of the test statistic, reject for suitably small values, or reject

for either small or large values).

3. Select the specific numerical critical value or values that will separate the

rejection region from the acceptance region (by obtaining the distribution of the

test statistic when H0 is true, and then selecting a level of significance).
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In the examples thus far, both steps 1 and 2 were carried out in an ad hoc manner

through intuition. For example, when the underlying population was assumed normal

with mean m and known s, we were led from X to the standardized test statistic

Z ¼ X � m0
s=

ffiffiffi
n

p

For testing H0: m ¼ m0 versus Ha: m > m0, intuition then suggested rejecting H0

when z was large. Finally, the critical value was determined by specifying the level

of significance a and using the fact that Z has a standard normal distribution when

H0 is true. The reliability of the test in reaching a correct decision can be assessed

by studying type II error probabilities.

Issues to be considered in carrying out steps 1–3 encompass the following

questions:

1. What are the practical implications and consequences of choosing a particular

level of significance once the other aspects of a test procedure have been

determined?

2. Does there exist a general principle, not dependent just on intuition, that can be

used to obtain best or good test procedures?

3. When two or more tests are appropriate in a given situation, how can the tests be

compared to decide which should be used?

4. If a test is derived under specific assumptions about the distribution or

population being sampled, how well will the test procedure work when the

assumptions are violated?

Statistical Versus Practical Significance

Although the process of reaching a decision by using the methodology of classical

hypothesis testing involves selecting a level of significance and then rejecting or

not rejecting H0 at that level, simply reporting the a used and the decision reached

conveys little of the information contained in the sample data. Especially when the

results of an experiment are to be communicated to a large audience, rejection ofH0

at level .05 will be much more convincing if the observed value of the test statistic

greatly exceeds the 5% critical value than if it barely exceeds that value. This is

Table 9.1 An illustration of the effect of sample size on P-values and b

n P-value when �x = 101 b(101) for Level .01 Test

25 .3085 .9664

100 .1587 .9082

400 .0228 .6293

900 .0013 .2514

1600 .0000335 .0475

2500 .000000297 .0038

10,000 7.69 � 10�24 .0000
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precisely what led to the notion of P-value as a way of reporting significance

without imposing a particular a on others who might wish to draw their own

conclusions.

Even if a P-value is included in a summary of results, however, there may be

difficulty in interpreting this value and in making a decision. This is because a

small P-value, which would ordinarily indicate statistical significance in that it

would strongly suggest rejection of H0 in favor of Ha, may be the result of a large

sample size in combination with a departure from H0 that has little practical
significance. In many experimental situations, only departures from H0 of large

magnitude would be worthy of detection, whereas a small departure from H0 would

have little practical significance.

Consider as an example testing H0: m ¼ 100 versus Ha: m > 100 where m is

the mean of a normal population with s ¼ 10. Suppose a true value of m ¼ 101

would not represent a serious departure from H0 in the sense that not rejecting H0

when m ¼ 101 would be a relatively inexpensive error. For a reasonably large

sample size n, this m would lead to an x value near 101, so we would not want this

sample evidence to argue strongly for rejection of H0 when x ¼ 101 is observed.

For various sample sizes, Table 9.1 records both the P-value when x ¼ 101 and also

the probability of not rejecting H0 at level .01 when m ¼ 101.

The second column in Table 9.1 shows that even for moderately large sample

sizes, the P-value of x ¼ 101 argues very strongly for rejection of H0, whereas
the observed x itself suggests that in practical terms the true value of m differs little

from the null value m0 ¼ 100. The third column points out that even when there is

little practical difference between the true m and the null value, for a fixed level of

significance a large sample size will almost always lead to rejection of the null

hypothesis at that level. To summarize, one must be especially careful in interpret-
ing evidence when the sample size is large, since any small departure from H0 will
almost surely be detected by a test, yet such a departure may have little practical
significance.

Best Tests for Simple Hypotheses

The test procedures presented thus far are (hopefully) intuitively reasonable, but

have not been shown to be best in any sense. How can an optimal test be obtained,

one for which the type II error probability is as small as possible, subject to

controlling the type I error probability at the desired level? Our starting point

here will be a rather unrealistic situation from a practical viewpoint: testing a

simple null hypothesis against a simple alternative hypothesis. A simple hypothesis
is one which, when true, completely specifies the distribution of the sample Xi’s.

Suppose, for example, that the Xi’s form a random sample from an exponential

distribution with parameter l. Then the hypothesis H: l ¼ 1 is simple, since when

H is true each Xi has an exponential distribution with parameter l ¼ 1. We might

then consider H0: l ¼ 1 versus Ha: l ¼ 2, both of which are simple hypotheses.

The hypothesis H: l � 1 is not simple, because when H is true, the distribution of

each Ximight be exponential with l ¼ 1 or with l ¼ .8 or . . . . Similarly, if the Xi’s

constitute a random sample from a normal distribution with known s, then

H: m ¼ 100 is a simple hypothesis. But if the value of s is unknown, this hypothesis

is not simple because the distribution of each Xi is then not completely specified; it

could be normal with m ¼ 100 and s ¼ 15 or normal with m ¼ 100 and s ¼ 12 or
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normal with m ¼ 100 and any other positive value of s. For a hypothesis to be

simple, the value of every parameter in the pmf or pdf of the Xi’s must be specified.

The next result was a milestone in the theory of hypothesis testing—a method

for constructing a best test for a simple null hypothesis versus a simple alternative

hypothesis. Let f(x1, . . . , xn; y) be the joint pmf or pdf of the Xi’s. Then our null

hypothesis will assert that y ¼ y0 and the relevant alternative hypothesis will claim
that y ¼ ya. The result will carry over to the case of more than one parameter as

long as the value of each parameter is completely specified in both H0 and Ha.

THE
NEYMAN-
PEARSON
THEOREM

For testing a simple null hypothesis H0: y ¼ y0 versus a simple alternative

hypothesis Ha: y ¼ ya, let k be a positive fixed number and form the rejection

region

R� ¼ ðx1; . . . ; xnÞ : f ðx1; . . . ; xn; yaÞ
f ðx1; . . . ; xn; y0Þ � k

� 	

Thus R* is the set of all observations for which the likelihood ratio—ratio of

the alternative likelihood to the null likelihood—is at least k. The probability
of a type I error for the test with this rejection region is a* ¼ P[(X1, . . . , Xn)

∈ R* when y ¼ y0], whereas the type II error probability b* is the probability
that the Xi’s lie in the complement of R* (in the “acceptance” region) when

y ¼ ya.
Then for any other test procedure with type I error probability a

satisfying a � a*, the probability of a type II error must satisfy b � b*.
Thus the test with rejection region R* has the smallest type II error probabil-

ity among all tests for which the type I error probability is at most a*.

The choice of the constant k in the rejection region will determine the type I

error probability a*. In the continuous case, k can be selected to give one of the

traditional significance levels .05, .01, and so on, whereas in the discrete case

a* ¼ .057 or .039 may be as close as one can get to .05.

Example 9.20 Consider randomly selecting n ¼ 5 new vehicles of a certain type and determining

the number of major defects on each one. Letting Xi denote the number of such

defects for the ith selected vehicle (i ¼ 1, . . . , 5), suppose that the Xi’s form

a random sample from a Poisson distribution with parameter l. Let’s find the

best test for testing H0: l ¼ 1 versus Ha: l ¼ 2. The Poisson likelihood is

f ðx1; : : : ; x5; lÞ ¼ e�5l lSxi=Pxi!. Substituting first l ¼ 2, then l ¼ 1, and then

taking the ratio of these two likelihoods gives the rejection region

R� ¼ ðx1; . . . ; x5Þ : e�52Sxi � k

 �

Multiplying both sides of the inequality by e5 and letting k 0 ¼ ke5 gives the

rejection region 2Sxi � k0. Now take the natural logarithm of both sides and let

c ¼ ln(k 0)/ln(2) to obtain the rejection region Sxi � c.
This latter rejection region is completely equivalent to R*: For any particular

value k there will be a corresponding value c, and vice versa. But it is much easier to
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express the rejection region in this latter form and then select c to obtain a desired

significance level than it is to determine an appropriate value of k for the likelihood
ratio. In particular, T ¼ SXi has a Poisson distribution with parameter 5l (via a

moment generating function argument), so when H0 is true T has a Poisson dis-

tribution with parameter 5. From the 5.0 column of our Poisson table (Table A.2),

the cumulative probabilities for the values 8 and 9 are .932 and .968, respectively.

Thus if we use c ¼ 9 in the rejection region,

a� ¼ PðPoisson rv with parameter 5 is � 9Þ ¼ 1� :932 ¼ :068

Choosing instead c ¼ 10 gives a* ¼ .032. If we insist that the significance level be

at most .05, then the optimal rejection region is Sxi � 10.

WhenHa is true, the test statistic has a Poisson distribution with parameter 10.

Thus

b� ¼ P H0 is not rejected when Ha is trueð Þ
¼ PðPoisson rv with parameter 10 is � 9Þ ¼ :458

Obviously this type II error probability is quite large. This is because the sample

size n ¼ 5 is too small to allow for effective discrimination between l ¼ 1 and

l ¼ 2. For a sample size of 10, the Poisson table reveals that the best test having

significance level at most .05 uses c ¼ 16, for which a* ¼ .049 (Poisson para-

meter ¼ 10) and b* ¼ .157 (Poisson parameter ¼ 20).

Finally, returning to a sample size of 5, c ¼ 10 implies that 10 ¼ ln(ke5)/ln(2),
from which k ¼ 210/e5 � 6.9. For the best test to have a significance level of at most

.05, the null hypothesis should be rejected only when the likelihood for the alternative

value of l is more than about 7 times what it is for the null value. ■

Example 9.21 Let X1, . . . , Xn be a random sample from a normal distribution with mean m and

variance 1 (the argument to be given will work for any other known value of s2).
Consider testingH0: m ¼ m0 versusHa: m ¼ ma where ma > m0. The likelihood ratio is

1
2p

� n=2
e�ð1=2ÞSðxi�maÞ2

1
2p

� n=2
e�ð1=2ÞSðxi�m0Þ2

¼ emaSxi�m0Sxi�ðn=2Þ m2a�m2
0ð Þ

¼ e�nðm2a�m2
0
Þ=2

h i

 eðma�m0ÞSxi
h i

The term in the first set of brackets is a numerical constant. Then ma � m0 > 0

implies that the likelihood ratio will be at least k if and only if Sxi � k0, that is, if
and only if x � k00, which means if and only if

z ¼ x� m0
1=

ffiffiffi
n

p � c

If we now let c ¼ z.01 ¼ 2.33, this z test (one for which the test statistic has a
standard normal distribution whenH0 is true), will have minimum b among all tests

for which a � .01. ■

The key idea in these last two examples cannot be overemphasized: Write an

expression for the likelihood ratio, and then manipulate the inequality likelihood
ratio � k so it is equivalent to an inequality involving a test statistic whose distribution
when H0 is true is known or can be derived. Then this known or derived distribution
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can be used to obtain a test with the desired a. In the first example the distribution was

Poisson with parameter 5, and in the second it was the standard normal distribution.

Proof of the Neyman-Pearson Theorem: We shall consider the case in which the

Xi’s have a discrete distribution, so that type I and type II error probabilities are

obtained by summation. In the continuous case, integration replaces summation.

Then

R� ¼ f x1; . . . ; xnð Þ : f x1; . . . ; xn; yað Þ � k 
 f x1; . . . ; xn; y0ð Þg
a� ¼ P½ðX1; . . . ;XnÞ 2 R� when y ¼ y0� ¼

X
R�

f ðx1; . . . ; xn; y0Þ

b� ¼ P½ðX1; . . . ;XnÞ 2 R�0 when y ¼ ya� ¼
X
R�0

f ðx1; . . . ; xn; yaÞ

(b* is the sum over values in the complement of the rejection region). Suppose that
R is a rejection region different from R* whose type I error probability is at most a*;
that is,

a ¼ P½ðX1; . . . ;XnÞ 2 R when y ¼ y0� ¼
X
R

f ðx1; . . . ; xn; y0Þ � a�

We then wish to show that b for this rejection region must be at least as large

as b*. Consider the difference

D ¼
X
R�

½ f ðx1; . . . ; xn; yaÞ � k 
 f ðx1; . . . ; xn; y0Þ�

�
X
R

½ f ðx1; . . . ; xn; yaÞ � k 
 f ðx1; . . . ; xn; y0Þ�

¼
X
R�\R

½. . .� þ
X
R�\R0

½. . .� �
X
R\R�

½. . .� þ
X
R\R�0

½. . .�
( )

¼
X
R�\R0

½. . .� �
X
R\R�0

½. . .�

This last difference is nonnegative (i.e.� 0) because the term in the square brackets

is � 0 for any set of xi’s in R* and is negative for any set of xi’s not in R*. It then
follows that

0 �
X
R�

f ðx1; . . . ; xn; yaÞ � k
X
R�

f ðx1; . . . ; xn; y0Þ

�
X
R

f ðx1; . . . ; xn; yaÞ þ k
X
R

f ðx1; . . . ; xn; y0Þ

¼ ð1� b�Þ � ka� � ð1� bÞ þ ka

¼ b� b� � kða� � aÞ � b� b�

ðsince a � a� implies that the term being subtracted is nonnegativeÞ

Thus we have shown that b* � b as desired. ■
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Power and Uniformly Most Powerful Tests

The Neyman–Pearson theorem can be restated in a slightly different way by

considering the power of a test, first introduced in Section 9.2.

DEFINITION LetO0 andOa be two disjoint sets of possible values of y, and consider testing
H0: y ∈ O0 versus Ha: y ∈ Oa using a test with rejection region R. Then the

power function of the test, denoted by p(
) is the probability of rejecting H0

considered as a function of y:

pðy 0Þ ¼ P½ X1; :::;Xnð Þ 2 Rwhen y ¼ y 0�

Since we don’t want to reject the null hypothesis when y∈ O0 and do want to reject

it when y∈ Oa, we wish a test for which the power function is close to 0 whenever

y0 is in O0 and close to 1 whenever y0 is in Oa. The power is easily related to the

type I and type II error probabilities:

pðy0Þ ¼ Pðtype I error when y ¼ y0Þ ¼ aðy0Þ when y0 2 O0

1� Pðtype II error when y ¼ y0Þ ¼ 1� bðy0Þ when y0 2 Oa

(

Thus large power when y0 ∈ Oa is equivalent to small b for such parameter values.

Example 9.22 The drying time (min) of a particular brand and type of paint on a test board under

controlled conditions is known to be normally distributedwith m ¼ 75 and s ¼ 9.4.A

new additive has been developed for the purpose of improving drying time. Assume

that drying time with the additive is still normally distributed with the same standard

deviation, and consider testing H0: m � 75 versus Ha: m < 75 based on a sample of

size n ¼ 100. A test with significance level .01 rejects H0 if z � �2.33, where

z ¼ ðx� 75Þ=ð9:4= ffiffiffiffiffiffiffiffi
100

p Þ ¼ ðx� 75Þ=:94. Manipulating the inequality in the rejec-

tion region to isolate x gives the equivalent rejection region x � 72:81. Thus the

power of the test when m ¼ 70 (a substantial departure from the null hypothesis) is

pð70Þ ¼ PðX � 72:81 when m ¼ 70Þ ¼ F
72:81� 70

9:4=
ffiffiffiffiffiffiffiffi
100

p
� �

¼ Fð2:99Þ ¼ :9986

so b ¼ .0014. It is easily verified that p(75) ¼ .01, the significance level. The

power when m ¼ 76 (a parameter value for which H0 is true) is

pð76Þ ¼ PðX � 72:81 when m ¼ 76Þ ¼ F
72:81� 76

9:4=
ffiffiffiffiffiffiffiffi
100

p
� �

¼ Fð�3:39Þ ¼ :0003

which is quite small as it should be. By repeating this calculation for various

other values of m we obtain the entire power function. A graph of the ideal

power function appears in Figure 9.10(a) and the actual power function is graphed

in Figure 9.10(b). The maximum power for m � 75 (i.e. in O0) occurs at m ¼ 75, on

the boundary betweenO0 andOa. Because the power function is continuous, there are

values of m smaller than 75 for which the power is quite small. Even with a large

sample size, it is difficult to detect a very small departure from the null hypothesis.
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The Neyman–Pearson theorem says that when O0 consists of a single value

y0 and Oa also consists of a single value ya, the rejection region R* specifies a test

for which the power p(ya) at the alternative value ya (which is just 1 � b) is

maximized subject to p(y0) � a for some specified value of a. That is, R* specifies
amost powerful test subject to the restriction on the power when the null hypothesis
is true.

What about best tests when at least one of the two hypotheses is composite,
that is, O0 or Oa (or both) consist of more than a single value?

Example 9.23

(Example 9.20

continued)

Consider again a random sample of size n ¼ 5 from a Poisson distribution, and

suppose we now wish to test H0: l � 1 versus Ha: l > 1. Both of these hypotheses
are composite. Arguing as in Example 9.20, for any value la exceeding 1, a most

powerful test of H0: l ¼ 1 versus Ha: l ¼ la with significance level (power when

l ¼ 1) .032 rejects the null hypothesis when Sxi � 10. Furthermore, it is easily

verified that the power of this test at l0 is smaller than .032 if l0 < 1. Thus the test

that rejects H0: l � 1 in favor of H0: l > 1 when Sxi � 10 has maximum power

for any l0 > 1 subject to the condition that p(l0) � .032. This test is uniformly most
powerful. ■

More generally, a uniformly most powerful (UMP) level a test is one for

which p(y0) is maximized for any y ∈ Oa subject to p(y0) � a for any y0 ∈ O0.

Unfortunately UMP tests are fairly rare, especially in commonly encountered

situations when H0 and Ha are assertions about a single parameter y1 whereas the
distribution of the Xi’s involves not only y1 but also at least one other “nuisance

parameter”. For example, when the population distribution is normal with values of

both m and s unknown, s is a nuisance parameter when testing H0: m ¼ m0 versus
Ha: m 6¼ m0. Be careful here—the null hypothesis is not simple because O0 consists

of all pairs (m, s) for which m ¼ m0 and s > 0, and there is certainly more than one

such pair. In this situation, the one-sample t test is not UMP.
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Figure 9.10 Graphs of power functions for Example 9.22 ■
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However, suppose we restrict attention to unbiased tests, those for which the

smallest value of p(y0) for y0 ∈ Oa is at least as large as the largest value of p(y0) for
y0 ∈ O0. Unbiasedness simply says that we are at least as likely to reject the null

hypothesis whenH0 is false as we are to reject it whenH0 is true. The test proposed in

Example 9.22 involving paint drying times is unbiased because, as Figure 9.10(b)

shows, the power function at or to the right of 75 is smaller than it is to the left of 75.

It can be shown that the one-sample t test is UMP unbiased; that is, it is uniformly

most powerful among all tests that are unbiased. Several other commonly used tests

also have this property. Please consult one of the chapter references for more details.

Likelihood Ratio Tests

The likelihood ratio (LR) principle is the most frequently used method for finding an

appropriate test statistic in a new situation. As before, denote the joint pmf or pdf of

X1, . . . , Xn by f(x1, . . . , xn; y). In the case of a random sample, it will be a product

f(x1;y)
 
 
 
 
 f(xn ;y). When the xi’s are the actual observations and f(x1, . . . , xn ;y) is
regarded as a function of y, it is called the likelihood function. Again consider

testing H0: y ∈ O0 versus Ha: y ∈ Oa, where O0 and Oa are disjoint sets, and

let O ¼ O0 [ Oa. In the Neyman–Pearson theorem, we focused on the ratio of the

likelihoodwhen y∈Oa to the likelihoodwhen y∈O0, rejectingH0 when the value of

the ratio was “sufficiently large”. Now we consider the ratio of the likelihood when

y ∈ O0 to the likelihood when y ∈ O. A very small value of this ratio argues against
the null hypothesis, since a small value arises when the data is much more consistent

with the alternative hypothesis than with the null hypothesis. More formally,

1. Find the largest value of the likelihood for any y ∈ O0 by finding the maximum

likelihood estimate of y within O0 and substituting this mle into the

likelihood function to obtain LðÔ0Þ.
2. Find the largest value of the likelihood for any y ∈ O by finding the maximum

likelihood estimate of y within O and substituting this mle into the likelihood

function to obtain LðÔÞ. Because O0 is a subset of O, this likelihood LðÔÞ can’t
be any smaller than the likelihood LðÔ0Þ obtained in the first step, and will be

much larger when the data is much more consistent with Ha than with H0.

3. Form the likelihood ratio LðÔ0Þ=LðÔÞand reject the null hypothesis in favor

of the alternative when this ratio is � k. The critical value k is chosen to give a

test with the desired significance level. In practice, the inequality LðÔ0Þ=LðÔÞ� k
is often re-expressed in terms of a more convenient statistic (such as the sum

of the observations) whose distribution is known or can be derived.

The above prescription remains valid if the single parameter y is replaced by

several parameters y1, . . . , yk. The mle’s of all parameters must be obtained in

both steps 1 and 2 and substituted back into the likelihood function.

Example 9.24 Consider a random sample from a normal distribution with the values of both

parameters unknown. We wish to test H0: m ¼ m0 versus Ha: m 6¼ m0. Here O
consists of all values of m and s2 for which �1 < m < 1 and s2 > 0, and the

likelihood function is

1

2ps2

� �n=2

e�1=ð2s2Þ
P

ðxi�mÞ2
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In Section 7.2 we obtained the mle’s as m̂ ¼ x; ŝ2 ¼P ðxi � xÞ2=n: Substituting
these estimates back into the likelihood function gives

LðÔÞ ¼ 1

2p
P ðxi � xÞ2=n

� �n=2

e�n=2

Within O0, m in the foregoing likelihood is replaced by m0, so that only s2 must be

estimated. It is easily verified that the mle is ŝ2 ¼P ðxi � m0Þ2=n: Substitution of

this estimate in the likelihood function yields

LðÔ0Þ ¼ 1

2p
P ðxi � m0Þ2=n

� �n=2

e�n=2

Thus we reject H0 in favor of Ha when

LðÔ0Þ
LðÔÞ ¼

P ðxi � xÞ2P ðxi � m0Þ2
 !n=2

� k

Raising both sides of this inequality to the power 2/n, we reject H0 wheneverP ðxi � xÞ2P ðxi � m0Þ2
� k2=n ¼ k0

This is intuitively quite reasonable: the value m0 is implausible for m if the sum of

squared deviations about the sample mean is much smaller than the sum of squared

deviations about m0. The denominator of this latter ratio can be expressed asX
½ðxi � xÞ þ ðx� m0Þ�2 ¼

X
ðxi � xÞ2 þ 2

X
ðx� m0Þðxi � xÞ þ nðx� m0Þ2

The middle (i.e., cross-product) term in this expression is 0, because the constant

x� m0 can be moved outside the summation, and then the sum of deviations from

the sample mean is 0. Thus we should reject H0 whenP ðxi � xÞ2P ðxi � xÞ2 þ nðx� m0Þ2
¼ 1

1þ nðx� m0Þ2=
P ðxi � xÞ2 � k0

This latter ratio will be small when the second term in the denominator is large, so

the condition for rejection becomes

nðx� m0Þ2P ðxi � xÞ2 � k00

Dividing both sides by n � 1 and taking square roots gives the rejection region

either
x� m0
s=

ffiffiffi
n

p � c or
x� m0
s=

ffiffiffi
n

p � �c

If we now let c ¼ ta=2;n�1, we have exactly the two-tailed one-sample t test. The
bottom line is that when testing H0: m ¼ m0 against the two-sided ( 6¼) alternative,

the one-sample t test is the likelihood ratio test. This is also true of the upper-tailed
version of the t test when the alternative is Ha: m > m0 and of the lower-tailed test

when the alternative is Ha: m < m0. We could trace back through the argument to

recover the critical constant k from c, but there is no point in doing this; the

rejection region in terms of t is much more convenient than the rejection region

in terms of the likelihood ratio. ■
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A number of tests discussed subsequently, including the “pooled” t test from
the next chapter and various tests from ANOVA (the analysis of variance) and

regression analysis, can be derived by the likelihood ratio principle. Rather fre-

quently the inequality for the rejection region of a likelihood ratio test cannot be

manipulated to express the test procedure in terms of a simple statistic whose

distribution can be ascertained. The following large-sample result, valid under

fairly general conditions, can then be used: If the sample size n is sufficiently

large, then the statistic �2[ln(likelihood ratio)] has approximately a chi-squared

distribution with n degrees of freedom, where n is the difference between the

number of “freely varying” parameters in O and the number of such parameters

in O0. For example, if the distribution sampled is bivariate normal with the 5 para-

meters m1, m2, s1, s2, and r and the null hypothesis asserts that m1 ¼ m2 and

s1 ¼ s2, then n ¼ 5 � 3 ¼ 2. By definition LðÔ0Þ=LðÔÞ � 1, and the likelihood

ratio test rejectsH0 when this likelihood ratio is much less than 1. This is equivalent

to rejecting when the logarithm of the likelihood ratio is quite negative, that is,

when �ln(LR) is quite positive. The large-sample version of the test is thus upper-

tailed: H0 should be rejected if �2ln(likelihood ratio) � wa;n
2 (an upper-tail critical

value extracted from Table A.6).

Example 9.25 Suppose a scientist makes n measurements of some physical characteristic, such as

the specific gravity of a liquid. Let X1, . . . , Xn denote the resulting measurement

errors. Assume that these Xi’s are independent and identically distributed according

to the double exponential (Laplace) distribution: f ðxÞ¼ :5e� x�yj j for �1<x<1:
This pdf is symmetric about y with somewhat heavier tails than the normal pdf.

If y ¼ 0 then the measurements are unbiased, so it is natural to testH0: y ¼ 0 versus

Ha: y 6¼ 0. Here n ¼ 1 � 0 ¼ 1. The likelihood is

LðyÞ ¼ ð:5Þne�S xi�yj j

Because of the minus sign preceding the summation, the likelihood is maximized

when
P jxi � yj is minimized. The absolute value function is not differentiable,

and therefore differential calculus cannot be used. Instead, consider for a moment

the case n ¼ 5 and let y1, . . . , y5 denote the values of the xi’s ordered from smallest

to largest—so the yi’s are the observed values of the order statistics. For example, a

random sample of size five from the Laplace distribution with y ¼ 0 is �.24998,

.75446, �.19053, 1.16237, .83229, so (y1, . . . , y5) ¼ (�.24998, �.19053, .75446,

.83229, 1.16237). Then

X
xi � yj j ¼

X
jyi � yj ¼

y1 þ y2 þ y3 þ y4 þ y5 � 5y y< y1

�y1 þ y2 þ y3 þ y4 þ y5 � 3y y1 � y< y2

�y1 � y2 þ y3 þ y4 þ y5 � y y2 � y< y3

�y1 � y2 � y3 þ y4 þ y5 þ y y3 � y< y4

�y1 � y2 � y3 � y4 þ y5 þ 3y y4 � y< y5

�y1 � y2 � y3 � y4 � y5 þ 5y y � y5

8>>>>>>>>><
>>>>>>>>>:

The graph of this expression as a function of y appears in Figure 9.11, from which it

is apparent that the minimum occurs at y3 ¼ ~x ¼ :75446, the sample median. The

situation is similar whenever n is odd. When n is even, the function achieves its

minimum for any y between yn/2 and y(n/2)+1; one such y is ðyn=2 þ yðn=2Þþ1Þ=2 ¼ ~x.
In summary, the mle of y is the sample median.
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The likelihood ratio statistic for testing the relevant hypotheses is

ð:5Þne�S xij j=½ð:5Þne�S xi�~xj j�. Taking the natural log of the likelihood ratio and multi-

plying by �2 gives the rejection region 2
P

xij j � 2
P

xi � ~xj j � w2a;1 for the large-
sample version of the LR test.

Suppose that a sample of n ¼ 30 errors results in
P

xij j ¼ 38:6 andP
xi � ~xj j ¼ 37:3. Then

� 2 lnðLRÞ ¼ 2
X

xij j �
X

xi � ~xj j
� �

¼ 2:6

Comparing this to w2:05;1 ¼ 3:84, we would not reject the null hypothesis at the

5% significance level. It is plausible that the measurement process is indeed

unbiased. ■

Exercises Section 9.5 (60–71)

60. Reconsider the paint-drying problem discussed in

Example 9.2. The hypotheses were H0: m ¼ 75

versus Ha: m < 75, with s assumed to have value

9.0. Consider the alternative value m ¼ 74, which

in the context of the problem would presumably

not be a practically significant departure from H0.
a. For a level .01 test, compute b at this alterna-

tive for sample sizes n ¼ 100, 900, and 2500.

b. If the observed value of X is x ¼ 74, what can

you say about the resulting P-value when

n ¼ 2500? Is the data statistically significant

at any of the standard values of a?

c. Would you really want to use a sample size

of 2500 along with a level .01 test (disregard-

ing the cost of such an experiment)? Explain.

61. Consider the large-sample level .01 test in Sec-

tion 9.3 for testing H0: p ¼ .2 against Ha: p > .2.

a. For the alternative value p ¼ .21, compute

b(.21) for sample sizes n ¼ 100, 2500,

10,000, 40,000, and 90,000.

b. For p̂ ¼ x=n ¼ :21, compute the P-value when
n ¼ 100, 2500, 10,000, and 40,000.

4.0

3.0

2.5

3.5

5.0

4.5

5.5

−.5 1.51.0
q

.50

Σ|xi − q |

Figure 9.11 Determining the mle of the double exponential parameter by minimizingP jxi � yj
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c. In most situations, would it be reasonable to

use a level .01 test in conjunction with a sample

size of 40,000? Why or why not?

62. For a random sample of n individuals taking a

licensing exam, let Xi ¼ 1 if the ith individual in

the sample passes the exam and Xi ¼ 0 otherwise

(i ¼ 1, . . . , n).
a. With p denoting the proportion of all exam-

takers who pass, show that the most powerful

test ofH0: p ¼ .5 versusHa: p ¼ .75 rejectsH0

when Sxi � c.
b. If n ¼ 20 and you want a � .05 for the test of

(a), would you reject H0 if 15 of the 20 indivi-

duals in the sample pass the exam?

c. What is the power of the test you used in (b)

when p ¼ .75 [i.e., what is p(.75)]?
d. Is the test derived in (a) UMP for testing

the hypotheses H0: p ¼ .5 versus Ha: p >.5?

Explain your reasoning.

e. Graph the power function p(p) of the test for the
hypotheses of (d) when n ¼ 20 and a � .05.

f. Return to the scenario of (a), and suppose the

test is based on a sample size of 50. If the

probability of a type II error is approximately

.025, what is the approximate significance level

of the test (use a normal approximation)?

63. The error X in a measurement has a normal distri-

bution with mean value 0 and variance s2. Con-
sider testing H0: s

2 ¼ 2 versus Ha: s
2 ¼ 3 based

on a random sample X1, . . . , Xn of errors.

a. Show that a most powerful test rejectsH0 whenP
xi
2� c:

b. For n ¼ 10, find the value of c for the test in

(a) that results in a ¼ .05.

c. Is the test of (a) UMP for H0: s
2 ¼ 2 versus

Ha: s
2 > 2? Justify your assertion.

64. Suppose that X, the fraction of a container that is

filled, has pdf f(x;y) ¼ yxy�1 for 0 < x < 1

(where y > 0), and let X1, . . . , Xn be a random

sample from this distribution.

a. Show that the most powerful test for H0: y ¼ 1

versus Ha: y ¼ 2 rejects the null hypothesis if

Sln(xi) � c.
b. Is the test of (a) UMP for testing H0: y ¼ 1

versus Ha: y > 1? Explain your reasoning.

c. If n ¼ 50, what is the (approximate) value of c
for which the test has significance level .05?

65. Consider a random sample of n component life-

times, where the distribution of lifetime is expo-

nential with parameter l.

a. Obtain a most powerful test for H0: l ¼ 1

versus Ha: l ¼ .5, and express the rejection

region in terms of a “simple” statistic.

b. Is the test of (a) uniformly most powerful for

H0: l ¼ 1 versus Ha: l < 1? Justify your

answer.

66. Consider a random sample of size n from the

“shifted exponential” distribution with pdf

f x; yð Þ ¼ e�ðx�yÞ for x > y and 0 otherwise (the

graph is that of the ordinary exponential pdf with

l ¼ 1 shifted so that it begins its descent at y rather
than at 0). Let Y1 denote the smallest order statistic,

and show that the likelihood ratio test of H0: y � 1

versus Ha: y > 1 rejects the null hypothesis if y1,
the observed value of Y1, is � c.

67. Suppose that each of n randomly selected indivi-

duals is classified according to his/her genotype

with respect to a particular genetic characteristic

and that the three possible genotypes are AA, Aa,

and aa with long-run proportions (probabilities) y2,
2y(1�y), and (1�y)2, respectively (0 < y < 1).

It is then straightforward to show that the

likelihood is

y2x1 
 ½2yð1� yÞ�x2 
 ð1� yÞ2x3

where x1, x2, and x3 are the number of individuals

in the sample who have the AA, Aa, and aa geno-

types, respectively. Show that the most powerful

test for testing H0: y ¼ .5 versus Ha: y ¼ .8

rejects the null hypothesis when 2x1 + x2 � c. Is
this test UMP for the alternative Ha: y > .5?

Explain. [Note: The fact that the joint distribution
of X1, X2, and X3 is multinomial can be used to

obtain the value of c that yields a test with any

desired significance level when n is large.]

68. The error in a measurement is normally dis-

tributed with mean m and standard deviation 1.

Consider a random sample of n errors, and show

that the likelihood ratio test for H0: m ¼ 0 versus

Ha: m 6¼ 0 rejects the null hypothesis when either

x � c or x � �c. What is c for a test with

a ¼ .05? How does the test change if the standard

deviation of an error is s0 (known) and the rele-

vant hypotheses are H0: m ¼ 0 versus Ha: m 6¼m0?

69. Measurement error in a particular situation is

normally distributed with mean value m and

standard deviation 4. Consider testing H0: m ¼ 0

versus Ha: m 6¼ 0 based on a sample of n ¼ 16

measurements.

a. Verify that the usual test with significance

level .05 rejects H0 if either x � 1:96 or
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x � �1:96. [Note: That this test is unbiased

follows from the fact that the way to capture

the largest area under the z curve above an

interval having width 3.92 is to center that inter-

val at 0 (so it extends from �1.96 to 1.96).]

b. Consider the test that rejects H0 if either

x � 2:17 or x � �1:81. What is a, that is, p(0)?
c. What is the power of the test proposed in (b)

when m ¼ .1 and when m ¼ �.1? (Note that .1

and �.1 are very close to the null value, so one

would not expect large power for such values).

Is the test unbiased?

d. Calculate the power of the usual test when

m ¼ .1 and when m ¼ �.1. Is the usual test a

most powerful test? [Hint: Refer to your calcu-
lations in (c).] [Note: It can be shown that

the usual test is most powerful among all

unbiased tests.]

70. A test of whether a coin is fair will be based on

n ¼ 50 tosses. Let X be the resulting number of

heads. Consider two rejection regions: R1 ¼ {x:
either x � 17 or x � 33} and R2 ¼ {x: either

x � 18 or x � 37}.

a. Determine the significance level (type I error

probability) for each rejection region.

b. Determine the power of each test when

p ¼ .49. Is the test with rejection region R1 a

uniformly most powerful level .033 test?

Explain.

c. Is the test with rejection region R2 unbiased?

Explain.

d. Sketch the power function for the test with

rejection region R1, and then do so for the test

with the rejection region R2. What does your

intuition suggest about the desirability of using

the rejection region R2?

71. Consider Example 9.24.

a. With t ¼ ðx� m0Þ=ðs=
ffiffiffi
n

p Þ, show that the likeli-

hood ratio is equal to l ¼ [1 + t2/(n � 1)]�n/2,

and therefore the approximate chi-square statis-

tic is �2[ln(l)] ¼ n ln[1 + t2/(n � 1)].

b. Apply part (a) to test the hypotheses of

Exercise 55, using the data given there. Com-

pare your results with the answers found in

Exercise 55.

Supplementary Exercises (72–94)

72. A sample of 50 lenses used in eyeglasses yields a

sample mean thickness of 3.05 mm and a sample

standard deviation of .34 mm. The desired true

average thickness of such lenses is 3.20 mm. Does

the data strongly suggest that the true average

thickness of such lenses is something other than

what is desired? Test using a ¼ .05.

73. In Exercise 72, suppose the experimenter had

believed before collecting the data that the value

of s was approximately .30. If the experimenter

wished the probability of a type II error to be .05

when m ¼ 3.00, was a sample size of 50 unneces-

sarily large?

74. It is specified that a certain type of iron should

contain .85 g of silicon per 100 g of iron (.85%).

The silicon content of each of 25 randomly

selected iron specimens was determined, and the

accompanying MINITAB output resulted from a

test of the appropriate hypotheses.

Variable N Mean StDev SE
Mean

T P

sil cont 25 0.8880 0.1807 0.0361 1.05 0.30

a. What hypotheses were tested?

b. What conclusion would be reached for a sig-

nificance level of .05, and why? Answer the

same question for a significance level of .10.

75. One method for straightening wire before coiling

it to make a spring is called “roller straightening.”

The article “The Effect of Roller and Spinner

Wire Straightening on Coiling Performance and

Wire Properties” (Springs, 1987: 27–28) reports
on the tensile properties of wire. Suppose a sample

of 16 wires is selected and each is tested to deter-

mine tensile strength (N/mm2). The resulting sam-

ple mean and standard deviation are 2160 and 30,

respectively.

a. The mean tensile strength for springs made

using spinner straightening is 2150 N/mm2.

What hypotheses should be tested to determine

whether the mean tensile strength for the roller

method exceeds 2150?

b. Assuming that the tensile strength distribution

is approximately normal, what test statistic

would you use to test the hypotheses in part (a)?

c. What is the value of the test statistic for this

data?

d. What is the P-value for the value of the test

statistic computed in part (c)?
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e. For a level .05 test, what conclusion would you
reach?

76. A new method for measuring phosphorus levels in

soil is described in the article “A Rapid Method to

Determine Total Phosphorus in Soils” (Soil Sci.
Amer. J., 1988: 1301–1304). Suppose a sample of

11 soil specimens, each with a true phosphorus

content of 548 mg/kg, is analyzed using the new

method. The resulting sample mean and standard

deviation for phosphorus level are 587 and 10,

respectively.

a. Is there evidence that the mean phosphorus

level reported by the new method differs sig-

nificantly from the true value of 548 mg/kg?

Use a ¼ .05.

b. What assumptions must you make for the test

in part (a) to be appropriate?

77. The article “Orchard Floor Management Utilizing

Soil-Applied Coal Dust for Frost Protection”

(Agric. Forest Meteorol., 1988: 71–82) reports

the following values for soil heat flux of eight

plots covered with coal dust.

34.7 35.4 34.7 37.7 32.5 28.0 18.4 24.9

The mean soil heat flux for plots covered only

with grass is 29.0. Assuming that the heat-flux

distribution is approximately normal, does the

data suggest that the coal dust is effective in

increasing the mean heat flux over that for

grass? Test the appropriate hypotheses using

a ¼ .05.

78. The article “Caffeine Knowledge, Attitudes, and

Consumption in Adult Women” (J. Nutrit. Ed.,
1992: 179–184) reports the following summary

data on daily caffeine consumption for a sample

of adult women: n ¼ 47, x ¼ 215mg, s ¼ 235

mg, and range ¼ 5�1176.

a. Does it appear plausible that the population

distribution of daily caffeine consumption is

normal? Is it necessary to assume a normal

population distribution to test hypotheses

about the value of the population mean con-

sumption? Explain your reasoning.

b. Suppose it had previously been believed that

mean consumption was at most 200 mg. Does

the given data contradict this prior belief? Test

the appropriate hypotheses at significance level

.10 and include a P-value in your analysis.

79. The accompanying output resulted when MINI-

TAB was used to test the appropriate hypotheses

about true average activation time based on the

data in Exercise 56. Use this information to reach

a conclusion at significance level .05 and also at

level .01.

TEST OF MU ¼ 25.000 VS MU G.T. 25.000

N MEAN STDEV SE MEAN T P VALUE

time 13 27.923 5.619 1.559 1.88 0.043

80. The true average breaking strength of ceramic

insulators of a certain type is supposed to be at

least 10 psi. They will be used for a particular

application unless sample data indicates conclu-

sively that this specification has not been met.

A test of hypotheses using a ¼ .01 is to be based

on a random sample of ten insulators. Assume

that the breaking-strength distribution is normal

with unknown standard deviation.

a. If the true standard deviation is .80, how

likely is it that insulators will be judged satis-

factory when true average breaking strength is

actually only 9.5? Only 9.0?

b. What sample size would be necessary to have

a 75% chance of detecting that true average

breaking strength is 9.5 when the true stan-

dard deviation is .80?

81. The accompanying observations on residual flame

time (sec) for strips of treated children’s nightwear

were given in the article “An Introduction to Some

Precision and Accuracy of Measurement Pro-

blems” (J. Test. Eval., 1982: 132–140). Suppose a
true average flame time of at most 9.75 had been

mandated. Does the data suggest that this condition

has not been met? Carry out an appropriate test

after first investigating the plausibility of assump-

tions that underlie your method of inference.

9.85 9.93 9.75 9.77 9.67 9.87 9.67

9.94 9.85 9.75 9.83 9.92 9.74 9.99

9.88 9.95 9.95 9.93 9.92 9.89

82. The incidence of a certain type of chromosome

defect in the U.S. adult male population is

believed to be 1 in 75. A random sample of 800

individuals in U.S. penal institutions reveals 16

who have such defects. Can it be concluded that

the incidence rate of this defect among prisoners

differs from the presumed rate for the entire adult

male population?

a. State and test the relevant hypotheses using

a ¼ .05. What type of error might you have

made in reaching a conclusion?

b. What P-value is associated with this test?

Based on this P-value, could H0 be rejected at

significance level .20?

83. In an investigation of the toxin produced by a

certain poisonous snake, a researcher prepared 26

Supplementary Exercises 481



different vials, each containing 1 g of the toxin, and

then determined the amount of antitoxin needed to

neutralize the toxin. The sample average amount of

antitoxin necessary was found to be 1.89 mg, and

the sample standard deviation was .42. Previous

research had indicated that the true average neutra-

lizing amount was 1.75 mg/g of toxin. Does the

new data contradict the value suggested by prior

research? Test the relevant hypotheses using the

P-value approach. Does the validity of your analy-

sis depend on any assumptions about the population

distribution of neutralizing amount? Explain.

84. The sample average unrestrained compressive

strength for 45 specimens of a particular type of

brick was computed to be 3107 psi, and the sample

standard deviation was 188. The distribution of

unrestrained compressive strength may be some-

what skewed. Does the data strongly indicate that

the true average unrestrained compressive

strength is less than the design value of 3200?

Test using a ¼ .001.

85. To test the ability of auto mechanics to identify

simple engine problems, an automobile with a

single such problem was taken in turn to 72 differ-

ent car repair facilities. Only 42 of the 72 mechan-

ics who worked on the car correctly identified the

problem. Does this strongly indicate that the true

proportion of mechanics who could identify this

problem is less than .75? Compute the P-value and
reach a conclusion accordingly.

86. When X1, X2, . . . , Xn are independent Poisson

variables, each with parameter l, and n is large,

the sample mean X has approximately a normal

distribution with m ¼ EðXÞ ¼ l and s2 ¼ VðXÞ ¼
l=n. This implies that

Z ¼ X � lffiffiffiffiffiffiffiffi
l=n

p
has approximately a standard normal distribution.

For testing H0: l ¼ l0, we can replace l by l0 in
the equation for Z to obtain a test statistic. This

statistic is actually preferred to the large-sample

statistic with denominator S=
ffiffiffi
n

p
(when the Xi’s

are Poisson) because it is tailored explicitly to the

Poisson assumption. If the number of requests for

consulting received by a certain statistician during

a 5-day work week has a Poisson distribution and

the total number of consulting requests during a

36-week period is 160, does this suggest that the

true average number of weekly requests exceeds

4.0? Test using a ¼ .02.

87. A hot-tub manufacturer advertises that with its

heating equipment, a temperature of 100�F can be

achieved in at most 15 min. A random sample of 32

tubs is selected, and the time necessary to achieve a

100�F temperature is determined for each tub. The

sample average time and sample standard deviation

are 17.5 min and 2.2 min, respectively. Does this

data cast doubt on the company’s claim? Compute

the P-value and use it to reach a conclusion at level
.05 (assume that the heating-time distribution is

approximately normal).

88. Chapter 8 presented a CI for the variance s2 of a
normal population distribution. The key result

there was that the rv w2 ¼ ðn� 1ÞS2=s2 has a

chi-squared distribution with n � 1 df. Consider

the null hypothesis H0 : s2 ¼ s20 (equivalently,

s ¼ s0). Then when H0 is true, the test statistic

w2 ¼ ðn� 1ÞS2=s20 has a chi-squared distribution

with n � 1 df. If the relevant alternative is

Ha : s2 > s20, rejecting H0 if ðn� 1ÞS2=s20 �
w2a;n�1 gives a test with significance level a. To
ensure reasonably uniform characteristics for a

particular application, it is desired that the true

standard deviation of the softening point of a

certain type of petroleum pitch be at most .50�C.
The softening points of ten different specimens

were determined, yielding a sample standard devi-

ation of .58�C. Does this strongly contradict the

uniformity specification? Test the appropriate

hypotheses using a ¼ .01.

89. Referring to Exercise 88, suppose an investigator

wishes to test H0: s
2 ¼ .04 versus Ha: s

2 < .04

based on a sample of 21 observations. The com-

puted value of 20s2/.04 is 8.58. Place bounds

on the P-value and then reach a conclusion at

level .01.

90. When the population distribution is normal and n is
large, the sample standard deviation S has approxi-
mately a normal distribution with E(S) � s and

V(S) � s2/(2n). We already know that in this

case, for any n, X is normal with EðXÞ ¼ m and

VðXÞ ¼ s2=n.
a. Assuming that the underlying distribution is

normal, what is an approximately unbiased

estimator of the 99th percentile y ¼ m + 2.33s?
b. As discussed in Section 6.4, when the Xi’s are

normal X and S are independent rv’s (one mea-

sures location whereas the other measures
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spread). Use this to compute VðŷÞ and sŷ for

the estimator ŷ of part (a). What is the esti-

mated standard error ŝŷ?
c. Write a test statistic for testing H0: y ¼ y0 that

has approximately a standard normal distribu-

tion when H0 is true. If soil pH is normally

distributed in a certain region and 64 soil sam-

ples yield x ¼ 6:33, s ¼ .16, does this provide

strong evidence for concluding that at most

99% of all possible samples would have a pH

of less than 6.75? Test using a ¼ .01.

91. Let X1, X2, . . . , Xn be a random sample from an

exponential distribution with parameter l. Then it

can be shown that 2lSXi has a chi-squared distri-

bution with n ¼ 2n(by first showing that 2lXi has

a chi-squared distribution with n ¼ 2).

a. Use this fact to obtain a test statistic and rejec-

tion region that together specify a level a test

for H0: m ¼ m0 versus each of the three com-

monly encountered alternatives. [Hint: E(Xi) ¼
m ¼ 1/l, so m ¼ m0 is equivalent to l ¼ 1/m0.]

b. Suppose that ten identical components, each

having exponentially distributed time until

failure, are tested. The resulting failure times

are

95 16 11 3 42 71 225 64 87 123

Use the test procedure of part (a) to decide

whether the data strongly suggests that the

true average lifetime is less than the previously

claimed value of 75.

92. Suppose the population distribution is normal with

known s. Let g be such that 0 < g < a. For testing
H0: m ¼ m0 versus Ha: m 6¼ m0, consider the test

that rejectsH0 if either z � zg or z � �za�g, where

the test statistic is Z ¼ ðX � m0Þ=ðs=
ffiffiffi
n

p Þ:
a. Show that P(type I error) ¼ a.

b. Derive an expression for b(m0). [Hint: Express
the test in the form “reject H0 if either

x � c1 or � c2.”]

c. Let D > 0. For what values of g (relative to a)
will b(m0 + D) < b(m0 � D)?

93. After a period of apprenticeship, an organization

gives an exam that must be passed to be eligible

for membership. Let p ¼ P(randomly chosen

apprentice passes). The organization wishes an

exam that most but not all should be able to pass,

so it decides that p ¼ .90 is desirable. For a par-

ticular exam, the relevant hypotheses are H0:

p ¼ .90 versus the alternative Ha: p 6¼ .90. Sup-

pose ten people take the exam, and let X ¼ the

number who pass.

a. Does the lower-tailed region {0, 1, . . . , 5}
specify a level .01 test?

b. Show that even though Ha is two-sided, no

two-tailed test is a level .01 test.

c. Sketch a graph of b(p0) as a function of p0 for
this test. Is this desirable?

94. A service station has six gas pumps. When no

vehicles are at the station, let pi denote the proba-
bility that the next vehicle will select pump i
(i ¼ 1, 2, . . . , 6). Based on a sample of size n,
we wish to test H0: p1 ¼ . . . ¼ p6 versus the alter-
native Ha: p1 ¼ p3 ¼ p5, p2 ¼ p4 ¼ p6 (note

that Ha is not a simple hypothesis). Let X be the

number of customers in the sample that select an

even-numbered pump.

a. Show that the likelihood ratio test rejects H0 if

either X � c or X � n � c. [Hint: When Ha is

true, let y denote the common value of p2, p4,
and p6.]

b. Let n ¼ 10 and c ¼ 9. Determine the power of

the test both when H0 is true and also when

p2 ¼ p4 ¼ p6 ¼ 1
10
; p1 ¼ p3 ¼ p5 ¼ 7

30
:
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C H A P T E R T E N

Inferences Based
on Two Samples

Introduction
Chapters 8 and 9 presented confidence intervals (CIs) and hypothesis testing

procedures for a single mean m, single proportion p, and a single variance s2.
Here we extend these methods to situations involving the means, proportions,

and variances of two different population distributions. For example, let m1 and

m2 denote true average decrease in cholesterol for two drugs. Then an investi-

gator might wish to use results from patients assigned at random to two different

groups as a basis for testing the hypothesis H0: m1 ¼ m2 versus the alternative

hypothesis Ha: m1 6¼ m2. As another example, let p1 denote the true proportion of

all Catholics who plan to vote for the Republican candidate in the next presidential

election, and let p2 represent the true proportion of all Protestants who plan to

vote Republican. Based on a survey of 500 Catholics and 500 Protestants we might

like an interval estimate for the difference p1 � p2.



10.1 z Tests and Confidence Intervals for a
Difference Between Two Population Means
The inferences discussed in this section concern a difference m1 � m2 between the

means of two different population distributions. An investigator might, for example,

wish to test hypotheses about the difference between the true average weight losses

of two diets. One such hypothesis would state that m1� m2 ¼ 0, that is, that m1 ¼ m2.
Alternatively, it may be appropriate to estimate m1 � m2 by computing a 95% CI.

Such inferences are based on a sample of weight losses for each diet.

BASIC
ASSUMPTIONS

1. X1, X2, . . . , Xm is a random sample from a population with mean m1 and
variance s21.

2. Y1, Y2, . . . , Yn is a random sample from a population with mean m2 and
variance s22.

3. The X and Y samples are independent of each other.

The natural estimator of m1� m2 is X � Y, the difference between the corresponding
sample means. The test statistic results from standardizing this estimator, so we

need expressions for the expected value and standard deviation of X � Y.

PROPOSITION The expected value of X � Y is m1 � m2, so X � Y is an unbiased estimator of

m1 � m2. The standard deviation of X � Y is

sX�Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
m

þ s22
n

r

Proof Both these results depend on the rules of expected value and variance

presented in Chapter 6. Since the expected value of a difference is the difference of

expected values,

EðX � YÞ ¼ EðXÞ � EðYÞ ¼ m1 � m2

Because the X and Y samples are independent, X and Y are independent quantities,

so the variance of the difference is the sum of VðXÞ and VðYÞ:

VðX � YÞ ¼ VðXÞ þ VðYÞ ¼ s21
m

þ s22
n

The standard deviation of X � Y is the square root of this expression. ■

If we think of m1 � m2 as a parameter y, then its estimator is ŷ ¼ X � Y with

standard deviation sŷ given by the proposition. When s21 and s22 both have known

values, the test statistic will have the form ðŷ� null valueÞ=sŷ; this form of a test
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statistic was used in several one-sample problems in the previous chapter. When s21
and s22 are unknown, the sample variances must be used to estimate sŷ.

Test Procedures for Normal Populations
with Known Variances

In Chapters 8 and 9, the first CI and test procedure for a population mean m were

based on the assumption that the population distribution was normal with the

value of the population variance s2 known to the investigator. Similarly, we first

assume here that both population distributions are normal and that the values of

both s21 and s
2
2 are known. Situations in which one or both of these assumptions can

be dispensed with will be presented shortly.

Because the population distributions are normal, both X and Y have normal

distributions. This implies that X � Y is normally distributed, with expected value

m1 � m2 and standard deviation sX�Y given in the foregoing proposition. Standar-

dizing X � Y gives the standard normal variable

Z ¼ X � Y � ðm1 � m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
m

þ s22
n

r ð10:1Þ

In a hypothesis-testing problem, the null hypothesis will state that m1� m2 has
a specified value. Denoting this null value by D0, the null hypothesis becomes H0:

m1 � m2 ¼ D0. Often D0 ¼ 0, in which case H0 says that m1 ¼ m2. A test statistic

results from replacing m1 � m2 in Expression (10.1) by the null value D0. Because

the test statistic Z is obtained by standardizing X � Y under the assumption that H0

is true, it has a standard normal distribution in this case. Consider the alternative

hypothesis Ha: m1 � m2 > D0. A value x� y that considerably exceeds D0 (the

expected value of X � Y when H0 is true) provides evidence against H0 and for Ha.

Such a value of x� y corresponds to a positive and large value of z. Thus H0 should

be rejected in favor of Ha if z is greater than or equal to an appropriately chosen

critical value. Because the test statistic Z has a standard normal distribution when

H0 is true, the upper-tailed rejection region z � za gives a test with significance

level (type I error probability) a. Rejection regions for the other alternatives

Ha: m1 � m2 < D0 and Ha: m1 � m2 6¼ D0 that yield tests with desired significance

level a are lower-tailed and two-tailed, respectively.

Null hypothesis: H0: m1 � m2 ¼ D0

Test statistic value: z ¼ x� y� D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
m

þ s22
n

r

Alternative Hypothesis Rejection Region for Level a Test

Ha: m1 � m2 > D0 z � za (upper-tailed test)

Ha: m1 � m2 < D0 z � �za (lower-tailed test)

Ha: m1 � m2 6¼ D0 either z � za/2 or z � �za/2 (two-tailed test)
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Because these are z tests, a P-value is computed as it was for the z tests in
Chapter 9 [e.g., P-value ¼ 1 � F(z) for an upper-tailed test].

Example 10.1 Each student in a class of 21 responded to a questionnaire that requested their grade

point average (GPA) and the number of hours each week that they studied.

For those who studied less than 10 h/week the GPAs were

2.80 3.40 4.00 3.60 2.00 3.00 3.47 2.80 2.60 2.00

and for those who studied at least 10 h/week the GPAs were

3.00 3.00 2.20 2.40 4.00 2.96 3.41 3.27 3.80 3.10 2.50

Normal plots for both sets are reasonably linear, so the normality assumption is

tenable. Because the standard deviation of GPAs for the whole campus is .6, it is

reasonable to apply that value here. The sample means are 2.97 for the <10 study

hours group and 3.06 for the �10 study hours group. Treating the two samples as

random, is there evidence that true average GPA differs for the two study times?

Let’s carry out a test of significance at level .05.

1. The parameter of interest is m1 � m2, the difference between true mean GPA for

the < 10 (conceptual) population and true mean GPA for the �10 population.

2. The null hypothesis is H0: m1 � m2 ¼ 0.

3. The alternative hypothesis is Ha: m1 � m2 6¼ 0; if Ha is true then m1 and m2 are
different. Although it would seem unlikely that m1 � m2 > 0 (those with low

study hours have higher mean GPA) we will allow it as a possibility and do a

two-tailed test.

4. With D0 ¼ 0, the test statistic value is

z ¼ x� yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
m

þ s22
n

r

5. The inequality in Ha implies that the test is two-tailed. For a ¼ .05, a/2 ¼ .025

and za/2 ¼ z.025 ¼ 1.96. H0 will be rejected if z � 1.96 or z � �1.96.

6. Substituting m ¼ 10, x ¼ 2:97, s21 ¼ :36, n ¼ 11, y ¼ 3:06, and s22 ¼ :36 into

the formula for z yields

z ¼ 2:97� 3:06ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:36

10
þ :36

11

r ¼ �:09

:262
¼ �:34

That is, the value of x� y is only one-third of a standard deviation below what

would be expected when H0 is true.

7. Because the value of z is not even close to the rejection region, there is no reason
to reject the null hypothesis. This test shows no evidence of any relationship

between study hours and GPA. ■
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Using a Comparison to Identify Causality

Investigators are often interested in comparing either the effects of two different treat-

ments on a response or the response after treatment with the response after no treatment

(treatment vs. control). If the individuals or objects to be used in the comparison are

not assigned by the investigators to the two different conditions, the study is said to be

observational. The difficulty with drawing conclusions based on an observational

study is that although statistical analysis may indicate a significant difference in

response between the two groups, the differencemay be due to some underlying factors

that had not been controlled rather than to any difference in treatments.

Example 10.2 A letter in the Journal of the American Medical Association (May 19, 1978) reports

that of 215 male physicians who were Harvard graduates and died between

November 1974 and October 1977, the 125 in full-time practice lived an average

of 48.9 years beyond graduation, whereas the 90 with academic affiliations lived

an average of 43.2 years beyond graduation. Does the data suggest that the mean

lifetime after graduation for doctors in full-time practice exceeds the mean lifetime

for those who have an academic affiliation (if so, those medical students who say

that they are “dying to obtain an academic affiliation” may be closer to the truth than

they realize; in other words, is “publish or perish” really “publish and perish”)?

Let m1 denote the true average number of years lived beyond graduation for

physicians in full-time practice, and let m2 denote the same quantity for physicians

with academic affiliations. Assume the 125 and 90 physicians to be random

samples from populations 1 and 2, respectively (which may not be reasonable if

there is reason to believe that Harvard graduates have special characteristics that

differentiate them from all other physicians—in this case inferences would be

restricted just to the “Harvard populations”). The letter from which the data was

taken gave no information about variances, so for illustration assume that

s1 ¼ 14.6 and s2 ¼ 14.4. The relevant hypotheses are H0: m1 � m2 ¼ 0 versus

Ha: m1 � m2 > 0, so D0 is zero. The computed value of z is

z ¼ 48:9� 43:2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð14:6Þ2
125

þ ð14:4Þ2
90

s ¼ 5:70ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:70þ 2:30

p ¼ 2:85

TheP-value for an upper-tailed test is 1�F(2.85) ¼ .0022. At significance level .01,

H0 is rejected (because a � P-value) in favor of the conclusion that m1 � m2 > 0

(m1 > m2). This is consistent with the information reported in the letter.

This data resulted from a retrospective observational study; the investigator
did not start out by selecting a sample of doctors and assigning some to the

“academic affiliation” treatment and the others to the “full-time practice” treat-

ment, but instead identified members of the two groups by looking backward

in time (through obituaries!) to past records. Can the statistically significant result

here really be attributed to a difference in the type of medical practice after

graduation, or is there some other underlying factor (e.g., age at graduation,

exercise regimens, etc.) that might also furnish a plausible explanation for the

difference?

Once upon a time, it could be argued that the studies linking smoking and

lung cancer were all observational, and therefore that nothing had been proved.
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This was the view of the great (perhaps the greatest) statistician R. A. Fisher, who

maintained till his death in 1962 that the observational studies did not show

causation. He said that people who choose to smoke might be more susceptible to

lung cancer. This explanation for the relationship had plenty of opposition then, and

few would support it now. At that time few women got lung cancer because few

women had smoked, but when smoking increased among women, so did lung

cancer. Furthermore, the incidence of lung cancer was higher for those who smoked

more, and quitters had reduced incidence. Eventually, the physiological effects on

the body were better understood, and nonobservational animal studies made it clear

that smoking does cause lung cancer. ■

A randomized controlled experiment results when investigators assign

subjects to the two treatments in a random fashion. When statistical significance

is observed in such an experiment, the investigator and other interested parties will

have more confidence in the conclusion that the difference in response has been

caused by a difference in treatments. A famous example of this type of experiment

and conclusion is the Salk polio vaccine experiment described in Section 10.4.

These issues are discussed at greater length in the (nonmathematical) books by

Moore and by Freedman et al., listed in the Chapter 1 bibliography.

b and the Choice of Sample Size

The probability of a type II error is easily calculated when both population

distributions are normal with known values of s1 and s2. Consider the case in

which the alternative hypothesis is Ha: m1 � m2 > D0. Let D0 denote a value of m1�
m2 that exceeds D0 (a value for which H0 is false). The upper-tailed rejection region

z � za can be re-expressed in the form x� y � D0 þ zasX�Y . Thus the probability

of a type II error when m1 � m2 ¼ D0 is

bðD0Þ ¼ Pðnot rejecting H0 when m1 � m2 ¼ D0Þ
¼ PðX � Y<D0 þ zasX�Y when m1 � m2 ¼ D0Þ

When m1� m2 ¼ D0, X � Y is normally distributed with mean value D0 and standard
deviation sX�Y (the same standard deviation as when H0 is true); using these values

to standardize the inequality in parentheses gives b.

Alternative Hypothesis b(D0) ¼ P(type II error when m1 � m2 ¼ D0)

Ha: m1 � m2 > D0
F za � D0 � D0

s

� �

Ha: m1 � m2 < D0
1� F �za � D0 � D0

s

� �

Ha: m1 � m2 6¼ D0
F za=2 � D0 � D0

s

� �
� F �za=2 � D0 � D0

s

� �

where s ¼ sX�Y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs21=mÞ þ ðs22=nÞ
p
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Example 10.3

(Example 10.1

continued)

If m1 and m2 (the true average GPAs for the two levels of effort) differ by as much as

.5, what is the probability of detecting such a departure from H0 based on a level .05

test with sample sizes m ¼ 10 and n ¼ 11? The value of s for these sample sizes

(the denominator of z) was previously calculated as .262. The probability of a type

II error for the two-tailed level .05 test when

m1 � m2 ¼ D0 ¼ :5

is

bð:5Þ ¼ F 1:96� :5� 0

:262

� �
� F �1:96� :5� 0

:262

� �

¼ F :0516ð Þ � F �3:868ð Þ ¼ :521

By symmetry we also have b(�.5) ¼ .521. Thus the probability of detecting such a

departure is 1 � b(.5) ¼ .479. Clearly, we do not have a very good chance of

detecting a difference of .5 with these sample sizes. We should not conclude from

Example 10.1 that there is no relationship between study time and GPA, because

the sample sizes were insufficient. ■

As in Chapter 9, sample sizesm and n can be determined that will satisfy both

P(type I error) ¼ a specified a and P(type II error when m1 � m2 ¼ D0) ¼
a specified b. For an upper-tailed test, equating the previous expression for b(D0)
to the specified value of b gives

s21
m

þ s22
n

¼ ðD0 � D0Þ2
ðza þ zbÞ2

When the two sample sizes are equal, this equation yields

m ¼ n ¼ ðs21 þ s22Þðza þ zbÞ2
ðD0 � D0Þ2

These expressions are also correct for a lower-tailed test, whereas a is replaced by

a/2 for a two-tailed test.

Large-Sample Tests

The assumptions of normal population distributions and known values of s1 and
s2 are unnecessary when both sample sizes are large. In this case, the Central Limit

Theorem guarantees that X � Y has approximately a normal distribution regardless

of the underlying population distributions. Furthermore, using S21 and S
2
2 in place of

s21 and s
2
2 in Expression (10.1) gives a variable whose distribution is approximately

standard normal:

Z ¼ X � Y � ðm1 � m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
m

þ S22
n

r

A large-sample test statistic results from replacing m1� m2 byD0, the expected

value of X � Y when H0 is true. This statistic Z then has approximately a standard
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normal distribution when H0 is true, so level a tests are obtained by using z critical
values exactly as before.

Use of the test statistic value

z ¼ x� y� D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
m
þ s22

n

r

along with the previously stated upper-, lower-, and two-tailed rejection

regions based on z critical values gives large-sample tests whose significance

levels are approximately a. These tests are usually appropriate if bothm > 40

and n > 40. A P-value is computed exactly as it was for our earlier z tests.

Example 10.4 A study was carried out in an attempt to improve student performance in a low-

level university mathematics course. Experience had shown that many students had

fallen by the wayside, meaning that they had dropped out or completed the course

with minimal effort and low grades. The study involved assigning the students

to sections based on odd or even Social Security number. It is important that the

assignment to sections not be on the basis of student choice, because then

the differences in performance might be attributable to differences in student

attitude or ability. Half of the sections were taught traditionally, whereas the

other half were taught in a way that hopefully would keep the students involved.

They were given frequent assignments that were collected and graded, they had

frequent quizzes, and they were allowed retakes on exams. Lotus Hershberger

conducted the experiment and he supplied the data. Here are the final exam scores

for the 79 students taught traditionally (the control group) and for the 85 students

taught with more involvement (the experimental group):

Control
37 22 29 29 33 22 32 36 29 06 04 37 00 36 00 32

27 07 19 35 26 22 28 28 32 35 28 33 35 24 21 00

32 28 27 08 30 37 09 33 30 36 28 03 08 31 29 09

00 00 35 25 29 03 33 33 28 32 39 20 32 22 24 20

32 07 08 33 29 09 00 30 26 25 32 38 22 29 29

Experimental
34 27 26 33 23 37 24 34 22 23 32 05 30 35 28 25

37 28 26 29 22 33 31 23 37 29 00 30 34 26 28 27

32 29 31 33 28 21 34 29 33 06 08 29 36 07 21 30

28 34 28 35 30 34 09 38 09 27 25 33 09 23 32 25

37 28 23 26 34 32 34 00 24 30 36 28 38 35 16 37

25 34 38 34 31

Table 10.1 summarizes the data. Does this information suggest that true mean for

the experimental condition exceeds that for the control condition? Let’s use a test

with a ¼ .05.
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Let m1 and m2 denote the true mean scores for the control condition and the

experimental condition, respectively. The two hypotheses are H0: m1 � m2 ¼ 0

versus Ha: m1 � m2 < 0. H0 will be rejected if z � �z.05 ¼ �1.645. Then

z ¼ 23:87� 27:34ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11:602

79
þ 8:852

85

r ¼ �3:47

1:620
¼ �2:14

Since �2.14 � �1.645, H0 is rejected at significance level .05. Alternatively, the

P-value for a lower-tailed z test is

P-value ¼ FðzÞ ¼ F �2:14ð Þ ¼ :016

which implies rejection at significance level .05. Also, if the test had been two-

tailed, then the P-value would be 2(.016) ¼ .032, so the two-tailed test would reject

H0 at the .05 level.

We have shown fairly conclusively that the experimental method of instruc-

tion is an improvement. Nevertheless, there is more to be said. It is important to

view the data graphically to see if there is anything strange. Figure 10.1 shows a

plot from Systat combining a boxplot and dotplot.

The plot shows that both groups have outlying observations at the low end;

some students showed up for the final but performed very poorly. What happens

if we compare the groups while ignoring the low performers whose scores are

below 10? The resulting summary information is in Table 10.2.

Table 10.1 Summary results for Example 10.4

Group Sample Size Sample Mean Sample SD

Control 79 23.87 11.60

Experimental 85 27.34 8.85

Control Exper
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Figure 10.1 Boxplot/dotplot for the teaching experiment
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Notice that the means and standard deviations for the two groups are now

very similar. Indeed, based on Table 10.2 the z-statistic value is �.34, giving no

reason to reject the null hypothesis. For the majority of the students, there appears

to be not much effect from the experimental treatment. It is the low performers who

make a big difference in the results. There were 18 low performers in the control

group but only 9 in the experimental group. The effect of the experimental

instruction is to decrease the number of students who perform at the bottom of

the scale. This is in accord with the goals of the experimental treatment, which was

designed to keep students on track. ■

Confidence Intervals for m1 � m2
When both population distributions are normal, standardizing X � Y gives a random

variable Z with a standard normal distribution. Since the area under the z curve

between �za/2 and za/2 is 1 � a, it follows that

P �za=2 <
X � Y � ðm1 � m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s21
m

þ s22
n

r < za=2

0
BB@

1
CCA ¼ 1� a

Manipulation of the inequalities inside the parentheses to isolate m1 � m2 yields the
equivalent probability statement

P X � Y � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
m

þ s22
n

r
< m1 � m2 <X � Y þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
m

þ s22
n

r !
¼ 1� a

This implies that a 100(1 � a)% CI for m1 � m2 has lower limit x� y� za=2 � sX�Y

and upper limit x� yþ za=2 � sX�Y , where sX�Y is the square-root expression. This

interval is a special case of the general formula ŷ� za=2 � sŷ.
If bothm and n are large, the CLT implies that this interval is valid evenwithout

the assumption of normal populations; in this case, the confidence level is approxi-
mately 100(1 � a)%. Furthermore, use of the sample variances S21 and S22 in the

standardized variable Z yields a valid interval in which s21 and s
2
2 replace s

2
1 and s

2
2.

Provided that m and n are both large, a CI for m1 � m2 with a confidence level
of approximately 100(1 � a)% is

x� y� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
m
þ s22

n

r

Table 10.2 Summary results without poor performers

Group Sample Size Sample Mean Sample SD

Control 61 29.59 5.005

Experimental 76 29.88 4.950
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where – gives the lower limit and + the upper limit of the interval. An upper

or lower confidence bound can also be calculated by retaining the appropriate

sign (+ or �) and replacing za/2 by za.

Our standard rule of thumb for characterizing sample sizes as large is m > 40 and

n > 40.

Example 10.5 For many calculus instructors it seems that students taking Calculus I in the fall

semester are better prepared than are the students taking it in the spring. If so, it

would be nice to have some measure of the difference. We use data from a study of

the influence of various predictors on calculus performance, “Factors Affecting

Achievement in the First Course in Calculus” (J. Exper. Educ.,1984: 136–140).
Here are the ACT mathematics scores for the fall and spring students:

Fall

27 29 30 34 29 30 29 28 28 31 25 34 27

28 31 26 24 30 25 25 27 27 28 27 27 27

26 33 27 26 35 27 32 30 27 30 30 28 28

30 26 31 28 26 23 28 31 28 33 24 32 20

28 34 33 30 29 16 30 30 26 29 26 27 26

25 31 18 29 29 30 29 29 30 33 29 29 27

28 28

Spring

29 26 25 24 14 31 25 33 27 30 27 29 26

27 29 31 25 28 26 23 28 27 27 19 28 25

23 20 34 25 33 30 26 19 18 25 17 26 24

29 20 27 26 26 27 20 28 26 27 24 28 28

30 27 27 27 14 25 27 32 35 13 28 25 29

25 19 27 30 15 28 27 28 32

Figure 10.2 shows a graph from Systat combining a boxplot and dotplot.
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Figure 10.2 Boxplot/dotplot for fall and spring ACT mathematics scores
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It is evident that there are more high scorers in the fall and more low scorers

in the spring. Table 10.3 summarizes the data.

Let’s now calculate a confidence interval for the difference between true

average fall ACT score and true average spring ACT score, using a confidence

level of 95%:

28:25� 25:88� ð1:96Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:252

80
þ 4:592

74

s
¼ 2:37� ð1:96Þð:6456Þ

¼ 2:37� 1:265 ¼ ð1:10; 3:64Þ
That is, with 95% confidence, 1.10 < m1 � m2 < 3.64. We can therefore be highly

confident that the true fall average exceeds the true spring average by between 1.10

and 3.64. It makes sense that the fall average should be higher, because students

who were less prepared in the fall (as judged by an algebra placement test) were

required to take a fall semester college algebra course before taking Calculus I in

the spring. ■

If the variances s21 and s22 are at least approximately known and the investi-

gator uses equal sample sizes, then the sample size n for each sample that yields a

100(1 � a)% interval of width w is

n ¼ 4z2a=2ðs21 þ s22Þ
w2

which will generally have to be rounded up to an integer.

Exercises Section 10.1 (1–19)

1. An article in the November 1983 Consumer
Reports compared various types of batteries. The

average lifetimes of Duracell Alkaline AA batteries

and Eveready Energizer Alkaline AA batteries

were given as 4.1 h and 4.5 h, respectively. Sup-

pose these are the population average lifetimes.

a. Let X be the sample average lifetime of 100 Dur-

acell batteries and Y be the sample average life-

time of 100 Eveready batteries. What is the mean

value of X � Y (i.e., where is the distribution of

X � Y centered)? How does your answer depend

on the specified sample sizes?

b. Suppose the population standard deviations of

lifetime are 1.8 h for Duracell batteries and

2.0 h for Eveready batteries. With the sample

sizes given in part (a), what is the variance of

the statistic X � Y, and what is its standard

deviation?

c. For the sample sizes given in part (a), draw a

picture of the approximate distribution curve of

X � Y (include a measurement scale on the

Table 10.3 Summary results for Example 10.5

Group Sample Size Sample Mean Sample SD

Fall 80 28.25 3.25

Spring 74 25.88 4.59
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horizontal axis). Would the shape of the curve

necessarily be the same for sample sizes of

10 batteries of each type? Explain.

2. Let m1 and m2 denote true average tread lives for

two competing brands of size P205/65R15 radial

tires. Test H0: m1 � m2 ¼ 0 versus Ha: m1 �
m2 6¼ 0 at level .05 using the following data:

m ¼ 45, x ¼ 42; 500, s1 ¼ 2200, n ¼ 45,

y ¼ 40; 400, and s2 ¼ 1900.

3. Let m1 denote true average tread life for a premium

brand of P205/65R15 radial tire and let m2 denote
the true average tread life for an economy brand of

the same size. Test H0: m1� m2 ¼ 5000 versus Ha:

m1 � m2 > 5000 at level .01 using the following

data: m ¼ 45, x ¼ 42; 500, s1 ¼ 2200, n ¼ 45,

y ¼ 36; 800, and s2 ¼ 1500.

4. a. Use the data of Exercise 2 to compute a 95% CI

for m1 � m2. Does the resulting interval suggest
that m1 � m2 has been precisely estimated?

b. Use the data of Exercise 3 to compute a 95%

upper confidence bound for m1 � m2.

5. Persons having Raynaud’s syndrome are apt to

suffer a sudden impairment of blood circulation

in fingers and toes. In an experiment to study the

extent of this impairment, each subject immersed

a forefinger in water and the resulting heat output

(cal/cm2/min) was measured. Form ¼ 10 subjects

with the syndrome, the average heat output was

x ¼ :64, and for n ¼ 10 nonsufferers, the average

output was 2.05. Let m1 and m2 denote the true

average heat outputs for the two types of subjects.

Assume that the two distributions of heat output

are normal with s1 ¼ .2 and s2 ¼ .4.

a. Consider testing H0: m1 � m2 ¼ �1.0 versus

Ha: m1 � m2 < �1.0 at level .01. Describe in

words what Ha says, and then carry out the test.

b. Compute the P-value for the value of Z
obtained in part (a).

c. What is the probability of a type II error when

the actual difference between m1 and m2 is m1 �
m2 ¼ �1.2?

d. Assuming that m ¼ n, what sample sizes are

required to ensure that b ¼ .1 when m1 �
m2 ¼ �1.2?

6. An experiment to compare the tension bond

strength of polymer latexmodifiedmortar (Portland

cement mortar to which polymer latex emulsions

have been added during mixing) to that of unmodi-

fied mortar resulted in x ¼ 18:12 kgf=cm2 for the

modified mortar (m ¼ 40) and y ¼ 16:87 kgf=cm2

for the unmodified mortar (n ¼ 32). Let m1 and

m2 be the true average tension bond strengths for

the modified and unmodified mortars, respectively.

Assume that the bond strength distributions are both

normal.

a. Assuming that s1 ¼ 1.6 and s2 ¼ 1.4, test H0:

m1� m2 ¼ 0 versus Ha: m1� m2 > 0 at level .01.

b. Compute the probability of a type II error for

the test of part (a) when m1 � m2 ¼ 1.

c. Suppose the investigator decided to use a level

.05 test and wished b ¼ .10 when m1� m2 ¼ 1.

If m ¼ 40, what value of n is necessary?

d. How would the analysis and conclusion of part

(a) change if s1 and s2 were unknown but

s1 ¼ 1.6 and s2 ¼ 1.4?

7. Are male college students more easily bored than

their female counterparts? This question was exam-

ined in the article “Boredom in Young Adults—

Gender and Cultural Comparisons” (J. Cross-Cult.
Psych., 1991: 209–223). The authors administered

a scale called the Boredom Proneness Scale to 97

male and 148 female U.S. college students. Does

the accompanying data support the research hypoth-

esis that the mean Boredom Proneness Rating is

higher for men than for women? Test the appropri-

ate hypotheses using a .05 significance level.

Gender
Sample
Size

Sample
Mean

Sample
SD

Male 97 10.40 4.83

Female 148 9.26 4.68

8. Is touching by a coworker sexual harassment? This

question was included on a survey given to federal

employees, who responded on a scale of 1–5, with

1 meaning a strong negative and 5 indicating a

strong yes. The table summarizes the results.

Gender
Sample
Size

Sample
Mean

Sample
SD

Female 4343 4.6056 .8659

Male 3903 4.1709 1.2157

Of course, with 1–5 being the only possible

values, the normal distribution does not apply

here, but the sample sizes are sufficient that it

does not matter. Obtain a two-sided confidence

interval for the difference in population means.

Does your interval suggest that females are more

likely than males to regard touching as harassment?

Explain your reasoning.
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9. The article “Evaluation of a Ventilation Strategy

to Prevent Barotrauma in Patients at High Risk for

Acute Respiratory Distress Syndrome” (New
Engl. J. Med., 1998: 355–358) reported on an

experiment in which 120 patients with similar

clinical features were randomly divided into a

control group and a treatment group, each consist-

ing of 60 patients. The sample mean ICU stay

(days) and sample standard deviation for the treat-

ment group were 19.9 and 39.1, respectively,

whereas these values for the control group were

13.7 and 15.8.

a. Calculate a point estimate for the difference

between true average ICU stay for the treat-

ment and control groups. Does this estimate

suggest that there is a significant difference

between true average stays under the two

conditions?

b. Answer the question posed in part (a) by

carrying out a formal test of hypotheses. Is

the result different from what you conjectured

in part (a)?

c. Does it appear that ICU stay for patients given

the ventilation treatment is normally distri-

buted? Explain your reasoning.

d. Estimate true average length of stay for

patients given the ventilation treatment in a

way that conveys information about precision

and reliability.

10. An experiment was performed to compare the

fracture toughness of high-purity 18 Ni maraging

steel with commercial-purity steel of the same

type (Corrosion Sci., 1971: 723–736). The sample

average toughness was x ¼ 65:6 for m ¼ 32 spe-

cimens of the high-purity steel, whereas for

n ¼ 38 specimens of commercial steel y ¼ 59:8.
Because the high-purity steel is more expensive,

its use for a certain application can be justified

only if its fracture toughness exceeds that of com-

mercial-purity steel by more than 5. Suppose that

both toughness distributions are normal.

a. Assuming that s1 ¼ 1.2 and s2 ¼ 1.1, test the

relevant hypotheses using a ¼ .001.

b. Compute b for the test conducted in part (a)

when m1 � m2 ¼ 6.

11. What impact does fast-food consumption have on

various dietary and health characteristics? The

article “Effects of Fast-Food Consumption on

Energy Intake and Diet Quality among Children

in a National Household Study” (Pediatrics, 2004:
112–118) reported the accompanying summary

data on daily calorie intake both for a sample of

teens who said they did not typically eat fast food

and another sample of teens who said they did

usually eat fast food.

Eat Fast Food
Sample
Size

Sample
Mean

Sample
SD

No 663 2258 1519

Yes 413 2637 1138

a. Estimate the difference between true average

calorie intake for teens who typically don’t eat

fast foods and true average intake for those who

do eat fast foods, and do so in a way that conveys

information about reliability and precision.

b. Does this data provide strong evidence for

concluding that true average calorie intake for

teens who typically eat fast food exceeds true

average intake for those who don’t typically

eat fast food by more than 200 cal/day? Carry

out a test at significance level .05 based on

determining the P-value.

12. A 3-year study was carried out to see if fluoride

toothpaste helps to prevent cavities (“Clinical

Testing of Fluoride and non-Fluoride Containing

Dentifrices in Hounslow School Children,” British
Dental J., Feb., 1971: 154–158). The dependent

variable was the DMFS increment, the number of

new Decayed, Missing, and Filled Surfaces. The

table gives summary data.

Group
Sample
Size

Sample
Mean

Sample
SD

Control 289 12.83 8.31

Fluoride 260 9.78 7.51

Calculate and interpret a 99% confidence interval

for the difference between true means. Is fluoride

toothpaste beneficial?

13. A study seeks to compare hospitals based on the

performance of their intensive care units. The

dependent variable is the mortality ratio, the ratio

of the number of deaths over the predicted number

of deaths based on the condition of the patients. The

comparison will be between hospitals with nurse

staffing problems and hospitals without such pro-

blems. Assume, based on past experience, that the

standard deviation of the mortality ratio will be

around .2 in both types of hospital. How many of

each type of hospital should be included in the study

in order to have both the type I and type II error

probabilities be .05, if the true difference of mean

mortality ratio for the two types of hospital is .2?

If we conclude that hospitals with nurse staffing

problems have a higher mortality ratio, does this

imply a causal relationship? Explain.
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14. The level of monoamine oxidase (MAO) activity

in blood platelets (nm/mg protein/h) was deter-

mined for each individual in a sample of 43

chronic schizophrenics, resulting in x ¼ 2:69 and

s1 ¼ 2.30, as well as for 45 normal subjects,

resulting in y ¼ 6:35 and s2 ¼ 4.03. Does this

data strongly suggest that true average MAO

activity for normal subjects is more than twice

the activity level for schizophrenics? Derive a

test procedure and carry out the test using

a ¼ .01. [Hint: H0 and Ha here have a different

form from the three standard cases. Let m1 and

m2 refer to true average MAO activity for schizo-

phrenics and normal subjects, respectively, and

consider the parameter y ¼ 2m1 � m2. Write H0

and Ha in terms of y, estimate y, and derive ŝŷ
(“Reduced Monoamine Oxidase Activity in Blood

Platelets from Schizophrenic Patients,” Nature,
July 28, 1972: 225–226).]

15. a. Show for the upper-tailed test with s1 and

s2 known that as either m or n increases, b
decreases when m1 � m2 > D0.

b. For the case of equal sample sizes (m ¼ n)
and fixed a, what happens to the necessary

sample size n as b is decreased, where b is

the desired type II error probability at a fixed

alternative?

16. To decide whether chemistry or physics majors

have higher starting salaries in industry, n B.S.

graduates of each major are surveyed, yielding

the following results (in $1000’s):

Major Sample Average Sample SD

Chemistry 41.5 2.5

Physics 41.0 2.5

Calculate the P-value for the appropriate two-

sample z test, assuming that the data was based

on n ¼ 100. Then repeat the calculation for

n ¼ 400. Is the small P-value for n ¼ 400 indica-

tive of a difference that has practical significance?

Would you have been satisfied with just a report

of the P-value? Comment briefly.

17. Much recent research has focused on comparing

business environment cultures across several coun-

tries. The article “Perception of Internal Factors for

Corporate Entrepreneurship: A Comparison of

Canadian and U.S. Managers” (Entrep. Theory
Pract., 1999: 9–24) presented the following

summary data on hours per week managers spent

thinking about new ideas.

Country
Sample
Size

Sample
Mean

Sample
SD

U.S. 174 5.8 6.0

Canada 353 5.1 4.6

Does it appear that true average time per week that

U.S. managers spend thinking about new ideas

differs from that for Canadian managers? State

and test the relevant hypotheses.

18. Credit card spending and resulting debt pose very

real threats to consumers in general, and the poten-

tial for abuse is especially serious among college

students. It has been estimated that about 2
3
of all

college students possess credit cards, and 80% of

these students received cards during their first year

of college. The article “College Students’ Credit

Card Debt and the Role of Parental Involvement:

Implications for Public Policy” (J. Public Policy
Mark., 2001: 105–113) reported that for 209

students whose parents had no involvement what-

soever in credit card acquisition or payments, the

sample mean total account balance was $421 with

a sample standard deviation of $686, whereas for

75 students whose parents assisted with payments

even though they were under no legal obligation to

do so, the sample mean and sample standard devia-

tion were $666 and $1048, respectively. All sam-

pled students were at most 21 years of age.

a. Do you think it is plausible that the distribu-

tions of total debt for these two types of stu-

dents are normal? Why or why not? Is it

necessary to assume normality in order to com-

pare the two groups using an inferential proce-

dure described in this chapter? Explain.

b. Estimate the true average difference between

total balance for noninvolvement students and

postacquisition-involvement students using a

method that incorporates precision into the

estimate. Then interpret the estimate. [Note:
Data was also reported in the article for pre-

acquisition involvement only and for both pre-

and postacquisition involvement.]

19. Returning to the previous exercise, the mean and

standard deviation of the number of credit cards for

the no-involvement group were 2.22 and 1.58,

respectively, whereas the mean and standard devi-

ation for the payment-help group were 2.09 and

1.65, respectively. Does it appear that the true

average number of cards for no-involvement stu-

dents exceeds the average for payment-help stu-

dents? Carry out an appropriate test of significance.
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10.2 The Two-Sample t Test
and Confidence Interval
In practice, it is virtually always the case that the values of the population variances

are unknown. In the previous section, we illustrated for large sample sizes the use

of a test procedure and CI in which the sample variances were used in place of

the population variances. In fact, for large samples, the CLT allows us to use these

methods even when the two populations of interest are not normal.

In many problems, though, at least one sample size is small and the popula-

tion variances have unknown values. In the absence of the CLT, we proceed by

making specific assumptions about the underlying population distributions. The use

of inferential procedures that follow from these assumptions is then restricted to

situations in which the assumptions are at least approximately satisfied.

ASSUMPTIONS Both populations are normal, so that X1, X2, . . . , Xm is a random sample from

a normal distribution and so is Y1, . . . , Yn (with the X’s and Y’s independent
of each other). The plausibility of these assumptions can be judged by

constructing a normal probability plot of the xi’s and another of the yi’s.

The test statistic and confidence interval formula are based on the same standar-

dized variable developed in Section 10.1, but the relevant distribution is now t
rather than z.

THEOREM When the population distributions are both normal, the standardized variable

T ¼ X � Y � ðm1 � m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
m

þ S22
n

r ð10:2Þ

has approximately a t distribution with df n estimated from the data by

n ¼
s21
m
þ s22

n

� �2

ðs21=mÞ2
m� 1

þ ðs22=nÞ2
n� 1

¼
ðse1Þ2 þ ðse2Þ2
h i2
ðse1Þ4
m� 1

þ ðse2Þ4
n� 1

where

se1 ¼ s1ffiffiffiffi
m

p se2 ¼ s2ffiffiffi
n

p

(round n down to the nearest integer).
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We can give some justification for the theorem. Dividing numerator and

denominator of (10.2) by the standard deviation of the numerator, we get

½X � Y � ðm1 � m2Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
m

þ s22
n

r,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
m

þ S22
n

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
m

þ s22
n

r,

The numerator of this ratio is a standard normal rv because it results from standar-

dizing X � Y, which is normally distributed because it is the difference of indepen-

dent normal rv’s. The denominator is independent of the numerator because the

sample variances are independent of the sample means. However, in order for

(10.2) to be a t random variable, the denominator needs to be the square root of a

chi-squared rv over its degrees of freedom, and unfortunately this is not generally

true. However, we can try to write the square of the denominator

½S21=mþ S22=n�=½s21=mþ s22=n� approximately as a chi-squared rv W with n degrees
of freedom, divided by n, so

S21
m

þ S22
n
¼ s21

m
þ s22

n

� �
W

n

To determine n we equate the means and variances of both sides, with the help

of E(W) ¼ n, V(W) ¼ 2n, ðm� 1ÞS21=s21 � w2m�1, ðn� 1ÞS22=s22 � w2n�1, from

Section 6.4. It follows that EðS21Þ ¼ s21, VðS21Þ ¼ 2 s41= m� 1ð Þ, and similarly for

S22. The mean of the left-hand side is

E
S21
m

þ S22
n

� �
¼ s21

m
þ s22

n

which is also the mean of the right-hand side, so the means are equal. The variance

of the left-hand side is

V
S21
m

þ S22
n

� �
¼ 2s41

ðm� 1Þm2
þ 2s42
ðn� 1Þn2

and the variance of the right-hand side is

V
s21
m

þ s22
n

� �
W

n

� �
¼ s21

m
þ s22

n

� �2

� 2n
n2

¼ s21
m

þ s22
n

� �2

� 2
n

We then equate the two, substituting sample variances for the unknown population

variances, and solve for n. This gives the n of the theorem. ■

Manipulating T in a probability statement to isolate m1 � m2 gives a CI,

whereas a test statistic results from replacing m1 � m2 by the null value D0.

TWO-SAMPLE

t PROCEDURES

The two-sample t confidence interval for m1 � m2 with confidence level

100(1 � a)% is then

x� y� ta=2;n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
m
þ s22

n

r

A one-sided confidence bound can be calculated as described earlier.

500 CHAPTER 10 Inferences Based on Two Samples



The two-sample t test for testing H0: m1 � m2 ¼ D0 is as follows:

Test statistic value: t ¼ x� y� D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
m
þ s22

n

r

Alternative Hypothesis Rejection Region for Approximate Level a Test

Ha: m1 � m2 > D0 t � ta,n (upper-tailed test)

Ha: m1 � m2 < D0 t � �ta,n (lower-tailed test)

Ha: m1 � m2 6¼ D0 either t � ta/2,n or t � �ta/2,n (two-tailed test)

AP-value can be computed as described in Section 9.4 for the one-sample t test.

Example 10.6 Which way of dispensing champagne, the traditional vertical method or a tilted

“beer-like” pour, preserves more of the tiny gas bubbles that improve flavor and

aroma? The following data was reported in the article “On the Losses of Dissolved

CO2 during Champagne Serving” (J. Agr. Food Chem., 2010: 8768–6775).

Temperature (	C) Type of Pour n Mean (g/L) SD

18 Traditional 4 4.0 .5

18 Slanted 4 3.7 .3

12 Traditional 4 3.3 .2

12 Slanted 4 2.0 .3

Assuming that the sampled distributions are normal, let’s calculate confidence

intervals for the difference between true average dissolved CO2 loss for the

traditional pour and that for the slanted pour at each of the two temperatures.

For the 18	C temperature, the number of degrees of freedom for the interval is

df ¼
:52

4
þ :32

4

� �2

ð:52=4Þ2
3

þ ð:32=4Þ2
3

¼ :007225

:00147083
¼ 4:91

Rounding down, the CI will be based on 4 df. For a confidence level of 99%,

we need t.005,4 ¼ 4.604. The desired interval is

4:0� 3:7� ð4:604Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:52

4
þ :32

4

s
¼ :3� ð4:604Þð:2915Þ ¼ :3� 1:3 ¼ ð�1:0; 1:6Þ

Thus we can be highly confident that � 1:0< m1 � m2 < 1:6, where m1 and
m2 are true average losses for the traditional and slant methods, respectively. Notice

that this CI contains 0, so at the 99% confidence level, it is plausible that

m1 � m2 ¼ 0, that is, that m1 ¼ m2.
The df formula for the 12	C comparison yields df ¼ .00105625/

.00020208 ¼ 5.23, necessitating the use of t.005,5 ¼ 4.032 for a 99% CI. The result-

ing interval is (.6, 2.0). Thus 0 is not a plausible value for this difference. It appears

from the CI that the true average loss when the slant method is used is smaller than

that when the traditional method is used, so that the slant method is better at this

temperature. This in fact was the conclusion reported in the popular media. ■
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Example 10.7 The deterioration of many municipal pipeline networks across the country is a

growing concern. One technology proposed for pipeline rehabilitation uses a

flexible liner threaded through existing pipe. The article “Effect of Welding on a

High-Density Polyethylene Liner” (J. Mater. Civil Eng., 1996: 94–100) reported
the following data on tensile strength (psi) of liner specimens both when a certain

fusion process was used and when this process was not used.

No fusion 2748 2700 2655 2822 2511

3149 3257 3213 3220 2753

m ¼ 10 x ¼ 2902:8 s1 ¼ 277.3

Fused 3027 3356 3359 3297 3125 2910 2889 2902

n ¼ 8 y ¼ 3108:1 s2 ¼ 205.9

Figure 10.3 shows normal probability plots from MINITAB. The linear pattern in

each plot supports the assumption that the tensile strength distributions under the

two conditions are both normal.

The authors of the article stated that the fusion process increased the average

tensile strength. The message from the comparative boxplot of Figure 10.4 is not all

that clear. Let’s carry out a test of hypotheses to see whether the data supports this

conclusion.

1. Let m1 be the true average tensile strength of specimens when the no-fusion

treatment is used and m2 denote the true average tensile strength when the fusion
treatment is used.

2. H0: m1 � m2 ¼ 0 (no difference in the true average tensile strengths for the two

treatments)

3. Ha: m1 � m2 < 0 (true average tensile strength for the no-fusion treatment is less

than that for the fusion treatment, so that the investigators’

conclusion is correct)

Figure 10.3 Normal probability plots from MINITAB for the tensile strength data
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4. The null value is D0 ¼ 0, so the test statistic is

t ¼ x� yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
m
þ s22

n

r

5. We now compute both the test statistic value and the df for the test:

t ¼ 2902:8� 3108:1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
277:32

10
þ 205:92

8

r ¼ �205:3

113:97
¼ �1:8

Using s21=m ¼ 7689:529 and s22=n ¼ 5299:351,

n ¼ 7689:529þ 5299:351ð Þ2
ð7689:529Þ2

9
þ ð5299:351Þ2

7

¼ 168;711;004

10;581;747
¼ 15:94

so the test will be based on 15 df.

6. Appendix Table A.7 shows that the area under the 15 df t curve to the right of 1.8
is .046, so the P-value for a lower-tailed test is also .046. The following

MINITAB output summarizes all the computations:

Twosample T for nofusion vs. fused

N Mean StDev SE Mean
No fusion 10 2903 277 88
Fused 8 3108 206 73

95% C.I. for mu nofusion-mu fused: (�488, 38)
T-Test mu nofusion ¼ mu fused (vs <): T ¼ �1.80 P ¼ 0.046 DF ¼ 15

7. Using a significance level of .05, we can barely reject the null hypothesis in

favor of the alternative hypothesis, confirming the conclusion stated in the

article. However, someone demanding more compelling evidence might select

a ¼ .01, a level for which H0 cannot be rejected.

270026002500

Type 1

Type 2

32003100300029002800 3300 3400

Strength

Figure 10.4 A comparative boxplot of the tensile strength data

10.2 The Two-Sample t Test and Confidence Interval 503



If the question posed had been whether fusing increased true average strength by more

than 100 psi, then the relevant hypotheses would have been H0: m1 � m2 ¼ �100

versus Ha: m1 � m2 < �100; that is, the null value would have been D0 ¼ �100. ■

Pooled t Procedures

Alternatives to the two-sample t procedures just described result from assuming not

only that the two population distributions are normal but also that they have equal

variances (s21 ¼ s22). That is, the two population distribution curves are assumed

normal with equal spreads, the only possible difference between them being where

they are centered.

Lets2 denote the common population variance. Then standardizingX � Y gives

Z ¼ X � Y � ðm1 � m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

m
þ s2

n

r ¼ X � Y � ðm1 � m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1

m
þ 1

n

� �s

which has a standard normal distribution. Before this variable can be used as a basis

for making inferences about m1 � m2, the common variance must be estimated from

sample data. One estimator of s2 is S21, the variance of them observations in the first

sample, and another is S22, the variance of the second sample. Intuitively, a better

estimator than either individual sample variance results from combining the two

sample variances. A first thought might be to use ðS21 þ S22Þ=2, the ordinary average
of the two sample variances. However, if m > n, then the first sample contains

more information about s2 than does the second sample, and an analogous com-

ment applies if m < n. The following weighted average of the two sample var-

iances, called the pooled (i.e., combined) estimator of s2, adjusts for any

difference between the two sample sizes:

S2p ¼
m� 1

mþ n� 2
S21 þ

n� 1

mþ n� 2
S22

We can show that S2p is proportional to a chi-squared rv with m + n � 2 df.

Recall that ðm� 1ÞS21 s21
� � w2m�1; ðn� 1ÞS22 s22

� � w2n�1. Furthermore, S21
and S22 are independent, so with s21 ¼ s22 ¼ s2,

ðmþ n� 2ÞS2p
s2

¼ m� 1

s2
S21 þ

n� 1

s2
S22

is the sum of two independent chi-squared rv’s withm� 1 and n� 1 df, respectively,

so the sum is a chi-squared rv with (m� 1) + (n� 1) ¼ m + n� 2 df. Furthermore,

it is also independent of X and Y because the sample means are independent of

the sample variances. Now consider the ratio

X � Y � ðm1 � m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 1=mþ 1=nð Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ n� 2ÞS2p

s2
� 1

mþ n� 2

s ¼ X � Y � ðm1 � m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2p

1

m
þ 1

n

� �s :

On the left is the ratio of a standard normal rv to the square root of an

independent chi-squared rv over its degrees of freedom, m + n � 2, so the ratio
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has the t distribution withm + n� 2 degrees of freedom. We see therefore that if S2p
replaces s2 in the expression for Z, the resulting standardized variable has a

t distribution. In the same way that earlier standardized variables were used as

a basis for deriving confidence intervals and test procedures, this t variable imme-

diately leads to the pooled t confidence interval for estimating m1 � m2 and the

pooled t test for testing hypotheses about a difference between means.

In the past, many statisticians recommended these pooled t procedures over
the two-sample t procedures. The pooled t test, for example, can be derived from

the likelihood ratio principle, whereas the two-sample t test is not a likelihood

ratio test. Furthermore, the significance level for the pooled t test is exact, whereas
it is only approximate for the two-sample t test. However, recent research has

shown that although the pooled t test does outperform the two-sample t test by a bit
(smaller b’s for the same a) when s21 ¼ s22, the former test can easily lead to

erroneous conclusions if applied when the variances are different. Analogous

comments apply to the behavior of the two confidence intervals. That is, the pooled

t procedures are not robust to violations of the equal variance assumption.

It has been suggested that one could carry out a preliminary test of H0:

s21 ¼ s22 and use a pooled t procedure if this null hypothesis is not rejected.

Unfortunately, the usual “F test” of equal variances (Section 10.5) is quite sensitive

to the assumption of normal population distributions, much more so than t proce-
dures. We therefore recommend the conservative approach of using two-sample

t procedures unless there is really compelling evidence for doing otherwise,

particularly when the two sample sizes are different.

Type II Error Probabilities

Determining type II error probabilities (or equivalently, power ¼ 1 � b) for the
two-sample t test is complicated. There does not appear to be any simple way to use

the b curves of Appendix Table A.16. The most recent version of MINITAB

(Version 16) will calculate power for the pooled t test but not for the two-sample

t test. However, the UCLA Statistics Department homepage (http://www.stat.ucla.

edu) permits access to a power calculator that will do this. For example, we

specified m ¼ 10, n ¼ 8, s1 ¼ 300, s2 ¼ 225 (these are the sample sizes for

Example 10.7, whose sample standard deviations are somewhat smaller than

these values of s1 and s2) and asked for the power of a two-tailed level .05 test

of H0: m1 � m2 ¼ 0 when m1 � m2 ¼ 100, 250, and 500. The resulting values of the

power were .1089, .4609, and .9635 (corresponding to b ¼ .89, .54, and .04),

respectively. In general, b will decrease as the sample sizes increase, as a increases,
and as m1 � m2 moves farther from 0. The software will also calculate sample sizes

necessary to obtain a specified value of power for a particular value of m1 � m2.

Exercises Section 10.2 (20–38)

20. Determine the number of degrees of freedom

for the two-sample t test or CI in each of the

following situations:

a. m ¼ 10, n ¼ 10, s1 ¼ 5.0, s2 ¼ 6.0

b. m ¼ 10, n ¼ 15, s1 ¼ 5.0, s2 ¼ 6.0

c. m ¼ 10, n ¼ 15, s1 ¼ 2.0, s2 ¼ 6.0

d. m ¼ 12, n ¼ 24, s1 ¼ 5.0, s2 ¼ 6.0

21. Expert and amateur pianists were compared in a

study “Maintaining Excellence: Deliberate Practice

and Elite Performance in Young and Older

Pianists” (J. Exp. Psychol. Gen., 1996: 331–340).
The researchers used a keyboard that allowed mea-

surement of the force applied by a pianist in striking

a key. All 48 pianists played Prelude Number 1
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from Bach’s Well-Tempered Clavier. For 24 ama-

teur pianists the mean force applied was 74.5 with

standard deviation 6.29, and for 24 expert pianists

the mean force was 81.8 with standard deviation

8.64.Do expert pianists hit the keys harder?Assum-

ing normally distributed data, state and test the

relevant hypotheses, and interpret the results.

22. The article “Supervised Exercise Versus Non-

Supervised Exercise for Reducing Weight in

Obese Adults” (J. Sport. Med. Phys. Fit., 2009:
85–90) reported on an investigation in which par-

ticipants were randomly assigned either to a

supervised exercise program or a control group.

Those in the control group were told only that they

should take measures to lose weight. After 4

months, the sample mean decrease in body fat

for the 17 individuals in the experimental group

was 6.2 kg with a sample standard deviation of

4.5 kg, whereas the sample mean and sample

standard deviation for the 17 people in the control

group were 1.7 kg and 3.1 kg, respectively.

Assume normality of the two body fat loss distri-

butions (as did the investigators).

a. Calculate a 99% lower prediction bound for the

body fat loss of a single randomly selected

individual subjected to the supervised exercise

program. Can you be highly confident that such

an individual will actually lose body fat?

b. Does it appear that true average decrease in

body fat is more than 2 kg larger for the exper-

imental condition than for the control condi-

tion? Carry out a test of appropriate hypotheses

using a significance level of .01

23. Fusible interlinings are being used with increasing

frequency to support outer fabrics and improve the

shape and drape of various pieces of clothing. The

article “Compatibility of Outer and Fusible Inter-

lining Fabrics in Tailored Garments” (Textile Res.
J., 1997: 137–142) gave the accompanying data on

extensibility (%) at 100 g/cm for both high-quality

fabric (H) and poor-quality fabric (P) specimens.

H 1.2 .9 .7 1.0 1.7 1.7 1.1 .9 1.7

1.9 1.3 2.1 1.6 1.8 1.4 1.3 1.9 1.6

.8 2.0 1.7 1.6 2.3 2.0

P 1.6 1.5 1.1 2.1 1.5 1.3 1.0 2.6

a. Construct normal probability plots to verify the

plausibility of both samples having been

selected from normal population distributions.

b. Construct a comparative boxplot. Does it sug-

gest that there is a difference between true

average extensibility for high-quality fabric

specimens and that for poor-quality specimens?

c. The sample mean and standard deviation for

the high-quality sample are 1.508 and .444,

respectively, and those for the poor-quality

sample are 1.588 and .530. Use the two-sample

t test to decide whether true average extensibil-
ity differs for the two types of fabric.

24. Low-back pain (LBP) is a serious health problem

in many industrial settings. The article “Isody-

namic Evaluation of Trunk Muscles and Low-

Back Pain Among Workers in a Steel Factory”

(Ergonomics, 1995: 2107–2117) reported the

accompanying summary data on lateral range of

motion (degrees) for a sample of workers without

a history of LBP and another sample with a history

of this malady.

Condition
Sample
Size

Sample
Mean

Sample
SD

No LBP 28 91.5 5.5

LBP 31 88.3 7.8

Calculate a 90% confidence interval for the dif-

ference between population mean extent of lateral

motion for the two conditions. Does the interval

suggest that population mean lateral motion dif-

fers for the two conditions? Is the message differ-

ent if we use a confidence level of 95%?

25. Research has shown that good hip range of motion

and strength in throwing athletes results in

improved performance and decreased body stress.

The article “Functional Hip Characteristics of

Baseball Pitchers and Position Players” (Am. J.
Sport. Med., 2010: 383–388) reported on a study

involving samples of 40 professional pitchers and

40 professional position players. For the pitchers,

the sample mean trail leg total arc of motion

(degrees) was 75.6 with a sample standard devia-

tion of 5.9, whereas the sample mean and sample

standard deviation for position players were 79.6

and 7.6, respectively. Assuming normality, test

appropriate hypotheses to decide whether true

average range of motion for the pitchers is less

than that for the position players (as hypothesized

by the investigators). In reaching your conclusion,

what type of error might you have committed?

26. Tennis elbow is thought to be aggravated by

the impact experienced when hitting the ball.

The article “Forces on the Hand in the Tennis

One-Handed Backhand” (Int. J. Sport Biomech.,
1991: 282–292) reported the force (Newtons) on

the hand just after impact on a one-handed
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backhand drive for six advanced players and for

eight intermediate players.

Type of Player
Sample
Size

Sample
Mean

Sample
SD

1. Advanced 6 40.3 11.3

2. Intermediate 8 21.4 8.3

In their analysis of the data, the authors assumed

that both force distributions were normal. Calcu-

late a 95% CI for the difference between true

average force for advanced players (m1) and

true average force for intermediate players (m2).
Does your interval provide compelling evidence

for concluding that the two m’s are different?

Would you have reached the same conclusion

by calculating a CI for m2 � m1 (i.e., by reversing
the 1 and 2 labels on the two types of players)?

Explain.

27. As the population ages, there is increasing con-

cern about accident-related injuries to the elderly.

The article “Age and Gender Differences in

Single-Step Recovery from a Forward Fall”

(J Gerontol A Biol Sci Med Sci., 1999 54(1):

M44–50) reported on an experiment in which the

maximum lean angle—the farthest a subject

is able to lean and still recover in one step—

was determined for both a sample of younger

females (21–29 years) and a sample of older

females (67–81 years). The following observations

are consistent with summary data given in the

article:

YF: 29, 34, 33, 27, 28, 32, 31, 34, 32, 27

OF: 18, 15, 23, 13, 12

Does the data suggest that true average maximum

lean angle for older females is more than 10

degrees smaller than it is for younger females?

State and test the relevant hypotheses at signifi-

cance level .10 by obtaining a P-value.

28. The article “Effect of Internal Gas Pressure on the

Compression Strength of Beverage Cans and

Plastic Bottles” (J. Testing Eval., 1993: 129–131)
includes the accompanying data on compression

strength (lb) for a sample of 12-oz aluminum

cans filled with strawberry drink and another sam-

ple filled with cola. Does the data suggest that the

extra carbonation of cola results in a higher average

compression strength? Base your answer on a

P-value. What assumptions are necessary for your

analysis?

Beverage
Sample
Size

Sample
Mean

Sample
SD

Strawberry drink 15 540 21

Cola 15 554 15

29. Which foams more when you pour it, Coke or

Pepsi? Here are measurements by Diane Warfield

on the foam volume (mL) after pouring a 12-oz

can of Coke, based on a sample of 12 cans:

312.2 292.6 331.7 355.1 362.9 331.7

292.6 245.8 280.9 320.0 273.1 288.7

and here are measurements for Pepsi, based on a

sample of 12 cans:

148.3 210.7 152.2 117.1 89.7 140.5

128.8 167.8 156.1 136.6 124.9 136.6

a. Verify graphically that normality is an appro-

priate assumption.

b. Calculate a 99% confidence interval for the

population difference in mean volumes.

c. Does the upper limit of your interval in (b) give

a 99% lower confidence bound for the differ-

ence between the two m’s? If not, calculate

such a bound and interpret it in terms of the

relationship between the foam volumes of

Coke and Pepsi.

d. Summarize in a sentence what you have learned

about the foam volumes of Coke and Pepsi.

30. The accompanying data set gives expenses

(including tuition and fees but not room and

board) for 16 colleges from the 2008 edition of

U.S. News and World Report’s America’s Best
Colleges, which lists 248 national liberal arts col-

leges in four tiers. The first two tiers are combined

in a list of 125 colleges. We drew a random sam-

ple of size 8 from the 62 in the first tier and

another random sample of size 8 from the 63 in

the next tier, excluding non-private colleges.

Tier College Expenses

1 Gettysburg 35760

1 Harvey Mudd 34891

1 Scripps 35850

1 Macalester 33694

1 Hamilton 36860
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1 Kenyon 38140

1 Oberlin 36282

1 Franklin and

Marshall

36480

2 Goucher 31082

2 Randolph-Macon 26830

2 Thomas Aquinas 20400

2 Beloit 30138

2 Austin 21586

2 Ursinus 35160

2 Siena 22685

2 Juniata 28920

a. Construct a comparative boxplot of expenses,

and comment on any interesting features.

b. Obtain a 95% confidence interval for the dif-

ference of population means. Interpret your

result in terms of the additional cost of attend-

ing a more prestigious college. Moving up

from tier 2 to tier 1 raises the cost by roughly

what percentage?

31. The article “Characterization of Bearing Strength

Factors in Pegged Timber Connections” (J. Struct.
Engrg., 1997: 326–332) gave the following sum-

mary data on proportional stress limits for speci-

mens constructed using two different types ofwood:

Type
of Wood

Sample
Size

Sample
Mean

Sample
SD

Red oak 14 8.48 .79

Douglas fir 10 6.65 1.28

Assuming that both samples were selected from

normal distributions, carry out a test of hypotheses

to decide whether the true average proportional

stress limit for red oak joints exceeds that for

Douglas fir joints by more than 1 MPa.

32. According to the article “Fatigue Testing of

Condoms” (Polym. Test., 2009: 567–571), “tests
currently used for condoms are surrogates for the

challenges they face in use,” including a test for

holes, an inflation test, a package seal test, and

tests of dimensions and lubricant quality (all fer-

tile territory for the use of statistical methodo-

logy!). The investigators developed a new test

that adds cyclic strain to a level well below break-

age and determines the number of cycles to break.

The cited article reported that for a sample of 20

natural latex condoms of a certain type, the sample

mean and sample standard deviation of the num-

ber of cycles to break were 4358 and 2218, respec-

tively, whereas a sample of 20 polyisoprene

condoms gave a sample mean and sample standard

deviation of 5805 and 3990, respectively. Is there

strong evidence for concluding that the true aver-

age number of cycles to break for the polyisoprene

condom exceeds that for the natural latex condom

by more than 1000 cycles? [Note: The article pre-
sented the results of hypothesis tests based on the t
distribution; the validity of these depends on

assuming normal population distributions.]

33. Consider the pooled t variable

T ¼ ðX � YÞ � ðm1 � m2Þ
Sp

ffiffiffiffiffiffiffiffiffiffiffiffi
1

m
þ 1

n

r

which has a t distribution with m + n � 2 df when

both population distributions are normal with

s1 ¼ s2 (see the Pooled t Procedures subsection
for a description of Sp).
a. Use this t variable to obtain a pooled t confi-

dence interval formula for m1 � m2.
b. A sample of ultrasonic humidifiers of one par-

ticular brand was selected for which the obser-

vations on maximum output of moisture (oz)

in a controlled chamber were 14.0, 14.3, 12.2,

and 15.1. A sample of the second brand gave

output values 12.1, 13.6, 11.9, and 11.2

(“Multiple Comparisons of Means Using

Simultaneous Confidence Intervals,” J. Qual.
Techn., 1989: 232–41). Use the pooled t for-
mula from part (a) to estimate the difference

between true average outputs for the two

brands with a 95% confidence interval.

c. Estimate the difference between the two m’s
using the two-sample t interval discussed in this
section, and compare it to the interval of part (b).

34. Refer to Exercise 33. Describe the pooled t test for
testing H0: m1 � m2 ¼ 0 when both population

distributions are normal with s1 ¼ s2. Then use

this test procedure to test the hypotheses suggested

in Exercise 32.

35. Exercise 35 from Chapter 9 gave the following

data on amount (oz) of alcohol poured into a short,

wide tumbler glass by a sample of experienced

bartenders: 2.00, 1.78, 2.16, 1.91, 1.70, 1.67,

1.83, 1.48. The cited article also gave summary

data on the amount poured by a different sample

of experienced bartenders into a tall, slender

(highball) glass; the following observations are

consistent with the reported summary data: 1.67,

1.57, 1.64, 1.69, 1.74, 1.75, 1.70, 1.60.
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a. What does a comparative boxplot suggest

about similarities and differences in the data?

b. Carry out a test of hypotheses to decide whether

the true average amount poured is different for

the two types of glasses; be sure to check the

validity of any assumptions necessary to your

analysis, and report a P-value.

36. Is the incidence of head or neck pain among video

display terminal users related to the monitor angle

(degrees from horizontal)? The paper, “An Anal-

ysis of VDT Monitor Placement and Daily Hours

of Use for Female Bifocal Users” (Work, 2003:
77–80), reported the accompanying data. Carry

out an appropriate test of hypotheses (be sure to

include a P-value in your analysis).

Pain
Sample
Size

Sample
Mean

Sample
SD

Yes 32 2.20 3.42

No 40 3.20 2.52

37. The article “Gender Differences in Individuals

with Comorbid Alcohol Dependence and Post-

Traumatic Stress Disorder” (Amer. J. Addiction,
2003: 412–423) reported the accompanying data

on total score on the Obsessive-Compulsive

Drinking Scale (OCSD).

Gender
Sample
Size

Sample
Mean

Sample
SD

Male 44 19.93 7.74

Female 40 16.26 7.58

Formulate hypotheses and carry out an appro-

priate analysis. Does your conclusion depend on

whether a significance level of .05 or .01 was

employed? (The cited paper reported P-value
<. 05; presumably .05 would have been replaced

by .01 if the P-value were really that small).

38. Which factors are relevant to the time a consumer

spends looking at a product on the shelf prior to

selection? The article “Effects of Base Price upon

Search Behavior of Consumers in a Supermarket”

(J. Econ. Psychol., 2003: 637–652) reported the

following data on elapsed time (sec) for fabric

softener purchasers and washing-up liquid purcha-

sers; the former product is significantly more

expensive than the latter. These products were

chosen because they are similar with respect to

allocated shelf space and number of alternative

brands.

Product
Sample
Size

Sample
Mean

Sample
SD

Fabric softener 15 30.47 19.15

Washing-up liquid 19 26.53 15.37

a. What if any assumptions are needed before an

inferential procedure can be used to compare

true average elapsed times?

b. If just the two sample means had been

reported, would they provide persuasive evi-

dence for a significant difference between true

average elapsed times for the two products?

c. Carry out an appropriate test of significance

and state your conclusion.

10.3 Analysis of Paired Data
In Sections 10.1 and 10.2, we considered estimating or testing for a difference

between two means m1 and m2. This was done by utilizing the results of a random

sample X1, X2,. . ., Xm from the distribution with mean m1 and a completely

independent (of the X’s) sample Y1, . . ., Yn from the distribution with mean m2.
That is, either m individuals were selected from population 1 and n different

individuals from population 2, or m individuals (or experimental objects) were

given one treatment and another n individuals were given the other treatment.

In contrast, there are a number of experimental situations in which there is only

one set of n individuals or experimental objects, and two observations are made on

each individual or object, resulting in a natural pairing of values.
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Example 10.8 Trace metals in drinking water affect the flavor, and unusually high concentrations

can pose a health hazard. The article “Trace Metals of South Indian River” (Envir.
Studies, 1982: 62–66) reports on a study in which six river locations were selected

(six experimental objects) and the zinc concentration (mg/L) determined for both

surface water and bottom water at each location. The six pairs of observations are

displayed in the accompanying table. Does the data suggest that true average

concentration in bottom water exceeds that of surface water?

Location

1 2 3 4 5 6

Zinc concentration in bottom water (x) .430 .266 .567 .531 .707 .716

Zinc concentration in surface water (y) .415 .238 .390 .410 .605 .609

Difference .015 .028 .177 .121 .102 .107

Figure 10.5a displays a plot of this data. At first glance, there appears to be

little difference between the x and y samples. From location to location, there is a

great deal of variability in each sample, and it looks as though any differences

between the samples can be attributed to this variability. However, when the

observations are identified by location, as in Figure 10.5b, a different view

emerges. At each location, bottom concentration exceeds surface concentration.

This is confirmed by the fact that all x � y differences (bottom water concentration

– surface water concentration) displayed in the bottom row of the data table are

positive. As we will see, a correct analysis of this data focuses on these differences.

ASSUMPTIONS The data consists of n independently selected pairs (X1, Y1), (X2, Y2), . . . ,
(Xn, Yn), with E(Xi) ¼ m1 and E(Yi) ¼ m2. Let D1 ¼ X1 � Y1, D2 ¼ X2 � Y2,
. . . , Dn ¼ Xn � Yn, so the Di’s are the differences within pairs. Then the Di’s

are assumed to be normally distributed with mean value mD and variance s2D.

We are again interested in hypothesis testing or estimation for the difference

m1 � m2. The denominator of the two-sample t statistic was obtained by first

applying the rule VðX � YÞ ¼ VðXÞ þ VðYÞ However, with paired data, the X and

Y observations within each pair are often not independent, so X and Y are not

independent of each other, and the rule is not valid. We must therefore abandon the

two-sample t procedures and look for an alternative method of analysis.

.2 .3 .4 .5 .6 .7 .8

x
y

Location x
Location y

a

b

2 341 56

562 1 4 3

Figure 10.5 Plot of paired data from Example 10.8: (a) observations not identified

by location; (b) observations identified by location ■
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The Paired t Test

Because different pairs are independent, the Di’s are independent of each other. If

we let D ¼ X � Y, where X and Y are the first and second observations, respec-

tively, within an arbitrary pair, then the expected difference is

mD ¼ E X � Yð Þ ¼ EðXÞ � EðYÞ ¼ m1 � m2

(the rule of expected values used here is valid even when X and Y are dependent).

Thus any hypothesis about m1 � m2 can be phrased as a hypothesis about the mean

difference mD. But since the Di’s constitute a normal random sample (of differ-

ences) with mean mD, hypotheses about mD can be tested using a one-sample t test.
That is, to test hypotheses about m1 � m2 when data is paired, form the differences
D1, D2, . . . , Dn and carry out a one-sample t test (based on n � 1 df) on the
differences.

THE PAIRED
t TEST

Null hypothesis: H0: mD ¼ D0 (where D ¼ X � Y is the difference between

the first and second observations within a

pair, and mD ¼ m1 � m2)
Test statistic value: t ¼ d � D0

sD=
ffiffiffi
n

p (where d and sD are the sample mean and

standard deviation, respectively, of the di’s)

Alternative Hypothesis Rejection Region for Level a Test

Ha: mD > D0 t � ta,n�1

Ha: mD < D0 t � �ta,n�1

Ha: mD 6¼ D0 either t � ta/2,n�1 or t � �ta/2,n�1

A P-value can be calculated as was done for earlier t tests.

Example 10.9 Musculoskeletal neck-and-shoulder disorders are all too common among office

staff who perform repetitive tasks using visual display units. The article “Upper-

Arm Elevation During OfficeWork” (Ergonomics, 1996: 1221–1230) reported on a
study to determine whether more varied work conditions would have any impact on

arm movement. The accompanying data was obtained from a sample of n ¼ 16

subjects. Each observation is the amount of time, expressed as a proportion of total

time observed, during which arm elevation was below 30	. The two measurements

from each subject were obtained 18 months apart. During this period, work condi-

tions were changed, and subjects were allowed to engage in a wider variety of work

tasks. Does the data suggest that true average time during which elevation is below

30	 differs after the change from what it was before the change? This particular

angle is important because in Sweden, where the research was conducted, workers’

compensation regulations assert that arm elevation less than 30	 is not harmful.

Subject 1 2 3 4 5 6 7 8

Before 81 87 86 82 90 86 96 73

After 78 91 78 78 84 67 92 70

Difference 3 �4 8 4 6 19 4 3
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Subject 9 10 11 12 13 14 15 16

Before 74 75 72 80 66 72 56 82

After 58 62 70 58 66 60 65 73

Difference 16 13 2 22 0 12 �9 9

Figure 10.6 shows a normal probability plot of the 16 differences; the pattern

in the plot is quite straight, supporting the normality assumption. A boxplot of these

differences appears in Figure 10.7; the box is located considerably to the right of

zero, suggesting that perhaps mD > 0 (note also that 13 of the 16 differences are

positive and only two are negative).

Let’s now use the recommended sequence of steps to test the appropriate

hypotheses.

1. Let mD denote the true average difference between elevation time before the

change in work conditions and time after the change.

2. H0: mD ¼ 0 (there is no difference between true average time before the change

and true average time after the change)

3. Ha: mD 6¼ 0

2010−10 0

Difference

Figure 10.7 A boxplot of the differences in Example 10.9

Figure 10.6 A normal probability plot fromMINITAB of the differences in Example 10.9
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4. t ¼ d � 0

sD=
ffiffiffi
n

p ¼ d

sD=
ffiffiffi
n

p
5. n ¼ 16, Sdi ¼ 108,

P
d2i ¼ 1746, from which d ¼ 6:75, sD ¼ 8.234, and

t ¼ 6:75

8:234=
ffiffiffiffiffi
16

p ¼ 3:28 
 3:3

6. Appendix Table A.7 shows that the area to the right of 3.3 under the t curve with
15 df is .002. The inequality in Ha implies that a two-tailed test is appropriate, so

the P-value is approximately 2(.002) ¼ .004 (MINITAB gives .0051).

7. Since .004 � .01, the null hypothesis can be rejected at either significance level

.05 or .01. It does appear that the true average difference between times is

something other than zero; that is, true average time after the change is different

from that before the change. Recalling that arm elevation should be kept under

30	, we can conclude that the situation became worse because the amount of

time below 30	 decreased. ■

When the number of pairs is large, the assumption of a normal difference

distribution is not necessary. The CLT validates the resulting z test.

A Confidence Interval for mD
In the same way that the t CI for a single population mean m is based on the

t variable T ¼ ðX � mÞ=ðS= ffiffiffi
n

p Þ, a t confidence interval for mD (¼ m1 � m2) is based
on the fact that

T ¼ D� mD
SD=

ffiffiffi
n

p

has a t distribution with n � 1 df. Manipulation of this t variable, as in previous

derivations of CIs, yields the following 100(1 � a)% CI:

The paired t CI for mD is

d � ta=2;n�1 � sD=
ffiffiffi
n

p

A one-sided confidence bound results from retaining the relevant sign and

replacing ta/2 by ta.

