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Preface

Purpose �

The use of statistical models and methods for describing and analyzing data has become 
common practice in virtually all scientific disciplines. This book provides a comprehen-
sive introduction to those models and methods most likely to be encountered and used 
by students in their careers in engineering and the natural sciences. It is appropriate for 
courses of one term (semester or quarter) in duration.

Approach �

Students in a statistics course designed to serve other majors are too often initially skepti-
cal of the value and relevance of the subject matter. Our experience, however, is that 
students can be turned on to the subject by the use of good examples and exercises that 
blend their everyday experiences with their scientific interests. We have worked hard to 
find examples involving real, rather than artificial, data—data that someone thought 
was worth collecting and analyzing. Many of the methods presented throughout the 
book are illustrated by analyzing data taken from a published source.

The exercises form a very important component of the book. A really good lecturer 
can deceive students into thinking they have an excellent mastery of the subject, only 
to discover otherwise when they start working problems. We have therefore provided a 
rich assortment of exercises designed to reinforce understanding of the material. A sub-
stantial majority of these are based on real data, and we have tried as much as possible 
to avoid mathematical manipulation for its own sake. Someone who attempts a good 
portion of the exercises will gain a greater appreciation of the scope and applicability of 
the subject than would be gleaned simply by reading the text.

Sometimes the reader may be unfamiliar with the context of a particular problem 
situation (as indeed we often were), but we believe that students will find scenarios, 

xi
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xii	 Preface

such as the one below, more appealing than they would in patently artificial situations 
dealing with widgets or brand A versus brand B.

Mathematical and Computing Level �

The exposition is relatively modest in terms of mathematical development. Limited 
use of univariate calculus is made in the first two chapters, and a bit of univariate and 
multivariate calculus is employed later on. Matrix algebra appears nowhere in the book. 
Thus virtually all of the exposition should be accessible to those whose mathematical 
background includes one semester or two quarters of differential and integral calculus.

The computer is an indispensable tool these days for organizing, displaying, and ana-
lyzing data. We have included many examples, as illustrated on the next page, of output 
from the most widely used statistical computer packages, including Minitab, SAS, R, and 
JMP, both to convince students that the statistical methods discussed herein are available 
in these packages and to expose them to format and contents of typical output. Because 
availability of packages and nature of platforms vary widely from institution to institution, 
we decided not to include instructions for obtaining output from any particular package. 
Based on our experience, it should be straightforward to supplement the text by indepen-
dently introducing students to any one of the aforementioned packages. They can then be 
asked to use the computer in working the many problems that contain raw data.

	64.	 The use of microorganisms to dissolve metals 
from ores has offered an ecologically friendly 
and less expensive alternative to traditional 
methods. The dissolution of metals by this 
method can be done in a two-stage bioleaching 
process: (1) microorganisms are grown in cul-
ture to produce metabolites (e.g. organic acids) 
and (2) ore is added to the culture medium to 
initiate leaching. The article “Two-Stage Fun-
gal Leaching of Vanadium from Uranium Ore 
Residue of the Leaching Stage using Statisti-
cal Experimental Design” (Annals of Nuclear 
Energy, 2013: 48–52) reported on a two-stage 
bioleaching process of vanadium by using 
the fungus Aspergillus niger. In one study, the 
authors examined the impact of the variables  

x1 5 pH, x2 5 sucrose concentration (g/L), and 
x3 5 spore population (106 cells/ml) on y 5 
oxalic acid production (mg/L). The accompa-
nying SAS output resulted from a request to fit 
the model with predictors x1, x2, and x3 only.

Source DF Sum of 

Squares

Mean 

Square

F 

Value

Pr > F

Model 3 5861301 1953767 7.53 0.0052

Error 11 2855951 259632

Corrected 

Total 14 8717252

		  Fitting the complete second-order model re-
sulted in SSResid 5 541,632. Carry out a test at 
significance level .01 to decide whether at least 
one of the second-order predictors provides use-
ful information about oxalic acid production.

Over the past decade researchers and consumers have shown increased interest 
in renewable fuels such as biodiesel, a form of diesel fuel derived from vegetable 
oils and animal fats. According to www.fueleconomy.gov, compared to petroleum 
diesel, the advantages of using biodiesel include its nontoxicity, biodegradability, 

Example 10.2
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	 Preface	 xiii

Focus and Content �

We have written this book for an audience whose primary interest is in statistical meth-
odology and the analysis of data. The ordering of topics herein is rather different from 
what is found in virtually all competing texts. The usual approach is to inject a heavy 
dose of probability at the outset, then develop probability distributions and use these as 
a basis for inferential methods (drawing conclusions from data). Unfortunately, an intro-
ductory one-term course rarely allows sufficient time for comprehensive treatments of 
both probability and statistical inference. If probability is emphasized, statistics gets short 
shrift. An additional problem is that many students find probability to be a difficult and 

and lower greenhouse gas emissions. One popular biodiesel fuel is fatty acid ethyl 
ester (FAEE). The authors of “Application of the Full Factorial Design to Opti-
mization of Base-Catalyzed Sunflower Oil Ethanolysis” (Fuel, 2013: 433−442) 
performed an experiment to determine optimal process conditions for producing 
FAEE from the ethanolysis of sunflower oils. In one study, the effects of three pro-
cess factors on FAEE purity (%) were investigated. 

Factor  Factor name Factor levels
A  Reaction Temperature 25°C, 50°C, 75°C

B  Ethanol-to-oil molar ratio 6:1, 9:1, 12:1

C  Catalyst loading .75 wt.%, 1.00 wt.%, 1.25 wt.%

(See Page 467 for the complete data)
Plots of all two-factor interactions are shown in Figure 10.18, along with the 

main effects Plots for the three factors. Suppose we are interested in maximizing 
the value of the response variable, FAEE purity. Looking at the interaction plots,  
the combination of factor levels that best accomplishes this objective is A 5 75°C,  
B 5 12:1, and C 5 1.25%. In this example, the conclusions from the interaction 
plots agree with the conclusions that we would have drawn from inspecting the 
main effects plots.

Figure 10.18 Two-factor interaction plots and main effects plots for Example 10.2
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xiv	 Preface

intimidating subject, so starting out in this way creates an aura of mathematical formal-
ism that makes it all too easy to lose sight of the applied and practical aspects of statistics.

Certainly descriptive statistical methods can be developed in detail with virtu-
ally no probability background, and even an understanding of the most commonly 
used inferential techniques requires familiarity with only the most basic of probability 
properties. So we decided to proceed along a path first blazed by David Moore and 
George McCabe in their book Introduction to the Practice of Statistics, written for a non- 
science audience. In their Chapter 1, the normal distribution is introduced and em-
ployed to address many interesting questions, whereas probability does not surface  
until much later in the book. Our Chapter 1 first presents some basic concepts and 
terminology, continues with an introduction to some descriptive techniques, and then 
extends the notion of a histogram for sample data to a distribution of values for an entire 
population or process. This allows us to develop and use not only the family of normal 
distributions but also other continuous and discrete distributions such as the lognormal, 
Weibull, Poisson, and binomial. Chapter  2 covers numerical summary measures for 
sample data (e.g., the sample mean x and sample standard deviation s) in tandem with 
analogous measures for populations and processes (e.g., the population or process mean 
� and standard deviation �).

The focus of the first two chapters is on univariate data (observations on or values of 
a single variable, such as tensile strength). In the third chapter we consider descriptive 
methods for bivariate data (e.g., measuring both thickness and strength for wire speci-
mens) and then multivariate data, emphasizing in particular correlation and regression. 
This chapter should be especially useful for courses in which there is insufficient time 
to cover regression models from a probabilistic viewpoint (such models and inferences 
based on them are the subject of Chapter 11).

Most other books intended for our target audience say rather little about how data 
is obtained. Yet statistics has much to say not only about how to analyze data once it is 
available but also about sensible and efficient techniques for collecting data. Several 
lower-level texts, notably the one by Moore and McCabe cited earlier, successfully and 
entertainingly covered this territory prior to probability and inference, and we follow 
their lead with our Chapter 4. Sampling and experimental design are discussed, and the 
last section contains an introduction to various aspects of measurement.

At last probability makes its appearance in Chapter 5. Our minimalist treatment 
of this subject is intended to move readers expeditiously into the inferential part of the 
book. Since only the notion of probability as limiting or long-run relative frequency is 
needed to understand the basis for most of the usual inferential procedures, little time 
is spent on topics such as addition and multiplication rules and conditional probability, 
and no material on counting techniques is included here (combinations enter briefly in 
Chapter 1 in connection with the binomial distribution). The concept of a random vari-
able and its probability distribution is then introduced and related to the distributional 
material in Chapter 1. Finally, the notion of a statistic and its sampling distribution is 
discussed and illustrated.

The remaining six chapters focus on the most widely used methods from statistical 
inference. Descriptive techniques from earlier chapters, such as boxplots and quantile 
plots, are employed in many of our examples. Chapter 6 covers topics from quality con-
trol and reliability. Estimation and various statistical intervals—confidence, prediction, 
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	 Preface	 xv

and tolerance—are introduced in Chapter 7. Hypothesis testing is discussed in Chap-
ter 8. Chapter 9 covers the analysis of variance for comparing more than two popula-
tions or treatments, and these ideas are extended in Chapter 10 to the analysis of data 
from designed multifactor experiments. Finally, regression models and associated infer-
ential procedures are covered in Chapter 11.

Some Suggestions Concerning Coverage �

It should be possible to cover virtually all the material in the book in a semester-long 
course that meets four hours per week. For a course of this duration that meets only 
three times per week or for a one-quarter course, some pruning will have to be done 
(perhaps combined with reading assignments on topics not discussed in lecture). The 
first four sections of Chapter 1 are essential, but Section 5 on other (than the normal) 
continuous distributions and Section 6 on the binomial and Poisson distributions can 
be covered very lightly or even omitted altogether. The first two sections of Chapter 2, 
on measures of center and spread, are also required. The material on more detailed 
summary measures (e.g., boxplots) in Section 3 can be just touched on or skipped, and 
quantile plots from Section 4 can be presented very quickly.

When time does not allow for coverage of inferences in regression, we strongly 
recommend that at least a bit of bivariate descriptive methods from Chapter 3 be cov-
ered. At minimum, this could consume just two or three one-hour lectures in which 
scatterplots, correlation, and fitting a line by least squares are discussed. More time 
would provide the opportunity to introduce r2 as an assessment of fit, nonlinear rela-
tionships, and even multiple regression. If inference in regression is to be covered, this 
chapter can be skipped over for the moment and then combined with Chapter 11 at the 
end of the course.

Chapter 4, on obtaining data, can be covered next or postponed until later. There 
is no mathematics here, only some definitions and examples, so this is one place where 
a minimal amount of lecture time can be expended along with a request that students 
read on their own. Most of Chapter 5 is crucial; inferential methods cannot be under-
stood without a modest exposure to probability and sampling distributions of various 
statistics. The quality control and reliability techniques of Chapter 6 are attractive ap-
plications of sampling distribution and probability properties. When time is limited, 
as few as two lectures might be devoted to some general concepts and a single type of  
control chart. Another possibility is to postpone this material until after hypothesis test-
ing has been introduced.

From this point on, it is local option as to what is covered and in how much detail. 
We certainly believe that students deserve at least minimal exposure to point estima-
tion, confidence intervals, and hypothesis testing. Time may permit presentation of 
just some selected one-sample procedures (Sections 7.1, 7.2, 8.1, and perhaps a bit of 
Sections 7.4 and 8.2). A longer course would accommodate topics from among predic-
tion and tolerance intervals, two-sample situations, chi-squared tests, testing the plausi-
bility of some particular type of distribution (e.g., testing the assumption that the data 
came from a normal distribution), analysis of variance and experimental design, and 
more on regression.
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xvi	 Preface

Changes for the Third Edition

    � There are nearly 200 new exercises and 40 new examples, most of which include 
real data or other information from published sources. 

     Chapter 1 contains a new subsection on “The Scope of Modern Statistics” to 
illustrate how statisticians continue to develop new methodology while working 
on problems in a wide spectrum of disciplines.

     Section 8.3, on hypothesis testing based on categorical data, now contains a sub-
section on Fisher’s Exact Test that is a useful alternative when assumptions for 
the standard chi-squared test fail.

     Section 11.6, on regression, now contains a subsection on the multiple logistic 
regression model that accommodates multiple predictor variables for a dichoto-
mous response. 

     In general, the exposition has been polished, tightened, and improved.
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Introduction

Statistical concepts and methods are not only useful but indeed often indispensable in 
understanding the world around us.  They provide ways of gaining new insights into the 
behavior of many phenomena that you will encounter in your chosen field of specializa-
tion in engineering or science.

The discipline of statistics teaches us how to make intelligent judgments and in-
formed decisions in the presence of uncertainty and variation. Without uncertainty 
or variation, there would be little need for statistical methods or statisticians. If every 
component of a particular type had exactly the same lifetime, if all resistors produced 
by a certain manufacturer had the same resistance value, if pH determinations for soil 
specimens from a particular locale gave identical results, and so on, then a single obser-
vation would reveal all desired information.

An interesting manifestation of variation appeared in connection with an effort 
to determine the “greenest” way to travel.  The article titled “Carbon Conundrum” 
( , 2008: 9) described websites that help consumers calculate carbon 
output.  The results for carbon output for a flight from New York to Los Angeles appear 
in the accompanying table.

1
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Carbon Calculator	 CO2 (lb)
Terra Pass	 1924
Conservation International	 3000
Cool It	 3049
World Resources Institute/Safe Climate	 3163
National Wildlife Federation	 3465
Sustainable Travel International	 3577
Native Energy	 3960
Environmental Defense	 4000
Carbonfund.org	 4820
The Climate Trust/CarbonCounter.org	 5860
Bonneville Environmental Foundation	 6732

Substantial disagreement clearly exists among these online calculators as to exactly 
how much carbon is emitted, characterized in the article as “from a ballerina’s to  
Bigfoot’s.” A website also was provided where readers could learn more about how the 
various calculators work.

How can statistical techniques be used to gather information and draw conclusions? 
Suppose, for example, that a materials engineer has developed a coating for retarding cor-
rosion in metal pipe under specified circumstances. If this coating is applied to different 
segments of pipe, variation in environmental conditions and in the segments themselves will 
result in more substantial corrosion on some segments than on others. Methods of statisti-
cal analysis could be used on data from such an experiment to decide whether the  
amount of corrosion exceeds an upper specification limit of some sort or to predict how 
much corrosion will occur on a single piece of pipe.

Alternatively, suppose the engineer has developed the coating in the belief that it will 
be superior to the currently used coating.   A comparative experiment could be carried out 
to investigate this issue by applying the current coating to some segments of pipe and the 
new coating to other segments. This must be done with care lest the wrong conclusion 
emerge. For example, perhaps the average amount of corrosion is identical for the two 
coatings. However, the new coating may be applied to segments that have superior ability 
to resist corrosion and under less stressful environmental conditions compared to the seg-
ments and conditions for the current coating.   The investigator would then likely observe 
a difference between the two coatings attributable not to the coatings themselves but just 
to extraneous variation. Statistics offers not only methods for analyzing the results of ex-
periments once they have been carried out but also suggestions for how experiments can 
be performed in an efficient manner to mitigate the effects of variation and have a better 
chance of producing correct conclusions.

In Chapters 1–3, we concentrate on describing and summarizing statistical informa-
tion obtained from populations or processes under investigation. Chapter 4 discusses 
how information can be collected either by the mechanism of sampling or by designing 
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and carrying out an experiment. Chapter 5 formalizes the notion of randomness and un-
certainty by introducing the language of probability. The remainder of the book focuses 
on the development of inferential methods for drawing interesting conclusions from data 
in a wide variety of situations.   We hope you will find the subject matter and our presenta-
tion to be as interesting, relevant, and exciting as we do.

1.1	 Populations, Samples,  and Processes �

Engineers and scientists are constantly exposed to collections of facts, or data, both in their 
professional capacities and in everyday activities. The discipline of statistics provides meth-
ods for organizing and summarizing data and for drawing conclusions based on informa-
tion contained in the data.

An investigation will typically focus on a well-defined collection of objects constitut-
ing a population of interest. In one study, the population might consist of all gelatin cap-
sules of a particular type produced during a specified period. Another investigation might 
involve the population consisting of all individuals who received a B.S. in engineering 
during the most recent academic year. When desired information is available for all ob-
jects in the population, we have what is called a census. Constraints on time, money, and 
other scarce resources usually make a census impractical or infeasible. Instead, a subset of 
the population—a sample—is selected in some prescribed manner. Thus we might obtain 
a sample of bearings from a particular production run as a basis for investigating whether 
bearings are conforming to manufacturing specifications, or we might select a sample of 
last year’s engineering graduates to obtain feedback about the quality of the curricula.

We are usually interested only in certain characteristics of the objects in a population: 
the number of flaws on the surface of each casing, the thickness of each capsule wall, the 
gender of an engineering graduate, the age at which the individual graduated, and so on. 
A characteristic may be categorical, such as gender or type of malfunction, or it may be 
numerical in nature. In the former case, the value of the characteristic is a category (e.g., 
female or insufficient solder), whereas in the latter case, the value is a number (e.g., age 5 
23 years or diameter 5 .502 cm). A variable is any characteristic whose value may change 
from one object to another in the population. We shall generally denote variables by lower-
case letters from the end of our alphabet. Examples include

x 5 gender of a graduating engineer
y 5 number of major defects on a newly manufactured automobile
z 5 braking distance of an automobile under specified conditions

Data results from making observations either on a single variable or simultaneously on 
two or more variables. A univariate data set consists of observations on a single variable. 
For example, we might determine the type of transmission, automatic (A) or manual (M), 
on each of ten automobiles recently purchased at a certain dealership, resulting in the 
categorical data set

M  A  A  A  M  A  A  M  A  A

The following sample of lifetimes (hours) of brand X batteries put to a certain use is a nu-
merical univariate data set:

5.6  5.1  6.2  6.0  5.8  6.5  5.8  5.5
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4	 chapter 1   Data and Distributions

We have bivariate data when observations are made on each of two variables. Our data set 
might consist of a (height, weight) pair for each basketball player on a team, with the first 
observation as (72, 168), the second as (75, 212), and so on. If an engineer determines the 
value of both x 5 component lifetime and y 5 reason for component failure, the resulting 
data set is bivariate with one variable numerical and the other categorical. Multivariate 
data arises when observations are made on more than two variables. For example, a re-
search physician might determine the systolic blood pressure, diastolic blood pressure, and 
serum cholesterol level for each patient participating in a study. Each observation would be 
a triple of numbers, such as (120, 80, 146). In many multivariate data sets, some variables 
are numerical and others are categorical. Thus the annual automobile issue of Consumer 
Reports gives values of such variables as type of vehicle (small, sporty, compact, mid-size, 
large), city fuel efficiency (mpg), highway fuel efficiency (mpg), drivetrain type (rear wheel, 
front wheel, four wheel), and so on.

Branches of Statistics
An investigator who has collected data may wish simply to summarize and describe 
important features of the data. This entails using methods from descriptive statis-
tics. Some of these methods are graphical in nature—the construction of histograms, 
boxplots, and scatterplots are primary examples. Other descriptive methods involve cal-
culation of numerical summary measures, such as means, standard deviations, and cor-
relation coefficients. The wide availability of statistical computer software packages has 
made these tasks much easier to carry out than they used to be. Computers are much 
more efficient than human beings at calculation and the creation of pictures (once they 
have received appropriate instructions from the user!). This means that the investigator 
doesn’t have to expend much effort on “grunt work” and will have more time to study 
the data and extract important messages. Throughout this book, we will present output 
from various packages such as Minitab, SAS, and R. The R software can be downloaded 
without charge from www.r-project.org.

Charity is a big business in the United States. The website charitynavigator.com gives 
information on approximately 5500 charitable organizations, and many smaller chari-
ties fly below the navigator’s radar screen. Some charities operate very efficiently, with 
fund-raising and administrative expenses only a small percentage of total expenses, 
whereas others spend a high percentage of what they take in to perform the same 
activities. Here is data on fund-raising expenses as a percentage of total expenditures 
for a random sample of 60 charities: 

6.1 12.6 34.7 1.6 18.8 2.2 3.0 2.2 5.6 3.8
2.2 3.1 1.3 1.1 14.1 4.0 21.0 6.1 1.3 20.4
7.5 3.9 10.1 8.1 19.5 5.2 12.0 15.8 10.4 5.2
6.4 10.8 83.1 3.6 6.2 6.3 16.3 12.7 1.3 0.8
8.8 5.1 3.7 26.3 6.0 48.0 8.2 11.7 7.2 3.9

15.3 16.6 8.8 12.0 4.7 14.7 6.4 17.0 2.5 16.2

Example 1.1

Without any organization, making sense of the data’s most prominent features is dif-
ficult: What is a typical (i.e., representative) value? Are values highly concentrated 
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	 1.1   Populations, Samples,  and Processes	 5

about a typical value or are they quite dispersed? Are there any gaps in the data? 
What fraction of the values are less than 20%? Figure 1.1 shows what is called a stem-
and-leaf display as well as a histogram. In Section 1.2, we will discuss construction 
and interpretation of these data summaries. For the moment, we hope you see how 
they begin to describe how the percentages are distributed over the range of possible 
values from 0 to 100. A substantial majority of the charities in the sample obviously 
spend less than 20% on fund-raising, and only a few percentages might be viewed as 
beyond the bounds of sensible practice.

Figure 1.1  A Minitab stem-and-leaf display (10ths digit truncated) 
and histogram for the charity fund-raising percentage data
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6	 chapter 1   Data and Distributions

The Scope of Modern Statistics
Statistical methodology is commonly employed by investigators in virtually every disci-
pline, including such areas as

   	 molecular biology (analysis of microarray data)
   	 ecology (describing quantitatively how individuals in various animal and plant pop-

ulations are spatially distributed)
   	 materials engineering (studying properties of various treatments to retard corrosion)
   	 marketing (developing market surveys and strategies for marketing new products)
   	 public health (identifying sources of diseases and ways to treat them)
   	 civil engineering (assessing the effects of stress on structural elements and the im-

pacts of traffic flows on communities)

As you progress through the book, you’ll encounter a wide spectrum of different 
scenarios in the examples and exercises that illustrate the application of techniques 
from probability and statistics. Many of these scenarios involve data or other mate-
rial extracted from articles in engineering and science journals. The methods pre-
sented here have become established and trusted tools in the arsenal of those who 
work with data. Meanwhile, statisticians continue to develop new models to describe 

Techniques for generalizing from a sample to a population are gathered within the branch 
of our discipline called inferential statistics.

Material  strength investigations provide a rich area of application for statistical 
methods. The article “Effects of Aggregates and Microfillers on the Flexural Prop-
erties of Concrete” (Magazine of Concrete Research, 1997: 81–98) reported on 
a study of strength properties of high-performance concrete obtained by using 
superplasticizers and certain binders. The compressive strength of such concrete 
had previously been investigated, but not much was known about flexural strength 
(a measure of ability to resist failure in bending). The accompanying data on 
flexural strength (in megapascals, MPa, where 1 Pa (pascal) 5 1.45 3 1024 psi) ap-
peared in the article cited:

5.9 7.2 7.3 6.3 8.1 6.8 7.0 7.6 6.8 6.5 7.0 6.3 7.9 9.0

8.2 8.7 7.8 9.7 7.4 7.7 9.7 7.8 7.7 11.6 11.3 11.8 10.7

Suppose we want an estimate of the average value of flexural strength for all beams 
that could be made in this way (if we conceptualize a population of all such beams, 
we are trying to estimate the population mean). It can be shown that, with a high 
degree of confidence, the population mean strength is between 7.48 MPa and 8.80 
MPa; we call this a confidence interval or interval estimate. Alternatively, this data 
could be used to predict the flexural strength of a single beam of this type. With a 
high degree of confidence, the strength of a single such beam will exceed 7.35 MPa; 
the number 7.35 is called a lower prediction bound.

Example 1.2
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	 1.1   Populations, Samples,  and Processes	 7

randomness and uncertainty and new methodology to analyze data. As evidence of 
the continuing creative efforts in the statistical community, here are titles and cap-
sule descriptions of some articles that have recently appeared in statistics journals 
(Journal of the American Statistical Association is abbreviated JASA, and APS is short 
for the Annals of Applied Statistics, just two of the many prominent journals in the 
discipline):

   	 “Application of Branching Models in the Study of Invasive Species” (JASA, 
2012: 467–476): Seismologists often predict earthquake occurrences using what 
is known as epidemic-type aftershock sequence (ETAS) models. The name stems 
from the model feature that allows earthquakes to cause aftershocks, which in turn 
may induce subsequent aftershocks, and so on, thereby generating a cascading 
effect. The authors propose the use of ETAS models in studying invasive plant 
and animal species. In particular, the article considers the spread of an invasive 
species in Costa Rica (Musa velutina, or red banana). The authors determine the 
estimated spatial–temporal rate of spread of red banana plants using a space–time 
ETAS model.

   	 “Spatio-Spectral Mixed-Effects Model for Functional Magnetic Resonance Im-
aging Data” (JASA, 2012: 568–577): For many years, scientists have attempted 
to model cognitive control-related activation among specific regions of the hu-
man brain. Researchers measure this brain activity through functional magnetic 
resonance imaging (fMRI). fMRI data often exhibit spatial and temporal correla-
tions (i.e., observations made at nearby locations or time points are often strongly 
related). Standard approaches to fMRI analysis, however, fail to incorporate 
these relationships. The article proposes a statistical model to study activation 
in specific regions in the prefrontal cortex while also incorporating the underly-
ing spatio–temporal correlations. The authors provide a simulation study that 
shows that significant errors can occur by ignoring the correlation structure in 
the network.

   	 “Active Learning Through Sequential Design, with Applications to the Detection 
of Money Laundering” (JASA, 2009: 969–981): Money laundering involves con-
cealing the origin of funds obtained through illegal activities. The huge number 
of transactions occurring daily at financial institutions makes detection of money 
laundering difficult. The standard approach has been to extract various summary 
quantities from the transaction history and conduct a time consuming investigation 
of suspicious activities. The article proposes a more efficient statistical method and 
illustrates its use in a case study.

   	 “Robust Internal Benchmarking and False Discovery Rates for Detecting Racial 
Bias in Police Stops” (JASA, 2009: 661–668): Allegations of police actions that are 
at least partly attributable to racial bias have become a contentious issue in many 
communities. This article proposes a new method that is designed to reduce the 
risk of flagging a substantial number of “false positives” (individuals falsely identi-
fied as manifesting bias). The method was applied to data on 500,000 pedestrian 
stops from New York City in 2006; 15 officers from the pool of 3000 regularly in-
volved in pedestrian stops were identified as having stopped a substantially greater 
fraction of black and Hispanic people than what would be predicted if bias were 
absent.
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8	 chapter 1   Data and Distributions

   	 “Measuring the Vulnerability of the Uruguayan Population to Vector-Borne Diseases 
via Spatially Hierarchical Factor Models” (APS, 2012: 284–303): Vector-borne 
diseases are illnesses caused by infections transmitted to people by organisms such 
as insects and spiders. According to the World Health Organization, the most deadly 
vector-borne disease is malaria, which kills more than 1 million people annually, 
mostly African children under age five. The authors develop a statistical index 
to model the vulnerability of Uruguayans to vector-borne diseases by accounting 
for variation attributable to factors such as different census tracts within cities and  
different cities in the country.

   	 “Self-Exciting Hurdle Models for Terrorist Activity” (APS, 2012: 106–124): The 
authors develop a predictive model of terrorist activity by considering the daily 
number of terrorist attacks in Indonesia from 1994 through 2007. The model 
estimates the chance of future attacks as a function of the times since past attacks. 
One feature of the model considers the excess of nonattack days coupled with 
the presence of multiple coordinated attacks on the same day. The article pro-
vides an interpretation of various model characteristics and assesses its predictive 
performance.

   	 “The BARISTA: A Model for Bid Arrivals in Online Auctions” (APS, 2007: 
412–441): Online auctions such as those on eBay and uBid often have char-
acteristics that differentiate them from traditional auctions. One particularly 
important such property is that the number of bidders at the outset of many 
traditional auctions is fixed, whereas in online auctions this number and the 
number of resulting bids are not predetermined. The article proposes a new 
BARISTA (for Bid ARivals In STAges) model for describing the way in which 
bids arrive that allows for higher bidding intensity not only at the outset of 
the auction but also as the auction comes to a close. Various properties of the 
model are investigated and then validated using data from eBay.com on auc-
tions for Palm M515 personal assistants, Microsoft Xbox games, and Cartier 
watches.

Statistical information now appears with increasing frequency in the popular media, and 
occasionally the spotlight is even turned on statisticians. For example, “Behind Cancer 
Guidelines, Quest for Data,” a New York Times article from November 23, 2009, reported 
that the new science for cancer investigations and more sophisticated methods for data 
analysis spurred the U.S. Preventive Services task force to reexamine guidelines for how 
frequently middle-aged and older women should have mammograms. The panel com-
missioned six independent groups to do statistical modeling. The result was a new set of 
conclusions, in particular one that mammograms every two years give nearly the same 
benefit as annual ones and confer only half the risk of harm. Donald Berry, a promi-
nent biostatistician, was quoted as saying he was pleasantly surprised that the task force 
took the new research to heart in making its recommendations. The task force’s report 
has generated much controversy among cancer organizations, politicians, and women 
themselves.

We hope you will become increasingly convinced of the importance and relevance 
of the discipline of statistics as you dig more deeply into the book and subject. We also 
anticipate you’ll be intrigued enough to want to continue your statistical education beyond 
your current course.
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Enumerative  Versus  Analytic Studies
W. E. Deming was a very influential American statistician whose ideas concerning 
the use of statistical methods in industrial production found great favor with Japanese 
companies in the years after World War II. He used the phrase enumerative study to 
describe investigations involving a finite collection of identifiable, unchanging objects 
that make up a population. In such studies, a sampling frame—that is, a listing of the 
objects to be sampled—is available or can be created. One example of such a frame is 
the collection of all signatures on petitions to qualify an initiative for inclusion on the 
ballot for an upcoming election. A sample is usually selected to ascertain whether the 
number of valid signatures exceeds a specified value. The variable on which observa-
tions are made is dichotomous, the two possible values being valid (S, for success) and 
not valid (F, for failure). As another example, the frame may contain serial numbers of 
all ovens manufactured by a particular company during a particular period. A sample 
may be selected to infer something about the average actual temperature of these units 
when the temperature control is set to 400°F (an inference about the population mean 
temperature).

Many problem situations faced by engineers involve some sort of ongoing process—a 
group of interrelated activities undertaken to accomplish some objective—rather than a 
specified, unchanging population. An investigator wants to learn something about how the 
process is operating so that the process can then be modified to better achieve the desired 
goal. Deming described such scenarios as analytic studies.

The  process of making ignition keys for automobiles consists of trimming and press-
ing raw key blanks, cutting grooves and notches, and then plating the keys. Dimen-
sions associated with groove and notch cutting are crucial to proper key functioning. 
There will always be “normal” variation in dimensions because of fluctuations in 
materials, worker behavior, and environmental conditions. It is important, though, 
to monitor production to ensure that there are no unusual sources of variation, such 
as incorrect machine settings or contaminated material, which might result in non-
conforming units or substantial changes in product characteristics. For this purpose, 
a sample (subgroup) of five keys is selected every 20 minutes, and critical dimensions 
are measured. Here are a few of the resulting observations for one particular dimen-
sion (in thousandths of an inch):

Subgroup 1:  6.1  8.4  7.6  7.5  4.4
Subgroup 2:  8.8  8.3  5.9  7.4  7.6
Subgroup 3:  8.0  7.5  7.0  6.8  9.3

This is indeed sample data, which can be used as a basis for drawing conclusions. 
However, the conclusions are about production process behavior rather than about 
a particular population of keys.

Example 1.3

Analytic studies sometimes involve figuring out what actions to take to improve the 
performance of a future product.
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1.2	 Visual Displays for Univariate Data �

Some preliminary organization of a data set often reveals useful information and opens 
paths of inquiry. Pictures are particularly effective in this respect. In this section, we intro-
duce several of the most frequently used pictorial techniques.

Stem-and-Leaf Displays
A stem-and-leaf display can be an effective way to organize numerical data without 
expending much effort. It is based on separating each observation into two parts: 
(1) a stem, consisting of one or more leading digits, and (2) a leaf, consisting of 
the remaining or trailing digit(s). Suppose, for example, that data on calibration 
times (sec) for certain test devices has been gathered and that the smallest and 
largest times are 11.3 and 18.8, respectively. Then we could use the tens and ones 
digits as the stem of an observation, leaving the tenths digit for the leaf. Thus 11.3 
would have a stem of 11 and a leaf of 3, 16.0 would have a stem of 16 and a leaf of 
0, and so on. Once stem values have been chosen, they should be listed in a single 
column. Then the leaf of each observation should be placed on the row of the cor-
responding stem.

Failure  in fluorescent lamps occurs when their luminosity falls below a predeter-
mined level. The article “Using Degradation Data to Improve Fluorescent Lamp 
Reliability” (J. of Quality Technology, 1995: 363–369) described a case study involv-
ing fluorescent lamps of a certain type. The project engineer suggested focusing on 
three factors thought to be crucial to reliability:

1.  The amount of electric current in the exhaustive process
2.  The concentration of the mercury dispenser in the coating process
3.  The concentration of argon in the filling process

Two levels, low and high, of each factor were established, leading to eight com-
binations of factor levels (e.g., low current, high mercury concentration, and 
low argon concentration). Luminance levels were then monitored over time for 
certain factor-level combinations. (Because of limited resources, only four of 
the eight combinations were included in the experiment, with five lamps used 
at each one.) Here is data for one particular lamp for which all factor levels 
were low:

Time (hr):   100   500 1000 2000 3000 4000 5000 6000
Luminance (lumens): 2810 2490 2460 2370 2320 2160 2140 2080

Statistical methods were used on the resulting data to draw conclusions about how 
lamp reliability could be improved. In particular, it was recommended that high 
concentration levels should be used with a low current level.

Example 1.4
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The use of alcohol by college students is of great concern not only to those in the 
academic community but also, because of potential health and safety consequences, 
to society at large. The article “Health and Behavioral Consequences of Binge 
Drinking in College” (J. of the Amer. Med. Assoc., 1994: 1672–1677) reported on 
a comprehensive study of heavy drinking on campuses across the United States. A 
binge episode was defined as five or more drinks in a row for males and four or more 
for females. Figure 1.2 shows a stem-and-leaf display of 140 values of x 5 the percent-
age of undergraduate students who are binge drinkers. (These values were not given 
in the cited article, but our display agrees with a picture of the data that did appear.)

The first leaf on the stem 2 row is 1, which tells us that 21% of the students at one 
of the colleges in the sample were binge drinkers. Without the identification of stem 
digits and leaf digits on the display, we wouldn’t know whether the stem 2, leaf 1 obser-
vation should be read as 21%, 2.1%, or .21%.

When  creating a display by hand, ordering the leaves from smallest to largest on 
each line can be time-consuming, and this ordering usually contributes little if any 
extra information. Suppose the observations had been listed in alphabetical order by 
school name, as

16%  33%  64%  37%  31%  . . .

Then placing these values on the display in this order would result in the stem 1 row 
having 6 as its first leaf, and the beginning of the stem 3 row would be

3 | 371 . . .

The display suggests that a typical or representative value is in the stem 4 row, 
perhaps in the mid-40% range. The observations are not highly concentrated about 
this typical value, as would be the case if all values were between 20% and 49%. The 
display rises to a single peak as we move downward, and then declines; there are no 
gaps in the display. The shape of the display is not perfectly symmetric, but instead 
appears to stretch out a bit more in the direction of low leaves than in the direction of 
high leaves. Lastly, there are no observations that are unusually far from the bulk of 
the data (no outliers), as would be the case if one of the 26% values had instead been 
86%. The most surprising feature of this data is that at most colleges in the sample, at 
least one-quarter of the students are binge drinkers. The problem of heavy drinking on 
campuses is much more pervasive than many had suspected.

Example 1.5

Figure 1.2  Stem-and-leaf display for percentage binge drinkers at 
each of 140 colleges

0 4
1 1345678889
2 1223456666777889999 Stem: tens digit
3 0112233344555666677777888899999 Leaf: ones digit
4 111222223344445566666677788888999
5 00111222233455666667777888899
6 01111244455666778
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12	 chapter 1   Data and Distributions

A stem-and-leaf display conveys information about the following aspects of the data:

   	 Identification of a typical or representative value
   	 Extent of spread about the typical value
   	 Presence of any gaps in the data
   	 Extent of symmetry in the distribution of values
   	 Number and location of peaks
   	 Presence of any outlying values

Suppose in Example 1.5 that each observation had included a tenths digit as well as 
the tens and ones digits: 16.4%, 36.5%, and so on. We could use two-digit leaves, so that 
16.4 would have a stem of 1 and a leaf of 64; in this case, the decimal point can be omitted, 
but commas are necessary between successive leaves. Because such a display can become 
very unwieldy, it is customary to use single-digit leaves obtained by truncation (not round-
ing). Thus 36.7 would have stem 3 and leaf 6, and information about the tenths digit would 
be suppressed.

Consider a data set consisting of exam scores all of which are in the 70s, 80s, and 90s 
(an instructor’s dream!). A stem-and-leaf display with the tens digit as the stem would have 
only three rows. However, a more informative display can be created by repeating each 
stem value twice, once for the low leaves 0, 1, 2, 3, 4 and again for the high leaves 5, 6, 7, 
8, 9. A display of the binge-drinking data with repeated stems is shown in Figure 1.3. (The 
11 on the far left in the fourth row indicates that there are 11 observations on or above that 
row; the (14) row contains the middle data value.)

Figure 1.3  Minitab stem-and-leaf display 
using repeated stems

Suppose that a final exam in physics contained questions worth a total of 200 points 
and that the only student who scored in the 100s earned 186 points. Rather than include 
rows 10, 11, . . . , and 18 just to show the extreme outlier 186, it is better to stop the display 
with a stem 9 row and place the information HI: 186 in a prominent place to the right of 
the display. The same thing can be done with outliers on the low end.

Consider two different data sets, each consisting of observations on the same variable, 
for example, exam scores for two different classes or stopping distances for cars equipped Un
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	 1.2   Visual Displays for Univariate Data	 13

Figure 1.4 A comparative stem-
and-leaf display of exam scores

9    658618
9447 8 13754380

2208965655 7 5312267
2432875 6 45104

5882 5 9

with two different braking systems. An investigator would naturally want to know in what 
ways the two sets were similar and how they differed. This can be accomplished by using 
a comparative stem-and-leaf display, in which the leaves for one data set are listed to the 
right of the stems and the leaves for the other to the left. Figure 1.4 shows a small example; 
the two sides of the display are quite similar, except that the right side appears to be shifted 
up one row (about 10 points) from the other side.

Dotplots
A dotplot is an attractive summary of numerical data when the data set is reasonably small or 
there are relatively few distinct data values. Each observation is represented by a dot above the 
corresponding location on a horizontal measurement scale. When a value occurs more than 
once, there is a dot for each occurrence, and these dots are stacked vertically. As with a stem-and-
leaf display, a dotplot gives information about location, spread, extremes, and gaps.

Here is data on state-by-state appropriations for higher education as a percentage of 
state and local tax revenue for fiscal year 2009–2010 (from the Statistical Abstract of the 
United States). Values are listed in order of state abbreviations (AL first, WY last):

14.0 3.1 8.6 9.6 7.4 4.0 4.5 6.5 6.1 8.8

8.2 8.6 6.4 6.7 8.0 8.5 9.4 9.5 4.6 6.8

3.9 6.9 6.3 11.9 5.8 5.8 9.9 5.9 2.7 4.2

14.9 4.0 12.1 8.0 5.2 9.2 6.8 4.3 3.9 9.6

8.0 8.6 8.6 8.7 3.1 5.8 6.2 8.7 6.8 8.9

Figure 1.5 shows a dotplot of the data. The most striking feature is the substan-
tial state-to-state variability. The largest values (for New Mexico, Alabama, North 
Carolina, and Mississippi) are somewhat separated from the bulk of the data and 
may possibly qualify as outliers.

Example 1.6

3.6 5.4 7.2 9.0 10.8 12.6 14.4

Figure 1.5 A dotplot of the data from Example 1.6
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14	 chapter 1   Data and Distributions

If the data set discussed in Example 1.6 had consisted of many more observations 
(e.g. average per pupil spending for each school district in the U.S.), it would be quite 
cumbersome to construct a corresponding dotplot. Our next technique is well suited to 
such situations.

Histograms
Some numerical data is obtained by counting to determine the value of a variable (the 
number of traffic citations a person received during the last year, the number of persons ar-
riving for service during a particular period), whereas other data is obtained by taking mea-
surements (weight of an individual, reaction time to a particular stimulus). The prescription 
for drawing a histogram is different for these two cases.

A  variable is discrete if its set of possible values either is finite or else can be listed 
in an infinite sequence (one in which there is a first number, a second number, 
and so on). A variable is continuous if its possible values consist of an entire 
interval on the number line.

definitionS

A discrete variable x almost always results from counting, in which case possible 
values are 0, 1, 2, 3, . . . or some subset of these integers. Continuous variables arise from 
making measurements. For example, if x is the pH of a chemical substance, then in 
theory x could be any number between 0 and 14: 7.0, 7.03, 7.032, and so on. Of course, 
in practice there are limitations on the degree of accuracy of any measuring instrument, 
so we may not be able to determine pH, reaction time, height, and concentration to an 
arbitrarily large number of decimal places. However, from the point of view of creating 
mathematical models for distributions of data, it is helpful to imagine an entire con-
tinuum of possible values.

Consider data consisting of observations on a discrete variable x. The frequency of 
any particular x value is the number of times that value occurs in the data set. The relative 
frequency of a value is the fraction or proportion of time the value occurs:

relative  frequency  of  a  value 5
number  of  times  the  value  occurs

number  of  observations  in  the  data  set

Suppose, for example, that our data set consists of 200 observations on x 5 the number of 
major defects on a new car of a certain type. If 70 of these x values are 1, then

frequency of the x value 1:  70

relative frequency of the x value 1: 
70
200

5 .35

Multiplying a relative frequency by 100 gives a percentage; in the defect example, 35% of the 
cars in the sample had just one major defect. The relative frequencies, or percentages, are usually 
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	 1.2   Visual Displays for Univariate Data	 15

of more interest than the frequencies themselves. In theory, the relative frequencies should sum 
to 1, but in practice the sum may differ slightly from 1 because of rounding.

Constructing a Histogram for Discrete Data
First, determine the frequency and relative frequency of each  value. Then mark possible  
values on a horizontal scale.  Above each value, draw a rectangle whose height is the rela-
tive frequency (or, alternatively, the frequency) of that value (all rectangles should have the 
same base width).

This construction ensures that the area of each rectangle is proportional to the relative 
frequency of the value. Thus if the relative frequencies of x 5 1 and x 5 5 are .35 and .07, 
respectively, then the area of the rectangle above 1 is five times the area of the rectangle 
above 5.

Every corporation has a governing board of directors. The number of individuals on a 
board varies from one corporation to another. One of the authors of the article “Does 
Optimal Corporate Board Size Exist? An Empirical Analysis” (Journal of Applied 
Finance, 2010: 57–69) provided the accompanying data on the number of directors 
on the boards of a random sample of 204 corporations.	

Example 1.7

Board Size
Relative 

Frequency Frequency Board Size
Relative 

Frequency Frequency
  4    3 0.0147 19 0 0.0000

  5     12 0.0588 20 0 0.0000

  6   13 0.0637 21 1 0.0049

  7   25 0.1225 22 0 0.0000

  8 24 0.1176 23 0 0.0000

  9 42 0.2059 24 1 0.0049

10 23 0.1127 25 0 0.0000

 11 19 0.0931 26 0 0.0000

12 16 0.0784 27 0 0.0000

13 11 0.0539 28 0 0.0000

14 5 0.0245 29 0 0.0000

15 4 0.0196 30 0 0.0000

16 1 0.0049 31 0 0.0000

17 3 0.0147 32 1 0.0049

18 0 0.0000 204 0.9997
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16	 chapter 1   Data and Distributions

Constructing a histogram for continuous data (measurements) entails subdividing the 
measurement axis into a suitable number of class intervals or classes, such that each obser-
vation is contained in exactly one class. Suppose, for example, that we have 50 observations 
on x 5 fuel efficiency of an automobile (mpg), the smallest of which is 27.8 and the largest 

Figure 1.6  Histogram of number of corporate board members
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The  corresponding histogram in Figure 1.6 rises to a peak and then declines. The 
histogram extends a bit more on the right (toward large values) than it does on the 
left—a slight positive skew.

From either the tabulated information or the histogram itself, we can determine 
the following:

Proportion of boards with 
at most 10 directors 5

(relative 
frequency 
for x 5 4)

1
(relative 
frequency 
for x 5 5)

1 ∙ ∙ ∙ 1
(relative 
frequency 
for x 5 10)

5 �0.0147 1 0.0588 1 0.0637 1 0.1225  
1 0.1176 1 0.2059 1 0.1127 5 0.6959

Similarly,

Proportion of boards with 
more than 15 directors 5

(relative 
frequency 
for x 5 16)

1
(relative 
frequency 
for x 5 17)

1 ∙ ∙ ∙ 1
(relative 
frequency 
for x 5 32)

5 0.0049 1 0.0147 1 ∙ ∙ ∙ 1 0.0049 5 0.0343
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	 1.2   Visual Displays for Univariate Data	 17

27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5

of which is 31.4. Then we could use the class boundaries 27.5, 28.0, 28.5, . . . , and 31.5 as 
shown here:

Constructing a Histogram for Continuous Data:  
Equal Class Widths
Determine the frequency and relative frequency for each class. Mark the class boundar-
ies on a horizontal measurement axis.  Above each class interval, draw a rectangle whose 
height is the corresponding relative frequency (or frequency).

Power companies need information about customer usage to obtain accurate fore-
casts of demand. Investigators from Wisconsin Power and Light determined energy 
consumption (BTUs) during a particular period for a sample of 90 gas-heated homes. 
An adjusted consumption value was calculated as follows:

adjusted consumption 5
consumption

(weather, in degree days)(house area)

This resulted in the accompanying data (part of the stored data set FURNACE.
MTW available in Minitab, which we have ordered from smallest to largest):

  2.97   4.00   5.20   5.56   5.94   5.98   6.35   6.62   6.72   6.78
  6.80   6.85   6.94   7.15   7.16   7.23   7.29   7.62   7.62   7.69
  7.73   7.87   7.93   8.00   8.26   8.29   8.37   8.47   8.54   8.58
  8.61   8.67   8.69   8.81   9.07   9.27   9.37   9.43   9.52   9.58
  9.60   9.76   9.82   9.83   9.83   9.84   9.96 10.04 10.21 10.28
10.28 10.30 10.35 10.36 10.40 10.49 10.50 10.64 10.95 11.09
11.12 11.21 11.29 11.43 11.62 11.70 11.70 12.16 12.19 12.28
12.31 12.62 12.69 12.71 12.91 12.92 13.11 13.38 13.42 13.43
13.47 13.60 13.96 14.24 14.35 15.12 15.24 16.06 16.90 18.26

Example 1.8

A potential difficulty is that an observation such as 29.0 lies on a class boundary so it doesn’t 
lie in exactly one interval. One way to deal with this problem is to use boundaries like 
27.55, 28.05, . . . , 31.55. Adding a hundredths digit to the class boundaries prevents obser-
vations from falling on the resulting boundaries. Another way to deal with this problem is 
to use the classes 27.5 2   , 28.0, 28.0  2  , 28.5, . . . , 31.0  2  , 31.5. Then 29.0 falls in the 
class 29.0 2  , 29.5 rather than in the class 28.5 2  , 29.0. In other words, with this conven-
tion, an observation on a boundary is placed in the interval to the right of the boundary. 
This is how Minitab constructs a histogram.
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18	 chapter 1   Data and Distributions

Figure 1.7  Histogram of the energy 
consumption data from Example 1.8
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We let Minitab select the class intervals. The most striking feature of the histogram in 
Figure 1.7 is its resemblance to a bell-shaped (and therefore symmetric) curve, with 
the point of symmetry at roughly 10.

There are no hard-and-fast rules concerning either the number of classes or the choice 
of classes themselves. Between 5 and 20 classes will be satisfactory for most data sets. Gener-
ally, the larger the number of observations in a data set, the more classes should be used. A 
reasonable rule of thumb is

number  of  classes 2number  of  observations

Equal-width classes may not be a sensible choice if a data set has at least one “stretched-
out tail.” Figure 1.8 (page 19) shows a dotplot of such a data set. Using a small number of 

Class: 12 ,3 32, 5 52, 7 72, 9 92, 11 112,13 132,15 152,17 172,19
Frequency: 1 1 11 21 25 17 9 4 1

Relative
frequency:  .011 .011 .122 .233 .278 .189 .100 .044 .011

From the histogram,

proportion of observations
less than 9

 .01 1 .01 1 .12 1 .23 5 .37

(exact value 5 34y90 5 .378)

The relative frequency for the 9 2   ,11 class is about .27, so roughly half of this, or 
.135, should be between 9 and 10. Thus

proportion of observations
less than 10

.37 1 .135 5 .505     (slightly more than 50%)

The exact value of this proportion is 47y90 5 .522.
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	 1.2   Visual Displays for Univariate Data	 19

equal-width classes results in almost all observations falling in just one or two of the classes. 
If a large number of equal-width classes are used, many classes will have zero frequency. A 
sound choice is to use a few wider intervals near extreme observations and narrower inter-
vals in the region of high concentration.

Figure 1.8  Selecting class intervals when there are outliers: (a) many short 
equal width intervals; (b) a few wide equal-width intervals; (c) unequal-width 
intervals

(a)

(b)

(c)

Constructing a Histogram for Continuous Data:  
Unequal Class Widths
After determining frequencies and relative frequencies, calculate the height of each rect-
angle using the formula

rectangle height 5
relative frequency of the class

class width

The resulting rectangle heights are usually called and the vertical scale is the 
density scale.  This prescription will also work when class widths are equal.

Corrosion  of reinforcing steel is a serious problem in concrete structures located 
in environments affected by severe weather conditions. For this reason, researchers 
have been investigating the use of reinforcing bars made of composite material. 
One study was carried out to develop guidelines for bonding glass-fiber-reinforced 
plastic rebars to concrete (“Design Recommendations for Bond of GFRP Rebars to 
Concrete,” J. of Structural Engr., 1996: 247–254). Consider the following 48 obser-
vations on measured bond strength:

11.5 12.1 9.9 9.3 7.8 6.2   6.6 7.0 13.4 17.1 9.3 5.6

5.7 5.4 5.2 5.1 4.9 10.7 15.2 8.5 4.2 4.0 3.9 3.8

3.6 3.4 20.6  25.5 13.8 12.6 13.1 8.9 8.2 10.7 14.2 7.6

5.2 5.5 5.1 5.0 5.2 4.8 4.1 3.8 3.7 3.6 3.6 3.6

Example 1.9
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20	 chapter 1   Data and Distributions

When class widths are unequal, not using a density scale will give a picture with dis-
torted areas. For equal class widths, the divisor is the same in each density calculation, and 
the extra arithmetic simply results in a rescaling of the vertical axis (i.e., the histogram us-
ing relative frequency and the one using density will have exactly the same appearance). A 
density histogram does have one interesting property. Multiplying both sides of the formula 
for density by the class width gives

relative frequency 5 (class width)(density)

                            5 (rectangle width)(rectangle height)

                            5 rectangle area

That is, the area of each rectangle is the relative frequency of the corresponding class. 
Furthermore, since the sum of relative frequencies must be 1.0 (except for roundoff), 
the total area of all rectangles in a density histogram is 1. It is always possible to draw a 
histogram so that the area equals the relative frequency (this is true also for a histogram 
of discrete data—just use the density scale). This property will play an important role in 
creating models for distributions in Section 1.3.

Class: 22   ,4 4 2  ,6 6 2  ,8 8 2  ,12 12 2  ,20 20 2  ,30
Frequency: 9 15 5 9 8 2

Relative
frequency: .1875 .3125 .1042 .1875 .1667 .0417

Density: .094 .156 .052 .047 .021 .004

The resulting histogram appears in Figure 1.9. The right or upper tail stretches 
out much farther than does the left or lower tail—a substantial departure from 
symmetry.

Figure 1.9 A Minitab density histogram for 
the bond strength data of Example 1.9
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	 1.2   Visual Displays for Univariate Data	 21

Histogram Shapes
Histograms come in a variety of shapes. A unimodal histogram is one that rises to a single 
peak and then declines. A bimodal histogram has two different peaks. Bimodality occurs 
when the data set consists of observations on two quite different kinds of individuals or 
objects. For example, consider a large data set consisting of driving times for automobiles 
traveling between San Luis Obispo, California, and Monterey, California (exclusive of 
stopping time for sightseeing, eating, etc.). This histogram would show two peaks, one for 
those cars that took the inland route (roughly 2.5 hours) and another for those cars travel-
ing up the coast (3.5–4 hours). However, bimodality does not automatically follow in such 
situations. Only if the two separate histograms are “far apart” relative to their spreads will 
bimodality occur in the histogram of combined data. Thus a large data set consisting of 
heights of college students should not result in a bimodal histogram because the typical 
male height of about 69 inches is not far enough above the typical female height of about 
64–65 inches. A histogram with more than two peaks is said to be multimodal. Of course, 
the number of peaks may well depend on the choice of class intervals, particularly with a 
small number of observations. The larger the number of classes, the more likely it is that 
bimodality or multimodality will manifest itself.

Figure 1.10(a) shows a Minitab histogram of the weights (lbs) of the 121 players 
listed on the rosters of the San Francisco 49ers and the New England Patriots as of 
November 28, 2012. Figure 1.10(b) is a smoothed histogram (actually what is called 
a density estimate) of the data from the R software package. Both the histogram and 
the smoothed histogram show three distinct peaks: The one on the right is for line-
men, the middle peak corresponds to linebacker weights, and the peak on the left is 
for all other players (wide receivers, quarterbacks, etc.).

Example 1.10
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Figure 1.10  NFL player weights: (a) histogram, (b) smoothed histogram
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22	 chapter 1   Data and Distributions

(a) (d)(b) (c)

Figure 1.11  Smoothed histograms: (a) symmetric unimodal; (b) bimodal; (c) positively skewed; 
(d) negatively skewed
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Figure 1.10  ( )

(b)

A histogram is symmetric if the left half is a mirror image of the right half. A bell-
shaped histogram is symmetric, but there are other unimodal symmetric histograms that 
are not bell-shaped; histograms with more than one peak can also be symmetric. A uni-
modal histogram is positively skewed if the right or upper tail is stretched out compared 
with the left or lower tail, and negatively skewed if the longer tail extends to the left. 
Figure 1.11 shows “smoothed” histograms, obtained by superimposing a smooth curve on 
the rectangles, that illustrate the various possibilities.

Categorical Data
A histogram for categorical data is often called a bar chart. In some cases, there will 
be a natural ordering of classes (for example, freshman, sophomore, junior, senior, 
graduate student), whereas in other cases, the order will be arbitrary (Honda, Yamaha, Un
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In  the manufacture of printed circuit boards, finished boards are subjected to a final 
inspection before they are shipped to customers. Here is data on the type of defect for 
each board rejected at final inspection during a particular time period:

Type of defect Frequency Relative frequency

Low copper plating 112 .615

Poor electroless coverage 35 .192

Lamination problems 10 .055

Plating separation 8 .044

Etching problems 5 .027

Miscellaneous 12 .066

Figure 1.12 is a Pareto diagram. Roughly 80% (.615 1 .192) of the defects were of 
one of the first two types.

Example 1.11
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Figure 1.12  A Pareto diagram for Example 1.11

Harley-Davidson, etc.). A Pareto diagram is a bar chart resulting from a quality control 
study in which each category represents a different type of product nonconformity or 
production problem. The categories appear in order of decreasing frequency (if a mis-
cellaneous category is needed, it is the last one).

Section 1.2 Exercises 

	 1.	 Consider the strength data for beams given in 
Example 1.2.

	 a.	 Construct a stem-and-leaf display of the data. 
What appears to be a representative strength 
value? Do the observations appear to be highly 

concentrated about the representative value or 
rather spread out?

	 b.	 Does the display appear to be reasonably sym-
metric about a representative value, or would you 
describe its shape in some other way?Un
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24	 chapter 1   Data and Distributions

	 c.	 Do there appear to be any outlying strength 
values?

	 d.	 What proportion of strength observations in this 
sample exceed 10 MPa?

	 2.	 The article cited in Example 1.2 also gave the accom-
panying strength observations for cylinders:

		  6.1   5.8   7.8   7.1   7.2   9.2   6.6     8.3      7.0      8.3
		  7.8   8.1   7.4   8.5   8.9   9.8   9.7   14.1   12.6   11.2

	 a.	 Construct a comparative stem-and-leaf display of 
the beam and cylinder data, then answer the ques-
tions in parts (b)–(d) of Exercise 1 for the observa-
tions on cylinders.

	 b.	 In what ways are the two sides of the display 
similar? Are there any obvious differences be-
tween the beam observations and the cylinder 
observations?

	 3.	 The accompanying specific gravity values for vari-
ous wood types used in construction appeared in the 
article “Bolted Connection Design Values Based on 
European Yield Model” (J. of Structural Engr., 1993: 
2169–2186):

		  .31    .35    .36    .36    .37    .38    .40    .40    .40
		  .41    .41    .42    .42    .42    .42    .42    .43    .44
		  .45    .46    .46    .47    .48    .48    .48    .51    .54
		  .54    .55    .58    .62    .66    .66    .67    .68    .75

		  Construct a stem-and-leaf display using repeated 
stems, and comment on any interesting features of 
the display.

	 4.	 Allowable mechanical properties for structural 
design of metallic aerospace vehicles requires an 
approved method for statistically analyzing empiri-
cal test data. The article “Establishing Mechanical 
Property Allowables for Metals” (J. of Testing and 
Evaluation, 1998: 293–299) used the accompany-
ing data on tensile ultimate strength (ksi) as a basis 
for addressing the difficulties in developing such a 
method:

		  122.2    124.2    124.3    125.6    126.3    126.5
		  126.5    127.2    127.3    127.5    127.9    128.6
		  128.8    129.0    129.2    129.4    129.6    130.2
		  130.4    130.8    131.3    131.4    131.4    131.5
		  131.6    131.6    131.8    131.8    132.3    132.4
		  132.4    132.5    132.5    132.5    132.5    132.6

		  132.7    132.9    133.0    133.1    133.1    133.1
		  133.1    133.2    133.2    133.2    133.3    133.3
		  133.5    133.5    133.5    133.8    133.9    134.0
		  134.0    134.0    134.0    134.1    134.2    134.3
		  134.4    134.4    134.6    134.7    134.7    134.7
		  134.8    134.8    134.8    134.9    134.9    135.2
		  135.2    135.2    135.3    135.3    135.4    135.5
		  135.5    135.6    135.6    135.7    135.8    135.8
		  135.8    135.8    135.8    135.9    135.9    135.9
		  135.9    136.0    136.0    136.1    136.2    136.2
		  136.3    136.4    136.4    136.6    136.8    136.9
		  136.9    137.0    137.1    137.2    137.6    137.6
		  137.8    137.8    137.8    137.9    137.9    138.2
		  138.2    138.3    138.3    138.4    138.4    138.4
		  138.5    138.5    138.6    138.7    138.7    139.0
		  139.1    139.5    139.6    139.8    139.8    140.0
		  140.0    140.7    140.7    140.9    140.9    141.2
		  141.4    141.5    141.6    142.9    143.4    143.5
		  143.6    143.8    143.8    143.9    144.1    144.5
		  144.5    147.7    147.7

	 a.	 Construct a stem-and-leaf display of the data by 
first deleting (truncating) the tenths digit and then 
repeating each stem value five times (once for 
leaves 0 and 1, a second time for leaves 2 and 3, 
etc.). Why is it relatively easy to identify a repre-
sentative strength value?

	 b.	 Construct a histogram using equal-width classes 
with the first class having a lower limit of 122 and 
an upper limit of 124. Then comment on any in-
teresting features of the histogram.

	 5.	 Consider the accompanying values of golf course 
lengths (yards) for a sample of courses designated by 
Golf Magazine as being among the most challenging 
in the United States:

		 6433    6435    6464    6470    6506    6526    6527
		 6583    6605    6614    6694    6700    6713    6745
		 6770    6770    6790    6798    6850    6870    6873
		 6890    6900    6904    6927    6936    7005    7011
		 7022    7040    7050    7051    7105    7113    7131
		 7165    7168    7169    7209    7280

	 a.	 Would it be best to use one-digit, two-digit, or 
three-digit stems as a basis for a stem-and-leaf dis-
play? Explain your reasoning.
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	 b.	 Construct a stem-and-leaf display based on 
two-digit stems and two-digit leaves, with suc-
cessive leaves separated by either a comma or a 
space.

	 c.	 Construct a stem-and-leaf display in which the 
leaf of each observation is its tens digit (so the 
ones digit is truncated). Does this display appear 
to be significantly less informative about course 
lengths than the display of part (b)? What ad-
vantage would this display have over the one in 
part (b) if there had been 200 courses in the 
sample?

	 6.	 Construct two stem-and-leaf displays for the accom-
panying set of exam scores, one in which each stem 
value appears just once and the other in which stem 
values are repeated:

74 89 80 93 64 67 72 70 66 85 89 81
81 71 74 82 85 63 72 81 81 95 84 81
80 70 69 66 60 83 85 98 84 68 90 82
69 72 87 88

		  What feature of the data is revealed by the display 
with repeated stems that is not so readily apparent in 
the first display?

	 7.	 Temperature transducers of a certain type are shipped 
in batches of 50. A sample of 60 batches was selected, 
and the number of transducers in each batch not 
conforming to design specifications was determined, 
resulting in the following data:

		 2  1  2  4  0  1  3  2  0  5  3  3  1  3  2  4  7  0  2  3
		  0  4  2  1  3  1  1  3  4  1  2  3  2  2  8  4  5  1  3  1
		  5  0  2  3  2  1  0  6  4  2  1  6  0  3  3  3  6  1  2  3

	 a.	 Determine frequencies and relative frequencies 
for the observed values of x 5 number of noncon-
forming transducers in a batch.

	 b.	 What proportion of batches in the sample have 
at most five nonconforming transducers? What 
proportion have fewer than five? What propor-
tion have at least five nonconforming units?

	 c.	 Draw a histogram of the data using relative fre-
quency on the vertical scale, and comment on its 
features.

	 8.	 In a study of author productivity (“Lotka’s Test,” Col-
lection Mgmt., 1982: 111–118), a large number of 

authors were classified according to the number of 
articles they had published during a certain period. 
The results were presented in the accompanying fre-
quency distribution:

Number
of papers: 1 2 3 4 5 6 7 8
Frequency: 784  204 127 50 33 28 19 19

Number
of papers: 9 10 11 12 13 14 15 16 17
Frequency: 6 7 6 7 4 4  5 3 3

	 a.	 Construct a histogram corresponding to this fre-
quency distribution. What is the most interesting 
feature of the shape of the distribution?

	 b.	 What proportion of these authors published at 
least five papers? At least ten papers? More than 
ten papers?

	 c.	 Suppose the five 15s, three 16s, and three 17s had 
been lumped into a single category displayed as  
;$15.< Would you be able to draw a histogram? 

Explain.
	 d.	 Suppose that instead of the values 15, 16, 

and 17 being listed separately, they had 
been combined into a 15–17 category with 
frequency 11. Would you be able to draw a 
histogram? Explain.

	 9.	 The number of contaminating particles on a silicon 
wafer prior to a certain rinsing process was deter-
mined for each wafer in a sample of size 100, result-
ing in the following frequencies:

Number
of particles: 0 1 2  3   4  5 6 7

Frequency: 1 2 3 12 11 15 18 10

Number
of particles: 8 9 10 11 12 13 14
Frequency: 12 4 5 3 1 2 1

	 a.	 What proportion of the sampled wafers had at 
least one particle? At least five particles?

	 b.	 What proportion of the sampled wafers had be-
tween five and ten particles, inclusive? Strictly 
between five and ten particles?

	 c.	 Draw a histogram using relative frequency on the 
vertical axis. How would you describe the shape of 
the histogram?
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26	 chapter 1   Data and Distributions

	10.	 The article “Knee Injuries in Women Collegiate 
Rugby Players” (Amer. J. of Sports Medicine, 1997: 
360–362) gave the following data on type of injury 
(A 5 mensical tear, B 5 MCL tear, C 5 ACL tear, 
D 5 patella dislocation, E 5 PCL tear):

		  A	 B	 B	 A	 C	 A	 A	 D	 B	 A	 C	 E	 B
		  B	 A	 A	 C	 D	 C	 A	 C	 B	 C	 C	 C	 A
		  B	 B	 C	 A	 A	 B	 C	 C	 A	 C	 B	 B	 D
		  A	 B	 A	 C	 B	 A	 A	 C	 A	 B	 B	 E	 B
		  B	 B	 C	 C	 A	 C	 A	 A	 B	 D	 A	 A	 C
		  B	 C	 C	 A	 B	 B	 A	 D	 C	 A	 B

		  Construct a Pareto diagram for this data. The three 
most frequently occurring types of injuries account 
for what proportion of all injuries?

	11.	 The article “Determination of Most Representative 
Subdivision” (J. of Energy Engr., 1993: 43–55) gave 
data on various characteristics of subdivisions that 
could be used in deciding whether to provide electri-
cal power using overhead lines or underground lines. 
Here are the values of the variable x 5 total length of 
streets within a subdivision:

1280 5320 4390 2100 1240 3060 4770
1050 360 3330 3380 340 1000 960
1320 530 3350 540 3870 1250 2400

960 1120 2120 450 2250 2320 2400
3150 5700 5220 500 1850 2460 5850
2700 2730 1670 100 5770 3150 1890

510 240 396 1419 2109

	 a.	 Construct a stem-and-leaf display using the thou-
sands digit as the stem and the hundreds digit as 
the leaf, and comment on the various features of 
the display.

	 b.	 Construct a histogram using class boundaries 0, 
1000, 2000, 3000, 4000, 5000, and 6000. What 
proportion of subdivisions have total length less 
than 2000? Between 2000 and 4000? How would 
you describe the shape of the histogram?

	12.	 The article cited in Exercise 11 also gave the follow-
ing values of the variables y 5 number of culs-de-sac 
and z 5 number of intersections:

y: 1 0 1 0 0 2 0 1 1 1 2 1 0 0 1 1

0 1 1 1 1 0 0 0 1 1 2 0 1 2 2 1
1 0 2 1 1 0 1 5 0 3 0 1 1 0 0

z: 1 8 6 1 1 5 3 0 0 4 4 0 0 1 2 1
4 0 4 0 3 0 1 1 0 1 3 2 4 6 6 0
1 1 8 3 3 5 0 5 2 3 1 0 0 0 3

	 a.	 Construct a histogram for the y data. What pro-
portion of these subdivisions had no culs-de-sac? 
At least one cul-de-sac?

	 b.	 Construct a histogram for the z data. What pro-
portion of these subdivisions had at most five 
intersections? Fewer than five intersections?

	13.	 The article “Ecological Determinants of Herd Size 
in the Thorncraft’s Giraffe of Zambia” (Afric. J. Ecol., 
2010: 962–971) gave the following data (read from a 
graph) on herd size for a sample of 1570 herds over a 
34-year period.

Herd size: 1 2 3 4 5 6 7 8
Frequency: 589 190 176 157 115 89 57 55

Herd size: 9 10 11 12 13 14 15 17
Frequency: 33 31 22 10 4 10 11 5

Herd size: 18 19 20 22 23 24 26 32
Frequency: 2 4 2 2 2 2 1 1

	 a.	 What proportion of the sampled herds had just 
one giraffe?

	 b.	 What proportion of the sampled herds had six or 
more giraffes (characterized in the article as “large 
herds”)?

	 c.	 What proportion of the sampled herds had be-
tween 5 and 10 giraffes inclusive?

	 d.	 Draw a histogram using relative frequency on the 
vertical axis. How would you describe the shape of 
this histogram?

	14.	 The article “Statistical Modeling of the Time Course 
of Tantrum Anger” (J. of Applied Stats, 2009: 1013–  
1034) discussed how anger intensity in children’s 
tantrums could be related to tantrum duration as 
well as behavioral indicators such as shouting, stamp-
ing, pushing, and pulling. The following frequency 
distribution was given (as well as the corresponding 
histogram):

0 2 ,2: 136 2 2 ,4: 92 4 2 ,11: 71

112 ,20: 26 20 2 ,30: 7 30 2 ,40: 3

Draw the histogram and then comment on any in-
teresting features.
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	15.	 Automated electron backscattered diffraction is now 
being used in the study of fracture phenomena. 
The following information on misorientation angle 
(degrees) was extracted from the article “Observations 
on the Faceted Initiation Site in the Dwell-Fatigue 
Tested Ti-6242 Alloy: Crystallographic Orienta-
tion and Size Effects” (Metallurgical and Materials 
Trans., 2006: 1507–1518)

Class: 0 2  ,5 5 2  ,10 10 2 ,15 15 2 ,20
Rel Freq: .177 .166 .175 .136

Class: 20 2  ,30 30 2  , 40 40 2  ,  60 602,90
Rel Freq: .194 .078 .044 .030

	 a.	 Is it true that more than 50% of the sampled angles 
are smaller than 15°, as asserted in the paper?

	 b.	 What proportion of the sampled angles are at least 
30°?

	 c.	 Roughly what proportion of angles are between 
10° and 25°?

	 d.	 Construct a histogram and comment on any inter-
esting features.

	16.	 A transformation of data values by means of some 
mathematical function, such as 1x  or 1yx, can often 
yield a set of numbers that has “nicer” statistical prop-
erties than the original data. In particular, it may be 
possible to find a function for which the histogram of 
transformed values is more symmetric (or even better, 
more like a bell-shaped curve) than the original data. 
For example, the article “Time Lapse Cinematograph-
ic Analysis of Beryllium–Lung Ibroblast Interactions” 
(Envir. Research, 1983: 34–43) reported the results of 
experiments designed to study the behavior of certain 
individual cells that had been exposed to beryllium. 
An important characteristic of such an individual cell 
is its interdivision time (IDT). IDTs were determined 
for a number of cells both in exposed (treatment) and 
in unexposed (control) conditions. The authors of the 
article used a logarithmic transformation. Consider 
the following representative IDT data:

28.1 31.2 13.7 46.0 25.8 16.8 34.8 62.3
28.0 17.9 19.5 21.1 31.9 28.9 60.1 23.7
18.6 21.4 26.6 26.2 32.0 43.5 17.4 38.8
30.6 55.6 25.5 52.1 21.0 22.3 15.5 36.3
19.1 38.4 72.8 48.9 21.4 20.7 57.3 40.9

		  Construct a histogram of this data based on classes 
with boundaries 10, 20, 30, . . . . Then calculate 
log10(x) for each observation, and construct a his-
togram of the transformed data using class bound-
aries 1.1, 1.2, 1.3, . . . . What is the effect of the 
transformation?

	17.	 The accompanying data set consists of observa-
tions on shear strength (lb) of ultrasonic spot 
welds made on a certain type of alclad sheet. 
Construct a relative frequency histogram based 
on ten equal-width classes with boundaries 4000, 
4200, . . . . (The histogram will agree with the 
one in “Comparison of Properties of Joints Pre-
pared by Ultrasonic Welding and Other Means,” 
J. of Aircraft, 1983: 552–556.) Comment on its 
features.

		  5434    4948    4521    4570    4990    5702    5241
		  5112    5015    4659    4806    4637    5670    4381
		  4820    5043    4886    4599    5288    5299    4848
		  5378    5260    5055    5828    5218    4859    4780
		  5027    5008    4609    4772    5133    5095    4618
		  4848    5089    5518    5333    5164    5342    5069
		  4755    4925    5001    4803    4951    5679    5256
		  5207    5621    4918    5138    4786    4500    5461
		  5049    4974    4592    4173    5296    4965    5170
		  4740    5173    4568    5653    5078    4900    4968
		  5248    5245    4723    5275    5419    5205    4452
		  5227    5555    5388    5498    4681    5076    4774
		  4931    4493    5309    5582    4308    4823    4417
		  5364    5640    5069    5188    5764    5273    5042
		  5189    4986

	18.	 The paper “Study on the Life Distribution of Micro-
drills” ( J. of Engr. Manufacture, 2002: 301–305) re-
ported the following observations, listed in increasing 
order, on drill lifetimes (number of holes that a drill 
machines before it breaks) when holes were drilled in 
a certain brass alloy.

11 14 20 23 31 36 39 44 47 50
59 61 65 67 68 71 74 76 78 79
81 84 85 89 91 93 96 99 101 104

105 105 112 118 123 136 139 141 148 158
161 168 184 206 248 263 289 322 388 513
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1.3	 Describing Distributions �

In Section 1.2, we saw that a histogram could be used to describe how values of a 
variable x are distributed in a data set. In practice, a histogram is virtually always 
constructed from sample data. Consider the population or process from which 
a sample might be selected. It is often possible to give a concise mathematical 
description of how the possible values of x are distributed or dispersed along the 
number line or measurement scale. Suppose, for example, that x is the fuel effi-
ciency (mpg) of a vehicle of a particular type (a continuous variable), so that the 
value of x varies from vehicle to vehicle. Knowing the distribution of x enables us 
to determine the proportion of vehicles for which x is less than 32, the proportion 
for which x exceeds 30.5, the proportion of vehicles having 31.5 , x , 32.5, and 
so on. If x is the number of defects on an item produced by some process (a discrete 
variable), then the x distribution will describe what proportion of items produced 
will have x 5 0, what proportion will have x 5 1, and so on. We now describe the 
essential features of distributions for continuous variables and those for discrete 
variables.

Continuous Distributions
Let x be a continuous variable, one whose value is determined by making a measurement of 
some sort. Suppose we have a sample of x values from a population or ongoing process. For 
example, the sample might consist of fuel efficiencies of cars selected from a large rental 
fleet (a population) or waiting times for a succession of patients entering a large medical 
clinic (a patient arrival process). If the sample size is small, a histogram based on only a 
small number of relatively wide class intervals is appropriate. For a large sample size, many 
narrow classes should be used. Let’s agree to draw our histograms using the density scale 
discussed in Section 1.2 so that

     	 For each rectangle, area 5 relative frequency of the class
     	 Total area of all rectangles 5 1

With a large amount of data, a histogram based on any reasonable choice of classes should 
have roughly the same shape and can very frequently be well approximated by a smooth 
curve. This type of approximation is illustrated in Figure 1.13.

Many approximating curves that arise in practice can be obtained as graphs of reason-
ably simple mathematical functions. Such a mathematical function provides a very concise 
description of the x distribution.

	 a.	 Why can a frequency distribution not be based 
on the class intervals 0–50, 50–100, 100–150, 
and so on?

	 b.	 Construct a frequency distribution and his-
togram of the data using class boundaries 0, 
50, 100, . . . and then comment on interesting 
characteristics.

	 c.	 Construct a frequency distribution and histo-
gram of the natural logarithms of the lifetime 
observations and comment on interesting char-
acteristics.

	 d.	 What proportion of the lifetime observations in 
this sample are less than 100? What proportion of 
the observations are at least 200?
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A density function f (x) is used to describe (at least approximately) the population 
or process distribution of a continuous variable x. The graph of f (x) is called the 
density curve. The following properties must be satisfied:

1.	 f (x) $ 0
2.       #

2   f (x) dx 5 1 (the total area under the density curve is 1.0)
3.	 For any two numbers a and b with a , b,

proportion of x values between a and b 5 #
b

 a
f  (x) dx

(This proportion is the area under the density curve and above the interval 
with endpoints a and b, as illustrated in Figure 1.14.)

DEFINITIONS

Density

(a)

Density

(c)

Density

(b)

Figure 1.13  Histograms of continuous data: (a) small number of wide classes; (b) large number of narrow 
classes; (c) approximation by a smooth curve

Shaded area = 
                        

( )

proportion of values
between and     

Figure 1.14 The area under the density 
curve is equal to the proportion of values in an 
interval

There is no area under the density curve and above a single value (e.g., above 2.50), which 
implies that

proportion of x values satisfying
a # x # b

5
proportion of x values satisfying

a , x , bUn
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30	 chapter 1   Data and Distributions

That is, the area under the curve between a and b does not depend on whether the two 
interval endpoints are included or excluded.

A certain daily program on a public radio station lasts 1 hour. Let x denote the 
amount of time (hr) during which music is played. (There are no advertisements, but 
the host provides occasional commentary and makes announcements.) A potential 
program sponsor is interested in knowing how the value of x varies from program to 
program. Consider the density function

f  (x) 5 e90x8(1 2 x) 0 # x # 1
0 otherwise

This looks complicated, but the corresponding density curve in Figure 1.15 has a 
simple and appealing shape.

We see immediately that most x values are quite close to 1 and very few are small-
er than .5 (almost all programs consist of at least a half hour of music). The constant 
90 in f(x) ensures that the total area under the density curve is 1.0 [f(x) 5 kx8(1 2 x) 
is a legitimate density function only for k 5 90]. Various proportions of interest can 
now be obtained by integration. For example,

proportion of programs 
with x between .7 and .9

  5 # .9
 .7

90x8(1 2 x) dx 5 90# 

.9

 .7
x8 dx 2 90# .9

  .7
x9 dx

 5 90a x9

9
2

x10

10
b 2 .9

.7
5 .587

proportion of programs 
for which x is at least .8  5 #

1

.8
90x8(1 2 x) dx 5 .624

Example 1.12

Figure 1.15  Density curve for Example 1.12
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Let x denote the response time (sec) at a certain on-line computer; that is, x is the 
time between the end of a user’s inquiry and the beginning of the system’s response 
to that inquiry. The value of x varies from inquiry to inquiry. Suppose the density 
function for the distribution of x is

f (x) 5 e .2e2.2x

0
x $ 0
otherwise

where e represents the base of the natural logarithm system and approximately equals 
2.71828. A graph of f (x) is shown in Figure 1.17. By inspection, f (x) $ 0, and

#
2

f (x) dx 5 # 0 .2e2.2x dx 5 2e2.2x 2
0

5 1

Example 1.13

What duration value c separates the smallest 50% of all x values from the largest 
50%? Figure 1.16 shows the location of c; the corresponding equation is

#
c

   0
90x8(1 2 x) dx 5 .5

which becomes

90a c9

9
2

c10

10
b 5 .5

Newton’s method or some other numerical technique is used to obtain the solution: 
c .838. That is, about 50% of all programs have music for more than .838 hr, and 
about 50% have music for less than .838 hr. The value .838 is called the median of 
the x distribution.

Figure 1.16  Determining the median of the 
distribution in Example 1.12
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32	 chapter 1   Data and Distributions

The density function in Example 1.13 is a particular case of a more general  function.

0 10 20

11.5 = 90th percentile

Shaded area = .10

.1

0

.2

( )

0 10 20

.1

0

.2

( )

Figure 1.17 The density curve and 90th percentile for Example 1.13

The proportion of inquiries with a response time less than 5 sec is

#
5

0
.2e2.2x dx 5 1 2 e2.2(5) 5 .632

So  63.2% of all response times are at most 5 sec, and 36.8% of all times exceed  5 sec. 
The value c that separates the largest 10% of all times from the smallest 90% (called 
the 90th percentile) satisfies

.9 5 #
c

 0
.2e2.2x dx 5 1 2 e2.2c

from which c 5 2[ln(.1)]y.2 5 11.5. Only about 10% of all inquiries will have re-
sponse times exceeding 11.5 sec.

A variable x is said to have an exponential distribution with parameter � . 0 if 
the density function for x is

f  (x) 5 e�e2�x x $ 0
0 otherwise

DEFINITION

Each different value of � prescribes a different exponential distribution, so we have an en-
tire family of distributions. The shape of each density curve is like the curve in Figure 1.17; 
the curve starts at height � above x 5 0 and decreases exponentially as x increases. The ex-
ponential distribution has been used to model many different phenomena, including time Un
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	 1.3   Describing Distributions	 33

A population or process distribution for a discrete variable x is specified by a mass 
function p(x) satisfying

p(x) $ 0    ^p(x) 5 1

where the summation is over all possible x values. Other interesting proportions 
can be obtained by adding various p(x) values. In particular, if a and b are integers 
with a , b, then

proportion of x values
between a and b (inclusive)

5 p(a) 1 p(a 1 1) 1 1 p(b)

DEFINITION

between successive arrivals at a service facility, the amount of time to complete a specified 
task, and the 1-hr concentration of carbon monoxide in an air sample. In Sections 1.4 and 
1.5, we introduce several other important continuous distributions.

Discrete Distributions
Let’s focus on a variable x whose possible values are nonnegative integers; usually the value 
of x results from counting something. A histogram of sample data will have rectangles 
centered at values 0, 1, 2, . . . (or some subset of these) regardless of the sample size. How-
ever, as the sample size increases, the relative frequencies (sample proportions of various 
x values) tend to get closer and closer to their true population or process counterparts. We 
will use the following notation:

proportion of x values in the population that equal 0, or the long run
proportion of x values in a process that equal 0

proportion of x values in the population that equal 1, or the long@run
           proportion of x values in a process that equal 1

and so on. None of these proportions can be negative, and their sum must be 1 (so that 
100% of the x values are included).

p(0) 5

p(1) 5

Consider  a package of four batteries of a particular type, and let x denote the number 
of satisfactory (i.e., nondefective) batteries in the package. Possible values of x are 0, 
1, 2, 3, and 4. One reasonable distribution for x is specified by the following mass 
function:

p(x) 5
24

x!(4 2 x)!
 (.9)x(.1)42x    x 5 0, 1, 2, 3, 4

where “!” is the factorial symbol (e.g., 4!5 (4)(3)(2)(1) 5 24, 1!5 1, and 0!5 1).
This looks a bit intimidating, but there is an intuitive argument leading to p(x) that 
we will mention shortly. Substituting x 5 3, we get

p(3) 5
24

(6)(1)
 (.9)3(.1)1 5 .2916

Example 1.14
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34	 chapter 1   Data and Distributions

In Section 1.6, we will generalize the distribution of Example 1.14 and introduce one 
additional important discrete distribution.

Section 1.3 Exercises 

	19.	 A continuous variable x is said to have a uniform distri-
bution if the density function is given by

f (x) 5 c 1
b 2 a

a , x , b

0 otherwise

		  The corresponding density “curve” has constant 
height over the interval from a to b. Suppose the time 
(min) taken by a clerk to process a certain application 
form has a uniform distribution with a 5 4 and b 5 6.

	 a.	 Draw the density curve, and verify that the total 
area under the curve is indeed 1.

	 b.	 In the long run, what proportion of forms will take 
between 4.5 min and 5.5 min to process? At least 
4.5 min to process?

	 c.	 What value separates the slowest 50% of all pro-
cessing times from the fastest 50% (the median of 
the distribution)?

	 d.	 What value separates the best 10% of all process-
ing times from the remaining 90%?

	20.	 Suppose that the reaction temperature x (°C) in a cer-
tain chemical process has a uniform distribution with 
a 5 25 and b 5 5 (refer to Exercise 19 for a descrip-
tion of a uniform distribution).

	 a.	 In the long run, what proportion of these reactions 
will have a negative value of temperature?

	 b.	 In the long run, what proportion of temperatures 
will be between 22 and 2? Between 22 and 3?

	 c.	 For any number k satisfying 25 , k , k 1 4 , 5, 
what long-run proportion of temperatures will be 
between k and k 1 4?

	21.	 Suppose that your morning waiting time for a bus 
has a uniform distribution on the interval from 0 
to 5 min, and your afternoon waiting time also has 
this distribution. Then if x denotes the total waiting 
time on any particular day, the density function of x 
can be shown to be

f  (x) 5 c .04x for 0 , x , 5
.4 2 .04x for 5 # x , 10

0 for other values of x

	 a.	 Draw the density curve, and verify that f (x) speci-
fies a legitimate distribution.

	 b.	 In the long run, what proportion of your total daily 
waiting times will be at most 3 min? At least 7 min? 
At least 4 min? Between 4 min and 7 min?

	 c.	 What value separates the longest 10% of your 
daily waiting times from the remaining 90%?

	22.	 Data collected at Toronto Pearson International 
Airport suggests that an exponential distribution 
with � 5 .37 is a good model for rainfall dura-
tion in hours (Urban Stormwater Management 
Planning with Analytical Probabilistic Models, 
2000, p. 69).

That is, roughly 29% of all packages will have three good batteries. Substituting the 
other x values gives us the following tabulation:

x: 0 1 2 3 4
p(x): .0001 .0036 .0486 .2916 .6561

The proportion of packages with at least two good batteries is

proportion of packages with x  
values between 2 and 4 (inclusive) 5 p(2) 1 p(3) 1 p(4) 5 .9963

More than 99% of all packages have at least two good batteries.
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	 a.	 What proportion of rainfall durations at this 
location are at least 2 hours? At most 3 hours? 
Between 2 and 3 hours?

	 b.	 What must the duration of a rainfall be to place 
it among the longest 5% of all times?

	23.	 Extensive experience with fans of a certain type used 
in diesel engines has suggested that the exponential 
distribution with � 5 .00004 provides a good model 
for time until failure (hr).

	 a.	 Sketch a graph of the density function.
	 b.	 What proportion of fans will last at least 

20,000 hr? At most 30,000 hr? Between 20,000 
and 30,000 hr?

	 c.	 What must the lifetime of a fan be to place it among 
the best 1% of all fans? Among the worst 1%?

	24.	 The article “Probabilistic Fatigue Evaluation of 
Riveted Railway Bridges” (J. of Bridge Engr., 2008: 
237–244) suggested the exponential distribution with 
� 5 1 6 as a model for the distribution of stress range 
(MPa) in certain bridge connections.

	 a.	 What proportion of stress ranges are at least 
2 MPa? At most 7 MPa? Between 5 and 10 MPa?

	 b.	 What value separates the highest 2% of the stress 
ranges from the remaining 98%?

	25.	 The actual tracking weight of a stereo cartridge set to 
track at 3 g can be regarded as a continuous variable 
with density function f (x) 5 c[1 2 (x 2 3)2]  for 2 , 
x , 4 and f (x) 5 0 otherwise.

	 a.	 Determine the value of c [you might find it help-
ful to graph f (x)].

	 b.	 What proportion of actual tracking weights ex-
ceed the target weight?

	 c.	 What proportion of actual tracking weights are 
within .25 g of the target weight?

	26.	 Let x represent the number of underinflated tires on 
an automobile.

	 a.	 Which of the following p(x) functions specifies a 
legitimate distribution for x, and why are the other 
two not legitimate?

		  (i) � p(0) 5.3,  p(1) 5 .2, 
p(2) 5 .1,  p(3) 5 .05,  p(4) 5 .05

		  (ii) � p(0) 5 .4, 
p(1) 5 p(2) 5 p(3) 5 .1,  p(4) 5 .3

		  (iii)  p(x)   5 .2(3 2 x)  for x 5 0, 1, 2, 3, 4

	 b.	 For the legitimate distribution of part (a), deter-
mine the long-run proportion of cars having at 
most two underinflated tires, the proportion hav-
ing fewer than two underinflated tires, and the 
proportion having at least one underinflated tire.

	27.	 A mail-order computer business has six telephone 
lines. Let x denote the number of lines in use at a 
specified time. Suppose the mass function of x is 
given by

x: 0 1 2 3 4 5 6
p(x): .10 .15 .20 .25 .20 ? ?

	 a.	 In the long run, what proportion of the time will at 
most three lines be in use? Fewer than three lines?

	 b.	 In the long run, what proportion of the time will at 
least five lines be in use?

	 c.	 In the long run, what proportion of the time will 
between two and four lines, inclusive, be in use?

	 d.	 In the long run, what proportion of the time will at 
least four lines not be in use?

	28.	 A contractor is required by a county planning de-
partment to submit 1, 2, 3, 4, or 5 forms (depending 
on the nature of the project) when applying for a 
building permit. Let y denote the number of forms 
required for an application, and suppose the mass 
function is given by p(y) 5 cy for y 5 1, 2, 3, 4, or 
5. Determine the value of c, as well as the long-run 
proportion of applications that require at most three 
forms and the long-run proportion that require be-
tween two and four forms, inclusive.

	29.	 Many manufacturers have quality control programs 
that include inspection of incoming materials for 
defects. Suppose a computer manufacturer receives 
computer boards in batches of five. Two boards 
are randomly selected from each batch for inspec-
tion. Consider batches for which exactly two of the 
boards are defective; for convenience, number the 
defective boards as 1 and 2, and the nondefective 
boards as 3, 4, and 5. Let x denote the number of 
defective boards among the two actually inspected, 
and determine the mass function of x. Hint: One 
possible sample of size 2 consists of boards 1 and 
2, another of boards 1 and 3, and so on. How many 
such samples are there, and what is the value of x 
for each sample?
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36	 chapter 1   Data and Distributions

1.4	 The Normal Distribution �

The normal distribution is the most important distribution in statistics. A typical normal 
density curve is shown in Figure 1.18. Many population and process variables have dis-
tributions that can be very closely fit by an appropriate normal curve. Examples include 
heights, weights, and other physical characteristics of humans and animals, anthropometric 
measurements on fossils, measurement errors in scientific experiments, reaction times in 
psychological experiments, pollutant concentrations of various sorts, amounts dispensed 
into containers by machines, thicknesses of material specimens, and numerous economic 
measures and indicators. In addition, even when individual variables themselves are not 
normally distributed, sums and averages of the variables will, under suitable conditions, 
have approximately a normal distribution; this is the content of the Central Limit Theorem, 
discussed in Chapter 5.

80 90 100 110 120

.04

.02

0

.08

.06

( )

Figure 1.18 A typical normal density curve

Again, e denotes the base of the natural logarithm system and has an approximate value 
of 2.71828, whereas � represents the familiar mathematical constant approximately 
equal to 3.14159.

Clearly, f (x) $ 0 for any number x, but techniques from multivariable calculus must 
be used to show that   #

2
 f (x) dx 5 1. The graph of f (x)—the density curve—is always a 

A continuous variable x is said to have a normal distribution with parameters � 
and �, where 2∞ , � , ∞ and � . 0, if the density function of x is

f (x) 5
122��

 e2(x2�)2y(2�2)           2 , x ,

DEFINITION
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0 10 20
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 = 40,   = 2.5
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 = 70,   = 10

Figure 1.19  Several normal density curves
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Curve turns downward

Figure 1.20 Visual identification of � and � 

bell-shaped curve (and hence symmetric) centered at �, so � is the median of the distribu-
tion. If the value of � is close to zero, the normal curve is highly concentrated about � (little 
variability in the distribution), whereas a large value of � corresponds to a curve that spreads 
out a great deal (a substantial amount of variability). Figure 1.19 displays several different 
normal density curves. Any normal curve has two inflection points—points at which the 
curve changes from being concave downward to concave upward—that are equidistant 
from �. It can be shown that the value of � is the distance from � to each inflection point, 
as illustrated in Figure 1.20.

Suppose that capacitors of a certain type have resistances that vary according to a nor-
mal distribution, with � 5 800 megohms and � 5 200 megohms. If a particular applica-
tion requires a resistance between 775 megohms and 850 megohms, the proportion of 
capacitors with satisfactory values of resistance (x) is

proportion of x values 
between 775 and 85  5 # 

850

   775

122�(200)
 e2(x2800)2y[2(40,000)] dx

Unfortunately, none of the standard integration techniques can be used to evaluate this 
integral. To calculate proportions of this sort, a special normal reference distribution is 
needed.Un
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38	 chapter 1   Data and Distributions

The normal distribution with parameter values � 5 0 and � 5 1 is called the 
standard normal distribution. We shall use the letter z to denote a variable that 
has this distribution. The corresponding density function is

f (z) 5
122�

 e2z2y2       2 , z ,

The standard normal density curve, or z curve, is shown in Figure 1.21. It is cen-
tered at 0 and has inflection points at 61.

DEFINITIONS

–2 –1 0 1 2

Standard normal ( ) curve

Shaded area = Proportion of  values less than 

Figure 1.21 The standard normal ( ) curve and 
a cumulative  curve area

Appendix Table I, which also appears on the inside front cover of the book, is a tabula-
tion of cumulative z curve areas; that is, the table gives areas under the z curve to the left of 
various values (to 2 ), as illustrated in Figure 1.21. Entries in this table were obtained by 
using numerical integration techniques, since the standard normal density function cannot 
be integrated in a straightforward way. Let’s first use this table to obtain various z curve areas 
and other z curve information, and then see how the table applies to any normal curve.

The proportion of values in a standard normal distribution that are less than 1.25 is

proportion of z values 
satisfying z , 1.25 5

entry in Appendix Table I at the intersection 
of the 1.2 row and .05 column

5 .8944

It is also true that

proportion of z values satisfying z # 1.25 5 .8944

Similarly,
proportion of z values  
satisfying z , 2.38 5

entry in 20.3 row and .08 column 
of Appendix Table I

5 .3520

Example 1.15

The Standard Normal Distribution
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Cumulative area 
to the left of 

1 = Total area

Area to the right of 

= –

Figure 1.22  Obtaining an “area to the right” from a cumulative  curve area

In particular,

 
proportion of values
satisfying z . 1.25 5 area under z curve to the right of 1.25

 5 1 2 area to the left of 1.25

 5 1 2 .8944
  5 .1056

What about the area under the z curve and above the interval between 2.38 and 
1.25? Figure 1.23 shows that this is a difference between two cumulative areas:

 
proportion of z values
satisfying 2.38 , z , 1.25 5 (area to the left of 1.25)

 2(area  of the left of 2.38)

 5 .8944 2 .3520 5 .5424

The proportion of z values satisfying –.38 # z # 1.25 is also .5424.

Figure 1.22 illustrates the simple relationship between an upper-tail area and a 
cumulative area.

 curve

0 1.25–.38 0 1.25 0–.38

= –

Figure 1.23 The area above an interval is the difference between two cumulative areas

In Example 1.15, a value on the horizontal z scale was specified and a curve area was 
determined. We now reverse this process by showing how to select a value or values to cap-
ture a specified curve area.Un
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40	 chapter 1   Data and Distributions

What value c on the horizontal z axis is such that the area under the z curve to the 
left of c is .67? Figure 1.24 illustrates the situation.

Example 1.16

Cumulative area = .67  

 curve

0

Figure 1.24  Determining  to 
capture a specified cumulative area

Upper-tail area = .05 

0

Figure 1.25  Finding the value  to capture a 
specified upper-tail area

Central area = .95 

Lower-tail area = .025

– 0

 curve

Figure 1.26  Determining  to capture a 
specified central  curve area

In Appendix Table I, we must look in the main body for .6700 (or the closest 
entry to it). The value .6700 does indeed appear; it is at the intersection of the 0.4 row 
and the .04 column. Thus c 5 .44. That is, 67% of the area under the z curve lies to 
the left of .44. Another way of expressing this is to say that .44 is the 67th percentile of 
the standard normal distribution. If .6710 replaces .6700 in the question posed, the 
closest tabulated entry is .6700. Rather than use linear interpolation, we generally 
recommend simply using the closest entry to answer the question; our answer to the 
revised question would also be (approximately) .44.

What  value c captures the upper-tail z curve area .05, as illustrated in Fig-
ure 1.25? The cumulative area to the left of c must be .9500. A search for this area 
in Appendix Table I reveals the following information about the two closest entries:

.9495 is in the 1.6 row and .04 column

.9505 is in the 1.6 row and .05 column

Because the desired area .9500 is halfway between the two closest entries, we use 
interpolation to find c 5 1.645 (1.64 or 1.65 would also be acceptable answers).

Finally, what interval, symmetrically placed about zero, captures 95% of the 
area under the z curve? This situation is illustrated in Figure 1.26.
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Since the lower-tail area to the left of 2c must be .025, the cumulative area to 
the left of c is .9500   1   .0250   5   .9750. This cumulative area is in the 1.9 row and .06 
column of the z table, so c 5 1.96. Alternatively, the desired lower-tail area .0250 lies 
in the 21.9 row and .06 column of the z table, so 2c  5  21.96 and again c  5  1.96.

Nonstandard Normal Distributions
Any normal curve area can be obtained by first calculating a “standardized” limit or limits, 
and then determining the corresponding area under the z curve. The particulars are pre-
sented in the following proposition.

Let x have a normal distribution with parameters � and �. Then the standardized 
variable

z 5
x 2 �

�

has a standard normal distribution. This implies that if we form the standardized  limits

a* 5
a 2 �

�
 b* 5

b 2 �

�

then

proportion of x values satisfying
a , x , b

5
proportion of z values satisfying

a* , z , b*

proportion of x values satisfying
x , a

5
proportion of z values satisfying

z , a*

proportion of x values satisfying
x . b

5
proportion of z values satisfying

z . b* �

Proposition

The  time that it takes a driver to react to the brake light on a decelerating vehicle 
is critical in avoiding rear-end collisions. The article “Fast-Rise Brake Lamp as a  
Collision-Prevention Device” (Ergonomics, 1993: 391–395) suggests that reaction 
time for an in-traffic response to a brake signal from standard brake lights can be 
modeled with a normal distribution having parameters � 5 1.25 sec and � 5 .46 sec. 
In the long run, what proportion of reaction times will be between 1.00 sec and 
1.75 sec? Let x denote reaction time. The standardized limits are

1.00 2 1.25
.46

5 2.54
1.75 2 1.25

.46
5 1.09

Example 1.17
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42	 chapter 1   Data and Distributions

The  amount of distilled water dispensed by a certain machine has a normal distribu-
tion with � 5 64 oz and � 5 .78 oz. What container size c will ensure that overflow 
occurs only .5% of the time? Let x denote the amount of water dispensed. The den-
sity curve for x is pictured in Figure 1.28, which shows that c captures a cumulative 

Example 1.18

Thus

proporiton of x values
satisfying 1.00 , x , 1.75 5

proportion of z values satisfying
2.54 , z , 1.09

 5
entry in 1.0 row, .09

column of z table
2

entry in 20.5 row,
.04 column of z tables

 5 .8621 2 .2946
 5 .5675

This calculation is illustrated in Figure 1.27.

Figure 1.27  Standardizing to calculate the desired proportion in Example 1.17

Normal,  = 1.25,  = .46

Proportion of
 values between

1.00 and 1.75

1.25

1.00 1.75

 curve

0

–.54 1.09

Similarly, if 2 sec is viewed as a critically long reaction time, the proportion of 
reaction times that exceed this value is, since (2 2 1.25)y.46 5 1.63,

 
proportion of x values
that exceed 2.0 5 proportion of z values that exceed 1.63

 5 1 2 area under z curve to the left of 1.63

 5 1 2 .9484

 5 .0516

Only a bit more than 5% of all reaction times will exceed 2 sec.
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area of .995 under this normal curve. That is, c is the 99.5th percentile of this normal 
distribution. Standardizing then tells us that

 
proportion of x values
satisfying x , c 5 proportion of z values satisfying z ,

c 2 64
.78

 

 5 .995

How can we capture cumulative area .9950 under the z curve? The 2.5 row of 
Appendix Table I has entries .9949 and .9951 in the .07 and .08 columns, respectively. 
Let’s use the value 2.58 (a more detailed tabulation gives 2.576). This implies that

c 2 64
.78

5 2.58

giving

c 5 64 1 2.58(.78) 5 64 1 2.0 5 66 oz

Normal,  = 64,  = .78 Shaded area = .995

 curve

0 = 64

 = 99.5th percentile = 66.0 2.58 = 99.5th  percentile

Figure 1.28  Distribution of amount dispensed and desired percentile for 
Example 1.18

Notice that the general form of the expression for c in Example 1.18 is

c 5 � 1 (z critical value) �

where the z critical value captures the desired cumulative area under the z curve. Once we 
know how to capture a particular cumulative area under the z curve, it is easy to determine 
how to capture the same area under any other normal curve.

A histogram of sample data may suggest that a normal curve specifies a reasonable 
population or process distribution, but appropriate values of � and � still remain to be 
chosen. In Chapter 2, we begin to see how this can be done.

The Normal Distribution and Discrete Populations
The normal distribution is often used as an approximation to the distribution of values in 
a discrete population. For example, the distribution of x 5 IQ in many populations is tak-
en to be approximately normal with � 5 100 and �5 15, though IQ is an integer-valued 
variable. A picture of the population distribution consists of a histogram with rectangles Un
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44	 chapter 1   Data and Distributions

centered at possible values of x. Consider the distribution of x 5 the number of correct 
responses among 20 true–false questions included on a final exam. A picture of the distri-
bution is shown in Figure 1.29 along with the approximating normal curve. Notice that 
the rectangle above 10 has its right edge at 10.5, so an approximation to the proportion of 
x values that are at most 10 is the area under the normal curve to the left of 10.5 (i.e., 10.5 
should be standardized to obtain the approximation).

Figure 1.29 A normal approximation to the distribution of 5 number of cor-
rect responses on a 20-question true–false test

.05

.10

.15

.20

10

Normal curve,  = 12,  = 2.2

Shaded area = 

2 3 4 5 6 7 8 9 10

10.5

1112 13 14 15 16 17 18 19 20

( )

Normal approximation to 
proportion of values  10

Section 1.4 Exercises 

	30.	 Suppose that values are repeatedly chosen from a 
standard normal distribution.

	 a.	 In the long run, what proportion of values will be 
at most 2.15? Less than 2.15?

	 b.	 What is the long-run proportion of selected values 
that will exceed 1.50? That will exceed 22.00?

	 c.	 What is the long-run proportion of values that will 
be between 21.23 and 2.85?

	 d.	 What is the long-run proportion of values that will 
exceed 5? That will exceed 25?

	 e.	 In the long run, what proportion of selected values 
z will satisfy |z| , 2.50?

	31.	 In the long run, what proportion of values selected 
from the standard normal distribution will satisfy 
each of the following conditions?

	 a.	 Be at most 1.78	 b. Exceed .55
	 c.	 Exceed 2 .80	 d. Be between .21 and 1.21
	 e.	 Be either at most 22.00 or at least 2.00
	 f.	 Be at most 2 4.2	 g. Be at least 4.33

	32.	 a.  � What value z* is such that the area under the stan-
dard normal curve to the left of z* is .9082?

	 b.	 What value z* is such that the area under the stan-
dard normal curve to the left of that value is .9080?

	 c.	 What value z* is such that the area under the 
standard normal curve to the right of z* is .121?

	 d.	 What value z* is such that the area under the 
standard normal curve between 2 z* and z* 
is .754?

	 e.	 How far to the right of 0 would you have to go to 
capture an upper-tail z curve area of .002? How Un
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far to the left of 0 would you have to go to cap-
ture this same lower-tail area?

	33.	 Suppose that values are successively chosen from the 
standard normal distribution.

	 a.	 How large must a value be to be among the largest 
15% of all values selected?

	 b.	 How small must a value be to be among the small-
est 25% of all values selected?

	 c.	 What values are among the 4% that are farthest 
from 0?

	34.	 Determine the following percentiles for the standard 
normal distribution:

	 a.	 91st    b. 9th    c. 22nd    d. 99.9th

	35.	 Suppose that the thicknesses of bolts (mm) manufac-
tured by a certain process can be modeled with a nor-
mal distribution having � 5 10 and �5 1. Note: The 
density curve here is just the standard normal curve 
shifted to be centered at 10 rather than 0.

	 a.	 What is the long-run proportion of bolts whose 
thicknesses are at most 11 mm? Hint: The corre-
sponding normal curve area is identical to what z 
curve area?

	 b.	 In the long run, what proportion of these bolts 
will have thickness values between 7.5 mm and 
12.5 mm?

	 c.	 In the long run, what proportion of these bolts will 
have thicknesses that exceed 11.5 mm?

	36.	 Suppose the flow of current (milliamps) in wire 
strips of a certain type under specified conditions 
can be modeled with a normal distribution hav-
ing � 5 20 and �5 1 (think about how the cor-
responding density curve relates to the standard 
normal curve).

	 a.	 What proportion of strips will have a current flow 
of between 18.5 and 22 milliamps?

	 b.	 What proportion of strips will have a current flow 
exceeding 15 milliamps?

	 c.	 How large must a current flow be to be among the 
largest 5% of all flows?

	37.	 Mopeds (small motorcycles with an engine capacity 
below 50 cm3) are popular in Europe because of their 
mobility, ease of operation, and low cost. The article 
“Procedure to Verify the Maximum Speed of Auto-
matic Transmission Mopeds in Periodic Motor Vehi-

cle Inspections” (J. of Automobile Engr., 2008: 1615–
1623) described a rolling bench test for determining 
maximum vehicle speed. A normal distribution with 
� 5 46.8 km/h and � 5 1.75 km/h is postulated.

	 a.	 What proportion of mopeds have a maximum 
speed that is at most 50 km/h?

	 b.	 What proportion of mopeds have a maximum 
speed that is at least 48 km/h?

	 c.	 What speed separates the fastest 75% of all mopeds 
from the others?

	38.	 Spray drift is a constant concern for pesticide ap-
plicators and agricultural producers. The inverse 
relationship between droplet size and drift potential 
is well known. The paper “Effects of 2,4-D Formu-
lation and Quinclorac on Spray Droplet Size and 
Deposition” (Weed Technology, 2005: 1030–1036) 
investigated the effects of herbicide formulation on 
spray atomization. A figure in the paper suggested 
the normal distribution with  � 5 1050 �m and � 5 
150 �m was a reasonable model for droplet size for 
water (the “control treatment”) sprayed through a 
760 ml/min nozzle.

	 a.	 What proportion of all droplets have a size that is 
less than 1500 �m? At least 1000 �m?

	 b.	 What proportion of all droplets have a size that is 
between 1000 and 1500 �m?

	 c.	 How would you characterize the smallest 2% of 
all droplets?

	39.	 The article “Reliability of Domestic-Waste Biofilm 
Reactors” (J. of Envir. Engr., 1995: 785–790) sug-
gests that substrate concentration (mg/cm3) of influ-
ent to a reactor is normally distributed with � 5 .30 
and � 5 .06.

	 a.	 What proportion of concentration values exceed 
.25?

	 b.	 What proportion of concentration values are at 
most .10?

	 c.	 How would you characterize the largest 5% of all 
concentration values?

	40.	 Consider babies born in the “normal range” of 37–43 
weeks gestational age. Extensive data supports the as-
sumption that for such babies born in the United States, 
birth weight is normally distributed with � 5 3432 g 
and �  5 482 g. [The article “Are Babies Normal?” 
(The American Statistician, 1999: 298 – 302) analyzed 
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46	 chapter 1   Data and Distributions

data from a particular year; for a sensible choice of class 
intervals, a histogram did not look normal but further 
investigation revealed that this was because some hos-
pitals measured weight in grams and others measured 
to the nearest ounce and then converted the data to 
grams. A modified choice of class intervals that allowed 
for this gave a histogram that was well described by a 
normal distribution.]

	 a.	 For babies of this type, what proportion of all birth 
weights exceeds 4000 g?

	 b.	  For babies of this type, what proportion of all birth 
weights is between 3000 and 4000 g?

	 c.	 How would you characterize the highest .1% of all 
birth weights?

	 d.	 What value c is such that the interval (3432 2 c, 
3432   1   c) includes 98% of all birth weights?

	41.	 Let x denote the number of flaws along a 100-m 
reel of magnetic tape (values of x are whole num-
bers). Suppose x has approximately a normal distri-
bution with � 5 25 and � 5 5.

	 a.	 What proportion of reels will have between 20 
and 40 flaws, inclusive?

1.5	 Other Continuous Distributions �

Normal density curves are always bell-shaped and therefore symmetric. Exponential densi-
ty curves are positively skewed but have their maximum at x 5 0 and decrease as x increases. 
Many histograms of data encountered in applied work are skewed and unimodal, rising to 
a maximum and then declining. We now present several useful distributions that have this 
property. Our survey is not exhaustive. Consult the bibliography at the end of the chapter 
for information on the gamma, beta, and other distributions not discussed here.

The Lognormal Distribution
Lognormal distributions are related to normal distributions in exactly the way the name 
suggests.

	 b.	 What proportion of reels will have at most 30 
flaws? Fewer than 30 flaws?

	42.	 Based on extensive data from an urban freeway near 
Toronto, Canada, “it is assumed that free speeds 
can best be represented by a normal distribution” 
(“Impact of Driver Compliance on the Safety and 
Operational Impacts of Freeway Variable Speed 
Limit Systems” (J. of Transp. Engr., 2011: 260–268)). 
The values of � and � reported in the article were 
119 km/h and 13.1 km/h, respectively.

	 a.	 What percentage of vehicles have speeds that are 
between 100 and 120 km/hr?

	 b.	 What speed characterizes the fastest 10% of all 
speeds?

	 c.	 The posted speed limit was 100 km/hr. What 
percentage of vehicles were traveling at speeds 
exceeding this posted limit?

	 d.	 What two values, symmetrically placed about 119, 
capture 90% of all vehicle speeds.

	 e.	 What values symmetrically placed about 119 sep-
arate .1% of the most extreme vehicle speeds from 
the rest?

A nonnegative variable x is said to have a lognormal distribution if ln(x) has a 
normal distribution with parameters � and �. It can be shown that the density 
function of x is

f (x) 5 c 112��x
 e2[ln(x)2�]2y(2�2) x . 0

0 for x # 0

definition
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Figure 1.30 illustrates density curves for several different combinations of � and �. 
Every lognormal distribution is positively skewed. The following example shows that by 
taking logarithms, calculation of any lognormal curve area reduces to a normal distribu-
tion computation.

Figure 1.30  Lognormal density curves

.05
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.10

.15

.20

.25
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 = 1,  = 1

 = 3,  = 1

 = 3,  = !3

According  to the article “Predictive Model for Pitting Corrosion in Buried Oil and 
Gas Pipelines” (Corrosion, 2009: 332–342), the lognormal distribution has been re-
ported as the best option for describing the distribution of maximum pit depth data 
from cast iron pipes in soil. The authors suggest that a lognormal distribution with � 5 
.353 and � 5 .754 is appropriate for maximum pit depth (mm) of buried pipelines.