When n is small, the validity of this interval requires that the distribution of

differences be at least approximately normal. For large n, the CLT ensures that the

resulting z interval is valid without any restrictions on the distribution of differences.

Example 10.10 Adding computerized medical images to a database promises to provide great

resources for physicians. However, there are other methods of obtaining such

information, so the issue of efficiency of access needs to be investigated. The article
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“The Comparative Effectiveness of Conventional and Digital Image Libraries”

(J. Audiov. Media Med., 2001: 8–15) reported on an experiment in which 13

computer-proficient medical professionals were timed both while retrieving an

image from a library of slides and while retrieving the same image from a computer

database with a web front end.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13

Slide 30 35 40 25 20 30 35 62 40 51 25 42 33

Digital 25 16 15 15 10 20 7 16 15 13 11 19 19

Difference 5 19 25 10 10 10 28 46 25 38 14 23 14

Let mD denote the true mean difference between slide retrieval time (sec) and digital

retrieval time. Using the paired t confidence interval to estimate mD requires that the

difference distribution be at least approximately normal. The linear pattern of

points in the normal probability plot from MINITAB (Figure 10.8) validates the

normality assumption. (Only 9 points appear because of ties in the differences.)

Relevant summary quantities are Sdi ¼ 267,
P

d2i ¼ 7201, from which

d ¼ 20:5, sD ¼ 11.96. The t critical value required for a 95% confidence level is

t.025,12 ¼ 2.179, and the 95% CI is

d � ta=2;n�1 � sDffiffiffi
n

p ¼ 20:5� 2:179 � 11:96ffiffiffiffiffi
13

p ¼ 20:5� 7:2 ¼ ð13:3; 27:7Þ

Thus we can be highly confident (at the 95% confidence level) that 13.3 < mD
< 27.7. This interval of plausible values is rather wide, a consequence of the sample

standard deviation being large relative to the samplemean. A sample sizemuch larger

than 13 would be required to estimate with substantially more precision. Notice,

however, that 0 lieswell outside the interval, suggesting thatmD > 0; this is confirmed
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.20

.05

.01

5 15 25 35 45

Diff
W-test for Normality
R:                0.9724
P-Value (approx): > 0.1000

Average: 20.5385
StDev: 11.9625
N: 13

.001

Figure 10.8 Normal probability plot of the differences in Example 10.10
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by a formal hypothesis test. It is not hard to show that 0 is outside the 95% CI if and

only if the two-tailed test rejects H0: mD ¼ 0 at the .05 level. We can conclude from

the experiment that computer retrieval appears to be faster on average. ■

Paired Data and Two-Sample t Procedures

Consider using the two-sample t test on paired data. The numerators of the

paired t and two-sample t test statistics are identical, since d ¼P di=n ¼
½P ðxi � yiÞ�=n ¼ P

xið Þ=n� P
yið Þ=n ¼ x� y. The difference between the two

statistics is due entirely to the denominators. Each test statistic is obtained by

standardizing X � Y ð¼ DÞ, but in the presence of dependence the two-sample

t standardization is incorrect. To see this, recall from Section 6.3 that

VðX � YÞ ¼ VðXÞ þ VðYÞ � 2 CovðX; YÞ
Since the correlation between X and Y is

r ¼ CorrðX; YÞ ¼ CovðX; YÞ=½
ffiffiffiffiffiffiffiffiffiffi
VðXÞ

p
�
ffiffiffiffiffiffiffiffiffiffi
VðYÞ

p
�

It follows that

VðX � YÞ ¼ s21 þ s22 � 2rs1s2

Applying this to X � Y yields

VðX � YÞ ¼ V
1

n

X
Di

� �
¼ VðDiÞ

n
¼ s21 þ s22 � 2rs1s2

n

The two-sample t test is based on the assumption of independence, in which

case r ¼ 0. But in many paired experiments, there will be a strong positive depen-
dence between X and Y (large X associated with large Y), so that rwill be positive and

the variance of X � Y will be smaller than s21=nþ s22=n. Thus whenever there is
positive dependence within pairs, the denominator for the paired t statistic should be
smaller than for t of the independent-samples test. Often two-sample t will be much

closer to zero than paired t, considerably understating the significance of the data.
Similarly, when data is paired, the paired t CI will usually be narrower than

the (incorrect) two-sample t CI. This is because there is typically much less

variability in the differences than in the x and y values.

Paired Versus Unpaired Experiments

In our examples, paired data resulted from two observations on the same subject

(Example 10.9) or experimental object (location in Example 10.8). Even when this

cannot be done, paired data with dependence within pairs can be obtained by

matching individuals or objects on one or more characteristics thought to influence

responses. For example, in a medical experiment to compare the efficacy of two

drugs for lowering blood pressure, the experimenter’s budget might allow for the

treatment of 20 patients. If 10 patients are randomly selected for treatment with the
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first drug and another 10 independently selected for treatment with the second drug,

an independent-samples experiment results.

However, the experimenter, knowing that blood pressure is influenced by age

and weight, might decide to pair off patients so that within each of the resulting 10

pairs, age and weight were approximately equal (although there might be sizable

differences between pairs). Then each drug would be given to a different patient

within each pair for a total of 10 observations on each drug.

Without this matching (or “blocking”), one drug might appear to outperform

the other just because patients in one sample were lighter and younger and thus

more susceptible to a decrease in blood pressure than the heavier and older patients

in the second sample. However, there is a price to be paid for pairing—a smaller

number of degrees of freedom for the paired analysis—so we must ask when one

type of experiment should be preferred to the other.

There is no straightforward and precise answer to this question, but there are

some useful guidelines. If we have a choice between two t tests that are both valid

(and carried out at the same level of significance a), we should prefer the test that

has the larger number of degrees of freedom. The reason for this is that a larger

number of degrees of freedom means a smaller b for any fixed alternative value of

the parameter or parameters. That is, for a fixed type I error probability, the

probability of a type II error is decreased by increasing degrees of freedom.

However, if the experimental units are quite heterogeneous in their responses, it

will be difficult to detect small but significant differences between two treatments.

This is essentially what happened in the data set in Example 10.8; for both “treat-

ments” (bottom water and surface water), there is great between-location variability,

which tends to mask differences in treatments within locations. If there is a high

positive correlation within experimental units or subjects, the variance ofD ¼ X � Y
will be much smaller than the unpaired variance. Because of this reduced variance, it

will be easier to detect a difference with paired samples than with independent

samples. The pros and cons of pairing can now be summarized as follows.

1. If there is great heterogeneity between experimental units and a large

correlation within experimental units (large positive r), then the loss in

degrees of freedom will be compensated for by the increased precision

associated with pairing, so a paired experiment is preferable to an inde-

pendent-samples experiment.

2. If the experimental units are relatively homogeneous and the correlation

within pairs is not large, the gain in precision due to pairing will be

outweighed by the decrease in degrees of freedom, so an independent-

samples experiment should be used.

Of course, values of s21; s
2
2, and rwill not usually be known very precisely, so

an investigator will be required to make a seat-of-the-pants judgment as to whether

Situation 1 or 2 obtains. In general, if the number of observations that can be

obtained is large, then a loss in degrees of freedom (e.g., from 40 to 20) will not be

serious; but if the number is small, then the loss (say, from 16 to 8) because of

pairing may be serious if not compensated for by increased precision. Similar

considerations apply when choosing between the two types of experiments to

estimate m1 � m2 with a confidence interval.
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Exercises Section 10.3 (39–47)

39. The Weaver–Dunn procedure with a fiber mesh

tape augmentation is commonly used to treat AC

joint (a joint in the shoulder) separations requiring

surgery. The article “TightRope Versus Fiber

Mesh Tape Augmentation of Acromioclavicular

Joint Reconstruction” (Am. J. Sport Med., 2010:
1204–1208) described the investigation of a new

method which was hypothesized to provide supe-

rior stability (less movement) compared to the

W–D procedure. The authors of the cited article

kindly provided the accompanying data on ante-

posterior (forward-backward) movement (mm) for

six matched pairs of shoulders:

Subject: 1 2 3 4 5 6

Fiber mesh: 20 30 20 32 35 33

TightRope: 15 18 16 19 10 12

Carry out a test of hypotheses at significance level

.01 to see if true average movement for the Tight-

Rope treatment is indeed less than that for the

Fiber Mesh treatment. Be sure to check any

assumptions underlying your analysis.

40. Hexavalent chromium has been identified as an

inhalation carcinogen and an air toxin of concern

in a number of different locales. The article “Air-

borne Hexavalent Chromium in Southwestern

Ontario” (J. Air Waste Manage., 1997: 905–910)
gave the accompanying data on both indoor and

outdoor concentration (nanograms/m3) for a sam-

ple of houses selected from a certain region.

House 1 2 3 4 5 6 7 8 9

Indoor .07 .08 .09 .12 .12 .12 .13 .14 .15

Outdoor .29 .68 .47 .54 .97 .35 .49 .84 .86

House 10 11 12 13 14 15 16 17

Indoor .15 .17 .17 .18 .18 .18 .18 .19

Outdoor .28 .32 .32 1.55 .66 .29 .21 1.02

House 18 19 20 21 22 23 24 25

Indoor .20 .22 .22 .23 .23 .25 .26 .28

Outdoor 1.59 .90 .52 .12 .54 .88 .49 1.24

House 26 27 28 29 30 31 32 33

Indoor .28 .29 .34 .39 .40 .45 .54 .62

Outdoor .48 .27 .37 1.26 .70 .76 .99 .36

a. Calculate a confidence interval for the popu-

lation mean difference between indoor and

outdoor concentrations using a confidence

level of 95%, and interpret the resulting interval.

b. If a 34th house were to be randomly selected

from the population, between what values

would you predict the difference in concentra-

tions to lie?

41. Shoveling is not exactly a high-tech activity, but

will continue to be a required task even in our

information age. The article “A Shovel with a

Perforated Blade Reduces Energy Expenditure

Required for Digging Wet Clay” (Hum. Factors,
2010: 492–502) reported on an experiment in

which each of 13 workers was provided with both

a conventional shovel and a shovel whose blade

was perforated with small holes. The authors of the

cited article provided the following data on stable

energy expenditure [kcal/kg(subject)/lb(clay)]:

Worker: 1 2 3 4 5 6 7

Conventional: .0011 .0014 .0018 .0022 .0010 .0016 .0028

Perforated: .0011 .0010 .0019 .0013 .0011 .0017 .0024

Worker: 8 9 10 11 12 13

Conventional: .0020 .0015 .0014 .0023 .0017 .0020

Perforated: .0020 .0013 .0013 .0017 .0015 .0013

a. Calculate a confidence interval at the 95%

confidence level for the true average difference

between energy expenditure for the conven-

tional shovel and the perforated shovel (a nor-

mal probability plot of the sample differences

shows a reasonably linear pattern). Based on

this interval, does it appear that the shovels

differ with respect to true average energy

expenditure? Explain.

b. Carry out a test of hypotheses at significance

level .05 to see if true average energy expendi-

ture using the conventional shovel exceeds that

using the perforated shovel; include a P-value
in your analysis.

42. Scientists and engineers frequently wish to com-

pare two different techniques for measuring

or determining the value of a variable. In such

situations, it is useful to test whether the mean

difference in measurements is zero. The article

“Evaluation of the Deuterium Dilution Technique

Against the Test Weighing Procedure for the

Determination of Breast Milk Intake” (Amer. J.
Clin. Nutrit., 1983: 996–1003) reports the accom-

panying data on measuring the amount of milk

ingested by each of 14 randomly selected infants.

a. Is it plausible that the population distribution of
differences is normal?

b. Does it appear that the true average difference

between intake values measured by the two

methods is something other than zero? Deter-

mine the P-value of the test, and use it to reach
a conclusion at significance level .05.

c. What happens if the two-sample t test is (incor-
rectly) used? [Hint: s1 ¼ 352.970, s2 ¼ 234.042.]
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43. In an experiment designed to study the effects of

illumination level on task performance (“Perfor-

mance of Complex Tasks Under Different Levels

of Illumination,” J. Illumin. Engrg., 1976:

235–242), subjects were required to insert a fine-

tipped probe into the eyeholes of 10 needles in

rapid succession both for a low light level with a

black background and a higher level with a white

background. Each data value is the time (sec)

required to complete the task.

Subject 1 2 3 4 5

Black 25.85 28.84 32.05 25.74 20.89

White 18.23 20.84 22.96 19.68 19.50

Subject 6 7 8 9

Black 41.05 25.01 24.96 27.47

White 24.98 16.61 16.07 24.59

Does the data indicate that the higher level of

illumination yields a decrease of more than 5 s in

true average task completion time? Test the appro-

priate hypotheses using the P-value approach.

44. It has been estimated that between 1945 and 1971,

as many as 2 million children were born to

mothers treated with diethylstilbestrol (DES),

a nonsteroidal estrogen recommended for preg-

nancy maintenance. The FDA banned this drug

in 1971 because research indicated a link with

the incidence of cervical cancer. The article

“Effects of Prenatal Exposure to Diethylstilbestrol

(DES) on Hemispheric Laterality and Spatial

Ability in Human Males” (Hormones Behav.,
1992: 62–75) discussed a study in which 10

males exposed to DES and their unexposed

brothers underwent various tests. This is the sum-

mary data on the results of a spatial ability test:

x ¼ 12:6 (exposed), y ¼ 13:7, and standard error

of mean difference ¼ .5. Test at level .05 to see

whether exposure is associated with reduced

spatial ability by obtaining the P-value.

45. Cushing’s disease is characterized by muscular

weakness due to adrenal or pituitary dysfunction.

To provide effective treatment, it is important to

detect childhood Cushing’s disease as early as

possible. Age at onset of symptoms and age at

diagnosis for 15 children suffering from the

disease were given in the article “Treatment of

Cushing’s Disease in Childhood and Adolescence

by Transphenoidal Microadenomectomy” (New
Engl. J. Med., 1984: 889). Here are the values of

the differences between age at onset of symptoms

and age at diagnosis:

�24 �12 �55 �15 �30 �60 �14 �21

�48 �12 �25 �53 �61 �69 �80

a. Does the accompanying normal probability

plot cast strong doubt on the approximate nor-

mality of the population distribution of differ-

ences?

b. Calculate a lower 95% confidence bound for

the population mean difference, and interpret

the resulting bound.

c. Suppose the (age at diagnosis) � (age at onset)

differences had been calculated. What would

be a 95% upper confidence bound for the

corresponding population mean difference?

46. Example 1.2 describes a study of children’s pri-

vate speech (talking to themselves). The 33 chil-

dren were each observed in about 100 ten-second

intervals in the first grade, and again in the second

and third grades. Because private speech occurs

more in challenging circumstances, the children

were observed while doing their mathematics.

Infant

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Isotopic 1509 1418 1561 1556 2169 1760 1098 1198 1479 1281 1414 1954 2174 2058

Test 1498 1254 1336 1565 2000 1318 1410 1129 1342 1124 1468 1604 1722 1518

Difference 11 164 225 �9 169 442 �312 69 137 157 �54 350 452 540
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The speech was classified as on task (about the

math lesson), off task, or mumbling (the observer

could not tell what was said). Here are the 33 first-

grade mumble scores:

20.8 24.4 19.4 33.3 26.0 56.6 39.5 24.7

21.6 32.1 48.1 19.5 19.2 43.0 26.3 22.7

49.4 35.4 56.8 45.4 28.7 42.2 20.3 20.0

34.0 26.9 48.4 27.6 52.6 5.9 38.5 22.1

22.2

and here are the third-grade mumble scores:

28.8 57.0 23.9 46.9 50.0 64.6 54.2 55.3

21.4 38.3 78.5 38.1 44.3 11.7 58.6 76.1

76.4 48.6 37.2 69.8 29.1 60.4 57.8 38.7

46.5 50.0 69.6 69.8 59.4 22.7 84.9 42.0

67.2

The numbers are in the same order for each grade;

for example, the third student mumbled in 19.4%

of the intervals in the first grade and 23.9% of the

intervals in the third grade.

a. Verify graphically that normality is plausible

for the population distribution of differences.

b. Find a 95% confidence interval for the differ-

ence of population means, and interpret the

result.

47. Construct a paired data set for which t ¼ 1, so

that the data is highly significant when the correct

analysis is used, yet t for the two-sample t test is
quite near zero, so the incorrect analysis yields an

insignificant result.

10.4 Inferences About Two Population
Proportions
Having presented methods for comparing the means of two different populations,

we now turn to the comparison of two population proportions. The notation for this

problem is an extension of the notation used in the corresponding one-population

problem. We let p1 and p2 denote the proportions of individuals in populations 1

and 2, respectively, who possess a particular characteristic. Alternatively, if we use

the label S for an individual who possesses the characteristic of interest (does favor
a particular proposition, has read at least one book within the last month, etc.), then

p1 and p2 represent the probabilities of seeing the label S on a randomly chosen

individual from populations 1 and 2, respectively.

We will assume the availability of a sample of m individuals from the first

population and n from the second. The variables X and Y will represent the number

of individuals in each sample possessing the characteristic that defines p1 and p2.

Provided the population sizes are much larger than the sample sizes, the distribution

of X can be taken to be binomial with parameters m and p1, and similarly, Y is taken

to be a binomial variable with parameters n and p2. Furthermore, the samples are

assumed to be independent of each other, so that X and Y are independent rv’s.

The obvious estimator for p1� p2, the difference in population proportions, is

the corresponding difference in sample proportions X/m� Y/n. With p̂1 ¼ X=m and

p̂2 ¼ Y=n, the estimator of p1 � p2 can be expressed as p̂1 � p̂2.

PROPOSITION LetX ~ Bin(m, p1) andY ~ Bin(n, p2) withX andY independent variables. Then

Eðp̂1 � p̂2Þ ¼ p1 � p2

so p̂1 � p̂2 is an unbiased estimator of p1 � p2, and

Vðp̂1 � p̂2Þ ¼ p1q1
m

þ p2q2
n

ðwhere qi ¼ 1� piÞ ð10:3Þ
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Proof Since E(X) ¼ mp1 and E(Y) ¼ np2,

E
X

m
� Y

n

� �
¼ 1

m
EðXÞ � 1

n
EðYÞ ¼ 1

m
mp1 � 1

n
np2 ¼ p1 � p2

Since V(X) ¼ mp1q1, V(Y) ¼ np2q2, and X and Y are independent,

V
X

m
� Y

n

� �
¼ V

X

m

� �
þ V

Y

n

� �
¼ 1

m2
VðXÞ þ 1

n2
VðYÞ ¼ p1q1

m
þ p2q2

n ■

We will focus first on situations in which both m and n are large. Then

because p̂1 and p̂2 individually have approximately normal distributions, the esti-

mator p̂1 � p̂2 also has approximately a normal distribution. Standardizing p̂1 � p̂2
yields a variable Z whose distribution is approximately standard normal:

Z ¼ p̂1 � p̂2 � ðp1 � p2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1q1
m

þ p2q2
n

r

A Large-Sample Test Procedure

Analogously to the hypotheses for m1 � m2, the most general null hypothesis an

investigator might consider would be of the form H0: p1 � p2 ¼ D0, where D0 is

again a specified number. Although for population means the case D0 6¼ 0 pre-

sented no difficulties, for population proportions the cases D0 ¼ 0 and D0 6¼ 0 must

be considered separately. Since the vast majority of actual problems of this sort

involve D0 ¼ 0 (i.e., the null hypothesis p1 ¼ p2), we will concentrate on this case.

When H0: p1 � p2 ¼ 0 is true, let p denote the common value of p1 and p2 (and

similarly for q). Then the standardized variable

Z ¼ p̂1 � p̂2 � 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pq

1

m
þ 1

n

� �s ð10:4Þ

has approximately a standard normal distribution when H0 is true. However, this Z
cannot serve as a test statistic because the value of p is unknown—H0 asserts only

that there is a common value of p, but does not say what that value is. To obtain a

test statistic having approximately a standard normal distribution when H0 is true

(so that use of an appropriate z critical value specifies a level a test), p must be

estimated from the sample data.

Assuming then that p1 ¼ p2 ¼ p, instead of separate samples of size m and n
from two different populations (two different binomial distributions), we really

have a single sample of sizem + n from one population with proportion p. Since the

total number of individuals in this combined sample having the characteristic of

interest is X + Y, the estimator of p is

p̂ ¼ X þ Y

mþ n
¼ m

mþ n
p̂1 þ n

mþ n
p̂2 ð10:5Þ
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The second expression for p̂ shows that it is actually a weighted average of

estimators p̂1 and p̂2 obtained from the two samples. If we take (10.5) (with

q̂ ¼ 1� p̂) and substitute back into (10.4), the resulting statistic has approximately

a standard normal distribution when H0 is true.

Null hypothesis: H0: p1 � p2 ¼ 0

Test statistic value (large samples): z ¼ p̂1 � p̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂q̂

1

m
þ 1

n

� �s

Alternative Hypothesis Rejection Region for Approximate
Level a Test

Ha: p1 � p2 > 0 z � za
Ha: p1 � p2 < 0 z � �za
Ha: p1 � p2 6¼ 0 either z � za/2 or z � �za/2

A P-value is calculated in the same way as for previous z tests.

Example 10.11 Some defendants in criminal proceedings plead guilty and are sentenced without a

trial, whereas others who plead innocent are subsequently found guilty and then are

sentenced. In recent years, legal scholars have speculated as to whether sentences

of those who plead guilty differ in severity from sentences for those who plead

innocent and are subsequently judged guilty. Consider the accompanying data on

defendants from San Francisco County accused of robbery, all of whom had

previous prison records (“Does It Pay to Plead Guilty? Differential Sentencing

and the Functioning of Criminal Courts,” Law Soc. Rev., 1981–1982: 45–69). Does
this data suggest that the proportion of all defendants in these circumstances who

plead guilty and are sent to prison differs from the proportion who are sent to prison

after pleading innocent and being found guilty?

Plea

Guilty Not guilty

Number judged guilty m ¼ 191 n ¼ 64

Number sentenced to prison x ¼ 101 y ¼ 56

Sample proportion p̂1 ¼ .529 p̂2 ¼ .875

Let p1 and p2 denote the two population proportions. The hypotheses of

interest are H0: p1 � p2 ¼ 0 versus Ha: p1 � p2 6¼ 0. At level .01, H0 should be

rejected if either z � z.005 ¼ 2.58 or if z � �2.58. The combined estimate of the

common success proportion is p̂ ¼ 101þ 56ð Þ= 191þ 64ð Þ ¼ :616. The value of

the test statistic is then

z ¼ :529� :875ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:616Þð:384Þ 1

191
þ 1

64

� �s ¼ �:346

:070
¼ �4:94
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Since �4.94 � �2.58, H0 must be rejected.

The P-value for a two-tailed z test is

P-value ¼ 2[1 � F(|z|)] ¼ 2[1 � F(4.94)] < 2[1 � F(3.49)] ¼ .0004

A more extensive standard normal table yields P-value ¼ .0000006. This P-value
is so minuscule that at any reasonable level a, H0 should be rejected. The data very

strongly suggests that p1 6¼ p2 and, in particular, that initially pleading guilty may

be a good strategy as far as avoiding prison is concerned.

The cited article also reported data on defendants in several other counties.

The authors broke down the data by type of crime (burglary or robbery) and by

nature of prior record (none, some but no prison, and prison). In every case, the

conclusion was the same: Among defendants judged guilty, those who pleaded that

way were less likely to receive prison sentences. ■

Type II Error Probabilities and Sample Sizes

Here the determination of b is a bit more cumbersome than it was for other

large-sample tests. The reason is that the denominator of Z is an estimate of the

standard deviation of p̂1 � p̂2, assuming that p1 ¼ p2 ¼ p. When H0 is false,

p̂1 � p̂2 must be restandardized using

sp̂1�p̂2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1q1
m

þ p2q2
n

r
ð10:6Þ

The form of s implies that b is not a function of just p1 � p2, so we denote it by

b(p1, p2)

Alternative Hypothesis b(p1, p2)

Ha: p1 � p2 > 0

F
za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p q

1

m
þ 1

n

� �s
� ðp1 � p2Þ

s

2
64

3
75

Ha: p1 � p2 < 0

1� F
�za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p q

1

m
þ 1

n

� �s
� ðp1 � p2Þ

s

2
64

3
75

Ha: p1 � p2 6¼ 0

F
za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p q

1

m
þ 1

n

� �s
� ðp1 � p2Þ

s

2
64

3
75

� F
�za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p q

1

m
þ 1

n

� �s
� ðp1 � p2Þ

s

2
64

3
75

where p ¼ ðmp1 þ np2Þ=ðmþ nÞ, q ¼ ðmq1 þ nq2Þ=ðmþ nÞ, and s is given

by (10.6).
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Proof For the upper-tailed test (Ha: p1 � p2 > 0),

bðp1; p2Þ ¼ P p̂1 � p̂2 < za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂q̂

1

m
þ 1

n

� �s" #

¼ P
p̂1 � p̂2 � ðp1 � p2Þ

s
<

za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂q̂

1

m
þ 1

n

� �s
� ðp1 � p2Þ

s

2
66664

3
77775

When m and n are both large,

p̂ ¼ mp̂1 þ np̂2
mþ n


 mp1 þ np2
mþ n

¼ p

and q̂ 
 q, which yields the previous (approximate) expression for b(p1, p2). ■

Alternatively, for specified p1, p2 with p1 � p2 ¼ d, the sample sizes neces-

sary to achieve b(p1, p2) ¼ b can be determined. For example, for the upper-tailed

test, we equate �zb to the argument of F(·) (i.e., what’s inside the parentheses) in
the foregoing box. If m ¼ n, there is a simple expression for the common value.

For the case m ¼ n, the level a test has type II error probability b at the

alternative values p1, p2 with p1 � p2 ¼ d when

n ¼ za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp1 þ p2Þðq1 þ q2Þ=2

p þ zb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1q1 þ p2q2

p� 	2
d2

ð10:7Þ

for an upper- or lower-tailed test, with a/2 replacing a for a two-tailed test.

Example 10.12 One of the truly impressive applications of statistics occurred in connection with

the design of the 1954 Salk polio vaccine experiment and analysis of the resulting

data. Part of the experiment focused on the efficacy of the vaccine in combating

paralytic polio. Because it was thought that without a control group of children,

there would be no sound basis for assessment of the vaccine, it was decided to

administer the vaccine to one group and a placebo injection (visually indistinguish-

able from the vaccine but known to have no effect) to a control group. For ethical

reasons and also because it was thought that the knowledge of vaccine administra-

tion might have an effect on treatment and diagnosis, the experiment was con-

ducted in a double-blind manner. That is, neither the individuals receiving

injections nor those administering them actually knew who was receiving vaccine

and who was receiving the placebo (samples were numerically coded)—remember,

at that point it was not at all clear whether the vaccine was beneficial.

Let p1 and p2 be the probabilities of a child getting paralytic polio for the

control and treatment conditions, respectively. The objective was to test the

hypotheses H0: p1 � p2 ¼ 0 versus Ha: p1 � p2 > 0 (the alternative hypothesis
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states that a vaccinated child is less likely to contract polio than an unvaccinated

child). Supposing the true value of p1 is .0003 (an incidence rate of 30 per 100,000),

the vaccine would be a significant improvement if the incidence rate was halved—

that is, p2 ¼ .00015. Using a level a ¼ .05 test, it would then be reasonable to ask

for sample sizes for which b ¼ .1 when p1 ¼ .0003 and p2 ¼ .00015. Assuming

equal sample sizes, the required n is obtained from (10.7) as

n ¼ 1:645
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið:5Þð:00045Þð:199955Þp þ 1:28

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið:00015Þð:99985Þ þ ð:0003Þð:9997Þp� 	2
ð:0003� :00015Þ2

¼ ½ð:0349þ :0271Þ=:00015�2 
 171; 000

The actual data for this experiment follows. Sample sizes of approximately

200,000 were used. The reader can easily verify that z ¼ 6.43, a highly significant

value. The vaccine was judged a resounding success!

Placebo: m ¼ 201,229 x ¼ number of cases of paralytic polio ¼ 110

Vaccine: n ¼ 200,745 y ¼ 33 ■

A Large-Sample Confidence Interval for p1 � p2
As with means, many two-sample problems involve the objective of comparison

through hypothesis testing, but sometimes an interval estimate for p1 � p2 is

appropriate. Both p̂1 ¼ X=m and p̂2 ¼ Y=n have approximate normal distributions

when m and n are both large. If we identify y with p1 � p2, then ŷ ¼ p̂1 � p̂2
satisfies the conditions necessary for obtaining a large-sample CI. In particular, the

estimated standard deviation of ŷ is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp̂1q̂1=mÞ þ ðp̂2q̂2=nÞ

p
. The 100(1 � a)%

interval ŷ� za=2 � ŝŷ then becomes

p̂1 � p̂2 � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1q̂1
m

þ p̂2q̂2
n

r

Notice that the estimated standard deviation of p̂1 � p̂2 (the square-root expression)
is different here from what it was for hypothesis testing when D0 ¼ 0.

Recent research has shown that the actual confidence level for the traditional

CI just given can sometimes deviate substantially from the nominal level (the level

you think you are getting when you use a particular z critical value—e.g., 95%

when za/2 ¼ 1.96). The suggested improvement is to add one success and one

failure to each of the two samples and then replace the p̂’s and q̂’s in the foregoing

formula by ~p’s and ~q’s where ~p1 ¼ ðxþ 1Þ=ðmþ 2Þ, etc. This interval can also be

used when sample sizes are quite small.

Example 10.13 The authors of the article “Adjuvant Radiotherapy and Chemotherapy in Node-

Positive Premenopausal Women with Breast Cancer” (New Engl. J. Med., 1997:
956–962) reported on the results of an experiment designed to compare treating

cancer patients with only chemotherapy to treatment with a combination of chemo-

therapy and radiation. Of the 154 individuals who received the chemotherapy-only

treatment, 76 survived at least 15 years, whereas 98 of the 164 patients who

received the hybrid treatment survived at least that long. With p1 denoting the

proportion of all such women who, when treated with just chemotherapy, survive at
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least 15 years and p2 denoting the analogous proportion for the hybrid treatment,

p̂1 ¼ 76=154 ¼ :494 and p̂2 ¼ 98=164 ¼ :598. A confidence interval for the dif-

ference between proportions based on the traditional formula with a confidence

level of approximately 99% is

:494� :598� 2:58

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:494Þð:506Þ

154
þ ð:598Þð:402Þ

164

r
¼ �:104� :143 ¼ ð�:247; :039Þ

At the 99% confidence level, it is plausible that �.247 < p1 �p2 < .039. This

interval is reasonably wide, a reflection of the fact that the sample sizes are not

terribly large for this type of interval. Notice that 0 is one of the plausible values of

p1 � p2 suggesting that neither treatment can be judged superior to the other. Using

~p1 ¼ 77=156 ¼ :494, ~q1 ¼ 79=156 ¼ :506, ~p2 ¼ :596, ~q2 ¼ :404 based on sample

sizes of 156 and 166, respectively, the “improved” interval here is essentially

identical to the earlier interval. ■

Small-Sample Inferences

On occasion an inference concerning p1 � p2 may have to be based on samples for

which at least one sample size is small. Appropriate methods for such situations are

not as straightforward as those for large samples, and there is more controversy

among statisticians as to recommended procedures. One frequently used test, called

the Fisher–Irwin test, is based on the hypergeometric distribution.

Exercises Section 10.4 (48–59)

48. Is someone who switches brands because of a

financial inducement less likely to remain loyal

than someone who switches without induce-

ment? Let p1 and p2 denote the true proportions

of switchers to a certain brand with and without

inducement, respectively, who subsequently

make a repeat purchase. Test H0: p1 � p2 ¼ 0

versus Ha: p1 � p2 < 0 using a ¼ .01 and the

following data:

m ¼200 number of successes ¼ 30

n ¼600 number of successes ¼ 180

(Similar data is given in “Impact of Deals and

Deal Retraction on Brand Switching,” J. Market-
ing, 1980: 62–70.)

49. A sample of 300 urban adult residents of a par-

ticular state revealed 63 who favored increasing

the highway speed limit from 55 to 65 mph,

whereas a sample of 180 rural residents yielded

75 who favored the increase. Does this data indi-

cate that the sentiment for increasing the speed

limit is different for the two groups of residents?

a. Test H0: p1 ¼ p2 versus Ha: p1 6¼ p2 using

a ¼ .05,where p1 refers to the urban population.

b. If the true proportions favoring the increase

are actually p1 ¼ .20 (urban) and p2 ¼ .40

(rural), what is the probability that H0 will

be rejected using a level .05 test with

m ¼ 300, n ¼ 180?

50. It is thought that the front cover and the nature of

the first question on mail surveys influence the

response rate. The article “The Impact of Cover

Design and First Questions on Response Rates

for a Mail Survey of Skydivers” (Leisure Sci.,
1991: 67–76) tested this theory by experimenting

with different cover designs. One cover was

plain; the other used a picture of a skydiver.

The researchers speculated that the return rate

would be lower for the plain cover.

Cover
Number
Sent

Number
Returned

Plain 207 104

Skydiver 213 109

Does this data support the researchers’ hypothesis?

Test the relevant hypotheses using a ¼ .10 by first

calculating a P-value.
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51. Do teachers find their work rewarding and satisfy-

ing? The article “Work-Related Attitudes” (Psych.
Rep., 1991: 443–450) reports the results of a survey
of 395 elementary school teachers and 266 high

school teachers. Of the elementary school teachers,

224 said they were very satisfied with their jobs,

whereas 126 of the high school teachers were very

satisfied with their work. Estimate the difference

between the proportion of all elementary school

teachers who are satisfied and all high school tea-

chers who are satisfied by calculating a CI.

52. A random sample of 5726 telephone numbers

from a certain region taken in March 2002

yielded 1105 that were unlisted, and 1 year later

a sample of 5384 yielded 980 unlisted numbers.

a. Test at level .10 to see whether there is a

difference in true proportions of unlisted

numbers between the 2 years.

b. If p1 ¼ .20 and p2 ¼ .18, what sample sizes

(m ¼ n) would be necessary to detect such a

difference with probability .90?

53. Ionizing radiation is being given increasing

attention as a method for preserving horticultural

products. The article “The Influence of Gamma-

Irradiation on the Storage Life of Red Variety

Garlic” (J. Food Process. Preserv., 1983:

179–183) reports that 153 of 180 irradiated garlic

bulbs were marketable (no external sprouting,

rotting, or softening) 240 days after treatment,

whereas only 119 of 180 untreated bulbs were

marketable after this length of time. Does this

data suggest that ionizing radiation is beneficial

as far as marketability is concerned?

54. In medical investigations, the ratio y ¼ p1/p2 is

often of more interest than the difference p1 � p2
(e.g., individuals given treatment 1 are how

many times as likely to recover as those given

treatment 2?). Let ŷ ¼ p̂1=p̂2. When m and n are

both large, the statistic lnðŷÞ has approximately a

normal distribution with approximate mean

value ln(y) and approximate standard deviation

[(m � x)/(mx) + (n � y)/(ny)]1/2.
a. Use these facts to obtain a large-sample 95%

CI formula for estimating ln(y), and then a CI
for y itself.

b. Return to the heart attack data of Example 1.3,

and calculate an interval of plausible values for

y at the 95% confidence level. What does this

interval suggest about the efficacy of the aspi-

rin treatment?

55. Sometimes experiments involving success or

failure responses are run in a paired or before/

after manner. Suppose that before a major policy

speech by a political candidate, n individuals are

selected and asked whether (S) or not (F) they
favor the candidate. Then after the speech the

same n people are asked the same question. The

responses can be entered in a table as follows:

S F
After

X2X1

X4X3

S

F

Before

where X1 + X2 + X3 + X4 ¼ n. Let p1, p2, p3,

and p4 denote the four cell probabilities, so that

p1 ¼ P(S before and S after), and so on. We wish

to test the hypothesis that the true proportion of

supporters (S) after the speech has not increased

against the alternative that it has increased.

a. State the two hypotheses of interest in terms

of p1, p2, p3, and p4.

b. Construct an estimator for the after/before

difference in success probabilities.

c. When n is large, it can be shown that the rv

(Xi � Xj)/n has approximately a normal distri-

bution with variance [pi + pj � (pi � pj)
2]/n.

Use this to construct a test statistic with

approximately a standard normal distribution

when H0 is true (the result is called

McNemar’s test).

d. If x1 ¼ 350, x2 ¼ 150, x3 ¼ 200, and

x4 ¼ 300, what do you conclude?

56. The Chicago Cubs won 73 games and lost 71 in

1995. This was described as a much more suc-

cessful season for them than 1994, when they

won only 49 and lost 64.

a. Based on a binomial model with p1 for 1994

and p2 for 1995, carry out a two-tailed test for

the difference. Based on your result, could the

difference in sample proportions be attributed

to luck (bad in 1994, good in 1995)?

b. Criticize the binomial model. Do baseball

games satisfy the assumptions?

57. Using the traditional formula, a 95% CI for p1 � p2
is to be constructed based on equal sample sizes

from the two populations. For what value of n (¼m)
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will the resulting interval have width at most .1

irrespective of the results of the sampling?

58. Statin drugs are used to decrease cholesterol levels,

and therefore hopefully to decrease the chances of

a heart attack. In a British study (“MRC/BHF

Heart Protection Study of Cholesterol Lowering

with Simvastin in 20,536 High-Risk Individuals:

A Randomized Placebo-Controlled Trial,” Lancet,
2002: 7–22) 20,536 at-risk adults were assigned

randomly to take either a 40-mg statin pill or

placebo. The subjects had coronary disease, artery

blockage, or diabetes. After 5 years there were

1328 deaths (587 from heart attack) among the

10,269 in the statin group and 1507 deaths (707

from heart attack) among the 10,267 in the placebo

group.

a. Give a 95% confidence interval for the

difference in population death proportions.

b. Give a 95% confidence interval for the differ-

ence in population heart attack death propor-

tions.

c. Is it reasonable to say that most of the difference

in death proportions is due to heart attacks, as

would be expected?

59. A study of male navy enlisted personnel was

reported in the Bloomington, Illinois, Daily Pan-
tagraph, Aug. 23, 1993. It was found that 90 of

231 left-handers had been hospitalized for inju-

ries, whereas 623 of 2148 right-handers had been

hospitalized for injuries. Test for equal population

proportions at the .01 level, find the P-value for

the test, and interpret your results. Can it be con-

cluded that there is a causal relationship between

handedness and proneness to injury? Explain.

10.5 Inferences About Two Population Variances
Methods for comparing two population variances (or standard deviations) are

occasionally needed, though such problems arise much less frequently than those

involving means or proportions. For the case in which the populations under

investigation are normal, the procedures are based on the F distribution, as dis-

cussed in Section 6.4.

Testing Hypotheses

A test procedure for hypotheses concerning the ratio s21=s
2
2, as well as a CI for this

ratio are based on the following result from Section 6.4.

THEOREM Let X1, . . . , Xm be a random sample from a normal distribution with variance

s21, let Y1, . . . , Yn be another random sample (independent of the Xi’s) from a

normal distribution with variance s22, and let S
2
1 and S

2
2 denote the two sample

variances. Then the rv

F ¼ S21=s
2
1

S22=s22
ð10:8Þ

has an F distribution with n1 ¼ m � 1 and v2 ¼ n � 1.

Under the null hypothesis of equal population variances, (10.8) reduces to the

ratio of sample variances. For a test statistic we use this ratio of sample variances;

and the claim that s21 ¼ s22 is rejected if the ratio differs by too much from 1.
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THE F TEST
FOR EQUA-
LITY OF
VARIANCES

Null hypothesis: H0: s21 ¼ s22
Test statistic value: f ¼ s21=s

2
2

Alternative Hypothesis Rejection Region for a Level a Test

Ha: s21 > s22 f � Fa,m�1,n�1

Ha: s21 < s22 f � Fa,m�1,n�1

Ha: s21 6¼ s22 either f � Fa/2,m�1,n�1 or f � F1�a/2,m�1,n�1

Since critical values are tabled only for a ¼ .10, .05, .01, and .001, the two-

tailed test can be performed only at levels .20, .10, .02, and .002. More

extensive tabulations of F critical values are available elsewhere, including

calculators and computer software.

Example 10.14 Is there less variation in weights of some baked goods than others? Here are the

weights (in grams) for a sample of Bruegger’s bagels (their Iowa City shop) and

another sample of Wolferman’s muffins (made in Kansas City):

B: 99.8 105.4 94.7 107.8 114.3 106.3

W: 99.0 98.2 98.1 102.1 102.9 104.1 98.8 99.5

The normality assumption is very important for the use of Expression (10.8) so we

check the normal plot from MINITAB, shown in Figure 10.9. There is no apparent

reason to doubt normality here.

Notice the difference in slopes for the two sources. This suggests different

variabilities because the vertical axis is the z-score and is related to the horizontal

axis (grams) by z ¼ (grams � mean)/(std dev). Thus, when score is plotted against

grams the slope is the reciprocal of the standard deviation. Now let’s test H0:

s21 ¼ s22 against a two-tailed alternative with a ¼ .02. We need the critical values

F.01,5,7 ¼ 7.46 and F.99,5,7 ¼ 1/F.01,7,5 ¼ 1/10.46 ¼ .0956. We have

f ¼ s21
s22

¼ 6:7652

2:3382
¼ 8:37

90 95 100 105 110 115 120
grams

2

1

0

−1

−2

S
co

re

brand
bruegger's
wolferman's

Mean
104.7
100.3

StDev
6.765
2.338

N
6
8

AD
0.206
0.548

P
0.762
0.107

Figure 10.9 Normal plot for baked goods
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which exceeds 7.46, so the hypothesis of equal variances is rejected.We conclude that

there is a difference in weight variation, and the English muffins are less variable.

Notice that it is not really necessary to use the lower-tailed critical value here if

the groups are chosen so the first group has the larger variance, and therefore the

value of f ¼ s21 s22
�

exceeds 1. Because f > 1, the only comparison is between the

computed f and the upper critical value 7.46. It does not change the result of the test to
fix things so f > 1, so it is not cheating to simplify the test in this way. ■

P-Values for F Tests

Recall that the P-value for an upper-tailed t test is the area under the relevant t curve
(the one with appropriate df) to the right of the calculated t. In the same way, the

P-value for an upper-tailed F test is the area under the F curve with appropriate

numerator and denominator df to the right of the calculated f. Figure 10.10 illus-

trates this for a test based on n1 ¼ 4 and n2 ¼ 6.

Unfortunately, tabulation of F curve upper-tail areas is much more cumber-

some than for t curves because two df’s are involved. For each combination of n1
and n2, our F table gives only the four critical values that capture areas .10, .05, .01,

and .001. Figure 10.11 (next page) shows what can be said about the P-value
depending on where f falls relative to the four critical values.

For example, for a test with n1 ¼ 4 and n2 ¼ 6,

f ¼ 5.70 ) .01 < P-value < .05

f ¼ 2.16 ) P-value > .10

f ¼ 25.03 ) P-value < .001

Only if f equals a tabulated value do we obtain an exact P-value (e.g., if f ¼ 4.53,

then P-value ¼ .05). Once we know that .01 < P-value < .05, H0 would be

rejected at a significance level of .05 but not at a level of .01. When P-value
< .001, H0 should be rejected at any reasonable significance level.

The F tests discussed in succeeding chapters will all be upper-tailed.

If, however, a lower-tailed F test is appropriate, then (6.15) should be used to

obtain lower-tailed critical values so that a bound or bounds on the P-value can

be established. In the case of a two-tailed test, the bound or bounds from a one-

tailed test should be multiplied by 2. For example, if f ¼ 5.82 when n1 ¼ 4 and

n2 ¼ 6, then since 5.82 falls between the .05 and .01 critical values, 2(.01) < P-
value < 2(.05), giving .02 < P-value < .10. H0 would then be rejected if a ¼ .10

f = 6.23

F curve for
v1 = 4, v2 = 6

Shaded area = P-value
                 = .025

Figure 10.10 A P-value for an upper-tailed F test
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but not if a ¼ .01. In this case, we cannot say from our table what conclusion is

appropriate when a ¼ .05 (since we don’t know whether the P-value is smaller or

larger than this). However, statistical software shows that the area to the right of

5.82 under this F curve is .029, so the P-value is .058 and the null hypothesis should
therefore not be rejected at level .05 (.058 is the smallest a for which H0 can be

rejected and our chosen a is smaller than this).

A Confidence Interval for s1=s2
The CI for s21=s

2
2 is based on replacing F in the probability statement

PðF1�a=2;n1;n2 <F<Fa=2;n1;n2Þ ¼ 1� a

by the F variable (10.8) and manipulating the inequalities to isolate s21=s
2
2:

s21
s22

� 1

Fa=2;n1;n2
<

s21
s22

<
s21
s22

� 1

F1�a=2;n1;n2
¼ s21

s22
� Fa=2;n2;n1

Equation (6.15) has been used here to simplify the upper bound and enable use of

Table A.8. Thus the confidence interval for s21=s
2
2 is

s21
s22

� 1

Fa=2;m�1;n�1

;
s21
s22

� Fa=2;n�1;m�1

� �

An interval for s1=s2 results from taking the square root of each limit:

s1
s2

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fa=2;m�1;n�1

p ;
s1
s2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fa=2;n�1;m�1

p !

In the interval for the ratio of population variances, notice that the limits of the

interval are proportional to the ratio of sample variances. Of course, the lower limit

is less than the ratio of sample variances, and the upper limit is greater.

v2 

v1 

a 1  .  .  . 4          .  .  .

6 .10

.05

.01

.001

3.18
4.53
9.15

21.92

P-value > .10 P-value < .001.01 <P-value < .05 .001 < P-value < .01

.05 < P-value < .10

Figure 10.11 Obtaining P-value information from the F table for an upper-tailed F test
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Example 10.15 Let’s find a confidence interval using the data of Example 10.14. The sample

standard deviations are s1 ¼ 6.765 for 6 Bruegger’s bagels, and s2 ¼ 2.338 for

8 Wolferman English muffins. Then a 98% confidence interval for the ratio s1=s2 is

6:765

2:338
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

F:01;5;7
p ;

6:765

2:338
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

F:01;7;5

p� �
¼ 2:89 � 1ffiffiffiffiffiffiffiffiffi

7:46
p ; 2:89 �

ffiffiffiffiffiffiffiffiffiffiffi
10:46

p� �

¼ ð1:06; 9:35Þ
Because 1 is not included in the interval, it suggests that the two standard deviations

differ. By comparing the CI calculation with the hypothesis test calculation, it

should be clear that a two-tailed test would reject equality at the 2% level, and this

is consistent with the results of Example 10.14. ■

It is important to emphasize that the methods of this section are strongly

dependent on the normality assumption. Expression 10.8 is valid only in the case of

normal data or nearly normal data. Otherwise, the F distribution in (10.8) does not

apply. The t procedures of this chapter are robust to the normality assumption,

meaning that the procedures still work in the case of moderate departures from

normality, but this is not true for comparison of variances based on (10.8).

Exercises Section 10.5 (60–68)

60. Obtain or compute the following quantities:

a. F.05,5,8

b. F.05,8,5

c. F.95,5,8

d. F.95,8,5

e. The 99th percentile of the F distribution with

n1 ¼ 10, n2 ¼ 12

f. The 1st percentile of the F distribution with

n1 ¼ 10, n2 ¼ 12

g. P(F � 6.16) for n1 ¼ 6, n2 ¼ 4

h. P(.177 � F � 4.74) for n1 ¼ 10, n2 ¼ 5

61. Give as much information as you can about the

P-value of the F test in each of the following

situations:

a. n1 ¼ 5, n2 ¼ 10, upper-tailed test, f ¼ 4.75

b. n1 ¼ 5, n2 ¼ 10, upper-tailed test, f ¼ 2.00

c. n1 ¼ 5, n2 ¼ 10, two-tailed test, f ¼ 5.64

d. n1 ¼ 5, n2 ¼ 10, lower-tailed test, f ¼ .200

e. n1 ¼ 35, n2 ¼ 20, upper-tailed test, f ¼ 3.24

62. Return to the data on maximum lean angle given

in Exercise 27 of this chapter. Carry out a test at

significance level .10 to see whether the popula-

tion standard deviations for the two age groups are

different (normal probability plots support the

necessary normality assumption).

63. Refer to Example 10.7. Does the data suggest that

the standard deviation of the strength distribution for

fused specimens is smaller than that for not-fused

specimens? Carry out a test at significance level .01

by obtaining as much information as you can about

the P-value.

64. Toxaphene is an insecticide that has been identi-

fied as a pollutant in the Great Lakes ecosystem.

To investigate the effect of toxaphene exposure

on animals, groups of rats were given toxaphene in

their diet. The article “Reproduction Study of

Toxaphene in the Rat” (J. Envir. Sci. Health,
1988: 101–126) reports weight gains (in grams)

for rats given a low dose (4 ppm) and for control

rats whose diet did not include the insecticide. The

sample standard deviation for 23 female control

rats was 32 g and for 20 female low-dose rats was

54 g. Does this data suggest that there is more

variability in low-dose weight gains than in con-

trol weight gains? Assuming normality, carry out

a test of hypotheses at significance level .05.

65. In a study of copper deficiency in cattle, the copper

values (mg/100 mL blood) were determined both

for cattle grazing in an area known to have well-

defined molybdenum anomalies (metal values in

excess of the normal range of regional variation)

and for cattle grazing in a nonanomalous area (“An

Investigation into Copper Deficiency in Cattle in

the Southern Pennines,” J. Agric. Soc. Cambridge,
1972: 157–163), resulting in s1 ¼ 21.5 (m ¼ 48)
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for the anomalous condition and s2 ¼ 19.45

(n ¼ 45) for the nonanomalous condition. Test

for the equality versus inequality of population

variances at significance level .10 by using the

P-value approach.

66. The article “Enhancement of Compressive Proper-

ties of Failed Concrete Cylinders with Polymer Im-

pregnation” (J. Test. Eval., 1977: 333–337) reports
the following data on impregnated compressive

modulus (psi � 106) when two different polymers

were used to repair cracks in failed concrete.

Epoxy 1.75 2.12 2.05 1.97

MMA prepolymer 1.77 1.59 1.70 1.69

Obtain a 90% confidence interval for the ratio of

variances.

67. Reconsider the data of Example 10.6, and calculate

a 95% upper confidence bound for the ratio of the

standard deviation of the triacetate porosity distri-

bution to that of the cotton porosity distribution.

68. For the data of Exercise 27 find a 90% confidence

interval for the ratio of population standard devia-

tions, and relate your CI to the test of Exercise 62.

10.6 Comparisons Using the Bootstrap
and Permutation Methods
In this chapter we have discussed how to make comparisons based on normal data.

We have also considered comparisons of means when the sample sizes are large

enough for the means to be approximately normal. What about all other cases,

especially small skewed data sets?

We now consider the bootstrap technique for forming confidence intervals

and permutation tests for testing hypotheses. As described in Section 8.5, boot-

strapping involves a lot of computation. The same will be true here for bootstrap

confidence intervals and for permutation tests.

The Bootstrap for Two Samples

The bootstrap for two samples is similar to the one-sample bootstrap of Section 8.5,

except that samples with replacement are taken from the two groups separately.

That is, a sample is taken from the first group, a separate sample is taken from the

second group, and then the difference of means or some other comparison statistic

is computed. This process is repeated until there are 999 (or another large number)

values of the comparison statistic, and this constitutes the bootstrap sample. The
distribution of the bootstrap sample is called the bootstrap distribution.

If the bootstrap distribution appears normal, then a confidence interval can be

computed by using the standard deviation of the bootstrap distribution in place of

the square root expression in the theorem of Section 10.2. That is, instead of

estimating the standard error for the difference of means from the two sample

standard deviations, we use the standard deviation of the bootstrap distribution. The

idea is that the bootstrap distribution should represent the actual sampling distribu-

tion for the difference of means.

However, if the bootstrap distribution does not look normal, then the percen-
tile interval should be calculated, just as was done in Section 8.5. Assuming a

bootstrap sample of size 999, this involves sorting the 999 bootstrap values, finding

the 25th from the bottom and the 25th from the top, and using these values as

confidence limits for a 95% CI. The bias corrected and adjusted interval is a further

refinement available in some software, including R, Stata, and Systat.
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Example 10.16 As an example of the bootstrap for two samples, consider data from a study of

children talking to themselves (private speech), introduced in Example 1.2. The

children were each observed in many 10-s intervals (about 100) and the researchers

computed the percentage of intervals in which private speech occurred. Because

private speech tends to occur when there is a challenging task, the students were

observed when they were doing arithmetic. The private speech is classified as on

task if it is about arithmetic, off task if it is about something else, and mumbling if

the subject is not clear.

Each child was observed in the first, second, and third grades, but we will

consider here just the first grade off-task private speech. For the 18 boys and

15 girls here are the percentages:

B: 4.9, 5.5, 6.5, 0.0, 0.0, 3.0, 2.8, 6.4, 1.0, 0.9, 0.0, 28.1, 8.7, 1.6, 5.1, 17.0, 4.7, 28.1

G: 0.0, 1.3, 2.2, 0.0, 1.3, 0.0, 0.0, 0.0, 0.0, 3.9, 0.0, 10.1, 5.2, 3.2, 0.0.

With the large number of zeroes, a majority for the girls, the normality assumption

of Section 10.2 does not apply here. Also, the sample sizes for the two groups are

not very large, so the two-sample zmethods of Section 10.1 might not work for this

data set. Nevertheless, it is useful to give the t CI for comparison purposes. The

95% interval is

x� y� t:025;n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
18

þ s22
15

r
¼ 6:906� 1:813� 2:080

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:7192

18
þ 2:8462

15

s

¼ 5:093� 2:080ð2:1825Þ ¼ 5:093� 4:540 ¼ ð:55; 9:63Þ
The degrees of freedom n ¼ 21 come from the messy formula in the theorem of

Section 10.2. The confidence interval does not include 0, which implies that we would

reject the hypothesis m1 ¼ m2 against a two-tailed alternative at the .05 level. This is in
agreement with what we get in testing this hypothesis directly: t ¼ 2.33,P-value .030.

The tmethod is of questionable validity, because of sample sizes that might not

be enough to compensate for the nonnormality. The bootstrap method involves

drawing a random sample of size 18 with replacement from the 18 boys, drawing a

random sample of size 15 with replacement from the 15 girls, and calculating the

difference of means. Then this process is repeated to give a total of 999 differences of

means. The distribution of these 999 differences ofmeans is the bootstrap distribution.

To help clarify the procedure, here are random samples from the boys and girls:

B: 0.0, 3.0, 2.8, 0.9, 3.0, 0.0, 0.0, 6.5, 6.4, 8.7, 6.4, 1.0, 0.9, 5.5, 17.0, 17.0, 0.0, 3.0

G: 1.3, 0.0, 0.0, 0.0, 0.0, 1.3, 1.3, 0.0, 3.2, 0.0, 1.3, 5.2, 0.0, 0.0, 0.0.

Of course, in sampling with replacement some values will occur more than once

and some will not occur at all. For these two samples, the difference of means is

4.56 � .91 ¼ 3.65. Doing this 999 times (using the R package boot) gives the

bootstrap distribution displayed in Figure 10.12.

The distribution looks almost normal, but with some positive skewness. The

idea of the bootstrap, with its samples taken from the original samples of boys and

girls, is for this histogram to resemble the true distribution of the difference of means.

If the original samples of boys and girls are representative of their populations, then

our histogram should be a reasonable imitation of the population distribution for the

difference of means.
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In spite of the nonnormality of the bootstrap distribution, we will use its

standard deviation to compute a confidence interval to see how much it differs from

the percentile interval. The standard deviation of the bootstrap distribution (i.e., of

the 999 x� y values) is sboot ¼ 2.1874, very close to the 2.1825 that was computed

for the square root in the t interval above. Using 2.1874 instead of 2.1825 gives the
95% confidence interval

x� y� z:025sboot ¼ 6:906� 1:813� 1:96ð2:1874Þ ¼ 5:093� 4:287 ¼ ð:81; 9:38Þ
This is very similar to the t interval, (.55, 9.63), except that using z.025

(common bootstrap practice) instead of t.025,n shortens the interval. Note that the

R package boot produces a slightly different interval because it replaces the

difference 5.093 with the average of the 999 bootstrap mean differences.

In the presence of a nonnormal bootstrap distribution, we now use the

percentile interval, which for a 95% confidence interval finds the middle 95% of

the bootstrap distribution. The confidence limits for a 95% confidence interval are

the 2.5 percentile and the 97.5 percentile. When the 999 bootstrap differences of

means are sorted, the 25th value from the bottom is 1.029 and the 25th value from

the top is 9.760. This gives a 95% CI (1.029, 9.760). The skewness of the bootstrap

distribution pushes the endpoints a little to the right of the endpoints computed from

sboot. In addition, one can compute the bias corrected and accelerated refinement,

as discussed in Section 8.5. The improved interval (1.625, 10.446), obtained from

R, is moved even farther to the right compared to the previous intervals. ■
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Figure 10.12 Histogram and normal plot of the bootstrapped difference in means

from R
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Permutation Tests

How should we test hypotheses when the validity of the t test is in doubt?

Permutation tests do not require any specific distribution for the data. The idea

is that under the null hypothesis, every observation has the same distribution and

thus the same expected value, so we can rearrange the group labels without

changing the group population means. We look at all possible arrangements,

compute the difference of means for each of these, and compute a P-value by

seeing how extreme is our original difference of means. That is, the P-value is the
fraction of arrangements that are at least as extreme as the value computed for the

original data.

Example 10.17 Consider a small-scale version of the off-task private speech data. The first three

values for the boys are 4.9, 5.5, 6.5 and the first two values for the girls are 0.0, 1.3.

To demonstrate the permutation test, we will act as if this is the whole data set.

First, we compute the difference of means of the boys versus the girls, 5.63 �
.65 ¼ 4.98. Under the null hypothesis of equal population means, it should not

matter if we reassign boys and girls. Therefore, we consider all ways of selecting

three from among the five observations to be in the boys sample, leaving the other

two for the girls sample. Under the null hypothesis, the following ten choices are

equally likely.

Boys x Girls y x� y

4.9 5.5 6.5 5.63 0.0 1.3 .65 4.98

4.9 5.5 0.0 3.47 6.5 1.3 3.90 �.43

4.9 5.5 1.3 3.90 0.0 6.5 3.25 .65

4.9 6.5 0.0 3.80 5.5 1.3 3.40 .40

4.9 6.5 1.3 4.23 5.5 0.0 2.75 1.48

4.9 0.0 1.3 2.07 5.5 6.5 6.00 �3.93

5.5 6.5 0.0 4.00 4.9 1.3 3.10 .90

5.5 6.5 1.3 4.43 4.9 0.0 2.45 1.98

5.5 0.0 1.3 2.27 6.5 4.9 5.70 �3.43

6.5 0.0 1.3 2.60 5.5 4.9 5.20 �2.60

How extreme is our original difference of means (4.98) in this set of ten differ-

ences? Because it is the largest of ten, our P-value for an upper-tailed alternative

hypothesis is 1
10
¼ :10. That is, for an upper-tailed test the P-value is the fraction

of arrangements that give a difference at least as large as our original difference.

For a two-tailed test we simply double the one-tailed P-value, giving P ¼ .20 for

this example. ■

When m ¼ 3 and n ¼ 2, it is simple enough to deal with all 5
3


 � ¼ 10

arrangements. What happens when we try to use the whole set of 18 boys and 15

girls in the private speech data set?

Example 10.18 Consider a permutation test for the full private speech data. Here we are dealing

with 33
18


 � ¼ 1;037;158;320 arrangements of the 18 boys and 15 girls, more than a

billion arrangements. Even on a reasonably fast computer it might take a while to

generate this many differences and see how many are at least as big as the value
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x� y ¼ 6:906� 1:813 ¼ 5:093 computed for the original data. It took around

an hour on an 800 mhz Dell using the free program BLOSSOM, which can be

downloaded from the Internet. The two-tailed P-value is .0203, a little less than the
P-value .030 from the t test. There is fairly strong evidence, at least at the 5% level,

that the boys engage in more off-task private speech than the girls.

We might have expected that the hypothesis test would reject the null

hypothesis (of zero difference in means) at the 5% level with a two-tailed test.

Recall that all three of our 95% confidence intervals in Example 10.16 consisted of

only positive values, so none of the intervals included zero.

The number of arrangements goes up very quickly as the group sizes

increase. If there are 20 boys and 20 girls, then the number of arrangements is

more than 100 times as big as when there are 18 boys and 15 girls. Doing the test

exactly, using all of the arrangements, becomes entirely impractical, but there is an

approximate alternative. We can take a random sample of a few thousand arrange-

ments and get quite close to the exact answer. For example, with our 18 boys and

15 girls, BLOSSOM gives (almost instantaneously) a P-value of .0204, which is

certainly close enough to the exact answer of .0203. An approximate computation

is also available in R (in the boot package) and Stata and can easily be programmed

in other software such as MINITAB. ■

PERMUTA-
TION TESTS

Let y1 and y2 be the same parameters (means, medians, standard deviations,

etc.) for two different populations, and consider testing H0: y1 ¼ y2 based on
independent samples of sizes m and n, respectively. Suppose that when H0 is

true, the two population distributions are identical in all respects, so allm + n
observations have actually been selected from the same population distribu-

tion. In this case, the labels 1 and 2 are arbitrary, as any m of the m + n
observations have the same chance of ending up in the first sample (leaving

the remaining n for the second sample). An exact permutation test computes

a suitable comparison statistic for all possible rearrangements, and sets the

P-value equal to the fraction of these that are at least as extreme as the

statistic computed on the original samples. This is the P-value for a one-tailed
test, and it needs to be doubled for a two-tailed test. For an approximate

permutation test, instead of all possible arrangements, we take a random

sample with replacement from the set of all possible arrangements.

Permutation tests are nonparametric, meaning that they do not assume a

specific underlying distribution such as the normal distribution. However, this

does not mean that there are no assumptions whatsoever. The null hypothesis in a

permutation test is that the two distributions are the same, and any deviation can

increase the probability of rejecting the null hypothesis. Thus, strictly speaking,

we are doing a test for equal means only if the distributions are alike in all other

respects, and this means that the two distributions have the same shape. In particu-

lar, it requires the distributions to have the same spread. See Exercise 84 for an

example in which the permutation test underestimates the true P-value.
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Inferences About Variability

Section 10.5 discussed the use of the F distribution for comparing two variances,

but this inferential method is strongly dependent on normality. For highly skewed

data the F test for equal variances will tend to reject the null hypothesis too often.

Example 10.19 Consider the off-task private speech data from Example 10.16. The sample stan-

dard deviations for boys and girls are 8.72 and 2.85, respectively. Then the method

of Section 10.5 gives for the ratio of male to female variances the 95% confidence

interval

s21
s22

1

F:025;17;14
;
s21
s22

1

F:975;17;14

� �
¼ 8:722

2:852
1

2:900
;
8:722

2:852
1

:3633

� �
¼ ð3:23; 25:77Þ

Taking the square root gives (1.80, 5.08) as the 95% confidence interval for

the ratio of standard deviations. However, the legitimacy of this interval is seriously

in question because of the skewed distributions.

What about a hypothesis test of equal population variances? The ratio of male

variance to female variance is s21=s
2
2 ¼ 8:722=2:852 ¼ 9:385. Comparing this to the

F distribution with 17 numerator degrees of freedom and 14 denominator degrees

of freedom, we find that the one-tailed P-value is .000061, and therefore the two-

tailed P-value is .00012. This is consistent with the 95% confidence interval not

including 1. It would be strong evidence for the male variance being greater than

the female variance, except that the validity of the test is in doubt because of

nonnormality.
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Figure 10.13 Histogram and normal plot of bootstrap standard deviation ratios from R
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Let’s apply the bootstrap to this problem. Begin with a sample from the boys,

standard deviation 5.264, and a sample from the girls, standard deviation 1.505,

with ratio 5.264/1.505 ¼ 3.498. We do this 999 times using the boot package in R,

and the resulting distribution of ratios is shown in Figure 10.13.

The bootstrap distribution is strongly skewed to the right. For a 95% confi-

dence interval, the percentile method uses the middle 95% of the bootstrap distri-

bution. The 2.5 percentile is 1.013 and the 97.5 percentile is 7.888, so the 95%

confidence interval for the population ratio of standard deviations is (1.013, 7.888).

The bias corrected and accelerated (BCa) refinement gives the interval (0.885,

7.382). These two intervals differ in an important respect, that the percentile

interval excludes 1 but the BCa refinement includes 1. In other words, the BCa

interval allows the possibility that the two standard deviations are the same, but the

percentile interval does not. We expect the BCa method to be an improvement, and

this is verified in the next example, where we see that the BCa result is consistent

with the results of a permutation test. ■

Consider using a permutation test for H0: s1 ¼ s2.

Example 10.20 From Example 10.19 we know that the ratio of sample standard deviations for off-

task private speech, males versus females, is 8.72/2.85 ¼ 3.064. The idea of the

permutation test is to find out how unusual this value is if we blur the distinction

between males and females. That is, we remove the labels from the 18 males and

15 females and then consider all possible choices of 18 from the 33 children.

For each of these possible choices we find the ratio of the standard deviation of

the first 18 to the standard deviation of the last 15. The one-tailed P-value is the

fraction that are at least as big as the original value, 3.064. Because there are more

than a billion possible choices of 18 from 33, we instead selected 4999 random

choices. This gives a total of 5000 when the original selection of males and females

is included. Of these, 432 are at least as big as 3.064, so the one-tailed P-value is

432/5000 ¼ .0864. For a two-tailed P-value we double this and get .1728. The

permutation test does not reject at the 5% level (or the 10% level) the null

hypothesis that the two population standard deviations are the same.

How does the permutation test result compare with the other results? Recall

that the F interval and the percentile interval ruled out the possibility that the two

standard deviations are the same, but the BCa refinement disagreed, because 1 is

included in the BCa interval. Taking it for granted that the permutation test is a valid

approach and the permutation test does not reject the equality of standard deviations,

the BCa interval is the only one of the three CIs consistent with this result. ■

The Analysis of Paired Data

The bootstrap can be used for paired data if we work with the paired differences, as

in the paired t methods of Section 10.3.

Example 10.21 The private speech study was introduced in Examples 1.2 and 10.16. The study

included the percentage of intervals with on-task private speech for 33 children in

the first, second, and third grades. Here we will consider just the 15 girls in the first

and second grades. Is there a change in on-task private speech when the girls go

from the first to the second grade? Here are the percentages of intervals in which on

task private speech occurred, and also the differences.
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Grade 1 Grade 2 Difference

25.7 18.6 7.1

36.0 17.4 18.6

27.6 2.6 25.0

29.7 0.9 28.8

36.0 1.5 34.5

35.1 14.1 21.0

42.0 3.3 38.7

7.6 1.6 6.0

14.1 0.0 14.1

25.0 1.5 23.5

20.2 0.0 20.2

24.4 2.1 22.3

10.4 18.4 �8.0

21.1 2.6 18.5

5.6 26.0 �20.4

Our null hypothesis is that the population mean difference between first- and

second-grade percentages is zero. Figure 10.14 shows a histogram for the differ-

ences, and it shows a negatively skewed distribution.

The paired t method of Section 10.3 requires normality, so the skewness

might invalidate this, but we will show the results here anyway for comparison

purposes. The mean of the differences is d ¼ 16:66 with standard deviation

sD ¼ 15.43, so the 95% confidence interval for the population mean difference is

d � t:025;15�1

sDffiffiffiffiffi
15

p ¼ 16:66� 2:145
15:43ffiffiffiffiffi

15
p ¼ 16:66� 8:54 ¼ ð8:12; 25:20Þ

What about the bootstrap for paired data? The bootstrap focuses on the 15

differences and uses the method of Section 8.5. Using Stata, we draw 999 samples

of size 15 with replacement from the 15 differences, and these 999 samples

constitute the bootstrap distribution. Figure 10.15 shows the histogram.
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Figure 10.14 Histogram of differences for girls from Stata
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The histogram shows negative skewness, which is expected because of the

negative skewness shown in Figure 10.14 for the original sample. The skewness

implies that a symmetric confidence interval will not be entirely appropriate, but

we show it for comparison with the other intervals. The standard deviation of the

bootstrap distribution is sboot ¼ 3.994, compared to the estimated standard error

sD=
ffiffiffiffiffi
15

p ¼ 15:43=
ffiffiffiffiffi
15

p ¼ 3:984. The 95% bootstrap confidence interval is nar-

rower because of using z.025 instead of t.025,15�1.

d � z:025sboot ¼ 16:66� 1:96ð3:994Þ ¼ 16:66� 7:83 ¼ ð8:83; 24:49Þ
This is slightly different from what Stata produces, because it uses t.025,B�1 ¼
t
.025,999�1

.where B is the size of the bootstrap sample.

The 95% percentile interval uses the 2.5 percentile ¼ 7.91 and the 97.5

percentile ¼ 23.97 of the bootstrap distribution, so the confidence interval is

(7.91, 23.97). This interval is to the left of the t intervals because of the negative

skewness of the bootstrap distribution. The bias corrected and accelerated refine-

ment from Stata yields the interval (6.43, 23.12), which is even farther to the left.

All of the intervals agree that there is a substantial population difference

between first grade and second grade. There is a strong reduction in the on-task

private speech of girls between first and second grades. ■

A permutation test for paired data involves permutations within the pairs.

Under the null hypothesis, the two observations in a pair have the same population

mean, so the population mean difference is zero, even if the order is reversed.

Therefore, we consider all possible orderings of the n pairs. Because there are two

possible orderings within each pair, there are 2n arrangements of n pairs. The one-

tailed P-value is the fraction of the 2n differences that are at least as extreme as the

observed value, and the two-tailed P-value is double this.
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Figure 10.15 Histogram of bootstrap differences for girls from Stata
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Example 10.22 To see how the permutation test works for paired data, consider a scaled-down version

of the data from Example 10.21 with only the first three pairs. These are (25.7, 18.6),

(36.0, 17.4), (27.6, 2.6). They give amean difference of (7.1 + 18.6 + 25.0)/3 ¼ 16.9.

Here are all 8 ¼ 23 permutations with the corresponding means.

Arrangements Mean difference

(25.7, 18.6) (36.0, 17.4) (27.6, 2.6) 16.90

(25.7, 18.6) (36.0, 17.4) (2.6, 27.6) .23

(25.7, 18.6) (17.4, 36.0) (27.6, 2.6) 4.50

(25.7, 18.6) (17.4, 36.0) (2.6, 27.6) �12.17

(18.6, 25.7) (36.0, 17.4) (27.6, 2.6) 12.17

(18.6, 25.7) (36.0, 17.4) (2.6, 27.6) �4.50

(18.6, 25.7) (17.4, 36.0) (27.6, 2.6) �.23

(18.6, 25.7) (17.4, 36.0) (2.6, 27.6) �16.90

Because the mean difference for the original sample is the highest value of eight,

the one-tailed P-value is 1
8
¼ :125, and the two-tailed P-value is 2 1

8


 � ¼ :25. ■

Example 10.23 Let’s now apply the permutation test to the paired data for the 15 girls of Example

10.21. In principle it is no harder to deal with the 2n ¼ 215 ¼ 32,768 arrangements

when all 15 pairs are included, but this exact approach is generally approximated

using a random sample. We used Stata to draw an additional 4999 samples. Of the

4999, none yielded a mean difference as large as the value of 16.66 obtained for the

original sample of 15 differences. Therefore, the one-tailed P-value is
1

5000
¼ :0002, and the two-tailed P-value is 2(.0002) ¼ .0004. Rejection of the

null hypothesis at the 5% level was to be expected, given that none of the

confidence intervals in Example 10.21 included 0.

It is interesting to compare the permutation test result with the t test of
Section 10.3. For testing the null hypothesis of 0 population mean difference, the

value of t is

d � 0

sD=
ffiffiffiffiffi
15

p ¼ 16:66

15:425=
ffiffiffiffiffi
15

p ¼ 4:183

The two-tailed P-value for this is .0009, not very different from the result of the

permutation test. ■

Exercises Section 10.6 (69–84)

69. A student project by Heather Kral studied

students on “lifestyle floors” of a dormitory in

comparison to students on other floors. On a life-

style floor the students share a common major,

and there are a faculty coordinator and resident

assistant from that department. Here are the grade

point averages of 30 students on lifestyle floors

(L) and 30 students on other floors (N):

L: 2.00, 2.25, 2.60, 2.90, 3.00, 3.00, 3.00, 3.00,

3.00, 3.20, 3.20, 3.25, 3.30, 3.30, 3.32, 3.50,

3.50, 3.60, 3.60, 3.70, 3.75, 3.75, 3.79, 3.80,

3.80, 3.90, 4.00, 4.00, 4.00, 4.00.

N: 1.20, 2.00, 2.29, 2.45, 2.50, 2.50, 2.50, 2.50,

2.65, 2.70, 2.75, 2.75, 2.79, 2.80, 2.80, 2.80,

2.86, 2.90, 3.00, 3.07, 3.10, 3.25, 3.50, 3.54,

3.56, 3.60, 3.70, 3.75, 3.80, 4.00.
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Notice that the lifestyle grade point averages

have a large number of repeats and the distribu-

tion is skewed, so there is some question about

normality.

a. Obtain a 95% confidence interval for the dif-

ference of population means using the method

based on the theorem of Section 10.2.

b. Obtain a bootstrap sample of 999 differences

of means. Check the bootstrap distribution for

normality using a normal probability plot.

c. Use the standard deviation of the bootstrap

distribution along with the mean and t critical
value from (a) to get a 95% confidence inter-

val for the difference of means.

d. Use the bootstrap sample and the percentile

method to obtain a 95% confidence interval

for the difference of means.

e. Compare your three confidence intervals. If

they are very similar, why do you think this is

the case?

f. Interpret your results. Is there a substantial dif-
ference between lifestyle and other floors?Why

do you think the difference is as big as it is?

70. In this application from major league baseball,

the populations represent an abstraction of what

the players can do, so the populations will vary

from year to year. The Colorado Rockies and the

Arizona Diamondbacks played nine games in

Phoenix and ten games in Denver in 2001. The

thinner air in Denver causes curve balls to curve

less and it allows fly balls to travel farther. Does

this mean that more runs are scored in Denver?

The numbers of runs scored by the two teams in

the nine Phoenix games (P) and ten Denver

games (D) are

P: 5.09 15.88 3 8.47 11.65 6.48 11.65 7.41 9.53

D: 10 18 15.56 19 8.1 14 13.76 10 20.12

10.59

The fractions occur because the numbers have

been adjusted for nine innings (54 outs). For

example, in the third Denver game the Rockies

won 10 to 7 on a home run with two out in the

bottom of the tenth inning, so there were 59 outs

instead of 54, and the number of runs is adjusted

to (54/59)(17) ¼ 15.56. We want to compare the

average runs in Denver with the average runs in

Phoenix.

a. Find a 95% confidence interval for the differ-

ence of population means using the method

given in the theorem of Section 10.2.

b. Obtain a bootstrap sample of 999 differences

of means. Check the bootstrap distribution for

normality using a normal probability plot.

c. Use the standard deviation of the bootstrap

distribution along with the mean and t critical
value from (a) to get a 95% confidence inter-

val for the difference of means.

d. Use the bootstrap sample and the percentile

method to obtain a 95% confidence interval

for the difference of means.

e. Compare your three confidence intervals. If

you used a standard normal critical value in

place of the t critical value in (c), why would

that make this interval more like the one in

(d)? Why should the three intervals be fairly

similar for this data set?

f. Interpret your results. Is there a substantial

difference between the two locations? Com-

pare the difference with what you thought it

would be. If you were a major league pitcher,

would you want to be traded to the Rockies?

71. For the data of Exercise 70 we want to compare

population medians for the runs in Denver versus

the runs in Phoenix.

a. Obtain a bootstrap sample of 999 differences

of medians. Check the bootstrap distribution

for normality using a normal probability

plot.

b. Use the standard deviation of the bootstrap

distribution along with the difference of the

medians in the original sample and the t criti-
cal value from Exercise 70(a) to get a 95%

confidence interval for the difference of

population medians.

c. Use the bootstrap sample and the percentile

method to obtain a 95% confidence interval

for the difference of population medians.

d. Compare the two confidence intervals.

e. How do the results for the median compare

with the results for the mean? In terms of

precision (measured by the width of the con-

fidence interval) which gives the best results?

72. For the data of Exercise 69 now consider testing

the hypothesis of equal population variances.

a. Carry out a 2-tailed test using the method of

Section 10.5. Recall that this method requires

the data to be normal, and the method is sensi-

tive to departures from normality. Check the

data for normality to see if the F test is justi-

fied.

b. Carry out a 2-tailed permutation test for the

hypothesis of equal population variances (or

standard deviations). Why does it not matter

whether you use variances or standard devia-

tions?

c. Compare the two results and summarize your

conclusions.
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73. For the data of Exercise 69 we want a 95%

confidence interval for the ratio of population

standard deviations.

a. Use the method of Section 10.5. Recall that

this method requires the data to be normal,

and the method is sensitive to departures from

normality. Check the data for normality to see

if the F distribution can be used for the ratio

of sample variances.

b. With a bootstrap sample of size 999 use the

percentile method to obtain a 95% confidence

interval for the ratio of standard deviations.

c. Compare the two results and discuss the rela-

tionship of the results to those of Exercise 72.

74. Can the right diet help us cope with diseases asso-

ciated with aging such as Alzheimer’s disease?

A study (“Reversals of Age-Related Declines

in Neuronal Signal Transduction, Cognitive, and

Motor Behavioral Deficits with Blueberry,

Spinach, or Strawberry Dietary Supplement,” J.
Neurosci., 1999; 8114–8121) investigated the

effects of fruit and vegetable supplements in the

diet of rats. The rats were 19 months old, which is

aged by rat standards. The 40 rats were randomly

assigned to four diets, of which we will consider

just the blueberry diet and the control diet here.

After 8 weeks on their diets, the rats were given a

number of tests.Wegive the data for just one of the

tests, which measured how many seconds they

could walk on a rod. Here are the times for the

ten control rats (C) and ten blueberry rats (B):

C: 15.00 7.00 2.44 5.60 3.63 6.24 4.12 8.21

3.90 0.95

B: 5.12 9.38 18.77 15.03 6.67 7.91 7.38

15.09 11.57 8.98

The objective is to obtain a 95% confidence

interval for the difference of population means.

a. Determine a 95% confidence interval for the

difference of population means using the

method based on the Theorem of Section 10.2.

b. Obtain a bootstrap sample of 999 differences

of means. Check the bootstrap distribution for

normality using a normal probability plot.

c. Use the standard deviation of the bootstrap

distribution along with the mean and t critical
value from (a) to get a 95% confidence inter-

val for the difference of means.

d. Use the bootstrap sample and the percentile

method to obtain a 95% confidence interval

for the difference of means.

e. Compare your three confidence intervals.

If they are very similar, why do you think

this is the case? If you had used a critical

value from the normal table rather than the

t table, would the result of (c) agree better

with the result of (d)? Why?

f. Interpret your results. Do the blueberries make

a substantial difference?

75. For the data of Exercise 74, we now want to test

the hypothesis of equal population means.

a. Carry out a 2-tailed test using the method

based on the theorem of Section 10.2.

Although this test requires normal data, it will

still work pretty well for moderately nonnor-

mal data. Nevertheless, you should check the

data for normality to see if the test is justified.

b. Carry out a 2-tailed permutation test for the

hypothesis of equal population means.

c. Compare the results of (a) and (b). Would you

expect them to be similar for the data of this

problem? Discuss their relationship to the

results of Exercise 74. Summarize your con-

clusions about the effectiveness of blueberries.

76. Researchers at the University of Alaska have

been trying to find inexpensive feed sources for

Alaska reindeer growers (“Effects of Two Barley-

Based Diets on Body Mass and Intake Rates of

Captive Reindeer During Winter,” Poster Presen-

tation: School of Agriculture and Land Resources

Management, University of Alaska Fairbanks,

2002). They are focusing on Alaska-grown barley

because commercially available feed supplies are

too expensive for farmers. Typically, reindeer lose

weight in the fall and winter, and the researchers

are trying to find a feed to minimize this loss.

Thirteen pregnant reindeer were randomly divided

into two groups to be fed on two different varieties

of barley, thual and finaska. Here are the weight

gains between October 1 and December 15 for the

seven thatwere fed thual barley (T) and the six that

were fed finaska barley (F).

T: �5.83 �11.5 �5.5 �1.33 �3.83 �3.33

�7.17

F: �0.17 �0.67 �4 �3 �1.33 �0.5.

The weight gains are all negative, indicating that

all of the animals lost weight. The thual barley is

less fibrous and more digestible, and the intake

rates for the two varieties of barley were very

nearly the same, so the experimenters expected

less weight loss for the thual variety.

a. Determine a 95% confidence interval for the

difference of population means using the

method given in the theorem of Section 10.2.
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b. Obtain a bootstrap sample of 999 differences of

means. Check the bootstrap distribution for

normality using a normal probability plot.

c. Use the standard deviation of the bootstrap

distribution along with the mean and t critical
value from (a) to get a 95% confidence interval

for the difference of means.

d. Use the bootstrap sample and the percentile

method to obtain a 95% confidence interval

for the difference of means.

e. Compare your three confidence intervals. If

they are very similar, why do you think this is

the case?

f. Interpret your results. Is there a substantial dif-
ference? Is it in the direction anticipated by the

experimenters?

77. For the data of Exercise 76 we want to test the

hypothesis of equal population variances.

a. Carry out a 2-tailed test using the method of

Section 10.5. Recall that this method requires

the data to be normal, and the method is sensi-

tive to departures from normality. Check the

data for normality to see if the F test is justified.

b. Carry out a 2-tailed permutation test for the

hypothesis of equal population variances (or

standard deviations).

c. Compare the two results and summarize your

conclusions.

78. Recall the data from Example 10.4 about the exper-

iment in the low-level college mathematics course.

Here again are the 85 final exam scores for those in

the experimental group (E) and the 79 final exam

scores for those in the control group (C):

E: 34 27 26 33 23 37 24 34 22 23 32 5

30 35 28 25 37 28 26 29 22 33 31 23

37 29 0 30 34 26 28 27 32 29 31 33

28 21 34 29 33 6 8 29 36 7 21 30

28 34 28 35 30 34 9 38 9 27 25 33

9 23 32 25 37 28 23 26 34 32 34 0

24 30 36 28 38 35 16 37 25 34 38 34

31

C: 37 22 29 29 33 22 32 36 29 6 4 37

0 36 0 32 27 7 19 35 26 22 28 28

32 35 28 33 35 24 21 0 32 28 27 8

30 37 9 33 30 36 28 3 8 31 29 9

0 0 35 25 29 3 33 33 28 32 39 20

32 22 24 20 32 7 8 33 29 9 0 30

26 25 32 38 22 29 29

a. Determine a 95% confidence interval for the

difference of population means using the z
method given in Section 10.1.

b. Obtain a bootstrap sample of 999 differences

of means. Check the bootstrap distribution for

normality using a normal probability plot.

c. Use the standard deviation of the bootstrap

distribution along with the mean and t critical
value from (a) to get a 95% confidence interval

for the difference of means.

d. Use the bootstrap sample and the percentile

method to obtain a 95% confidence interval

for the difference of means.

e. Compare your three confidence intervals. If

they are very similar, why do you think this is

the case? In the light of your results for (c) and

(d), does the z method of (a) seem to work,

regardless of normality? Explain.

f. Are your results consistent with the results of

Example 10.4? Explain.

79. For the data of Example 10.4 we want to try a

permutation test.

a. Carry out a 2-tailed permutation test for the

hypothesis of equal population means.

b. Compare the results for (a) and Example 10.4.

Why should you have expected (a) and Exam-

ple 10.4 to give similar results?

80. For the data of Example 10.4 it might be more

appropriate to compare medians.

a. Find the medians for the two groups. With the

help of a stem-and-leaf display for each group,

explain why the medians are much closer than

the means.

b. Do a two-tailed permutation test to compare

the medians. Given what you found in (a),

explain why the result of the permutation test

was to be expected.

81. Two students, Miguel Melo and CodyWatson, did

a study of textbook pricing. They compared prices

at the campus bookstore and Amazon.com. To be

fair, they included the sales tax for the local store

and added shipping for Amazon. Here are the

prices for a sample of 27 books.

Campus Amazon

100.41 106.94

99.34 113.94

51.53 61.44

20.45 31.59

28.69 29.89

70.66 83.94

98.81 107.74

111.56 115.99

97.22 108.29

(continued)
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(continued)

61.89 78.44

70.39 82.94

58.17 65.74

108.38 122.09

61.63 63.49

59.50 69.24

87.66 73.84

26.56 33.98

44.63 40.39

96.69 117.99

18.06 27.94

103.06 115.74

14.61 24.69

77.03 88.04

99.34 113.94

81.81 90.74

48.88 58.94

76.50 91.94

a. Determine a 95% confidence interval for the

difference of population means using the

t method of Section 10.3. Check the data for

normality. Even if the normality assumption is

not valid here, explain why the tmethod (or the

z method of Section 10.1) might still be appro-

priate.

b. Based on the 27 differences, obtain a bootstrap

sample of 999 differences of means. Check the

bootstrap distribution for normality.

c. Use the standard deviation of the bootstrap

distribution along with the mean and t critical
value from (a) to get a 95% confidence interval

for the difference of means.

d. Use the bootstrap sample and the percentile

method to obtain a 95% confidence interval

for the difference of means.

e. Compare your three confidence intervals. In the

light of your results for (d), does nonnormality

invalidate the results of (a) and (c)? Explain.

f. Interpret your results. Is there a substantial

difference between the two ways to buy

books? Assuming that the populations remain

unchanged and you have just these two sources,

where would you buy?

82. Consider testing the hypothesis of equal popula-

tion means based on the data in Exercise 81.

a. Carry out a 2-tailed test using the method of

Section 10.3. Is the normality assumption satis-

fied here? If not, why might the test be valid

anyway?

b. Carry out a 2-tailed permutation test for the

hypothesis of equal population means.

c. Compare the results for (a) and (b). If the two

results are similar, does it tend to validate (a),

regardless of normality?

83. Compare bootstrapping with approximate permu-

tation tests in which random permutations are

used. Discuss the similarities and differences.

84. Assume that X is uniformly distributed on (�1, 1)

and Y is split evenly between a uniform distribu-

tion on (�101, �100) and a uniform distribution

on (100, 101). Thus the means are both 0, but the

variances differ strongly. We take random sam-

ples of size three from each distribution and

apply a permutation test for the null hypothesis

H0: m1 ¼ m2 against the alternative Ha: m1 < m2.
a. Show that the probability is 1

8
that all three of

the Y values come from (100, 101).

b. Show that, if all three Y values come from

(100, 101), then the P-value for the permuta-

tion test is .05.

c. Explain why (a) and (b) are in conflict. What is

the true probability that the permutation test

rejects the null hypothesis at the .05 level?

Supplementary Exercises (85–113)

85. A group of 115 University of Iowa students was

randomly divided into a build-up condition group

(m ¼ 56) and a scale-down condition group

(n ¼ 59). The task for each subject was to build

his or her own pizza from amenu of 12 ingredients.

The build-up group was told that a basic cheese

pizza costs $5 and that each extra ingredient would

cost 50 cents. The scale-down groupwas told that a

pizza with all 12 ingredients (ugh!!!) would cost

$11 and that deleting an ingredient would save 50

cents. The article “A Tale of Two Pizzas: Building

Up from a Basic Product Versus Scaling Down

from a Fully Loaded Product” (Market. Lett.,
2002: 335–344) reported that the mean number

of ingredients selected by the scale-down group

was significantly greater than themean number for

the build-up group: 5.29 versus 2.71. The calcu-

lated value of the appropriate t statistic was 6.07.
Would you reject the null hypothesis of equality in

favor of inequality at a significance level of .05?

.01? .001? Can you think of other products aside

from pizza where one could build up or scale
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down? [Note: A separate experiment involved stu-

dents from the University of Rome, but details

were a bit different because there are typically

not so many ingredient choices in Italy.]

86. Is the number of export markets in which a firm

sells its products related to the firm’s return on

sales? The article “Technology Industry Success:

Strategic Options for Small and Medium Firms”

(Gongming Qian, Lee Li, Bus. Horizons, Sept.–
Oct. 2003: 41–46) gave the accompanying informa-

tion on the number of export markets for one group

of firmswhose return on sales was less than 10% and

another group whose return was at least 10%.

Return
Sample
Size

Sample
Mean

Sample
SD

Less than 10% 36 5.12 .57

At least 10% 47 8.26 1.20

The investigators reported that an appropriate test

of hypotheses resulted in a P-value between .01

and .05. What hypotheses do you think were

tested, and do you agree with the stated P-value
information? What assumptions if any are needed

in order to carry out the test? Can the plausibility of

these assumptions be investigated based just on the

foregoing summary data? Explain.

87. Suppose when using a two-sample t CI or test that
m < n, and show that df > m� 1. This iswhy some

authors suggest using min(m � 1, n � 1) as df in

place of the formula given in the text. What impact

does this have on the CI and test procedure?

88. The accompanying summary data on compression

strength (lb) for 12 � 10 � 8 in. boxes appeared

in the article “Compression of Single-Wall

Corrugated Shipping Containers Using Fixed and

Floating Test Platens” (J. Testing Eval., 1992:
318–320). The authors stated that “the difference

between the compression strength using fixed and

floating platen method was found to be small

compared to normal variation in compression

strength between identical boxes.” Do you agree?

Method
Sample
Size

Sample
Mean

Sample
SD

Fixed 10 807 27

Floating 10 757 41

89. The authors of the article “Dynamics of Canopy

Structure and Light Interception in Pinus elliotti,

North Florida” (Ecol. Monogr., 1991: 33–51)

planned an experiment to determine the effect of

fertilizer on a measure of leaf area. A number of

plots were available for the study, and half were

selected at random to be fertilized. To ensure that

the plots to receive the fertilizer and the control

plots were similar, before beginning the experi-

ment tree density (the number of trees per hectare)

was recorded for eight plots to be fertilized and

eight control plots, resulting in the given data.

MINITAB output follows.

Fertilizer plots 1024 1216 1312 1280

1216 1312 992 1120

Control plots 1104 1072 1088 1328

1376 1280 1120 1200

Two sample T for fertilize vs. control

N Mean StDev SE Mean
fertilize 8 1184 126 44
control 8 1196 118 42

95% CI for mu fertilize-mu control:
(�144, 120)
a. Construct a comparative boxplot and comment

on any interesting features.

b. Would you conclude that there is a significant

difference in the mean tree density for fertilizer

and control plots? Use a ¼ .05.

c. Interpret the given confidence interval.

90. Is the response rate for questionnaires affected

by including some sort of incentive to respond

along with the questionnaire? In one experiment,

110 questionnaires with no incentive resulted in

75 being returned, whereas 98 questionnaires that

included a chance to win a lottery yielded 66

responses (“Charities, No; Lotteries, No; Cash,

Yes,” Public Opinion Q., 1996: 542–562). Does
this data suggest that including an incentive

increases the likelihood of a response? State and

test the relevant hypotheses at significance level

.10 by using the P-value method.

91. The article “Quantitative MRI and Electrophysiol-

ogy of Preoperative Carpal Tunnel Syndrome in a

Female Population” (Ergonomics, 1997: 642–649)
reported that (�473.3, 1691.9) was a large-sam-

ple 95% confidence interval for the difference

between true average thenar muscle volume

(mm3) for sufferers of carpal tunnel syndrome

and true average volume for nonsufferers. Calcu-

late and interpret a 90% confidence interval for

this difference.
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92. The following summary data on bending strength

(lb-in/in) of joints is taken from the article

“Bending Strength of Corner Joints Constructed

with Injection Molded Splines” (Forest Products
J., April 1997: 89–92). Assume normal distribu-

tions.

Type
Sample
Size

Sample
Mean

Sample
SD

Without side coating 10 80.95 9.59

With side coating 10 63.23 5.96

a. Calculate a 95% lower confidence bound for

true average strength of joints with a side

coating.

b. Calculate a 95% lower prediction bound for the

strength of a single joint with a side coating.

c. Calculate a 95% confidence interval for the

difference between true average strengths for

the two types of joints.

93. An experiment was carried out to compare

various properties of cotton/polyester spun yarn

finished with softener only and yarn finished

with softener plus 5% DP-resin (“Properties

of a Fabric Made with Tandem Spun Yarns,”

Textile Res. J., 1996: 607–611). One particularly
important characteristic of fabric is its durability,

that is, its ability to resist wear. For a sample of

40 softener-only specimens, the sample mean

stoll-flex abrasion resistance (cycles) in the fill-

ing direction of the yarn was 3975.0, with a

sample standard deviation of 245.1. Another

sample of 40 softener-plus specimens gave a

sample mean and sample standard deviation of

2795.0 and 293.7, respectively. Calculate a con-

fidence interval with confidence level 99% for

the difference between true average abrasion

resistances for the two types of fabrics. Does

your interval provide convincing evidence that

true average resistances differ for the two types

of fabrics? Why or why not?

94. The derailment of a freight train due to the cata-

strophic failure of a traction motor armature bear-

ing provided the impetus for a study reported in

the article “Locomotive Traction Motor Armature

Bearing Life Study” (Lubricat. Engrg., Aug.

1997: 12–19). A sample of 17 high-mileage trac-

tion motors was selected, and the amount of cone

penetration (mm/10) was determined both for the

pinion bearing and for the commutator armature

bearing, resulting in the following data:

Motor 1 2 3 4 5 6

Commutator 211 273 305 258 270 209

Pinion 226 278 259 244 273 236

Motor 7 8 9 10 11 12

Commutator 223 288 296 233 262 291

Pinion 290 287 315 242 288 242

Motor 13 14 15 16 17

Commutator 278 275 210 272 264

Pinion 278 208 281 274 268

Calculate an estimate of the population mean dif-

ference between penetration for the commutator

armature bearing and penetration for the pinion

bearing, and do so in a way that conveys informa-

tion about the reliability and precision of the esti-

mate. [Note: A normal probability plot validates

the necessary normality assumption.] Would you

say that the population mean difference has been

precisely estimated? Does it look as though popu-

lation mean penetration differs for the two types of

bearings? Explain.

95. The article “Two Parameters Limiting the Sensi-

tivity of Laboratory Tests of Condoms as Viral

Barriers” (J. Test. Eval., 1996: 279–286) reported
that, in brand A condoms, among 16 tears pro-

duced by a puncturing needle, the sample mean

tear length was 74.0 mm, whereas for the 14 brand

B tears, the sample mean length was 61.0 mm
(determined using light microscopy and scanning

electron micrographs). Suppose the sample stan-

dard deviations are 14.8 and 12.5, respectively

(consistent with the sample ranges given in the

article). The authors commented that the thicker

brand B condom displayed a smaller mean tear

length than the thinner brand A condom. Is this

difference in fact statistically significant? State

the appropriate hypotheses and test at a ¼ .05.

96. Information about hand posture and forces gener-

ated by the fingers during manipulation of various

daily objects is needed for designing high-

tech hand prosthetic devices. The article “Grip

Posture and Forces During Holding Cylindrical

Objects with Circular Grips” (Ergonomics, 1996:
1163–1176) reported that for a sample of 11

females, the sample mean four-finger pinch

strength (N) was 98.1 and the sample standard

deviation was 14.2. For a sample of 15 males,

the sample mean and sample standard deviation

were 129.2 and 39.1, respectively.

a. A test carried out to see whether true average

strengths for the two genders were different
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resulted in t ¼ 2.51 and P-value ¼ .019. Does

the appropriate test procedure described in this

chapter yield this value of t and the stated

P-value?
b. Is there substantial evidence for concluding

that true average strength for males exceeds

that for females by more than 25 N? State

and test the relevant hypotheses.

97. The article “Pine Needles as Sensors of Atmo-

spheric Pollution” (Environ. Monitor., 1982:

273–286) reported on the use of neutron-activity

analysis to determine pollutant concentration in

pine needles. According to the article’s authors,

“These observations strongly indicated that for

those elements which are determined well by the

analytical procedures, the distribution of concentra-

tion is lognormal. Accordingly, in tests of signifi-

cance the logarithms of concentrations will be

used.” The given data refers to bromine concentra-

tion in needles taken from a site near an oil-fired

steam plant and from a relatively clean site. The

summary values are means and standard deviations

of the log-transformed observations.

Site
Sample
Size

Mean Log
Concentration

SD of Log
Concentration

Steam

plant

8 18.0 4.9

Clean 9 11.0 4.6

Let m�1 be the true average log concentration at

the first site, and define m�2 analogously for the

second site.

a. Use the pooled t test (based on assuming nor-

mality and equal standard deviations) to decide
at significance level .05 whether the two con-

centration distribution means are equal.

b. If s�1 and s
�
2, the standard deviations of the two

log concentration distributions, are not equal,

would m1 and m2, the means of the concentra-

tion distributions, be the same if m�1 ¼ m�2?
Explain your reasoning.

98. Torsion during hip external rotation (ER) and

extension may be responsible for certain kinds of

injuries in golfers and other athletes. The article

“Hip Rotational Velocities during the Full Golf

Swing” (J. Sport Sci. Med., 2009: 296–299)

reported on a study in which peak ER velocity

and peak IR (internal rotation) velocity (both in

deg/s) were determined for a sample of 15 female

collegiate golfers during their swings. The follow-

ing data was supplied by the article’s authors.

Golfer ER IR diff z perc

1 �130.6 �98.9 �31.7 �1.28

2 �125.1 �115.9 �9.2 �0.97

3 �51.7 �161.6 109.9 0.34

4 �179.7 �196.9 17.2 �0.73

5 �130.5 �170.7 40.2 �0.34

6 �101.0 �274.9 173.9 0.97

7 �24.4 �275.0 250.6 1.83

8 �231.1 �275.7 44.6 �0.17

9 �186.8 �214.6 27.8 �0.52

10 �58.5 �117.8 59.3 0.00

11 �219.3 �326.7 107.4 0.17

12 �113.1 �272.9 159.8 0.73

13 �244.3 �429.1 184.8 1.28

14 �184.4 �140.6 �43.8 �1.83

15 �199.2 �345.6 146.4 0.52

a. Is it plausible that the differences came from a

normally distributed population?

b. The article reported that Meanð�SD) ¼
�145:3 68:0ð Þ for ER velocity and ¼
�227.8(96.6) for IR velocity. Based just on

this information, could a test of hypotheses

about the difference between true average IR

velocity and true average ER velocity be car-

ried out? Explain.

c. Do an appropriate hypothesis test about the

difference between true average IR velocity

and true average ER velocity and interpret the

result.

99. The accompanying summary data on the ratio of

strength to cross-sectional area for knee extensors

is taken from the article “Knee Extensor and Knee

Flexor Strength: Cross-Sectional Area Ratios in

Young and Elderly Men” (J. Gerontol., 1992:

M204–M210).

Group
Sample
Size

Sample
Mean

Standard
Error

Young 13 7.47 .22

Elderly men 12 6.71 .28

Does this data suggest that the true average ratio

for young men exceeds that for elderly men?

Carry out a test of appropriate hypotheses using

a ¼ .05. Be sure to state any assumptions neces-

sary for your analysis.
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100. The accompanying data on response time

appeared in the article “The Extinguishment of

Fires Using Low-Flow Water Hose Streams—

Part II” (Fire Techn., 1991: 291–320). The

samples are independent, not paired.

Good
visibility

.43 1.17 .37 .47 .68 .58 .50 2.75

Poor
visibility

1.47 .80 1.58 1.53 4.33 4.23 3.25 3.22

The authors analyzed the data with the pooled

t test. Does the use of this test appear justified?

[Hint: Check for normality. The normal scores

for n ¼ 8 are �1.53, �.89, �.49, �.15, .15, .49,

.89, and 1.53.]

101. The accompanying data on the alcohol content of

wine is representative of that reported in a study

in which wines from the years 1999 and 2000

were randomly selected and the actual content

was determined by laboratory analysis (London
Times, Aug. 5, 2001).

Wine 1 2 3 4 5 6

Actual 14.2 14.5 14.0 14.9 13.6 12.6

Label 14.0 14.0 13.5 15.0 13.0 12.5

The two-sample t test gives a test statistic value

of .62 and a two-tailed P-value of .55. Does this

convince you that there is no significant difference

between true average actual alcohol content and

true average content stated on the label? Explain.

102. The article “The Accuracy of Stated Energy

Contents of Reduced-Energy, Commercially

Prepared Foods” (J. Am. Diet. Assoc., 2010:

116–123) presented the accompanying data on

vendor-stated gross energy and measured value

(both in kcal) for 10 different supermarket

convenience meals):

Meal 1 2 3 4 5 6 7 8 9 10

Stated 180 220 190 230 200 370 250 240 80 180

Measured 212 319 231 306 211 431 288 265 145 228

Obtain a 95% confidence interval for the differ-

ence of population means. By roughly what per-

centage are the actual calories higher than the

stated value?

Note that the article calls this a convenience

sample and suggests that therefore it should have

limited value for inference. However, even if the

ten meals were a random sample from their local

store, there could still be a problem in drawing

conclusions about a purchase at your store.

103. How does energy intake compare to energy

expenditure? One aspect of this issue was con-

sidered in the article “Measurement of Total

Energy Expenditure by the Doubly Labelled

Water Method in Professional Soccer Players”

(J. Sports Sci., 2002: 391–397), which contained

the accompanying data (MJ/day).

Player 1 2 3 4 5 6 7

Expenditure 14.4 12.1 14.3 14.2 15.2 15.5 17.8

Intake 14.6 9.2 11.8 11.6 12.7 15.0 16.3

Test to see whether there is a significant differ-

ence between intake and expenditure. Does the

conclusion depend on whether a significance

level of .05, .01, or .001 is used?

104. An experimenter wishes to obtain a CI for the

difference between true average breaking

strength for cables manufactured by company I

and by company II. Suppose breaking strength is

normally distributed for both types of cable with

s1 ¼ 30 psi and s2 ¼ 20 psi.

a. If costs dictate that the sample size for the

type I cable should be three times the sample

size for the type II cable, how many observa-

tions are required if the 99% CI is to be no

wider than 20 psi?

b. Suppose a total of 400 observations is to be

made. How many of the observations should

be made on type I cable samples if the width

of the resulting interval is to be a minimum?

105. An experiment to determine the effects of tempera-

ture on the survival of insect eggs was described in

the article “Development Rates and a Temperature-

Dependent Model of Pales Weevil” (Environ.
Entomol., 1987: 956–962). At 11	C, 73 of 91 eggs
survived to the next stage of development. At 30	C,
102 of 110 eggs survived. Do the results of this

experiment suggest that the survival rate (propor-

tion surviving) differs for the two temperatures?

Calculate the P-value and use it to test the appro-

priate hypotheses.

106. The insulin-binding capacity (pmol/mg protein)

was measured for four different groups of rats:

(1) nondiabetic, (2) untreated diabetic, (3) diabetic

treated with a low dose of insulin, (4) diabetic

treated with a high dose of insulin. The accompa-

nying table gives sample sizes and sample stan-

dard deviations. Denote the sample size for the ith
treatment by ni and the sample variance by

S2i ði ¼ 1; 2; 3; 4Þ. Assuming that the true variance

for each treatment is s2, construct a pooled esti-

mator of s2 that is unbiased, and verify using rules

Supplementary Exercises 549



of expected value that it is indeed unbiased. What

is your estimate for the following actual data?

[Hint: Modify the pooled estimator S2p from Sec-

tion 10.2.]

Treatment

1 2 3 4

Sample Size 16 18 8 12

Sample SD .64 .81 .51 .35

107. Suppose a level .05 test of H0: m1 � m2 ¼ 0

versus Ha: m1 � m2 > 0 is to be performed,

assuming s1 ¼ s2 ¼ 10 and normality of both

distributions, using equal sample sizes (m ¼ n).
Evaluate the probability of a type II error when

m1 � m2 ¼ 1 and n ¼ 25, 100, 2500, and 10,000.

Can you think of real problems in which the

difference m1 � m2 ¼ 1 has little practical signif-

icance? Would sample sizes of n ¼ 10,000 be

desirable in such problems?

108. The following data refers to airborne bacteria

count (number of colonies/ft3) both for m ¼ 8

carpeted hospital rooms and for n ¼ 8 uncar-

peted rooms (“Microbial Air Sampling in a

Carpeted Hospital,” J. Environ. Health, 1968:
405). Does there appear to be a difference in

true average bacteria count between carpeted

and uncarpeted rooms?

Carpeted 11.8 8.2 7.1 13.0 10.8 10.1 14.6 14.0

Uncarpeted 12.1 8.3 3.8 7.2 12.0 11.1 10.1 13.7

Suppose you later learned that all carpeted rooms

were in a veterans’ hospital,whereas all uncarpeted

rooms were in a children’s hospital. Would you be

able to assess the effect of carpeting? Comment.

109. Researchers sent 5000 resumes in response to job

ads that appeared in theBostonGlobe andChicago
Tribune. The resumes were identical except that

2500 of them had “white sounding” first names,

such as Brett and Emily, whereas the other 2500

had “black sounding” names such as Tamika and

Rasheed. The resumes of the first type elicited 250

responses and the resumes of the second type only

167 responses (these numbers are very consistent

with information that appeared in a January 15,

2003, report by the Associated Press). Does this

data strongly suggest that a resume with a “black”

name is less likely to result in a response than is a

resume with a “white” name?

110. McNemar’s test, developed in Exercise 55, can

also be used when individuals are paired

(matched) to yield n pairs and then one member

of each pair is given treatment 1 and the other is

given treatment 2. Then X1 is the number of pairs

in which both treatments were successful, and

similarly for X2, X3, and X4. The test statistic

for testing equal efficacy of the two treatments

is given by ðX2 � X3Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ X3

p
, which has

approximately a standard normal distribution

when H0 is true. Use this to test whether the

drug ergotamine is effective in the treatment of

migraine headaches.

Ergotamine

S F

Placebo S 44 34

F 46 30

The data is fictitious, but the conclusion agrees

with that in the article “Controlled Clinical Trial

of Ergotamine Tartrate” (British Med. J., 1970:
325–327).

111. Let X1, . . . , Xm be a random sample from a

Poisson distribution with parameter l1, and let

Y1, . . . , Yn be a random sample from another

Poisson distribution with parameter l2. We wish

to test H0: l1 � l2 ¼ 0 against one of the three

standard alternatives. Since m ¼ l for a Poisson

distribution, when m and n are large the large-

sample z test of Section 10.1 can be used. How-

ever, the fact that VðXÞ ¼ l=n suggests that a

different denominator should be used in standar-

dizing X � Y. Develop a large-sample test proce-

dure appropriate to this problem, and then apply

it to the following data to test whether the plant

densities for a particular species are equal in two

different regions (where each observation is the

number of plants found in a randomly located

square sampling quadrat having area 1 m2, so for

region 1, there were 40 quadrats in which one

plant was observed, etc.):

Frequency

0 1 2 3 4 5 6 7

Region 1 28 40 28 17 8 2 1 1 m ¼ 125

Region 2 14 25 30 18 49 2 1 1 n ¼ 140
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112. Referring to Exercise 111, develop a large-

sample confidence interval formula for l1 � l2.
Calculate the interval for the data given there

using a confidence level of 95%.

113. Let R1 be a rejection region with significance

level a for testing H01: y ∈ O1 versus Ha1: y =2
O1, and let R2 be a level a rejection region for

testing H02: y∈ O2 versus Ha2: y =2 O2, where O1

and O2 are two disjoint sets of possible values of

y. Now consider testing H0: y ∈ O1 [ O2 versus

the alternative Ha: y =2 O1 [ O2. The proposed

rejection region for this latter test is R1 \ R2. That

is, H0 is rejected only if both H01 and H02 can

be rejected. This procedure is called a union–
intersection test (UIT).
a. Show that the UIT is a level a test.

b. As an example, let mT denote the mean value

of a particular variable for a generic (test)

drug, and mR denote the mean value of this

variable for a brand-name (reference) drug. In

bioequivalence testing, the relevant hypoth-

eses are H0: mT/mR � dL or mT/mR � dU (not

bioequivalent) versus Ha: dL < mT/mR < dU
(bioequivalent). The limits dL and dU are

standards set by regulatory agencies; for cer-

tain purposes the FDA uses .80 and 1.25 ¼
1/.8, respectively. By taking logarithms and

letting � ¼ ln(m), t ¼ ln(d), the hypotheses

become H0: either �T � �R � tL or � tU
versus Ha: tL < �T � �R < tU. With this

setup, a type I error involves saying the

drugs are bioequivalent when they are not.

The FDA mandates a ¼ .05.

Let D be an estimator of �T � �R with stan-

dard error SD such that standardized variable

T ¼ [D � (�T � �R)]/SD has a t distribution
with v df. The standard test procedure is

referred to as TOST for “two one-sided

tests,” and is based on the two test statistics

TU ¼ (D � tU)/SD and TL ¼ (D � tL)/SD.
If v ¼ 20, state the appropriate conclusion

in each of the following cases: (1) tL ¼ 2.0,

tU ¼ �1.5; (2) tL ¼ 1.5, tU ¼ �2.0; (3)

tL ¼ 2.0, tU ¼ �2.0.
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C H A P T E R E L E V E N

The Analysis
of Variance

Introduction
In studying methods for the analy‘sis of quantitative data, we first focused on

problems involving a single sample of numbers and then turned to a comparative

analysis of two different samples. Now we are ready for the analysis of several

samples.

The analysis of variance, or more brieflyANOVA, refers broadly to a collection

of statistical procedures for the analysis of quantitative responses. The simplest

ANOVA problem is referred to variously as a single-factor, single-classification, or

one-way ANOVA and involves the analysis of data sampled from two or more

numerical populations (distributions). The characteristic that labels the populations

is called the factor under study, and the populations are referred to as the levels of

the factor. Examples of such situations include the following:

1. An experiment to study the effects of five different brands of gasoline on

automobile engine operating efficiency (mpg)

2. An experiment to study the effects of four different sugar solutions (glucose,

sucrose, fructose, and a mixture of the three) on bacterial growth

3. An experiment to investigate whether hardwood concentration in pulp (%) has

an effect on tensile strength of bags made from the pulp

4. An experiment to decide whether the color density of fabric specimens depends

on the amount of dye used



In (1) the factor of interest is gasoline brand, and there are five different

levels of the factor. In (2) the factor is sugar, with four levels (or five, if a control

solution containing no sugar is used). In both (1) and (2), the factor is qualitative in

nature, and the levels correspond to possible categories of the factor. In (3) and (4),

the factors are concentration of hardwood and amount of dye, respectively; both

these factors are quantitative in nature, so the levels identify different settings of

the factor. When the factor of interest is quantitative, statistical techniques from

regression analysis (discussed in Chapter 12) can also be used to analyze the data.

In this chapter we first introduce single-factor ANOVA. Section 11.1 presents

the F test for testing the null hypothesis that the population means are identical.

Section 11.2 considers further analysis of the data when H0 has been rejected.

Section 11.3 covers some other aspects of single-factor ANOVA. Many experimen-

tal situations involve studying the simultaneous impact of more than one factor.

Various aspects of two-factor ANOVA are considered in the last two sections of the

chapter.

11.1 Single-Factor ANOVA
Single-factor ANOVA focuses on a comparison of two or more populations. Let

I ¼ the number of treatments being compared

m1 ¼ the mean of population 1 (or the true average response when

treatment 1 is applied)

..

.

mI ¼ the mean of population I (or the true average response when
treatment I is applied)

Then the hypotheses of interest are

H0 : m1 ¼ m2 ¼ � � � ¼ mI

versus

Ha: at least two of the mi’s are different

If I ¼ 4, H0 is true only if all four mi’s are identical. Ha would be true, for example,

if m1 ¼ m2 6¼ m3 ¼ m4, if m1 ¼ m3 ¼ m4 6¼ m2, or if all four mi’s differ from each

other.

A test of these hypotheses requires that we have available a random sample

from each population or treatment.

Example 11.1 The article “Compression of Single-Wall Corrugated Shipping Containers Using

Fixed and Floating Test Platens” (J. Test. Eval., 1992: 318–320) describes an

experiment in which several different types of boxes were compared with respect

to compression strength (lb). Table 11.1 presents the results of a single-factor

ANOVA experiment involving I ¼ 4 types of boxes (the sample means and

standard deviations are in good agreement with values given in the article).
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With mi denoting the true average compression strength for boxes of type i (i ¼ 1, 2,

3, 4), the null hypothesis is H0: m1 ¼ m2 ¼ m3 ¼ m4. Figure 11.1(a) shows a

comparative boxplot for the four samples. There is a substantial amount of overlap

among observations on the first three types of boxes, but compression strengths for

the fourth type appear considerably smaller than for the other types. This suggests

thatH0 is not true. The comparative boxplot in Figure 11.1(b) is based on adding 120

Table 11.1 The data and summary quantities for Example 11.1

Type of box Compression strength (lb) Sample mean Sample SD

1 655.5 788.3 734.3 713.00 46.55

721.4 679.1 699.4

2 789.2 772.5 786.9 756.93 40.34

686.1 732.1 774.8

3 737.1 639.0 696.3 698.07 37.20

671.7 717.2 727.1

4 535.1 628.7 542.4 562.02 39.87

559.0 586.9 520.0

Grand mean ¼ 682.50

630
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660 690 750720 780
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Figure 11.1 Boxplots for Example 11.1: (a) original data; (b) altered data
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to each observation in the fourth sample (giving mean 682.02 and the same standard

deviation) and leaving the other observations unaltered. It is no longer obvious

whether H0 is true or false. In situations such as this, we need a formal test

procedure. ■

Notation and Assumptions

In two-sample problems, we used the letters X and Y to designate the observations

in the two samples. Because this is cumbersome for three or more samples, it is

customary to use a single letter with two subscripts. The first subscript identifies the

sample number, corresponding to the population or treatment being sampled, and

the second subscript denotes the position of the observation within that sample. Let

Xij ¼ the random variable (rv) denoting the jth measurement from the ith
population

xij ¼ the observed value of Xij when the experiment is performed

The observed data is usually displayed in a rectangular table, such as

Table 11.1. There samples from the different populations appear in different rows

of the table, and xi,j is the jth number in the ith row. For example, x2,3 ¼ 786.9 (the

third observation from the second population), and x4,1 ¼ 535.1. When there is no

ambiguity, we will write xij rather than xi,j (e.g., if there were 15 observations on

each of 12 treatments, x112 could mean x1,12 or x11,2). It is assumed that the Xij
’s

within any particular sample are independent—a random sample from the ith
population or treatment distribution— and that different samples are independent

of each other.

In some experiments, different samples contain different numbers of obser-

vations. However, the concepts and methods of single-factor ANOVA are most

easily developed for the case of equal sample sizes. Unequal sample sizes will be

considered in Section 11.3. Restricting ourselves for the moment to equal sample

sizes, let J denote the number of observations in each sample (J ¼ 6 in Example

11.1). The data set consists of IJ observations. The individual sample means will

be denoted by X1�; X2�; . . ., XI�. That is,

Xi� ¼

PJ
j¼1

Xij

J
i ¼ 1; 2; . . . ; I

The dot in place of the second subscript signifies that we have added over all values

of that subscript while holding the other subscript value fixed, and the horizontal

bar indicates division by J to obtain an average. Similarly, the average of all IJ
observations, called the grand mean, is

X�� ¼

PI
i¼1

PJ
j¼1

Xij

IJ

For the strength data in Table 11.1, �x1� ¼ 713:00, �x2� ¼ 756:93, �x3� ¼ 698:07,

�x4 ¼ 562:02, and �x�� ¼ 682:50. Additionally, let S21; S
2
2; . . . ; S

2
I represent the sample

variances:
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S2i ¼

PJ
j¼1

ðXij � Xi�Þ2

J � 1
i ¼ 1; 2; . . . ; I

From Example 11.1, s1 ¼ 46.55, s21 ¼ 2166:90, and so on.

ASSUMPTIONS The I population or treatment distributions are all normal with the same

variance s2. That is, each Xij is normally distributed with

EðXijÞ ¼ mi VðXijÞ ¼ s2

In previous chapters, a normal probability plot was suggested for checking

normality. The individual sample sizes in ANOVA are typically too small for I
separate plots to be informative. A single plot can be constructed by subtracting �x1�
from each observation in the first sample, �x2� from each observation in the second,

and so on, and then plotting these IJ deviations against the z percentiles. The

deviations are called residuals so this plot is the normal plot of the residuals.

Figure 11.2 gives the plot for the residuals of Example 11.1. The straightness of the

pattern gives strong support to the normality assumption.

At the end of the section we discuss Levene’s test for the equal variance

assumption. For the moment, a rough rule of thumb is that if the largest s is not
much more than twice the smallest s, it is reasonable to assume equal variances.

This is especially true if the sample sizes are equal or close to equal. In Example

11.1, the largest s is only about 1.25 times the smallest.

Sums of Squares and Mean Squares

If H0 is true the J observations in each sample come from a normal population

distribution with the same mean value m, in which case the sample means

�x1� ; �x2�; . . . �xI: should be reasonably close. The test procedure is based on comparing

−1.4 −.7 0 .7 1.4

50

−50

0

z percentile

Deviation

Figure 11.2 A normal probability plot based on the data of Example 11.1
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a measure of differences among these sample means (“between-samples” variation)

to a measure of variation calculated from within each sample. These measures

involve quantities called sums of squares.

DEFINITION The treatment sum of squares SSTr is given by

SSTr ¼ J
X
i

ðXi� � X��Þ2 ¼ J½ðX1� � X��Þ2 þ � � � þ ðXI� � X��Þ2�

and the error sum of squares SSE is

SSE ¼
X
i

X
j

ðXij � Xi�Þ2

¼
X
j

ðX1j � X1�Þ2 þ � � � þ
X
j

ðXIj � XI�Þ2

¼ðJ � 1ÞS21 þ ðJ � 1ÞS22 þ � � � þ ðJ � 1ÞS2I
¼ðJ � 1Þ½S21 þ S22 þ � � � þ S2I �

Now recall a result from Section 6.4 : if X1, . . ., Xn is a random sample from a normal

distribution with mean m and variance s2, then the sample mean X and the sample

variance S2 are independent. Also, X is normally distributed, and (n�1)S2/s2

[i.e.,
P

Xi � Xð Þ2=s2] has a chi-squared distribution with n � 1 df. That is, dividing

the sum of squares
P

Xi � Xð Þ2 by s2 gives a chi-squared random variable. Similar

results hold in our ANOVA situation.

THEOREM When the basic assumptions of this section are satisfied, SSE/s2 has a chi-

squared distribution with I(J – 1) df (each sample contributes J – 1 df and df’s
add because the samples are independent). Furthermore, when H0 is true,

SSTr/s2 has a chi-squared distribution with I – 1 df [there are I deviations
X1� � X��; . . . ;XI� � X�� but 1 df is lost because

P
i ðXi� � X��Þ ¼ 0]. Lastly,

SSE and SSTr are independent random variables.

If we let Yi ¼ Xi�; i ¼ 1; . . . ; I, then Y1, Y2, . . ., YI are independent and normally

distributed with the same mean under H0 and with variance s2/J. Thus, by the key

result from Section 6.4, I � 1ð ÞS2Y= s2=Jð Þ has a chi-squared distribution with I – 1 df.
Furthermore, I � 1ð ÞS2Y= s2=Jð Þ ¼ J

P
Xi� � X��ð Þ2=s2 ¼ SSTr=s2, so SSTr=s2 �

w2I�1. Independence of SSTr and SSE follows from the fact that SSTr is based on the

individual sample means whereas SSE is based on the sample variances, and Xi� is
independent of S2i for each i.

The expected value of a chi-squared variable with n df is just n. Thus

E
SSE

s2

� �
¼ IðJ � 1Þ ) E

SSE

IðJ � 1Þ
� �

¼ s2
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H0 true ) E
SSTr

s2

� �
¼ I � 1 ) E

SSTr

I � 1

� �
¼ s2

Whenever the ratio of a sum of squares over s2 has a chi-squared distribution,
we divide the sum of squares by its degrees of freedom to obtain a mean square
(“mean” is used in the sense of “average”).

DEFINITION The mean square for treatments is MSTR ¼ SSTr/(I � 1) and the mean
square for error is MSE ¼ SSE/[I(J � 1)].

Notice that upper case X’s and S’s are used in defining the sums of squares and thus

the mean squares, so the SS’s and MS’s are statistics (random variables). We will

follow tradition and also use MSTr and MSE (rather than mstr and mse) to denote

the calculated values of these statistics.

The foregoing results concerning expected values can now be restated:

E MSEð Þ ¼ s2; that is, MSE is an unbiased estimator of s2

H0 true ) EðMSTrÞ ¼ s2; so MSTr is an unbiased estimator of s2

MSTr is unbiased for s2 when H0 is true, but what about when H0 is false? It can be

shown (Exercise 10) that in this case, E(MSTr) > s2. This is because the Xi�’s tend
to differ more from each other, and therefore from the grand mean, when the mi’s
are not identical than when they are the same.

The F Test

The test statistic is the ratio F ¼ MSTr/MSE. F is a ratio of two estimators of s2.
The numerator (the between-samples estimator), MSTr, is unbiased whenH0 is true

but tends to overestimate s2 when H0 is false, whereas the denominator (the within-

samples estimator), MSE, is unbiased regardless of the status of H0. Thus if H0 is

true the F ratio should be reasonably close to 1, but if the mi’s differ considerably
from each other, F should greatly exceed 1. Thus a value of F considerably

exceeding 1 argues for rejection of H0.

In Section 6.4 we introduced a family of probability distributions called F
distributions. If Y1 and Y2 are two independent chi-squared random variables with n1
and n2 df, respectively, then the ratio F ¼ (Y1/n1)/(Y2/n2) has an F distribution with n1
numerator df and n2 denominator df. Figure 11.3 shows an F density curve and

corresponding upper-tail critical value Fa;n1;n2 . Appendix Table A.8 gives these

critical values for a ¼ .10, .05, .01, and .001. Values of n1 are identified with different
columns of the table and the rows are labeled with various values of n2. For example,

the F critical value that captures upper-tail area .05 under the F curve with n1 ¼ 4 and

n2 ¼ 6 is F.05,4,6 ¼ 4.53, whereas F.05,6,4 ¼ 6.16 (so don’t accidentally switch

numerator and denominator df!). The key theoretical result that justifies the test

procedure is that the test statistic F has an F distribution when H0 is true.
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THEOREM The test statistic in single-factor ANOVA is F ¼ MSTr/MSE. We can write

this as

F ¼
SSTr

s2

� �
=ðI � 1Þ

SSE

s2

� �
=IðJ � 1Þ

When H0 is true, the previous theorem implies that the numerator and

denominator of F are independent chi-squared variables divided by their

df’s, in which case F has an F distribution with I � 1 numerator df and

I(J�1) denominator df. The rejection region f � Fa,I�1,I(J�1) then specifies

an upper-tailed test that has the desired significance level a. The P-value for
an upper-tailed F test is the area under the relevant F curve (the one with

correct numerator and denominator df’s) to the right of the calculated f.