Since x , 2 is equivalent to ln(x) , ln(2) 5 .693,

proportion of pipelines 
with x , 2

5 proportion of pipelines with ln(x) , .693
5 area under normal (.353, .754) curve to the left of .693
5 area under z curve to the left of (.693 2 .353) .754
5 area under z curve to the left of .45
5 .6736

Similarly, since ln(1) 5 0 and (0 2 .353)/.754 5 20.47,

proportion of pipelines  
with 1 , x , 2 5 area under z curve between 2 0.47 and 0.45

5 .6736 2 .3192
5 .3544

Example 1.19

The Weibull Distribution
This distribution was introduced in 1939 by a Swedish physicist who developed many 
applications over the course of the following two decades.Un
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48	 chapter 1   Data and Distributions

A  variable x has a Weibull distribution with parameters � and � if the density 
function of x is

f (x) 5 c �

�� x�21e2(xy�)�

0

x . 0

x # 0

definition

When �5 1, the Weibull density function reduces to the exponential density function 
(with �5  1y�). Figure 1.31 shows several Weibull density curves. Some combinations 
of � and � result in a positive skew and others, a negative skew.

Figure 1.31 Weibull density curves
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 = 2,  = 1
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Let t represent some positive number. The proportion of x values satisfying x , t is

 area under density curve to the left of  t 5 #
t

0
  f (x)  dx

 5 1 2 e2(ty�)�

Thus, rather than needing a table of cumulative areas, such as the z table for normal dis-
tribution calculations, we use a simple mathematical function to get this information.

In  recent years the Weibull distribution has been used to model engine emissions 
of various pollutants. Let x denote the amount of NOx emission (g/gal) from a cer-
tain type of four-stroke engine, and suppose that x has a Weibull distribution with 
� 5 2 and � 5 10 (suggested by information in the article “Quantification of Vari-
ability and Uncertainty in Lawn and Garden Equipment NOx and Total Hydrocar-
bon Emission Factors,” J. of the Air and Waste Management Assoc., 2002: 435–448). 
The corresponding density curve looks exactly like the one in Figure 1.31 for �5 2, 

Example 1.20
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Selecting an Appropriate Distribution
The choice of an appropriate distribution for a continuous variable x is usually based on 
sample data. An investigator must first decide whether a particular family, such as the 
Weibull family or the normal family, is reasonable. Then any parameters of the chosen 
family must be estimated to find a particular member of the family that in some sense best 
fits the data. These issues are considered in subsequent chapters.

Section 1.5 Exercises 

	43.	 A theoretical justification based on a certain mate-
rial failure mechanism underlies the assumption 
that ductile strength of a material has a lognormal 
distribution. Suppose the values of the parameters are 
� 5 5 and � 5 .1.

	 a.	 What proportion of material specimens have a 
ductile strength exceeding 120? What proportion 
have a ductile strength of at least 120?

	 b.	 What proportion of material specimens have a 
ductile strength between 110 and 130?

	 c.	 If the smallest 5% of strength values were unac-
ceptable, what would be the minimum accept-
able strength?

	44.	 Nonpoint source loads are chemical masses that 
travel to the main stem of a river and its tributaries in 
flows that are distributed over relatively long stream 
reaches in contrast to those that enter at well-defined 
and regulated points. The article “Assessing Uncer-
tainty in Mass Balance Calculation of River Nonpoint 
Source Loads” ( J. of Envir. Engr., 2008: 247–258) 
suggested that for a certain time period and location, 
x 5 nonpoint source load of total dissolved solids (in  

kg/day/km) could be modeled with a lognormal dis-
tribution having � 5 9.164 and � 5 .385.

	 a.	 What proportion of source loads are at most 
15,000 kg/day/km?

	 b.	 What interval (a, b) is such that 95% of all 
source loads have values in this interval, 2.5% 
have values less than a, and 2.5% have values 
exceeding b?

	45.	 The article “Response of SiGf/Si3N4 Composites 
Under Static and Cyclic Loading—An Experimen-
tal and Statistical Analysis” ( J. of Engr. Materials 
and Technology, 1997: 186–193) suggests that ten-
sile strength (MPa) of composites under specified 
conditions can be modeled by a Weibull distribu-
tion with �5 9 and �5 180.

	 a.	 Sketch a graph of the density function.
	 b.	 What proportion of specimens of this type have 

strength values exceeding 175?
	 c.	 What proportion of specimens of this type have 

strength values between 150 and 175?
	 d.	 What strength value separates the weakest 10% 

of all specimens from the remaining 90%?

� 5 1 except that now the values 50 and 100 replace 5 and 10 on the horizontal axis 
(because � is a “scale parameter”). Then

proportion of engines emitting 
less than 10 g/gal 5 1 2 e2(10y10)2

5 1 2 e21 5 .632

The proportion of engines emitting at most 25 g/gal is .998, so the distribution is almost 
entirely concentrated on values between 0 and 25. The value c which separates the 5% of 
all engines having the largest amounts of NOx emissions from the remaining 95% satisfies

.95 5 1 2 e2(cy10)2

Isolating the exponential term on one side, taking logarithms, and solving the result-
ing equation gives c 17.3 as the 95th percentile of the emissions distribution.
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50	 chapter 1   Data and Distributions

	46.	 Suppose that fracture strength (MPa) of silicon nitride 
braze joints under certain conditions has a Weibull dis-
tribution with � 5 5 and � 5 125 (suggested by data 
in the article “Heat-Resistant Active Brazing of Silicon 
Nitride: Mechanical Evaluation of Braze Joints,” Weld-
ing J., August 1997: 300s–304s).

	 a.	 What proportion of such joints have a fracture 
strength of at most 100? Between 100 and 150?

	 b.	 What strength value separates the weakest 50% of 
all joints from the strongest 50%?

	 c.	 What strength value characterizes the weakest 5% 
of all joints?

	47.	 The Weibull distribution discussed in this section has 
a positive density function for all x . 0. In some situ-
ations, the smallest possible value of x will be some 
number � that exceeds zero. A shifted Weibull distri-
bution, appropriate in such situations, has a density 
function for x . � obtained by replacing x with x 2 �  
in the earlier density function formula. The article 
“Predictive Posterior Distributions from a Bayesian 
Version of a Slash Pine Yield Model” (Forest Science, 
1996: 456–463) suggests that the values � 5 1.3 cm, 
� 5 4, and � 5 5.8 specify an appropriate distribu-
tion for diameters of trees in a particular location.

	 a.	 What proportion of trees have diameters between 
2 and 4 cm?

	 b.	 What proportion of trees have diameters that are 
at least 5 cm?

	 c.	 What is the median diameter of trees, that is, the 
value separating the smallest 50% from the largest 
50% of all diameters?

	48.	 The paper “Study on the Life Distribution of Micro-
drills” ( J. of Engr. Manufacture, 2002: 301–305) re-
ported the following observations, listed in increasing 
order, on drill lifetime (number of holes that a drill 
machines before it breaks) when holes were drilled in 
a certain brass alloy.

	 a.	 Construct a histogram of the data using class 
boundaries 0, 50, 100, . . . , and then com-
ment on interesting characteristics.

	 b.	 Construct a histogram of the natural logarithms of 
the lifetime observations, and comment on inter-
esting characteristics.

11  14 20 23 31 36 39 44
47 50 59 61 65 67 68 71
74 76 78  79 81 84 85  91
93  96 99 101 104 105 105 112

118 123 136 139 141 148 158 161
168 184 206 248 263 289 322 388
513

	49.	 The authors of the paper from which the data in 
the previous exercise was extracted suggested that a 
reasonable probability model for drill lifetime was a 
lognormal distribution with � 5 4.5 and � 5 .8.

	 a.	 What proportion of lifetime values are at most 100?
	 b.	 What proportion of lifetime values are at least 

200? Greater than 200?

	50.	 The article cited in Example 1.20 proposed the log-
normal distribution with � 5 4.5 and � 5 .625 as a 
model for total hydrocarbon emissions (g/gal).

	 a.	 What proportion of engines emit at least 50 g/gal? 
Between 50 and 150 g/gal?

	 b.	 What value c separates the best 1% of engines 
with respect to THC emissions from the remain-
ing 99%?

	51.	 The article “On Assessing the Accuracy of Offshore 
Wind Turbine Reliability-Based Design Loads from 
the Environmental Contour Method” (Intl. J. of Off-
shore and Polar Engr., 2005: 132–140) proposes the 
Weibull distribution with � 5 1.817 and � 5 .863 as 
a model for 1-hour significant wave height (m) at a 
certain site.

	 a.	 What proportion of wave heights are at most 0.5 m?
	 b.	 What proportion of wave heights are between 0.2 

and 0.6 m?
	 c.	 What is the 90th percentile of the wave height dis-

tribution? The 10th percentile?

1.6	 Several Useful Discrete Distributions 

A distribution for a discrete variable x is specified by a mass function p(x) satisfy-
ing p(x) . 0 for every possible value and ^p (x) 5 1. Here p(0) is the population 
or long-run process proportion of x values that equal 0, p(1) is the proportion of 
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values that equal 1, and so on. We now introduce the two discrete distributions 
that appear most frequently in statistical applications: the binomial and the Poisson 
distributions.

The Binomial Distribution
Cartridges for a certain type of rollerball pen are sold two to a package. Suppose that 20% 
of all such cartridges leak, making them unsatisfactory, and the other 80% do not leak. Let’s 
also assume that the condition of the second cartridge in a package—satisfactory or unsat-
isfactory—is independent of the first cartridge’s condition. By this we mean that in packages 
with a satisfactory first cartridge, 80% of the second cartridges are satisfactory, and in packag-
es with an unsatisfactory first cartridge, 80% of the second cartridges are satisfactory. In other 
words, the percentage of satisfactory second cartridges is not affected by the condition of the 
first cartridge. We will use SS to denote a package with two satisfactory cartridges, and SF 
to denote a package with a satisfactory first cartridge and an unsatisfactory second cartridge 
(S for success and F for failure). Then 80% of all packages will have a first S, and of these, a 
further 80% will have a second S, giving 80% of 80% or 64% SS’s. Similarly, of the 80% of 
all packages that have a first S, 20% will have a second cartridge that is an F, so 20% of 80% 
or 16% of all packages will be SF’s. This is also the percentage of all packages that are FS’s: 
80% of 20% or 16%. Finally, 20% of 20% or 4% of all packages are FF’s. Notice that these 
percentages result from multiplying pairs of proportions:

SS:  (.8)(.8) 5 .64 or 64%

SF:  (.8)(.2) 5 .16 or 16%

FS:  (.2)(.8) 5 .16 or 16%

FF:  (.2)(.2) 5 .04 or  4%

Now let x be the number of S’s in a package. Possible values of x are 0, 1, and 2. Our 
calculations imply that the proportion of all packages with x 5 0 is .04 and the proportion 
of all packages with x 5 2 is .64. Because 16% of all packages are SF’s and 16% are FS’s,

(proportion of all packages with x 5 1) 5 .16 1 .16 5 .32

That is, in the long run, 32% of all packages will have x 5 1 (this also comes from 1 2 
.04 2 .64).

Suppose instead that cartridges come in packages of four. Again let x be the 
number of S’s in a package. One way to get a package with x 5 2 is SSFF, and by 
independence, the percentage of all such packages is 20% of 20% of 80% of 80% or 
100[(.8)(.8)(.2)(.2)] 5 2.56%, or a proportion of .0256. But there are in fact five other 
ways, for a total of six possibilities:

Outcome for which x 5 2 Proportion
SSFF (S in 1 and 2) (.8)(.8)(.2)(.2) 5 .0256
SFSF (S in 1 and 3) (.8)(.2)(.8)(.2) 5 .0256
SFFS (S in 1 and 4) .0256
FSSF (S in 2 and 3) .0256
FSFS (S in 2 and 4) .0256
FFSS (S in 3 and 4) .0256
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The population or long-run process proportion of packages having x 5 2 is then the sum 
of these six values of .0256, or 6(.0256) 5.1536. Similarly, there are four possibilities for 
x 5 1—the single satisfactory cartridge could be the first, second, third, or fourth one in 
the package. The proportion of SFFF’s is (.8)(.2)(.2)(.2) 5 .0064, which is also the pro-
portion of FSFF’s, FFSF’s, and FFFS’s. Adding .0064 four times gives

(proportion of packages with x 5 1) 5 4(.8)(.2)3 5 .0256

By the same reasoning,

(proportion of packages with x 5 3) 5 4(.8)3(.2) 5 .4096

so roughly 41% of all packages will have three satisfactory cartridges.
What if packages have ten cartridges, and you want to know what proportion have six 

S’s? It is extremely tedious to list all possibilities, but fortunately this is unnecessary. There 
is a straightforward counting technique to determine the number of possible outcomes hav-
ing any particular x value.

The Binomial Distribution
Suppose that items or entities of some sort come in batches or groups of size . Let � denote 
the proportion of all items in the population or process that are satisfactory (S, for success), so 
the proportion of all items that are unsatisfactory (F,  for failure) is 1 – �.  Assume that the condi-
tion of any particular item (S or F) is independent of that of any other item.  The binomial vari-
able  is the number of S’s in a batch or group. The mass function of  is given by the formula

( ) 5 proportion of batches with  S’s

5
!

!( 2 )!
3 � (1 2 �) 2              5 0,1, . . . , 

In the case of a population, the formula gives good approximations as long as the total 
number of items examined in all batches is at most 5% of the population size (answers 
are exact if the population size is infinite). For a process, it is required that the value of 
� remain constant over time (a stable process).

In the mass function formula, �x(1 2 �)n2x generalizes the multiplications 
(.8)3(.2) and (.8)2(.2)2 in the pen cartridge example. The factorial expression is the 
number of possible outcomes for a batch of size n that have x S’s. For example, when 
n 5 4 and x 5 2,

n!
x!(n 2 x)!

5
4!

(2!)(2!)
5

(4)(3)(2)(1)
(2)(1)(2)(1)

5
(4)(3)
(2)(1)

5 6

as we saw previously. You can find a derivation of this formula in several of the refer-
ences listed in the bibliography.
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The  binomial distribution is used extensively in genetic applications. An early 
genetics article (“The Progeny in Generation F12 to F17 of a Cross Between a Yel-
low-Wrinkled and a Green-Round Seeded Pea,” J. of Genetics, 1923: 255–331) 
reported on an experiment in which four-seeded pea pods from a dihybrid cross 
were examined. The variable of interest was x 5 the number of YR (yellow and 
round) peas in a pod. Mendelian laws of inheritance imply that � 5 9/16 5 .5625 
[from (3/4)(3/4)]. Now consider peas with eight-seeded pods. The proportion of all 
pods with five YR peas is

 (proportion with x 5 5) 5
8!

(5!)(3!)
 (.5625)5(.4375)3

 5 56(.5625)5(.4375)3 5 2641

The proportion of all pods with at least five such peas is

 (proportion with x $ 5) 5 p(5) 1 p(6) 1 p(7) 1 p(8)

 5 .2641 1 .1698 1 .0624 1 0.100 5 .5063

In the long run, slightly more than 50% of all pods will have five or more YR peas 
and slightly less than 50% will have four or fewer YR peas. The complete distribution 
of x is as follows:

x: 0 1 2 3 4 5 6 7 8

p(x):  .0013 .0138 .0621 .1598 .2567 .2641 .1698 .0624 .0100

Figure 1.32 shows a picture of this distribution. The binomial histogram has a slight 
negative skew (it is symmetric only when � 5 .5).

Example 1.21

.10

.20

.30

0 1 2 3 4 5 6 7 8
0

Proportion

Figure 1.32 A binomial histogram when 5 8 and � 5 .5625
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54	 chapter 1   Data and Distributions

Use of the binomial distribution formula can be tedious when n is large. Appendix 
Table II gives a tabulation of p(x) for a few selected values of n and �. This will allow 
you to practice binomial calculations without referring to the formula. Alternatively, 
values of p(x) for any n and � can be obtained from Minitab and other statistical com-
puter packages.

The Poisson Distribution
The Poisson distribution is usually used as a model for the number of times an “event” 
of some sort occurs during a specified time period or in a particular region of space. 
Examples include the number of accidents that occur on a segment of highway during 
a particular 24-hour period, the number of blemishes on the exterior of a new automo-
bile, the number of customers in a grocery store’s express line on Wednesday at 6 p.m., 
and the number of plants of a particular species that are found in a chosen geographic 
sampling region.

The condition p(x) $ 0 is clearly satisfied. The fact that ^x50 p(x) 5 1 is a consequence 
of multiplying both sides of the following infinite series expansion by e2�:

e� 5 1 1 � 1
�2

2!
1

�3

3!
1

We shall see in Chapter 2 that � can be interpreted as the average rate at which events 
occur.

The Poisson Distribution
The Poisson mass function is

( ) 5
2��x

!
    5 0, 1, 2, 3, . . .  

where the parameter � must satisfy � . 0.

Let x denote the number of creatures of a particular type captured in a trap during 
a given time period. Suppose that x has a Poisson distribution with 4.5, so, on aver-
age, traps will contain 4.5 creatures. [The article “Dispersal Dynamics of the Bivalve 
Gemma Gemma in a Patchy Environment (Ecological Monographs, 1995: 1–20) sug-
gests this model; the bivalve Gemma gemma is a small clam]. The proportion of traps 
with five creatures is

(proportion with x 5 5) 5
e24.5(4.5)5

5!
5 .1708

Example 1.22
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Figure 1.33 P oisson histogram when �5 4.5

The proportion of traps having at most five creatures is

(proportion with x # 5) 5 p(0) 1 p(1) 1 1 p(5) 5 .7029 (roughly 70%)

so the proportion of traps with at least six creatures is 1 2 .7029 5 .2971. As x 
increases, p(x) decreases but never quite reaches zero. The proportions for the first 
13 x values follow; their sum is .9992. Figure 1.33 shows the corresponding Poisson 
histogram.

x: 0 1 2 3 4 5 6
p(x): .0111  .0500 .1125 .1687 .1898 .1708 .1281
x: 7 8 9 10 11 12
p(x): .0824 .0463 .0232 .0104 .0043 .0016

A small tabulation of the Poisson mass function for selected values of � appears in Ap-
pendix Table III.

The Poisson Approximation to the Binomial Distribution
Often a binomial scenario involves a group size n that is quite large in combination with 
a success proportion � close to zero. Under such circumstances, the binomial mass func-
tion can be well approximated by the Poisson mass function with �5 n�. In particular, if 
n $ 100, � # .01, and �5 n� # 20, then

n!
x!(n 2 x)!

 � 

x(1 2 �)n2x e2��x

x!

A more formal statement of this result is that the Poisson mass function on the right-
hand side is the limit of the binomial function on the left as n , �  0 in such a 
way that n� �.Un
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Components of a certain type are shipped from a supplier to customers in lots of 5000. 
Because the purchaser cannot check the condition of each component, a sample of 25 
is selected and tested. The entire lot will then be accepted only if the number of compo-
nents x that do not conform to specification is at most three (so here S’s are nonconform-
ing units, not what we usually think of as a success). Suppose that .5% of all components 
are nonconforming, giving � 5 100(.005) 5 .5. Then the proportion of acceptable lots is

proportion of lots with x # 3

 5 p(0) 1 p(1) 1 p(2) 1 p(3)

 5
100!

0!100!
(.005)0(.995)100 1 … 1

100!
3!97!

(.005)3(.995)97

 
e2.5(.5)0

0!
1 …1 

e2.5(.5)3

3!

 5 .6065 1 .3033 1 .0758 1 .0126

 5 .9982

The exact proportion using the binomial mass function is .6058 1 .3044 1 .0757 1 
.0124 5 .9983.

Example 1.23

Many applications of the Poisson distribution are in fact based on an underlying 
binomial situation without the values of n and � being stated explicitly. For example, 
a very large number of vehicles may pass over a given stretch of highway during a par-
ticular time period, but the long-run proportion of vehicles receiving speeding tickets 
will be quite small, so the number of ticketed vehicles will have at least approximately 
a Poisson distribution.

have cosmetic flaws and that the condition of any par-
ticular goblet with respect to flaws is independent of 
the condition of any other goblet.

	 a.	 What proportion of boxes will contain only one 
goblet with a cosmetic flaw?

	 b.	 What proportion of boxes will contain at least two 
goblets with cosmetic flaws?

	 c.	 What proportion of boxes will have between 
one and three goblets, inclusive, with cosmetic 
flaws?

	54.	 On his way to work, a friend of ours must pass through 
ten traffic signals. Suppose that in the long run, she 
encounters a red light at 40% of these signals and that 

	52.	 When circuit boards used in the manufacture of com-
pact disc players are tested, the long-run percentage 
of defectives is 5%. Let x denote the number of de-
fective boards in a batch of 25 boards, so that x has a 
binomial distribution with n 5 25 and � 5 .05.

	 a.	 What proportion of batches have at most 2 defec-
tive boards?

	 b.	 What proportion of batches have at least 5 defec-
tive boards?

	 c.	 What proportion of batches will have all 25 boards 
free of defects?

	53.	 A company packages its crystal goblets in boxes con-
taining six goblets. Suppose that 12% of all its goblets 

Section 1.6 Exercises 
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whether any particular signal is red is independent of 
whether any other one is red.

	 a.	 On what proportion of days will our friend en-
counter at most two red lights? At least five red 
lights?

	 b.	 On what proportion of days will our friend en-
counter between two and five (inclusive) red 
lights?

	55.	 Suppose that 10% of all bits transmitted through 
a digital communication channel are erroneously 
received and that whether any particular bit is er-
roneously received is independent of whether any 
other bit is erroneously received. Consider sending 
a very large number of messages, each consisting of 
20 bits.

	 a.	 What proportion of these messages will have at 
most 2 erroneously received bits?

	 b.	 What proportion of these messages will have at 
least 5 erroneously received bits?

	 c.	 For what proportion of these messages will more 
than half the bits be erroneously received?

	56.	 Components arrive at a distributor in very 
large batches. A batch can be characterized as ac-
ceptable only if the fraction of defective compo-
nents in the batch is at most .10. The distributor 
decides to randomly select ten components from 
the batch, test each one, and accept the batch 
only if the sample contains at most two defec-
tive components. Assume that the condition of 
any particular component is independent of any 
other.

	 a.	 If the actual fraction of defectives in each batch is 
only � 5 .01, what proportion of batches will be 
accepted? Repeat this calculation for the follow-
ing values of �: .05, .10, .20, and .25.

	 b.	 A graph of the proportion of batches accepted 
versus the actual fraction of defectives � is 
called the operating characteristic curve. Use 
the results of part (a) to sketch this curve for 
0 # � # 1 (proportion of batches accepted is 
on the vertical axis and � is on the horizontal 
axis).

	 c.	 Suppose the distributor decides to be more 
demanding by accepting a batch only if 
the sample contains at most one defective 
component. Repeat parts (a) and (b) with 

this new acceptance sampling plan. Does 
this plan appear more satisfactory than the 
original plan?

	57.	 Suppose that the number of drivers who travel be-
tween a particular origin and destination during a 
designated time period has a Poisson distribution 
with parameter � 5 20 (suggested in the article 
“Dynamic Ride Sharing: Theory and Practice,” J. 
of Transp. Engr., 1997: 308–312). In the long run, 
in what proportion of time periods will the number 
of drivers

	 a.	 Be at most 10?
	 b.	 Exceed 20?
	 c.	 Be between 10 and 20, inclusive? Be strictly 

between 10 and 20?

	58.	 Let x be the number of material anomalies occur-
ring in a particular region of an aircraft gas-turbine 
disk. The article “Methodology for Probabilistic 
Life Prediction of Multiple-Anomaly Materials” 
(Amer. Inst. of Aeronautics and Astronautics J., 
2006: 787–793) proposes a Poisson distribution for 
x. Suppose that � 5 4.

	 a.	 What proportion of gas-turbine disks have exactly 
one anomaly?

	 b.	 What proportion of gas-turbine disks have at least 
three anomalies?

	 c.	 What proportion of gas-turbine disks have be-
tween one and six anomalies inclusive?

	59.	 Let x denote the number of trees in a quarter-acre 
plot within a certain forest. Suppose that x has a 
Poisson distribution with � 5 20 (corresponding to 
an average density of 80 trees per acre). In what pro-
portion of such plots will there be at least 15 trees? 
At most 25 trees?

	60.	 An article in the Los Angeles Times (Dec. 3, 1993) 
reports that 1 in 200 people carry the defective 
gene that causes colon cancer. Let x denote the 
number of people in a group of size 1000 who 
carry this defective gene. What is the approximate 
distribution of x? Use this approximate distribu-
tion to determine the proportion of all such groups 
having at least 8 people who carry the defective 
gene, as well as the proportion of all such groups 
for which between 5 and 10 people (inclusive) 
carry the defective gene.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



58	 chapter 1   Data and Distributions

	61.	 The accompanying frequency distribution of fracture 
strength (MPa) observations for ceramic bars fired 
in a particular kiln appeared in the article “Evaluat-
ing Tunnel Kiln Performance” (Amer. Ceramic Soc. 
Bull., August 1997: 59–63).

		  812	 832	 852	 872	 892
Class:	 , 83	 , 85	 , 87	 , 89	 , 91
Frequency:	 6	 7	 17	 30	 43
		  912	 932	 952	 972
Class:

	 , 93	 , 95	 , 97	 , 99
Frequency:	 28	 22	 13	 3

	 a.	 Construct a histogram based on relative frequen-
cies, and comment on any interesting features.

	 b.	 What proportion of the strength observations are 
at least 85? Less than 95?

	 c.	 Roughly what proportion of the observations are 
less than 90?

	62.	 The article cited in Exercise 61 presented compel-
ling evidence for assuming that fracture strength 
(MPa) of ceramic bars fired in a particular kiln 
is normally distributed (while commenting that 
the Weibull distribution is traditionally used as 
a model). Suppose that � 5 90 and � 5 3.75, 
which is consistent with data given in the article.

	 a.	 In the long run, what proportion of bars would 
have strength values less than 90? Less than 95? At 
least 95?

	 b.	 In the long run, what proportion of bars would 
have strength values between 85 and 95? Between 
80 and 100?

	 c.	 What value is exceeded by 90% of the fracture 
strengths for all such bars?

	 d.	 What interval centered at 90 includes 99% of all 
fracture strength values?

	63.	 Once an individual has been infected with a cer-
tain disease, let x represent the time (days) that 
elapses before the individual becomes infectious.  
The article “The Probability of Containment for 
Multitype Branching Process Models for Emerg-
ing Epidemics” (J. of Applied Probability, 2011: 
173–188) proposes a Weibull distribution with � 5 
2.2 and � 5 1.1 for x 2 .5 (i.e. the Weibull density 
curve is shifted to the right of 0 by .5; Minitab refers 
to .5 as the value of the threshold parameter).

	 a.	 What proportion of elapsed times exceed 
1.5 days?

	 b.	 What is the 90th percentile of the elapsed time 
distribution?

	64.	 Let x denote the distance (m) that an animal moves 
from its birth site to the first territorial vacancy it en-
counters. Suppose that for banner-tailed kangaroo 
rats, x has an exponential distribution with parame-
ter � 5 .01386 (as suggested in the article “Compe-
tition and Dispersal from Multiple Nests,” Ecology, 
1997: 873–883).

	 a.	 What proportion of distances are at most 100 m? 
At most 200 m? Between 100 m and 200 m?

	 b.	 What proportion of distances are at least 50 m?
	 c. 	What is the median distance, that is, the value that 

separates the smallest 50% of all distances from 
the largest 50%?

	65.	 Suppose the unloading time x (centiminutes) of 
a forwarder in a harvesting operation could be as-
sumed to be lognormal with � 5 6.5 and � 5 .75,  
as suggested in the article “Simulating a Harvester-
Forwarder Softwood Thinning” (Forest Products J., 
May 1997: 36–41).

	 a.	 What proportion of unloading times exceed 1000? 
2000? 3000?

	 b.	 What proportion of times are between 2500 and 
5000?

	 c.	 What value characterizes the fastest 10% of all 
times?

	 d.	 Sketch a graph of the density function of x. Is the 
positive skewness quite pronounced?

	66.	 In an experiment, 25 laminated glass units configured 
in a particular way are subjected to an impact test (cf. 
“Performance of Laminated Glass Units Under Simu-
lated Windborne Debris Impacts,” J. of Architectural 
Engr., 1996: 95–99). We are interested in the number 
of units that sustain an inner glass ply fracture. Sup-
pose that the long-run proportion of all such units that 
fracture is .20. In the long run, for what proportion of 
such experiments will the number of fractures be

	 a.	 At least 10?  
	 b.	 At most 5?
	 c.	 Between 5 and 10 inclusive?
	 d.	 Strictly between 5 and 10?

Supplementary Exercises 
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	67.	 Airlines frequently overbook flights. Suppose that for 
a plane with 100 seats, an airline takes 110 reserva-
tions. Let x represent the number of people with res-
ervations who actually show up for a sold-out flight. 
From past experience, we know that the distribution 
of x is as follows:

x: 95 96 97 98 99 100 101 102 103
p(x): .05 .10 .12 .14 .24 .17 .06 .04 .03

x: 104 105 106 107 108 109 110
p(x): .02 .01 .005 .005 .005 .0037 .0013

	 a.	 For what proportion of such flights is the airline 
able to accommodate everyone who shows up 
for the flight?

	 b.	 For what proportion of all such flights is it not pos-
sible to accommodate all passengers?

	 c.	 For someone who is trying to get a seat on such 
a flight and is number 1 on the standby list, 
what proportion of the time is such an indi-
vidual able to take the flight? Answer the ques-
tion for individuals who are number 3 on the 
standby list.

	68.	 The accompanying data are observations on shower 
flow rate for a sample of 129 houses in Perth, Australia 
(“An Application of Bayes Methodology to the Analy-
sis of Diary Records in a Water Use Study,” J. Amer. 
Stat. Assoc., 1987: 705–711):

4.6 12.3 7.1  7.0  4.0  9.2 6.7 6.9
11.5  5.1 3.8 11.2 10.5 14.3 8.0 8.8

6.4  5.1  5.6  9.6   7.5  7.5 6.2 5.8
2.3  3.4 10.4 9.8   6.6  3.7 6.4 6.0
8.3  6.5  7.6 9.3   9.2  7.3 5.0 6.3

13.8  6.2  5.4 4.8   7.5  6.0 6.9 10.8
7.5  6.6  5.0  3.3  7.6  3.9 11.9 2.2

15.0  7.2  6.1 15.3 18.9 7.2  5.4 5.5
4.3  9.0 12.7 11.3   7.4 5.0  3.5 8.2
8.4  7.3 10.3 11.9   6.0 5.6  9.5  9.3

10.4  9.7  5.1  6.7 10.2  6.2 8.4 7.0
4.8  5.6 10.5 14.6 10.8 15.5 7.5 6.4
3.4  5.5  6.6   5.9 15.0  9.6 7.8 7.0
6.9  4.1  3.6 11.9  3.7 5.7 6.8 11.3
9.3  9.6 10.4 9.3  6.9 9.8 9.1 10.6
4.5  6.2  8.3  3.2  4.9 5.0 6.0  8.2
 6.3

	 a.	 Construct a stem-and-leaf display of the data.
	 b.	 What is a typical or representative flow value? 

Does the data appear to be highly concentrated or 
quite spread out about this typical value?

	 c.	 Does the distribution of values appear to be rea-
sonably symmetric? If not, how would you de-
scribe the departure from symmetry?

	 d. 	Does the data set appear to contain any outliers?
	 e.	 Construct a histogram using class boundaries 2, 3, 

4, 5, 6, 7, 8, 9, 10, 12, 14, 16, and 20. From your 
histogram, approximately what proportion of the 
observations are at most 11? Compare this with 
the exact proportion that are at most 11.

	69.	 Let x denote the vibratory stress (psi) on a wind 
turbine blade at a particular wind speed in a wind 
tunnel. The article “Blade Fatigue Life Assessment 
with Applications to VAWTS” (J. of Solar Energy 
Engr., 1982: 107–111) proposes the Rayleigh distri-
bution as a model; the density function is

f (x) 5 c x
�2 ? e2x2y(2�2)

0

x . 0

otherwise

	 a. 	Verify that f (x) is a legitimate density function.
	 b. 	Suppose that � 5 100 (a value suggested by a 

graph in the cited article). What proportion of vi-
bratory stress values will be at most 200? At least 
200? Between 100 and 200?

	70.	 The article “Error Distribution in Navigation” (J. In
stitute of Navigation, 1971: 429–442) suggests that 
the frequency distribution of positive errors (magni
tudes of errors) is well approximated by an exponen-
tial distribution. Let x denote the lateral position  
error (nautical miles), which can be either positive 
or negative, and suppose the density function of x is 
f (x) 5 (.1)e2.2|x| for 2∞ , x , ∞.

	 a.	 Sketch the corresponding density curve, and verify 
that f (x) is a legitimate density function.

	 b.	 What proportion of errors are negative? At most 2? 
Between 21 and 2?

	71.	 “Time headway” in traffic flow is the elapsed time be-
tween the time that one car finishes passing a fixed 
point and the instant that the next car begins to pass 
that point. Let x be the time headway (sec) for two 
consecutive cars on a freeway during a period of heavy 
flow. The following density function is essentially the 
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60	 chapter 1   Data and Distributions

one suggested in “The Statistical Properties of Freeway 
Traffic” (Transportation Research, 1977: 221–228):

f (x) 5 e .15e2.15(x2.5)

0
x . .5
otherwise

	 a.	 Sketch the corresponding density curve, and verify 
that f (x) is a legitimate density function.

	 b.	 What proportion of time headways are at most 
5 sec? Between 5 and 10 sec?

	 c.	 What value separates the smallest 50% of all time 
headways from the largest 50%?

	 d.	 What value characterizes the largest 10% of all 
time headways?

	72.	 A k-out-of-n system is one that will function if and 
only if at least k out of the n individual components 
in the system function. If individual components 
function independently of one another and the 
long-run proportion of components that function 
is .9, what is the long-run proportion of 3-out-of-5 
systems that will function?

	73.	 An insurance company offers its policyholders a num-
ber of different premium payment options. Let x de-
note the number of months between successive pay-
ments chosen by a policyholder. For any particular 
number k, the proportion of x values that are at most k 
(i.e., # k) is called a cumulative proportion.Consider 
the following cumulative proportions: 0 for x , 1, .30 
for 1 , # x , 3, .40 for 3 # x , 4, .45 for 4 # x , 6, .60 
for 6 # x , 12, and 1 for x $  12.

	 a.	 Graph this cumulative proportion function, that 
is, graph (proportion of x values #  k) versus k.

	 b.	 Determine the mass function of x. Hint: The cu-
mulative proportion function jumps only at pos-
sible values of x.

	 c.	 Use the cumulative proportion function to deter-
mine the proportion of all policyholders for which 
3 # x # 6, and check to see that the mass function 
gives this same proportion.

	74.	 Based on data from a dart-throwing experiment, the 
article “Shooting Darts” (Chance, Summer 1997, 
16–19) proposed that the horizontal and vertical er-
rors from aiming at a point target should be indepen-
dent of one another, each with a normal distribution 
having parameters � 5 0 and �. It can then be shown 
that the density function of the distance from the tar-
get to the landing point is

f (v) 5
v

�2 ? e2v2y2�2          v . 0

	 a.	 This pdf is a member of what family introduced in 
this chapter?

	 b.	 If � 5 20 mm (close to the value suggested in the 
paper), what proportion of darts will land within 
25 mm (roughly 1 in.) of the target?

	75.	 The bursting strength of wine bottles of a certain type 
is normally distributed with parameters � 5 250 psi 
and � 5 30 psi. If these bottles are shipped 12 to a 
carton, in what proportion of cartons will at least one 
of the bottles have a bursting strength exceeding 300 
psi? Hint: Think of a bottle as a success S if its burst-
ing strength exceeds 300 psi.
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Numerical Summary  
Measures

2.1	 Measures of Center

2.2	 Measures of Variability

2.3	 More Detailed Summary Quantities

2.4	 Quantile Plots

Introduction

In Chapter 1, we learned how to describe sample data using either a stem-
and-leaf display or a histogram.   We then saw how a density function or mass 
function could be used to represent the distribution of a variable  in an entire 
population or process. Often an investigator will want to obtain or convey in-
formation about particular characteristics of data. In this chapter, we first in-
troduce several numerical summary measures that describe where a sample or 
distribution is centered.  Another important aspect of a sample or distribution 
is the extent of spread about the center. In Section 2.2, we develop the most 
useful measures of variability. In Section  2.3, we consider more detailed data 
summaries and how they can be combined to yield concise yet informative data 
descriptions. Once sample data has been obtained, it is often important to know 
whether it is plausible that the data came from a particular type of distribution, 
such as a normal distribution or a Weibull distribution. In Section 2.4, we show 
how to construct a picture from which the plausibility of any particular type of 
underlying distribution can be judged.

2
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62	 chapter 2   Numerical Summary Measures

2.1	 Measures of  Center 

A preliminary sense of where a data set is centered can be gleaned from a stem-and-leaf 
display or a histogram. A precise quantitative assessment entails calculating a measure of 
center such as the mean or median; the resulting number can then be regarded as being rep-
resentative or typical of the data. First, we consider measures of center for sample data, and 
then we turn our attention to analogous measures for distributions of a numerical variable x.

Measures of Center for Data
Suppose that the sample consists of observations on a numerical variable x. We shall 
use the letter n to represent the sample size (number of observations in the sample, e.g.,  
n 5 10). The individual observations will be denoted by x1, x2, . . . , xn. The subscripts 
typically refer to the time order in which the observations were obtained—the first ob-
servation is x1, the second observation is x2, and so on. In general, the subscripts are un-
related to the magnitudes of the observations: x1 is not usually the smallest observation, 
nor is xn the largest sample value.

The Sample Mean

The most frequently used measure of center is simply the arithmetic average of the n 
observations.

For reporting x, we recommend using decimal accuracy of one digit more than the ac-
curacy of the xi’s. Thus if observations are stopping distances with x1 5 125, x2 5 131, 
and so on, we might have x 5 127.3 ft. 

The sample mean of observations x1, . . . , xn, denoted by x, is given by

x 5
x1 1 x2 1    1  xn

n
5

^
n

i51
xi

n

The numerator of  x can be written more informally as ^xi, where the summation 
is over all sample observations.

definition

In recent years there has been growing commercial interest in the use of what is 
known as internally cured concrete. This concrete contains porous inclusions most 
commonly in the form of lightweight aggregate (LWA). In the article “Characterizing 
Lightweight Aggregate Desorption at High Relative Humidities Using a Pressure Plate 
Apparatus” (J. of Materials in Civil Engr., 2012: 961–969), researchers examined 
various physical properties of 14 LWA specimens. The following are the 24-hour 
water absorption percentages for the 14 specimens:

x1 5 16.0 x2 5 30.5 x3 5 17.7 x4 5 17.5 x5 5 14.1
x6 5 10.0 x7 5 15.6 x8 5 15.0 x9 5 19.1 x10 5 17.9
x11 5 18.9 x12 5 18.5 x13 5 12.2 x14 5 6.0

Example 2.1
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Figure 2.1 shows a stem-and-leaf display of the data (the tenths digit is truncated); 
a water absorption percentage  in  the midteens appears to be “typical.” With 
^xi   5  229.0, the sample mean is x 5 229.0

14 5 16.36, a value consistent with informa-
tion conveyed by the stem-and-leaf display.

Figure 2.1 A stem-and-leaf display  
of the water absorption data

The mean suffers from one deficiency that makes it an inappropriate measure of 
center under some circumstances: Its value can be greatly affected by the presence 
of  even a single outlier (unusually large or small observation). In Example 2.1, the 
value x2 5 30.5 is obviously an outlier. Without this observation, x 5 15.27; the outlier 
increases the mean by more than 1%. If the 30.5 observation were replaced by the 
relatively large value 90.0, a really extreme outlier, then x 5 288.5y14 5 20.61, which is 
larger than any of the other observations!

The Sample Median

An alternative measure of center that resists the effects of outliers is the median. The me-
dian strip of a roadway divides the roadway into two equal parts, and the sample median does 
the same for the sample. If, for example, n 5 5 and the observations are ordered from small-
est to largest, the third observation from either end is the median. When n 5 6, though, 
there are two middle values in the ordered list; the median is the average of these two values.

The sample median, denoted by x~, is obtained by first ordering the sample obser-
vations from smallest to largest. Then

x~ 5 µ
single middle value 5 an 1 1

2
b th value on ordered list   n odd

definition

average of two
middle values

5 average of  
n
2

 th and an
2

1 1b th values  n even

People not familiar with classical music might tend to believe that a composer’s in-
structions for playing a particular piece are so specific that the duration would not 
depend at all on the performer(s). However, there is typically plenty of room for 
interpretation, and orchestral conductors and musicians take full advantage of this. 
We went to the website ArkivMusic.com and selected a sample of 12 recordings of 

Example 2.2
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64	 chapter 2   Numerical Summary Measures

Consider the following 20 observations, ordered from smallest to largest, each repre-
senting the lifetime (hr) of a certain type of incandescent lamp:

Example 2.3

The largest observation or even the largest two or three observations in Ex
ample 2.2 can be increased by an arbitrary amount without impacting x~. Similarly, 
decreasing several of the smallest observations by any amount does not affect the me-
dian. In contrast to x, the median is impervious to many outliers.

Trimmed Means

A trimmed mean is a compromise between x and x~; it is less sensitive to outliers than 
the mean but more sensitive than the median. The observations are again first ordered 
from smallest to largest. Then a trimming percentage 100r% is chosen, where 
r is a number  between 0 and .5. Suppose that r 5 .1, so the trimming percentage 
is 10%. Then if  n 5 20, 10% of 20 is 2; the 10% trimmed mean results from deleting 
(trimming) the largest two and the smallest two observations, and then averaging the 
remaining 16  values. Notice that the trimming percentage specifies the number of 
observations to be deleted from each end of the ordered list. The sample mean is a 0% 
trimmed mean, whereas the median is a trimmed mean corresponding to the largest 
possible trimming percentage (e.g., a 45% trimmed mean when n 5 20).

Beethoven’s stunningly beautiful Symphony No. 9 (the “Chorale”), and found the 
following durations (min) listed in increasing order:

62.3  62.8  63.6  65.2  65.7  66.4  67.4  68.4  68.8  70.8  75.7  79.0

Figure 2.2 is a dotplot of the data:

Figure 2.2  Dotplot of the data from Example 2.2

60 65 70

Duration

75 80

Since n  5  12 is even, the sample median is the average of the ny2 5 sixth and  
(ny2 1 1) 5 seventh values from the ordered list:

x~ 5
66.4 1 67.4

2
5 66.90

Note that if the largest observation 79.0 had not been included in the sample, then the 
resulting sample median for the n  5  11 remaining observations would have been the 
single middle value 67.4 [the (n 1 1)y2 5 sixth ordered value—i.e., the sixth value in 
from either end of the ordered list]. The sample mean is x 5 ^xi 5 816.1y12 5 68.01, 
a bit more than a full minute larger than the median. The mean is pulled out a bit 
relative to the median because the sample “stretches out” somewhat more on the up-
per end than on the lower end.
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612 623 666 744 883 898 964 970 983 1003

1016 1022 1029 1058 1085 1088 1122 1135 1197 1201

The sample mean is x 5 19,299y20 5 965.0, and x~ 5 (1003 1 1016)y2 5 1009.5. 
The 10% trimmed mean is

xtr(10) 5
19,299 2 612 2 623 2 1197 2 1201

16
5 979.1

The effect of trimming here is to produce a central value that is somewhat larger than 
the mean yet considerably below the median. Similarly, the 20% trimmed mean 
averages the middle 12 values to obtain xtr(20) 5 999.9, which is even closer to the 
median. The various measures of center are illustrated in the dotplot of Figure 2.3.

Figure 2.3  Dotplot of lifetimes and measures of center for Example 2.3

600 800 1000 1200

– ˜

tr(10)
–

Statisticians generally recommend a trimming percentage between 5% and 
25%. Notice that (r)(n) may not be a whole number; if r 5 .10 and n 5 25, then 
(r)(n) 5 2.5. Eliminating two observations from each end gives a trimming percent-
age of 8%, whereas eliminating three observations gives 12%. The resulting two xtr’s 
can then be averaged to obtain the 10% trimmed mean. More generally, a trimmed 
mean for any trimming percentage can be obtained by interpolation.

Measures of Center for Distributions
The primary measure of center for a discrete distribution is the mean value, and both the 
mean value and the median are frequently used measures for continuous distributions.

Discrete Distributions

Plastic parts manufactured using an injection molding process may exhibit one or more 
defects, including sinks, scratches, black spots, and so on. Let x represent the number of 
defects on a single part, and suppose the distribution of x is as follows:

x: 0 1 2 3 4

p(x): .80 .14 .03 .02 .01

A picture of the distribution appears in Figure 2.4. Where is this distribution centered? 
That is, what is the mean or long-run average value of x? A first thought might be to sim-
ply average the five possible values of x to obtain a mean value of 2.0. But this entails Un
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66	 chapter 2   Numerical Summary Measures

giving the same weight to each possible value, whereas the distribution indicates that 
x 5 0 occurs much more frequently than any of the other values. So what is needed is 
a weighted average of x values.

We return now to the plastic part scenario introduced at the outset of this subsection. 
The mean value of x, the number of defects on a part, is

�x 5 ^
4

x50
x ? p(x)

5 0(p(0)) 1 1(p(1)) 1 2(p(2)) 1 3(p(3)) 1 4(p(4))
5 (0)(.80) 1 (1)(.14) 1 (2)(.03) 1 (3)(.02) 1 (4)(.01)
5 .30

When we consider the population of all such parts, the population mean value of 
x is .30. Alternatively, .30 is the long-run average value of  x when part after part is 
monitored. It can also be shown that the histogram of the distribution of Figure 2.4 
will balance on the tip of a fulcrum placed on the horizontal axis only if the tip is 
at .30; � is the balance point of the distribution.

Example 2.4

The mean value (alternatively, expected value) of a discrete variable x, denoted 
by �x or just � [alternatively, E(x)] is given by

�x 5 ^x ? p(x)

where the summation is over all possible x values.

definition

Figure 2.4  Distribution of , the number of defects on a 
manufactured plastic part
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If  is a binomial variable with parameters 5 group size and � 5 success proportion,
then � �.

Thus if n 5 10 and � 5 .8, � 5 (10)(.8) 5 8; we “expect” eight of the ten items to be 
successes, a very intuitive result.

When x is a Poisson variable with parameter �,

�x 5
x̂50

 x 
e2��x

x!
5

x̂51
 x 

e2��x

x!
 

 5 �
x̂51

 
e2��x21

(x 2 1)!

If we now let y 5 x 2 1, the range of summation is from y 5 0 to :

 5 �
ŷ50

 
e2��y

y!
 

 5 � ?  (sum of a Poisson mass function) 5 �(1) 5 �

Let  be a Poisson variable with parameter �. The mean value of  is � itself.

In Example 2.4, � is not a possible value of x. In the same way, if x is the number of 
children in a household, the population mean value of  x might be 1.7 even though there 
are no households with 1.7 children.

In Chapter 1, we introduced two important types of discrete distributions, the bi-
nomial distribution and the Poisson distribution. The binomial distribution models the 
number of “successes” in a group of n items when conditions of individual items are 
independent of one another and the long-run proportion of successes is � (a number 
between 0 and 1). The mean value of x is

�x 5 ^
n

x50
x 

n!
x!(n 2 x)!

 �x(12  �)n2x

The summation looks very intimidating, but fortunately some algebraic manipulation 
yields an extremely simple result.

Suppose, for example, that x is the number of burnt potato chips in a 13-oz bag. If x 
has a Poisson distribution with parameter � 5 2.5, then �x 5 2.5; the population mean 
number of burnt chips per bag is 2.5.

Continuous Distributions

A distribution for a continuous variable x is specified by a density function f  (x) whose 
graph is a smooth curve. To obtain �, we replace summation in the discrete case by 
integration and replace the mass function p(x) by the density function.
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68	 chapter 2   Numerical Summary Measures

Just as � in the discrete case is the balance point for the histogram corresponding to p(x), 
in the continuous case � is the balance point for the density curve corresponding to f (x).

The mean value (or expected value) of a continuous variable x with density 
function f (x) is given by

�x 5 #
2

x ? f  (x) dx

definition

The distribution of the amount of gravel (tons) sold by a particular construction sup-
ply company in a given week is a continuous variable x with density function

f (x) 5 1.5(1 2 x2)    0 # x # 1 

( f (x) 5 0 outside the interval from 0 to 1). The density curve is shown in Figure 2.5. 
Knowledge of the mean value of x will help the company decide on a price for the gravel:

�x 5 #
2

xf (x) dx 5 #
1

0
x[1.5(1 2 x2)] dx

 5 1.5#
1

0
(x 2 x3) dx 5 1.5 a x2

2
2

x4

4
b 2

0

1

5 .375

Figure 2.5  The density curve 
and mean value for Example 2.5

0 1

1.5

( )

Example 2.5

In Chapter 1, we introduced the normal distribution with parameters � and �. The 
symmetry of the associated density curve about � certainly suggests that � is the mean 
value, and this is indeed the case:

 #
2

xf  (x) dx 5 #
2

(� 1 x 2 �)f (x) dx

 5 � #
2

122��
 e2(x2�)2y(2�2) dx 1 #

2
(x 2 �) 

122��
 e2(x2�)2y(2�2) dx

 5 � 1
122�

 #
2

 ye2y2y2dy  using y 5
x 2 �

�
 

Un
le

ss
 o

th
er

w
is

e 
no

te
d,

 a
ll 

co
nt

en
t o

n 
th

is
 p

ag
e 

is
 ©

 C
en

ga
ge

 L
ea

rn
in

g.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 2.1   Measures of  Center 	 69

The latter integral is zero because the integrand g(y) is an odd function (g(2 y) 5 
2 g(y)), which gives the desired result.

A lognormal variable x is one for which ln(x) has a normal distribution with mean 
value �. That is, � ln(x) 5 �. Therefore, it might seem that �x 5 e�, but this is not the 
case. It can be shown that

�x 5 e�1�2y2

In Example 1.19 of Chapter 1, � 5 .353 and � 5 .754, from which we calculate  
e� 5 1.42 whereas

�x 5 e.3531.5(.754)2

5 1.89

The mean value of a Weibull variable is a somewhat complicated expression involving 
the parameters � and �. Consult the chapter references for details.

m  and x

If x1, . . . , xn have been randomly selected from some population or process distribution 
with mean value �, then the sample mean x gives a point estimate for �. In Example 2.1, 
we calculated x 5 16.36, so a reasonable educated guess for the population mean 
water-absorption percentage is 16.36%. Estimation—both point (a single number) and 
interval—will be discussed in Chapter 7.

The Median of a Distribution

Just as the sample median x~ separates the sample into two equal halves, the median m~  
of a continuous distribution divides the area under the density curve into two equal 
halves. The defining condition is

#
�~

2
f(x)  dx 5 .5

(Example 2.5 continued)    The median for the distribution of weekly gravel sales 
satisfies

#
�
~

0
 1.5(1 2 x2) dx 5 1.5 ax 2

x3

3
b 2 �

0
5 .5

Using c in place of �~ , we have the cubic equation 1.5(c 2 c3y3) 5 .5, whose so-
lution is c 5 �~ 5 .347. We previously calculated the mean as �x 5 .375, which 
is somewhat larger than the median because the distribution is positively skewed 
(see Figure 2.5).

Example 2.6

Figure 2.6 shows the relationship between the mean and the median for various 
types of unimodal distributions or (smoothed) histograms. The median of a discrete dis-
tribution can also be defined; see one of the chapter references for details.
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Just as the sample mean gives a point estimate of the population mean �, the sam-
ple median x~ gives a point estimate of the population median. If the population distribu-
tion is symmetric (as is any normal distribution), both x and x~ are estimates of the same 
population characteristic, namely, the point of symmetry. The issue of which estimate to 
use will be addressed in Section 7.1.

Figure 2.6 The relationship between the mean and the median for a continuous 
distribution or smoothed histogram

Mean = Median Median Mean Mean Median

	 1.	 The May 1, 2009, issue of The Montclarian reported 
the following sales figures ($ 1000s) for a sample of 
homes in Alameda, California, that were sold the 
previous month:

		  590    815    575     608    350    1285 
408      540      555       679

	 a.	 Calculate and interpret the sample mean and 
median.

	 b.	 Suppose the sixth observation had been 985 
rather than 1285. How would the mean and me-
dian change?

	 c.	 Calculate a 20% trimmed mean by first trimming 
the two smallest and two largest observations.

	 d.	 Calculate a 15% trimmed mean.

	 2.	 Exposure to microbial products, especially endo-
toxin, may affect human vulnerability to allergic 
diseases. The article “Dust Sampling Methods 
for Endotoxin—An Essential but Underestimated 
Issue” (Indoor Air, 2006: 20–27) considered various 
issues associated with determining endotoxin con-
centration. The following data on concentration 
(EU/mg) in settled dust for one sample of urban 
homes and another of farm homes was kindly 
supplied by the authors of the article.
U: 6.0 5.0 11.0 33.0 4.0 5.0

80.0 18.0 35.0 17.0 23.0
F: 4.0 14.0 11.0 9.0 9.0 8.0

4.0 20.0 5.0 8.9 21.0 9.2
3.0 2.0 0.3

	 a.	 Determine the sample mean for each sample. 
How do they compare?

	 b.	 Determine the sample median for each sample. 
How do they compare? Why is the median for 
the urban sample so different from the mean for 
that sample?

	 c.	 Calculate the trimmed mean for each sample 
by deleting the smallest and largest observation. 
What are the corresponding trimming percent-
ages? How do the values of these trimmed 
means compare to the corresponding means 
and medians?

	 3.	 The production of Bidri is a traditional craft of India. 
Bidriware (bowls, vessels, and so on) is cast from an 
alloy containing primarily zinc along with some 
copper. Consider the following observations on 
copper content (%) for a sample of Bidri artifacts in 
London’s Victoria and Albert Museum (“Enigmas 
of Bidri,” Surface Engr., 2005: 333–339), which are 
listed in increasing order:

	 2.0	 2.4	 2.5	 2.6	 2.6	 2.7	 2.7	
2.8	 3.0	 3.1	 3.2	 3.3	 3.3	 3.4	
3.4	 3.6	 3.6	 3.6	 3.6	 3.7	 4.4	
4.6	 4.7	 4.8	 5.3	 10.1

	 a.	 Construct a stem-and-leaf display of the data. 
How does it suggest that the sample mean and 
median will compare?

	 b.	 Calculate the values of the sample mean and 
median. Hint: ^xi 5 95.0.

Section 2.1 Exercises 
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	 c.	 By how much could the largest observation, 
10.1, be increased without affecting the value 
of the sample median? By how much could this 
value be decreased without affecting the value of 
the sample median?

	 4.	 Suppose that after computing xn based on n sample 
observations x1, . . . , xn, another observation xn11 be-
comes available. What is the relationship between 
the mean of the first n observations, the new ob-
servation, and the mean of all   n 1 1  observations? 
The mean of the 10 observations in Exercise 1  
is 640.5.  If an 11th property had sold at a price 
of 780, what would be the mean sale price for all  
11 properties?

	 5.	 In the article “Evaluation of Optimal Power Op-
tions for Base Transceiver Stations of Mobile 
Telephone Networks Cameroon” (Solar Energy, 
2012:  2935–2949), researchers recorded site spe-
cific information for remote telecommunications 
stations throughout Cameroon. The following ob-
servations are daily energy demand readings (kWh) 
for 12 stations:

    17.76    23.44    24.58    26.99    27.23    30.77
    31.79    35.57    36.59    36.59    40.51    59.31

		  Without doing any computation, how do you think 
the sample mean compares to the sample median? 
What would you report as representative, or typical, 
of the daily energy demand for these stations? What 
prompted your choice?

	 6.	 Blood pressure values are often reported to the 
nearest 5 mmHg (100, 105, 110, and so on). Sup-
pose the actual blood pressure values for nine ran-
domly selected individuals are

		  118.6    127.4    138.4    130.0    113.7
		  122.0    108.3    131.5    133.2

	 a.	 What is the median of the reported blood pres-
sure values?

	 b.	 Suppose the blood pressure of the second indi-
vidual is 127.6 rather than 127.4 (a small change 
in a single value). How does this affect the me-
dian of the reported values? What does this say 
about the sensitivity of the median to rounding 
or grouping in the data?

	 7.	 An experiment to study the lifetime (hr) for a cer-
tain type of component involved putting ten com-
ponents into operation and observing them for  
100 hours. Eight of the components failed during 
that period, and those lifetimes were recorded. 
Denote the lifetimes of the two components still 
functioning after 100 hours by 1001. The resulting 
sample observations were 48, 79, 1001, 35, 92, 86, 
57, 17, 1001, and 29. Which of the measures of 
center discussed in this section can be calculated, 
and what are the values of those measures? Note: 
The data from this experiment is said to be “cen-
sored on the right”; patient lifetimes in medical ex-
perimentation are sometimes obtained in this way.

	 8.	 A target is located at the point 0 on a horizontal axis. 
Let x be the landing point of a shot aimed at the 
target, a continuous variable with density function 
f (x) 5 .75(1 2 x2) for 21 # x # 1. What is the mean 
value of x?

	 9.	 Let x denote the amount of time for which a book 
on 2-hour reserve at a college library is checked out 
by a student, and suppose that x has density func-
tion f (x) 5 .5x for 0 , x , 2.

	 a.	 What is the mean value of x? Why is the mean 
value not 1, the midpoint of the interval of posi-
tive density?

	 b.	 What is the median of this distribution, and how 
does it compare to the mean value?

	 c.	 What proportion of checkout times are within 
one-half hour of the mean time? What propor-
tion are within one-half hour of the median time?

	10.	 Let x have a uniform distribution on the interval from 
a to b, so the density function of x is f (x) 5 1y(b 2 a) 
for a # x # b. What is the mean value of x?

	11.	 The weekly demand for propane gas (1000s of gal-
lons) at a certain facility is a continuous variable 
with density function

		  f (x) 5 c 2a1 2
1
x2 b 1 # x # 2

0 otherwise

		  Determine both the mean value and the median. 
In the long run, in what proportion of weeks will 
the value of x be between the mean value and the 
median?
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72	 chapter 2   Numerical Summary Measures

	12.	 Refer to Exercise 27 of Section 1.3, in which x was 
the number of telephone lines in use at a speci-
fied time. If � 5 2.64, what are the values of p(5) 
and p(6)?

	13.	 The distribution of the number of underinflated 
tires x on an automobile is given in Exercise 26a(ii) 
of Section 1.3. Determine the mean value of x.

	14.	 Sometimes, rather than wishing to determine the 
mean value of x, an investigator wishes to determine 
the mean value of some function of x. Suppose, for 
example, that a repairman assesses a fixed charge of 
$25 plus $40 an hour that he spends on a job. Then 
the revenue resulting from a job that takes x hours 
is h(x) 5 25 1 40x. If x is a continuous variable, 

the mean value of any function h(x) is computed 
similarly to the way in which � itself is computed: 
�h(x)5 1h(x) f(x) dx.

	 a.	 Refer to Exercise 9. Suppose the library, in a 
desperate search for revenue to fund its op-
erations, charges a student h(x) 5 x2 dollars 
to check a book out on 2-hour reserve for 
x hours. What is the mean value of the check-
out charge?

	 b.	 Suppose that h(x) 5 a 1 bx, a linear function of 
x. Show that �h(x) 5 a 1 b� (this is true for x con-
tinuous or discrete). If the mean value of repair 
time is .5 hr for the repair situation mentioned 
at the outset of this problem, what is the mean 
value of repair revenue?

Measures of   Variability for Sample Data
The simplest measure of variability in a sample is the range, which is the difference 
between the largest and smallest sample values. Notice that the value of the range 
for sample 1 in Figure 2.7 is much larger than it is for sample 3, reflecting more vari-
ability in the first sample than in the third one. A defect of the range, though, is that 
it depends on only the two most extreme observations and disregards the positions 
of the remaining n  2  2 values. Samples 1 and 2 in Figure 2.7 have identical ranges, 
yet when we take into account the observations between the two extremes, there is 
much less variability or dispersion in the second sample than in the first one.

2.2	 Measures of   Variability

Reporting a measure of center gives only partial information about a data set or distribu-
tion. Different samples or distributions may have identical measures of center yet differ 
from one another in other important ways. For example, for a normal distribution with 
parameters � and �, the normal curve becomes more spread out as the value of � in-
creases. Figure 2.7 shows dotplots of three samples with the same mean and median, yet 
the extent of spread about the center is different for all three samples. The first sample 
has the largest amount of variability, the third has the smallest amount, and the second 
is intermediate to the other two in this respect.

Figure 2.7  Samples with identical measures of center but different 
amounts of variability

* * * * * * * * *
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Our primary measures of variability involve quantities called deviations from the 
mean: x1 2 x, x2 2 x, . . . , xn 2 x. That is, the deviations from the mean are obtained by 
subtracting x from each of the n sample observations. A deviation will be positive if the 
observation is larger than the mean (to the right of the mean on the measurement axis) 
and negative if the observation is smaller than the mean. If all the deviations are small in 
magnitude, then all xi’s are close to the mean and there is little variability. On the other 
hand, if some of the deviations are large in magnitude, then some xi’s lie far from x, sug-
gesting a greater amount of variability. A simple way to combine the deviations into a 
single quantity is to average them (sum them and divide by n). Unfortunately, there is a 
major problem with this suggestion:

sum of deviations 5^
n

i51
(xi 2 x) 5 0

so that the average deviation is always zero (because ^n
i51 x 5 x 1   1  x 5 nx 5  

^n
i51 xi). In practice, the sum of the deviations may not be identically zero because of 

rounding in x. The greater the decimal accuracy used in x, the closer the sum will be 
to zero.

How can we change the deviations to nonnegative quantities so the positive and 
negative deviations do not counteract one another when they are combined? One pos-
sibility is to work with the absolute values of the deviations and calculate the average 
absolute deviation ^uxi 2 xuyn. Because the absolute value operation leads to a number 
of theoretical difficulties, consider instead the squared deviations (x1 2 x)2, (x2 2 x)2, . . . ,  
(xn 2 x)2. We might now use the average squared deviation ^(xi 2 x)2yn, but for several 
reasons we will divide the  sum of squared deviations by n 2 1 rather than n.

The  sample variance, denoted by s2, is given by

s2 5
^ (xi 2 x)2

n 2 1
5

Sxx

n 2 1

The sample standard deviation, denoted by s, is the (positive) square root of the 
variance:

s 5 2s2

definitions

An alternative computational formula for s2 is given in Exercise 18.
The unit for s is the same as the unit for each of the xi’s. If, for example, the observa-

tions are fuel efficiencies in miles per gallon (mpg), then we might have s 5 2.0 mpg. A 
rough interpretation of the sample standard deviation is that it is the size of a typical or rep-
resentative deviation from the sample mean within the given sample. Thus if s 5 2.0 mpg, 
then some xi’s in the sample are closer than 2.0 to x whereas others are farther away; 2.0 is a 
representative (or standard) deviation from the mean fuel efficiency. If s 5 3.0 for a second 
sample of cars of another type, a typical deviation in this sample is roughly one and one-half 
times what it is in the first sample, an indication of greater variability in the second sample.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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One explanation for the use of n  2  1 in s2 goes back to the fact that ^(xi 2 x) 5 0. 
Suppose that n 5 5 and that x1 2 x   5 24, x2 2 x 5 6, x3 2 x 5 1, and x5 2 x 5 28.  
Since the sum of these four deviations is 25, the remaining deviation must be 
x4 2 x 5 5 (so that the sum of all five deviations is zero). More generally, once any 
n 2 1 of the deviations are available, the value of the remaining deviation is deter-
mined. The n deviations actually contain only n 2 1 independent pieces of informa-
tion about variability. Statisticians express this by saying that s2 and s are based on 
n 2 1 degrees of freedom (df). Many inferential procedures encountered in later 
chapters are based on some appropriate number of df.

The Variance and Standard Deviation of a Discrete Distribution
Let x be a discrete variable with mass function p(x) and mean value �. Just as � itself is 
a weighted average of possible x values, where the weights come from the mass function, 
the variance is a weighted average of the squared deviations (x 2 �)2 for possible x values.

The website www.fueleconomy.gov contains a wealth of information about the fuel 
characteristics of various vehicles. In addition to EPA mileage ratings, there are many 
vehicles for which users have reported their own values of fuel efficiency (mpg). Con-
sider the following sample of n 5 11 efficiencies for the 2009 Ford Focus equipped 
with an automatic transmission (for this model, EPA reports an overall rating of  
27 mpg—24 mpg in city driving and 33 mpg in highway driving):

Car xi xi 2 x
   (xi 2 x)2 

1 27.3 25.96 35.522
2 27.9 25.36 28.730
3 32.9 20.36 0.130
4 35.2 1.94 3.764
5 44.9 11.64 135.490
6 39.9 6.64 44.090
7 30.0 23.26 10.628
8 29.7 23.56 12.674
9 28.5 24.76 22.658

10 32.0 21.26 1.588
11 37.6 4.34 18.836

^xi 5 365.9 ^(xi 2 x) 5 .04 ^(xi 2 x)2 5 314.110   x 5 33.26

Effects of rounding account for the sum of deviations differing slightly from zero. The 
numerator of s2 is Sxx 5 314.110, from which

	 s2 5
Sxx

n 2 1
5

314.110
11 2 1

5 31.41,    s 5 5.60 

The size of a representative deviation from the sample mean 33.26 is roughly 5.6 mpg.

Note: Of the nine people who also reported driving behavior, only three did more 
than 80% of their driving in highway mode; we bet you can guess which cars they 
drove. We haven’t a clue why all 11 reported values exceed the EPA figure: Maybe 
only drivers with really good fuel efficiencies communicate their results.

Example 2.7
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If a particular x value is far from �, resulting in a large squared deviation, it will 
still not contribute much to variability in the distribution if p(x) is quite small. This 
is desirable because any x value for which p(x) is quite small will be observed very 
infrequently in a long sequence of selections from the population or process. Just 
as s can be interpreted as the size of a representative deviation from the sample 
mean, � can be interpreted as the size of a typical deviation from the population 
or process mean.

The  variance of a discrete distribution for a variable x specified by mass function 
p(x), denoted by �2

x or just �2 (alternatively, V(x)), is given by

�2 5 ^ (x 2 �)2 ? p(x)

where the sum is over all possible x values. The standard deviation is �, the posi-
tive square root of the variance.

definitions

Consider a computer system consisting of the computer itself, a monitor, and a printer. 
Let x denote the number of system components that need service while under war-
ranty; possible x values are 0, 1, 2, and 3. Suppose that p(0) 5 .532, p(1) 5 .389, 
p(2) 5 .076, and p(3) 5 .003 (these come from individual component failure propor-
tions of .2, .3, and .05 along with an assumption of component independence, so that 
these proportions can be multiplied as we originally did in a binomial calculation). 
Then � 5 .55 and

�2 5 ^ (x 2 �)2 ? p(x)

5 (0 2 .55)2 (.532) 1 (1 2 .55)2 (.389) 1 (2 2 .55)2(.076)

1 (3 2 .55)2(.003)

5 .16093 1 .07877 1 .15979 1 .01801 5 .41750

from which � 5 .646.

Example 2.8

An alternative computational formula for calculating �2 is given in Exercise 26, which 
is similar to the computational formula for s2 in Exercise 18.

Recall that the mean value of the binomial distribution based on group size n and 
item success proportion � is just n�. The variance is also a simple expression, though 
verification of this result involves some tedious manipulation of summations:

�2 5 ^
n

x50
(x 2 n�)2 

n!
x!(n 2 x)!

 � 

x(1 2 �)n2x 5 n� (1 2 �)

The standard deviation of a binomial distribution is then � 5 2n�(1 2 �). Note that 
� 5 0 if � 5 0 (in which case, every item is a failure, so x 5 0 always) or � 5 1 (ev-
ery item a success, so x 5 n always). The variance and standard deviation are largest  
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The Case of a Normal Distribution

The two parameters of a normal distribution were denoted by � and �. We have already 
seen that � is in fact the mean value, and it should come as no surprise that the second 

The variance of a continuous distribution specified by density function f (x) is

�2 5 #
2

(x 2 �)2 ? f (x) dx

The standard deviation � is again the positive square root of the variance.

definitionS

The distribution of x 5 gravel sales during a given week (tons), introduced in 
Example 2.5, was specified by the density function f (x) 5 1.5(1 2 x2) for x between 
0 and 1. We found the mean value to be � 5 .375. The variance of the distribution is

�2 5 #
1

0
(x 2 .375)2 ? 1.5(1 2 x2) dx

Multiplying the factors in the integrand gives 1.5(2x4 1 .75x3 1 .859375x2  2  .75x 1 
.140625). Integrating this fourth-degree polynomial term by term gives �2 5 .059375 
and � 5 .244.

Example 2.9

when � 5 .5 [�(1 2 �) is maximized for this value], that is, when there is a 50–50 split 
between successes and failures. As � moves toward either 0 or 1, the variance and stan-
dard deviation decrease. If identical components are shipped in groups of size 25 and 
the long-run success (doesn’t need warranty service) proportion is � 5 .9, then

� 5 25(.9) 5 22.5    � 5 225(.9)(.1) 5 22.25 5 1.50

The mean value of a Poisson distribution with parameter � is � itself, and this is also 
the variance of the distribution:

�2 5
x̂50

(x 2 �)2  
e2��x

x!
5 �

(Again, much summation manipulation is required.) The standard deviation is, of course, 1�. If the number of blemishes  x on surfaces of a certain part has a Poisson distribution 
with parameter � 5 3.5, then the mean value is 3.5 and the standard deviation is 1.87.

The Variance and Standard Deviation of a Continuous Distribution
The variance of a continuous distribution with density function f (x) is obtained by re-
placing summation in the discrete case by integration and substituting f (x) for p(x).
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parameter is the standard deviation of the distribution. That is, a bit of integration ma-
nipulation shows that

V(x) 5 #
2

(x 2 �)2 
112��

 e 2(x2�)2y(2�2) dx 5 �2

Let k be some fixed positive number. Consider the area under a normal curve with 
parameters � and � that lies within k standard deviations of the mean value. That is, 
we wish to determine the proportion of x values that lie in the interval from � 2 k� to 
� 1 k�. Standardizing the interval limits gives

� 2 k� 2 �

�
5 2k  

� 1 k� 2 �

�
5 k

Thus the desired proportion is the area under the standard normal (z) curve between 
2k and k. This shows that the area within k standard deviations of the mean under any 
normal curve depends only on k and not on the particular normal curve under consider-
ation. For k 5 1, the desired proportion is the area under the z curve between 21 and 1. 
From Appendix Table I, this area is .8413 2 .1587 5 .6826 < .68. Similar calculations 
for k 5 2 and k 5 3 give .9544 and .9974, respectively. Thus for any variable x whose 
distribution is well approximated by a normal curve:

Approximately 68% of the values are within 1 standard deviation of the mean.
Approximately 95% of the values are within 2 standard deviations of the mean.
Approximately 99.7% of the values are within 3 standard deviations of the mean.

These three statements together are often referred to as the empirical rule; the name 
reflects the fact that histograms of a great many data sets have at least roughly the shape 
of a normal curve.

Other Continuous Distributions

A variable x is said to have a lognormal distribution with parameters � and � if ln(x) is 
normally distributed with mean value � and standard deviation �. In Section 2.1, we 
pointed out that the mean value of x itself is not �. Similarly, the variance of x is not �2. 
It can be shown that

V(x) 5 e2�1�2

(e�2

2 1)

The variance of a variable having a Weibull distribution is even more complicated than 
the mean value; consult one of the chapter references.

2 and s2

The sample mean x is a sensible estimate (educated guess) for the value of the population 
or process mean �. Similarly, the sample variance should be defined so that it gives a rea-
sonable estimate of the population or process variance �2. Recall that �2 involves squared 
deviations from �, that is, quantities of the form (x 2 �)2. If the value of � were known 
to an investigator, a good estimate of �2 based on sample observations x1, . . . , xn would be  
^(xi 2 �)2yn. It is natural to replace � by x when the value of the former quantity is 
unknown. However, it can be shown that ^(xi 2 x)2 , ^(xi 2 �)2 unless x 5 �, so x is 
“closer” to the sample observations than is �. To compensate for this reduction in sum of 
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squares, the value of the denominator n should also be reduced. According to a technical 
criterion called unbiasedness, the sample size n should be replaced by the number of df  
n 2 1. The resulting sample variance s2 will tend to provide good estimates of �2.

	15.	 In the article “Mechanical Reliability of Devices Sub-
dermally Implanted into the Young of Long-Lived and 
Endangered Wildlife” (J. of Materials Engr. and Perfor-
mance, 2012:  1924–1931), researchers examined the 
mechanical reliability of a thin enclosure for a biote-
lemetry device to be subdermally implanted in young 
wild animals. Six enclosure specimens were subjected 
to puncture tests. Each specimen was placed in a test 
apparatus, and researchers recorded the necessary 
force (N) for the puncture head to cause initial cracks 
in the enclosure. Here is the corresponding data:

		  2006.1    2065.2     2118.9
		  1686.6    1966.9    1792.5

	 a.	 Calculate x~ and the deviations from the mean.
	 b.	 Use the deviations calculated in part (a) to ob-

tain the sample variance and the sample stan-
dard deviation.

	 c.	 Compute the sample standard deviation using a 
calculator or software function to confirm the ac-
curacy of your answer in (b).

	16.	 Return to the puncture test data given in Exercise 15.
	 a.	 Subtract 100 from each observation to obtain a 

sample of transformed values. Now calculate the 
sample variance of these transformed values and 
compare it to s2 for the original data.

	 b.	 Consider a sample x1, . . . , xn and let yi 5 xi 2 c for 
i 5 1, 2, . . . , n, where c is some specified number. 
Give a general argument to show that the sample 
variance of the yi’s is identical to that of the xi’s. 
Hint: How are y and x related?

	17.	 Suppose the following represent quiz scores (out of 
15 points) for students in two different study groups:

		  Group 1: 10, 14, 8, 7, 12, 7, 11
		  Group 2: 5, 8, 9.5, 8.5, 9, 9.5, 13

	 a.	 Compute the mean and standard deviation for 
each group.

	 b.	 Determine the range for each data set.
	 c.	 Create a dotplot for each data set and ensure you 

use the same axis scale for each.

	 d.	 Notice that one group exhibits the smaller stan-
dard deviation but the other exhibits the smaller 
range. Explain how it is possible for a data set to 
have the smallest standard deviation yet not have 
the smallest range. Hint: Keep in mind how stan-
dard deviation measures variability and compare 
the dotplots you created.

	18.	 Traumatic knee dislocation often requires surgery to 
repair ruptured ligaments. One measure of recovery 
is range of motion (measured as the angle formed 
when, starting with the leg straight, the knee is bent 
as far as possible). The given data on postsurgical 
range of motion appeared in the article “Recon-
struction of the Anterior and Posterior Cruciate 
Ligaments After Knee Dislocation” (Amer. J. Sports 
Med., 1999: 189–197):

		  154    142    137    133    122    126    135

		  135    108    120    127    134    122

	 a.	 What are the values of the sample mean and 
sample median?

	 b.	 An alternative computing formula for the nu-
merator of s2 is:

Sxx 5 ^(xi 2 x)2 5 ^xi
2 2

1
n

  (^xi)
2

		 Using this formula, determine the sample variance 
of the data.

		 Hint: ^xi 5 1695, ^xi
2 5 222,581.

	19.	 In the article “X-Ray Computed Tomography and 
Nondestructive Evaluation of Clogging in Porous 
Concrete Field Samples” (J. of Materials in Civil 
Engr., 2012: 1103–1109), investigators determined the 
clogging percentage in porous concrete samples cored 
from parking lots. Porosity profiles using computed 
tomography scanned images were used in this study. 
The following represent the average porosity (%) using 
a gravimetric method for nine concrete cores:

		  8.10    20.50    26.54    19.68    14.87
		  14.36    9.19    23.55    22.27

Section 2.2 Exercises 
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		  Calculate and interpret the values of the sample 
mean and sample standard deviation for this data.

	20.	 Use the alternative computing formula for Sxx as 
shown in Exercise 18 to determine the sample stan-
dard deviation for the average porosity measure-
ments presented in Exercise 19.

	21.	 Consider the following information on ultimate 
tensile strength (lb/in.) for a sample of n 5 4 hard 
zirconium copper wire specimens (from “Charac-
terization Methods for Fine Copper Wire,” Wire J. 
Intl., August 1997: 74–80):

		  x 5 76,831  s   5  180  smallest xi 5 76,683  
largest xi 5 77,048

		  Determine the values of the two middle sample ob-
servations (and don’t do it by successive guessing!).

		 Hint: See Exercise 18 part b.

	22.	 The federal test procedure (FTP) for determin-
ing the levels of various types of vehicle emissions 
is time-consuming and expensive to perform. Ac-
cording to the article “Motor Vehicle Emissions 
Variability” (J. of the Air and Waste Mgmnt. Assoc., 
1996: 667–675), there is a widespread belief that 
repeated FTP measurements on the same vehicle 
would yield identical (or nearly identical) results. 
The accompanying data is from one particular ve-
hicle characterized as a high emitter:

HC (gm/mi): 13.8 18.3 32.2 32.5
CO (gm/mi): 118 149 232 236

	 a.	 Compute the sample standard deviations for the 
HC and CO observations. Does the widespread 
belief appear to be justified?

	 b.	 The sample coefficient of variation syx (or 100syx) 
assesses the extent of variability relative to the 
mean. Values of this coefficient for several different 
data sets can be compared to determine which 
data sets exhibit more or less variation. Carry out 
such a comparison for the given HC and CO data.

	23.	 Suppose, as in Exercise 57 of Chapter 1, that the 
number of drivers traveling between a particular 
origin and destination during a designated time pe-
riod has a Poisson distribution with � 5 20. In the 
long run, during what proportion of such periods 
will the number of drivers be

	 a.	 Within 5 of the mean value?
	 b.	 Within 1 standard deviation of the mean value?

	24.	 Suppose that x, the number of flaws on the surface 
of a boiler of a certain type, has a Poisson distribu-
tion with � 5 5. For what proportion of such boilers 
will the number of flaws

	 a.	 Be within 1 standard deviation of the mean 
number of flaws?

	 b.	 Exceed the mean number of flaws by more than 
2 standard deviations?

	25.	 Let x represent the number of underinflated tires on 
an automobile of a certain type, and suppose that 
p(0) 5 .4, p(1) 5 p(2) 5 p(3) 5 .1, and p(4) 5 .3, 
from which � 5 1.8.

	 a.	 Calculate the standard deviation of  x.
	 b.	 For what proportion of such cars will the num-

ber of underinflated tires be within 1 standard 
deviation of the mean value? More than 3 stan-
dard deviations from the mean value?

	26.	 Use the fact that (x 2 �)2 5 x2 2 2�x 1 �2 to show 
that �2 5 ^x2p(x) 2 �2 for a discrete variable x. 
Then use this result to compute the variance for 
the variable whose distribution is given in the pre-
vious problem. Hint: Substitute the alternative 
expression for (x 2 �)2 in the definition of �2, and 
break the summation into three separate terms; the 
argument in the continuous case involves replacing 
summation with integration.

	27.	 If x has a uniform distribution on the interval from a 
to b [  f (x) 5 1y (b 2 a)], from which � 5 (a 1 b)y2, 
show that �2 5 (b 2 a)2y12. If task completion time 
is uniformly distributed with a 5 4 and b 5 6, what 
proportion of times will be farther than 1 standard 
deviation from the mean value of completion 
time?

	28.	 Suppose that bearing diameter x has a normal distri-
bution. What proportion of bearings have diameters 
that are within 1.5 standard deviations of the mean 
diameter? That exceed the mean diameter by more 
than 2.5 standard deviations?

	29.	 Historical data implies that 20% of all components 
of a certain type need service while under warranty. 
Suppose that whether any particular component 
needs warranty service is independent of whether 
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2.3	 More Detailed Summary Quantities �

The median separates a data set or distribution into two equal parts, so that 50% of the 
values exceed the median and 50% are smaller than the median. Quartiles and percentiles 
give more detailed information about location of a data set or distribution by considering 
percentages other than 50%. In this section, we also develop another measure of spread 
based on the quartiles, the interquartile range (IQR). The median and IQR can be used 
together to give a concise yet informative visual summary of sample data called a boxplot.

Quartiles and the Interquartile Range
The lower and upper quartiles along with the median separate a data set or distribution 
into four equal parts: 25% of all values are smaller than the lower quartile, 25% exceed 
the upper quartile, and 25% lie between each quartile and the median. This is illustrated 
for a continuous distribution or smoothed histogram in Figure 2.8.

Figure 2.8  Illustrating the quartiles

25% 25% 25% 25%25% 25% 25% 25%

Lower
quartile

Upper
quartileMedian

any other component does. If these components 
are shipped in batches of 25 and x denotes the 
number of components in a batch that need war-
ranty service, determine the standard deviation of 
x and then the proportion of batches for which the 
number of components that need warranty service 
exceeds the mean number by more than 2 standard 
deviations.

	30.	 If the unloading time of a forwarder in a harvesting 
operation is lognormally distributed with a mean 
value of 900 and a standard deviation of 725, what 
are the values of the parameters � and �? Note: An 
expression for the mean value of a lognormal vari-
able is given in Section 2.1, and an expression for 
the variance appears in this section.

	31.	 If component lifetime is exponentially distributed 
with parameter �, obtain an expression for the pro-
portion of components whose lifetime exceeds the 
mean value by more than 1 standard deviation. Hint: 
According to Exercise 26, �2 5#0 x2f (x) dx 2 �2;
now use integration by parts.

	32.	 The sample mean and sample standard devia-
tion for the sample of n 5 100 shear strength ob-
servations given in Exercise 17 of Section 1.2 are 
5049.16 and 351.45, respectively. What percent-
age of the observations in the sample are within  
1 standard deviation of the mean, and how does this 
compare to the corresponding percentage given by 
the empirical rule? Answer this question also for  
2 standard deviations and for 3 standard deviations.

Let’s first consider quartiles for sample data. There are several different sensible 
ways to define the sample quartiles. We will use a definition that requires a minimal Un
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Separate  the n ordered sample observations into a lower half and an upper half; if 
n is an odd number, include the median x~ in each half. Then

lower quartile 5 median of the lower half of the data
upper quartile 5 median of the upper half of the data

The interquartile range (IQR), a measure of variability that is resistant to the  
effect of outliers, is the difference between the two quartiles:

	 IQR 5 upper quartile 2 lower quartile

definitionS

amount of computation; statistical computer packages actually calculate quartiles by 
interpolation (our quartiles are called fourths in some sources).

Reconsider the flexural strength data for beams given in Example 1.2. A stem-and-
leaf display of the 27 observations follows:

  5 9
  6 3 3 5 8 8
  7 0 0 2 3 4 6 7 7 8 8 9 Stem: ones digit
  8 1 2 7 Leaf: tenths digit
  9 0 7 7
10 7
11 3 6 7

Because n 5 27 is odd, the median x~ 5 7.7 is included in each half of the data:

Lower half: 5.9 6.3 6.3 6.5 6.8 6.8 7.0 7.0 7.2 7.3  7.4 7.6 7.7 7.7

Upper half: 7.7 7.8 7.8 7.9 8.1 8.2 8.7 9.0 9.7 9.7 10.7 11.3 11.6 11.8

lower quartile 5
7.0 1 7.0

2
5 7.0    upper quartile 5

8.7 1 9.0
2

5 8.85

IQR 5 8.85 2 7.0 5 1.85

Notice that if the largest observation, 11.8, were increased by any amount, the up-
per quartile and therefore the IQR would not be affected, whereas such an increase 
would change the sample variance and standard deviation. Similarly, a decrease in 
several of the smallest observations has no impact on the quartiles or the IQR.

The following output is from the summary and IQR commands from the R 
software. The former command requests that the values of various summary quanti-
ties be calculated: 

> summary(flexural)

Min. 1st Qu. Median Mean 3rd Qu. Max.
5.900 7.000 7.700 8.141 8.850 11.800

> IQR(flexural)

[1] 1.85 

Minitab’s reported value for the quartile Q3 is 9.000, a bit different from what R returns. 

Example 2.10
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The quartiles of a normal distribution are easily expressed in terms of � and �. First, 
consider a variable z having the standard normal distribution. Symmetry of the stan-
dard normal curve about 0 implies that �~ 5 0. Looking for .2500 inside Appendix 
Table I, we obtain the following information:

area to the left of  2.67:  .2514
area to the left of  2.68:  .2483

Since .25 is roughly halfway between these two tabled areas, we take 2.675 as the 
lower quartile. By symmetry, .675 is the upper quartile.

It is then easily verified that if x has a normal distribution with mean value � and 
standard deviation �,

upper quartile 5 � 1 .675�    lower quartile 5 � 2 .675�

Example 2.12

Now consider a continuous variable x whose distribution is described by a density 
function f (x). Recall that the median �~  results from solving the equation

#
�~

2
 f (x) dx 5 .5

(so that half the area under the density curve lies to the left of �~ ). The lower quartile q1 
and upper quartile qu are solutions to

#
q1

2
 f (x) dx 5 .25    #

  qu

f (x) dx 5 .25

The exponential distribution with parameter � has density function �e2�x for x . 0.
For any positive number c,

 #
c

2
 f (x) dx 5 #

c

0
 �e2�x dx 5 1 2 e2�c

#
 c

�e2�x dx 5 e2�c

Equating either of these quantities to .5 and solving for c gives c 5 �
~   5 2ln(.5)y� 5

.693y�. Equating each of these two quantities to .25 gives

q1 5 2ln(.75)y� 5 .288y�    qu 5 2ln(.25)y� 5 1.386y�

Suppose, for example, that times (min) between successive arrivals at a shipping ter-
minal are exponentially distributed with � 5 .1. Then q1 5 2.88 min, �~ 5 6.93  min, 
and qu 5 13.86 min. The upper quartile is much farther from the median than is the 
lower quartile because the distribution has a substantial positive skew (the mean value 
of x is 1y� 5 10, much larger than the median).

Example 2.11
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For our purposes, it is not necessary to discuss quartiles for a discrete distribution.

Boxplots
A boxplot is a visual display of data based on the following five-number summary:

smallest xi    lower quartile    median    upper quartile    largest xi

To create a boxplot, first draw a horizontal measurement scale. Then place a rectangle 
above this axis; the left edge of the rectangle is at the lower quartile, and the right edge is 
at the upper quartile (so box width 5 IQR). Place a vertical line segment or some other 
symbol inside the rectangle at the location of the median; the position of the median 
symbol relative to the two edges conveys information about skewness in the middle 50% 
of the data. Finally, draw “whiskers” out from either end of the rectangle to the smallest 
and largest observations. A boxplot with a vertical orientation can also be drawn by mak-
ing obvious modifications in the construction process.

That is, for any normal distribution, the quartiles are .675 standard deviation to ei-
ther side of the mean. The interquartile range is � 1 .675� 2 (� 2 .675�) 5 1.35�.
A familiar example is IQ scores in the general population, where �  5  100, � 5 15, 
q1 5 89.875 90, and qu 110. Roughly 25% of all people have scores below  
90 and roughly 25% have scores exceeding 110.

The relation IQR 5 1.35� suggests that if the sample IQR is very different from 
1.35s, it is not plausible that the underlying distribution is normal. In Example 2.10, 
1.35s 2.2, which is not much greater than the IQR of 1.85. A graphical technique 
for assessing the plausibility of a normal population or process distribution is pre-
sented in the next section.

Returning to the article on lightweight aggregates referenced in Example 2.1, the 
researchers also reported specific gravity measurements for all 14 LWA specimens:

1.10 1.29 1.38 1.39 1.40 1.45 1.46

1.48 1.49 1.50 1.51 1.51 1.56 1.62

The five-number summary is as follows:

Smallest xi 5 1.10  lower quartile 5 1.39  x~ 5 1.47  upper quartile 5 1.51
Largest xi 5 1.62

Figure 2.9 shows the resulting boxplot.
The right edge of the box is closer to the median than is the left edge, indicating 

a substantial skew in the middle half of the data. The box width (IQR) is also reason-
ably large relative to the range of the data (distance between the tips of the whiskers).

Example 2.13
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A boxplot is certainly more compact than a stem-and-leaf display or histogram, but 
it is sometimes inferior to these latter two descriptive techniques because a boxplot can 
mask important characteristics of the data, such as the presence of clusters. The main 
attraction of boxplots is that they give a quick visual comparison. A comparative or side-
by-side boxplot is a very effective way of revealing similarities and differences between 
two or more data sets consisting of observations on the same variable.

The article “Compression of Single-Wall Corrugated Shipping Containers Using 
Fixed and Floating Test Platens” (J. of Testing and Evaluation, 1992: 318–320) de-
scribes an experiment in which several different types of boxes were compared with 
respect to compression strength. Consider the following observations on four dif-
ferent types of boxes (summary quantities for this data are in good agreement with 
values given in the cited article):

Type of box Compression strength (lb)

1 655.5 788.3 734.3 721.4 679.1 699.4
2 789.2 772.5 786.9 686.1 732.1 774.8
3 737.1 639.0 696.3 671.7 717.2 727.1
4 535.1 628.7 542.4 559.0 586.9 520.0

Figure 2.10 is a comparative boxplot of this data produced by the Minitab statistical 
package. (Recall that Minitab uses definitions of the quartiles that differ somewhat 
from ours.) The most striking feature of the comparative boxplot is that strength 
values for the fourth type of box appear to be considerably smaller than those for the 
three other types; this suggests that the population mean strength for type 4 boxes is 
less than the mean strengths for the other three types. The differences between box 
types seem pretty clear-cut because within-sample variation is small relative to the 

Example 2.14

Figure 2.9 A boxplot of the LWA data generated by the R software
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separation between sample means and medians. When this is not the case, an infer-
ential method called single-factor analysis of variance, discussed in Chapter 9, is used 
to investigate differences among three or more populations or treatments.

Figure 2.10  A Minitab comparative boxplot of 
the compressive strength data
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Boxplots That Show Outliers
A boxplot can be embellished to indicate explicitly the presence of outliers.

Any  observation farther than 1.5 IQR from the closest quartile is an outlier. An 
outlier is extreme if it is more than 3 IQR from the nearest quartile, and it is mild 
otherwise.

definitionS

Many inferential procedures are based on the assumption that the sample came from 
a normal distribution. Even a single extreme outlier in the sample warns the investiga-
tor that such procedures should not be used, and the presence of several mild outliers 
conveys the same message.

Let’s now modify our previous construction of a boxplot by drawing a whisker out 
from each end of the box to the smallest and largest observations that are not outliers. Each 
mild outlier is represented by a closed circle and each extreme outlier by an open circle. 
Some statistical computer packages do not distinguish between mild and extreme outliers.

The National Health and Nutrition Examination Survey (NHANES), a massive 
annual program conducted by the National Center for Health Statistics, is a series 
of cross-sectional nationally representative surveys that include demographic, 
socioeconomic, dietary, and health-related questions. The information from the 

Example 2.15
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Percentiles
Let p denote a number between 0 and 1. Then the (100p)th percentile, hp—also called 
the pth quantile—separates the smallest 100p% of the data or distribution from the 
remaining values. For example, 90% of all values lie below the 90th percentile, �.9 (the 
.9th quantile), and only 10% of all values exceed the 90th percentile. The median is  
the 50th percentile, and the lower and upper quartiles are the 25th and 75th percentiles, 
respectively. For a continuous distribution, �p is the solution to the equation

#
�p

2
 f  (x) dx 5 p

That is, p is the area under the density curve to the left of �p. Figure 2.12 illustrates the 
definition.

surveys is used to assess the health and nutritional status of adults and children in  
the United States.

One variable measured is the high-density lipoprotein (HDL) cholesterol level 
(mg/dl) of each survey participant. The following 30 HDL observations were ob-
tained from the 2009–2010 NHANES data set:

11 32 33 41 45 46 47 48 48 49
49 50 52 55 57 57 59 61 63 63
66 67 71 71 71 72 73 76 111 144

Relevant summary quantities are

x~ 5 57 lower quartile 5 48 upper quartile 5 71
IQR 5 23 1.5 IQR 5 34.5 3 IQR 5 69

Thus, any observation smaller than 48 2 34.5 5 13.5 or larger than 71 1 34.5 5 
105.5 is an outlier. There is one outlier at the lower end of the sample and two at the 
upper end. Because 71 1 69 5 140, the largest observation of 144 is an extreme out-
lier; the other outlier is mild. The whiskers extend out to 32 and 76, the most extreme 
observations that are not outliers. The resulting boxplot is in Figure 2.11.

Figure 2.11 A boxplot of the HDL cholesterol data showing mild and 
extreme outliers
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Shaded area = 

( )

Figure 2.12 The (100 )th percentile of a continuous 
distribution

Percentiles for discrete distributions will not be needed in this book. In general, 
percentiles for sample data require interpolation between successive sample values. In 
Section 2.4, we use percentiles that correspond to the ordered sample observations. For 
example, if n 5 10, we will regard the smallest sample observation as the fifth sample 
percentile, the second smallest observation as the 15th sample percentile, and so on.

Appendix Table I gives cumulative z curve areas for the standard normal distribution. 
To find the 90th percentile, we look for cumulative area .9000 inside the table. The 
entry closest to .9000 is .8997 in the 1.2 row and .08 column, so �.9 1.28. By sym-
metry, the 10th z percentile (.1th quantile) is �.1 21.28. It then follows that for the 
normal distribution with mean value � and standard deviation �,

�.9 � 1 1.28�      �.1 � 2 1.28�

Once a particular z percentile is determined, the corresponding percentile for any 
normal distribution is easily calculated.

Example 2.16

	33.	 Reconsider the accompanying data on postsurgical 
range of motion introduced in Exercise 18 of this 
chapter:

		  154	 142	 137	 133	 122	 126	 135
		  135    108    120    127    134    122

	 a.	 What are the values of the quartiles? What is the 
value of the IQR?

	 b.	 Construct a boxplot based on the five-number 
summary and comment on its features.

	 c.	 How large or small does an observation have to 
be to qualify as an outlier? As an extreme out-
lier?

	 d.	 By how much could the largest observation be 
decreased without affecting the IQR?

Section 2.3 Exercises 
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	34.	 Here is a description from the R software of the 
strength data given in Exercise 4 from Chapter 1.

Min. 1st Qu. Median

122.2 133.0 135.4

Mean 3rd Qu. Max.

135.4 138.2 147.7

	 a.	 Comment on any interesting features.
	 b.	 Construct a boxplot of the data and comment on 

what you see.

	35.	 The diameter length of contact windows used in in-
tegrated circuits is normally distributed. About 5% 
of all lengths exceed  3.75 �m, and about 1% of all 
lengths exceed 3.85 �m. What are the mean value 
and standard deviation of the length distribution?

	36.	 The following data on distilled alcohol content (%) 
for a sample of 35 port wines was extracted from 
the article “A Method for the Estimation of Alcohol 
in Fortified Wines Using Hydrometer Baumé and 
Refractometer Brix” (Amer. J. Enol. Vitic., 2006: 
486–490). Each value is an average of two duplicate 
measurements.

16.35 18.85 16.20 17.75 19.58
17.73 22.75 23.78 23.25 19.08
19.62 19.20 20.05 17.85 19.17
19.48 20.00 19.97 17.48 17.15
19.07 19.90 18.68 18.82 19.03
19.45 19.37 19.20 18.00 19.60
19.33 21.22 19.50 15.30 22.25

	 a.	 Determine the value of the IQR.
	 b.	 Are there any outliers in the sample? Any ex-

treme outliers?
	 c.	 Construct a boxplot and comment on its features.
	 d.	 By how much could the largest observation be 

decreased without affecting the value of the IQR?

	37.	 Grip is applied to produce normal surface forces 
that compress the object being gripped. Examples 
include two people shaking hands and a nurse 
squeezing a patient’s forearm to stop bleeding. The 
article “Investigation of Grip Force, Normal Force, 
Contact Area, Hand Size, and Handle Size for Cy-
lindrical Handles” (Human Factors, 2008: 734–744) 
included the following data on grip strength (N) for 
a sample of 42 individuals:

  16   18   18   26   33   41   54

  56   66   68   87   91   95   98

106 109 111 118 127 127 135

145 147 149 151 168 172 183

189 190 200 210 220 229 230

233 238 244 259 294 329 403

		  Construct a boxplot that shows outliers and com-
ment on its features.

	38.	 A sample of 20 glass bottles of a particular type 
was selected, and the internal pressure strength of 
each bottle was determined. Consider the follow-
ing partial sample information:

		  median 5  202.2
		  lower quartile 5  196.0
		  upper quartile 5  216.8
		  three smallest observations:  125.8  188.1  193.7
		  three largest observations:      221.3  230.5  250.2

	 a.	 Are there any outliers in the sample? Any ex-
treme outliers?

	 b.	 Construct a boxplot that shows outliers, and 
comment on any interesting features.

	39.	 A company utilizes two different machines to manu-
facture parts of a certain type. During a single shift, a 
sample of n 5 20 parts produced by each machine is 
obtained, and the value of a particular critical dimen-
sion for each part is determined. The accompanying 
comparative boxplot is constructed from the resulting 
data. Compare and contrast the two samples.

85
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	40.	 Recall from Exercise 2 the data on the concen-
tration (EU/mg) in settled dust for one sample of 
urban homes and another of farm homes:
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U: 6.0 5.0 11.0 33.0 4.0 5.0
80.0 18.0 35.0 17.0 23.0

F: 4.0 14.0 11.0 9.0 9.0 8.0
4.0 20.0 5.0 8.9 21.0 9.2
3.0 2.0 0.3

	 a.	 Determine the medians, quartiles, and IQRs 
for the two samples.

	 b.	 Are there any outliers in either sample? Any 
extreme outliers?

	 c.	 Construct a comparative boxplot and use it as 
a basis for comparing and contrasting the two 
samples.

	41.	 The authors of the article cited in Exercise 2 also 
provided endotoxin concentrations in dust from 
vacuum-cleaner dust bags:

U: 34.0 49.0 13.0 33.0 24.0 24.0 35.0 104.0
34.0 40.0 38.0 1.0

F: 2.0 64.0 6.0 17.0 35.0 11.0 17.0 13.0
5.0 27.0 23.0 28.0 10.0 13.0 0.2

		  Construct a comparative boxplot (which ap-
peared in the cited paper), and compare and 
contrast the two samples.

	42.	 The comparative boxplot (see below) of gasoline 
vapor coefficients for vehicles in Detroit appeared 
in the article “Receptor Modeling Approach to 
VOC Emission Inventory Validation” (J. of Envir. 

Engr., 1995: 483–490). Discuss any interesting 
features.

	43.	 Exercise 46 from Section 1.5 suggested a Weibull 
distribution with � 5 5 and � 5 125 as a model 
for fracture strength of silicon nitride braze 
joints.

	 a.	 What are the quartiles of this distribution, and 
what is the value of the IQR?

	 b.	 Suppose that the value of � is changed to 
12.5. Determine the values of the quartiles 
and the value of the IQR. Note: In essence, 
this amounts to dividing each observation in 
the population distribution by 10, because � 
is a “scale” parameter and changing its value 
stretches or compresses the x scale without 
changing the shape of the distribution.

	44.	 Reconsider the lognormal distribution with � 5 
9.164 and � 5.385 proposed in Exercise 44 from 
Section 1.5 as a model for the distribution of non-
point source load of total dissolved solids (in kg/
day/km).

	 a.	 What are the values of the quartiles?
	 b.	 What is the value of the 95th percentile of the 

concentration distribution?
	 c.	 If � were 10.164 rather than 9.164, would the 

values of the two quartiles simply increase by 
an identical amount?
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90	 chapter 2   Numerical Summary Measures

2.4	 Quantile Plots 

An investigator frequently wishes to know whether it is plausible that a numerical sample 
x1, x2, . . . , xn was selected from a particular type of population distribution (e.g., a normal 
distribution). For one thing, many inferential procedures are based on the assumption 
that the underlying distribution is of a specified type. The use of such procedures is in-
appropriate if the actual distribution differs greatly from the assumed type. Additionally, 
understanding the underlying distribution can sometimes give insight into the physical 
mechanisms involved in generating the data. An effective way to check a distributional 
assumption is to construct a quantile plot (sometimes called a probability plot). The es-
sence of such a plot is that if the plot is based on the correct distribution, the points in the 
plot will fall close to a straight line. If the actual distribution is quite different from the 
one used to construct the plot, the points should depart substantially from a linear pattern.

Sample Quantiles
The details involved in constructing quantile plots differ a bit from source to source. The 
basis for our construction is a comparison between quantiles of the sample data and the 
corresponding quantiles of the distribution under consideration. Recall that for any num-
ber p between 0 and 1, the pth quantile �p is such that area p lies to the left of �p under the 
density curve. For example, Appendix Table I shows that the .9th quantile (90th percen-
tile) for the standard normal distribution is approximately 1.28, the .1th quantile is roughly 
21.28, the .8th quantile is about .84, and of course the .5th quantile (the median) is 0.

Roughly speaking, sample quantiles are defined in the same way that quantiles of a 
population or process distribution are defined. The .5th sample quantile should separate 
the smallest 50% of the sample from the largest 50%, the .9th sample quantile should be 
such that 90% of the sample lies below that value and only 10% above, and so on. Our 
interest here is only in the value of p corresponding to each of the sample observations 
when ordered from largest to smallest. Recall that when n is odd, the sample median 
or .5th quantile is the middle value in the ordered list; for example, the sixth smallest 
value when n 5 11. This amounts to regarding the middle observations as being half 
in the lower half of the data and half in the upper half. Similarly, suppose that n 5 10.  
Then if we call the third smallest value the .25th quantile, we are regarding that value 
as being half in the lower group (consisting of the two smallest observations) and half in 
the upper group (comprising the seven largest observations). This leads to the following 
general definition of sample quantiles:

Let x(1) denote the smallest sample observation, x(2) the second smallest sample 
observation, . . . , and x(n) the largest sample observation. We take x(1) to be the 
(.5yn)th sample quantile, x(2) to be the (1.5yn)th sample quantile, . . . , and finally 
x(n) to be the [(n 2 .5)yn]th sample quantile. That is, for i 5 1, . . . , n, x(i) is the  
[(i 2 .5)/n]th sample quantile. 

definition

Thus when n 5 20, x(1) is the .025th quantile, x(2) is the .075th quantile, x(3) is the .125th 
quantile, . . . , and x(20) is the .975th quantile (97.5th percentile).
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A Normal Quantile Plot
Suppose now that for i 5 1,  .  .  .  , n, the quantities (i 2 .5)yn are calculated and the cor-
responding quantiles are determined for a specified population or process distribution 
whose plausibility is being investigated. If the sample were actually selected from the 
specified distribution, the sample quantiles should be reasonably close to the corre-
sponding distributional quantiles. That is, for i 5 1,  .  .  .  , n, there should be reasonable 
agreement between x(i) and the [(i 2 . 5)yn]th quantile for the specified distribution. 
After determining the appropriate quantiles for the distribution being investigated, form 
the n pairs as follows:

aa .5
n
b th quantile, x(1)b , aa 1.5

n
b th quantile, x(2)b , . . . , aan 2 .5

n
b th quantile, x(n)b

In other words, pair the smallest quantile with the smallest observation, the second 
smallest quantile with the second smallest observation, and so on. Each such pair can 
be plotted as a point on a two-dimensional coordinate system. If the first number in each 
pair is close to the second number, the points in the plot will fall close to a 45° line [one 
with slope 1 passing through the point (0, 0)].

For example, this program can be carried out to decide whether a normal distribution 
with � 5 100 and � 5 15 is plausible. First the appropriate z quantiles are determined; 
then the desired normal quantiles are expressed in the form � 1 (corresponding z quan-
tile)�. However, an investigator is typically not interested in knowing whether a particular 
normal distribution is plausible but instead whether some normal distribution is plausible. 
It is clearly inefficient to construct a separate normal quantile plot for each of a large 
number of different choices of � and �. Fortunately, this is not necessary because there 
is a linear relationship between z quantiles and those for any other normal distribution:

quantile for normal (�, �) distribution 5 � 1 (corresponding z quantile)�

A  normal quantile plot is a plot of the (z quantile, observation) pairs. The lin-
ear relation between normal (�, �) quantiles and z quantiles implies that if the 
sample has come from a normal distribution with particular values of � and �, the 
points in the plot should fall close to a straight line with slope � and vertical in-
tercept �. Thus a plot for which the points fall close to some straight line suggests 
that the assumption of a normal population or process distribution is plausible.

definition

Note that if a straight line is fit to the points in the plot, the intercept and slope give esti-
mates of � and �, respectively, though these will typically differ from the usual estimates 
x and s.

There has been recent increased use of augered cast-in-place (ACIP) and drilled dis-
placement (DD) piles in the foundations of buildings and transportation structures. In 
the article “Design Methodology for Axially Loaded Auger Cast-in-Place and Drilled 

Example 2.17
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92	 chapter 2   Numerical Summary Measures

The judgment as to whether a plot does or does not show a substantial linear pattern is 
somewhat subjective. Particularly when n is small, normality should not be ruled out unless 
the departure from linearity is very clear-cut. Figure 2.14 displays several plots that suggest a 
nonnormal population or process distribution. In Section 8.4, we show how a quantitative as-
sessment of the extent to which points in a two-dimensional plot fall close to a straight line can 
be used as the basis of an inferential procedure for deciding whether normality is plausible.

Displacement Piles” (J. Geotech. Geoenviron. Engr., 2012: 1431–1441) researchers 
propose a design methodology to enhance the efficiency of these piles. The authors re-
ported the following length-diameter ratio measurements based on 17 static-pile load 
tests on ACIP and DD piles from various construction sites. The values of p for which 
z percentiles are needed are (1  2  .5)y17 5 .029, (2  2  .5)y17 5 .088, . . . , and .971. 

x(i): 30.86 37.68 39.04 42.78 42.89 42.89 45.05 47.08 47.08
z percentile: 21.89 21.35 21.05 20.82 20.63 20.46 20.30 20.15 0.00

x(i): 48.79 48.79 52.56 52.56 54.8 55.17 56.31 59.94
z percentile: 0.15 0.30 0.46 0.63 0.82 1.05 1.35 1.89

Figure 2.13 shows the corresponding normal quantile plot as generated by the 
qqnorm function in the R software. The pattern in the plot is quite straight, indicat-
ing it is plausible that the population distribution of length-diameter ratio is normal.

2 1 0
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Normal quantile plot for length-diameter ratio
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Figure 2.13  Normal quantile plot from R for the length-diameter 
ratio data
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(a) (b) (c)

Figure 2.14  Quantile plots that are inconsistent with an underlying normal  
distribution

Minitab will automatically obtain the z percentiles in response to an “NSCORE” 
command, but it uses something a bit different from (i 2 .5)yn as a basis for this calcula-
tion. Minitab also has a normal plot command in its graphics menu; the resulting plot 
has x on the horizontal axis and a nonlinear vertical axis constructed so that normal data 
should plot close to a straight line.

Plots for Other Distributions
It is easy to assess the plausibility of a lognormal population or process distribution, be-
cause to say that x is lognormally distributed is to say that ln(x) has a normal distribution. 
Thus one simply calculates ln(x(1)), . . . , ln(x(n)) and uses these quantities in place of  
x(1), . . . , x(n) in a normal quantile plot.

For a Weibull distribution,

p 5 area to the left of �p 5 1 2 e2(�py�)�

This implies that

ln(1 2 p) 5 2a
�p

�
b

�

Multiplying by 21 and taking logs again gives

ln[2ln(1 2 p)] 5 �[ln(�p) 2 ln(�)] 5 � ln(�p) 1 � where � 5 2� ln(�)

Thus there is a linear relation between the logarithm of Weibull quantiles and 
ln[2ln(1 2 p)]. This suggests that we calculate ln(x(1)), . . . , ln(x(n)) and then plot the 
(ln[2 ln(1 2 p)], ln(x)) pairs. If the plot is reasonably straight, it is plausible that the 
sample has come from some Weibull distribution.

For many years it has been well established that the Weibull distribution is useful 
in modeling the strength of fibers used in composite materials such as carbon 
graphite, Kevlar, and glass. With the advent of nanotechnology where materials can 
be developed at miniscule levels, scientists have questioned whether the Weibull 

Example 2.18
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94	 chapter 2   Numerical Summary Measures

distribution is applicable to model material strength even at the nanoscale. In the 
article “Stochastic Strength of Nanotubes: An Appraisal of Available Data” (Com-
posites Sci. and Tech., 2005: 2380–2384) researchers reported the tensile strengths 
of three different types of nanotubes and assessed whether the Weibull distribution 
would serve as a reasonable model for each type.

The following represent the tensile strengths (in GPa) for 26 multiwall carbon 
nanotubes produced by chemical vapor deposition; their average diameter is 
roughly 97 nm. Note that the values of pi 5 (i 2 .5)y26 are also given:

x(i): 17.4 22.3 23.7 30.0 44.2 49.3 52.7 54.8 62.1 66.2

pi : 0.019 0.058 0.096 0.135 0.173 0.212 0.250 0.288 0.327 0.365

x(i): 84.9 90.1 90.3 91.1 99.5 101.6 108.5 109.5 119.1 127.0

pi : 0.404 0.442 0.481 0.519 0.558 0.596 0.635 0.673 0.712 0.750

x(i): 132.9 140.8 141.0 175.0 231.8 259.7

pi : 0.788 0.827 0.865 0.904 0.942 0.981

Figure 2.15 is a plot of the (ln[2ln(1 2 p)], ln(x)) pairs. Although there is some wig-
gling especially in the lower part of the plot, the overall pattern is reasonably straight 
and so the assumption of an underlying Weibull distribution for tensile strength for 
this type of nanotube appears to be acceptable. The article also showed that the 
Weibull distribution was a good fit in modeling tensile strength for the two other 
nanotube types discussed.
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Figure 2.15 A Weibull plot of the nanotube tensile strength data
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Most statistical computer packages make it easy to do the arithmetic necessary to 
obtain the quantities to be plotted. In addition, the Minitab graphics menu has a Weibull 
plot option, making it unnecessary for the user to do any arithmetic before obtaining the 
plot. The x values are plotted directly on the horizontal axis, and the vertical axis is 
constructed using a nonlinear scale so that data from a Weibull distribution should plot 
close to a straight line.