Refer to Section 10.5 to see how P-value information for F tests can be obtained

from the table of F critical values. Alternatively, statistical software packages will

automatically include the P-value with ANOVA output.

Computational Formulas

The calculations leading to f can be done efficiently by using formulas similar to the

computing formula for the numerator of the sample variance s2 from Section 1.4.

The first two computational formulas here are essentially repetitions of that for-

mula with new notation. Let xi� represent the sum (not the average, since there is no

overbar) of the xij’s for fixed i (the total of the J observations in the ith sample).

Similarly, let x:: denote the sum of all IJ observations (the grand total). We also

need a third sum of squares in addition to SSTr and SSE.

Sum of Squares df Definition Computing Formula

Total ¼ SST IJ � 1
P
i

P
j
ðxij � x��Þ2

P
i

P
j

x2ij � x2��=IJ

Treatment ¼ SSTr I � 1
P
i

P
j

ð�xi� � �x��Þ2

¼ J
P
i

ð�xi� � �x��Þ2

P
i
x2i�

J
� x2��

IJ

Error ¼ SSE I(J � 1) P
i

P
j

xij � �xi�
� �2 SST � SSTr

Shaded area = a 

F curve for n1 and n2 df

F a,n1,n2

Figure 11.3 An F curve and critical value Fa;n1;n2
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Both SST and SSTr involve x2��=IJ, which is called either the correction factor or the
correction for the mean. SST results from squaring each observation, adding these

squares, and then subtracting the correction factor. Calculation of SSTr entails

squaring each sample total (each row total from the data table), summing these

squares, dividing the sum by J, and again subtracting the correction factor. SSTr is

subtracted from SST to give SSE (it must be the case that SST � SSTr), after

which MSTr, MSE, and finally f are calculated.
The computational formula for SSE is a consequence of the fundamental

ANOVA identity

SST ¼ SSTrþ SSE ð11:1Þ

The identity implies that once any two of the SS’s have been calculated, the

remaining one is easily obtained by addition or subtraction. The two that are

most easily calculated are SST and SSTr. The proof of the identity follows from

squaring both sides of the relationship

xij � �x�� ¼ xij � �xi�
� �þ �xi� � �x��ð Þ ð11:2Þ

and summing over all i and j. This gives SST on the left and SSTr and SSE as the

two extreme terms on the right; the cross-product term is easily seen to be zero

(Exercise 9).

The interpretation of the fundamental identity is an important aid to under-

standing ANOVA. SST is a measure of total variation in the data – the sum of all

squared deviations about the grand mean. The identity says that this total variation

can be partitioned into two pieces; it is this decomposition of SST that gives rise to

the name “analysis of variance” (more appropriately, “analysis of variation”). SSE

measures variation that would be present (within samples) even if H0 were true and

is thus the part of total variation that is unexplained by the status of H0 (true or

false). SSTr is the part of total variation (between samples) that can be explained by
possible differences in the mi’s. If explained variation is large relative to unex-

plained variation, then H0 is rejected in favor of Ha.

Once SSTr and SSE are computed, each is divided by its associated df to

obtain a mean square (mean in the sense of average). Then F is the ratio of the two

mean squares.

MSTr ¼ SSTr

I � 1
MSE ¼ SSE

IðJ � 1Þ F ¼ MSTr

MSE
ð11:3Þ

The computations are often summarized in a tabular format, called an ANOVA
table, as displayed in Table 11.2. Tables produced by statistical software custom-

arily include a P-value column to the right of f.
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Example 11.2 The accompanying data resulted from an experiment comparing the degree of

soiling for fabric copolymerized with three different mixtures of methacrylic acid

(similar data appeared in the article “Chemical Factors Affecting Soiling and Soil

Release from Cotton DP Fabric,” Am. Dyest. Rep., 1983: 25–30).

Mixture Degree of Soiling xi� �xi�

1 .56 1.12 .90 1.07 .94 4.59 .918

2 .72 .69 .87 .78 .91 3.97 .794

3 .62 1.08 1.07 .99 .93 4.69 .938

x·· ¼ 13.25

Let mi denote the true average degree of soiling when mixture i is used (i ¼ 1, 2, 3).

The null hypothesis H0: m1 ¼ m2 ¼ m3 states that the true average degree of soiling
is identical for the three mixtures. We will carry out a test at significance level .01

to see whether H0 should be rejected in favor of the assertion that true average

degree of soiling is not the same for all mixtures. Since I – 1 ¼ 2 and I(J – 1) ¼ 12,

the F critical value for the rejection region is F.01,2,12 ¼ 6.93. Squaring each of the

15 observations and summing gives
PP

x2ij ¼ ð:56Þ2 þ ð1:12Þ2 þ � � � þ ð:93Þ2 ¼
12:1351. The values of the three sums of squares are

SST ¼ 12:1351� 13:252=15 ¼ 12:1351� 11:7042 ¼ :4309

SSTr ¼ 1

5
½4:592 þ 3:972 þ 4:692� � 11:7042

¼ 11:7650� 11:7042 ¼ :0608

SSE ¼ :4309� :0608 ¼ :3701

The remaining computations are summarized in the accompanying ANOVA table.

Because f ¼ .99 is not at least F.01,2,12 ¼ 6.93, H0 is not rejected at significance

level .01. The mixtures appear to be indistinguishable with respect to degree of

soiling (F:10;2;12 ¼ 2:81 ) P� value>:10).

Source of Variation df Sum of Squares Mean Square f

Treatments 2 .0608 .0304 .99

Error 12 .3701 .0308

Total 14 .4309 ■

When the F test causes H0 to be rejected, the experimenter will often be

interested in further analysis to decide which mi’s differ from which others. Proce-

dures for doing this are called multiple comparison procedures, and several are

described in the next two sections.

Table 11.2 An ANOVA table

Source of Variation df Sum of Squares Mean Square f

Treatments I�1 SSTr MSTr ¼ SSTr/(I �1) MSTr/MSE

Error I(J�1) SSE MSE ¼ SSE/[I(J�1)]

Total IJ�1 SST
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Testing for the Assumption of Equal Variances

One of the two assumptions for ANOVA is that the populations have equal

variances. If the likelihood ratio principle is applied to the problem of testing for

equal variances for normal data, then the result is Bartlett’s test. This is a generali-

zation of the F test for equal variances given in Section 10.5, and it is very sensitive

to the normality assumption.

The Levene test is much less sensitive to the assumption of normality. Essen-

tially, this test involves performing anANOVAon the absolute values of the residuals,

which are the deviations xij � �xi�; j ¼ 1; 2; . . . ; J for each i ¼ 1, 2,. . ., I. That

is, a residual is the difference between an observation and its row mean (mean for

its sample). The Levene test performs an ANOVA F test using the absolute residuals

jxij � �xi�j in place of xij. The idea is to use absolute residuals to compare the variability

of the samples.

Example 11.3

(Example 11.2

continued)

Consider the data of Example 11.2. Here are the observations again along with the

means and the absolute values of the residuals.

�xi� Sjxij��xi�j
Mixture 1 .56 1.12 .90 1.07 .94 .918

jresidual 1j .358 .202 .018 .152 .022 .752

Mixture 2 .72 .69 .87 .78 .91 .794

jresidual 2j .074 .104 .076 .014 .116 .384

Mixture 3 .62 1.08 1.07 .99 .93 .938

jresidual 3j .318 .142 .132 .052 .008 .652

1.788

Now apply ANOVA to the absolute residuals. The sum of all 15 squared absolute

residuals is .3701, so

SST ¼ :3701� 1:7882=15 ¼ :3701� :2131 ¼ :1570

SSTr ¼ 1

5
:7522 þ :3842 þ :6522
� 	� :2131 ¼ :2276� :2131 ¼ :0145

SSE ¼ :1570� :0145 ¼ :1425

f ¼ :0145=2

:1425=12
¼ :61

Compare .61 to the critical value F.10,2,12 ¼ 2.81. Because .61 is much smaller than

2.81, there is no reason to doubt that the variances are equal. ■

Given that the absolute residuals are not normally distributed, it might seem

like a dumb idea to do an ANOVA on them. However, the ANOVA F-test is robust
to the assumption of normality, meaning that the assumption can be relaxed

somewhat. Thus, the Levene test works in spite of the normality assumption.

Note also that the residuals are dependent because they sum to zero within each

sample (row), but this again is not a problem if the samples are of sufficient size (If

J ¼ 2, why does each sample have both absolute residuals the same?). A sample

size of 10 is sufficient for excellent accuracy in the Levene test, but smaller samples

can still give useful results when only approximate critical values are needed. This

occurs when the test value is either far beyond the nominal critical value or well

below it, as in Example 11.3.
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Some software packages perform the Levene test, but they will not necessarily

get the same answer because they do not necessarily use absolute deviations from

the mean. For example, MINITAB uses absolute residuals with respect to the

median, an especially good idea in case of skewed data. By default, SAS uses the

squared deviations from the mean, although the absolute deviations from the mean

can be requested. SAS also allows absolute deviations from the median (as the BF

test, because Brown and Forsythe studied this procedure).

The ANOVA F-test is pretty robust to both the normality and constant

variance assumptions. The test will still work under moderate departures from

these two assumptions. When the sample sizes are all the same, as we are assuming

so far, the test is especially insensitive to unequal variances. Also, there is a

generalization of the two-sample t-test of Section 10.2 for more than two samples,

and it does not demand equal variances. This test is available in JMP, R, and SAS.

If there is a major violation of assumptions, then the situation can sometimes

be corrected by a data transformation, as discussed in Section 11.3. Alternatively,

the bootstrap can be used, by generalizing the method of Section 10.6 from two

groups to several. There is also a nonparametric test (no normality required), as

discussed in Exercise 37 of Chapter 14.

Exercises Section 11.1 (1–10)

1. An experiment to compare I ¼ 5 brands of golf

balls involved using a robotic driver to hit J ¼ 7

balls of each brand. The resulting between-sample

and within-sample estimates of s2 were MSTr ¼
123.50 and MSE ¼ 22.16, respectively.

a. State and test the relevant hypotheses using a

significance level of .05.

b. What can be said about the P-value of the test?

2. The lumen output was determined for each of I ¼ 3

different brands of 60-watt soft-white lightbulbs,

with J ¼ 8 bulbs of each brand tested. The sums

of squares were computed as SSE ¼ 4773.3 and

SSTr ¼ 591.2. State the hypotheses of interest

(including word definitions of parameters), and

use the F test of ANOVA (a ¼ .05) to decide

whether there are any differences in true average

lumen outputs among the three brands for this type

of bulb by obtaining as much information as possi-

ble about the P-value.

3. In a study to assess the effects of malaria infection on

mosquito hosts (“Plasmodium cynomolgi: Effects of

Malaria Infection on Laboratory Flight Performance

of Anopheles stephensi Mosquitos,” Exp. Parasitol.,
1977: 397–404),mosquitoeswere fed on either infec-

tive or noninfective rhesus monkeys. Subsequently

the distance they flew during a 24-h period was

measured using a flight mill. The mosquitoes were

divided into four groups of eight mosquitoes each:

infective rhesus and sporozites present (IRS),

infective rhesus and oocysts present (IRD), infective

rhesus and no infection developed (IRN), and

noninfective (C). The summary data values are

�x1� ¼ 4:39 IRSð Þ, �x2� ¼ 4:52 IRDð Þ, �x3� ¼
5:49 IRNð Þ, �x4� ¼ 6:36 Cð Þ, �x�� ¼ 5:19, andPP

x2ij ¼ 911:91. Use the ANOVA F test at level

.05 to decide whether there are any differences

between true average flight times for the four

treatments.

4. Consider the following summary data on the mod-

ulus of elasticity (� 106 psi) for lumber of three

different grades (in close agreement with values in

the article “Bending Strength and Stiffness of Sec-

ond-Growth Douglas-Fir Dimension Lumber”

(Forest Products J., 1991: 35–43), except that the
sample sizes there were larger):

Grade J �xi� si

1 10 1.63 .27

2 10 1.56 .24

3 10 1.42 .26

Use this data and a significance level of .01 to test

the null hypothesis of no difference in mean modu-

lus of elasticity for the three grades.

5. The article “Origin of Precambrian Iron Forma-

tions” (Econ. Geol., 1964: 1025–1057) reports the
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following data on total Fe for four types of iron

formation (1 ¼ carbonate, 2 ¼ silicate, 3 ¼ mag-

netite, 4 ¼ hematite).

1: 20.5 28.1 27.8 27.0 28.0

25.2 25.3 27.1 20.5 31.3

2: 26.3 24.0 26.2 20.2 23.7

34.0 17.1 26.8 23.7 24.9

3: 29.5 34.0 27.5 29.4 27.9

26.2 29.9 29.5 30.0 35.6

4: 36.5 44.2 34.1 30.3 31.4

33.1 34.1 32.9 36.3 25.5

Carry out an analysis of variance F test at signifi-

cance level .01, and summarize the results in an

ANOVA table.

6. In an experiment to investigate the performance of

four different brands of spark plugs intended for use

on a 125-cc two-stroke motorcycle, five plugs of

each brand were tested for the number of miles (at a

constant speed) until failure. The partial ANOVA

table for the data is given here. Fill in the missing

entries, state the relevant hypotheses, and carry out

a test by obtaining as much information as you can

about the P-value.

Source df Sum of squares Mean square f

Brand

Error 14,713.69

Total 310,500.76

7. A study of the properties of metal plate-connected

trusses used for roof support (“Modeling Joints

Made with Light-Gauge Metal Connector Plates,”

Forest Products J., 1979: 39–44) yielded the fol-

lowing observations on axial stiffness index (kips/

in.) for plate lengths 4, 6, 8, 10, and 12 in.:

4: 309.2 409.5 311.0 326.5 316.8 349.8 309.7

6: 402.1 347.2 361.0 404.5 331.0 348.9 381.7

8: 392.4 366.2 351.0 357.1 409.9 367.3 382.0

10: 346.7 452.9 461.4 433.1 410.6 384.2 362.6

12: 407.4 441.8 419.9 410.7 473.4 441.2 465.8

a. Check the ANOVA assumptions with a normal

plot and a test for equal variances.

b. Does variation in plate length have any effect

on true average axial stiffness? State and

test the relevant hypotheses using analysis

of variance with a ¼ .01. Display your

results in an ANOVA table. [Hint:PP
x2ij ¼ 5; 241; 420:79.]

8. Six samples of each of four types of cereal grain

grown in a certain region were analyzed to deter-

mine thiamin content, resulting in the following

data (mg/g):

Wheat 5.2 4.5 6.0 6.1 6.7 5.8

Barley 6.5 8.0 6.1 7.5 5.9 5.6

Maize 5.8 4.7 6.4 4.9 6.0 5.2

Oats 8.3 6.1 7.8 7.0 5.5 7.2

a. Check the ANOVA assumptions with a normal

probability plot and a test for equal variances.

b. Test to see if at least two of the grains differ

with respect to true average thiamin content.

Use an a ¼ .05 test based on the P-value
method.

9. Derive the fundamental identity SST ¼ SSTr +

SSE by squaring both sides of Equation 11.2

and summing over all i and j. [Hint: For any

particular i,
P

j ðxij��xi�Þ ¼ 0.]

10. In single-factor ANOVA with I treatments and

J observations per treatment, let m ¼ (1/I)Smi .
a. Express EðX��Þ in terms of m. [Hint: X�� ¼

ð1=IÞPXi�]
b. Compute EðX2

i�Þ. [Hint: For any rv Y;E Y2ð Þ ¼
VðYÞ þ EðYÞ½ �2.]

c. Compute EðX2
��Þ.

d. Compute E(SSTr) and then show that

EðMSTrÞ ¼ s2 þ J
I�1

P ðmi � mÞ2

e. Using the result of part (d), what is E(MSTr)

when H0 is true? When H0 is false, how does

E(MSTr) compare to s2?

11.2 Multiple Comparisons in ANOVA
When the computed value of theF statistic in single-factor ANOVA is not significant,

the analysis is terminated because no differences among the mi’s have been identi-

fied. But whenH0 is rejected, the investigator will usually want to knowwhich of the
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mi’s are different from each other. A method for carrying out this further analysis is

called a multiple comparisons procedure.
Several of the most frequently used such procedures are based on the

following central idea. First calculate a confidence interval for each pairwise

difference mi � mj with i < j. Thus if I ¼ 4, the six required CIs would be for

m1 � m2 (but not also for m2 � m1), m1 � m3, m1 � m4, m2 � m3, m2 � m4, and m3 � m4.
Then if the interval for m1 � m2 does not include 0, conclude that m1 and m2 differ
significantly from each other; if the interval does include 0, the two m’s are judged
not significantly different. Following the same line of reasoning for each of the

other intervals, we end up being able to judge for each pair of m’s whether or not
they differ significantly from each other.

The procedures based on this idea differ in the method used to calculate the

various CIs. Here we present a popular method that controls the simultaneous
confidence level for all I(I – 1)/2 intervals calculated.

Tukey’s Procedure

Tukey’s procedure involves the use of another probability distribution.

DEFINITION Let Z1, Z2,. . ., Zm be m independent standard normal rv’s and W be a chi-

squared rv, independent of the Zi’s, with n df. Then the distribution of

Q ¼ max jZi � Zjjffiffiffiffiffiffiffiffiffi
W=n

p ¼ maxðZ1; . . . ; ZmÞ �minðZ1; . . . ; ZmÞffiffiffiffiffiffiffiffiffi
W=n

p

is called the studentized range distribution. The distribution has two

parameters, m ¼ the number of Zi’s and n ¼ denominator df. We denote

the critical value that captures upper-tail area a under the density curve of

Q by Qa,m,n. A tabulation of these critical values appears in Appendix

Table A.9.

The word “range” reflects the fact that the numerator of Q is indeed the range of the

Zi’s. Dividing the range by
ffiffiffiffiffiffiffiffiffi
W=v

p
is the same as dividing each individual Zi byffiffiffiffiffiffiffiffiffi

W=v
p

. But Zi=
ffiffiffiffiffiffiffiffiffi
W=v

p
has a (Student) t distribution (Student was the pseudonym

used by the statistician Gossett, who derived the t distribution but published his

work using the pseudonym “Student” because his employer, the Guinness Brewing

Co., would not permit publication under his own name.); “studentizing” refers to

the division by
ffiffiffiffiffiffiffiffiffi
W=v

p
. So Q is actually the range of m variables that have the

t distribution (but they are not independent because the denominator is the same for

each one).

The identification of the quantities in the definition with single-factor

ANOVA is as follows:

Zi ¼ Xi� � mi
s=

ffiffiffi
J

p m ¼ I W ¼ SSE

s2
¼ IðJ � 1ÞMSE

s2
n ¼ IðJ � 1Þ
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Substituting into Q gives

Q ¼
max

Xi� � mi
s=

ffiffiffi
J

p � Xj� � mj
s=

ffiffiffi
J

p
����

����ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðJ � 1ÞMSE

s2
½IðJ � 1Þ�=

r ¼ max Xi� � Xj� � ðmi � mjÞ
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSE J=
p

In this latter expression for Q, the denominator
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=J

p
is the estimated standard

deviation of Xi� � mi. By definition of Q and Qa, P(Q > Qa) ¼ a, so

1� a ¼ P
max Xi� � Xj� � ðmi � mjÞ

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE J=

p � Qa;I;IðJ�1Þ

 !

¼ P
jXi� � Xj� � ðmi � mjÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSE J=
p � Qa;I;IðJ�1Þ for all i; j

 !

¼ P �Qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE J=

p
� Xi� � Xj� � ðmi � mjÞ � Qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE J=

p
for all i; j

� 

¼ P Xi� � Xj� � Qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE J=

p
� mi � mj � Xi� � Xj� þ Qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE J=

p
for all i; j

� 

(whew!). Replacing Xi�; Xj�, and MSE by the values calculated from the data gives

the following result.

PROPOSITION For each i < j, form the interval

�xi� � �xj� 	 Qa;I;I J�1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=J

p
ð11:4Þ

There are I
2

� � ¼ IðI � 1Þ=2 such intervals: one for m1 � m2, another for

m1 � m3, . . ., and the last for mI�1 � mI. Then the simultaneous confidence
level that every interval includes the corresponding value of mi � mj is
100(1 � a)%. Notice that the second subscript on Qa is I, whereas the second
subscript on Fa used in the F test is I�1.

We will say more about the interpretation of “simultaneous” shortly. Each interval

that doesn’t include 0 yields the conclusion that the corresponding values of mi and
mj are different—we say that mi and mj “differ significantly” from each other. For

purposes of deciding which mi’s differ significantly from which others (i.e., identi-

fying the intervals that don’t include 0) much of the arithmetic associated with

calculating the CI’s can be avoided. The following box gives details and describes

how differences can be displayed using an “underscoring pattern”.

TUKEY’S
PROCEDURE
FOR IDEN-
TIFYING SIG-
NIFICANTLY
DIFFERENT
mi’s

Select a, extract Qa,I,I(J�1) from Appendix Table A.9, and calculate

w ¼ Qa;I;IðJ�1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE J=

p
. Then list the sample means in increasing order

and underline those pairs that differ by less than w. Any pair of sample means

not underscored by the same line corresponds to a pair of population or

treatment means that are judged significantly different. The quantity w is

sometimes referred to as Tukey’s honestly significantly difference (HSD).
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Suppose, for example, that I ¼ 5 and that

�x2� < �x5� < �x4� < �x1� < �x3�

Then

1. Consider first the smallest mean �x2�. If �x5� � �x2� � w, proceed to step 2.

However, if �x5� � �x2�<w, connect these first two means with a line segment.

Then if possible extend this line segment even further to the right to the largest

�xi� that differs from �x2� by less than w (so the line may connect two, three, or even

more means).

2. Now move to �x5�, and again extend a line segment to the largest �xi� to its right

that differs from �x5� by less than w (it may not be possible to draw this line, or

alternatively it may underscore just two means, or three, or even all four

remaining means).

3. Continue by moving to �x4� and repeating, and then finally move to �x1�.

To summarize, starting from each mean in the ordered list, a line segment is

extended as far to the right as possible as long as the difference between the

means is smaller than w. It is easily verified that a particular interval of the form

(11.4) will contain 0 if and only if the corresponding pair of sample means is

underscored by the same line segment.

Example 11.4 An experiment was carried out to compare five different brands of automobile oil

filters with respect to their ability to capture foreign material. Let mi denote the true
average amount of material captured by brand i filters (i ¼ 1, . . ., 5) under

controlled conditions. A sample of nine filters of each brand was used, resulting

in the following sample mean amounts: �x1� ¼ 14:5, �x2� ¼ 13:8, �x3� ¼ 13:3,
�x4� ¼ 14:3, and �x5� ¼ 13:1. Table 11.3 is the ANOVA table summarizing the first

part of the analysis.

Since F.05,4,40 ¼ 2.61, H0 is rejected (decisively) at level .05. We now use Tukey’s

procedure to look for significant differences among the mi’s. From Appendix Table

A.9, Q.05,5,40 ¼ 4.04 (the second subscript on Q is I and not I – 1 as in F), so

w ¼ 4:04
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:088=9

p ¼ :4. After we arrange the five sample means in increasing

order, the two smallest can be connected by a line segment because they differ

by less than .4. However, this segment cannot be extended further to the right since

13:8� 13:1 ¼ :7 � :4. Moving one mean to the right, the pair �x3� and �x2� cannot
be underscored because these means differ by more than .4. Again moving to the

right, the next mean, 13.8, cannot be connected to any further to the right, and

finally the last two means can be underscored with the same line segment.

Table 11.3 ANOVA table for Example 11.4

Source of Variation df Sum of Squares Mean Square f

Treatments (brands) 4 13.32 3.33 37.84

Error 40 3.53 .088

Total 44 16.85
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�x5� �x3� �x2� �x4� �x1�
13.1 13.3 13.8 14.3 14.5

Thus brands 1 and 4 are not significantly different from each other, but are

significantly higher than the other three brands in their true average amounts

captured. Brand 2 is significantly better than 3 and 5 but worse than 1 and 4, and

brands 3 and 5 do not differ significantly.

If �x2� ¼ 14:15 rather than 13.8 with the same computed w, then the configu-

ration of underscored means would be

�x5� �x3: �x2� �x4� �x1�
13.1 13.3 14.15 14.3 14.5

■

Example 11.5 A biologist wished to study the effects of ethanol on sleep time. A sample of 20 rats,

matched for age and other characteristics, was selected, and each rat was given an

oral injection having a particular concentration of ethanol per kg of body weight.

The rapid eye movement (REM) sleep time for each rat was then recorded for a

24-h period, with the following results:

Treatment
(ethanol) REM time xi� �xi�

0 (control) 88.6 73.2 91.4 68.0 75.2 396.4 79.28

1 g/kg 63.0 53.9 69.2 50.1 71.5 307.7 61.54

2 g/kg 44.9 59.5 40.2 56.3 38.7 239.6 47.92

4 g/kg 31.0 39.6 45.3 25.2 22.7 163.8 32.76

x�� ¼ 1107.5 �x�� ¼ 55.375

Does the data indicate that the true average REM sleep time depends on the

concentration of ethanol? (This example is based on an experiment reported in

“Relationship of Ethanol Blood Level to REM and Non-REM Sleep Time and

Distribution in the Rat,” Life Sci., 1978: 839–846.)
The �xi�’s differ rather substantially from each other, but there is also a great

deal of variability within each sample, so to answer the question precisely we must

carry out the ANOVA. With
PP

x2ij ¼ 68;697:6 and correction factor

x2��= IJð Þ ¼ 1107:5ð Þ2=20 ¼ 61; 327:8, the computing formulas yield

SST ¼ 68; 697:6� 61; 327:8 ¼ 7369:8

SSTr ¼ 1

5
396:402 þ 307:702 þ 239:602 þ 163:802
� 	� 61; 327:8

¼ 67; 210:2� 61; 327:8 ¼ 5882:4

and

SSE ¼ 7369:8� 5882:4 ¼ 1487:4

Table 11.4 is a SAS ANOVA table. The last column gives the P-value, which
is .0001. Actually, the P-value is .0000083, but SAS does not output anything lower

than .0001. It does not output .0000 because this could be misinterpreted to say that

the P-value is 0. Using a significance level of .05, we reject the null hypothesis H0:

m1 ¼ m2 ¼ m3 ¼ m4, since the given P-value ¼ .0001 < .05 ¼ a. True average

REM sleep time does appear to depend on ethanol concentration.
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There are I ¼ 4 treatments and 16 df for error, so Q.05,4,16 ¼ 4.05 and

w ¼ 4:05
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
93:0=5

p ¼ 17:47. Ordering the means and underscoring yields

�x4� �x3� �x2� �x1�
32.76 47.92 61.54 79.28

The interpretation of this underscoring must be done with care, since we seem to

have concluded that treatments 2 and 3 do not differ, 3 and 4 do not differ, yet 2 and

4 do differ. The suggested way of expressing this is to say that although evidence

allows us to conclude that treatments 2 and 4 differ from each other, neither has

been shown to be significantly different from 3. Treatment 1 has a significantly

higher true average REM sleep time than any of the other treatments. This treat-

ment involves 0 ethanol (alcohol) and there is a trend toward less sleep with more

ethanol, although not all differences are significant.

Figure 11.4 shows SAS output from the application of Tukey’s procedure.

The Interpretation of a in Tukey’s Procedure

We stated previously that the simultaneous confidence level is controlled by

Tukey’s method. So what does “simultaneous” mean here? Consider calculating

a 95% CI for a population mean m based on a sample from that population and then

Table 11.4 SAS ANOVA table

Analysis of variance procedure
Dependent Variable: TIME

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 3 5882.35750 1960.78583 21.09 .0001
Error 16 1487.40000 92.96250

Corrected
Total 19 7369.75750

Alpha = 0.05  df = 16  MSE = 92.9625 
Critical Value of Studentized Range = 4.046
Minimum Significant Difference = 17.446

Means with the same letter are not significantly different.

Tukey Grouping Mean N TREATMENT

A 79.280 5 0(control)

B 61.540 5 1 gm/kg

B

C B 47.920 5 2 gm/kg

C

C 32.760 5 4 gm/kg

Figure 11.4 Tukey’s method using SAS ■
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a 95% CI for a population proportion p based on another sample selected indepen-

dently of the first one. Prior to obtaining data, the probability that the first interval

will include m is .95, and this is also the probability that the second interval will

include p. Because the two samples are selected independently of each other, the

probability that both intervals will include the values of the respective parameters is

(.95)(.95) ¼ (.95)2 
 .90. Thus the simultaneous or joint confidence level for the
two intervals is roughly 90%—if pairs of intervals are calculated over and over

again from independent samples, in the long run roughly 90% of the time the first

interval will capture m and the second will include p. Similarly, if three CIs are

calculated based on independent samples, the simultaneous confidence level will

be 100(.95)3% 
 86%. Clearly, as the number of intervals increases, the simulta-

neous confidence level that all intervals capture their respective parameters will

decrease.

Now suppose that we want to maintain the simultaneous confidence level at

95%. Then for two independent samples, the individual confidence level for each

would have to be 100
ffiffiffiffiffiffiffi
:95

p
% 
 97:5%. The larger the number of intervals, the

higher the individual confidence level would have to be to maintain the 95%

simultaneous level.

The tricky thing about the Tukey intervals is that they are not based on

independent samples—MSE appears in every one, and various intervals share the

same �xi�’s (e.g., in the case I ¼ 4, three different intervals all use �x1�). This implies

that there is no straightforward probability argument for ascertaining the simulta-

neous confidence level from the individual confidence levels. Nevertheless, if Q.05

is used, the simultaneous confidence level is controlled at 95%, whereas using Q.01

gives a simultaneous 99% level. To obtain a 95% simultaneous level, the individual

level for each interval must be considerably larger than 95%. Said in a slightly

different way, to obtain a 5% experimentwise or family error rate, the individual or
per-comparison error rate for each interval must be considerably smaller than .05.

MINITAB asks the user to specify the family error rate (e.g., 5%) and then includes

on output the individual error rate (see Exercise 16).

Confidence Intervals for Other Parametric Functions

In some situations, a CI is desired for a function of the mi’s more complicated than a

difference mi –mj. Let y ¼ Scimi, where the ci’s are constants. One such function is
1
2
ðm1 þ m2Þ � 1

3
ðm3 þ m4 þ m5Þ, which in the context of Example 11.4 measures the

difference between the group consisting of the first two brands and that of the last

three brands. Because the Xij’s are normally distributed with E(Xij) ¼ mi and
V(Xij) ¼ s2, ŷ ¼ SiciXi� is normally distributed, unbiased for y, and

VðŷÞ ¼ Vð
X
i

ciXi�Þ ¼
X
i

c2i VðXi�Þ ¼ s2

J

X
i

c2i

Estimating s2 by MSE and forming ŝŷ results in a t variable ðŷ� yÞ=ŝŷ, which can
be manipulated to obtain the following 100(1 – a)% confidence interval for Scimi:

X
ci�xi� 	 ta=2;IðJ�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMSE

X
c2i Þ=J

q
ð11:5Þ
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Example 11.6

(Example 11.4

continued)

The parametric function for comparing the first two (store) brands of oil filter with

the last three (national) brands is y ¼ 1
2
ðm1 þ m2Þ� 1

3
ðm3 þ m4 þ m5Þ, from which

X
c2i ¼

1

2

� �2

þ 1

2

� �2

þ � 1

3

� �2

þ � 1

3

� �2

þ � 1

3

� �2

¼ 5

6

With ŷ ¼ 1
2
ð�x1� þ �x2�Þ � 1

3
ð�x3� þ �x4� þ �x5�Þ ¼ :583 and MSE ¼ .088, a 95%

interval is

:583	 2:021
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð:088Þ=½ð6Þð9Þ�

p
¼ :583	 :182 ¼ ð:401; :765Þ ■

Notice that in the foregoing example the coefficients c1, . . ., c5 satisfyP
ci ¼ 1

2
þ 1

2
� 1

3
� 1

3
� 1

3
¼ 0. When the coefficients sum to 0, the linear combina-

tion y ¼P cimi is called a contrast among the means, and the analysis is available

in a number of statistical software programs.

Sometimes an experiment is carried out to compare each of several “new”

treatments to a control treatment. In such situations, a multiple comparisons

technique called Dunnett’s method is appropriate.

Exercises Section 11.2 (11–21)

11. An experiment to compare the spreading rates of

five different brands of yellow interior latex

paint available in a particular area used 4 gallons

(J ¼ 4) of each paint. The sample average

spreading rates (ft2/gal) for the five brands were

�x1� ¼ 462:0, �x2� ¼ 512:8, �x3� ¼ 437:5,
�x4� ¼ 469:3, and �x5� ¼ 532:1. The computed

value of F was found to be significant at level

a ¼ .05. With MSE ¼ 272.8, use Tukey’s pro-

cedure to investigate significant differences in

the true average spreading rates between brands.

12. In Exercise 11, suppose �x3� ¼ 427:5. Now which

true average spreading rates differ significantly

from each other? Be sure to use the method of

underscoring to illustrate your conclusions, and

write a paragraph summarizing your results.

13. Repeat Exercise 12 supposing that �x2� ¼ 502:8 in
addition to �x3� ¼ 427:5

14. Use Tukey’s procedure on the data in Exercise 3

to identify differences in true average flight

times among the four types of mosquitos.

15. Use Tukey’s procedure on the data of Exercise 5

to identify differences in true average total Fe

among the four types of formations (use MSE

¼ 15.64).

16. Reconsider the axial stiffness data given in Exer-

cise 7. ANOVA output from MINITAB follows:

Analysis of Variance for stiffness

Source DF SS MS F P
length 4 43993 10998 10.48 0.000
Error 30 31475 1049
Total 34 75468

Level N Mean StDev
4 7 333.21 36.59
6 7 368.06 28.57
8 7 375.13 20.83
10 7 407.36 44.51
12 7 437.17 26.00

Pooled StDev ¼ 32.39
Tukey’s pairwise comparisons
Family error rate ¼ 0.0500
Individual error rate ¼ 0.00693
Critical value ¼ 4.10

Intervals for (column level mean) -
(row level mean)

4 6 8 10
6 �85.0

15.4
8 �92.1 �57.3

8.3 43.1
10 �124 �89.5 �82.4

�23.9 10.9 18.0
12 �154.2 �119.3 �112.2 �80.0

a. Use the output (without reference to our F
table) to test the relevant hypotheses.

b. Use the Tukey intervals given in the output to

determine which means differ, and construct

the corresponding underscoring pattern.
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17. Refer to Exercise 4. Compute a 95% t CI for the
contrast y ¼ 1

2
ðm1 þ m2Þ � m3

18. Consider the accompanying data on plant growth

after the application of different types of growth

hormone.

1 13 17 7 14
2 21 13 20 17

Hormone 3 18 15 20 17
4 7 11 18 10
5 6 11 15 8

a. Perform an F test at level a ¼ .05.

b. What happens when Tukey’s procedure is

applied?

19. Consider a single-factor ANOVA experiment in

which I ¼ 3, J ¼ 5, �x1� ¼ 10, �x2� ¼ 12, and

�x3� ¼ 20. Find a value of SSE for which

f > F.05,2,12, so that H0: m1 ¼ m2 ¼ m3 is

rejected, yet when Tukey’s procedure is applied

none of the mi’s differ significantly from each

other.

20. Refer to Exercise 19 and suppose �x1� ¼ 10,

�x2� ¼ 15, and �x3� ¼ 20. Can you now find a value

of SSE that produces such a contradiction between

the F test and Tukey’s procedure?

21. The article “The Effect of Enzyme Inducing

Agents on the Survival Times of Rats Exposed to

Lethal Levels of Nitrogen Dioxide” (Toxicol.
Appl. Pharmacol., 1978: 169–174) reports the fol-
lowing data on survival times for rats exposed to

nitrogen dioxide (70 ppm) via different injection

regimens. There were J ¼ 14 rats in each group.

Regimen �xi� (min) si

1. Control 166 32
2. 3-Methylcholanthrene 303 53
3. Allylisopropylacetamide 266 54
4. Phenobarbital 212 35
5. Chlorpromazine 202 34
6. p-Aminobenzoic acid 184 31

a. Test the null hypothesis that true average sur-

vival time does not depend on injection regi-

men against the alternative that there is some

dependence on injection regimen using

a ¼ .01.

b. Suppose that 100(1 � a)% CIs for k different

parametric functions are computed from the

same ANOVA data set. Then it is easily ver-

ified that the simultaneous confidence level is

at least 100(1 � ka)%. Compute CIs with

simultaneous confidence level at least 98%

for the contrasts m1 – 1
5
ðm2 þ m3 þ m4þ

m5 þ m6Þand 1
4
ðm2 þ m3 þ m4 þ m5Þ � m6

11.3 More on Single-Factor ANOVA
In this section, we briefly consider some additional issues relating to single-factor

ANOVA. These include an alternative description of the model parameters, b for

the F test, the relationship of the test to procedures previously considered, data

transformation, a random effects model, and formulas for the case of unequal

sample sizes.

An Alternative Description of the ANOVA Model

The assumptions of single-factor ANOVA can be described succinctly by means of

the “model equation”

Xij ¼ mi þ eij

where eij represents a random deviation from the population or true treatment mean

mi. The eij’s are assumed to be independent, normally distributed rv’s (implying that

the Xij’s are also) with E(eij) ¼ 0 [so that E(Xij) ¼ mi] and V(eij) ¼ s2 [from which

V(Xij) ¼ s2 for every i and j]. An alternative description of single-factor ANOVA

will give added insight and suggest appropriate generalizations to models involving

more than one factor. Define a parameter m by
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m ¼ 1

I

XI
i¼1

mi

and the parameters a1, . . ., aI by

ai ¼ mi � m ði ¼ 1; . . . ; IÞ
Then the treatment mean mi can be written as m + ai, where m represents the true

average overall response in the experiment, and ai is the effect, measured as a

departure from m, due to the ith treatment. Whereas we initially had I parameters,

we now have I + 1 (m, a1, . . ., aI). However, because
P

ai ¼ 0 (the average

departure from the overall mean response is zero), only I of these new parameters

are independently determined, so there are as many independent parameters as

there were before. In terms of m and the ai’s, the model becomes

Xij ¼ mi þ ai þ eij ði ¼ 1; . . . ; I; j ¼ 1; . . . ; JÞ

In the next two sections, we will develop analogous models for two-factor ANOVA.

The claim that the mi’s are identical is equivalent to the equality of the ai’s, and
because

P
ai ¼ 0, the null hypothesis becomes

H0 : a1 ¼ a2 ¼ � � � ¼ aI ¼ 0

In Section 11.1, it was stated that MSTr is an unbiased estimator of s2 when
H0 is true but otherwise tends to overestimate s2. More precisely,

EðMSTrÞ ¼ s2 þ J

I � 1

X
a2i

When H0 is true,
P

a2i ¼ 0 so E(MSTr) ¼ s2 (MSE is unbiased whether or not H0

is true). If
P

a2i is used as a measure of the extent to which H0 is false, then a larger

value of
P

a2i will result in a greater tendency for MSTr to overestimate s2. More

generally, formulas for expected mean squares for multifactor models are used to

suggest how to form F ratios to test various hypotheses.

Proof of the Formula for E(MSTr) For any rv Y, E(Y2) ¼ V(Y) + [E(Y)]2, so

EðSSTrÞ ¼ E
1

J

X
i

X2
i��

1

IJ
X2
��

 !
¼ 1

J

X
i

EðX2
i�Þ�

1

IJ
EðX2

��Þ

¼ 1

J

X
i

VðXi�Þ þ ½EðXi�Þ�2
n o

� 1

IJ
VðX��Þ þ ½EðX��Þ�2
n o

¼ 1

J

X
i

Js2 þ ½Jðmþ aiÞ�2
n o

� 1

IJ
IJs2 þ ðIJmÞ2
n o

¼ Is2 þ IJm2 þ 2mJ
X
i

ai þ J
X
i

a2i � s2 � IJm2

¼ðI � 1Þs2 þ J
X
i

a2i ðsince
X

ai ¼ 0Þ

The result then follows from the relationship MSTr ¼ SSTr/(I – 1). ■
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b for the F Test

Consider a set of parameter values a1, a2, . . ., aI for which H0 is not true. The

probability of a type II error, b, is the probability that H0 is not rejected when that

set is the set of true values. One might think that b would have to be determined

separately for each different configuration of ai’s. Fortunately, since b for the F test

depends on the ai’s and s2 only through
P

a2i =s
2 it can be simultaneously

evaluated for many different alternatives. For example,
P

a2i ¼ 4 for each of the

following sets of ai’s for whichH0 is false, so b is identical for all three alternatives:

1. a1 ¼ �1, a2 ¼ �1, a3 ¼ 1, a4 ¼ 1

2. a1 ¼ � ffiffiffi
2

p
, a2 ¼

ffiffiffi
2

p
, a3 ¼ 0, a4 ¼ 0

3. a1 ¼ � ffiffiffi
3

p
, a2 ¼

ffiffiffiffiffiffiffiffi
1=3

p
, a3 ¼

ffiffiffiffiffiffiffiffi
1=3

p
, a4 ¼

ffiffiffiffiffiffiffiffi
1=3

p

The quantity J
P

a2i =s
2 is called the noncentrality parameter for one-way

ANOVA (because when H0 is false the test statistic has a noncentral F distribution

with this as one of its parameters), and b is a decreasing function of the value of this

parameter. Thus, for fixed values of s2 and J, the null hypothesis is more likely to

be rejected for alternatives far from H0 (large
P

a2i ) than for alternatives close to

H0. For a fixed value of
P

a2i , b decreases as the sample size J on each treatment

increases, and it increases as the variance s2 increases (since greater underlying

variability makes it more difficult to detect any given departure from H0).

Because hand computation of b and sample size determination for the F test

are quite difficult (as in the case of t tests), statisticians have constructed sets of

curves from which b can be obtained. Sets of curves for numerator df n1 ¼ 3 and

n1 ¼ 4 are displayed in Figures. 11.5 and 11.6, respectively. After the values ofs2 and
the ai’s for which b is desired are specified, these are used to compute the value of

f, where f2 ¼ (J/I)
P

a2i /s
2. We then enter the appropriate set of curves at the
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Figure 11.5 Power curves for the ANOVA F test (n1 ¼ 3)
(E. S. Pearson and H. O. Hartley, “Charts of the Power Function for Analysis of Variance Tests,

Derived from the Non-central F Distribution,” Biometrika, vol. 38, 1951: 112, by permission

of Biometrika Trustees.)
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value of f on the horizontal axis, move up to the curve associated with error df n2,
and move over to the value of power on the vertical axis. Finally, b ¼ 1 – power.

Example 11.7 The effects of four different heat treatments on yield point (tons/in2) of steel ingots

are to be investigated. A total of eight ingots will be cast using each treatment.

Suppose the true standard deviation of yield point for any of the four treatments is

s ¼ 1.How likely is it thatH0 will not be rejected at level .05 if three of the treatments

have the same expected yield point and the other treatment has an expected yield

point that is 1 ton/in.2 greater than the common value of the other three (i.e., the fourth

yield is on average 1 standard deviation above those for the first three treatments)?

Suppose that m1 ¼ m2 ¼ m3 and m4 ¼ m1 + 1, m ¼ ðSmiÞ=4 ¼ m1 þ 1
4
. Then

a1 ¼ m1 � m ¼ � 1
4
, a2 ¼ � 1

4
, a3 ¼ � 1

4
, a4 ¼ 3

4
so

f2 ¼ 8

4
� 1

4

� �2

þ � 1

4

� �2

þ � 1

4

� �2

þ 3

4

� �2
" #

¼ 3

2

and f ¼ 1.22. The degrees of freedom are n1 ¼ I – 1 ¼ 3 and n2 ¼ I(J – 1) ¼ 28,

so interpolating visually between n2 ¼ 20 and n2 ¼ 30 gives power 
 .47 and

b 
 .53. This b is rather large, so we might decide to increase the value of J.
How many ingots of each type would be required to yield b 
 .05 for the alterna-

tive under consideration? By trying different values of J, we can verify that J ¼ 24

will meet the requirement, but any smaller J will not. ■

As an alternative to the use of power curves, many statistical packages have a

function that calculates the cumulative area under a noncentral F curve (inputs Fa,

numerator df, denominator df, and f2), and this area is b. In addition, MINITAB 16
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Figure 11.6 Power curves for the ANOVA F test (n1 ¼ 4)
(E. S. Pearson and H. O. Hartley, “Charts of the Power Function for Analysis of Variance Tests, Derived

from the Non-central F Distribution,” Biometrika, vol. 38, 1951: 112, by permission of Biometrika

Trustees.)
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does something rather different. The user is asked to specify the maximum differ-

ence between mi’s rather than the individual means. For example, we might wish to

calculate the power of the test with a ¼ .05, s ¼ 1, I ¼ 4, J ¼ 2, m1 ¼ 100,

m2 ¼ 101, m3 ¼ 102, and m4 ¼ 106. Then the maximum difference is 106 –

100 ¼ 6. However, the power depends not only on this maximum difference but

on the values of all the mi’s. In this situation MINITAB calculates the smallest

possible value of power subject to m1 ¼ 100 and m4 ¼ 106, which occurs when the

two other m’s are both halfway between 100 and 106. This power is .86, so we can

say that the power is at least .86 and b is at most .14 when the two most extreme m’s
are separated by 6. The software will also determine the necessary common sample

size if maximum difference and minimum power are specified. The R package has

a function that allows specification of all I of the means, along with the other

parameters. The function calculates whichever parameter is omitted. For example,

in the above scenario with a ¼ .05, s ¼ 1, I ¼ 4, J ¼ 2, m1 ¼ 100, m2 ¼ 101,

m3 ¼ 102, and m4 ¼ 106, the function calculates power ¼ .89.

Relationship of the F Test to the t Test

When the number of populations is just I ¼ 2, the ANOVA F is testingH0: m1 ¼ m2
versus Ha: m1 6¼ m2. In this case, a two-tailed, two-sample t test can also be used. In
Section 10.2, we mentioned the pooled t test, which requires equal variances, as an

alternative to the two-sample t procedure. With a little algebra, it can be shown that

the single-factor ANOVA F test and the two-tailed pooled t test are equivalent; for
any given data set, the P-values for the two tests will be identical, so the same

conclusion will be reached by either test.

The two-sample t test is more flexible than the F test when I ¼ 2 for two

reasons. First, it is not based on the assumption that s1 ¼ s2; second, it can be used
to testHa: m1 > m2 (an upper-tailed t test) orHa: m1 < m2 as well asHa: m1 6¼ m2. As
mentioned at the end of Section 11.1, there is a generalization of the two-sample

t test for I � 3 samples with population variances not necessarily the same.

Single-Factor ANOVA When Sample Sizes Are Unequal

When the sample sizes from each population or treatment are not equal, let J1, J2, . . .,
JI denote the I sample sizes and let n ¼ SiJi denote the total number of observations.

The accompanying box gives ANOVA formulas and the test procedure.

SST ¼
XI
i¼1

XJi
j¼1

ðXij � X��Þ2 ¼
XI
i¼1

XJi
j¼1

X2
ij �

1

n
X2
�� df ¼ n� 1

SSTr ¼
XI
i¼1

XJi
j¼1

ðXi� � X��Þ2 ¼
XI
i¼1

1

Ji
X2
i� �

1

n
X2
�� df ¼ I � 1

SSE ¼
XI
i¼1

XJi
j¼1

ðXij � Xi�Þ2 ¼ SST� SSTr df ¼
X

ðJi � 1Þ ¼ n� I
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Test statistic value:

f ¼ MSTr

MSE
where MSTr ¼ SSTr

I � 1
and MSE ¼ SSE

n� I

Rejection region: f � Fa;I�1;n�I

The correction factor (CF) X2
��=n is subtracted when computing both SST and SSTr.

These formulas are derived in the same way (see Exercise 28) as the similar

formulas in Section 11.1, except that it is harder here to show that MSTr/MSE

has the F distribution under H0.

Example 11.8 The article “On the Development of a New Approach for the Determination of

Yield Strength in Mg-Based Alloys” (Light Metal Age, Oct. 1998: 51–53) pre-
sented the following data on elastic modulus (GPa) obtained by a new ultrasonic

method for specimens of an alloy produced using three different casting

processes.

Process Observations Ji xi· �xi�

Permanent molding 45.5 45.3 45.4 44.4 44.6 43.9 44.6 44.0 8 357.7 44.71

Die casting 44.2 43.9 44.7 44.2 44.0 43.8 44.6 43.1 8 352.5 44.06

Plaster molding 46.0 45.9 44.8 46.2 45.1 45.5 6 273.5 45.58

22 983.7

Let m1, m2, and m3 denote the true average elastic moduli for the three different

processes under the given circumstances. The relevant hypotheses are H0: m1 ¼
m2 ¼ m3 versusHa: at least two of the mi’s are different. The test statistic is, of course,
F ¼ MSTr/MSE, based on I – 1 ¼ 2 numerator df and n – I ¼ 22 – 3 ¼ 19

denominator df. Relevant quantities include

XX
x2ij ¼ 43; 998:73 CF ¼ 983:72

22
¼ 43; 984:80

SST ¼ 43; 998:73� 43; 984:80 ¼ 13:93

SSTr ¼ 357:72

8
þ 352:52

8
þ 273:52

6
� 43; 984:80 ¼ 7:93

SSE ¼ 13:93� 7:93 ¼ 6:00

The remaining computations are displayed in the accompanying ANOVA table.

Since F.001,2,19 ¼ 10.16 < 12.56 ¼ f, the P-value is smaller than .001. Thus the

null hypothesis should be rejected at any reasonable significance level; there is

compelling evidence for concluding that true average elastic modulus somehow

depends on which casting process is used.
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Source of Variation df Sum of Squares Mean Square f

Treatments 2 7.93 3.965 12.56

Error 19 6.00 .3158

Total 21 13.93 ■

Multiple Comparisons When Sample Sizes Are Unequal

There is more controversy among statisticians regarding which multiple compar-

isons procedure to use when sample sizes are unequal than there is in the case of

equal sample sizes. The procedure that we present here is recommended in the

excellent book Beyond ANOVA: Basics of Applied Statistics (see the chapter

bibliography) for use when the I sample sizes J1, J2, . . ., JI are reasonably close

to each other (“mild imbalance”). It modifies Tukey’s method by using averages of

pairs of 1/Ji’s in place of 1/J.

Let

wij ¼ Qa;I;n�I �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

2

1

Ji
þ 1

Jj

� �s

Then the probability is approximately 1 – a that

Xi� � Xj� � wij � mi � mj � Xi� � Xj� þ wij

for every i and j (i ¼ 1, . . ., I and j ¼ 1, . . ., I) with i 6¼ j.

The simultaneous confidence level 100(1 – a)% is only approximate rather than

exact as it is with equal sample sizes. The underscoring method can still be used,

but now the wij factor used to decide whether �xi� and �xj: can be connected will

depend on Ji and Jj.

Example 11.9

(Example 11.8

continued)

The sample sizes for the elastic modulus data were J1 ¼ 8, J2 ¼ 8, J3 ¼ 6, and

I ¼ 3, n – I ¼ 19, MSE ¼ .316. A simultaneous confidence level of approximately

95% requires Q.05,3,19 ¼ 3.59, from which

w12 ¼ 3:59

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:316

2

1

8
þ 1

8

� �s
¼ :713 w13 ¼ :771 w23 ¼ :771

Since �x1� � �x2� ¼ 44:71� 44:06 ¼ :65 < w12, m1 and m2 are judged not signifi-

cantly different. The accompanying underscoring scheme shows that m1 and m3
differ significantly, as do m2 and m3.

2. Die 1. Permanent 3. Plaster

44.06 44.71 45.58 ■
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Data Transformation

The use of ANOVA methods can be invalidated by substantial differences in the

variances s21; . . . ; s
2
I (which until now have been assumed equal with common

value s2). It sometimes happens that VðXijÞ ¼ s2i ¼ gðmiÞ, a known function of mi
(so that when H0 is false, the variances are not equal). For example, if Xij has a

Poisson distribution with parameter li (approximately normal if li � 10), then

mi ¼ li and s2i ¼ li, so g(mi) ¼ mi is the known function. In such cases, one can

often transform the Xij’s to h(Xij)’s so that they will have approximately equal

variances (while hopefully leaving the transformed variables approximately nor-

mal), and then the F test can be used on the transformed observations. The basic

idea is that, if h(·) is a smooth function, then we can express it approximately using

the first terms of a Taylor series, h(Xij) 
 h(mi) + h0(mi)(Xij – mi). Then V[h(Xij)] 

V(Xij) · [h

0(mi)]
2 ¼ g(mi) � [h0(mi)]2. We now wish to find the function h(·) for which

g(mi) · [h0(mi)]
2 ¼ c (a constant) for every i. Solving this for h0(mi) and integrating

gives the following result:

PROPOSITION If V(Xij) ¼ g(mi), a known function of mi, then a transformation h(Xij) that

“stabilizes the variance” so that V[h(Xij)] is approximately the same for each i
is given by h(x) / R [g(x)]�1/2 dx.

In the Poisson case, g(x) ¼ x, so h(x) should be proportional to
R
x�1/2 dx ¼

2 x1/2. Thus Poisson data should be transformed to hðxijÞ ¼ ffiffiffiffiffi
xij

p
before the analysis.

A Random Effects Model

The single-factor problems considered so far have all been assumed to be examples

of a fixed effects ANOVA model. By this we mean that the chosen levels of the

factor under study are the only ones considered relevant by the experimenter. The

single-factor fixed effects model is

Xij ¼ mi þ ai þ eij
X

ai ¼ 0 ð11:6Þ

where the eij’s are random and both m and the ai’s are fixed parameters whose

values are unknown.

In some single-factor problems, the particular levels studied by the experi-

menter are chosen, either by design or through sampling, from a large population of

levels. For example, to study the effects on task performance time of using different

operators on a particular machine, a sample of five operators might be chosen from

a large pool of operators. Similarly, the effect of soil pH on the yield of maize plants

might be studied by using soils with four specific pH values chosen from among the

many possible pH levels. When the levels used are selected at random from a larger

population of possible levels, the factor is said to be random rather than fixed, and

the fixed effects model (11.6) is no longer appropriate. An analogous random
effects model is obtained by replacing the fixed ai’s in (11.6) by random variables.

The resulting model description is
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Xij ¼ mþ Ai þ eij with EðAiÞ ¼ EðeijÞ ¼ 0

VðeijÞ ¼ s2 VðAiÞ ¼ s2A
ð11:7Þ

with all Ai’s and eij’s normally distributed and independent of each other.

The condition E(Ai) ¼ 0 in (11.7) is similar to the condition Sai ¼ 0 in (11.6); it

states that the expected or average effect of the ith level measured as a departure

from m is zero.

For the random effects model (11.7), the hypothesis of no effects due to

different levels is H0: s2A ¼ 0 which says that different levels of the factor contrib-

ute nothing to variability of the response. Although the hypotheses in the single-
factor fixed and random effects models are different, they are tested in exactly the
same way, by forming F ¼ MSTr/MSE and rejecting H0 if f � Fa,I–1,n–I. This can

be justified intuitively by noting that E(MSE) ¼ s2 (as for fixed effects), whereas

EðMSTr) ¼ s2 þ 1

I � 1
n�

P
J2i
n

� �
s2A ð11:8Þ

where J1, J2,. . ., JI are the sample sizes and n ¼ SJi. The factor in parentheses on

the right side of (11.8) is nonnegative, so once again E(MSTr) ¼ s2 if H0 is true

and E(MSTr) > s2 if H0 is false.

Example 11.10 The study of nondestructive forces and stresses in materials furnishes important

information for efficient design. The article “Zero-Force Travel-Time Parameters

for Ultrasonic Head-Waves in Railroad Rail” (Mater. Eval., 1985: 854–858)

reports on a study of travel time for a type of wave that results from longitudinal

stress of rails used for railroad track. Three measurements were made on each of six

rails randomly selected from a population of rails. The investigators used random

effects ANOVA to decide whether some variation in travel time could be attributed

to “between-rail variability.” The data is given in the accompanying table (each

value, in nanoseconds, resulted from subtracting 36.1 ms from the original obser-

vation) along with the derived ANOVA table. The value of the F ratio is highly

significant, so H0: s2A ¼ 0 is rejected in favor of the conclusion that differences

between rails are a source of travel-time variability.

Source of
Variation df

Sum of
Squares

Mean
Square f

Treatments 5 9310.5 1862.1 115.2

Error 12 194.0 16.17

Total 17 9504.5

■

Rail Travel time xi·

1 55 53 54 162

2 26 37 32 95

3 78 91 85 254

4 92 100 96 288

5 49 51 50 150

6 80 85 83 248

x·· ¼ 1197
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Exercises Section 11.3 (22–34)

22. The following data refers to yield of tomatoes (kg/

plot) for four different levels of salinity; salinity

level here refers to electrical conductivity (EC),

where the chosen levels were EC ¼ 1.6, 3.8, 6.0,

and 10.2 nmhos/cm:

1.6: 59.5 53.3 56.8 63.1 58.7

3.8: 55.2 59.1 52.8 54.5

6.0: 51.7 48.8 53.9 49.0

10.2: 44.6 48.5 41.0 47.3 46.1

Use the F test at level a ¼ .05 to test for any

differences in true average yield due to the differ-

ent salinity levels.

23. Apply the modified Tukey’s method to the data in

Exercise 22 to identify significant differences

among the mi’s.

24. The following partial ANOVA table is taken from

the article “Perception of Spatial Incongruity” (J.
Nerv. Ment. Dis., 1961: 222) in which the abilities
of three different groups to identify a perceptual

incongruity were assessed and compared. All indi-

viduals in the experiment had been hospitalized to

undergo psychiatric treatment. There were 21

individuals in the depressive group, 32 individuals

in the functional “other” group, and 21 individuals

in the brain-damaged group. Complete the

ANOVA table and carry out the F test at level

a ¼ .01.

Source df Sum of Squares Mean Square f

Groups 76.09

Error

Total 1123.14

25. Lipids provide much of the dietary energy in the

bodies of infants and young children. There is a

growing interest in the quality of the dietary lipid

supply during infancy as a major determinant of

growth, visual and neural development, and long-

term health. The article “Essential Fat Require-

ments of Preterm Infants” (Amer. J. Clin. Nutrit.,
2000: 245S–250S) reported the following data on

total polyunsaturated fats (%) for infants who were

randomized to four different feeding regimens:

breast milk, corn-oil-based formula, soy-oil-based

formula, or soy-and-marine-oil-based formula:

Regimen
Sample
Size

Sample
Mean

Sample
SD

Breast milk 8 43.0 1.5

CO 13 42.4 1.3

SO 17 43.1 1.2

SMO 14 43.5 1.2

a. What assumptions must be made about the four

total polyunsaturated fat distributions before

carrying out a single-factor ANOVA to decide

whether there are any differences in true aver-

age fat content?

b. Carry out the test suggested in part (a). What

can be said about the P-value?

26. Samples of six different brands of diet/imitation

margarine were analyzed to determine the level of

physiologically active polyunsaturated fatty acids

(PAPFUA, in percentages), resulting in the fol-

lowing data:

Imperial 14.1 13.6 14.4 14.3

Parkay 12.8 12.5 13.4 13.0 12.3

Blue Bonnet 13.5 13.4 14.1 14.3

Chiffon 13.2 12.7 12.6 13.9

Mazola 16.8 17.2 16.4 17.3 18.0

Fleischmann’s 18.1 17.2 18.7 18.4

(The preceding numbers are fictitious, but the

sample means agree with data reported in the Jan-

uary 1975 issue of Consumer Reports.)
a. Use ANOVA to test for differences among the

true average PAPFUA percentages for the dif-

ferent brands.

b. Compute CIs for all (mi – mj)’s.
c. Mazola and Fleischmann’s are corn-based,

whereas the others are soybean-based. Compute

a CI for

m1 þ m2 þ m3 þ m4
4

� m5 þ m6
2

[Hint: Modify the expression for VðŷÞ that led to

(11.5) in the previous section.]

27. Although tea is the world’s most widely consumed

beverage after water, little is known about its

nutritional value. Folacin is the only B vitamin
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present in any significant amount in tea, and

recent advances in assay methods have made

accurate determination of folacin content feasible.

Consider the accompanying data on folacin con-

tent for randomly selected specimens of the four

leading brands of green tea.

Brand Observations

1 7.9 6.2 6.6 8.6 8.9 10.1 9.6

2 5.7 7.5 9.8 6.1 8.4

3 6.8 7.5 5.0 7.4 5.3 6.1

4 6.4 7.1 7.9 4.5 5.0 4.0

(Data is based on “Folacin Content of Tea,” J.
Amer. Dietetic Assoc., 1983: 627–632.) Does this
data suggest that true average folacin content is the

same for all brands?

a. Carry out a test using a ¼ .05 via the P-value
method.

b. Assess the plausibility of any assumptions

required for your analysis in part (a).

c. Perform a multiple comparisons analysis to

identify significant differences among brands.

28. In single-factor ANOVA with sample sizes Ji (i ¼
1, . . ., I), show that SSTr ¼P JiðXi� � X��Þ2 ¼P

i JiX
2
i� � nX

2
��, where n ¼P Ji.

29. When sample sizes are equal (Ji ¼ J), the para-

meters a1, a2,. . ., aI of the alternative parameteri-

zation are restricted by Sai ¼ 0. For unequal

sample sizes, the most natural restriction is

SJiai ¼ 0. Use this to show that

E(MSTr) ¼ s2 þ 1

I � 1

X
Jia2i

What is E(MSTr) when H0 is true? [This expec-

tation is correct if SJiai ¼ 0 is replaced by the

restriction Sai ¼ 0 (or any other single linear

restriction on the ai’s used to reduce the model

to I independent parameters), but SJiai ¼ 0

simplifies the algebra and yields natural estimates

for the model parameters (in particular,

âi ¼ �xi� � �x��).]

30. Reconsider Example 11.7 involving an investiga-

tion of the effects of different heat treatments on

the yield point of steel ingots.

a. If J ¼ 8 and s ¼ 1, what is b for a level

.05 F test when m1 ¼ m2, m3 ¼ m1 – 1, and m4
¼ m1 + 1?

b. For the alternative of part (a), what value of J is
necessary to obtain b ¼ .05?

c. If there are I ¼ 5 heat treatments, J ¼ 10, and

s ¼ 1, what is b for the level .05 F test when

four of the mi’s are equal and the fifth differs by
1 from the other four?

31. For unequal sample sizes,, the noncentrality para-

meter is
P

Jia2i =s
2 and f2 ¼ð1=IÞPJia2i =s

2.

Referring to Exercise 22, what is the power of the

test when m2 ¼ m3, m1 ¼ m2 – s, and m4 ¼ m2 + s?

32. In an experiment to compare the quality of four

different brands of reel-to-reel recording tape, five

2400-ft reels of each brand (A–D) were selected

and the number of flaws in each reel was deter-

mined.

A: 10 5 12 14 8

B: 14 12 17 9 8

C: 13 18 10 15 18

D: 17 16 12 22 14

It is believed that the number of flaws has approx-

imately a Poisson distribution for each brand. Ana-

lyze the data at level .01 to see whether the

expected number of flaws per reel is the same for

each brand.

33. Suppose that Xij is a binomial variable with para-

meters n and pi (so it is approximately normal

when npi � 10 and nqi � 10). Then since mi ¼
npi, VðXijÞ ¼ s2i ¼ npið1� piÞ ¼ mið1� mi=nÞ.
How should the Xij’s be transformed so as to

stabilize the variance? [Hint: g(mi) ¼ mi(1 – mi/n).]

34. Simplify E(MSTr) for the random effects model

when J1 ¼ J2 ¼ � � � ¼ JI ¼ J.

11.4 Two-Factor ANOVA with Kij ¼ 1
In many experimental situations there are two factors of simultaneous interest. For

example, suppose an investigator wishes to study permeability of woven material

used to construct automobile air bags (related to the ability to absorb energy).
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An experiment might be carried out using I ¼ 4 temperature levels (10�C, 15�C,
20�C, 25�C) and J ¼ 3 levels of fabric denier (420-D, 630-D, 840-D).

When factor A consists of I levels and factor B consists of J levels, there are IJ
different combinations (pairs) of levels of the two factors, each called a treatment.

With Kij ¼ the number of observations on the treatment consisting of factor A at

level i and factor B at level j, we focus in this section on the case Kij ¼ 1, so that the

data consists of IJ observations. We will first discuss the fixed effects model, in

which the only levels of interest for the two factors are those actually represented in

the experiment. The case in which one or both factors are random is discussed

briefly at the end of the section.

Example 11.11 Is it really as easy to remove marks on fabrics from erasable pens as the word

erasablemight imply? Consider the following data from an experiment to compare

three different brands of pens and four different wash treatments with respect to

their ability to remove marks on a particular type of fabric (based on “An Assess-

ment of the Effects of Treatment, Time, and Heat on the Removal of Erasable Pen

Marks from Cotton and Cotton/Polyester Blend Fabrics,” J. Test. Eval., 1991:
394–397). The response variable is a quantitative indicator of overall specimen

color change; the lower this value, the more marks were removed.

Washing treatment

1 2 3 4 Total

1 .97 .48 .48 .46 2.39

Brand of Pen 2 .77 .14 .22 .25 1.38

3 .67 .39 .57 .19 1.82

Total 2.41 1.01 1.27 .90 5.59

Is there any difference in the true average amount of color change due either to the

different brands of pen or to the different washing treatments? ■

As in single-factor ANOVA, double subscripts are used to identify random

variables and observed values. Let

Xij ¼ the random variable (rv) denoting the measurement when factor A is

held at level i and factor B is held at level j

xij ¼ the observed value of Xij

The xij’s are usually presented in a two-way table in which the ith row contains the

observed values when factor A is held at level i and the jth column contains the

observed values when factor B is held at level j. In the erasable-pen experiment of

Example 11.11, the number of levels of factor A is I ¼ 3, the number of levels of

factor B is J ¼ 4, x13 ¼ .48, x22 ¼ .14, and so on.

Whereas in single-factor ANOVA we were interested only in row means and

the grand mean, here we are interested also in column means. Let

Xi� ¼ the average of data obtained

when factor A is held at level i
¼

PJ
j¼1

Xij

J
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X�j ¼ the average of data obtained

when factor B is held at level j
¼
PI
i¼1

Xij

I

X�� ¼ the grand mean ¼

PI
i¼1

PJ
j¼1

Xij

IJ

with observed values �xi�, �x�j, and �x��. Totals rather than averages are denoted by

omitting the horizontal bar (so x�j ¼
P

i xij, etc.). Intuitively, to see whether there is

any effect due to the levels of factorA, we should compare the observed �xi�’s with each
other, and information about the different levels of factorB should come from the �x�j’s.

The Model

Proceeding by analogy to single-factor ANOVA, one’s first inclination in specify-

ing a model is to let mij ¼ the true average response when factor A is at level i and
factor B at level j, giving IJ mean parameters. Then let

Xij ¼ mij þ eij

where eij is the random amount by which the observed value differs from its

expectation and the eij’s are assumed normal and independent with common vari-

ance s2. Unfortunately, there is no valid test procedure for this choice of parameters.

The reason is that under the alternative hypothesis of interest, the mij’s are free to

take on any values whatsoever, whereas s2 can be any value greater than zero, so that
there are IJ + 1 freely varying parameters. But there are only IJ observations, so

after using each xij as an estimate of mij, there is no way to estimate s2.
To rectify this problem of a model having more parameters than observed

values, we must specify a model that is realistic yet involves relatively few

parameters.

Assume the existence of I parameters a1, a2,. . ., aI and J parameters

b1, b2,. . ., bJ such that

Xij ¼ ai þ bj þ eij ði ¼ 1; . . . ; I; j ¼ 1; . . . ; JÞ ð11:9Þ

so that

mij ¼ ai þ bj ð11:10Þ

Including s2, there are now I + J + 1 model parameters, so if I � 3 and J � 3,

there will be fewer parameters than observations [in fact, we will shortly modify

(11.10) so that even I ¼ 2 and/or J ¼ 2 will be accommodated].

The model specified in (11.9) and (11.10) is called an additive model
because each mean response mij is the sum of an effect due to factor A at level i
(ai) and an effect due to factor B at level j (bj). The difference between mean
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responses for factor A at level i and level i 0 when B is held at level j is mij – mi0j.
When the model is additive,

mij � mi0j ¼ ðai þ bjÞ � ðai0 þ bjÞ ¼ ai � ai0

which is independent of the level j of the second factor. A similar result holds for

mij – mij 0. Thus additivity means that the difference in mean responses for two levels

of one of the factors is the same for all levels of the other factor. Figure 11.7(a) shows a

set of mean responses that satisfy the condition of additivity (which implies parallel

lines), and Figure 11.7(b) shows a nonadditive configuration of mean responses.

Example 11.12

(Example 11.11

continued)

When we plot the observed xij’s in a manner analogous to that of Figure 11.7, we

get the result shown in Figure 11.8. Although there is some “crossing over” in the

observed xij’s, the configuration is reasonably representative of what would be

expected under additivity with just one observation per treatment.

1 2 3 4

Levels of A
1 2 3 4

Levels of A

a b

Levels of B 

Mean response

Levels of B

Mean response

Figure 11.7 Mean responses for two types of model: (a) additive; (b) nonadditive

Color change

.4

.3

.1

.2

1 2
Washing treatment

Brand 1

3 4

.5

.6

.7

.8

.9

1.0

Brand 2

Brand 3

Figure 11.8 Plot of data from Example 11.11 ■
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Expression (11.10) is not quite the final model description because the ai’s
and bj’s are not uniquely determined. Following are two different configurations of

the ai’s and bj’s that yield the same additive mij’s.

b1 ¼ 1 b2 ¼ 4 b1 ¼ 2 b2 ¼ 5

a1 ¼ 1 m11 ¼ 2 m12 ¼ 5 a1 ¼ 0 m11 ¼ 2 m12 ¼ 5

a2 ¼ 2 m21 ¼ 3 m22 ¼ 6 a2 ¼ 1 m21 ¼ 3 m22 ¼ 6

By subtracting any constant c from all ai’s and adding c to all bj’s, other config-
urations corresponding to the same additive model are obtained. This nonunique-

ness is eliminated by use of the following model.

Xij ¼ mþ ai þ bj þ eij ð11:11Þ

where
PI

i¼1 ai ¼ 0,
PJ

j¼1 bj ¼ 0 and the eij’s are assumed independent,

normally distributed, with mean 0 and common variance s2.

This is analogous to the alternative choice of parameters for single-factor ANOVA

discussed in Section 11.3. It is not difficult to verify that (11.11) is an additive

model in which the parameters are uniquely determined (e.g., for the mij’s men-

tioned previously, m ¼ 4, a1 ¼ –.5, a2 ¼ .5, b1 ¼�1.5, and b2 ¼ 1.5). Notice that

there are only I – 1 independently determined ai’s and J – 1 independently

determined bj’s, so (including m) (11.11) specifies I + J – 1 mean parameters.

The interpretation of the parameters of (11.11) is straightforward: m is the true

grand mean (mean response averaged over all levels of both factors), ai is the effect
of factor A at level i (measured as a deviation from m), and bj is the effect of factor B
at level j. Unbiased (and maximum likelihood) estimators for these parameters are

m̂ ¼ X�� âi ¼ Xi� � X�� b̂j ¼ X�j � X��

There are two different hypotheses of interest in a two-factor experiment with

Kij ¼ 1. The first, denoted by H0A, states that the different levels of factor A have

no effect on true average response. The second, denoted by H0B, asserts that there is

no factor B effect.

H0A : a1 ¼ a2 ¼ � � � ¼ aI ¼ 0

versus HaA : at least one ai 6¼ 0

H0B : b1 ¼ b2 ¼ � � � ¼ bJ ¼ 0

versus HaB : at least one bj 6¼ 0

ð11:12Þ

(No factor A effect implies that all ai’s are equal, so they must all be 0 since they

sum to 0, and similarly for the bj’s.)
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Test Procedures

The description and analysis now follow closely that for single-factor ANOVA.

The relevant sums of squares and their computing forms are given by

SST ¼
XI
i¼1

XJ
j¼1

ðXij � X��Þ2 ¼
XI
i¼1

XJ
j¼1

X2
ij �

1

IJ
X2
�� df ¼ IJ � 1

SSA ¼
XI
i¼1

XJ
j¼1

ðXi� � X��Þ2 ¼ 1

J

XI
i¼1

X2
i� �

1

IJ
X2
�� df ¼ I � 1

SSB ¼
XI
i¼1

XJ
j¼1

ðX�j � X��Þ2 ¼ 1

I

XJ
j¼1

X2
�j �

1

IJ
X2
�� df ¼ J � 1

SSE ¼
XI
i¼1

XJ
j¼1

ðXij � Xi� � X�j þ X��Þ2 df ¼ ðI � 1ÞðJ � 1Þ

ð11:13Þ

and the fundamental identity

SST ¼ SSAþ SSBþ SSE ð11:14Þ
allows SSE to be determined by subtraction.

The expression for SSE results from replacing m, ai, and bj in

S½Xij � ðmþ ai þ bjÞ�2 by their respective estimators. Error df is IJ – number of

mean parameters estimated ¼ IJ – [1 + (I – 1) + (J – 1)] ¼ (I – 1)(J – 1). As in

single-factor ANOVA, total variation is split into a part (SSE) that is not explained

by either the truth or the falsity ofH0A orH0B and two parts that can be explained by

possible falsity of the two null hypotheses.

Forming F ratios as in single-factor ANOVA, we can show as in Section 11.1

that if H0A is true, the corresponding F ratio has an F distribution with numerator

df ¼ I – 1 and denominator df ¼ (I – 1)(J – 1); an analogous result applies when

testing H0B.

Hypotheses Test Statistic Value Rejection Region

H0A versus HaA fA ¼ MSA

MSE

fA � Fa;I�1;ðI�1ÞðJ�1Þ

H0B versus HaB fB ¼ MSB

MSE

fB � Fa;J�1;ðI�1ÞðJ�1Þ

Example 11.13

(Example 11.12

continued)

The xi�’s (row totals) and x�j’s (column totals) for the color change data are displayed

along the right and bottom margins of the data table in Example 11.11. In addition,PP
x2ij ¼ 3:2987 and the correction factor is x2��= IJð Þ ¼ 5:59ð Þ2=12 ¼ 2:6040.

The sums of squares are then
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SST ¼ 3:2987� 2:6040 ¼ :6947

SSA ¼ 1

4
½2:392 þ 1:382 þ 1:822� � 2:6040 ¼ :1282

SSB ¼ 1

3
½2:412 þ 1:012 þ 1:272 þ :902� � 2:6040 ¼ :4797

SSE ¼ :6947� ð:1282þ :4797Þ ¼ :0868

The accompanying ANOVA table (Table 11.5) summarizes further calculations.

The critical value for testingH0A at level of significance .05 is F.05,2,6 ¼ 5.14.

Since 4.43 < 5.14, H0A cannot be rejected at significance level .05. Based on this

(small) data set, we cannot conclude that true average color change depends on

brand of pen. Because F.05,3,6 ¼ 4.76 and 11.05 � 4.76, H0B is rejected at signifi-

cance level .05 in favor of the assertion that color change varies with washing

treatment. A statistical computer package gives P-values of .066 and .007 for these
two tests.

How can plausibility of the normality and constant variance assumptions be

investigated graphically? Define the predicted values (also called fitted values)

x̂ij ¼ m̂þ âi þ b̂j ¼ �x�� þ ð�xi� � �x��Þ þ ð�x�j � �x��Þ ¼ �xi� þ �x�j � �x��, and the residuals

(the differences between the observations and predicted values)

xij � x̂ij ¼ xij � �xi� � �x�j þ �x��. We can check the normality assumption with a nor-

mal plot of the residuals, Figure 11.9(a), and we can check the constant variance

assumption with a plot of the residuals against the fitted values, Figure 11.9(b).

Table 11.5 ANOVA table for Example 11.13

Source of Variation df Sum of Squares Mean Square f

Factor A (pen brand) I�1 ¼ 2 SSA ¼ .1282 MSA ¼ .0641 fA ¼ 4.43

Factor B (wash

treatment)

J�1 ¼ 3 SSB ¼ .4797 MSB ¼ .1599 fB ¼ 11.05

Error (I�1)(J�1) ¼ 6 SSE ¼ .0868 MSE ¼ .01447

Total IJ�1 ¼ 11 SST ¼ .6947
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Figure 11.9 Plots from MINITAB for Example 11.13
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The normal plot is reasonably straight, so there is no reason to question

normality for this data set. On the plot of the residuals against the fitted values, we

are looking for differences in vertical spread as we move horizontally across the

graph. For example, if there were a narrow range for small fitted values and a

wide range for high fitted values, this would suggest that the variance is higher for

larger responses (this happens often, and it can sometimes be cured by replacing

each observation by its logarithm). No such problem occurs here, so there is no

evidence against the constant variance assumption. ■

Expected Mean Squares

The plausibility of using the F tests just described is demonstrated by determining

the expected mean squares. After some tedious algebra,

E(MSE) ¼ s2 (when the model is additive)

E(MSA) ¼ s2 þ J

I � 1

XI
i¼1

a2i

E(MSB) ¼ s2 þ I

J � 1

XJ
j¼1

b2j

WhenH0A is true, MSA is an unbiased estimator of s2, so F is a ratio of two unbiased

estimators of s2.WhenH0A is false, MSA tends to overestimate s2, soH0A should be

rejected when the ratio FA is too large. Similar comments apply to MSB and H0B.

Multiple Comparisons

When either H0A or H0B has been rejected, Tukey’s procedure can be used to

identify significant differences between the levels of the factor under investigation.

The steps in the analysis are identical to those for a single-factor ANOVA:

1. For comparing levels of factor A, obtain Qa,I,(I�1)(J�1).

For comparing levels of factor B, obtain Qa, J,(I�1)(J�1).

2. Compute

w ¼ Q·(estimated standard deviation of the sample means being compared)

¼ Qa;I;ðI�1ÞðJ�1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE J=

p
for factor A comparisons

Qa; J;ðI�1ÞðJ�1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE I=

p
for factor B comparisons

(

(because, e.g., the standard deviation of Xi� is s=
ffiffiffi
J

p
).

3. Arrange the sample means in increasing order, underscore those pairs differing

by less than w, and identify pairs not underscored by the same line as

corresponding to significantly different levels of the given factor.

Example 11.14

(Example 11.13

continued)

Identification of significant differences among the four washing treatments requires

Q.05,4,6 ¼ 4.90 and w ¼ 4.90
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:01447=3

p ¼ :340. The four factor B sample means

(column averages) are now listed in increasing order, and any pair differing by less

than .340 is underscored by a line segment:
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�x4� �x2� �x3� �x1�
.300 .337 .423 .803

Washing treatment 1 is significantly worse than the other three treatments, but no

other significant differences are identified. In particular, it is not apparent which

among treatments 2, 3, and 4 is best at removing marks. ■

Randomized Block Experiments

In using single-factor ANOVA to test for the presence of effects due to the

I different treatments under study, once the IJ subjects or experimental units have

been chosen, treatments should be allocated in a completely random fashion. That

is, J subjects should be chosen at random for the first treatment, then another

sample of J chosen at random from the remaining IJ – J subjects for the second

treatment, and so on.

It frequently happens, though, that subjects or experimental units exhibit

differences with respect to other characteristics that may affect the observed

responses. For example, some patients might be healthier than others. When this

is the case, the presence or absence of a significant F value may be due to these

differences rather than to the presence or absence of factor effects. This was the

reason for introducing a paired experiment in Chapter 10. The generalization of the

paired experiment to I > 2 is called a randomized block experiment. An extrane-

ous factor, “blocks,” is constructed by dividing the IJ units into J groups with I units
in each group. This grouping or blocking is done in such a way that within each

block, the I units are homogeneous with respect to other factors thought to affect the

responses. Then within each homogeneous block, the I treatments are randomly

assigned to the I units or subjects in the block.

Example 11.15 A consumer product-testing organization wished to compare the annual power

consumption for five different brands of dehumidifier. Because power consumption

depends on the prevailing humidity level, it was decided to monitor each brand at

four different levels ranging from moderate to heavy humidity (thus blocking on

humidity level). Within each level, brands were randomly assigned to the five

selected locations. The resulting amount of power consumption (annual kWh)

appears in Table 11.6.

Table 11.6 Power consumption data for Example 11.15

Blocks (humidity level)

Treatments (brands) 1 2 3 4 xi� �xi�

1 685 792 838 875 3190 797.50

2 722 806 893 953 3374 843.50

3 733 802 880 941 3356 839.00

4 811 888 952 1005 3656 914.00

5 828 920 978 1023 3749 937.25

x·j 3779 4208 4541 4797 17,325
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Since
PP

x2ij ¼ 15;178;901:00 and x2��=ðIJÞ ¼ 15;007;781:25

SST ¼ 15;178;901:00� 15;007;781:25 ¼ 171;119:75

SSA ¼ 1

4
½60;244;049� � 15;007;781:25 ¼ 53;231:00

SSB ¼ 1

5
½75;619;995� � 15;007;781:25 ¼ 116;217:75

and

SSE ¼ 171;119:75� 53;231:00� 116;217:75 ¼ 1671:00

The ANOVA calculations are summarized in Table 11.7

Since F.05,4,12 ¼ 3.26 and fA ¼ 95.57 � 3.26, H0 is rejected in favor of Ha, and

we conclude that power consumption does depend on the brand of humidifier.

To identify significantly different brands, we use Tukey’s procedure. Q.05,5,12 ¼
4.51 and w ¼ 4.51

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
139:25=4

p ¼ 26:6.

�x1� �x3� �x2� �x4� �x5�
797.50 839.00 843.50 914.00 937.25

The underscoring indicates that the brands can be divided into three groups with

respect to power consumption.

Because the block factor is of secondary interest, F.05,3,12 is not needed,

though the computed value of FB is clearly highly significant. Figure 11.10

shows SAS output for this data. Notice that in the first part of the ANOVA table,

the sums of squares (SS’s) for treatments (brands) and blocks (humidity levels) are

combined into a single “model” SS.

In many experimental situations in which treatments are to be applied to

subjects, a single subject can receive all I of the treatments. Blocking is then often

done on the subjects themselves to control for variability between subjects; each

subject is then said to act as its own control. Social scientists sometimes refer to

such experiments as repeated-measures designs. The “units” within a block are then

the different “instances” of treatment application. Similarly, blocks are often taken

as different time periods, locations, or observers.

Table 11.7 ANOVA table for Example 11.15

Source of Variation df Sum of Squares Mean Square f

Treatments (brands) 4 53,231.00 13,307.75 fA ¼ 95.57

Blocks 3 116,217.75 38,739.25 fB ¼ 278.20

Error 12 1671.00 139.25

Total 19 171,119.75
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In most randomized block experiments in which subjects serve as blocks, the

subjects actually participating in the experiment are selected from a large popula-

tion. The subjects then contribute random rather than fixed effects. This does not

affect the procedure for comparing treatments when Kij ¼ 1 (one observation per

“cell,” as in this section), but the procedure is altered if Kij ¼ K > 1. We will

shortly consider two-factor models in which effects are random.

More on BlockingWhen I ¼ 2, either the F test or the paired differences t test can
be used to analyze the data. The resulting conclusion will not depend on which

procedure is used, since T2 ¼ F and t2a=2;n ¼ Fa;1;n

Just as with pairing, blocking entails both a potential gain and a potential loss

in precision. If there is a great deal of heterogeneity in experimental units, the value

of the variance parameter s2 in the one-way model will be large. The effect of

blocking is to filter out the variation represented by s2 in the two-way model

appropriate for a randomized block experiment. Other things being equal, a smaller

Analysis of Variance Procedure

Dependent Variable: POWERUSE

Sum of Mean

Source DF Squares Square F Value Pr > F

Model  7 169448.750 24206.964 173.84 0.0001

Error 12 1671.000 139.250

Corrected Total 19 171119.750

 R-Square C.V. Root MSE POWERUSE Mean

0.990235 1.362242 11.8004 866.25000

Source DF Anova SS Mean Square F Value Pr > F

BRAND 4  53231.000 13307.750  95.57 0.0001

HUMIDITY 3 116217.750 38739.250 278.20 0.0001

Alpha = 0.05 df = 12 MSE = 139.25 
Critical Value of Studentized Range = 4.508
Minimum Significant Difference = 26.597 

Means with the same letter are not significantly different.

Tukey Grouping

A

A

A

B

B

B

C
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843.500
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5

4
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1

Figure 11.10 SAS output for consumption data ■
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value of s2 results in a test that is more likely to detect departures from H0 (i.e., a

test with greater power).

However, other things are not equal here, since the single-factor F test is

based on I(J – 1) degrees of freedom (df) for error, whereas the two-factor F test is

based on (I – 1)(J – 1) df for error. Fewer degrees of freedom for error results in a

decrease in power, essentially because the denominator estimator of s2 is not as

precise. This loss in degrees of freedom can be especially serious if the experi-

menter can afford only a small number of observations. Nevertheless, if it appears

that blocking will significantly reduce variability, it is probably worth the loss in

degrees of freedom.

Models for Random Effects

In many experiments, the actual levels of a factor used in the experiment, rather

than being the only ones of interest to the experimenter, have been selected from a

much larger population of possible levels of the factor. In a two-factor situation,

when this is the case for both factors, a random effects model is appropriate. The
case in which the levels of one factor are the only ones of interest and the levels of

the other factor are selected from a population of levels leads to a mixed effects
model. The two-factor random effects model when Kij ¼ 1 is

Xij ¼ mþ Ai þ Bj þ eij i ¼ 1; :::; I; j ¼ 1; :::; Jð Þ

where the Ai’s, Bj’s, and eij’s are all independent, normally distributed rv’s

with mean 0 and variances s2A,s
2
B, and s2, respectively.

The hypotheses of interest are then H0A: s2A ¼ 0 (level of factor A does not contrib-

ute to variation in the response) versus HaA: s2A > 0 and H0B: s2B ¼ 0 versus

HaB: s2B > 0. Whereas E(MSE) ¼ s2 as before, the expected mean squares for

factors A and B are now

E MSAð Þ ¼ s2 þ Js2A E MSBð Þ ¼ s2 þ Is2B

Thus when H0A (H0B) is true, FA(FB) is still a ratio of two unbiased estimators of s2.
It can be shown that a test with significance level a for H0A versus HaA still rejects

H0A if fA � Fa,I�1,(I�1)(J�1), and, similarly, the same procedure as before is used to

decide between H0B and HaB.

For the case in which factor A is fixed and factor B is random, the mixed

model is

Xij ¼ mþ ai þ Bj þ eij i ¼ 1; :::; I; j ¼ 1; :::; Jð Þ

where
P

ai ¼ 0, and the Bj’s, and eij’s are all independent, normally

distributed rv’s with mean 0 and variances s2B and s2, respectively.

11.4 Two-Factor ANOVA with Kij ¼ 1 593



Now the two null hypotheses are

H0A: a1 ¼ � � � ¼ aI ¼ 0 and H0B: s2B ¼ 0

with expected mean squares

E MSEð Þ ¼ s2 E MSAð Þ ¼ s2 þ J

I � 1

X
a2i E MSBð Þ ¼ s2 þ Is2B

The test procedures for H0A versus HaA and H0B versus HaB are exactly as before.

For example, in the analysis of the color change data in Example 11.11, if the

four wash treatments were randomly selected, then because fB ¼ 11.05 and

F.05,3,6 ¼ 4.76, H0B: s2B ¼ 0 is rejected in favor of HaB: s2B > 0. An estimate of

the “variance component” s2B is then given by (MSB – MSE)/I ¼ .0485.

Summarizing, when Kij ¼ 1, although the hypotheses and expected

mean squares differ from the case of both effects fixed, the test procedures are

identical.

Exercises Section 11.4 (35–48)

35. The number of miles of useful tread wear (in

1000’s) was determined for tires of each of five

different makes of subcompact car (factor A,
with I ¼ 5) in combination with each of four

different brands of radial tires (factor B, with
J ¼ 4), resulting in IJ ¼ 20 observations. The

values SSA ¼ 30.6, SSB ¼ 44.1, and SSE ¼
59.2 were then computed. Assume that an addi-

tive model is appropriate.

a. Test H0: a1 ¼ a2 ¼ a3 ¼ a4 ¼ a5 ¼ 0 (no

differences in true average tire lifetime due

to makes of cars) versus Ha: at least one

ai 6¼ 0 using a level .05 test.

b. H0: b1 ¼ b2 ¼ b3 ¼ b4 ¼ 0 (no differences

in true average tire lifetime due to brands of

tires) versus Ha: at least one bj 6¼ 0 using a

level .05 test.

36. Four different coatings are being considered for

corrosion protection of metal pipe. The pipe will

be buried in three different types of soil. To

investigate whether the amount of corrosion

depends either on the coating or on the type of

soil, 12 pieces of pipe are selected. Each piece is

coated with one of the four coatings and buried in

one of the three types of soil for a fixed time,

after which the amount of corrosion (depth of

maximum pits, in .0001 in.) is determined. The

depths are shown in this table:

Soil Type (B)

1 2 3

Coating (A)

1 64 49 50

2 53 51 48

3 47 45 50

4 51 43 52

a. Assuming the validity of the additive model,

carry out the ANOVA analysis using an

ANOVA table to see whether the amount of

corrosion depends on either the type of coat-

ing used or the type of soil. Use a ¼ .05.

b. Compute m̂; â1; â2; â3; â4; b̂1; b̂2; and b̂3

37. The data set shown below is from the article

“Compounding of Discriminative Stimuli from

the Same and Different Sensory Modalities”

(J. Exp. Anal. Behav., 1971: 337–342). Rat

response was maintained by fixed interval sche-

dules of reinforcement in the presence of a tone or

two separate lights. The lights were of either mod-

erate (L1) or low (L2) intensity. Observations are

given as the mean number of responses emitted by
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each subject during single and compound stimuli

presentations over a 4-day period. Carry out an

appropriate analysis.

38. In an experiment to see whether the amount of

coverage of light-blue interior latex paint

depends either on the brand of paint or on the

brand of roller used, 1 gallon of each of four

brands of paint was applied using each of three

brands of roller, resulting in the following data

(number of square feet covered).

Roller Brand

1 2 3

1 454 446 451

Paint 2 446 444 447

Brand 3 439 442 444

4 444 437 443

a. Construct the ANOVA table. [Hint: The com-

putations can be expedited by subtracting 400

(or any other convenient number) from each

observation. This does not affect the final

results.]

b. State and test hypotheses appropriate for

deciding whether paint brand has any effect

on coverage. Use a ¼ .05.

c. Repeat part (b) for brand of roller.

d. Use Tukey’s method to identify significant

differences among brands. Is there one brand

that seems clearly preferable to the others?

e. Check the normality and constant variance

assumptions graphically.

39. In an experiment to assess the effect of the angle

of pull on the force required to cause separation

in electrical connectors, four different angles

(factor A) were used and each of a sample of

five connectors (factor B) was pulled once at

each angle (“A Mixed Model Factorial Experi-

ment in Testing Electrical Connectors,” Indust.
Qual. Control, 1960: 12–16). The data appears in
the accompanying table.

B

1 2 3 4 5

A

0� 45.3 42.2 39.6 36.8 45.8

2� 44.1 44.1 38.4 38.0 47.2

4� 42.7 42.7 42.6 42.2 48.9

6� 43.5 45.8 47.9 37.9 56.4

Does the data suggest that true average separa-

tion force is affected by the angle of pull? State

and test the appropriate hypotheses at level .01

by first constructing an ANOVA table (SST

¼ 396.13, SSA ¼ 58.16, and SSB ¼ 246.97).

40. A particular county employs three assessors who

are responsible for determining the value of resi-

dential property in the county. To see whether

these assessors differ systematically in their

assessments, 5 houses are selected, and each

assessor is asked to determine the market value

of each house. With factor A denoting assessors

(I ¼ 3) and factor B denoting houses (J ¼ 5),

suppose SSA ¼ 11.7, SSB ¼ 113.5, and SSE

¼ 25.6.

a. Test H0: a1 ¼ a2 ¼ a3 ¼ 0 at level .05. (H0

states that there are no systematic differences

among assessors.)

b. Explain why a randomized block experiment

with only 5 houses was used rather than a

one-way ANOVA experiment involving a

total of 15 different houses with each assessor

asked to assess 5 different houses (a different

group of 5 for each assessor).

Subject

Stimulus 1 2 3 4 xi� �xi�

L1 8.0 17.3 52.0 22.0 99.3 24.8

L2 6.9 19.3 63.7 21.6 111.5 27.9

Tone (T) 9.3 18.8 60.0 28.3 116.4 29.1

L1 + L2 9.2 24.9 82.4 44.9 161.4 40.3

L1 + T 12.0 31.7 83.8 37.4 164.9 41.2

L2 + T 9.4 33.6 96.6 40.6 180.2 45.1

x�j 54.8 145.6 438.5 194.8 833.7
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41. The article “Rate of Stuttering Adaptation

Under Two Electro-Shock Conditions” (Behav.
Res. Therapy, 1967: 49–54) gives adaptation

scores for three different treatments: (1) no

shock, (2) shock following each stuttered

word, and (3) shock during each moment of

stuttering. These treatments were used on each

of 18 stutterers.

a. Summary statistics include x1� ¼ 905; x2� ¼
913; x3� ¼ 936; x�� ¼ 2754;

P
j x

2
�j ¼ 430; 295

and
PP

x2ij ¼ 143; 930. Construct the

ANOVA table and test at level .05 to see

whether true average adaptation score

depends on the treatment given.

b. Judging from the F ratio for subjects (factor

B), do you think that blocking on subjects was
effective in this experiment? Explain.

42. The article “The Effects of a Pneumatic Stool

and a One-Legged Stool on Lower Limb Joint

Load and Muscular Activity During Sitting and

Rising” (Ergonomics, 1993: 519–535) gives the
accompanying data on the effort required of a

subject to arise from four different types of stools

(Borg scale). Perform an analysis of variance

using a ¼ .05, and follow this with a multiple

comparisons analysis if appropriate.

Subject

1 2 3 4 5 6 7 8 9 �xi�

Type

of
Stool

1 12 10 7 7 8 9 8 7 9 8.56

2 15 14 14 11 11 11 12 11 13 12.44

3 12 13 13 10 8 11 12 8 10 10.78

4 10 12 9 9 7 10 11 7 8 9.22

43. The strength of concrete used in commercial

construction tends to vary from one batch to

another. Consequently, small test cylinders of

concrete sampled from a batch are “cured” for

periods up to about 28 days in temperature- and

moisture-controlled environments before

strength measurements are made. Concrete is

then “bought and sold on the basis of strength

test cylinders” (ASTM C 31 Standard Test

Method for Making and Curing Concrete Test

Specimens in the Field). The accompanying

data resulted from an experiment carried out to

compare three different curing methods with

respect to compressive strength (MPa). Analyze

this data.

Batch Method A Method B Method C

1 30.7 33.7 30.5

2 29.1 30.6 32.6

3 30.0 32.2 30.5

4 31.9 34.6 33.5

5 30.5 33.0 32.4

6 26.9 29.3 27.8

7 28.2 28.4 30.7

8 32.4 32.4 33.6

9 26.6 29.5 29.2

10 28.6 29.4 33.2

44. Check the normality and constant variance assump-

tions graphically for the data of Example 11.15.

45. Suppose that in the experiment described in Exer-

cise 40 the five houses had actually been selected

at random from among those of a certain age and

size, so that factor B is random rather than fixed.

Test H0: s2B ¼ 0 versus Ha: s2B > 0 using a level

.01 test.

46. a. Show that a constant d can be added to (or

subtracted from) each xij without affecting

any of the ANOVA sums of squares.

b. Suppose that each xij is multiplied by a nonzero

constant c. How does this affect the ANOVA

sums of squares? How does this affect the

values of the F statistics FA and FB? What

effect does “coding” the data by yij ¼ cxij + d
have on the conclusions resulting from the

ANOVA procedures?

47. Use the fact that E Xij

� � ¼ mþ ai þ bj with Sai ¼
Sbj ¼ 0 to show that E(Xi� � X��) ¼ ai, so that

âi ¼ Xi� � X�� is an unbiased estimator for ai.

48. The power curves of Figures 11.5 and 11.6 can be

used to obtain b ¼ P(type II error) for the F test in

two-factor ANOVA. For fixed values of a1, a2, . . .,
aI, the quantity f2 ¼ ðJ=IÞP a2i =s

2 is computed.

Then the figure corresponding to v1 ¼ I – 1 is

entered on the horizontal axis at the value f, the
power is read on the vertical axis from the curve

labeled v2 ¼ (I – 1)(J – 1), and b ¼ 1 – power.

a. For the corrosion experiment described in

Exercise 36, find b when a1 ¼ 4, a2 ¼ 0, a3 ¼
a4 ¼�2, and s ¼ 4. Repeat for a1 ¼ 6,

a2 ¼ 0, a3 ¼ a4 ¼�3, and s ¼ 4.

b. By symmetry, what isb for the test ofH0B versus

HaB in Example 11.11 when b1 ¼ .3, b2 ¼ b3
¼ b4 ¼ –.1, and s ¼ .3?
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11.5 Two-Factor ANOVA with Kij > 1
In Section 11.4, we analyzed data from a two-factor experiment in which there

was one observation for each of the IJ combinations of levels of the two factors. To

obtain valid test procedures, the mij’s were assumed to have an

additive structure with mij ¼ mþ ai þ bj, Sai ¼ Sbj ¼ 0. Additivity means that

the difference in true average responses for any two levels of the factors is the

same for each level of the other factor. For example, mij � mi0j ¼
ðmþ ai þ bjÞ � ðmþ ai0 þ bjÞ ¼ ai � ai0 independent of the level j of the second

factor. This is shown in Figure 11.7(a), in which the lines connecting true average

responses are parallel.

Figure 11.7(b) depicts a set of true average responses that does not have

additive structure. The lines connecting these mij’s are not parallel, which

means that the difference in true average responses for different levels of one

factor does depend on the level of the other factor. When additivity does not

hold, we say that there is interaction between the different levels of the factors.

The assumption of additivity allowed us in Section 11.4 to obtain an estimator of

the random error variance s2 (MSE) that was unbiased whether or not either null

hypothesis of interest was true. When Kij > 1 for at least one (i, j) pair, a valid

estimator of s2 can be obtained without assuming additivity. In specifying the

appropriate model and deriving test procedures, we will focus on the case Kij ¼ K
> 1, so the number of observations per “cell” (for each combination of levels)

is constant.

Parameters for the Fixed Effects Model with Interaction

Rather than use the mij’s themselves as model parameters, it is usual to use an

equivalent set that reveals more clearly the role of interaction. Let

m ¼ 1

IJ

X
i

X
j

mij �mi� ¼
1

J

X
j

mij �m�j ¼
1

I

X
i

mij ð11:15Þ

Thus m is the expected response averaged over all levels of both factors (the true

grand mean), �mi� is the expected response averaged over levels of the second factor

when the first factor A is held at level i, and similarly for �m�j. Now define

ai ¼ �mi� � m ¼ the effect of factor A at level i

bj ¼ �m�j � m ¼ the effect of factor B at level j

gij ¼ mij � ðmþ ai þ bjÞ
ð11:16Þ

from which

mij ¼ mþ ai þ bj þ gij ð11:17Þ
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The model is additive if and only if all gij’s ¼ 0. The gij’s are referred to as the

interaction parameters. The ai’s are called themain effects for factor A, and the
bj’s are themain effects for factor B.Although there are I ai’s, J bj’s, and IJ gij’s in
addition to m, the conditions Sai ¼ 0, Sbj ¼ 0, Sjgij ¼ 0 for any i, and Sigij ¼ 0

for any j [all by virtue of (11.15) and (11.16)], imply that only IJ of these new

parameters are independently determined: m, I – 1 of the ai’s, J – 1 of the bj’s, and
(I – 1)(J – 1) of the gij’s.

There are now three sets of hypotheses that will be considered:

H0AB: gij ¼ 0 for all i; j versus HaAB: at least one gij 6¼ 0

H0A: a1 ¼ a2 ¼ � � � ¼ aI ¼ 0 versus HaA: at least one ai 6¼ 0

H0B: b1 ¼ b2 ¼ � � � ¼ bJ ¼ 0 versus HaB: at least one bj 6¼ 0

The no-interaction hypothesis H0AB is usually tested first. If H0AB is not rejected,

then the other two hypotheses can be tested to see whether the main effects are

significant. But once H0AB is rejected, we believe that the effect of factor A at any

particular level depends on the level of B (and vice versa). It then does not make

sense to test H0A or H0B. In this context a picture similar to that of Figure 11.7(b) is

helpful in visualizing the way the factors interact. Here the cell means are used

instead of xij; this type of graph is sometimes called an interaction plot.
In case of interaction, it may be appropriate to do a one-way ANOVA to

compare levels of A separately for each level of B. For example, suppose factor A
involves four kinds of glue, factor B involves three types of material, the response is

strength of the glue joint, and the strength rankings of the glues clearly depend on

which material is being glued. In this situation with interaction, it makes sense to do

three separate one-way ANOVA analyses, one for each material.

Notation, Model, and Analysis

We now use triple subscripts for both random variables and observed values, with

Xijk and xijk referring to the kth observation (replication) when factor A is at level i
and factor B is at level j. The model is then

Xijk ¼ mþ ai þ bj þ gij þ eijk

i ¼ 1; :::; I; j ¼ 1; :::; J; k ¼ 1; :::;K
ð11:18Þ

where the eijk’s are independent and normally distributed, each with mean

0 and variance s2.

Again a dot in place of a subscript means that we have summed over all

values of that subscript, whereas a horizontal bar denotes averaging. Thus Xij· is the

total of all K observations made for factor A at level i and factor B at level j [all
observations in the (i, j)th cell], and Xij� is the average of these K observations.
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Example 11.16 Three different varieties of tomato (Harvester, Ife No. 1, and Pusa Early Dwarf) and

four different plant densities (10, 20, 30, and 40 thousand plants per hectare) are

being considered for planting in a particular region. To see whether either variety or

plant density affects yield, each combination of variety and plant density is used in

three different plots, resulting in the data on yields in Table 11.8 (based on the

article “Effects of Plant Density on Tomato Yields in Western Nigeria,” Exper.
Agric., 1976: 43–47).

Here, I ¼ 3, J ¼ 4, and K ¼ 3, for a total of IJK ¼ 36 observations ■

To test the hypotheses of interest, we again define sums of squares and

present computing formulas:

SST ¼
X
i

X
j

X
k

ðXijk � X���Þ2 ¼
X
i

X
j

X
k

X2
ijk �

1

IJK
X2
��� df ¼ IJK � 1

SSE ¼
X
i

X
j

X
k

ðXijk � Xij�Þ2

¼
X
i

X
j

X
k

X2
ijk �

1

K

X
i

X
j

X2
ij� df ¼ IJðK � 1Þ

SSA ¼
X
i

X
j

X
k

ðXi�� � X���Þ2 ¼ 1

JK

X
i

X2
i�� �

1

IJK
X2
��� df ¼ I � 1

SSB ¼
X
i

X
j

X
k

ðX�j� � X���Þ2 ¼ 1

IK

X
j

X2
�j� �

1

IJK
X2
��� df ¼ J � 1

SSAB ¼
X
i

X
j

X
k

ðXij� � Xi�� � X�j� þ X���Þ2 df ¼ ðI � 1ÞðJ � 1Þ

The fundamental identity

SST ¼ SSAþ SSBþ SSAB þ SSE

implies that the interaction sum of squares SSAB can be obtained by

subtraction.

Table 11.8 Yield data for Example 11.16

Planting Density

Variety 10,000 20,000 30,000 40,000 xi�� �xi��

H 10.5 9.2 7.9 12.8 11.2 13.3 12.1 12.6 14.0 10.8 9.1 12.5 136.0 11.33

Ife 8.1 8.6 10.1 12.7 13.7 11.5 14.4 15.4 13.7 11.3 12.5 14.5 146.5 12.21

P 16.1 15.3 17.5 16.6 19.2 18.5 20.8 18.0 21.0 18.4 18.9 17.2 217.5 18.13

x.j. 103.3 129.5 142.0 125.2 500.00
�x�j� 11.48 14.39 15.78 13.91 13.89
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The computing formulas are all obtained by expanding the squared expres-

sions and summing. The fundamental identity is obtained by squaring and summing

an expression similar to Equation (11.2).

Total variation is thus partitioned into four pieces: unexplained (SSE—which

would be present whether or not any of the three null hypotheses was true) and three

pieces that may be explained by the truth or falsity of the three H0’s. Each of four

mean squares is defined by MS ¼ SS/df. The expected mean squares suggest that

each set of hypotheses should be tested using the appropriate ratio of mean squares

with MSE in the denominator:

E(MSE) ¼ s2

E(MSA) ¼ s2 þ JK

I � 1

XI
i¼1

a2i

E(MSB) ¼ s2 þ IK

J � 1

XJ
j¼1

b2j

E(MSAB) ¼ s2 þ K

ðI � 1ÞðJ � 1Þ
XI
i¼1

XJ
j¼1

g2ij

Each of the three mean square ratios can be shown to have an F distribution

when the associated H0 is true, which yields the following level a test procedures.

Hypotheses Test Statistic Value Rejection Region

H0A versus HaA fA ¼ MSA

MSE
fA � Fa ;I�1;IJðK�1Þ

H0B versus HaB fA ¼ MSB

MSE
fB � Fa ;J�1;IJðK�1Þ

H0AB versus HaAB fAB ¼ MSAB

MSE
fAB � Fa ;ðI�1ÞðJ�1Þ;IJðK�1Þ

As before, the results of the analysis are summarized in an ANOVA table.

Example 11.17

(Example 11.16

continued)

From the given data, x2��� ¼ 5002 ¼ 250;000.X
i

X
j

X
k

x2ijk ¼10:52 þ 9:22 þ � � � þ 18:92 þ 17:22 ¼ 7404:80

X
i

x2i�� ¼136:02 þ 146:52 þ 217:52 ¼ 87;264:50

and X
j

x2�j� ¼ 63;280:18

The cell totals (xij.’s) are

10,000 20,000 30,000 40,000

H 27.6 37.3 38.7 32.4

Ife 26.8 37.9 43.5 38.3

P 48.9 54.3 59.8 54.5
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from which
P

i

P
j x

2
ij� ¼ 27:62 þ � � � þ 54:52 ¼ 22;100:28. Then

SST ¼ 7404:80� 1

36
ð250;000Þ ¼ 7404:80� 6944:44 ¼ 460:36

SSA ¼ 1

12
ð87;264:50Þ � 6944:44 ¼ 327:60

SSB ¼ 1

9
ð63;280:18Þ � 6944:44 ¼ 86:69

SSE ¼ 7404:80� 1

3
ð22;100:28Þ ¼ 38:04

and

SSAB ¼ 460:36� 327:60� 86:69� 38:04 ¼ 8:03

Table 11.9 summarizes the computation.

Since F.01,6,24 ¼ 3.67 and fAB ¼ .84 is not � 3.67, H0AB cannot be rejected at level

.01, so we conclude that the interaction effects are not significant. Now the presence

or absence ofmain effects can be investigated. SinceF.01,2,24 ¼ 5.61 and fA ¼ 103.02

� 5.61, H0A is rejected at level .01 in favor of the conclusion that different varieties

do affect the true average yields. Similarly, fB ¼ 18.18 � 4.72 ¼ F.01,3,24, so we

conclude that true average yield also depends on plant density.

Figure 11.11 shows the interaction plot. Notice the nearly parallel lines for

the three tomato varieties, in agreement with the F test showing no significant

interaction. The yield for Pusa Early Dwarf appears to be significantly above the

yields for the other two varieties, and this is in accord with the highly significant F
for varieties. Furthermore, all three varieties show the same pattern in which yield

increases as the density goes up, but decreases beyond 30,000 per hectare. This

suggests that planting more seed will increase the yield, but eventually overcrowd-

ing causes the yield to drop.

In this example one of the two factors is quantitative, and this is naturally the

factor used for the horizontal axis in the interaction plot. In case both of the factors

are quantitative, the choice for the horizontal axis would be arbitrary, but a case can

be made for two plots to try it both ways. Indeed, MINITAB has an option to allow

both plots to be included in the same graph.

Table 11.9 ANOVA table for Example 11.17

Source of Variation df Sum of Squares Mean Square f

Varieties 2 327.60 163.8 fA ¼ 103.02

Density 3 86.69 28.9 fB ¼ 18.18

Interaction 6 8.03 1.34 fAB ¼ .84

Error 24 38.04 1.59

Total 35 460.36
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To check the normality and constant variance assumptions we can make plots

similar to those of Section 11.4. Define the predicted values (fitted values) to be the

cell means, x̂ijk ¼ �xij�, so the residuals, the differences between the observations and
predicted values, are xijk � �xij�. The normal plot of the residuals is Figure 11.12(a),

and the plot of the residuals against the fitted values is Figure 11.12(b). The normal

plot is sufficiently straight that there should be no concern about the normality

assumption. The plot of residuals against predicted values has a fairly uniform

vertical spread, so there is no cause for concern about the constant variance

assumption.
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Figure 11.11 Interaction plot for the tomato yield data
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Figure 11.12 Plots from MINITAB to verify assumptions for Example 11.17 ■

602 CHAPTER 11 The Analysis of Variance



Multiple Comparisons

When the no-interaction hypothesis H0AB is not rejected and at least one of the two

main-effect null hypotheses is rejected, Tukey’s method can be used to identify

significant differences in levels. To identify differences among the ai’s when H0A

is rejected:

1. Obtain Qa,I,IJ(K�1), where the second subscript I identifies the number of levels

being compared and the third subscript refers to the number of degrees of

freedom for error.

2. Compute w ¼ Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=JK

p
, where JK is the number of observations averaged

to obtain each of the �xi��’s compared in step 3.

3. Order the �xi��’s from smallest to largest and, as before, underscore all pairs that

differ by less than w. Pairs not underscored correspond to significantly different

levels of factor A.

To identify different levels of factor B when H0B is rejected, replace the second

subscript in Q by J, replace JK by IK in w, and replace �xi�� by �x�j�.

Example 11.18

(Example 11.17

continued)

For factor A (varieties), I ¼ 3, so with a ¼ .01 and IJ(K – 1) ¼ 24, Q.01,3,24 ¼
4.55. Then w ¼ 4:55

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:59=12

p ¼ 1.66, so ordering and underscoring gives

�x1�� �x2�� �x3��
11.33 12.21 18.13

The Harvester and Ife varieties do not differ significantly from each other in effect

on true average yield, but both differ from the Pusa variety.

For factorB (density), J ¼ 4 soQ.01,4,24 ¼ 4.91 andw ¼ 4:91
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:59=9

p ¼ 2:06

�x�1� �x�4� �x�2� �x�3�
11.48 13.91 14.39 15.78

Thus with experimentwise error rate .01, which is quite conservative, only the

lowest density differs significantly from all others. Even with a ¼ .05 (so that

w ¼ 1.64), densities 2 and 3 cannot be judged significantly different from each

other in their effect on yield. ■

Models with Mixed and Random Effects

In some situations, the levels of either factor may have been chosen from a large

population of possible levels, so that the effects contributed by the factor are

random rather than fixed. As in Section 11.4, if both factors contribute random

effects, the model is referred to as a random effects model, whereas if one factor is

fixed and the other is random, a mixed effects model results. We will now consider

the analysis for a mixed effects model in which factor A (rows) is the fixed factor

and factor B (columns) is the random factor. When either factor is random,

interaction effects will also be random. The case in which both factors are random

is dealt with in Exercise 57. The mixed effects model is
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Xij ¼mþ ai þ Bj þ Gij þ eijk
i ¼1; . . . ; I; j ¼ 1; . . . ; J; k ¼ 1; . . . ;K

Here m and ai’s are constants with Sai ¼ 0 and the Bj’s, Gij’s, and eijk’s are

independent, normally distributed random variables with expected value 0 and

variances s2B, s
2
G, and s2, respectively.1

H0A: a1 ¼ � � � ¼ aI ¼ 0 versus HaA: at least one ai 6¼ 0

H0B: s2B ¼ 0 versus HaB: s2B > 0

H0G: s2G ¼ 0 versus HaG: s2G > 0

It is customary to test H0A and H0B only if the no-interaction hypothesis H0G cannot

be rejected.

The relevant sums of squares and mean squares needed for the test procedures

are defined and computed exactly as in the fixed effects case. The expected mean

squares for the mixed model are

E MSEð Þ ¼ s2

E MSAð Þ ¼ s2 þ Ks2G þ JK

I � 1

X
a2i

E MSBð Þ ¼ s2 þ Ks2G þ IKs2B

and

E MSABð Þ ¼ s2 þ Ks2G

Thus, to test the no-interaction hypothesis, the ratio fAB ¼ MSAB/MSE is again

appropriate, with H0G rejected if fAB � Fa;ðI�1ÞðJ�1Þ;IJðK�1Þ. However, for testing
H0A versus HaA, the expected mean squares suggest that although the numerator of

the F ratio should still be MSA, the denominator should be MSAB rather than MSE.

MSAB is also the denominator of the F ratio for testing H0B.

1 This is referred to as an “unrestricted” model. An alternative “restricted” model requires that SiGij ¼ 0

(so the Gij’s are no longer independent). Expected mean squares and F ratios appropriate for testing

certain hypotheses depend on the choice of model. Minitab’s default option gives output for the

unrestricted model.
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For testing H0A versus HaA (factors A fixed, B random), the test statistic value

is fA ¼ MSA/MSAB, and the rejection region is fA � Fa;I�1;ðI�1ÞðJ�1Þ. The
test of H0B versus HaB utilizes fB ¼ MSB/MSAB, and the rejection region is

fB � Fa;J�1;ðI�1ÞðJ�1Þ.

Example 11.19 A process engineer has identified two potential causes of electric motor vibration,

the material used for the motor casing (factor A) and the supply source of bearings

used in the motor (factor B). The accompanying data on the amount of vibration

(microns) resulted from an experiment in which motors with casings made of steel,

aluminum, and plastic were constructed using bearings supplied by five randomly

selected sources.

Supply source

Material 1 2 3 4 5

Steel 13.1 13.2 16.3 15.8 13.7 14.3 15.7 15.8 13.5 12.5

Aluminum 15.0 14.8 15.7 16.4 13.9 14.3 13.7 14.2 13.4 13.8

Plastic 14.0 14.3 17.2 16.7 12.4 12.3 14.4 13.9 13.2 13.1

Only the three casing materials used in the experiment are under consideration for

use in production, so factor A is fixed. However, the five supply sources were

randomly selected from a much larger population, so factor B is random. The

relevant null hypotheses are

H0A: a1 ¼ a2 ¼ a3 ¼ 0 H0B: s2B ¼ 0 H0G: s2G ¼ 0

MINITAB output appears in Figure 11.13.

Factor  Type Levels Values
casmater fixed 3 1 2 3

random 5 1 2 3 4 5

DF SS MS F P
casmater  2  0.7047 0.3523 0.24 0.790
source  4 36.6747 9.1687 6.32 0.013

8 11.6053 1.4507 13.03 0.000
Error 15  1.6700 0.1113
Total 29 50.6547

Source           Variance Error Expected Mean Square for Each Term 
                component term (using unrestricted model) 
1 casmater 3 (4) + 2(3)

2(3)
2(3)

+
3 (4) + +
4 (4) +

(4)

source

Source

casmater*source

Q[1]
2 source 1.2863 6(2)
3 casmater*source 0.6697
4 Error 0.1113

Figure 11.13 Output from MINITAB’s balanced ANOVA option for the data of

Example 11.19
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The printed 0.000 P-value for interaction means that it is less than .0005 (the

actual value is .000018). To interpret the significant interaction we use the interac-

tion plot, Figure 11.14, which has both versions, one with source on the x-axis and
one with material on the x-axis. Interaction is evident, because the best material (the

one with the least vibration) depends strongly on source. For source 1 the best

material is steel, for source 3 the best material is plastic, and for source 4 the best

material is aluminum. Because of this interaction, we ordinarily would not interpret

the main effects, but one cannot help noticing that there is strong dependence of

vibration on source. Source 2 is bad for all three materials and source 3 is pretty

good for all three materials. When one-way ANOVA analyses are done to compare

the five sources for each of the three materials, all three show highly significant

differences. This is consistent with the P-value of 0.013 for source in Figure 11.13.
We can conclude that, although the interaction causes the best material to depend

on the source, the source also makes a difference of its own.

When at least two of the Kij’s are unequal, the ANOVA computations are

much more complex than for the case Kij ¼ K, and there are no nice formulas for

the appropriate test statistics. One of the chapter references can be consulted for

more information.

Exercises Section 11.5 (49–57)

49. In an experiment to assess the effects of curing

time (factor A) and type of mix (factor B) on the

compressive strength of hardened cement cubes,

three different curing times were used in combi-

nation with four different mixes, with three obser-

vations obtained for each of the 12 curing

time–mix combinations. The resulting sums of

squares were computed to be SSA ¼ 30,763.0,

SSB ¼ 34,185.6, SSE ¼ 97,436.8, and SST

¼ 205,966.6.

a. Construct an ANOVA table.

b. Test at level .05 the null hypothesis H0AB: all

gij’s ¼ 0 (no interaction of factors) against

H0AB: at least one gij 6¼ 0.

1 2 3 4 5 A P S

Interaction Plot(data means)for vibration

17

17

16

15

14

14

13

15

16

13

Source

Material

Source
1
2
3
4
5

Material
A
P
S

Fig.11.14 MINITAB interaction plot for the data of Example 11.19 ■

606 CHAPTER 11 The Analysis of Variance



c. Test at level .05 the null hypothesis H0A: a1 ¼
a2 ¼ a3 ¼ 0 (factor A main effects are absent)

against HaA: at least one ai 6¼ 0.

d. Test H0B : b1 ¼ b2 ¼ b3 ¼ b4 ¼ 0 versus HaB:

at least one bj 6¼ 0 using a level .05 test.

e. The values of the �xi��’s were �x1�� ¼
4010:88; �x2�� ¼ 4029:10; and �x3�� ¼ 3960:02.
Use Tukey’s procedure to investigate signifi-

cant differences among the three curing times.

50. The article “Towards Improving the Properties of

Plaster Moulds and Castings” (J. Engrg. Manuf.,
1991: 265–269) describes several ANOVAs car-

ried out to study how the amount of carbon fiber

and sand additions affect various characteristics of

the molding process. Here we give data on casting

hardness and on wet-mold strength.

Sand
Addition
(%)

Carbon
Fiber
Addition
(%)

Casting
Hardness

Wet-
Mold
Strength

0 0 61.0 34.0

0 0 63.0 16.0

15 0 67.0 36.0

15 0 69.0 19.0

30 0 65.0 28.0

30 0 74.0 17.0

0 .25 69.0 49.0

0 .25 69.0 48.0

15 .25 69.0 43.0

15 .25 74.0 29.0

30 .25 74.0 31.0

30 .25 72.0 24.0

0 .50 67.0 55.0

0 .50 69.0 60.0

15 .50 69.0 45.0

15 .50 74.0 43.0

30 .50 74.0 22.0

30 .50 74.0 48.0

a. An ANOVA for wet-mold strength gives

SSSand ¼ 705, SSFiber ¼ 1278, SSE ¼ 843,

and SST ¼ 3105. Test for the presence of any

effects using a ¼ .05.

b. Carry out an ANOVA on the casting hardness

observations using a ¼ .05.

c. Make an interaction plot with sand percentage

on the horizontal axis, and discuss the results of

part (b) in terms of what the plot shows.

51. The accompanying data resulted from an

experiment to investigate whether yield from a

chemical process depended either on the formula-

tion of a particular input or on mixer speed.

Speed

60 70 80

189.7 185.1 189.0

1 188.6 179.4 193.0

Formulation 190.1 177.3 191.1

165.1 161.7 163.3

2 165.9 159.8 166.6

167.6 161.6 170.3

A statistical computer package gave SS(Form) ¼
2253.44, SS(Speed) ¼ 230.81, SS(Form*Speed)

¼ 18.58, and SSE ¼ 71.87.

a. Does there appear to be interaction between the
factors?

b. Does yield appear to depend on either formu-

lation or speed?

c. Calculate estimates of the main effects.

d. Verify that the residuals are 0.23,�0.87, 0.63,

4.50,�1.20,�3.30,�2.03,1.97,0.07,�1.10,

�0.30,1.40,0.67,�1.23,0.57,�3.43,�0.13,

3.57.

e. Construct a normal plot from the residuals

given in part (d). Do the eijk’s appear to be

normally distributed?

f. Plot the residuals against the predicted values

(cell means) to see if the population variance

appears reasonably constant.

52. In an experiment to investigate the effect of “cement

factor” (number of sacks of cement per cubic yard)

on flexural strength of the resulting concrete (“Stud-

ies of Flexural Strength of Concrete. Part 3: Effects

of Variation in Testing Procedure,” Proceedings
ASTM, 1957: 1127–1139), I ¼ 3 different factor

values were used, J ¼ 5 different batches of cement

were selected, and K ¼ 2 beams were cast from

each cement factor/batch combination. Summary

values include
PPP

x2ijk ¼ 12;280;103,PP
x2ij� ¼ 24;529;699,

P
x2i�� ¼ 122;380;901,P

x2�j� ¼ 73;427;483, and x��� ¼ 19;143.

a. Construct the ANOVA table.

b. Assuming a mixed model with cement factor

(A) fixed and batches (B) random, test the three

pairs of hypotheses of interest at level .05.

53. A study was carried out to compare the writing

lifetimes of four premium brands of pens. It was

thought that the writing surface might affect life-

time, so three different surfaces were randomly

selected. A writing machine was used to ensure

that conditions were otherwise homogeneous
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(e.g., constant pressure and a fixed angle). The

accompanying table shows the two lifetimes

(min) obtained for each brand–surface combina-

tion. In addition,
PPP

x2ijk ¼ 11; 499; 492 andPP
x2ij� ¼ 22; 982; 552.

Writing Surface

Brand
of Pen

1 2 3 xi..

1 709, 659 713, 726 660, 645 4112

2 668, 685 722, 740 692, 720 4227

3 659, 685 666, 684 678, 750 4122

4 698, 650 704, 666 686, 733 4137

x.j. 5413 5621 5564 16,598

Carry out an appropriate ANOVA, and state your

conclusions.

54. The accompanying data was obtained in an experi-

ment to investigate whether compressive strength

of concrete cylinders depends on the type of cap-

ping material used or variability in different batches

(“The Effect of Type of Capping Material on the

Compressive Strength of Concrete Cylinders,”

Proceedings ASTM, 1958: 1166–1186). Each num-

ber is a cell total (xij.) based on K ¼ 3 observations.

Batch

Capping
Material

1 2 3 4 5

1 1847 1942 1935 1891 1795

2 1779 1850 1795 1785 1626

3 1806 1892 1889 1891 1756

In addition,
PPP

x2ijk ¼ 16;815;853 andPP
x2ij� ¼ 50;443;409. Obtain the ANOVA

table and then test at level .01 the hypotheses

H0G versus HaG, H0A versus HaA, and H0B versus

HaB, assuming that capping is a fixed effect and

batches is a random effect.

55. a. Show that EðXi�� � X���Þ ¼ ai, so that Xi�� � X���
is an unbiased estimator for ai (in the fixed

effects model).

b. With ĝij ¼ Xij� � Xi�� � X�j� þ X���, show that ĝij
is an unbiased estimator for gij (in the fixed

effects model).

56. Show how a 100(1 – a)% t CI for ai � a0i can be

obtained. Then compute a 95% interval for a2 – a3
using the data from Example 11.16. [Hint: With

y ¼ a2 – a3, the result of Exercise 55(a) indicates
how to obtain ŷ. Then compute V(ŷ) and sŷ and

obtain an estimate of sŷ by using
ffiffiffiffiffiffiffiffiffiffi
MSE

p
to esti-

mate s (which identifies the appropriate number

of df).]

57. When both factors are random in a two-way

ANOVA experiment with K replications per

combination of factor levels, the expected

mean squares are E MSEð Þ ¼ s2;E MSAð Þ ¼ s2þ
Ks2G þ JKs2A, E MSBð Þ ¼ s2 þ Ks2G þ IKs2B, and
E MSABð Þ ¼ s2 þ Ks2G
a. What F ratio is appropriate for testing

H0G: s2G ¼ 0 versus HaG: s2G > 0?

b. Answer part (a) for testing H0A: s2A ¼ 0 versus

HaA: s2A > 0 and H0B: s2B ¼ 0 versus

HaB: s2B > 0

Supplementary Exercises (58–70)

58. An experiment was carried out to compare flow

rates for four different types of nozzle.

a. Sample sizes were 5, 6, 7, and 6, respectively,

and calculations gave f ¼ 3.68. State and test

the relevant hypotheses using a ¼ .01.

b. Analysis of the data using a statistical com-

puter package yielded P-value ¼ .029. At

level .01, what would you conclude, and

why?

59. The article “Computer-Assisted Instruction Aug-

mented with Planned Teacher/Student Contacts”

(J. Exper. Ed., Winter 1980–1981: 120–126)

compared five different methods for teaching

descriptive statistics. The five methods were tra-

ditional lecture and discussion (L/D), pro-

grammed textbook instruction (R), programmed

text with lectures (R/L), computer instruction

(C), and computer instruction with lectures

(C/L). Forty-five students were randomly
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assigned, 9 to each method. After completing

the course, the students took a 1-h exam. In

addition, a 10-minute retention test was adminis-

tered 6 weeks later. Summary quantities are

given.

Exam Retention Test

Method �xi� si �xi� si

L/D 29.3 4.99 30.20 3.82

R 28.0 5.33 28.80 5.26

R/L 30.2 3.33 26.20 4.66

C 32.4 2.94 31.10 4.91

C/L 34.2 2.74 30.20 3.53

The grand mean for the exam was 30.82, and the

grand mean for the retention test was 29.30.

a. Does the data suggest that there is a difference
among the five teaching methods with respect

to true mean exam score? Use a ¼ .05.

b. Using a .05 significance level, test the null

hypothesis of no difference among the true

mean retention test scores for the five differ-

ent teaching methods.

60. Numerous factors contribute to the smooth run-

ning of an electric motor (“Increasing Market

Share Through Improved Product and Process

Design: An Experimental Approach,” Qual.
Engrg., 1991: 361–369). In particular, it is desir-
able to keep motor noise and vibration to a mini-

mum. To study the effect that the brand of

bearing has on motor vibration, five different

motor bearing brands were examined by instal-

ling each type of bearing on different random

samples of six motors. The amount of motor

vibration (measured in microns) was recorded

when each of the 30 motors was running. The

data for this study follows. State and test the

relevant hypotheses at significance level .05,

and then carry out a multiple comparisons analy-

sis if appropriate.

Mean
Brand 1: 13.1 15.0 14.0 14.4 14.0 11.6 13.68

Brand 2: 16.3 15.7 17.2 14.9 14.4 17.2 15.95

Brand 3: 13.7 13.9 12.4 13.8 14.9 13.3 13.67

Brand 4: 15.7 13.7 14.4 16.0 13.9 14.7 14.73

Brand 5: 13.5 13.4 13.2 12.7 13.4 12.3 13.08

61. An article in the British scientific journal Nature
(“Sucrose Induction of Hepatic Hyperplasia in

the Rat,” August 25, 1972: 461) reports on an

experiment in which each of five groups consist-

ing of six rats was put on a diet with a different

carbohydrate. At the conclusion of the experi-

ment, the DNA content of the liver of each rat

was determined (mg/g liver), with the following

results:

Carbohydrate �xi�

Starch 2.58

Sucrose 2.63

Fructose 2.13

Glucose 2.41

Maltose 2.49

a. Assuming also that
PP

x2ij ¼ 183:4, is the

true average DNA content affected by the

type of carbohydrate in the diet? Construct

an ANOVA table and use a .05 level of sig-

nificance.

b. Construct a t CI for the contrast

y ¼ m1 � ðm2 þ m3 þ m4 þ m5Þ=4
which measures the difference between the

average DNA content for the starch diet and

the combined average for the four other diets.

Does the resulting interval include zero?

c. What is b for the test when true average DNA

content is identical for three of the diets and

falls below this common value by 1 standard

deviation (s) for the other two diets?

62. Four laboratories (1–4) are randomly selected

from a large population, and each is asked to

make three determinations of the percentage of

methyl alcohol in specimens of a compound

taken from a single batch. Based on the accom-

panying data, are differences among laboratories

a source of variation in the percentage of methyl

alcohol? State and test the relevant hypotheses

using significance level .05.

1: 85.06 85.25 84.87

2: 84.99 84.28 84.88

3: 84.48 84.72 85.10

4: 84.10 84.55 84.05

Supplementary Exercises 609



63. The critical flicker frequency (cff) is the highest

frequency (in cycles/sec) at which a person can

detect the flicker in a flickering light source. At

frequencies above the cff, the light source appears

to be continuous even though it is actually flicker-

ing. An investigation carried out to see whether

true average cff depends on iris color yielded the

following data (based on the article “The Effects

of Iris Color on Critical Flicker Frequency,” J.
Gen. Psych., 1973: 91–95):

Iris Color

1. Brown 2. Green 3. Blue

26.8 26.4 25.7

27.9 24.2 27.2

23.7 28.0 29.9

25.0 26.9 28.5

26.3 29.1 29.4

24.8 28.3

25.7

24.5

Ji 8 5 6

xi� 204.7 134.6 169.0

�xi� 25.59 26.92 28.17

n ¼ 19 x�� ¼ 508:3

a. State and test the relevant hypotheses at signif-
icance level .05 by using the F table to obtain

an upper and/or lower bound on the P-value.
[Hint:

PP
x2ij ¼ 13; 659:67 and

CF ¼ 13; 598:36.]
b. Investigate differences between iris colors

with respect to mean cff.

64. Recall from Section 11.2 that if c1, c2, . . ., cI are
numbers satisfying Sci ¼ 0 then Scimi ¼ c1m1 +
� � � + cImI is called a contrast in the mi’s. Notice
that with c1 ¼ 1, c2 ¼�1, c3 ¼ � � � ¼ cI ¼ 0,

Scimi ¼ m1 – m2, which implies that every pair-

wise difference between mi’s is a contrast (so is,

e.g., m1 – .5m2 – .5m3). A method attributed to

Scheffé gives simultaneous CIs with simultaneous

confidence level 100(1 – a)% for all possible

contrasts (an infinite number of them!). The inter-

val for Scimi isP
ci�xi� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðI � 1ÞFa;I�1;n�IMSE
P

c2i =Ji
p

Using the critical flicker frequency data of Exer-

cise 63, calculate the Scheffé intervals for the

contrasts m1 – m2, m1 – m3, m2 – m3, and

.5m1 + .5m2 – m3 (the last contrast compares

blue to the average of brown and green). Which

contrasts differ significantly from 0, and why?

65. Four types of mortars—ordinary cement mortar

(OCM), polymer impregnated mortar (PIM), resin

mortar (RM), and polymer cement mortar

(PCM)—were subjected to a compression test to

measure strength (MPa). Three strength observa-

tions for each mortar type are given in the article

“Polymer Mortar Composite Matrices for Mainte-

nance-Free Highly Durable Ferrocement” (J. Fer-
rocement, 1984: 337–345) and are reproduced

here. Construct an ANOVA table. Using a .05

significance level, determine whether the data sug-

gests that the true mean strength is not the same for

all four mortar types. If you determine that the true

mean strengths are not all equal, use Tukey’s

method to identify the significant differences.

OCM: 32.15 35.53 34.20

PIM: 126.32 126.80 134.79

RM: 117.91 115.02 114.58

PCM: 29.09 30.87 29.80

66. In single-factor ANOVA, suppose the xij’s are

“coded” by yij ¼ cxij + d. How does the value of

the F statistic computed from the yij’s compare to

the value computed from the xij’s? Justify your

assertion.

67. In Example 11.10, subtract �xi� from each observa-

tion in the ith sample (i ¼ 1, . . ., 6) to obtain a set
of 18 residuals. Then construct a normal probabil-

ity plot and comment on the plausibility of the

normality assumption.

68. The results of a study on the effectiveness of line

drying on the smoothness of fabric were summar-

ized in the article “Line-Dried vs. Machine-Dried

Fabrics: Comparison of Appearance, Hand, and

Consumer Acceptance” (Home Econ. Res. J.,
1984: 27–35). Smoothness scores were given for

nine different types of fabric and five different

drying methods: (1) machine dry, (2) line dry,

(3) line dry followed by 15-min tumble, (4) line

dry with softener, and (5) line dry with air move-

ment. Regarding the different types of fabric as

blocks, construct an ANOVA table.

a. Using a .05 significance level, test to see

whether there is a difference in the true mean

smoothness score for the drying methods.
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b. Make a plot like Figure 11.8 with fabric on the

horizontal axis. Discuss the result of part (a) in

terms of the plot.

c. Did the two methods involving the dryer yield

significantly smoother fabric compared to the

other three?

Drying method

Fabric 1 2 3 4 5

Crepe 3.3 2.5 2.8 2.5 1.9

Double knit 3.6 2.0 3.6 2.4 2.3

Twill 4.2 3.4 3.8 3.1 3.1

Twill mix 3.4 2.4 2.9 1.6 1.7

Terry 3.8 1.3 2.8 2.0 1.6

Broadcloth 2.2 1.5 2.7 1.5 1.9

Sheeting 3.5 2.1 2.8 2.1 2.2

Corduroy 3.6 1.3 2.8 1.7 1.8

Denim 2.6 1.4 2.4 1.3 1.6

69. The water absorption of two types of mortar used

to repair damaged cement was discussed in the

article “Polymer Mortar Composite Matrices for

Maintenance-Free, Highly Durable Ferrocement”

(J. Ferrocement, 1984: 337–345). Specimens of

ordinary cement mortar (OCM) and polymer

cement mortar (PCM) were submerged for vary-

ing lengths of time (5, 9, 24, or 48 h), and water

absorption (% by weight) was recorded. With

mortar type as factor A (with two levels) and

submersion period as factor B (with four levels),

three observations were made for each factor level

combination. Data included in the article was used

to compute the sums of squares, which were SSA

¼ 322.667, SSB ¼ 35.623, SSAB ¼ 8.557, and

SST ¼ 372.113. Use this information to construct

an ANOVA table. Test the appropriate hypotheses

at a .05 significance level.

70. Four plots were available for an experiment to

compare clover accumulation for four different

sowing rates (“Performance of Overdrilled Red

Clover with Different Sowing Rates and Initial

Grazing Managements,” New Zeal. J. Exper.
Agric., 1984: 71–81). Since the four plots had

been grazed differently prior to the experiment

and it was thought that this might affect clover

accumulation, a randomized block experiment

was used with all four sowing rates tried on a

section of each plot. Use the given data to test

the null hypothesis of no difference in true mean

clover accumulation (kg DM/ha) for the different

sowing rates.

a. Test to see if the different sowing rates

make a difference in true mean clover accumu-

lation.

b. Make appropriate plots to go with your analy-

sis in (a): Make a plot like the one in Figure

11.8, make a normal plot of the residuals, and

plot the residuals against the predicted values.

Explain why, based on the plots, the assump-

tions do not appear to be satisfied for this data

set.

c. Repeat part (a) replacing the observations with

their natural logarithms.

d. Repeat the plots of (b) for the analysis in (c).

Do the logged observations appear to satisfy

the assumptions better?

e. Summarize your conclusions for this experi-

ment. Does mean clover accumulation increase

with increasing sowing rate?

Sowing Rate (kg/ha)

Plot 3.6 6.6 10.2 13.5

1 1155 2255 3505 4632

2 123 406 564 416

3 68 416 662 379

4 62 75 362 564
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C H A P T E R T W E L V E

Regression
and Correlation

Introduction
The general objective of a regression analysis is to determine the relationship

between two (or more) variables so that we can gain information about one of

them through knowing values of the other(s). Much of mathematics is devoted to

studying variables that are deterministically related. Saying that x and y are related

in this manner means that once we are told the value of x, the value of y is

completely specified. For example, suppose we decide to rent a van for a day and

that the rental cost is $25.00 plus $.30 per mile driven. If we let x ¼ the number

of miles driven and y ¼ the rental charge, then y ¼ 25 + .3x. If we drive the van

100 miles (x ¼ 100), then y ¼ 25 + .3(100) ¼ 55. As another example, if the

initial velocity of a particle is v0 and it undergoes constant acceleration a, then

distance traveled ¼ y þ v0x þ 1
2 ax

2, where x ¼ time.

There are many variables x and y that would appear to be related to each

other, but not in a deterministic fashion. A familiar example to many students is

given by variables x ¼ high school grade point average (GPA) and y ¼ college

GPA. The value of y cannot be determined just from knowledge of x, and two

different students could have the same x value but have very different y values.

Yet there is a tendency for those students who have high (low) high school GPAs

also to have high (low) college GPAs. Knowledge of a student’s high school GPA

should be quite helpful in enabling us to predict how that person will do in college.

Other examples of variables related in a nondeterministic fashion include

x ¼ age of a child and y ¼ size of that child’s vocabulary, x ¼ size of an engine in

cubic centimeters and y ¼ fuel efficiency for an automobile equipped with that

engine, and x ¼ applied tensile force and y ¼ amount of elongation in a metal strip.

Regression analysis is the part of statistics that deals with investigation of the

relationship between two or more variables related in a nondeterministic fashion.



In this chapter, we generalize a deterministic linear relation to obtain a linear

probabilistic model for relating two variables x and y. We then develop procedures

for making inferences based on data obtained from the model, and obtain a

quantitative measure (the correlation coefficient) of the extent to which the two

variables are related. Techniques for assessing the adequacy of any particular

regression model are then considered. We next introduce multiple regression

analysis as a way of relating y to two or more variables—for example, relating

fuel efficiency of an automobile to weight, engine size, number of cylinders, and

transmission type. The last section of the chapter shows how matrix algebra

techniques can be used to facilitate a concise and elegant development of regres-

sion procedures.

12.1 The Simple Linear and Logistic
Regression Models
The key idea in developing a probabilistic relationship between a dependent or
response variable y and an independent, explanatory, or predictor variable x is to
realize that once the value of x has been fixed, there is still uncertainty in what the

resulting y value will be. That is, for a fixed value of x, we now think of the

dependent variable as being random. This random variable will be denoted by Y and

its observed value by y. For example, suppose an investigator plans a study to relate

y ¼ yearly energy usage of an industrial building (1000’s of BTUs) to x ¼ the shell

area of the building (ft2). If one of the buildings selected for the study has a shell

area of 25,000 ft2, the resulting energy usage might be 2,215,000 or it might be

2,348,000 or any one of a number of other possibilities. Since we don’t know a

priori what the value of energy usage will be (because usage is determined partly by

factors other than shell area), usage is regarded as a random variable Y.
We now relate the independent and dependent variables by an additive

model equation:

Y ¼ some particular deterministic function of xþ a random deviation

¼ f ðxÞ þ e
ð12:1Þ

The symbol e represents a random deviation or random “error” (random variable)

which is assumed to have mean value 0. This rv incorporates all variation in the

dependent variable due to factors other than x. Figure 12.1 shows the graph of a

particular f(x). Without the random deviation e, whenever x is fixed prior to making

an observation on the dependent variable, the resulting (x, y) point would fall

exactly on the graph. That is, y would be entirely determined by x. The role of

the random deviation e is to allow a non-deterministic relationship. Now if the

value of e is positive, the resulting (x, y) point falls above the graph of f(x), whereas
when e is negative, the resulting point falls below the graph. The assumption that e
has mean value 0 implies that we expect the point (x, y) to fall right on the graph,

but we virtually never see what we literally expect—the observed point will almost

always deviate upward or downward from the graph.
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How should the deterministic part of the model equation be selected?

Occasionally some sort of theoretical argument will suggest an appropriate choice

of f(x). However, in practice the specification of f(x) is almost always made by

obtaining sample data consisting of n (x, y) pairs. A picture of the resulting observa-

tions (x1, y1), (x2, y2), . . ., (xn, yn), called a scatter plot, is then constructed. In this

scatter plot each (xi, yi) is represented as a point in a two-dimensional coordinate

system. The pattern of points in the plot should suggest an appropriate f(x).

Example 12.1 Visual and musculoskeletal problems associated with the use of visual display

terminals (VDTs) have become rather common in recent years. Some researchers

have focused on vertical gaze direction as a source of eye strain and irritation. This

direction is known to be closely related to ocular surface area (OSA), so a method

of measuring OSA is needed. The accompanying representative data on y ¼ OSA

(cm2) and x ¼ width of the palprebal fissure (i.e., the horizontal width of the eye

opening, in cm) is from the article “Analysis of Ocular Surface Area for Comfort-

able VDT Workstation Layout” (Ergonomics, 1996: 877–884). The order in which
observations were obtained was not given, so for convenience they are listed in

increasing order of x values.

Thus (x1, y1) ¼ (.40, 1.02), (x5, y5) ¼ (.57, 1.52), and so on. A MINITAB

scatter plot is shown in Figure 12.2; we used an option that produced a dotplot of both

the x values and y values individually along the right and top margins of the plot,

which makes it easier to visualize the distributions of the individual variables

y

x

e
positive e

negative

(x,y)

(x,y)

Graph of f (x)
⎧
⎨
⎩

Figure 12.1 Observations resulting from the model equation (12.1)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xi .40 .42 .48 .51 .57 .60 .70 .75 .75 .78 .84 .95 .99 1.03 1.12

yi 1.02 1.21 .88 .98 1.52 1.83 1.50 1.80 1.74 1.63 2.00 2.80 2.48 2.47 3.05

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

xi 1.15 1.20 1.25 1.25 1.28 1.30 1.34 1.37 1.40 1.43 1.46 1.49 1.55 1.58 1.60

yi 3.18 3.76 3.68 3.82 3.21 4.27 3.12 3.99 3.75 4.10 4.18 3.77 4.34 4.21 4.92
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(histograms or boxplots are alternative options). Here are some things to notice about

the data and plot:

• Several observations have identical x values yet different y values (e.g.,
x8 ¼ x9 ¼ .75, but y8 ¼ 1.80 and y9 ¼ 1.74). Thus the value of y is not
determined solely by x but also by various other factors.

• There is a strong tendency for y to increase as x increases. That is, larger values
of OSA tend to be associated with larger values of fissure width—a positive

relationship between the variables.

• It appears that the value of y could be predicted from x by finding a line that is

reasonably close to the points in the plot (the authors of the cited article

superimposed such a line on their plot). In other words, there is evidence of a

substantial (though not perfect) linear relationship between the two variables.

The horizontal and vertical axes in the scatter plot of Figure 12.2 intersect at

the point (0, 0). In many data sets, the values of x or y or the values of both variables
differ considerably from zero relative to the range(s) of the values. For example, a

study of how air conditioner efficiency is related to maximum daily outdoor

temperature might involve observations for temperatures ranging from 80�F to

100�F. When this is the case, a more informative plot would show the appropriately

labeled axes intersecting at some point other than (0, 0).

Example 12.2 Forest growth and decline phenomena throughout the world have attracted consid-

erable public and scientific interest. The article “Relationships Among Crown

Condition, Growth, and Stand Nutrition in Seven Northern Vermont Sugarbushes”

(Canad. J. Forest Res., 1995: 386–397) included a scatter plot of y ¼ mean crown

dieback (%), one indicator of growth retardation, and x ¼ soil pH (higher pH

corresponds to more acidic soil), from which the following observations were taken:

x 3.3 3.4 3.4 3.5 3.6 3.6 3.7 3.7 3.8 3.8

y 7.3 10.8 13.1 10.4 5.8 9.3 12.4 14.9 11.2 8.0

x 3.9 4.0 4.1 4.2 4.3 4.4 4.5 5.0 5.1

y 6.6 10.0 9.2 12.4 2.3 4.3 3.0 1.6 1.0

Figure 12.2 Scatter plot from MINITAB for the data from Example 12.1, along

with dotplots of x and y values ■
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Figure 12.3 shows two MINITAB scatter plots of this data. In Figure 12.3a,

MINITAB selected the scale for both axes. We obtained Figure 12.3b by specifying

minimum and maximum values for x and y so that the axes would intersect roughly
at the point (0, 0). The second plot is more crowded than the first one; such

crowding can make it more difficult to ascertain the general nature of any relation-

ship. For example, it can be more difficult to spot curvature in a crowded plot.

Large values of percentage dieback tend to be associated with low soil pH, a

negative or inverse relationship. Furthermore, the two variables appear to be at least

approximately linearly related, although the points would be spread out about any

straight line drawn through the plot. ■

A Linear Probabilistic Model

For a deterministic linear relationship y ¼ b0 + b1x, the slope coefficient b1 is the
guaranteed increase in y when x increases by one unit and the intercept coefficient

b0 is the value of ywhen x ¼ 0. A graph of y ¼ b0 + b1x is of course a straight line.
The slope gives the amount by which the line rises or falls when we move one unit

to the right, and the intercept is the height at which the line crosses the vertical axis.

For example, the line y ¼ 100�5x specifies an increase of�5 (i.e., a decrease of 5)

for each one-unit increase in x, and the vertical intercept of the line is 100. When a

scatter plot of bivariate data consisting of n (x, y) pairs shows a reasonably

substantial linear pattern, it is natural to specify f(x) in the model equation (12.1)

to be a linear function. Rather than assuming that the dependent variable itself is a

linear function of x, the model assumes that the expected value of Y is a linear

function of x. For any fixed x value, the observed value of Y will deviate by a

random amount from its expected value.

THE SIMPLE
LINEAR
REGRESSION
MODEL

There are parameters b0, b1, and s2 such that for any fixed value of the

independent variable x, the dependent variable is related to x through the

model equation

Y ¼ b0 þ b1xþ e

Figure 12.3 MINITAB scatter plots of data in Example 12.2
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The random deviation (random variable) e is assumed to be normally

distributed with mean value 0 and variance s2, and this mean value and

variance are the same regardless of the fixed x value. The n observed pairs

(x1, y1), (x2, y2), . . ., (xn, yn) are regarded as having been generated indepen-

dently of each other from the model equation (first fix x ¼ x1 and observe

Y1 ¼ b0 + b1x1 + e1, then fix x ¼ x2 and observe Y2 ¼ b0 + b1x2 + e2, and
so on; assuming that the e’s are independent of each other implies that the Y’s
are also).

Figure 12.4 gives an illustration of data resulting from the simple linear regression

model.

The first two model parameters b0 and b1 are the coefficients of the popula-
tion or true regression line b0 + b1x. The slope parameter b1 is now interpreted as

the expected or true average increase in Y associated with a 1-unit increase in x. The
variance parameter s2 (or equivalently the standard deviation s) controls the

inherent amount of variability in the data. When s2 is very close to 0, virtually

all of the (xi, yi) pairs in the sample should correspond to points quite close to the

population regression line. But if s2 greatly exceeds 0, a number of points in the

scatter plot should fall far from the line. So the larger the value of s, the greater will
be the tendency for observed points to deviate from the population line by substan-

tial amounts. Roughly speaking, the magnitude of s is the size of a “typical”

deviation from the population line.

The following notation will help clarify implications of the model relation-

ship. Let x* denote a particular value of the independent variable x, and

mY�x� ¼ the expected i:e:; meanð Þ value of Y when x ¼ x�

s2Y�x� ¼ the variance of Y when x ¼ x�

Alternative notation for these quantities is E(Y| x*) and V(Y| x*). For example, if

x ¼ applied stress (kg/mm2) and y ¼ time to fracture (h), then mY�20 denotes the

expected time to fracture when applied stress is 20 kg/mm2. If we conceptualize an

entire population of (x, y) pairs resulting from applying stress to specimens, then

mY�20 is the average of all values of the dependent variable for which x ¼ 20. The

variance s2Y�20 describes the spread in the distribution of all y values for which

applied stress is 20.

y

x

x1 x2

⎧
⎨
⎩ ⎧

⎨
⎩

(x1, y1)

(x2, y2)

True regression line
y 0 1x

e1
e 2

Figure 12.4 Points corresponding to observations from the simple linear

regression model
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Now consider replacing x in the model equation by the fixed value x*. Then
the only randomness on the right-hand side is from the random deviation e.
Recalling that the mean value of a numerical constant is the numerical constant

and the variance of a constant is zero, we have that

mY�x� ¼ Eðb0 þ b1x
� þ eÞ ¼ b0 þ b1x

� þ EðeÞ ¼ b0 þ b1x
�

s2Y�x� ¼ Vðb0 þ b1x
� þ eÞ ¼ Vðb0 þ b1x

�Þ þ VðeÞ ¼ 0þ s2 ¼ s2

The first sequence of equalities says that the mean value of Y when x ¼ x* is the

height of the population regression line above the value x*. That is, the population
regression line is the line of mean Y values—themean Y value is a linear function of

the independent variable. The second sequence of equalities tells us that the amount

of variability in the distribution of Y is the same at any particular x value as it is at
any other x value—this is the property of homogeneous variation about the popu-

lation regression line. If the independent variable is age of a preschool child and the

dependent variable is the child’s vocabulary size, data suggests that the mean

vocabulary size increases linearly with age. However, there is more variability

in vocabulary size for 2-year-old children than for 4-year-old children, so there is

not constant variation in Y about the population line and the simple linear regres-

sion model is therefore not appropriate. The constant variance property implies that

points should spread out about the population regression line to the same extent

throughout the range of x values in the sample, rather than fanning out more as x
increases or as x decreases.

Also, the sum of a constant and a normally distributed variable is itself

normally distributed, and the addition of the constant affects only the mean value

and not the variance. So for any fixed value x*, Y ( ¼ b0 + b1x* + e) has a normal

distribution. The foregoing properties are summarized in Figure 12.5.

Example 12.3 Suppose the relationship between applied stress x and time-to-failure y is described
by the simple linear regression model with true regression line y ¼ 65 � 1.2x and
s ¼ 8. Then on average there is a 1.2-h decrease in time to rupture associated with

y

x
x1 x2 x3

Line y = b0 + b1x

b0 + b1x3

b0 + b1x2

b0 + b1x1

0

Normal, mean 0,
standard deviation s

a

b

s−s

Figure 12.5 (a) Distribution of «, (b) distribution of Y for different values of x
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an increase of 1 kg/mm2 in applied stress. For any fixed value of x* of stress, time to

rupture is normally distributed with mean value 65 � 1.2x* and standard deviation
8. Roughly speaking, in the population consisting of all (x, y) points, the magnitude

of a typical deviation from the true regression line is about 8. For x ¼ 20, Y has

mean value mY·20 ¼ 65 � 1.2(20) ¼ 41, so

PðY > 50 when x ¼ 20Þ ¼ P Z >
50� 41

8

� �
¼ 1� Fð1:13Þ ¼ :1292

When applied stress is 25, mY·25 ¼ 35, so the probability that time-to-failure

exceeds 50 is

PðY > 50 when x ¼ 25Þ ¼ P Z >
50� 35

8

� �
¼ 1� Fð1:88Þ ¼ :0301

These probabilities are illustrated as the shaded areas in Figure 12.6.

Suppose that Y1 denotes an observation on time-to-failure made with x ¼ 25

and Y2 denotes an independent observation made with x ¼ 24. Then the difference

Y1 � Y2 is normally distributed with mean value E(Y1 � Y2) ¼ b1 ¼ �1.2, vari-

ance V(Y1 � Y2) ¼ s2 + s2 ¼ 128, and standard deviation
ffiffiffiffiffiffiffiffi
128

p ¼ 11:314. The
probability that Y1 exceeds Y2 is

PðY1 � Y2 > 0Þ ¼ P Z >
0� ð�1:2Þ
11:314

� �
¼ PðZ > :11Þ ¼ :4562

That is, even though we expected Y to decrease when x increases by 1 unit, the

probability is fairly high (but less than .5) that the observed Y at x + 1 will be larger

than the observed Y at x. ■

The Logistic Regression Model

The simple linear regression model is appropriate for relating a quantitative

response variable y to a quantitative predictor x. Suppose that y is a dichotomous

variable with possible values 1 and 0 corresponding to success and failure.

20 25
x

y

50

41
35

P(Y  50 when x  20)  .1292

P(Y  50 when x   25)  .0301

True regression line
y 65 1.2x

Figure 12.6 Probabilities based on the simple linear regression model
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Let p ¼ P(S) ¼ P(y ¼ 1). Frequently, the value of p will depend on the value of

some quantitative variable x. For example, the probability that a car needs warranty

service of a certain kind might well depend on the car’s mileage, or the probability

of avoiding an infection of a certain type might depend on the dosage in an

inoculation. Instead of using just the symbol p for the success probability, we

now use p(x) to emphasize the dependence of this probability on the value of x. The
simple linear regression equation Y ¼ b0 + b1x + e is no longer appropriate, for

taking the mean value on each side of the equation gives

mY�x ¼ 1 � pðxÞ þ 0 � 1� pðxÞ½ � ¼ pðxÞ ¼ b0 þ b1x

Whereas p(x) is a probability and therefore must be between 0 and 1, b0 + b1x need
not be in this range.

Instead of letting the mean value of y be a linear function of x, we now

consider a model in which some function of the mean value of y is a linear function
of x. In other words, we allow p(x) to be a function of b0 + b1x rather than b0 + b1x
itself. A function that has been found quite useful in many applications is the logit
function

pðxÞ ¼ eb0þb1x

1þ eb0þb1x

Figure 12.7 shows a graph of p(x) for particular values of b0 and b1 with b1 > 0.

As x increases, the probability of success increases. For b1 negative, the success

probability would be a decreasing function of x.

Logistic regression means assuming that p(x) is related to x by the logit

function. Straightforward algebra shows that

pðxÞ
1� pðxÞ ¼ e b0þb1x

The expression on the left-hand side is called the odds ratio. If, for example

p(60) ¼ 3/4, then pð60Þ=½1� pð60Þ� ¼ 3
4

1� 3
4

� �� ¼ 3 and when x ¼ 60 a success

10 20 30 40 50 60 70 80

0

.5

1.0

x

p(x)

Figure 12.7 A graph of a logit function
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is three times as likely as a failure. This is described by saying that the odds are 3 to

1 because the success probability is three times the failure probability. Taking

natural logs of both sides, we see that the logarithm of the odds ratio is a linear

function of the predictor,

ln
pðxÞ

1� pðxÞ
� �

¼ b0 þ b1x

In particular, the slope parameter b1 is the change in the log odds associated with a

1-unit increase in x. This implies that the odds ratio itself changes by the multipli-

cative factor eb1 when x increases by 1 unit.

Example 12.4 It seems reasonable that the size of a cancerous tumor should be related to the

likelihood that the cancer will spread (metastasize) to another site. The article

“Molecular Detection of p16 Promoter Methylation in the Serum of Patients with

Esophageal Squamous Cell Carcinoma” (Cancer Res., 2001: 3135–3138) investi-
gated the spread of esophageal cancer to the lymph nodes. With x ¼ size of a tumor

(cm) and Y ¼ 1 if the cancer does spread, consider the logistic regression model

with b1 ¼ .5 and b0 ¼ �2 (values suggested by data in the article). Then

pðxÞ ¼ e�2þ:5x

1þ e�2þ:5x

from which p(2) ¼ .27 and p(8) ¼ .88 (tumor sizes for patients in the study ranged

from 1.7 to 9.0 cm). Because e�2+.5(6.77) � 4, the odds for a 6.77 cm tumor are 4,

so that it is four times as likely as not that a tumor of this size will spread to the

lymph nodes. ■

Exercises Section 12.1 (1–12)

1. The efficiency ratio for a steel specimen immersed

in a phosphating tank is the weight of the phos-

phate coating divided by the metal loss (both in

mg/ft2). The article “Statistical Process Control of

a Phosphate Coating Line” (Wire J. Internat., May

1997: 78–81) gave the accompanying data on tank

temperature (x) and efficiency ratio ( y).

Temp. 170 172 173 174 174 175 176
Ratio .84 1.31 1.42 1.03 1.07 1.08 1.04

Temp. 177 180 180 180 180 180 181
Ratio 1.80 1.45 1.60 1.61 2.13 2.15 .84

Temp. 181 182 182 182 182 184 184
Ratio 1.43 .90 1.81 1.94 2.68 1.49 2.52

Temp. 185 186 188
Ratio 3.00 1.87 3.08

a. Construct stem-and-leaf displays of both tem-

perature and efficiency ratio, and comment on

interesting features.

b. Is the value of efficiency ratio completely and

uniquely determined by tank temperature?

Explain your reasoning.

c. Construct a scatter plot of the data. Does it

appear that efficiency ratio could be very well

predicted by the value of temperature? Explain

your reasoning.

2. The article “Exhaust Emissions from Four-Stroke

Lawn Mower Engines” (J. Air Water Manage.
Assoc., 1997: 945–952) reported data from a

study in which both a baseline gasoline mixture

and a reformulated gasoline were used. Consider

the following observations on age (year) and NOx

emissions (g/kWh):

Engine 1 2 3 4 5
Age 0 0 2 11 7
Baseline 1.72 4.38 4.06 1.26 5.31
Reformulated 1.88 5.93 5.54 2.67 6.53

Engine 6 7 8 9 10
Age 16 9 0 12 4
Baseline .57 3.37 3.44 .74 1.24
Reformulated .74 4.94 4.89 .69 1.42

Construct scatter plots of NOx emissions versus

age. What appears to be the nature of the relation-

ship between these two variables? [Note: The
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authors of the cited article commented on the

relationship.]

3. Bivariate data often arises from the use of two

different techniques to measure the same quantity.

As an example, the accompanying observations on

x ¼ hydrogen concentration (ppm) using a gas

chromatography method and y ¼ concentration

using a new sensor method were read from a

graph in the article “A New Method to Measure

the Diffusible Hydrogen Content in Steel Weld-

ments Using a Polymer Electrolyte-Based Hydro-

gen Sensor” (Welding Res., July 1997:

251s–256s).

x 47 62 65 70 70 78 95 100 114 118

y 38 62 53 67 84 79 93 106 117 116

x 124 127 140 140 140 150 152 164 198 221

y 127 114 134 139 142 170 149 154 200 215

Construct a scatter plot. Does there appear to be a

very strong relationship between the two types of

concentration measurements? Do the two methods

appear to be measuring roughly the same quan-

tity? Explain your reasoning.

4. A study to assess the capability of subsurface flow

wetland systems to remove biochemical oxygen

demand (BOD) and various other chemical con-

stituents resulted in the accompanying data on

x ¼ BOD mass loading (kg/ha/d) and y ¼ BOD

mass removal (kg/ha/d) (“Subsurface Flow Wet-

lands—A Performance Evaluation,” Water Envi-
ron. Res., 1995: 244–247).

x 3 8 10 11 13 16 27 30 35 37 38 44 103 142

y 4 7 8 8 10 11 16 26 21 9 31 30 75 90

a. Construct boxplots of both mass loading and

mass removal, and comment on any interesting

features.

b. Construct a scatter plot of the data, and com-

ment on any interesting features.

5. The article “Objective Measurement of the

Stretchability of Mozzarella Cheese” (J. Texture
Stud., 1992: 185–194) reported on an experiment

to investigate how the behavior of mozzarella

cheese varied with temperature. Consider the

accompanying data on x ¼ temperature and y ¼
elongation (%) at failure of the cheese. [Note: The
researchers were Italian and used real mozzarella

cheese, not the poor cousin widely available in the

United States.]

x 59 63 68 72 74 78 83

y 118 182 247 208 197 135 132

a. Construct a scatter plot in which the axes inter-
sect at (0, 0). Mark 0, 20, 40, 60, 80, and 100 on

the horizontal axis and 0, 50, 100, 150, 200,

and 250 on the vertical axis.

b. Construct a scatter plot in which the axes inter-

sect at (55, 100), as was done in the cited

article. Does this plot seem preferable to the

one in part (a)? Explain your reasoning.

c. What do the plots of parts (a) and (b) suggest

about the nature of the relationship between the

two variables?

6. One factor in the development of tennis elbow, a

malady that strikes fear in the hearts of all serious

tennis players, is the impact-induced vibration of

the racket-and-arm system at ball contact. It is

well known that the likelihood of getting tennis

elbow depends on various properties of the racket

used. Consider the scatter plot of x ¼ racket

resonance frequency (Hz) and y ¼ sum of peak-

to-peak acceleration (a characteristic of arm vibra-

tion, in m/s/s) for n ¼ 23 different rackets

(“Transfer of Tennis Racket Vibrations into the

Human Forearm,” Med. Sci. Sports Exercise,
1992: 1134–1140). Discuss interesting features

of the data and scatter plot.

x
100

y

38

36

34

32

30

28

26

22

24

180 190120110 130 140 160150 170

7. The article “Some Field Experience in the Use of

an Accelerated Method in Estimating 28-Day

Strength of Concrete” (J. Amer. Concrete Institut.,
1969: 895) considered regressing y ¼ 28-day

standard-cured strength (psi) against x ¼ acceler-

ated strength (psi). Suppose the equation of the

true regression line is y ¼ 1800 + 1.3x.
a. What is the expected value of 28-day strength

when accelerated strength ¼ 2500?
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b. By how much can we expect 28-day strength to

change when accelerated strength increases by

1 psi?

c. Answer part (b) for an increase of 100 psi.

d. Answer part (b) for a decrease of 100 psi.

8. Referring to Exercise 7, suppose that the standard

deviation of the random deviation e is 350 psi.

a. What is the probability that the observed value

of 28-day strength will exceed 5000 psi when

the value of accelerated strength is 2000?

b. Repeat part (a) with 2500 in place of 2000.

c. Consider making two independent observa-

tions on 28-day strength, the first for an accel-

erated strength of 2000 and the second for

x ¼ 2500. What is the probability that the sec-

ond observation will exceed the first by more

than 1000 psi?

d. Let Y1 and Y2 denote observations on 28-day

strength when x ¼ x1 and x ¼ x2, respectively.
By how much would x2 have to exceed x1 in

order that P(Y2 > Y1) ¼ .95?

9. The flow rate y (m3/min) in a device used for air-

quality measurement depends on the pressure drop

x (in. of water) across the device’s filter. Suppose
that for x values between 5 and 20, the two vari-

ables are related according to the simple linear

regression model with true regression line

y ¼ �.12 + .095x.
a. What is the expected change in flow rate asso-

ciated with a 1-in. increase in pressure drop?

Explain.

b. What change in flow rate can be expected

when pressure drop decreases by 5 in.?

c. What is the expected flow rate for a pressure

drop of 10 in.? A drop of 15 in.?

d. Suppose s ¼ .025 and consider a pressure

drop of 10 in. What is the probability that the

observed value of flow rate will exceed .835?

That observed flow rate will exceed .840?

e. What is the probability that an observation on

flow rate when pressure drop is 10 in. will

exceed an observation on flow rate made

when pressure drop is 11 in.?

10. Suppose the expected cost of a production run is

related to the size of the run by the equation

y ¼ 4000 + 10x. Let Y denote an observation on

the cost of a run. If the variables size and cost are
related according to the simple linear regression

model, could it be the case that P(Y > 5500 when

x ¼ 100) ¼ .05 and P(Y > 6500 when x ¼ 200)

¼ .10? Explain.

11. Suppose that in a certain chemical process the

reaction time y (hr) is related to the temperature

(�F) in the chamber in which the reaction takes

place according to the simple linear regression

model with equation y ¼ 5.00 � .01x and

s ¼ .075.

a. What is the expected change in reaction time

for a 1�F increase in temperature? For a 10�F
increase in temperature?

b. What is the expected reaction time when tem-

perature is 200�F? When temperature is

250�F?
c. Suppose five observations are made indepen-

dently on reaction time, each one for a temper-

ature of 250�F. What is the probability that all

five times are between 2.4 and 2.6 h?

d. What is the probability that two independently

observed reaction times for temperatures 1�

apart are such that the time at the higher tem-

perature exceeds the time at the lower temper-

ature?

12. In Example 12.4 the probability of cancer metas-

tasizing was pðxÞ ¼ e�2þ:5x= 1þ e�2þ:5x
� 	

.

a. Tabulate values of x, p(x), the odds

pðxÞ= 1� pðxÞ½ �, and the log odds

for x¼ 0; 1; 2; 3; . . . ; 10
b. Explain what happens to the odds when x is

increased by 1. Your explanation should

involve the .5 that appears in the formula

for p(x).
c. Support your answer to (b) algebraically, start-

ing from the formula for p(x).
d. For what value of x are the odds 1? 5? 10?

12.2 Estimating Model Parameters
We will assume in this and the next several sections that the variables x and y are
related according to the simple linear regression model. The values of b0, b1, and
s2 will almost never be known to an investigator. Instead, sample data consisting of

n observed pairs (x1, y1), . . ., (xn, yn) will be available, from which the model

parameters and the true regression line itself can be estimated. These observations
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are assumed to have been obtained independently of each other. That is, yi is
the observed value of an rv Yi, where Yi ¼ b0 þ b1xi þ ei and the n deviations

e1, e2, . . ., en are independent rv’s. Independence of Y1, Y2, . . ., Yn follows from

the independence of the ei’s.
According to the model, the observed points will be distributed about the true

regression line in a random manner. Figure 12.8 shows a typical plot of observed

pairs along with two candidates for the estimated regression line, y ¼ a0 + a1x and
y ¼ b0 + b1x. Intuitively, the line y ¼ a0 + a1x is not a reasonable estimate of the

true line y ¼ b0 + b1x because, if y ¼ a0 + a1x were the true line, the observed

points would almost surely have been closer to this line. The line y ¼ b0 + b1x is a
more plausible estimate because the observed points are scattered rather closely

about this line.

Figure 12.8 and the foregoing discussion suggest that our estimate of y ¼
b0 + b1x should be a line that provides in some sense a best fit to the observed data

points. This is what motivates the principle of least squares, which can be traced

back to the mathematicians Gauss and Legendre around the year 1800. According

to this principle, a line provides a good fit to the data if the vertical distances

(deviations) from the observed points to the line are small (see Figure 12.9). The

measure of the goodness-of-fit is the sum of the squares of these deviations. The

best-fit line is then the one having the smallest possible sum of squared deviations.

x

y

y = a0 + a1x

y = b0 + b1x

Figure 12.8 Two different estimates of the true regression line
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Figure 12.9 Deviations of observed data from line y ¼ b0 + b1x

12.2 Estimating Model Parameters 625



PRINCIPLE
OF LEAST
SQUARES

The vertical deviation of the point (xi, yi) from the line y ¼ b0 + b1x is

height of point� height of line ¼ yi � ðb0 þ b1xiÞ

The sum of squared vertical deviations from the points (x1, y1), . . ., (xn, yn) to
the line is then

f ðb0; b1Þ ¼
Xn
i¼1

½ yi � ðb0 þ b1xiÞ�2

The point estimates of b0 and b1, denoted by b̂0 and b̂1 and called the least
squares estimates, are those values that minimize f(b0, b1). That is,b̂0 andb̂1
are such that f ð̂b0;b̂1Þ � f ðb0; b1Þ for any b0 and b1. The estimated regres-
sion line or least squares line is then the line whose equation is y ¼b̂0 þb̂1x.

The minimizing values of b0 and b1 are found by taking partial derivatives of
f(b0, b1) with respect to both b0 and b1, equating them both to zero [analogously to

f 0(b) ¼ 0 in univariate calculus], and solving the equations

@f ðb0; b1Þ
@b0

¼
X

2ðyi � b0 � b1xiÞð�1Þ ¼ 0

@f ðb0; b1Þ
@b1

¼
X

2ðyi � b0 � b1xiÞð�xiÞ ¼ 0

Cancellation of the factor 2 and rearrangement gives the following system of

equations, called the normal equations:

nb0 þ
X

xi


 �
b1 ¼

X
yiX

xi


 �
b0 þ

X
x2i


 �
b1 ¼

X
xiyi

The normal equations are linear in the two unknowns b0 and b1. Provided that at

least two of the xi’s are different, the least squares estimates are the unique solution

to this system.

The least squares estimate of the slope coefficient b1 of the true regression

line is

b1 ¼ b̂1 ¼
P ðxi � xÞðyi � yÞP ðxi � xÞ2 ¼ Sxy

Sxx
ð12:2Þ

Computing formulas for the numerator and denominator of b1 are

Sxy ¼
X

xiyi �
P

xið Þ P yið Þ
n

Sxx ¼
X

x2i �
P

xið Þ2
n
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(the Sxx formula was derived in Chapter 1 in connection with the sample

variance, and the derivation of the Sxy formula is similar).

The least squares estimate of the intercept b0 of the true regression line is

b0 ¼ b̂0 ¼
P

yi �b̂1
P

xi
n

¼ y�b̂1x ð12:3Þ

Because of the normality assumption, b̂0 and b̂1 are also the maximum

likelihood estimates (see Exercise 23).

The computational formulas for Sxy and Sxx require only the summary statistics Sxi,
Syi, Sx2i ;Sxiyi (Sy

2
i will be needed shortly); the x and y deviations are then not

needed. In computing b̂0, use extra digits in b̂1 because, if x is large in magnitude,

rounding may affect the final answer. We emphasize that before b̂1 and b̂0 are
computed, a scatter plot should be examined to see whether a linear probabilistic
model is plausible. If the points do not tend to cluster about a straight line with

roughly the same degree of spread for all x, other models should be investigated. In

practice, plots and regression calculations are usually done by using a statistical

computer package.

Example 12.5 Global warming is a major issue, and CO2 emissions are an important part of the

discussion. What is the effect of increased CO2 levels on the environment? In

particular, what is the effect of these higher levels on the growth of plants and trees?

The article “Effects of Atmospheric CO2 Enrichment on Biomass Accumulation

and Distribution in Eldarica Pine Trees” (J. Exp. Bot., 1994: 345–349) describes the
results of growing pine trees with increasing levels of CO2 in the air. There were

two trees at each of four levels of CO2 concentration, and the mass of each tree was

measured after 11 months of the experiment. Here are the observations with x ¼
atmospheric concentration of CO2 in microliters per liter (parts per million) and

y ¼ mass in kilograms, along with x2, xy and y2. The mass measurements were read

from a graph in the article.

Obs x y x2 xy y2

1 408 1.1 166,464 448.8 1.21

2 408 1.3 166,464 530.4 1.69

3 554 1.6 306,916 886.4 2.56

4 554 2.5 306,916 1385.0 6.25

5 680 3.0 462,400 2040.0 9.00

6 680 4.3 462,400 2924.0 18.49

7 812 4.2 659,344 3410.4 17.64

8 812 4.7 659,344 3816.4 22.09

Sum 4908 22.7 3,190,248 15,441.4 78.93
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Thus x ¼ 4908=8 ¼ 613:5, y ¼ 22:7=8 ¼ 2:838, and

b̂1 ¼
Sxy
Sxx

¼ 15;441:4� ð4908Þð22:7Þ=8
3;190;248� ð4908Þ2=8

¼ 1514:95

179;190
¼ :00845443 � :00845

b̂0 ¼ 2:838� ð:00845443Þð613:5Þ ¼ �2:349

We estimate that the expected change in tree mass associated with a 1-part-per-

million increase in CO2 concentration is .00845. The equation of the estimated

regression line (least squares line) is then y ¼ �2.35 + .00845x. Figure 12.10,

generated by the statistical computer package R, shows that the least squares line

provides an excellent summary of the relationship between the two variables.

The estimated regression line can immediately be used for two different pur-

poses. For a fixed x value x�; b̂0 þb̂1x
� (the height of the line above x*) gives either (1)

a point estimate of the expected value of Ywhen x ¼ x* or (2) a point prediction of the
Y value that will result from a single new observation made at x ¼ x*.

The least squares line should not be used to make a prediction for an x value
much beyond the range of the data, such as x ¼ 250 or x ¼ 1000 in Example 12.5.

The danger of extrapolation is that the fitted relationship (a line here) may not be

valid for such x values. (In the foregoing example, x ¼ 250 gives ŷ ¼ �:235, a
patently ridiculous value of mass, but extrapolation will not always result in such

inconsistencies.)

Example 12.6 Refer to the tree-mass-CO2 data in the previous example. With a little extrapola-

tion, a point estimate for true average mass for all specimens with CO2 concentra-

tion 365 is

m̂Y�365 ¼b̂0 þb̂1ð365Þ ¼ �2:35þ :00845ð365Þ ¼ :73

With a little more extrapolation, a point estimate for true average mass for all

specimens with CO2 concentration 315 is

m̂Y�315 ¼b̂0 þb̂1ð315Þ ¼ �2:35þ :00845ð315Þ ¼ :31

510410 610 710 810
CO2

5
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Figure 12.10 A scatter plot of the data in Example 12.5 with the least squares

line superimposed, from R ■
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The values 315 and 365 are chosen based on actual values: the average world

atmospheric CO2 concentration rose from 315 to 365 parts per million between

1960 and 2000. Even if the prediction equation is somewhat inaccurate when

extrapolated to the left, it is clear that changes in carbon dioxide are making a

big difference in the growth of trees. Notice that in Figure 12.10 the tree mass

increases by a factor of more than 4 while the CO2 concentration increases by just a

factor of 2. ■

Estimating s2 and s

The parameter s2 determines the amount of variability inherent in the regression

model. A large value of s2 will lead to observed (xi, yi)’s that are quite spread out

about the true regression line, whereas when s2 is small the observed points will

tend to fall very close to the true line (see Figure 12.11). An estimate of s2 will be
used in confidence interval (CI) formulas and hypothesis-testing procedures pre-

sented in the next two sections. Because the equation of the true line is unknown,

the estimate is based on the extent to which the sample observations deviate from

the estimated line. Many large deviations (residuals) suggest a large value of s2,
whereas if all deviations are small in magnitude it indicates that s2 is small.

DEFINITION The fitted (or predicted) values ŷ1; ŷ2; . . . ; ŷn are obtained by successively

substituting the x values x1, . . ., xn into the equation of the estimated regres-

sion line: ŷ1 ¼b̂0 þb̂1x1; ŷ2 ¼b̂0 þb̂1x2; . . . ; ŷn ¼b̂0 þb̂1xn. The residuals
are the vertical deviations y1 � ŷ1; y2 � ŷ2; . . . ; yn � ŷn from the estimated

line.

In words, the predicted value ŷi is the value of y that we would predict or expect

when using the estimated regression line with x ¼ xi; ŷi is the height of the

estimated regression line above the value xi for which the ith observation was

made. The residual yi � ŷi is the difference between the observed yi and the

predicted ŷi. If the residuals are all small in magnitude, then much of the variability

y  Elongation

x  Tensile force

y  Product sales

x  Advertising expenditure

0 1x

0 1x

a b

Figure 12.11 Typical sample for s2: (a) small; (b) large
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in observed y values appears to be due to the linear relationship between x and y,
whereas many large residuals suggest quite a bit of inherent variability in y relative
to the amount due to the linear relation. Assuming that the line in Figure 12.9 is the

least squares line, the residuals are identified by the vertical line segments from

the observed points to the line. When the estimated regression line is obtained

via the principle of least squares, the sum of the residuals should in theory be zero

(an immediate consequence of the first normal equation; see Exercise 24). In

practice, the sum may deviate a bit from zero due to rounding.

Example 12.7 Japan’s high population density has resulted in a multitude of resource usage

problems. One especially serious difficulty concerns waste removal. The article

“Innovative Sludge Handling Through Pelletization Thickening” (Water Res.,
1999: 3245–3252) reported the development of a new compression machine for

processing sewage sludge. An important part of the investigation involved relating

the moisture content of compressed pellets ( y, in %) to the machine’s filtration rate

(x, in kg-DS/m/h). The following data was read from a graph in the paper:

x 125.3 98.2 201.4 147.3 145.9 124.7 112.2 120.2 161.2 178.9

y 77.9 76.8 81.5 79.8 78.2 78.3 77.5 77.0 80.1 80.2

x 159.5 145.8 75.1 151.4 144.2 125.0 198.8 132.5 159.6 110.7

y 79.9 79.0 76.7 78.2 79.5 78.1 81.5 77.0 79.0 78.6

Relevant summary quantities (summary statistics) are
P

xi ¼ 2817:9,
P

yi ¼
1574:8,

P
x2i ¼ 415;949:85,

P
xiyi ¼ 222;657:88, and

P
y2i ¼ 124;039:58,

from which x ¼ 140:895, y ¼ 78:74, Sxx ¼ 18;921:8295, and Sxy ¼ 776:434. Thus

b̂1 ¼
776:434

18;921:8295
¼ :04103377 � :041

b̂0 ¼78:74� ð:04103377Þð140:895Þ ¼ 72:958547 � 72:96

fromwhich the equation of the least squares line is ŷ ¼ 72:96þ :041x. For numerical

accuracy, the fitted values are calculated from ŷi ¼ 72:958547þ :04103377xi:

ŷ1 ¼ 72:958547þ :04103377 125:3ð Þ � 78:100 y1 � ŷ1 � �200; etc:

A positive residual corresponds to a point in the scatter plot that lies above the graph

of the least squares line, whereas a negative residual results from a point lying

below the line. All predicted values (fits) and residuals appear in the accompanying

table.

Obs Filtrate Moistcon Fit Residual

1 125.3 77.9 78.100 �0.200

2 98.2 76.8 76.988 �0.188

3 201.4 81.5 81.223 0.277

4 147.3 79.8 79.003 0.797

5 145.9 78.2 78.945 �0.745

6 124.7 78.3 78.075 0.225

7 112.2 77.5 77.563 �0.063

8 120.2 77.0 77.891 �0.891
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9 161.2 80.1 79.573 0.527

10 178.9 80.2 80.299 �0.099

11 159.5 79.9 79.503 0.397

12 145.8 79.0 78.941 0.059

13 75.1 76.7 76.040 0.660

14 151.4 78.2 79.171 �0.971

15 144.2 79.5 78.876 �0.624

16 125.0 78.1 78.088 0.012

17 198.8 81.5 81.116 0.384

18 132.5 77.0 78.396 �1.396

19 159.6 79.0 79.508 �0.508

20 110.7 78.6 77.501 1.099 ■

In much the same way that the deviations from the mean in a one-sample

situation were combined to obtain the estimate s2 ¼P ðxi � xÞ2=ðn� 1Þ, the

estimate of s2 in regression analysis is based on squaring and summing the

residuals. We will continue to use the symbol s2 for this estimated variance, so

don’t confuse it with our previous s2.

DEFINITION The error sum of squares (equivalently, residual sum of squares), denoted

by SSE, is

SSE ¼
X

ðyi � ŷiÞ2 ¼
X

½ yi � ð̂b0 þb̂1xiÞ�
2

and the least squares estimate of s2 is

ŝ2 ¼ s2 ¼ SSE

n� 2
¼
P ðyi � ŷiÞ2

n� 2

The divisor n� 2 in s2 is the number of degrees of freedom (df) associated with the

estimate (or, equivalently, with the error sum of squares). This is because to obtain

s2, the two parameters b0 and b1 must first be estimated, which results in a loss of

2 df (just as m had to be estimated in one-sample problems, resulting in an estimated

variance based on n � 1 df). Replacing each yi in the formula for s2 by the rv Yi
gives the estimator S2. It can be shown that S2 is an unbiased estimator for

s2 (although the estimator S is biased for s). The mle of s2 has divisor n rather

than n � 2, so it is biased.

Example 12.8

(Example 12.7

continued)

The residuals for the filtration rate–moisture content data were calculated previ-

ously. The corresponding error sum of squares is

SSE ¼ ð�:200Þ2 þ ð�:188Þ2 þ � � � þ ð1:099Þ2 ¼ 7:968

The estimate of s2 is then ŝ2 ¼ s2 ¼ 7:968=ð20� 2Þ ¼ :4427, and the estimated

standard deviation is ŝ ¼ s ¼ ffiffiffiffiffiffiffiffiffiffiffi
:4427

p ¼ :665. Roughly speaking, .665 is the mag-

nitude of a typical deviation from the estimated regression line. ■
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Computation of SSE from the defining formula involves much tedious

arithmetic because both the predicted values and residuals must first be calculated.

Use of the following computational formula does not require these quantities.

SSE ¼
X

yi
2 � b̂0

X
yi �b̂1

X
xiyi

This expression results from substituting yi ¼b̂0 þb̂1xi into
P ðyi � ŷiÞ2, squaring

the summand, carrying the sum through to the resulting three terms, and simplify-

ing (see Exercise 24). This computational formula is especially sensitive to the

effects of rounding in b̂0 and b̂1, so use as many digits as your calculator will

provide.

Example 12.9 The article “Promising Quantitative Nondestructive Evaluation Techniques for

Composite Materials” (Mater. Eval., 1985: 561–565) reports on a study to investi-

gate how the propagation of an ultrasonic stress wave through a substance depends

on the properties of the substance. The accompanying data on fracture strength

(x, as a percentage of ultimate tensile strength) and attenuation ( y, in neper/cm, the

decrease in amplitude of the stress wave) in fiberglass-reinforced polyester com-

posites was read from a graph that appeared in the article. The simple linear

regression model is suggested by the substantial linear pattern in the scatter plot.

x 12 30 36 40 45 57 62 67 71 78 93 94 100 105

y 3.3 3.2 3.4 3.0 2.8 2.9 2.7 2.6 2.5 2.6 2.2 2.0 2.3 2.1

The necessary summary quantities are n ¼ 14,
P

xi ¼ 890,
P

x2i ¼ 67;182,P
yi ¼ 37:6,

P
y2i ¼ 103:54,

P
xiyi ¼ 2234:30, from which Sxx ¼

10;603:4285714, Sxy ¼ �155:98571429, b̂1 ¼ �:0147109, and b̂0 ¼ 3:6209072.

The computational formula for SSE gives

SSE ¼ 103:54� ð3:6209072Þð37:6Þ � ð�:0147109Þð2234:30Þ ¼ :2624532

so s2 ¼ .2624532/12 ¼ .0218711 and s ¼ .1479. With rounding to three decimal

digits in the computational formula for SSE, the result is

SSE ¼ 104� ð3:62Þð37:6Þ � ð�:0147Þð2234:30Þ ¼ 104� 103:331 ¼ :669

which is wrong in all digits. The problem is that, even though each of the three

terms may be correct in its first three nonzero digits, the three correct digits can be

subtracted away, leaving you with no correct digits. ■

The Coefficient of Determination

Figure 12.12 shows three different scatter plots of bivariate data. In all three plots,

the heights of the different points vary substantially, indicating that there is much

variability in observed y values. The points in the first plot all fall exactly on a

straight line. In this case, all (100%) of the sample variation in y can be attributed to
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the fact that x and y are linearly related in combination with variation in x. The
points in Figure 12.12b do not fall exactly on a line, but compared to overall y
variability, the deviations from the least squares line are small. It is reasonable to

conclude in this case that much of the observed y variation can be attributed to the

approximate linear relationship between the variables postulated by the simple

linear regression model. When the scatter plot looks like that of Figure 12.12c,

there is substantial variation about the least squares line relative to overall y
variation, so the simple linear regression model fails to explain variation in y by

relating y to x.

The error sum of squares SSE can be interpreted as a measure of how much

variation in y is left unexplained by the model—that is, how much cannot be

attributed to a linear relationship. In Figure 12.12a, SSE ¼ 0, and there is no

unexplained variation, whereas unexplained variation is small for the data of

Figure 12.12b and much larger in Figure 12.12c. A quantitative measure of the

total amount of variation in observed y values is given by the total sum of squares

SST ¼ Syy ¼
X

ðyi � yÞ2 ¼
X

y2i � ð
X

yiÞ2=n

The total sum of squares is the sum of squared deviations about the sample

mean of the observed y values. Thus the same number y is subtracted from each yi in
SST, whereas SSE involves subtracting each different predicted value ŷi from the

corresponding observed yi. Just as SSE is the sum of squared deviations about

the least squares line y ¼b̂0 þb̂1x, SST is the sum of squared deviations about the

horizontal line at height y (since then vertical deviations are yi � y), as pictured in

Figure 12.13. Furthermore, because the sum of squared deviations about the least

squares line is smaller than the sum of squared deviations about any other line,

SSE < SST unless the horizontal line is the least squares line. The ratio SSE/SST

is the proportion of total variation that cannot be explained by the simple linear

regression model, and 1 � SSE/SST (a number between 0 and 1) is the proportion

of observed y variation explained by the model.

x

y

x

y

x

y

a b c

Figure 12.12 Explaining y variation: (a) all variation explained; (b) most

variation explained; (c) little variation explained
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DEFINITION The coefficient of determination, denoted by r2, is given by

r2 ¼ 1� SSE

SST

It is interpreted as the proportion of observed y variation that can be

explained by the simple linear regression model (attributed to an approximate

linear relationship between y and x).

In equivalent words, r2 is the proportion by which the error sum of squares is

reduced by the regression line compared to the horizontal line. For example, if

SST ¼ 20 and SSE ¼ 2, then r2 ¼ 1� 2
20
, so the regression reduces the error sum

of squares by .90 ¼ 90%.

The higher the value of r2, the more successful is the simple linear regression

model in explaining y variation. When regression analysis is done by a statistical

computer package, either r2 or 100r2 (the percentage of variation explained by the

model) is a prominent part of the output. If r2 is small, an analyst may want to

search for an alternative model (either a nonlinear model or a multiple regression

model that involves more than a single independent variable) that can more

effectively explain y variation.

Example 12.10

(Example 12.5

continued)

The scatter plot of the CO2 concentration data in Figure 12.10 indicates a fairly high

r2 value. With

b̂0 ¼ �2:349293 b̂1 ¼ :00845443 Syi ¼ 22:7

Sxiyi ¼ 15; 441:4 Sy2i ¼ 78:93

we have

SST ¼78:93� 22:72

8
¼ 14:519

SSE ¼78:93� ð�2:349293Þð22:7Þ � ð:00845443Þð15;441:4Þ ¼ 1:711

Least squares line

y

x

y

x

y

Horizontal line at height y

a b

Figure 12.13 Sums of squares illustrated: (a) SSE ¼ sum of squared deviations about

the least squares line; (b) SST ¼ sum of squared deviations about the horizontal line
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The coefficient of determination is then

r2 ¼ 1� 1:711

14:519
¼ 1� :118 ¼ :882

That is, 88.2% of the observed variation in mass is attributable to (can be explained

by) the approximate linear relationship between mass and CO2 concentration, a

fairly impressive result. The r2 can also be interpreted by saying that the error sum

of squares using the regression line is 88.2% less than the error sum of squares

using a horizontal line. By the way, although it is common to have r2 values of .88
or more in engineering, the physical sciences, and the biological sciences, r2 is

likely to be much smaller in social sciences such as psychology and sociology. An

r2 as big as .5 would be unusual in predicting one test score from another. In

particular, when third grade verbal IQ score is used to predict third-grade written IQ

score for the 33 students of Example 1.2, r2 is only .28.

Figure 12.14 shows partial MINITAB output for the CO2 concentration data

of Examples 12.5 and 12.10; the package will also provide the predicted values and

residuals upon request, as well as other information. The formats used by other

packages differ slightly from that of MINITAB, but the information content is very

similar. Quantities such as the standard deviations, t-ratios, and the details of the

ANOVA table are discussed in Section 12.3.

For regression there is an analysis of variance identity like the fundamental

identity (11.1), in Section 11.1. Add and subtract ŷi in the total sum of squares:

SST ¼
X

ðyi � yÞ2 ¼
X

½ðyi � ŷiÞ þ ðŷi � yÞ�2 ¼
X

ðyi � ŷiÞ2 þ
X

ðŷi � yÞ2

Notice that the middle (cross-product) term is missing on the right, but see Exercise

24 for the justification. Of the two sums on the right, the first is SSE ¼P ðyi � ŷiÞ2

Figure 12.14 MINITAB output for the regression of Examples 12.5 and 12.10 ■
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and the second is something new, the regression sum of squares, SSR ¼P ðŷi � yÞ2. Interpret the regression sum of squares as the amount of total variation

that is explained by the model. The analysis of variance identity for regression is

SST ¼ SSEþ SSR ð12:4Þ
The coefficient of determination in Example 12.10 can now be written in a

slightly different way:

r2 ¼ 1� SSE

SST
¼ SST� SSE

SST
¼ SSR

SST

the ratio of explained variation to total variation. The ANOVA table in Figure 12.14

shows that SSR ¼ 12:808, from which r2 ¼ 12:808=14:519 ¼ :882.

Terminology and Scope of Regression Analysis

The term regression analysis was first used by Francis Galton in the late nineteenth
century in connection with his work on the relationship between father’s height

x and son’s height y. After collecting a number of pairs (xi, yi), Galton used the

principle of least squares to obtain the equation of the estimated regression line

with the objective of using it to predict son’s height from father’s height. In using

the derived line, Galton found that if a father was above average in height, the son

would also be expected to be above average in height, but not by as much as the
father was. Similarly, the son of a shorter-than-average father would also be

expected to be shorter than average, but not by as much as the father. Thus the

predicted height of a son was “pulled back in” toward the mean; because regression
can be defined as moving backward, Galton adopted the terminology regression
line. This phenomenon of being pulled back in toward the mean has been observed

in many other situations (e.g., batting averages from year to year in baseball) and is

called the regression effect or regression to the mean. See also Section 5.3 for a

discussion of this topic in the context of the bivariate normal distribution.

Because of the regression effect, care must be exercised in experiments that

involve selecting individuals based on below average scores. For example, if

students are selected because of below average performance on a test, and they

are then given special instruction, then the regression effect predicts improvement

even if the instruction is useless. A similar warning applies in studies of under-

performing businesses or hospital patients.

Our discussion thus far has presumed that the independent variable is under

the control of the investigator, so that only the dependent variable Y is random. This

was not, however, the case with Galton’s experiment; fathers’ heights were not

preselected, but instead both X and Y were random. Methods and conclusions of

regression analysis can be applied both when the values of the independent variable

are fixed in advance and when they are random, but because the derivations and

interpretations are more straightforward in the former case, we will continue to

work explicitly with it. For more commentary, see the excellent book by Michael

Kutner et al. listed in the chapter bibliography.
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Exercises Section 12.2 (13–30)

13. Exercise 4 gave data on x ¼ BOD mass loading

and y ¼ BOD mass removal. Values of relevant

summary quantities are

n ¼ 14
X

xi ¼ 517X
yi ¼ 346

X
x2i ¼ 39;095X

yi ¼ 17;454
X

xiyi ¼ 25;825

a. Obtain the equation of the least squares line.

b. Predict the value of BOD mass removal for a

single observation made when BOD mass

loading is 35, and calculate the value of the

corresponding residual.

c. Calculate SSE and then a point estimate of s.
d. What proportion of observed variation in

removal can be explained by the approximate

linear relationship between the two variables?

e. The last two x values, 103 and 142, are much

larger than the others. How are the equation of

the least squares line and the value of r2

affected by deletion of the two corresponding

observations from the sample? Adjust the

given values of the summary quantities, and

use the fact that the new value of SSE is

311.79.

14. The accompanying data on x ¼ current density

(mA/cm2) and y ¼ rate of deposition (mm/min)

appeared in the article “Plating of 60/40 Tin/

Lead Solder for Head Termination Metallurgy”

(Plating and Surface Finishing, Jan. 1997:

38–40). Do you agree with the claim by the

article’s author that “a linear relationship was

obtained from the tin–lead rate of deposition as

a function of current density”? Explain your

reasoning.

x 20 40 60 80

y .24 1.20 1.71 2.22

15. Refer to the data given in Exercise 1 on tank

temperature and efficiency ratio.

a. Determine the equation of the estimated

regression line.

b. Calculate a point estimate for true average

efficiency ratio when tank temperature is 182.

c. Calculate the values of the residuals from the

least squares line for the four observations for

which temperature is 182. Why do they not all

have the same sign?

d. What proportion of the observed variation in

efficiency ratio can be attributed to the simple

linear regression relationship between the two

variables?

16. As an alternative to the use of father’s height to

predict son’s height, Galton also used the mid-

parent height, the average of the father’s and

mother’s heights. Here are the heights of 11

female students along with their midparent

heights in inches:

Midparent 66.0 65.5 71.5 68.0 70.0 65.5 67.0
Daughter 64.0 63.0 69.0 69.0 69.0 65.0 63.0

Midparent 70.5 69.5 64.5 67.5
Daughter 68.5 69.0 64.0 67.0

a. Make a scatter plot of daughter’s height

against the midparent height and comment

on the strength of the relationship.

b. Is the daughter’s height completely and

uniquely determined by the midparent

height? Explain.

c. Use the accompanying MINITAB output to

obtain the equation of the least squares line

for predicting daughter height from midparent

height, and then predict the height of a daugh-

ter whose midparent height is 70 in. Would

you feel comfortable using the least squares

line to predict daughter height when midpar-

ent height is 74 in.? Explain.

Predictor Coef SE Coef T P
Constant 1.65 13.36 0.12 0.904
midparent 0.9555 0.1971 4.85 0.001

S ¼ 1.45061 R-Sq ¼ 72.3% R-Sq(adj)¼69.2%

Analysis of Variance

Source DF SS MS F P
Regression 1 49.471 49.471 23.51 0.001
Residual 9 18.938 2.104

Error
Total 10 68.409

d. What are the values of SSE, SST, and the

coefficient of determination? How well does

the midparent height account for the variation

in daughter height?

e. Notice that for most of the families, the mid-

parent height exceeds the daughter height. Is

this what is meant by regression to the mean?

Explain.

17. The article “Characterization of Highway Runoff

in Austin, Texas, Area” (J. Environ. Engrg.,
1998: 131–137) gave a scatter plot, along with
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the least squares line, of x ¼ rainfall volume

(m3) and y ¼ runoff volume (m3) for a particular

location. The accompanying values were read

from the plot.

x 5 12 14 17 23 30 40 47

y 4 10 13 15 15 25 27 46

x 55 67 72 81 96 112 127

y 38 46 53 70 82 99 100

a. Does a scatter plot of the data support the use

of the simple linear regression model?

b. Calculate point estimates of the slope and

intercept of the population regression line.

c. Calculate a point estimate of the true average

runoff volume when rainfall volume is 50.

d. Calculate a point estimate of the standard

deviation s.
e. What proportion of the observed variation in

runoff volume can be attributed to the simple

linear regression relationship between runoff

and rainfall?

18. A regression of y ¼ calcium content (g/L) on

x ¼ dissolved material (mg/cm2) was reported

in the article “Use of Fly Ash or Silica Fume to

Increase the Resistance of Concrete to Feed

Acids” (Mag. Concrete Res., 1997: 337–344).

The equation of the estimated regression line

was y ¼ 3.678 + .144x, with r2 ¼ .860, based

on n ¼ 23.

a. Interpret the estimated slope .144 and the

coefficient of determination .860.

b. Calculate a point estimate of the true average

calcium content when the amount of dis-

solved material is 50 mg/cm2.

c. The value of total sum of squares was SST

¼ 320.398. Calculate an estimate of the error

standard deviation s in the simple linear

regression model.

19. The cetane number is a critical property in spe-

cifying the ignition quality of a fuel used in a

diesel engine. Determination of this number for a

biodiesel fuel is expensive and time-consuming.

The article “Relating the Cetane Number of Bio-

diesel Fuels to Their Fatty Acid Composition:

A Critical Study” (J. Automobile Engr., 2009:
565–583) included the following data on x ¼
iodine value (g) and y ¼ cetane number for a

sample of 14 biofuels. The iodine value is the

amount of iodine necessary to saturate a sample

of 100 g of oil. The article’s authors fit the simple

linear regression model to this data, so let’s fol-

low their lead.

x 132.0 129.0 120.0 113.2 105.0 92.0 84.0

y 46.0 48.0 51.0 52.1 54.0 52.0 59.0

x 83.2 88.4 59.0 80.0 81.5 71.0 69.2

y 58.7 61.6 64.0 61.4 54.6 58.8 58.0

X
xi ¼ 1307:5;

X
yi ¼ 779:2;X

x2i ¼ 128;913:93;
X

xiyi ¼ 71;347:30;X
y2i ¼ 43;745:22

a. Obtain the equation of the least squares line,

and then calculate a point prediction of the

cetane number that would result from a single

observation with an iodine value of 100.

b. Calculate and interpret the coefficient of

determination.

c. Calculate and interpret a point estimate of the

model standard deviation s.

20. A number of studies have shown lichens (certain

plants composed of an alga and a fungus) to be

excellent bioindicators of air pollution. The arti-

cle “The Epiphytic Lichen Hypogymnia phy-
sodes as a Biomonitor of Atmospheric Nitrogen

and Sulphur Deposition in Norway” (Environ.
Monitoring Assessment, 1993: 27–47) gives the
following data (read from a graph) on x ¼ NO3

�

wet deposition (g N/m2) and y ¼ lichen N (% dry

weight):

x .05 .10 .11 .12 .31 .37 .42

y .48 .55 .48 .50 .58 .52 1.02

x .58 .68 .68 .73 .85 .92

y .86 .86 1.00 .88 1.04 1.70

The author used simple linear regression to ana-

lyze the data. Use the accompanying MINITAB

output to answer the following questions:

a. What are the least squares estimates of b0 and
b1?

b. Predict lichen N for an NO3
� deposition

value of .5.

c. What is the estimate of s?
d. What is the value of total variation, and how

much of it can be explained by the model

relationship?
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The regression equation is lichen

N ¼ 0.365 + 0.967 no3 depo

Predictor Coef Stdev t-ratio P
Constant 0.36510 0.09904 3.69 0.004
no3 depo 0.9668 0.1829 5.29 0.000

S ¼ 0.1932 R-sq ¼ 71.7% R-sq (adj) ¼ 69.2%

Analysis of Variance

Source DF SS MS F P
Regression 1 1.0427 1.0427 27.94 0.000
Error 11 0.4106 0.0373
Total 12 1.4533

21. The article “Effects of Bike Lanes on Driver and

Bicyclist Behavior” (ASCE Transportation
Engrg. J., 1977: 243–256) reports the results of

a regression analysis with x ¼ available travel

space in feet (a convenient measure of roadway

width, defined as the distance between a cyclist

and the roadway center line) and separation dis-

tance y between a bike and a passing car (deter-

mined by photography). The data, for ten streets

with bike lanes, follows:

x 12.8 12.9 12.9 13.6 14.5

y 5.5 6.2 6.3 7.0 7.8

x 14.6 15.1 17.5 19.5 20.8

y 8.3 7.1 10.0 10.8 11.0

a. Verify that
P

xi ¼ 154:20,
P

yi ¼ 80,P
x2i ¼ 2452:18,

P
xiyi ¼ 1282:74, andP

y2i ¼ 675:16.

b. Derive the equation of the estimated regres-

sion line.

c. What separation distance would you predict

for another street that has 15.0 as its available

travel space value?

d. What would be the estimate of expected sep-

aration distance for all streets having avail-

able travel space value 15.0?

22. For the past decade rubber powder has been used

in asphalt cement to improve performance. The

article “Experimental Study of Recycled Rubber-

Filled High-Strength Concrete” (Mag. Concrete
Res., 2009: 549–556) included on a regression of

y ¼ axial strength (MPa) on x ¼ cube strength
(MPa) based on the following sample data:

x 112.3 97.0 92.7 86.0 102.0

y 75.0 71.0 57.7 48.7 74.3

x 99.2 95.8 103.5 89.0 86.7

y 73.3 68.0 59.3 57.8 48.5

a. Verify that a scatter plot supports the assump-

tion that the two variables are related via the

simple linear regression model.

b. Obtain the equation of the least squares line,

and interpret its slope.

c. Calculate and interpret the coefficient of deter-

mination

d. Calculate and interpret an estimate of the error

standard deviation s in the simple linear

regression model.

e. The largest x value in the sample considerably

exceeds the other x values. What is the effect

on the equation of the least squares line of

deleting the corresponding observation?

23. Show that the mle’s of b0 and b1 are indeed the

least squares estimates. [Hint: The pdf of Yi is
normal with mean mi ¼ b0 + b1xi and variance

s2; the likelihood is the product of the n pdf’s.]

24. Denote the residuals by e1; . . . ; en ðei ¼ yi � ŷiÞ
a. Show that

P
ei ¼ 0 and

P
xiei ¼ 0. [Hint:

Examine the two normal equations.]

b. Show that ŷi � y ¼b̂1ðxi � xÞ.
c. Use (a) and (b) to derive the analysis of vari-

ance identity for regression, Equation (12.4),

by showing that the cross-product term is 0.

d. Use (b) and Equation (12.4) to verify the

computational formula for SSE.

25. A regression analysis is carried out with y ¼ tem-

perature, expressed in �C. How do the resulting

values of b̂0 and b̂1 relate to those obtained if y is

reexpressed in �F? Justify your assertion. [Hint:
new yi ¼ y0i ¼ 1:8yi þ 32:]

26. Show that b1 and b0 of Expressions (12.2) and

(12.3) satisfy the normal equations.

27. Show that the “point of averages” ðx; yÞ lies on the
estimated regression line.

28. Suppose an investigator has data on the amount

of shelf space x devoted to display of a particular

product and sales revenue y for that product. The

investigator may wish to fit a model for which

the true regression line passes through (0, 0).

The appropriate model is Y ¼ b1x + e. Assume

that (x1, y1), . . ., (xn, yn) are observed pairs gener-

ated from this model, and derive the least squares

estimator of b1. [Hint: Write the sum of squared

deviations as a function of b1, a trial value, and use
calculus to find the minimizing value of b1.]
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29. a. Consider the data in Exercise 20. Suppose that

instead of the least squares line passing through

the points (x1, y1), . . ., (xn, yn), we wish the

least squares line passing through

ðx1 � x; y1Þ; . . . ; ðxn � x; ynÞ. Construct a

scatter plot of the (xi, yi) points and then of

the ðxi � x; yiÞ points. Use the plots to explain

intuitively how the two least squares lines are

related to each other.

b. Suppose that instead of the model

Yi ¼ b0 þ b1xi þ ei i ¼ 1; . . . ; nð Þ, we wish

to fit a model of the form

Yi ¼ b�0 þ b�1ðxi � xÞ þ ei i ¼ 1; . . . ; nð Þ.
What are the least squares estimators of b�0 and
b�1, and how do they relate tob̂0 andb̂1?

30. Consider the following three data sets, in which

the variables of interest are x ¼ commuting dis-

tance and y ¼ commuting time. Based on a scatter

plot and the values of s and r2, in which situation

would simple linear regression be most (least)

effective, and why?

1 2 3

x y x y x y

15 42 5 16 5 8
16 35 10 32 10 16
17 45 15 44 15 22
18 42 20 45 20 23
19 49 25 63 25 31
20 46 50 115 50 60

Sxx 17.50 1270.8333 1270.8333
Sxy 29.50 2722.5 1431.6667

b̂1 1.685714 2.142295 1.126557

b̂0 13.666672 7.868852 3.196729

SST 114.83 5897.5 1627.33
SSE 65.10 65.10 14.48

12.3 Inferences About the Regression
Coefficient �1

In virtually all of our inferential work thus far, the notion of sampling variability

has been pervasive. In particular, properties of sampling distributions of various

statistics have been the basis for developing confidence interval formulas and

hypothesis-testing methods. The key idea here is that the value of virtually any

quantity calculated from sample data—the value of virtually any statistic—is going

to vary from one sample to another.

Example 12.11 Reconsider the global warming data on x ¼ CO2 and y ¼ tree growth mass from

Example 12.5 in the previous section. There are 8 observations, 2 at each of the x
values 408, 554, 680, and 812. Suppose that the slope and intercept of the true

regression line are b1 ¼ .0085 and b0 ¼ �2.35, with s ¼ .5 (consistent with the

values b̂1 ¼ :00845, b̂0 ¼ �2:349, s ¼ 0:534, computed in Example 12.10). Using

R, we proceeded to generate a sample of random deviations ~e1; . . . ;~e8 from a

normal distribution with mean 0 and standard deviation .5, and then added ~ei to
b0 + b1xi to obtain 8 corresponding y values. Regression calculations were then

carried out to obtain the estimated slope, intercept, and standard deviation. This

process was repeated a total of 20 times, resulting in the values given in Table 12.1.

There is clearly variation in values of the estimated slope and estimated

intercept, as well as the estimated standard deviation. The equation of the least

squares line thus varies from one sample to the next. Figure 12.15 shows graphs of

the true regression line and the 20 sample regression lines.
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Table 12.1 Simulation results for Example 12.11

b̂0 b̂1
s

1 �2.606 0.0086 0.312

2 �3.639 0.0104 0.345

3 �3.316 0.0100 0.530

4 �3.042 0.0093 0.475

5 �3.400 0.0103 0.441

6 �3.932 0.0107 0.328

7 �2.533 0.0090 0.423

8 �2.862 0.0100 0.676

9 �2.152 0.0081 0.401

10 �2.975 0.0093 0.409

11 �2.255 0.0084 0.639

12 �3.003 0.0095 0.437

13 �3.187 0.0093 0.587

14 �2.424 0.0087 0.598

15 �1.490 0.0073 0.735

16 �1.812 0.0074 0.332

17 �1.845 0.0079 0.552

18 �4.080 0.0107 0.520

19 �2.958 0.0090 0.718

20 �1.670 0.0072 0.574
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Figure 12.15 Simulation results from Example 12.11: graphs of the true

regression line and 20 least squares lines (from R) ■
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The slope b1 of the population regression line is the true average change in the
dependent variable y associated with a 1-unit increase in the independent variable x.
The slope of the least squares line,b̂1, gives a point estimate of b1. In the same way

that a confidence interval for m and procedures for testing hypotheses about m were

based on properties of the sampling distribution of X, further inferences about b1 are
based on thinking ofb̂1 as a statistic and investigating its sampling distribution.

The values of the xi’s are assumed to be chosen before the experiment is

performed, so only the Yi’s are random. The estimators (statistics, and thus random

variables) for b0 and b1 are obtained by replacing yi by Yi in (12.2) and (12.3):

b̂1 ¼
P ðxi � xÞðYi � YÞP ðxi � xÞ2 ; b̂0 ¼

P
Yi �b̂1

P
xi

n

Similarly, the estimator for s2 results from replacing each yi in the formula for s2 by
the rv Yi:

ŝ2 ¼ S2 ¼
P

Y2
i �b̂0

P
Yi �b̂1

P
xiYi

n� 2

The denominator of b̂1, Sxx ¼
P ðxi � xÞ2, depends only on the xi’s and not

on the Yi’s, so it is a constant. Then because
P ðxi � xÞY ¼ Y

P ðxi � xÞ ¼
Y � 0 ¼ 0, the slope estimator can be written as

b̂1 ¼
P ðxi � xÞYi

Sxx
¼
X

ciYi where ci ¼ ðxi � xÞ=Sxx

That is, b̂1 is a linear function of the independent rv’s Y1, Y2, . . ., Yn, each of which
is normally distributed. Invoking properties of a linear function of random variables

discussed in Section 6.3 leads to the following results (Exercise 40).

1. The mean value of b̂1 is Eðb̂1Þ ¼ m̂b1 ¼ b1, so b̂1 is an unbiased estimator

of b1 (the distribution of b̂1 is always centered at the value of b1).

2. The variance and standard deviation of b̂1 are

Vðb̂1Þ ¼ s2
b̂1

¼ s2

Sxx
ŝb1 ¼

sffiffiffiffiffiffi
Sxx

p ð12:5Þ

where Sxx ¼
P ðxi � xÞ2 ¼P x2i�

P
xið Þ2=n. Replacing s by its estimate

s gives an estimate for sb̂1 (the estimated standard deviation, i.e., estimated

standard error, of b̂1):

ŝb1 ¼
sffiffiffiffiffiffi
Sxx

p

(This estimate can also be denoted by ŝb̂1 .)

3. The estimator b̂1 has a normal distribution (because it is a linear function

of independent normal rv’s).
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According to (12.5), the variance of b̂1 equals the variance s
2 of the random error

term—or, equivalently, of any Yi—divided by
P ðxi � xÞ2. Because P ðxi � xÞ2 is

a measure of how spread out the xi’s are about x, we conclude that making

observations at xi values that are quite spread out results in a more precise estimator

of the slope parameter (smaller variance ofb̂1), whereas values of xi all close to each
other imply a highly variable estimator. Of course, if the xi’s are spread out too far,
a linear model may not be appropriate throughout the range of observation.

Many inferential procedures discussed previously were based on standardiz-

ing an estimator by first subtracting its mean value and then dividing by its

estimated standard deviation. In particular, test procedures and a CI for the mean

m of a normal population utilized the fact that the standardized variable

ðX � mÞ=ðS= ffiffiffiffiffi
nÞp
—that is, ðX � mÞ=Sm̂—had a t distribution with n� 1 df. A similar

result here provides the key to further inferences concerning b1.

THEOREM The assumptions of the simple linear regression model imply that the

standardized variable

T ¼ b̂1 � b1
S=

ffiffiffiffiffiffi
Sxx

p ¼b̂1 � b1
Ŝb1

has a t distribution with n � 2 df.

The T ratio can be written as

T ¼ b̂1 � b1
S=

ffiffiffiffiffiffi
Sxx

p ¼
b̂1 � b1
s=

ffiffiffiffiffiffi
Sxx

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 2ÞS2 s2

�
ðn� 2Þ

s

The theorem is a consequence of the following facts: ð̂b1 � b1Þ=ðs=
ffiffiffiffiffiffi
Sxx

p Þ 	
N 0; 1ð Þ, ðn� 2ÞS2 s2

� 	 w2n�2, and b̂1 is independent of S
2. That is, T is a standard

normal rv divided by the square root of an independent chi-squared rv over its df, so

T has the specified t distribution.

A Confidence Interval for b1

As in the derivation of previous CIs, we begin with a probability statement:

P �ta=2;n�2 <
b̂1 � b1

Ŝb1
< ta=2;n�2

 !
¼ 1� a

Manipulation of the inequalities inside the parentheses to isolate b1 and substitution
of estimates in place of the estimators gives the CI formula.
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A 100(1 � a)% CI for the slope b1 of the true regression line is

b̂1 
 ta=2;n�2 � ŝb1

This interval has the same general form as did many of our previous intervals. It is

centered at the point estimate of the parameter, and the amount it extends out to

each side of the estimate depends on the desired confidence level (through the

t critical value) and on the amount of variability in the estimator b̂1 (through ŝb1 ,
which will tend to be small when there is little variability in the distribution of b̂1
and large otherwise).

Example 12.12 Is it possible to predict graduation rates from freshman test scores? Based on

the average SAT score of entering freshmen at a university, can we predict the

percentage of those freshmen who will get a degree there within 6 years? We use a

random sample of 20 universities from the 248 national universities listed in the

2005 edition of America’s Best Colleges, published by U.S.News & World Report.

Rank University Grad rate SAT Private or State

1 2 Princeton 98 1465.00 P

2 13 Brown 96 1395.00 P

3 15 Johns Hopkins 88 1380.00 P

4 69 Pittsburgh 65 1215.00 S

5 77 SUNY-Binghamton 80 1235.00 S

6 94 Kansas 58 1011.10 S

7 102 Dayton 76 1055.54 P

8 107 Illinois Inst Tech 67 1166.65 P

9 125 Arkansas 48 1055.54 S

10 139 Florida Inst Tech 54 1155.00 P

11 147 New Mexico Inst Mining 42 1099.99 S

12 158 Temple 54 1080.00 S

13 172 Montana 45 944.43 S

14 174 New Mexico 42 899.99 S

15 178 South Dakota 51 944.43 S

16 183 Virginia Commonwealth 42 1060.00 S

17 186 Widener 70 1005.00 P

18 187 Alabama A&M 38 722.21 S

19 243 Toledo 44 877.77 S

20 245 Wayne State 31 833.32 S

The SAT scores were actually given in the form of first and third quartiles, so the

average of those two numbers is used here. Notice that some of the SAT scores are

not integers. Those values were computed from ACT scores using the NCAA

formula SAT ¼ �55.556 + 44.444ACT, which is equivalent to saying that there

is a linear relationship with 17 on the ACT corresponding to 700 on the SAT, and

26 on the ACT corresponding to 1100 on the SAT.

The scatter plot of the data in Figure 12.16 suggests the appropriateness of the

linear regression model; graduation rate increases approximately linearly with SAT.
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The values of the summary statistics required for calculation of the least squares

estimates areX
xi¼21;600:97

X
yi ¼1189

X
x2i ¼24;034;220:545X

xiyi¼1;346;524:53
X

y2i ¼78;113

from which Sxy ¼ 62,346.86, Sxx ¼ 704,125.298, b̂1 ¼ :08854513, b̂0 ¼
�36:1830309, SST ¼ 7426:95, SSE ¼ 1906:439, r2 ¼ 1� 1906:439=7426:95 ¼
:7433. Roughly 74% of the observed variation in graduation rate can be attributed to

the simple linear regression model relationship between graduation rate and SAT.

Error df is 20 � 2 ¼ 18, giving s2 ¼ 1906.439/18 ¼ 105.9 and s ¼ 10.29.

The estimated standard deviation of b̂1 is

ŝb1 ¼
sffiffiffiffiffiffi
Sxx

p ¼ 10:29ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
704;125:298

p ¼ :01226

The t critical value for a confidence level of 95% is t.025,18 ¼ 2.101. The confidence

interval is

:0885
 2:101ð Þ :01226ð Þ ¼ :0885
 :0258 ¼ :063; :114ð Þ
With a high degree of confidence, we estimate that an average increase in

percentage graduation rate of between .063 and .114 is associated with a 1 point

increase in SAT. Multiplying by 100 gives the change in graduation percentage

corresponding to a 100 point increase in SAT, 8.85 
 2.58, between 6.3 and 11.4.

This shows that a substantial increase in graduation rate accompanies an increase of

100 SAT points. Is this a causal relationship, so a university president can count on

an increased graduation rate if the admissions process becomes more selective in

terms of entrance exam scores? One can imagine contrary scenarios, such as that

more serious students attend more prestigious colleges, with higher entrance

requirements and higher graduation rates, and that prestige would not be affected

by an increase in entrance requirements. However, it seems more likely that
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Figure 12.16 Scatter plot of the data from Example 12.12
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prestige would benefit from higher test scores, so this scenario is not a very good

argument against causality. In any case, there is at least one university president

who claimed that increasing test scores resulted in a higher graduation rate.

Looking at the SAS output of Figure 12.17, we find the value of ŝb1 under

Parameter Estimates as the second number in the Standard Error column. All of the

widely used statistical packages include this estimated standard error in output.

There is also an estimated standard error for the statisticb̂0. Confidence intervals for
b1 and b0 appear on the output. For all of the statistics, compare the values on the

SAS output with the values that we calculated.

The output shows the values of graduation rate, predicted values, and residuals.

Matching the rows in Figure 12.17 with the corresponding rows in the original listing

of the data, it is possible to see that the residuals for the private universities are mostly

positive. However, it is much easier to see this in Figure 12.18, where the private

Figure 12.17 SAS output for the data of Example 12.12
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universities are labeled “P” and the public universities are labeled “S.” Of the seven

private universities, five are above their predictions (positive residual) and one is

barely below. Private universities mostly seem to achieve a higher graduation rate for

a given entrance exam score (for more on this issue, see the rest of the story in

Sections 12.6 and 12.7). It is interesting to speculate about why this might occur.

Is there a more nurturing atmosphere with more individual attention at private

schools? On the other hand, private universities might attract students who are

more likely to graduate regardless of the campus atmosphere. ■

Hypothesis-Testing Procedures

As before, the null hypothesis in a test about b1 will be an equality statement. The

null value (value of b1 claimed true by the null hypothesis) will be denoted by b10
(read “beta one nought,” not “beta ten”). The test statistic results from replacing b1
in the standardized variable T by the null value b10—that is, from standardizing the

estimator of b1 under the assumption that H0 is true. The test statistic thus has a

t distribution with n � 2 df when H0 is true, so the type I error probability is

controlled at the desired level a by using an appropriate t critical value.
The most commonly encountered pair of hypotheses about b1 is H0: b1 ¼ 0

versus Ha: b1 6¼ 0. When this null hypothesis is true, mY�x ¼ b0 independent of x,
so knowledge of x gives no information about the value of the dependent variable.

A test of these two hypotheses is often referred to as the model utility test in simple

linear regression. Unless n is quite small, H0 will be rejected and the utility of

the model confirmed precisely when r2 is reasonably large. The simple linear

regression model should not be used for further inferences (estimates of mean

value or predictions of future values) unless the model utility test results in

rejection of H0 for a suitably small a.
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Figure 12.18 Comparing private and state universities
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Null hypothesis: H0: b1 ¼ b10

Test statistic value: t ¼b̂1 � b10
ŝb1

Alternative Hypothesis Rejection Region for Level a Test

Ha: b1 > b10 t � ta,n�2

Ha: b1 < b10 t � �ta,n�2

Ha: b1 6¼ b10 either t � ta/2,n�2 or t � �ta/2,n�2

A P-value based on n� 2 df can be calculated just as was done previously for

t tests in Chapters 9 and 10.

The model utility test is the test of H0: b1 ¼ 0 versus Ha: b1 6¼ 0, in

which case the test statistic value is the t ratio t ¼b̂1=ŝb1 .

Example 12.13 Let’s carry out the model utility test at significance level a ¼ .05 for the data of

Example 12.12. We use the MINITAB regression output in Figure 12.19, which can

be compared with the SAS output of Figure 12.17.

The parameter of interest is b1, the expected change in graduation rate

associated with an increase of 1 in SAT score. The null hypothesis H0: b1 ¼ 0

will be rejected in favor of the alternativeHa: b1 6¼ 0 if the t ratio t ¼ b̂1=ŝb1 satisfies
either t � ta/2,n�2 ¼ t.025,18 ¼ 2.101 or t � �2.101.

From Figure 12.19,b̂1 ¼ :08855, ŝb1 ¼ :01226, and

t ¼ :08855

:01226
¼ 7:22 (also on output)

Figure 12.19 MINITAB output for Example 12.13
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Clearly, 7.22 � 2.101, so H0 is resoundingly rejected. Alternatively, the P-value is
twice the area captured under the 18 df t curve to the right of 7.22. MINITAB gives

P-value ¼ .000, so H0 should be rejected at any reasonable a. This confirmation of

the utility of the simple linear regression model gives us license to calculate various

estimates and predictions as described in Section 12.4.

Notice that, in contrast, SAS in Figure 12.17 gives a P-value of < .0001.

This is better than the MINITAB P-value of .000 because the MINITAB value

could be incorrectly read as 0. Of course the actual value is positive, approximately

.0000010. When rounded to three decimals this gives the value .000 printed

by MINITAB.

Given the confidence interval of Example 12.12, the result of the hypothesis test

should be no surprise. It should be clear, in the two-tailed test forH0: b1 ¼ 0 at level a,
thatH0 is rejected if and only if the 100(1� a)% confidence interval fails to include 0.

In the present instance, the 95% confidence interval did not include 0, so we should

have known that the two-tailed test at level .05 would reject H0: b1 ¼ 0. ■

Regression and ANOVA

The splitting of the total sum of squares
P ðyi � yÞ2 into a part SSE, which

measures unexplained variation, and a part SSR, which measures variation

explained by the linear relationship, is strongly reminiscent of one-way ANOVA.

In fact, the null hypothesis H0: b1 ¼ 0 can be tested against Ha: b1 6¼ 0 by

constructing an ANOVA table (Table 12.2) and rejecting H0 if f � Fa,1,n�2.

The F test gives exactly the same result as the model utility t test because
t2 ¼ f and t2a=2;n�2 ¼ Fa;1;n�2. Virtually all computer packages that have regression

options include such an ANOVA table in the output. For example, Figure 12.17

shows SAS output for the university data of Example 12.12. The ANOVA table at

the top of the output has f ¼ 52.12 with a P-value of <.0001 (the actual value is

about .0000010) for the model utility test. The table of parameter estimates gives

t ¼ 7.22, again with P ¼ <.0001 (the actual value is about .0000010) and t2

¼ (7.22)2 ¼ 52.12 ¼ f.

Table 12.2 ANOVA table for simple linear regression

Source of variation df Sum of Squares Mean Square f

Regression 1 SSR SSR SSR

SSE=ðn� 2Þ
Error n � 2 SSE

s2 ¼ SSE

n� 2
Total n � 1 SST
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Fitting the Logistic Regression Model

Recall from Section 12.1 that in the logistic regression model, the dependent

variable Y is 1 if the observation is a success and 0 otherwise. The probability of

success is related to a quantitative predictor x by the logit function pðxÞ ¼
eb0þb1x=ð1þ eb0þb1xÞ. Fitting the model to sample data requires that the parameters

b0 and b1 be estimated. The standard way of doing this is by the method of

maximum likelihood. Suppose, for example, that n ¼ 5 and that the observations

made at x2, x4, and x5 are successes whereas the other two observations are failures.
Then the likelihood function is

1� p x1ð Þ½ � p x2ð Þ½ � 1� p x3ð Þ½ � p x4ð Þ½ � p x5ð Þ½ �

¼ 1

1þ eb0þb1x1

� 
eb0þb1x2

1þ eb0þb1x2

� 
1

1þ eb0þb1x3

� 
eb0þb1x4

1þ eb0þb1x4

� 
eb0þb1x5

1þ eb0þb1x5

� 

Unfortunately it is not at all straightforward to maximize this likelihood, and there

are no nice formulas for the mle’s b̂0 and b̂1 The maximization process must be

carried out using iterative numerical methods. The details are involved, but fortu-

nately the most popular statistical software packages will do this on request and

provide quantitative and graphical indications of how well the model fits.

In particular, the mle b̂1is provided along with its estimated standard devia-

tion ŝb1 . For large n, the estimator has approximately a normal distribution and the

standardized variable ð̂b1 � b1Þ=Ŝb1has approximately a standard normal distribu-

tion. This allows for calculation of a confidence interval for b1 as well as for testing
H0: b1 ¼ 0, according to which the value of x has no impact on the likelihood of

success. Some software packages report the value of the chi-squared statistic z2

rather than z itself, along with the corresponding P-value for a two-tailed test.

Example 12.14 Here is data on launch temperature and the incidence of failure for O-rings in 23

space shuttle launches prior to the Challenger disaster of January 1986.

Temperature Failure Temperature Failure Temperature Failure

53 Y 68 N 75 N

57 Y 69 N 75 Y

58 Y 70 N 76 N

63 Y 70 N 76 N

66 N 70 Y 78 N

67 N 70 Y 79 N

67 N 72 N 81 N

67 N 73 N

Figure 12.20 shows JMP output for a logistic regression analysis. We have chosen

to let p denote the probability of failure. Failures tended to occur at lower tem-

peratures and successes at higher temperatures, so the graph of p̂ decreases as

temperature increases. The estimate of b1 is b̂1 ¼ �:2322, and the estimated

standard deviation of b̂1 is ŝb1 ¼ :1082. The value of z for testing H0: b1 ¼ 0,

which asserts that temperature does not affect the likelihood of O-ring failure, is

b̂1=ŝb1 ¼ �:2322=:1082 ¼ �2:15. The P-value is .032 (twice the area under the z

650 CHAPTER 12 Regression and Correlation



curve to the left of�2.15). JMP reports the value of a chi-squared statistic, which is

just z2, and the chi-squared P-value differs from that for z only because of rounding.
For each 1-degree increase in temperature, we estimate that the odds of failure

decrease by a factor of eb̂1 ¼ e�:2322 � :79. The launch temperature for the Chal-
lenger mission was only 31�F. Because this value is much smaller than any

temperature in our sample, it is dangerous to extrapolate the estimated relationship.

Nevertheless, it appears that for a temperature this small, O-ring failure is almost a

sure thing. The logistic regression gives the estimated probability at x ¼ 31 as

pð31Þ ¼ eb0þb1ð31Þ

1þ eb0þb1ð31Þ ¼
e15:0423�:23215ð31Þ

1þ e15:0423�:23215ð31Þ ¼ :99961

and the odds associated with this probability are .99961/(1 � .99961) � 2563.

Thus, if the logistic regression can be extrapolated down to 31, the probability of

failure is .99961, the probability of success is .00039, and the predicted odds are

2563 to 1 against success. Too bad this calculation was not done before launch!

Exercises Section 12.3 (31–44)

31. Reconsider the situation described in Exam-

ple 12.5, in which x ¼ CO2 concentration

and y ¼ mass of 11-month-old pine trees.

Suppose the simple linear regression model is

valid for x between 450 and 750, and that

b1 ¼ .008 and s ¼ .5. Consider an experiment

in which n ¼ 7, and the x values at which obser-

vations are made are x1 ¼ 450, x2 ¼ 500,

x3 ¼ 550, x4 ¼ 600, x5 ¼ 650, x6 ¼ 700, and

x7 ¼ 750.

a. Calculate ŝb1 , the standard deviation of b̂1.
b. What is the probability that the estimated

slope based on such observations will be

between .006 and .010?

c. Suppose it is also possible to make a single

observation at each of the n ¼ 11 values 525,

540, 555, 570, . . ., 675. If a major objective is

to estimate b1 as accurately as possible, would
the experiment with n ¼ 11 be preferable to

the one with n ¼ 7?
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Parameter Estimates
Term Estimate Std Error ChiSquare Prob>ChiSq
Intercept 15.0422911 7.378391 4.16 0.0415
temp –0.2321537 0.1082329 4.60 0.0320

Figure 12.20 Logistic regression output from JMP ■
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32. Exercise 17 of Section 12.2 gave data on x ¼
rainfall volume and y ¼ runoff volume (both in

m3). Use the accompanying MINITAB output to

decide whether there is a useful linear relation-

ship between rainfall and runoff, and then calcu-

late a confidence interval for the true average

change in runoff volume associated with a 1-m3

increase in rainfall volume.

The regression equation is runoff ¼
�1.13 + 0.827 rainfall

Predictor Coef Stdev t-ratio P

Constant �1.128 2.368 �0.48 0.642

Rainfall 0.82697 0.03652 22.64 0.000

s ¼ 5.240 R-sq ¼ 97.5% R-sq(adj)¼97.3%

33. Exercise 16 of Section 12.2 included MINITAB

output for a regression of daughter’s height on

the midparent height.

a. Use the output to calculate a confidence inter-
val with a confidence level of 95% for the

slope b1 of the population regression line, and
interpret the resulting interval.

b. Suppose it had previously been believed that

when midparent height increased by 1 in., the

associated true average change in the daugh-

ter’s height would be at least 1 in. Does the

sample data contradict this belief? State and

test the relevant hypotheses.

34. The invasive diatom species Didymosphenia
Geminata has the potential to inflict substantial

ecological and economic damage in rivers. The

article “Substrate Characteristics Affect Coloni-

zation by the Bloom-Forming Diatom Didymo-
sphenia Geminata” (Aquatic Ecology, 2010:

33–40) described an investigation of coloniza-

tion behavior. One aspect of particular interest

was whether y ¼ colony density was related to

x ¼ rock surface area. The article contained a

scatter plot and summary of a regression analy-

sis. Here is representative data:

x 50 71 55 50 33 58 79

y 152 1929 48 22 2 5 35

x 26 69 44 37 70 20 45 49

y 7 269 38 171 13 43 185 25

a. Fit the simple linear regression model to this

data, and then calculate and interpret the coef-

ficient of determination.

b. Carry out a test of hypotheses to determine

whether there is a useful linear relationship

between density and rock area.

c. The second observation has a very extreme

y value (in the full data set consisting of 72

observations, there were two of these). This

observation may have had a substantial

impact on the fit of the model and subsequent

conclusions. Eliminate it and redo parts (a)

and (b). What do you conclude?

35. How does lateral acceleration—side forces expe-

rienced in turns that are largely under driver

control—affect nausea as perceived by bus pas-

sengers? The article “Motion Sickness in Public

Road Transport: The Effect of Driver, Route,

and Vehicle” (Ergonomics, 1999: 1646–1664)

reported data on x ¼ motion sickness dose (calcu-

lated in accordance with a British standard for

evaluating similar motion at sea) and y ¼ reported

nausea (%). Relevant summary quantities are

n ¼ 17;
X

xi ¼ 222:1;
X

yi ¼ 193;X
x2i ¼ 3056:69;

X
xiyi ¼ 2759:6;X

y2i ¼ 2975

Values of dose in the sample ranged from 6.0

to 17.6.

a. Assuming that the simple linear regression

model is valid for relating these two variables

(this is supported by the raw data), calculate

and interpret an estimate of the slope parame-

ter that conveys information about the preci-

sion and reliability of estimation.

b. Does it appear that there is a useful linear

relationship between these two variables?

Answer the question by employing the P-
value approach.

c. Would it be sensible to use the simple linear

regression model as a basis for predicting %

nausea when dose ¼ 5.0? Explain your

reasoning.

d. When MINITAB was used to fit the simple

linear regression model to the raw data, the

observation (6.0, 2.50) was flagged as possi-

bly having a substantial impact on the fit.

Eliminate this observation from the sample

and recalculate the estimate of part (a).

Based on this, does the observation appear

to be exerting an undue influence?

36. Mist (airborne droplets or aerosols) is gen-

erated when metal-removing fluids are

used in machining operations to cool and
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lubricate the tool and workpiece. Mist gen-

eration is a concern to OSHA, which has

substantially lowered the workplace stan-

dard. The article “Variables Affecting Mist

Generation from Metal Removal Fluids”

(Lubricat. Engrg., 2002: 10–17) gave the

accompanying data on x ¼ fluid flow veloc-

ity for a 5% soluble oil (cm/s) and y ¼ the

extent of mist droplets having diameters

smaller than 10 mm (mg/m3):

x 89 177 189 354 362 442 965

y .40 .60 .48 .66 .61 .69 .99

a. The investigators performed a simple linear

regression analysis to relate the two variables.

Does a scatter plot of the data support this

strategy?

b. What proportion of observed variation in mist

can be attributed to the simple linear regression

relationship between velocity and mist?

c. The investigators were particularly interested

in the impact on mist of increasing velocity

from 100 to 1000 (a factor of 10 corresponding

to the difference between the smallest and larg-

est x values in the sample). When x increases in
this way, is there substantial evidence that the

true average increase in y is less than .6?

d. Estimate the true average change in mist asso-

ciated with a 1 cm/s increase in velocity, and

do so in a way that conveys information about

precision and reliability.

37. Refer to the data on x ¼ iodine value and y ¼
cetane number given in Exercise 19.

a. Does the simple linear regression model spec-

ify a useful relationship between the two vari-

ables? Use the appropriate test procedure to

obtain information about the P-value and then
reach a conclusion at significance level .01.

b. Compute a 95% CI for the expected change in

cetane number associated with a 10 g increase

in iodine value.

38. Carry out the model utility test using the

ANOVA approach for the filtration rate–mois-

ture content data of Example 12.7. Verify that it

gives a result equivalent to that of the t test.

39. Use the rules of expected value to show thatb̂0 is
an unbiased estimator for b0 (assuming thatb̂1 is
unbiased for b1).

40. a. Verify that Eð̂b1Þ ¼ b1 by using the rules of

expected value from Chapter 6.

b. Use the rules of variance from Chapter 6 to

verify the expression for Vð̂b1Þ given in this

section.

41. Verify that if each xi is multiplied by a positive

constant c and each yi is multiplied by another

positive constant d, the t statistic for testing H0:

b1 ¼ 0 versus Ha: b1 6¼ 0 is unchanged in value

(the value ofb̂1 will change, which shows that the

magnitude ofb̂1 is not by itself indicative of model

utility).

42. The probability of a type II error for the t test
for H0: b1 ¼ b10 can be computed in the same

manner as it was computed for the t tests of

Chapter 9. If the alternative value of b1 is denoted
by b01, the value of

d ¼ jb10 � b01j
s
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

Sxx

r

is first calculated, then the appropriate set of curves

in Appendix Table A.16 is entered on the horizontal

axis at the value of d, and b is read from the curve

for n � 2 df. An article in the Journal of Public
Health Engineering. reports the results of

a regression analysis based on n ¼ 15 observations

in which x ¼ filter application temperature (�C)
and y ¼ % efficiency of BOD removal. Here

BOD stands for biochemical oxygen demand,

and it is a measure of organic matter in sewage.

Calculated quantities include
P

xi ¼ 402;P
x2i ¼ 11;098; s ¼ 3:725, and b̂1 ¼ 1:7035.

Consider testing at significance level .01 H0:

b1 ¼ 1, which states that the expected increase in

% BOD removal is 1 when filter application tem-

perature increases by 1�C, against the alternative

Ha: b1 > 1. Determine P(type II error) when

b01 ¼ 2; s ¼ 4.

43. Kyphosis, or severe forward flexion of the spine,

may persist despite corrective spinal surgery.

A study carried out to determine risk factors for

kyphosis reported the following ages (months) for

40 subjects at the time of the operation; the first 18

subjects did have kyphosis and the remaining 22

did not.

Kyphosis 12 15 42 52 59 73

82 91 96 105 114 120

121 128 130 139 139 157

No kyphosis 1 1 2 8 11 18

22 31 37 61 72 81

97 112 118 127 131 140

151 159 177 206
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Use the accompanying MINITAB logistic regres-

sion output to decide whether age appears to have

a significant impact on the presence of kyphosis.

44. The following data resulted from a study

commissioned by a large management con-

sulting company to investigate the relationship

between amount of job experience (months) for

a junior consultant and the likelihood of the

consultant being able to perform a certain

complex task.

Success 8 13 14 18 20 21 21 22 25 26 28

29 30 32

Failure 4 5 6 6 7 9 10 11 11 13 15

18 19 20 23 27

Interpret the accompanying MINITAB logistic

regression output, and sketch a graph of the esti-

mated probability of task performance as a func-

tion of experience.

12.4 Inferences Concerning �Y�x � and
the Prediction of Future Y Values
Let x* denote a specified value of the independent variable x. Once the estimates b̂0
and b̂1 have been calculated,b̂0 þb̂1x

� can be regarded either as a point estimate of

mY�x� (the expected or true average value of Y when x ¼ x*) or as a prediction of the
Y value that will result from a single observation made when x ¼ x*. The point

estimate or prediction by itself gives no information concerning how precisely mY�x�
has been estimated or Y has been predicted. This can be remedied by developing a

CI for mY�x� and a prediction interval (PI) for a single Y value.

Before we obtain sample data, both b̂0 and b̂1 are subject to sampling

variability—that is, they are both statistics whose values will vary from sample

to sample. This variability was shown in Example 12.11 at the beginning of

Section 12.3. Suppose, for example, that b0 ¼ 50 and b1 ¼ 2. Then a first sample

of (x, y) pairs might give b̂0 ¼ 52:35, b̂1 ¼ 1:895, a second sample might result in

b̂0 ¼ 46:52, b̂1 ¼ 2:056, and so on. It follows that Ŷ ¼b̂0 þb̂1x
� itself varies in

value from sample to sample, so it is a statistic. If the intercept and slope of the

population line are the aforementioned values 50 and 2, respectively, and x* ¼ 10,

then this statistic is trying to estimate the value 50 + 2(10) ¼ 70. The estimate

from a first sample might be 52.35 + 1.895(10) ¼ 71.30, from a second sample

might be 46.52 + 2.056(10) ¼ 67.08, and so on. In the same way that a confidence

interval for b1 was based on properties of the sampling distribution of b̂1, a

confidence interval for a mean y value in regression is based on properties of the

sampling distribution of the statistic b̂0 þb̂1x
�.

Substitution of the expressions for b̂0 and b̂1 into b̂0 þb̂1x
� followed by some

algebraic manipulation leads to the representation ofb̂0 þb̂1x
� as a linear function

of the Yi’s:

b̂0 þb̂1x
� ¼

Xn
i¼1

1

n
þ ðx� � xÞðxi � xÞP ðxj � xÞ2

" #
Yi ¼

Xn
i¼1

diYi

Predictor Coef StDev z P Odds ratio 95% lower CI upper

Constant �3.211 1.235 �2.60 0.009

Age 0.17772 0.06573 2.70 0.007 1.19 1.05 1.36

Predictor Coef StDev z P Odds ratio 95% lower CI upper

Constant �0.5727 0.6024 �0.95 0.342

Age 0.004296 0.005849 0.73 0.463 1.00 0.99 1.02
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The coefficients d1, d2, . . ., dn in this linear function involve the xi’s and x*,
all of which are fixed. Application of the rules of Section 6.3 to this linear function

gives the following properties. (Exercise 55 requests a derivation of Property 2.)

Let Ŷ ¼b̂0 þb̂1x
�, where x* is some fixed value of x. Then

1. The mean value of Ŷ is

EðŶÞ ¼ Eðb̂0 þb̂1x
�Þ ¼ mb̂0þb̂1x�

¼ b0 þ b1x
�

Thus b̂0 þb̂1x
� is an unbiased estimator for b0 + b1x* (i.e., for mY�x� ).

2. The variance of Ŷ is

VðŶÞ ¼ s2
Ŷ
¼ s2

1

n
þ ðx� � xÞ2P

x2i �
P

xið Þ2=n

" #
¼ s2

1

n
þ ðx� � xÞ2

Sxx

" #

and the standard deviation sŶ is the square root of this expression. The

estimated standard deviation of b̂0 þb̂1x
�, denoted by sŶ or ŝb0þ̂b1x� , results

from replacing s by its estimate s:

sŶ ¼ ŝb0þb̂1x� ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ ðx� � xÞ2

Sxx

s

3. Ŷ has a normal distribution (because the Yi’s are normally distributed and

independent).

The variance ofb̂0 þb̂1x
� is smallest when x� ¼ x and increases as x* moves away

from x in either direction. Thus the estimator of mY�x� is more precise when x* is

near the center of the xi’s than when it is far from the x values where observations
have been made. This implies that both the CI and PI are narrower for an x* near x
than for an x* far from x. Most statistical computer packages provide bothb̂0 þb̂1x

�

and ŝb0þb̂1x� for any specified x* upon request.

Inferences Concerning mY�x �

Just as inferential procedures for b1 were based on the t variable obtained by

standardizing b̂1, a t variable obtained by standardizing b̂0 þb̂1x
� leads to a CI

and test procedures here.

THEOREM The variable

T ¼ b̂0 þb̂1x
� � ðb0 þ b1x

�Þ
Ŝb0þb̂1x�

¼ Ŷ � ðb0 þ b1x
�Þ

SŶ
ð12:6Þ

has a t distribution with n � 2 df.
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As for b1 in the previous section, a probability statement involving this

standardized variable can be manipulated to yield a confidence interval for mY�x� .

A 100(1 � a)% CI for mY·x*, the expected value of Y when x ¼ x*, is

b̂0 þb̂1x
� 
 ta=2;n�2 � ŝb0þb̂1x� ¼ ŷ
 ta=2;n�2 � sŶ ð12:7Þ

This CI is centered at the point estimate for mY�x� and extends out to each side by an
amount that depends on the confidence level and on the extent of variability in the

estimator on which the point estimate is based.

Example 12.15 Recall the university data of Example 12.12, where the dependent variable was

graduation rate and the predictor was the average SAT for entering freshmen.

Results from Example 12.12 include
P

xi¼ 21;600:97, Sxx ¼ 704;125:298,

b̂1 ¼ :088545, b̂0 ¼ �36:18, s ¼ 10:29, and therefore x ¼ 21;600:97=20 ¼ 1080.

Let’s now calculate a confidence interval, using a 95% confidence level, for the

mean graduation rate for all universities having an average freshman SAT of

1200—that is, a confidence interval for b0 + b1(1200). The interval is centered at

ŷ ¼ b̂0 þb̂1ð1200Þ ¼ �36:18þ :0885ð1200Þ ¼ 70:07

The estimated standard deviation of the statistic Ŷ is

sŶ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ ðx� � xÞ2

Sxx

s
¼ 10:29

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

20
þ ð1200� 1080Þ2

704;125

s
¼ 2:731

The 18 df t critical value for a 95% confidence level is 2.101, from which we

determine the desired interval to be

70:07
 2:101ð Þ 2:731ð Þ ¼ 70:07
 5:74 ¼ 64:33; 75:81ð Þ
This rather wide CI suggests that we don’t have terribly precise information about

the mean value being estimated. Remember that if we recalculated this interval for

sample after sample, in the long run about 95% of the calculated intervals would

include b0 + b1(1200). We can only hope that this mean value lies in the single

interval that we have calculated.

Figure 12.21 shows MINITAB output resulting from a request to calculate

confidence intervals for the mean graduation rate when the SAT is 1100 and 1200.

Because this optional output was requested, the confidence intervals (Figure 12.21)

were appended to the bottom of the regression output given in Figure 12.19. Note

that the first interval is narrower than the second, because 1100 is much closer to x
than is 1200. Figure 12.22 shows curves corresponding to the confidence limits for

each different x value. Notice how the curves get farther and farther apart as x
moves away from x. The output labeled PI in Figure 12.21 and the curves labeled PI
in Figure 12.22 refer to prediction intervals, to be discussed shortly.
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In some situations, a CI is desired not just for a single x value but for two or

more x values. Suppose an investigator wishes a CI both for mY�n and for mY�w where

v and w are two different values of the independent variable. It is tempting to

compute the interval (12.7) first for x ¼ v and then for x ¼ w. Suppose we use

a ¼ .05 in each computation to get two 95% intervals. Then if the variables

involved in computing the two intervals were independent of each other, the joint

confidence coefficient would be (.95) • (.95) � .90.

Unfortunately, the intervals are not independent because the sameb̂0,b̂1, and
S are used in each. We therefore cannot assert that the joint confidence level for the

two intervals is exactly 90%. However, Exercise 79 of Chapter 8 derives the

Bonferroni inequality showing that, if the 100(1 � a)% CI (12.7) is computed

both for x ¼ v and for x ¼ w to obtain joint CIs for mY�n and mY�w, then the joint
confidence level on the resulting pair of intervals is at least 100(1 � 2a)%. In

particular, using a ¼ .05 results in a joint confidence level of at least 90%, whereas

using a ¼ .01 results in at least 98% confidence. For example, in Example 12.15 a

95% CI for mY�1100 was (56.35, 66.08) and a 95% CI for mY�1200 was (64.33, 75.81).
The simultaneous or joint confidence level for the two statements 56.35< mY�1100 <
66.08 and 64.33 < mY�1200 < 75.81 is at least 90%.
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Figure 12.22 MINITAB scatter plot with confidence intervals and prediction

intervals for the data of Example 12.15 ■

Figure 12.21 MINITAB regression output for the data of Example 12.15
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The joint CIs are referred to as Bonferroni intervals. The method is easily

generalized to yield joint intervals for k different mY�x’s. Using the interval (12.7)
separately first for x ¼ x�1 then for x ¼ x�2; . . . , and finally for x ¼ x�k yields a set of k
CIs for which the joint or simultaneous confidence level is guaranteed to be at least
100(1 � ka)%.

Tests of hypotheses about b0 + b1x* are based on the test statistic T obtained

by replacing b0 + b1x* in the numerator of (12.6) by the null value m0. For example,

the assertion H0: b0 + b1(1200) ¼ 75 in Example 12.15 says that when the average

SAT is 1200, expected (i.e., true average) graduation rate is 75%. The test statistic

value is then t ¼ ½̂b0 þb̂1 1200ð Þ � 75�=ŝb0þb̂1ð1200Þ, and the test is upper-, lower-, or

two-tailed according to the inequality in Ha.

A Prediction Interval for a Future Value of Y

Analogous to the CI (12.7) for mY�x� , one frequently wishes to obtain an interval of

plausible values for the value of Y associated with some future observation when

the independent variable has value x*. In the scenario of Example 12.5, the CI

(12.7) can be used to provide an interval estimate of true average tree mass for all

trees exposed to CO2 concentration x ¼ 600. Alternatively, we might wish an

interval of plausible values for the mass of a single such tree.

A CI refers to a parameter, or population characteristic, whose value is fixed

but unknown to us. In contrast, a future value of Y is not a parameter but instead a

random variable; for this reason we refer to an interval of plausible values for a

future Y as a prediction interval rather than a confidence interval. For the

confidence interval we use the error of estimation, b0 þ b1x
� � ð̂b0 þb̂1x

�Þ, a

difference between a fixed (but unknown) quantity and a random variable. The

error of prediction is Y � ð̂b0 þb̂1x
�Þ ¼ b0 þ b1x

� þ e� ð̂b0 þb̂1x
�Þ, a difference

between two random variables. With the additional random e term, there is more

uncertainty in prediction than in estimation, so a PI will be wider than a CI. Because

the future value Y is independent of the observed Yi’s,

V½Y � ð̂b0 þb̂1x
�Þ� ¼ variance of prediction error

¼ VðYÞ þ Vð̂b0 þb̂1x
�Þ

¼ s2 þ s2
1

n
þ ðx� � xÞ2

Sxx

" #

¼ s2 1þ 1

n
þ ðx� � xÞ2

Sxx

" #

Furthermore, because EðYÞ ¼ b0 þ b1x
� and Eð̂b0 þb̂1x

�Þ ¼ b0 þ b1x
�, the

expected value of the prediction error is E½Y � ð̂b0 þb̂1x
�Þ� ¼ 0. It can then be

shown that the standardized variable

T ¼ Y � ð̂b0 þb̂1x
�Þ

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ ðx� � xÞ2

Sxx

s
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has a t distribution with n � 2 df. Substituting this T into the probability statement

P(�ta/2,n�2 < T < ta/2,n�2) ¼ 1� a and manipulating to isolate Y between the two

inequalities yields the following interval.