Plots based on other distributions can also be constructed. Consult chapter refer-
ences and software packages for more information.

Section 2.4 Exercises 

	45.	 The accompanying normal quantile plot was con-
structed from a sample of 30 readings on tension for 
mesh screens behind the surface of video display 
tubes used in computer monitors. Does it appear 
plausible that the tension distribution is normal?

–2 –1
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0 1 2
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300
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Normal quantile

Tension

	46.	 The following are modulus of elasticity observa-
tions for cylinders given in the article cited in  
Example 1.2:

		  37.0  37.5  38.1  40.0  40.2  40.8  41.0
		  42.0  43.1  43.9  44.1  44.6  45.0  46.1
		  47.0  62.0  64.3  68.8  70.1  74.5

		  Use the quantiles for a sample of size 20 given in 
this section to construct a normal quantile plot, and 
comment on the plausibility of a normal population 
distribution.

	47.	 A sample of 15 female collegiate golfers was 
selected, and the clubhead velocity (km/ hr) of each 
golfer while swinging a driver was determined,  
resulting in the following data (“Hip Rotational 
Velocities During the Full Golf Swing,” J. of Sports 
Science and Medicine, 2009: 296–299):

69.0 69.7 72.7 80.3 81.0
85.0 86.0 86.3 86.7 87.7
89.3 90.7 91.0 92.5 93.0

		  The corresponding z percentiles are

21.83 21.28 20.97 20.73 20.52
20.34 20.17 0.0 0.17 0.34

0.52 0.73 0.97 1.28 1.83

Construct a normal quantile plot and a dotplot. Is it 
plausible that the population distribution is normal?

	48.	 The accompanying observations are precipitation 
values during March over a 30-year period in 
Minneapolis–St. Paul.

.77 1.20 3.00 1.62 2.81 2.48

1.74 .47 3.09 1.31 1.87   .96

.81 1.43 1.51 .32 1.18 1.89

1.20 3.37 2.10 .59 1.35   .90

1.95 2.20   .52 .81 4.75 2.05

	 a.	 Construct and interpret a normal quantile plot 
for this data set.

	 b.	 Calculate the square root of each value and then 
construct a quantile plot based on this transformed 
data. Does it seem plausible that the square root of 
precipitation is normally distributed?

	 c.	 Repeat part (b) after transforming by cube roots.

	49.	 The article “A Probabilistic Model of Fracture in 
Concrete and Size Effects on Fracture Toughness” 
(Magazine of Concrete Res., 1996: 311–320) gives 
arguments for why fracture toughness in concrete 
specimens should have a Weibull distribution and 
presents several histograms of data that appear well 
fit by superimposed Weibull curves. Consider the Un
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following sample of size n 5 18 observations on 
toughness for high-strength concrete (consistent 
with one of the histograms); values of pi 5 (i 2 .5)y18  
are also given:

Obs: .47 .58 .65 .69 .72 .74
pi: .0278 .0833 .1389 .1944 .2500 .3056

Obs: .77 .79 .80 .81 .82 .84
pi: .3611 .4167 .4722 .5278 .5833 .6389

Obs: .86 .89 .91 .95 1.01 1.04
pi: .6944 .7500 .8056 .8611 .9167 .9722

		  Construct a Weibull quantile plot and comment.

	50.	 In the article “Weibull Parameter of Oil-Immersed 
Transformer to Evaluate Insulation Reliability on 
Temporary Overvoltage” (IEEE Trans. on Dielectrics 
and Elec. Insul., 2010: 1863–1868), researchers in-
vestigated the reliability of oil-immersed transformers 
under various conditions. In one experiment, the 
researchers measured the breakdown time of the 

transformer oil gap under various oil flow velocities 
and exposure to temporary overvoltage. Consider 
the following breakdown time data (in s) from their 
experiment where an oil flow at 16 cm/s and an over-
voltage of 81kV were applied.

7.2 10.0 18.0 25.0 36.0 38.0
46.0 63.0 71.0 76.0 92.0 95.0

104.0 152.0 198.0 226.0 235.0 247.0
361.0 392.0

		  Construct a Weibull plot and comment on the 
plausibility of breakdown time having a Weibull 
distribution.

	51.	 The accompanying figures show (a) a normal quan-
tile plot of the observations on cell interdivision time 
(IDT) given in Exercise 16 of Section 1.2 and (b) a 
normal quantile plot of the logarithms of the IDTs. 
What do these plots suggest about the distribution of 
cell interdivision time?
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Supplementary Exercises 

	54.	 Anxiety disorders and symptoms can often be ef-
fectively treated with benzodiazepine medications. 
It is known that animals exposed to stress exhibit 
a decrease in benzodiazepine receptor binding in 
the frontal cortex. The paper “Decreased Benzo-
diazepine Receptor Binding in Prefrontal Cortex 
in Combat-Related Posttraumatic Stress Disorder” 
(American J. of Psychiatry, 2000: 1120–1126) de-
scribed the first study of benzodiazepine receptor 
binding in individuals suffering from PTSD. The 
accompanying data on a receptor binding measure 
(adjusted distribution volume) was read from a 
graph in the paper:

PTSD: 10 20 25 28 31 35 37 38 38

39 39 42 46

Healthy: 23 39 40 41 43 47 51 58

63 66 67 69 72

	 a.	 Calculate and interpret the values of the mean, 
median, and standard deviation for each of the 
two samples.

	 b.	 Calculate a trimmed mean for each sample by 
deleting the smallest and largest observations. 
What is the trimming percentage? What effect 
does trimming have?

	 c.	 Determine the value of the interquartile range 
for each sample. Does either sample contain any 
outliers? Any extreme outliers?

	 d.	 Construct a comparative boxplot, and comment 
on interesting features.

	 e.	 Would you recommend estimating the differ-
ence between the true average binding mea-
sure of PTSD individuals and the true average 
measure for healthy individuals using a method 
based on assuming that each sample was select-
ed from a normal population distribution? Ex-
plain your reasoning.

	55.	 A sample of 77 individuals working at a particular 
office was selected, and the noise level (dBA) expe-
rienced by each one was determined, yielding the 
following data (“Acceptable Noise Levels for Con-
struction Site Offices,” Building Serv. Engr. Res. 
and Tech., 2009: 87–94).

55.3 55.3 55.3 55.9 55.9 55.9
55.9 56.1 56.1 56.1 56.1 56.1
56.1 56.8 56.8 57.0 57.0 57.0
57.8 57.8 57.8 57.9 57.9 57.9
58.8 58.8 58.8 59.8 59.8 59.8
62.2 62.2 63.8 63.8 63.8 63.9
63.9 63.9 64.7 64.7 64.7 65.1
65.1 65.1 65.3 65.3 65.3 65.3
67.4 67.4 67.4 67.4 68.7 68.7
68.7 68.7 69.0 70.4 70.4 71.2
71.2 71.2 73.0 73.0 73.1 73.1
74.6 74.6 74.6 74.6 79.3 79.3
79.3 79.3 83.0 83.0 83.0

	52.	 A plot to assess the plausibility of an exponential 
population distribution can be based on quantiles 
of the exponential distribution having � 5 1 (i.e., 
the exponential distribution with density function 
f (x) 5 e2x for x . 0). This is because �, like � for 
a normal distribution, is a scale parameter. Con-
sider the following failure time observations (1000s 
of hours) resulting from accelerated life testing of 
16 integrated circuit chips of a certain type:

82.8 11.6 359.5 502.5 307.8 179.7
242.0 26.5 244.8 304.3 379.1
212.6 229.9 558.9 366.7 204.6

		  Construct a quantile plot and comment on the 
plausibility of failure time having an exponential 
distribution.

	53.	 The article “Families of Distributions for Hourly 
Median Power and Instantaneous Power of Received 
Radio Signals” (J. of Research for the National 
Bureau of Standards, 1963: 753–762) suggests the 
lognormal distribution for x 5 hourly median pow-
er (decibels) of received radio signals transmitted 
between two cities. Consider the following sample 
of hourly median power readings:

		  2.7  5.4  9.7  22.8  30.5  55.7  66.2  97.3 
186.5  240.0

	 a.	 Is it plausible that these observations were sam-
pled from a normal distribution?

	 b.	 Is it plausible that these observations were sam-
pled from a lognormal distribution?
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98	 chapter 2   Numerical Summary Measures

		  Use various techniques discussed in this chapter to 
organize, summarize, and describe the data.

	56.	 Three different C2F6 flow rates (SCCM) were con-
sidered in an experiment to investigate the effect 
of flow rate on the uniformity (%) of the etch on a 
silicon wafer used in the manufacture of integrated 
circuits, resulting in the following data:

		  125:  2.6  2.7  3.0  3.2  3.8  4.6
		  160:  3.6  4.2  4.2  4.6  4.9  5.0
		  200:  2.9  3.4  3.5  4.1  4.6  5.1

		  Compare and contrast the uniformity observations 
resulting from these three different flow rates.

	57.	 Consider a sample x1, . . . , xn, and let xk and sk
2 de-

note the sample mean and variance, respectively, of 
the first k observations.

	 a.	 Show that

ks2
k11 5 (k 2 1)sk

2 1
k

k 1 1
 (xk11 2 xk)

2

	 b.	 Suppose that a sample of 15 strands of drap-
ery yarn has resulted in a sample mean thread 
elongation of 12.58 mm and a sample standard 
deviation of .512 mm. A 16th strand results in 
an elongation value of 11.8. What are the val-
ues of the sample mean and sample standard 
deviation for all 16 elongation observations?

	58.	 In 1997 a woman sued a computer keyboard man-
ufacturer, charging that her repetitive stress inju-
ries were caused by the keyboard (Genessy v. Dig-
ital Equipment Corp.). The jury awarded about  
$3.5 million for pain and suffering, but the court 
then set aside that award as being unreason-
able compensation. In making this determina-
tion, the court identified a “normalative” group 
of 27 similar cases and specified a reasonable 
award as one within 2 standard deviations of 
the mean of the awards in the 27 cases. The 27 
awards were (in $1000s) 37, 60, 75, 115, 135, 
140, 149, 150, 238, 290, 340, 410, 600, 750, 
750, 750, 1050, 1100, 1139, 1150, 1200, 1200, 
1250, 1576, 1700, 1825, and 2000, from which 
^xi 5 20,179, ^xi

2 5 24,657,511. What is the maxi
mum possible amount that could be awarded un-
der the 2 standard deviation rule?

	59.	 A deficiency of the trace element selenium in the 
diet can negatively affect growth, immunity, muscle 
and neuromuscular function, and fertility. The 
introduction of selenium supplements to dairy cows 
is justified when pastures have low selenium levels. 
Authors of the paper “Effects of Short-Term Supple-
mentation with Selenised Yeast on Milk Production 
and Composition of Lactating Cows” (Australian J. 
of Dairy Tech., 2004: 199–203) supplied the follow-
ing data on milk selenium concentration (mg/L) 
for a sample of cows given a selenium supplement 
and a control sample given no supplement, both 
initially and after a nine-day period.

Obs Init Se Init Cont Final Se Final Cont
1 11.4 9.1 138.3 9.3
2 9.6 8.7 104.0 8.8
3 10.1 9.7 96.4 8.8
4 8.5 10.8 89.0 10.1
5 10.3 10.9 88.0 9.6
6 10.6 10.6 103.8 8.6
7 11.8 10.1 147.3 10.4
8 9.8 12.3 97.1 12.4
9 10.9 8.8 172.6 9.3

10 10.3 10.4 146.3 9.5
11 10.2 10.9 99.0 8.4
12 11.4 10.4 122.3 8.7
13 9.2 11.6 103.0 12.5
14 10.6 10.9 117.8 9.1
15 10.8 121.5
16 8.2 93.0

	 a.	 Do the initial Se concentrations for the supple-
ment and control samples appear to be similar? 
Use various techniques from this chapter to 
summarize the data and answer the question 
posed.

	 b.	 Again use methods from this chapter to summa-
rize the data and then describe how the final Se 
concentration values in the treatment group dif-
fer from those in the control group.

	60.	 An inequality developed by the Russian mathema-
tician Chebyshev gives information about the per-
centage of values in any sample or distribution that 
fall within a specified number of standard deviations 
of the mean. Let k denote any number satisfying 
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k $ 1. Then at least 100(1 2 1yk2)% of the values 
are within k standard deviations of the mean.

	 a.	 What does Chebyshev’s inequality say about 
the percentage of values that are within 2 stan-
dard deviations of the mean? Within 3 standard 
deviations of the mean? Within 5 standard de-
viations? Within 10 standard deviations?

	 b.	 What does Chebyshev’s inequality say about the 
percentage of values that are more than 2 stan-
dard deviations from the mean? More than 3 
standard deviations from the mean?

	 c.	 Suppose the distribution of slot width on a 
forging has a mean value of 1.000 in. and a 
standard deviation of .0025 in. What percent-
age of such forgings have a slot width that is be-
tween .995 in. and 1.005 in.? If specifications 
are 1.000 6 .005 in., what percentage of slot 
widths will conform to specifications?

	 d.	 Refer to part (c). What percentage of such forg-
ings will have a slot width that is outside the 
interval from .995 in. to 1.005 in. (i.e., either 
less than .995 or greater than 1.005)? What 
can be said about the percentage of widths 
that exceed 1.005 in.?

	61.	 Reconsider Chebyshev’s inequality as stated in the 
previous exercise.

	 a.	 Compare what the inequality says about the per-
centage within 1, 2, or 3 standard deviations of 
the mean value to the corresponding percent-
ages given by the empirical rule.

	 b.	 An exponential distribution with parameter � 
has both mean value and standard deviation 
equal to 1y�. If component lifetime is exponen-
tially distributed with a mean value of 100  hr, 
what percentage of these components have life-
times within 1 standard deviation of the mean 
lifetime? Within 2 standard deviations? Within 
3 standard deviations? Compare these to the per-
centages given by Chebyshev’s inequality.

	 c.	 Why do you think the percentages from Che-
byshev’s inequality so badly understate the 
actual percentages in the situations of parts 
(a) and (b)?

	62.	 Consider a sample x1, . . . , xn with mean x and stan-
dard deviation s, and let zi 5 (xi 2 x)ys. What are the 
mean and standard deviation of the zi’s?

	63.	 The accompanying observations are carbon mon-
oxide levels (ppm) in air samples obtained from a 
certain region:

9.3 10.7 8.5 9.6 12.2 16.6 9.2 10.5
7.9 13.2 11.0 8.8 13.7 12.1 9.8

	 a.	 Calculate a trimmed mean by trimming the 
smallest and largest observations, and give the 
corresponding trimming percentage. Do the 
same with the two smallest and two largest values 
trimmed.

	 b.	 Using the results of part (a), how would you cal-
culate a trimmed mean with a 10% trimming  
percentage?

	 c.	 Suppose there had been 16 sample observations. 
How would you go about calculating a 10% 
trimmed mean?

	64.	 Specimens of three different types of rope wire were 
selected, and the fatigue limit (MPa) was deter-
mined for each specimen, resulting in the accom-
panying data:

Type 1: 350 350 350 358 370 370 370 371
371 372 372 384 391 391 392

Type 2: 350 354 359 363 365 368 369 371
373 374 376 380 383 388 392

Type 3: 350 361 362 364 364 365 366 371
377 377 377 379 380 380 392

	 a.	 Construct a comparative boxplot, and comment 
on similarities and differences.

	 b.	 Construct a comparative dotplot (a dotplot for 
each sample with a common scale). Comment 
on similarities and differences.

	 c.	 Does the comparative boxplot of part (a) give an 
informative assessment of similarities and differ-
ences? Explain your reasoning.

	65.	 The three measures of center introduced in this 
chapter are the mean, median, and trimmed 
mean. Two additional measures of center that are 
occasionally used are the midrange, which is the 
average of the smallest and largest observations, 
and the midhinge, which is the average of the two 
quartiles. Which of these five measures of center 
are resistant to the effects of outliers and which 
are not? Explain your reasoning.
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	66.	 The capacitance (nf) of multilayer ceramic capaci-
tors supplied by a certain vendor is normally distrib-
uted with mean value 98 and standard deviation 2. 
Specifications for these capacitors are 100 6 5 nf.

	 a.	 What proportion of these capacitors will con-
form to specification?

	 b.	 Suppose that these capacitors are shipped in 
batches of size 20. Let x denote the number of ca-
pacitors in a batch that conform to specification. 
Provided that capacitances of successive capaci-
tors are independent of one another, what kind of 
distribution does x have? In the long run, in what 
proportion of batches will at least 19 of the 20 ca-
pacitors conform to specifications? Hint: Think of 
a capacitor that conforms to specification as a “suc-
cess,” so x is the number of successes in the batch.

	67.	 Aortic stenosis refers to a narrowing of the aortic 
valve in the heart. The paper “Correlation Analysis 
of Stenotic Aortic Valve Flow Patterns Using Phase 
Contrast MRI” (Annals of Biomed. Engr., 2005: 
878–887) gave the following data on aortic root 
diameter (cm) and gender for a sample of patients 
having various degrees of aortic stenosis:

M: 3.7 3.4 3.7 4.0 3.9
3.8 3.4 3.6 3.1 4.0
3.4 3.8 3.5

F: 3.8 2.6 3.2 3.0 4.3
3.5 3.1 3.1 3.2 3.0

	 a.	 Compare and contrast the diameter observations 
for the two genders.

	 b.	 Calculate a 10% trimmed mean for each of the 
two samples and compare to other measures of 
center (for the male sample, the interpolation 
method mentioned in Section 2.1 must be used).

	68.	 A study carried out to investigate the distribution of 
total braking time (reaction time plus accelerator-
to-brake movement time, in ms) during real driving 
conditions at 60 km/hr gave the following summary 
information on the distribution of times (“A Field 
Study on Braking Responses during Driving,” Ergo-
nomics, 1995: 1903–1910):

		  mean 5 535  median 5 500  mode 5 500
		  sd 5 96  minimum 5 220  maximum 5 925
		  5th percentile 5 400  10th percentile 5 430
		  90th percentile 5 640  95th percentile 5 720

		  What can you conclude about the shape of a histo-
gram of this data? Explain your reasoning.

	69.	 Let x denote the maximum physical stress that a 
unit of a certain product encounters during its life-
time. Suppose that x is normally distributed with 
99th percentile 5 5.33 and 10th percentile 5 1.72 
(suggested in the article “A Formulation of Product 
Reliability through Environmental Stress Testing 
and Screening,” J. of the Institute of Envir. Sciences, 
1994: 50–56; the unit for x was unspecified). What 
proportion of these units have maximum stress val-
ues exceeding 5? What proportion have maximum 
stress values less than 2?

	70.	 The indoor thermal climate is an important 
characteristic affecting the health and pro-
ductivity of workers in buildings. The paper 
“Adaptive Comfort Temperature Model of Air-
Conditioned Buildings in Hong Kong” (Building 
and Environment, 2003: 837–852) reported data 
on a number of building characteristics mea-
sured during the summer and also during the 
winter. Consider the accompanying values of 
relative humidity.

		  Summer:	 57.18  58.11  56.53  58.61  57.40  62.64
			   61.72  57.26  53.43  53.71  58.64  45.12
			   47.52  54.47  55.88  51.08  53.69  54.37
			   54.36  61.01  52.66  56.20  48.40  46.99
			   50.63  52.40  52.20  55.95  53.77

		  Winter: 	 52.20  41.83  55.63  54.18  54.56  56.20
			   58.09  56.70  57.57  58.70  56.15  59.77
			   61.58  61.81  62.48  63.31  55.57  62.25
			   57.40  55.07  62.52  52.80  57.20  59.27
			   54.98  58.13

		  Use methods from this and the previous chapter 
to describe, summarize, compare, and contrast the 
summer and winter relative humidity data.
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101

Introduction

Now that we have acquired some facility for working with univariate data and 
distributions, it’s time to expand our horizons.  A multivariate data set consists of 
observations made simultaneously on two or more variables. One important special 
case is that of bivariate data, in which observations on only two variables,  and ,  are 
available. In Section 3.1, we introduce the scatterplot,  a picture for gaining insight 
into the nature of any relationship between  and .

Next, we discuss the correlation coefficient, which is a measure of how 
strongly two variables are related. In many investigations, one primary objective 
is to predict  from the value of —for example, to predict yield from a chemical 
reaction at a particular reaction temperature. If the scatterplot shows a linear 
pattern, the natural strategy is to fit a straight line to the data and use it as the 
basis for predictions, as we do in Section 3.3. If a scatterplot shows curvature, 
fitting a nonlinear function, such as a quadratic or an exponential function, is 
appropriate; we show how this can be done in Section 3.4. Multiple regression 
functions, in which  is related to two or more predictor variables, are the 
subject of Section 3.5. Finally, Section 3.6 introduces bivariate and multivariate 
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distributions for population or process variables. In Chapter 11, we return to 
this type of data and describe how formal conclusions about relationships can 
be drawn by using methods from statistical inference.

3.1	 ScatterPlots �

A multivariate data set consists of measurements or observations on each of two or 
more  variables. One important special case, bivariate data, involves only two vari­
ables, x and y. For example, x might be the distance from a particular highway and y, 
the lead content of the soil at that distance. When both x and y are numerical variables, 
each observation consists of a pair of numbers, such as (14, 5.2) or (27.63, 18.9). The 
first number in a pair is the value of x and the second number is the value of y.

An unorganized list of such pairs yields little information about the distribution of 
either the x values or the y values separately, and even less information about whether 
the two variables are related to one another. In Chapter 1, we saw how pictures could 
help make sense of univariate data. The most important picture based on bivariate 
numerical data is a scatterplot. Each observation (pair of numbers) is represented by 
a point on a rectangular coordinate system, as shown in Figure 3.1(a). The horizontal 
axis is identified with values of x and is scaled so that any x value can be easily located. 
Similarly, the vertical or y axis is marked for easy location of y values. The point cor­
responding to any particular (x, y) pair is placed where a vertical line from the value on 
the x axis intersects a horizontal line from the value on the y axis. Figure 3.1(b) shows 
the point representing the observation (4.5, 15); it is above 4.5 on the horizontal axis 
and to the right of 15 on the vertical axis.

Figure 3.1 C onstructing a scatterplot: (a) rectangular coordinate system for a scatterplot 
of bivariate data; (b) the point corresponding to the observation (4.5, 15)
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Visual and musculoskeletal problems associated with the use of visual display 
terminals (VDTs) have become rather common in recent years. Some research­
ers have focused on vertical gaze direction as a source of eye strain and irritation. 
This direction is known to be closely related to ocular surface area (OSA), so a 
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method of measuring OSA is needed. The accompanying representative data on 
y 5 OSA (cm2) and x 5 width of the palprebal fissure (i.e., the horizontal width 
of the eye opening, in cm) is from the article “Analysis of Ocular Surface Area for 
Comfortable VDT Workstation Layout” (Ergonomics, 1996: 877–884). The order in 
which observations were obtained was not given, so for convenience they are listed 
in increasing order of x values.

Obs: 1 2 3 4 5 6 7 8 9 10
x: .40 .42 .48 .51 .57 .60 .70 .75 .75 .78
y: 1.02 1.21 .88 .98 1.52 1.83 1.50 1.80 1.74 1.63

Obs:  11 12 13 14 15 16 17 18 19 20
x: .84 .95 .99 1.03 1.12 1.15 1.20 1.25 1.25 1.28
y: 2.00 2.80 2.48 2.47 3.05 3.18 3.76 3.68 3.82 3.21

Obs: 21 22 23 24 25 26 27 28 29 30
x: 1.30 1.34 1.37 1.40 1.43 1.46 1.49 1.55 1.58 1.60
y: 4.27 3.12 3.99 3.75 4.10 4.18 3.77 4.34 4.21 4.92

Thus (x1, y1) 5 (.40, 1.02), (x5, y5) 5 (.57, 1.52), and so on. A Minitab scatterplot is 
shown in Figure 3.2; we used an option that produced a dotplot of both the x values 
and y values individually along the right and top margins of the plot, which makes it 
easier to visualize the distributions of the individual variables (histograms or boxplots 
are alternative options).
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0
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Figure 3.2  Scatterplot from Minitab for the data from Example 3.1, along with  
dotplots of  and  values
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Arsenic is found in many ground waters and some surface waters. Recent re­
search on health effects has prompted the Environmental Protection Agency 
to reduce allowable arsenic levels in drinking water; as a result, many water 
systems are no longer compliant with standards. This has spurred interest in 
the development of methods to remove arsenic. The accompanying data on 
x 5 pH and y 5 arsenic removed (%) by a particular process was read from a 
scatterplot in the article “Optimizing Arsenic Removal During Iron Removal: 
Theoretical and Practical Considerations” (J. of Water Supply Res. and Tech., 
2005: 545–560):

x: 7.01 7.11 7.12 7.24 7.94 7.94 8.04 8.05 8.07

y: 60 67 66 52 50 45 52 48 40

x: 8.90 8.94 8.95 8.97 8.98 9.85 9.86 9.86 9.87
y: 23 20 40 31 276 9 22 13 7

Figure 3.3 shows two Minitab scatterplots of this data. In Figure 3.3(a), the software 
selected the scale for both axes. We obtained Figure 3.3(b) by specifying scaling for 
the axes so that they would intersect at roughly the point (0, 0). The second plot 
is much more crowded than the first one; such crowding can make it difficult to 
ascertain the general nature of any relationship. For example, curvature can be over­
looked in a crowded plot.

Example 3.2

Here are some things to notice about the data and plot:

    � Several observations have identical x values yet different y values (for 
example, x8 5 x9 5 .75, but y8 5 1.80 and y9 5 1.74). Thus the value of y is 
not determined solely by x but also by various other factors.

      There is a strong tendency for y to increase as x increases. That is, larger 
values of OSA tend to be associated with larger values of fissure width—a 
positive relationship between the variables.

      It appears that the value of y could be predicted from x by finding a line that 
is reasonably close to the points in the plot (the authors of the cited article 
superimposed such a line on their plot). In other words, there is evidence of a 
substantial (though not perfect) linear relationship between the two variables.

The horizontal and vertical axes in the scatterplot of Figure 3.2 intersect at the 
point (0, 0). In many data sets, the values of x or y or the values of both variables differ 
considerably from zero relative to the range(s) of the values. For example, a study of 
how air conditioner efficiency is related to maximum daily outdoor temperature might 
involve observations for temperatures ranging from 80°F to 100°F. When this is the 
case, a more informative plot would show the appropriately labeled axes intersecting at 
some point other than (0, 0).
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Large values of arsenic removal tend to be associated with low pH, a negative or in­
verse relationship. Furthermore, the two variables appear to be at least approximately 
linearly related, although the points in the plot would spread out somewhat about 
any superimposed straight line (such a line appeared in the plot in the cited article).

Figure 3.3  Minitab scatterplots of the data in Example 3.2
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	 2.	 The article “Case Adaptation Method of Case-Based 
Reasoning for Construction Cost Estimation in Ko­
rea” (J. Constr. Engr. Mgmt., 2012: 43–52) provided 
data on military barrack projects undertaken by the 
Korean Ministry of National Defense from 2004 to 
2008. Two variables of interest were the floor area of 
a barrack and the corresponding cost (in $US). The 
corresponding data is given here:

Floor Area: Cost:
  382 418,930
  571 609,386
  618 755,489
  726 660,527
  802 864,438
  959 1,003,495
1066 895,947
1306 1,461,549
1873 1,899,494
2460 2,331,632
3134 2,833,203
4989 4,750,468
6918 5,331,390

Section 3.1 Exercises

	 1.	 In the article “Analysis of the Thermal Properties of 
Air-Conditioning-Type Building Materials” (Solar 
Energy, 2012: 2967–2974), researchers investigated 
thermal properties of building materials that are 
used across a variety of climate regions. One prop­
erty of interest was solar absorptance, a measure of 
an object’s ability to absorb solar radiation. To reduce 
building energy consumption, it would be desirable 
for the building material to have higher solar absorp­
tance in colder climates and lower solar absorptance 
in warmer climates. The following data (read from a 
graph) shows solar absorptance levels under different 
temperature conditions for a building material called 
G17S, which changes color depending on tempera­
ture, thereby allowing for variable absorptance.

Temperature (in C): 2 9 20 28 39

Solar Absorptance: .81 .78 .69 .65 .48

		  Create a scatterplot for this data. How would you 
characterize the relationship between these two vari­
ables? Is the desired inverse relationship between tem­
perature and absorptance evident for this material?Un
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106	 chapter 3   Bivariate and Multivariate Data and Distributions

	 a.	 Construct stem-and-leaf displays of both floor area 
and cost. Comment on any interesting features.

	 b.	 Do the values of cost appear to be perfectly 
linearly related to the floor area values?

	 c.	 Construct a scatterplot of the data. Does 
it appear that cost could be accurately 
predicted by the value of floor area? Explain 
your reasoning.

	 3.	 In the article referenced in Exercise 2, the relation­
ship between the number of beds in a barrack and 
the cost of the building was also investigated.

Number of Beds Cost
  22 418,930
  40 609,386
  40 755,489
  38 660,527
  24 864,438
  54 1,003,495
  59 895,947
  98 1,461,549
106 1,899,494
142 2,331,632
190 2,833,203
  68 4,750,468
392 5,331,390

		  Construct a scatterplot based on this data. What ap­
pears to be the nature of the relationship between 
these two variables? Do you notice anything pecu­
liar in the graph?

	 4.	 Open water oil spills, such as the Deepwater 
Horizon spill of 2010, can wreak terrible conse­
quences on the environment and be expensive to 
clean up. Many physical and biological methods 
have been developed to recover oil from water 
surfaces. In the article “Capacity of Straw for Re­
peated Binding of Crude Oil from Salt Water and 
Its Effect on Biodegradation” (J. Hazard. Toxic 
Radioact. Waste, 2012: 75–78), researchers exam­
ined how wheat straw could be used to extract 
crude oil from a water surface. An experiment 
was conducted in which crude oil (0 to 16.9 g) 
was added to 100 mL of saltwater in separate 
Petri dishes. Wheat straw (2 g) was then added to 
each dish and all dishes were shaken at 70 rpm 
overnight. The following data read from a graph 

is based on the amount of oil added (in g) and 
the corresponding amount of oil recovered (in g) 
from wheat straw.

Oil Added Oil Recovered
1.0 0.610
1.5 0.840
2.1 1.512
2.8 1.792
3.6 2.952
4.5 2.880
5.5 4.400
6.6 5.346
7.8 6.396
9.1 7.189

10.5 8.085
12.0 9.840
13.6 11.696
15.2 13.224
16.9 14.365

	 a.	 For each observation, determine the percentage 
of oil recovery by wheat straw. Is this percentage 
relatively constant across all observations? Was 
the percentage higher at certain added oil levels 
over others?

	 b.	 Do the values of the recovered oil appear to be 
perfectly linearly related to the added oil values? 
Why or why not?

	 c.	 Construct a scatterplot of the data. Does it 
appear that recovered oil could be accurately 
predicted by the value of added oil? Explain 
your reasoning.

	 5.	 The article “Objective Measurement of the 
Stretch-ability of Mozzarella Cheese” (J. of Texture 
Studies, 1992: 185–194) reported on an experi­
ment to investigate how the behavior of mozzarella 
cheese varied with temperature. Consider the ac­
companying data on x 5 temperature and y 5 
elongation (%) at failure of the cheese. Note: The 
researchers were Italian and used real mozzarella 
cheese, not the poor cousin widely available in the 
United States.

x: 59 63 68 72 74 78 83
y: 118 182 247 208 197 135 132

	 a.	 Construct a scatterplot in which the axes 
intersect at (0, 0). Mark 0, 20, 40, 60, 80, and 
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100 on the horizontal axis and 0, 50, 100, 150, 
200, and 250 on the vertical axis.

	 b.	 Construct a scatterplot in which the axes 
intersect at (55, 100), as was done in the cited 
article. Does this plot seem preferable to the one 
in part (a)? Explain your reasoning.

	 c.	 What do the plots of parts (a) and (b) suggest 
about the nature of the relationship between the 
two variables?

	 6.	 Calcium phosphate cement is gaining increasing 
attention for use in bone repair applications. The 
article “Short-Fibre Reinforcement of Calcium 
Phosphate Bone Cement” (J. of Engr. in Med., 
2007: 203–211) reported on a study in which 
polypropylene fibers were used in an attempt to 
improve fracture behavior. The following data on 
x 5 fiber weight (%) and y 5 compressive strength 
(MPa) was provided by the article’s authors.

x: 0.00 0.00 0.00 0.00 0.00 1.25
y: 9.94 11.67 11.00 13.44 9.20 9.92

x: 1.25 1.25 1.25 2.50 2.50 2.50
y: 9.79 10.99 11.32 12.29 8.69 9.91

x: 2.50 2.50 5.00 5.00 5.00 5.00
y: 10.45 10.25 7.89 7.61 8.07 9.04

x: 7.50 7.50 7.50 7.50 10.00 10.00
y: 6.63 6.43 7.03 7.63 7.35 6.94

x: 10.00 10.00
y: 7.02 7.67

		  Construct a scatterplot of the data. How would you 
describe the nature of the relationship between the 
two variables?

	 7.	 In surface water hydrology, a common problem 
is the estimation of long-term annual yield from 
ungauged watersheds. In the article “General­
ized Mediterranean Annual Water Yield Model: 
Grunsky’s Equation and Long-Term Average 
Temperature” (J. Hydrol. Engr., 2011: 874–879), 
researchers propose a generalized water yield 
model for watersheds. One important watershed-
specific component of the model is �, a coeffi­
cient characterizing the watershed’s annual water 
yield response to annual precipitation. The article 
provided the following data from 16 California 

coastal watersheds for � (in �m21) and average 
long-term annual temperature (T in °C):

T: 8.51 8.69 9.01 9.50 10.00 10.60 11.00 11.60
�: .40 .42 .40 .43 .40 .38 .40 .30

T: 11.60 12.60 12.60 13.60 14.20 15.30 17.90 17.90
�: .41 .27 .28 .19 .22 .19 .13 .09

		  Construct a scatterplot of the data. How would you 
describe the nature of the relationship between the 
two variables?

	 8.	 Researchers considered how the construction 
cost of highway resurfacing projects in Kentucky 
were affected by that state’s asphalt price index 
(API) and diesel price index (DPI) among other 
factors. From about the mid-1990s to 2010, Ken­
tucky’s annual average API and DPI were found 
to be closely related to the annual average crude 
oil price. Based on this, the authors suggested 
that crude oil price could be used to predict API 
and DPI (“Prices of Highway Resurfacing Proj­
ects in Economic Downturn: Lessons Learned 
and Strategies Forward,” J. Mgmnt. Engr., 2012, 
391–397).

			   Consider the following monthly API and state­
wide crude oil index (COI) values for California 
during 2010−11, obtained from the California 
Department of Transportation.

COI API COI API
385.1 415.1 474.3 477.1
408.0 377.0 483.4 488.9
400.8 402.8 504.9 586.3
426.0 427.3 616.1 634.7
437.0 436.9 656.6 667.5
384.0 360.8 606.0 592.2
393.3 372.3 579.0 565.9
402.9 417.2 588.4 570.5
404.2 376.5 536.8 589.7
399.5 424.1 585.9 559.8
438.9 432.2 592.5 637.0
447.8 450.6 650.0 625.0

		  Construct a scatterplot of the data. How would you 
describe the nature of the relationship between the 
two variables? Does it seem to be the case that COI 
and API are closely related?
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108	 chapter 3   Bivariate and Multivariate Data and Distributions

3.2	 Correlation �

A scatterplot of bivariate numerical data gives a visual impression of how strongly x values 
and y values are related. However, to make precise statements and draw reliable conclu­
sions from data, we must go beyond pictures. A correlation coefficient (from co-relation) 
is a quantitative assessment of the strength of relationship between x and y values in a set of 
(x, y) pairs. In this section, we introduce the most frequently used correlation coefficient.

Figure 3.4 displays scatterplots that indicate different types of relationships between 
the x and y values. The plot in Figure 3.4(a) suggests a very strong positive relationship 
between x and y, that is, a strong tendency for y to increase as x increases. Figure 3.4(b) 
gives evidence of a substantial negative relationship: As x increases, there is a tendency 
for y to decrease (as would probably be the case for x 5 amount of time per week that 
a high school student spends watching television and y 5 amount of time the student 
spends studying). The plot of Figure 3.4(c) indicates no strong relationship between 
the two variables; there is no tendency for y to either increase or decrease as x increases. 
Finally, as illustrated in Figure 3.4(d), a scatterplot can show a strong positive (or 
negative) relationship through a pattern that is curved rather than linear in appearance.

Figure 3.4  Scatterplots illustrating various types of relationships: (a) positive relationship, linear pattern;  
(b) negative relationship, linear pattern; (c) no relationship or pattern; (d) positive relationship, curved pattern

(a) (b) (d)(c)

Pearson’s Sample Correlation Coefficient
Let (x1, y1), (x2, y2), . . . , (xn, yn) denote a sample of (x, y) pairs. Consider subtracting x 
from each x value to obtain the x deviations, x1 2 x, . . . , xn 2 x, and also subtracting 
y from each y value to give y1 2 y, . . . , yn 2 y. Then multiply each x deviation by the 
corresponding y deviation to obtain products of deviations of the form (x 2 x)(y 2 y).

The scatterplot in Figure 3.5(a) indicates a substantial positive relationship. A ver­
tical line through x and a horizontal line through y divide the plot into four regions. 
In region I, both x and y exceed their mean values, so x 2 x and y 2 y are both posi­
tive numbers. It then follows that (x 2 x)(y 2 y) is positive. The product of deviations 
is also positive for any point in region III, because both deviations are negative and 
multiplying two negative numbers gives a positive number. In each of the other two 
regions, one deviation is positive and the other is negative, so (x 2 x)(y 2 y) is negative. 
Because almost all points lie in regions I and III, almost all products of deviations are 
positive. Thus the sum of products, ^(xi 2 x)(yi 2 y), will be a large positive number. Un
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Figure 3.5  Subdividing a scatterplot according to the signs of  2  and 2 :  
(a) a positive relation; (b) a negative relation; (c) no strong relation
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Similar reasoning for the data displayed in Figure 3.5(b), which exhibits a strong 
negative relationship, implies that ^(xi 2 x)(yi 2 y) will be a large negative number. 
When there is no evidence of a strong relationship, as in Figure 3.5(c), positive and 
negative products of deviations tend to counteract one another, giving a value of the 
sum that is close to zero. In summary, ^(xi 2 x)(yi 2 y) seems to be a reasonable mea­
sure of the degree of association between the x and y values; it will be a large positive 
number, a large negative number, or a number close to zero according to whether there 
is a strong positive, a strong negative, or no strong relationship.Un
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The catch basin in a storm-sewer system is the interface between surface runoff and 
the sewer. A catch-basin insert is a device for retrofitting catch basins to improve 
their pollutant removal properties. The article “An Evaluation of the Urban Storm­
water Pollutant Removal Efficiency of Catch Basin Inserts” (Water Envir. Res., 2005: 
500–510) reported on tests of various inserts under controlled conditions for which 
inflow is close to what can be expected in the field. Consider the following data, read 
from a graph in the article, for one particular type of insert on x 5 amount filtered 
(1000s of liters) and y 5 % total suspended solids removed.

x: 23 45 68 91 114 136 159 182 205 228
y: 53.3 26.9 54.8 33.8 29.9 8.2 17.2 12.2 3.2 11.1

Example 3.3

Pearson’s sample correlation r is given by

r 5
^(xi 2 x)(yi 2 y )3 ^(xi 2 x)23^(yi 2 y)2

 5
Sxy2Sxx2Syy

Computing formulas for the three summation quantities are

Sxx 5 ^xi
2 2

1^xi22

n

Syy 5 ^yi
2 2

1^yi22

n

Sxy 5 ^xiyi 2
1^xi2 1^yi2

n

DEFINITION

Unfortunately, our proposal has a serious deficiency: Its value depends on the 
choice of unit of measurement for both x and y. Suppose, for example, that x is height. 
Each x value expressed in inches will be 12 times the corresponding value expressed 
in feet, and the same will then be true of x. It follows that the value of ^(xi 2 x)(yi 2 y) 
when the x unit is inches will be 12 times what it is when the unit is feet. A measure of 
the inherent strength of the relationship should give the same value whatever the units 
for the variables; otherwise our impressions may be distorted by the choice of units.

A straightforward modification of our initial proposal leads to the most popular 
measure of association, one that is free of the defect just alluded to and has other attrac­
tive properties.

Use of the computing formulas makes all the subtraction needed to obtain the devia­
tions unnecessary. Instead, the following five summary quantities are needed: ̂ xi, ^yi, 
^x2

i , ^y2
i , ^xi yi. The following example shows how a tabular format facilitates the cal­

culations (we’ll get to the issue of interpretation in a moment).
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The accompanying table contains five columns for the x, y, x2, y2, and xy values, 
respectively. The sum of each column is given at the bottom of the table.

x y x2 y2 xy
23 53.3 529 2840.89 1225.9
45 26.9 2025 723.61 1210.5
68 54.8 4624 3003.04 3726.4
91 33.8 8281 1142.44 3075.8

114 29.9 12996 894.01 3408.6
136 8.2 18496 67.24 1115.2
159 17.2 25281 295.84 2734.8
182 12.2 33124 148.84 2220.4
205 3.2 42025 10.24 656
228 11.1 51984 123.21 2530.8

1251 250.6 199,365 9249.36 21,904.4

^xi ^yi ^x2
i ^y2

i
^xi yi

Then

Sxx 5 199,365 2 
(1251)2

10
 5 42,865,

Syy 5 9249.36 2 
(250.6)2

10
 5 2969.3

Sxy 5 21,904.4 2 
(1251)(250.6)

10
 5 29446

from which

r 5
29446242,86522969.3

5 2.837

Properties and Interpretation of r
1.	 The value of r does not depend on the unit of measurement for either variable. If, 

for example, x is height, the factor of 12 that appears in the numerator when changing 
from feet to inches will also appear in the denominator, so the two will cancel and leave 
r unchanged. The same value of r results from height expressed in inches, meters, or 
miles. If y is temperature, expressing values in °F, °C, or °K will give the same value of r. 
The correlation coefficient measures the inherent strength of relationship between two 
numerical variables.

2.	 The value of r does not depend on which of the two variables is labeled x. Thus 
if we had let x 5 % removed and y 5 amount filtered in Example 3.3, the same value, 
r 5 2.837, would have resulted.

3.	 The value of r is between 21 and 11. A value near the upper limit, 11, is indicative 
of a substantial positive relationship, whereas an r close to the lower limit, 21, suggests a 
prominent negative relationship. Figure 3.6 shows a useful informal way to describe the 

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



112	 chapter 3   Bivariate and Multivariate Data and Distributions

strength of relationship based on r. It may seem surprising that a value of r as extreme as 2.5 
or .5 should be in the “weak” category; an explanation for this is given later in the chapter.

Figure 3.6  Describing the strength of relationship

1 .8 .5 0 .5 .8 1

Weak ModerateModerate StrongStrong

4.	 r 5 1 only when all the points in a scatterplot of the data lie exactly on a straight 
line that slopes upward. Similarly, r 5 21 only when all the points lie exactly on a 
downward-sloping line. Only when there is a perfect linear relationship between x and 
y in the sample will r take on one of its two possible extreme values.

5.	 The value of r is a measure of the extent to which x and y are linearly related—that 
is, the extent to which the points in the scatterplot fall close to a straight line. A value 
of r close to zero does not rule out any strong relationship between x and y; there could 
still be a strong relationship but one that is not linear.

As far back as Leonardo da Vinci, height and wingspan (measured from fingertip to 
fingertip between outstretched hands) were known to be closely related. For the fol­
lowing actual measurements (in inches) from 16 students in a statistics class notice 
how close the two values are.

Height: 59.0 72.0 67.0 63.5 68.0 66.0 71.0 69.0
Wingspan: 57.5 70.5 69.0 63.5 71.0 67.0 71.5 68.5

Height: 73.0 69.0 69.5 72.0 73.5 73.0 74.0 70.0
Wingspan: 74.0 69.5 71.0 71.5 75.0 75.5 74.5 73.0

The scatterplot in Figure 3.7 shows an approximately linear shape, and the point 
cloud is roughly elliptical. The correlation is computed to be 0.955. If the measure­
ments were converted to centimeters, the correlation would remain unchanged.

Example 3.4
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Figure 3.7 Wingspan plotted against height
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The accompanying data on y 5 glucose concentration (g/L) and x 5 fermentation 
time (days) for a particular brand of malt liquor was read from a scatterplot appearing 
in the article “Improving Fermentation Productivity with Reverse Osmosis” (Food 
Tech., 1984: 92–96):

x: 1 2 3 4 5 6 7 8
y: 74 54 52 51 52 53 58 71

The scatterplot of Figure 3.9 (page 114) suggests a strong relationship, but not a lin­
ear one, between x and y. With

^xi 5 36 ^x2
i 5 204 ^yi 5 465 ^y2

i 5 27,615  ^xi yi 5 2094

Example 3.6

The article “Quantitative Estimation of Clay Mineralogy in Fine-Grained Soils” 
(J. Geotech. Geoenviron. Engr., 2011: 997–1008) reported on various chemical prop­
erties of natural and artificial soils. Consider the accompanying data on the cation 
exchange capacity (CEC, in meq@100 g) and specific surface area (SSA, in m2@g) of 
20 natural soils. A scatterplot appears in Figure 3.8.

CEC: 66 121 134 101 77 89 63 57 117 118
SSA: 175 324 460 288 205 210 295 161 314 265
CEC: 76 125 75 71 133 104 76 96 58 109
SSA: 236 355 240 133 431 306 132 269 158 303

Minitab gave the following output in response to a request for r:

correlation of SSA and CEC = 0.853

There is evidence of a moderate to strong positive relationship.

Example 3.5

Figure 3.8  Scatterplot of the data from Example 3.5
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114	 chapter 3   Bivariate and Multivariate Data and Distributions

The Population Correlation Coefficient
The sample correlation coefficient r measures how strongly the x and y values in a 
sample of pairs are related to one another. There is an analogous measure of how 
strongly x and y are related in the entire population of pairs from which the sample 
(x1, y1), . . . , (xn, yn) was obtained. It is called the population correlation coefficient 
and is denoted by � (notice again the use of a Greek letter for a population character­
istic and a Roman letter for a sample characteristic). We will never have to calculate � 
from the entire population of pairs, but it is important to know that � satisfies proper­
ties paralleling those of r:

1.	   � � is a number between 21 and 11 that does not depend on the unit of measure­
ment for either x or y, or on which variable is labeled x and which is labeled y.

2.	   � � 5 11 or 21 if and only if all (x, y) pairs in the population lie exactly on a 
straight line, so � measures the extent to which there is a linear relationship in 
the population.

we have

Sxy 5 2094 2
(36)(465)

8
5 1.5000

Sxx 5 204 2
(36)2

8
5 42  Syy 5 586.875

r 5
1.5002422586.875

5 .0096 .01

This shows the importance of interpreting r as measuring the extent of any linear rela­
tionship. We should not conclude that there is no relation whatsoever just because r    0.

Figure 3.9  Scatterplot of the data from Example 3.6

60

70

2 4 6 8
50

80

Un
le

ss
 o

th
er

w
is

e 
no

te
d,

 a
ll 

co
nt

en
t o

n 
th

is
 p

ag
e 

is
 ©

 C
en

ga
ge

 L
ea

rn
in

g.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 3.2   Exercises	 115

In Chapter 11, we show how the sample characteristic r can be used to make an 
inference concerning the population characteristic �. In particular, r can be used to 
decide whether � 5 0 (no linear relationship in the population).

Correlation and Causation
A value of r close to 1 indicates that relatively large values of one variable tend to 
be associated with relatively large values of the other variable. This is far from say­
ing that a large value of one variable causes the value of the other variable to be 
large. Correlation (Pearson’s or any other) measures the extent of association, but 
association does not imply causation. It frequently happens that two variables are 
highly correlated not because one is causally related to the other but because they are 
both strongly related to a third variable. Among all elementary-school children, there 
is a strong positive relationship between the number of cavities in a child’s teeth and 
the size of his or her vocabulary. Yet no one advocates eating foods that result in more 
cavities to increase vocabulary size (or working to decrease vocabulary size to protect 
against cavities). Number of cavities and vocabulary size are both strongly related to 
age, so older children tend to have higher values of both variables than do younger 
ones. Among children of any fixed age, there would undoubtedly be little relationship 
between number of cavities and vocabulary size.

Scientific experiments can frequently make a strong case for causality by care­
fully controlling the values of all variables that might be related to the ones un­
der study. Then, if y is observed to change in a “smooth” way as the experimenter 
changes the value of x, the most plausible explanation would be a causal relationship 
between x and y. In the absence of such control and ability to manipulate values of 
one variable, we must admit the possibility that an unidentified underlying third 
variable is influencing both the variables under investigation. A high correlation in 
many uncontrolled studies carried out in different settings can marshal support for 
causality—as in the case of cigarette smoking and cancer—but proving causality is 
often a very elusive task.

	 9.	 For each of the following pairs of variables, indicate 
whether you would expect a positive correlation, 
a negative correlation, or little or no correlation. 
Explain your choice.

	 a.	 Maximum daily temperature and cooling cost
	 b.	 Interest rate and number of loan applications
	 c.	 Incomes of husbands and wives when both have 

full-time jobs
	 d.	 Vehicle speed (mph, from 20 to 100) and fuel 

efficiency (mpg)
	 e.	 Fuel efficiency and 3-year operating cost
	 f.	 Distance from a Stanford University student’s 

home town to campus and grade point average

	10.	 Head movement evaluations are important be­
cause individuals, especially those who are dis­
abled, may be able to operate communications 
aids in this manner. The article “Constancy 
of Head Turning Recorded in Healthy Young 
Humans” (J. of Biomed. Engr., 2008: 428–436) 
reported data on ranges in maximum inclination 
angles of the head in the clockwise anterior, pos­
terior, right, and left directions for 14 randomly 
selected subjects. Consider the accompanying 
data on average anterior maximum inclination 
angle (AMIA) in both the clockwise (Cl) and 
counterclockwise (Co) directions.

Section 3.2 Exercises
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116	 chapter 3   Bivariate and Multivariate Data and Distributions

Subj: 1 2 3 4 5 6 7
Cl: 57.9 35.7 54.5 56.8 51.1 70.8 77.3
Co: 44.2 52.1 60.2 52.7 47.2 65.6 71.4

Subj: 8 9 10 11 12 13 14
Cl: 51.6 54.7 63.6 59.2 59.2 55.8 38.5
Co: 48.8 53.1 66.3 59.8 47.5 64.5 34.5

	 a.	 Construct boxplots of both the clockwise and 
counterclockwise direction observations, and 
comment on any interesting features.

	 b.	 Construct a scatterplot of the data. What does it 
suggest about the general nature of the relation­
ship between Cl and Co?

	 c.	 Calculate the value of the sample correlation 
coefficient. Does it confirm your impression 
from the scatterplot?

	11.	 Torsion during external rotation and extension 
of the hip may explain why acetabular labral 
tears occur in professional athletes. The article 
“Hip Rotational Velocities During the Full 
Golf Swing” (J. of Sports Sci. and Med., 2009: 
296–299) reported on an investigation in which 
lead hip internal peak rotational velocity (x) and 
trailing hip peak external rotational velocity (y) 
were determined for a sample of 15 golfers. Data 
provided by the article’s authors was used to cal­
culate the following summary quantities:

^(xi 2 x)2 5 64,732.83,

^(yi 2 y)2 5 130,566.96,

^(xi 2 x)(yi 2 y) 5 44,185.87

		  Based on this, compute the sample correlation 
coefficient and interpret its value. How would you 
characterize this correlation—as strong, moderate, 
or weak?

	12.	 Historically, reinforced concrete structures used 
externally bonded steel plates to add strength 
and support. Recently, fiber reinforced polymer 
(FRP) plates have been used instead of steel 
plates because of their superior properties. In 
the article “Interfacial Bond Strength Character­
istics of FRP and RC Substrate” (J. of Compos. 

Constr., 2012: 35–43), investigators developed a 
method to mathematically model bond strength 
between a carbon FRP and a concrete substrate. 
For each of 15 carbon FRP–concrete samples, 
the article reported the maximum transferable 
load (kN) calculated by the model and compared 
this with the corresponding maximum transfer­
able load (kN) as measured in the laboratory. 
The data is given here:

Calc: Meas: Calc: Meas:

14.2 13.7 14.3 13.4

16.0 13.7 21.4 21.4

16.5 15.4 17.6 14.8

15.9 15.4 8.6 7.4

18.8 16.2 10.3 7.4

17.9 16.3 11.9 14.7

13.1 13.7 18.7 18.2

15.4 16.2

	 a.	 Construct a scatterplot of the data. Does it seem 
to be the case that, in general, when the mea­
sured load is low (high), the calculated load is 
also low (high)? For each sample, are the two 
variables relatively close in value?

	 b.	 Calculate the value of the sample correlation 
coefficient. Does it confirm your impression 
from the scatterplot?

	13.	 The article “Behavioural Effects of Mobile Tele­
phone Use During Simulated Driving” (Ergo-
nomics, 1995: 2536–2562) reported that for a 
sample of 20 experimental subjects, the sample 
correlation coefficient for x 5 age and y 5 time 
since the subject had acquired a driving license 
(yr) was .97. Why do you think the value of r 
is so close to 1? (The article’s authors gave an 
explanation.)

	14.	 An employee of an auction house has a list of 
25 recently sold paintings. Eight artists were 
represented in these sales. The sale price of each 
painting is on the list. Would the correlation coef­
ficient be an appropriate way to summarize the 
relationship between artist (x) and sale price (y)? 
Why or why not?
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	15.	 A sample of automobiles traversing a certain stretch 
of highway is selected. Each automobile travels at a 
roughly constant rate of speed, though speed does 
vary from auto to auto. Let x 5 speed and y 5 time 
needed to traverse this segment of highway. Would 
the sample correlation coefficient be closest to .9, 
.3, 23, or 2.9? Explain.

	16.	 Suppose that x and y are positive variables and that a 
sample of n pairs results in r 1. If the sample cor­
relation coefficient is computed for the (x, y2) pairs, 
will the resulting value also be approximately 1?  
Explain.

	17.	 Nine students currently taking introductory statis­
tics are randomly selected, and both the first mid­
term exam score (x) and the second midterm score 
(y) are determined. Three of the students have the 
class at 8 a.m., another three have it at noon, and 
the remaining three have a night class. The result­
ing (x, y) pairs are as follows:

		  8 a.m.:    (70, 60)    (72, 83)    (94, 85)
		  Noon:    (80, 72)    (60, 74)    (55, 58)
		  Night:    (45, 63)    (50, 40)    (35, 54)

	 a.	 Calculate the sample correlation coefficient for 
the nine (x, y) pairs.

	 b.	 Let x1 be the average score on the first midterm 
exam for the 8 a.m. students and y1 be the average 
score on the second midterm for these students. 
Denote the two averages for the noon students by 
x2 and y2, and for the night students by x3 and y3. 
Calculate r for these three (x, y) pairs.

	 c.	 Construct a scatterplot of the nine (x, y) pairs 
and another one of the three pairs of averages. 
Can you see why r in part (a) is smaller than r in 
part (b)? Does this suggest that a correlation co­
efficient based on averages (called an “ecologi­
cal” correlation) might be misleading? Explain.