A 100(1 � a)% PI for a future Y observation to be made when x ¼ x* is

b̂0 þb̂1x
� 
 ta=2;n�2 � s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ ðx� � xÞ2

Sxx

s

¼ b̂0 þb̂1x
� 
 ta=2;n�2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ s2

b̂0þb̂1x�
q

¼ ŷ
 ta=2;n�2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ s2

Ŷ

q

ð12:8Þ

The interpretation of the prediction level 100(1 � a)% is identical to that of

previous confidence levels—if (12.8) is used repeatedly, in the long run the

resulting intervals will actually contain the observed y values 100(1 � a)% of the

time. Notice that the 1 underneath the initial square root symbol makes the PI (12.8)

wider than the CI (12.7), although the intervals are both centered atb̂0 þb̂1x
�. Also,

as n ! 1 the width of the CI approaches 0, whereas the width of the PI approaches

2za/2s (because even with perfect knowledge of b0 and b1, there will still be

uncertainty in prediction).

Example 12.16 Let’s return to the university data of Example 12.15 and calculate a 95% prediction

interval for a graduation rate that would result from selecting a single university

whose average SAT is 1200. Relevant quantities from that example are

ŷ ¼ 70:07 sŶ ¼ 2:731 s ¼ 10:29

For a prediction level of 95% based on n � 2 ¼ 18 df, the t critical value is 2.101,
exactly what we previously used for a 95% confidence level. The prediction

interval is then

70:07
 ð2:101Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10:292 þ 2:7312

p
¼ 70:07
 2:101ð Þ 10:646ð Þ
¼ 70:07
 22:37 ¼ 47:70; 92:44ð Þ

Plausible values for a single observation on graduation rate when SAT is 1200 are

(at the 95% prediction level) between 47.70% and 92.44%. The 95% confidence

interval for graduation rate when SAT is 120 was (64.33, 75.81). The prediction

interval is much wider than this because of the extra 10.292 under the square root.

Figure 12.22, the MINITAB output for Example 12.15, shows this interval as well

as the confidence interval. ■

The Bonferroni technique can be employed as in the case of confidence

intervals. If a PI with prediction level 100(1 � a)% is calculated for each of k
different values of x, the simultaneous or joint prediction level for all k intervals is
at least 100(1 � ka)%.
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Exercises Section 12.4 (45–55)

45. Recall Example 12.5 and Example 12.6 of Sec-

tion 12.2, where the simple linear regression

model was applied to 8 observations on x ¼ CO2

concentration and y ¼ mass in kilograms of pine

trees at age 11 months. Further calculations give

s ¼ .534 and ŷ ¼ 2:723, sŶ ¼ :190 when

x ¼ 600, and ŷ ¼ 3:992, sŶ ¼ :256 when

x ¼ 750.

a. Explain why sŶ is larger when x ¼ 750 than

when x ¼ 600.

b. Calculate a confidence interval with a confi-

dence level of 95% for the true average mass

of all trees grown with a CO2 concentration of

600 parts per million.

c. Calculate a prediction interval with a predic-

tion level of 95% for the mass of a tree grown

with a CO2 concentration of 600 parts per

million.

d. If a 95% CI is calculated for the true average

mass when CO2 concentration is 750, what

will be the simultaneous confidence level for

both this interval and the interval calculated

in part (b)?

46. Reconsider the filtration rate–moisture content

data introduced in Example 12.7 (see also Exam-

ple 12.8).

a. Compute a 90% CI for b0 + 125b1, true aver-
age moisture content when the filtration rate

is 125.

b. Predict the value of moisture content for a

single experimental run in which the filtration

rate is 125 using a 90% prediction level. How

does this interval compare to the interval of

part (a)? Why is this the case?

c. How would the intervals of parts (a) and (b)

compare to a CI and PI when filtration rate is

115? Answer without actually calculating

these new intervals.

d. Interpret both H0: b0 + 125b1 ¼ 80 and

Ha: b0 + 125b1 < 80, and then carry out a

test at significance level .01.

47. Astringency is the quality in a wine that makes

the wine drinker’s mouth feel slightly rough, dry,

and puckery. The paper “Analysis of Tannins in

Red Wine Using Multiple Methods: Correlation

with Perceived Astringency” (Amer. J. Enol.
Vitic., 2006: 481–485) reported on an investiga-

tion to assess the relationship between perceived

astringency and tannin concentration using vari-

ous analytic methods. Here is data provided by

the authors on x ¼ tannin concentration by pro-

tein precipitation and y ¼ perceived astringency

as determined by a panel of tasters.

x 0.718 0.808 0.924 1.000 0.667 0.529 0.514 0.559

y 0.428 0.480 0.493 0.978 0.318 0.298 �0.224 0.198

x 0.766 0.470 0.726 0.762 0.666 0.562 0.378 0.779

y 0.326 �0.336 0.765 0.190 0.066 �0.221 �0.898 0.836

x 0.674 0.858 0.406 0.927 0.311 0.319 0.518 0.687

y 0.126 0.305 �0.577 0.779 �0.707 �0.610 �0.648 �0.145

x 0.907 0.638 0.234 0.781 0.326 0.433 0.319 0.238

y 1.007 �0.090 �1.132 0.538 �1.098 �0.581 �0.862 �0.551

Relevant summary quantities are as follows:

X
xi ¼ 19:404;

X
yi ¼ �:549;

X
x2i ¼ 13:248032;X

y2i ¼ 11:835795;
X

xiyi ¼ 3:497811

Sxx ¼ 13:248032� ð19:404Þ2=32 ¼ 1:48193150;

Syy ¼ 11:82637622

Sxy ¼ 3:497811� ð19:404Þð�:549Þ=32 ¼ 3:83071088

a. Fit the simple linear regression model to this

data. Then determine the proportion of

observed variation in astringency that can be

attributed to the model relationship between

astringency and tannin concentration.

b. Calculate and interpret a confidence interval

for the slope of the true regression line.

c. Estimate true average astringency when tan-

nin concentration is .6, and do so in a way that

conveys information about reliability and pre-

cision.

d. Predict astringency for a single wine sample

whose tannin concentration is .6, and do so in

a way that conveys information about reliabil-

ity and precision.

e. Is there compelling evidence for concluding

that true average astringency is positive when

tannin concentration is .7? State and test the

appropriate hypotheses.

48. The simple linear regression model provides a

very good fit to the data on rainfall and runoff

volume given in Exercise 17 of Section 12.2. The

equation of the least squares line is

ŷ ¼ �1:128þ :82697x, r2 ¼ :975, and s ¼ 5:24.
a. Use the fact that sŶ ¼ 1:44 when rainfall

volume is 40 m3 to predict runoff in a way
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that conveys information about reliability and

precision. Does the resulting interval suggest

that precise information about the value of

runoff for this future observation is available?

Explain your reasoning.

b. Calculate a PI for runoff when rainfall is 50

using the same prediction level as in part (a).

What can be said about the simultaneous pre-

diction level for the two intervals you have

calculated?

49. You are told that a 95% CI for expected lead

content when traffic flow is 15, based on a sam-

ple of n ¼ 10 observations, is (462.1, 597.7).

Calculate a CI with confidence level 99% for

expected lead content when traffic flow is 15.

50. Refer to Exercise 21 in which x ¼ available

travel space in feet and y ¼ separation distance

in feet between a bicycle and a passing car.

a. MINITAB gives ŝb0þ̂b1ð15Þ ¼ :186 and

ŝb0þb̂1ð20Þ ¼ :360. Explain why one is much

larger than the other.

b. Calculate a 95% CI for expected separation

distance when available travel space is 15 ft.

(Use ŝb0þ̂b1ð15Þ ¼ :186.)
c. Calculate a 95% PI for a single instance of

separation distance when available travel

space is 20 ft. (Use ŝb0þb̂1ð20Þ ¼ :360.)

51. Plasma etching is essential to the fine-line pat-

tern transfer in current semiconductor processes.

The article “Ion Beam-Assisted Etching of Alu-

minum with Chlorine” (J. Electrochem. Soc.,
1985: 2010–2012) gives the accompanying data

(read from a graph) on chlorine flow (x, in

SCCM) through a nozzle used in the etching

mechanism and etch rate (y, in 100 A/min).

x 1.5 1.5 2.0 2.5 2.5 3.0 3.5 3.5 4.0

y 23.0 24.5 25.0 30.0 33.5 40.0 40.5 47.0 49.0

The summary statistics are
P

xi ¼ 24:0,P
yi ¼ 312:5,

P
x2i ¼ 70:50,

P
xiyi ¼ 902:25;P

y2i ¼ 11;626:75, b̂0 ¼ 6:448718, b̂1 ¼
10:602564.
a. Does the simple linear regression model spec-

ify a useful relationship between chlorine

flow and etch rate?

b. Estimate the true average change in etch rate

associated with a 1-SCCM increase in flow

rate using a 95% confidence interval, and

interpret the interval.

c. Calculate a 95% CI for mY·3.0, the true average
etch rate when flow ¼ 3.0. Has this average

been precisely estimated?

d. Calculate a 95% PI for a single future obser-

vation on etch rate to be made when flow

¼ 3.0. Is the prediction likely to be accurate?

e. Would the 95% CI and PI when flow ¼ 2.5 be

wider or narrower than the corresponding

intervals of parts (c) and (d)? Answer without

actually computing the intervals.

f. Would you recommend calculating a 95% PI

for a flow of 6.0? Explain.

g. Calculate simultaneous CI’s for true average

etch rate when chlorine flow is 2.0, 2.5, and

3.0, respectively. Your simultaneous confi-

dence level should be at least 97%.

52. Consider the following four intervals based on

the data of Exercise 20 (Section 12.2):

a. A 95% CI for lichen nitrogen when NO�
3 is .5

b. A 95% PI for lichen nitrogen when NO�
3 is .5

c. A 95% CI for lichen nitrogen when NO�
3 is .8

d. A 95% PI for lichen nitrogen when NO�
3 is .8

e. Without computing any of these intervals,

what can be said about their widths relative

to each other?

53. The decline of water supplies in certain areas of

the United States has created the need for

increased understanding of relationships

between economic factors such as crop yield

and hydrologic and soil factors. The article

“Variability of Soil Water Properties and Crop

Yield in a Sloped Watershed” (Water Resources
Bull., 1988: 281–288) gives data on grain sor-

ghum yield (y, in g/m-row) and distance upslope

(x, in m) on a sloping watershed. Selected obser-

vations are given in the accompanying table.

x 0 10 20 30 45 50 70

y 500 590 410 470 450 480 510

x 80 100 120 140 160 170 190

y 450 360 400 300 410 280 350

a. Construct a scatter plot. Does the simple lin-

ear regression model appear to be plausible?

b. Carry out a test of model utility.

c. Estimate true average yield when distance

upslope is 75 by giving an interval of plausi-

ble values.
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54. Infestation of crops by insects has long been of

great concern to farmers and agricultural scien-

tists. The article “Cotton Square Damage by the

Plant Bug, Lygus hesperus, and Abscission Rates”
(J. Econ. Entomol., 1988: 1328–1337) reports data
on x ¼ age of a cotton plant (days) and y ¼ %

damaged squares. Consider the accompanying

n ¼ 12 observations (read from a scatter plot in

the article).

x 9 12 12 15 18 18

y 11 12 23 30 29 52

x 21 21 27 30 30 33

y 41 65 60 72 84 93

a. Why is the relationship between x and y not

deterministic?

b. Does a scatter plot suggest that the simple

linear regression model will describe the rela-

tionship between the two variables?

c. The summary statistics are
P

xi ¼ 246,P
x2i ¼ 5742,

P
yi ¼ 572,

P
y2i ¼ 35;634

and
P

xiyi ¼ 14;022. Determine the equation

of the least squares line.

d. Predict the percentage of damaged squares

when the age is 20 days by giving an interval

of plausible values.

55. Verify that Vð̂b0 þb̂1xÞ is indeed given by

the expression in the text. [Hint:

VðP diYiÞ ¼
P

d2i � VðYiÞ.]

12.5 Correlation
In many situations the objective in studying the joint behavior of two variables is to

see whether they are related, rather than to use one to predict the value of the other.

In this section, we first develop the sample correlation coefficient r as a measure of

how strongly related two variables x and y are in a sample and then relate r to the

correlation coefficient r defined in Chapter 5.

The Sample Correlation Coefficient r

Given n pairs of observations (x1, y1), (x2, y2), . . ., (xn, yn), it is natural to speak of x
and y having a positive relationship if large x’s are paired with large y’s and small

x’s with small y’s. Similarly, if large x’s are paired with small y’s and small x’s with
large y’s, then a negative relationship between the variables is implied. Consider

the quantity

Sxy ¼
Xn
i¼1

ðxi � xÞðyi � yÞ ¼
Xn
i¼1

xiyi �
Pn
i¼1

xi

� � Pn
i¼1

yi

� �

n

Then if the relationship is strongly positive, an xi above the mean x will tend to be

paired with a yi above the mean y, so that ðxi � xÞðyi � yÞ > 0, and this product will

also be positive whenever both xi and yi are below their respective means. Thus a

positive relationship implies that Sxy will be positive. An analogous argument

shows that when the relationship is negative, Sxy will be negative, since most of

the products ðxi � xÞðyi � yÞ will be negative. This is illustrated in Figure 12.23.

Although Sxy seems a plausible measure of the strength of a relationship, we

do not yet have any idea of how positive or negative it can be. Unfortunately, Sxy
has a serious defect: By changing the unit of measurement for either x or y, Sxy can
be made either arbitrarily large in magnitude or arbitrarily close to zero. For

example, if Sxy ¼ 25 when x is measured in meters, then Sxy ¼ 25,000 when x is
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measured in millimeters and .025 when x is expressed in kilometers. A reasonable

condition to impose on any measure of how strongly x and y are related is that the

calculatedmeasure should not depend on the particular unit used tomeasure them. This

condition is achieved by modifying Sxy to obtain the sample correlation coefficient.

DEFINITION The sample correlation coefficient for the n pairs (x1, y1), . . ., (xn, yn) is

r ¼ SxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxi � xÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðyi � yÞ2

q ¼ Sxyffiffiffiffiffiffi
Sxx

p ffiffiffiffiffiffi
Syy

p ð12:9Þ

Example 12.17 An accurate assessment of soil productivity is critical to rational land-use planning.

Unfortunately, as the author of the article “Productivity Ratings Based on Soil Series”

(Prof.Geographer, 1980: 158–163) argues, an acceptable soil productivity index is not
so easy to come by. One difficulty is that productivity is determined partly by which

crop is planted, and the relationship between yield of two different crops planted in the

same soil may not be very strong. To illustrate, the article presents the accompanying

data on corn yield x and peanut yield y (mT/ha) for eight different types of soil.

x 2.4 3.4 4.6 3.7 2.2 3.3 4.0 2.1

y 1.33 2.12 1.80 1.65 2.00 1.76 2.11 1.63

With
P

xi ¼ 25:7,
P

yi ¼ 14:40,
P

x2i ¼ 88:31,
P

xiyi ¼ 46:856,
P

y2i ¼
26:4324,

Sxx ¼ 88:31� 25:72

8
¼ 88:31� 82:56 ¼ 5:75

Syy ¼ 26:4324� 14:402

8
¼ :5124

Sxy ¼ 46:856� ð25:7Þð14:40Þ
8

¼ :5960

x x

y
y

a b

Figure 12.23 (a) Scatter plot with Sxy positive; (b) scatter plot with Sxy negative

[+ means ðxi � �xÞðyi � �yÞ > 0, and � means ðxi � �xÞðyi � �yÞ < 0]
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from which

r ¼ :5960ffiffiffiffiffiffiffiffiffi
5:75

p ffiffiffiffiffiffiffiffiffiffiffi
:5124

p ¼ :347
■

Properties of r

The most important properties of r are as follows:

1. The value of r does not depend on which of the two variables is labeled x and
which is labeled y.

2. The value of r is independent of the units in which x and y are measured.

3. �1 � r � 1

4. r ¼ 1 if and only if (iff) all (xi, yi) pairs lie on a straight line with positive slope,
and r ¼ �1 iff all (xi, yi) pairs lie on a straight line with negative slope.

5. The square of the sample correlation coefficient gives the value of the

coefficient of determination that would result from fitting the simple linear

regression model—in symbols, (r)2 ¼ r2.

Property 1 should be evident. Exercise 66 asks you to verify Property 2. To

derive Property 5, recall the regression analysis of variance identity (12.4),

[SST ¼ SSEþ SSR ¼ SSEþP ðŷi � yÞ2]. It is easily shown [Exercise 24(b)]

that ŷi � y ¼ b̂1ðxi � xÞ, and therefore

X
ðŷi� yÞ2 ¼b̂21

X
ðxi� xÞ2 ¼

Pðxi� xÞðyi� yÞPðxi� xÞ2
" #2X

ðxi� xÞ2

¼
Pðxi� xÞðyi� yÞ½ �2Pðxi� xÞ2Pðyi� yÞ2

X
ðyi� yÞ2 ¼ ðrÞ2SST

Here (r)2 is the square of the correlation coefficient. Substituting this result into the
identity (12.4) gives SST ¼ SSE + (r)2 SST, so (r)2 ¼ (SST � SSE)/SST, com-

pleting the derivation of Property 5.

Because (r)2 ¼ (SST � SSE)/SST, and the numerator cannot be bigger than

the denominator, Property 3 follows immediately. Furthermore, because the ratio

can be 1 if and only if SSE ¼ 0, we conclude that r2 ¼ 1 if and only if all the points

fall on a straight line. If the correlation is positive this will be a line with positive

slope, and if the correlation is negative it will be a line with negative slope, so we

have verified Property 4.

Property 1 stands in marked contrast to what happens in regression analysis,

where virtually all quantities of interest (the estimated slope, estimated y-intercept,
s2, etc.) depend on which of the two variables is treated as the dependent variable.

However, Property 5 shows that the proportion of variation in the dependent

variable explained by fitting the simple linear regression model does not depend

on which variable plays this role.

Property 2 is equivalent to saying that r is unchanged if each xi is replaced by
cxi and if each yi is replaced by dyi (where c and d are positive, giving a change in

the scale of measurement), as well as if each xi is replaced by xi� a and yi by yi � b
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(which changes the location of zero on the measurement axis). This implies, for

example, that r is the same whether temperature is measured in �F or �C.
Property 3 tells us that the maximum value of r, corresponding to the largest

possible degree of positive relationship, is r ¼ 1, whereas the most negative

relationship is identified with r ¼ �1. According to Property 4, the largest positive

and largest negative correlations are achieved only when all points lie along a

straight line. Any other configuration of points, even if the configuration suggests a

deterministic relationship between variables, will yield an r value less than 1 in

absolute magnitude. Thus r measures the degree of linear relationship among

variables. A value of r near 0 is not evidence of the lack of a strong relationship,

but only the absence of a linear relation, so that such a value of rmust be interpreted

with caution. Figure 12.24 illustrates several configurations of points associated

with different values of r.

A frequently asked question is, “When can it be said that there is a

strong correlation between the variables, and when is the correlation weak?”

A reasonable rule of thumb is to say that the correlation is weak if 0 � |r| � .5,

strong if .8 � |r| � 1, and moderate otherwise. It may surprise you that r ¼ .5 is

considered weak, but r2 ¼ .25 implies that in a regression of y on x, only 25% of

observed y variation would be explained by the model. In Example 12.17, the

correlation between corn yield and peanut yield would be described as weak.

The Population Correlation Coefficient r
and Inferences About Correlation

The correlation coefficient r is a measure of how strongly related x and y are in the
observed sample. We can think of the pairs (xi, yi) as having been drawn from a

bivariate population of pairs, with (Xi, Yi) having joint probability distribution

f(x, y). In Chapter 5, we defined the correlation coefficient r(X, Y) by

r near + 1 r near - 1

r near 0, no
apparent relationship

r near 0, nonlinear
relationship

Figure 12.24 Data plots for different values of r
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r ¼ rðX;YÞ ¼ CovðX; YÞ
sXsY

where

CovðX; YÞ ¼
P
x

P
y
ðx� mXÞðy� mYÞf ðx; yÞ ðX; YÞ discrete

Ð1
�1
Ð1
�1 ðx� mXÞðy� mYÞf ðx; yÞ dx dy ðX; YÞ continuous

(

If we think of f(x, y) as describing the distribution of pairs of values within the

entire population, r becomes a measure of how strongly related x and y are in that

population. Properties of r analogous to those for r were given in Chapter 5.

The population correlation coefficient r is a parameter or population charac-

teristic, just as mX, mY, sX, and sY are, and we can use the sample correlation

coefficient to make various inferences about r. In particular, r is a point estimate

for r, and the corresponding estimator is

r̂ ¼ R ¼
P ðXi � XÞðYi � YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðXi � XÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðYi � YÞ2
q

Example 12.18 In some locations, there is a strong association between concentrations of two

different pollutants. The article “The Carbon Component of the Los Angeles

Aerosol: Source Apportionment and Contributions to the Visibility Budget”

(J. Air Pollution Contr. Fed., 1984: 643–650) reports the accompanying data on

ozone concentration x (ppm) and secondary carbon concentration y (mg/m3).

x .066 .088 .120 .050 .162 .186 .057 .100

y 4.6 11.6 9.5 6.3 13.8 15.4 2.5 11.8

x .112 .055 .154 .074 .111 .140 .071 .110

y 8.0 7.0 20.6 16.6 9.2 17.9 2.8 13.0

The summary quantities are n ¼ 16,
P

xi ¼ 1:656,
P

yi ¼ 170:6,P
x2i ¼ :196912,

P
xiyi ¼ 20:0397,

P
y2i ¼ 2253:56, from which

r ¼ 20:0397� ð1:656Þð170:6Þ=16ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:196912� ð1:656Þ2=16

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2253:56� ð170:6Þ2=16

q

¼ 2:3826

ð:1597Þð20:8456Þ ¼ :716

The point estimate of the population correlation coefficient r between ozone

concentration and secondary carbon concentration is r̂ ¼ r ¼ :716. ■
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The small-sample intervals and test procedures presented in Chapters 8–10

were based on an assumption of population normality. To test hypotheses about r,
we must make an analogous assumption about the distribution of pairs of (x, y)
values in the population. We are now assuming that both X and Y are random, with

joint distribution given by the bivariate normal pdf introduced in Section 5.3.

If X ¼ x, recall that the (conditional) distribution of Y is normal with mean

mY�x ¼ m2 þ ðrs2=s1Þðx� m1Þ and variance ð1� r2Þs22. This is exactly the model

used in simple linear regression with b0 ¼ m2 � rm1s2=s1; b1 ¼ rs2=s1, and

s2 ¼ ð1� r2Þs22 independent of x. The implication is that if the observed pairs
(xi, yi) are actually drawn from a bivariate normal distribution, then the simple
linear regression model is an appropriate way of studying the behavior of Y for
fixed x. If r ¼ 0, then mY·x ¼ m2 independent of x; in fact, when r ¼ 0 the joint

probability density function f(x, y) can be factored into a part involving x only and a
part involving y only, which implies that X and Y are independent variables.

Example 12.19 As discussed in Section 5.3, contours of the bivariate normal distribution are

elliptical, and this suggests that a scatter plot of observed (x, y) pairs from such a

joint distribution should have a roughly elliptical shape. The accompanying scatter

plot of y ¼ visceral fat (cm2) by the CT method versus x ¼ visceral fat (cm2) by

the US method for a sample of n ¼ 100 obese women appeared in the paper

“Methods of Estimation of Visceral Fat: Advantages of Ultrasonography” (Obes.
Res., 2003: 1488–1494). Computerized tomography is considered the most accu-

rate technique for body fat measurement, but is costly, time consuming, and

involves exposure to ionizing radiation; the US method is noninvasive and less

expensive.

The pattern in the scatter plot seems consistent with an assumption of

bivariate normality. Here r ¼ .71, which is not all that impressive (r2 ¼ .50), but

the investigators reported that a test of H0: r ¼ 0 (to be introduced shortly) gives

P-value < .001. Of course we would want values from the two methods to be very

highly correlated before regarding one as an adequate substitute for the other. ■
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Figure 12.25 Scatter Plot for Example 12.19
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Assuming that the pairs are drawn from a bivariate normal distribution allows

us to test hypotheses about r and to construct a CI. There is no completely

satisfactory way to check the plausibility of the bivariate normality assumption.

A partial check involves constructing two separate normal probability plots, one for

the sample xi’s and another for the sample yi’s, since bivariate normality implies

that the marginal distributions of both X and Y are normal. If either plot deviates

substantially from a straight-line pattern, the following inferential procedures

should not be used when the sample size n is small. Also, as discussed in Example

12.19, the scatter plot should show a roughly elliptical shape.

TESTING
FOR THE
ABSENCE
OF CORRE-
LATION

When H0: r ¼ 0 is true, the test statistic

T ¼ R
ffiffiffiffiffiffiffiffiffiffiffi
n� 2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p

has a t distribution with n � 2 df (see Exercise 65).

Alternative Hypothesis Rejection Region for Level a Test

Ha: r > 0 t � ta,n�2

Ha: r < 0 t � �ta,n�2

Ha: r 6¼ 0 either t � ta/2,n�2 or t � �ta/2,n�2

A P-value based on n � 2 df can be calculated as described previously.

Example 12.20 Neurotoxic effects of manganese are well known and are usually caused by high

occupational exposure over long periods of time. In the fields of occupational

hygiene and environmental hygiene, the relationship between lipid peroxidation,

which is responsible for deterioration of foods and damage to live tissue, and

occupational exposure had not been previously reported. The article “Lipid Perox-

idation inWorkers Exposed to Manganese” (Scand. J.Work Environ.Health, 1996:
381–386) gave data on x ¼ manganese concentration in blood (ppb) and y ¼ con-

centration (mmol/L) of malondialdehyde, which is a stable product of lipid peroxi-

dation, both for a sample of 22 workers exposed to manganese and for a control

sample of 45 individuals. The value of r for the control sample was .29, from which

t ¼ ð:29Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
45� 2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :292

p � 2:0

The corresponding P-value for a two-tailed t test based on 43 df is roughly .052 (the
cited article reported only that the P-value > .05). We would not want to reject the

assertion that r ¼ 0 at either significance level .01 or .05. For the sample of

exposed workers, r ¼ .83 and t ¼ 6.7, clear evidence that there is a positive

relationship in the entire population of exposed workers from which the sample

was selected. Although in general correlation does not necessarily imply causation,

it is plausible here that higher levels of manganese cause higher levels of per-

oxidation. ■
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Because rmeasures the extent to which there is a linear relationship between

the two variables in the population, the null hypothesisH0: r ¼ 0 states that there is

no such population relationship. In Section 12.3, we used the t ratiob̂1=ŝb1 to test for
a linear relationship between the two variables in the context of regression analysis.

It turns out that the two test procedures are completely equivalent because

r
ffiffiffiffiffiffiffiffiffiffiffi
n� 2

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
¼ b̂1=ŝb1 (Exercise 65). When interest lies only in assessing the

strength of any linear relationship rather than in fitting a model and using it to

estimate or predict, the test statistic formula just presented requires fewer computa-

tions than does the t ratio.

Other Inferences Concerning r

The procedure for testing H0: r ¼ r0 when r0 6¼ 0 is not equivalent to any

procedure from regression analysis. The test statistic is based on a transformation

of R called the Fisher transformation.

PROPOSITION When (X1, Y1), . . ., (Xn, Yn) is a sample from a bivariate normal distribution,

the rv

V ¼ 1

2
ln

1þ R

1� R

� �
ð12:10Þ

has approximately a normal distribution with mean and variance

mV ¼ 1

2
ln

1þ r
1� r

� �
s2V ¼ 1

n� 3

The rationale for the transformation is to obtain a function of R that has a variance

independent of r; this would not be the case with R itself. Also, the approximation

will not be valid if n is quite small.

The test statistic for testing H0: r ¼ r0 is

Z ¼ V � 1
2
ln½ð1þ r0Þ=ð1� r0Þ�

1=
ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p

Alternative Hypothesis Rejection Region for Level a Test

Ha: r > r0 z � za
Ha: r < r0 z � �za
Ha: r 6¼ r0 either z � za/2 or z � �za/2

A P-value can be calculated in the same manner as for previous z tests.
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Example 12.21 As far back as Leonardo da Vinci, it was known that height and wingspan

(measured fingertip to fingertip between outstretched hands) are closely related.

For these measurements (in inches) from 16 students in a statistics class notice how

close the two values are.

Student: 1 2 3 4 5 6 7 8

Height: 63.0 63.0 65.0 64.0 68.0 69.0 71.0 68.0

Wingspan: 62.0 62.0 64.0 64.5 67.0 69.0 70.0 72.0

Student: 9 10 11 12 13 14 15 16

Height: 68.0 72.0 73.0 73.5 70.0 70.0 72.0 74.0

Wingspan: 70.0 72.0 73.0 75.0 71.0 70.0 76.0 76.5

The scatter plot in Figure 12.26 shows an approximately linear shape, and the point

cloud is roughly elliptical. Also, the normal plots for the individual variables are

roughly linear, so the bivariate normal distribution can reasonably be assumed.

The correlation is computed to be .9422. Can it be conclude that wingspan

and height are highly correlated, in the sense that r > .8? To carry out a test of

H0: r ¼ .8 versus Ha: r > .8, we Fisher transform .9422 and .8:

1

2
ln

1þ :9422

1� :9422

� �
¼ 1:757

1

2
ln

1þ :8

1� :8

� �
¼ 1:099

The calculation is easily done on a calculator with hyperbolic functions,

because the inverse hyperbolic tangent is equivalent to the Fisher transformation.

That is, tanh�1(.9422) ¼ 1.757 and tanh�1(.8) ¼ 1.099. Compute z ¼
1:757� 1:099ð Þ=ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16� 3
p Þ ¼ 2:37. Since 2.37 � 1.645, at level .05 we can

reject H0: r ¼ .8 in favor of Ha: r � .8. Indeed, because 2.37 � 2.33, it is also

true that we can reject H0 in this one-tailed test at the .01 level, and conclude that

wingspan is highly correlated with height. ■

64

62

60

74

76

68

66

72

70

78

62 64 66 68 70 72 74

Wingspan

Height

Figure 12.26 Wingspan plotted against height
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To obtain a CI for r, we first derive an interval for

mV ¼ 1
2
ln½ð1þ rÞ=ð1� rÞ�. Standardizing V, writing a probability statement, and

manipulating the resulting inequalities yields

v� za=2ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p ; vþ za=2ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p
� �

ð12:11Þ

as a 100(1� a)% interval for mV, where v ¼ 1
2
ln½ð1þ rÞ=ð1� rÞ�. This interval can

then be manipulated to yield a CI for r.

A 100(1 � a)% confidence interval for r is

e2c1 � 1

e2c1 þ 1
;
e2c2 � 1

e2c2 þ 1

� �

where c1 and c2 are the left and right endpoints, respectively, of the interval

(12.11).

Example 12.22

(Example 12.21

continued)

The sample correlation coefficient between wingspan and height was r ¼ .9422,

giving n ¼ 1.757. With n ¼ 16, a 95% confidence interval for mn is

1:757
 1:96=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 3

p ¼ 1:213; 2:301ð Þ ¼ c1; c2ð Þ.
The 95% interval for r is

e2 1:213ð Þ � 1

e2 1:213ð Þ þ 1
;
e2 2:301ð Þ � 1

e2 2:301ð Þ þ 1

� 
¼ ð:838; :980Þ

As before, this calculation can be done more easily using the hyperbolic

tangent, which is the inverse of the Fisher transformation. This gives (tanh(1.213),

tanh(2.301)) ¼ (.838, .980). Notice that this interval excludes .8, and that our

hypothesis test in Example 12.21 would have rejected H0: r ¼ .8 in favor of the

alternative Ha: r > .8 at the .025 level. ■

Absent the assumption of bivariate normality, a bootstrap procedure can be

used to obtain a CI for r or test hypotheses.

In Chapter 5, we cautioned that a large value of the correlation coefficient

(near 1 or �1) implies only association and not causation. This applies to both

r and r. It is easy to find strong but weird correlations in which neither variable is

casually related to the other. For example, since prohibition ended in the 1930s,

beer consumption and church attendance have correlated very highly. Of course,

the reason is that both variables have increased in accord with population growth.
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Exercises Section 12.5 (56–67)

56. The article “Behavioural Effects of Mobile Tele-

phone Use During Simulated Driving” (Ergo-
nomics, 1995: 2536–2562) reported that for a

sample of 20 experimental subjects, the sample

correlation coefficient for x ¼ age and y ¼ time

since the subject had acquired a driving license

(yr) was .97. Why do you think the value of r is
so close to 1? (The article’s authors gave an

explanation.)

57. The Turbine Oil Oxidation Test (TOST) and the

Rotating Bomb Oxidation Test (RBOT) are two

different procedures for evaluating the oxidation

stability of steam turbine oils. The article

“Dependence of Oxidation Stability of Steam

Turbine Oil on Base Oil Composition” (J. Soc.
Tribologists Lubricat. Engrs., Oct. 1997: 19–24)
reported the accompanying observations on x ¼
TOST time (hr) and y ¼ RBOT time (min) for 12

oil specimens.

TOST 4200 3600 3750 3675 4050 2770

RBOT 370 340 375 310 350 200

TOST 4870 4500 3450 2700 3750 3300

RBOT 400 375 285 225 345 285

a. Calculate and interpret the value of the sample

correlation coefficient (as did the article’s

authors).

b. How would the value of r be affected if we had
let x ¼ RBOT time and y ¼ TOST time?

c. How would the value of r be affected if RBOT

time were expressed in hours?

d. Construct a scatter plot and normal probability

plots and comment.

e. Carry out a test of hypotheses to decide

whether RBOT time and TOST time are line-

arly related.

58. Torsion during hip external rotation and extension

may explain why acetabular labral tears occur in

professional athletes. The article “Hip Rotational

Velocities During the Full Golf Swing” (J. Sport
Sci. Med., 2009: 296 – 299) reported on an inves-

tigation in which lead hip internal peak rotational

velocity (x) and trailing hip peak external rota-

tional velocity (y) were determined for a sample of

15 golfers. Data provided by the article’s authors

was used to calculate the following summary

quantities:

Sxx ¼ 64;732:83; Syy ¼ 130;566:96;

Sxy ¼ 44;185:87

Separate normal probability plots showed very

substantial linear patterns.

a. Calculate a point estimate for the population

correlation coefficient.

b. If the simple linear regression model were fit

to the data, what proportion of variation in

external velocity could be attributed to the

model relationship? What would happen to

this proportion if the roles of x and y were

reversed? Explain.

c. Carry out a test at significance level .01 to

decide whether there is a linear relationship

between the two velocities in the sampled pop-

ulation; your conclusion should be based on a

P-value.
d. Would the conclusion of (c) have changed if

you had tested appropriate hypotheses to

decide whether there is a positive linear asso-

ciation in the population? What if a signifi-

cance level of .05 rather than .01 had been

used?

59. The authors of the paper “Objective Effects of a

Six Months’ Endurance and Strength Training

Program in Outpatients with Congestive Heart

Failure” (Med. Sci. Sports Exercise, 1999:

1102–1107) presented a correlation analysis to

investigate the relationship between maximal lac-

tate level x and muscular endurance y. The accom-

panying data was read from a plot in the paper.

x 400 750 770 800 850 1025 1200

y 3.80 4.00 4.90 5.20 4.00 3.50 6.30

x 1250 1300 1400 1475 1480 1505 2200

y 6.88 7.55 4.95 7.80 4.45 6.60 8.90

Sxx ¼ 36.9839, Syy ¼ 2,628,930.357,

Sxy ¼ 7377.704

A scatter plot shows a linear pattern.

a. Test to see whether there is a positive correla-

tion between maximal lactate level and muscu-

lar endurance in the population from which this

data was selected.

b. If a regression analysis were to be carried out

to predict endurance from lactate level, what

proportion of observed variation in endurance

could be attributed to the approximate linear

relationship? Answer the analogous question if

regression is used to predict lactate level from
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endurance—and answer both questions with-

out doing any regression calculations.

60. Hydrogen content is conjectured to be an impor-

tant factor in porosity of aluminum alloy castings.

The article “The Reduced Pressure Test as a Mea-

suring Tool in the Evaluation of Porosity/Hydro-

gen Content in A1–7 Wt Pct Si-10 Vol Pct SiC(p)

Metal Matrix Composite” (Metallurg. Trans.,
1993: 1857–1868) gives the accompanying data

on x ¼ content and y ¼ gas porosity for one par-

ticular measurement technique.

x .18 .20 .21 .21 .21 .22 .23

y .46 .70 .41 .45 .55 .44 .24

x .23 .24 .24 .25 .28 .30 .37

y .47 .22 .80 .88 .70 .72 .75

MINITAB gives the following output in response

to a CORRELATION command:

Correlation of Hydrcon and

Porosity ¼ 0.449

a. Test at level .05 to see whether the population

correlation coefficient differs from 0.

b. If a simple linear regression analysis had been

carried out, what percentage of observed vari-

ation in porosity could be attributed to the

model relationship?

61. Physical properties of six flame-retardant fabric

samples were investigated in the article “Sensory

and Physical Properties of Inherently Flame-

Retardant Fabrics” (Textile Res., 1984: 61–68).
Use the accompanying data and a .05 significance

level to determine whether there is a significant

correlation between stiffness x (mg-cm) and thick-

ness y (mm). Is the result of the test surprising in

light of the value of r?

x 7.98 24.52 12.47 6.92 24.11 35.71

y .28 .65 .32 .27 .81 .57

62. The article “Increases in Steroid Binding

Globulins Induced by Tamoxifen in Patients with

Carcinoma of the Breast” (J. Endocrinol., 1978:
219–226) reports data on the effects of the drug

tamoxifen on change in the level of cortisol-bind-

ing globulin (CBG) of patients during treatment.

With age ¼ x and DCBG ¼ y, summary values

are n ¼ 26,
P

xi ¼ 1613,
Pðxi�xÞ2¼3756:96,P

yi¼281:9,
Pðyi�yÞ2¼ 465:34, andP

xiyi¼16;731
a. Compute a 90% CI for the true correlation

coefficient r.

b. Test H0: r ¼ �.5 versus Ha: r < �.5 at level

.05.

c. In a regression analysis of y on x, what propor-
tion of variation in change of cortisol-binding

globulin level could be explained by variation

in patient age within the sample?

d. If you decide to perform a regression analysis

with age as the dependent variable, what pro-

portion of variation in age is explainable by

variation in DCBG?

63. A sample of n ¼ 500 (x, y) pairs was collected

and a test of H0: r ¼ 0 versus Ha: r 6¼ 0 was

carried out. The resulting P-value was computed

to be .00032.

a. What conclusion would be appropriate at level

of significance .001?

b. Does this small P-value indicate that there is a
very strong relationship between x and y (a

value of r that differs considerably from 0)?

Explain.

c. Now suppose a sample of n ¼ 10,000 (x, y)
pairs resulted in r ¼ .022. TestH0: r¼ 0 versus

Ha: r 6¼ 0 at level .05. Is the result statistically

significant? Comment on the practical signifi-

cance of your analysis.

64. Let x be number of hours per week of studying and

y be grade point average. Suppose we have one

sample of (x, y) pairs for females and another for

males. Then we might like to test the hypothesis

H0: r1� r2 ¼ 0 against the alternative that the two

population correlation coefficients are different.

a. Use properties of the transformed variable V ¼
.5ln[(1 + R)/(1� R)] to propose an appropriate
test statistic and rejection region (let R1 and

R2 denote the two sample correlation coeffi-

cients).

b. The paper “Relational Bonds and Customer’s

Trust and Commitment: A Study on the Mod-

erating Effects of Web Site Usage” (Serv. Ind.
J., 2003: 103–124) reported that n1 ¼ 261,

r1 ¼ .59, n2 ¼ 557, r2 ¼ .50, where the first

sample consisted of corporate website users

and the second of non-users; here r is the

correlation between an assessment of the

strength of economic bonds and performance.

Carry out the test for this data (as did the

authors of the cited paper).

65. Verify that the t ratio for testing H0: b1 ¼ 0 in

Section 12.3 is identical to t for testing H0: r ¼ 0.

66. Verify Property 2 of the correlation coefficient:

the value of r is independent of the units in which

x and y are measured; that is, if xi
0 ¼ axi + c and

yi
0 ¼ byi + d, a > 0, b > 0, then r for the (xi

0, yi0)
pairs is the same as r for the (xi, yi) pairs.
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67. Consider a time series—that is, a sequence of

observations X1, X2, . . . on some response variable

(e.g., concentration of a pollutant) over time—

with observed values x1, x2, . . ., xn over n time

periods. Then the lag 1 autocorrelation coefficient
is defined as

r1 ¼
Pn�1

i¼1

ðxi � xÞðxiþ1 � xÞ
Pn
i¼1

ðxi � xÞ2

Autocorrelation coefficients r2, r3, . . . for lags 2,
3, . . . are defined analogously.

a. Calculate the values of r1, r2, and r3 for the

temperature data from Exercise 79 of Chapter 1.

b. Consider the n � 1 pairs (x1, x2), (x2, x3), . . .,
(xn � 1, xn). What is the difference between the

formula for the sample correlation coefficient r
applied to these pairs and the formula for r1?
What if n, the length of the series, is large?

What about r2 compared to r for the n� 2 pairs

(x1, x3), (x2, x4), . . ., (xn � 2, xn)?
c. Analogous to the population correlation coeffi-

cient r, let ri (i ¼ 1, 2, 3, . . . ) denote the theo-
retical or long-run autocorrelation coefficients at

the various lags. If all these r’s are zero, there is
no (linear) relationship between observations in

the series at any lag. In this case, if n is large, each
Ri has approximately a normal distribution with

mean 0 and standard deviation 1=
ffiffiffi
n

p
and differ-

ent Ri’s are almost independent. ThusH0: ri ¼ 0

can be rejected at a significance level of approxi-

mately .05 if either rir2=
ffiffiffi
n

p
or ri � �2=

ffiffiffi
n

p
. If

n ¼ 100 and r1 ¼ .16, r2 ¼ �.09, r3 ¼ �.15, is

there evidence of theoretical autocorrelation at

any of the first three lags?

d. If you are testing the null hypothesis in (c) for

more than one lag, why might you want to

increase the cutoff constant 2 in the rejection

region? [Hint: What about the probability of

committing at least one type I error?]

12.6 Assessing Model Adequacy
A plot of the observed pairs (xi, yi) is a necessary first step in deciding on the form

of a mathematical relationship between x and y. It is possible to fit many functions

other than a linear one (y ¼ b0 + b1x) to the data, using either the principle of least
squares or another fitting method. Once a function of the chosen form has been

fitted, it is important to check the fit of the model to see whether it is in fact

appropriate. One way to study the fit is to superimpose a graph of the best-fit

function on the scatter plot of the data. However, any tilt or curvature of the best-fit

function may obscure some aspects of the fit that should be investigated. Further-

more, the scale on the vertical axis may make it difficult to assess the extent to

which observed values deviate from the best-fit functions.

Residuals and Standardized Residuals

A more effective approach to assessment of model adequacy is to compute the

fitted or predicted values ŷi and the residuals ei ¼ yi � ŷi and then plot various

functions of these computed quantities. We then examine the plots either to confirm

our choice of model or for indications that the model is not appropriate. Suppose the

simple linear regression model is correct, and let y ¼b̂0 þb̂1x be the equation of the
estimated regression line. Then the ith residual is ei ¼ yi � ð̂b0 þb̂1xiÞ. To derive

properties of the residuals, let ei ¼ Yi � Ŷi represent the ith residual as a random

variable (rv) (before observations are actually made). Then

EðYi � ŶiÞ ¼ E Yið Þ � Eð̂b0 þb̂1xiÞ ¼ b0 þ b1xi � ðb0 þ b1xiÞ ¼ 0 ð12:12Þ

Because Ŷið¼b̂0 þb̂1xiÞ is a linear function of the Yj’s, so is Yi � Ŷi (the coefficients
depend on the xj’s). Thus the normality of the Yj’s implies that each residual is

normally distributed. It can also be shown (Exercise 76) that
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VðYi � ŶiÞ ¼ s2 1� 1

n
� ðxi � xÞ2

Sxx

" #
ð12:13Þ

Replacing s2 by s2 and taking the square root of Equation (12.13) gives the

estimated standard deviation of a residual.

Let’s now standardize each residual by subtracting the mean value (zero) and

then dividing by the estimated standard deviation.

The standardized residuals are given by

e�i ¼
yi � ŷi

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

n
� ðxi � xÞ2

Sxx

s i ¼ 1; . . . ; n ð12:14Þ

Notice that the variances of the residuals differ from one another. If n is reasonably
large, though, the bracketed term in (12.13) will be approximately 1, so some

sources use ei/s as the standardized residual. Computation of the ei*’s can be

tedious, but the most widely used statistical computer packages automatically

provide these values and (upon request) can construct various plots involving them.

Example 12.23 Example 12.12 presented data on x ¼ average SAT for entering freshmen and

y ¼ six-year percentage graduation rate. Here we reproduce the data along with the

fitted values and their estimated standard deviations, residuals and their estimated

standard deviations, and standardized residuals. The estimated regression line is

y ¼ �36.18 + .08855x, and r2 ¼ .729. Notice that estimated standard deviations

of the residuals (in the se column) differ somewhat, so e* 6¼ e/s. The standard

deviations of the residuals are higher near x, in contrast to the standard deviations of
the predicted values, which are lower near x.

x y ŷ sŷ e se e*

722.21 38 27.7651 4.9554 10.2349 9.020 1.135

833.32 31 37.6034 3.8016 �6.6034 9.564 �0.690

877.77 44 41.5392 3.3838 2.4608 9.719 0.253

899.99 42 43.5067 3.1894 �1.5067 9.785 �0.154

944.43 45 47.4416 2.8394 �2.4416 9.892 �0.247

944.43 51 47.4416 2.8394 3.5584 9.892 0.360

1005.00 70 52.8048 2.4785 17.1952 9.989 1.721

1011.10 58 53.3449 2.4517 4.6551 9.995 0.466

1055.54 48 57.2799 2.3208 �9.2799 10.026 �0.926

1055.54 76 57.2799 2.3208 18.7201 10.026 1.867

1060.00 42 57.6748 2.3143 �15.6748 10.028 �1.563

1080.00 54 59.4457 2.3012 �5.4457 10.031 �0.543

1099.99 42 61.2157 2.3142 �19.2157 10.028 �1.916

1155.00 54 66.0866 2.4780 �12.0866 9.989 �1.210

1166.65 67 67.1181 2.5345 �0.1181 9.974 �0.012

1215.00 65 71.3993 2.8346 �6.3993 9.893 �0.647

1235.00 80 73.1702 2.9845 6.8298 9.849 0.693

1380.00 88 86.0092 4.3392 1.9908 9.332 0.213

1395.00 96 87.3374 4.4963 8.6626 9.257 0.936

1465.00 98 93.5356 5.2522 4.4644 8.850 0.504

■
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Diagnostic Plots

The basic plots that many statisticians recommend for an assessment of model

validity and usefulness are the following:

1. yi on the vertical axis versus xi on the horizontal axis

2. yi on the vertical axis versus ŷi on the horizontal axis

3. ei* (or ei) on the vertical axis versus xi on the horizontal axis

4. ei* (or ei) on the vertical axis versus ŷi on the horizontal axis

5. A normal probability plot of the standardized residuals (or residuals)

Plots 3 and 4 are called residual plots against the independent variable and fitted

(predicted) values, respectively.

If Plot 2 yields points close to the 45� line [slope +1 through (0, 0)], then the

estimated regression function gives accurate predictions of the values actually

observed. Thus Plot 2 provides a visual assessment of model effectiveness in

making predictions. Provided that the model is correct, neither residual plot should

exhibit distinct patterns. The residuals should be randomly distributed about

0 according to a normal distribution, so all but a very few standardized residuals

should lie between �2 and +2 (i.e., all but a few residuals within 2 standard

deviations of their expected value 0). The plot of standardized residuals versus ŷ
is really a combination of the two other plots, showing implicitly both how

residuals vary with x and how fitted values compare with observed values. This

latter plot is the single one most often recommended for multiple regression

analysis. Plot 5 allows the analyst to assess the plausibility of the assumption that

e has a normal distribution.

Example 12.24

(Example 12.23

continued)

Figure 12.27 presents the five plots just recommended along with a sixth plot. The

plot of y versus ŷ confirms the impression given by r2 that x is fairly effective in

predicting y. The residual plots show no unusual pattern or discrepant values. The

normal probability plot of the standardized residuals is quite straight. In summary,

the first five plots leave us with no qualms about either the appropriateness of a

simple linear relationship or the fit to the given data.

Notice that plotting against x yields the same shape as a plot against the

predicted values. Is this surprising? The predicted value is a linear function of x, so
the plots will have the same appearance. Given that the plots look the same, why

include both? This is preparation for the next section, where more than one

predictor is allowed, and plotting against x is not the same as plotting against the

predicted values.

The sixth plot in Figure 12.27 is in accord with what was found graphically in

Example 12.12. In that example, Figure 12.18 showed that private universities

might tend to have better graduation rates than state universities. For another

graphical view of this, we show in the last plot of Figure 12.27 the standardized

residuals plotted against a variable that is 0 for state universities and 1 for private

universities. In this graph the private universities do seem to have an advantage, but

we will need to wait until the next section for a hypothesis test, which requires

including this new variable as a second predictor in the model.
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Difficulties and Remedies

Although we hope that our analysis will yield plots like the first five of

Figure 12.27, quite frequently the plots will suggest one or more of the following

difficulties:

1. A nonlinear probabilistic relationship between x and y is appropriate.

2. The variance of e (and of Y) is not a constant s2 but depends on x.

3. The selected model fits the data well except for a very few discrepant or outlying

data values, which may have greatly influenced the choice of the best-fit

function.

4. The error term e does not have a normal distribution (this is related to item 3).

5. When the subscript i indicates the time order of the observations, the ei’s exhibit
dependence over time.

6. One or more relevant independent variables have been omitted from the model.
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Figure 12.27 Plots for the data from Example 12.24 ■
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Figure 12.28 presents residual plots corresponding to items 1–3, 5, and 6. In

Chapter 4, we discussed patterns in normal probability plots that cast doubt on the

assumption of an underlying normal distribution. Notice that the residuals from the

data in Figure 12.28d with the circled point included would not by themselves

necessarily suggest further analysis, yet when a new line is fit with that point

deleted, the new line differs considerably from the original line. This type of

behavior is more difficult to identify in multiple regression. It is most likely to

arise when there is a single (or very few) data point(s) with independent variable

value(s) far removed from the remainder of the data.

We now indicate briefly what remedies are available for the types of diffi-

culties. For a more comprehensive discussion, one or more of the references on

regression analysis should be consulted. If the residual plot looks something like

that of Figure 12.28a, exhibiting a curved pattern, then a nonlinear function of x
may be fit.

The residual plot of Figure 12.28b suggests that, although a straight-line

relationship may be reasonable, the assumption that V(Yi) ¼ s2 for each i is of

doubtful validity. When the error term e satisfies the independence and constant

variance assumptions (normality is not needed) for the simple linear regression

+2
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+2

-2
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+2

-2

e*

e*

e* e*

e*

x x

x
x

y
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Figure 12.28 Plots that indicate abnormality in data: (a) nonlinear relationship;

(b) non-constant variance; (c) discrepant observation; (d) observation with large

influence; (e) dependence in errors; (f) variable omitted
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model of Section 12.1, it can be shown that among all unbiased estimators of b0 and
b1, the ordinary least squares estimators have minimum variance. These estimators

give equal weight to each (xi, Yi). If the variance of Y increases with x, then Yi’s for
large xi should be given less weight than those with small xi. This suggests that
b0 and b1 should be estimated by minimizing

fwðb0; b1Þ ¼
X

wi½yi � ðb0 þ b1xiÞ�2 ð12:15Þ

where the wi’s are weights that decrease with increasing xi. Minimization of

Expression (12.15) yields weighted least squares estimates. For example, if the

standard deviation of Y is proportional to x (for x > 0)—that is, V(Y) ¼ kx2—then

it can be shown that the weights wi ¼ 1=x2i yield minimum variance estimators of

b0 and b1. The books by Michael Kutner et al. and by S. Chatterjee et al. contain

more detail (see the chapter bibliography). Weighted least squares is used quite

frequently by econometricians (economists who use statistical methods) to estimate

parameters.

When plots or other evidence suggest that the data set contains outliers or

points having large influence on the resulting fit, one possible approach is to omit

these outlying points and recompute the estimated regression equation. This would

certainly be correct if it were found that the outliers resulted from errors in

recording data values or experimental errors. If no assignable cause can be found

for the outliers, it is still desirable to report the estimated equation both with and

without outliers. Yet another approach is to retain possible outliers but to use an

estimation principle that puts relatively less weight on outlying values than does the

principle of least squares. One such principle is MAD (minimize absolute devia-

tions), which selects b̂0 and b̂1 to minimize
P

yi � b0 þ b1xið Þj j . Unlike the

estimates of least squares, there are no nice formulas for the MAD estimates;

their values must be found by using an iterative computational procedure. Such

procedures are also used when it is suspected that the ei’s have a distribution that is
not normal but instead has “heavy tails” (making it much more likely than for the

normal distribution that discrepant values will enter the sample); robust regression

procedures are those that produce reliable estimates for a wide variety of underly-

ing error distributions. Least squares estimators are not robust in the same way that

the sample mean X is not a robust estimator for m.
When a plot suggests time dependence in the error terms, an appropriate

analysis may involve a transformation of the y’s or else a model explicitly including

a time variable. Lastly, a plot such as that of Figure 12.28f, which shows a pattern in

the residuals when plotted against an omitted variable, suggests considering a

model that includes the omitted variable. We have already seen an illustration of

this in Example 12.24. ■

Exercises Section 12.6 (68–77)

68. Suppose the variables x ¼ commuting distance

and y ¼ commuting time are related according

to the simple linear regression model with

s ¼ 10.

a. If n ¼ 5 observations are made at the x values
x1 ¼ 5, x2 ¼ 10, x3 ¼ 15, x4 ¼ 20, and

x5 ¼ 25, calculate the standard deviations of

the five corresponding residuals.

b. Repeat part (a) for x1 ¼ 5, x2 ¼ 10, x3 ¼ 15,

x4 ¼ 20, and x5 ¼ 50.

c. What do the results of parts (a) and (b) imply

about the deviation of the estimated line from
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the observation made at the largest sampled x
value?

69. The x values and standardized residuals for the

chlorine flow/etch rate data of Exercise 51 (Sec-

tion 12.4) are displayed in the accompanying

table. Construct a standardized residual plot and

comment on its appearance.

x 1.50 1.50 2.00 2.50 2.50

e* .31 1.02 �1.15 �1.23 .23

x 3.00 3.50 3.50 4.00

e* .73 �1.36 1.53 .07

70. Example 12.7 presented the residuals from a

simple linear regression of moisture content y
on filtration rate x.
a. Plot the residuals against x. Does the resulting

plot suggest that a straight-line regression

function is a reasonable choice of model?

Explain your reasoning.

b. Using s ¼ .665, compute the values of the

standardized residuals. Is ei* � ei/s for

i ¼ 1, . . ., n, or are the ei*’s not close to

being proportional to the ei’s?
c. Plot the standardized residuals against x.

Does the plot differ significantly in general

appearance from the plot of part (a)?

71. Wear resistance of certain nuclear reactor compo-

nents made of Zircaloy-2 is partly determined by

properties of the oxide layer. The following data

appears in an article that proposed a new nonde-

structive testing method to monitor thickness of

the layer (“Monitoring of Oxide Layer Thickness

on Zircaloy-2 by the Eddy Current Test Method,”

J. Test. Eval., 1987: 333–336). The variables are

x ¼ oxide-layer thickness (mm) and y ¼ eddy-

current response (arbitrary units).

x 0 7 17 114 133

y 20.3 19.8 19.5 15.9 15.1

x 142 190 218 237 285

y 14.7 11.9 11.5 8.3 6.6

a. The authors summarized the relationship by

giving the equation of the least squares line as

y ¼ 20.6� .047x. Calculate and plot the resi-
duals against x and then comment on the

appropriateness of the simple linear regres-

sion model.

b. Use s ¼ .7921 to calculate the standardized

residuals from a simple linear regression.

Construct a standardized residual plot and

comment. Also construct a normal probability

plot and comment.

72. As the air temperature drops, river water

becomes supercooled and ice crystals form.

Such ice can significantly affect the hydraulics

of a river. The article “Laboratory Study of

Anchor Ice Growth” (J. Cold Regions Engrg.,
2001: 60–66) described an experiment in which

ice thickness (mm) was studied as a function of

elapsed time (hr) under specified conditions. The

following data was read from a graph in the

article: n ¼ 33; x ¼ .17, .33, .50, .67, . . ., 5.50;
y ¼ .50, 1.25, 1.50, 2.75, 3.50, 4.75, 5.75, 5.60,

7.00, 8.00, 8.25, 9.50, 10.50, 11.00, 10.75, 12.50,

12.25, 13.25, 15.50, 15.00, 15.25, 16.25, 17.25,

18.00, 18.25, 18.15, 20.25, 19.50, 20.00, 20.50,

20.60, 20.50, 19.80.

a. The r2 value resulting from a least squares fit

is .977. Given the high r2, does it seem appro-

priate to assume an approximate linear rela-

tionship?

b. The residuals, listed in the same order as the x
values, are

�1.03 �0.92 �1.35 �0.78 �0.68 �0.11 0.21

�0.59 0.13 0.45 0.06 0.62 0.94 0.80

�0.14 0.93 0.04 0.36 1.92 0.78 0.35

0.67 1.02 1.09 0.66 �0.09 1.33 �0.10

�0.24 �0.43 �1.01 �1.75 �3.14

Plot the residuals against x, and reconsider the

question in (a). What does the plot suggest?

73. The accompanying data on x ¼ true density

(kg/mm3) and y ¼ moisture content (% d.b.)

was read from a plot in the article “Physical

Properties of Cumin Seed” (J. Agric. Engrg.
Res., 1996: 93–98).

x 7.0 9.3 13.2 16.3 19.1 22.0

y 1046 1065 1094 1117 1130 1135

The equation of the least squares line is y
¼ 1008.14 + 6.19268x (this differs very slightly
from the equation given in the article); s ¼ 7.265

and r2 ¼ .968.

a. Carry out a test of model utility and comment.

b. Compute the values of the residuals and

plot the residuals against x. Does the plot

suggest that a linear regression function is

inappropriate?
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c. Compute the values of the standardized

residuals and plot them against x. Are there

any unusually large (positive or negative)

standardized residuals? Does this plot give

the same message as the plot of part (b)

regarding the appropriateness of a linear

regression function?

74. Continuous recording of heart rate can be used to

obtain information about the level of exercise

intensity or physical strain during sports partici-

pation, work, or other daily activities. The article

“The Relationship Between Heart Rate and Oxy-

gen Uptake During Non-Steady State Exercise”

(Ergonomics, 2000: 1578–1592) reported on a

study to investigate using heart rate response (x,
as a percentage of the maximum rate) to predict

oxygen uptake (y, as a percentage of maximum

uptake) during exercise. The accompanying data

was read from a graph in the paper.

HR 43.5 44.0 44.0 44.5 44.0 45.0 48.0 49.0

VO2 22.0 21.0 22.0 21.5 25.5 24.5 30.0 28.0

HR 49.5 51.0 54.5 57.5 57.7 61.0 63.0 72.0

VO2 32.0 29.0 38.5 30.5 57.0 40.0 58.0 72.0

Use a statistical software package to perform a

simple linear regression analysis. Considering

the list of potential difficulties in this section,

see which of them apply to this data set.

75. Consider the following four (x, y) data sets; the

first three have the same x values, so these values
are listed only once (Frank Anscombe, “Graphs in

Statistical Analysis,” Amer. Statist., 1973: 17–21):

1–3 1 2 3 4 4

x y y y x y

10.0 8.04 9.14 7.46 8.0 6.58

8.0 6.95 8.14 6.77 8.0 5.76

13.0 7.58 8.74 12.74 8.0 7.71

9.0 8.81 8.77 7.11 8.0 8.84

11.0 8.33 9.26 7.81 8.0 8.47

14.0 9.96 8.10 8.84 8.0 7.04

6.0 7.24 6.13 6.08 8.0 5.25

4.0 4.26 3.10 5.39 19.0 12.50

12.0 10.84 9.13 8.15 8.0 5.56

7.0 4.82 7.26 6.42 8.0 7.91

5.0 5.68 4.74 5.73 8.0 6.89

For each of these four data sets, the values of the

summary statistics
P

xi,
P

x2i ,
P

yi,
P

y2i , andP
xiyi are virtually identical, so all quantities

computed from these five will be essentially

identical for the four sets—the least squares

line (y ¼ 3 + .5x), SSE, s2, r2, t intervals, t sta-
tistics, and so on. The summary statistics provide

no way of distinguishing among the four data

sets. Based on a scatter plot and a residual plot

for each set, comment on the appropriateness or

inappropriateness of fitting a straight-line model;

include in your comments any specific sugges-

tions for how a “straight-line analysis” might be

modified or qualified.

76. a. Express the ith residual Yi � Ŷi (where

Ŷi ¼b̂0 þb̂1xi) in the form
P

cjYj, a linear

function of the Yj’s. Then use rules of vari-

ance to verify that VðYi � ŶiÞ is given by

Expression (12.13).

b. As xi moves farther away from x, what hap-
pens to VðŶiÞ and to VðYi � ŶiÞ?

77. If there is at least one x value at which more than

one observation has been made, there is a formal

test procedure for testing

H0: mY·x ¼ b0 + b1x for some values b0, b1 (the
true regression function is linear)

versus

Ha: H0 is not true (the true regression function is

not linear)

Suppose observations are made at x1, x2, . . ., xc.
Let Y11; Y12; . . . ; Y1n1 denote the n1 observations

when x ¼ x1; . . .; Yc1; Yc2; . . . ; Ycnc denote the nc
observations when x ¼ xc. With n ¼ Sni (the

total number of observations), SSE has n � 2 df.

We break SSE into two pieces, SSPE (pure error)

and SSLF (lack of fit), as follows:

SSPE ¼
X
i

X
j

ðYij � Yi�Þ2

¼
X
i

X
j

Y2
ij �

X
i

niðYi�Þ2

SSLF ¼ SSE� SSPE

The ni observations at xi contribute ni � 1 df to

SSPE, so the number of degrees of freedom for

SSPE is Si(ni � 1) ¼ n � c and the degrees of

freedom for SSLF is n� 2� (n� c) ¼ c� 2. Let

MSPE ¼ SSPE/(n � c), MSLF ¼ SSLF/(c � 2).

Then it can be shown that whereas E(MSPE) ¼ s2

whether or not H0 is true, E(MSLF) ¼ s2 if H0 is

true and E(MSLF) > s2 if H0 is false.

Test statistic: F ¼ MSLF=MSPE

Rejection region: f � Fa;c�2;n�c
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The following data comes from the article

“Changes in Growth Hormone Status Related to

BodyWeight of Growing Cattle” (Growth, 1977:
241–247), with x ¼ body weight and y ¼ meta-

bolic clearance rate/ body weight.

x 110 110 110 230 230 230 360

y 235 198 173 174 149 124 115

x 360 360 360 505 505 505 505

y 130 102 95 122 112 98 96

(So c ¼ 4, n1 ¼ n2 ¼ 3, n3 ¼ n4 ¼ 4.)

a. Test H0 versus Ha at level .05 using the lack-

of-fit test just described.

b. Does a scatter plot of the data suggest that the

relationship between x and y is linear? How

does this compare with the result of part (a)?

(A nonlinear regression function was used in

the article.)

12.7 Multiple Regression Analysis
In multiple regression, the objective is to build a probabilistic model that relates a

dependent variable y to more than one independent or predictor variable. Let k
represent the number of predictor variables (k � 2) and denote these predictors by

x1, x2, . . ., xk. For example, in attempting to predict the selling price of a house, we

might have k ¼ 3 with x1 ¼ size (ft2), x2 ¼ age (years), and x3 ¼ number of rooms.

DEFINITION The general additive multiple regression model equation is

Y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bkxk þ e ð12:16Þ

where E(e) ¼ 0 and V(e) ¼ s2. In addition, for purposes of testing hypoth-

eses and calculating CIs or PIs, it is assumed that e is normally distributed and

also that the e’s associated with various observations, and thus the Yi’s
themselves, are independent of one another.

Let x�1; x
�
2; . . . ; x

�
k be particular values of x1, . . ., xk. Then (12.16) implies that

mY�x�
1
;x�

2
;...;x�

k
¼ b0 þ b1x

�
1 þ � � � þ bkx

�
k ð12:17Þ

Thus, just as b0 + b1x describes the mean Y value as a function of x in simple linear

regression, the true (or population) regression function b0 + b1x1 + � � � + bkxk
gives the expected value of Y as a function of x1, . . ., xk. The bi’s are the true (or
population) regression coefficients. The regression coefficient b1 is interpreted as
the expected change in Y associated with a 1-unit increase in x1 while x2, . . ., xk are
held fixed. Analogous interpretations hold for b2, . . ., bk.

Estimating Parameters

The data in simple linear regression consists of n pairs (x1, y1), . . ., (xn, yn). Suppose
that a multiple regression model contains two predictor variables, x1 and x2. Then
each observation will consist of three numbers (a triple): a value of x1, a value of x2,
and a value of y. More generally, with k independent or predictor variables, each
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observation will consist of k + 1 numbers (a “k + 1 tuple”). The values of the

predictors in the individual observations are denoted using double-subscripting:

xij ¼ the value of the jth predictor xj in the ith observation

i ¼ 1; . . . ; n; j ¼ 1; . . . ; kð Þ:

Thus the first subscript is the observation number and the second subscript is the

predictor number. For example, x83 is the value of the 3rd predictor in the 8th

observation (to avoid confusion, a comma can be inserted between the two sub-

scripts, e.g. x12,3). The first observation in our data set is then (x11, x12, . . ., x1k, y1),
the second is (x21, x22, . . ., x2k, y2), and so on.

Consider candidates b0, b1, . . ., bk for estimates of the bi’s and the

corresponding candidate regression function b0 + b1x1 + � � � + bkxk. Substituting
the predictor values for any individual observation into this candidate function

gives a prediction for the y value that would be observed, and subtracting this

prediction from the actual observed y value gives the prediction error. The princi-
ple of least squares says we should square these prediction errors, sum, and then

take as the least squares estimatesb̂0;b̂1; . . . ;b̂k, the values of the bj’s that minimize

the sum of squared prediction errors. To carry out this program, form the criterion

function (sum of squared prediction errors)

gðb0; b1; . . . ; bkÞ ¼
Xn
i¼1

yi � b0 þ b1xi1 þ � � � þ bkxikð Þ½ �2

and then take the partial derivative of g(·) with respect to each bj (j ¼ 0, 1, . . ., k),
and equate these k + 1 partial derivatives to 0. The result is a system of k + 1

equations, the normal equations, in the k + 1 unknowns (the bj’s). It is very

important here that the normal equations are linear in the unknowns because the

criterion function is quadratic.

nb0þ
X

xi1


 �
b1þ

X
xi2


 �
b2þ�� �þ

X
xik


 �
bk ¼

X
yiX

xi1


 �
b0þ

X
x2i1


 �
b1þ

X
xi1xi2


 �
b2þ�� �þ

X
xi1xik


 �
bk ¼

X
xi1yi

..

.

X
xik


 �
b0þ

X
xi1xik


 �
b1þ�� �þ

X
xi;k�1xik


 �
bk�1þ

X
x2ik


 �
bk ¼

X
xikyi

We will assume that the system has a unique solution, the least squares estimates

b̂0; b̂1; b̂2; . . . ; b̂k. The next section uses matrix algebra to deal with the system of

equations and develop inferential procedures for multiple regression. For the

moment, though, we shall take advantage of the fact that all of the commonly

used statistical software packages are programmed to solve the equations and

provide the results needed for inference.

Sometimes interest in the individual regression coefficients is the main

reason for doing the regression. The article “Autoregressive Modeling of Baseball

Performance and Salary Data,” Proceedings of the Statistical Graphics Section,
American Statistical Association, 1988, 132–137, describes a multiple regression of

runs scored as a function of singles, doubles, triples, home runs, and walks

(combined with hit-by-pitcher). The estimated regression equation is
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runs ¼ �2:49þ :47 singlesþ :76 doublesþ 1:14 triplesþ 1:54 home runs

þ :39 walks

This is very similar to the popular slugging percentage statistic, which gives

weight 1 to singles, 2 to doubles, 3 to triples, and 4 to home runs. However, the

slugging percentage gives no weight to walks, whereas the regression puts weight

.39 on walks, more than 80% of the weight it assigns to singles. The importance of

walks is well-known among statisticians who follow baseball, and it is interesting

that there are now some statistically savvy people in major league baseball man-

agement who are emphasizing walks in choosing players.

Example 12.25 The article “Factors Affecting Achievement in the First Course in Calculus”

(J. Exper. Educ., 1984: 136–140) discussed the ability of several variables to

predict y ¼ freshman calculus grade (on a scale of 0–100). The variables included

x1 ¼ an algebra placement test given in the first week of class, x2 ¼ ACT math

score, x3 ¼ ACT natural science score, and x4 ¼ high school percentile rank. Here

are the scores for the first five and the last five of the 80 students (the data set is

available from the website for this book):

Observation Algebra ACTM ACTNS HS Rank Grade

1 21 27 23 68 62

2 16 29 32 99 75

3 22 30 32 98 95

4 25 34 28 90 78

5 22 29 23 99 95

..

. ..
. ..

. ..
. ..

. ..
.

76 22 29 26 88 85

77 17 29 33 92 75

78 26 27 29 95 88

79 26 28 30 99 95

80 21 28 30 99 85

The JMP statistical computer package gave the following least squares estimates:

b̂0 ¼ 36:12 b̂1 ¼ :9610 b̂2 ¼ :2718 b̂3 ¼ :2161 b̂4 ¼ :1353

Thus we estimate that .9610 is the average increase in final grade associated with a

1–point increase in the algebra placement score when the other three predictors are

held fixed.Another way to interpret this is to say that a 10-point increase in the algebra

pretest score,with the other scores held fixed, corresponds to a 9.6 point increase in the

final grade, an increase of approximately one letter grade if A ¼ 90s, B ¼ 80s, etc.

The other estimated coefficients are interpreted in a similar manner.

The estimated regression equation is

y ¼ 36:12þ :9610x1 þ :2718x2 þ :2161x3 þ :1353x4:

A point prediction of final grade for a single student with an algebra test score of 25,

ACTM score of 28, ACTNS score of 26, and a high school percentile rank of 90 is

ŷ ¼ 36:12þ :9610 25ð Þ þ :2718 28ð Þ þ :2161 26ð Þ þ :1353 90ð Þ ¼ 85:55
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a middle B. This is also a point estimate of the mean for the population of all

students with an algebra test score of 25, ACTM score of 28, ACTNS score of 26,

and a high school percentile rank of 90 ■

ŝ2 and the Coefficient of Multiple Determination

Substituting the values of the predictors from the successive observations into the

equation for an estimated regression function gives the predicted or fitted values
ŷ1; ŷ2; . . . ; ŷn. For example, since the values of the four predictors for the last

observation in Example 12.25 are 21, 28, 30, and 99, respectively, the

corresponding predicted value is ŷ80 ¼ 83:79. The residuals are the differences

y1 � ŷ1; . . . ; yn � ŷn. In simple linear regression, they were the vertical deviations

from the least squares line, but in general there is no geometric interpretation in

multiple regression (the exception is the case k ¼ 2, where the estimated regression

function specifies a plane in three dimensions and the residuals are the vertical

deviations from the plane). The last residual in Example 12.25 is 85 �
83.79 ¼ 1.21. The closer the residuals are to 0, the better the job our estimated

equation is doing in predicting the y values actually observed.

The residuals are sometimes important not just for judging the quality of a

regression. Several enterprising students developed a multiple regression model

using age, size in square feet, etc. to predict the price of four-unit apartment

buildings. They found that one building had a strongly negative residual, meaning

that the price was much lower than predicted. As it turned out, the reason was that

the owner had “cash-flow” problems, and needed to sell quickly, so the students got

an unusually good deal.

As in simple linear regression, the estimate of the variance parameter s2 is

based on the sum of squared residuals (or sum of squared errors) SSE = Sðyi � ŷiÞ2.
Previously, we divided SSE by n� 2 to obtain the estimate. The explanation was that

the two parametersb̂0 and b̂1 had to be estimated, entailing a loss of two degrees of

freedom. For each parameter there is a normal equation that can be expressed as a

constraint on the residuals, with a loss of 1 df. In multiple regression with k
predictors, k + 1 df are lost in estimating the bi’s (don’t forget the constant term

b0). Here are the normal equations rewritten as constraints on the residuals:

X
½yi � ðb0 þ xi1b1 þ xi2b2 þ � � � þ xikbkÞ� ¼ 0X

xi1½yi � ðb0 þ xi1b1 þ xi2b2 þ � � � þ xikbkÞ� ¼ 0

..

.

X
xik½yi � ðb0 þ xi1b1 þ xi2b2 þ � � � þ xikbkÞ� ¼ 0

The first equation says that the sum of the residuals is 0, the second equation

says that the first predictor times the residual sums to 0, etc. These k + 1 constraints

allow any k + 1 residuals to be determined from the others. This implies that SSE is

based on n � (k + 1) df and this is the divisor in the estimate of s2:

ŝ2 ¼ s2 ¼ SSE

n� ðk þ 1Þ ¼ MSE; ŝ ¼ s ¼
ffiffiffiffi
s2

p
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SSE can once again be regarded as a measure of unexplained variation in the

data—the extent to which observed variation in y cannot be attributed to the model

relationship. Total sum of squares SST, defined as
P ðyi � yÞ2 as in simple linear

regression, is a measure of total variation in the observed y values. Taking the ratio
of these sums of squares and subtracting from one gives the coefficient of multiple
determination

R2 ¼ 1� SSE

SST

Sometimes called just the coefficient of determination or the squared multiple
correlation, R2 is interpreted as the proportion of observed variation that can be

attributed to, or equivalently, explained by, the model relationship. Thinking of

SST as the error sum of squares using just the constant model (with b0 as the only
term in the model) having y as the predictor, R2 is the proportion by which the

model reduces the error sum of squares. For example, if SST ¼ 20 and SSE ¼ 5,

then the model reduces the error sum of squares by 75%, so R2 ¼ .75. The closer R2

is to 1, the greater the proportion of observed variation that can be explained by the

fitted model.

Unfortunately, there is a potential problem with R2: its value can be inflated

by including predictors in the model that are relatively unimportant or even

frivolous. For example, suppose we plan to obtain a sample of 20 recently sold

houses in order to relate sale price to various characteristics of a house. Natural

predictors include interior size, lot size, age, number of bedrooms, and distance to

the nearest school. Suppose we also include in the model the diameter of the

doorknob on the door of the master bedroom, the height of the toilet bowl in the

master bath, and so on until we have 19 predictors. Then unless we are extremely

unlucky in our choice of predictors, the value of R2 will be 1 (because 20

coefficients are estimated from 20 observations)! Rather than seeking a model

that has the highest possible R2 value, which can be achieved just by “packing” our

model with predictors, what is desired is a relatively simple model based on just a

few important predictors whose R2 value is high.

It is therefore desirable to adjust R2 to take account of the fact that its value

may be quite high just because many predictors were used relative to the amount of

data. The adjusted coefficient of multiple determination is defined by

R2
a ¼ 1�MSE

MST
¼ 1� SSE=½n� ðk þ 1Þ�

SST=ðn� 1Þ ¼ 1� n� 1

n� ðk þ 1Þ
SSE

SST

The ratio multiplying SSE/SST in adjusted R2 exceeds 1 (the denominator is

smaller than the numerator), so adjusted R2 is smaller than R2 itself, and in fact

will be much smaller when k is large relative to n. A value of R2
a much smaller than

R2 is a warning flag that the chosen model has too many predictors relative to the

amount of data.

Example 12.26 Continuing with the previous example in which a model with four predictors was fit

to the calculus data consisting of 80 observations, the JMP software package gave

SSE ¼ 7346.05 and SST ¼ 10,332.20, from which s ¼ 9.90, R2 ¼ .289, and

R2
a ¼ :251. The estimated standard deviation s is very close to 10, which corre-

sponds to one letter grade on the usual A ¼ 90s, B ¼ 80s, . . ., scale. About 29% of
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observed variation in grade can be attributed to the chosen model. The difference

between R2 and Ra
2 is not very dramatic, a reflection of the fact that k ¼ 4 is much

smaller than n ¼ 80. ■

A Model Utility Test

In multiple regression, is there a single indicator that can be used to judge whether a

particular model will be useful? The value of R2 certainly communicates a prelimi-

nary message, but this value is sometimes deceptive because it can be greatly

inflated by using a large number of predictors (large k) relative to the sample size n
(this is the rationale behind adjusting R2).

The model utility test in simple linear regression involved the null hypothesis

H0: b1 ¼ 0, according to which there is no useful relation between y and the single
predictor x. Here we consider the assertion that b1 ¼ 0, b2 ¼ 0, . . ., bk ¼ 0, which

says that there is no useful relationship between y and any of the k predictors. If at
least one of these b’s is not 0, the corresponding predictor(s) is (are) useful. The test
is based on a statistic that has a particular F distribution when H0 is true (see

Sections 10.5 and 11.1 for more about F tests).

Null hypothesis: H0 : b1 ¼ b2 ¼ � � � ¼ bk ¼ 0

Alternative hypothesis: Ha : at least one bi 6¼ 0 i ¼ 1; . . . ; kð Þ
Test statistic value:

f ¼ R2=k

ð1� R2Þ=½n� ðk þ 1Þ� ¼
SSR=k

SSE/½n� ðk þ 1Þ� ¼
MSR

MSE
ð12:18Þ

where SSR ¼ regression sum of squares ¼ SST � SSE

Rejection region for a level a test: f � Fa,k,n�(k+1)

See the next section for an explanation of why the ratio MSR/MSE has an F
distribution under the null hypothesis.

Except for a constant multiple, the test statistic here is R2/(1 � R2), the ratio

of explained to unexplained variation. If the proportion of explained variation is

high relative to unexplained, we would naturally want to reject H0 and confirm the

utility of the model. However, the factor [n � (k + 1)]/k decreases as k increases,

and if k is large relative to n, it will reduce f considerably.

Example 12.27 Returning to the calculus data of Example 12.25, a model with k ¼ 4 predictors

was fitted, so the relevant hypotheses are

H0: b1 ¼ b2 ¼ b3 ¼ b4 ¼ 0

Ha: at least one of these four b’s is not 0

Figure 12.29 shows output from the JMP statistical package. The values of s (Root
Mean Square Error), R2, and adjusted R2 certainly suggest a useful model. The

value of the model utility F ratio is

f ¼ R2=k

ð1� R2Þ=½n� ðk þ 1Þ� ¼
:289=4

:711=ð80� 5Þ ¼ 7:62
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This value also appears in the F Ratio column of the ANOVA table in Figure 12.29.

Since f ¼ 7.62 � F.01,4,75 � 3.6, H0 should be rejected at significance level .01.

In fact, the ANOVA table in the JMP output shows that P-value < .0001. The null

hypothesis should therefore be rejected at any reasonable significance level. We

conclude that there is a useful linear relationship between y and at least one of the
four predictors in the model. This does not mean that all four predictors are useful;

we will say more about this subsequently.

Inferences in Multiple Regression

Before testing hypotheses, constructing CIs, and making predictions, one should

first examine diagnostic plots to see whether the model needs modification or

whether there are outliers in the data. The recommended plots are (standardized)

residuals versus each independent variable, residuals versus ŷ, y versus ŷ, and a

normal probability plot of the standardized residuals. Potential problems are sug-

gested by the same patterns discussed in Section 12.6. Of particular importance is

the identification of observations that have a large influence on the fit.

Because eachb̂i is a linear function of the yi’s, the standard deviation of each

b̂i is the product of s and a function of the xij’s, so an estimate ŝbi is obtained by

substituting s for s. A formula for ŝbi is given in the next section, and the result is

part of the output from all standard regression computer packages. Inferences

concerning a singleb̂i are based on the standardized variable

T ¼ b̂i � bi
Ŝbi

which, assuming the model is correct, has a t distribution with n � (k + 1) df.

The point estimate of mY�x�
1
;...;x�

k
, the expected value of Y when

x1 ¼ x�1; . . . ; xk ¼ x�k , is m̂Y�x�1;...;x�k ¼ b̂0 þb̂1x
�
1 þ � � � þb̂kx

�
k . The estimated standard

deviation of the corresponding estimator is a complicated expression involving the

Figure 12.29 Multiple regression output from JMP for the data of Example 12.27 ■
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sample xij’s, but a simple matrix formula is given in the next section. The better

statistical computer packages will calculate it on request. Inferences about mY�x�
1
;...;x�

k

are based on standardizing its estimator to obtain a t variable having n� (k + 1) df.

1. A 100(1 � a)% CI for bi, the coefficient of xi in the regression function, is

b̂i 
 ta=2;n�ðkþ1Þ � ŝbi
2. A test for H0: bi ¼ bi0 uses the test statistic value t ¼ ð̂bi � bi0Þ=ŝbi based

on n � (k + 1) df. The test is upper-, lower-, or two-tailed according to

whether Ha contains the inequality >, <, or 6¼ .

3. A 100(1 � a)% CI for mY�x�
1
;x�

2
;...;x�

k
is

m̂Y�x�
1
;x�

2
;...;x�

k

 ta=2;n�ðkþ1Þ � ðestimated SD of m̂Y�x�

1
;x�

2
;...;x�

k
Þ ¼ ŷ
 ta=2;n�ðkþ1Þ � sŶ

where Ŷ is the statisticb̂0 þb̂1x
�
1 þ � � � þb̂kx

�
k and ŷ is the calculated value

of Ŷ.
4. A 100(1 � a)% PI for a future y value is

m̂Y�x�
1
;x�

2
;...;x�

k

 ta=2;n�ðkþ1Þ � ½s2 þ ðestimated SD of m̂Y�x�

1
;x�

2
;...;x�

k
Þ2�1=2

¼ ŷ
 ta=2;n�ðkþ1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ s2

Ŷ

q

Simultaneous intervals for which the simultaneous confidence or prediction

level is controlled can be obtained by applying the Bonferroni technique.

Example 12.28

(Example 12.27

continued)

The JMP output for the calculus data includes 95% confidence intervals for the

coefficients. Let’s verify the interval for b1, the coefficient for algebra placement

score:

b̂1 
 t:025;80�5ŝb1 ¼ :961
 1:992ð:264Þ ¼ :961
 :526 ¼ ð:435; 1:487Þ
which agrees with the interval given in Figure 12.29. Thus if ACTM score, ACTNS

score, and percentile rank are fixed, we estimate an increase between .435 and

1.487 in grade is associated with a one-point increase in algebra score.

We found in Example 12.25 that, if a student has an algebra test score of 25,

ACTM score of 28, ACTNS score of 26, and high school percentile rank of 90, then

the predicted value is 85.55. The estimated standard deviation for this predicted

value can be obtained from JMP, with the result sŶ ¼ 1:882, so a 95% confidence

interval for the expected grade is

m̂Y�25;28;26;90 
 t:025;80�5sŶ ¼ 85:55
 1:992ð1:882Þ
¼ 85:55
 3:75 ¼ ð81:8; 89:3Þ

which can also be obtained from JMP. This interval is for the mean score of all

students with the predictor values 25, 28, 26, and 90. Regarding scores in the 80’s

as B’s, we can say with 95% confidence that the expected grade is a B. Now
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consider the estimated standard deviation for the error in predicting the final grade

of a single student with the predictor values 25, 28, 26, and 90. This isffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ s2

Ŷ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:8972 þ 1:8822

p
¼ 10:074

Therefore, a 95% prediction interval for the final grade of a single student with

predictor scores 25, 28, 26, and 90 is

m̂Y�25;28;26;90 
 t:025;80�5ð10:074Þ ¼ 85:55
 1:992ð10:074Þ ¼ 85:55
 20:07

¼ ð65:5; 105:6Þ
Of course, this PI is much wider than the corresponding CI. Although we are highly

confident that the expected score is a B, the score for a single student could be as

low as a D or as high as an A. Notice that the upper end of the interval exceeds

the maximum score of 100, so it would be appropriate to truncate the interval to

(65.5, 100) ■

Frequently, the hypothesis of interest has the form H0: bi ¼ 0 for a particular

i. For example, after fitting the four-predictor model in Example 12.25, the

investigator might wish to test H0: b2 ¼ 0. According to H0, as long as the

predictors x1, x3, and x4 remain in the model, x2 contains no useful information

about y. The test statistic value is the t-ratio b̂i=ŝbi . Many statistical computer

packages report the t-ratio and corresponding P-value for each predictor included

in the model. For example, Figure 12.29 shows that as long as algebra pretest score,

ACT natural science, and high school percentile rank are retained in the model, the

predictor x2 ¼ ACT math score can be deleted. The P-value for x2 is .55, much too

large to reject the null hypothesis.

It is interesting to look at the correlations between the predictors and the

response variable in Example 12.25. Here are the correlations and the

corresponding P-values (in parentheses):

alg plc ACTmath ACTns rank

calc grade 0.491 0.353 0.259 0.324

(0.000) (0.0013) (0.020) (0.003)

Do these values seem inconsistent with the multiple regression results? There is a

highly significant correlation between calculus grade and ACT math score, but in

the multiple regression the ACT math score is redundant, not needed in the model.

The idea is that ACT math score also has highly significant correlations with the

other predictors, so much of its predictive ability is retained in the model when this

variable is deleted. In order to be a statistically significant predictor in the multiple

regression model, a variable must provide additional predictive ability beyond what

is offered by the other predictors.

The R2 value for the calculus data is disappointing. Given the importance

placed on predictors such as ACT scores and high school rank in college admis-

sions and NCAA eligibility, we might expect that these scores would give better

predictions.
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Assessing Model Adequacy

The standardized residuals in multiple regression result from dividing each residual

by its estimated standard deviation; a simple matrix formula for the standard

deviation is given in the next section. We recommend a normal probability plot

of the standardized residuals as a basis for validating the normality assumption.

Plots of the standardized residuals versus each predictor and versus ŷ should show

no discernible pattern. The book by Kutner et al. discusses other diagnostic plots.

Example 12.29 Figure 12.30 from JMP shows a histogram and normal probability plot of the

standardized residuals for the calculus data discussed in the preceding examples.

The plot is sufficiently straight that there is no reason to doubt the assumption of

normally distributed errors.

Figure 12.31 shows plots of the standardized residuals versus the predictors

for the calculus data. There is not much evidence of a pattern in plots (b), (c), and

(d), other than randomness. However, the first plot does show some indication that

the variance might be lower at the high end.

The graphs in Figure 12.32 show the calculus grade and the standardized

residuals plotted against the predicted values, and these also show narrowing on the

right. Looking at Figure 12.32a, it is apparent that this would have to occur, because

no score can be above 100. ■

Multiple Regression Models

We now consider various ways of creating predictors to specify informative models.

Polynomial Regression Let’s return for a moment to the case of bivariate

data consisting of n (x, y) pairs. Suppose that a scatter plot shows a parabolic rather
than linear shape. Then it is natural to specify a quadratic regression model:

Y ¼ b0 þ b1xþ b2x
2 þ e

00--22 --11
Normal Quantile PlotNormal Quantile Plot

3311

--2.52.5

--22

--1.51.5

--0.50.5

--11

1.51.5

00

0.50.5

11

22
.05.05.01.01 .10.10 .25.25 .50.50 .75.75 .90.90 .95.95 .99.99

22

Figure 12.30 A normal probability plot and histogram of the standardized

residuals for the calculus data
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Figure 12.31 Standardized residuals versus predictors for the calculus data
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Figure 12.32 Diagnostic plots for the calculus data: (a) y versus ŷ (b) standardized residual versus ŷ
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The corresponding population regression function b0 þ b1xþ b2x
2 is quadratic

rather than linear, and gives the mean or expected value of Y for any particular x.
So what does this have to do with multiple regression? Let’s rewrite the

quadratic model equation as follows:

Y ¼ b0 þ b1x1 þ b2x2 þ e where x1 ¼ x and x2 ¼ x2

Now this looks exactly like a multiple regression equation with two predictors. You

may object on the grounds that one of the predictors is a mathematical function of

the other one. Appeal denied! It is not only legitimate for a predictor in a multiple

regression model to be a function of one or more other predictors but often

desirable in the sense that a model with such a predictor may be judged much

more useful than the model without such a predictor. The message at the moment is

that quadratic regression is a special case of multiple regression. Thus any

software package capable of carrying out a multiple regression analysis can fit

the quadratic regression model. The same is true of cubic regression and even

higher-order polynomial models, although in practice very rarely are such higher-

order predictors needed.

The interpretation of bi given previously for the general multiple regression

model is not legitimate in quadratic regression. This is because x2 ¼ x2, so the

value of x2 cannot be increased while x1 ¼ x is held fixed. More generally, the

interpretation of regression coefficients requires extra care when some predictor

variables are mathematical functions of others.

Modelswith Interaction Suppose that an industrial chemist is interested in

the relationship between product yield (y) from a certain reaction and two indepen-

dent variables, x1 ¼ reaction temperature and x2 ¼ pressure at which the reaction

is carried out. The chemist initially proposes the relationship

Y ¼ 1200þ 15x1 � 35x2 þ e

for temperature values between 80 and 100 in combination with pressure values

ranging from 50 to 70. The population regression function 1200 + 15x1 � 35x2
gives the mean y value for any particular values of the predictors. Consider this

mean y value for three different particular temperature values:

x1 ¼ 90 : mean y value ¼ 1200þ 15 90ð Þ � 35x2 ¼ 2550� 35x2

x1 ¼ 95 : mean y value ¼ 2625� 35x2

x1 ¼ 100 : mean y value ¼ 2700� 35x2

Graphs of these three mean y value functions are shown in Figure 12.33a. Each

graph is a straight line, and the three lines are parallel, each with a slope of �35.

Thus irrespective of the fixed value of temperature, the average change in yield

associated with a 1-unit increase in pressure is �35.

When pressure x2 increases, the decline in average yield should be more rapid

for a high temperature than for a low temperature, so the chemist has reason to

doubt the appropriateness of the proposed model. Rather than the lines being

parallel, the line for a temperature of 100 should be steeper than the line for a

temperature of 95, and that line in turn should be steeper than the line for x1 ¼ 90.
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A model that has this property includes, in addition to predictors x1 and x2, a third
predictor variable, x3 ¼ x1x2. One such model is

Y ¼ �4500þ 75x1 þ 60x2 � x1x2 þ e

for which the population regression function is �4500 + 75x1 + 60x2 � x1x2. This
gives

mean y value when temperature is 100ð Þ ¼ � 4500þ 75ð Þ 100ð Þ þ 60x2 � 100x2

¼ 3000� 40x2

mean value when temperature is 95ð Þ ¼ 2625� 35x2

mean value when temperature is 90ð Þ ¼ 2250� 30x2

These are graphed in Figure 12.33b, where it is clear that the three slopes are

different. Now each different value of x1 yields a line with a different slope, so the

average change in yield associated with a l-unit increase in x2 depends on the value
of x1. When this is the case, the two variables are said to interact.

DEFINITION If the change in the mean y value associated with a 1-unit increase in one

independent variable depends on the value of a second independent variable,

there is interaction between these two variables. Denoting the two indepen-

dent variables by x1 and x2, we can model this interaction by including as an

additional predictor x3 ¼ x1x2, the product of the two independent variables.

The general equation for a multiple regression model based on two indepen-

dent variables x1 and x2 and also including an interaction predictor is

Y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ e where x3 ¼ x1x2:

When x1 and x2 do interact, this model will usually give a much better fit to

resulting data than would the no-interaction model. Failure to consider a model

Mean y value Mean y value

x2 x2

2550 − 35x
2  (x

1  = 90) 

2625 − 35x
2  (x

1  = 95) 

2700 − 35x
2  (x

1  = 100) 

3000 − 40x
2  (x

1  = 100) 
2625 − 35x

2  (x
1  = 95) 

2250 − 30x
2  (x

1  = 90) 

a b

Figure 12.33 Graphs of the mean y value for two different models: (a) 1200 + 15x1 � 35x2;

(b) �4500 + 75x1 + 60x2 � x1x2
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with interaction too often leads an investigator to conclude incorrectly that the

relationship between y and a set of independent variables is not very substantial.

In applied work, quadratic predictors x21 and x22 are often included to model a

curved relationship. This leads to the full quadratic or complete second-order
model

Y ¼ b0 þ b1x1 þ b2x2 þ b3x1x2 þ b4x
2
1 þ b5x

2
2 þ e

This model replaces the straight lines of Figure 12.33 with parabolas (each one is

the graph of the population regression function as x2 varies when x1 has a particular
value).

Example 12.30 Investigators carried out a study to see how various characteristics of concrete are

influenced by x1 ¼ % limestone powder and x2 ¼ water–cement ratio, resulting in

the accompanying data (“Durability of Concrete with Addition of Limestone

Powder,” Mag. Concrete Res., 1996: 131–137).

x1 x2 x1x2 28-day comp str. (MPa) Adsorbability (%)

21 .65 13.65 33.55 8.42

21 .55 11.55 47.55 6.26

7 .65 4.55 35.00 6.74

7 .55 3.85 35.90 6.59

28 .60 16.80 40.90 7.28

0 .60 0.00 39.10 6.90

14 .70 9.80 31.55 10.80

14 .50 7.00 48.00 5.63

14 .60 8.40 42.30 7.43

y ¼ 39:317; SST ¼ 278:52 y ¼ 7:339; SST ¼ 18:356

Consider first compressive strength as the dependent variable y. Fitting the first-

order model results in

y ¼ 84:82þ :1643x1 � 79:67x2 SSE ¼ 72:25 df ¼ 6ð Þ
R2 ¼ :741 R2

a ¼ :654

whereas including an interaction predictor gives

y ¼ 6:22þ 5:779x1 þ 51:33x2 � 9:357x1x2

SSE ¼ 29:35 df ¼ 5ð Þ R2 ¼ :895 R2
a ¼ :831

Based on this latter fit, a prediction for compressive strength when % limestone ¼
14 and water–cement ratio ¼ .60 is

ŷ ¼ 6:22þ 5:779 14ð Þ þ 51:33 :60ð Þ � 9:357 8:4ð Þ ¼ 39:32

Fitting the full quadratic relationship results in virtually no change in the R2 value.

However, when the dependent variable is adsorbability, the following results are

obtained: R2 ¼ .747 when just two predictors are used, .802 when the interaction

predictor is added, and .889 when the five predictors for the full quadratic relation-

ship are used. ■
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Models with Predictors for Categorical Variables Thus far we have

explicitly considered the inclusion of only quantitative (numerical) predictor vari-

ables in a multiple regression model. Using simple numerical coding, qualitative

(categorical) variables, such as type of college (private or state) or type of wood

(pine, oak, or walnut), can also be incorporated into a model. Let’s first focus on the

case of a dichotomous variable, one with just two possible categories—male or

female, U.S. or foreign manufacture, and so on. With any such variable, we

associate a dummy or indicator variable x whose possible values 0 and 1 indicate
which category is relevant for any particular observation.

Example 12.31 Recall the graduation rate data introduced in Example 12.12 and plotted in Exam-

ple 12.24. There it appeared that private universities might do better for a given

SAT score. To test this we will use a model with y ¼ graduation rate, x2 ¼ average

freshman SAT score, and x1 ¼ a variable defined to indicate private or public

status. Define

x1 ¼ 1 if the university is private

0 if the university is public

�

and consider the multiple regression model

Y ¼ b0 þ b1x1 þ b2x2 þ e:

The mean graduation rate depends on whether the university is public or private:

mean graduation rate ¼ b0 þ b2x2 when x1 ¼ 0 publicð Þ
mean graduation rate ¼ b0 þ b1 þ b2x2 when x1 ¼ 1 privateð Þ

Thus there are two parallel lines with vertical separation b1. as shown in Fig-

ure 12.34a. The coefficient b1 is the difference in mean graduation rates between

private and public universities with SAT held fixed. If b1 > 0, then on average, for

a given SAT, private universities will have a higher graduation rate.

Mean y Mean y

Private

State Private

State

x2 x2

b 0

b 1

b 2
x 2

(x 1

1)

b 0

b 2
x 2

(x 1

0)

b 0

b 1

( b
2

b 3
)x 2

(x 1

1)

b 0
b 2x2

(x1
0)

a b

Figure 12.34 Regression functions for models with one dummy variable (x1) and one

quantitative variable (x2): (a) no interaction; (b) interaction
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A second possibility is a model with a product (interaction) term:

Y ¼ b0 þ b1x1 þ b2x2 þ b3x1x2 þ e:

Now the mean graduation rates for the two types of university are

mean graduation rate ¼ b0 þ b2x2 when x1 ¼ 0 publicð Þ
mean graduation rate ¼ b0 þ b1 þ ðb2 þ b3Þx2 when x1 ¼ 1 privateð Þ

Thus we have two lines where b1 is the difference in intercepts and b3 is the

difference in slopes, as shown in Figure 12.34b. Unless b3 ¼ 0, the lines will not

be parallel and there will be interaction, which means that the separation between

public and private universities depends on SAT.

The usual procedure is to test the interaction hypothesis H0: b3 ¼ 0 versus

Ha: b3 6¼ 0 first. If we do not reject H0 (no interaction) then we can use the parallel

model to see if there is a separation (b1) between lines. Of course, it does not make

sense to estimate the difference between lines if the difference depends on x2,
which is the case when there is interaction.

Figure 12.35 shows SAS output for these two tests. The coefficient for

interaction has a P-value of 0.9062, so there is no reason to reject the null

Figure 12.35 SAS output for interaction model and parallel model ■
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hypothesis H0: b3 ¼ 0. Since we do not reject the hypothesis of no interaction, let’s

look at the results for the difference b1 in the model with two parallel lines. The

variable Priv1_St0 is x2, the dummy variable with value 1 for private and 0 for state

universities. The P-value for its coefficient is .0231, so we can reject the hypothesis
that it is 0 at the .05 level. The value of the coefficient is 13.17, which means that a

private university is estimated to have a graduation rate about 13 percentage points

higher than a state university with the same freshman SAT. This is pretty large,

especially in comparison with the coefficient for SAT, which is .06869. Dividing

.06869 into b̂1 ¼ 13:17 gives 192, which means that it takes 192 points in SAT to

make up the difference between private and public universities. To put it another

way, a private university with freshman SAT of 1000 is estimated to have the same

graduation rate as a state university with SAT of 1192. ■

You might think that the way to handle a three-category situation is to define

a single numerical variable with coded values such as 0, 1, and 2 corresponding to

the three categories. This is incorrect, because it imposes an ordering on the

categories that is not necessarily implied by the problem context. The correct

way to incorporate three categories is to define two different dummy variables.

Suppose, for example, that y is a score on a posttest taken after instruction, x1 is the
score on an ability pretest taken before instruction, and that there are three methods

of instruction in a mathematics unit (1) with symbols, (2) without symbols, and (3)

a mixture with and without symbols. Then let

x2 ¼ 1 instruction method 1

0 otherwise

�
x3 ¼ 1 instruction method 2

0 otherwise

�

For an individual taught with method 1, x2 ¼ 1 and x3 ¼ 0, whereas for an

individual taught with method 2, x2 ¼ 0 and x3 ¼ 1. For an individual taught

with method 3, x2 ¼ x3 ¼ 0, and it is not possible that x2 ¼ x3 ¼ 1 because

an individual cannot be taught simultaneously by both methods 1 and 2. The

no-interaction model would have only the predictors x1, x2, and x3. The following
interaction model allows the mean change in lifetime associated with a 1-unit

increase in pretest to depend on the method of instruction:

Y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x1x2 þ b5x1x3 þ e

Construction of a picture like Figure 12.34 with a graph for each of the three

possible (x2, x3) pairs gives three nonparallel lines (unless b4 ¼ b5 ¼ 0). How

would we interpret statistically significant interaction? Suppose that it occurs to

the extent that the lines for methods 1 and 2 cross. In particular, if the line for

method 1 is higher on the right and lower on the left, it means that symbols work

well for high ability students but not as well for low ability students.

More generally, incorporating a categorical variable with c possible cate-

gories into a multiple regression model requires the use of c� 1 indicator variables

(e.g., five methods of instruction would necessitate using four indicator variables).

Thus even one categorical variable can add many predictors to a model.

Indicator variables can be used for categorical variables without any other

variables in the model. For example, consider Example 11.3, which compared three

different compounds in their ability to prevent fabric soiling. Using a regression
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with two dummy variables gives the following regression ANOVA table, just like

the one in Example 11.2:

Source DF SS MS F P

Regression 2 0.06085 0.03043 0.99 0.401

Residual error 12 0.37008 0.03084

Total 14 0.43093

Analysis that involves both quantitative and categorical predictors, as in

Example 12.31, is called analysis of covariance, and the quantitative variable is

called a covariate. Sometimes more than one covariate is used.

Other Models The logistic regression model introduced in Section 12.1 can be

extended to incorporate more than one predictor. Various nonlinear models are also

used frequently in applied work. An example is the multiple exponential model

Y ¼ eb0þb1x1þ���þbkxk � e

Taking logs on both sides shows that ln(Y) ¼ b0 + b1x1 + � � � + bkxk + e0, where
e0 ¼ ln(e). This is the usual multiple regression model with ln(Y) as the response

variable.

Exercises Section 12.7 (78–90)

78. Cardiorespiratory fitness is widely recognized as a

major component of overall physical well-being.

Direct measurement of maximal oxygen uptake

(VO2max) is the single best measure of such fit-

ness, but direct measurement is time-consuming

and expensive. It is therefore desirable to have a

prediction equation for VO2max in terms of easily

obtained quantities. Consider the variables

y ¼ VO2max L=minð Þ x1 ¼ weight kgð Þ
x2 ¼ age yrð Þ
x3 ¼ time necessary to walk 1 mile minð Þ
x4 ¼ heart rate at the end of the walk beats=minð Þ
Here is one possible model, for male students,

consistent with the information given in the article

“Validation of the Rockport Fitness Walking Test

in College Males and Females” (Res. Q. Exercise
Sport, 1994: 152–158):

Y ¼ 5:0þ :01x1 � :05x2 � :13x3 � :01x4 þ e

s ¼ :4

a. Interpret b1 and b3.
b. What is the expected value of VO2max when

weight is 76 kg, age is 20 year, walk time is

12 min, and heart rate is 140 beats/min?

c. What is the probability that VO2max will be

between 1.00 and 2.60 for a single observation

made when the values of the predictors are as

stated in part (b)?

79. Let y ¼ sales at a fast-food outlet ($1000’s), x1 ¼
number of competing outlets within a 1-mile

radius, x2 ¼ population within a 1-mile radius

(1000’s of people), and x3 be an indicator variable
that equals 1 if the outlet has a drive-up window

and 0 otherwise. Suppose that the true regression

model is

Y ¼ 10:0� 1:2x1 þ 6:8x2 þ 15:3x3 þ e

a. What is the mean value of sales when the

number of competing outlets is 2, there are

8000 people within a 1-mile radius, and the

outlet has a drive-up window?

b. What is the mean value of sales for an outlet

without a drive-up window that has three com-

peting outlets and 5000 people within a 1-mile

radius?

c. Interpret b3.

80. The article “Analysis of the Modeling Methodol-

ogies for Predicting the Strength of Air-Jet Spun

Yarns” (Textile Res. J., 1997: 39–44) reported on a
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study carried out to relate yarn tenacity (y, in g/

tex) to yarn count (x1, in tex), percentage polyester
(x2), first nozzle pressure (x3, in kg/cm2), and

second nozzle pressure (x4, in kg/cm2). The esti-

mate of the constant term in the corresponding

multiple regression equation was 6.121. The esti-

mated coefficients for the four predictors were

�.082, .113, .256, and �.219, respectively, and

the coefficient of multiple determination was .946.

Assume that n ¼ 25.

a. State and test the appropriate hypotheses to

decide whether the fitted model specifies a

useful linear relationship between the depen-

dent variable and at least one of the four model

predictors.

b. Calculate the value of adjusted R2 and

comment.

c. Calculate a 99% confidence interval for true

mean yarn tenacity when yarn count is 16.5,

yarn contains 50% polyester, first nozzle pres-

sure is 3, and second nozzle pressure is 5 if the

estimated standard deviation of predicted

tenacity under these circumstances is .350.

81. The article “Selling Prices/Sq. Ft. of Office Build-

ings in Downtown Chicago – How Much Is

It Worth to Be an Old But Class A Building?”

(J. Real Estate Res., 2010: 1–22) considered a

regression model to relate y ¼ ln($/ft2) to 16 pre-

dictors, including age, age squared, number of

stories, occupancy rate, and indicator variables

for whether a building has a restaurant and

whether it has conference rooms. The model was

fit to data resulting from 203 sales.

a. The coefficient of multiple determination was

.711. What is the value of the adjusted coeffi-

cient of multiple determination? Does it sug-

gest that the relatively high R2 value was the

result of including too many predictors in the

model relative to the amount of data available?

b. Using the R2 value from (a), carry out a test of

hypotheses to see whether there is a useful

linear relationship between the dependent var-

iable and at least one of the predictors.

c. The estimated coefficient of the indicator vari-

able for whether or not a building was class A

was .364. Interpret this estimated coefficient,

first in terms of y and then in terms of $/ft2.

d. The t ratio for the estimated coefficient of (c)

was 5.49. What does this tell you?

82. An investigation of a die casting process resulted

in the accompanying data on x1 ¼ furnace tem-

perature, x2 ¼ die close time, and y ¼ tempera-

ture difference on the die surface (“A Multiple-

Objective Decision-Making Approach for Asses-

sing Simultaneous Improvement in Die Life and

Casting Quality in a Die Casting Process,” Qual.
Engrg., 1994: 371–383).

x1 1250 1300 1350 1250 1300

x2 6 7 6 7 6

y 80 95 101 85 92

x1 1250 1300 1350 1350

x2 8 8 7 8

y 87 96 106 108

MINITAB output from fitting the multiple regres-

sion model with predictors x1 and x2 is given here.

The regression equation is

tempdiff ¼ �200 + 0.210 furntemp

+3.00 clostime

Predictor Coef Stdev t-ratio p

Constant �199.56 11.64 �17.14 0.000

furntemp 0.210000 0.008642 24.30 0.000

clostime 3.0000 0.4321 6.94 0.000

s ¼ 1.058 R-sq ¼ 99.1% R-sq(adj) ¼ 98.8%

Analysis of Variance

Source DF SS MS F p

Regression 2 715.50 357.75 319.31 0.000

Error 6 6.72 1.12

Total 8 722.22

a. Carry out the model utility test.

b. Calculate and interpret a 95% confidence inter-

val for b2, the population regression coefficient
of x2.

c. When x1 ¼ 1300 and x2 ¼ 7, the estimated

standard deviation of Ŷ is sŶ ¼ :353. Calculate
a 95% confidence interval for true average

temperature difference when furnace tempera-

ture is 1300 and die close time is 7.

d. Calculate a 95% prediction interval for the

temperature difference resulting from a single

experimental run with a furnace temperature of

1300 and a die close time of 7.

e. Use appropriate diagnostic plots to see if there

is any reason to question the regression model

assumptions.

83. An experiment carried out to study the effect of

the mole contents of cobalt (x1) and the calcination
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temperature (x2) on the surface area of an iron–

cobalt hydroxide catalyst (y) resulted in the

accompanying data (“Structural Changes and Sur-

face Properties of CoxFe3�xO4 Spinels,” J. Chem.
Tech. Biotech., 1994: 161–170).

x1 .6 .6 .6 .6 .6 1.0 1.0

x2 200 250 400 500 600 200 250

y 90.6 82.7 58.7 43.2 25.0 127.1 112.3

x1 1.0 1.0 1.0 2.6 2.6 2.6 2.6

x2 400 500 600 200 250 400 500

y 19.6 17.8 9.1 53.1 52.0 43.4 42.4

x1 2.6 2.8 2.8 2.8 2.8 2.8

x2 600 200 250 400 500 600

y 31.6 40.9 37.9 27.5 27.3 19.0

A request to the SAS package to fit the regression

function b0 + b1x1 + b2x2 + b3x3, where x3 ¼
x1x2 (an interaction predictor) yielded the accom-

panying output.

a. Predict the value of surface area when cobalt

content is 2.6 and temperature is 250, and

calculate the value of the corresponding resid-

ual.

b. Since b̂1 ¼ �46:0, is it legitimate to conclude

that if cobalt content increases by 1 unit while

the values of the other predictors remain fixed,

surface area can be expected to decrease by

roughly 46 units? Explain your reasoning.

c. Does there appear to be a useful relationship

between y and the predictors?

d. Given that mole contents and calcination tem-

perature remain in the model, does the interac-

tion predictor x3 provide useful information

about y? State and test the appropriate hypoth-

eses using a significance level of .01.

e. The estimated standard deviation of Ŷ when

mole contents is 2.0 and calcination tempera-

ture is 500 is sŶ ¼ 4:69. Calculate a 95% con-

fidence interval for the mean value of surface

area under these circumstances.

f. Based on appropriate diagnostic plots, is there

any reason to question the regression model

assumptions?

84. A regression analysis carried out to relate y ¼
repair time for a water filtration system (hr) to

x1 ¼ elapsed time since the previous service

(months) and x2 ¼ type of repair (1 if electri-

cal and 0 if mechanical) yielded the following

model based on n ¼ 12 observations: y
¼ .950 + .400x1 + 1.250x2. In addition, SST

¼ 12.72, SSE ¼ 2.09, and ŝb2 ¼ :312.

SAS output for Exercise 83

Dependent Variable: SURFAREA

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Prob > F

Model 3 15223.52829 5074.50943 18.924 0.0001

Error 16 4290.53971 268.15873

C Total 19 19514.06800

Root MSE 16.37555 R-square 0.7801

Dep Mean 48.06000 Adj R-sq 0.7389

C.V. 34.07314

Parameter Estimates

Variable DF

Parameter

Estimate

Standard

Error

T for H0:

Parameter ¼ 0

Prob

> |T|

INTERCEP 1 185.485740 21.19747682 8.750 0.0001

COBCON 1 �45.969466 10.61201173 �4.332 0.0005

TEMP 1 �0.301503 0.05074421 �5.942 0.0001

CONTEMP 1 0.088801 0.02540388 3.496 0.0030
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a. Does there appear to be a useful linear

relationship between repair time and the

two model predictors? Carry out a test of

the appropriate hypotheses using a signifi-

cance level of .05.

b. Given that elapsed time since the last ser-

vice remains in the model, does type of

repair provide useful information about

repair time? State and test the appropriate

hypotheses using a significance level of

.01.

c. Calculate and interpret a 95% CI for b2.
d. The estimated standard deviation of a pre-

diction for repair time when elapsed time

is 6 months and the repair is electrical is

.192. Predict repair time under these cir-

cumstances by calculating a 99% predic-

tion interval. Does the interval suggest that

the estimated model will give an accurate

prediction? Why or why not?

85. The article “The Undrained Strength of Some

Thawed Permafrost Soils” (Canad. Geotech.
J., 1979: 420–427) contains the following

data on undrained shear strength of sandy

soil (y, in kPa), depth (x1, in m), and water

content (x2, in %).

Obs y x1 x2 ŷ y� ŷ e*

1 14.7 8.9 31.5 23.35 �8.65 �1.50

2 48.0 36.6 27.0 46.38 1.62 .54

3 25.6 36.8 25.9 27.13 �1.53 �.53

4 10.0 6.1 39.1 10.99 �.99 �.17

5 16.0 6.9 39.2 14.10 1.90 .33

6 16.8 6.9 38.3 16.54 .26 .04

7 20.7 7.3 33.9 23.34 �2.64 �.42

8 38.8 8.4 33.8 25.43 13.37 2.17

9 16.9 6.5 27.9 15.63 1.27 .23

10 27.0 8.0 33.1 24.29 2.71 .44

11 16.0 4.5 26.3 15.36 .64 .20

12 24.9 9.9 37.8 29.61 �4.71 �.91

13 7.3 2.9 34.6 15.38 �8.08 �1.53

14 12.8 2.0 36.4 7.96 4.84 1.02

The predicted values and residuals were com-

puted by fitting a full quadratic model, which

resulted in the estimated regression function

y ¼� 151:36� 16:22x1 þ 13:48x2 þ :094x21

� :253x22 þ :492x1x2

a. Do plots of e* versus x1, e* versus x2, and
e* versus ŷ suggest that the full quadratic

model should be modified? Explain your

answer.

b. The value of R2 for the full quadratic

model is .759. Test at level .05 the null

hypothesis stating that there is no linear

relationship between the dependent vari-

able and any of the five predictors.

c. Each of the null hypotheses H0: bi ¼ 0

versus Ha: bi 6¼ 0, i ¼ 1, 2, 3, 4, 5, is not

rejected at the 5% level. Does this make

sense in view of the result in (b)? Explain.

d. It is shown in Section 12.8 that

VðYÞ ¼ s2 ¼ VðŶÞ þ VðY � ŶÞ. The esti-

mate of s is ŝ ¼ s ¼ 6:99 (from the full

quadratic model). First obtain the esti-

mated standard deviation of Y � Ŷ, and
then estimate the standard deviation of Ŷ
(i.e., b̂0 þb̂1x1 þb̂2x2 þb̂3x

2
1 þb̂4x

2
2 þ

b̂5x1x2 when x1 ¼ 8.0 and x2 ¼ 33.1.

Finally, compute a 95% CI for mean

strength. [Hint: What is ðy� ŷÞ=e�?]
e. Sometimes an investigator wishes to

decide whether a group of m predictors

(m > 1) can simultaneously be eliminated

from the model. The null hypothesis says

that all b’s associated with these m predic-

tors are 0, which is interpreted to mean that

as long as the other k � m predictors are

retained in the model, the m predictors

under consideration collectively provide

no useful information about y. The test is

carried out by first fitting the “full” model

with all k predictors to obtain SSE(full)

and then fitting the “reduced” model con-

sisting just of the k � m predictors not
being considered for deletion to obtain

SSE(red). The test statistic is

F ¼ ½SSEðredÞ � SSEðfullÞ�=m
SSE(full)/[n� ðk þ 1Þ�

The test is upper-tailed and based on m
numerator df and n � (k + 1) denominator

df. Fitting the first-order model with just the

predictors x1 and x2 results in SSE ¼ 894.95.

State and test at significance level .05 the null

hypothesis that none of the three second-order

predictors (one interaction and two quadratic

predictors) provides useful information about

y provided that the two first-order predictors

are retained in the model.
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86. The following data on y ¼ glucose concen-

tration (g/L) and x ¼ fermentation time

(days) for a particular blend of malt liquor

was read from a scatter plot in the article

“Improving Fermentation Productivity with

Reverse Osmosis” (Food Tech., 1984:

92–96):

x 1 2 3 4 5 6 7 8

y 74 54 52 51 52 53 58 71

a. Verify that a scatter plot of the data is

consistent with the choice of a quadratic

regression model.

b. The estimated quadratic regression equa-

tion is y ¼ 84.482 � 15.875x + 1.7679x2.
Predict the value of glucose concentration

for a fermentation time of 6 days, and

compute the corresponding residual.

c. Using SSE ¼ 61.77, what proportion of

observed variation can be attributed to the

quadratic regression relationship?

d. The n ¼ 8 standardized residuals based on

the quadratic model are 1.91,�1.95,�.25,

.58, .90, .04, �.66, and .20. Construct a

plot of the standardized residuals versus x
and a normal probability plot. Do the plots

exhibit any troublesome features?

e. The estimated standard deviation of

m̂Y�6—that is, b̂0 þb̂1ð6Þ þb̂2ð36Þ— is

1.69. Compute a 95% CI for mY·6.
f. Compute a 95% PI for a glucose concen-

tration observation made after 6 days of

fermentation time.

87. Utilization of sucrose as a carbon source for

the production of chemicals is uneconomical.

Beet molasses is a readily available and low-

priced substitute. The article “Optimization of

the Production of b-Carotene from Molasses

by Blakeslea trispora” (J. Chem. Tech. Bio-
tech., 2002: 933–943) carried out a multiple

regression analysis to relate the dependent

variable y ¼ amount of b-carotene (g/dm3)

to the three predictors: amount of linoleic

acid, amount of kerosene, and amount of anti-

oxidant (all g/dm3).

a. Fitting the complete second-order model in

the three predictors resulted in R2 ¼ .987

and adjusted R2 ¼ .974, whereas fitting

the first-order model gave R2 ¼ .016.

What would you conclude about the two

models?

b. For x1 ¼ x2 ¼ 30, x3 ¼ 10, a statistical

software package reported that

ŷ ¼ :66573, sŶ ¼ :01785 based on the

complete second-order model. Predict

the amount of b-carotene that would

result from a single experimental run

with the designated values of the indepen-

dent variables, and do so in a way that

conveys information about precision and

reliability.

Obs Linoleic Kerosene Antiox Betacaro

1 30.00 30.00 10.00 0.7000

2 30.00 30.00 10.00 0.6300

3 30.00 30.00 18.41 0.0130

4 40.00 40.00 5.00 0.0490

5 30.00 30.00 10.00 0.7000

6 13.18 30.00 10.00 0.1000

7 20.00 40.00 5.00 0.0400

8 20.00 40.00 15.00 0.0065

9 40.00 20.00 5.00 0.2020

10 30.00 30.00 10.00 0.6300

11 30.00 30.00 1.59 0.0400

12 40.00 20.00 15.00 0.1320

13 40.00 40.00 15.00 0.1500

14 30.00 30.00 10.00 0.7000

15 30.00 46.82 10.00 0.3460

16 30.00 30.00 10.00 0.6300

17 30.00 13.18 10.00 0.3970

18 20.00 20.00 5.00 0.2690

19 20.00 20.00 15.00 0.0054

20 46.82 30.00 10.00 0.0640

88. Snowpacks contain a wide spectrum of pollu-

tants that may represent environmental

hazards. The article “Atmospheric PAH

Deposition: Deposition Velocities and Wash-

out Ratios”(J. Environ. Engrg., 2002:

186–195) focused on the deposition of poly-

aromatic hydrocarbons. The authors proposed

a multiple regression model for relating

deposition over a specified time period (y, in
mg/m2) to two rather complicated predictors

x1 (mg-s/m
3) and x2 (mg/m

2) defined in terms

of PAH air concentrations for various species,

total time, and total amount of precipitation.

Here is data on the species fluoranthene and

corresponding MINITAB output:

Obs x1 x2 flth dep

1 92017 .0026900 278.78

2 51830 .0030000 124.53

3 17236 .0000196 22.65
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4 15776 .0000360 28.68

5 33462 .0004960 32.66

6 243500 .0038900 604.70

7 67793 .0011200 27.69

8 23471 .0006400 14.18

9 13948 .0004850 20.64

10 8824 .0003660 20.60

11 7699 .0002290 16.61

12 15791 .0014100 15.08

13 10239 .0004100 18.05

14 43835 .0000960 99.71

15 49793 .0000896 58.97

16 40656 .0026000 172.58

17 50774 .0009530 44.25

The regression equation is

flth dep ¼ �33.5 + 0.00205 x1 + 29836 x2

Predictor Coef SE Coef T P

Constant �33.46 14.90 �2.25 0.041

x1 0.0020548 0.0002945 6.98 0.000

x2 29836 13654 2.19 0.046

S ¼ 44.28 R-Sq ¼ 92.3% R-Sq(adj) ¼ 91.2%

Analysis of Variance

Source DF SS MS F P

Regression 2 330989 165495 84.39 0.000

Residual

error

14 27454 1961

Total 16 358443

Formulate questions and perform appropriate

analyses.

Construct the appropriate residual plots,

including plots against the predictors. Based

on these plots, justify adding a quadratic term,

and fit the model with this additional term. Is

this term statistically significant, and does it

help the appearance of the diagnostic plots?

89. The following data set has ratings from rateb-

eer.com along with values of IBU (interna-

tional bittering units, a measure of bitterness)

and ABV (alcohol by volume) for 25 beers.

Notice which beers have the lowest ratings

and which are highest.

a. Find the correlations (and the

corresponding P-values) among Rating,

IBU, and ABV.

b. Regress Rating on IBU and ABV. Notice

that although both predictors have strongly

significant correlations with Rating, they

do not both have significant regression

coefficients. How do you explain this?

c. Plot the residuals from the regression of (b)

to check the assumptions. Also plot rating

against each of the two predictors. Which

of the assumptions is clearly not satisfied?

d. Repeat the multiple regression in (b) with

the square of IBU as a third predictor.

Again check assumptions.

e. How effective is the regression in (d)?

Interpret the coefficients with regard to

statistical significance and sign. In particu-

lar, discuss the relationship to IBU.

f. Summarize your conclusions.

Beer IBU ABV Rating

Amstel Light 18 3.5 1.93

Anchor Liberty Ale 54 5.9 3.60

Anchor Steam 33 4.9 3.31

Bud Light 7 4.2 1.15

Budweiser 11 5 1.38

Coors 14 5 1.63

DAB Dark 32 5 2.73

Dogfish 60 Minute IPA 60 6 3.76

Great Divide Titan IPA 65 6.8 3.81

Great Divide Hercules Double

IPA

85 9.1 4.05

Guinness Extra Stout 60 5 3.38

Harp Lager 21 4.3 2.85

Heineken 23 5 2.13

Heineken Premium Light 11 3.2 1.62

Michelob Ultra 4 4.2 1.01

Newcastle Brown Ale 18 4.7 3.05

Pilsner Urquell 35 4.4 3.28

Redhook ESB 29 5.77 3.06

Rogue Imperial Stout 88 11.6 3.98

Samuel Adams Boston Lager 31 4.9 3.19

Shiner Light 13 4.03 2.57

Sierra Nevada Pale Ale 37 5.6 3.61

Sierra Nevada Porter 40 5.6 3.60

Terrapin All-American Imperial

Pilsner

75 7.5 3.46

Three Floyds Alpha King 66 6 4.04

90. The article “Promoting Healthy Choices:

Information versus Convenience” (Amer.
Econ. J.: Applied Econ., 2010: 164 – 178)

reported on a field experiment at a fast-food
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sandwich chain to see whether calorie infor-

mation provided to patrons would affect calo-

rie intake. One aspect of the study involved

fitting a multiple regression model with 7 pre-

dictors to data consisting of 342 observations.