	18.	 Suppose data is collected on two quantitative vari­
ables, x and y. Let r be the corresponding sample cor­
relation coefficient for (x, y). The x and y values are 
then transformed as follows: x= 5 a 1 bx, y= 5 c 1 dy 
where a, b, c, and d are constants. Let r= be the cor­
responding sample correlation coefficient for (x=, y=).

	 a.	 Show that x= 5 a 1 bx and y= 5 c 1 dy.
	 b.	 Show that sx= 5 bsx and sy= 5 dsy.
	 c.	 Show that r 5 r=.

3.3	 Fitting a Line to Bivariate Data �

Given two numerical variables x and y, the general objective of regression analysis is 
to use information about x to draw some type of conclusion concerning y. Often an 
investigator wants to predict the y value that would result from making a single obser­
vation at a specified x value—for example, to predict product sales y for a sales region 
in which advertising expenditure x is one million dollars. The different roles played by 
the two variables are reflected in standard terminology: y is called the dependent or 
response variable, and x is referred to as the independent, predictor, or explanatory 
variable.

A scatterplot of y versus x frequently exhibits a linear pattern. In such cases, it is 
natural to summarize the relationship between the variables by finding a line that is 
as close as possible to the points in the plot. Before doing so, let’s quickly review some 
elementary facts about lines and linear relationships.

Suppose a car dealership advertises that a particular type of vehicle can be rented 
on a one-day basis for a flat fee of $25 plus an additional $.30 per mile driven. If such a 
vehicle is rented and driven for 100 miles, the dealer’s revenue y is

y 5 25 1 (.30)(100) 5 25 1 30 5 55
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118	 chapter 3   Bivariate and Multivariate Data and Distributions

More generally, if x denotes the distance driven in miles, then

y 5 25 1 .30x

That is, x and y are linearly related.
The general form of a linear relationship between x and y is y 5 a 1 bx. A par­

ticular relation is specified by choosing values of a and b, for example, y 5 10 1 2x or 
y 5 100 2 5x.  If we choose some x values and calculate y 5 a 1 bx  for each value, the 
points in the scatterplot of the resulting (x, y) pairs fall exactly on a straight line. The value 
of b, the slope of the line, is the amount by which y increases when x increases by 1 unit. 
The vertical or y intercept a is the height of the line above the value x 5 0. The equation 
y 5 10 1 2x has slope b 5 2, so each 1-unit increase in x results in an increase of 2 in y. 
When x 5 0, y 5 10 and the height at which the line crosses the vertical axis is 10. To 
draw the line corresponding to this equation, select any two x values (e.g., x 5 5 and x 5 
10). Substitute these values into the equation to obtain the corresponding y values (y 5 20 
and y 5 30) and thus two (x, y) points on the line. Finally, connect these two points with 
a straightedge.

Fitting a Straight Line
The line that gives the most effective summary of an approximate linear relation is the 
one that in some sense is the best-fitting line, the one closest to the sample data. Con­
sider the scatterplot and line shown in Figure 3.10. Let’s focus on the vertical deviations 
from the points to the line. For example,

 deviation from (15, 47) 5 height of point2 height of line

 5 47 2 [10 1 2(15)]

 57

Figure 3.10 Vertical deviations from points to 
a line
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The most widely used criterion for assessing the goodness of fit of a line y 5 a 1 
bx to bivariate data (x1, y1), . . . , (xn, yn) is the sum of the squared deviations about 
the line:

^ [yi 2 (a 1 bxi)]
2 5 [y1 2 (a 1 bx1)]

2 1 1 [yn 2 (a 1 bxn)]
2

According to the principle of least squares, the line that gives the best fit to 
the data is the one that minimizes this sum; it is called the least squares line or 
sample regression line.

DEFINITIONS

Similarly,

deviation from (13, 28) 5 28 2 [10 1 2(13)] 5 28

A positive deviation results from a point that lies above the chosen line, and a negative 
deviation from a point that lies below this line. A particular line gives a good fit if the 
deviations from the line are small in magnitude, that is, reasonably close to zero.

We now need a way to combine the n deviations into a single measure of fit. The 
standard approach is to square the deviations (to obtain nonnegative numbers) and sum 
these squared deviations.

To find the equation of the least squares line, let g(a , b) 5 ^[yi 2 (a 1 bxi)]
2.  

Then the intercept a and slope b of the least squares line are the values of a  and 
b  that minimize g1a , b2. These minimizing values are obtained by taking the par­
tial derivative of the g function first with respect to a  and then with respect to  b, 
and equating these two partial derivatives to zero (this is analogous to solving the 
single equation f

=
(z) 5 0 to find the value of z that minimizes a function of a single 

variable). This results in the following two equations in two unknowns, called the 
normal equations:

na 1 1^xi2b 5 ^yi  1^ xi2a 1 1^x2
i 2b 5 ^xi  yi

These equations are easily solved because they are linear in the unknowns (a conse­
quence of using squared deviations in the fitting criterion).

The slope b of the least squares line is given by

5
^

 

2 A^ B A^ B /
^ 2 2 A^ B2/

5

The vertical intercept a of the least squares line is

        5 2  

The equation of the least squares line is often written as yn 5 a 1 bx, where the 
“ˆ” above y emphasizes that yn is a prediction of y that results from the substitution of 
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The cetane number is a critical property in specifying the ignition quality of a fuel 
used in a diesel engine. Determining this number for a biodiesel fuel is expensive and 
time consuming. The article “Relating the Cetane Number of Biodiesel Fuels to Their 
Fatty Acid Composition: A Critical Study” (J. of Automobile Engr., 2009: 565–583) in­
cluded the following data on x 5 iodine value (g) and y 5 cetane number for a sample 
of 14 biofuels. The iodine value is the amount of iodine necessary to saturate a sample 
of 100 g of oil.

x: 132.0 129.0 120.0 113.2 105.0 92.0 84.0
y: 46.0 48.0 51.0 52.1 54.0 52.0 59.0

x: 83.2 88.4 59.0 80.0 81.5 71.0 69.2
y: 58.7 61.6 64.0 61.4 54.6 58.8 58.0

The necessary summary quantities for hand calculation can be obtained by plac­
ing the x values in a column and the y values in another column and then creating 
columns for x2, xy, and y2 (the latter value is not needed at the moment but will be 
used shortly). Calculating the column sums gives

^xi 5 1307.5,    ^yi 5 779.2,    ^x2
i 5 128,913.93,

^xiyi 5 71,347.30,    ^y2
i 5 43,745.22  

from which

x 5
1307.5

14
5 93.392857,  y 5

779.2
14

5 55.657143

Sxx 5 128,913.93 2 (1307.5)2/14 5 6802.7693
Sxy 5 71,347.30 2 (1307.5)(779.2)/14 521424.41429

Thus

b 5
21424.41429

6802.7693
5 2.20938742

a 5 55.657143 2 (2.20938742)(93.392857) 5 75.212432

and the equation of the least squares line is yn 5 75.212 2 .2094x, exactly that re­
ported in the cited article.

Figure 3.11 generated by the statistical computer package Minitab shows 
that the least squares line is a very good summary of the relationship between the 
two variables. A prediction of the cetane number when the iodine value is 100 is 
yn 5 75.212 2 .2094(100) 5 54.27. The slope of the least squares line tells us that 
a decrease of roughly .209 in cetane number is associated with a 1-gram increase 
in iodine value.

Example 3.7

any particular x value into the equation. Notice that the numerator and denominator 
of b appeared previously in the formula for the sample correlation coefficient r.
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Figure 3.11  Scatterplot from Minitab for Example 3.7 with least squares  
line superimposed

The least squares line should not be used to make a prediction for an x value much 
beyond the range of the data, such as x 5 50 or x 5 250 in Example 3.7. The danger 
of extrapolation is that the fitted relationship (here, a line) may not be valid for such x 
values.

Regression
The term regression comes from the relationship between the least squares line and the 
sample correlation coefficient. Let sx and sy denote the sample standard deviations of the 
x and y values, respectively. Algebraic manipulation gives

b 5 ra
sy

sx
b        yn 5 y 1 ra

sy

sx
b (x 2 x)

If r 5 1 and we substitute x 5 x 1 sx (an x value 1 standard deviation above the 
mean x value), then yn 5 y 1 sy, which is 1 standard deviation above the mean y 
value. If, however, r 5 .5 and this x value is substituted, then yn 5 y 1 .5sy, which is 
only half a y standard deviation above the mean. More generally, when 21 6 r 6 1,  
for any x value, the corresponding predicted value yn will be closer in terms of stan­
dard deviations to y than is x to x; that is, yn is pulled toward (regressed toward) 
the mean y value. This regression effect was first noticed by Sir Francis Galton 
in the  late 1800s when he studied the relation between father’s height and son’s Un
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122	 chapter 3   Bivariate and Multivariate Data and Distributions

height; the predicted height of a son was always closer to the mean height than was 
his father’s height.

Assessing the Fit of the Least Squares Line
How effectively does the least squares line summarize the relationship between the 
two variables? In other words, how much of the observed variation in y can be attrib­
uted to the approximate linear relationship and the fact that x is varying? A quantita­
tive assessment is based on the vertical deviations from the least squares line. The 
height of the least squares line above x1 is y1n 5 a 1 bx1, and y1 is the height of the 
corresponding point in the scatterplot, so the vertical deviation (residual) from this 
point to the line is y1 2 (a 1 bx1). Substituting the remaining x values into the equa­
tion gives other predicted (or fitted) values yn2 5 a 1 bx2, . . . , ynn 5 a 1 bxn, and 
the other residuals y2 2  yn2, . . . , yn 2 ynn are again obtained by subtraction. A residual 
is positive if the corresponding point in the scatterplot lies above the least squares 
line and negative if the point lies below the line. It can be shown that when predicted 
values and residuals are based on the least squares line, ^(yi 2 yni) 5 0, so of course 
the average residual is zero.

Variation in y can effectively be explained by an approximate straight-line relation­
ship when the points in the scatterplot fall close to the least squares line—that is, when 
the residuals are small in magnitude. A natural measure of variation about the least 
squares line is the sum of the squared residuals (squaring before combining prevents 
negative and positive residuals from counteracting one another). A second sum of 
squares assesses the total amount of variation in observed y values.

Residual sum of squares, denoted by SSResid, is given by

SSResid 5 ^(yi 2 yni)
2 5 (y1 2  yn1)

2 1 1 (yn 2 ynn)
2

(alternatively called error sum of squares and denoted by SSE).
Total sum of squares, denoted by SSTo, is defined as

SSTo 5 ^(yi 2 y)2 5 (y1 2 y)2 1 1 (yn 2 y)2

Alternative notation for SSTo is Syy , and a computing formula is

^y2
i 2

1^yi22

n

A computing formula for residual sum of squares makes it unnecessary to calcu­
late the residuals:

SSResid 5 SSTo 2 bSxy

DEFINITIONS

Because b and Sxy have the same sign, bSxy is a positive quantity unless b 5 0, so the 
computing formula shows that SSResid 5 SSTo if b 5 0 and SSResid 6 SSTo otherwise. 
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The coefficient of determination, denoted by r2, is given by

r2 5 1 2  

SSResid
SSTo

It is the proportion of variation in the observed y values that can be attributed to 
(or explained by) a linear relationship between x and y in the sample. Multiplying 
r2 by 100 gives the percentage of y variation attributable to the approximate linear 
relationship. The closer this percentage is to 100%, the more successful is the 
relationship in explaining variation in y.

DEFINITION

To avoid any rounding effects, use as much decimal accuracy in b as possible when 
computing SSResid.

SSResid is often referred as a measure of “unexplained” variation; it is the amount 
of variation in y that cannot be attributed to the linear relationship between x and y. 
The more points in the scatterplot deviate from the least squares line, the larger the 
value of SSResid and the greater the amount of y variation that cannot be explained 
by a linear relation. Similarly, SSTo is interpreted as a measure of total variation; the 
larger the value of SSTo, the greater the amount of variability in the observed yi’s. The 
ratio SSResid/SSTo is the fraction or proportion of total variation that is unexplained 
by a straight-line relation. Subtracting this ratio from 1.0 gives the proportion of total 
variation that is explained.

The scatterplot of the iodine value and cetane number data in Figure 3.11 portends 
a reasonably high r2 value. With

Sxy 5 21424.41429 (the numerator of b)  b 5 2.20938742

^yi 5 779.2  ^yi
2 5 43,745.22

we have

 SST 5 43,745.22 2 (779.2)2/14 5 377.174
SSE 5 377.174 2 (2.20938742)(21424.41429) 5 78.920

The coefficient of determination is then

r2 5 1 2 SSEySST 5 1 2 (78.920)y(377.174) 5 .791

That is, 79.1% of the observed variation in cetane number is attributable to  
(can be explained by) the simple linear regression relationship between cetane 
number and iodine value (r2 values are even higher than this in many scientific 
contexts, but social scientists would typically be ecstatic at a value anywhere near 
this large).

Example 3.8
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The wide availability of good statistical computer packages makes it unnec­
essary to hand calculate the various quantities involved in a regression analysis. 
Figure 3.12 shows partial Minitab output for the cetane number–iodine value data 
of Examples 3.7 and 3.8; the package will also provide the predicted values and 
residuals as well as other information on request. The formats used by other pack­
ages differ slightly from that of Minitab, but the information content is very similar. 
Quantities such as the standard deviations, t-ratios, F, and P-values are discussed in 
Chapter 11.

The symbol r was used in Section 3.2 to denote Pearson’s sample correlation coef­
ficient. It is not coincidental that r2 is used to represent the coefficient of determination. 
The notation suggests how these two quantities are related:

(correlation coefficient)2 5 coefficient of determination

Thus, if r 5 .8 or r 5 2.8 then r2 5 .64, so that 64% of the observed variation in 
the dependent variable can be attributed to the linear relationship. Notice that 
because the value of r does not depend on which variable is labeled x, the same is 
true of r2. The coefficient of determination is one of the very few quantities calcu­
lated in the course of a regression analysis whose value remains the same when the 
role of dependent and independent variables are interchanged. When r 5 .5, we 
get r2 5 .25, so only 25% of the observed variation is explained by a linear relation. 
This is why values of r between 2.5 and .5 can fairly be described as evidence of a 
weak relationship.

Figure 3.12  Minitab output for the regression of 
Examples 3.7 and 3.8
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The standard deviation about the least squares line is given by

se 5 ASSResid
n 2 2

DEFINITION

Standard Deviation About the Least Squares Line
The coefficient of determination measures the extent of variation about the best-
fit line relative to overall variation in y. A high value of r2 does not by itself prom­
ise that the deviations from the line are small in an absolute sense. A typical observa­
tion could deviate from the line by quite a bit, yet these deviations might still be small 
relative to overall y variation. Recall that in Chapter 2 the sample standard deviation 
s 5 2^(x 2 x)2y(n 2 1) was used as a measure of variability in a single sample; roughly 
speaking, s is the typical amount by which a sample observation deviates from the mean. 
There is an analogous measure of variability when a line is fit by least squares.

Roughly speaking, se is the typical amount by which an observation deviates from the 
least squares line. Justification for division by n  2  2 and the use of the subscript e are 
given in Chapter 11.

The values of x 5 commuting distance and y 5 commuting time were determined 
for workers in samples from three different regions. Data is presented in Table 3.1; 
the three scatterplots are displayed in Figure 3.13.

For sample 1, a rather small proportion of variation in y can be attributed to 
an approximate linear relationship, and a typical deviation from the least squares 
line is roughly 4. The amount of variability about the line for sample 2 is the 
same as for sample 1, but the value of r2 is much higher because y variation is 
much greater overall in sample 2 than in sample 1. Sample 3 yields roughly the 
same high value of r2 as does sample 2, but the typical deviation from the line for 
sample 3 is only half that for sample 2. A complete picture of variation requires 
that both r2 and se be computed.

Example 3.9

Table 3.1  Data for three regions (Example 3.9)

1 2 3

x y x    y x y

15 42   5   16   5   8

16 35 10   32 10 16

17 45 15   44 15 22

18 42 20   45 20 23

19 49 25   63 25 31

20 46 50 115 50 60
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126	 chapter 3   Bivariate and Multivariate Data and Distributions

Consider the accompanying data (page 127) on x 5 height (in.) and y 5 average 
weight (lb) for American females aged 30–39 (taken from The World Almanac and 
Book of Facts). The scatterplot displayed in Figure 3.14(a) appears rather straight. 
However, when the residuals from the least squares line (yn 5 298.2313.596x) are 
plotted, substantial curvature is apparent (even though r2 < .99). It is not accurate to 
say that weight increases in direct proportion to height (linearly with height). Instead, 
average weight increases somewhat more rapidly in the range of relatively large 
heights than it does for relatively small heights.

Example 3.10

Figure 3.13  Scatterplots and summary quantities for Example 3.9
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A residual plot is a plot of the (x, residual) pairs—that is, of the pairs 
(x1, y1 2  yn1), (x2, y2 2  yn2), . . . , (xn, yn 2  ynn)—or of the residuals versus predicted 
values—the pairs (yn1, y1 2  yn1), . . . , (ynn, yn 2  ynn).

DEFINITION

Plotting the Residuals (Optional)
It is important to have methods for identifying unusual or highly influential observa­
tions and revealing patterns in the data that may suggest how an improved fit can be 
achieved. A plot based on the residuals is very useful in this regard.

A desirable plot exhibits no particular pattern, such as curvature or much greater 
spread in one part of the plot than in another part. Looking at a residual plot after fitting 
a line amounts to examining y after removing any linear dependence on x. This can 
sometimes more clearly show the existence of a nonlinear relationship.
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x: 58 59 60 61 62 63 64 65
y: 113 115 118 121 124 128 131 134

x: 66 67 68 69 70 71 72
y: 137 141 145 150 153 159 164

Figure 3.14 P lots of data from Example 3.10: (a) scatterplot; (b) residual plot
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We also hope that there are no unusual points in the plot. A point falling far 
above or below the horizontal line at height zero corresponds to a large residual, 
which may indicate some type of unusual behavior, such as a recording error, non­
standard experimental condition, or atypical experimental subject. A point whose 
x value differs greatly from others in the data set may have exerted excessive influ­
ence in determining the fitted line. One method for assessing the impact of such 
an isolated point on the fit is to delete it from the data set and then recompute the 
best-fit line and various other quantities. Substantial changes in the equation, pre­
dicted values, r2, and se warn of instability in the data. More information may then 
be needed before reliable conclusions can be drawn.

Bioaerosols are airborne particles such as bacteria or pollen that, when found in 
indoor environments, may cause infectious or allergic health effects. The Andersen 
method for determining bioaerosol concentration requires a 2–7-day incubation 
period. The article “Measurement of Indoor Bioaerosol Levels by a Direct Count­
ing Method” (J. of Envir. Engr., 1996: 374–378) discussed an alternative technique, 
the FFDC method. Consider the accompanying data, read from a plot in the cited  

Example 3.11
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128	 chapter 3   Bivariate and Multivariate Data and Distributions

Figure 3.15 P lots from R for the bioaerosol data of Example 3.11: 
(a)  ——  least squares line for the full sample 
    - - -  least squares line when the potentially influential observation is deleted 
(b)  residuals versus predicted values
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article, on x 5 concentration using Andersen method (CFU/m3) and y 5 concentra­
tion using FFDC method (no./m3):

Observation x y yn Residual
1 119 239 225.1 13.9
2 140 262 240.3 21.7
3 150 202 247.6 245.6
4 157 224 252.7 228.7
5 171 255 262.8 27.8
6 200 292 283.9 8.1
7 218 350 296.9 53.1
8 250 298 320.2 222.2
9 272 313 336.2 223.2

10 321 415 371.7 43.3
11 573 542 554.7 212.7

The equation of the least squares line is yn 5 138.68 1 .726x, with r2 5 .901. (The 
slope, intercept, and r2 differ very slightly from values given in the article.)

Figure 3.15 shows a scatterplot and a residual plot (here, residuals versus predicted 
values) from R (this package has excellent graphics capabilities). There is no single 
residual that is much larger in magnitude than the other residuals. The most strik­
ing feature here is that x11 is much larger than any other x value in the sample, so 
that (x11, y11) is an observation with potentially high influence (sometimes called a 
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Resistant Lines
As Example 3.11 shows, the least squares line can be greatly affected by the presence 
of even a single observation that shows a large discrepancy in the x or y direction 
from the rest of the data. When the data set contains such unusual observations, it 
is desirable to have a method for obtaining a summarizing line that is resistant to 
the influence of these stray values. In recent years, many methods for obtaining a 
resistant (or robust) line have been proposed, and various statistical packages will 
fit such lines. Consult a statistician or a book on exploratory data analysis to obtain 
more information.

high-leverage observation). This point would not in fact be highly influential if it fell 
close to the least squares line based on just the first ten observations. However, the 
equation of this line is yn 5 115.09 1 .850x with r2 5 .757; this r2 value is much 
lower than the original value, and the slope and intercept have also changed substan­
tially. Without the influential observation, evidence for a very strong linear relation­
ship between concentrations assessed by the two methods is not nearly so compelling.

	19.	 The invasive diatom species Didymosphenia gemi-
nata has the potential to inflict substantial eco­
logical and economic damage in rivers. The article 
“Substrate Characteristics Affect Colonization by 
the Bloom-Forming Didymosphenia geminata” 
(Aquatic Ecology, 2010: 33–40) described an in­
vestigation of colonization behavior. One aspect of 
particular interest was whether y 5 colony density 
was related to x 5 rock surface area. The article 
contained a scatterplot and summary of a regression 
analysis. Here is representative data:

x: 50 71 55 50 33 58 79
y: 152 1929 48 22 2 5 35

x: 26 69 44 37 70 20 45 49
y: 7 269 38 171 13 43 185 25

	 a.	 Determine the equation of the least squares line 
for this data and then calculate and interpret the 
coefficient of determination.

	 b.	 The second observation has a very extreme  
y value (in the full data set consisting of 72 ob­
servations, there were 2 of these). This obser­
vation may have had a substantial impact on 

the form of the regression function and subse­
quent conclusions. Eliminate it and redo part  
(a). What do you conclude?

	20.	 Electromagnetic technologies such as ground pen­
etrating radar offer effective nondestructive sensing 
techniques to determine a continuous profile of a 
pavement structure. The propagation of electromag­
netic waves through the structure depends critically 
on the dielectric properties of the media. However, 
little research has been done on the characteriza­
tion of dielectric properties of asphalt mixtures. The 
article “Dielectric Modeling of Asphalt Mixtures 
and Relationship with Density” (J. Transp. Engr., 
2011: 104–111) reported on the dielectric response 
with percent air voids for various asphalt mixtures at 
7-GHz frequency. The following data, kindly pro­
vided by the authors of the cited article, compares  
y 5 dielectric constant and x 5 air void (%) for 18 
samples having 5% asphalt content: 

y: 4.55 4.49 4.50 4.47 4.47 4.45
x: 4.35 4.79 5.57 5.20 5.07 5.79

y: 4.40 4.34 4.43 4.43 4.42 4.40
x: 5.36 6.40 5.66 5.90 6.49 5.70

Section 3.3 Exercises
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	 a.	 Does a scatterplot of the data suggest it is reason­
able to assume an approximate linear relation­
ship between x and y?

	 b.	 Find the equation of the least squares line for 
this data and interpret its slope.

	 c.	 Determine the proportion of observed variation 
in the response variable that can be attributed 
to the approximate linear relationship between 
strength and fiber weight.

	 d.	 Does a residual plot indicate any deficiency in a 
straight line fit? Explain your reasoning.

	21.	 For the past decade rubber powder has been used 
in asphalt cement to improve performance. The 
article “Experimental Study of Recycled Rubber-
Filled High-Strength Concrete” (Magazine of 
Concrete Res., 2009: 549–556) included on a re­
gression of y 5 axial strength (MPa) on x 5 cube 
strength (MPa) based on the following sample 
data:

x: 112.3 97.0 92.7 86.0 102.0

y: 75.0 71.0 57.7 48.7 74.3

x: 99.2 95.8 103.5 89.0 86.7
y: 73.3 68.0 59.3 57.8 48.5

	 a.	 Does a scatterplot of the data suggest an appro­
priate linear relationship between x and y?

	 b.	 Obtain the equation of the least squares line and 
interpret its slope.

	 c.	 Calculate and interpret the coefficient of 
determination.

	 d.	 Roughly what is the size of a typical deviation of 
points in the scatterplot from the least squares 
line?

	22.	 Recall the data from Exercise 4 based on amount 
of oil added (in g) and the corresponding amount 
of oil recovered (in g) from wheat straw. Suppose 
that we want to use the least squares line to predict 
the amount of oil recovered from the wheat straw 
based on the initial amount of oil added. Consider 
the accompanying output from the SAS statistical 
computer package.

y: 4.33 4.44 4.40 4.26 4.32 4.34
x: 6.49 6.37 6.51 7.88 6.74 7.08

Dependent Variable: oil_recov

			   Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F
Model  1 289.45805 289.45805 2977.07 <.0001
Error 13 1.26398 0.09723
C Total 14 290.72203

Root MSE 0.31182 R–Square 0.9957

Dep Mean 6.07513 Adj R-Sq 0.9953

C.V. 5.13266

			   Parameter Estimates

Parameter Standard t

Variable DF Estimate Error Value Pr > |t|
Intercept 1 -0.52343 0.14528 -3.60 0.0032
oil_added 1 0.87825 0.01610 54.56 <.0001
			   Predict

	 Obs	 Dep Var	 Value	 Residual

	 1	 0.6100	 0.3548	 0.2552

	 2	 0.8400	 0.7939	 0.0461

	 3	 1.5120	 1.3209	 0.1911

	 4	 1.7920	 1.9357	 -0.1437

	 5	 2.9520	 2.6383	 0.3137

	 6	 2.8800	 3.4287	 -0.5487

	 7	 4.4000	 4.3069	 0.0931

	 8	 5.3460	 5.2730	 0.0730

	 9	 6.3960	 6.3269	 0.0691

	 10	 7.1890	 7.4686	 -0.2796

	 11	 8.0850	 8.6982	 -0.6132

	 12	 9.8400	 10.0155	 -0.1755

	 13	 11.6960	 11.4207	 0.2753

	 14	 13.2240	 12.8259	 0.3981

	 15	 14.3650	 14.3189	 0.0461

Sum of Residuals	 0

Sum of Squared Residuals	 1.2640

	 a.	 Write the equation of the least squares line and 
use it to predict the value of recovered oil when 
added oil is 10 g.

	 b.	 What are the values of SSResid, SSTo, r2, and 
se? Do these values suggest that the least squares 
line provides an effective summary of the rela­
tionship between the two variables?

	 c.	 Construct a plot of the residuals. What does it 
suggest?

	23.	 Recall the data from Exercise 6 involving x 5 fiber 
weight (%) and y 5 compressive strength (MPa).

	 a.	 Determine the equation of the least squares line 
and interpret its slope.

	 b.	 Determine the proportion of observed variation 
in strength that can be attributed to the approxi­
mate linear relationship between strength and 
fiber weight.
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	 c.	 Predict the value of the compressive strength 
when the fiber weight percentage is 6.5.

	 d.	 Would you feel comfortable using the least 
squares line to predict the compressive strength 
when the fiber weight percentage is 25? Explain. 
Now predict the value of y when x 5 25 and in­
terpret the result.

	24.	 By their nature, deserts are typically exposed to 
large amounts of solar radiation. Thus, such re­
gions seem to be prime locations for harvesting so­
lar energy through the installation of photovoltaic 
modules. These modules rely on an optical system 
to collect sunlight, often through some lens, so an 
important factor to consider would be the effect 
of desert sandstorms on lens performance. The 
authors of “Sandblasting Durability of Acrylic and 
Glass Fresnel Lenses for Concentrator Photovol­
taic Modules” (Solar Energy, 2012: 3021–3025) 
compared the performance of sandblasted acrylic 
and glass Fresnel lenses used in concentrator pho­
tovoltaic modules. In the experiment, the transmit­
tance after sandblasting of acrylic polymethylmeth­
acrylate (PMMA) and glass Fresnel lenses were 
measured. The experimental data, kindly provided 
by the authors, compares y 5 reduction rate of 
transmittance (%) and x 5 sandblast momen­
tum (g . m/s) for 14  PMMA and 8 glass substrate 
samples:

		

PMMA: 10.56 20.80 15.84 31.20 48.00

PMMA: 8.56 18.93 19.35 23.65 33.05

PMMA: 21.12 41.60 64.00 16.80 33.20

PMMA: 18.53 29.21 40.39 17.21 27.21

PMMA: 51.20 13.92 27.84 42.72

PMMA: 34.74 17.40 25.89 32.82

Glass: 35.20 52.80 105.60 52.80 70.40

Glass: 5.62 8.10 31.21 13.76 15.37

Glass: 56.00 48.00 139.20

Glass: 14.76 16.55 37.08

	 a.	 In one graph, overlay the scatterplots for the 
PMMA and the glass data sets and comment on 
any interesting features. Be sure to use different 
symbols for each data set.

	 b.	 Determine the equations for the least squares 
line for the PMMA and glass data sets. Interpret 
the slope for each equation.

	 c.	 For the PMMA lens, predict the reduction rate 
of transmittance when sandblast momentum is 
at 50 g.m/s. Do the same for the glass lens type.

	 d.	 Based on your results, which lens type per­
formed better in this experiment?

	25.	 Two important properties of a soil are its initial 
void ratio (e0, a measure of soil porosity) and its 
compression index (Cc, an indicator of soil com­
pressibility). The article “Consolidation and 
Hydraulic Conductivity of Zeolite-Amended 
Soil-Bentonite Backfills” (J. Geotech. Geoenvi-
ron. Engr., 2012: 15–25) reported the following 
data (read from a graph) for the Cc and e0 vari­
ables  for  sand–bentonite backfills with varying 
amounts and types of zeolites.

e0: 0.988 1.018 1.058 1.070 1.085 1.145

Cc: 0.19 0.20 0.20 0.22 0.23 0.24

	 a.	 Using Cc as the response and e0 as the ex­
planatory variable, create the corresponding 
scatterplot. Do the values of Cc appear to 
be perfectly linearly related to the e0 values? 
Explain.

	 b.	 Determine the equation of the least squares 
line.

	 c.	 What proportion of the observed variation in the 
compression index can be attributed to the ap­
proximate linear relationship between the two 
variables?

	 d.	 Predict the value of the compression index 
when the initial void ratio is 1.10. Would you 
feel comfortable using the least squares line to 
predict the compression index when the initial 
void ratio is .80? Explain.

	26.	 In biofiltration of wastewater, air discharged from 
a treatment facility is passed through a damp po­
rous membrane that causes contaminants to dis­
solve in water and be transformed into harmless 
products. The accompanying data on x 5 inlet 
temperature (°C) and y 5 removal efficiency (%) 
was the basis for a scatterplot that appeared in the 
article “Treatment of Mixed Hydrogen Sulfide 
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and Organic Vapors in a Rock Medium Biofilter” 
(Water Environment Research, 2001: 426–435):

Removal Removal
Obs Temp % Obs Temp %
  1 7.68 98.09 17 8.55 98.27
  2 6.51 98.25 18 7.57 98.00
  3 6.43 97.82 19 6.94 98.09
  4 5.48 97.82 20 8.32 98.25
  5 6.57 97.82 21 10.50 98.41
  6 10.22 97.93 22 17.83 98.51
  7 15.69 98.38 23 17.83 98.71
  8 16.77 98.89 24 17.03 98.79
  9 17.13 98.96 25 16.18 98.87
10 17.63 98.90 26 16.26 98.76
11 16.72 98.68 27 14.44 98.58
12 15.45 98.69 28 12.78 98.73
13 12.06 98.51 29 12.25 98.45
14 11.44 98.09 30 11.69 98.37
15 10.17 98.25 31 11.34 98.36
16 9.64 98.36 32 10.97 98.45

		  Calculated summary quantities are ^  xi 5 384.26, 
^  yi 5 3149.04, ^ x2

i 5 5099.2412, ^ xi yi 5

37,850.7762, and ^ y2
i 5 309,892.6548.

	 a.	 Does a scatterplot of the data suggest ap­
propriateness of the simple linear regression 
model?

	 b.	 Determine the equation of the least square line, 
obtain a point prediction of removal efficiency 
when temperature  5  10.50, and calculate the 
value of the corresponding residual.

	 c.	 Roughly what is the size of a typical deviation of 
points in the scatterplot from the least squares line?

	 d.	 What proportion of observed variation in re­
moval efficiency can be attributed to the ap­
proximate linear relationship?

	 e.	 Personal communication with the authors of the 
article revealed that there was one additional 
observation that was not included in their scat­
terplot:  (6.53,  96.55).  What impact does this ad­
ditional observation have on the equation of the 
least squares line and the values of se and r2?

	27.	 Consider the following four (x, y) data sets; the first 
three have the same x values, so these values are 
listed only once (from “Graphs in Statistical Analy­
sis,” Amer. Statistician, 1973: 17–21).

			   For each of these four data sets, the values of 
the summary quantities, ^xi,  ^yi, and so on, are al­
most identical, so the equation of the least squares 
line(yn 5 3 1  .5x), SSResid, SSTo, r2, and se will be 
virtually the same for all four. Based on a scatterplot 
and a residual plot for each data set, comment on 
the appropriateness of fitting a straight line; include 
any specific suggestions for how a “straight-line 
analysis” might be modified or qualified.

Data set: 1–3 1 2 3 4 4
Variable: x y y y x y

10.0 8.04 9.14 7.46 8.0 6.58
8.0 6.95 8.14 6.77 8.0 5.76

13.0 7.58 8.74 12.74 8.0 7.71
9.0 8.81 8.77 7.11 8.0 8.84

11.0 8.33 9.26 7.81 8.0 8.47
14.0 9.96 8.10 8.84 8.0 7.04
6.0 7.24 6.13 6.08 8.0 5.25
4.0 4.26 3.10 5.39 19.0 12.50

12.0 10.84 9.13 8.15 8.0 5.56
7.0 4.82 7.26 6.42 8.0 7.91
5.0 5.68 4.74 5.73 8.0 6.89

3.4	 Nonlinear Relationships �

A scatterplot of bivariate data frequently shows curvature rather than a linear pattern. In 
this section, we discuss several different ways to fit a curve to such data.

Power Transformations
Suppose that the general pattern in a scatterplot is curved and monotonic—either strictly 
increasing or strictly decreasing. In this case, it is often possible to find a power trans-
formation for x or y so that there is a linear pattern in a scatterplot of the transformed 
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data. By a power transformation, we mean the use of exponents p and q such that the 
transformed values are x= 5 xp and/or y= 5 yq; the relevant scatterplot is of the (x=, y=)
pairs. Figure 3.16 displays a “ladder” of the most frequently used transformations and 
a guide for choosing an appropriate transformation, depending on the pattern in the 
original scatterplot.

Figure 3.16  Transformation ladder and guide

4

3 2

1

,

,

,

,

Power transformation ladder: 
Transformed value 5 (original value)POWER

Power Transformed value Name

3 (Original value)3 Cube

2 (Original value)2 Square

1 Original value No transformation
1
2 1Original value Square root

1
3 23 Original value Cube root

0 Log(original value) Logarithm

–1 1/(original value) Reciprocal

For example, suppose the pattern has the shape of segment 2 in Figure 3.16. Then 
to straighten the plot, we should use a transformation on x that is up the ladder from 
the no-transformation row, for example, x= 5 x2 or x3, or a transformation on y that is 
down the ladder, such as y= 5 1yy or  ln(y) (log10 would produce equivalent results). A 
residual plot should be used to check that curvature has in fact been removed. Once a 
straightening transformation has been identified, a straight line can be fit to the (x=, y=) 
points using least squares. If it was not necessary to transform y, then the line provides 
a direct way of predicting y values: calculate x= and substitute into the equation. When 
y has been transformed, the line gives predictions of y= values. The transformation can 
then be reversed to obtain predictions of y. For example, if  x= 5 1yx and y= 5 1y, the 
least squares line gives 1y a 1 byx

from which

y (a 1 byx)2

Un
le

ss
 o

th
er

w
is

e 
no

te
d,

 a
ll 

co
nt

en
t o

n 
th

is
 p

ag
e 

is
 ©

 C
en

ga
ge

 L
ea

rn
in

g.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



134	 chapter 3   Bivariate and Multivariate Data and Distributions

0 10
0

20 30 40 50 60

5

10

15

Frying time

Moisture content

(a)

2
0

3 4

1

2

3

ln(frying time)

ln(moisture content)

(b)

Figure 3.17 P lots of the data from Example 3.12: (a) scatterplot of 
the original data; (b) scatterplot of the (ln( ), ln( )) pairs

No tortilla chip aficionado likes soggy chips, so it is important to find characteristics of 
the production process that produce chips with an appealing texture. The following 
data on x 5 frying time (sec) and y 5 moisture content (%) appeared in the article 
“Thermal and Physical Properties of Tortilla Chips as a Function of Frying Time” 
(J. of Food Processing and Preservation, 1995: 175–189):

x: 5 10 15 20 25 30 45 60
y: 16.3 9.7 8.1 4.2 3.4 2.9 1.9 1.3

The scatterplot in Figure 3.17(a), opposite, has the pattern of segment 3 in 
Figure 3.16, so we must go down the ladder for x or y. A scatterplot of the (ln(x), 
ln(y)) pairs in Figure 3.17(b) is quite straight. A regression of ln(y) on ln(x) gives 
a 5 4.6384, b 5 21.04920, and r2 5 .976. The residual plot of Figure 3.17(c) 
shows no evidence of curvature, though there is one rather large residual.  

Example 3.12
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Thus ln(y)  4.6384 – 1.04920[ln(x)]. Since ln(20) 5 2.996, a prediction of 
ln(y) is

lnn(y) 5  4.63842 (1.04920)(2.996) 5 1.495

Taking the antilog of 1.495 gives a prediction of y itself: e1.495 5 4.46%. In fact, taking 
the antilog of both sides of the linear equation gives an explicit nonlinear relation­
ship between x and y:

y 5 e ln(y) e4.638421.04920[ln(x)] 5 (e4.6384)(e21.04920 ln(x)) 5 103.379x21.04920

This is often called a power function relationship between x and y.

0 2
–.2

3 4

–.1
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ln(frying time)

Residual

(c)

Figure 3.17 P lots of the data from Example 3.12: (c) plot of the 
residuals from the transformed regression

Fitting a Polynomial Function
Sometimes the general pattern of curvature in a scatterplot is not monotonic. Instead, it 
may be the case that as x increases, there is a tendency for y first to increase and then to 
decrease (like a bowl turned upside down) or for y first to decrease and then to increase. 
In such instances, it is reasonable to fit a quadratic function a 1  b1x 1  b2x

2, whose 
graph is a parabola, to the data. If the quadratic coefficient b2 is positive, the parabola 
turns upward, whereas it turns downward if b2 is negative. Just as in fitting a straight line, 
the principle of least squares can be employed to find the best-fit quadratic. The least 
squares coefficients a, b1, and b2 are the values of a, b1, and b2 that minimize

g(a , b1, b2) 5  
î

3yi 2 Aa  1  b1xi 1  b2x
2
i B 4 2

which is the sum of squared vertical deviations from the points in the scatterplot to the parab­
ola determined by the quadratic with coefficients a, b1, and b2. Taking the partial derivative 
of the g function first with respect to a, then with respect to b1, and finally with respect to b2, Un
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and equating these three expressions to zero gives three equations in three unknowns. These 
normal equations are again linear in the unknowns, but because there are three rather than 
just two, there is no explicit elementary expression for their solution. Instead, matrix algebra 
must be used to solve the system numerically for each different data set. Fortunately, solution 
procedures have been programmed into the most popular statistical computer packages, so 
it is necessary only to make the appropriate request and then sit back and wait for output.

The scatterplot of y 5 glucose concentration versus x 5 fermentation time shown in 
Figure 3.9 (at the end of Section 3.2) has the appearance of an upward-turning qua­
dratic. We supplied the data to Minitab and made the appropriate regression request 
to obtain the accompanying output. The fitted quadratic equation appears at the top 
of the output, and the values of the least squares coefficients a, b1, b2 appear in the 
Coef column just below the equation. A prediction for glucose concentration when 
fermentation time is 4 hours is

yn 5 84.482 2 15.875(4) 1  1.7679(4)2 5 49.27

The regression equation is

glucconc = 84.5 - 15.9 time + 1.77 timesqd

Predictor Coef Stdev t-ratio p
Constant 84.482 4.904 17.23 0.000
time -15.875 2.500 -6.35 0.001
timesqd 1.7679 0.2712 6.52 0.001
s = 3.515    R–sq = 89.5%	    R–sq (adj) = 85.3%

Analysis of Variance
SOURCE	 DF	 SS	 MS	 F	 p
Regression	 2	 525.11	 262.55	 21.25	 0.004
Error	 5	 61.77	 12.35
Total	 7	 586.88

Example 3.13

Predicted or fitted values yn1, . . . , ynn are obtained by substituting the successive x 
values x1, . . . , xn into the fitted quadratic equation (e.g., in Example 3.13, yn4 5 49.27), 
and the residuals are the vertical deviations y1 2  yn1, . . . , yn 2 ynn from the observed 
points to the graph of the fitted quadratic (e.g., y4 2  yn4 5 51 2  49.27 5 1.73). 
Residual or error sum of squares and total sum of squares are defined exactly as they 
were previously:

SSResid 5 
î

(yi 

2  yni)
2    SSTo 5 

î
(yi 

2  y)2

The Minitab output of Example 3.13 shows that SSResid 5 61.77 and SSTo  5 
586.88. The coefficient of multiple determination, denoted by R2, is now the 
proportion of observed y variation that can be attributed to the approximate qua­
dratic relationship:

R2 5 1 2 
SSResid

SSTo
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The R2 value in Example 3.13 is .895, so about 89.5% of the observed variation in 
glucose concentration can be attributed to the approximate quadratic relation between 
concentration and fermentation time.

The methodology employed to fit a quadratic is easily extended to fit a higher-order 
polynomial. For example, using the principle of least squares to fit a cubic equation 
gives a system of normal equations consisting of four equations in four unknowns. The 
arithmetic is best left to a statistical computer package. In practice, a cubic equation 
is rather rarely fit to data, and it is virtually never appropriate to fit anything of higher 
order than this.

Smoothing a Scatterplot
Sometimes the pattern in a scatterplot is too complex for a line or curve of a par­
ticular type (e.g., exponential or parabolic) to give a good fit. Statisticians have 
recently developed some more flexible methods that permit a wide variety of pat­
terns to be modeled using the same fitting procedure. One such method is LOW-
ESS (or LOESS), short for locally weighted scatterplot smoother. Let (x , y ) denote 
a particular one of the n (x, y) pairs in the sample. The yn value corresponding to 
(x , y ) is obtained by fitting a straight line using only a specified percentage of 
the data (e.g., 25%) whose x values are closest to x . Furthermore, rather than 
use “ordinary” least squares, which gives equal weight to all points, those with x 
values closer to x  are more heavily weighted than those whose x values are farther 
away.1 The height of the resulting line above x  is the fitted value yn .This process 
is repeated for each of the n points, so n different lines are fit (you surely wouldn’t 
want to do all this by hand). Finally, the fitted points are connected to produce a 
LOWESS curve.

1 The weighted least squares criterion involves finding a  and b  to minimize, ^wi[yi 2 (a 1 bxi)]
2, where  

w1, . . . , wn are nonnegative weights. For example, if we take w5 5 0, then (x5, y5) is disregarded in obtaining 
the fitted line. R will also fit a local quadratic in this way.

Weighing large deceased animals found in wilderness areas is usually not feasible, 
so it is desirable to have a method for estimating weight from various characteristics 
of an animal that can be easily determined. Minitab has a stored data set consist­
ing of various characteristics for a sample of n  5  143 wild bears. Figure 3.18(a), 
opposite, displays a scatterplot of y 5 weight versus x 5 distance around the chest 
(chest girth). At first glance, it looks as though a single line obtained from ordinary 
least squares would effectively summarize the pattern. Figure 3.18(b) shows the 
LOWESS curve produced by Minitab using a span of 50% (the fit at (x , y ) is 
determined by the closest 50% of the sample). The curve appears to consist of two 
straight-line segments joined together above approximately x  5  38. The steeper 
line is to the right of 38, indicating that weight tends to increase more rapidly as 
girth does for girths exceeding 38 in.

Example 3.14
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	28.	 Polyester fiber ropes are increasingly being used as 
components of mooring lines for offshore structures 
in deep water. The authors of the paper “Quantify­
ing the Residual Creep Life of Polyester Mooring 
Ropes” (Intl. J. of Offshore and Polar Explor., 2005: 
223–228) used the accompanying data as a basis for 
studying how time to failure (hr) depended on load 
(% of breaking load):

x: 77.7 77.8 77.9 77.8 85.5 85.5
y: 5.067 552.056 127.809 7.611 .124 .077

x: 89.2 89.3 73.1 85.5 89.2 85.5
y: .008 .013 49.439 .503 .362 9.930

x: 89.2 85.5 89.2 82.3 82.0 82.3
y: .677 5.322 .289 53.079 7.625 155.299

	 a.	 Construct a scatterplot of x 5 load versus y 5 
time. Would it be reasonable to characterize 
the relationship between the two variables to be 
linear?

	 b.	 Transform the response variable by comput­
ing y= 5 log(y). Construct a scatterplot of x and 
y=. Would it be reasonable to characterize the 
relationship between these two variables to be 
linear?

	 c.	 Fit a straight line to the (x, y= ) data. Assess the 
quality of the fit. Finally, based on the linear 

fit, predict the value of failure time from a load 
of  85%.

	29.	 The authors of “Experimental and Numerical 
Investigation of Bed-Load Transport Under Un­
steady Flows” (J. Hydraul. Engr., 2011: 1276–1282) 
simulated sediment yield of a gravel bed load under 
varying rates of water flow. The researchers wanted 
to mathematically model the behavior of sediment 
transport under such conditions and proposed a 
new model parameter, Pgt, that characterizes the 
unsteadiness of the water flow. Eleven simulation 
runs were conducted in the laboratory. For each 
simulation, the article reported the computed value 
of the unsteadiness parameter Pgt and the nondi­
mensionalized total bed load, Wt . One aim of the 
study was to investigate the behavior of y 5 Wt  as 
a function of x 5 Pgt. Data from the experiment is 
given here:

x: 0.0021 0.0041 0.0045 0.0046
y: 15.4 59.0 80.9 107.5

x: 0.0049 0.0043 0.0049 0.0043
y: 313.6 163.8 857.2 40.9

x: 0.0047 0.0038 0.0046

y: 88.9 87.8 196.5
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Figure 3.18 A Minitab scatterplot and LOWESS curve for the bear weight data of Example 3.14
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Section 3.4 Exercises
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	 a.	 Would you fit a straight line to the data and use 
it as a basis for predicting nondimensionalized 
total bed load from the unsteadiness parameter? 
Why or why not?

	 b.	 Find a transformation that produces an ap­
proximate linear relationship between the trans­
formed values. Then fit a line to the transformed 
data and use it to obtain an equation that de­
scribes approximately the relationship between 
the untransformed variables.

	30.	 In the article “Sensitivity of Oklahoma Bind­
ers on Dynamic Modulus of Asphalt Mixes and 
Distress Functions” (J. Mater. Civ. Engr., 2012: 
1076–1088), researchers measured various physi­
cal characteristics of performance grade asphalt 
binders commonly used in Oklahoma. One im­
portant physical characteristic is dynamic shear 
modulus, G  (kPa), which is the ratio of maxi­
mum shear stress to the maximum shear strain and 
is a measure of the stiffness or resistance of the 
asphalt binder to deformation under load. In one 
experiment, the researchers measured the dynam­
ic shear modulus of the asphalt binder samples 
over a range of testing temperatures (°C). The fol­
lowing is the corresponding data for binder type 
PG64-22:

		

Temp: 54.4 46.1 43.3 29.4

G : 9.28 32.47 46.98 344.36

Temp: 21.1 12.7 4.4

G : 1,030.38 4,870.00 18,300.00

	 a.	 Construct a scatterplot of y  5  dynamic shear 
modulus versus x  5  temperature. Would it be 
reasonable to characterize the relationship 
between the two variables as approximately 
linear?

	 b.	 Transform only the dependent variable y so that 
a scatterplot of the transformed data shows a 
substantial linear pattern. Then fit a straight line 
to this data, use the line to establish an approxi­
mate relationship between x and y, and predict 
the dynamic shear modulus when the tempera­
ture is 35°C.

	 c.	 Plot the residuals from your linear fit in part (b) 
and look for any patterns that might suggest 

an inappropriate choice of transformation. If 
necessary, return to part (b) and try a different 
transformation.

	31.	 Failures in aircraft gas turbine engines due to 
high cycle fatigue is a pervasive problem. The 
article “Effect of Crystal Orientation on Fatigue 
Failure of Single Crystal Nickel Base Turbine 
Blade Superalloys” (J. of Engr. for Gas Turbines 
and Power, 2002: 161–176) gave the accompany­
ing data and fit a nonlinear regression function 
in order to predict strain amplitude from cycles 
to failure.

Obs Cycfail Strampl Obs Cycfail Strampl

  1 1326 .01495 11 7356 .00576
  2 1593 .01470 12 7904 .00580
  3 4414 .01100 13 79 .01212
  4 5673 .01190 14 4175 .00782
  5 29,516 .00873 15 34,676 .00596
  6 26 .01819 16 114,789 .00600
  7 843 .00810 17 2672 .00880
  8 1016 .00801 18 7532 .00883
  9 3410 .00600 19 30,220 .00676
10 7101 .00575

	 a.	 Construct scatterplots of y versus x, y versus 
ln(x), ln(y) versus ln(x), and 1@y versus 1@x.

	 b.	 Which transformation from part (a) does the 
best job of producing an approximate linear 
relationship?

	 c.	 Use the selected transformation to predict am­
plitude when cycles to failure 5 5000.

	32.	 There has been an increasing demand for open-
ended steel pipe piles to be used as deep founda­
tions for offshore and onshore structures. When 
an open-ended pile is driven into the ground, a 
soil plug often forms within the pile. The driving 
resistance and the base capacity of the pile are 
heavily influenced by this plugging effect. As an 
indicator of the degree of plugging, researchers of­
ten use the plug length ratio (PLR), which is the 
ratio of the plug length at the end of pile instal­
lation to the length of the pile. The article “Base 
Capacity of Open-Ended Steel Pipe Piles in Sand” 
(J. Geotech. Geoenviron. Engr., 2012: 1116–1128) 
reported the PLR and corresponding pile inner 
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diameter, d  (mm), of nine test piles used in case 
studies. The data is given here:

d: 691.0 292.0 83.7 37.2 78.9
PLR: 1.00 0.82 0.76 0.44 0.76

d: 107.9 82.5 1444.0 1444.0
PLR: 0.88 0.75 1.00 1.00

	 a.	 The authors were interested in predicting 
PLR based on the pile inner diameter. Trans­
form only the independent variable x so that 
a scatterplot of the transformed data shows a 
substantial linear pattern. Then fit a straight 
line to this data, use the line to establish an 
approximate relationship between x and y, and 
predict the plug length ratio when the pile in­
ner diameter is 500 mm.

	 b.	 Plot the residuals from your linear fit in part (a) 
and look for any patterns that might suggest an 
inappropriate choice of transformation. If neces­
sary, return to part (a) and try a different transfor­
mation.

	33.	 The article “Residual Stresses and Adhesion of 
Thermal Spray Coatings” (Surface Engr., 2005: 
35–40) considered the relationship between the 
thickness (mm) of NiCrAl coatings deposited on 
stainless steel substrate and corresponding bond 
strength (MPa). The following data was read from a 
plot in the paper:

		

Thickness: 220 220 220 220 370
Strength: 24.0 22.0 19.1 15.5 26.3

Thickness: 370 370 370 440 440
Strength: 24.6 23.1 21.2 25.2 24.0

Thickness: 440 440 680 680 680
Strength: 21.7 19.2 17.0 14.9 13.0

Thickness: 680 860 860 860 860
Strength: 11.8 12.2 11.2 6.6 2.8

	 a.	 Is it possible to transform this data as described 
in this section so that there is an approximate 
linear relationship between the transformed 
variables? Why or why not?

	 b.	 Use a statistical computer package to fit a qua­
dratic function to this data and then predict 
bond strength when thickness is 500. Assess the 
fit of the quadratic to the data.

	34.	 The accompanying data was extracted from the 
article “Effects of Cold and Warm Temperatures 
on Springback of Aluminum-Magnesium Alloy 
5083-H111” (J. Engr. Manuf., 2009: 427–431). The 
response variable is yield strength (MPa), and the 
predictor is temperature ( C).

x: 250 25 100 200 300
y: 91.0 120.5 136.0 133.1 120.8

		  Here is Minitab output from fitting the quadratic 
regression function (a graph in the cited paper sug­
gests that the authors did this):

Predictor Coef SE Coef T P

Constant 111.277 2.100 52.98 0.000

temp 0.32845 0.03303 9.94 0.010

tempsqd -0.0010050 0.0001213 -8.29 0.014

S = 3.44398  R–Sq = 98.1%  R–Sq(adj) = 96.3%

Analysis of Variance

Source DF SS MS F P

Regression 2 1245.39 622.69 52.50 0.019

Residual Error 2 23.72 11.86

Total 4 1269.11

	 a.	 What is the equation of the best-fit quadratic? 
Use this quadratic to predict yield strength when 
temperature is 110.

	 b.	 What are the values of SSResid and SSTo? 
Verify that these values are consistent with the 
value of R-sq given on the output. Do you think 
the fit of the quadratic is good? Explain.

3.5	 Using More Than One Predictor �

In Sections 3.3 and 3.4, we considered relationships between a dependent or response 
variable y and a single predictor, independent, or explanatory variable x. In many situ­
ations, predictions of y values can be improved and more observed y variation can be 
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explained by utilizing information in two or more explanatory variables. Notation is a 
bit more complex than in the case of a single predictor. Let

k 5 number of explanatory variables or predictors
n 5 sample size

and x1, x2, . . . , xk denote the k predictors, so that each observation will consist of 
k 1 1 numbers: the value of x1, the value of x2, . . . , the value of xk, and the value of y. 
Also let

xij 5 value of the predictor xi in the jth observation
so

first observation 5 (x11, x21, . . . , xk1, y1)
	 	 ?
	 ?	 ?
	 ?	 ?

nth observation 5 (x1n, x2n, . . . , xkn, yn)

Soil and sediment adsorption, the extent to which chemicals collect in a condensed 
form on the surface, is an important characteristic because it influences the effec­
tiveness of pesticides and various agricultural chemicals. The article “Adsorption of 
Phosphate, Arsenate, Methanearsonate, and Cacodylate by Lake and Stream Sedi­
ments: Comparison with Soils” (J. of Environ. Qual., 1984: 499–504) gave the fol­
lowing data on y 5 phosphate adsorption index, x1 5 amount of extractable iron, and 
x2 5 amount of extractable aluminum

Example 3.15

Observation x1 x2 y
  1 61 13 4
  2 175 21 18
  3 111 24 14
  4 124 23 18
  5 130 64 26
  6 173 38 26
  7 169 33 21
  8 169 61 30
  9 160 39 28
10 244 71 36
11 257 112 65
12 333 88 62
13 199 54 40

Thus the first observation is the triple (x11, x21, y1) 5 (61, 13, 4), . . . , and the last 
observation is (x1,13, x2,13, y13) 5 (199, 54, 40).

Each observation in Example 3.15 is a triple of numbers. A scatterplot of such 
data would represent each observation as a point in a three-dimensional coordinate 
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Figure 3.19 A scatterplot matrix from R of the data from Example 3.15
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system, which is obviously difficult to construct or visualize. For k . 2, a scatterplot 
requires more than three dimensions! Partial information about the relationship 
between the variables can be obtained by forming a scatterplot matrix. This is just 
a collection of two-dimensional scatterplots, arranged in a square array, in which 
each variable is plotted against every other variable. The matrix gives a preliminary 
indication of whether any single predictor might be related to y, whether the rela­
tionship might be linear, and whether there appears to be a strong relation between 
any particular pair of predictors (in which case, one of them may be redundant). 
Figure 3.19 shows a scatterplot matrix for the adsorption data from Example 3.15. In 
the case k 5 2, there are really just three plots: y versus x1, y versus x2, and x2 versus 
x1. Each of these plots appears twice in Figure 3.19, allowing the investigator to look 
across any row and see a particular variable plotted against every other variable. For 
example, the third row shows adsorption index versus extractable iron, followed by 
adsorption index versus extractable aluminum. We can see that y appears linearly 
related to both x1 and x2 and that there is not a very strong relationship between x1 
and x2.
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Fitting a Linear Function
We now consider fitting a relation of the form

y a 1 b1x1 1 b2x2 1   1  bk  

xk

The reasonableness of this approximation depends on patterns in the scatterplot matrix 
and other characteristics of the data to be considered shortly. As with bivariate data, the 
values of a, b1, . . . , bk should be selected to give the best fit. Again, the principle of least 
squares can be invoked: The least squares coefficients a, b1, b2, . . . , bk are the values 
of a, b1, . . . , bk that minimize

g(a, b1, . . . , bk) 5 ^
n

j51
[yj 2 (a 1 b1x1j 1 1 bkxkj)]

2

The g( ) function is the sum of squared deviations between observed y values and 
what would be predicted by a 1 b1x11 1 bk xk. Determination of the least squares 
coefficients involves multivariable calculus: Take the partial derivative of g( ) with 
respect to each unknown, equate these to zero to obtain a system of k 1 1 linear 
equations in the k 1 1 unknowns (the normal equations), and solve the system. The 
arithmetic is quite tedious, but any good statistical computer package can handle 
the task upon request; a regression command of some sort is usually required.

(Example 3.15 continued) Figure 3.20 shows partial Minitab output from a request 
to fit a1b1x11b2x2 to the phosphate adsorption data using the principle of least 
squares. The result is

yn  27.3511  .11273x11 .34900x2 27.35 1  .113x11 .349x2

Example 3.16

Figure 3.20  Minitab regression output for the phosphate  
adsorption data
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144	 chapter 3   Bivariate and Multivariate Data and Distributions

Predicted values and residuals are calculated in a manner similar to that 
used in the case of a single predictor. For example, yn1 results from substituting 
x1 5 x11, x2 5 x21, . . . , xk 5 xk1 (the values of the predictors for the first observation) 
into yn 5 a 1 b1x1 1 1 bk  

xk, and the corresponding residual is y1 5 yn1. From 
Examples 3.15 and 3.16,

yn1 5 27.35 1 .113(61) 1 .349(13) 5 4.08  y12 yn1 5 4 2 4.08 5 2.08

The same two sums of squares calculated after fitting a line are relevant here:

	 SSResid 5 ^ (yj 

2  ynj)
2    a measure of unexplained variation

	 SSTo 5 ^ (yj 2  y)2      a measure of total variation

The coefficient of multiple determination

R2 5 1 2 
SSResid

SSTo

is interpreted as the proportion of observed y variation that can be explained by or at­
tributed to the approximate linear relation between the response variable and the pre­
dictors. The value of R2 is the first concrete indicator of whether the postulated linear 
relationship is indeed a good approximation. Looking at the Minitab output of Figure 
3.20, we see that about 94.8% of observed variation in the phosphate adsorption index 
can be explained by its approximate linear relationship to extractable iron and extract­
able aluminum, a very impressive result. In addition, residual plots—residuals versus x1, 
residuals versus x2, . . . , and residuals versus xk—should be examined for evidence that 
the fitted relationship must be modified. The two residual plots of Figure 3.21 (p. 145) 
show no unusual pattern indicating that a modification is needed.

There is one potential difficulty with R2: Its value can be greatly inflated by using 
many predictors of questionable importance when fitting the linear relationship. Sup­
pose, for example, that y is the sale price of a home and that we have a sample of  n 5 20 
homes from the region of interest. Important predictors include x1 5 interior size (ft2), 
x2 5 lot size, x3 5 age of the home, x4 5 number of bedrooms, and x5 5 size of the 
garage. Consider adding other predictors that are intuitively relatively uninformative or 
even frivolous: thickness of the driveway slab, diameter of a showerhead, height of the 

A prediction of the phosphate adsorption index for an observation to be made when 
extractable iron is 150 and extractable aluminum is 60 is

yn  5 27.35 1 .113(150) 1 .349(60)530.54

We interpret b1 5 .113 to mean that when the amount of extractable iron increases 
by 1 unit and the amount of extractable aluminum is held fixed, we can expect 
the phosphate adsorption index to increase by roughly .113. A similar interpretation 
applies to b2 5 .349.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 3.5   Using More Than One Predictor	 145

Figure 3.21 R esidual plots for the adsorption data of Examples 3.15  and 3.16
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doorknob on the front door, and so on. It turns out that if 19 predictors are included 
(one less than the number of observations), then it will virtually always be the case that 
R2 5 1. So the goal here is not simply to obtain a set of predictors for which R2 is large, 
but to obtain a large value using relatively few predictors while excluding those of mar­
ginal significance. We will further discuss this issue in Chapter 11.

Creating New Predictors from Existing Ones
The ability of predictors x1, . . . , xk to explain variation in y can often be consider­
ably enhanced by having one or more predictors that are mathematical functions 
of the remaining predictors. As an example, let y denote the yield of a particular 
product resulting from a certain chemical reaction. Usually y will depend on both 
x1 5 reaction temperature and x2 5 reaction pressure. It may be the case, though, 
that using only these two predictors results in an R2 value much less than 1, whereas 
including a third predictor x3 5 x1x2 considerably increases R2 (adding a predictor 
cannot possibly decrease R2). Alternatively, using predictors x1 and x2 along with 
the two additional predictors x3 5 x2

1 and x4 5 x2
2 may result in most of the ob­

served y variation being explained. Or perhaps all three of the additional predictors 
x3 5 x1x2, x4 5 x2

1, and x5 5 x2
2 will give very impressive results. The first new vari­

able x3 is called an interaction predictor, and the other two are quadratic predictors 
(interpretations will be given in Chapter 11); the fit with all five predictors is called 
the full quadratic or complete  second-order relationship. In fact, we used a quadratic 
predictor in the previous section when fitting a quadratic function to bivariate data. 
The two predictors there were x1 5 x and x2 5 x2, implying that quadratic (more 
generally, polynomial) regression is a special case of multiple regression.

Researchers carried out a study to see how y 5 ultimate deflection, �d (mm), of 
reinforced ultrahigh toughness cementitious composite beams were influenced 
by x1 5 shear span ratio and x2 5 splitting tensile strength (MPa), resulting in the 

Example 3.17
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General Additive Fitting
The relationships described heretofore in this section impose quite a bit of structure on 
how y depends on the explanatory variables. A more flexible type of relation is

yn 5 a 1 f1(x1) 1 f2(x2) 1 1 fk(xk)

where the forms of f1( ), . . . , and fk( ) are left unspecified. The statistical package R, 
among others, will execute this general additive fit by calculating a and the individual 
fi( )’s; one method for carrying out this latter task is based on the LOWESS technique 
described in Section 3.4.

accompanying data (“Shear Behavior of Reinforced Ultrahigh Toughness Cementi­
tious Composite Beams without Transverse Reinforcement,” J. Mater. Civ. Engr., 
2012: 1283–1294):

x1 x2 x1x2 y

2.04 3.55 7.2420 3.11
2.04 6.07 12.3828 3.26
3.06 3.55 10.8630 3.89
3.06 6.07 18.5742 10.25
4.08 3.55 14.4840 3.11
4.08 6.16 25.1328 13.48
2.06 3.62 7.4572 3.94
2.06 6.16 12.6896 3.53
3.08 3.62 11.1496 3.36
3.08 5.89 18.1412 6.49
4.11 3.62 14.8782 2.72
4.11 5.89 24.2079 12.48
2.01 6.18 12.4218 2.82
3.02 6.18 18.6636 5.19
4.03 6.18 24.9054 8.04

Fitting a 1 b1x1 1 b2x2 results in

yn  5 29.251 1 2.322x1 1 1.544x2,  R2 5 .576

Including an interaction predictor yields

yn 5 17.279 2 6.368x1 2 3.658x2 

1 1.707x1x2,  R2 5 .825

Adding in the two quadratic predictors gives

yn 5 234.323 2 6.568x1 1 19.347x2 1 1.655x1x2 1 .058x1
2 2 2.359x2

2,  R25.845
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Figure 3.22  Scatterplot matrix of the ethanol data from R
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The ethanol data set stored in the R package contains 88 observations on variables 
x1, x2, and y obtained in an experiment in which ethanol was burned in a  single-
cylinder automobile test engine. The variables are

x1 5 C 5 compression ratio of the engine
x2 5 E 5  �equivalence ratio at which the engine was run (a measure of  

richness of the air/ethanol mix)
y 5 NOx 5 �concentration of nitric oxide and nitrogen dioxide in engine  

exhaust, normalized in a certain manner

Figure 3.22 shows a scatterplot matrix of the data; it appears that there is a sub­
stantial nonlinear relation between y and x2. We asked R to obtain a general  
additive fit using LOWESS with a span of .75 (closest 75% of the data values) for 
each of the two component functions f1(x1) and f2(x2). Graphs of these two functions 
appear in Figure 3.23. Sure enough, the second graph is highly nonlinear, and there 
is also some nonlinearity in the first graph.

Example 3.18
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148	 chapter 3   Bivariate and Multivariate Data and Distributions

The R2 value for this fit was .873, whereas the value for the linear fit a 1 b1x1 1 
b2x2 was only .01. The reported value of the constant term a was 1.957, and the pre­
dicted value of NOx when C 5 9.0 and E 5 1.0 was given by R as

yn 5 1.957 1  f1(9.0) 1  f2(1.0) 5 2.743
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Figure 3.23 R  graphs of the component functions resulting from a general additive fit to the  
ethanol data

	35.	 Recently there has been increased use of stainless 
steel claddings in industrial settings. Claddings 
are used to finish the exterior walls of a building 
and help weatherproof the structure. To ensure 
the quality of claddings, it is essential to know how 
welding parameters impact the cladding process. 
The authors of “Mathematical Modeling of Weld 
Bead Geometry, Quality, and Productivity for 
Stainless Steel Claddings Deposited by FCAW” 
(J. Mater. Engr. Perform., 2012: 1862–1872) in­
vestigated how y 5 deposition rate was influenced 
by x1 5 wire feed rate (Wf, in m/min) and x2 5 
welding speed (S, in cm/min). The following 22 
observations correspond to the experiment condi­
tion where applied voltage was less than 30v:

y: 2.718 3.881 2.773 3.924 2.740 3.870

x1: 17.0 10.0 7.0 10.0 7.0 10.0

x2: 30 30 50 50 30 30

y: 2.847 3.901 2.204 4.454 3.324 3.319

x1: 7.0 10.0 5.5 11.5 8.5 8.5

x2: 50 50 40 40 40 20

y: 3.423 3.242 3.385 3.420 3.380 3.402

x1: 8.5 8.5 8.5 8.5 8.5 8.5

x2: 60 40 40 40 40 40

y: 3.382 3.388 3.398 3.404

x1: 8.5 8.5 8.5 8.5

x2: 40 40 40 40
	 a.	 A least squares fit of y 5 a 1 b1x1 1 b2x2 to 

this data gave a 5 .0558, b1 5 .3749, and b2 5 
.0028. What value of deposition rate would you 
predict when wire feed rate 5 11.5 and weld­
ing speed 5 40? What is the value of the cor­
responding residual?

	 b.	 Residual and total sums of squares are .03836 
and 5.1109, respectively. What proportion of 
observed variation in deposition rate can be 
attributed to the stated approximate relation­
ship between deposition rate and the two pre­
dictor variables?

	36.	 The accompanying Minitab regression output 
is based on data that appeared in the article “Ap­
plication of Design of Experiments for Modeling 

Section 3.5 Exercises
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Surface Roughness in Ultrasonic Vibration Turn­
ing” (J. of Engr. Manuf., 2009: 641–652). The 
response variable is surface roughness (mm), and 
the independent variables are vibration amplitude 
(mm), depth of cut (mm), feed rate (mm/rev), and 
cutting speed (m/min), respectively.

The regression equation is

Ra  =  -0.972  -  0.0312a  -  0.557d  -  18.3f - 0.00282v

Predictor Coef SE Coef T P
Constant -0.9723 0.3923 -2.48 0.015
a -0.03117 0.01864 -1.67 0.099
d 0.5568 0.3185 1.75 0.084
f 18.2602 0.7536 24.23 0.000
v 0.002822 0.003977 0.71 0.480

S  =  0.822059            R–Sq = 88.6%           R-Sq(adj) = 88.0%

Source DF SS MS F P
Regression 4 401.02 100.25 148.35 0.000
Residual Error 76 51.36 0.68
Total 80 452.38

	 a.	 Predict the value of surface roughness when am­
plitude is 10, depth of cut is .5, feed rate is .25, 
and cutting speed is 50.

	 b.	 What proportion of observed variation in surface 
roughness can be explained by the approximate 
relationship between surface roughness and the 
four predictors?

	37.	 Snowpacks contain a wide spectrum of pollutants 
that may represent environmental hazards. The 
article “Atmospheric PAH Deposition: Deposi­
tion Velocities and Washout Ratios” (J. of Envir. 
Engr., 2002: 186–195) focused on the deposition of 
polyaromatic hydrocarbons. The authors proposed 
a multiple regression function for relating deposi­
tion over a specified time period (y,  in mg/m2) to 
two rather complicated predictors x1 (mg-sec/m3) 
and x2 (mg/m2), defined in terms of PAH air con­
centrations for various species, total time, and total 
amount of precipitation. Here is data on the species 
fluoranthene and corresponding output fitting y 5 
a 1 b1x1 1 b2x2 from the R software:

	 obs	 1	 2	 flth

	  1	 92017	 .0026900	 278.78
	  2	 51830	 .0030000	 124.53
	  3	 17236	 .0000196	 22.65
	  4	 15776	 .0000360	 28.68
	  5	 33462	 .0004960	 32.66
	  6	 243500	 .0038900	 604.70
	  7	 67793	 .0011200	 27.69

	 obs	 1	 2	 flth
	  8	 23471	 .0006400	 14.18
	  9	 13948	 .0004850	 20.64
	 10	 8824	 .0003660	 20.60
	 11	 7699	 .0002290	 16.61
	 12	 15791	 .0014100	 15.08
	 13	 10239	 .0004100	 18.05
	 14	 43835	 .0000960	 99.71
	 15	 49793	 .0000896	 58.97
	 16	 40656	 .0026000	 172.58
	 17	 50774	 .0009530	 44.25
Coefficients:

Estimate

Std.  

Error

t  

value

Pr 

(>|t|)

(Intercept) -33.46 1.490e+01 -2.246 0.0413

1 2.055e-03 2.945e-04 6.977 6.48e-06

2 29836 1.365e+04 2.185 0.0464

Residual standard error: 44.28 on 14 degrees of 

freedom Multiple R–squared: 0.9234, Adjusted R–

squared: 0.9125 F-statistic: 84.39 on 2 and 14 

DF, p-value: 1.546e–08

Analysis of Variance Table

Response: flth

Df Sum Sq Mean Sq F value Pr(>F)

1 1 321625 321625 164.011 4.04e-09

2 1 9364  9364 4.775 0.04637

Residuals 14 27454 1961

	 a.	 Interpret the value of the coefficient of multiple 
determination.

	 b.	 Predict the value of deposition when x1 5 
20,000 and x2 5 .001.

	 c.	 Since b2 5 29,836, is it legitimate to conclude 
that if x2 increases by 1 unit while the values 
of the other predictors remain fixed, deposi­
tion would increase by 29,836 units? Explain 
your reasoning.

	38.	 An investigation of a die-casting process resulted in 
the accompanying data on x1 5 furnace temperature, 
x2 5 die close time, and y 5 temperature difference 
on the die surface (“A Multiple-Objective Decision-
Making Approach for Assessing Simultaneous Im­
provement in Die Life and Casting Quality in a Die 
Casting Process,” Quality Engr., 1994: 371–383).

x1: 1250 1300 1350 1250 1300
x2: 6 7 6 7 6
y: 80 95 101 85 92
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x1: 1250 1300 1350 1350
x2: 8 8 7 8
y: 87 96 106 108

		  Use a statistical computer package to fit y 5 a 1  
b1 x1 1 b2x2 using the least squares method. Be sure 
to specify all function coefficients. Also include the 
coefficient of multiple determination and interpret 
its value.

	39.	 Use of sucrose as a carbon source for the production 
of chemicals is uneconomical. Beet molasses is a 
readily available and lower-priced substitute. The ar­
ticle “Optimization of the Production of �-Carotene 
from Molasses by Blakeslea trispora” (J.  of Chem. 
Tech. and Biotech. 2002: 933–943) carried out a 
multiple regression analysis to relate the dependent 
variable y 5 amount of �-carotene (g/dm3) to the 
three predictors amount of lineolic acid, amount of 
kerosene, and amount of antioxidant (all g/dm3).

Obs Linoleic Kerosene Antiox Betacaro

1 30.00 30.00 10.00 0.7000

2 30.00 30.00 10.00 0.6300

3 30.00 30.00 18.41 0.0130

4 40.00 40.00  5.00 0.0490

5 30.00 30.00 10.00 0.7000

6 13.18 30.00 10.00 0.1000

7 20.00 40.00  5.00 0.0400

8 20.00 40.00 15.00 0.0065

9 40.00 20.00  5.00 0.2020

 10 30.00 30.00 10.00 0.6300

 11 30.00 30.00  1.59 0.0400

 12 40.00 20.00 15.00 0.1320

 13 40.00 40.00 15.00 0.1500

 14 30.00 30.00 10.00 0.7000

 15 30.00 46.82 10.00 0.3460

 16 30.00 30.00 10.00 0.6300

 17 30.00 13.18 10.00 0.3970

 18 20.00 20.00  5.00 0.2690

 19 20.00 20.00 15.00 0.0054

 20 46.82 30.00 10.00 0.0640

		  A request to the SAS package to fit a 1 b1x1 1  
b2x2 1 b3x3 yielded the following output:

Dependent Variable:  beta

Source DF

Sum of 

Squares

Mean  

Square

F  

Value

Pr  

. F
Model 3 0.02352595 0.00784198 0.09 0.9648
Error 16 1.40326270 0.08770392
C. Total 19 1.42678865

R-Square    Coeff Var    Root MSE    beta Mean

0.016489       102.0515    0.296148        0.290195

Parameter Estimate

Standard 

Error

t  

Value

Pr > 

 |t|

Intercept 0.4010752535 0.38164661 1.05 0.3089

lino 0.0011095713 0.00801331 0.14 0.8916

kero -.0032850626 0.00801331 -0.41 0.6873

anti -.0045615514 0.01602662 -0.28 0.7796

A request to the SAS package to fit a function with 
predictors x1, x2, and x3 as well as quadratic and inter­
action predictors yielded the following output:

Dependent Variable:	 beta

Source DF

Sum of 

Squares

Mean  

Square

F  

Value
Pr .  

F

Model 9 1.40762342 0.15640260 81.61 ,.0001

Error 10 0.01916523 0.00191652

C. Total 19 1.42678865

R–Square Coeff Var Root MSE beta Mean

0.986568 15.08576 0.043778 0.290195

Parameter Estimate
Standard 

Error
t  

Value
Pr > 
|t|

Intercept -2.368673650 0.25095313 -9.44 <.0001

lino 0.115946557 0.00896686 12.93 <.0001

kero 0.048329827 0.00896686 5.39 0.0003

anti 0.125140001 0.01622284 7.71 <.0001

lino*kero 0.000116125 0.00015478 0.75 0.4704

lino*anti 0.000820250 0.00030956 2.65 0.0243

kero*anti 0.001002750 0.00030956 3.24 0.0089

lino*lino -0.002108721 0.00011530 -18.29 <.0001

anti*anti -0.009219578 0.00046120 -19.99 <.0001

kero*kero -0.001085436 0.00011530 -9.41 <.0001

	 a.	 What is the coefficient of multiple determina­
tion for each fitted function?

	 b.	 For the fit using a 1 b1x1 1 b2x2 1 b3x3, what 
is the predicted value of �-carotene when lin­
eolic acid 5 40, kerosene 5 20, and antioxi­
dant 5 5? What is the corresponding residual?

	 c.	 For the fit with predictors x1, x2, and x3 as well 
as quadratic and interaction predictors, what is 
the predicted value of �-carotene when lineolic 
acid 5 40, kerosene 5 20, and antioxidant 5 5? 
What is the corresponding residual?

	 d.	 Note the difference in magnitude of the re­
siduals you just computed for the two regres­
sions. Explain how it is reasonable for one of 
these to have a smaller residual magnitude 
given the difference in coefficients of multiple 
determination.
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	40.	 The collapse of reinforced concrete buildings dur­
ing earthquakes can result in significant loss of 
property and life. Often such collapses are caused 
by concrete column axial failure. The authors of 
“Rotation-Based Shear Failure Model for Lightly 
Confined RC Columns” (J. Struct. Engr., 2012: 
1267–1278) introduced a model for the deforma­
tion at onset of shear failure for a class of rein­
forced concrete columns. As part of the study, the 
authors investigated how y 5 maximum sustained 
shear (Vmax, in kN) is influenced by x1 5 transverse-
reinforcement yield stress (MPa) and x2 5 concrete 
cylinder compressive strength (MPa). 
y: 314.9 359.0 300.7 271.3 266.9
x1: 469 469 469 400 400
x2: 21.10 21.10 20.90 25.60 25.60

y: 240.2 231.3 315.8 338.1 355.9

x1: 400 400 400 400 400

x2: 33.10 33.10 25.70 27.60 27.60

y: 378.1 101.9 110.8 103.2 101.9
x1: 400 46 46 365 365
x2: 25.70 4.65 4.34 23.00 20.20

y: 120.5 111.6 219.3 213.1
x1: 365 365 392 392
x2: 23.00 20.20 30.70 30.70

		  Use a statistical computer package to fit (a) a 1  
b1x1 1 b2x2, (b) a 1 b1x1 1 b2x2 1 b3x1x2, and 
(c)  a  1 b1x1 1 b2x2 1 b3x1x2 1 b4x1

2 1 b5x2
2. Be 

sure to specify all function coefficients. For each 
function, also include the coefficient of multiple 
determination and interpret its value.

	41.	 A new surface finishing method has been developed 
for nanofinishing flat and three-dimensional work­
piece surfaces. The authors of “Parametric Analysis 
of an Improved Ball End Magnetorheological Fin­
ishing Process” (J. Engr. Manuf., 2012: 1550–1563) 
investigated how y 5 percent change in surface 
roughness was influenced by x1 5 rotational speed 
of tool core (N, in r/min), x2 5 magnetizing current 
(I, in A), x3 5 working gap (D, in mm).

y: 47.68 39.80 80.69 34.12 45.10
x1: 400 500 500 600 500
x2: 5.0 2.3 4.0 5.0 4.0
x3: 2.00 1.50 0.66 2.00 1.50

y: 46.51 69.63 63.62 37.18 36.75
x1: 500 500 600 668 400
x2: 4.0 5.7 5.0 4.0 3.0
x3: 1.50 1.50 1.00 1.50 2.00

y: 49.94 45.86 70.64 54.75 24.97
x1: 500 500 400 600 600
x2: 4.0 4.0 5.0 3.0 3.0
x3: 1.50 1.50 1.00 1.00 2.00

y: 49.38 59.85 55.18 32.05 44.94
x1: 500 400 332 500 500
x2: 4.0 3.0 4.0 4.0 4.0
x3: 1.50 1.00 1.50 2.34 1.50

		  Use a statistical computer package to fit  
(a) a 1 b1x1 1 b2x2 1 b3x3, (b) a 1 b1x1 1 b2x2 1 
b3x3  1 b4x1x2 1 b5x1x3 1 b6x2x3, and (c) a 1 b1x1 1  
b2x2 1 b3x3 1 b4x1x2 1 b5x1x3 1 b6x2x31 b7x1

2 1 

b8x2
2 1  b9x3

2. Be sure to specify all function coeffi­
cients. For each fit, also include the coefficient of 
multiple determination and interpret its value.

3.6	 Joint Distributions �

In Chapter 1, we presented several different ways to display and summarize sample data 
consisting of observations on a single quantitative variable x. These ideas were then 
extended to a population or process distribution consisting of a density function (when 
x is continuous) or mass function (for discrete x) and the corresponding graph. In this 
chapter, we have discussed bivariate and multivariate sample data. Now we consider 
distributions for two or more variables in a population or ongoing process.

Distributions for Two Variables
Let’s initially focus on the case of two numerical variables x and y. For example, x might 
be the time a customer spends in a grocery checkout line (a continuous variable) and 
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y the number of items purchased by the customer (a discrete variable). In practice, x 
and y are usually of the same type, either both discrete or both continuous. Suppose first 
that x and y are both discrete. Then their “joint” distribution is specified by a joint mass 
function f(x, y) satisfying

f (x, y) $ 0  ^
all (x,y)

f (x, y) 5 1

Often there is no nice formula for f  (x, y). When there are only a few possible values of x 
and y, the mass function is most conveniently displayed in a rectangular table.

A certain market has both an express checkout register and a superexpress register. 
Let x denote the number of customers queueing at the express register at a particular 
weekday time, and let y denote the number of customers in line at the superexpress 
register at that same time. Suppose that the joint mass function is as given in the ac­
companying table:

y

0 1 2 3
0 .08 .07 .04 .00
1 .06 .15 .05 .04

x 2 .05 .04 .10 .06
3 .00 .03 .04 .07
4 .00 .01 .05 .06

According to the table, f(x, y) . 0 for only 17 (x, y) pairs. Just as in the case of a single 
variable, individual proportions from the mass function can be added to yield other 
proportions of interest. For example, (x, y) pairs for which the number of customers 
at the express register is equal to the number of customers at the other register are 
(0, 0), (1, 1), (2, 2), and (3, 3), so

a long­run proportion of
times for which x5y

b 5 f  (0, 0)1  f  (1, 1) 1  f  (2, 2) 1  f  (3, 3)

	 5 .08 1 .15 1  .10 1 .07
	 5 .40

The total number of customers at these two registers will be 2 if (x, y) 5 (2, 0),   
(1, 1), or (0, 2), so

a long­run proportion of
times for which x 1 y52

b 5 f  (2, 0) 1  f  (1, 1) 1  f  (0, 2)

	 5 .05 1 .15 1 .04
	 5 .24

Example 3.19
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Suppose we are presented with the joint distribution but are interested only in the 
distribution of x alone: the marginal distribution of x. In Example 3.19, we might wish 
to know f1(0), f1(1), f1(2), f1(3), and f1(4), the long-run proportions for various values of 
the first variable, x. Consider x 5 1, which occurs when (x, y) 5 (1, 0), (1, 1), (1, 2), or 
(1, 3). Thus

f 1(1) 5 long@run proportion of the time that x 5 1

5 f (1, 0) 1  f (1, 1) 1  f (1, 2) 1  f (1, 3)

5 .06 1 .15 1 .05 1 .04 5 .30

This is nothing more than the sum of proportions in the x 5 1 row of the joint mass 
table. Adding proportions in the other rows gives the entire marginal distribution of x, 
whereas adding proportions in the various columns gives the marginal distribution of y, 
denoted by f2(y):

x: 0 1 2 3 4 y: 0 1 2 3
f1(x): .19 .30 .25 .14 .12 f2(y): .19 .30 .28 .23

Now let’s consider the case of two continuous random variables. The distribution for  
a single continuous variable x is specified by a density function f  (x) that satisfies f  (x)  0  
and   #2  f (x) dx 5 1. The graph of f  (x) is the density curve, and various proportions 
correspond to areas under this curve that are obtained by integrating the density function. 
Extending these ideas to two variables requires that we use multivariate calculus, in par­
ticular multiple integration. The joint distribution of x and y is specified by a joint density 
function f   (x, y) that satisfies

f (x, y) $ 0      #
2

#
2

 f (x, y) dx dy 5 1

The graph of f  (x, y) is a surface in three-dimensional space. The second condition 
indicates that the total volume under this density surface is 1.0. Suppose that x and 
y are reaction times by an individual to two different stimuli (e.g., two different con­
figurations of brake lights) and that we wish to calculate the proportion of individu­
als for which both .5  x  1 and .5  y  1. Letting A 5 {(x, y): .5  x  1, .5   
y  1}, a rectangular region in the x–y plane, the desired proportion is the dou­
ble integral ##  

A f (x, y) dx dy; this is just the volume underneath the density surface 
that lies above the region A, as illustrated in Figure 3.24 (p. 154). Even though the  
region of integration is a rectangle, the integral may be quite difficult to compute 
if the integrand (density function) is complicated, perhaps requiring a numerical 
integration of some sort. When A is not a rectangle, the integration will typically be 
even more difficult to carry out. We are not going to do multiple integration in this 
text; we simply want you to be acquainted with the basic ideas of continuous distributions. 
To see examples of calculations, please consult one of the chapter references.

In the same way that in the discrete case the marginal distribution for either one of 
the variables is obtained by summing the joint mass function over values of the other 
variable [the row or column sums from a rectangular table of f  (x, y)], the marginal den­
sity function f1(x) is obtained by integrating the joint density with respect to y, and f2(y) 
results from integrating f (x, y) with respect to x.
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Correlation and the Bivariate Normal Distribution
Let h(x, y) represent some particular function of x and y, such as h(x, y) 5 x 1 y or 
h(x, y) 5 xy. Paralleling the definition of a mean value in the case of a single variable, 
the mean (or expected) value of h(x, y) is a weighted average of h(x, y), with the weights 
given by the joint mass or density function:

�h(x,y) 5 d ^ ^h(x, y) f (x, y)            x, y discrete

                    ##h(x, y)f  (x, y) dx dy         x, y continuous

Let �x and �y denote the mean values of x and y, respectively. Then the function

h(x, y) 5 (x 2 �x)(y  2 �y)

is a product of x and y deviations from their mean values [like (x 2 x)(y 2  y) in our 
discussion of sample correlation]. The mean value of this product of deviations 
is called the covariance between x and y, and the population correlation coef-
ficient is

� 5
covariance(x, y)

�x�y

where �x and �y are the x and y standard deviations, respectively. This definition of � is 
very similar to the definition of the sample correlation coefficient r given in Section 3.2. 
You need not worry about calculating �, but we do want you to know that it exists and 
shares many properties with r. In particular,

1.		 � does not depend on the x or y units of measurement.
2.		 21 � 1
3.		� The closer � is to 11 or 21, the stronger the linear relationship between the two 

variables.
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One of the most frequently occurring bivariate distributions in statistics generalizes 
the univariate normal distribution introduced in Section 1.4. The bivariate normal 
joint density function is given by

f  (x, y) 5
1

2��x�y21 2 �2
 e

2 
1

2(1 2 �2)
c a

x 2 �x

�x
b

2 

2 2� a
x 2 �x

�x
b a

y 2 �y

�y
b 1 a

y 2 �y

�y
b

2

d

2 , x ,
2 , y ,

One interesting example of the use of this joint distribution appears in the article “Analysis 
of Size-Grouped Potato Yield Data Using a Bivariate Normal Distribution of Tuber Size 
and Weight” (J. of Agric. Science, 1993: 193–198). Figure 3.25 is a three-dimensional graph 
of this function for specified parameter values. The function cannot be easily integrated, 
so tables or numerical methods must be employed to calculate various proportions of in­
terest. In Chapter 11, we consider an inferential procedure for drawing conclusions about 
� based on assuming that the sample was selected from a bivariate normal distribution.
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Figure 3.25  Graph of the bivariate normal density function when �x 5 10, 
�x 5 1, �y 5 25, �y 5 2,  and � 5 .5

The Case of Independence
In general, it may be difficult to find a reasonable joint distribution for two variables x 
and y. The one situation in which this task is relatively straightforward is when x and 
y are independent. Intuitively, independence means that knowing the value of x does not 
change the distribution of y (equivalently, the distribution of y is the same for each dif­
ferent x value) and knowing the value of y has no bearing on the distribution of x. Look Un
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back at the joint distribution table for x and y in Example 3.19. Notice that if x 5 0, 
then y 5 0 is a possibility but not y 5 3. However, if x 5 4, then y 5 0 is excluded, 
whereas y 5 3 is possible. So the distribution of one variable does depend on the value 
of the other, and the variables are therefore not independent.

Let f1(x) and f2(y) denote the marginal distributions of x and y, respectively. 
Frequently, an investigator has enough knowledge of the situation under study to 
assume independence. When this is the case, the joint mass or density function 
must satisfy

( )    f  (x, y) 5 f1(x) . f2(y)

For the variables of Example 3.19 to be independent, every entry in the joint table would 
have to be the product of the row and column totals. Very importantly, once indepen­
dence is assumed, one has only to select appropriate distributions for x and y separately 
and then use ( ) to create the joint distribution.

Independence was introduced in Chapter 1 in connection with the binomial distri­
bution. The concept will be considered further when we discuss probability in Chapter 5.

Variables x and y that have a bivariate normal distribution will be independent if
� 5 0, since then the joint density can be written as a product of two univariate normal 
densities. If the joint distribution is not bivariate normal, however, then � 5 0 does not 
imply independence. Zero correlation means only that there is no linear relationship, 
whereas independence means that there is no relationship of any sort.

More Than Two Variables
Suppose that k variables x1, x2, . . . , xk are under consideration. We might, for example, have 
a system with k 5 4 components and let xi be the useful lifetime of component i(i 5 1, 2, 3, 
4). Properties satisfied by a joint mass or density function f (x1, . . . , xk) are analogous to those 
in the bivariate case. It can be quite difficult to specify a reasonable joint distribution. The 
multivariate normal distribution is frequently used when the variables are continuous. How­
ever, its density function is rather complicated. If it can be assumed that the variables are 
independent, then the joint distribution is again the product of the marginal distributions.

A business is planning to purchase two different new vehicles, a van and a sedan. Let 
x denote the number of major defects on the first vehicle, and y be the number of 
major defects on the second one. Because the vehicles come from different manu­
facturers and assembly lines, an assumption of independence is reasonable. Suppose 
x has a Poisson distribution with � 5 2 and y has a Poisson distribution with � 5 1.5 
(the marginal distributions). Then

f (x, y) 5 c e22 (2)x

x!
d c e21.5 (1.5)y

y!
d  x 5 0, 1, 2, . . . ; y 5 0, 1, 2, . . . 

The long-run proportion of such purchases that would result in at most one major de­
fect for the two vehicles combined (x 1 y # 1) is then f (0, 0) 1 f (0, 1) 1 f (1, 0) 5 .136.

Example 3.20
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	42.	 A large insurance agency provides services to a 
number of customers who have purchased both a 
homeowner’s policy and an automobile policy. For 
each type of policy, a deductible amount must be 
specified. Let x denote the homeowner’s deductible 
amount and y denote the automobile deductible 
amount for a customer who has both types of poli­
cies. The joint mass function of x and y is as follows:

y

f (x, y) 0 250 500

x
200 .20 .10 .20
500 .05 .15 .30

	 a.	 What proportion of customers have $500 de­
ductible amounts for both types of policies?

	 b.	 What proportion of customers have both de­
ductible amounts less than $500?

	 c.	 What is the marginal mass function of x? What 
is the marginal mass function of y?

	43.	 The joint distribution of the number of cars (x) and 
the number of buses (y) per signal cycle at a particular 
left turn lane is displayed in the accompanying table:

y

f (x, y) 0 1 2
0 .025 .015 .010
1 .050 .030 .020

x
2 .125 .075 .050
3 .150 .090 .060
4 .100 .060 .040
5 .050 .030 .020

	 a.	 In what proportion of cycles will there be exactly 
one car and one bus?

	 b.	 In what proportion of cycles will there be at 
most one vehicle of each type?

	 c.	 In what proportion of cycles will the number of 
cars be the same as the number of buses?

	 d.	 What is the mean value of the number of cars 
per signal cycle?

	 e.	 If a bus occupies three vehicle spaces and a car 
occupies just one, what is the mean value of the 
number of vehicle spaces occupied during a sig­
nal cycle? Hint: Let h(x, y) 5 x 1 3y.

	44.	 Let x denote the number of major defects for a 
particular piece of machinery and y be the num­
ber of cosmetic flaws on this same piece. Sup­
pose that x and y are independent variables with 
f1(x) 5 .80, .15, and .05 for x 5 0, 1, and 2, re­
spectively, and f2(y) 5 .50, .25, .15, .08, and .02 
for y 5 0, 1, . . . , 4, respectively.

	 a.	 What is the joint mass function of these two 
variables?

	 b.	 What proportion of these machines will have no 
major defects or cosmetic flaws? What propor­
tion will have at least one defect or flaw?

	 c.	 For what proportion of these machines will the 
number of cosmetic flaws exceed the number of 
major defects?

	45.	 Refer to Exercise 42. Compute the covariance 
between x and y and then the value of the popu­
lation correlation coefficient. Do these two vari­
ables appear to be strongly related? Explain.

Section 3.6 Exercises

Supplementary Exercises

2011: 492–499), researchers examine the physical 
properties of 22 bridge specimens. Each speci­
men was attached to a fatigue testing apparatus. 
Fatigue life was determined as the number of cycles 
(in millions, p. 158) at the end of the fatigue test. 
For each specimen, the corresponding stress range 
(MPa) was also recorded. 

	46.	 Orthotropic steel bridge decks with closed ribs have 
been widely used in suspension bridges, cable-
stayed bridges, and urban elevated expressways due 
to their overall light weights, ease of construction, 
and high load-carrying capacities. In the article 
“Fatigue Evaluation of Rib-to-Deck Welded Joints 
of Orthotropic Steel Bridge Deck” ( J. Bridge Engr., 
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Stress: 121 71 108 99 77

Cycles: 1.257 11.250 2.240 4.030 6.650

Stress: 70 79 56 89 75

Cycles: 6.970 6.430 19.140 3.950 9.000

Stress: 95 90 110 77 64

Cycles: 2.290 4.470 2.150 10.490 19.260

Stress: 90 99 91 91 82

Cycles: 4.120 1.800 2.190 3.150 5.800 

Stress: 75 79

Cycles: 5.130 5.970

	 a.	 Would you fit a straight line to the data and use 
it as a basis for predicting y 5 stress range from 
x 5 number of cycles? Why or why not?

	 b.	 Find a transformation that produces an ap­
proximate linear relationship between the trans­
formed values. Then fit a line to the transformed 
data and use it to obtain an equation that de­
scribes approximately the relationship between 
the untransformed variables.

	47.	 An investigation of the relationship between the tem­
perature (°F) at which a material is treated and the 
strength of the material involved an experiment in 
which four different strength observations were ob­
tained at each of the temperatures 100, 110, 120, 130, 
and 140. A scatterplot of the data showed a substantial 
linear pattern. The least squares line fit to the data had 
a slope of .500 and a vertical intercept of 225.000.

	 a.	 Interpret the value of the slope.
	 b.	 The largest strength value when temperature was 

120 was 40 and the smallest was 29. What value 
of strength would you have predicted for this 
temperature, and what are the values of the re­
siduals for the two aforementioned observations? 
Why do these residuals have different signs?

	 c.	 The values of SSTo and SSResid were 1060.0 
and 390.0, respectively. Calculate and interpret 
the coefficient of determination.

	48.	 As the air temperature drops, river water becomes 
supercooled and ice crystals form. Such ice can sig­
nificantly affect the hydraulics of a river. The article 
“Laboratory Study of Anchor Ice Growth” (J. of Cold 
Regions Engr., 2001: 60–66) described an experi­
ment in which ice thickness (mm) was studied as a 
function of elapsed time (hr) under specified condi­
tions. The following data was read from a graph in 

the article: n 5 33; x 5 .17, .33, .50, .67, . . . , 5.50; 
y 5 .50, 1.25, 1.50, 2.75, 3.50, 4.75, 5.75, 5.60, 7.00, 
8.00, 8.25, 9.50, 10.50, 11.00, 10.75, 12.50, 12.25, 
13.25, 15.50, 15.00, 15.25, 16.25, 17.25, 18.00, 18.25, 
18.15, 20.25, 19.50, 20.00, 20.50, 20.60, 20.50, 19.80.

	 a.	 The r2 value resulting from a least squares fit is 
.977. Interpret this value and comment on the 
appropriateness of assuming an approximate lin­
ear relationship.

	 b.	 The residuals, listed in the same order as the x 
values, are

21.03 20.92  21.35  20.78  20.68  20.11  0.21
20.59  0.13 0.45 0.06 0.62 0.94 0.80
20.14  0.93 0.04 0.36 1.92 0.78 0.35
  0.67  1.02 1.09 0.66  20.09  1.33 20.10

20.24  20.43  21.01  21.75  23.14

		  Plot the residuals against elapsed time. What does 
the plot suggest?

	49.	 An investigation was carried out to study the rela­
tionship between speed (ft/sec) and stride rate (num­
ber of steps taken/sec) among female marathon  
runners. Resulting summary quantities included 

		  n 5 11, ^(speed) 5 205.4, ^(speed)2 5 3880.08,
^(rate) 5 35.16, ^(rate)2 5 112.681, and   (speed) 
(rate) 5 660.130.

	 a.	 Calculate the equation of the least squares line that 
you would use to predict stride rate  from speed.

	 b.	 Calculate the equation of the least squares line that 
you would use to predict speed from stride rate.

	 c.	 Calculate and interpret the coefficient of deter­
mination for the regression of stride rate on speed 
of part (a) and for the regression of speed on stride 
rate of part (b). How are these two related?

	50.	 Refer to Exercise 49. Consider predicting speed 
from stride rate, so that the response variable y 
is speed. Suppose that the values of speed in the 
sample are expressed in meters/second. How does 
this change in the unit of measurement for y affect 
the equation of the least squares line? More gener­
ally, if each y value in the sample is multiplied by 
the same number c, what happens to the slope and 
vertical intercept of the least squares line?

	51.	 The relationship between x 5 strain (in./in.) and y 5 
stress (ksi) for an experimental alloy tension member 
was investigated by making an observation on stress 
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for each of n 5 10 values of strain. A scatterplot of 
the resulting data suggested a quadratic relationship 
between the two variables. Employing the principle of 
least squares gave yn 5 88.791 1 5697.0x 2 328,161x2 
as the equation of the best-fit quadratic.

	 a.	 One observation in the sample was made when 
strain was .005, and the resulting value of stress 
was 111. What value of stress would you have 
predicted in this situation, and what is the value 
of the corresponding residual?

	 b.	 The observed values of stress were 91, 97, 108, 
111, 114, 110, 112, 102, 98, and 91. Using the 
best-fit quadratic gave corresponding predicted 
values of 94.16, 98.87, 102.93, 109.07, 111.16, 
113.36, 113.48, 104.22, 95.93, and 90.80, re­
spectively. Calculate a quantitative assessment 
of the extent to which variation in observed stress 
values can be attributed to the approximate qua­
dratic relationship between stress and strain.

	 c.	 What happens if the best-fit equation is used to 
predict stress when strain is .03? Note: The larg­
est strain value in the sample was .017.

	52.	 An experiment carried out to investigate the relation­
ship between y 5 wire bond pull strength in a semi­
conductor product and the two predictors x1 5 wire 
length and x2 5 die height resulted in data for which 
the best-fit equation according to the principle of 
least squares was yn 5 2.300 1 2.750x1 1 .0125x2.

	 a.	 Interpret the coefficients of x1 and x2 in the 
given equation.

	 b.	 The observed value of pull strength was 24.35 
when wire length was 9 and die height was 100. 
What value of pull strength would you have pre­
dicted under these circumstances, and what is 
the value of the corresponding residual?

	 c.	 The values of SSTo and SSResid were 6110.2 
and 123.4, respectively. Can a substantial per­
centage of the observed variation in strength be 
attributed to the postulated approximate relation­
ship between strength and the two predictors?

	53.	 The accompanying data resulted from an investiga­
tion of the relationship between temperature (x, in 
°F) and viscosity (y, in poise) for specimens of bitu­
men removed from tar sand deposits:

x: 750 800 700 850 590 620 650 680 710 550
y: 50 16 102 10 945 818 403 151 114 1358

	 a.	 Would a straight line fit to this data give accu­
rate predictions of viscosity?

	 b.	 Let x951/x and y9 5 ln(y). Fit a straight line to 
the (x9, y9) data, use it as a basis for predicting 
viscosity when temperature is 720, and calculate 
a quantitative assessment of the extent to which 
the approximate linear relationship between x9 
and y9 explains observed variation.

	54.	 Ground motions resulting from an earthquake can be 
heavily influenced by the dynamic properties of the 
soils overlying bedrock. The authors of “Influence of 
Pore Fluid Viscosity on the Dynamic Properties of an 
Artificial Clay” (J. Geotech. Geoenviron. Engr., 2011: 
1190–1201) investigated properties of an artificial soil 
called modified glyben to study seismic soil-structure 
interaction. Researchers investigated the relationship 
between x 5 fluid content by mass (%) and vane shear 
strength (kPa) for three types of modified glyben at dif­
ferent pore fluid viscosities (w/gw): y' 5 vane shear 
strength (0% w/gw), y'' 5 vane shear strength (25%  
w/gw), y''' 5 vane shear strength (50% w/gw). The 
data below corresponds to a graph from the article:
x 35.0 37.5 40.0 42.5 45.0 47.5
y9 75.0 63.0 57.0 45.0 28.5 38.0
y0 52.0 41.5 38.0 35.0 20.0 16.0
y- 33.5 24.5 22.0 19.0 13.0 10.0

	 a.	 Create the scatterplots for the pairs (x, y=), (x, y==), 
and (x, y===). Does each scatterplot suggest that a lin­
ear relationship holds for the respective variables?

	 b.	 Determine the least squares regression line for 
each pair. For each, determine the correspond­
ing coefficient of determination.

	 c.	 Given the slope coefficients from the regression, 
summarize the relationship between vane shear 
strength and fluid content by mass as pore fluid 
viscosity changes from 0%, to 25%, and to 50%.

	55.	 Failures in aircraft gas turbine engines due to high 
cycle fatigue is a pervasive problem. The article 
“Effect of Crystal Orientation on Fatigue Failure of 
Single Crystal Nickel Base Turbine Blade Superal­
loys” (J. of Engr. for Gas Turbines and Power, 2002: 
161–176) gave the accompanying data and fit a 
nonlinear regression model in order to predict strain 
amplitude from cycles to failure. Fit an appropriate 
curve, investigate the quality of the fit, and predict 
amplitude when cycles to failure 5 5000.
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Obs Cycfail Strampl Obs Cycfail Strampl
  1 1326 .01495 11 7356 .00576
  2 1593 .01470 12 7904 .00580
  3 4414 .01100 13 79 .01212
  4 5673 .01190 14 4175 .00782
  5 29,516 .00873 15 34,676 .00596
  6 26 .01819 16 114,789 .00600
  7 843 .00810 17 2672 .00880
  8 1016 .00801 18 7532 .00883
  9 3410 .00600 19 30,220 .00676
10 7101 .00575

	56.	 Efficient design of certain types of municipal waste 
incinerators requires that information about energy 
content of the waste be available. The authors of the 
article “Modeling the Energy Content of Municipal 
Solid Waste Using Multiple Regression Analysis” (J. 
of the Air and Waste Mgmnt. Assoc., 1996: 650–656) 
kindly provided us with the accompanying data on 
y 5 energy content (kcal/kg); the three physical com­
position variables x1 5 % plastics by weight, x2 5 % pa­
per by weight, and x3 5 % garbage by weight;, and the 
proximate analysis variable x4 5 % moisture by weight 
for waste specimens obtained from a certain region.

Obs Plastics Paper Garbage Water
Energy

Content
  1 18.69 15.65 45.01 58.21   947
  2 19.43 23.51 39.69 46.31 1407
  3 19.24 24.23 43.16 46.63 1452
  4 22.64 22.20 35.76 45.85 1553
  5 16.54 23.56 41.20 55.14   989
  6 21.44 23.65 35.56 54.24 1162
  7 19.53 24.45 40.18 47.20 1466
  8 23.97 19.39 44.11 43.82 1656
  9 21.45 23.84 35.41 51.01 1254
10 20.34 26.50 34.21 49.06 1336
11 17.03 23.46 32.45 53.23 1097
12 21.03 26.99 38.19 51.78 1266
13 20.49 19.87 41.35 46.69 1401
14 20.45 23.03 43.59 53.57 1223
15 18.81 22.62 42.20 52.98 1216
16 18.28 21.87 41.50 47.44 1334
17 21.41 20.47 41.20 54.68 1155

Obs Plastics Paper Garbage Water
Energy

Content
18 25.11 22.59 37.02 48.74 1453
19 21.04 26.27 38.66 53.22 1278
20 17.99 28.22 44.18 53.37 1153
21 18.73 29.39 34.77 51.06 1225
22 18.49 26.58 37.55 50.66 1237
23 22.08 24.88 37.07 50.72 1327
24 14.28 26.27 35.80 48.24 1229
25 17.74 23.61 37.36 49.92 1205
26 20.54 26.58 35.40 53.58 1221
27 18.25 13.77 51.32 51.38 1138
28 19.09 25.62 39.54 50.13 1295
29 21.25 20.63 40.72 48.67 1391
30 21.62 22.71 36.22 48.19 1372

		  Using Minitab to fit a regression function with the 
four aforementioned variables as predictors of en­
ergy content resulted in the following output:

The regression equation is
enercont = 2245 + 28.9 plastics
+ 7.64 paper + 4.30 garbage - 37.4 water

Predictor    Coef      StDev	   T	      P
Constant    2244.9     177.9  12.62    0.000
plastics	 28.925	 2.824	 10.24	 0.000
paper	 7.644	 2.314	 3.30	 0.003
garbage	 4.297	 1.916	 2.24	 0.034
water	  -37.354	 1.834	 20.36	 0.000

s = 31.48 R–Sq = 96.4% R–Sq(adj) = 95.8%
Analysis of Variance

Source DF SS MS F P
Regression 4 664931 166233 167.71 0.000
Error 25 24779 991
Total 29 689710

	 a.	 Predict the value of energy content when plas­
tics is 17.03, paper is 23.46, garbage is 32.45, 
and water is 53.23. Also determine the corre­
sponding residual.

	 b.	 What proportion of observed variation in energy 
content can be explained by the approximate re­
lationship between energy content and the four 
predictors?
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Obtaining Data

4.1	 Operational Definitions

4.2	 Data from Sampling

4.3	 Data from Experiments

4.4	 Measurement Systems

Introduction

Engineering has been defined as the art of applying science and technology for the 
optimal conversion of the resources of nature into the uses of humankind.1 The sci-
ences, in turn, are grounded in mathematics, so it is natural that measurements of all 
kinds should play a large role in engineering and scientific practice. In this chapter, 
we examine some of the ways in which data is collected as well as some approaches 
to ensuring data quality.

Scientists and statisticians have long realized that some sets of data are defi-
nitely more useful than others, and that at the heart of data quality lies the 
realization that external conditions can often exert a large influence on mea-
sured values. Temperature, for example, is well known to affect the physical di-
mensions (length, area, etc.) of most materials, so the measured length of a thin 
strip of aluminum will necessarily vary depending on the ambient temperature. 
In an effort to control or eliminate the effects of such external or “noise” fac-
tors, engineers have developed a large number of professional standards whose 
purpose is to ensure the consistency and quality of scientific data.   We will look 
at some specific examples of such standards in Section 4.1.

Since the early 1920s, statisticians have also addressed the problems of data 
quality by introducing tightly controlled data collection schemes. These schemes, 
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1 Encyclopedia Britannica, 1998.
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162	 chapter 4   Obtaining Data

called experimental designs and sampling plans, provide methods not only 
for controlling or eliminating the effects of external factors but also for assess-
ing the magnitude of their combined effect on measured data. Sampling plans 
also address the problem of how far we can generalize the conclusions that we 
draw from data. One important feature of experimental designs is the ability to 
study the effects of several factors simultaneously on the values of another factor, 
called a response variable. This feature is especially well suited to research and 
development activities. The main components of such designs are introduced in 
Sections 4.2 and 4.3.

The process of obtaining measurements is also vital to the eventual conclu-
sions drawn from data. Numerous questions can be asked about measurement 
procedures: Can we trust a particular measuring instrument’s readings? Are the 
readings accurate and precise? Do repeated measurements of the same object  
give similar results, or do the results exhibit large variation? If different people or 
special laboratories are involved at various stages of the measuring process, does 
this have an adverse effect on the quality of the data? These questions are the sub-
ject of metrology, the study of measurement, and are examined in Section 4.4.

4.1	 Operational Definitions 

When working with data, two facts quickly emerge: (1) There are usually several ways to 
measure the same thing and (2) external factors can exert a large influence on our final 
measurements. We learn early that failing to be specific about what we want to measure 
can lead to endless problems and questions about how, or even whether, to use a set 
of data. To illustrate, suppose that you ask two people to measure the density of water. 
Person A might use the following method: An empty graduated cylinder is weighed and 
then filled with water and reweighed; the two weights are subtracted, giving the weight 
of the water in the cylinder; then, by reading off the water volume from the cylinder’s 
measuring scale, the ratio of the volume to the weight is used as a measure of the 
water’s density. Person B, however, decides to simply use a hydrometer, an instrument 
that directly measures the density of water. Do the two measurement methods agree? 
Probably not. The measurements from person A, for instance, depend on the precision 
and accuracy of the weighing scale used and on the person’s ability to read the volume 
correctly from the cylinder.2 The readings from person B depend on the precision of 
the hydrometer and whether it is correctly calibrated. There are additional reasons why 
the two measurements may not be equal. For instance, what kind of water was used? 
After all, pure water, freshwater, and seawater are known to have different densities. 
Furthermore, temperature is an important factor affecting water density (maximum 
water density occurs at 39.09°F). Did person A and person B measure the same sort of 
water at the same temperatures?

2 Surface tension causes the top of the water to form a bowl-like surface, called a meniscus. Using the top of 
the meniscus leads to a different volume estimate than using the bottom of the meniscus.
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As this example shows, unless you are very specific about what to measure (e.g., 
seawater at 50°F and 1 atmosphere of pressure) and how to measure it, data can be quite 
unreliable. Realizing this, the quality pioneer W. Edwards Deming recommended that, 
prior to collecting any set of data, one should first create an operational definition that 
spells out exactly what is to be measured and exactly how the measurements should 
be made. The reward for doing this is consistent, reliable data. Any two people should 
be able to follow the operational definition and obtain essentially the same measure-
ments. Cognizant of the importance of operational definitions, most scientists include 
a Materials and Methods or Experimental Procedure section that outlines the exact 
procedures employed to collect the data used in a study.