Predictors in the model included age and

dummy variables for gender, whether or not a

daily calorie recommendation was provided,

and whether or not calorie information about

choices was provided. The reported value of

the F ratio for testing model utility was 3.64.

a. At significance level .01, does the model

appear to specify a useful linear relation-

ship between calorie intake and at least

one of the predictors?

b. What can be said about the P-value for the
model utility F test?

c. What proportion of the observed variation in

calorie intake can be attributed to the model

relationship? Does this seem very impres-

sive? Why is the P-value as small as it is?

d. The estimated coefficient for the indicator

variable calorie information provided was

�71.73, with an estimated standard error

of 25.29. Interpret the coefficient. After

adjusting for the effects of other predic-

tors, does it appear that true average calo-

rie intake depends on whether or not

calorie information is provided? Carry

out a test of appropriate hypotheses.

12.8 Regression with Matrices
In Section 12.7 we used an additive model equation to relate a dependent variable y
to independent variables x1, . . ., xk. That is, we used the model

Y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bkxk þ e;

where e is a random deviation or error term that is normally distributed with mean

0, variance s2, and the various e’s are independent of one another. Simple linear

regression is the special case in which k ¼ 1.

The Normal Equations

Suppose that we have n observations, each consisting of a y value and values of the
k predictors (so each observation consists of k + 1 numbers). We have then

y1

..

.

yn

2
64

3
75 ¼

b0 þ b1x11 þ b2x12 þ � � � þ bkx1k þ e1
..
.

b0 þ b1xn1 þ b2xn2 þ � � � þ bkxnk þ en

2
64

3
75

For example, if there are n ¼ 6 cars, where y is horsepower, x1 is engine size

(liters), and x2 indicates fuel type (regular or premium), then we are trying to

predict horsepower as a linear function of the k ¼ 2 predictors engine size and fuel

type. The equations can be written much more compactly using vectors and

matrices. To do this, form a column vector of observations on y, a column vector

of regression coefficients, and a vector of random deviations:

y ¼
y1

..

.

yn

2
64

3
75 b ¼

b0
b1
..
.

bk

2
6664

3
7775 e ¼

e1
..
.

en

2
64

3
75

12.8 Regression with Matrices 705



Also form an n � (k + 1) matrix in which the first column consists of 1’s

(corresponding to the constant term in the model), the second column consists of

the values of the first predictor x1 (i.e., of x11, x21, . . ., xn1), the third column has the

values of x2, and so on.

X ¼
1 x11 . . . x1k

..

. ..
.

..

.

1 xn1 . . . xnk

2
64

3
75

The X matrix has a row for each observation, consisting of 1 and then the values of

the k predictors. The equations relating the observed y’s to the xi’s can then be

written very concisely as

y1

..

.

yn

2
64

3
75 ¼ y ¼ Xbþ e ¼

1 x11 . . . x1k

..

. ..
.

..

.

1 xn1 . . . xnk

2
64

3
75

b0
b1
..
.

bk

2
6664

3
7775þ

e1
..
.

en

2
64

3
75

We now estimate b0, b1, b2, . . ., bk using the principle of least squares: Find b0, b1,
b2, . . ., bk to minimize

Xn
i¼1

½yi � ðb0 þ b1xi1 þ b2xi2 þ � � � þ bkxikÞ�2 ¼ ðy� XbÞ0ðy� XbÞ ¼ y� Xbk k2

where b is the column vector with entries b0, b1, . . ., bk, and ||u|| is the length of u.
If we equate to zero the partial derivative with respect to each of the

coefficients, then it leads to the normal equations:

b0
Xn
i¼1

1þ b1
Xn
i¼1

xi1 þ � � � þ bk
Xn
i¼1

xik ¼
Xn
i¼1

yi

b0
Xn
i¼1

xi1 þ b1
Xn
i¼1

xi1xi1 þ � � � þ bk
Xn
i¼1

xi1xik ¼
Xn
i¼1

xi1yi

..

.

b0
Xn
i¼1

xik þ b1
Xn
i¼1

xikxi1 þ � � � þ bk
Xn
i¼1

xikxik ¼
Xn
i¼1

xikyi

In matrix form this is

Pn
i¼1

1
Pn
i¼1

xi1 . . .
Pn
i¼1

xik

Pn
i¼1

xi1
Pn
i¼1

xi1xi1 . . .
Pn
i¼1

xi1xik

..

.

Pn
i¼1

xik
Pn
i¼1

xikxi1 . . .
Pn
i¼1

xikxik

2
6666666664

3
7777777775

b0
b1
..
.

bk

2
6664

3
7775 ¼

Pn
i¼1

yi

Pn
i¼1

xi1yi

..

.

Pn
i¼1

xikyi

2
6666666664

3
7777777775
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The matrix on the left is just X0X and the matrix on the right is X0y, where X0

indicates X-transpose, so the normal equations become X0Xb ¼ X0y. We will

assume throughout this section that X0X has an inverse, so the vector of estimated

coefficients is b̂ ¼ b ¼ ½X0X��1X0y.

Example 12.32 Based on six cars, we try to predict horsepower (hp) using engine size (liters) and

fuel type. Here is the data set:

Make hp Eng Size Fuel

Ford 132 2.0 Regular

Mazda 167 2.0 Premium

Subaru 170 2.5 Regular

Lexus 204 2.5 Premium

Mitsubishi 230 3.0 Regular

BMW 260 3.0 Premium

The hp column will be used for y, and engine size values are placed in the second

column of X, but numbers must be used instead of words in the third column. We

use 0 for “regular” and 1 for “premium.” Any two numbers could be used instead of

0 and 1, but this choice is convenient in terms of the interpretation of the coeffi-

cients. This gives

X ¼

1 2:0 0

1 2:0 1

1 2:5 0

1 2:5 1

1 3:0 0

1 3:0 1

2
6666664

3
7777775

y ¼

132

167

170

204

230

260

2
6666664

3
7777775

X0X ¼
6 15 3

15 38:5 7:5
3 7:5 3

2
4

3
5 X0y ¼

1163

3003

631

2
4

3
5

Therefore,

b̂ ¼ ½X0X��1X0y ¼
79=12 �5=2 �1=3
�5=2 1 0

�1=3 0 2=3

2
4

3
5 1163

3003

631

2
4

3
5 ¼

�61:417
95:5
33

2
4

3
5

The coefficient 95.5 for engine size means that, if the fuel type is held constant, then

we estimate that horsepower will increase on average by 95.5 when the engine size

increases by one liter. Similarly, the coefficient 33 for fuel means that, if the engine

size is held constant, then we estimate that horsepower will increase on average by

33 when the fuel type increases by 1. However, increasing fuel type by 1 unit means

switching from regular fuel to premium fuel, so the difference in horsepower

corresponding to the difference in fuels is 33. Notice that this is the difference

between the average for the three premium-fuel cars and the average for the three

regular-fuel cars. ■

Residuals, ANOVA, F, and R-Squared

The estimated regression coefficients can be used to obtain the predicted values.

Recall that ŷi ¼ b̂0 þb̂1xi1 þb̂2xi2 þ � � � þb̂kxik. The expression for ŷi is the product
of the ith row of X and the b̂ vector. The vector of predicted values is then
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ŷ1
..
.

ŷn

2
64

3
75 ¼ ŷ ¼ Xb̂ ¼ X½X0X��1

X0y

Because y-hat is the product of H ¼ X½X0X��1X0 and y, the matrix H is called the

hat matrix. A residual is yi � ŷi, so the vector of n residuals is

y� ŷ ¼ y�Hy ¼ ðI �HÞy:

The error sum of squares SSE is the sum of the n squared residuals,

SSE = (y� ŷÞ0ðy� ŷÞ ¼ y� ŷk k2

An unbiased estimator of s2 is MSE ¼ S2 ¼ SSE/[n � (k + 1)]. Notice that the

estimated variance is the average [with n � (k + 1) in place of n] squared residual.

The divisor n � (k + 1) is used because SSE is proportional to a chi-square rv with

n� (k + 1) degrees of freedom under the assumptions given at the beginning of this

section, including the assumption that X0X be invertible.

We can rewrite the normal equations in the form

0 ¼ X0y� X0Xb̂ ¼ X0ðy� Xb̂Þ ¼ X0ðy� ŷÞ: ð12:19Þ

Because the transpose of X times the residual vector is zero, each of the columns of

X, including the column of 1’s, is perpendicular to the residual vector y� ŷ. In
particular, because the dot product of the column of 1’s with the residual vector is

zero, the sum of the residuals is zero. There are k + 1 columns of X, and the dot

product of each column with the residual vector is zero, so there are k + 1 condi-

tions satisfied by the residual vector. This helps to explain intuitively why there are

only n � (k + 1) degrees of freedom for SSE.

Letting y be the vector with n identical components y, the total sum of

squares SST is the sum of the squared deviations from y, SST ¼ y� yk k2. Simi-

larly, the regression sum of squares SSR is defined to be the sum of the squared

deviations of the predicted values from y, SSR ¼ ŷ� yk k2. As before the ANOVA
relationship is

SST ¼ SSEþ SSR ð12:20Þ

This can be obtained by subtracting and adding ŷ:

SST ¼ jjy� yjj2 ¼ ½ðy� ŷÞ þ ðŷ� yÞ�0½ðy� ŷÞ þ ðŷ� yÞ�
¼ jjy� ŷjj2 þ jjŷ� yjj2 ¼ SSEþ SSR:

The cross-terms in the matrix product are zero because of Equation (12.19) (see

Exercise 102).

Recall that the null hypothesis in themodel utility test isH0:b1 ¼ � � � ¼ bk¼ 0,

in which case the model consists of just b0. That is, underH0 the observations all have

the same mean m ¼ b0. For a normal random sample with mean m and standard
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deviation s, a proposition in Section 6.4 shows that SST/s2 has the chi-squared

distribution with n � 1 df. Dividing Equation (12.20) by s2 gives

SST

s2
¼ SSE

s2
þ SSR

s2

It can be shown that SSE and SSR are independent of each other. We know that

SST=s2 	 w2n�1 under the null hypothesis and SSE=s2 	 w2n�k�1. Then, by a prop-

osition in Section 6.4, SSR/s2 is distributed as chi-squared with degrees of freedom
[n � 1] � [n � (k + 1)] ¼ k. Recall from Section 6.4 that the F distribution is the

ratio of two independent chi-squares that have been divided by their degrees of

freedom. Applying this to SSR/s2 and SSE/s2 leads to the F ratio

SSR

s2k
SSE

s2½n� ðk þ 1Þ�
¼

SSR

k
SSE

n� ðk þ 1Þ
¼ MSR

MSE
	 Fk;n�ðkþ1Þ ð12:21Þ

Here MSR ¼ SSR/k and MSE was previously defined as SSE/[n � (k + 1)]. The

F ratio MSR/MSE is a standard part of regression output for statistical computer

packages. It tests the null hypothesis H0: b1 ¼ � � � ¼ bk ¼ 0, the hypothesis of a

constant mean model. This is the model utility test, and it tests the hypothesis that

the explanatory variables are useless for predicting y. Rejection of H0 occurs for

large values of the F ratio. This should be intuitively reasonable, because if the

prediction quality is good, then SSE should be small and SSR should be large, and

therefore the F ratio should be large. The dividing line between large and small is

set using the upper tail of the F distribution. In particular, H0 is typically rejected if

the F ratio exceeds F.05,k,n�(k+1).

Another measure of the relationship between y and the predictors is the R2

statistic, the coefficient of multiple determination, which is the fraction SSR/SST:

R2 ¼ SSR

SST
¼ SST� SSE

SST
¼ 1� SSE

SST
ð12:22Þ

By the analysis of variance, Equation (12.20), this is always between 0 and 1. The

R2 statistic is also called the squared multiple correlation. For example, suppose

SST ¼ 200, SSR ¼ 120, and therefore SSE ¼ 80. Then R2 ¼ 1 � (SSE/SST) ¼
1 � 80/200 ¼ .60, so the error sum of squares is 60% less than the total sum of

squares. This is sometimes interpreted by saying that the regression explains 60%

of the variability of y, which means that the regression has reduced the error sum of

squares by 60% from what it would be (SST) with just a constant model and no

predictors.

The F ratio and R2 are equivalent statistics in the sense that one can be

obtained from the other. For example, dividing numerator and denominator through

by SST in Equation (12.21) and using Equation (12.22), we find that the F ratio is

[see Equation (12.18)]

F ¼ R2=k

ð1� R2Þ=½n� ðk þ 1Þ�
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In the special case of just one predictor, k ¼ 1, F ¼ (n � 2)R2/(1 � R2), and the

multiple correlation is just the absolute value of the ordinary correlation coefficient.

This F is the square of the statistic T ¼ ffiffiffiffiffiffiffiffiffiffiffi
n� 2

p
R=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p
given in Section 12.5.

Example 12.33

(Example 12.32

continued)

The predicted values and residuals are easily obtained:

ŷ ¼ Xb̂ ¼

1 2 0

1 2 1

1 2:5 0

1 2:5 1

1 3 0

1 3 1

2
6666664

3
7777775

�61:417
95:50
33

2
4

3
5 ¼

129:583

162:583

177:333

210:333

225:083

258:083

2
6666666664

3
7777777775

y� ŷ ¼

132

167

170

204

230

260

2
6666666664

3
7777777775
�

129:583

162:583

177:333

210:333

225:083

258:083

2
6666666664

3
7777777775
¼

2:417

4:417

�7:333

�6:333

4:917

1:917

2
6666666664

3
7777777775

Therefore, the error sum of squares is SSE ¼ y� ŷk k2 ¼ 2:4172 þ � � � þ 1:9172 ¼
147:083 and MSE ¼ s2 ¼ SSE/[n � (k + 1)] ¼ 147.083/[6 � (2 + 1)] ¼ 49.028.

The square root of this yields the estimated standard deviation s ¼ 7.002, which is

a form of average for the magnitude of the residuals. However, notice that only one

of the six residuals exceeds s in magnitude. The total sum of squares is

SST ¼ jjy� yjj2 ¼P ðyi � 193:83Þ2 ¼ 10;900:83. The regression sum of squares

can be obtained by subtraction using the analysis of variance, SSR ¼ SST �
SSE ¼ 10,900.83 � 147.083 ¼ 10,753.75. The sums of squares and the computa-

tion of the F test and R2 are often done through an analysis of variance table, as

copied in Figure 12.36 from SAS output.

The regression sum of squares is called the model sum of squares here. The mean

square is the sum of squares divided by the degrees of freedom, and the F value

is the ratio of mean squares. Because the P-value is less than .05, we reject the

null hypothesis (that both the engine size and fuel population coefficients are 0) at

the .05 level. The coefficient of multiple determination is R2 ¼ SSR/SST ¼
10,753.75/ 10,900.83 ¼ .9865. We say that the two predictors account for

98.65% of the variance of horsepower because the error sum of squares is reduced

by 98.65% compared to the total sum of squares. ■

Figure 12.36 Analysis of variance table from SAS

710 CHAPTER 12 Regression and Correlation



Covariance Matrices

In order to develop hypothesis tests and confidence intervals for the regression

coefficients, the standard deviations of the estimated coefficients are needed. These

can be obtained from a certain covariance matrix, a matrix with the variances on

the diagonal and the covariances in the off-diagonal elements. If U is a column

vector of random variables U1, . . .,Unwith means m1 ¼ E(U1), . . ., mn ¼ E(Un), let

m be the vector of these n means and define

CovðUÞ¼
CovðU1;U1Þ � � � CovðU1;UnÞ

..

. . .
. ..

.

CovðUn;U1Þ � � � CovðUn;UnÞ

2
6664

3
7775

¼
E½ðU1�m1ÞðU1�m1Þ� � � � E½ðU1�m1ÞðUn�mnÞ�

..

. . .
. ..

.

E½ðUn�mnÞðU1�m1Þ� � � � E½ðUn�mnÞðUn�mnÞ�

2
6664

3
7775

¼ E

U1�m1

..

.

Un�mn

2
6664

3
7775 U1�m1; � � � ;Un�mn½ �

8>>><
>>>:

9>>>=
>>>;

¼Ef½U�m�½U�m�0g

ð12:23Þ

When n ¼ 1 this reduces to just the ordinary variance. The key to finding the

needed covariance matrix is this proposition:

PROPOSITION IfA is a matrix with constant entries andV ¼ AU, then Cov(V) ¼ ACov(U)A0.

Proof By the linearity of the expectation operator, E(V) ¼ E(AU) ¼ AE(U).
Then

CovðVÞ ¼ E AU � E AUð Þ½ � AU � E AUð Þ 0g ¼ EfA� ½U � EðUÞ ðA� ½U � EðUÞ½ �Þ0� �
¼ E A U � EðUÞ½ � U � EðUÞ½ �0A0� �
¼ AE U � EðUÞ½ � U � EðUÞ½ �0� �

A0 ¼ ACovðUÞA0 ■

Let’s apply the proposition to find the covariance matrix of b̂. Because

b̂ ¼ ½X0X��1X0Y, we use A ¼ ½X0X��1X0 and U ¼ Y. The transpose of A is

A0 ¼ f½X0X��1X0g0 ¼ X½X0X��1
. The covariance matrix of Y is just the variance

s2 times the n-dimensional identity matrix, that is, s2I, because the observations are
independent and all have the same variance s2. Then the proposition says

Covðb̂Þ ¼ ACovðYÞA0 ¼ ½X0X��1X0½s2I�X½X0X��1 ¼ s2½X0X��1 ð12:24Þ
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We also need to find the expected value of b̂,

Eðb̂Þ ¼ Eð½X0X��1X0YÞ ¼ ½X0X��1X0EðYÞ
¼ ½X0X��1X0EðXbþ eÞ ¼ ½X0X��1X0Xb ¼ b

That is, b̂ is an unbiased estimator of b (for each i, b̂i is unbiased for estimating bi).
Write the inverse matrix as ½X0X��1 ¼ C ¼ ½cij�. In particular, let

c00; c11; . . . ; ckk be the diagonal elements of this inverse matrix. Then

Vð̂bjÞ ¼ s2cjj. Also,b̂j is a linear combination of Y1, . . ., Yn, which are independent

normal, so ð̂bj � bjÞ=ðs ffiffiffiffiffi
cjj

p Þ 	 Nð0; 1Þ It follows that (this requires the indepen-

dence of S and the estimated regression coefficients, which we will not prove)

ð̂bj � bjÞ=ðS ffiffiffiffiffi
cjj

p Þ 	 tn�ðkþ1Þ. This leads to the confidence interval and hypothesis

test for coefficients of Section 12.7.

The 95% confidence interval for bj is

b̂j 
 t:025;n�ðkþ1Þs
ffiffiffiffiffi
cjj

p
: ð12:25Þ

We can test the hypothesis H0: bj ¼ bj0 using the t ratio

T ¼ b̂j � bj0
S
ffiffiffiffiffi
cjj

p 	 tn�ðkþ1Þ

Statistical software packages usually provide output for testing H0 bj ¼ 0 against

the two-sided alternative Ha: bj 6¼ 0. In particular, we would reject H0 in favor of

Ha at the 5% level if |t| exceeds t.025,n�(k+1). Usually, with computer output there is

no need to use statistical tables for hypothesis tests because P-values for these tests
are included.

Example 12.34

(Example 12.33

continued)

For the engine horsepower scenario we found that s ¼ 7.002, b̂0 ¼ �61:417,

b̂1 ¼ 95:5, b̂2 ¼ 33 and [X0X]�1 has elements c00 ¼ 79/12, c11 ¼ 1, c22 ¼ 2/3.

Therefore, we get these 95% confidence intervals:

b̂1
 t:025;6�ð2þ1Þs
ffiffiffiffiffiffi
c11

p ¼ 95:5
3:182ð7:002Þ
ffiffiffi
1

p
¼ 95:50
22:28¼ ½73:22; 117:78�

b̂2
 t:025;6�ð2þ1Þs
ffiffiffiffiffiffi
c22

p ¼ 33
3:182ð7:002Þ
ffiffiffiffiffiffiffiffi
2=3

p
¼ 33
18:19¼ ½14:81; 51:19�

We can also do the individual t tests for the coefficients:

b̂1 � 0

s
ffiffiffiffiffiffi
c11

p ¼ 95:5� 0

7:002
ffiffiffi
1

p ¼ 13:64; two-tailed P-value ¼ :0009

b̂2 � 0

s
ffiffiffiffiffiffi
c22

p ¼ 33� 0

7:002
ffiffiffiffiffiffiffiffi
2=3

p ¼ 5:77; two-tailed P-value ¼ :0103

Both of these exceed t.025,6�2�1 ¼ 3.182 in absolute value (and their P-values are
less than .05), so for both of them we reject at the 5% level the null hypothesis that

the coefficient is 0, in favor of the two-sided alternative. These conclusions are

consistent with the fact that the corresponding confidence intervals do not include

zero. Also, recall that the F test rejected at the 5% level the null hypothesis that both

coefficients are zero. As our intuition suggests, horsepower increases with engine

size and horsepower is higher when the engine requires premium fuel. ■
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The Hat Matrix

The foregoing proposition can be used to find estimated standard deviations for

predicted values and residuals. Recall that the vector of predicted values can be

obtained by multiplying the hat matrix H times the Y vector, HY ¼ Ŷ. First, in
order to apply the proposition, let’s obtain the transpose of H. With the help of the

rules (AB)0 ¼ B0A0 and (A�1)0 ¼ (A0)�1, we find that H is symmetric, H0 ¼ H:

H0 ¼ X X0X½ ��1
X0

n o0
¼ X0ð Þ0f X0X½ ��1g0X0 ¼ X X0X½ �0� ��1

X0 ¼ X X0X½ ��1
X0 ¼ H:

Therefore,

CovðŶÞ ¼ HCovðYÞH0 ¼ X½X0X��1X0½s2I�X½X0X��1X0

¼ s2X½X0X��1X0 ¼ s2H:
ð12:26Þ

A similar calculation shows that the covariance matrix of the residuals is

CovðY � ŶÞ ¼ s2ðI �HÞ ð12:27Þ

Of course, the true variance s2 is generally unknown, so the estimate s2 ¼ MSE is

used instead.

Example 12.35

(Example 12.34

continued)

Continue again with the horsepower example. If residuals and predicted values are

requested from SAS, then the output includes the information in Figure 12.37.

The column labeled “Std Error Mean Predict” has the estimated standard

deviations for the predicted values and it contains the square roots of the s2H matrix

diagonal elements. The column labeled “Std Error Residual” has the estimated

standard deviations for the residuals, and it contains the square roots of the diagonal

elements of s2(I�H). The column labeled “Student Residual” is what we defined as

the standardized residual in Section 12.6. It is the ratio of the previous two col-

umns. ■

The hat matrix is also important as a measure of the influence of individual

observations. Because ŷ ¼ Hy, ŷi ¼ hi1y1 þ hi2y2 þ � � � þ hinyn, and therefore

@ŷi=@yi ¼ hii. That is, the partial derivative of ŷi with respect to yi is the ith
diagonal element of the hat matrix. In other words, the ith diagonal element of H
measures the influence of the ith observation on its predicted value. The diagonal

Obs Residual
Student
Residual

1 132.0000 129.5833 5.3479 2.4167 4.520 0.535
2 167.0000 162.5833 5.3479 4.4167 4.520 0.977
3 170.0000 177.3333 4.0426 –7.3333 5.717 –1.283
4 204.0000 210.3333 4.0426 –6.3333 5.717 –1.108
5 230.0000 225.0833 5.3479 4.9167 4.520 1.088
6 260.0000 258.0833 5.3479 1.9167 4.520 0.424

Dep Var
Predicted

Value
StdError

Mean Predict
StdError
Residual

Figure 12.37 Predicted values and residuals from SAS
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elements of H are sometimes called the leverages to indicate their influence over

the regression. An observation with very high leverage will tend to pull the

regression toward it, and its residual will tend to be small. Of course, H depends

only on the values of the predictors, so the leverage measures only one aspect of

influence. If the influence of an observation is defined in terms of the effect on the

predicted values when the observation is omitted, then an influential observation is

one that has both large leverage and a large (in absolute value) residual.

Example 12.36 Students in a statistics class measured their height, foot length, and wingspan

(measured fingertip to fingertip with hands outstretched) in inches. Leonardo da

Vinci was aware that the wingspan tends to be very nearly the same as height. Here

in Table 12.3 are the measurements for 16 students. The last column has the

leverages for the regression of wingspan on height and foot length.

In Figure 12.38 we show the plot of height against foot length, along with the

leverage for each point. Notice that the points at the extreme right and left of

the plot have high leverage, and the points near the center have low leverage.

However, it is interesting that the point with highest leverage is not at the extremes

of height or foot length. This is student number 7, with a 10-in. foot and height of

71 in., and the high leverage comes from the height being extreme relative to foot

length. Indeed, when there are several predictors, high leverage often occurs when

values of one predictor are extreme relative to the values of other predictors. For

example, if height and weight are predictors, then an overweight or underweight

subject would likely have high leverage.

Table 12.3 Height, foot length, and wingspan

Obs Height Foot Wingspan Leverage

1 63.0 9.0 62.0 0.239860

2 63.0 9.0 62.0 0.239860

3 65.0 9.0 64.0 0.228236

4 64.0 9.5 64.5 0.223625

5 68.0 9.5 67.0 0.196418

6 69.0 10.0 69.0 0.083676

7 71.0 10.0 70.0 0.262182

8 68.0 10.0 72.0 0.067207

9 68.0 10.5 70.0 0.187088

10 72.0 10.5 72.0 0.151959

11 73.0 11.0 73.0 0.143279

12 73.5 11.0 75.0 0.168719

13 70.0 11.0 71.0 0.245380

14 70.0 11.0 70.0 0.245380

15 72.0 11.0 76.0 0.128790

16 74.0 11.2 76.5 0.188340
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In Figure 12.39 there is some useful output from MINITAB, including the

model utility test, the regression coefficients, and the correlations among the

variables. The correlation table shows all three correlations among the three vari-

ables along with their P-values. Clearly, the three variables are very strongly

related. However, when wingspan is regressed on height and foot length, the

P-value for foot length is greater than .05, so we can consider eliminating foot

length from the regression equation. Does it make sense for foot length to be very

strongly related to wingspan, as measured by correlation, but for the foot length

term to be not statistically significant in the regression equation? The difference is

that the regression test is asking whether foot length is needed in addition to height.

Because the two predictors are themselves highly correlated, foot length is redun-

dant in the sense that it offers little prediction ability beyond what is contributed

by height.

Analysis of Variance

Source DF SS MS F P
Regression 2 294.79 147.40 67.33 0.000
Residual Error 13 28.46 2.19
Total 15 323.25

Predictor Coef SE Coef T P
Constant 6.085 8.018 0.76 0.461
height 0.8060 0.2305 3.50 0.004
foot 1.973 1.044 1.89 0.081

S 1.47956 R-Sq 91.2% R-Sq(adj) 89.8%

Correlations: height, foot, wingspan
height foot

foot 0.892
0.000

wingspan 0.942 0.911
0.000 0.000

Figure 12.39 Regression output for height, foot length, and wingspan ■

64

62

74

68

66

72

70

9.0 9.5 10.0 10.5 11.0 11.5

Height

Foot length

0.08
0.07

0.22

0.26
0.15

0.25

0.13

0.23

0.24

0.14
0.190.17

0.20 0.19

Figure 12.38 Plot of height and foot length showing leverage
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Exercises Section 12.8 (91–104)

91. Fit the model Y ¼ b0 þ b1x1 þ b2x2 þ e to the

data

x1 x2 y
�1 �1 1

�1 1 1

1 �1 0

1 1 4

a. Determine X and y and express the normal

equations in terms of matrices.

b. Determine the b̂ vector, which contains the

estimates for the three coefficients in the

model.

c. Determine ŷ, the predictions for the four

observations, and also the four residuals.

Find SSE by summing the four squared resi-

duals. Use this to get the estimated variance

MSE.

d. Use the MSE and c11 to get a 95% confidence

interval for b1.
e. Carry out a t test for the hypothesis H0:

b1 ¼ 0 against a two-tailed alternative, and

interpret the result.

f. Form the analysis of variance table and carry

out the F test for the hypothesis H0: b1 ¼ b2
¼ 0. Find R2 and interpret.

92. Consider the model Y ¼ b0 þ b1x1 þ e for the

data

x1 y

�.5 1

�.5 2

�.5 2

�.5 3

.5 8

.5 9

.5 7

.5 8

a. Determine the X and y matrices and express

the normal equations in terms of matrices.

b. Determine the b̂ vector, which contains the

estimates for the two coefficients in the

model.

c. Determine ŷ, the predictions for the eight

observations, and also obtain the eight resi-

duals.

d. Find SSE by summing the eight squared resi-

duals. Use this to get the estimated variance

MSE.

e. Use the MSE and c11 to get a 95% confidence

interval for b1.
f. Carry out a t test for the hypothesisH0: b1 ¼ 0

against a two-tailed alternative.

g. Carry out the F test for the hypothesis H0:

b1 ¼ 0. How is this related to part (f)?

93. Suppose that the model consists of just

Y ¼ b0 þ e so k ¼ 0. Estimate b0 from

[X0X]�1X0y. Find simple expressions for s and

c00, and use them along with Equation (12.25)

to express simply the 95% confidence interval

for b0. Your result should be equivalent to the

one-sample t confidence interval in Section 8.3.

94. Suppose we have (x1, y1), . . ., (xn, yn). Let k ¼ 1

and let xi1 ¼ xi � x; i ¼ 1; . . . ; n, so our model

is yi ¼ b0 þ b1ðxi � xÞ þ ei i ¼ 1; . . . ; n:
a. Obtain b̂0 and b̂1 from [X0X]�1X0y.
b. Find c00 and c11 and use them to simplify the

confidence intervals [Equation (12.25)] for

b0 and b1.
c. In terms of computing [X0X]�1, why is it better

to have xi1 ¼ xi � x rather than xi1 ¼ xi?

95. Suppose that we have Y1, . . ., Ym ~ N( m1, s
2),

Ym+1, . . ., Ym+n ~ N( m2, s
2), and all m + n obser-

vations are independent. These are the assump-

tions of the pooled t procedure in Section 10.2.

Let k ¼ 1, x11 ¼ .5, . . ., xm1 ¼ .5, xm+1,1 ¼ �.5,

. . ., xm+n,1 ¼ �.5. For convenience in inverting

X0X assume m ¼ n.
a. Obtain b̂0 and b̂1 from [X0X]�1X0y.
b. Find simple expressions for ŷ, SSE, s, c11.
c. Use parts (a) and (b) to find a simple expres-

sion for the 95% CI [Equation (12.25)] for b1.
Letting y1 be the mean of the first m observa-

tions and y2 be the mean of the next n obser-

vations, your result should be

b̂1
 t:025;mþn�2s

ffiffiffiffiffiffiffiffiffiffiffi
1

m
þ1

n

r
¼ y1� y2


 t:025;mþn�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

ðyi�y1Þ2þ
Pmþn

i¼mþ1

ðyi�y2Þ2

mþn�2

vuuut ffiffiffiffiffiffiffiffiffiffiffi
1

m
þ1

n

r

which is the pooled variance confidence inter-

val discussed in Section 9.2.
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d. Let m ¼ 3 and n ¼ 3, with y1 ¼ 117,

y2 ¼ 119, y3 ¼ 127, y4 ¼ 129, y5 ¼ 138,

y6 ¼ 139. These are the prices in thousands

for three houses in Brookwood and then three

houses in Pleasant Hills. Apply parts (a), (b),

and (c) to this data set.

96. The constant term is not always needed in the

regression equation. For example, many physical

principles involve proportions, where no con-

stant term is needed. In general, if the dependent

variable should be 0 when the independent vari-

ables are 0, then the constant term is not needed.

Then it is preferable to omit b0 and use the model

Y ¼ b1x1 þ b2x2 þ � � � þ bkxk þ e. Here we

focus on the special case k ¼ 1.

a. Differentiate the appropriate sum of squares

to derive the one normal equation for estimat-

ing b1.
b. Express your normal equation in matrix

terms, X0Xb ¼ X0y, where X consists of one

column with the values of the predictor vari-

able.

c. Apply part (b) to the data of Example 12.32,

using hp for y and just engine size in X.
d. Explain why deletion of the constant term

might be appropriate for the data set in part (c).

e. By fitting a regression model with a constant

term added to the model of part (c), test the

hypothesis that the constant is not needed.

97. Assuming that the analysis of variance table is

available, show how the last three columns of

Figure 12.37 (the columns related to residuals)

can be obtained from the previous columns.

98. Given that the residuals are y� ŷ ¼ ðI �HÞy,
show that CovðY � ŶÞ ¼ I �Hð Þs2.

99. Use Equations (12.26) and (12.27) to show that

each of the leverages is between 0 and 1, and

therefore the variances of the predicted values

and residuals are between 0 and s2.

100. Consider the special case y ¼ b0 þ b1xþ e, so
k ¼ 1 and X consists of a column of 1’s and a

column of the values x1, . . ., xn of x.
a. Write the normal equations in matrix form,

and solve by inverting X0X. [Hint: if ad 6¼ bc,
then

a b
c d

� �1

¼ 1

ad � bc

d �b
�c a

� 

Check your answers against those in Sec-

tion 12.2.]

b. Use the inverse of X0X to obtain expressions

for the variances of the coefficients, and

check your answers against the results given

in Sections 12.3 and 12.4 (b̂0 is the predicted
value corresponding to x* ¼ 0).

c. Compare the predictions from this model with

the predictions from the model of Exercise 94.

Comparing other aspects of the two models,

discuss similarities and differences. Mention,

in particular, the hat matrix, the predicted

values, and the residuals.

101. Continue Exercise 94.

a. Find the elements of the hat matrix and use

them to obtain the variance of the predicted

values. Noting the result of Exercise 100(c),

compare your result with the expression for

VðŶÞ given in Section 12.4.

b. Using the diagonal elements of H, obtain the

variances of the residuals and compare with

the expression given in Section 12.6

c. Compare the variances of predicted values

for an x that is close to x and an x that is far

from x.
d. Compare the variances of residuals for an x

that is close to x and an x that is far from x.
e. Give intuitive explanations for the results of

parts (c) and (d).

102. Carry out the details of the derivation for the

analysis of variance, Equation (12.20).

103. The measurements here are similar to those in

Example 12.36, except that here the students did

the measurements at home, and the results suf-

fered in accuracy. These are measurements from

a sample of ten students:

Wingspan Foot Height

74 13.0 75

56 8.5 66

65 10.0 69

66 9.5 66

62 9.0 54

69 11.0 72

75 12.0 75

66 9.0 63

66 9.0 66

63 8.5 63

a. Regress wingspan on the other two variables.

Carry out the test of model utility and the tests

for the two individual regression coefficients

of the predictors.
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b. Obtain the diagonal elements of the hat

matrix (leverages). Identify the point with

the highest leverage. What is unusual about

the point? Given the instructor’s assertion that

there were no students in the class less than

five feet tall, would you say that there was an

error? Give another reason that this student’s

measurements seem wrong.

c. For the other points with high leverages, what
distinguishes them from the points with ordi-

nary leverage values?

d. Examining the residuals, find another student

whose data might be wrong.

e. Discuss the elimination of questionable points

in order to obtain valid regression results.

104. Here is a method for obtaining the variance of the

residuals in simple (one predictor) linear regres-

sion, as given by Equation (12.13).

a. We have shown in Equations (12.26) and

(12.27) that CovðŶÞ ¼ s2H and

CovðY � ŶÞ ¼ s2ðI �HÞ. Show therefore

that VðYi � ŶiÞ ¼ s2 � VðŶiÞ.
b. Use part (a) and VðŶiÞ from Section 12.4 to

show that for simple linear regression,

VðYi � ŶiÞ ¼ s2 � 1� 1

n
� ðxi � xÞ2

Sxx

" #

Supplementary Exercises (105–121)

105. The presence of hard alloy carbides in high

chromium white iron alloys results in excellent

abrasion resistance, making them suitable for

materials handling in the mining and materials

processing industries. The accompanying data

on x ¼ retained austenite content (%) and y ¼
abrasive wear loss (mm3) in pin wear tests with

garnet as the abrasive was read from a plot in

the article “Microstructure-Property Relation-

ships in High Chromium White Iron Alloys”

(Internat. Mater. Rev., 1996: 59–82).

x 4.6 17.0 17.4 18.0 18.5 22.4 26.5 30.0 34.0

y .66 .92 1.45 1.03 .70 .73 1.20 .80 .91

x 38.8 48.2 63.5 65.8 73.9 77.2 79.8 84.0

y 1.19 1.15 1.12 1.37 1.45 1.50 1.36 1.29

SAS output for Exercise 105

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Prob > F
Model 1 0.63690 0.63690 15.444 0.0013
Error 15 0.61860 0.04124
C Total 16 1.25551

Root MSE 0.20308 R-square 0.5073
Dep Mean 1.10765 Adj R-sq 0.4744
C.V. 18.33410

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error

T for H0:
Parameter ¼ 0

Prob
> |T|

INTERCEP 1 0.787218 0.09525879 8.264 0.0001
AUSTCONT 1 0.007570 0.00192626 3.930 0.0013
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a. What proportion of observed variation in

wear loss can be attributed to the simple lin-

ear regression model relationship?

b. What is the value of the sample correlation

coefficient?

c. Test the utility of the simple linear regression

model using a ¼ .01.

d. Estimate the true average wear loss when

content is 50% and do so in a way that con-

veys information about reliability and preci-

sion.

e. What value of wear loss would you predict

when content is 30%, and what is the value of

the corresponding residual?

106. An investigation was carried out to study the

relationship between speed (ft/s) and stride rate

(number of steps taken/s) among female mara-

thon runners. Resulting summary quantities

included n ¼ 11, S(speed) ¼ 205.4, S(speed)2

¼ 3880.08, S(rate) ¼ 35.16, S(rate)2

¼ 112.681, and S(speed)(rate) ¼ 660.130.

a. Calculate the equation of the least squares

line that you would use to predict stride rate

from speed.

b. Calculate the equation of the least squares

line that you would use to predict speed from

stride rate.

c. Calculate the coefficient of determination

for the regression of stride rate on speed of

part (a) and for the regression of speed on

stride rate of part (b). How are these related?

d. How is the product of the two slope esti-

mates related to the value calculated in (c)?

107. In Section 12.4, we presented a formula for

the variance Vðb̂0 þ b̂1x
�Þ and a CI for

b0 þ b1x
�. Taking x* ¼ 0 gives s2

b̂0

and a CI

for b0. Use the data of Example 12.12 to cal-

culate the estimated standard deviation of b̂0
and a 95% CI for the y-intercept of the true

regression line.

108. Show that SSE ¼ Syy � b̂1Sxy, which gives an

alternative computational formula for SSE.

109. Suppose that x and y are positive variables and
that a sample of n pairs results in r � 1. If the

sample correlation coefficient is computed for

the (x, y2) pairs, will the resulting value also be

approximately 1? Explain.

110. Let sx and sy denote the sample standard devia-

tions of the observed x’s and y’s, respectively [so

s2x ¼
P ðxi � xÞ2=ðn� 1Þ and similarly for s2y].

a. Show that an alternative expression for the

estimated regression line b̂0 þ b̂1x is

y ¼ yþ r � sy
sx
ðx� xÞ

b. This expression for the regression line can

be interpreted as follows. Suppose r ¼ .5.

What then is the predicted y for an x that

lies 1 SD (sx units) above the mean of the

xi’s? If r were 1, the prediction would be for

y to lie 1 SD above its mean y, but since
r ¼ .5, we predict a y that is only .5 SD (.5sy
unit) above y. Using the data in Exercise 62

for a patient whose age is 1 SD below the

average age in the sample, by how many

standard deviations is the patient’s predicted

DCBG above or below the average DCBG
for the sample?

111. In biofiltration of wastewater, air discharged

from a treatment facility is passed through a

damp porous membrane that causes contami-

nants to dissolve in water and be transformed

into harmless products. The accompanying data

on x ¼ inlet temperature (�C) and y ¼ removal

efficiency (%) was the basis for a scatter plot

that appeared in the article “Treatment of

Mixed Hydrogen Sulfide and Organic Vapors

in a Rock Medium Biofilter”(Water Environ.
Res., 2001: 426–435).

Obs Temp Removal
%

Obs Temp Removal
%

1 7.68 98.09 17 8.55 98.27

2 6.51 98.25 18 7.57 98.00

3 6.43 97.82 19 6.94 98.09

4 5.48 97.82 20 8.32 98.25

5 6.57 97.82 21 10.50 98.41

6 10.22 97.93 22 16.02 98.51

7 15.69 98.38 23 17.83 98.71

8 16.77 98.89 24 17.03 98.79

9 17.13 98.96 25 16.18 98.87

10 17.63 98.90 26 16.26 98.76

11 16.72 98.68 27 14.44 98.58

12 15.45 98.69 28 12.78 98.73

13 12.06 98.51 29 12.25 98.45

14 11.44 98.09 30 11.69 98.37

15 10.17 98.25 31 11.34 98.36

16 9.64 98.36 32 10.97 98.45

Calculated summary quantities are

Sxi ¼ 384:26, Syi ¼ 3149:04,
P

x2i ¼
5099:2412, Sxiyi ¼ 37; 850:7762, and

P
y2i ¼

309;892:6548.
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a. Does a scatter plot of the data suggest appro-

priateness of the simple linear regression

model?

b. Fit the simple linear regression model, obtain

a point prediction of removal efficiency when

temperature ¼ 10.50, and calculate the value

of the corresponding residual.

c. Roughly what is the size of a typical deviation
of points in the scatter plot from the least

squares line?

d. What proportion of observed variation in

removal efficiency can be attributed to the

model relationship?

e. Estimate the slope coefficient in a way that

conveys information about reliability and pre-

cision, and interpret your estimate.

f. Personal communication with the authors of

the article revealed that one additional observa-

tion was not included in their scatter plot: (6.53,

96.55). What impact does this additional obser-

vation have on the equation of the least squares

line and the values of s and r2?

112. Normal hatchery processes in aquaculture inev-

itably produce stress in fish, which may nega-

tively impact growth, reproduction, flesh

quality, and susceptibility to disease. Such

stress manifests itself in elevated and sustained

corticosteroid levels. The article “Evaluation of

Simple Instruments for the Measurement of

Blood Glucose and Lactate, and Plasma Protein

as Stress Indicators in Fish”(J.World Aquacult.
Soc., 1999: 276–284) described an experiment

in which fish were subjected to a stress protocol

and then removed and tested at various times

after the protocol had been applied. The accom-

panying data on x ¼ time (min) and y ¼ blood

glucose level (mmol/L) was read from a plot.

x 2 2 5 7 12 13 17 18 23 24 26 28

y 4.0 3.6 3.7 4.0 3.8 4.0 5.1 3.9 4.4 4.3 4.3 4.4

x 29 30 34 36 40 41 44 56 56 57 60 60

y 5.8 4.3 5.5 5.6 5.1 5.7 6.1 5.1 5.9 6.8 4.9 5.7

Use the methods developed in this chapter to

analyze the data, and write a brief report sum-

marizing your conclusions (assume that the

investigators are particularly interested in glu-

cose level 30 min after stress).

113. The article “Evaluating the BOD POD for

Assessing Body Fat in Collegiate Football

Players” (Med. Sci. Sports Exercise, 1999:

1350–1356) reports on a new air displacement

device for measuring body fat. The customary

procedure utilizes the hydrostatic weighing

device, which measures the percentage of

body fat by means of water displacement.

Here is representative data read from a graph

in the paper.

BOD 2.5 4.0 4.1 6.2 7.1 7.0 8.3 9.2 9.3 12.0 12.2
HW 8.0 6.2 9.2 6.4 8.6 12.2 7.2 12.0 14.9 12.1 15.3

BOD 12.6 14.2 14.4 15.1 15.2 16.3 17.1 17.9 17.9
HW 14.8 14.3 16.3 17.9 19.5 17.5 14.3 18.3 16.2

a. Use various methods to decide whether it is

plausible that the two techniques measure on

average the same amount of fat.

b. Use the data to develop a way of predicting

an HW measurement from a BOD POD

measurement, and investigate the effective-

ness of such predictions.

114. Reconsider the situation of Exercise 105, in

which x ¼ retained austenite content using a

garnet abrasive and y ¼ abrasive wear loss

were related via the simple linear regression

model Y ¼ b0 + b1x + e. Suppose that for a sec-
ond type of abrasive, these variables are also

related via the simple linear regression model

Y ¼ g0 + g1x + e and that V(e) ¼ s2 for both

types of abrasive. If the data set consists of n1
observations on the first abrasive and n2 on the

second and if SSE1 and SSE2 denote the two

error sums of squares, then a pooled estimate of

s2 is ŝ2 ¼ SSE1 þ SSE2ð Þ= n1 þ n2 � 4ð Þ. Let

SSx1 and SSx2 denote
P ðxi � xÞ2 for the data

on the first and second abrasives, respectively.

A test of H0: b1 � g1 ¼ 0 (equal slopes) is based

on the statistic

T ¼ b̂1 � ĝ1

ŝ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ssx1
þ 1

ssx2

r

When H0 is true, T has a t distribution with

n1 + n2 � 4 df. Suppose the 15 observations

using the alternative abrasive give SSx2
¼ 7152.5578, ĝ1 ¼ :006845, and SSE2

¼ .51350. Using this along with the data of

Exercise 105, carry out a test at level .05 to see

whether expected change in wear loss associated

with a 1% increase in austenite content is identi-

cal for the two types of abrasive.
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115. Show that the ANOVA version of the model

utility test discussed in Section 12.3 (with test

statistic F ¼ MSR/MSE) is in fact a likelihood

ratio test for H0: b1 ¼ 0 versus Ha: b1 6¼ 0. [Hint:
We have already pointed out that the least

squares estimates of b0 and b1 are the mle’s.

What is the mle of b0 when H0 is true? Now

determine the mle of s2 both in O (when b1 is

not necessarily 0) and in O0 (when H0 is true).]

116. Show that the t ratio version of the model utility

test is equivalent to the ANOVA F statistic ver-

sion of the test. Equivalent here means that

rejecting H0: b1 ¼ 0 when either t � ta/2,n�2 or

t � �ta/2, n�2 is the same as rejecting H0 when f
� Fa,1,n�2.

117. When a scatter plot of bivariate data shows a

pattern resembling an exponentially increasing

or decreasing curve, the following multiplicative
exponential model is often used: Y ¼ aebx � e.
a. What does this multiplicative model imply

about the relationship between Y0¼ ln(Y) and
x? [Hint: take logs on both sides of the model

equation and let b0 ¼ ln(a), b1 ¼ b, e0 ¼ ln

(e), and suppose that e has a lognormal distri-

bution.]

b. The accompanying data resulted from an

investigation of how ethylene content of let-

tuce seeds (y, in nL/g dry wt) varied with

exposure time (x, in min) to an ethylene

absorbent (“Ethylene Synthesis in Lettuce

Seeds: Its Physiological Significance,” Plant
Physiol., 1972: 719–722).

x 2 20 20 30 40 50 60 70 80 90 100

y 408 274 196 137 90 78 51 40 30 22 15

Fit the simple linear regression model to this

data, and check model adequacy using the

residuals.

c. Is a scatter plot of the data consistent with the

exponential regression model? Fit this model

by first carrying out a simple linear regression

analysis using ln(y) as the dependent variable
and x as the independent variable. How good a

fit is the simple linear regression model to the

“transformed” data [the (x, ln(y)) pairs]? What

are point estimates of the parameters a and b?
d. Obtain a 95% prediction interval for ethylene

content when exposure time is 50 min. [Hint:
first obtain a PI for ln(y) based on the simple

linear regression carried out in (c).]

118. No tortilla chip afficionado likes soggy chips, so

it is important to identify characteristics of the

production process that produce chips with an

appealing texture. The following data on x ¼
frying time (sec) and y ¼ moisture content (%)

appeared in the article “Thermal and Physical

Properties of Tortilla Chips as a Function of

Frying Time” (J. Food Process. Preserv., 1995:
175–189).

x 5 10 15 20 25 30 45 60

y 16.3 9.7 8.1 4.2 3.4 2.9 1.9 1.3

a. Construct a scatter plot of the data and com-

ment.

b. Construct a scatter plot of the [ln(x), ln(y)]
pairs (i.e. transform both x and y by logs) and

comment.

c. Consider the multiplicative power model Y ¼
a xbe. What does this model imply about the

relationship between y0 ¼ ln(y) and x0 ¼ ln

(x) (assuming that e has a lognormal distribu-

tion)?

d. Obtain a prediction interval for moisture con-

tent when frying time is 25 s. [Hint: first carry
out a simple linear regression of y0 on x0 and
calculate an appropriate prediction interval.]

119. The article “Determination of Biological Matu-

rity and Effect of Harvesting and Drying Condi-

tions on Milling Quality of Paddy” (J. Agric.
Engr. Res., 1975: 353–361) reported the follow-

ing data on date of harvesting (x, the number of

days after flowering) and yield of paddy, a grain

farmed in India (y, in kg/ha).

x 16 18 20 22 24 26 28 30

y 2508 2518 3304 3423 3057 3190 3500 3883

x 32 34 36 38 40 42 44 46

y 3823 3646 3708 3333 3517 3241 3103 2776

a. Construct a scatter plot of the data. What

model is suggested by the plot?

b. Use a statistical software package to fit the

model suggested in (a) and test its utility.

c. Use the software package to obtain a predic-

tion interval for yield when the crop is har-

vested 25 days after flowering, and also a

confidence interval for expected yield in

situations where the crop is harvested
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25 days after flowering. How do these two

intervals compare to each other? Is this result

consistent with what you learned in simple

linear regression? Explain.

d. Use the software package to obtain a PI and

CI when x ¼ 40. How do these intervals com-

pare to the corresponding intervals obtained

in (c)? Is this result consistent with what you

learned in simple linear regression? Explain.

e. Carry out a test of hypotheses to decide

whether the quadratic predictor in the model

fit in (b) provides useful information about

yield (presuming that the linear predictor

remains in the model).

120. The article “Validation of the Rockport Fitness

Walking Test in College Males and Females”

(Res. Q. Exercise Sport, 1994: 152–158) recom-

mended the following estimated regression equa-

tion for relating y ¼ VO2max (L/min, a measure

of cardiorespiratory fitness) to the predictors x1
¼ gender (female ¼ 0, male ¼ 1), x2 ¼ weight

(lb), x3 ¼ 1-mile walk time (min), and x4 ¼
heart rate at the end of the walk (beats/min):

y ¼ 3:5959þ :6566x1 þ :0096x2

� :0996x3 � :0080x4

a. How would you interpret the estimated coef-

ficient �.0996?

b. How would you interpret the estimated coef-

ficient .6566?

c. Suppose that an observation made on a male

whose weight was 170 lb, walk time was

11 min, and heart rate was 140 beats/min

resulted in VO2max ¼ 3.15. What would

you have predicted for VO2max in this situa-

tion, and what is the value of the

corresponding residual?

d. Using SSE ¼ 30.1033 and SST ¼ 102.3922,

what proportion of observed variation in

VO2max can be attributed to the model rela-

tionship?

e. Assuming a sample size of n ¼ 20, carry out a

test of hypotheses to decide whether the cho-

sen model specifies a useful relationship

between VO2max and at least one of the pre-

dictors.

121. A sample of n ¼ 20 companies was selected, and

the values of y ¼ stock price and k ¼ 15 predic-

tor variables (such as quarterly dividend, previ-

ous year’s earnings, and debt ratio) were

determined. When the multiple regression

model using these 15 predictors was fit to the

data, R2 ¼ .90 resulted.

a. Does the model appear to specify a useful

relationship between y and the predictor vari-

ables? Carry out a test using significance level

.05. [Hint: The F critical value for 15 numer-

ator and 4 denominator df is 5.86.]

b. Based on the result of part (a), does a high R2

value by itself imply that a model is useful?

Under what circumstances might you be sus-

picious of a model with a high R2 value?

c. With n and k as given previously, how large

would R2 have to be for the model to be

judged useful at the .05 level of significance?
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C H A P T E R T H I R T E E N

Goodness-of-Fit
Tests and
Categorical Data
Analysis

Introduction
In the simplest type of situation considered in this chapter, each observation

in a sample is classified as belonging to one of a finite number of categories

(For example, blood type could be one of the four categories O, A, B, or AB).

With pi denoting the probability that any particular observation belongs in

category i (or the proportion of the population belonging to category i ), we wish

to test a null hypothesis that completely specifies the values of all the pi’s (such

as H0: p1 ¼ .45, p2 ¼ .35, p3 ¼ .15, p4 ¼ .05, when there are four categories).

The test statistic will be a measure of the discrepancy between the observed

numbers in the categories and the expected numbers when H0 is true. Because a

decision will be reached by comparing the computed value of the test statistic to

a critical value of the chi-squared distribution, the procedure is called a chi-squared

goodness-of-fit test.

Sometimes the null hypothesis specifies that the pi’s depend on some

smaller number of parameters without specifying the values of these parameters.

For example, with three categories the null hypothesis might state that p1 ¼ y2,
p2 ¼ 2y(1 – y), and p3 ¼ (1 – y)2. For a chi-squared test to be performed, the

values of any unspecified parameters must be estimated from the sample data.

These problems are discussed in Section 13.2. The methods are then applied to test

a null hypothesis that states that the sample comes from a particular family of

distributions, such as the Poisson family (with l estimated from the sample) or the

normal family (with m and s estimated).

Chi-squared tests for two different situations are presented in Section 13.3.

In the first, the null hypothesis states that the pi’s are the same for several different

populations. The second type of situation involves taking a sample from a single

population and classifying each individual with respect to two different categorical



factors (such as religious preference and political party registration). The null

hypothesis in this situation is that the two factors are independent within the

population.

13.1 Goodness-of-Fit Tests When Category
Probabilities Are Completely Specified
A binomial experiment consists of a sequence of independent trials in which each

trial can result in one of two possible outcomes, S (for success) and F (for failure).

The probability of success, denoted by p, is assumed to be constant from trial to

trial, and the number n of trials is fixed at the outset of the experiment. In Chapter 9,

we presented a large-sample z test for testing H0: p ¼ p0. Notice that this null

hypothesis specifies both P(S) and P(F ), since if P(S) ¼ p0, then P(F ) ¼ 1 – p0.
Denoting P(F ) by q and 1 – p0 by q0, the null hypothesis can alternatively be

written as H0: p ¼ p0, q ¼ q0. The z test is two-tailed when the alternative of

interest is p 6¼ p0.
A multinomial experiment generalizes a binomial experiment by allowing

each trial to result in one of k possible outcomes, where k � 2. For example,

suppose a store accepts three different types of credit cards. A multinomial experi-

ment would result from observing the type of credit card used—type 1, type 2, or

type 3—by each of the next n customers who pay with a credit card. In general, we

will refer to the k possible outcomes on any given trial as categories, and pi will
denote the probability that a trial results in category i. If the experiment consists of

selecting n individuals or objects from a population and categorizing each one, then

pi is the proportion of the population falling in the ith category (such an experiment

will be approximately multinomial provided that n is much smaller than the

population size).

The null hypothesis of interest will specify the value of each pi. For example,

in the case k ¼ 3, we might have H0: p1 ¼ .5, p2 ¼ .3, p3 ¼ .2. The alternative

hypothesis will state that H0 is not true—that is, that at least one of the pi’s has a
value different from that asserted by H0 (in which case at least two must be

different, since they sum to 1). The symbol pi0 will represent the value of pi claimed

by the null hypothesis. In the example just given, p10 ¼ .5, p20 ¼ .3, and p30 ¼ .2.

Before the multinomial experiment is performed, the number of trials that

will result in category i (i ¼ 1, 2, . . . , or k) is a random variable—just as the

number of successes and the number of failures in a binomial experiment are

random variables. This random variable will be denoted by Ni and its observed

value by ni. Since each trial results in exactly one of the k categories, SNi ¼ n, and
the same is true of the ni’s. As an example, an experiment with n ¼ 100 and k ¼ 3

might yield N1 ¼ 46, N2 ¼ 35, and N3 ¼ 19.

The expected number of successes and expected number of failures in a

binomial experiment are np and nq, respectively. When H0: p ¼ p0, q ¼ q0 is

true, the expected numbers of successes and failures are np0 and nq0, respectively.
Similarly, in a multinomial experiment the expected number of trials resulting in

category i is E(Ni) ¼ npi (i ¼ l, . . . , k). When H0: p1 ¼ p10, . . . , pk ¼ pk0 is true,
these expected values become E(N1) ¼ np10, E(N2) ¼ np20, . . . , E(Nk) ¼ npk0.
For the case k ¼ 3, H0: p1 ¼ .5, p2 ¼ .3, p3 ¼ .2, and n ¼ 100, we have

E(N1) ¼ 100(.5) ¼ 50, E(N2) ¼ 30, and E(N3) ¼ 20 when H0 is true. The ni’s
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are often displayed in a tabular format consisting of a row of k cells, one for each
category, as illustrated in Table 13.1. The expected values when H0 is true are

displayed just below the observed values. The Ni’s and ni’s are usually referred to

as observed cell counts (or observed cell frequencies), and np10, np20, . . . , npk0 are
the corresponding expected cell counts under H0.

The ni’s should all be reasonably close to the corresponding npi0’s when

H0 is true. On the other hand, several of the observed counts should differ

substantially from these expected counts when the actual values of the pi’s differ
markedly from what the null hypothesis asserts. The test procedure involves

assessing the discrepancy between the ni’s and the npi0’s, with H0 being rejected

when the discrepancy is sufficiently large. It is natural to base a measure of

discrepancy on the squared deviations (n1 – np10)
2, (n2 – np20)

2, . . . , (nk – npk0)
2.

An obvious way to combine these into an overall measure is to add them together

to obtain S(ni – npi0)
2. However, suppose np10 ¼ 100 and np20 ¼ 10. Then if

n1 ¼ 95 and n2 ¼ 5, the two categories contribute the same squared deviations

to the proposed measure. Yet n1 is only 5% less than what would be expected when

H0 is true, whereas n2 is 50% less. To take relative magnitudes of the deviations

into account, we will divide each squared deviation by the corresponding expected

count and then combine.

Before giving a more detailed description, we must discuss the chi-squared
distribution. This distribution was introduced in Section 4.4, discussed in

Section 6.4, and used in Chapter 8 to obtain a confidence interval for the variance

s2 of a normal population. The chi-squared distribution has a single parameter,

called the number of degrees of freedom (df) of the distribution, with possible

values 1, 2, 3, . . . . Analogous to the critical value ta,n for the t distribution, w2a; n is
the value such that a of the area under the w2 curve with n df lies to the right of w2a;n
(see Figure 13.1). Selected values of w2a;n are given in Appendix Table A.6.

Table 13.1 Observed and expected cell counts

0

Shaded area

2
,

v curve2

Figure 13.1 A critical value for a chi-squared distribution
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THEOREM Provided that npi � 5 for every i (i ¼ 1, 2, . . . , k), the variable

w2 ¼
Xk
i¼1

ðNi � npiÞ2
npi

¼
X

all cells

ðobserved� expectedÞ2
expected

has approximately a chi-squared distribution with k – 1 df.

The fact that df ¼ k–1 is a consequenceof the restrictionSNi ¼ n.Although there arek
observed cell counts, once any k – 1 are known, the remaining one is uniquely deter-

mined. That is, there are only k – 1 “freely determined” cell counts, and thus k – 1 df.
If npi0 is substituted for npi in w

2, the resulting test statistic has approximately

a chi-squared distribution when H0 is true. Rejection of H0 is appropriate when

w2 � c (because large discrepancies between observed and expected counts lead to
a large value of w2), and the choice c¼ w2a;k�1 yields a test with significance level a.

Null hypothesis: H0: p1 ¼ p10, p2 ¼ p20, . . . , pk ¼ pk0

Alternative hypothesis: Ha: at least one pi does not equal pi0

Test statistic value: w2 ¼ P
all cells

(observed�expected)2
expected

¼Pk
i¼1

ðni � npi 0Þ2
npi 0

Rejection region: w2 � w2a; k�1

Example 13.1 If we focus on two different characteristics of an organism, each controlled by a

single gene, and cross a pure strain having genotype AABB with a pure strain

having genotype aabb (capital letters denoting dominant alleles and small letters

recessive alleles), the resulting genotype will be AaBb. If these first-generation

organisms are then crossed among themselves (a dihybrid cross), there will be four

phenotypes depending on whether a dominant allele of either type is present.

Mendel’s laws of inheritance imply that these four phenotypes should have prob-

abilities 9/16, 3/16, 3/16, and 1/16 of arising in any given dihybrid cross.

The article “Linkage Studies of the Tomato” (Trans. Royal Canad. Institut.,
1931: 1–19) reports the following data on phenotypes from a dihybrid cross of tall

cut-leaf tomatoes with dwarf potato-leaf tomatoes. There are k ¼ 4 categories

corresponding to the four possible phenotypes, with the null hypothesis being

H0 : p1 ¼ 9

16
; p2 ¼ 3

16
; p3 ¼ 3

16
; p4 ¼ 1

16

The expected cell counts are 9n/16, 3n/16, 3n/16, and n/16, and the test is based on
k – 1 ¼ 3 df. The total sample size was n ¼ 1611. Observed and expected counts

are given in Table 13.2.

Table 13.2 Observed and expected cell counts for Example 13.1
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The contribution to w2 from the first cell is

ðn1 � np10Þ2
np10

¼ ð926� 906:2Þ2
906:2

¼ :433

Cells 2, 3, and 4 contribute .658, .274, and .108, respectively, so

w2 ¼ .433 + .658 + .274 + .108 ¼ 1.473. A test with significance level .10

requires w2:10;3, the number in the 3 df row and .10 column of Appendix Table

A.6. This critical value is 6.251. Since 1.473 is not at least 6.251, H0 cannot be

rejected even at this rather large level of significance. The data is quite consistent

with Mendel’s laws. ■

Consider the special case of just two categories, k ¼ 2. The null hypothesis

in this case can be stated as H0: p1 ¼ p10, because the relations p2 ¼ 1 – p1 and
p20 ¼ 1 – p10 make the inclusion of p2 ¼ p20 in H0 redundant. The alternative

hypothesis is Ha: p1 6¼ p10. These hypotheses can also be tested using a two-tailed

z test with test statistic

Z ¼ ðN1=nÞ � p10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p10ð1� p10Þ

n

r ¼ p̂1 � p10ffiffiffiffiffiffiffiffiffiffiffiffiffi
p10 p20

n

r

Surprisingly, the two test procedures are completely equivalent. This is

because it can be shown that Z2 ¼ w2 and ðza=2Þ2 ¼ w2a;1, so that w2 � w2a;1 if and

only if (iff) |Z| � za/2.
1 If the alternative hypothesis is either Ha: p1 > p10 or Ha:

p1 < p10, the chi-squared test cannot be used. One must then revert to an upper- or

lower-tailed z test.
As is the case with all test procedures, one must be careful not to confuse

statistical significance with practical significance. A computed w2 that exceeds

w2a;k�1 may be a result of a very large sample size rather than any practical

differences between the hypothesized pi0’s and true pi’s. Thus if

p10 ¼ p20 ¼ p30 ¼ 1
3
, but the true pi’s have values .330, .340, and .330, a large

value of w2 is sure to arise with a sufficiently large n. Before rejecting H0, the

p̂i’s should be examined to see whether they suggest a model different from that

of H0 from a practical point of view.

P-Values for Chi-Squared Tests

The chi-squared tests in this chapter are all upper-tailed, so we focus on this case.

Just as the P-value for an upper-tailed t test is the area under the tn curve to the right
of the calculated t, the P-value for an upper-tailed chi-squared test is the area under
the w2n curve to the right of the calculated w2. Appendix Table A.6 provides limited

P-value information because only five upper-tail critical values are tabulated for

each different n. We have therefore included Appendix Table A.10, analogous to

Table A.7, that facilitates making more precise P-value statements.

1The fact that (za/2)
2 ¼ w2a;1 is a consequence of the relationship between the standard normal distribution

and the chi-squared distribution with 1 df; if Z � N(0, 1), then Z2 has a chi-squared distribution with

n ¼ 1. See the first proposition in Section 6.4.
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The fact that t curves were all centered at zero allowed us to tabulate t-curve
tail areas in a relatively compact way, with the left margin giving values ranging from

0.0 to 4.0 on the horizontal t scale and various columns displaying corresponding

upper-tail areas for various df’s. The rightward movement of chi-squared curves as df

increases necessitates a somewhat different type of tabulation. The left margin of

Appendix Table A.10 displays various upper-tail areas: .100, .095, .090, . . . , .005,
and .001. Each column of the table is for a different value of df, and the entries are

values on the horizontal chi-squared axis that capture these corresponding tail areas.

For example, moving down to tail area .085 and across to the 4 df column, we see that

the area to the right of 8.18 under the 4 df chi-squared curve is .085 (see Figure 13.2).

To capture this same upper-tail area under the 10 df curve, we must go out to

16.54. In the 2 df column, the top row shows that if the calculated value of the chi-

squared variable is smaller than 4.60, the captured tail area (the P-value) exceeds
.10. Similarly, the bottom row in this column indicates that if the calculated value

exceeds 13.81, the tail area is smaller than .001 (P-value < .001).

x2 When the pi’s Are Functions of Other Parameters

Frequently the pi’s are hypothesized to depend on a smaller number of parameters

y1, . . . , ym (m < k). Then a specific hypothesis involving the yi’s yields specific
pi0’s, which are then used in the w2 test.

Example 13.2 In a well-known genetics article (“The Progeny in Generations F12 to F17 of a Cross

Between a Yellow-Wrinkled and a Green-Round Seeded Pea,” J. Genet., 1923:
255–331), the early statistician G. U. Yule analyzed data resulting from crossing

garden peas. The dominant alleles in the experiment were Y ¼ yellow color and

R ¼ round shape, resulting in the double dominant YR. Yule examined 269 four-

seed pods resulting from a dihybrid cross and counted the number of YR seeds in

each pod. Letting X denote the number of YR’s in a randomly selected pod, possible

X values are 0, 1, 2, 3, 4, which we identify with cells 1, 2, 3, 4, and 5 of a rectangular

table (so, for example, a pod with X ¼ 4 yields an observed count in cell 5).

The hypothesis that the Mendelian laws are operative and that genotypes of

individual seeds within a pod are independent of one another implies that X has a

binomial distribution with n ¼ 4 and y ¼ 9
16
. We thus wish to testH0: p1 ¼ p10, . . .,

p5 ¼ p50, where

pi0 ¼ Pði� 1 YR0s among 4 seeds when H0 is trueÞ

¼ 4

i� 1

� �
yi�1ð1� yÞ4�ði�1Þ i ¼ 1; 2; 3; 4; 5; y ¼ 9

16

Shaded area = .085

Chi-squared curve for 4 df

 8.18Calculated 2

Figure 13.2 A P-value for an upper-tailed chi-squared test
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Yule’s data and the computations are in Table 13.3 with expected cell counts

npi0 ¼ 269pi0.

Thus w2 ¼ 3.823 + · · · + .032 ¼ 4.582. Since w2:01;k�1 ¼ w2:01;4 ¼ 13:277,
H0 is not rejected at level .01. Appendix Table A.10 shows that because

4.582 < 7.77, the P-value for the test exceeds .10. H0 should not be rejected at

any reasonable significance level. ■

x2 When the Underlying Distribution Is Continuous

We have so far assumed that the k categories are naturally defined in the context of
the experiment under consideration. The w2 test can also be used to test whether a

sample comes from a specific underlying continuous distribution. Let X denote the

variable being sampled and suppose the hypothesized pdf of X is f0(x). As in the

construction of a frequency distribution in Chapter 1, subdivide the measurement

scale of X into k intervals [a0, a1), [a1, a2), . . . , [ak–1, ak), where the interval [ai–1, ai)
includes the value ai–1 but not ai. The cell probabilities specified by H0 are then

pi0 ¼ Pðai�1 � X< aiÞ ¼
ðai
ai�1

f0ðxÞdx

The cells should be chosen so that npi0 � 5 for i ¼ 1, . . . , k. Often they are

selected so that the npi0’s are equal.

Example 13.3 To see whether the time of onset of labor among expectant mothers is uniformly

distributed throughout a 24 h day, we can divide a day into k periods, each of length
24/k. The null hypothesis states that f(x) is the uniform pdf on the interval [0, 24], so

that pi0 ¼ 1/k. The article “The Hour of Birth” (Brit. J. Prevent. Social Med., 1953:
43–59) reports on 1186 onset times, which were categorized into k ¼ 24 1-hour

intervals beginning at midnight, resulting in cell counts of 52, 73, 89, 88, 68, 47, 58,

47, 48, 53, 47, 34, 21, 31, 40, 24, 37, 31, 47, 34, 36, 44, 78, and 59. Each expected

cell count is 1186 � 1/24 ¼ 49.42, and the resulting value of w2 is 162.77. Since

w2:01;23 ¼ 41:637, the computed value is highly significant, and the null hypothesis

is resoundingly rejected. Generally speaking, it appears that labor is much more

likely to commence very late at night than during normal waking hours. ■

For testing whether a sample comes from a specific normal distribution, the

fundamental parameters are y1 ¼ m and y2 ¼ s, and each pi0 will be a function of

these parameters.

Table 13.3 Observed and expected cell counts for Example 13.2

13.1 Goodness-of-Fit Tests When Category Probabilities Are Completely Specified 729



Example 13.4 The developers of a new standardized exam want it to satisfy the following criteria:

(1) actual time taken to complete the test is normally distributed, (2) m ¼ 100 min,

and (3) exactly 90% of all students will finish within a 2 h period. In the pilot testing

of the standardized test, 120 students are given the test, and their completion times

are recorded. For a chi-squared test of normally distributed completion time it is

decided that k ¼ 8 intervals should be used. The criteria imply that the 90th

percentile of the completion time distribution is m + 1.28s ¼ 2 h ¼ 120 min.

Since m ¼ 100, this implies that s ¼ 15.63.

The eight intervals that divide the standard normal scale into eight equally

likely segments are [0, .32), [.32, .675), [.675, 1.15), [1.15, 1), and their

four counterparts on the other side of 0. For m ¼ 100 and s ¼ 15.63, these

intervals become [100, 105), [105, 110.55), [110.55, 117.97), and [117.97, 1).

Thus pi0 ¼ 1
8
¼ :125 ði ¼ 1; . . . ; 8Þ, from which each expected cell count is

npi0 ¼ 120(.125) ¼ 15. The observed cell counts were 21, 17, 12, 16, 10, 15, 19,

and 10, resulting in a w2 of 7.73. Since w2:10;7 ¼ 12:017 and 7.73 is not � 12.017,

there is no evidence for concluding that the criteria have not been met. ■

Exercises Section 13.1 (1–11)

1. What conclusion would be appropriate for an

upper-tailed chi-squared test in each of the follow-

ing situations?

a. a ¼ .05, df ¼ 4, w2 ¼ 12.25

b. a ¼ .01, df ¼ 3, w2 ¼ 8.54

c. a ¼ .10, df ¼ 2, w2 ¼ 4.36

d. a ¼ .01, k ¼ 6, w2 ¼ 10.20

2. Say as much as you can about the P-value for an

upper-tailed chi-squared test in each of the follow-

ing situations:

a. w2 ¼ 7.5, df ¼ 2

b. w2 ¼ 13.0, df ¼ 6

c. w2 ¼ 18.0, df ¼ 9

d. w2 ¼ 21.3, k ¼ 5

e. w2 ¼ 5.0, k ¼ 4

3. A statistics department at a large university main-

tains a tutoring center for students in its introduc-

tory service courses. The center has been staffed

with the expectation that 40% of its clients would

be from the business statistics course, 30% from

engineering statistics, 20% from the statistics

course for social science students, and the other

10% from the course for agriculture students.

A random sample of n ¼ 120 clients revealed

52, 38, 21, and 9 from the four courses. Does

this data suggest that the percentages on which

staffing was based are not correct? State and test

the relevant hypotheses using a ¼ .05.

4. It is hypothesized that when homing pigeons are

disoriented in a certain manner, they will exhibit

no preference for any direction of flight after

takeoff (so that the direction X should be uni-

formly distributed on the interval from 0� to

360�). To test this, 120 pigeons are disoriented,

let loose, and the direction of flight of each is

recorded; the resulting data follows. Use the chi-

squared test at level .10 to see whether the data

supports the hypothesis.

Direction 0– < 45� 45– < 90� 90– < 135�

Frequency 12 16 17

Direction 135– < 180� 180– < 225� 225– < 270�

Frequency 15 13 20

Direction 270– < 315� 315– < 360�

Frequency 17 10

5. An information retrieval system has ten storage

locations. Information has been stored with the

expectation that the long-run proportion of

requests for location i is given by the expression

pi ¼ (5.5 – | i – 5.5| )/30. A sample of 200 retrieval

requests gave the following frequencies for loca-

tions 1–10, respectively: 4, 15, 23, 25, 38, 31, 32,

14, 10, and 8. Use a chi-squared test at significance

level .10 to decide whether the data is consistent

with the a priori proportions (use the P-value
approach).

6. Sorghum is an important cereal crop whose qual-

ity and appearance could be affected by the pres-

ence of pigments in the pericarp (the walls of the
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plant ovary). The article “A Genetic and Biochem-

ical Study on Pericarp Pigments in a Cross

Between Two Cultivars of Grain Sorghum, Sor-

ghum Bicolor” (Heredity, 1976: 413–416) reports
on an experiment that involved an initial cross

between CK60 sorghum (an American variety

with white seeds) and Abu Taima (an Ethiopian

variety with yellow seeds) to produce plants with

red seeds and then a self-cross of the red-seeded

plants. According to genetic theory, this F2 cross

should produce plants with red, yellow, or white

seeds in the ratio 9:3:4. The data from

the experiment follows; does the data confirm or

contradict the genetic theory? Test at level .05

using the P-value approach.

Seed Color Red Yellow White

Observed Frequency 195 73 100

7. Criminologists have long debated whether there is

a relationship between weather conditions and the

incidence of violent crime. The author of the arti-

cle “Is There a Season for Homicide?” (Criminol-
ogy, 1988: 287–296) classified 1361 homicides

according to season, resulting in the accompany-

ing data. Test the null hypothesis of equal propor-

tions using a ¼ .01 by using the chi-squared table

to say as much as possible about the P-value.

Winter Spring Summer Fall

328 334 372 327

8. The article “Psychiatric and Alcoholic Admissions

Do Not Occur Disproportionately Close to

Patients’ Birthdays” (Psych. Rep., 1992: 944–946)
focuses on the existence of any relationship

between date of patient admission for treatment of

alcoholism and patient’s birthday. Assuming a 365-

day year (i.e., excluding leap year), in the absence

of any relation, a patient’s admission date is equally

likely to be any one of the 365 possible days. The

investigators established four different admission

categories: (1) within 7 days of birthday, (2)

between 8 and 30 days, inclusive, from the birth-

day, (3) between 31 and 90 days, inclusive, from

the birthday, and (4) more than 90 days from the

birthday. A sample of 200 patients gave observed

frequencies of 11, 24, 69, and 96 for categories 1, 2,

3, and 4, respectively. State and test the relevant

hypotheses using a significance level of .01.

9. The response time of a computer system to a

request for a certain type of information is

hypothesized to have an exponential distribution

with parameter l ¼ 1 [so if X ¼ response time,

the pdf of X under H0 is f0(x) ¼ e–x for x � 0].

a. If you had observed X1, X2, . . . , Xn and wanted

to use the chi-squared test with five class inter-

vals having equal probability under H0, what

would be the resulting class intervals?

b. Carry out the chi-squared test using the follow-

ing data resulting from a random sample of 40

response times:

.10 .99 1.14 1.26 3.24 .12 .26 .80

.79 1.16 1.76 .41 .59 .27 2.22 .66

.71 2.21 .68 .43 .11 .46 .69 .38

.91 .55 .81 2.51 2.77 .16 1.11 .02

2.13 .19 1.21 1.13 2.93 2.14 .34 .44

10. a. Show that another expression for the chi-

squared statistic is

w2 ¼
Xk
i¼1

N2
i

npi0
� n

Why is it more efficient to compute w2 using

this formula?

b. When the null hypothesis is H0: p1 ¼ p2 ¼ � � �
¼ pk ¼ 1/k (i.e., pi0 ¼ 1/k for all i), how does

the formula of part (a) simplify? Use the sim-

plified expression to calculate w2 for the

pigeon/direction data in Exercise 4.

11. a. Having obtained a random sample from a

population, you wish to use a chi-squared

test to decide whether the population dis-

tribution is standard normal. If you base the

test on six class intervals having equal pro-

bability under H0, what should the class

intervals be?

b. If you wish to use a chi-squared test to test H0:

the population distribution is normal with

m ¼ .5, s ¼ .002 and the test is to be based

on six equiprobable (under H0) class intervals,

what should these intervals be?

c. Use the chi-squared test with the intervals of

part (b) to decide, based on the following 45

bolt diameters, whether bolt diameter is a nor-

mally distributed variable with m ¼ .5 in., s
¼ .002 in.

.4974 .4976 .4991 .5014 .5008 .4993

.4994 .5010 .4997 .4993 .5013 .5000

.5017 .4984 .4967 .5028 .4975 .5013

.4972 .5047 .5069 .4977 .4961 .4987

.4990 .4974 .5008 .5000 .4967 .4977

.4992 .5007 .4975 .4998 .5000 .5008

.5021 .4959 .5015 .5012 .5056 .4991

.5006 .4987 .4968
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13.2 Goodness-of-Fit Tests for Composite
Hypotheses
In the previous section, we presented a goodness-of-fit test based on a w2 statistic
for deciding between H0: p1 ¼ p10, . . . , pk ¼ pk0 and the alternative Ha stating that

H0 is not true. The null hypothesis was a simple hypothesis in the sense that each pi0
was a specified number, so that the expected cell counts when H0 was true were

uniquely determined numbers.

In many situations, there are k naturally occurring categories, but H0 states

only that the pi’s are functions of other parameters y1, . . . , ym without specifying

the values of these y’s. For example, a population may be in equilibrium with

respect to proportions of the three genotypes AA, Aa, and aa. With p1, p2, and p3
denoting these proportions (probabilities), one may wish to test

H0 : p1 ¼ y2; p2 ¼ 2yð1� yÞ; p3 ¼ ð1� yÞ2 ð13:1Þ

where y represents the proportion of gene A in the population. This hypothesis is

composite because knowing that H0 is true does not uniquely determine the cell

probabilities and expected cell counts but only their general form. To carry out a

w2 test, the unknown yi’s must first be estimated.

Similarly, we may be interested in testing to see whether a sample came from

a particular family of distributions without specifying any particular member of the

family. To use the w2 test to see whether the distribution is Poisson, for example, the

parameter l must be estimated. In addition, because there are actually an infinite

number of possible values of a Poisson variable, these values must be grouped so

that there are a finite number of cells. If H0 states that the underlying distribution

is normal, use of a w2 test must be preceded by a choice of cells and estimation of

m and s.

x2 When Parameters Are Estimated

As before, k will denote the number of categories or cells and pi will denote the

probability of an observation falling in the ith cell. The null hypothesis now states

that each pi is a function of a small number of parameters y1, . . . , ym with the yi’s
otherwise unspecified:

H0 : p1 ¼ p1ðuÞ; . . . ; pk ¼ pkðuÞ where u ¼ ðy1; . . . ; ymÞ
Ha : the hypothesis H0 is not true

ð13:2Þ

For example, for H0 of (13.1), m ¼ 1 (there is only one y), p1(y) ¼ y 2, p2(y) ¼
2y(1 – y), and p3(y) ¼ (1 – y)2.

In the case k ¼ 2, there is really only a single rv, N1 (since N1 + N2 ¼ n),
which has a binomial distribution. The joint probability that N1 ¼ n1 and N2 ¼ n2
is then

PðN1 ¼ n1;N2 ¼ n2Þ ¼ n
n1

� �
pn11 pn22 / pn11 pn22
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where p1 + p2 ¼ 1 and n1 + n2 ¼ n. For general k, the joint distribution of N1, . . . ,
Nk is the multinomial distribution (Section 5.1) with

PðN1 ¼ n1; :::;Nk ¼ nkÞ / pn11 pn22 � � � � � pnkk ð13:3Þ

When H0 is true, (13.3) becomes

PðN1 ¼ n1; :::;Nk ¼ nkÞ / ½p1ðuÞ�n1 � � � � � ½pkðuÞ�nk ð13:4Þ
To apply a chi-squared test, y ¼ (y1, . . . , ym) must be estimated.

METHOD OF
ESTIMATION

Let n1, n2, . . . , nk denote the observed values of N1, . . . , Nk. Then ŷ1; . . . ; ŷm
are those values of the yi’s that maximize (13.4), that is, the maximum

likelihood estimators (Section 7.2).

Example 13.5 In humans there is a blood group, the MN group, that is composed of individuals

having one of the three blood typesM,MN, and N. Type is determined by two alleles,

and there is no dominance, so the three possible genotypes give rise to three pheno-

types. A population consisting of individuals in the MN group is in equilibrium if

PðMÞ¼ p1 ¼ y2

PðMNÞ¼ p2 ¼ 2yð1� yÞ
PðNÞ¼ p3 ¼ ð1� yÞ2

for some y. Suppose a sample from such a population yielded the results shown in

Table 13.4.

Then

½p1ðyÞ�n1 ½p2ðyÞ�n2 ½p3ðyÞ�n3 ¼ ½y2�n1 ½2yð1� yÞ�n2 ½ð1� yÞ2�n3
¼ 2n2 � y2n1þn2 � ð1� yÞn2þ2n3

Maximizing this with respect to y (or, equivalently, maximizing the natural loga-

rithm of this quantity, which is easier to differentiate) yields

ŷ ¼ 2n1 þ n2
½ð2n1 þ n2Þ þ ðn2 þ 2n3Þ� ¼

2n1 þ n2
2n

With n1 ¼ 125 and n2 ¼ 225, ŷ ¼ 475=1000 ¼ :475. ■

Once u ¼ (y1, . . . , ym) has been estimated by û ¼ ðŷ1; . . . ; ŷmÞ, the estimated

expected cell counts are the npiðûÞ’s. These are now used in place of the npi0’s of
Section 13.1 to specify a w2 statistic.

Table 13.4 Observed counts for Example 13.5
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THEOREM Under general “regularity” conditions on y1, . . . , ym and the pi(u)’s, if y1, . . .,
ym are estimated by the method of maximum likelihood as described previ-

ously and n is large,

w2 ¼
X

all cells

ðobserved� estimated expectedÞ2
expected

¼
Xk
i¼1

½Ni � npiðûÞ�2

npiðûÞ

has approximately a chi-squared distribution with k – 1 – m df when H0 of

(13.2) is true. An approximately level a test of H0 versus Ha is then to reject

H0 if w2 � w2a;k�1�m. In practice, the test can be used if npiðûÞ � 5 for every i.

Notice that the number of degrees of freedom is reduced by the number of yi’s
estimated.

Example 13.6

(Example 13.5

continued)

With ŷ ¼ :475 and n ¼ 500, the estimated expected cell counts are

np1ðŷÞ¼500ðŷÞ2¼112:81, np2ðŷÞ¼ 500ð Þ 2ð Þ :475ð Þð1� :475Þ¼ 249:38, and

np3ðŷÞ¼500�112:81�249:38¼137:81. Then

w2 ¼ ð125� 112:81Þ2
112:81

þ ð225� 249:38Þ2
249:38

þ ð150� 137:81Þ2
137:81

¼ 4:78

Since w2:05;k�1�m ¼ w2:05;3�1�1 ¼ w2:05;1 ¼ 3:843 and 4.78 � 3.843, H0 is rejected.

Appendix Table A.10 shows that P-value 	 .029. ■

Example 13.7 Consider a series of games between two teams, I and II, that terminates as soon as

one team has won four games (with no possibility of a tie). A simple probability

model for such a series assumes that outcomes of successive games are independent

and that the probability of team I winning any particular game is a constant y. We

arbitrarily designate I the better team, so that y � .5. Any particular series can then

terminate after 4, 5, 6, or 7 games. Let p1(y), p2(y), p3(y), p4(y) denote the

probability of termination in 4, 5, 6, and 7 games, respectively. Then

p1ðyÞ ¼ PðI wins in 4 gamesÞ þ PðII wins in 4 gamesÞ
¼ y4 þ 1� yð Þ4

p2ðyÞ ¼ PðI wins 3 of the first 4 and the fifthÞ
þ PðI loses 3 of the first 4 and the fifthÞ

¼ 4

3

� �
y3ð1� yÞ � yþ 4

1

� �
yð1� yÞ3 � ð1� yÞ

¼ 4y 1� yð Þ y3 þ 1� yð Þ3
h i

p3ðyÞ ¼ 10y2ð1� yÞ2½y2 þ ð1� yÞ2�
p4ðyÞ ¼ 20y3ð1� yÞ3

The article “Seven-Game Series in Sports” by Groeneveld and Meeden

(Math. Mag., 1975: 187–192) tested the fit of this model to results of National
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Hockey League playoffs during the period 1943–1967 (when league membership

was stable). The data appears in Table 13.5.

The estimated expected cell counts are 83piðŷÞ, where ŷ is the value of y that

maximizes

y4 þ 1� yð Þ4
n o15 � 4y 1� yð Þ y3 þ 1� yð Þ3

h in o26

� 10y2 1� yð Þ2 y2 þ 1� yð Þ2
h in o24

� 20y3 1� yð Þ3
n o18

ð13:5Þ

Standard calculus methods fail to yield a nice formula for the maximizing value ŷ,
so it must be computed using numerical methods. The result is ŷ ¼ :654, from which

piðŷÞ and the estimated expected cell counts are computed. The computed value of

w2 is .360, and (since k – 1 – m ¼ 4 – 1 – 1 ¼ 2) w2:10;2 ¼ 4:605. There is thus no

reason to reject the simple model as applied to NHL playoff series.

The cited article also considered World Series data for the period 1903–1973.

For the simple model, w2 ¼ 5.97, so the model does not seem appropriate. The

suggested reason for this is that for the simple model

Pðseries lasts six games j series lasts at least six games Þ � :5 ð13:6Þ
whereas of the 38 series that actually lasted at least six games, only 13 lasted

exactly six. The following alternative model is then introduced:

p1ðy1; y2Þ ¼ y41 þ ð1� y1Þ4

p2ðy1; y2Þ ¼ 4y1ð1� y1Þ½y31 þ ð1� y1Þ3�
p3ðy1; y2Þ ¼ 10y21 1� y1ð Þ2y2
p4ðy1; y2Þ ¼ 10y21ð1� y1Þ2ð1� y2Þ

The first two pi’s are identical to the simple model, whereas y2 is the conditional

probability of (13.6) (which can now be any number between zero and one).

The values of ŷ1 and ŷ2 that maximize the expression analogous to expression

(13.5) are determined numerically as ŷ1 ¼ :614, ŷ2 ¼ :342. A summary appears in

Table 13.6, and w2 ¼ .384. Two parameters are estimated, so df ¼ k – 1 – m ¼ 1

with w2:10;1 ¼ 2:706, indicating a good fit of the data to this new model.

Table 13.6 Observed and expected counts for the more complex model

■

Table 13.5 Observed and expected counts for the simple model
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One of the regularity conditions on the yi’s in the theorem is that they be

functionally independent of one another. That is, no single yi can be determined

from the values of other yi’s, so that m is the number of functionally independent

parameters estimated. A general rule of thumb for degrees of freedom in a chi-

squared test is the following.

w2 df ¼ number of freely

determined cell counts

� �
� number of independent

parameters estimated

� �

This rule will be used in connection with several different chi-squared tests in the

next section.

Goodness of Fit for Discrete Distributions

Many experiments involve observing a random sample X1, X2, . . ., Xn from some

discrete distribution. One may then wish to investigate whether the underlying

distribution is a member of a particular family, such as the Poisson or negative

binomial family. In the case of both a Poisson and a negative binomial distribution,

the set of possible values is infinite, so the values must be grouped into k subsets

before a chi-squared test can be used. The groupings should be done so that the

expected frequency in each cell (group) is at least 5. The last cell will then

correspond to X values of c, c + 1, c + 2, . . . for some value c.
This grouping can considerably complicate the computation of the ŷi’s and

estimated expected cell counts. This is because the theorem requires that the ŷi’s be
obtained from the cell counts N1, . . ., Nk rather than the sample values X1, . . ., Xn.

Example 13.8 Table 13.7 presents count data on the number of Larrea divaricata plants found in

each of 48 sampling quadrats, as reported in the article “Some Sampling Character-

istics of Plants and Arthropods of the Arizona Desert” (Ecology, 1962: 567–571).

The author fit a Poisson distribution to the data. Let l denote the Poisson

parameter and suppose for the moment that the six counts in cell 5 were actually 4,

4, 5, 5, 6, 6. Then denoting sample values by x1, . . ., x48, nine of the xi’s were 0, nine
were 1, and so on. The likelihood of the observed sample is

e�llx1

x1!
� � � � � e

�llx48

x48!
¼ e�48llSxi

x1!� � � � �x48! ¼
e�48ll101

x1!� � � � �x48!
The value of l for which this is maximized is l̂ ¼ xi=n ¼ 101=48 ¼ 2:10 (the value
reported in the article).

Table 13.7 Observed counts for Example 13.8
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However, the l̂ required for w2 is obtained by maximizing Expression (13.4)

rather than the likelihood of the full sample. The cell probabilities are

piðlÞ ¼ e�lli�1

ði� 1Þ! i ¼ 1; 2; 3; 4

p5ðlÞ ¼ 1�
X3
i¼0

e�lli

i!

so the right-hand side of (13.4) becomes

e�ll0

0!

� �9
e�ll1

1!

� �9
e�ll2

2!

� �10
e�ll3

3!

� �14
1�

X3
i¼0

e�lli

i!

" #6
ð13:7Þ

There is no nice formula for l̂, the maximizing value of l in this latter expression,

so it must be obtained numerically. ■

Because the parameter estimates are usually much more difficult to compute
from the grouped data than from the full sample, they are often computed using this
latter method.When these “full” estimators are used in the chi-squared statistic, the

distribution of the statistic is altered and a level a test is no longer specified by the

critical value w2a;k�1�m

THEOREM Let ŷ1; . . . ; ŷm be the maximum likelihood estimators of y1, . . ., ym based on

the full sample X1, . . ., Xn, and let w2 denote the statistic based on these

estimators. Then the critical value ca that specifies a level a upper-tailed test

satisfies

w2a;k�1�m � ca � w2a;k�1 ð13:8Þ

The test procedure implied by this theorem is the following:

If w2 � w2a;k�1; reject H0:

If w2 � w2a;k�1�m; do not reject H0: ð13:9Þ

If w2a;k�1�m < w2 < w2a;k�1; withhold judgment:
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Example 13.9

(Example 13.8

continued)

Using l̂ ¼ 2:10, the estimated expected cell counts are computed from npiðl̂Þ,
where n ¼ 48. For example,

np1ðl̂Þ ¼ 48 � e
�2:1ð2:1Þ0

0!
¼ ð48Þðe�2:1Þ ¼ 5:88

Similarly, np2ðl̂Þ ¼ 12:34, np3ðl̂Þ ¼ 12:96, np4ðl̂Þ ¼ 9:07, and np5ðl̂Þ ¼
48� 5:88� � � � � 9:07 ¼ 7:75. Then

w2 ¼ ð9� 5:88Þ2
5:88

þ � � � þ ð6� 7:75Þ2
7:75

¼ 6:31

Since m ¼ 1 and k ¼ 5, at level .05 we need w2:05;3 ¼ 7:815 and w2:05;4 ¼ 9:488.
Because 6.31 � 7.815, we do not reject H0; at the 5% level, the Poisson distribu-

tion provides a reasonable fit to the data. Notice that w2:10;3 ¼ 6:251 and

w2:10;4 ¼ 7:779, so at level .10 we would have to withhold judgment on whether

the Poisson distribution was appropriate.

For comparison we can with a little additional effort maximize Expres-

sion (13.7). Use of a graphing calculator gives l̂ ¼ 2:047. Because this

differs very little from 2.10, there is little change in the results. Using 2.047, we

get the estimated expected cell counts 6.197, 12.687, 12.985, 8.860, and 7.271,

and the resulting value of w2 is 6.230. Comparing this with w2:05;3 ¼ 7:815, we do not
reject the Poisson null hypothesis at the .05 level. Because 6.230 does not

quite exceed w2:10;3 ¼ 6:251, we also do not reject the null hypothesis at the

10% level. ■

Sometimes even the maximum likelihood estimates based on the full sample

are quite difficult to compute. This is the case, for example, for the two-parameter

(generalized) negative binomial distribution. In such situations, method-of-

moments estimates are often used and the resulting w2 compared to w2a;k�1�m,

although it is not known to what extent the use of moments estimators affects the

true critical value.

Goodness of Fit for Continuous Distributions

The chi-squared test can also be used to test whether the sample comes from a

specified family of continuous distributions, such as the exponential family or the

normal family. The choice of cells (class intervals) is even more arbitrary in the

continuous case than in the discrete case. To ensure that the chi-squared test is

valid, the cells should be chosen independently of the sample observations. Once

the cells are chosen, it is almost always quite difficult to estimate unspecified

parameters (such as m and s in the normal case) from the observed cell counts, so

instead mle’s based on the full sample are computed. The critical value ca again
satisfies (13.8), and the test procedure is given by (13.9).

Example 13.10 The Institute of Nutrition of Central America and Panama (INCAP) has carried out

extensive dietary studies and research projects in Central America. In one study

reported in the November 1964 issue of the American Journal of Clinical Nutrition
(“The Blood Viscosity of Various Socioeconomic Groups in Guatemala”), serum
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total cholesterol measurements for a sample of 49 low-income rural Indians were

reported as follows (in mg/L):

204 108 140 152 158 129 175 146 157 174 192 194 144

152 135 223 145 231 115 131 129 142 114 173 226 155

166 220 180 172 143 148 171 143 124 158 144 108 189

136 136 197 131 95 139 181 165 142 162

Is it plausible that serum cholesterol level is normally distributed for this popula-

tion? Suppose that prior to sampling, it was believed that plausible values for m
and s were 150 and 30, respectively. The seven equiprobable class intervals for

the standard normal distribution are (�1, –1.07), (�1.07, –.57), (�.57, –.18),

(�.18, .18), (.18, .57), (.57, 1.07), and (1.07,1), with each endpoint also giving the

distance in standard deviations from the mean for any other normal distribution.

For m ¼ 150 and s ¼ 30, these intervals become (�1, 117.9), (117.9, 132.9),

(132.9, 144.6), (144.6, 155.4), (155.4, 167.1), (167.1, 182.1), and (182.1, 1).

To obtain the estimated cell probabilities p1ðm̂; ŝÞ; . . . ;p7ðm̂; ŝÞ, we first need
the mle’s m̂ and ŝ. In Chapter 7, ŝwas shown to be ½P ðxi � �xÞ2=n�1=2 (rather than s),
so with s ¼ 31.75,

m̂ ¼ �x ¼ 157:02 ŝ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxi � �xÞ2

n

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þs2

n

r
¼ 31:42

Each piðm̂; ŝÞ) is then the probability that a normal rv X with mean 157.02 and

standard deviation 31.42 falls in the ith class interval. For example,

p2ðm̂; ŝÞ ¼ Pð117:9 � X � 132:9Þ ¼ Pð�1:25 � Z � �:77Þ ¼ :1150

so np2ðm̂; ŝÞ ¼ 49 :1150ð Þ ¼ 5:64. Observed and estimated expected cell counts are

shown in Table 13.8.

The computed w2 is 4.60. With k ¼ 7 cells and m ¼ 2 parameters estimated,

w2:05;k�1 ¼ w2:05;6 ¼ 12:592 and w2:05;k�1�m ¼ w2:05;4 ¼ 9:488. Since 4.60 � 9.488,

a normal distribution provides quite a good fit to the data. ■

Example 13.11 The article “Some Studies on Tuft Weight Distribution in the Opening Room”

(Textile Res. J., 1976: 567–573) reports the accompanying data on the distribution

of output tuft weight X (mg) of cotton fibers for the input weight x0 ¼ 70.

Table 13.8 Observed and expected counts for Example 13.10
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The authors postulated a truncated exponential distribution:

H0 : f ðxÞ ¼ le�lx

1� e�lx0
0 � x � x0

The mean of this distribution is

m ¼
ðx0
0

xf ðxÞdx ¼ 1

l
� x0e

�lx0

1� e�lx0

The parameter l was estimated by replacing m by �x ¼ 13:086 and solving the

resulting equation to obtain l̂ ¼ :0742 (so l̂ is a method-of-moments estimate

and not an mle). Then with l̂ replacing l in f(x), the estimated expected cell

frequencies as displayed previously are computed as

40p̂iðl̂Þ ¼ 40Pðai�1 � X<aiÞ ¼ 40

ðai
ai�1

f ðxÞdx ¼ 40ðe�l̂ai�1 � e�l̂aiÞ
1� e�l̂x0

where [ai–1, ai) is the ith class interval. To obtain expected cell counts of at least 5,

the last six cells are combined to yield observed counts 20, 8, 7, 5 and expected

counts of 18.0, 9.9, 5.5, 6.6. The computed value of chi-squared is then w2 ¼ 1.34.

Because w2:05;2 ¼ 5:992, H0 is not rejected, so the truncated exponential model

provides a good fit. ■

A Special Test for Normality

Probability plots were introduced in Section 4.7 as an informal method for asses-

sing the plausibility of any specified population distribution as the one from which

the given sample was selected. The straighter the probability plot, the more

plausible is the distribution on which the plot is based. A normal probability plot

is used for checking whether any member of the normal distribution family is

plausible. Let’s denote the sample xi’s when ordered from smallest to largest by

x(1), x(2), . . ., x(n). Then the plot suggested for checking normality was a plot of the

points (x(i), yi), where yi ¼ F–1[(i – .5)/n].
A quantitative measure of the extent to which points cluster about a straight line

is the sample correlation coefficient r introduced inChapter 12. Consider calculating r
for the n pairs (x(1), y1), . . ., (x(n), yn).The yi’s here are not observed values in a random
sample from a y population, so properties of this r are quite different from those

described in Section 12.5. However, it is true that the more r deviates from one, the

less the probability plot resembles a straight line (remember that a probability plot

must slope upward). This idea can be extended to yield a formal test procedure: Reject

the hypothesis of population normality if r � ca, where ca is a critical value chosen to
yield the desired significance level a. That is, the critical value is chosen so that when
the population distribution is actually normal, the probability of obtaining an r value
that is at most ca (and thus incorrectly rejectingH0) is the desired a. The developers of
the MINITAB statistical computer package give critical values for a ¼ .10, .05, and

.01 in combination with different sample sizes. Because no theory exists for the

distribution of r for a normal plot, the critical values are determined by computer

simulation. These critical values are based on a slightly different definition of the yi’s
than that given previously. The new values give slightly better approximations to the

expected values of the ordered normal observations.

MINITAB will also construct a normal probability plot based on these yi’s.
The plot will be almost identical in appearance to that based on the previous yi’s.
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When there are several tied x(i)
’s, MINITAB computes r by using the average of the

corresponding yi’s as the second number in each pair.

Let yi ¼ F–1[(i – .375)/(n + .25)] and compute the sample correlation coef-

ficient r for the n pairs (x(1), y1), . . ., (x(n), yn). The Ryan–Joiner test of

H0: the population distribution is normal

versus

Ha: the population distribution is not normal

consists of rejectingH0 when r � ca. Critical values ca are given in Appendix
Table A.11 for various significance levels a and sample sizes n.

Example 13.12 The following sample of n ¼ 20 observations on dielectric breakdown voltage of a

piece of epoxy resin first appeared in Example 4.36.

yi �1.871 �1.404 �1.127 �.917 �.742 �.587 �.446 �.313 �.186 �.062

x(i) 24.46 25.61 26.25 26.42 26.66 27.15 27.31 27.54 27.74 27.94

yi .062 .186 .313 .446 .587 .742 .917 1.127 1.404 1.871

x(i) 27.98 28.04 28.28 28.49 28.50 28.87 29.11 29.13 29.50 30.88

We asked MINITAB to carry out the Ryan–Joiner test, and the result appears in

Figure 13.3. The test statistic value is r ¼ .9881, and Appendix Table A.11 gives

.9600 as the critical value that captures lower-tail area .10 under the r sampling

distribution curve when n ¼ 20 and the underlying distribution is actually normal.

Since .9881 > .9600, the null hypothesis of normality cannot be rejected even for a

significance level as large as .10.

■

Figure 13.3 MINITAB output from the Ryan–Joiner test for the data of Example 13.12
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Exercises Section 13.2 (12–22)

12. Consider a large population of families in which

each family has exactly three children. If the

genders of the three children in any family are

independent of one another, the number of male

children in a randomly selected family will have

a binomial distribution based on three trials.

a. Suppose a random sample of 160 families

yields the following results. Test the relevant

hypotheses by proceeding as in Example 13.5.

Number of Male Children 0 1 2 3

Frequency 14 66 64 16

b. Suppose a random sample of families in a

nonhuman population resulted in observed

frequencies of 15, 20, 12, and 3, respectively.

Would the chi-squared test be based on the

same number of degrees of freedom as the test

in part (a)? Explain.

13. A study of sterility in the fruit fly (“Hybrid

Dysgenesis in Drosophila melanogaster: The

Biology of Female andMale Sterility,”Genetics,
1979: 161–174) reports the following data on the

number of ovaries developed for each female fly

in a sample of size 1,388. One model for unilat-

eral sterility states that each ovary develops with

some probability p independently of the other

ovary. Test the fit of this model using w2.

x ¼ Number of

Ovaries Developed 0 1 2

Observed Count 1212 118 58

14. The article “Feeding Ecology of the Red-Eyed

Vireo and Associated Foliage-Gleaning Birds”

(Ecol. Monogr., 1971: 129–152) presents the

accompanying data on the variableX ¼ the num-

ber of hops before the first flight and preceded by

a flight. The author then proposed and fit a geo-

metric probability distribution [p(x) ¼ P(X ¼ x)
¼ px–1 · q for x ¼ 1, 2, . . ., where q ¼ 1 – p] to
the data. The total sample size was n ¼ 130.

x 1 2 3 4 5 6 7 8 9 10 11 12

Number

of Times x

Observed

48 31 20 9 6 5 4 2 1 1 2 1

a. The likelihood is ðpx1�1 �qÞ � � � � � ðpxn�1 �qÞ¼
pSxi�n �qn. Show that the mle of p is given by

p̂¼ P
xi�nð Þ=Pxi, and compute p̂ for the

given data.

b. Estimate the expected cell counts using p̂ of

part (a) [expected cell counts ¼ n � p̂x�1 � q̂ for
x ¼ 1, 2, . . . ], and test the fit of the model

using a w2 test by combining the counts for

x ¼ 7, 8, . . ., and 12 into one cell (x � 7).

15. A certain type of flashlight is sold with the four

batteries included. A random sample of 150

flashlights is obtained, and the number of defec-

tive batteries in each is determined, resulting in

the following data:

Number Defective 0 1 2 3 4

Frequency 26 51 47 16 10

Let X be the number of defective batteries in a

randomly selected flashlight. Test the null hypo-

thesis that the distribution of X is Bin(4, y). That
is, with pi ¼ P(i defectives), test

H0 : pi ¼ 4

i

� �
yið1� yÞ4�i i ¼ 0; 1; 2; 3; 4

[Hint: To obtain the mle of y, write the likelihood
(the function to be maximized) as y u(1 – y)v,
where the exponents u and v are linear functions
of the cell counts. Then take the natural log,

differentiate with respect to y, equate the result

to 0, and solve for ŷ.]

16. In a genetics experiment, investigators looked at

300 chromosomes of a particular type and

counted the number of sister-chromatid

exchanges on each (“On the Nature of Sister-

Chromatid Exchanges in 5-Bromodeoxyuridine-

Substituted Chromosomes,” Genetics, 1979:

1251–1264). A Poisson model was hypothesized

for the distribution of the number of exchanges.

Test the fit of a Poisson distribution to the data by

first estimating l and then combining the counts

for x ¼ 8 and x ¼ 9 into one cell.

x ¼ Number

of Exchanges

0 1 2 3 4 5 6 7 8 9

Observed

Counts

6 24 42 59 62 44 41 14 6 2

17. An article in Annals of Mathematical Statistics
reports the following data on the number of

borers in each of 120 groups of borers. Does

the Poisson pmf provide a plausible model for

the distribution of the number of borers in a

group? [Hint: Add the frequencies for 7, 8, . . .,
12 to establish a single category “ � 7.”]
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Number

of Borers

0 1 2 3 4 5 6 7 8 9 10 11 12

Frequency 24 16 16 18 15 9 6 5 3 4 3 0 1

18. The article “A Probabilistic Analysis of Dissolved

Oxygen–Biochemical Oxygen Demand Relation-

ship in Streams” (J. Water Resources Control
Fed., 1969: 73–90) reports data on the rate of

oxygenation in streams at 20�C in a certain region.

The sample mean and standard deviation were

computed as �x ¼ :173 and s ¼ .066, respectively.

Based on the accompanying frequency distribu-

tion, can it be concluded that oxygenation rate is a

normally distributed variable? Use the chi-

squared test with a ¼ .05.

Rate (per day) Frequency

Below .100 12

.100–below .150 20

.150–below .200 23

.200–below .250 15

.250 or more 13

19. Each headlight on an automobile undergoing an

annual vehicle inspection can be focused either too

high (H), too low (L), or properly (N). Checking
the two headlights simultaneously (and not distin-

guishing between left and right) results in the six

possible outcomes HH, LL, NN, HL, HN, and LN.
If the probabilities (population proportions) for the

single headlight focus direction are P(H) ¼ y1,
P(L) ¼ y2, and P(N) ¼ 1 – y1 – y2 and the two

headlights are focused independently of each

other, the probabilities of the six outcomes for a

randomly selected car are the following:

p1 ¼ y21 p2 ¼ y22 p3 ¼ ð1� y1 � y2Þ2
p4 ¼ 2y1y2 p5 ¼ 2y1ð1� y1 � y2Þ
p6 ¼ 2y2ð1� y1 � y2Þ

Use the accompanying data to test the null

hypothesis

H0 : p1 ¼ p1ðy1; y2Þ; :::; p6 ¼ p6ðy1; y2Þ

where the pi(y1, y2)’s are given previously.

Outcome HH LL NN HL HN LN

Frequency 49 26 14 20 53 38

[Hint: Write the likelihood as a function of y1 and
y2, take the natural log, then compute @=@y1 and
@=@y2, equate them to 0, and solve for ŷ1; ŷ2.]

20. The article “Compatibility of Outer and Fusible

Interlining Fabrics in Tailored Garments (Textile
Res. J., 1997: 137–142) gave the following

observations on bending rigidity (mN · m) for

medium-quality fabric specimens, from which

the accompanying MINITAB output was

obtained:

24.6 12.7 14.4 30.6 16.1 9.5 31.5 17.2

46.9 68.3 30.8 116.7 39.5 73.8 80.6 20.3

25.8 30.9 39.2 36.8 46.6 15.6 32.3

.999

.99

.96

.80

.50

.20

.05

.01

.001

P
ro

ba
bi

lit
y

20 70 120
bending

West for Normality
R:               0.9116
pvalue(approx): <0.0100

Average: 37.4217
Std Dev. 25.8101
N of data: 23

Normal Probability Plot

Would you use a one-sample t confidence inter-
val to estimate true average bending rigidity?

Explain your reasoning.

21. The article from which the data in Exercise 20 was

obtained also gave the accompanying data on the

composite mass/outer fabric mass ratio for high-

quality fabric specimens.

MINITAB gave r ¼ .9852 as the value of the

Ryan– Joiner test statistic and reported that P-
value > .10. Would you use the one-sample

t test to test hypotheses about the value of the

true average ratio? Why or why not?

22. The article “Nonbloated Burned Clay Aggregate

Concrete” (J. Mater., 1972: 555–563) reports the

following data on 7 day flexural strength of
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nonbloated burned clay aggregate concrete samples

(psi):
Test at level .10 to decide whether flexural strength is a

normally distributed variable.

13.3 Two-Way Contingency Tables
In the previous two sections, we discussed inferential problems in which the count

data was displayed in a rectangular table of cells. Each table consisted of one row

and a specified number of columns, where the columns corresponded to categories

into which the population had been divided. We now study problems in which the

data also consists of counts or frequencies, but the data table will now have I rows
(I � 2) and J columns, so IJ cells. There are two commonly encountered situations

in which such data arises:

1. There are I populations of interest, each corresponding to a different row of the

table, and each population is divided into the same J categories. A sample is

taken from the ith population (i ¼ 1, . . ., I), and the counts are entered in the

cells in the ith row of the table. For example, customers of each of I ¼ 3

department store chains might have available the same J ¼ 5 payment

categories: cash, check, store credit card, Visa, and MasterCard.

2. There is a single population of interest, with each individual in the population cate-
gorized with respect to two different factors. There are I categories associated

with the first factor, and J categories associated with the second factor. A single

sample is taken, and the number of individuals belonging in both category i of factor
1 and category j of factor 2 is entered in the cell in row i, column j (i ¼ 1, . . ., I;
j ¼ 1, . . ., J). As an example, customers making a purchase might be classified

according to both department in which the purchase was made, with I ¼ 6

departments, and according to method of payment, with J ¼ 5 as in (1) above.

Let nij denote the number of individuals in the sample(s) falling in the (i, j )th cell

(row i, column j ) of the table—that is, the (i, j )th cell count. The table displaying

the nij
’s is called a two-way contingency table; a prototype is shown in Table 13.9.

Table 13.9 A two-way contingency table
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In situations of type 1, we want to investigate whether the proportions in the

different categories are the same for all populations. The null hypothesis states that

the populations are homogeneous with respect to these categories. In type 2 situa-

tions, we investigate whether the categories of the two factors occur independently

of each other in the population.

Testing for Homogeneity

We assume that each individual in every one of the I populations belongs in exactly
one of J categories. A sample of ni individuals is taken from the ith population; let

n ¼ S ni and

nij ¼ the number of individuals in the ith sample who fall into category j

n�j ¼
XI
i¼1

nij ¼
the total number of individuals among

the n sampled who fall into category j

The nij’s are recorded in a two-way contingency table with I rows and J columns.

The sum of the nij’s in the ith row is ni, whereas the sum of entries in the jth column

is n·j.
Let

pij ¼ the proportion of the individuals in

population i who fall into category j

Thus, for population 1, the J proportions are p11, p12, . . ., p1J (which sum to 1) and

similarly for the other populations. The null hypothesis of homogeneity states that
the proportion of individuals in category j is the same for each population and

that this is true for every category; that is, for every j, p1j ¼ p2j ¼ � � � ¼ pIj.
When H0 is true, we can use p1, p2, . . ., pJ to denote the population propor-

tions in the J different categories; these proportions are common to all I popula-
tions. The expected number of individuals in the ith sample who fall in the jth
category when H0 is true is then E(Nij) ¼ ni · pj. To estimate E(Nij), we must first

estimate pj, the proportion in category j. Among the total sample of n individuals,

N·j fall into category j, so we use p̂j ¼ N�j=n as the estimator (this can be shown to

be the maximum likelihood estimator of pj). Substitution of the estimate p̂j for pj in
nipj yields a simple formula for estimated expected counts under H0:

êij ¼ estimated expected count in cell ði; jÞ ¼ ni � n�j
n

¼ ðith row total)ðjth column total)

n

ð13:10Þ

The test statistic also has the same form as in previous problem situations. The

number of degrees of freedom comes from the general rule of thumb. In each row of

Table 13.9 there are J – 1 freely determined cell counts (each sample size ni is
fixed), so there are a total of I(J – 1) freely determined cells. Parameters p1, . . ., pJ
are estimated, but because Spi ¼ 1, only J – 1 of these are independent. Thus

df ¼ I(J – 1) – (J – 1) ¼ (J – 1)(I – 1).
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Null hypothesis: H0 : p1j ¼ p2j ¼ � � � ¼ pIj j ¼ 1; 2; . . . ; J

Alternative hypothesis: Ha : H0 is not true

Test statistic value:

w2 ¼
X

all cells

ðobserved� estimated expectedÞ2
estimated expected

¼
XI
i¼1

XJ
j¼1

ðnij � êijÞ2
êij

Rejection region: w2 � w2a;I�1;J�1

P-value information can be obtained as described in Section 13.1. The test

can safely be applied as long as êij � 5 for all cells.

Example 13.13 A company packages a particular product in cans of three different sizes, each one

using a different production line. Most cans conform to specifications, but a quality

control engineer has identified the following reasons for nonconformance: (1)

blemish on can; (2) crack in can; (3) improper pull tab location; (4) pull tab

missing; (5) other. A sample of nonconforming units is selected from each of the

three lines, and each unit is categorized according to reason for nonconformity,

resulting in the following contingency table data:

Reason for Nonconformity

Blemish Crack Location Missing Other Sample Size

Production 1 34 65 17 21 13 150

Line 2 23 52 25 19 6 125

3 32 28 16 14 10 100

Total 89 145 58 54 29 375

Does the data suggest that the proportions falling in the various nonconformance

categories are not the same for the three lines? The parameters of interest are the

various proportions, and the relevant hypotheses are

H0: the production lines are homogeneous with respect to the five non-

conformance categories; that is, p1j ¼ p2j ¼ p3j for j ¼ 1, . . ., 5

Ha: the production lines are not homogeneous with respect to the categories

The estimated expected frequencies (assuming homogeneity) must now be calcu-

lated. Consider the first nonconformance category for the first production line.

When the lines are homogeneous,

estimated expected number among the 150 selected units that are blemished

¼ ðfirst row total)ðfirst column total)

total of sample sizes
¼ ð150Þð189Þ

375
¼ 35:60

The contribution of the cell in the upper-left corner to w2 is then

ðobserved� estimated expected)
2

estimated expected
¼ ð34� 35:60Þ2

35:60
¼ :072
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The other contributions are calculated in a similar manner. Figure 13.4 shows

MINITAB output for the chi-squared test. The observed count is the top number in

each cell, and directly below it is the estimated expected count. The contribution of

each cell to w2 appears below the counts, and the test statistic value is w2 ¼ 14.159.

All estimated expected counts are at least 5, so combining categories is unnecessary.

The test is based on (3 – 1)(5 – 1) ¼ 8 df. Appendix Table A.10 shows that the values

that capture upper-tail areas of .08 and .075 under the 8 df curve are 14.06 and 14.26,

respectively. Thus the P-value is between .075 and .08; MINITAB gives P-value
¼ .079. The null hypothesis of homogeneity should not be rejected at the usual

significance levels of .05 or .01, but it would be rejected for the higher a of .10.

Testing for Independence

We focus now on the relationship between two different factors in a single

population. The number of categories of the first factor will be denoted by I and
the number of categories of the second factor by J. Each individual in the popula-

tion is assumed to belong in exactly one of the I categories associated with the first
factor and exactly one of the J categories associated with the second factor. For

example, the population of interest might consist of all individuals who regularly

watch the national news on television, with the first factor being preferred network

(ABC, CBS, NBC, PBS, CNN, or FOX, so I ¼ 6) and the second factor political

philosophy (liberal, moderate, conservative, giving J ¼ 3).

For a sample of n individuals taken from the population, let nij denote the

number among the n who fall both in category i of the first factor and category j of
the second factor. The nij’s can be displayed in a two-way contingency table with

I rows and J columns. In the case of homogeneity for I populations, the row totals

were fixed in advance, and only the J column totals were random. Now only the

total sample size is fixed, and both the ni·’s and n·j’s are observed values of random
variables. To state the hypotheses of interest, let

Figure 13.4 MINITAB output for the chi-squared test of Example 13.13 ■
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pij ¼ the proportion of individuals in the population who

belong in category i of factor 1 and category j of factor 2

¼ Pða randomly selected individual falls in both category

i of factor 1 and category j of factor 2Þ

Then

pi� ¼
X
j

pij ¼Pða randomly selected individual falls in category i of factor 1)

p�j ¼
X
i

pij ¼Pða randomly selected individual falls in category j of factor 2)

Recall that two events A and B are independent if P(A \ B) ¼ P(A) · P(B). The
null hypothesis here says that an individual’s category with respect to factor 1 is
independent of the category with respect to factor 2. In symbols, this becomes

pij ¼ pi· · p·j for every pair (i, j ).
The expected count in cell (i, j ) is n · pij, so whenH0 is true, E(Nij) ¼ n · pi· · p·j.

To obtain a chi-squared statistic, we must therefore estimate the pi·’s (i ¼ 1, . . ., I )
and p·j’s ( j ¼ 1, . . ., J ). The (maximum likelihood) estimates are

p̂i� ¼ ni�
n
¼ sample proportion for category i of factor 1

and

p̂�j ¼ n�j
n
¼ sample proportion for category j of factor 2

This gives estimated expected cell counts identical to those in the case of homo-

geneity.

êij ¼ n � p̂i� � p̂�j ¼ n � ni�
n
� n�j
n
¼ ni� � n�j

n

¼ ðith row totalÞð jth column totalÞ
n

The test statistic is also identical to that used in testing for homogeneity, as is

the number of degrees of freedom. This is because the number of freely determined

cell counts is IJ – 1, since only the total n is fixed in advance. There are I estimated

pi·’s, but only I – 1 are independently estimated since S pi· ¼ 1, and similarly J – 1
p·j’s are independently estimated, so I + J – two parameters are independently

estimated. The rule of thumb now yields df ¼ IJ – 1 – (I + J – 2) ¼ IJ – I –

J + 1 ¼ (I – 1) · (J – 1).
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Null hypothesis: H0 : pij ¼ pi� � p�j i ¼ 1; . . . ; I; j ¼ 1; . . . ; J

Alternative hypothesis: Ha : H0 is not true

Test statistic value:

w2 ¼
X

all cells

ðobserved� estimated expectedÞ2
estimated expected

¼
XI
i¼1

XJ
j¼1

ðnij � êijÞ2
êij

Rejection region: w2 � w2a;ðI�1ÞðJ�1Þ
Again, P-value information can be obtained as described in Section 13.1.

The test can safely be applied as long as êij � 5 for all cells.

Example 13.14 A study of the relationship between facility conditions at gasoline stations and

aggressiveness in the pricing of gasoline (“An Analysis of Price Aggressiveness in

Gasoline Marketing,” J. Market. Res., 1970: 36–42) reports the accompanying data

based on a sample of n ¼ 441 stations. At level .01, does the data suggest that

facility conditions and pricing policy are independent of one another? Observed

and estimated expected counts are given in Table 13.10.

Thus

w2 ¼ ð24� 17:02Þ2
17:02

þ � � � þ ð36� 54:29Þ2
54:29

¼ 22:47

and because w2:01;4 ¼ 13:277, the hypothesis of independence is rejected.
We conclude that knowledge of a station’s pricing policy does give informa-

tion about the condition of facilities at the station. In particular, stations with an

aggressive pricing policy appear more likely to have substandard facilities than

stations with a neutral or nonaggressive policy. ■

Ordinal Factors and Logistic Regression

Sometimes a factor has ordinal categories, meaning that there is a natural ordering.

For example, there is a natural ordering to freshman, sophomore, junior, senior. In

such situations we can use a method that often has greater power to detect relation-

ships. Consider the case in which the first factor is ordinal and the other has two

categories. Denote by X the level of the first (ordinal) factor, the rows, which will

be the predictor in the model. Then Y designates the column, either one or two, and

Table 13.10 Observed and estimated expected counts for Example 13.14
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Y will be the dependent variable in the model. It is convenient for purposes of

logistic regression to label column 1 as Y ¼ 0 (failure) and column 2 as Y ¼ 1

(success), corresponding to the usual notation for binomial trials. In terms of

logistic regression, p(x) is the probability of success given that X ¼ x:

pðxÞ ¼ PðY ¼ 1jX ¼ xÞ ¼ Pðj ¼ 2ji ¼ xÞ ¼ px2
px1 þ px2

Then the logistic model of Chapter 12 says that

eb0þb1x ¼ pðxÞ
1� pðxÞ ¼

px2
px1

In terms of the odds of success in a row (estimated by the ratio of the two counts),

the model says that the odds change proportionally (by the fixed multiple eb1 ) from
row to row. For example, suppose a test is given in grades 1, 2, 3, and 4 with

successes and failures as follows

Grade Failed Passed Estimated Odds

1 45 45 1

2 30 60 2

3 18 72 4

4 10 80 8

Here themodel fits perfectly, with odds ratio eb1 ¼ 2, so b1 ¼ ln(2) and b0 ¼ �ln(2).

In general, it should be clear that b1 is the natural log of the odds ratio between

successive rows. If a tablewith I rows and 2 columns has roughly a common odds ratio

from row to row, then the logistic model should be a good fit if the rows are labeled

with consecutive integers.

We focus on the slope b1 because the relationship between the two factors

hinges on this parameter. The hypothesis of no relationship is equivalent to H0:

b1 ¼ 0, which is usually tested against a two-tailed alternative.

Example 13.15 Is there a relationship between TV watching and physical fitness? For an answer

we refer to the article “Television Viewing and Physical Fitness in Adults”

(Res. Quart. Exercise Sport, 1990: 315–320). Subjects were asked about their

television-viewing habits and were classified as physically fit if they scored in

the excellent or very good category on a step test. Table 13.11 shows the results in

the form of a 4 
 2 table. The TV column gives the hours per day

Table 13.11 TV versus fitness results
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The rows need to be given specific numeric values for computational pur-

poses, and it is convenient to make these just 1, 2, 3, 4, because consecutive integers

correspond to the assumption of a common odds ratio from row to row. The

columns may need to be labeled as 0 and 1 for input to a program. The logistic

regression results from MINITAB are shown in Figure 13.5, where the estimated

coefficient b̂1 for TV is given as –.29 and the odds ratio is given as .75 ¼ e–.29. This
means that, for each increase in TV watching category, the odds of being fit decline

to about 3/4 of the previous value. There is a loss of 25% for each increment in TV.

The output shows two tests for b1, a z based on the ratio of the coefficient to

its estimated standard error and G, which is based on a likelihood ratio test and

gives the chi-squared approximation for the difference of log likelihoods. The two

tests usually give very similar results, with G being approximately the square of z.
In this case they agree that the P-value is around .02, which means that we should

reject at the .05 level the hypothesis that b1 ¼ 0, and we can conclude that there is a

relationship between TV watching and fitness. Of course, the existence of a

relationship does not imply anything about one causing the other. By the way, a

chi-squared test yields w2 ¼ 6.161 with 3 df, P ¼ .104, so with this test we would

not conclude that there is a relationship, even at the 10% level. There is an

advantage in using logistic regression for this kind of data.

Suppose there are two ordinal factors, each with more than two levels. This

too can be handled with logistic regression, but it requires a procedure called

ordinal logistic regression that allows an ordinal dependent variable. When one

factor is ordinal and the other is not, the analysis can be done with multinomial

(also called nominal or polytomous) logistic regression, which allows a non-ordinal

dependent variable.

Models and methods for analyzing data in which each individual is cate-

gorized with respect to three or more factors (multidimensional contingency tables)

are discussed in several of the references in the chapter bibliography.

Figure 13.5 Logistic regression for TV versus fitness ■
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Exercises Section 13.3 (23–35)

23. Reconsider the Cubs data of Exercise 56

in Chapter 10. Form a 2 
 2 table for the data

and use a w2 statistic to test the hypothesis of

equal population proportions. The w2 statistic

should be the square of the z statistic in Exer-

cise 56 of Chapter 10. How are the P-values
related?

24. The accompanying data refers to leaf marks

found on white clover samples selected from

both long-grass areas and short-grass areas

(“The Biology of the Leaf Mark Polymorphism

in Trifolium repens L.,” Heredity, 1976:

306–325). Use a w2 test to decide whether the

true proportions of different marks are identical

for the two types of regions.

25. The following data resulted from an experiment

to study the effects of leaf removal on the ability

of fruit of a certain type to mature (“Fruit Set,

Herbivory, Fruit Reproduction, and the Fruiting

Strategy of Catalpa speciosa,” Ecology, 1980:
57–64). Does the data suggest that the chance

of a fruit maturing is affected by the number of

leaves removed? State and test the appropriate

hypotheses at level .01.

Treatment

Number
of Fruits
Matured

Number
of Fruits
Aborted

Control 141 206

Two leaves removed 28 69

Four leaves removed 25 73

Six leaves removed 24 78

Eight leaves removed 20 82

26. The article “Human Lateralization from Head to

Foot: Sex-Related Factors” (Science, 1978:

1291–1292) reports for both a sample of right-

handed men and a sample of right-handed

women the number of individuals whose feet

were the same size, had a bigger left than right

foot (a difference of half a shoe size or more), or

had a bigger right than left foot.

Does the data indicate that gender has a strong

effect on the development of foot asymmetry?

State the appropriate null and alternative hypoth-

eses, compute the value of w2, and obtain infor-

mation about the P-value.

27. The article “Susceptibility of Mice to Audio-

genic Seizure Is Increased by Handling Their

Dams During Gestation” (Science, 1976:

427–428) reports on research into the effect of

different injection treatments on the frequencies

of audiogenic seizures.

Does the data suggest that the true percentages

in the different response categories depend on

the nature of the injection treatment? State and

test the appropriate hypotheses using a ¼ .005.

28. The accompanying data on sex combinations of

two recombinants resulting from six different

male genotypes appears in the article “A New

Method for Distinguishing Between Meiotic and

Premeiotic Recombinational Events in Drosoph-
ila melanogaster” (Genetics, 1979: 543–554).

Does the data support the hypothesis that the

frequency distribution among the three sex com-

binations is homogeneous with respect to the dif-

ferent genotypes? Define the parameters of

interest, state the appropriate H0 and Ha, and

perform the analysis.
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Sex Combination

M/M M/F F/F

Male 1 35 80 39

2 41 84 45

3 33 87 31

Genotype 4 8 26 8

5 5 11 6

6 30 65 20

29. Each individual in a random sample of high school

and college students was cross-classified with

respect to both political views and marijuana

usage, resulting in the data displayed in the accom-

panying two-way table (“Attitudes About Mari-

juana and Political Views,” Psych. Rep., 1973:
1,051–1,054).Does the data support the hypothesis

that political views and marijuana usage level are

independent within the population? Test the appro-

priate hypotheses using level of significance .01.

30. Show that the chi-squared statistic for the test of

independence can be written in the form

w2 ¼
XI
i¼1

XJ
j¼1

N2
ij

Êij

 !
� n

Why is this formula more efficient computation-

ally than the defining formula for w2?

31. Suppose that in Exercise 29 each student had

been categorized with respect to political views,

marijuana usage, and religious preference, with

the categories of this latter factor being Protes-

tant, Catholic, and other. The data could be dis-

played in three different two-way tables, one

corresponding to each category of the third factor.

With pijk ¼ P(political category i, marijuana cat-

egory j, and religious category k), the null hypoth-
esis of independence of all three factors states that

pijk ¼ pi·· p·j· p··k Let nijk denote the observed

frequency in cell (i, j, k). Show how to estimate

the expected cell counts assuming that H0 is true

(êijk ¼ np̂ijk, so the p̂ijk’s must be determined).

Then use the general rule of thumb to determine

the number of degrees of freedom for the chi-

squared statistic.

32. Suppose that in a particular state consisting of four

distinct regions, a random sample of nk voters is
obtained from the kth region for k ¼ 1, 2, 3, 4.

Each voter is then classified according to which

candidate (1, 2, or 3) he or she prefers and accord-

ing to voter registration (1 ¼ Dem., 2 ¼ Rep.,

3 ¼ Indep.). Let pijk denote the proportion of

voters in region k who belong in candidate cate-

gory i and registration category j. The null hypoth-
esis of homogeneous regions is H0:

pij1 ¼ pij2 ¼ pij3 ¼ pij4 for all i, j (i.e., the propor-
tion within each candidate/registration combina-

tion is the same for all four regions). Assuming

that H0 is true, determine p̂ijk and êijk as functions
of the observed nijk’s, and use the general rule of

thumb to obtain the number of degrees of freedom

for the chi-squared test.

33. Consider the accompanying 2 
 3 table displaying

the sample proportions that fell in the various com-

binations of categories (e.g., 13% of those in the

sample were in the first category of both factors).

a. Suppose the sample consisted of n ¼ 100 peo-

ple. Use the chi-squared test for independence

with significance level .10.

b. Repeat part (a) assuming that the sample size

was n ¼ 1000.

c. What is the smallest sample size n for which

these observed proportions would result in

rejection of the independence hypothesis?

34. Use logistic regression to test the relationship

between leaf removal and fruit growth in Exer-

cise 25. Compare the P-value with what was

found in Exercise 25. (Remember that w21 ¼ z2.)
Explain why you expected the logistic regression

to give a smaller P-value.

35. A random sample of 100 faculty at a university

gives the results shown below for professorial

rank versus gender.

a. Test for a relationship at the 5% level using a

chi-squared statistic.

b. Test for a relationship at the 5% level using

logistic regression.

13.3 Two-Way Contingency Tables 753



c. Compare the P-values in parts (a) and (b). Is

this in accord with your expectations? Explain.

d. Interpret your results. Assuming that today’s

assistant professors are tomorrow’s associate

professors and professors, do you see implica-

tions for the future?

Rank Male Female

Professor 25 9

Assoc Prof 20 8

Asst Prof 18 20

Supplementary Exercises (36–47)

36. The article “Birth Order and Political Success”

(Psych. Rep., 1971: 1,239–1,242) reports that

among 31 randomly selected candidates for

political office who came from families with

four children, 12 were firstborn, 11 were mid-

dleborn, and 8 were lastborn. Use this data to

test the null hypothesis that a political candidate

from such a family is equally likely to be in any

one of the four ordinal positions.

37. The results of an experiment to assess the effect

of crude oil on fish parasites are described in the

article “Effects of Crude Oils on the Gastrointes-

tinal Parasites of Two Species of Marine Fish”

(J. Wildlife Diseases, 1983: 253–258). Three

treatments (corresponding to populations in the

procedure described) were compared: (1) no con-

tamination, (2) contamination by 1–year-old

weathered oil, and (3) contamination by new

oil. For each treatment condition, a sample of

fish was taken, and then each fish was classified

as either parasitized or not parasitized. Data com-

patible with that in the article is given. Does the

data indicate that the three treatments differ with

respect to the true proportion of parasitized and

nonparasitized fish? Test using a ¼ .01.

Treatment Parasitized Nonparasitized

Control 30 3

Old oil 16 8

New oil 16 16

38. Qualifications of male and female head and

assistant college athletic coaches were compared

in the article “Sex Bias and the Validity of

Believed Differences Between Male and Female

Interscholastic Athletic Coaches” (Res. Q. Exer-
cise Sport, 1990: 259–267). Each person in ran-

dom samples of 2225 male coaches and 1141

female coaches was classified according to num-

ber of years of coaching experience to obtain the

accompanying two-way table. Is there enough

evidence to conclude that the proportions falling

into the experience categories are different for

men and women? Use a ¼ .01.

Years of Experience

Gender 1–3 4–6 7–9 10–12 13+

Male 202 369 482 361 811

Female 230 251 238 164 258

39. The authors of the article “Predicting Profes-

sional Sports Game Outcomes from Intermediate

Game Scores” (Chance, 1992: 18–22) used a chi-
squared test to determine whether there was any

merit to the idea that basketball games are not

settled until the last quarter, whereas baseball

games are over by the seventh inning. They

also considered football and hockey. Data was

collected for 189 basketball games, 92 baseball

games, 80 hockey games, and 93 football games.

The games analyzed were sampled randomly

from all games played during the 1990 season

for baseball and football and for the 1990–1991

season for basketball and hockey. For each game,

the late-game leader was determined, and then it

was noted whether the late-game leader actually

ended up winning the game. The resulting data is

summarized in the accompanying table.

Sport
Late-Game
Leader Wins

Late-Game
Leader Loses

Basketball 150 39

Baseball 86 6

Hockey 65 15

Football 72 21

The authors state, “Late-game leader is defined
as the team that is ahead after three quarters in

basketball and football, two periods in hockey,

and seven innings in baseball. The chi-square
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value on three degrees of freedom is 10.52

(P < .015).”

a. State the relevant hypotheses and reach a

conclusion using a ¼ .05.

b. Do you think that your conclusion in part (a)

can be attributed to a single sport being an

anomaly?

40. The accompanying two-way frequency table

appears in the article “Marijuana Use in

College” (Youth and Society, 1979: 323–334).
Each of 445 college students was classified

according to both frequency of marijuana

use and parental use of alcohol and psychoactive

drugs. Does the data suggest that parental usage

and student usage are independent in

the population from which the sample was

drawn? Use the P-value method to reach a con-

clusion.

41. In a study of 2989 cancer deaths, the location of

death (home, acute-care hospital, or chronic-care

facility) and age at death were recorded, resulting

in the given two-way frequency table (“Where

Cancer Patients Die,” Public Health Rep., 1983:
173). Using a .01 significance level, test the null

hypothesis that age at death and location of death

are independent.

Location

Age Home Acute-Care Chronic-Care

15–54 94 418 23

55–64 116 524 34

65–74 156 581 109

Over 74 138 558 238

42. In a study to investigate the extent to which

individuals are aware of industrial odors in a

certain region (“Annoyance and Health Reac-

tions to Odor from Refineries and Other Indus-

tries in Carson, California,” Environ. Res., 1978:
119–132), a sample of individuals was obtained

from each of three different areas near industrial

facilities. Each individual was asked whether he

or she noticed odors (1) every day, (2) at least

once/week, (3) at least once/month, (4) less often

than once/month, or (5) not at all, resulting in the

output from SPSS on the next page. State and test

the appropriate hypotheses.

43. Many shoppers have expressed unhappiness

because grocery stores have stopped putting

prices on individual grocery items. The article

“The Impact of Item Price Removal on Grocery

Shopping Behavior” (J. Market., 1980: 73–93)
reports on a study in which each shopper in a

sample was classified by age and by whether he

or she felt the need for item pricing. Based on the

accompanying data, does the need for item pric-

ing appear to be independent of age?

Age

< 30 30–39 40–49 50–59 � 60

Number
in Sample

150 141 82 63 49

Number
Who Want

127 118 77 61 41

Item Pricing

44. Let p1 denote the proportion of successes in a

particular population. The test statistic value in

Chapter 9 for testing H0: p1 ¼ p10 was z ¼
ðp̂1 � p10Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p10p20=n

p
, where p20 ¼ 1 – p10.

Show that for the case k ¼ 2, the chi-squared sta-

tistic value of Section 13.1 satisfies w2 ¼ z2. [Hint:
First show that (n1 – np10)

2 ¼ (n2 – np20)
2.]

45. The NCAA basketball tournament begins with 64

teams that are apportioned into four regional tour-

naments, each involving 16 teams. The 16 teams

in each region are then ranked (seeded) from 1 to

16. During the 12-year period from 1991 to 2002,

the top-ranked team won its regional tournament

22 times, the second-ranked team won 10 times,

the third-ranked team won 5 times, and the

remaining 11 regional tournaments were won

by teams ranked lower than 3. Let Pij denote

the probability that the team ranked i in its region

is victorious in its game against the team ranked

j. Once the Pij’s are available, it is possible to

compute the probability that any particular seed

wins its regional tournament (a complicated

calculation because the number of outcomes
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in the sample space is quite large). The paper

“Probability Models for the NCAA Regional

Basketball Tournaments”(Amer. Statist., 1991:

35–38) proposed several different models for

the Pij’s.

a. One model postulated Pij ¼ .5 – l(i – j) with

l ¼ 1
32

(from which P16;1 ¼ 1
32
, P16;2 ¼ 2

32
,

etc.). Based on this, P(seed #1 wins) ¼ .27477,

P(seed #2 wins) ¼ .20834, and P(seed #3

wins) ¼ .15429. Does this model appear to

provide a good fit to the data?

b. A more sophisticated model has Pij ¼ .5 +

.2813625(zi – zj), where the z’s are measures

of relative strengths related to standard normal

percentiles [percentiles for successive highly

seeded teams are closer together than is the

case for teams seeded lower, and .2813625

ensures that the range of probabilities is the

same as for the model in part (a)]. The resulting

probabilities of seeds 1, 2, or 3 winning their

regional tournaments are .45883, .18813, and

.11032, respectively. Assess the fit of this

model.

46. Have you ever wondered whether soccer players

suffer adverse effects from hitting “headers”?

The authors of the article “No Evidence of

Impaired Neurocognitive Performance in Colle-

giate Soccer Players” (Amer. J. Sports Med.
2002: 157–162) investigated this issue from

several perspectives.

a. The paper reported that 45 of the 91 soccer

players in their sample had suffered at least one

concussion, 28 of 96 nonsoccer athletes had suf-

fered at least one concussion, and only 8 of 53

student controls had suffered at least one con-

cussion. Analyze this data and draw appropriate

conclusions.

b. For the soccer players, the sample correlation

coefficient calculated from the values of

x ¼ soccer exposure (total number of

competitive seasons played prior to enrollment

in the study) and y ¼ score on an immediate

memory recall test was r¼ –.220. Interpret this

result.

c. Here is summary information on scores on a

controlled oral word-association test for the

soccer and nonsoccer athletes:

n1 ¼ 26; �x1 ¼ 37:50; s1 ¼ 9:13;

n2 ¼ 56; �x2 ¼ 39:63; s2 ¼ 10:19

Analyze this data and draw appropriate conclu-

sions.

Crosstabulation: AREA By CATEGORY
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d. Considering the number of prior nonsoccer

concussions, the values of mean � SD for the

three groups were soccer players, .30 � .67;

nonsoccer athletes, .49 � .87; and student con-

trols, .19 � .48. Analyze this data and draw

appropriate conclusions.

47. Do the successive digits in the decimal expansion

of p behave as though they were selected from a

random number table (or came from a computer’s

random number generator)?

a. Let p0 denote the long-run proportion of digits

in the expansion that equal 0, and define p1, . . .,
p9 analogously. What hypotheses about these

proportions should be tested, and what is df for

the chi-squared test?

b. H0 of part (a) would not be rejected for the

nonrandom sequence 012 . . . 901 . . . 901 . . . .

Consider nonoverlapping groups of two digits,

and let pij denote the long-run proportion of

groups for which the first digit is i and the

second digit is j. What hypotheses about these

proportions should be tested, and what is df for

the chi-squared test?

c. Consider nonoverlapping groups of 5 digits.

Could a chi-squared test of appropriate hypoth-

eses about the pijklm’s be based on the first

100,000 digits? Explain.

d. The paper “Are the Digits of p an Independent

and Identically Distributed Sequence?” (Amer.
Statist., 2000: 12–16) considered the first

1,254,540 digits of p, and reported the follow-

ing P-values for group sizes of 1, . . ., 5 digits:

.572, .078, .529, .691, .298. What would you

conclude?
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C H A P T E R F O U R T E E N

Alternative
Approaches
to Inference

Introduction
In this final chapter we consider some inferential methods that are different in

important ways from those considered earlier. Recall that many of the confidence

intervals and test procedures developed in Chapters 9–12 were based on some sort

of a normality assumption. As long as such an assumption is at least approximately

satisfied, the actual confidence and significance levels will be at least approxi-

mately equal to the “nominal” levels, those prescribed by the experimenter through

the choice of particular t or F critical values. However, if there is a substantial

violation of the normality assumption, the actual levels may differ considerably

from the nominal levels (e.g., the use of t.025 in a confidence interval formula may

actually result in a confidence level of only 88% rather than the nominal 95%).

In the first three sections of this chapter, we develop distribution-free or non-

parametric procedures that are valid for a wide variety of underlying distributions

rather than being tied to normality. We have actually already introduced several

such methods: the bootstrap intervals and permutation tests are valid without

restrictive assumptions on the underlying distribution(s).

Section 14.4 introduces the Bayesian approach to inference. The standard

frequentist view of inference is that the parameter of interest, y, has a fixed but

unknown value. Bayesians, however, regard y as a random variable having a prior

probability distribution that incorporates whatever is known about its value. Then

to learn more about y, a sample from the conditional distribution f (x|y) is

obtained, and Bayes’ theorem is used to produce the posterior distribution of y
given the data x1, . . . , xn. All Bayesian methods are based on this posterior

distribution.



14.1 The Wilcoxon Signed-Rank Test
A research chemist replicated a particular experiment a total of 10 times and obtained

the following values of reaction temperature, ordered from smallest to largest:

�.57 �.19 �.05 .76 1.30 2.02 2.17 2.46 2.68 3.02

The distribution of reaction temperature is of course continuous. Suppose the

investigator is willing to assume that this distribution is symmetric, so that the pdf

satisfies f ðemþ tÞ ¼ f ðem� tÞ for any t >0, where em is the median of the distribution

(and also the mean m provided that the mean exists). This condition on f (x) simply

says that the height of the density curve above a value any particular distance to the

right of the median is the same as the height that same distance to the left of the

median. The assumption of symmetry may at first thought seem quite bold, but

remember that we have frequently assumed a normal distribution. Since a normal

distribution is symmetric, the assumption of symmetry without any additional

distributional specification is actually a weaker assumption than normality.

Let’s now consider testing the null hypothesis that em ¼ 0. This amounts to

saying that a temperature of any particular magnitude, say 1.50, is no more likely

to be positive (+1.50) than to be negative (�1.50). A glance at the data casts doubt

on this hypothesis; for example, the sample median is 1.66, which is far larger in

magnitude than any of the three negative observations.

Figure 14.1 shows graphs of two symmetric pdf’s, one for which H0 is

true and the other for which the median of the distribution considerably exceeds 0.

In the first case we expect the magnitudes of the negative observations in the

sample to be comparable to those of the positive sample observations. However,

in the second case observations of large absolute magnitude will tend to be positive

rather than negative.

For the sample of ten reaction temperatures, let’s for the moment disregard

the signs of the observations and rank the absolute magnitudes from 1 to 10, with

the smallest getting rank 1, the second smallest rank 2, and so on. Then apply the

sign of each observation to the corresponding rank (so some signed ranks will be

negative, e.g. �3, whereas others will be positive, e.g. 8). The test statistic will be

S+ ¼ the sum of the positively signed ranks.

Absolute Magnitude .05 .19 .57 .76 1.30 2.02 2.17 2.46 2.68 3.02

Rank 1 2 3 4 5 6 7 8 9 10

Signed Rank �1 �2 �3 4 5 6 7 8 9 10

sþ ¼ 4þ 5þ 6þ 7þ 8þ 9þ 10 ¼ 49

0 0

a b

Figure 14.1 Distributions for which (a) ~m ¼ 0; (b) ~m � 0
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When the median of the distribution is much greater than 0, most of the observa-

tions with large absolute magnitudes should be positive, resulting in positively

signed ranks and a large value of s+. On the other hand, if the median is 0,

magnitudes of positively signed observations should be intermingled with those

of negatively signed observations, in which case s+ will not be very large. Thus

we should reject H0 : em ¼ 0 when s+ is “quite large”— the rejection region should

have the form s+ � c.
The critical value c should be chosen so that the test has a desired significance

level (type I error probability), such as .05 or .01. This necessitates finding the

distribution of the test statistic S+ when the null hypothesis is true. Let’s consider

n ¼ 5, in which case there are 25 ¼ 32 ways of applying signs to the five ranks 1, 2, 3,

4, and 5 (each rank could have a� sign or a + sign). The key point is that whenH0 is

true, any collection of five signed ranks has the same chance as does any other
collection. That is, the smallest observation in absolute magnitude is equally likely to

be positive or negative, the same is true of the second smallest observation in absolute

magnitude, and so on. Thus the collection�1, 2, 3,�4, 5 of signed ranks is just as likely

as the collection 1, 2, 3, 4,�5, and just as likely as any one of the other 30 possibilities.

Table 14.1 lists the 32 possible signed-rank sequences when n ¼ 5 along

with the value s+ for each sequence. This immediately gives the “null distribution”

of S+ displayed in Table 14.2. For example, Table 14.1 shows that three of the

32 possible sequences have s+ ¼ 8, so P Sþ ¼ 8 when H0 is trueð Þ ¼ 1=32 þ
1=32þ 1=32 ¼ 3=32. This null distribution appears in Table 14.2. Notice that it

Table 14.1 Possible signed-rank sequences for n ¼ 5

Sequence s+ Sequence s+

�1 �2 �3 �4 �5 0 �1 �2 �3 þ4 �5 4

þ1 �2 �3 �4 �5 1 þ1 �2 �3 þ4 �5 5

�1 þ2 �3 �4 �5 2 �1 þ2 �3 þ4 �5 6

�1 �2 þ3 �4 �5 3 �1 �2 þ3 þ4 �5 7

þ1 þ2 �3 �4 �5 3 þ1 þ2 �3 þ4 �5 7

þ1 �2 þ3 �4 �5 4 þ1 �2 þ3 þ4 �5 8

�1 þ2 þ3 �4 �5 5 �1 þ2 þ3 þ4 �5 9

þ1 þ2 þ3 �4 �5 6 þ1 þ2 þ3 þ4 �5 10

�1 �2 �3 �4 þ5 5 �1 �2 �3 þ4 þ5 9

þ1 �2 �3 �4 þ5 6 þ1 �2 �3 þ4 þ5 10

�1 þ2 �3 �4 þ5 7 �1 þ2 �3 þ4 þ5 11

�1 �2 þ3 �4 þ5 8 �1 �2 þ3 þ4 þ5 12

þ1 þ2 �3 �4 þ5 8 þ1 þ2 �3 þ4 þ5 12

þ1 �2 þ3 �4 þ5 9 þ1 �2 þ3 þ4 þ5 13

�1 þ2 þ3 �4 þ5 10 �1 þ2 þ3 þ4 þ5 14

þ1 þ2 þ3 �4 þ5 11 þ1 þ2 þ3 þ4 þ5 15

Table 14.2 Null distribution of S+ when n ¼ 5

s+ 0 1 2 3 4 5 6 7

p(s+) 1/32 1/32 1/32 2/32 2/32 3/32 3/32 3/32

s+ 8 9 10 11 12 13 14 15

p(s+) 3/32 3/32 3/32 2/32 2/32 1/32 1/32 1/32
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is symmetric about 7.5 [more generally, symmetrically distributed over the possible

values 0; 1; 2;:::; n nþ 1ð Þ=2]. This symmetry is important in relating the rejection

region of lower-tailed and two-tailed tests to that of an upper-tailed test.

For n ¼ 10 there are 210 ¼ 1024 possible signed rank sequences, so a listing

would involve much effort. Each sequence, though, would have probability 1/1024

whenH0 is true, fromwhich the distribution of S+whenH0 is true can be easily obtained.

We are now in a position to determine a rejection region for testing H0:em ¼ 0

versus Ha : em> 0 that has a suitably small significance level a. Consider the

rejection region R ¼ fsþ : sþ � 13g ¼ 13; 14; 15f g. Then

a ¼ P reject H0 when H0 is trueð Þ
¼ PðSþ ¼ 13; 14; or 15 when H0 is trueÞ
¼ 1=32þ 1=32þ 1=32 ¼ 3=32

¼ :094

so that R ¼ {13, 14, 15} specifies a test with approximate level .1. For the rejec-

tion region {14, 15}, a ¼ 2/32 ¼ .063. For the sample x1 ¼ :58; x2 ¼ 2:50;
x3 ¼ �:21; x4 ¼ 1:23; x5 ¼ :97, the signed rank sequence is �1, +2, +3, +4, +5,

so s+ ¼ 14 and at level .063 H0 would be rejected.

A General Description of the Wilcoxon Signed-Rank Test

Because the underlying distribution is assumed symmetric, m ¼ em, so we will state

the hypotheses of interest in terms of m rather than em.1

ASSUMPTION X1, X2, . . . , Xn is a random sample from a continuous and symmetric

probability distribution with mean (and median) m.

When the hypothesized value of m is m0, the absolute differences

jx1 � m0 ; :::j jxn � m0j, must be ranked from smallest to largest.

Null hypothesis: H0 : m ¼ m0

Test statistic value: s+ ¼ the sumof the ranks associatedwith positive (xi � m0)’s

Alternative Hypothesis Rejection Region for Level a Test

Ha : m> m0 sþ � c1
Ha : m< m0 sþ � c2 ½where c2 ¼ nðnþ 1Þ=2� c1�
Ha : m 6¼ m0 either sþ � c or sþ � nðnþ 1Þ=2� c

where the critical values c1 and c obtained from Appendix Table A.12 satisfy

PðSþ � c1Þ � a andPðSþ � cÞ � a=2 when H0 is true.

1If the tails of the distribution are “too heavy,” as was the case with the Cauchy distribution of Chapter 7,

then m will not exist. In such cases, the Wilcoxon test will still be valid for tests concerning em.
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Example 14.1 A producer of breakfast cereals wants to verify that a filler machine is operating

correctly. The machine is supposed to fill one-pound boxes with 460 g, on the

average. This is a little above the 453.6 g needed for one pound. When the contents

are weighed, it is found that 15 boxes yield the following measurements:

454.4 470.8 447.5 453.2 462.6 445.0 455.9 458.2

461.6 457.3 452.0 464.3 459.2 453.5 465.8

It is believed that deviations of any magnitude from 460 g are just as likely to be

positive as negative (in accord with the symmetry assumption) but the distribution

may not be normal. Therefore, the Wilcoxon signed-rank test will be used to see if

the filler machine is calibrated correctly.

The hypotheses are H0: m ¼ 460 versus Ha: m 6¼ 460, where m is the true

average weight. Subtracting 460 from each measurement gives

�5.6 10.8 �12.5 �6.8 2.6 �15.0 �4.1 �1.8 1.6 �2.7

�8.0 4.3 �.8 �6.5 5.8

The ranks are obtained by ordering these from smallest to largest without regard to sign.

Absolute
Magnitude .8 1.6 1.8 2.6 2.7 4.1 4.3 5.6 5.8 6.5 6.8 8.0 10.8 12.5 15.0

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sign � + � + � � + � + � � � + � �

Thus sþ ¼ 2þ 4þ 7þ 9þ 13 ¼ 35. From Appendix Table A.12, PðSþ � 95Þ ¼
PðSþ � 25Þ ¼ :024 when H0 is true, so the two-tailed test with approximate level

.05 rejects H0 when either s+ � 95 or � 25 [the exact a is 2(.024) ¼ .048]. Since

s+ ¼ 35 is not in the rejection region, it cannot be concluded at level .05 that m
differs from 460. Even at level .094 (approximately .1),H0 cannot be rejected, since

P(S+ � 30) ¼ P(S+ � 90) ¼ .047 implies that s+ values between 30 and 90 are not
significant at that level. The P-value of the data is thus >.1. ■

Although a theoretical implication of the continuity of the underlying distri-

bution is that ties will not occur, in practice they often do because of the discrete-

ness of measuring instruments. If there are several data values with the same

absolute magnitude, then they would be assigned the average of the ranks they

would receive if they differed very slightly from one another. For example, if in

Example 14.1 x8 ¼ 458.2 is changed to 458.4, then two different values of

(xi � 460) would have absolute magnitude 1.6. The ranks to be averaged would

be 2 and 3, so each would be assigned rank 2.5.

Paired Observations

When the data consisted of pairs ðX1; Y1Þ; . . . ; ðXn; YnÞ and the differences

D1 ¼ X1 � Y1; . . . ;Dn ¼ Xn � Yn were normally distributed, in Chapter 10 we

used a paired t test for hypotheses about the expected difference mD. If normality

is not assumed, hypotheses about mD can be tested by using the Wilcoxon signed-

rank test on the Di’s provided that the distribution of the differences is continuous

and symmetric. If Xi and Yi both have continuous distributions that differ only with
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respect to their means (so the Y distribution is the X distribution shifted by

m1 � m2 ¼ mD), then Di will have a continuous symmetric distribution (it is not
necessary for the X and Y distributions to be symmetric individually). The null

hypothesis is H0 : mD ¼ D0, and the test statistic S+ is the sum of the ranks

associated with the positive (Di � D0)’s.

Example 14.2 About 100 years ago an experiment was done to see if drugs could help people with

severe insomnia (“The Action of Optical Isomers, II: Hyoscines,” J. Physiol., 1905:
501–510). There were 10 patients who had trouble sleeping, and each patient

tried several medications. Here we compare just the control (no medication) and

levo-hyoscine. Does the drug offer an improvement in average sleep time? The

relevant hypotheses are H0: mD ¼ 0 versus Ha: mD < 0. Here are the sleep times,

differences, and signed ranks.

Patient 1 2 3 4 5 6 7 8 9 10

Control 0.6 1.1 2.5 2.8 2.9 3.0 3.2 4.7 5.5 6.2

Drug 2.5 5.7 8.0 4.4 6.3 3.8 7.6 5.8 5.6 6.1

Difference �1.9 �4.6 �5.5 �1.6 �3.4 �.8 �4.4 �1.1 �.1 .1

Signed rank �6 �9 �10 �5 �7 �3 �8 �4 �1.5 1.5

Notice that there is a tie for the lowest rank, so the two lowest ranks are split

between observations 9 and 10, and each receives rank 1.5. Appendix Table A.12

shows that for a test with significance level approximately .05, the null hypothesis

should be rejected if sþ � 10ð Þ 11ð Þ=2� 44 ¼ 11. The test statistic value is 1.5,

which falls in the rejection region. We therefore reject H0 at significance level .05

in favor of the conclusion that the drug gives greater mean sleep time. The

accompanying MINITAB output shows the test statistic value and also the

corresponding P-value, which is P(S+ �1.5 when H0 is true).

Test of median ¼ 0.000000 versus median < 0.000000
N
for Wilcoxon Estimated

N Test Statistic P Median

diff 10 10 1.5 0.005 �2.250 ■

Efficiency of the Wilcoxon Signed-Rank Test

When the underlying distribution being sampled is normal, either the t test or the
signed-rank test can be used to test a hypothesis about m. The t test is the best test in
such a situation because among all level a tests it is the one having minimum b. It is
generally agreed that there are many experimental situations in which normality

can be reasonably assumed, as well as some in which it should not be. These two

questions must be addressed in an attempt to compare the tests:

1. When the underlying distribution is normal (the “home ground” of the t test),
how much is lost by using the signed-rank test?

2. When the underlying distribution is not normal, can a significant improvement

be achieved by using the signed-rank test?

If the Wilcoxon test does not suffer much with respect to the t test on the “home

ground” of the latter, and performs significantly better than the t test for a large number

of other distributions, then there will be a strong case for using the Wilcoxon test.
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Unfortunately, there are no simple answers to the two questions. Upon

reflection, it is not surprising that the t test can perform poorly when the underlying

distribution has “heavy tails” (i.e., when observed values lying far from m are

relatively more likely than they are when the distribution is normal). This is because

the behavior of the t test depends on the sample mean and variance, which are both

unstable in the presence of heavy tails. The difficulty in producing answers to the

two questions is that b for the Wilcoxon test is very difficult to obtain and study for

any underlying distribution, and the same can be said for the t test when the

distribution is not normal. Even if bwere easily obtained, any measure of efficiency

would clearly depend on which underlying distribution was assumed. A number of

different efficiency measures have been proposed by statisticians; one that many

statisticians regard as credible is called asymptotic relative efficiency (ARE).

The ARE of one test with respect to another is essentially the limiting ratio of

sample sizes necessary to obtain identical error probabilities for the two tests. Thus

if the ARE of one test with respect to a second equals .5, then when sample sizes are

large, twice as large a sample size will be required of the first test to perform as well

as the second test. Although the ARE does not characterize test performance for

small sample sizes, the following results can be shown to hold:

1. When the underlying distribution is normal, the ARE of the Wilcoxon test with

respect to the t test is approximately .95.

2. For any distribution, the ARE will be at least .86 and for many distributions will

be much greater than 1.

We can summarize these results by saying that, in large-sample problems, the

Wilcoxon test is never very much less efficient than the t test and may be much

more efficient if the underlying distribution is far from normal. Although the issue

is far from resolved in the case of sample sizes obtained in most practical problems,

studies have shown that the Wilcoxon test performs reasonably and is thus a viable

alternative to the t test.

Exercises Section 14.1 (1–8)

1. Reconsider the situation described in Exercise 32 of

Section 9.2, and use the Wilcoxon test with a ¼ .05

to test the relevant hypotheses.

2. Use the Wilcoxon test to analyze the data given in

Example 9.9.

3. The accompanying data is a subset of the data re-

ported in the article “Synovial Fluid pH, Lactate,

Oxygen and Carbon Dioxide Partial Pressure in

Various Joint Diseases” (Arthritis Rheum., 1971:

476–477). The observations are pH values of syno-

vial fluid (which lubricates joints and tendons) taken

from the knees of individuals suffering from arthri-

tis. Assuming that true average pH for non-arthritic

individuals is 7.39, test at level .05 to see whether the

data indicates a difference between average pH

values for arthritic and nonarthritic individuals.

7.02 7.35 7.34 7.17 7.28 7.77 7.09

7.22 7.45 6.95 7.40 7.10 7.32 7.14

4. A random sample of 15 automobile mechanics

certified to work on a certain type of car was

selected, and the time (in minutes) necessary for

each one to diagnose a particular problem was

determined, resulting in the following data:

30.6 30.1 15.6 26.7 27.1 25.4 35.0 30.8

31.9 53.2 12.5 23.2 8.8 24.9 30.2

Use the Wilcoxon test at significance level .10 to

decide whether the data suggests that true average

diagnostic time is less than 30 minutes.

5. Both a gravimetric and a spectrophotometric method

are under consideration for determining phosphate

content of a particular material. Twelve samples of
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the material are obtained, each is split in half, and a

determination is made on each half using one of the

two methods, resulting in the following data:

Sample 1 2 3 4

Gravimetric 54.7 58.5 66.8 46.1

Spectrophotometric 55.0 55.7 62.9 45.5

Sample 5 6 7 8

Gravimetric 52.3 74.3 92.5 40.2

Spectrophotometric 51.1 75.4 89.6 38.4

Sample 9 10 11 12

Gravimetric 87.3 74.8 63.2 68.5

Spectrophotometric 86.8 72.5 62.3 66.0

Use the Wilcoxon test to decide whether one tech-

nique gives on average a different value than the

other technique for this type of material.

6. The signed-rank statistic can be represented as

Sþ ¼ W1 þW2 þ � � � þWn; where Wi ¼ i if the

sign of the xi � m0 with the ith largest absolute

magnitude is positive (in which case i is included
in S+) andWi ¼ 0 if this value is negative (i ¼ 1, 2,

3, . . . , n). Furthermore, when H0 is true, the Wi’s

are independent and PðW ¼ iÞ ¼ PðW ¼ 0Þ ¼ :5.
a. Use these facts to obtain the mean and variance

of S+ when H0 is true. [Hint: The sum of the first

n positive integers is nðnþ 1Þ=2, and the sum of

the squares of the first n positive integers is

nðnþ 1Þð2nþ 1Þ=6.]
b. The Wi’s are not identically distributed (e.g.,

possible values of W2 are 2 and 0 whereas pos-

sible values of W5 are 5 and 0), so our Central

Limit Theorem for identically distributed and

independent variables cannot be used here

when n is large. However, a more general CLT

can be used to assert that when H0 is true and

n > 20, S+ has approximately a normal distri-

bution with mean and variance obtained in (a).

Use this to propose a large-sample standardized

signed-rank test statistic and then an appropriate

rejection region with level a for each of the three
commonly encountered alternative hypotheses.

[Note: When there are ties in the absolute mag-

nitudes, it is still correct to standardize S+ by

subtracting the mean from (a), but there is a

correction for the variance which can be found

in books on nonparametric statistics.]

c. A particular type of steel beam has been de-

signed to have a compressive strength (lb/in2)

of at least 50,000. An experimenter obtained a

random sample of 25 beams and determined the

strength of each one, resulting in the following

data (expressed as deviations from 50,000):

�10 �27 36 �55 73 �77 �81

90 �95 �99 113 �127 �129 136

�150 �155 �159 165 �178 �183 �192

�199 �212 �217 �229

Carry out a test using a significance level of

approximately .01 to see if there is strong evi-

dence that the design condition has been violated.

7. The accompanying 25 observations on fracture

toughness of base plate of 18% nickel maraging

steel were reported in the article “Fracture Testing

of Weldments” (ASTM Special Publ. No. 381,
1965: 328–356). Suppose a company will agree to

purchase this steel for a particular application only

if it can be strongly demonstrated from experimen-

tal evidence that true average toughness exceeds

75. Assuming that the fracture toughness distribu-

tion is symmetric, state and test the appropriate

hypotheses at level .05, and compute a P-value.
[Hint: Use Exercise 6(b).]

69.5 71.9 72.6 73.1 73.3 73.5 74.1 74.2 75.3

75.5 75.7 75.8 76.1 76.2 76.2 76.9 77.0 77.9

78.1 79.6 79.7 80.1 82.2 83.7 93.7

8. Suppose that observations X1, X2, . . . , Xn are made

on a process at times 1, 2, . . . , n. On the basis of this
data, we wish to test

H0: the Xi’s constitute an independent and iden-

tically distributed sequence

versus

Ha: Xi+1 tends to be larger than Xi for i ¼ 1, . . . , n
(an increasing trend)

Suppose theXi’s are ranked from1 to n. ThenwhenHa

is true, larger ranks tend to occur later in the sequence,

whereas if H0 is true, large and small ranks tend

to be mixed together. Let Ri be the rank of Xi

and consider the test statistic D ¼ Pn
i¼1 ðRi � iÞ2.
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Then small values of D give support to Ha (e.g., the

smallest value is 0 for R1 ¼ 1; R2 ¼ 2; :::;Rn ¼ n),
soH0 should be rejected in favor ofHa if d � c.When

H0 is true, any sequence of ranks has probability 1/n!.
Use this to find c for which the test has a level as close

to .10 as possible in the case n ¼ 4. [Hint: List the 4!
rank sequences, compute d for each one, and then

obtain the null distribution of D. See the Lehmann

book (in the chapter bibliography), for more infor-

mation.]

14.2 The Wilcoxon Rank-Sum Test
When at least one of the sample sizes in a two-sample problem is small, the t test
requires the assumption of normality (at least approximately). There are situations,

though, in which an investigator would want to use a test that is valid even if the

underlying distributions are quite nonnormal. We now describe such a test, called

the Wilcoxon rank-sum test. An alternative name for the procedure is the Mann–

Whitney test, although the Mann–Whitney test statistic is sometimes expressed in a

slightly different form from that of the Wilcoxon test. The Wilcoxon test procedure

is distribution-free because it will have the desired level of significance for a very

large class of underlying distributions.

ASSUMPTIONS X1, . . . , Xm and Y1, . . . , Yn are two independent random samples from

continuous distributions with means m1 and m2, respectively. The X and Y
distributions have the same shape and spread, the only possible difference

between the two being in the values of m1 and m2.

WhenH0 : m1 � m2 ¼ D0 is true, the X distribution is shifted by the amount D0 to the

right of the Y distribution; whereas when H0 is false, the shift is by an amount other

than D0.

Development of the Test When m ¼ 3, n ¼ 4

Let’s first test H0 : m1 � m2 ¼ 0. If m1 is actually much larger than m2, then most of

the observed x’s will fall to the right of the observed y’s. However, ifH0 is true, then

the observed values from the two samples should be intermingled. The test statistic

will provide a quantification of howmuch intermingling there is in the two samples.

Consider the case m ¼ 3, n ¼ 4. Then if all three observed x’s were to the

right of all four observed y’s, this would provide strong evidence for rejecting H0 in

favor of Ha : m1 � m2 6¼ 0, with a similar conclusion being appropriate if all three

x’s fall below all four of the y’s. Suppose we pool the x’s and y’s into a combined

sample of size m + n ¼ 7 and rank these observations from smallest to largest,

with the smallest receiving rank 1 and the largest, rank 7. If either most of the

largest ranks or most of the smallest ranks were associated with X observations, we

would begin to doubt H0. This suggests the test statistic

W ¼ the sum of the ranks in the combined sample

associated withX observations
ð14:1Þ

For the values of m and n under consideration, the smallest possible value of W is

w ¼ 1 + 2 + 3 ¼ 6 (if all three x’s are smaller than all four y’s), and the largest

possible value is w ¼ 5 + 6 + 7 ¼ 18 (if all three x’s are larger than all four y’s).
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As an example, suppose x1 ¼ �3.10, x2 ¼ 1.67, x3 ¼ 2.01, y1 ¼ 5.27,

y2 ¼ 1.89, y3 ¼ 3.86, and y4 ¼ .19. Then the pooled ordered sample is �3.10, .19,

1.67, 1.89, 2.01, 3.86, and 5.27. The X ranks for this sample are 1 (for �3.10), 3 (for

1.67), and 5 (for 2.01), so the computed value ofW is w ¼ 1 + 3 + 5 ¼ 9.

The test procedure based on the statistic (14.1) is to reject H0 if the computed

value w is “too extreme” — that is, � c for an upper-tailed test, � c for a lower-

tailed test, and either � c1 or � c2 for a two-tailed test. The critical constant(s) c
(c1, c2) should be chosen so that the test has the desired level of significance a. To
see how this should be done, recall that when H0 is true, all seven observations

come from the same population. This means that under H0, any possible triple of

ranks associated with the three x’s — such as (1, 4, 5), (3, 5, 6), or (5, 6, 7) — has

the same probability as any other possible rank triple. Since there are 7
3

� � ¼ 35

possible rank triples, under H0 each rank triple has probability 1/35. From a list of

all 35 rank triples and the w value associated with each, the probability distribution

of W can immediately be determined. For example, there are four rank triples that

have w value 11 — (1, 3, 7), (1, 4, 6), (2, 3, 6), and (2, 4, 5) — so P(W ¼ 11) ¼
4/35. The summary of the listing and computations appears in Table 14.3.

The distribution of Table 14.3 is symmetric about w ¼ (6 + 18)/2 ¼ 12,

which is the middle value in the ordered list of possible W values. This is because

the two rank triples (r, s, t) (with r < s < t) and (8 � t, 8 � s, 8 � r) have values
of w symmetric about 12, so for each triple with w value below 12, there is a triple

with w value above 12 by the same amount.

If the alternative hypothesis is Ha : m1 � m2 > 0, then H0 should be rejected

in favor of Ha for large W values. Choosing as the rejection region the set of

W values {17, 18}, a ¼ P type I errorð Þ ¼ Pðreject H0 when H0 is trueÞ ¼ PðW ¼
17 or 18 when H0 is trueÞ ¼ 1

35
þ 1

35
¼ 2

35
¼ :057; the region {17, 18} therefore

specifies a test with level of significance approximately .05. Similarly, the region

{6, 7}, which is appropriate for Ha: m1 � m2 < 0, has a ¼ .057 � .05. The region

{6, 7, 17, 18}, which is appropriate for the two-sided alternative, has a ¼ 4
35
¼ :114.

The W value for the data given several paragraphs previously was w ¼ 9, which is

rather close to the middle value 12, so H0 would not be rejected at any reasonable

level a for any one of the three Ha’s.

General Description of the Rank-Sum Test

The null hypothesis H0 : m1 � m2 ¼ D0 is handled by subtracting D0 from each Xi

and using the (Xi � D0)’s as the Xi’s were previously used. Recalling that for any

positive integer K, the sum of the first K integers is K(K + 1)/2, the smallest

possible value of the statistic W is m(m + 1)/2, which occurs when the (Xi � D0)’s

are all to the left of the Y sample. The largest possible value of W occurs when the

(Xi � D0)’s lie entirely to the right of the Y’s; in this case, W ¼ ðnþ 1Þ þ � � � þ
ðmþ nÞ ¼ ðsum of first mþ n integersÞ � ðsum of first n integersÞ, which gives

Table 14.3 Probability distribution of W (m ¼ 3, n ¼ 4) when H0 is true

w 6 7 8 9 10 11 12 13 14 15 16 17 18

P(W ¼ w) 1

35

1

35

2

35

3

35

4

35

4

35

5

35

4

35

4

35

3

35

2

35

1

35

1

35
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mðmþ 2nþ 1Þ=2. As with the special case m ¼ 3, n ¼ 4, the distribution of W is

symmetric about the value that is halfway between the smallest and largest values;

this middle value is m(m + n + 1)/2. Because of this symmetry, probabilities

involving lower-tail critical values can be obtained from corresponding upper-tail

values.

Null hypothesis: H0 : m1 � m2 ¼ D0

Test statistic value : w ¼
Xm
i¼1

ri

where ri ¼ rank of ðxi � D0Þ in the
combined sample of mþ n ðx� D0Þ’s
and y’s

Alternative Hypothesis Rejection Region

Ha : m1 � m2 >D0 w � c1
Ha : m1 � m2 <D0 w � mðmþ nþ 1Þ � c1
Ha : m1 � m2 6¼ D0 either w � c or w � mðmþ nþ 1Þ � c

where P(W � c1 when H0 is true) � a, P(W � c when H0 is true) � a/2.

Because W has a discrete probability distribution, there will not always exist

a critical value corresponding exactly to one of the usual levels of significance.

Appendix Table A.13 gives upper-tail critical values for probabilities closest to .05,

.025, .01, and .005, from which level .05 or .01 one- and two-tailed tests can be

obtained. The table gives information only for m ¼ 3, 4, . . . , 8 and n ¼ m, m + 1,

. . . , 8 (i.e., 3 � m � n � 8). For values of m and n that exceed 8, a normal

approximation can be used (Exercise 14). To use the table for small m and n,
though, the X and Y samples should be labeled so that m � n.

Example 14.3 The urinary fluoride concentration (parts per million) was measured both for a

sample of livestock grazing in an area previously exposed to fluoride pollution and

for a similar sample grazing in an unpolluted region:

Polluted 21.3 18.7 23.0 17.1 16.8 20.9 19.7

Unpolluted 14.2 18.3 17.2 18.4 20.0

Does the data indicate strongly that the true average fluoride concentration for

livestock grazing in the polluted region is larger than for the unpolluted region? Use

the Wilcoxon rank-sum test at level a ¼ .01.

The sample sizes here are 7 and 5. To obtain m � n, label the unpolluted

observations as the x’s (x1 ¼ 14.2, . . . , x5 ¼ 20.0) and the polluted observations

as the y’s. Thus m1 is the true average fluoride concentration without pollution, and
m2 is the true average concentration with pollution. The alternative hypothesis is

Ha : m1 � m2 < 0 (pollution causes an increase in concentration), so a lower-tailed
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test is appropriate. From Appendix Table A.13 with m ¼ 5 and n ¼ 7, P(W � 47

when H0 is true) � .01. The critical value for the lower-tailed test is therefore

m(m + n + 1) � 47 ¼ 5(13) � 47 ¼ 18; H0 will now be rejected if w � 18.

The pooled ordered sample follows; the computed W is w ¼ r1 þ r2 þ � � � þ r5
(where ri is the rank of xi) ¼ 1 + 5 + 4 + 6 + 9 ¼ 25. Since 25 is not � 18, H0 is

not rejected at (approximately) level .01.

x y y x x x y y x y y y

14.2 16.8 17.1 17.2 18.3 18.4 18.7 19.7 20.0 20.9 21.3 23.0

1 2 3 4 5 6 7 8 9 10 11 12

■

Ties are handled as suggested for the signed-rank test in the previous section.

Efficiency of the Wilcoxon Rank-Sum Test

When the distributions being sampled are both normal with s1 ¼ s2, and therefore
have the same shapes and spreads, either the pooled t test or the Wilcoxon test can

be used (the two-sample t test assumes normality but not equal variances, so

assumptions underlying its use are more restrictive in one sense and less in another

than those for Wilcoxon’s test). In this situation, the pooled t test is best among all

possible tests in the sense of minimizing b for any fixed a. However, an investigator
can never be absolutely certain that underlying assumptions are satisfied. It is

therefore relevant to ask (1) how much is lost by using Wilcoxon’s test rather

than the pooled t test when the distributions are normal with equal variances and

(2) how W compares to T in nonnormal situations.

The notion of test efficiency was discussed in the previous section in connec-

tion with the one-sample t test and Wilcoxon signed-rank test. The results for the

two-sample tests are the same as those for the one-sample tests. When normality

and equal variances both hold, the rank-sum test is approximately 95% as efficient

as the pooled t test in large samples. That is, the t test will give the same error

probabilities as the Wilcoxon test using slightly smaller sample sizes. On the other

hand, the Wilcoxon test will always be at least 86% as efficient as the pooled t test
and may be much more efficient if the underlying distributions are very nonnormal,

especially with heavy tails. The comparison of the Wilcoxon test with the two-

sample (unpooled) t test is less clear-cut. The t test is not known to be the best test in
any sense, so it seems safe to conclude that as long as the population distributions

have similar shapes and spreads, the behavior of the Wilcoxon test should compare

quite favorably to the two-sample t test.
Lastly, we note that b calculations for the Wilcoxon test are quite difficult.

This is because the distribution ofW when H0 is false depends not only on m1 � m2
but also on the shapes of the two distributions. For most underlying distributions,

the nonnull distribution of W is virtually intractable. This is why statisticians have

developed large-sample (asymptotic relative) efficiency as a means of comparing

tests. With the capabilities of modern-day computer software, another approach to

calculation of b is to carry out a simulation experiment.
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Exercises Section 14.2 (9–16)

9. In an experiment to compare the bond strength of

two different adhesives, each adhesive was used in

five bondings of two surfaces, and the force nec-

essary to separate the surfaces was determined for

each bonding. For adhesive 1, the resulting values

were 229, 286, 245, 299, and 250, whereas the

adhesive 2 observations were 213, 179, 163, 247,

and 225. Let mi denote the true average bond

strength of adhesive type i. Use the Wilcoxon

rank-sum test at level .05 to test H0 : m1 ¼ m2
versus Ha : m1 > m2.

10. The article “A Study of Wood Stove Particulate

Emissions” (J. Air Pollut. Contr. Assoc., 1979:
724–728) reports the following data on burn time

(hours) for samples of oak and pine. Test at level

.05 to see whether there is any difference in true

average burn time for the two types of wood.

Oak 1.72 .67 1.55 1.56 1.42 1.23 1.77 .48

Pine .98 1.40 1.33 1.52 .73 1.20

11. A modification has been made to the process for

producing a certain type of “time-zero” film (film

that begins to develop as soon as a picture is taken).

Because the modification involves extra cost, it will

be incorporated only if sample data strongly indi-

cates that the modification has decreased true aver-

age developing time by more than 1 s. Assuming

that the developing-time distributions differ only

with respect to location if at all, use the Wilcoxon

rank-sum test at level .05 on the accompanying data

to test the appropriate hypotheses.

Original
Process 8.6 5.1 4.5 5.4 6.3 6.6 5.7 8.5

Modified
Process 5.5 4.0 3.8 6.0 5.8 4.9 7.0 5.7

12. The article “Measuring the Exposure of Infants to

Tobacco Smoke” (New Engl. J. Med., 1984:

1075–1078) reports on a study in which various

measurements were taken both from a random

sample of infants who had been exposed to house-

hold smoke and from a sample of unexposed

infants. The accompanying data consists of obser-

vations on urinary concentration of cotinine, a

major metabolite of nicotine (the values constitute

a subset of the original data and were read from a

plot that appeared in the article). Does the data

suggest that true average cotinine level is higher in

exposed infants than in unexposed infants by more

than 25? Carry out a test at significance level .05.

Unexposed 8 11 12 14 20 43 111

Exposed 35 56 83 92 128 150 176 208

13. Reconsider the situation described in Exercise 100

of Chapter 10 and the accompanying MINITAB

output (the Greek letter eta is used to denote a

median).

Mann-Whitney Confidence Interval and
Test
good N ¼ 8 Median ¼ 0.540
poor N ¼ 8 Median ¼ 2.400
Point estimate for ETA1 � ETA2 is
�1.155
95.9 % CI for ETA1 � ETA2 is(�3.160,

�0.409) W ¼ 41.0
Test of ETA1 ¼ ETA2 vs ETA1 < ETA2 is
significant at 0.0027

a. Verify that the value of MINITAB’s test statis-

tic is correct.

b. Carry out an appropriate test of hypotheses

using a significance level of .01.

14. The Wilcoxon rank-sum statistic can be repre-

sented as W ¼ R1 þ R2 þ � � � þ Rm, where Ri is

the rank of Xi � D0 among all m + n such differ-

ences. When H0 is true, each Ri is equally likely to

be one of the first m + n positive integers; that is,

Ri has a discrete uniform distribution on the values

1, 2, 3, . . . , m + n.
a. Determine the mean value of each Ri when H0

is true and then show that the mean value of W
is m(m + n + 1)/2. [Hint: Use the hint given in
Exercise 6(a).]

b. The variance of each Ri is easily determined.

However, the Ri’s are not independent random

variables because, for example, if m ¼ n ¼ 10

and we are told that R1 ¼ 5, then R2 must

be one of the other 19 integers between 1

and 20. However, if a and b are any two

distinct positive integers between 1 and

m + n inclusive, it follows that

PðRi ¼ a andRj ¼ bÞ ¼ 1=½ðmþ nÞðmþ n� 1Þ�
since two integers are being sampled without

replacement from among 1, 2, . . . , m + n.
Use this fact to show that CovðRi;RjÞ ¼
�ðmþ nþ 1Þ=12 and then show that the vari-

ance ofW is mnðmþ nþ 1Þ=12.
c. A central limit theorem for a sum of non-inde-

pendent variables can be used to show that

when m > 8 and n > 8, W has approximately

a normal distribution with mean and variance

given by the results of (a) and (b). Use this to
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propose a large-sample standardized rank-sum

test statistic and then describe the rejection

region that has approximate significance level

a for testing H0 against each of the three

commonly encountered alternative hypotheses.

[Note: When there are ties in the observed

values, a correction for the variance derived

in (b) should be used in standardizingW; please

consult a book on nonparametric statistics for

the result.]

15. The accompanying data resulted from an experi-

ment to compare the effects of vitamin C in orange

juice and in synthetic ascorbic acid on the length

of odontoblasts in guinea pigs over a 6-week

period (“The Growth of the Odontoblasts of the

Incisor Tooth as a Criterion of the Vitamin C

Intake of the Guinea Pig,” J. Nutrit., 1947:

491–504). Use the Wilcoxon rank-sum test at

level .01 to decide whether true average length

differs for the two types of vitamin C intake.

Compute also an approximate P-value. [Hint:
See Exercise 14.]

Orange Juice 8.2 9.4 9.6 9.7 10.0 14.5

15.2 16.1 17.6 21.5

Ascorbic Acid 4.2 5.2 5.8 6.4 7.0 7.3

10.1 11.2 11.3 11.5

16. Test the hypotheses suggested in Exercise 15

using the following data:

Orange Juice 8.2 9.5 9.5 9.7 10.0 14.5

15.2 16.1 17.6 21.5

Ascorbic Acid 4.2 5.2 5.8 6.4 7.0 7.3

9.5 10.0 11.5 11.5

[Hint: See Exercise 14.]

14.3 Distribution-Free Confidence Intervals
The method we have used so far to construct a confidence interval (CI) can be

described as follows: Start with a random variable (Z, T, w2, F, or the like) that

depends on the parameter of interest and a probability statement involving the

variable, manipulate the inequalities of the statement to isolate the parameter

between random endpoints, and finally substitute computed values for random

variables. Another general method for obtaining CIs takes advantage of a relation-

ship between test procedures and CIs. A 100(1 � a)% CI for a parameter y can be

obtained from a level a test for H0 : y ¼ y0 versus Ha: y 6¼ y0. This method will

be used to derive intervals associated with the Wilcoxon signed-rank test and the

Wilcoxon rank-sum test.

Before using the method to derive new intervals, reconsider the t test and the
t interval. Suppose a random sample of n ¼ 25 observations from a normal

population yields summary statistics x¼ 100, s ¼ 20. Then a 90% CI for m is

x� t:05;24 � sffiffiffiffiffi
25

p ; xþ t:05;24 � sffiffiffiffiffi
25

p
� �

¼ ð93:16; 106:84Þ ð14:2Þ

Suppose that instead of a CI, we had wished to test a hypothesis about m. For
H0 : m ¼ m0 versus Ha : m 6¼ m0, the t test at level .10 specifies that H0 should be

rejected if t is either � 1.711 or � �1.711, where

t ¼ x� m0
s=

ffiffiffiffiffi
25

p ¼ 100� m0
20=

ffiffiffiffiffi
25

p ¼ 100� m0
4

ð14:3Þ

Consider now the null value m0 ¼ 95. Then t ¼ 1.25, so H0 is not rejected.

Similarly, if m0 ¼ 104, then t ¼ �1, so again H0 is not rejected. However,

if m0 ¼ 90, then t ¼ 2.5, so H0 is rejected, and if m0 ¼ 108, then t ¼ �2, so H0

is again rejected. By considering other values of m0 and the decision resulting

from each one, the following general fact emerges: Every number inside the

14.3 Distribution-Free Confidence Intervals 771



interval (14.2) specifies a value of m0 for which t of (14.3) leads to nonrejection of
H0, whereas every number outside interval (14.2) corresponds to a t for which H0 is
rejected. That is, for the fixed values of n, x, and s, the interval (14.2) is precisely
the set of all m0 values for which testing H0 : m ¼ m0 versus Ha : m 6¼ m0 results in
not rejecting H0.

PROPOSITION Suppose we have a level a test procedure for testing H0 : y ¼ y0 versus

Ha : y 6¼ y0. For fixed sample values, let A denote the set of all values

y0 for which H0 is not rejected. Then A is a 100(1 � a)% CI for y.

There are actually pathological examples in which the set A defined in the

proposition is not an interval of y values, but instead the complement of an interval

or something even stranger. To be more precise, we should really replace the notion

of a CI with that of a confidence set. In the cases of interest here, the set A does

turn out to be an interval.

The Wilcoxon Signed-Rank Interval

To test H0 : m ¼ m0 versus Ha : m 6¼ m0 using the Wilcoxon signed-rank test, where

m is the mean of a continuous symmetric distribution, the absolute values

jx1 � m0 ; . . . ;j jxn � m0j are ordered from smallest to largest, with the smallest

receiving rank 1 and the largest, rank n. Each rank is then given the sign of its

associated xi � m0, and the test statistic is the sum of the positively signed ranks.

The two-tailed test rejects H0 if s+ is either � c or � n(n + 1)/2 � c, where c is

obtained from Appendix Table A.12 once the desired level of significance a is

specified. For fixed x1, . . . , xn, the 100(1 � a)% signed-rank interval will consist of

all m0 for which H0 : m ¼ m0 is not rejected at level a. To identify this interval, it is

convenient to express the test statistic S+ in another form.

Sþ ¼ the number of pairwise averages Xi þ Xj

� �
=2 with i � j

that are � m0
ð14:4Þ

That is, if we average each xj in the list with each xi to its left, including (xj + xj)/2
(which is just xj), and count the number of these averages that are � m0, s+ results.
In moving from left to right in the list of sample values, we are simply averaging

every pair of observations in the sample [again including (xj + xj)/2] exactly once,

so the order in which the observations are listed before averaging is not important.

The equivalence of the two methods for computing s+ is not difficult to verify. The
number of pairwise averages is n

2

� �þ n (the first term due to averaging of different

observations and the second due to averaging each xi with itself), which equals

n(n + 1)/2. If either too many or too few of these pairwise averages are � m0,
H0 is rejected.
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Example 14.4 The following observations are values of cerebral metabolic rate for rhesus monkeys:

x1 ¼ 4.51, x2 ¼ 4.59, x3 ¼ 4.90, x4 ¼ 4.93, x5 ¼ 6.80, x6 ¼ 5.08, x7 ¼ 5.67. The

28 pairwise averages are, in increasing order,

4.51 4.55 4.59 4.705 4.72 4.745 4.76 4.795 4.835 4.90

4.915 4.93 4.99 5.005 5.08 5.09 5.13 5.285 5.30 5.375

5.655 5.67 5.695 5.85 5.865 5.94 6.235 6.80

The first fewand the last fewof these are pictured onameasurement axis in Figure 14.2.

Because of the discreteness of the distribution of S+, a ¼ .05 cannot be

obtained exactly. The rejection region {0, 1, 2, 26, 27, 28} has a ¼ .046, which

is as close as possible to .05, so the level is approximately .05. Thus if the number of

pairwise averages � m0 is between 3 and 25, inclusive, H0 is not rejected. From

Figure 14.2 the (approximate) 95% CI for m is (4.59, 5.94). ■

In general, once the pairwise averages are ordered from smallest to largest,

the endpoints of the Wilcoxon interval are two of the “extreme” averages. To

express this precisely, let the smallest pairwise average be denoted by xð1Þ, the next
smallest by xð2Þ; . . . ; and the largest by xðnðnþ1Þ=2Þ.

PROPOSITION If the level aWilcoxon signed-rank test forH0 : m ¼ m0 versusHa : m 6¼ m0 is to
rejectH0 if either s+ � c or s+ � n(n + 1)/2 � c, then a 100(1 � a)%CI form is

ðxðnðnþ1Þ=2�cþ1Þ; xðcÞÞ ð14:5Þ

In words, the interval extends from the dth smallest pairwise average to the dth
largest average, where d ¼ nðnþ 1Þ=2� cþ 1. Appendix Table A.14 gives the

values of c that correspond to the usual confidence levels for n ¼ 5, 6, . . . , 25.

Example 14.5

(Example 14.4

continued)

For n ¼ 7, an 89.1% interval (approximately 90%) is obtained by using c ¼ 24

(since the rejection region {0, 1, 2, 3, 4, 24, 25, 26, 27, 28} has a ¼ .109). The

interval is ðxð28�24þ1Þ; xð24ÞÞ ¼ ðxð5Þ; xð24ÞÞ ¼ 4:72; 5:85ð Þ, which extends from the

fifth smallest to the fifth largest pairwise average. ■

At level .0469, H0 is
not rejected for m0 in here

s  27

s  26

s  0

s  1

s  28

4.8 5.5 5.75 64.5 4.6 4.7

s  2

 3 s  25

Figure 14.2 Plot of the data for Example 14.4
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The derivation of the interval depended on having a single sample from a continuous

symmetric distribution with mean (median) m. When the data is paired, the interval

constructed from the differences d1, d2, . . . , dn is a CI for the mean (median)

difference mD. In this case, the symmetry of X and Y distributions need not be

assumed; as long as the X and Y distributions have the same shape, the X � Y
distribution will be symmetric, so only continuity is required.

For n > 20, the large-sample approximation (Exercise 6) to the Wilcoxon

test based on standardizing S+ gives an approximation to c in (14.5). The result

[for a 100(1 � a)% interval] is

c � nðnþ 1Þ
4

þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þð2nþ 1Þ

24

r

The efficiency of the Wilcoxon interval relative to the t interval is roughly the
same as that for the Wilcoxon test relative to the t test. In particular, for large

samples when the underlying population is normal, the Wilcoxon interval will tend

to be slightly longer than the t interval, but if the population is quite nonnormal

(symmetric but with heavy tails), then the Wilcoxon interval will tend to be

much shorter than the t interval. And as we emphasized earlier in our discussion

of bootstrapping, in the presence of nonnormality the actual confidence level of

the t interval may differ considerably from the nominal (e.g., 95%) level.

The Wilcoxon Rank-Sum Interval

The Wilcoxon rank-sum test for testing H0 : m1 � m2 ¼ D0 is carried out by first

combining the (Xi � D0)’s and Yj’s into one sample of size m + n and ranking them
from smallest (rank 1) to largest (rankm + n). The test statisticW is then the sum of

the ranks of the (Xi � D0)’s. For the two-sided alternative, H0 is rejected if w is

either too small or too large.

To obtain the associated CI for fixed xi’s and yj’s, we must determine the set

of all D0 values for whichH0 is not rejected. This is easiest to do if we first express

the test statistic in a slightly different form. The smallest possible value of W is

m(m + 1)/2, corresponding to every (Xi � D0) less than every Yj, and there are mn
differences of the form (Xi � D0) � Yj. A bit of manipulation gives

W ¼ ½number of (Xi � Yj � D0Þ’s � 0� þ mðmþ 1Þ
2

¼ ½number of (Xi � YjÞ’s � D0� þ mðmþ 1Þ
2

ð14:6Þ

Thus rejecting H0 if the number of (xi � yj)’s � D0 is either too small or too large

is equivalent to rejecting H0 for small or large w.
Expression (14.6) suggests that we compute xi � yj for each i and j and order

these mn differences from smallest to largest. Then if the null value D0 is neither

smaller than most of the differences nor larger than most, H0 : m1 � m2 ¼ D0 is not

rejected. Varying D0 now shows that a CI for m1 � m2 will have as its lower

endpoint one of the ordered (xi � yi)’s, and similarly for the upper endpoint.
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PROPOSITION Let x1, . . . , xm and y1, . . . , yn be the observed values in two independent samples

from continuous distributions that differ only in location (and not in shape).

With dij ¼ xi � yj and the ordered differences denoted by dij(1), dij(2), . . . , dij(mn),
the general form of a 100(1 � a)% CI for m1 � m2 is

ðdijðmn�cþ1Þ; dijðcÞÞ ð14:7Þ

where c is the critical constant for the two-tailed level aWilcoxon rank-sum test.

Notice that the form of the Wilcoxon rank-sum interval (14.7) is very similar to the

Wilcoxon signed-rank interval (14.5); (14.5) uses pairwise averages from a single

sample, whereas (14.7) uses pairwise differences from two samples. Appendix

Table A.15 gives values of c for selected values of m and n.

Example 14.6 The article “Some Mechanical Properties of Impregnated Bark Board” (Forest
Products J., 1977: 31–38) reports the following data on maximum crushing strength

(psi) for a sample of epoxy-impregnated bark board and for a sample of bark board

impregnated with another polymer:

Epoxy (x’s) 10,860 11,120 11,340 12,130 14,380 13,070

Other (y’s) 4,590 4,850 6,510 5,640 6,390

Obtain a 95% CI for the true average difference in crushing strength between the

epoxy-impregnated board and the other type of board.

From Appendix Table A.15, since the smaller sample size is 5 and the larger

sample size is 6, c ¼ 26 for a confidence level of approximately 95%. The dij’s
appear in Table 14.4. The five smallest dij’s [dij(1), . . . , dij(5)] are 4350, 4470, 4610,
4730, and 4830; and the five largest dij’s are (in descending order) 9790, 9530,

8740, 8480, and 8220. Thus the CI is (dij(5), dij(26)) ¼ (4830, 8220).

■

When m and n are both large, the Wilcoxon test statistic has approximately a

normal distribution (Exercise 14). This can be used to derive a large-sample

approximation for the value c in interval (14.7). The result is

Table 14.4 Differences (dij) for the rank-sum interval in Example 14.6

yj

4590 4850 5640 6390 6510

xi

10,860 6270 6010 5220 4470 4350

11,120 6530 6270 5480 4730 4610

11,340 6750 6490 5700 4950 4830

12,130 7540 7280 6490 5740 5620

13,070 8480 8220 7430 6680 6560

14,380 9790 9530 8740 7990 7870
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c � mn

2
þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnðmþ nþ 1Þ

12

r
ð14:8Þ

As with the signed-rank interval, the rank-sum interval (14.7) is quite effi-

cient with respect to the t interval; in large samples, (14.7) will tend to be only a bit

longer than the t interval when the underlying populations are normal and may be

considerably shorter than the t interval if the underlying populations have heavier

tails than do normal populations. And once again, the actual confidence level for

the t interval may be quite different from the nominal level in the presence of

substantial nonnormality.

Exercises Section 14.3 (17–22)

17. The article “The Lead Content and Acidity of

Christchurch Precipitation” (New Zeal. J. Sci.,
1980: 311–312) reports the accompanying data

on lead concentration (mg/L) in samples gathered

during eight different summer rainfalls: 17.0,

21.4, 30.6, 5.0, 12.2, 11.8, 17.3, and 18.8. Assum-

ing that the lead-content distribution is symmetric,

use the Wilcoxon signed-rank interval to obtain a

95% CI for m.

18. Compute the 99% signed-rank interval for true

average pH m (assuming symmetry) using the

data in Exercise 3. [Hint: Try to compute only

those pairwise averages having relatively small

or large values (rather than all 105 averages).]

19. Compute a CI for mD of Example 14.2 using the

data given there; your confidence level should be

roughly 95%.

20. The following observations are amounts of hydro-

carbon emissions resulting from road wear of bias-

belted tires under a 522-kg load inflated at

228 kPa and driven at 64 km/h for 6 h (“Charac-

terization of Tire Emissions Using an Indoor Test

Facility,” Rubber Chem. Tech., 1978: 7–25): .045,
.117, .062, and .072. What confidence levels are

achievable for this sample size using the signed-

rank interval? Select an appropriate confidence

level and compute the interval.

21. Compute the 90% rank-sum CI for m1 � m2 using
the data in Exercise 9.

22. Compute a 99% CI for m1 � m2 using the data in

Exercise 10.

14.4 Bayesian Methods
Consider making an inference about some parameter y. The “frequentist” or

“classical” approach, which we have followed until now in this book, is to regard

the value of y as fixed but unknown, observe data from a joint pmf or pdf

f ðx1; . . . ; xn; yÞ, and use the observations to draw appropriate conclusions. The

Bayesian or “subjective” paradigm is different. Again the value of y is unknown,

but Bayesians say that all available information about it—intuition, data from past

experiments, expert opinions, etc. —can be incorporated into a prior distribution,
usually a prior pdf g(y) since there will typically be a continuum of possible values

of the parameter rather than just a discrete set. If there is substantial knowledge

about y, the prior will be quite peaked and highly concentrated about some central

value, whereas a lack of information is shown by a relatively flat “uninformative”

prior. These possibilities are illustrated in Figure 14.3.

In essence we are now thinking of the actual value of y as the observed value
of a random variable Y, although unfortunately we ourselves don’t get to observe

the value. The (prior) distribution of this random variable is g(y). Now, just as in
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the frequentist scenario, an experiment is performed to obtain data. The joint pmf or

pdf of the data given the value of y is pðx1; . . . ; xn jyÞ or f ðx1; . . . ; xn jyÞ. We use a

vertical line segment here rather than the earlier semicolon to emphasize that we are

conditioning on the value of a random variable.

At this point, an appropriate version of Bayes’ theorem is used to obtain

h(yjx1,. . .,xn), the posterior distribution of the parameter. In the Bayesian world,

this posterior distribution contains all current information about y. In particular, the
mean of this posterior distribution gives a point estimate of the parameter.

An interval [a, b] having posterior probability .95 gives a 95% credibility interval,
the Bayesian analogue of a 95% confidence interval (but the interpretation is

different). After presenting the necessary version of Bayes’ Theorem, we illustrate

the Bayesian approach with two examples.

Bayes’ theorem here needs to be a bit more general than in Section 2.4 to

allow for the possibility of continuous distributions. This version gives the posterior

distribution h(y | x1, x2, . . ., xn) as a product of the prior pdf times the conditional

pdf, with a denominator to assure that the total posterior probability is 1:

hðyjx1; x2; . . . ; xnÞ ¼ f ðx1; x2; . . . ; xnjyÞgðyÞR1
�1 f ðx1; x2; . . . ; xnjyÞgðyÞdy

Example 14.7 Suppose we want to make an inference about a population proportion p. Since the
value of this parameter must be between 0 and 1, and the family of standard beta

distributions is concentrated on the interval [0, 1], a particular beta distribution is a

natural choice for a prior on p. In particular, consider data from a survey of 1574

American adults reported by the National Science Foundation in May 2002.

Of those responding, 803 (51%) incorrectly said that antibiotics kill viruses.

In accord with the discussion in Section 3.5, the data can be considered either a

random sample of 1574 from the Bernoulli distribution (binomial with number of

trials ¼ 1) or a single observation from the binomial distribution with n ¼ 1574.

We use the latter approach here, but Exercise 23 involves showing that the

Bernoulli approach is equivalent.

0.2

0.0

0.8

0.6

0.4

1.0

0 2 4 6 8 10

Prior pdf

q
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Narrow

Figure 14.3 A narrow concentrated prior and a wider less informative prior
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Assuming a beta prior for p on [0,1] with parameters a and b and the binomial

distribution Bin(n ¼ 1574, p) for the data, we get for the posterior distribution,

hð pj xÞ ¼ f ðx j pÞgð pÞð1
�1

f ðx j pÞgð pÞdp
¼

n
x

� �
pxð1� pÞn�x Gðaþ bÞ

GðaÞGðbÞ p
a�1ð1� pÞb�1

ð1
0

n
x

� �
pxð1� pÞn�x Gðaþ bÞ

GðaÞGðbÞ p
a�1ð1� pÞb�1dp

:

The numerator can be written as

n
x

� �
Gðaþ bÞ
GðaÞGðbÞ

Gðxþ aÞGðn� xþ bÞ
Gðnþ aþ bÞ

Gðnþ aþ bÞ
Gðxþ aÞGðn� xþ bÞ p

xþa�1ð1� pÞn�xþb�1

� �
:

Given that the part in square brackets is of the form of a beta pdf on [0, 1], its

integral over this interval is 1. The part in front of the square brackets is shared by

the numerator and denominator, and will therefore cancel. Thus

hð pjxÞ ¼ Gðnþ aþ bÞ
Gðxþ aÞGðn� xþ bÞ p

xþa�1ð1� pÞn�xþb�1

That is, the posterior distribution of p is itself a beta distribution with parameters

x + a and n � x + b.
If we were using the traditional non-Bayesian frequentist approach to statis-

tics, and we wanted to give an estimate of p for this example, we would give the

usual estimate from Section 8.2, x/n ¼ 803/1574 ¼ .51. The usual Bayesian esti-

mate is the posterior mean, the expected value of p given the data. Recalling that the
mean of the beta distribution on [0, 1] is a=ðaþ bÞ, we obtain

E pjxð Þ ¼ xþ að Þ= nþ aþ bð Þ ¼ ð803þ aÞ=ð1574þ aþ bÞ

for the posterior mean.

Suppose that a ¼ b ¼ 1, so the beta prior distribution reduces to the uniform

distribution on [0, 1]. Then E(pjx) ¼ (803 + 1)/(1574 + 2) ¼ .51, and in this case

theBayesian and frequentist results are essentially the same. It should be apparent that,
if a and b are small compared to n, then the prior distribution will not matter much.

Indeed, if a and b are close to 0 and positive, then E pjxð Þ � x=n.We should hesitate

to set a and b equal to 0, because this would make the beta prior pdf not integrable,

but it does nevertheless give a reasonable posterior distribution if x and n � x are

positive. When a prior distribution is not integrable it is said to be improper.
In Bayesian inference, is there an interval corresponding to the confidence

interval for p given in Section 8.2? We have the posterior distribution for p, so we

can take the central 95% of this distribution and call it a 95% credibility interval, as

mentioned at the beginning of this section. In the case with a beta prior and a ¼ 1,

b ¼ 1, we have a beta posterior with a ¼ 804, b ¼ 772. Using the inverse cumu-

lative beta distribution function from MINITAB (or almost any major statistical

package) evaluated at .025 and .975, we obtain the interval [.4855, .5348]. For

comparison the 95% confidence interval from Equation (8.10) of Section 8.2 is

[.4855, .5348]. The intervals are not exactly the same, although they do agree to
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four decimals. The simpler formula, Equation (8.11), gives the answer [.4855,

.5349], which is very close because of the large sample size.

It is interesting that, although the frequentist and Bayesian intervals agree to

four decimals, they have very different interpretations. For the Bayesian interval we

can say that the probability is 95% that p is in the interval, given the data. However,
this is not correct for the frequentist interval, because p is not random and the

endpoints are not random after they have been specified, and therefore no proba-

bility statement is appropriate. Here the 95% applies to the aggregate of confidence

intervals, of which in the long run 95% should include the true p.
The confidence intervals and credibility interval all include .5, so they allow

the possibility that p ¼ .5. Another way to view this possibility in Bayesian terms is

to see whether the posterior distribution is consistent with p ¼ .5. We actually

consider the related hypothesis p � .5. Using a ¼ 1 and b ¼ 1 again, we find from

MINITAB that the beta distribution with a ¼ 804 and b ¼ 772 has probability

.2100 of being less than or equal to .5. The corresponding one-tailed frequentist P-
value is the probability, assuming p ¼ .5, of at least 803 successes in 1574 trials,

which is .2173. Both the Bayesian and frequentist values are much greater than .05,

and there is no reason to reject .5 as a possible value for p.
To clarify the relationship between E(pjx) and x/n, we can write E(pjx) as a

weighted average of the prior mean a/(a + b) and x/n.

EðpjxÞ ¼ aþ b

nþ aþ b
� a

aþ b
þ n

nþ aþ b
� x
n

The weights can be interpreted in terms of the sum of the two parameters of the beta

distribution, which is often called the concentration parameter. The weights are
proportional to the concentration parameter a + b of the prior distribution and the

number n of observations. The weight of the prior depends on the size of a + b in

relation to n, and the concentration parameter of the posterior distribution is the

total aþ bþ n.
It is also useful to interpret the posterior pdf in terms of the concentration

parameter. Because the first parameter is the sum x + a and the second para-

meter is the sum (n � x) + b, the effect of a is to add to the number of successes

and the effect of b is to add to the number of failures. In particular, setting a to 1 and
b to 1 resulted in a posterior with the equivalent of 803 + 1 successes and

(1574 – 803) + 1 failures, for a total of 1574 + 2 observations. From this view-

point, the total observations are the a + b provided by the prior plus the n provided
by the data, and this addition also gives the concentration parameter of the posterior

in terms of the concentration parameter of the prior.

How should we specify the prior distribution? The beta distribution is

convenient, because it is easy with this specification to find the posterior distribu-

tion, but what about a and b? Suppose we have asked 10 adults about the effect of

antibiotics on viruses, and it is reasonable to assume that the 10 are a random

sample. If 6 of the 10 say that antibiotics kill viruses, then we set a ¼ 6 and

b ¼ 10 – 6 ¼ 4. That is, we have a beta distributed prior with parameters 6

and 4. Then the posterior distribution is beta with parameters 803 + 6 ¼ 809 and

(1574 – 803) + 4 ¼ 775. The posterior is the same as if we had started with a ¼ 0

and b ¼ 0 and observed 809 who said that antibiotics kill viruses and 775 who
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said no. In other words, observations can be incorporated into the prior and count

just as if they were part of the NSF survey. ■

Life in the Bayesian world is sometimes more complicated. Perhaps the prior

observations are not of a quality equivalent to that of the survey, but we would still

like to use them to form a prior distribution. If we regard them as being only half as

good, then we could use the same proportions but cut the a and b in half, using 3 and
2 instead of 6 and 4. There is certainly a subjective element to this, and it suggests

why some statisticians are hesitant about using Bayesian methods. When everyone

can agree about the prior distribution, there is little controversy about the Bayesian

procedure, but when the prior is very much a matter of opinion people tend to

disagree about its value.

Example 14.8 Assume a random sample X1;X2; . . . ;Xn from the normal distribution with known

variance, and assume a normal prior distribution for m. In particular, consider the IQ
scores of 18 first- grade boys,

113 108 140 113 115 146 136 107 108 119 132 127 118

108 103 103 122 111

from the private speech data introduced in Example 1.2. Because the IQ has

a standard deviation of 15 nationwide, we can assume s ¼ 15 is valid here. For

the prior distribution it is reasonable to use a mean of m0 ¼ 110, a ballpark figure

for previous years in this school. It is harder to prescribe a standard deviation for

the prior, but we will use s0 ¼ 7.5. This is the standard deviation for the average of

four independent observations if the individual standard deviation is 15. As a result,

the effect on the posterior mean will turn out to be the same as if there were four

additional observations with average 110.

To compute the posterior distribution of the mean m, we use Bayes’ theorem

hðmjx1; x2; . . . ; xnÞ ¼ f ðx1; x2; . . . ; xnjmÞgðmÞÐ1
�1 f ðx1; x2; . . . ; xnjmÞgðmÞdm

The numerator is

f ðx1; x2; . . . ; xnjmÞgðmÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
e�:5ðx1�mÞ2=s2 � � � � � 1ffiffiffiffiffiffi

2p
p

s
e�:5ðxn�mÞ2=s2

	 1ffiffiffiffiffiffi
2p

p
s0

e�:5ðm�m0Þ2=s20

¼ 1

ð2pÞðnþ1Þ=2sns0
e�:5½ðx1�mÞ2=s2þ���þðxn�mÞ2=s2þðm�m0Þ2=s20�

The trick here is to complete the square in the exponent, which yields

ð�:5=s21Þðm� m1Þ2 þ C

where C does not involve m and

s21 ¼
1

n

s2
þ 1

s20

; m1 ¼

P
xi

s2
þ m0
s20

n

s2
þ 1

s20

¼
nx

s2
þ m0
s20

n

s2
þ 1

s20
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The posterior is then

hðmjx1; x2; . . . ; xnÞ ¼

s1
ð2pÞn=2sns0

� 1

ð2pÞ:5s1
eð�:5=s2

1
Þðm�m1Þ2eC

s1
ð2pÞn=2sns0

eC
ð1
�1

1

ð2pÞ:5s1
eð�:5=s2

1
Þðm�m1Þ2dm

The integral is 1 because it is the area under a normal pdf, and the part in front of the

integral cancels out, leaving a posterior distribution that is normal with mean m1 and
standard deviation s1:

hðmjx1; x2; . . . ; xnÞ ¼ 1

ð2pÞ:5s1
eð�:5=s2

1
Þðm�m1Þ2

Notice that the posterior mean m1 is a weighted average of the prior mean

m0 and the data mean x, with weights that are the reciprocals of the prior variance

and the variance of x. It makes sense to define the precision as the reciprocal of

the variance because a lower variance implies a more precise measurement, and the

weights then are the corresponding precisions. Furthermore, the posterior variance

is the reciprocal of the sum of the reciprocals of the two variances, but this can

be described much more simply by saying that the posterior precision is the sum of

the prior precision plus the precision of x.
Numerically, we have

1

s21
¼ 1

s2=n
þ 1

s20
¼ 1

152=18
þ 1

7:52
¼ :09778 ¼ 1

10:227
¼ 1

3:1982

m1 ¼
nx

s2
þ m0
s20

n

s2
þ 1

s20

¼
18ð118:28Þ

152
þ 110

7:52

18

152
þ 1

7:52

¼ 116:77

The posterior distribution is normal with mean m1 ¼ 116.77 and standard deviation

s1 ¼ 3.198. The mean m1 is a weighted average of x ¼ 118:28 and m0 ¼ 110, so m1
is necessarily between them. As n becomes large the weight given to m0 declines,
and m1 will be closer to x.

Knowing the mean and standard deviation, we can use the normal distribu-

tion to find an interval with 95% probability for m. This 95% credibility interval is

[110.502, 123.038]. For comparison the 95% confidence interval using x ¼ 118:28
and s ¼ 15 is x
 1:96s=

ffiffiffi
n

p ¼ ½111:35; 125:21�. Notice that this interval must

be wider. Because the precisions add to give the posterior precision, the posterior

precision is greater than the prior precision and it is greater than the data precision.

Therefore, it is guaranteed that the posterior standard deviation s1 will be less than
s0 and less than the data standard deviation s=

ffiffiffi
n

p
.

Both the credibility interval and the confidence interval exclude 110, so we

can be pretty sure that m exceeds 110. Another way of looking at this is to calculate

the posterior probability of m being less than or equal to 110. Using m1 ¼ 116.77

and s1 ¼ 3.198, we obtain the probability .0171, so this too supports the idea that m
exceeds 110.

How should we go about choosing m0 and s0 for the prior distribution?

Suppose we have four prior observations for which the mean is 110. The standard
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deviation of the mean is 15=
ffiffiffi
4

p
. We therefore choose m0 ¼ 110 and s0 ¼ 7.5,

the same values used for this example. If the four values are combined with the 18

values from the data set, then the mean of all 22 is 116.77 ¼ m1 and the standard

deviation is 15=
ffiffiffiffiffi
22

p ¼ 3:198 ¼ s1. The 95% confidence interval for the mean,

based on the average of all 22 observations, is the same as the Bayesian 95%

credibility interval. This says that if you have some preliminary data values that are

just as good as the regular data values that will be obtained, then base the prior

distribution on the preliminary data. The posterior mean and its standard deviation

will be the same as if the preliminary data were combined with the regular data, and

the 95% credibility interval will be the same as the 95% confidence interval.

It should be emphasized that, even if the confidence interval is the same as

the credibility interval, they have different interpretations. To interpret the Bayes-

ian credibility interval, we can say that the probability is 95% that m is in the

interval [110.502, 123.038]. However, for the frequentist confidence interval such a

probability statement does not make sense because m and the endpoints of the

interval are all constants after the interval has been calculated. Instead we have the

more complicated interpretation that, in repeated realizations of the confidence

interval, 95% of the intervals will include the true m in the long run.

What should be done if there are no prior observations and there are no strong

opinions about the prior mean m0? In this case the prior standard deviation s0 can be
taken as some large number much bigger than s, such as s0 ¼ 1000 in our example.

The result is that the prior will have essentially no effect, and the posterior distribu-

tion will be based on the data, m1 ¼ x ¼ 118:28 and s1 ¼ s ¼ 15. The 95%

credibility interval will be the same as the 95% confidence interval based on the 18

observations, [111.35, 125.21], but of course the interpretation is different. ■

In both examples it turned out that the posterior distribution has the same form as

the prior distribution. When this happens we say that the prior distribution is

conjugate to the data distribution. Exercises 31 and 32 offer additional examples

of conjugate distributions.

Exercises Section 14.4 (23–32)

23. For the data of Example 14.7 assume a beta prior

distribution and assume that the 1574 observa-

tions are a random sample from the Bernoulli

distribution. Use Bayes’ theorem to derive the

posterior distribution, and compare your answer

with the result of Example 14.7.

24. Here are the IQ scores for the 15 first-grade girls

from the study mentioned in Example 14.8.

102 96 106 118 108 122 115 113

109 113 82 110 121 110 99

Assume the same prior distribution used in

Example 14.8, and assume that the data is a ran-

dom sample from a normal distribution with mean

m and s ¼ 15.

a. Find the posterior distribution of m.
b. Find a 95% credibility interval for m.
c. Add four observations with average 110 to the

data and find a 95% confidence interval for m

using the 19 observations. Compare with the

result of (b).

d. Change the prior so the prior precision is very

small but positive, and then recompute (a) and (b).

e. Find a 95% confidence interval for m using the

15 observations and compare with the credibil-

ity interval of (d).

25. Laplace’s rule of succession says that if there

have been n Bernoulli trials and they have all

been successes, then the probability of a success

on the next trial is ðnþ 1Þ=ðnþ 2Þ. For the deri-

vation Laplace used a beta prior with a ¼ 1 and

b ¼ 1 for binomial data, as in Example 14.7.

a. Show that, if a ¼ 1 and b ¼ 1 and there are n
successes in n trials, then the posterior mean of

p is ðnþ 1Þ=ðnþ 2Þ.
b. Explain (a) in terms of total successes and

failures; that is, explain the result in terms of

two prior trials plus n later trials.
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c. Laplace applied his rule of succession to

compute the probability that the sun will rise

tomorrow using 5000 years, or n ¼ 1,826,214

days of history in which the sun rose every day.

Is Laplace’s method equivalent to including

two prior days when the sun rose once and

failed to rise once? Criticize the answer in

terms of total successes and failures.

26. For the scenario of Example 14.8 assume the same

normal prior distribution but assume that the data

set is just one observation x ¼ 118:28 with stan-

dard deviation s
ffiffiffi
n

p ¼ 15
ffiffiffiffiffi
18

p		 ¼ 3:5355. Use
Bayes’ theorem to derive the posterior distribu-

tion, and compare your answer with the result of

Example 14.8.

27. Let X have the beta distribution on [0, 1] with

parameters a ¼ n1/2 and b ¼ n2/2, where n1/2
and n2/2 are positive integers. Define Y ¼
X=að Þ= 1� Xð Þ=b½ �. Show that Y has the F distri-

bution with degrees of freedom n1, n2.

28. In a study by Erich Brandt of 70 restaurant bills,

40 of the 70 were paid using cash. We assume a

random sample and estimate the posterior distri-

bution of the binomial parameter p, the population
proportion paying cash.

a. Use a beta prior distribution with a ¼ 2 and

b ¼ 2.

b. Use a beta prior distribution with a ¼ 1 and

b ¼ 1.

c. Use a beta prior distribution with a and b very

small and positive.

d. Calculate a 95% credibility interval for p using
(c). Is your interval compatible with p ¼ .5?

e. Calculate a 95% confidence interval for p using
Equation (8.10) of Section 8.2, and compare

with the result of (d).

f. Calculate a 95% confidence interval for p using
Equation (8.11) of Section 8.2, and compare

with the results of (d) and (e).

g. Compare the interpretations of the credibility

interval and the confidence intervals.

h. Based on the prior in (c), test the hypothesis

p � .5 using the posterior distribution to find

P( p � .5).

29. Exercise 27 gives an alternative way of finding

beta probabilities when software for the beta dis-

tribution is unavailable.

a. Use Exercise 27 together with the F table to

obtain a 90% credibility interval for Exercise

28(c). [Hint: To find c such that .05 is the

probability that F is to the left of c, reverse
the degrees of freedom and take the reciprocal

of the value for a ¼ .05.]

b. Repeat (a) using software for the beta distribu-
tion and compare with the result of (a).

30. If a and b are large, then the beta distribution can

be approximated by the normal distribution using

the beta mean and variance given in Section 4.5.

This is useful in case beta distribution software is

unavailable. Use the approximation to compute

the credibility interval in Example 14.7.

31. Assume a random sample X1, X2, . . . , Xn from the

Poisson distribution with mean l. If the prior dis-

tribution for l has a gamma distribution with para-

meters a and b, show that the posterior distribution

is also gamma distributed. What are its parameters?

32. Consider a random sample X1, X2, . . . , Xn from the

normal distribution with mean 0 and precision t
(use t as a parameter instead of s2 ¼ 1/t).
Assume a gamma-distributed prior for t and

show that the posterior distribution of t is also

gamma. What are its parameters?

Supplementary Exercises (33–42)

33. The article “Effects of a Rice-Rich Versus Potato-

Rich Diet on Glucose, Lipoprotein, and Cholesterol

Metabolism in Noninsulin-Dependent Diabetics”

(Amer. J. Clin. Nutrit., 1984: 598–606) gives the
accompanying data on cholesterol-synthesis rate

for eight diabetic subjects. Subjects were fed a

standardized diet with potato or rice as the major

carbohydrate source. Participants received both

diets for specified periods of time, with cholesterol-

synthesis rate (mmol/day) measured at the end of

each dietary period. The analysis presented in this

article used a distribution-free test. Use such a test

with significance level .05 to determine whether

the true mean cholesterol-synthesis rate differs sig-

nificantly for the two sources of carbohydrates.

Subject 1 2 3 4 5 6 7 8

Potato 1.88 2.60 1.38 4.41 1.87 2.89 3.96 2.31

Rice 1.70 3.84 1.13 4.97 .86 1.93 3.36 2.15
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34. The study reported in “Gait Patterns During Free

Choice Ladder Ascents” (Hum. Movement Sci.,
1983: 187–195) was motivated by publicity con-

cerning the increased accident rate for individuals

climbing ladders. A number of different gait pat-

terns were used by subjects climbing a portable

straight ladder according to specified instructions.

The ascent times for seven subjects who used a

lateral gait and six subjects who used a four-beat

diagonal gait are given.

Lateral .86 1.31 1.64 1.51 1.53 1.39 1.09

Diagonal 1.27 1.82 1.66 .85 1.45 1.24

a. Carry out a test using a ¼ .05 to see whether

the data suggests any difference in the true

average ascent times for the two gaits.

b. Compute a 95% CI for the difference between

the true average gait times.

35. The sign test is a very simple procedure for testing

hypotheses about a population median assuming

only that the underlying distribution is continuous.

To illustrate, consider the following sample of 20

observations on component lifetime (hr):

1.7 3.3 5.1 6.9 12.6 14.4 16.4

24.6 26.0 26.5 32.1 37.4 40.1 40.5

41.5 72.4 80.1 86.4 87.5 100.2

Wewish to test the hypothesesH0 : em ¼ 25:0 versus
Ha : em> 25:0 The test statistic is Y ¼ the number of

observations that exceed 25.

a. Consider rejecting H0 if Y � 15. What is the

value of a (the probability of a type I error) for
this test? [Hint: Think of a “success” as a

lifetime that exceeds 25.0. Then Y is the num-

ber of successes in the sample. What kind of a

distribution does Y have when em ¼ 25:0?]
b. What rejection region of the form Y � c spe-

cifies a test with a significance level as close to

.05 as possible? Use this region to carry out the

test for the given data. [Note: The test statistic
is the number of differences Xi � 25.0 that

have positive signs, hence the name sign test.]

36. Refer to Exercise 35, and consider a confidence

interval associated with the sign test, the sign
interval. The relevant hypotheses are now

H0 : em ¼ em0versus Ha : em 6¼ em0. Let’s use the fol-

lowing rejection region: either Y � 15 or Y � 5.

a. What is the significance level for this test?

b. The confidence interval will consist of all

values em0 for which H0 is not rejected. Deter-

mine the CI for the given data, and state the

confidence level.

37. The single-factor ANOVA model considered in

Chapter 11 assumed the observations in the ith
sample were selected from a normal distribution

with mean mi and variance s2, that is,

Xij ¼ mi þ eij where the e’s are normal with

mean 0 and variance s2. The normality assump-

tion implies that the F test is not distribution-free.

We now assume that the e’s all come from the

same continuous, but not necessarily normal, dis-

tribution, and develop a distribution-free test of

the null hypothesis that all I mi’s are identical. Let
N ¼ P

Ji, the total number of observations in the

data set (there are Ji observations in the ith sam-

ple). Rank these N observations from 1 (the smal-

lest) to N, and let Ri be the average of the ranks for

the observations in the ith sample. When H0 is

true, we expect the rank of any particular observa-

tion and therefore also Ri to be (N + 1)/2. The

data argues against H0 when some of the Ri’s

differ considerably from (N + 1)/2. The Krus-
kal–Wallis test statistic is

K ¼ 12

NðN þ 1Þ
X

Ji Ri � N þ 1

2

� �2

When H0 is true and either (1) I ¼ 3, all Ji � 6 or

(2) I > 3, all Ji � 5, the test statistic has approxi-

mately a chi-squared distribution with I � 1 df.

The accompanying observations on axial stiff-

ness index resulted from a study of metal-plate

connected trusses in which five different plate

lengths—4 in., 6 in., 8 in., 10 in., and 12 in. —

were used (“Modeling Joints Made with Light-

Gauge Metal Connector Plates,” Forest Products
J., 1979: 39–44).

i ¼ 1 (4 in.): 309.2 309.7 311.0 316.8

326.5 349.8 409.5

i ¼ 2 (6 in.): 331.0 347.2 348.9 361.0

381.7 402.1 404.5

i ¼ 3 (8 in.): 351.0 357.1 366.2 367.3

382.0 392.4 409.9

i ¼ 4 (10 in.): 346.7 362.6 384.2 410.6

433.1 452.9 461.4

i ¼ 5 (12 in.): 407.4 410.7 419.9 441.2

441.8 465.8 473.4

Use the K–W test to decide at significance level

.01 whether the true average axial stiffness index

depends somehow on plate length.
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38. The article “Production of Gaseous Nitrogen in

Human Steady-State Conditions” (J. Appl. Physiol.,
1972: 155–159) reports the following observations

on the amount of nitrogen expired (in liters) under

four dietary regimens: (1) fasting, (2) 23% protein,

(3) 32% protein, and (4) 67% protein. Use the

Kruskal–Wallis test (Exercise 37) at level .05 to

test equality of the corresponding mi’s.

1. 4.079 4.859 3.540 5.047 3.298

4.679 2.870 4.648 3.847

2. 4.368 5.668 3.752 5.848 3.802

4.844 3.578 5.393 4.374

3. 4.169 5.709 4.416 5.666 4.123

5.059 4.403 4.496 4.688

4. 4.928 5.608 4.940 5.291 4.674

5.038 4.905 5.208 4.806

39. The model for the data from a randomized block

experiment for comparing I treatments was

Xij ¼ mþ ai þ bj þ eij, where the a’s are treat-

ment effects, the b’s are block effects, and the

e’s were assumed normal with mean 0 and vari-

ance s2. We now replace normality by the

assumption that the e’s have the same continuous

distribution. A distribution-free test of the null

hypothesis of no treatment effects, called Fried-
man’s test, involves first ranking the observations

in each block separately from 1 to I. The rank

average Ri is then calculated for each of the I
treatments. If H0 is true, the expected value of

each rank average is (I + 1)/2. The test statistic is

Fr ¼ 12J

IðI þ 1Þ
X

Ri � I þ 1

2

� �2

For even moderate values of J, the test statistic has
approximately a chi-squared distribution with

I � 1 df when H0 is true.

The article “Physiological Effects During

Hypnotically Requested Emotions” (Psychoso-
matic Med., 1963: 334–343) reports the follow-

ing data (xij) on skin potential in millivolts when

the emotions of fear, happiness, depression, and

calmness were requested from each of eight

subjects.

Blocks (Subjects)

1 2 3 4

Fear 23.1 57.6 10.5 23.6

Happiness 22.7 53.2 9.7 19.6

Depression 22.5 53.7 10.8 21.1

Calmness 22.6 53.1 8.3 21.6

5 6 7 8

Fear 11.9 54.6 21.0 20.3

Happiness 13.8 47.1 13.6 23.6

Depression 13.7 39.2 13.7 16.3

Calmness 13.3 37.0 14.8 14.8

Use Friedman’s test to decide whether emotion

has an effect on skin potential.

40. In an experiment to study the way in which differ-

ent anesthetics affect plasma epinephrine concen-

tration, ten dogs were selected and concentration

was measured while they were under the influence

of the anesthetics isoflurane, halothane, and

cyclopropane (“Sympathoadrenal and Hemody-

namic Effects of Isoflurane, Halothane, and

Cyclopropane in Dogs,” Anesthesiology, 1974:

465–470). Test at level .05 to see whether there

is an anesthetic effect on concentration. [Hint: See
Exercise 39.]

Dog

1 2 3 4 5

Isoflurane .28 .51 1.00 .39 .29

Halothane .30 .39 .63 .38 .21

Cyclopropane 1.07 1.35 .69 .28 1.24

6 7 8 9 10

Isoflurane .36 .32 .69 .17 .33

Halothane .88 .39 .51 .32 .42

Cyclopropane 1.53 .49 .56 1.02 .30

41. Suppose we wish to test

H0: the X and Y distributions are identical

versus

Ha: the X distribution is less spread out than the Y
distribution

The accompanying figure pictures X and Y dis-

tributions for which Ha is true. The Wilcoxon

rank-sum test is not appropriate in this situation

because when Ha is true as pictured, the Y’s will
tend to be at the extreme ends of the combined

sample (resulting in small and large Y ranks), so
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the sum of X ranks will result in a W value that is

neither large nor small.

X distribution

Y distribution

“Ranks” : 51 3 6 4 2

Consider modifying the procedure for assigning

ranks as follows: After the combined sample of

m + n observations is ordered, the smallest obser-

vation is given rank 1, the largest observation is

given rank 2, the second smallest is given rank 3,

the second largest is given rank 4, and so on. Then

if Ha is true as pictured, the X values will tend to

be in the middle of the sample and thus receive

large ranks. Let W0 denote the sum of the X ranks

and consider rejecting H0 in favor of Ha when

w0 � c. When H0 is true, every possible set of X
ranks has the same probability, soW0 has the same
distribution as does W when H0 is true. Thus c can
be chosen from Appendix Table A.13 to yield a

level a test. The accompanying data refers to

medial muscle thickness for arterioles from the

lungs of children who died from sudden infant

death syndrome (x’s) and a control group of chil-

dren (y’s). Carry out the test of H0 versus Ha at

level .05.

SIDS 4.0 4.4 4.8 4.9

Control 3.7 4.1 4.3 5.1 5.6

Consult the Lehmann book (in the chapter bibli-

ography) for more information on this test, called

the Siegel–Tukey test.

42. The ranking procedure described in Exercise 41

is somewhat asymmetric, because the smallest

observation receives rank 1 whereas the largest

receives rank 2, and so on. Suppose both the

smallest and the largest receive rank 1, the second

smallest and second largest receive rank 2, and so

on, and let W00 be the sum of the X ranks. The null

distribution of W00 is not identical to the null dis-

tribution of W, so different tables are needed.

Consider the case m ¼ 3, n ¼ 4. List all 35 possi-

ble orderings of the three X values among the

seven observations (e.g., 1, 3, 7 or 4, 5, 6), assign

ranks in the manner described, compute the value

of W00 for each possibility, and then tabulate the

null distribution of W00. For the test that rejects if

w00 � c, what value of c prescribes approximately

a level .10 test? This is the Ansari–Bradley test;
for additional information, see the book by Hol-

lander and Wolfe in the chapter bibliography.
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Table A.1 Cumulative Binomial Probabilities
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Table A.1 Cumulative Binomial Probabilities (cont.)
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Table A.2 Cumulative Poisson Probabilities

Table A.1 Cumulative Binomial Probabilities (cont.)
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Table A.2 Cumulative Poisson Probabilities (cont.)
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Table A.3 Standard Normal Curve Areas
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Table A.3 Standard Normal Curve Areas (cont.)
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Table A.4 The Incomplete Gamma Function
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Table A.5 Critical Values for t Distributions
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Table A.6 Critical Values for Chi-Squared Distributions
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Table A.7 t Curve Tail Areas
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Table A.7 t Curve Tail Areas (cont.)
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Table A.8 Critical Values for F Distributions
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Table A.8 Critical Values for F Distributions (cont.)
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Table A.8 Critical Values for F Distributions (cont.)
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Table A.8 Critical Values for F Distributions (cont.)
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Table A.8 Critical Values for F Distributions (cont.)
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Table A.8 Critical Values for F Distributions (cont.)
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Table A.9 Critical Values for Studentized Range Distributions
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Table A.10 Chi-Squared Curve Tail Areas
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Table A.10 Chi-Squared Curve Tail Areas (cont.)
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Table A.11 Critical Values for the Ryan–Joiner Test of Normality
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Table A.12 Critical Values for the Wilcoxon Signed-Rank Test
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Table A.13 Critical Values for the Wilcoxon Rank-Sum Test

810 Appendix Tables



Table A.14 Critical Values for the Wilcoxon Signed-Rank Interval
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Table A.15 Critical Values for the Wilcoxon Rank-Sum Interval
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Answers to
Odd-Numbered Exercises
Chapter 1

1. a. Houston Chronicle, Des Moines Register, Chicago
Tribune, Washington Post

b. Capital One, Campbell Soup, Merrill Lynch,
Prudential

c. Bill Jasper, Kay Reinke, Helen Ford, David Menendez
d. 1.78, 2.44, 3.50, 3.04

3. a. In a sample of 100 DVD players, what are the chances
that more than 20 need service while under warranty?
What are the chances that none need service while still
under warranty?

b. What proportion of all DVD players of this brand and
model will need service within the warranty period?

5. a. No, the relevant conceptual population is all scores of
all students who participate in the SI in conjunction
with this particular statistics course.

b. The advantage of randomly allocating students to the
two groups is that the two groups should then be fairly
comparable before the study. If the two groups perform
differently in the class, we might attribute this to the
treatments (SI and control). If it were left to students to
choose, stronger or more dedicated students might
gravitate toward SI, confounding the results.

c. If all students were put in the treatment group there
would be no results with which to compare the
treatments.

7. One could generate a simple random sample of all single
family homes in the city, or a stratified random sample
by taking a simple random sample from each of the ten
district neighborhoods. From each of the homes in the
sample the necessary data would be collected. This
would be an enumerative study because there exists a
finite, identifiable population of objects from which to
sample.

9. a. There could be several explanations for the variability
of themeasurements. Among them could bemeasuring
error, (due to mechanical or technical changes across
measurements), recording error, differences in
weather conditions at time of measurements, etc.

b. This study involves a conceptual population. There is
no sampling frame.

11. 6 l 034

6 h 667899

7 l 00122244

7 h Stem ¼ tens

8 l 001111122344 Leaf ¼ ones

8 h 5557899

9 l 03

9 h 58

This display brings out the gap in the data:
There are no scores in the high 70’s.

13. a. 2 23 Stem units: 1.0

3 2344567789 Leaf units: .10

4 01356889

5 00001114455666789

6 0000122223344456667789999

7 00012233455555668

8 02233448

9 012233335666788

10 2344455688

11 2335999

12 37

13 8

14 36

15 0035

16

17

18 9

b. A representative value could be the median, 7.0.

c. The data appear to be highly concentrated, except for
a few values on the positive side.

d. No, there is skewness to the right, or positive
skewness.

e. The value 18.9 appears to be an outlier, being more
than two stem units from the previous value.

15. a.

Number
nonconforming Frequency

Relative
frequency
(Freq/60)

0 7 0.117

1 12 0.200

2 13 0.217

3 14 0.233

4 6 0.100

5 3 0.050

6 3 0.050

7 1 0.017

8 1 0.017

1.001

Doesn’t add exactly to 1 because relative

frequencies have been rounded



b. .917, .867, 1 �.867 ¼ .133
c. The center of the histogram is somewhere around

2 or 3 and it shows that there is some positive
skewness in the data.

17. a. .375
b. .218
c. .242
d. The histogram is very positively skewed.

19. a. The number of subdivisions having no cul-de-sacs is
17/47 ¼ .362, or 36.2%. The proportion having at
least one cul-de-sac is 30/47 ¼ .638, or 63.8%.

y: Count Percent

0 17 36.17
1 22 46.81
2 6 12.77
3 1 2.13
5 1 2.13

N ¼ 47

.362, .638

b.

21. a.

The histogram is skewed right, with a majority of
observations between 0 and 300 cycles. The class
holding the most observations is between 100 and 200
cycles.

b.

c. .79

23.

The original distribution is positively skewed.
The transformation creates a much more symmetric,
mound-shaped histogram.

25. a.

The distribution is skewed to the right, or positively
skewed. There is a gap in the histogram, and what
appears to be an outlier in the ‘500–550’ interval.

Class Freq Rel freq Density

0– < 50 8 0.08 .0016

50– < 100 13 0.13 .0026

100– < 150 11 0.11 .0022

150– < 200 21 0.21 .0042

200– < 300 26 0.26 .0026

300– < 400 12 0.12 .0012

400– < 500 4 0.04 .0004

500– < 600 3 0.03 .0003

600– < 900 2 0.02 .00007

100 1.00

z: Count Percent

0 13 27.66
1 11 23.40
2 3 6.38
3 7 14.89
4 5 10.64
5 3 6.38
6 3 6.38
8 2 4.26
N ¼ 47

.894, .830

Class Freq Rel freq

0– < 100 21 0.21

100– < 200 32 0.32

200– < 300 26 0.26

300– < 400 12 0.12

400– < 500 4 0.04

500– < 600 3 0.03

600– < 700 1 0.01

700– < 800 0 0.00

800– < 900 1 0.01

100 1.00

Class Freq Class Freq

10– < 20 8 1.1– < 1.2 2

20– < 30 14 1.2– < 1.3 6

30– < 40 8 1.3– < 1.4 7

40– < 50 4 1.4– < 1.5 9

50– < 60 3 1.5– < 1.6 6

60– < 70 2 1.6– < 1.7 4

70– < 80 1 1.7– < 1.8 5

40 1.8– < 1.9 1

40

Class interval Freq Rel. Freq.

0–< 50 9 0.18

50–< 100 19 0.38

100–< 150 11 0.22

150–< 200 4 0.08

200–< 250 2 0.04

250–< 300 2 0.04

300–< 350 1 0.02

350–< 400 1 0.02

> ¼ 400 1 0.02

50 1.00
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b.

The distribution of the natural logs of the original data
is much more symmetric than the original.

c. .56, .14.

29. d. The frequency distribution is:

Class
Relative
frequency Class

Relative
frequency

0 < 150 .193 900 < 1050 .019

150 < 300 .183 1050 < 1200 .029

300 < 450 .251 1200 < 1350 .005

450 < 600 .148 1350 < 1500 .004

600 < 750 .097 1500 < 1650 .001

750 < 900 .066 1650 < 1800 .002

1800 < 1950 .002

The relative frequency distribution is almost unimodal
and exhibits a large positive skew. The typical middle
value is somewhere between 400 and 450, although the
skewness makes it difficult to pinpoint more exactly than
this.
e. .775, .014
f. .211

31. a. 5.24
b. The median, 2, is much lower because of positive

skewness.
c. Trimming the largest and smallest observations yields

the 5.9% trimmed mean, 4.4, which is between the
mean and median.

33. a. A stem-and leaf display:

32 55 Stem: ones

33 49 Leaf: tenths

34

35 6699

36 34469

37 03345

38 9

39 2347

40 23

41

42 4

The display is reasonably symmetric, so the mean and
median will be close.
b. 370.7, 369.50.
c. The largest value (currently 424) could be increased

by any amount without changing the median. It can be

decreased to any value at least 370 without changing
the median.

d. 6.18 min; 6.16 min

35. a. 125.
b. If 127.6 is reported as 130, then the median is 130, a

substantial change.When there is rounding or grouping,
the median can be highly sensitive to a small change.

37. ~x ¼ 92; �xtrð25Þ ¼ 95:07; �xtrð10Þ ¼ 102:23; �x ¼ 119:3
Positive skewness causes the mean to be larger than the
median. Trimming moves the mean closer to the median.

39. a. �y ¼ �xþ c, ~y ¼ ~xþ c
b. �y ¼ c�x, ~y ¼ c~x

41. a. 25.8 b. 49.31 c. 7.02 d. 49.31

43. a. 2887.6, 2888 b. 7060.3

45. 24.36

47. $1,961,160

49. �3.5; 1.3, 1.9, 2.0, 2.3, �2.5

51. a. 1, 6, 5
b. The box plot shows positive skewness. The two

longest runs are extreme outliers.
c. outlier: greater than 13.5 or less than �6.5

extreme outlier: greater than 21 or less than �14
d. The largest observation could be decreased to 6

without affecting fs

53. a. The mean is 27.82, the median is 26, and the 5%
trimmed mean is 27.38. The mean exceeds the
median, in accord with positive skewness. The
trimmed mean is between the mean and median, as
you would expect.

b. There are two outliers at the high end and one at the
low end, but there are no extreme outliers. Because
the median is in the lower half of the box, the upper
whisker is longer than the lower whisker, and there are
two high outliers compared to just one low outlier, the
plot suggests positive skewness.

55. The two distributions are centered in about the same
place, but one machine is much more variable than the
other. The more precise machine produced one outlier,
but this part would not be an outlier if judged by the
distribution of the other machine.

57. All of the Indian salaries are below the first quartile of
Yankee salaries. There is much more variability in the
Yankee salaries. Neither team has any outliers.

61. The three flow rates yield similar uniformities, but the
values for the 160 flow rate are a little higher.

63. a. 9.59, 59.41. The standard deviations are large, so it is
certainly not true that repeated measurements are
identical.

b. .396, .323. In terms of the coefficient of variation, the
HC emissions are more variable.

65. 10.65

67. a. �y ¼ a�xþ b: s2y ¼ a2s2x :
b. 100.78, .572

Class interval Freq. Rel. Freq.

2.25 < 2.75 2 0.04

2.75 < 3.25 2 0.04

3.25 < 3.75 3 0.06

3.75 < 4.25 8 0.16

4.25 < 4.75 18 0.36

4.75 < 5.25 10 0.20

5.25 < 5.75 4 0.08

5.75 < 6.25 3 0.06
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69. The mean is .93 and the standard deviation is .081. The
distribution is fairly symmetric with a central peak, as
shown by the stem and leaf display:

Leaf unit ¼ 0.010
7 7
8 11
8 556
9 22333344
9 55
10 04
10 55

71. a. Mode ¼ .93. It occurs four times in the data set.
b. The Modal Category is the one in which the most

observations occur.

73. The measures that are sensitive to outliers are the mean
and the midrange. The mean is sensitive because all
values are used in computing it. The midrange is the
most sensitive because it uses only the most extreme
values in its computation.

The median, the trimmed mean, and the midfourth are
less sensitive to outliers. The median is the most resistant
to outliers because it uses only the middle value (or
values) in its computation. The midfourth is also quite
resistant because it uses the fourths. The resistance of the
trimmed mean increases with the trimming percentage.

75. a. s2y ¼ s2x and sy ¼ sx b. s2z ¼ 1 and sz ¼ 1

77. b. .552, .102 c. 30 d. 19

79. a. There may be a tendency to a repeating pattern.
b. The value .1 gives a much smoother series.
c. The smoothed value depends on all previous values of

the time series, but the coefficient decreases with k.
d. As t gets large, the coefficient (1 – a)t–1 decreases to

zero, so there is decreasing sensitivity to the initial
value.

Chapter 2

1. a. A\B0 b. A[B c. (A\B0) [ (B\A0)

3. a. S ¼ {1324, 1342, 1423, 1432, 2314, 2341, 2413,
2431, 3124, 3142, 4123, 4132, 3214, 3241,
4213, 4231}

b. A ¼ {1324, 1342, 1423, 1432}
c. B ¼ {2314, 2341, 2413, 2431, 3214, 3241, 4213,

4231}
d. A[B ¼ {1324, 1342, 1423, 1432, 2314, 2341, 2413,

2431, 3214, 3241, 4213, 4231}
A\B ¼ ∅
A0 ¼ {2314, 2341, 2413, 2431, 3124, 3142, 4123,

4132, 3214, 3241, 4213, 4231}

5. a. A ¼ { SSF, SFS, FSS }
b. B ¼ { SSS, SSF, SFS, FSS }
c. C ¼ { SSS, SSF, SFS }
d. C0 ¼ { SFF, FSS, FSF, FFS, FFF }

A[C ¼ { SSS, SSF, SFS, FSS }
A\C ¼ { SSF, SFS }
B[C ¼ { SSS, SSF, SFS, FSS }
B\C ¼ { SSS SSF, SFS }

7. a. {111, 112, 113, 121, 122, 123, 131, 132, 133, 211,
212, 213, 221, 222, 223, 231, 232, 233, 311, 312, 313,
321, 322, 323, 331, 332, 333}

b. {111, 222, 333}
c. {123, 132, 213, 231, 312, 321}
d. {111, 113, 131, 133, 311, 313, 331, 333}

9. a. S ¼ {BBBAAAA, BBABAAA, BBAABAA,
BBAAABA, BBAAAAB, BABBAAA, BABABAA,
BABAABA, BABAAAB, BAABBAA, BAABABA,
BAABAAB, BAAABBA, BAAABAB, BAAAABB,
ABBBAAA, ABBABAA, ABBAABA, ABBAAAB,
ABABBAA, ABABABA, ABABAAB, ABAABBA,
ABAABAB, ABAAABB, AABBBAA, AABBABA,
AABBAAB, AABABBA, AABABAB, AABAABB,
AAABBBA, AAABBAB, AAABABB, AAAABBB}

b. {AAAABBB, AAABABB, AAABBAB, AABAABB,
AABABAB}

13. a. .07 b. .30 c. .57

15. a. They are awarded at least one of the first two projects,
.36.

b. They are awarded neither of the first two projects, .64.
c. They are awarded at least one of the projects, .53.
d. They are awarded none of the projects, .47.
e. They are awarded only the third project, .17.
f. Either they fail to get the first two or they are awarded

the third, .75.

17. a. .572 b. .879

19. a. SAS and SPSS are not the only packages.
b. .7 c. .8 d. .2

21. a. .8841 b. .0435

23. a. .10 b. .18, .19 c. .41 d. .59 e. .31 f. .69

25. a. 1/15 b. 6/15 c. 14/15 d. 8/15

27. a. .98 b. .02 c. .03 d. .24

29. a. 1/9 b. 8/9 c. 2/9

31. a. 20 b. 60 c. 10

33. a. 243 b. 3645, 10

35. .0679

37. .2

39. .0456

41. a. .0839 b. .24975 c. .1998

43. a. 1/15 b. 1/3 c. 2/3

45. a. .447, .5, .2
b. P(A|C) ¼ .4, the fraction of ethnic group C that has

blood type A.
P(C|A) ¼ .447, the fraction of those with blood group
A that are of ethnic group C.

c. .211

47. a. Of those with a Visa card, .5 is the proportion who also
have a Master Card.

b. Of those with a Visa card, .5 is the proportion who do
not have a Master Card.
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c. Of those with Master Card, .625 is the proportion
who also have a Visa Card.

d. Of those with Master Card, .375 is the proportion
who do not have a Visa Card.

e. Of those with at least one of the two cards, .769 is the
proportion who have a Visa card.

49. .217, .178

51. .436, .582

53. .0833

59. a. .067 b. .509

61. .287

63. a. 76.5% b. .235

65. .466, .288, .247

67. a. Because of independence, the conditional probability
is the same as the unconditional probability, .3.

b. .82 c. .146

71. .349, .651, (1 � p)n, 1 � (1 � p)n

73. .99999969, .226

75. .9981

77. Yes, no

79. a. 2p � p2 b. 1 � (1 � p)n c. (1 � p)3

d. .9 + .1(1 � p)3 e. .0137

81. .8588, .9896

83. 2p(1 � p)

85. a. 1/3, .444 b. .15 c. .291

87. .45, .32

89. a. 1/120 b. 1/5 c. 1/5

91. .9046

93. a. .904 b. .766

95. .008

97. .362, .348, .290

99. a. P(G | R1 < R2 < R3) ¼ 2/3, so classify as granite if
R1 < R2 < R3.

b. P(G | R1 < R3 < R2) ¼ .294, so classify as basalt if
R1 < R3 < R2.
P(G | R3 < R1 < R2) ¼ 1/15, so classify as basalt if
R3 < R1 < R2.

c. .175 d. p > 14/17

101. a. 1/24 b. 3/8

103. s ¼ 1

107. a. P(B0|survive) ¼ b0/[1 � (b1 + b2)cd]
P(B1|survive) ¼ b1(1 � cd)/[1 � (b1 + b2)cd]
P(B2|survive) ¼ b2(1 � cd)/[1 � (b1 + b2)cd]

b. .712, .058, .231

Chapter 3

1. S : FFF SFF FSF FFS FSS SFS SSF SSS

X: 0 1 1 1 2 2 2 3

3. M ¼ the absolute value of the difference between the
outcomes, with possible values 0, 1, 2, 3, 4, 5 or 6;
W ¼ 1 if the sum of the two resulting numbers is even
and W ¼ 0 otherwise, a Bernoulli random variable.

5. No, X can be a Bernoulli random variable where a
success is an outcome in B, with B a particular subset
of the sample space.

7. a. Possible values are 0, 1, 2, . . ., 12; discrete
b. With N ¼ # on the list, values are 0, 1, 2, . . . , N;

discrete
c. Possible values are 1, 2, 3, 4, . . . ; discrete
d. { x: 0 < x < 1 } if we assume that a rattlesnake can

be arbitrarily short or long; not discrete
e. With c ¼ amount earned per book sold, possible

values are 0, c, 2c, 3c, . . . , 10,000c; discrete
f. { y: 0 � y � 14} since 0 is the smallest possible pH

and 14 is the largest possible pH; not discrete
g. With m andM denoting the minimum and maximum

possible tension, respectively, possible values are {
x: m � x � M }; not discrete

h. Possible values are 3, 6, 9, 12, 15, . . . — i.e., 3(1),
3(2), 3(3), 3(4), . . .giving a first element, etc,; discrete

9. a. X is a discrete random variable with possible values
{2, 4, 6, 8, . . .}

b. X is a discrete random variable with possible values
{2, 3, 4, 5, . . .}

11. a. p(4) ¼ .10 c. .45, .25

13. a. .70 b. .45 c. .55 d. .71 e. .65 f. .45

15. a. (1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)
b. p(0) ¼ .3, p(1) ¼ .6, p(2) ¼ .1, p(x) ¼ 0 otherwise
c. F(0) ¼ .30, F(1) ¼ .90, F(2) ¼ 1. The c.d.f. is

FðxÞ ¼
0 x<0

:30 0 � x<1

:90 1 � x<2

1 2 � x

8>><
>>:

17. a. .81 b. .162
c. The fifth battery must be an A, and one of the first

four must also be an A, so
p(5) ¼ P(AUUUA or UAUUA or UUAUA or
UUUAA) ¼ .00324

d. P(Y ¼ y) ¼ (y � 1)(.1)y�2(.9)2, y ¼ 2,3,4,5,. . .

19. c. F(x) ¼ 0, x < 1, F(x) ¼ log10([x] + 1), 1 � x � 9,
F(x) ¼ 1, x > 9.

d. .602, .301

21. F(x) ¼ 0, x < 0; .10, 0 � x < 1; .25, 1 � x < 2; .45,
2 � x < 3; .70, 3 � x < 4; .90, 4 � x < 5; .96,
5 � x < 6; 1.00, 6 � x

23. a. p(1) ¼ .30, p(3) ¼ .10, p(4) ¼ .05, p(6) ¼ .15,
p(12) ¼ .40

b. .30, .60

25. a. p(x) ¼ (1/3)(2/3)x�1, x ¼ 1, 2, 3, . . .
b. p(y) ¼ (1/3)(2/3)y�2, y ¼ 2, 3, 4, . . .
c. p(0) ¼ 1/6, p(z) ¼ (25/54)(4/9)z�1, z ¼ 1, 2, 3, 4, . . .
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29. a. .60 b. $110

31. a. 16.38, 272.298, 3.9936 b. 401 c. 2496 d. 13.66

33. Yes, because S(1/x2) is finite.

35. $700

37. E[h(X)] ¼ .408 > 1/3.5 ¼ .286, so you expect to win
more if you gamble.

39. V(�X) ¼ V(X)

41. a. 32.5 b. 7.5
c. V(X) ¼ E[X(X–1)] + E(X) � [E(X)]2

43. a. 1/4, 1/9, 1/16, 1/25, 1/100
b. m ¼ 2.64, s ¼ 1.54, P(|X � m| � 2s) ¼ .04 < .25,

P(|X � m| � 3s) ¼ 0 < 1/9
The actual probability can be far below the Chebyshev
bound, so the bound is conservative.

c. 1/9, equal to the Chebyshev bound
d. P(�1) ¼ .02, P(0) ¼ .96, P(1) ¼ .02

45. MX(t) ¼ .5et/(1–.5et), E(X) ¼ 2, V(X) ¼ 2

47. pY(y) ¼ .75(.25)y�1, y ¼ 1, 2, 3, . . .

49. E(X) ¼ 5, V(X) ¼ 4

51. MYðtÞ ¼ et
2=2, E(X) ¼ 0, V(X) ¼ 1

53. E(X) ¼ 0, V(X) ¼ 2

59. a. .850 b. .200 c. .200 d. .701
e. .851 f. .000 g. .570

61. a. .354 b. .114 c. .919

63. a. .403 b. .787 c. .773

65. .1478

67. .4068, assuming independence

69. a. .0173 b. .8106, .4246 c. .0056, .9022, .5858

71. For p ¼ .9 the probability is higher for B (.9963 versus
.99 for A)
For p ¼ .5 the probability is higher for A (.75 versus
.6875 for B)

73. The tabulation for p > .5 is not needed.

75. a. 20, 16 (binomial, n ¼ 100, p ¼ .2) b. 70, 21

77. When p ¼ .5, the true probability for k ¼ 2 is .0414,
compared to the bound of .25.
When p ¼ .5, the true probability for k ¼ 3 is .0026,
compared to the bound of .1111.
When p ¼ .75, the true probability for k ¼ 2 is .0652,
compared to the bound of .25.
When p ¼ .75, the true probability for k ¼ 3 is .0039,
compared to the bound of .1111.

79. Mn�X(t) ¼ [p + (1 � p)et]n, E(n � X) ¼ n(1 � p),
V(n � X) ¼ np(1 � p)
Intuitively, the means of X and n � X should add to n and
their variances should be the same.

81. a. .114 b. .879 c. .121 d. Use the binomial
distribution with n ¼ 15 and p ¼ .1

83. a. h(x; 15, 10, 20) b. .0325 c. .6966

85. a. h(x; 10, 10, 20) b. .0325 c. h(x; n, n, 2n),
E(X) ¼ n/2, V(X) ¼ n2/[4(2n � 1)]

87. a. nb(x; 2, .5) ¼ (x + 1).5x+2, x ¼ 0, 1, 2, 3, . . .
b. 3/16 c. 11/16 d. 2, 4

89. nb(x; 6, .5), E(X) ¼ 6 ¼ 3(2)

93. a. .932 b. .065 c. .068 d. .491 e. .251

95. a. .011 b. .441 c. .554, .459 d. .944

97. a. .491 b. .133

99. a. .122, .808, .283 b. 12, 3.464 c. .530, .011

101. a. .099 b. .135 c. 2

103. a. 4 b. .215 c. 1.15 years

105. a. .221 b. 6,800,000 c. p(x; 1608.5)

111. b. 3.114, .405, .636

113. a. b(x; 15, .75) b. .6865 c. .313 d. 45/4, 45/16
e. .309

115. .9914

117. a. p(x; 2.5) b. .067 c. .109

119. 1.813, 3.05

121. p(2) ¼ p2 , p(3) ¼ (1 � p)p2 , p(4) ¼ (1 � p)p2,
p(x) ¼ [1 � p(2) � . . . � p(x � 3)](1 � p)p2, x ¼ 5,
6, 7, . . . .
Alternatively, p(x) ¼ (1 � p)p(x � 1) +
p(1 � p) p(x � 2), x ¼ 5, 6, 7, . . . ; 99950841

123. a. 0029 b. 0767, .9702

125. a. .135 b. .00144 c.
P1
x¼0

½pðx; 2Þ�5

127. 3.590

129. a. No b. .0273

131. b. .6p(x; l) + .4p(x; m) c. (l + m)/2
d. (l + m)/2 + (l � m)2/4

133. .5

137. X ~ b(x; 25, p), E(h(X)) ¼ 500p + 750,

shðXÞ ¼ 100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞp

Independence and constant probability might not be
valid because of the effect that customers can have on
each other. Also, store employees might affect customer
decisions.

139.
X 0 1 2 3 4

p(x) .07776 .10368 .19008 .20736 .17280

X 5 6 7 8

p(x) .13824 .06912 .03072 .01024
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Chapter 4

1. a. 25 b. .5 c. 7/16

3. b. .5 c. 11/16 d. .6328

5. a. 3/8 b. 1/8 c. .2969 d. .5781

7. a. f ðxÞ ¼ 1
10
for 25 � x � 35 and ¼ 0 otherwise

b. .2 c. .4 d. .2

9. a. .5618 b. .4382, .4382 c. .0709

11. a. 1/4 b. 3/16 c. 15/16
d.

ffiffiffi
2

p
e. f(x) ¼ x/2 for 0 � x < 2, and f(x) ¼ 0

otherwise

13. a. 3 b. 0 for x � 1, 1 � 1/x3 for x > 1
c. 1/8, .088

15. a. F(x) ¼ 0 for x � 0, F(x) ¼ x3/8 for 0 < x < 2,
F(x) ¼ 1 for x � 2

b. 1/64 c. .0137, .0137 d. 1.817

17. b. 90th percentile of Y ¼ 1.8(90th percentile of X) + 32
c. 100 pth percentile of Y ¼ a(100 pth percentile of

X) + b

19. a. 1.5, .866 b. .9245

21. a. .8182, .1113 b. .044

23. a. A + (B � A)p
b. (A + B)/2, (B � A)2/12, ðB� AÞ= ffiffiffiffiffi

12
p

c. (Bn+1 � An+1)/[(n + 1)(B � A)]

25. 314.79

27. 248, 3.6

29. 1/(1 � t/4), 1/4, 1/16

31. 100p, 30p

33. f ðxÞ ¼ 1
10
for �5 � x � 5 and ¼ 0 otherwise

35. a. M(t) ¼ .15 e.5t/(.15 � t), t < .15; E(X) ¼ 7.167,
V(X) ¼ 44.44

b. E(X) ¼ 7.167, V(X) ¼ 44.44

37. M(t) ¼ .15/(.15 � t), E(X) ¼ 6.667, V(X) ¼ 44.44
This distribution is shifted left by .5, so the mean differs
by .5 but the variance is the same.

39. a. .4850 b. .3413 c. .4938 d. .9876
e. .9147 f. .9599 g. .9104 h. .0791
i. .0668 j. .9876

41. a. 1.34 b.�1.34 c. .674 d.�.674
e.�1.555

43. a. .9772 b. .5 c. .9104 d. .8413
e. .2417 f. .6826

45. a. .7977 b. .0004
c. The top 5% are the values above .3987.

47. The second machine

49. a. .2525 b. 39.96

51. .0510

53. a. .8664 b. .0124 c. .2718

55. a. .794 b. 5.88 c. 7.94 d. .265

57. No, because of symmetry.

59. a. approximate, .0391; binomial, .0437
b. approximate, .99993; binomial, .99976

61. a. .7287 b. .8643, .8159

63. a. approximate, .9933; binomial, .9905
b. approximate, .9874; binomial, .9837
c. approximate, .8051; binomial, .8066

67. a. .15866 b. .0013499 c. .999936658
Actual: .15866 .0013499 .999936658

d. .00000028665

69. a. 120 b. 1.329 c. .371 d. .735 e. 0

71. a. 5, 4 b. .715 c. .411

73. a. 1 b. 1 c. .982 d. .129

75. a. .449, .699, .148 b. .050, .018

77. a. \ Ai b. Exponential with l ¼ .05
c. Exponential with parameter nl

83. a. .8257, .8257, .0636 b. .6637 c. 172.73

87. a. .9296 b. .2975 c. 98.18

89. a. 68.03, 122.09 b. .3196 c. .7257, skewness

91. a. 149.157, 223.595 b. .957 c. .0416
d. 148.41 e. 9.57 f. 125.90

93. a ¼ b

95. b. G(a + b) G(m + b) /[G(a + b + m ) G(b)], b/( a + b)

97. Yes, since the pattern in the plot is quite linear.

99. Yes

101. Yes

103. Form a new variable, the logarithms of the rainfall
values, and then construct a normal plot for the new
variable. Because of the linearity of this plot, normality
is plausible.

105. The normal plot has a nonlinear pattern showing
positive skewness.

107. The plot deviates from linearity, especially at the low
end, where the smallest three observations are too small
relative to the others. The plot works for any l because l
is a scale parameter.

109. fY ( y) ¼ 2/y3, y > 1

111. fYðyÞ ¼ ye�y2=2, y > 0

113. fY ( y) ¼ 1/16, 0 < y < 16

115. fY ( y) ¼ 1/[p(1 + y2)]

117. Y ¼ X2/16

119. fYðyÞ ¼ 1=½2 ffiffiffi
y

p �, 0 < y < 1

121. fYðyÞ ¼ 1=½4 ffiffiffi
y

p �, 0 < y < 1, fYðyÞ ¼ 1=½8 ffiffiffi
y

p �,
1 < y < 9

125. pY ( y) ¼ (1 � p)y�1p, y ¼ 1, 2, 3, . . .
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127. a. .4 b. .6 c. F(x) ¼ x/25, 0 � x � 25;
F(x) ¼0, x < 0; F(x) ¼ 1, x > 25 d. 12.5, 7.22

129. b. F(x) ¼ 1 � 16/(x + 4)2, x � 0; F(x) ¼ 0, x < 0
c. .247 d. 4 e. 16.67

131. a. .6563 b. 41.55 c. .3179

133. a. .00025, normal approximation; .000859, binomial
b. .0888, normal approximation; .0963, binomial

135. a. F(x) ¼1.5(1 � 1/x), 1 � x � 3; F(x) ¼0, x < 1;
F(x) ¼ 1, x > 3 b. .9, .4 c. 1.6479
d. .5333 e. .2662

137. a. 1.075, 1.075 b. .0614, .3331 c. 2.476

139. b. 95,693, 1/3

141. b. F(x) ¼ .5e.2x, x � 0; F(x) ¼ 1 � .5e�.2x, x > 0
c. .5, .6648, .2555, .6703

143. a. k ¼ (a � 1)5a�1 b. F(x) ¼ 0, x � 5;
F(x) ¼ 1 � (5/x) a�1, x > 5 c. 5(a � 1)/(a � 2)

145. b. .4602, .3636 c. .5950 d. 140.178

147. a. Weibull b. .5422

149. a. l b. a xa� 1/ba

c. FðxÞ ¼ 1� e�a x�x2= 2bð Þð Þ, 0 � x � b; F(x) ¼ 0,
x < 0; F(x) ¼ 1 � e�ab/2, x > b

f ðxÞ ¼ a 1� x=bð Þe�a x�x2= 2bð Þð Þ, 0 � x � b;
f(x) ¼ 0, x < 0, f(x) ¼ 0, x > b
This gives total probability less than 1, so some
probability is located at infinity (for items that last
forever).

151. mR � v/20, sR � v/800

155. F(q*) ¼ .818

Chapter 5

1. a. .20 b. .42 c. The probability of at least one
hose being in use at each pump is .70.

d. x 0 1 2 y 0 1 2

pX(x) .16 .34 .50 pY(y) .24 .38 .38

P(X � 1) ¼ .50

e. dependent, .30 ¼ P(X ¼ 2 and Y ¼ 2) 6¼ P(X ¼ 2)
P(Y ¼ 2) ¼ (.50)(.38)

3. a. .15 b. .40 c. .22 ¼ P(A) ¼ P(|X1 � X2| � 2)
d. .17, .46
e. x1 0 1 2 3 4

p1(x1) .19 .30 .25 .14 .12

E(X1) ¼ 1.7

f. x2 0 1 2 3

p2(x2) .19 .30 .28 .23

g. 0 ¼ p(4 , 0) 6¼ p1(4) � p2(0) ¼ (.12)(.19) so the two
variables are not independent.

5. a. .54 b. .00018

7. a. .030 b. .120 c. .10, .30 d. .38
e. yes, p(x,y) ¼ pX(x) � pY(y)

9. a. .3/380,000 b. .3024 c. .3593
d. 10Kx2 + .05, 20 � x � 30 e. no

11. a. p x; yð Þ ¼ e�llx=x!
� �

e�yyy=y!
� �

for x ¼ 0, 1, 2, . . .;
y ¼ 0, 1, 2, . . . b. e�l�yð1þ lþ yÞ� �

c. e�l�yðlþ yÞm=m!, Poisson with parameter l + y

13. a. e�x�y, x � 0, y � 0 b. .3996 c. .5940
d. .3298

15. a. FðyÞ ¼ 1� 2e�2ly þ e�3ly for y � 0, F(y) ¼ 0 for
y < 0; f ðyÞ ¼ 4le�2ly � 3e�3ly for y � 0, f(y) ¼ 0
for y < 0

b. 2/(3l)

17. a. .25 b. 1/p c. 2/p
d. fXðxÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

p
pR2ð Þ�

for �R � x � R,

fYðyÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � y2

p
pR2ð Þ�

for �R � y � R, no

19. .15

21. L2

23. 1/4 h

25. �2/3

27. a. �.1058 b. �.0128

37. a. fX(x) ¼ 2x, 0 < x < 1, fX(x) ¼ 0 elsewhere
b. fY|X(y| x) ¼ 1/x, 0 < y < x < 1 c. .6
d. no, the domain is not a rectangle
e. E(Y| X ¼ x) ¼ x/2, a linear function of x
f. V(Y| X ¼ x) ¼ x2/12

39. a. fX(x) ¼ 2e�2x, 0 < x < 1, fX(x) ¼ 0, x � 0
b. fY|X(y| x) ¼ e�y+x, 0 < x < y < 1
c. P(Y > 2| x ¼ 1) ¼ 1/e
d. no, the domain is not rectangular
e. E(Y| X ¼ x) ¼ x + 1, a linear function of x
f. V(Y| X ¼ x) ¼ 1

41. a. E(Y| X ¼ x) ¼ x/2, a linear function of x; V(Y|
X ¼ x) ¼ x2/12

b. f(x, y) ¼ 1/x, 0 < y < x < 1
c. fY(y) ¼ �ln(y), 0 < y < 1
d. E(Y) ¼ 1/4, V(Y) ¼ 7/144
e. E(Y) ¼ 1/4, V(Y) ¼ 7/144

43. a. pY|X(0|1) ¼ 4/17, pY|X(1|1) ¼ 10/17, pY|X(2|1) ¼ 3/17
b. pY|X(0|2) ¼ .12, pY|X(1|2) ¼ .28, pY|X(2|2) ¼ .60
c. .40
d. pX|Y(0|2) ¼ 1/19, pX|Y(1|2) ¼ 3/19, pX|Y(2|2) ¼ 15/19

45. a. E(Y| X ¼ x) ¼ x2/2 b. V(Y| X ¼ x) ¼ x4/12
c. fY(y) ¼ y–.5 � 1, 0 < y < 1

47. a. p(1,1) ¼ p(2,2) ¼ p(3,3) ¼ 1/9, p(2,1) ¼ p(3,1)
¼ p(3,2) ¼ 2/9

b. pX(1) ¼ 1/9, pX(2) ¼ 3/9, pX(3) ¼ 5/9
c. pY|X(1|1) ¼ 1, pY|X(1|2) ¼ 2/3, pY|X(2|2) ¼ 1/3,

pY|X(1|3) ¼ .4, pY|X(2|3) ¼ .4, pY|X(3|3) ¼ .2
d. E(Y| X ¼ 1) ¼ 1, E(Y| X ¼ 2) ¼ 4/3,

E(Y| X ¼ 3) ¼ 1.8, no
e. V(Y| X ¼ 1) ¼ 0, V(Y| X ¼ 2) ¼ 2/9,

V(Y| X ¼ 3) ¼ .56

49. a. pX|Y(1|1) ¼ .2, pX|Y(2|1) ¼ .4, pX|Y(3|1) ¼ .4,
pX|Y(2|2) ¼ 1/3, pX|Y(3|2) ¼ 2/3, pX|Y(3|3) ¼ 1

b. E(X| Y ¼ 1) ¼ 2.2, E(X| Y ¼ 2) ¼ 8/3,
E(X| Y ¼ 3) ¼ 3, no

c. V(X| Y ¼ 1) ¼ .56, V(X| Y ¼ 2) ¼ 2/9,
V(X| Y ¼ 3) ¼ 0
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51. a. 2x – 10 b. 9 c. 3 d. .0228

53. a. pX(x) ¼ .1, x ¼ 0, 1, 2, . . ., 9; pY|X(y| x) ¼ 1/9, y ¼ 0,
1, 2, . . ., 9, y 6¼ x;
pX,Y(x, y) ¼ 1/90, x, y ¼ 0, 1, 2, . . ., 9, y 6¼ x

b. E(Y| X ¼ x) ¼ 5 � x/9, x ¼ 0, 1, 2, . . ., 9, a linear
function of x

55. a. .6x, .24x b. 60 c. 60

57. a. .1410 b. .1165
With positive correlation, the deviations from their means
of X and Y are likely to have the same sign.

59. a. If U ¼ X1 + X2, fU(u) ¼ u2, 0 < u < 1, fU(u) ¼
2u – u2, 1 < u < 2, fU(u) ¼ 0, elsewhere
b. If V ¼ X2 � X1, fV(v) ¼ 2 � 2v, 0 < v < 1,
fV(v) ¼ 0, elsewhere

61. 4y3[(ln(y3)]
2, 0 < y3 < 1

65. a. g5(y) ¼ 5y4/105, 25/3 b. 20/3 c. 5
d. 1.409

67. gY5jY1 y5j4ð Þ ¼ ½2=3�½ðy5 � 4Þ=6�3, 4 < y5 < 10; 8.8

69. 1/(n + 1), 2/(n + 1), 3/(n + 1), . . ., n/(n + 1)

71. Gðnþ1ÞGðiþ1=yÞ
GðiÞGðnþ1þ1=yÞ ,

Gðnþ1ÞGðiþ2=yÞ
GðiÞGðnþ1þ2=yÞ � Gðnþ1ÞGðiþ1=yÞ

GðiÞGðnþ1þ1=yÞ
h i2

73. a. .0238 b. $2025

75. gi;j yi; yj
� � ¼ n!

ði�1Þ!ðj�i�1Þ!ðn�jÞ!FðyiÞi�1ðFðyjÞ � FðyiÞÞj�i�1ð1� FðyjÞÞn�jf ðyiÞf ðyjÞ,
�1 < yi < yj < 1

77. a. fW2
w2ð Þ ¼ nðn� 1Þ Ð1�1 ðFðw1 þ w2Þ � Fðw1ÞÞn�2f ðw1Þf ðw1 þ w2Þdw1

b. fW2
w2ð Þ ¼ nðn� 1Þw2

n�2ð1� w2Þ, 0 < w2 < 1

79. f(x) ¼ e�x/2 � e�x, x � 0; f(x) ¼ 0, x < 0.

81. a. 3/81,250

b. fXðxÞ ¼

ð30�x

20�x

kxydy ¼ kð250x� 10x2Þ; 0 � x � 20ð30�x

0

kxydy ¼ kð450x� 30x2 þ 1
2
x3Þ; 20<x � 30

8>><
>>:

fY(y) ¼ fX(y) dependent
c. .3548 d. 25.969 e. �32.19, �.894
f. 7.651

83. 7/6

87. c. If p(0) ¼ .3, p(1) ¼ .5, p(2) ¼ .2, then 1 is the smaller of
the tworoots, soextinction iscertain in thiscasewithm < 1.
Ifp(0) ¼ .2,p(1) ¼ .5,p(2) ¼ .3, then 2/3 is the smaller of
the two roots, so extinction is not certain with m > 1.

89. a. P((X,Y)∈ A) ¼ F(b, d) � F(b, c) � F(a, d) + F(a, b)
b. P((X,Y)∈A) ¼ F(10, 6) � F(10, 1) � F(4, 6) +F(4, 1)

P((X,Y) ∈ A) ¼ F(b, d) � F(b, c–1) – F(a–1, d) +
F(a–1, b–1)

c. At each (x*, y*), F(x*, y*) is the sum of the
probabilities at points (x, y) such that x � x* and
y � y*
F(x, y) x

100 250
200 .50 1

y 100 .30 .50

0 .20 .25

d. F(x, y) ¼ .6x2y + .4xy3, 0 � x � 1; 0 � y � 1;
F(x, y) ¼ 0, x � 0; F(x, y) ¼ 0, y � 0;
F(x, y) ¼ .6x2 + .4x, 0 � x � 1, y > 1;
F(x, y) ¼ .6y + .4y3, x > 1, 0 � y � 1; F(x, y) ¼ 1,
x > 1, y > 1
P(.25 � X � .75, .25 � Y � .75) ¼ .23125

e. F(x, y) ¼ 6x2y2, x + y � 1, 0 � x � 1; 0 � y � 1,
x � 0, y � 0
F(x, y) ¼ 3x4 � 8x3 + 6x2 + 3y4 � 8y3 + 6y2 � 1,
x + y > 1, x � 1, y � 1
F(x, y) ¼ 0, x � 0; F(x, y) ¼ 0, y � 0;
F(x, y) ¼ 3x4 – 8x3 + 6x2 , 0 � x � 1, y > 1
F(x, y) ¼ 3y4 – 8y3 + 6y2 , 0 � y � 1, x > 1
F(x, y) ¼ 1, x > 1, y > 1

91. a. 2x, x b. 40 c. .100

93. MW(t) ¼ 2/[(1–1000t)(2–1000t)], 1500

Chapter 6

1. a. �x 25 32.5 40 45 52.5 65

pð�xÞ .04 .20 .25 .12 .30 .09

Eð �XÞ ¼ 44:5 ¼ m
b. s2 0 112.5 312.5 800

p(s2) .38 .20 .30 .12

E(S2) ¼ 212.25 ¼ s2

3. x/n 0 .1 .2 .3 .4

p(x/n) 0.0000 0.0000 0.0001 0.0008 0.0055

.5 .6 .7 .8 .9 1.0

0.0264 0.0881 0.2013 0.3020 0.2684 0.1074

5. a. �x 1 1.5 2 2.5 3 3.5 4

pð�xÞ .16 .24 .25 .20 .10 .04 .01

b. Pð �X � 2:5Þ ¼ :85
c. r 0 1 2 3

p(r) .30 .40 .22 .08

d. .24

7.
�x pð�xÞ
2.8 0.052077

3.0 0.034718

3.2 0.021699

3.4 0.012764

3.6 0.007091

3.8 0.003732

4.0 0.001866

�x pð�xÞ
1.4 0.090079

1.6 0.112599

1.8 0.125110

2.0 0.125110

2.2 0.113736

2.4 0.094780

2.6 0.072908

�x pð�xÞ
0.0 0.000045

0.2 0.000454

0.4 0.002270

0.6 0.007567

0.8 0.018917

1.0 0.037833

1.2 0.063055
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11. a. 12, .01
b. 12, .005
c. With less variability, the second sample is more

closely concentrated near 12.

13. a. No, the distribution is clearly not symmetric.
A positively skewed distribution —perhaps Weibull,
lognormal, or gamma.

b. .0746
c. .00000092. No, 82 is not a reasonable value for m.

15. a. .8366 b. no

17. 43.29

19. a. .9802, .4802 b. 32

21. a. .9839 b. .8932

27. a. 87,850, 19,100,116
b. In case of dependence, the mean calculation is still

valid, but not the variance calculation.
c. .9973

29. a. .2871 b. .3695

31. .0317; Because each piece is played by the same
musicians, there could easily be some dependence. If
they perform the first piece slowly, then they might
perform the second piece slowly, too,

33. a. 45 b. 68.33 c. �1, 13.67 d. �5, 68.33

35. a. 50, 10.308 b. .0076 c. 50 d. 111.56
e. 131.25

37. a. .9615 b. .0617

39. a. .5, n(n + 1)/4 b. .25, n(n + 1)(2n + 1)/24

41. 10:52.74

43. .48

45. b. MY(t) ¼ 1/[1 � t2/(2n)]n

47. Because w2n is the sum of n independent random variables,
each distributed as w21, the Central Limit Theorem applies.

53. a. 3.2 b. 10.04, the square of the answer to (a)

57. a. n2/(n2 � 2), n2 > 2
b. 2n22ðn1 þ n2 � 2Þ=½n1ðn2 � 2Þ2ðn2 � 4Þ�, n2 > 4

61. a. 4.32

65. a. The approximate value, .0228, is smaller because of
skewness in the chi-squared distribution

b. This approximation gives the answer .03237, agreeing
with the software answer to this number of decimals.

67. No, the sum of the percentiles is not the same as the
percentile of the sum, except that they are the same for
the 50th percentile. For all other percentiles, the
percentile of the sum is closer to the 50th percentile
than is the sum of the percentiles

69. a. 2360, 73.70 b. .9713

71. .9685

73. .9093 Independence is questionable because con-
sumption one day might be related to consumption the
next day.

75. .8340

77. a. r ¼ s2W=ðs2W þ s2EÞ
b. r ¼ .9999

79. 26, 1.64

81. If Z1 and Z2 are independent standard normal
observations, then let
X ¼ 5Z1 + 100, Y ¼ 2ð:5Z1 þ ð ffiffiffi

3
p

=2ÞZ2Þ þ 50

Chapter 7

1. a. 113.73, X b. 113, eX
c. 12.74, S, an estimator for the population standard

deviation
d. The sample proportion of students exceeding 100 in

IQ is 30/33 ¼ .91
e. .112, S=X

3. a. 1.3481, X b. 1.3481, X
c. 1.78, X þ 1:282S
d. .67 e. .0846

5. a. 1,703,000 b. 1,599,730 c. 1,601,438

7. a. 120.6 b. 1,206,000, 10,000X c. .8
d. 120, eX

9. a. X, 2.113 b.
ffiffiffiffiffiffiffiffi
l=n

p
, .119

11. b.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1� p1Þ=n1 þ p2ð1� p2Þ=n2

p
c. In part (b) replace p1 with X1/n1 and replace p2 with

X2/n2
d. �.245 e. .0411

13. a. .9876 b. .6915

15. a. ŷ ¼ P
X2
i =ð2nÞ b. 74.505

17. b. 4/9

19. a. p̂ ¼ 2l̂� :30 ¼ :20 c. p̂ ¼ ð100l̂� 9Þ=70
21. a. .15 b. yes c. .4437

23. a. ŷ ¼ ð2�x� 1Þ=ð1� �xÞ ¼ 3
b. ŷ ¼ ½�n=S lnðxiÞ� � 1 ¼ 3:12

25. p̂ ¼ r=ðr þ xÞ ¼ :15 This is the number of successes
over the number of trials, the same as the result in
Exercise 21. It is not the same as the estimate of
Exercise 17.

27. a. ŝ2 ¼ 1
n

P
X2
i b. ŝ2 ¼ 1

n

P
X2
i

29. a. ŷ ¼ P
X2
i =ð2nÞ ¼ 74:505, the same as in Exercise 15

b.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ŷ lnð2Þ

q
¼ 10:16

31. l̂ ¼ � lnðp̂Þ=24 ¼ :0120

33. No, statistician A does not have more information.

35.
Qn

i¼1 xi;
Pn

i¼1 xi

37. I(.5 max(x1, x2, . . ., xn) � y � min(x1, x2, . . ., xn))

39. a. 2X(n � X)/[n(n � 1)]

41. a. X b. FððX � cÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=n

p Þ
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43. a. Vð~yÞ ¼ y2= n nþ 2ð Þ½ � b. y2/n
c. The variance in (a) is below the bound of (b), but the

theorem does not apply because the domain is a
function of the parameter.

45. a. �x b. N(m, s2/n)
c. Yes, the variance is equal to the Cramér-Rao bound
d. The answer in (b) shows that the asymptotic

distribution of the theorem is actually exact here.

47. a. 2/s2

b. The answer in (a) is different from the answer,
1/(2s4), to 46(a), so the information does depend on
the parameterization.

49. l̂ ¼ 6=ð6t6 � t1 � . . .� t5Þ ¼ 6=ðx1 þ 2x2 þ . . .þ 6x6Þ ¼ :0436,
where x1 ¼ t1, x2 ¼ t2 � t1, . . ., x6 ¼ t6 � t5

53. 1.275, s ¼ 1.462

55. b. no, Eðŝ2Þ ¼ s2=2, so 2ŝ2 is unbiased

59. .416, .448

61. d(X) ¼ (�1)X, d(200) ¼ 1, d(199) ¼ �1

63. b. b̂ ¼ P
xiyi

P
x2i

� ¼ 30:040, the estimated minutes
per item; ŝ2 ¼ 1

n

Pðyi � b̂xiÞ2 ¼ 16:912;
25b̂ ¼ 751

Chapter 8

1. a. 99.5% b. 85% c. 2.97 d. 1.15

3. a. A narrower interval has a lower probability b.No,
m is not random

c. No, the interval refers to m, not individual observations
d. No, a probability of .95 does not guarantee 95

successes in 100 trials

5. a. (4.52, 5.18) b. (4.12, 5.00) c. 55 d. 94

7. Increase n by a factor of 4. Decrease the width by a factor
of 5.

9. a. ð�x� 1:645s=
ffiffiffi
n

p
;1Þ; (4.57, 1)

b. ð�x� za � s=
ffiffiffi
n

p
;1Þ

c. ð�1; �xþ za � s=
ffiffiffi
n

p Þ; (�1, 59.7)

11. 950; .8724 (normal approximation), .8731 (binomial)

13. a. (.99, 1.07) b. 158

15. a. 80% b. 98% c. 75%

17. .06, which is positive, suggesting that the population
mean change is positive

19. (.513, .615)

21. .218

23. (.439, .814)

25. a. 381 b. 339

29. a. 1.341 b. 1.753 c. 1.708 d. 1.684
e. 2.704

31. a. 2.228 b. 2.131 c. 2.947 d. 4.604
e. 2.492 f. 2.715

33. a. (38.081, 38.439) b. (100.55, 101.19), yes

35. a. Assuming normality, a 95% lower confidence bound
is 8.11. When the bound is calculated from repeated
independent samples, roughly 95% of such bounds
should be below the population mean.

b. A 95% lower prediction bound is 7.03. When the
bound is calculated from repeated independent
samples, roughly 95% of such bounds should be
below the value of an independent observation.

37. a. 378.85 b. 413.09 c. (333.88, 407.50)

39. 95% prediction interval: (.0498, .0772)

41. a. (169.36, .179.37)
b. (134.30, 214.43), which includes 152
c. The second interval is much wider, because it allows

for the variability of a single observation.
d. The normal probability plot gives no reason to doubt

normality. This is especially important for part (b), but
the large sample size implies that normality is not so
critical for (a).

45. a. 18.307 b. 3.940 c. .95 d. .10

47. b. (2.34, 5.60)

49. a. (7.91, 12.00)
b. Because of an outlier, normality is questionable for

this data set.
c. In MINITAB, put the data in C1 and execute the

following macro 999 times
Let k3 ¼ N(c1)
sample k3 c1 c3;
replace.
let k1 ¼ mean(c3)
stack k1 c5 c5
end

51. a. (26.61, 32.94)
b. Because of outliers, the weight gains do not seem

normally distributed.
c. In MINITAB, see Exercise 49(c).

53. a. (38.46, 38.84)
b. Although the normal probability plot is not perfectly

straight, there is not enough deviation to reject
normality.

c. In MINITAB, see Exercise 49(c).

55. a. (169.13, 205.43)
b. Because of an outlier, normality is questionable for

this data set.
c. In MINITAB, see Exercise 49(c).

57. a. In MINITAB, put the data in C1 and execute the
following macro 999 times
Let k3 ¼ N(c1)
sample k3 c1 c3;
replace.
let k1 ¼ stdev(c3)
stack k1 c5 c5
end

b. Assuming normality, a 95% confidence interval for
s is (3.541, 6.578), but the interval is inappropriate
because the normality assumption is clearly not
satisfied.
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59. a. (.198, .230) b. .048
c. A 90% prediction interval is (.149, .279)

61. 246

63. a. A 95% confidence interval for the mean is (.163,
.174). Yes, this interval is below the interval for 59(a).

b. (.089, .326)

65. (0.1263, 0.3018)

67. a. yes b. (196.88, 222.62)

69. c. Vðb̂Þ ¼ s2=Sx2i , sb̂ ¼ s=
ffiffiffiffiffiffiffiffi
Sx2i

p
d. Put the xi’s far from 0 to minimize sb̂
e. b̂� ta=2;n�1s=

ffiffiffiffiffiffiffiffi
Sx2i

p
, (29.93, 30.15)

73. a. .00985 b. .0578

75. a. ð�x� ðs= ffiffiffi
n

p Þt:025;n�1;d; �x� ðs= ffiffiffi
n

p Þt:975;n�1;dÞ
b. (3.01, 4.46)

77. a. 1/2n b. n/2n c. (n + 1)/2n, 1 � (n + 1)/2n�1,
(29.9, 39.3) with confidence level .9785

79. a. P(A1\A2) ¼ .952 b. P(A1\A2) � .90
c. P(A1\A2) � 1 � a1 � a2 ; P(A1\A2\ . . . \ Ak)

� 1 � a1 � a2 � . . . �ak

Chapter 9

1. a. yes b. no c. no d. yes e. no f. yes

5. H0: s ¼ .05 vs. Ha: s < .05. Type I error: Conclude that
the standard deviation is less than .05 mm when it is
really equal to .05 mm. Type II error: Conclude that the
standard deviation is .05 mm when it is really less than
.05.

7. A type I error here involves saying that the plant is not in
compliance when in fact it is. A type II error occurs when
we conclude that the plant is in compliance when in fact it
isn’t. A government regulator might regard the type II
error as being more serious.

9. a. R1

b. A type I error involves saying that the two companies
are not equally favored when they are. A type II error
involves saying that the two companies are equally
favored when they are not.

c. binomial, n ¼ 25, p ¼ .5; .0433
d. .3, .4881; .4, .8452; .6, .8452; .7, .4881
e. If only 6 favor the first company, then reject the null

hypothesis and conclude that the first company is not
preferred.

11. a. H0: m ¼ 10 vs. Ha: m 6¼ 10 b. .0099
c. .5319. .0076 d. c ¼ 2.58 e. c ¼ 1.96
f. �x ¼ 10:02, so do not reject H0

g. Recalibrate if z � �2.58 or z � 2.58

13. b. .00043, .0000075, less than .01

15. a. .0301 b. .0030 c. .0040

17. a. Because z ¼ 2.56 > 2.33, reject H0 b. .84

c. 142 d. .0052

19. a. Because z ¼ �2.27 > �2.58, do not reject H0

b. .22 c. 22

21. Test H0: m ¼ .5 vs. Ha: m 6¼ .5
a. Do not reject H0 because t.025,12 ¼ 2.179 > |1.6|
b. Do not reject H0 because t.025,12 ¼ 2.179 > |�1.6|
c. Do not reject H0 because t.005,24 ¼ 2.797 > |�2.6|
d. Reject H0 because t.005,24 ¼ 2.797 < |�3.9|

23. Because t ¼ 2.24 � 1.708 ¼ t.05,25, reject H0: m ¼ 360.
Yes, this suggests contradiction of prior belief.

25. Because |z| ¼ 3.37 � 1.96, reject the null hypothesis.
It appears that this population exceeds the national
average in IQ.

27. a. no, t ¼ �.02 b. 58
c. n ¼ 20 total observations

29. a. Because t ¼ .50 < 1.895 ¼ t.05,7 do not reject H0.
b. .73

31. Because t ¼ �1.24 > �1.397 ¼ �t.10,8, we do not have
evidence to question the prior belief.

35. a. The distribution is fairly symmetric, without outliers.
b. Because t ¼ 4.25 � 3.499 ¼ t.005,7, there is strong

evidence to say that the amount poured differs from
the industry standard, and indeed bartenders tend to
exceed the standard.

c. Yes, the test in (b) depends on normality, and a normal
probability plot gives no reason to doubt the
assumption.

d. .643, .185, .016

37. a. Do not reject H0: p ¼ .10 in favor of Ha: p > .10
because z ¼ 1.33 < 1.645. Because the null
hypothesis is not rejected, there could be a type II
error.

b. .49, .27. c. 362

39. a. Do not reject H0: p ¼ .02 in favor of Ha: p < .02
because z ¼ �1.1 > �1.645. There is no strong
evidence suggesting that the inventory be postponed.

b. .195. c. <.0000001.

41. a. Reject H0 because z ¼ 3.08 � 2.58. b. .03

43. Using n ¼ 25, the probability of 5 or more leaky faucets
is .0980 if p ¼ .10, and the probability of 4 or fewer leaky
faucets is .0905 if p ¼ .3. Thus, the rejection region is
5 or more, a ¼ .0980, and b ¼ .0905.

45. a. reject b. reject c. do not reject d. reject
e. do not reject

47. a. .0778 b. .1841 c. .0250 d. .0066 e. .5438

49. a. P ¼ .0403 b. P ¼ .0176 c. P ¼ .1304
d. P ¼ .6532 e. P ¼ .0021 f. P ¼ .000022

51. Based on the given data, there is no reason to believe
that pregnant women differ from others in terms of true
average serum receptor concentration.

53. a. Because the P-value is .17, no modification is
indicated. b. 997

55. Because t ¼ �1.759 and the P-value ¼ .089, which is
less than .10, reject H0: m ¼ 3.0 against a two-tailed
alternative at the 10% level. However, the P-value
exceeds .05, so do not reject H0 at the 5% level. There
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is just a weak indication that the percentage is not equal to
3% (lower than 3%).

57. a. Test H0: m ¼ 10 vs. Ha: m < 10
b. Because the P-value is .017 < .05, reject H0,

suggesting that the pens do not meet specifications.
c. Because the P-value is .045 > .01, do not reject H0,

suggesting there is no reason to say the lifetime is
inadequate.

d. Because the P-value is .0011, reject H0. There is good
evidence showing that the pens do not meet
specifications.

61. a. 98, .85, .43, .004, .0000002
b. .40, .11, .0062, .0000003
c. Because the null hypothesis will be rejected with high

probability, even with only slight departure from the
null hypothesis, it is not very useful to do a .01 level
test.

63. b. 36.61 c. yes

65. a. Sxi � c b. yes

67. Yes, the test is UMP for the alternative Ha : y > .5
because the tests for H0 : y ¼ .5 vs. Ha : y ¼ p0 all
have the same form for any p0 > .5.

69. b. .05
c. .04345, .05826; Because .04345 < .05, the test is not

unbiased.
d. .05114; not most powerful

71. b. The value of the test statistic is 3.041, so the P-value is
.081, compared to .089 for Exercise 55.

73. A sample size of 32 should suffice.

75. a. Test H0: m ¼ 2150 vs. Ha: m > 2150
b. t ¼ ð�x� 2150Þ=ðs= ffiffiffi

n
p Þ c. 1.33 d. .101

e. Do not reject H0 at the .05 level.

77. Because t ¼ .77 and the P-value is .23, there is no
evidence suggesting that coal increases the mean heat
flux.

79. Conclude that activation time is too slow at the .05 level,
but not at the .01 level.

81. A normal probability plot gives no reason to doubt the
normality assumption. Because the sample mean is 9.815,
giving t ¼ 4.75 and a (upper tail) P-value of .00007,
reject the null hypothesis at any reasonable level. The
true average flame time is too high.

83. Assuming normality, calculate t ¼ 1.70, which gives a
two tailed P-value of .102. Do not reject the null
hypothesis H0: m ¼ 1.75.

85. The P-value for a lower tail test is .0014 (normal
approximation, .0005), so it is reasonable to reject the
idea that p ¼ .75 and conclude that fewer than 75% of
mechanics can identify the problem.

87. Because t ¼ 6.43, giving an upper tail P-value of
.0000002, conclude that the population mean time
exceeds 15 minutes.

89. Because the P-value is .013 > .01, do not reject the null
hypothesis at the .01 level.

91. a. For the test of H0: m ¼ m0 vs. Ha: m > m0 at level a,
reject H0 if 2Sxi/m0 � w2a;2n
For the test of H0: m ¼ m0 vs. Ha: m < m0 at level a,
reject H0 if 2Sxi/m0 � w21�a;2n

For the test of H0: m ¼ m0 vs. Ha: m 6¼ m0 at level a,
reject H0 if 2Sxi/m0 � w2a=2;2n or
if 2Sxi/m0 � w21�a=2;2n

b. Because Sxi ¼ 737, the test statistic is 2Sxi/m0
¼ 19.65, which gives a P-value of .52. There is no
reason to reject the null hypothesis.

93. a. yes

Chapter 10

1. a. �.4; it doesn’t b. .0724, .269
c. Although the CLT implies that the distribution will be

approximately normal when the sample sizes are each
100, the distribution will not necessarily be normal
when the sample sizes are each 10.

3. Do not reject H0 because z ¼ 1.76 < 2.33

5. a. Ha says that the average calorie output for sufferers is
more than 1 cal/cm2/min below that for non-sufferers.
Reject H0 in favor of Ha because z ¼ �2.90 � �2.33

b. .0019 c. .819 d. .66

7. Yes, because z ¼ 1.83 � 1.645.

9. a. �x� �y ¼ 6:2
b. z ¼ 1.14, two-tailed P-value ¼ .25, so do not reject

the null hypothesis that the population means are
equal.

c. No, the values are positive and the standard deviation
exceeds the mean.

d. 95% CI: (10.0, 29.8)

11. a. A 95% CI for the true difference, fast food mean – not
fast food mean is (219.6, 538.4)

b. The one-tailed P-value is .014, so reject the null
hypothesis of a 200-calorie difference at the .05
level, and conclude that yes, there is strong evidence.

13. 22. No.

15. b. It increases.

17. Because z ¼ 1.36, there is no reason to reject the
hypothesis of equal population means (p ¼ .17).

19. Because z ¼ .59, there is no reason to conclude that the
population mean is higher for the no-involvement group
(p ¼ .28).

21. Because t ¼ �3.35 � �3.30 ¼ t.001,42, yes, there is
evidence that experts do hit harder.

23. b. No c. Because |t| ¼ |�.38| < 2.228 ¼ t.025,10, no,
there is no evidence of a difference.

25. Because the one-tailed P-value is .005 � .01, conclude at
the .01 level that the difference is as stated.
This could result in a type I error.

27. Yes, because t ¼ 2.08 with P-value ¼ .046.

29 b. (127.6, 202.0) c. 131.8
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31. Because t ¼ 1.82 with P-value .046 � .05, conclude at
the .05 level that the difference exceeds 1.

33. a. �x� �yð Þ � ta=2;mþn�2 � sp
ffiffiffiffiffiffiffiffiffiffi
1
m þ 1

n

q
b. (�.24, 3.64)
c. (�.34, 3.74), which is wider because of the loss of a

degree of freedom

35. a. The slender distribution appears to have a lower mean
and lower variance.

b. With t ¼ 1.88 and a P-value of .097, there is no
significant difference at the .05 level.

37. With t ¼ 2.19 and a two-tailed P-value of .031, there is a
significant difference at the .05 level but not the .01 level.

39. With t ¼ 3.89 and one-tailed P-value ¼ .006, conclude
at the 1% level that true average movement is less for the
TightRope treatment. Normality is important, but the
normal probability plot does not indicate a problem.

41. a. The 95% confidence interval for the difference of
means is (.000046, .000446), which has only positive
values. This omits 0 as a possibility, and says that the
conventional mean is higher.

b. With t ¼ 2.68 and P-value ¼ .010, reject at the .05
level the hypothesis of equal means in favor of the
conventional mean being higher.

43. With t ¼ 1.87 and a P-value of .049, the difference is
(barely) significantly greater than 5 at the .05 level.

45. a. No b. �49.1 c. 49.1

47. 1 2 3 4

x 10 20 30 40

y 11 21 31 41

49. a. Because |z| ¼ |�4.84| � 1.96, conclude that there is a
difference. Rural residents are more favorable to the
increase.

b. .9967

51. (.016, .171)

53. Because z ¼ 4.27 with P-value .000010, conclude that
the radiation is beneficial.

55. a. H0: p3 ¼ p2, Ha: p3 > p2
b. (X3 � X2)/n
c. ðX3 � X2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ X3

p
d. With z ¼ 2.67, P ¼ .004, reject H0 at the .01 level.

57. 769

59. Because z ¼ 3.14 with P ¼ .002, reject H0 at the .01
level. Conclude that lefties are more accident-prone.

61. a. .0175 b. .1642 c. .0200 d. .0448
e. .0035

63. No, because f ¼ 1.814 < 6.72 ¼ F.01,9,7.

65. Because f ¼ 1.2219 with P ¼ .505, there is no reason to
question the equality of population variances.

67. 8.10

69. a. (.158, .735)
b. Here is a macro that can be executed 999 times in

MINITAB:

# start with X in C1, Y in C2
let k3 ¼ N(c1)
let k4 ¼ N(c2)
sample k3 c1 c3;
replace.
sample k4 c2 c4;
replace.
let k1 ¼ mean(c3)-mean(c4)
stack k1 c5 c5
end

71. a. Here is a macro that can be executed 999 times in
MINITAB:
# start with X in C1, Y in C2
let k3 ¼ N(c1)
let k4 ¼ N(c2)
sample k3 c1 c3;
replace.
sample k4 c2 c4;
replace.
let k2 ¼ medi(c3)-medi(c4)
stack k2 c6 c6
end

73. a. (.593, 1.246)
b. Here is a macro that can be executed 999 times in

MINITAB:
# start with X in C1, Y in C2
let k3 ¼ N(c1)
let k4 ¼ N(c2)
sample k3 c1 c3;
replace.
sample k4 c2 c4;
replace.
let k5 ¼ stdev(c3)/stdev(c4)
stack k5 c12 c12
end

75. a. Because t ¼ �2.62 with a P-value of .018, conclude
that the population means differ. At the 5% level,
blueberries are significantly better.

b. Here is a macro that can be executed repeatedly in
MINITAB:
# start with data in C1, group var in C2
let k3 ¼ N(c1)
Sample k3 c1 c3.
unstack c3 c4 c5;
subs c2.
let k9 ¼ mean(c4)-mean(c5)
stack k9 c6 c6
end

77. a. Because f ¼ 4.46 with a two-tailed P-value of .122,
there is no evidence of unequal population variances.

b. Here is a macro that can be executed repeatedly in
MINITAB:
let k1 ¼ n(C1)
Sample K1 c1 c3.
unstack c3 c4 c5;
subs c2.
let k6 ¼ stdev(c4)/stdev(c5)
stack k6 c6 c6
end

79. a. A MINITAB macro is given in #75(b).

81. a. (�11.85, �6.40)
b. See Exercise 57(a) in Chapter 8.
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85. The difference is significant at the .05, .01, and .001
levels.

89. b. No, given that the 95% CI includes 0, the test at the
.05 level does not reject equality of means.

91. (�299.2, 1517.8)

93. (1020.2, 1339.9). Because 0 is not in the CI, we would
reject equality of means at the .01 level.

95. Because t ¼ 2.61 and the one-tailed P-value is .007, the
difference is significant at the .05 level using either a
one-tailed or a two-tailed test.

97. a. Because t ¼ 3.04 and the two-tailed P-value is .008,
the difference is significant at the .05 level.

b. No, the mean of the concentration distribution
depends on both the mean and standard deviation
of the log concentration distribution.

99. Because t ¼ 7.50 and the one-tailed P-value is .0000001,
the difference is highly significant, assuming normality.

101. The two-sample t is inappropriate for paired data. The
paired t gives a mean difference .3, t ¼ 2.67, and the
two-tailed P-value is .045, so the means are significantly
different at the .05 level. We are concluding tentatively
that the label understates the alcohol percentage.

103. Because paired t ¼ 3.88 and the two-tailed P-value is
.008, the difference is significant at the .05 and .01
levels, but not at the .001 level.

105. Because z ¼ 2.63 and the two-tailed P-value is .009,
there is a significant difference at the .01 level,
suggesting better survival at the higher temperature.

107. .902, .826, .029, .00000003

109. Because z ¼ 4.25 and the one-tailed P-value is .00001,
the difference is highly significant and companies
appear to discriminate.

111. With Z ¼ ðX � �YÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X=nþ �Y=m

p
, the result is

z ¼ �5.33, two-tailed P-value ¼ .0000001, so one
should conclude that there is a significant difference in
parameters.

113. (i) not bioequivalent (ii) not bioequivalent (iii)
bioequivalent

Chapter 11

1. a. Reject H0: m1 ¼ m2 ¼ m3 ¼ m4 ¼ m5 in favor of Ha:
m1, m2, m3, m4, m5 not all the same, because
f ¼ 5.57 � 2.69 ¼ F.05,4,30.

b. Using Table A.9, .001 < P-value < .01. (TheP-value
is .0018)

3. Because f ¼ 6.43 � 2.95 ¼ F.05,3,28, there are
significant differences among the means.

5. Because f ¼ 10.85 � 4.38 ¼ F.01,3,36, there are
significant differences among the means.

Source DF SS MS F P

Formation 3 509.1 169.7 10.85 0.000
Error 36 563.1 15.6
Total 39 1072.3

7. a. The Levene test gives f ¼ 1.47, P-value .236, so there
is no reason to doubt equal variances.

b. Because f ¼ 10.48 � 4.02 ¼ F.01,4,30, there are
significant differences among the means.

Source DF SS MS F P

Plate
length

4 43993 10998 10.48 0.000

Error 30 31475 1049

Total 34 75468

11. w ¼ 36.09 3 1 4 2 5

Splitting the paints into two groups, {3, 1, 4}, {2, 5},
there are no significant differences within groups but the
paints in the first group differ significantly (they are
lower) from those in the second group.

13. 3 1 4 2 5

427.5 462.0 469.3 502.8 532.1

15. w ¼ 5.92; At the 1% level the only significant
differences are between formation 4 and the first two
formations.

2 1 3 4

24.69 26.08 29.95 33.84

17. (�.029, .379)

19. 426

21. a. Because f ¼ 22.60 � 3.26 ¼ F.01,5,78, there are
significant differences among the means.

b. (�99.1, �35.7), (29.4, 99.1)

23. The nonsignificant differences are indicated by the
underscores.

10 6 3 1

45.5 50.85 55.40 58.28

25. a. Assume normality and equal variances.
b. Because f ¼ 1.71 < 2.20 ¼ F.10,3,48, P-value ¼ .18,

there are no significant differences among the means.

27. a. Because f ¼ 3.75, P-value ¼ .028, there are
significant differences among the means.

b. Because the normal plot looks fairly straight and the
P-value for the Levene test is .68, there is no reason to
doubt the assumptions of normality and constant
variance.

c. The only significant pairwise difference is between
brands 1 and 4:
4 3 2 1

5.82 6.35 7.50 8.27

31. .63

33. arcsinð ffiffiffiffiffiffiffi
x=n

p Þ
35. a. Because f ¼ 1.55 < 3.26 ¼ F.05,4,12, there are no

significant differences among the means.
b. Because f ¼ 2.98 < 3.49 ¼ F.05,3,12, there are no

significant differences among the means.

37. With f ¼ 5.49 � 4.56 ¼ F.01,5,15, there are significant
differences among the stimulus means. Although not all
differences are significant in the multiple comparisons
analysis, the means for combined stimuli were higher.
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Differences among the subject means are not very
important here. The normal plot of residuals shows no
reason to doubt normality. However, the plot of residuals
against the fitted values shows some dependence of the
variance on the mean. If logged response is used in place
of response, the plots look good and the F test result is
similar but stronger. Furthermore, the logged response
gives more significant differences in the multiple
comparisons analysis.

Means:

L1 L2 T L1 + L2 L1 + T L2 + T

24.825 27.875 29.1 40.35 41.22 45.05

39. With f ¼ 2.56 < 2.61 ¼ F.10,3,12, there are no significant
differences among the angle means.

41. a. With f ¼ 1.04 < 3.28 ¼ F.05,2,34, there are no
significant differences among the treatment means.

Source DF SS MS F

Treatment 2 28.78 14.39 1.04
Block 17 2977.67 175.16 12.68
Error 34 469.56 13.81
Total 53 3476.00

b. The very significant f for blocks, which shows that
blocks differ strongly, implies that blocking was
successful.

43. With f ¼ 8.69 � 6.01 ¼ F.01,2,18, there are significant
differences among the three treatment means.
The normal plot of residuals shows no reason to doubt
normality, and the plot of residuals against the fitted
values shows no reason to doubt constant variance.
There is no significant difference between treatments B
and C, but Treatment A differs (it is lower) significantly
from the others at the .01 level.
Means:

A 29.49 B 31.31 C 31.40

45. Because f ¼ 8.87 � 7.01 ¼ F01,4,8, reject the hypothesis
that the variance for B is 0.

49. a.

Source df SS MS F

A 2 30763.0 15381.5 3.79
B 3 34185.6 11395.2 2.81
Interaction 6 43581.2 7263.5 1.79
Error 24 97436.8 4059.9
Total 35 205966.6

b. Because 1.79 < 2.04 ¼ F.10,6,24, there is no
significant interaction.

c. Because 3.79 � 3.40 ¼ F.05,2,24, there is a significant
difference among the A means at the .05 level.

d. Because 2.81 < 3.01 ¼ F..05,6,24, there is no
significant difference among the B means at the .05
level.

e. Using w ¼ 64.93,

3 1 2

3960.2 4010.88 4029.10

(continued)

51. a. With f ¼ 1.55 < 2.81 ¼ F.10,2,12, there is no
significant interaction at the .10 level.

b. With f ¼ 376.27 � 18.64 ¼ F.001,2,12, there is a
significant difference between the formulation
means at the .001 level.
With f ¼ 19.27 � 12.97 ¼ F.001,1,12, there is a
significant difference among the speed means at the
.001 level.

c. Main effects Formulation: (1) 11.19, (2) –11.19
Speed: (60) 1.99, (70) –5.03, (80) 3.04

53. Here is the ANOVA table

Source DF SS MS F P

Pen 3 1387.5 462.50 0.68 0.583
surface 2 2888.1 1444.04 2.11 0.164
Interaction 6 8100.3 1350.04 1.97 0.149
Error 12 8216.0 684.67
Total 23 20591.8

With f ¼ 1.97 < 2.33 ¼ F.10,6,12, there is no significant
interaction at the .10 level.
With f ¼ .68 < 2.61 ¼ F.10,3,12, there is no significant
difference among the pen means at the .10 level.
With f ¼ 2.11 < 2.81 ¼ F.10,2,12, there is no significant
difference among the surface means at the .10 level.

57. a. F ¼ MSAB/MSE
b. A: F ¼ MSA/MSAB B: F ¼ MSB/MSAB

59. a. Because f ¼ 3.43 � 2.61 ¼ F.05,4,40, there is a
significant difference among the exam means at the
.05 level.

b. Because f ¼ 1.65 < 2.61 ¼ F.05,4,40, there is no
significant difference among the retention means at
the .05 level.

61. a.

Source DF SS MS F

Diet 4 .929 .232 2.15
Error 25 2.690 .108
Total 29 3.619

Because f ¼ 2.15 < 2.76 ¼ F.05,4,25, there is no
significant difference among the diet means at the .05
level.
b. (�.59, .92) Yes, the interval includes 0.
c. .53

63. a. Test H0: m1 ¼ m2 ¼ m3 versus Ha: the three means
are not all the same. With f ¼ 4.80 and F.05,2,16 ¼
3.63 < 4.80 < 6.23 ¼ F.01,2,16, it follows that
.01 < P-value < .05 (more precisely, P ¼ .023).
Reject H0 in favor of Ha at the 5% level but not at
the 1% level.

b. Only the first and third means differ significantly at
the 5% level.

1 2 3

25.59 26.92 28.17

65. Because f ¼ 1123 � 4.07 ¼ F.05,3,8, there are significant
differences among the means at the .05 level.
For Tukey multiple comparisons, w ¼ 7.12:
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PCM OCM RM PIM

29.92 33.96 125.84 129.30

The means split into two groups of two. The means within
each group do not differ significantly, but the means in
the top group differ strongly from the means in the
bottom group.

67. The normal plot is reasonably straight, so there is no
reason to doubt the normality assumption.

69.

Source DF SS MS F

A 1 322.667 322.667 980.5
B 3 35.623 11.874 36.1
AB 3 8.557 2.852 8.7
Error 16 5.266 .329
Total 23 372.113

With f ¼ 8.7 � 3.24 ¼ F.05,3,16, there is significant
interaction at the .05 level.
In the presence of significant interaction, main effects are
not very useful.

Chapter 12

1. a. Temperature

17 0

Stem: hundreds and tens
Leaf: ones

17 23
17 445
17 67
17
18 0000011
18 2222
18 445
18 6
18 8

The distribution is fairly symmetric and bell-shaped with
a center around 180.
Ratio

0 889

Stem: ones;
Leaf: tenths

1 0000
1 3
1 4444
1 66
1 8889
2 11
2
2 5
2 6
2
3 00

The distribution is concentrated between 1 and 2, with
some positive skewness.
b. No, x does not determine y: for a given x there may be

more than one y.

c. No, there is a wide range of y values for a given x; for
example when temperature is 18.2 the ratio ranges
from .9 to 2.68.

3. Yes. Yes.

5. b. Yes
c. The relationship of y to x is roughly quadratic.

7. a. 5050 psi b. 1.3 psi c. 130 psi d. �130 psi

9. a. .095 m3/min b. �.475 m3/min c. .83 m3/min,
1.305 m3/min d. .4207, .3446 e. .0036

11. a. �.01 h, �.10 h b. 3.0 h, 2.5 h
c. .3653 d. .4624

13. a. y ¼ .63 + .652x
b. 23.46, �2.46
c. 392, 5.72
d. .956
e. y ¼ 2.29 + .564x, r2 ¼ .688

15. a. y ¼ �15.2 + .0942x
b. 1.906
c. �1.006 , �0.096, 0.034, 0.774
d. .451

17. a. Yes
b. slope, .827; intercept, �1.13
c. 40.22
d. 5.24
e. .975

19. a. y ¼ 75.2 � .209x 54.274
b. The coefficient of determination is .791, meaning that

the predictor accounts for 79.1% of the variation in y.
c. The value of s is 2.56, so typical deviations from the

regression line will be of this size.

21. b. y ¼ �2.18 + .660x
c. 7.72
d. 7.72

25. b̂
0
0 ¼ 1:8b̂0 þ 32; b̂

0
1 ¼ 1:8b̂1

29. a. Subtracting �x from each xi shifts the plot �x units to
the left. The slope is left unchanged, but the new
y intercept is �y, the height of the old line at x ¼ �x.

b. b̂	0 ¼ �Y ¼ b̂0 þ b̂1�x and b̂	1 ¼ b̂1

31. a. .00189
b. .7101
c. No, because here Sðxi � �xÞ2is 24,750, smaller than the

value 70,000 in part (a), so Vðb̂1Þ ¼ s2=Sðxi � �xÞ2 is
higher here.

33. a. (.51, 1.40)
b. To test H0: b1 ¼ 1 vs. Ha: b1 < 1, we compute

t ¼ �.2258 > �1.383 ¼ �t.10,9, so there is no
reason to reject the null hypothesis, even at the 10%
level. There is no conflict between the data and the
assertion that the slope is at least 1.

35. a. b̂1 ¼ 1:536, and a 95% CI is (.632, 2.440)
b. Yes, for the test of H0: b1 ¼ 0 vs. Ha: b1 6¼ 0, we find

t ¼ 3.62, with P-value .0025. At the .01 level
conclude that there is a useful linear relationship.

c. Because 5 is beyond the range of the data, predicting
at a dose of 5 might involve too much extrapolation.
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d. b̂1 ¼ 1:683, and a 95% CI is (.531, 2.835).
Eliminating the point causes only moderate change,
so the point is not extremely influential.

37. a. Yes, for the test of H0: b1 ¼ 0 vs. Ha: b1 6¼ 0, we find
t ¼ �6.73, with P-value .00002. At the .01 level
conclude that there is a useful linear relationship.

b. (�2.77, –1.42)

43. No, z ¼ .73 and the P-value is .46, so there is no evidence
for a significant impact of age on kyphosis.

45. a. sŶ increases as the distance of x from �x increases
b. (2.26, 3.19)
c. (1.34, 4.11)
d. At least 90%

47. a. The regression equation is y ¼ �1:58þ 2:59x and
R2 ¼ .838.

b. A 95% confidence interval for the slope is ( 2.16,
3.01). In repetitions of the whole process of data
collection and calculation of the interval, roughly
95% of the intervals will contain the true slope.

c. When tannin ¼ .6 the estimated mean astringency is
�0.0335 and the 95% confidence interval is (�0.125,
0.058)

d. When tannin ¼ .6 the predicted astringency is
�0.0335 and the 95% prediction interval is
(�0.5582, 0.4912)

e. Our null hypothesis is that true average astringency
is 0 when tannin is .7, and the alternative is that the
true average is positive. The t for this test is 4.61, with
P-value ¼ .000035, so yes there is compelling
evidence.

49. (431.2, 628.6)

51. a. Yes, for the test of H0: b1 ¼ 0 vs. Ha: b1 6¼ 0,
we find t ¼ 10.62, with P-value .000014. At the
.001 level conclude that there is a useful linear
relationship.

b. (8.24, 12.96) With 95% confidence, when the flow
rate is increased by 1 SCCM, the associated expected
change in etch rate is in the interval.

c. (36.10, 40.41) This is fairly precise.
d. (31.86, 44.65) This is much less precise than the

interval in (c)
e. Because 2.5 is closer to the mean, the intervals will be

narrower.
f. Because 6 is outside the range of the data, it is

unknown whether the regression will apply there.
g. Use a 99% CI at each value: (23.88, 31.43), (29.93,

35.98), (35.07, 41.45)

53. a. Yes
b. Yes, for the test of H0: b1 ¼ 0 vs. Ha: b1 6¼ 0, we find

t ¼ �4.39, with P-value < .001. At the .001 level
conclude that there is a useful linear relationship.

c. (403.6, 468.2)

57. a. r ¼ .923, so x and y are strongly correlated.
b. unaffected
c. unaffected
d. The normal plots seem consistent with normality, but

the scatter plot shows a slight curvature.
e. For the test of H0: r ¼ 0 vs. Ha: r 6¼ 0, we find

t ¼ 7.59, with P-value .00002. At the .001 level
conclude that there is a useful linear relationship.

59. a. For the test of H0: r ¼ 0 vs. Ha: r > 0, we find
r ¼ .760, t ¼ 4.05, with P-value < .001. At the .001
level conclude that there is a positive correlation.

b. Because r2 ¼ .578 we say that the regression accounts
for 57.8 % of the variation in endurance. This also
applies to prediction of lactate level from endurance.

61. For the test of H0: r ¼ 0 vs. Ha: r 6¼ 0, we find r ¼ .773,
t ¼ 2.44, with P-value .072. At the .05 level conclude
that there is not a significant correlation. With such a
small sample size, a high r is needed for significance.

63. a. Reject the null hypothesis in favor of the alternative.
b. No, with a large sample size a small r can be

significant.
c. Because t ¼ 2.200 � 1.96 ¼ t.025,9998 the correlation

is statistically (but not necessarily practically)
significant at the .05 level.

67. a. .184, –.238, –.426
b. The mean that is subtracted is not the mean �x1;n�1 of

x1, x2,, . . ., xn–1, or the mean �x2;n of x2, x3,, . . ., xn.
Also, the denominator of r1 is notffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn�1

1 ðxi � �x1;n�1Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

2 ðxi � �x2;nÞ2
q

. However, if

n is large then r1 is approximately the same as the
correlation. A similar relationship applies to r2.

c. No
d. After performing one test at the .05 level, doing more

tests raises the probability of at least one type I error to
more than .05.

69. The plot shows no reasons for concern about using the
simple linear regression model.

71. a. The simple linear regression model may not be a
perfect fit because the plot shows some curvature.

b. The plot of standardized residuals is very similar to
the residual plot. The normal probability plot gives
no reason to doubt normality.

73. a. For the test of H0: b1 ¼ 0 vs. Ha: b1 6¼ 0, we find
t ¼ 10.97, with P-value .0004. At the .001 level
conclude that there is a useful linear relationship.

b. The residual plot shows curvature, so the linear
relationship of part (a) is questionable.

c. There are no extreme standardized residuals , and the
plot of standardized residuals is similar to the plot of
ordinary residuals.

75. The first data set seems appropriate for a straight-line
model. The second data set shows a quadratic
relationship, so the straight-line relationship is
inappropriate. The third data set is linear except for an
outlier, and removal of the outlier will allow a line to be
fit. The fourth data set has only two values of x, so there is
no way to tell if the relationship is linear.

77. a. To test for lack of fit, we find f ¼ 3.30, with 3
numerator df and 10 denominator df, so the P-value
is .079. At the .05 level we cannot conclude that the
relationship is poor.

b. The scatter plot shows that the relationship is not
linear, in spite of (a). In this case, the plot is more
sensitive than the test.

79. a. 77.3
b. 40.4
c. The coefficient b3 is the difference in sales caused by

the window, all other things being equal.
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81. a. .686, no
b. We find f ¼ 28.6 � 2.62 ¼ F.001,16,186, so there is a

significant relationship at the .001 level.
c. With all other predictors held constant, the estimated

difference in y between class A and not is .364. In
terms of $/ft2, the effect is multiplicative. Class A
buildings are estimated to be worth 44% more
dollars per square foot, with all other predictors held
constant.

d. The difference in (c) is highly significant because the
two-tailed P-value is .00000013.

83. a. 48.31, 3.69
b. No, because the interaction term will change.
c. Yes, f ¼ 18.92, P-value < .0001.
d. Yes, t ¼ 3.496, P-value ¼ .003 � .01
e. (21.6, 41.6)
f. There appear to be no problems with normality or

curvature, but the variance may depend on x1

85. a. No
b. With f ¼ 5.03 � 3.69 ¼ F.05,5,8, there is a significant

relationship at the .05 level.
c. Yes, the individual hypotheses deal with the issue of

whether an individual predictor can be deleted, not the
effectiveness of the whole model.

d. 6.2, 3.3, (16.7, 31.9)
e. With f ¼ 3.44 < 4.07 ¼ F.05,3,8, there is no reason to

reject the null hypothesis, so the quadratic terms can
be deleted.

87. a. The quadratic terms are important in providing a good
fit to the data.

b. A 95% PI is (.560, .771).

89. a. rRI ¼ .843 (.000), rRA ¼ .621 (.001), rIA ¼ .843
(.000) Here the P-values are given in parentheses to
three decimals.

b. Rating ¼ 2.24 + 0.0419 IBU – 0.166 ABV. Because
the two predictors are highly correlated, one is
redundant.

c. Linearity is an issue.
e. The regression is quite effective, with R2 ¼ .872. The

ABV coefficient is not significant, so ABV is not
needed. The highly significant positive coefficient
for IBU and negative coefficient for its square show
that Rating increases with IBU, but the rate of increase
is lower at higher IBU.

91. a. X ¼
1

1

1

1

�1

�1

1

1

�1

1

�1

1

2
664

3
775 y ¼

1

1

0

4

2
664

3
775,

4 0 0

0 4 0

0 0 4

2
4

3
5b̂ ¼

6

2

4

2
4

3
5 b. b̂ ¼

1:5
:5
1

2
4

3
5

c. ŷ ¼
0

2

1

3

2
664

3
775 y� ŷ ¼

1

�1

�1

1

2
664

3
775 SSE ¼ 4, MSE ¼ 4

d. (�12.2, 13.2)
e. For the test of H0: b1 ¼ 0 vs. Ha: b1 6¼ 0, we

find |t| ¼ .5 < t.025,1 ¼ 12.7, so do not reject H0 at
the .05 level. The x1 term does not play a significant
role.

f. Source DF SS MS F

Regression 2 5 2.5 0.625
Error 1 4 4.0
Total 3 9

With f ¼ .625 < 199.5 ¼ F.05,2,1, there is no
significant relationship at the .05 level.

93. b̂0 ¼ �y; s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðy� �yÞ2=ðn� 1Þ

q
;

c00 ¼ 1=n; �y� t:025;n�1s=
ffiffiffi
n

p

95. a. b̂0 ¼
1

mþ n

Xmþn

1
yi ¼�y;

b̂1 ¼
1

m

Xm

1
yi � 1

n

Xmþn

mþ1
yi ¼ �y1 � �y2

b. ŷi ¼ �y1; i ¼ 1; . . . ;m; ŷi ¼ �y2; i ¼ mþ 1; . . . ;mþ n

SSE ¼ Pm
1 ðyi � �y1Þ2 þ

Pmþn
mþ1 ðyi � �y2Þ2 s ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSE=ðmþ n� 2Þp
c11 ¼ 4/(m + n)

d. b̂0 ¼ 128:17; b̂1 ¼ 14:33 ŷi ¼ 121; i ¼ 1; . . . ; 3;
ŷi ¼ 135:33; i ¼ 4; . . . ; 6
SSE ¼ 116.67 s ¼ 5.4006 c11 ¼ 2/3
95% CI for b1 (2.09, 26.58)

97. Residual ¼ Dep Var – Predicted Value
Std Error Residual ¼ [MSE – (Std Error Predict)2].5

Student Residual ¼ Residual/Std Error Residual

101. a. Hij ¼ 1=nþ ðxi � �xÞðxj � �xÞ=Sðxk � �xÞ2
VðŶiÞ ¼ s2½1=nþ ðxi � �xÞ2=Sðxk � �xÞ2�

b. VðYi � ŶiÞ ¼ s2½1� 1=n� ðxi � �xÞ2=Sðxk � �xÞ2�
c. The variance of a predicted value is greater for an x

that is farther from �x
d. The variance of a residual is lower for an x that is

farther from �x
e. It is intuitive that the variance of prediction should be

higher with increasing distance. However, points that
are farther away tend to draw the line toward them,
so the residual naturally has lower variance.

103. a. With f ¼ 12.04 � 9.55 ¼ F.01,2,7, there is a
significant relationship at the .01 level.
To test H0: b1 ¼ 0 vs. Ha: b1 6¼ 0, |t| ¼
2.96 � t.025,7 ¼ 2.36, so reject H0 at the .05 level.
The foot term is needed.
To test H0: b2 ¼ 0 vs. Ha: b2 6¼ 0, |t| ¼
0.02 < t.025,7 ¼ 2.36, so do not reject H0 at the .05
level. The height term is not needed.

b. The highest leverage is .88 for the fifth point. The
height for this student is given as 54 inches, too low
to be correct for this group of students. Also this
value differs by 800 from the wingspan, an extreme
difference.

c. Point 1 has leverage .55, and this student has height
75, foot length 13, both quite high.
Point 2 has leverage .31, and this student has height
66 and foot length 8.5, at the low end.
Point 7 has leverage .31 and this student has both
height and foot length at the high end.

d. Point 2 has the most extreme residual. This student
has a height of 6600 and a wingspan of 5600 differing
by 1000, so the extremely low wingspan is probably
wrong.

e. For this data set it would make sense to eliminate
points 2 and 5 because they seem to be wrong.
However, outliers are not always mistakes and one
needs to be careful about eliminating them.
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105. a. .507% b. .7122
c. To test H0: b1 ¼ 0 vs. Ha: b1 6¼ 0, we have t ¼ 3.93,

with P-value .0013. At the .01 level conclude that
there is a useful linear relationship.

d. (1.056, 1.275)
e. ŷ ¼ 1:014 y� ŷ ¼ �:214

107. –36.18, (�64.43, –7.94)

109. No, if the relationship of y to x is linear, then the
relationship of y2 to x is quadratic.

111. a. Yes
b. ŷ ¼ 98:293 y� ŷ ¼ :117
c. s ¼ .155
d. .794
e. 95% CI for b1: (.0613, .0901)
f. The new observation is an outlier, and has a major

impact:
The equation of the line changes from
y ¼ 97.50 + .0757 x to y ¼ 97.28 + .1603 x
s changes from .155 to .291
r2 changes from .794 to .616

113. a. The paired t procedure gives t ¼ 3.54 with a two-
tailed P-value of .002, so at the .01 level we reject the
hypothesis of equal means.

b. The regression line is y ¼ 4.79 + .743x, and the test
of H0: b1 ¼ 0 vs. Ha: b1 6¼ 0, gives t ¼ 7.41 with a
P-value of <.000001, so there is a significant
relationship. However, prediction is not perfect,
with r2 ¼ .753, so one variable accounts for only
75% of the variability in the other.

117. a. linear
b. After fitting a line to the data, the residuals show a

lot of curvature.
c. Yes. The residuals from the logged model show some

departure from linearity, but the fit is good in terms
of R2 ¼ .988. We find â ¼ 411:98, b̂ ¼ �:03333:

d. (58.15, 104.18)

119. a. The plot suggests a quadratic model.
b. With f ¼ 25.08 and a P-value of < .0001, there is a

significant relationship at the .0001 level
c. CI: (3282.3, 3581.3), PI: (2966.6, 3897.0). Of course,

the PI is wider, as in simple linear regression,
because it needs to include the variability of a new
observation in addition to the variability of the mean.

d. CI: (3257.6, 3565.6), PI: (2945.0, 3878.2). These are
slightly wider than the intervals in (c),which is
appropriate, given that 25 is slightly closer to the
mean and the vertex.

e. With t ¼ �6.73 and a two-tailed P-value of
< .0001, the quadratic term is significant at the
.0001 level, so this term is definitely needed.

121. a. With f ¼ 2.4 < 5.86 ¼ F.05,15,4, there is no
significant relationship at the .05 level

b. No, especially when k is large compared to n
c. .9565

Chapter 13

1. a. reject H0 b. do not reject H0 c. do not reject
H0 d. do not reject H0

3. Do not reject H0 because w2 ¼ 1:57 < 7:815 ¼ w2:05;3

5. Because w2 ¼ 6.61 with P-value .68, do not reject H0.

7. Because w2 ¼ 4.03 with P-value > .10, do not reject H0.

9. a. [0, .223), [.223, .510), [.510, .916), [.916, 1.609).
[1.609, 1)

b. Because w2 ¼ 1.25 with P-value > .10, do not reject
H0.

11. a. (�1, �.967), [�.967, �.431), [�.431, 0), [0, .431),
[.431, .967), [.967, 1)

b. (�1,.49806), [.49806, .49914), [.49914, .50), [.50,
.50086), [.50086, .50194), [.50194, 1)

c. Because w2 ¼ 5.53 with P-value > .10, do not reject
H0.

13. Using p̂ ¼ :0843, w2 ¼ 280.3 with P-value < .001, so
reject the independence model.

15. The likelihood is proportional to y233(1 – y)367 from
which ŷ ¼ :3883. This gives estimated probabilities
.1400, .3555, .3385, .1433, .0227 and expected counts
21.00, 53.32, 50.78, 21.49, 3.41. Because 3.41 < 5,
combine the last two categories, giving w2 ¼ 1.62 with
P-value > .10. Do not reject the binomial model.

17. l̂ ¼ 3:167 which gives w2 ¼ 103.9 with P-value < .001,
so reject the assumption of a Poisson model.

19. ŷ1 ¼ :4275; ŷ2 ¼ :2750 which gives w2 ¼ 29.3 with P-
value < .001, so reject the model.

21. Yes, the test gives no reason to reject the null hypothesis
of a normal distribution.

23. The P-values are both .243.

25. Let pi1 ¼ the probability that a fruit given treatment i
matures and pi2 ¼ the probability that a fruit given
treatment i aborts, so Ho: pi1 ¼ pi2 for i ¼ 1, 2, 3, 4, 5.
We find w2 ¼ 24.82 with P-value < .001, so reject the
null hypothesis and conclude that maturation is affected
by leaf removal.

27. If pij denotes the probability of a type j response when
treatment i is applied, then H0: p1j ¼ p2j ¼ p3j ¼ p4j for
j ¼ 1, 2, 3, 4. With w2 ¼ 27:66 � 23:587 ¼ w2:005;9,
reject H0 at the .005 level. The treatment does affect the
response.

29. With w2 ¼ 64:65 � 13:277 ¼ w2:01;4, reject H0 at the .001
level. Political views are related to marijuana usage. In
particular, liberals are more likely to be users.

31. Compute the expected counts by

êijk ¼ np̂ijk ¼ np̂i��p̂�j�p̂��k ¼ n ni��
n

n�j�
n

n��k
n . For the

w2 statistic df ¼ 20.

33. a. With w2 ¼ :681 < 4:605 ¼ w2:10;2, do not reject
independence at the .10 level.

b. With w2 ¼ 6:81 � 4:605 ¼ w2:10;2, reject independence
at the .10 level.

c. 677

35. a. With w2 ¼ 6.45 and P-value .040, reject independence
at the .05 level.

b. With z ¼ �2.29 and P-value .022, reject
independence at the .05 level.

Chapter 13 833



c. Because the logistic regression takes into account the
order in the professorial ranks, it should be more
sensitive, so it should give a lower P-value.

d. There are few female professors but many assistant
professors, and the assistant professors will be the
professors of the future.

37. With w2 ¼ 13:005 � 9:210 ¼ w2:01;2, reject the null
hypothesis of no effect at the .01 level. Oil does make a
difference (more parasites).

39. a. H0: The population proportion of Late Game
Leader Wins is the same for all four sports; Ha: The
proportion of Late Game Leader Wins is not the same
for all four sports. With w2 ¼ 10:518 � 7:815 ¼ w2:05;3,
reject the null hypothesis at level .05. Sports differ in
terms of coming from behind late in the game.

b. Yes (baseball)

41. With w2 ¼ 197:6 � 16:812 ¼ w2:01;6, reject the null
hypothesis at the .01 level. The aged are more likely to
die in a chronic-care facility.

43. With w2 ¼ :763 < 7:779 ¼ w2:10;4, do not reject the
hypothesis of independence at the .10 level. There is no
evidence that age influences the need for item pricing.

45. a. No, w2 ¼ 9:02 � 7:815 ¼ w2:05;3.
b. With w2 ¼ :157 < 6:251 ¼ w2:10;3, there is no reason to

say the model does not fit.

47. a. H0: p0 ¼ p1 ¼ . . . ¼ p9 ¼ .10 vs. Ha: at least one
pi 6¼ .10, with df ¼ 9.

b. H0: pij ¼ .01 for i and j ¼ 0,1,2,. . .,9 vs. Ha: at least
one pij 6¼ .01, with df ¼ 99.

c. No, there must be more observations than cells to do a
valid chi-square test.

d. The results give no reason to reject randomness.

Chapter 14

1. For a two-tailed test of H0: m ¼ 100 at level .05, we
find that s+ ¼ 27 and because 14 < s+ < 64, we do not
reject H0.

3. For a two-tailed test of H0: m ¼ 7.39 at level .05, we find
that s+ ¼ 18 and because s+ does not satisfy
21 < s+ < 84, we reject H0.

5. We form the difference and perform a two-tailed test of
H0: m ¼ 0 at level .05. This gives s+ ¼ 72 and because
it does not satisfy 14 < s+ < 64, we reject H0 at the
.05 level.

7. Because s+ ¼ 162.5 with P-value .044, reject H0: m ¼ 75
in favor of Ha: m > 75 at the .05 level.

9. With w ¼ 38, reject H0 at the .05 level because the
rejection region is {w � 36}.

11. Test H0: m1 – m2 ¼ 1 vs. Ha: m1 – m2 > 1. After
subtracting 1 from the original process measurements,
we get w ¼ 65. Do not reject H0 because w < 84.

13. b. Test H0: m1 – m2 ¼ 0 vs. Ha: m1 – m2 < 0. With a
P-value of .002 we reject H0 at the .01 level.

15. With w ¼ 135, z ¼ 2.223, and the approximate P-value
is .026, so we would not reject the null hypothesis at the
.01 level.

17. (11.15, 23.80)

19. (�.585, .025)

21. (16, 87)

29. a. (.4736, .6669)
b. (.4736, .6669)

33. For a two-tailed test at level .05, we find that s+ ¼ 24 and
because 4 < s+ < 32, we do not reject the hypothesis of
equal means.

35. a. a ¼ .0207; Bin(20, .5)
b. c ¼ 14; because y ¼ 12, do not reject H0

37. With K ¼ 20:12 � 13:277 ¼ w2:01;4, reject the null hypo-
thesis of equal means at the 1% level. Axial strength does
seem to (as an increasing function) depend on plate
length.

39. Because fr ¼ 6:45 < 7:815 ¼ w2:05;3, do not reject the null
hypothesis of equal emotion means at the 5% level.

41. Because w0 ¼ 26 < 27, do not reject the null hypothesis
at the 5% level.
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Index

A
Additive model

for ANOVA, 584–6, 589

for linear regression analysis, 624

for multiple regression

analysis, 682

Alternative hypothesis, 426

Analysis of covariance, 699

Analysis of variance (ANOVA)

additive model for, 584–586,

597

data transformation for, 579

definition of, 552

expected value in, 556, 573,

589, 597

fixed vs. random effects, 579

Friedman test, 785

fundamental identity of, 560,

564, 587, 599, 600, 635

interaction model for, 597–606

Kruskal–Wallis test, 784

Levene test, 562–563

linear regression and, 636, 639,

664, 708, 717

mean in, 553, 555, 557

mixed effects model for,

593, 603

multiple comparisons in,

564–571, 578, 589–590, 603

noncentrality parameter for,

574, 582

notation for, 555, 559, 598

power curves for, 574–575

randomized block experiments

and, 590–593

regression identity of, 635–636

sample sizes in, 574–576

single-factor, 553–582

two-factor, 582–608

type I error in, 558–559

type II error in, 574

Ansari–Bradley test, 786

Association, causation and, 251, 671

Asymptotic normal distribution, 298,

371, 375, 377, 671

Asymptotic relative efficiency,

764, 769

Autocorrelation coefficient, 674

Average

definition of, 25

deviation, 33

pairwise, 379, 772–773, 775

rank, 785

weighted (see Weighted average)

B
Bar graph, 9, 19

Bartlett’s test, 562

Bayesian approach to inference, 758,

776–782

Bayes’ Theorem, 79–81, 777, 780

Bernoulli distribution, 104, 122, 134,

302 373, 375, 377, 777

Bernoulli random variable

binomial random variable and,

134, 302

Cramér–Rao inequality for, 375

definition of, 98

expected value, 113

Fisher information on, 372–373,

377

Laplace’s rule of succession

and, 782

mean of, 113

mle for, 377

moment generating function for,

122, 123, 127

pmf of, 103

score function for, 372

in Wilcoxon’s signed-rank

statistic, 314

Beta distribution, 206–208, 777

Beta functions, incomplete, 207

Bias-corrected and accelerated

interval, 415, 417, 538

Bimodal histogram, 18, 19

Binomial distribution

basics of, 128–135

Bayesian approach to, 777–780

multinomial distribution and, 240

normal distribution and,

189–190, 302

Poisson distribution and,

147–149

Binomial experiment, 130–131, 134,

147, 240, 302, 724

Binomial random variable

Bernoulli random variables and,

134, 302

cdf for, 132

definition of, 130

distribution of, 132

expected value of, 134, 135

in hypergeometric experiment,

141

in hypothesis testing, 428–431,

450–454

mean of, 134–135

moment generating function for,

135

multinomial distribution of, 240

in negative binomial experiment,

142

normal approximation of,

189–190, 302

pmf for, 132

and Poisson distribution,

147–149

standard deviation of, 134

unbiased estimation, 335, 337

variance of, 134, 135

Binomial theorem, 135, 142–144

Bioequivalence tests, 551



Birth process, pure, 378

Bivariate data, 3, 617, 623, 632,

691, 721

Bivariate normal distribution,

258–260, 310, 318, 477,

667–671

Bonferroni confidence intervals,

424, 657–659, 689

Bootstrap procedure

for confidence intervals,

411–418, 532–534

for paired data, 538–540

for point estimates, 345–346

Bound on the error of estimation, 388

Box–Muller transformation, 271

Boxplot, 37–41

comparative, 40–41

Branching process, 281

C
Categorical data

classification of, 30

graphs for, 19

in multiple regression analysis,

696–699

Pareto diagram, 24

sample proportion in, 30

Cauchy distribution

mean of, 322, 342

median of, 342

minimal sufficiency for, 367

reciprocals and, 231

standard normal distribution

and, 271

uniform distribution and, 226

variance of sample mean

for, 349

Causation, association and, 251, 671

cdf. See Cumulative distribution

function

Cell counts/frequencies, 725–727,

729–730, 732–740, 744–750

Cell probabilities, 729, 732, 737, 739

Censored experiments, 32, 343–344

Census, 2

Central Limit Theorem

basics of, 298–303

Law of Large Numbers and, 305

proof of, 329–330

sample proportion distribution

and, 190

Wilcoxon rank-sum test and, 770

Wilcoxon signed-rank test

and, 765

Central t distribution, 320–323, 423
Chebyshev’s inequality, 120, 138,

156, 194, 303, 345

Chi-squared distribution

censored experiment and, 421

in confidence intervals,

389–390, 410

critical values for, 317, 389,

409–410, 477, 725, 727,

737–738

definition of, 200

degrees of freedom for, 200, 315

exponential distribution

and, 317

F distribution and, 323–325

gamma distribution and, 200, 315

in goodness-of-fit tests, 720–751

Rayleigh distribution and, 226

standard normal distribution

and, 224, 316–317, 325

of sum of squares, 317, 557

t distribution and, 320, 325

in transformation, 224

Weibull distribution and, 231

Chi-squared random variable

in ANOVA, 557

cdf for, 316

expected value of, 315

in hypothesis testing, 482

in likelihood ratio tests, 477, 480

mean of, 315

moment generating function

of, 315

pdf of, 200, 315

standard normal random

variables and, 224,

316–317, 325

in Tukey’s procedure, 565

variance of, 315

Chi-squared test

degrees of freedom in, 726, 734,

736, 745, 748

for goodness of fit, 724-730,

for homogeneity, 745–747

for independence, 747–749

P-value for, 727–728
for specified distribution,

729–730

z test and, 752
Class intervals, 15–17, 278, 293,

738–739

Coefficient of determination

definition of, 632–634, 686

F ratio and, 687

in multiple regression, 686

sample correlation coefficient

and, 664

Coefficient of skewness, 121,

128, 178

Coefficient of variation, 45, 229, 357

Cohort, 281

Combination, 70–72

Comparative boxplot, 40–41, 502,

503, 554

Complement of an event, 53, 60

Compound event, 52, 62

Concentration parameter, 779

Conceptual population, 6, 113,

287, 487

Conditional density, 253

Conditional distribution, 253–263,

361, 369, 667, 735, 758, 777

Conditional mean, 255–262

Conditional probability, 74–81,

84–85, 200, 253–255, 362,

365–366

Conditional probability density

function, 253

Conditional probability mass

function, 253, 255

Conditional variance, 255–262, 367

Confidence bound, 398–399, 403,

440, 494, 500, 513

Confidence interval

adjustment of, 400

in ANOVA, 565, 570–571, 578,

589, 591, 603

based on t distribution, 401–404,
499–501, 505, 513–515,

570–571, 643–646

Bonferroni, 424, 657-659

bootstrap procedure for,

411–418, 538, 540, 532–534

for a contrast, 571

for a correlation coefficient, 671

vs. credibility interval, 777–781

definition of, 382

derivation of, 389

for difference of means, 493–495,

500–501, 505, 513–515,

532–534, 539–540, 565–569,

578, 589, 591, 603

for difference of proportions, 524

distribution-free, 771–776

for exponential distribution

parameter, 389

in linear regression, 643–646,

656–658

for mean, 383–387, 392,

403–404, 411–415

for median, 415–417

in multiple regression, 689, 712

one-sided, 398, 500, 513

for paired data, 513–515, 539

for ratio of variances, 530–531, 537

sample size and, 388

Scheffé method for, 610

sign, 784

for slope coefficient, 643

for standard deviation, 409–410

for variance, 409–410

width of, 385, 387–388, 394, 397,

404, 417, 495
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Wilcoxon rank-sum, 774–776

Wilcoxon signed-rank, 772-774

Confidence level

definition of, 382, 385–388

simultaneous, 565–570, 578,

589, 591, 658

in Tukey’s procedure, 565–570,

578, 589, 591

Confidence set, 772

Consistency, 304, 357, 375–377

Consistent estimator, 304, 357,

375–377

Contingency tables, two-way,

744–751

Continuity correction, 189–190

Continuous random variable(s)

conditional pdf for, 254, 789

cumulative distribution function

of, 163–168

definition of, 99, 159

vs. discrete random variable, 162

expected value of, 171–172

joint pdf of (see Joint probability
density functions)

marginal pdf of, 236–238

mean of, 171, 172

moment generating of, 175–177

pdf of (see Probability density

function)

percentiles of, 166–168

standard deviation of, 173–175

transformation of, 220–225,

265–270

variance of, 173–175

Contrast of means, 570–571

Convenience samples, 7

Convergence

in distribution, 153, 329

in mean square, 303

in probability, 304

Convex function, 231

Correction factor, 141, 560, 568,

577, 582

Correction for the mean, 560

Correlation coefficient

autocorrelation coefficient and, 674

in bivariate normal distribution,

258–260, 310, 667

confidence interval for, 671

covariance and, 249

Cramér–Rao inequality and,

374–375

definition of, 249, 663

estimator for, 666

Fisher transformation, 669

for independent random

variables, 250

in linear regression, 664, 667, 669

measurement error and, 328

paired data and, 515–516

sample (see Sample correlation

coefficient)

Covariance

correlation coefficient and, 249

Cramér–Rao inequality and,

374–375

definition of, 247

of independent random

variables, 250–251

of linear functions, 249

matrix format for, 711

Covariate, 699

Cramér–Rao inequality, 374–375

Credibility interval, 777–782

Critical values

chi-squared, 317

F, 324
standard normal (z), 184

studentized range, 565

t, 322, 409
tolerance, 406

Cumulative distribution function

for a continuous random

variable, 163–168

for a discrete random variable,

104–108

inverse function of, 223–224

joint, 282

of order statistics, 272–273

pdf and, 163

percentiles and, 167

pmf and, 105–108

transformation and, 220–225

Cumulative frequency, 24

Cumulative relative frequency, 24

D
Data

bivariate, 3, 617, 632, 691

categorical (see Categorical data)
censoring of, 32, 343–344

characteristics of, 3

collection of, 7–8

definition of, 2

multivariate, 3, 220

qualitative, 19

univariate, 3

Deductive reasoning, 6

Degrees of freedom (df)

in ANOVA, 557–559,

587, 599

for chi-squared distribution,

200, 315–320

in chi-squared tests, 726, 734,

737, 746

for F distribution, 323

in regression, 631, 685

sample variance and, 35

for Studentized range

distribution, 565

for t distribution, 320, 390,
500, 504

type II error and, 574

Delta method, 174

De Morgan’s laws, 56

Density

conditional, 253–257

curve, 160

function (pdf), 160

joint, 235

marginal, 236

scale, 17

Dependence, 84–88, 238–242, 250,

257, 747

Dependent events, 84-88

Dependent variable, 614

Descriptive statistics, 1–41

Deviation

definition of, 33

minimize absolute deviations

principle, 33, 679

Dichotomous trials, 128

Difference statistic, 347

Discrete random variable(s)

conditional pmf for, 253

cumulative distribution function

of, 104–108

definition of, 99

expected value of, 112

joint pmf of (see Joint probability
mass function)

marginal pmf of, 234

mean of, 112

moment generating of, 122

pmf of (see Probability mass

function)

standard deviation of, 117

transformation of, 225

variance of, 117

Disjoint events, 54

Dotplots, 12

Dummy variable, 696

Dunnett’s method, 571

E
Efficiency, asymptotic relative,

764, 769

Empirical rule, 187

Erlang distribution, 202, 229

Error(s)

estimated standard, 344, 646, 713

estimation, 334

family vs. individual, 570

measurement, 179, 211, 337, 477

prediction, 405, 658, 683

rounding, 36

standard, 344, 713

Index 837



Error(s) (cont.)
type I, 429

type II, 429

Estimated regression function,

676, 685

Estimated regression line, 625

Estimated standard error, 344,

646, 713

Estimator, 332

Event(s)

complement of, 53

compound, 52, 62

definition of, 52

dependent, 84–88

disjoint, 54

exhaustive, 79

independent, 84–88

indicator function for, 364

intersection of, 53

mutually exclusive, 54

mutually independent, 87

simple, 52

union of, 53

Venn diagrams for, 55

Expected mean squares

in ANOVA, 573, 577, 600, 614

F test and, 589, 593, 600, 604

in mixed effects model, 593, 604

in random effects model, 580,

593–594

in regression, 681

Expected value

conditional, 255

of a continuous random

variable, 171

covariance and, 247

of a discrete random variable, 112

of a function, 115, 245–246

heavy-tailed distribution and,

114–115, 120

of jointly distributed random

variables, 245

Law of Large Numbers and, 303

of a linear combination, 306

of mean squares (see Expected
mean squares)

moment generating function

and, 122, 175

moments and, 121

in order statistics, 272–273, 277

of sample mean, 277, 296

of sample standard deviation,

340, 379

of sample total, 296

of sample variance, 339

Experiment

binomial, 128, 240, 724

definition of, 52

double-blind, 523

observational studies in, 488

paired data, 515

paired vs. independent samples,

520–521

randomized block, 590–593

randomized controlled, 489

repeated measures designs in, 591

with replacement, 69, 141, 287

retrospective, 488

simulation, 291–294

Explanatory variable, 614

Exponential distribution

censored experiments and, 343

chi-squared distribution

and, 317

confidence interval for

parameter, 389

double, 477

estimators for parameter, 343, 351

goodness-of-fit test for, 739

mixed, 229

in pure birth process, 378

shifted, 360, 479

skew in, 277

standard gamma distribution

and, 198

Weibull distribution and, 203

Exponential random variable(s)

Box–Muller transformation

and, 271

cdf of, 199

expected value of, 198

independence of, 242

mean of, 198

in order statistics, 272, 275

pdf of, 198

transformation of, 220, 267, 270

variance of, 198

Exponential regression model, 721

Exponential smoothing, 48

Extreme outliers, 39–41

Extreme value distribution, 217

F
Factorial notation, 69

Factorization theorem, 363

Factors, 552

Failure rate function, 230

Family of probability distributions,

104, 213

F distribution

chi-squared distribution and, 323

definition of, 323

expected value of, 325

for model utility test, 649, 687, 709

noncentral, 574–575

pdf of, 324

Finite population correction factor, 141

Fisher information, 371

Fisher–Irwin test, 525

Fisher transformation, 669

Fitted values, 588, 629, 674

Fixed effects model, 579, 592, 597

Fourth spread, 37, 41, 285

Frequency, 13

Frequency distribution, 13

Friedman’s test, 785

F test

in ANOVA, 558, 580, 587,

593, 600

Bartlett’s test and, 562
coefficient of determination

and, 687

critical values for, 324, 528, 558

distribution and, 323, 527, 558

for equality of variances, 527, 537

expected mean squares and, 573,

589, 593, 600, 604

Levene test and, 562

power curves and, 574–575

P-value for, 529, 537, 559
in regression, 687, 709

sample sizes for, 574

single-factor, 558, 580

vs. t test, 576
two-factor, 587, 593, 600

type II error in, 574

Full quadratic model, 695

G
Galton–Watson branching process,

281

Gamma distribution

chi-squared distribution and, 200

definition of, 195

density function for, 195

Erlang distribution and, 201

estimators of parameters, 351,

355, 358

exponential distribution and,

198–200

Poisson distribution and, 783

standard, 195

Weibull distribution and, 203

Gamma function

incomplete, 196, 217

properties of, 195

Gamma random variables, 195

Geometric distribution, 143, 225

Geometric random variables, 143

Goodness-of-fit test

for composite hypotheses,

732, 741

definition of, 723

for homogeneity, 745–747

for independence, 747–749

simple, 724–730

Grand mean, 555, 584
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H
Half-normal plot, 220

Histogram

bimodal, 18

class intervals in, 15–17

construction of, 12–20

density, 17–18

multimodal, 19

Pareto diagram, 24

for pmf, 103

symmetric, 19

unimodal, 18

Hodges–Lehmann estimator, 379

Homogeneity, 745–747

Hyperexponential distribution, 229

Hypergeometric distribution,

138–141

and binomial distribution, 141

Hypergeometric random variable,

138–141

Hypothesis

alternative, 426

composite, 732–741, 744

definition of, 426

errors in testing of, 428–434

notation for, 426

null, 426

research, 427

simple, 469

Hypothetical population, 6

I
Inclusive inequalities, 136

Incomplete beta function, 207

Incomplete gamma function,

196–197, 217

Independence

chi-squared test for, 749

conditional distribution and,

257–258

correlation coefficient

and, 250

covariance and, 250, 252

of events, 84–88

of jointly distributed random

variables, 238–239, 241

in linear combinations, 306–307

mutual, 87

pairwise, 90, 94

in simple random sample, 287

Independent variable, 614

Indicator variables, 696

Inductive reasoning, 6

Inferential statistics, 5–6

Inflection point, 180

Intensity function, 156

Interaction, 597–602, 603–606,

693–698

Intercept, 214, 617, 627

Intersection of events

definition of, 53

multiplication rule for probability

of, 77–79

Invariance principle, 357

Inverse matrix, 712

J
Jacobian, 267

Jensen’s inequality, 231

Joint cumulative distribution

function, 282

Jointly distributed random variables

bivariate normal distribution

of, 258–260

conditional distribution of,

253–263

correlation coefficients for, 249

covariance between, 248

expected value of function of,

245–246

independence of, 238–239

linear combination of, 306–312

in order statistics, 274–276

pdf of (see Joint probability
density functions)

pmf of (see Joint probability mass

functions)

transformation of, 265–270

variance of function of, 252, 307

Joint marginal density function, 245

Joint probability mass function,

233–234

Joint probability table, 233

K
k-out-of-n system, 153

Kruskal–Wallis test, 784–785

k-tuple, 68–69

L
lag 1 autocorrelation coefficient, 674

Laplace distribution, 478

Laplace’s rule of succession, 782

Largest extreme value distribution, 228

Law of Large Numbers, 303–304,

322–323, 376

Law of total probability, 79

Least squares estimates, 626, 645,

679, 683–684

Level a test, 433

Level of a factor, 552, 583, 593

Levene test, 562–563

Leverages, 714–715

Likelihood function, 354, 470, 475

Likelihood ratio

chi-squared statistic for, 477

definition of, 470

mle and, 475

model utility test and, 721

in Neyman–Pearson theorem, 470

significance level and, 470, 471

sufficiency and, 380

tests, 475

Limiting relative frequency, 58, 59

Linear combination

distribution of, 309

expected value of, 306

independence in, 306

variance of, 307

Linear probabilistic model, 617, 627

Linear regression

additive model for, 614, 682, 705

ANOVA in, 649, 699, 768

confidence intervals in, 643, 656

correlation coefficient in,

662–671

definition of, 617

degrees of freedom in, 631,

685, 708

least squares estimates in,

625–636, 679

likelihood ratio test in, 721

mles in, 631, 639

model utility test in, 648, 687, 708

parameters in, 617, 624–636, 682

percentage of explained variation

in, 633–634

prediction interval in, 654, 658, 689

residuals in, 629, 674, 685

summary statistics in, 627

sums of squares in, 631–636, 686

t ratio in, 648, 669, 690

Line graph, 102–103

Location parameter, 217, 367

Logistic distribution, 279

Logistic regression model

contingency tables for, 749–751

definition of, 620–622

fit of, 650–651

mles in, 650

inmultiple regression analysis, 699

Logit function, 621, 650

Lognormal distribution, 205–205, 233

Lognormal randomvariables, 205–206

M
Mann–Whitney test, 766–770

Marginal distribution, 234, 236, 253

Marginal probability density

functions, 236

Marginal probability mass

functions, 234

Matrices in regression analysis,

705–715

Maximum likelihood estimator

for Bernoulli parameter, 377

for binomial parameter, 377
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Maximum likelihood estimator

(cont.)
Cramér–Rao inequality and, 375

data sufficiency for, 369

Fisher information and, 371, 375

for geometric distribution

parameter, 742

in goodness-of-fit testing, 733

in homogeneity test, 745

in independence test, 748

in likelihood ratio tests, 475

in linear regression, 631, 639

in logistic regression, 650

sample size and, 357

score function and, 377

McNemar’s test, 526, 550

Mean

of Cauchy distribution, 322,

342, 761

conditional, 255–257

correction for the, 560

deviations from the, 33, 206, 563,

631, 739

of a function, 115, 245–246

vs. median, 28

moments about, 121

outliers and, 27, 28

population, 26

regression to the, 260, 636

sample, 25

of sample total, 296

See also Average

Mean square

expected, 573, 589, 593, 594,

600, 604

lack of fit, 681

pure error, 681

Mean square error

definition of, 335

of an estimator, 335

MVUE and, 341

sample size and, 337

Measurement error, 337

Median

in boxplot, 37–38

of a distribution, 27, 28

as estimator, 378, 478

vs. mean, 28

outliers and, 26, 28, 29

population, 28

sample, 27, 271

statistic, 378

Mendel’s law of inheritance, 726–728

M-estimator, 359, 381

Midfourth, 46

Midrange, 333

Mild outlier, 39, 393

Minimal sufficient statistic,

366–367, 369

Minimize absolute deviations

principle, 477, 679

Minimum variance unbiased

estimator, 341–343, 358,

369, 375

Mixed effects model, 593–603

Mixed exponential distribution, 229

mle. See Maximum likelihood

estimate

Mode

of a continuous distribution,

228, 229

of a data set, 46

of a discrete distribution, 156

Model utility test, 647–649

Moment generating function

of a Bernoulli rv, 122, 127

of a binomial rv, 135

of a chi-squared rv, 315

CLT and, 329–330

of a continuous rv, 175–177

definition of, 122, 175

of a discrete rv, 122–127

of an exponential rv, 221

of a gamma rv, 195

of a linear combination, 311

and moments, 124, 176

of a negative binomial rv, 143

of a normal rv, 191

of a Poisson rv, 149

of a sample mean, 329–330

uniqueness property of, 123, 176

Moments

definition of, 121

method of, 350–352, 358, 740

and moment generating function,

124, 176

Monotonic, 221, 353

Multimodal histogram, 19

Multinomial distribution, 240, 725

Multinomial experiment, 240, 724

Multiple regression

additive model, 682, 705

categorical variables in, 696–699

coefficient of multiple

determination, 686, 709

confidence intervals in, 712

covariance matrices in, 711–713

degrees of freedom in, 685,

696, 708

diagnostic plots, 691

fitted values in, 685

F ratio in, 687, 709

interaction in models for, 693–698

leverages in, 714–715

logistic regression model, 699

in matrix/vector format, 705–715

model utility test in, 687,

708–709

normal equations in, 683, 685,

705–708

parameters for, 682

and polynomial regression,

691–693

prediction interval in, 689

principle of least squares in,

683–706

residuals in, 685, 691, 688, 691,

708, 713

squared multiple correlation in,

686, 709

sum of squares in, 686, 708–710

t ratios in, 690, 712
Multiplication rule, 77–88

Multiplicative exponential

regression model, 721

Multiplicative power regression

model, 721

Multivariate data, 3, 20

Multivariate hypergeometric

distribution, 244

Mutually exclusive events, 54, 79

MVUE. See Minimum variance

unbiased estimator

N
Negative binomial distribution,

141–144

definition of, 141

estimation of parameters, 352, 738

Negative binomial random

variable, 141

Newton’s binomial theorem, 143

Neyman factorization theorem, 363

Neyman–Pearson theorem, 470–475

Noncentrality parameter, 423,

574, 582

Noncentral t distribution, 423
Nonhomogeneous Poisson

process, 156

Nonstandard normal distribution,

185–188

Normal distribution

asymptotic, 298, 371, 375, 377

binomial distribution and,

189–190, 302

bivariate, 258–260, 310, 318,

477, 677–671

confidence interval for mean of,

383–388, 392, 398, 403

continuity correction and, 189–190

density curves for, 180

and discrete random variables,

188–190

goodness-of-fit test for, 730, 740

of linear combination, 309

lognormal distribution and,

205, 303
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nonstandard, 185–188

pdf for, 179

percentiles for, 182–188, 210

probability plot, 210, 740

Ryan–Joiner test for, 747

standard, 181

t distribution and, 320–322, 325,

402

z table, 181–183
Normal equations, 626, 683, 705

Normal probability plot, 210, 740

Normal random variable, 181

Null distribution, 443–444, 760, 780

Null hypothesis, 426

Null set, 54, 57

Null value, 427, 436

O
Observational study, 488

Odds ratio, 621–622, 750–751

One-sided confidence interval,

398–399

Operating characteristic curve, 137

Ordered categories, 749–751

Ordered pairs, 66–67

Order statistics, 271–278, 338,

365–367, 478

sufficiency and, 365–367

Outliers

in a boxplot, 37–41

definition of, 11

extreme, 39–41

leverage and, 714

mean and, 29, 415–417

median and, 29, 37, 415, 417

mild, 39

in regression analysis, 679, 688

P
Paired data

in before/after experiments,

511, 526

bootstrap procedure for, 538–540

confidence interval for, 513–515

definition of, 509

vs. independent samples, 515

in McNemar’s test, 550

permutation test for, 540–541

t test for, 511–513
in Wilcoxon signed-rank test,

762–763

Pairwise average, 772, 773, 775

Pairwise independence, 94

Parallel connection, 55, 88, 89, 90,

272, 273

Parameter(s)

Bayesian approach to, 776–782

concentration, 779

confidence interval for, 389, 394

estimator for a, 332–346

Fisher information on, 371–377

goodness-of-fit tests for,

728–729, 732–736

hypothesis testing for, 427, 450

location, 217, 367

maximum likelihood estimate

of, 354–359, 369

moment estimators for, 350–352

MVUE of, 341–343, 358,

369, 375

noncentrality, 574

null value of, 427

of a probability distribution,

103–104

in regression, 617–618, 622,

624–636, 658, 666, 682

scale, 195, 203, 217–218, 365

shape, 217–218, 365

sufficient estimation of, 361–369

Pareto diagram, 24

Pareto distribution, 170, 178, 226

pdf. See Probability density function

Percentiles

for continuous random variables,

166–168

in hypothesis testing, 458, 740

in probability plots, 211–216, 740

sample, 29, 210–211, 216

of standard normal distribution,

182–184, 211–216

Permutation, 68, 69, 535–541

Permutation test, 535–541

PERT analysis, 207

Plot

probability, 210–218, 369, 499,

668, 676, 688, 691, 740

scatter, 615–617, 632–633,

663, 667

pmf. See Probability mass function

Point estimate/estimator

biased, 337–342

bias of, 335–340

bootstrap techniques for,

345–346, 411–418

bound on the error of

estimation of, 388

censoring and, 343–344

consistency, 304, 357, 375–377

for correlation coefficient, 665–666

and Cramér–Rao inequality,

373–377

definition of, 26, 287, 332

efficiency of, 375

Fisher information on, 371–377

least squares, 626–631

maximum likelihood (mle),

352–359

of a mean, 26, 287, 332–333, 366

mean squared error of, 335
moments method, 350–352, 358

MVUE of, 340–342, 358, 369,

375

notation for, 332, 334

of a standard deviation and,

286, 340

standard error of, 344–346

of a variance, 334, 339

Point prediction, 405, 628, 684

Poisson distribution

Erlang distribution and, 202

expected value, 149, 152

exponential distribution and, 199

gamma distribution and, 783

goodness-of-fit tests for, 736–738

in hypothesis testing, 470–472,

474, 482, 550

mode of, 156

moment generating function

for, 149

nonhomogeneous, 156

parameter of, 149

and Poisson process, 149–151, 199

variance, 149, 152

Poisson process, 149–151, 194

Polynomial regression model,

691–693

Pooled t procedures
and ANOVA, 477, 504–505, 576

vs. Wilcoxon rank-sum

procedures, 769

Posterior probability, 79–81,

777, 781

Power curves, 574–575

Power function of a test, 473–475,

574–575

Power model for regression, 721

Power of a test

Neyman–Pearson theorem and,

473–475

type II error and, 446–447,

472–476, 505, 593, 749

Precision, 315, 344, 371, 382,

387–388, 397, 405, 417, 514,

516, 592, 781

Prediction interval

Bonferroni, 659

vs. confidence interval, 406,

658–659, 690

in linear regression, 654, 658–659

in multiple regression, 690

for normal distribution, 404–406

Prediction level, 405, 659, 689

Predictor variable, 614, 682,

693–696

Principle of least squares, 625–636,

674, 679, 683

Prior probability, 79, 758
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Probability

conditional, 74–81, 84–85, 200,

253–255, 362, 365–366

continuous random variables

and, 99, 158–225, 235–242,

253–255

counting techniques for, 66–72

definition of, 50

density function (see Probability
density function)

of equally likely outcomes, 62–63

histogram, 103, 159–160,

188–190, 289–290

inferential statistics and, 6, 9, 284

Law of Large Numbers and,

303–304, 322–323

law of total, 79

mass function (see Probability
mass function)

of null event, 57

plots, 210–218, 369, 499, 668,

676, 688, 691, 740

posterior/prior, 79–81, 758,

777, 781

properties of, 56–63

relative frequency and, 58–59,

291–292

sample space and, 51–55, 56–57,

63, 66, 95

and Venn diagrams, 54–55, 62,

75–76

Probability density function (pdf)

conditional, 254–255, 777

definition of, 161

joint, 232–278, 310, 354,

363–365, 368, 470, 475

marginal, 236–238, 268–269

vs. pmf, 162

Probability distribution

Bernoulli, 98, 102–104, 113,

122–123, 127, 134, 302, 304,

308, 360, 373, 375, 377, 777

beta, 206–208

binomial, 128–135, 147–149,

189–190, 302, 352–353,

395–396, 428–431

bivariate normal, 258–260,

477, 669

Cauchy, 226, 231, 271, 342

chi-squared, 200, 224, 315–320

conditional, 253–263

continuous, 99, 158–231

discrete, 96–157

exponential, 198–200, 203, 343

extreme value, 217–218

F, 323–325
family, 104, 213, 216–218, 558

gamma, 194–200, 217–218

geometric, 106–107, 114, 143, 225

hyperexponential, 229

hypergeometric, 138–141,

307–308

joint, 232–283, 665–667, 732

Laplace, 315, 477–478

of a linear combination, 259,

306–312

logistic, 279

lognormal, 205–206, 303

multinomial, 240, 724

negative binomial, 141–144

normal, 179–191, 205, 210–216,

258–260, 297–303, 309, 730

parameter of a, 103–104

Pareto, 170, 178, 226

Poisson, 146–151, 199

Rayleigh, 169, 226, 349, 360

of a sample mean, 285–294,

296–304

standard normal, 181–184

of a statistic, 285–304

Studentized range, 565

symmetric, 19, 28, 121, 168,

174, 180

t, 320–323, 325, 401–403, 443,
462, 511

uniform, 161–162, 164

Weibull, 202–205

Probability mass function

conditional, 253–254

definition of, 101–109

joint, 233–236

marginal, 234

Product rules, 66–68

Proportion

population, 30, 395, 450–454,

519–525

sample, 30, 190, 302, 338, 519,

748

trimming, 29, 333, 340, 342–343

P-value
for chi-squared test, 727–728

definition of, 456

for F tests, 529–530

for t tests, 462–465
type I error and, 457–459

for z tests, 459–461

Q
Quadratic regression model, 691–693

Qualitative data, 19

Quartiles, 28–29

R
Random effects model, 579–580,

593–594, 603–606

Random interval, 384–386

Randomized block experiment,

590–593

Randomized controlled

experiment, 489

Randomized response technique, 349

Random variable

continuous, 158–231

definition of, 97

discrete, 96–157

jointly distributed, 232, 233–283

standardizing of, 185

types of, 99

Range

definition of, 33

in order statistics, 271–274

population, 394

sample, 33, 271–274

Studentized, 565–566

Rank average, 785

Ratio statistic, 478

Rayleigh distribution, 226,

349, 360

Regression

coefficient, 640–651, 682–685,

705–707, 711–712

effect, 260, 636

function, 614, 676, 682, 685,

693, 696

line, 618–620, 624–636,

640–647, 674–677

linear, 617–620, 624–636,

640–649, 654–659

logistic, 620–622, 650–651

matrices for, 705–715

to the mean, 260

multiple, 682–689

multiplicative exponential

model, 721

multiplicative power model

for, 721

plots for, 676–678

polynomial, 691–693

quadratic, 691–693

through the origin, 381–421

Rejection method, 281

Rejection region

cutoff value for, 428–433

definition of, 428

lower-tailed, 431, 437–438

in Neyman–Pearson theorem,

470–474

two-tailed, 438

type I error and, 429

in union-intersection test, 551

upper-tailed, 429, 437–438

Relative frequency, 13–19, 30,

58–59

Repeated measures designs, 591

Replications, 58, 291–293, 386

Research hypothesis, 427

Residual plots, 588, 602, 676–678
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Residuals

in ANOVA, 588, 602

definition of, 556

leverages and, 714–715

in linear regression, 629, 674–678

in multiple regression, 685, 688

standard error, 674

standardizing of, 675, 691

variance of, 675, 713

Response variable, 8, 614, 620

Retrospective study, 488

Ryan–Joiner test, 741

S
Sample

convenience, 7

definition of, 2

outliers in, 38–40

simple random, 7, 287

size of (see Sample size)

stratified, 7

Sample coefficient of variation, 45

Sample correlation coefficient

in linear regression, 662–664,

669, 719

vs. population correlation

coefficient, 666, 669–671

properties of, 664–665

strength of relationship, 665

Sample mean

definition of, 25

population mean and, 296–304

sampling distribution of, 296–304

Sample median

definition of, 27

in order statistics, 271–272

vs. population median, 417

Sample moments, 350–351

Sample percentiles, 210–211

Sample proportion, 30, 335–336,

338, 391–400, 450–455,

519–526

Sample size

in ANOVA, 574–576

asymptotic relative efficiency

and, 764, 769

bound on the error of estimation

and, 388

Central Limit Theorem and, 302

confidence intervals and,

387–388, 394, 396, 403, 495

definition of, 9

in finite population correction

factor, 140

for F test, 574–576

for Levene test, 562–563

mle and, 357–358, 375

noncentrality parameter and,

574–576, 582

Poisson distribution and, 147

for population proportion,

396–398

power and, 433, 440–441, 445,

452–454, 489, 505, 523

probability plots and, 216

in simple random sample, 287

t distribution and, 445, 505

type I error and, 433, 440-441,

445, 489, 523

type II error and, 433, 440–441,

445, 452–454, 489, 505, 523

variance and, 303

z test and, 440–441, 452–453
Sample space

definition of, 51

probability of, 56–63

Venn diagrams for, 54–55

Sample standard deviation

in bootstrap procedure, 413, 537

confidence bounds and, 398

confidence intervals and, 392,

403

definition of, 33

as estimator, 340, 379

expected value of, 340, 379

independence of, 318–319

mle and, 357

population standard deviation

and, 286, 340, 379

sample mean and, 34, 318–319

sampling distribution of,

288–289, 320, 340, 379, 482

variance of, 482

Sample total, 296, 306, 560

Sample variance

in ANOVA, 555–556

calculation of, 35

definition of, 33

distribution of, 287–289, 320

expected value of, 339

population variance and, 35, 317,

322–323, 339

Sampling distribution

bootstrap procedure and, 413,

532, 758

definition of, 284, 287

derivation of, 288–291

of intercept coefficient, 719

of mean, 288–290, 297–299

permutation tests and, 758

simulation experiments for,

291–294

of slope coefficient, 640–649

Scale parameter, 195, 203–204,

217–218, 365

Scatter plot, 615–617

Scheffé method, 610

Score function, 373–377

Series connection, 272–273

Set theory, 53–55

Shape parameters, 217–218, 366

Siegel–Tukey test, 786

Significance

practical, 468–469, 727

statistical, 469, 489, 727

Significance level

definition of, 433

joint distribution and, 479

likelihood ratio and, 475

observed, 458

Sign interval, 784

Sign test, 784

Simple events, 52, 62, 66

Simple hypothesis, 469, 732

Simple random sample

definition of, 7, 287

independence in, 287

sample size in, 287

Simulation experiment, 288,

291–294, 417, 463

Skewed data

coefficient of skewness, 121, 178

definition of, 19

in histograms, 19, 413

mean vs. median in, 28

measure of, 121

probability plot of, 216, 411–413

Slope, 617–618, 622, 626, 642, 644

Slope coefficient

confidence interval for, 644

definition of, 617–618

hypothesis tests for, 648

least squares estimate of, 626

in logistic regression model, 622

Standard deviation

normal distribution and, 179

of point estimator, 344–346

population, 117, 173

of a random variable, 117, 173

sample, 33

z table and, 186

Standard error, 344–346

Standardized variable, 185

Standard normal distribution

Cauchy distribution and, 271

chi-squared distribution and,

316, 325

critical values of, 184

definition of, 181

density curve properties for,

181–184

F distribution and, 323, 325

percentiles of, 182–184

t distribution and, 320, 325

Standard normal random variable,

181, 325

Statistic, 286
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Statistical hypothesis, 426

Stem-and-leaf display, 10–12

Step function, 106

Stratified samples, 7

Studentized range distribution, 565

Student t distribution, 320–323
Summary statistics, 627, 630,

645, 671

Sum of squares

error, 557, 631, 708

interaction, 599

lack of fit, 681

pure error, 681

regression, 636, 699, 708

total, 559–560, 587, 591, 645,

686

treatment, 557–560

Symmetric distribution, 19,

121, 168

T
Taylor series, 174, 579

t confidence interval
heavy tails and, 764, 769, 774

in linear regression, 643, 656

in multiple regression, 689, 712

one-sample, 403–404

paired, 513–515

pooled, 505

two-sample, 500, 515

t distribution
central, 423

chi-squared distribution and,

320, 325, 500, 504

critical values of, 322, 402,

444, 461

definition of, 320

degrees of freedom in,

320–321, 401–402

density curve properties for,

322, 402

F distribution and, 325, 576

noncentral, 423

standard normal distribution

and, 320, 322, 403

Student, 320–323

Test statistic, 428

Time series, 48, 674

Tolerance interval, 406

Treatment, 553, 555–556, 583

Tree diagram, 67–68, 78, 81, 87

Trial, 128–131

Trimmed mean

definition of, 28–29

in order statistics, 271–272

outliers and, 29

as point estimator, 333,

340, 343

population mean and, 340, 343

Trimming proportion, 29, 343

True regression function, 615

True regression line, 618–620, 625,

640–641

t test
vs. F test, 576

heavy tails and, 764, 769, 774

likelihood ratio and, 475, 476

in linear regression, 648

in multiple regression,

688–690, 712

one-sample, 443–445, 461,

474–476, 511, 769

paired, 511

pooled, 504–505, 576

P-value for, 461–462
two-sample, 499–504, 576, 515

type I error and, 443–445, 501

type II error and, 445–447, 505

vs. Wilcoxon rank-sum

test, 769

vs. Wilcoxon signed-rank test,

763–764

Tukey’s procedure, 565–570, 578,

589–590, 603

Two one-sided tests, 551

Type I error

definition of, 429

Neyman–Pearson theorem

and, 470

power function of the test

and, 473

P-value and, 457–458
sample size and, 441

significance level and, 433

vs. type II error, 433

Type II error

definition of, 429

vs. type I error, 433

Type II error probability

in ANOVA, 574–576, 596

degrees of freedom and, 516

for F test, 574–576, 596

in linear regression, 653

Neyman–Pearson theorem

and, 469–472

power of the test and, 446, 473

sample size and, 440, 505,

477–478, 468, 495

in tests concerning means,

440, 445, 468, 489, 505

in tests concerning proportions,

452–453, 522–524

t test and, 445, 505
vs. type I error probability, 433

in Wilcoxon rank-sum

test, 769

in Wilcoxon signed-rank test,

763–764

U
Unbiased estimator, 337–344

minimum variance, 340–343

Uncorrelated random variables,

251, 307

Uniform distribution

beta distribution and, 778

Box–Muller transformation

and, 271

definition of, 161

discrete, 120

transformation and, 223–224

Uniformly most powerful test,

473–474

Unimodal histogram, 18–19

Union-intersection test, 551

Union of events, 53

Univariate data, 3

V
Variable(s)

covariate, 699

in a data set, 10

definition of, 3

dependent, 614

dummy, 696–699

explanatory, 614

independent, 614

indicator, 696–699

predictor, 614

random, 96–231

response, 614

Variance

conditional, 255–257

of a function, 118–119,

174–175, 328

of a linear function, 118–120, 307

population, 34–35, 117, 173

precision and, 781

of a random variable, 117, 173

sample, 33–37

Venn diagram, 54–55, 62, 75, 76

W
Weibull distribution

basics of, 202–205

chi-squared distribution and, 231

estimation of parameters, 356,

359–360

extreme value distribution

and, 217

probability plot, 217–218

Weighted average, 112, 171, 261,

504, 779, 781

Weighted least squares

estimates, 679

Wilcoxon rank-sum test, 766–769

Wilcoxon signed-rank test,

759–764
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Z
z confidence interval

for a correlation coefficient, 671

for a difference between

means, 493

for a difference between

proportions, 524

for a mean, 387, 392

for a proportion, 395

z curve
area under, maximizing

of, 479

rejection region and, 438

t curve and, 322, 402
z test

chi-squared test and, 752

for a correlation

coefficient, 669

for a difference between

means, 485–493

for a difference between

proportions, 521

for a mean, 438, 442

for a Poisson parameter,

400, 482

for a proportion, 451

P-value for, 459–461
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