Automobile gasoline is a carefully balanced blend of from 8 to 15 different hydrocar-
bons. The resulting blends must meet up to 15 quality and environmental require-
ments, including standards regarding vapor pressure, boiling point, stability, color, and 
octane rating. The octane scale measures the degree to which a gasoline blend per-
forms like pure isooctane (which gives the least amount of premature firing or “knock”) 
or pure normal heptane (which produces extreme knocking). If the blend performs 
like a mixture of 90% isooctane and 10% heptane, it is assigned an octane rating of 90.

Because octane measurements are heavily influenced by engine speed and 
temperature, an operational definition must be used when assigning octane ratings. 
First, using a standard knock engine, the “research octane” level is measured under 
mild conditions (600 rpm and 120°F). Second, “motor octane” is measured under 
harsher conditions (900 rpm and 300°F). Finally, the “road octane” rating is calcu-
lated as the average of the research and motor octane levels. Road octane, calculated 
by the (R 1 M)y2 method, is the one commonly reported on gasoline station pumps.

Example 4.1

Operational definitions are often created on the job. For example, when inspecting 
injection-molded automobile dashboards, several types of defects can be observed, 
such as pinholes, creases, burn marks, and voids (hollow areas underneath the outer 
skin of the dashboard). To generate meaningful data about such defects, an opera-
tional definition must be created so that any two inspectors will report the same types 
and severity of defects. For example, we might decide to classify creases longer than 
1 inch as severe, whereas creases less than one-quarter inch might be called minor. 
Pinholes that occur under the dashboard (not visible to passengers) could be classi-
fied differently from those that are in the passengers’ field of vision. Similarly, voids 
with large diameters might be treated as major defects, whereas smaller voids are 
minor defects. Once these definitions have been established, the resulting data can 
be reliably used in quality control charts (Chapter 6) or other statistical methods.

Example 4.2

Professional Standards
It often takes highly specialized knowledge to create operational definitions. Conse-
quently, entire professional societies have arisen to create such definitions, which are 
then called professional standards or simply standards. One of the largest such groups 
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is the American Society for Testing and Materials (ASTM). ASTM publishes 
standard test methods, specifications, practices, and guides for engineers working with 
materials, products, systems, and services. Over 12,000 ASTM standards have now been 
published, and these standards are commonly adopted by government agencies for use 
in codes,  regulations, and laws. Building codes, for example, commonly cite ASTM 
standards for conducting tests on structures. In the following example, notice how each 
step of a measurement process is carefully defined.

Concrete used in construction must meet tight consistency standards. Consistency 
refers to the fluidity of the concrete when poured. ASTM C 143 (Standard Method 
for Slump of Portland Cement Concrete) is often cited in state construction codes as 
the required method of testing consistency.

ASTM C 143 requires that a sample of concrete be poured into a cone shaped 
like a megaphone (8-in. diameter at one end and 4-in. diameter at the other end). 
The large base of the cone is on the ground during the pour. The cone is filled 
one-third full and then tamped down 25 times. This procedure is repeated twice, 
leaving the mold full. The cement sample must come from the middle portion of 
the batch being poured. Next, the cone is lifted off the cement and quickly inverted 
and placed beside the conical pile of cement. Without the support of the cone, the 
height of the cement then diminishes or slumps. The distance between the top of the 
cone and the top of the cement is called the slump, and, depending on the building 
code used, the slump must fall within specified limits.

Example 4.3

Other organizations, including the federal government, make extensive use of pub-
lished standards. The Code of Federal Regulations (CFR), for instance, is an important 
source of engineering standards and requirements in all federally regulated industries.

The Department of Transportation (DOT) oversees the testing and rating of au-
tomobile tires. Tires are rated for treadwear, traction, and temperature resistance. 
These ratings are marked on the side of each tire. A treadwear rating of DOT 150, 
for example, means that a tire wears about one and a half times as long as a tire rated 
100 on a standard government test course. Estimating the treadwear of a given brand 
of tire is done via regression analysis.

Because of the numerous factors that can affect treadwear (size of car, driving 
style, road conditions, and speed), the operational definition specified by DOT is 
extensive. In brief, Regulation 49CFR 575.104 (Uniform Tire Quality Grading 
Standards) requires that a convoy of two or four rear-wheel-drive passenger cars be 
driven over a 400-mile government test course in the vicinity of San Angelo, Texas. 
One vehicle is outfitted with special government-manufactured course-monitoring 
tires; the other vehicles have only test tires. Inflation pressures are specified, and 
each vehicle is weight-loaded to put a required test load on the tires. Wheel align-
ments are checked, tires are broken in for two laps (800 miles), air pressure is 

Example 4.4
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Another organization that has played a major role in setting standards for various indus-
tries is the International Organization for Standardization (ISO). Founded in 1947, 
the ISO has published more than 19,500 international standards covering diverse areas 
such as food safety, computers, agriculture, and health care.

rechecked, and wheels are realigned. Initial tread depth, to the nearest .001 in., is 
measured. The convoy is then driven for 6400 miles, rotating tires every 400 miles 
in a specified pattern. A car’s position in the convoy is also rotated. In addition, tires 
are also shifted from one vehicle to another every 1600 miles. Tread depth is mea-
sured every 800 miles. Finally, a regression line is fit to the nine treadwear points 
(one initial reading and eight readings at 800-mile intervals). The regression line 
is used to calculate a projected mileage for the test tires and the monitoring tires. 
Comparisons between the projected test tire wear and monitoring tire wear are used 
to assign the DOT wear rating.

We often assume that children’s toys, once made available on the shelves of a store, 
are perfectly safe to use by children. Unfortunately, this is not always the case as evi-
denced by toy product recalls because of some hazard concern. For example, the U.S. 
Consumer Product Safety Commission maintains a regularly updated website that 
lists various hazardous toy recalls. In 2012, the ISO updated its series of toy safety stan-
dards that detail requirements and test methods for toys intended for use by children 
under 14 years of age; it also sets age limits for various requirements. The series con-
tains four parts: Part 1—Safety aspects related to mechanical and physical properties; 
Part 2—Flammability; Part 3—Migration of certain elements; and Part 4—Swings, 
slides, and similar activity toys for indoor and outdoor family domestic use. Two new 
parts are currently under development: Part 5—Determination of total concentration 
of certain elements in toys; and Part 6—Toys and children’s products—Determination 
of phthalate plasticizers in polyvinyl chloride plastics. By adopting the requirements 
and recommendations of the ISO safety standards, toy manufacturers can help mini-
mize product recalls and reduce the risk of a child being injured by an unsafe toy.

Example 4.5

Benchmarks
Operational definitions are especially appropriate for establishing industry and profes-
sional standards. However, when we want to compare several different products or pro-
cesses, another sort of standard is needed. For these applications, benchmarks are the 
appropriate tools. Benchmarks are well-defined objects or processes whose character-
istics are already explicitly known. Knowing the exact value of some characteristic in 
advance allows one to evaluate several products or processes by comparing how they 
perform against the benchmark. For example, the National Institute of Standards and 
Technology (NIST) keeps copies of standard physical units, such as the volt and the 
kilogram. These standards are the benchmarks against which the precision and accu-
racy of all measuring instruments are eventually compared.
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4.2	 Data from Sampling 

The data used in most applications arises from some form of sampling. By its very 
definition, a sample is simply a fraction or a part of some larger entity. Sometimes, 
the larger entity can be considered to be a population, such as the population of all 
electronic components made during a single workshift. At other times, the sampled 
entity may be a single object, such as a batch of cement, a chemical process, or a city’s 
water supply.

Benchmarks are routinely used for comparing software products. For instance, statis-
tical software packages are evaluated for computational accuracy by using specially 
designed data sets whose statistical properties are precisely known. One repository 
of such benchmark data sets can be found at http://www.itl.nist.gov/div898/strd 
/index.html, a website maintained by the Information Technology Laboratory of 
the National Institute of Standards and Technology. This website was produced as 
part of the Statistical Reference Datasets Project. One of these data sets is the set of 
three integers 10,000,001 to 10,000,003 that is used to evaluate a software programs 
computation of the sample standard deviation, s. The sample standard deviation for 
these three values is s 5 1, the same as for the sample 1, 2, 3.

Using this data set as a benchmark, it is possible to compare the different ap-
proaches to calculating s that are used in software packages. For instance, summing 
the squares of the three integers (a step used in some formulas for s) leads to inac-
curate results. However, programs that use updating formulas (in which the value of 
s is updated as each data point is entered) are generally very accurate.

Example 4.6

Section 4.1 Exercises

	 1.	 What is the primary difference between an opera-
tional definition and a benchmark?

	 2.	 Give an operational definition for measuring the fuel 
efficiency of a car. In your definition, take into ac-
count factors such as the driving speed, octane rating, 
distance driven, tire pressure, and driving terrain.

	 3.	 Give an operational definition for measuring the day-
time temperature in a city. In your definition, take 
into account factors such as time of day and location.

	 4.	 To test the accuracy of a new numerical algorithm, a 
programmer uses the algorithm to produce the first 
200 digits of the number �. The programmer checks 
the accuracy of 200 digits by comparing them to 
those in a published reference, whose accuracy has 
been previously verified. In this application, would 

the published reference more properly be considered 
an operational definition or a benchmark?

	 5.	 Print speed (often measured in pages per minute, 
ppm) is an important property to consider when 
buying a printer. However, printer manufacturers 
measure this property in different ways, making 
comparison of print speeds difficult. In 2009, 
the ISO developed an international standard for 
measuring print speed. The standard, known as 
“ISO ppm,” allows a consumer to make “apples-
to-apples” comparisons of real-world  print speeds 
under standard conditions. It is now common for 
the ISO ppm rating of a printer to be included in 
its product specifications listing. Here, would ISO 
ppm more properly be considered an operational 
definition or a benchmark?
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The goal in all forms of sampling is to be able to draw conclusions about the larger 
entity based solely on our analyses of the information in a sample. For this reason, 
every effort is made to ensure that samples are truly representative of the thing we are 
sampling. Professional standards usually provide great detail on how samples are to be 
obtained. For example, ASTM C 172 (Standard Method of Sampling Freshly Mixed 
Concrete) requires that samples of fresh concrete be taken “. . . at two or more regularly 
spaced intervals during discharge of the middle of the batch . . .” and that the inspector 
should “. . . perform sampling by passing a receptacle completely through the discharge 
stream . . .” while taking care “. . . not to restrict the flow of the concrete . . . so as to 
cause segregation.” Another method of assuring representative samples is based on the 
concept of random sampling, described later in this section.

The Advantages of Sampling
When done properly, sampling has several desirable features. Foremost among these 
are the savings in resources, especially time and money, that can be obtained by us-
ing samples. The economics of sampling are readily apparent because, for example, 
sampling and testing 20 items from a batch of 1000 items obviously involves less 
labor than testing the entire batch. In many cases, it is equally important to control 
the amount of time spent analyzing the sample data itself because production deci-
sions often depend on tests performed on samples. In quality control applications, 
for instance, the decision of whether to adjust a process or to leave it alone is based 
on the analysis of periodic samples taken from an ongoing process. Timely test re-
sults are equally important in construction, where decisions on whether to accept a 
contractor’s work and to proceed to the next phase of construction are based on the 
results of test samples.

Sometimes sampled material must be destroyed during testing. This is the case, 
for example, when evaluating the breaking strength of materials (e.g., metals, wood, 
fabrics, plastics), assessing the potency of drugs, or estimating the average lifetime of a 
group of electronic components. Such evaluation is called destructive testing. In such 
cases, sampling is not just an advantage, it is a necessity.

Even when testing is nondestructive, it still makes sense to sample. In addition to 
the economic benefits described previously, testing done on samples is often more reli-
able than testing done on entire populations. Several case studies have verified this phe-
nomenon. The simple explanation is that testing and inspection errors begin to creep in 
whenever large numbers of items are tested because of inspector fatigue or differences 
between inspectors. With samples, more attention can be devoted to each item tested, 
and this almost always results in more reliable test data.

The inspection and approval of metal welding in building construction can be based 
on nondestructive test (abbreviated NDT) methods, destructive test methods, or vi-
sual inspection. There are several NDT methods available, including magnetic par-
ticle testing, radiographic inspection, penetrant inspection, ultrasonic testing (UT), 
leak testing, and hardness testing. Each of these methods is based on a nondestruc-
tive examination of a sample of welded material.

Example 4.7
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Suppose that we want to perform some electrical tests on a random sample of 
5 integrated circuit chips from a package of 20 chips. Arranging the 20 chips in a 
horizontal line on a table is a rapid way of associating a unique integer from 1 to 
20 with each chip (the leftmost chip would be labeled “1,” the rightmost would be 
“20,” and so forth). It is important to note that the particular ordering of the chips 

Example 4.8

Random Sampling
Random sampling is a form of sampling used extensively in statistical methods. This 
technique presupposes that samples are to be obtained from some well-defined popu-
lation of distinct items, and it provides a simple mechanism for randomly selecting 
items from the population to be included in a sample. The advantages of using random 
sampling are (1) it helps to reduce or eliminate bias in the manner in which the sam-
pled items are chosen and (2) it enables us to make precise statements about the extent 
to which conclusions drawn from a sample can be applied to the entire population.

Random samples are obtained by making sure that every sample of the desired size has 
the same chance of being selected. This in turn implies that each item in the population has 
an equally likely chance of being chosen. One popular method for achieving this is to first 
create a list (called a sampling frame) of the items in a population. Next, successive positive 
integers are assigned to the items on the list, and then a random number generator is used 
to select a random sample of these positive integers. Random number generators can be 
in the form of tables, functions on handheld calculators, or commands in programming 
languages and statistical software. Whatever method is used, the selected integers will  
correspond to specific items in the sampling frame.

When sampling, we are immediately faced with a decision to sample with or with-
out replacement. Sampling with replacement means that after each successive item 
(or integer) is selected for the random sample, the item is “replaced” back into the 
population and may even be selected again at a later stage. Thus, sampling with re-
placement allows for the possibility of having “repeats” occur in our random sample. In 
practice, sampling with replacement is rarely used. Instead, the more common notion 
of sampling is to allow only distinct items from the population in the sample. That is, no 
repeats are allowed. Sampling in this manner is called sampling without replacement. 
Although these two forms of sampling are indeed different, in most applications (i.e., 
when the sample size is small compared to the population size) there is little practical 
difference between them. Unless otherwise stated, however, we will always assume that 
random sampling is done without replacement.

Penetrant inspection, for example, involves the application of a dye (often red in 
color) to the welded surface. The dye penetrates any existing cracks and holes in the 
metal surface. After the excess dye is wiped away, only the dye in the cracks remains. 
To reveal these cracks, another liquid, called a developer, is applied to the surface. This 
causes the dye to come to the surface of the crack and creates a highly visible marking 
of each crack or hole in the weld. An experienced inspector can then make an evalua-
tion of the quality of the weld from the number and location of these markings.
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is completely immaterial to the sampling process. All that is needed is a method for 
assigning integers to the chips, and horizontal positioning achieves that purpose.

Using a random number generator from a calculator or a statistical software 
package, we next generate a random sample of five integers from the numbers 1 
through 20. When doing this, we have to decide whether to sample with replace-
ment or without replacement. Suppose we choose to sample without replacement 
and that the randomly chosen integers turn out to be 4, 14, 3, 18, and 15. Then, 
our random sample of 5 chips would consist of the 4th, 14th, 3rd, 18th, and 15th 
chips, counting from left to right.

Rules for Increasing or Decreasing the Size of a Random Sample3

1.	� The complement of a random sample of size  from a population of size  is itself a 
random sample from the population.

2.	�A ny random subsample of a random sample is also a random sample from the population.

3.	�A ny random subsample from the complement of a random sample is itself a random 
sample from the population.

4.	�A fter a random sample of size  has been selected,  any random sample from its comple-
ment can be added to it to form a larger random sample from the population.

[  The complement of any sample is the name given to those items  in the sample.]

3 Wright, T., and H. Tsao, “Some Useful Notes on Simple Random Sampling,” Journal of Quality Technology, 
1985: 67–73.

The sample size used in random sampling can sometimes change due to changes 
in available budgets or changes in the precision of the information required from the 
sample. In such cases, after already having drawn a random sample of size n from a 
population of N items, we may find ourselves in the position of wanting to either reduce 
or increase the sample size somewhat. A question then arises as to how to accomplish 
this. Fortunately, as the following rules illustrate, adjusting the sample size does not 
require that we discard the items already sampled.

Commercial and military aircraft are built using hundreds of thousands of specially 
designed nuts and bolts, known as “fasteners.” Because these fasteners are subjected 
to stress, fatigue, and a host of environmental conditions, random samples of each 
type of fastener are routinely tested for strength requirements.

Suppose an inspector has drawn a random sample of size 10 from a box  
of completed fasteners and conducts torque tests on them. After testing, the inspector 
is informed that, in fact, a sample of size 25 is required by the customer for these fas-
teners. Since the fasteners remaining in the box are the complement of the original 

Example 4.9
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Random Versus Nonrandom Samples
The first three chapters of this text focus primarily on the mechanics of how data is used to 
describe samples and populations. In Chapter 4, because of the importance of obtaining 
good (and avoiding bad) data, we look at how data is generated in the first place. This is one 
of the most important aspects of conducting a statistical study because you certainly do not 
want all your hard work on a problem to be negated by statements such as “your results are 
only as good as your data” or the well-known acronym GIGO (garbage in, garbage out).

Drawing conclusions from data always comes down to a question of trust: How 
reliable or trustworthy is the person, organization, or method providing the data? Stat-
isticians address this issue by using data-gathering methods based on random sampling 
and randomization (see Section 4.3), techniques that then allow the use of probability 
calculations (Chapter 5) to numerically assess the reliability of the conclusions drawn 

sample of 10, then the inspector need only select a random sample of 15 fasteners from 
the box to add to the original sample. Rule 4 ensures that the group of 25 fasteners 
selected in this fashion qualifies as a random sample from the box.

On the other hand, suppose the inspector had originally selected a sample of 
size 25 but subsequently found that a sample of only 10 was needed. By simply 
selecting a random sample of 10 from the original 25 items, the inspector will have 
legitimately obtained a random sample of size 10 from the box.

Obtaining random samples often requires some ingenuity. This is especially the 
case when it is difficult to develop a sampling frame for the population of interest. 
For example, continuous processes, which are not conveniently divided into finite 
numbers of discrete parts, usually pose special problems when developing sampling 
frames. In such circumstances, it is helpful to remember that a sampling frame can 
also be a procedure, not just a list.4

4 Kish, L., Survey Sampling, John Wiley & Sons, New York, 1965: 53.

Agricultural inspectors are required to select random samples of crops for testing and 
evaluation. Harvested crops stored in cartons or bins, such as citrus fruit, pose special 
sampling problems. Although it is easy to imagine tagging the fruit in a bin with succes-
sive integers and applying the random number scheme to generate samples, doing so 
would be time-consuming and economically prohibitive. Instead, other schemes have 
been developed to obtain random samples in a more economical fashion. One popular 
technique is to select a bin of fruit at random (bins are generally easy to select by the 
random number method) and then follow a “random corner” method for obtaining the 
sample: First, one of the bin’s four corners is chosen at random (a small printed table of 
random numbers is helpful here); then the fruit stacked in the selected corner are used 
to form the sample. This method relies on the reasonable assumption that the fruit 
were randomly mixed when packed in the bin. Choosing a corner at random has the 
additional benefit of not allowing human inspectors to introduce bias into the result-
ing data by always choosing a corner in which the fruit looks especially good (or bad).

Example 4.10
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from the data. Such methods are objective and the only “trust” involved is in assuring 
that random sampling or randomization is correctly employed while gathering the data. 
On the other hand, with nonrandom samples (i.e., data not gathered using some sort of 
randomizing technique), no such probability assessments are possible and the informa-
tion in such data cannot, as a rule, be generalized to larger populations.

The problems with nonrandom data go even deeper. Even with the best intentions, 
when trying to subjectively obtain data that we think is “representative” of a larger popula-
tion, the resulting data can be badly skewed. For example, when assessing the reliability of a 
product, an engineer might try to ensure that the data includes examples of each kind of fail-
ure mode that the product experiences in the field. This practice automatically ignores the 
fact that some failure modes are usually much more prevalent than others, and inferences 
based on such “representative” samples may not only be unreliable, but even misleading.

So, what should you do when nonrandomly collected data arises in practice? 
Although it is acceptable to apply simple descriptive statistical measures to the data (e.g., 
means, histograms, and so forth), be aware that (1) such measures can’t legitimately be 
generalized, and (2) the statistical techniques presented in the following chapters may 
not be valid when applied to such data.

Stratified Sampling
The method of random sampling can be extended to incorporate additional sources 
of information and to handle problems that arise when sampling from populations for 
which suitable sampling frames are hard to obtain. To distinguish basic random sam-
pling (as previously described in this section) from the extended sampling schemes that 
rely on it, random sampling is often referred to as simple random sampling (SRS).

One method for incorporating additional information is stratified sampling. In 
stratified sampling, the population of interest is first divided into several nonoverlap-
ping subsets called strata, and then the SRS method is used to select a separate ran-
dom sample from each of the strata. All of the strata samples are then combined into 
one large “stratified” sample from the population. When the strata are properly spec-
ified, stratified sampling will generally produce estimates that are more precise than  
SRS sampling.

General Rules for Choosing Strata

   � Decide on a response variable  that is of interest.

   � Divide the entire population into nonoverlapping groups (i.e., strata) 1, 2, . . . , each of 
which is as  as possible.

    �Decide on the sample sizes 1, 2, . . . ,  to select from the  strata.

    �Use SRS to obtain a sample from each stratum.

Estimating a Population Mean

Figure 4.1 illustrates the decomposition of a population into strata for estimating the 
mean � of a population. Let the number of population elements that fall within these 
strata be denoted by Ni (i 5 1, 2, 3, . . . , k); each stratum Si has its own mean �i  and 
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standard deviation �i. The selection of sample sizes can be done in two steps: (1) Decide 
on the total sample size n that will be used, and then (2) decide how to divide n up into 
the strata sample sizes n1, n2, n3, . . . , nk.

Companies that produce or handle hazardous chemicals are required to apply for a 
National Pollutant and Discharge Elimination System (NPDES) permit from the 
federal government (“Measuring, Sampling, and Analyzing Storm Water,” Pollution 
Engr., Mar. 1, 1992: 50–55). The environmental concerns addressed by the NP-
DES permit involve the amounts of pollutants carried by storm water runoff from a 
company’s facility to nearby public waters. Pollutant levels are estimated by taking 
random samples of storm water and subjecting them to chemical analysis.

Sampling runoff water is accomplished by stratifying runoff water according to 
the different point sources, usually water channels, that carry the runoff. Using various 
techniques and meters, the average velocity of water flow and the cross-sectional area 
of each channel are estimated. These are used to estimate total flow volumes for 
each point source. The flow volume can be thought of as a measure of the size Ni of 
the ith stratum. The total of all flow volumes represents the population size. Water 
samples from each point source are obtained and chemically analyzed. The total pol-
lutant level is then calculated as a weighted average of the pollutants in each sample, 
weighted by the flow volume from the point source where the sample was obtained.

Example 4.11

1 2 3

1

1, 1 2, 2 3, 3 , 

2 3

1 2 3

sum = 

sum = 

Figure 4.1 A population divided into  strata 1, 2,  

3, . . . ,  of size 1, 2, 3, . . . , 

To choose n, we first decide on a confidence level and a bound B on the error 
of estimation. The confidence level (which will be discussed in greater detail in 
Section 7.2) is a measure of the degree of reliability, measured on a scale from 0% to 
100%, that we would like to have in our final estimate of the overall population mean 
�. Of course, since estimates are based on samples, 100% confidence is not possible, 
so confidence levels are usually restricted to large numbers (e.g., 90%, 95%, 99%, etc.) 
less than 100%. Estimates should also be “close enough” to the population character-
istic they estimate to be useful for subsequent calculations and decision making. This 
requirement is achieved by specifying B, the “plus or minus” margin of error that you are 
willing to accept in your estimate. Finally, we let wi denote the proportion (or weight) Un
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that the ith stratum sample represents in the total sample of n, that is, wi 5 niyn for 
i 5 1, 2, 3, . . . , k. Given the wi’s, the Ni’s, the �i’s, a confidence level of 95%, and B, it 
can be shown that the minimum necessary sample n for estimating the population mean 
� to within a margin of error of  6 B is

n 5

^
k

i51
 
N2

i �
2
i

wi

N2a B
1.96

b
2

1 ^
k

i51
Ni�

2
i

where N 5 N1 1 N2 1 N3 1 1 Nk. For confidence levels other than 95%, replace 
1.96 by the appropriate value from a table of standard normal curve areas.

Assuming the same per unit cost for sampling from each stratum, the optimum 
allocation of sample sizes (called the Neyman allocation) can be shown to be

ni 5 n°
Ni�i

^
k

i51
Ni�i

¢    where n 5

c ^
k

i51
Ni�i d

2

N2a B
1.96

b
2
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If, in addition, the strata standard deviations are identical, then

ni 5 naNi

N
b     where  n 5

1

a B
1.96

b
2

1
1
N

This is called the proportional allocation. Please consult one of the chapter references 
for the case of unequal sampling costs.

Regardless of the allocation used, the stratified estimate of the population mean � 
is given by

xstr 5 x1a
N1

N
b 1 x2a

N2

N
b 1 x3a

N3

N
b 1 1  xka

Nk

N
b

where xi denotes the mean of the ni observations from stratum Si. One of the nice 
features of the proportional allocation is that the resulting data is “self-weighting”; in 
other words, instead of calculating the stratified estimate we can simply combine the 
data from all the strata and calculate the ordinary sample mean of the combined data, 
which, only in this case, will exactly equal xstr.

Stratified estimates of � are usually accompanied by a measure called their standard 
error (which will be discussed more fully in Chapter 7) that can be interpreted in much 
the same way the sample standard deviation is interpreted. That is, if we think of all 
the possible stratified samples of size n that we could have selected, about 95% of the 
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estimated means from such samples will be within about 2 standard errors of �. For 
stratified sampling, the standard error is approximated by

sstr C 1
N2 ^

k

i51
N2

i a
s2

i

ni
b aNi 2 ni

Ni 2 1
b

where si
2 is the sample variance of the ni observations from stratum Si.

Since 1991 the USGS (U.S. Geological Survey) has conducted the National Water 
Quality Assessment Program (NAWQA), whose purpose is to study natural and human 
factors that affect water quality. One important measurement that NAWQA produces 
is an estimate of the percentages of a region covered by various crop types. In one 
study (“Validation of National Land-Cover Characteristics Data for Regional Water 
Quality Assessment,” Geocarto International, Dec. vol. 10, no. 4 1995: 69–80) of the 
percentages of a region covered by corn crops, a region was divided into the following 
strata: A (irrigated crops), B (small grains and mixed crops), C (grasslands and small 
crops), D (wooded areas and crops), E (grasslands), and F (woods and pastures).

The region under study is first divided into smaller regions called quadrats, each 
with an area of 1 km2. These subregions are then assigned to the various strata cat-
egories. Suppose that data from previous studies is used to obtain estimates of the 
standard deviations �i of the percentages of corn crops within each stratum and that 
this information is collected in the following table:

Stratum (Si) Stratum size (Ni) Standard deviation (�i)
A 500 .2
B 300 .2
C 100 .3
D   50 .4
E   50 .6
F 200 .8

Since aerial photographs are used to estimate the percentage of corn coverage at a 
given site, the unit sampling costs will be about the same for each 1 km2 subregion, 
so the Neyman allocation can be used. If we specify a 90% confidence level (the 
area under the z curve between 21.645 and 11.645 is .90) and a margin or error 
of  610% (i.e., B 5 .10), then

n 5

c ^
k

i51
Ni�i d

2

N2a B
1.645

b
2

1 ^
k

i51
Ni�

2
i

 5
[500(.2) 1 300(.2) 1 100(.3) 1 50(.4) 1 50(.6) 1 200(.8)]2

12002a 0.10
1.645

b
2

1 [500(.22) 1 300(.22) 1 1 200(.82)]

 5 109.68   110     (rounding  to  the  nearest  integer).

Example 4.12
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Using the fact that ^k
i51 Ni�i 5 410.0, the Neyman allocation of  n 5 110 to the strata is

Stratum Ni �i Ni�i ni n(Ni�i  yg k
i 1 Ni �i)

A 500 .2 100 n1 5 110(100y410) 5 26.8 27
B 300 .2   60 n2 5 110(60y410)  5 16.1 16
C 100 .3   40 n3 5 110(40y410)  5 10.7 11
D   50 .4   20 n4 5 110(20y410)  5 5.4  5
E   50 .6   30 n5 5 110(30y410)  5 8.0  8
F 200 .8 160 n6 5 110(160y410) 5 42.8 43

The next step in the study is to obtain random samples of size n1 5 27, n2 5
16, . . . , n6 5 43 from the respective strata and to use aerial photographs of the selected 
1-km2 regions to obtain estimates of the corn percentages in these regions. To illustrate, the 
following table summarizes the data from such a study:

Stratum ni Ni xi si

A 27 500 .52 .18
B 16 300 .22 .23
C 11 100 .02 .35
D   5   50 .06 .45
E   8   50 .01 .64
F 43 200 .67 .78

From this data we estimate that overall percentage of the entire region that is covered by 
corn crops is

xstr 5 .52(500y1200) 1 .22(300y1200) 1   1  .67(200y1200)
 5 .39 (or,  39%)

and the estimated standard deviation that accompanies this estimate is sstr  .03 (or, 3%).

Estimating a Population Proportion

Stratification can also be used to obtain an estimate of a population proportion �. Recall 
that a population proportion is simply the proportion of all the items in a population that 
have a particular attribute. In statistics, it is important to remember that the term popula-
tion proportion refers to a proportion of the number of items in a population. Proportions 
or percentages that use different bases of comparison (such as in Example 4.12, where per-
centages of land areas were used) are treated simply as numerical data, not as proportions.

The procedure presented earlier for finding stratified estimates of a population 
mean can easily be converted into a procedure for estimating a population proportion. 
Using earlier notation, where N denotes the population size and Ni denotes the number 
of items in the ith stratum, Si, the only changes in the formulas are:

1.		� Replace each xi by pi, where pi is the sample proportion of items found in the 
sample of ni items selected from stratum Si.

2.		� Replace each �i by 2�i(1 2 �i), where �i is the proportion of items 
in stratum Si that have the given attribute. Since the values of �i 
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Improper handling of newly planted citrus trees can cause a defect called benchroot, 
which is the tendency for the root system to grow sideways. Benchroot eventually 
causes trees to be less healthy and smaller than normal, which results in smaller 
crops. Because citrus trees require several years of growth before reaching maximum 
production levels, the presence of benchroot is not apparent until years after planting. 
By sampling young trees shortly after planting, the extent of the benchroot problem 
can be estimated in time to take other measures, such as replanting selected areas.

Suppose that a citrus cooperative consists of five different farms. Using the farms as 
strata should increase the precision of the final sampling results since the trees within a 
given farm ought to be more similar to each other than to trees on other farms. The number 
of trees on the farms are known to be N1 5 2000, N2 5 4000, N3 5 8000, N4 5 8000, 
and  N5 5 1000. Based on records from previous plantings, the benchroot problem has 
affected no more than about 10% of all trees, so a value of �i 5 .10 (i 5 1, 2, 3, 4, 5) is 
selected for each farm. This means that �i 5 1.10(1 2 .10) 5 .3 for each farm. Since the 
unit costs ci(i 5 1, 2, 3, 4, 5) of selecting and testing a tree are assumed to be equal for each 
farm, the Neyman allocation can be used to find the required sample size and its allocation 
to the strata (farms). Finally, suppose that a confidence level of 95% and an error bound 
of B 5 .03 (i.e., 63%) are chosen. Based on this information, the required sample size is

n 5 

c ^
k

i51
Ni�i d

2

N2a B
1.96

b
2

1 ^
k

i51
Ni�

2
i

 5
[2000(.3) 1 4000(.3) 1 8000(.3) 1 5000(.3) 1 1000(.3)]2

200002a 0.03
1.960

b
2

1 [2000(.32) 1 4000(.32) 1 1 1000(.32)]

 5 376.92

Example 4.13

are not normally known exactly, there are various possibilities for 
estimating them:
a. � You can approximate the �i values based on pilot studies or on results from 

previous studies.
b.  Or, if there is no prior information about �i values, then be pessimistic 

and use �i 5 .5 for each i 5 1, 2 ,3 , . . . , k (this choice maximizes 1�i(1 2 �i)).

The stratified estimate of the population proportion � is then given by

pstr 5 p1a
N1

N
b 1 p2a

N2

N
b 1 p3a

N3

N
b 1 1    pka

Nk

N
b

and its associated standard error is approximated by

sp C 1
N2 ^

k

i51
N2

i a
Ni2 ni

Ni
b api(12 pi)

ni21
b
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which we round to n 5 377. The following table shows the steps in allocating the 
total sample of 377 to the five strata (farms). After sampling, the number of trees with 
benchroot, xi, is recorded for each farm. Note that we have rounded all final sample 
sizes to integer values.

Farm Ni �i Ni�i
ni n(Ni�i   ya k

i 1Ni�i) xi

1 2000 .3   600 n1 5 377(600y6000)  5   38 2
2 4000 .3 1200 n2 5 377(1200y6000) 5   75 5
3 8000 .3 2400 n3 5 377(2400y6000)   5151 8
4 5000 .3 1500 n4 5 377(1500y6000) 5   94 3
5 1000 .3   300 n5 5 377(300y6000)    5   19 2

Of the sampled trees, x1 5 2, x2 5 5, x3 5 8, x4 5 3, and x5 5 2 trees were found to 
have the benchroot problem. Using this data, the stratified estimate of the proportion 
of all the 20,000 trees in the cooperative having benchroot is

pstr 5 p1a
N1

N
b 1 p2a

N2

N
b 1 p3a

N3

N
b 1 p4a

N4

N
b 1 p5a

N5

N
b 5 .053.

The reader can verify that the standard error associated with this estimate is 
sp 5 .011.

Cluster Sampling
Stratified and SRS sampling are best when relatively complete lists of population elements 
and strata sizes are known before sampling. In some applications, however, such informa-
tion is difficult or impossible to obtain. In wildlife sampling, for instance, scientists usually 
do not have advance knowledge of either the size of the particular population or the size of 
the various strata in the population. In such cases, some form of cluster sampling is used 
instead of SRS or stratified sampling. Like stratified sampling, cluster sampling requires 
that we first divide a population into nonoverlapping groups, called clusters. However, we 
do not need to know the number of population elements in each cluster. Instead, we simply 
take an SRS sample of the clusters and then measure all elements within the selected clus-
ters. For example, the U.S. Census relies on cluster sampling when complete lists of city in-
habitants are not known. A city is divided into blocks (clusters) using maps, then a random 
sample of these blocks is selected and all residences in the sampled blocks are contacted.

Biologists and ecologists frequently sample geographic areas by dividing a map of a 
region into a collection of small square regions called quadrats (Ripley, B. D., Spa-
tial Statistics, New York, Wiley, 2004: 102). By making sure the quadrats do not over-
lap, we can apply the method of cluster sampling by choosing a random sample of 
quadrats to investigate. In wildlife studies, for instance, the number of a given species 
in each of the selected quadrats is counted. Because the area of a quadrat is known, 
these counts are usually converted into a count per unit area, which is a measure of 
the abundance of the particular species per unit area.

Example 4.14
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Section 4.2 Exercises

	 6.	 Devise a procedure for selecting a random sample 
of words from a dictionary. Explain why your proce-
dure guarantees that, for any n, each collection of n 
words has an equally likely chance of being selected.

	 7.	 Sometimes it is difficult or impossible to determine 
the population size before selecting a random sample. 
Describe how you would go about selecting a random 
sample of trees from a 1-square-mile area of forest.

	 8.	 Small manufactured goods are often gathered into 
large batches, called lots, for purposes of handling 
and shipping. Random sampling is commonly 
used to evaluate the quality of items in a given lot. 
Suppose an inspector selects a random sample of 
20 items from a lot of 1000 items.

	 a.	 Before evaluating the 20 items, the inspector de-
cides that a sample of size 30 should be used in-
stead. If the inspector obtains a second random 
sample of size 10 from the remaining 980 items, 
can the two samples combined be validly con-
sidered a random sample of 30 from the lot? Ex-
plain your reasoning.

	 b.	 Suppose the inspector decides that only 15 items 
must be tested. Describe a method by which a 
valid random sample of 15 from the lot can be 
formed from the 20 items already selected.

	 9.	 Citrus trees are usually grown in orderly arrangements 
of rows to facilitate automated farming and harvesting 
practices. Suppose a group of 1000 trees is laid out in 
40 rows of 25 trees each. To test the sugar content of 
fruit from a sample of 30 trees, researcher A suggests 
randomly selecting five rows and then randomly se-
lecting six trees from each sampled row. Researcher B 
suggests numbering a map of the trees from 1 to 1000 
and selecting a random sample (without replace-
ment) of 30 integers from the integers 1 to 1000.

	 a.	 Without performing any calculations, do you 
think that both methods are capable of gener-
ating random samples from the block of trees? 
Justify your answer using the rules for random 
samples listed in this section.

	 b.	 Suppose that the group of trees is grown on 
the top and sides of a small hill. A researcher 
suggests that, because growing conditions 

(e.g.,  daily amounts of sunlight) are different 
on the four sides of the hill, the hill should be 
divided into four quadrants and trees should be 
randomly sampled from each quadrant. What is 
the name for this type of sampling procedure?

	10.	 In stratified sampling, explain why it is best to 
choose strata such that the objects within any stra-
tum are relatively homogeneous.

	11.	 Explain how to use the 5RANDBETWEEN fun
ction in Excel™ to generate a random sample from 
the integers 1 through 1000. Does the 5RANDBE- 
TWEEN function generate samples with or without 
replacement?

	12.	 A population of items is partitioned into k strata of sizes 
N1, N2, . . . , Nk. Using proportional allocation, ran-
dom samples of size n1, n2, n3, . . . , nk  are selected 
from the strata and the numbers x1, x2, x3, . . . , xk

of items having a specified characteristic are deter-
mined. Sample proportions p1, p2, p3, . . . , pk are 
then computed (i.e., pi 5 xi   

yni for each i).
	 a.	 Write an expression for the weighted average of 

the sample proportions, using the stratum sizes 
as weights.

	 b.	 Show that the weighted average in part  (a) 
simplifies to (x1 1 x2 1 x3 1 1 xk)y(n1 1 n2 1

n3 1 1 nk).

	13.	 Integrated circuits (ICs) consist of thousands of small 
circuits, electronic subcomponents (e.g., resistors), 
and connections. An important factor in the manu-
facture of ICs is the yield, the percentage of manu-
factured ICs that function correctly. Stratified sam-
pling has recently been used to estimate the number 
of defects of various kinds that occur throughout an 
IC. The area of the IC is first divided into smaller 
areas (i.e., strata) and then small sample areas are 
selected from the strata and examined for defects. 
A stratified estimate of the overall proportion of de-
fects can be used to help estimate the eventual yield 
of the IC manufacturing process.

In one such study, to estimate the proportion 
of pinholes on an IC, its entire surface was first di-
vided into 10 equal areas (strata), each of which was 
further subdivided into 1000 smaller rectangles that 
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served as the elements to be sampled. It was also as-
sumed that the unit costs and variances of the num-
bers of pinholes were equal from strata to strata.

	 a.	 Calculate the population size N.
	 b.	 Using a confidence level of 90% and a bound on 

the error of estimation of B 5 .03 (i.e., 63%), 
calculate the required sample size n and its 
allocation n1, n2, n3, . . . , n10 to the ten strata. 
Round all sample sizes to the nearest integer.

	 c.	 Using the sample sizes in part (b), the results of 
the study showed the following numbers of pin-
holes per sample:

		  Sample #:	 1  2  3  4  5  6  7  8  9  10
		  Pinholes:	 5  4  7  6  3  9  5  6  2    8

		  Calculate the stratified estimate of the proportion 
of pinholes on the entire IC.

	 d.	 Calculate the standard error associated with the 
estimate in part (c).

	14.	 Of the elements of a certain population 20% are 
grouped into stratum S1 and the rest of the popu-
lation elements comprise stratum S2. Suppose that 
the variances of the characteristic being measured 
are the same for each stratum, but it costs twice as 
much to obtain a sampled item from stratum S1 as 
it does from stratum S2. What is the best allocation 
of a total sample of n 5 1000 to these two strata?

	15.	 When the per unit cost of sampling from stratum 
i is ci, it can be shown that the optimal weights for 
allocating the total sample size are given by

		  wi 5

Ni�i1ci

N1�11c1

1
N2�21c2

1
N3�31c3

1 1  
Nk�k1ck

	 a.	 In the case where all unit sampling costs are equal, 
show that the resulting weights give the formulas 
for n and ni specified by the Neyman  allocation.

	 b.	 In the case where all unit sampling costs are equal 
and all strata variances are equal, show algebraically 
that the resulting weights give the formulas for n 
and ni specified by the “proportional” allocation.

	16.	 In stratified sampling, explain why the number of 
strata, k, should not exceed ny2, where n 5 n1 1 
n2 1 n3 1   1 nk is the total sample size and ni 
denotes the number of sampled items selected from 
stratum Si (i 5 1, 2, 3,  . . . , k).

	17.	 In stratified sampling, what value would you use in 
place of 1.96 if you wanted the confidence level to 
be 99% rather than 95%? What is the consequence 
of using the higher confidence level on the neces-
sary sample size?

4.3	 Data from Experiments 

The choice of a data collection method is dictated, to a large extent, by how we intend 
to use the data. If our work involves applying standards and codes (e.g., strength testing 
of concrete in commercial buildings, measuring the amount of a pollutant in a water 
sample, or assigning the DOT treadwear rating printed on automobile tires), then it is 
desirable to use operational definitions (Section 4.1) to keep tight control over every as-
pect of the measurement process. By doing so, we ensure that the results will be directly 
comparable to similar tests and measurements made by ourselves and others. On the 
other hand, if our work involves research and experimentation, then it is necessary to 
purposely allow some of the underlying conditions to vary so that their combined effects 
can be studied and understood. In this way, we can generalize the conclusions obtained 
from the data to a larger setting. This text is concerned primarily with the latter type of 
application: the statistical tools needed in research and experimentation.

The statistical techniques used in experimental research are collectively known 
as experimental designs. In the sciences, these tools are also referred to as the design 
of experiments, commonly abbreviated DOE. Experimental designs are carefully de-
tailed plans for obtaining sample data for the purpose of understanding relationships 
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Plastic resins used in injection molding machines are designed to meet various pro-
duction requirements (e.g., melting temperatures, hardness, color). Raw resins are 
manufactured in the form of solid plastic pellets that are subsequently melted inside 
an injection molding machine and then “shot” into molds.

Suppose that a company wants to test similar resins from two suppliers, A and B, 
to determine which one better achieves the hardness requirements for certain molded 
parts. One experimental approach is to test each resin two or more times using the same 
molding machine. By combining more than one reading for each brand, we hope to 
“average out” any unexpected biases that might creep into any single measurement. In 
such an experiment, the average hardness measurements would be directly comparable. 
That is, as long as all other experimental conditions are held constant, there would be 
little doubt that differences between the average hardness measurements could be at-
tributed to differences between the two brands of resin. Figure 4.2(a) depicts this design.

It is very difficult, however, to extrapolate such results to a more general setting. For 
instance, would the hardness measurements be significantly affected if we used several 
different molding machines? Figure 4.2(b) shows a simple experimental design that 
allows us to answer this question while simultaneously allowing us to answer the origi-
nal question about differences between the two brands. The noteworthy feature of this 
design is that comparability between brands is maintained [by comparing the average 
hardness reading (x1 1 x2)y2 for brand A to the average  (x3 1 x4)y2 for brand B], yet 
we can also answer questions about whether different machines influence the results 
[by comparing the two machine averages (x1 1 x3)y2 and (x2 1 x4)y2]. As this design 
illustrates, the key to maintaining comparability while answering questions about gen-
eralizability is to make each measurement work more than once. Note, for instance, 
that reading x1 appears in the average for brand A and again in the average for machine 
1. Designs such as the one in Figure 4.2(b) can easily be extended to handle more and 
more complex questions involving the effects of changing several test conditions.

Example 4.15

Figure 4.2  Experimental designs for hardness requirements: 
(a) one machine, two measurements per brand; (b) two 
machines, two measurements per brand

1 2 3 4

Brand A Brand B

(a)

1

2

3

4

Brand A

Machine 1

Machine 2

Brand B

(b)

between variables and generalizing conclusions obtained from the data. Inherent in 
these designs are methods for balancing the two opposing goals of comparability and 
generalizability mentioned in the previous paragraph.

Experimental designs are considered to be controlled studies because they place 
strict guidelines on which factors are allowed to vary and on the range of values these 
factors may assume. In this way, they differ from observational studies, in which Un
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experimenters simply observe and measure but otherwise allow all factors to vary freely. 
The following list shows some of the most common applications of experimental design.

Where Experimental Designs Are Used

  	 Studying cause-and-effect relationships
  	 Increasing the external validity of data
  	 Studying how independent variables (factors) affect a dependent variable (response)
  	 Studying the interrelationships among factors that affect a response
  	 Optimizing product and process characteristics
  	 Measuring experimental error

Experimental Design Terminology
Most of the concepts and terminology of experimental design were developed in the 
mid-1920s by the English statistician Sir Ronald Fisher while he was working at the 
British Agricultural Experimentation Station at Rothamsted, just outside London. Al-
though Fisher’s applications were primarily agricultural, statisticians quickly realized 
that the methods of experimental design were universal and soon began using them in 
industrial and scientific applications as well.

The object of using an experimental design is to study and quantify the effects that dif-
ferent test conditions have on some measurable characteristic of a product or process. For 
instance, experimental designs have been used for decades to analyze drilling processes. 
In one such study, the thrust force (lb) required to push a drill into a bar of aluminum 
was studied along with two explanatory variables, drill diameter (in.) and the feed rate  
(in./revolution) with which the drill penetrates the metal (“Design of a Metal-Cutting 
Drilling Experiment: A Discrete Two-Variable Problem,” Quality Engr., 1993: 71–98). In 
the language of experimental design, the thrust force is a response variable (also called 
a dependent variable); drill diameter and feed rate are two factors (also called indepen-
dent variables) whose values are thought to explain or affect the values of the response 
variable. Part of the experimental process involves selecting specific factor values, called 
the factor levels (or treatment levels), to use in the study. In this study, five different feed 
rates were used (.005, .006, .009, .013, and .017 in./rev.) along with five drill sizes (.225, 
.250, .318, .406, and .450 in.). The final choice to be made involves the experimen-
tal unit(s) to which the treatments will be applied. Experimental units are the objects 
or material upon which the final measurements are made. In the drilling study, it was 
decided to use samples of a single type of aluminum alloy as the experimental units.

The particular choice of experimental units is important because it influences the 
range of validity of the experimental results. Generally speaking, the more variation there 
is between experimental units, the wider the range of validity of the experiment. By choos-
ing a single type of aluminum alloy, for example, the results of the drilling experiment 
previously described are limited primarily to conclusions about drilling in aluminum. 
If, instead, the experimental units had consisted of different types of metals, then the ex-
perimental results would correspondingly apply to a wider range of drilling applications.

The Basic Tools of Experimental Design
Experimental designs are built from a small group of tools, each addressing specific con-
cerns about experimental results: reducing bias, reducing experimental error, reducing 
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the effect of external factors, and increasing the generalizability of the conclusions. 
What follows is an overview of these tools. Specific designs are presented in Chapter 10.

Perhaps the most familiar tool is that of replication, that is, making several repeated 
measurements at each fixed combination of factor or treatment levels. For instance, in 
Figure 4.2(b) of Example 4.15, suppose that we decide to make three measurements 
of plastic hardness at each of the four combinations of factor levels: {brand A with ma-
chine 1, brand B with machine 1, brand A with machine 2, brand B with machine 2}. 
The purpose of doing this is twofold: (1) Biases tend to be eliminated when several 
measurements are averaged and (2) the variation between repeated measurements gives 
a measure of experimental error. Experimental error is the name given to the slight 
differences that we expect to find between repeated experimental tests, even when we 
attempt to hold all test conditions constant.

The next tool, randomization, is somewhat less familiar than replication. Random-
ization requires that treatments be given to the experimental units in random order, or 
equivalently, that we assign experimental units to the various treatments in a random 
fashion. In Example 4.15, the experimental units are the individual containers of plastic 
pellets (of each brand) that are used for testing. Since we decided to use three replica-
tions for each combination of factor levels, there are a total of 12 tests to conduct (three 
measurements at each of the four factor combinations). Randomization requires that 
these 12 tests be run in random order. This is easy to accomplish using the methods of 
Section 4.2, as the next example shows.

In Figure 4.2(b) of Example 4.15 (page 180), denote the four distinct treatment com-
binations by M1A, M1B, M2A, and M2B, where M1A stands for the combination 
“machine 1 and brand A,” M1B stands for “machine 1 and brand B,” and so forth. To 
run three replicate tests at each treatment combination, we first number these tests 
from 1 to 12 as in the following table. Next, a random sample of size 12 is chosen 
(without replacement) from the integers 1 through 12. Suppose, for instance, the 
random sample is {11, 3, 7, 1, 4, 5, 12, 2, 8, 10, 6, 9}. With this ordering, test 4 (M2A) 
would be the first one conducted, test 8 (M1B) would be next, and so forth. In this 
way, the tests will be conducted in random order.

Test # Test conditions
Random order in which  

tests are conducted
  1 M1A 11
  2 M1A   3
  3 M1A   7
  4 M2A   1
  5 M2A   4
  6 M2A   5
  7 M1B 12
  8 M1B   2
  9 M1B   8
10 M2B 10
11 M2B   6
12 M2B   9

Example 4.16
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Randomization is used for much the same reasons that we use random sampling 
(Section 4.2): to eliminate unforeseen biases from the experimental data and to lay the 
groundwork for the statistical inferences that we eventually draw from the experiment. 
The first reason is easy to understand when we again consider Example 4.15. To save 
time, for instance, someone might decide to run all three tests involving machine 1 and 
brand A sequentially, since the brand A plastic could simply be inserted in the machine 
three times in a row, avoiding any downtime for cleaning the machine when switching 
to the other brand. However, this might mean that all the tests with machine 1 and 
brand B would have to be conducted on a different day than the brand A tests. Since it is 
possible that environmental factors could change from one day to another or that differ-
ent machine operators might be used on different days, these different conditions them-
selves could be responsible for substantial differences in the hardness measurements. 
In other words, we could no longer be confident about attributing differences between 
hardness measurements solely to differences between the two brands. By running the 12 
tests in random order, we can avoid systematic biases such as these.

The third tool used extensively in experimental design is blocking. Blocking is 
used to screen out the effects of external factors that the experimenter suspects in 
advance will have a large effect on the measurements. Pharmaceutical companies, 
for example, use blocking when testing the effectiveness of a new drug. Because 
different people often differ widely in their responses to drugs, experimenters first 
divide the experimental subjects into homogeneous groups or blocks. The people 
in a given block are “matched” on various characteristics (e.g., blood pressure, age, 
gender) so that the people in any given block are very similar to one another but fairly 
different from the people in other blocks. The goal is to maximize the similarity of 
the subjects within each block and to maximize the differences between the blocks. 
For instance, block 1 might consist of young females with low blood pressure, block 
2 could consist of middle-aged men with high blood pressure, and so forth. After 
the blocks are formed, the experimental treatments are applied within the blocks. 
For example, half of the people in block 1 would be given the new drug, whereas 
the other half would receive a placebo. Similarly, half the people in block 2 would 
receive the new drug and half would receive the placebo. In this way, when we look 
at a particular block, any differences in response between the two halves of the block 
could be attributed to the different treatments (receiving the drug or receiving the 
placebo), not to the differences between people. Without blocking, differences in the 
response to different treatments can often be masked by large differences between 
the individuals randomly selected for each treatment.

Blocking increases the sensitivity of an experiment for detecting differences be-
tween treatments. When blocking is applied in conjunction with randomization, it is 
possible to design experiments that are simultaneously sensitive to differences between 
the treatments studied but less sensitive to the unknown external factors that might 
affect the data. One popular phrase that summarizes how these tools are to be used is 
“block what you know, randomize what you don’t.”5 In other words, try to identify known 
sources of variation and eliminate their effect by forming blocks. However, within each 
block, remember to assign experimental units to the treatments in a random fashion.

5 Box, G. E. P., W. G. Hunter, and J. S. Hunter, Statistics for Experimenters (2nd ed.), John Wiley & Sons, 
New York, 2005: 93.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



184	 chapter 4   Obtaining Data

The strength of concrete used in commercial construction tends to vary from 
one batch to another. Consequently, small test cylinders of concrete sampled 
from a batch are “cured” for periods up to about 28 days in temperature- and 
moisture-controlled environments before strength measurements are made. 
Concrete is then “bought and sold on the basis of strength test cylinders” (ASTM 
C 31 Standard Test Method for Making and Curing Concrete Test Specimens 
in the Field).

Suppose that we want to compare three different methods of curing concrete 
specimens. We know that batch-to-batch variation can be a significant factor in 
strength measurements. One way to compare the three methods is to use different 
batches of concrete as blocks in an experimental design. This is accomplished by 
separating each batch into three portions and then randomly assigning the portions 
to the three curing methods. Table 4.1 shows the data from one such test using ten 
batches of concrete of comparable strengths.

The purpose of blocking is to allow for fair comparisons among the three test 
methods. Notice, for example, that all three methods gave relatively lower values 
for batch 6 and higher values for batch 5. This is evidence of a difference be-
tween batches 5 and 6. By blocking, however, any differences among the batches 
are experienced by all three test methods. Consider how different things might 
be if we had simply assigned entire batches at random to the three test methods. 
By doing so, it is possible that batch 5 could be assigned to method C alone and 
batch 6 to method A alone, which would increase the average strength measure-
ment for column C and decrease the average for column A. In other words, if 
we do not use blocking, then differences among the three test methods could be 
significantly influenced by the manner in which the batches of cement are as-
signed to the tests.

Example 4.17

Table 4.1 Data from the blocked experiment of 
Example 4.17

Strength (in MPa)

Batch Method A Method B Method C

  1 30.7 33.7 30.5

  2 29.1 30.6 32.6

  3 30.0 32.2 30.5

  4 31.9 34.6 33.5

  5 30.5 33.0 32.4

  6 26.9 29.3 27.8

  7 28.2 28.4 30.7

  8 32.4 32.4 33.6

  9 26.6 29.5 29.2

10 28.6 29.4 33.2
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Section 4.3 Exercises

	 b.	 What operational definitions would you sug-
gest that the researcher incorporate into this  
experiment?

	 c.	 What changes would you make to the experi-
ment to increase the generalizability of the 
experimental results?

	22.	 In a study of the ratio of nitrogen, phosphoric acid, 
and potash in fertilizers, four different mixtures 
(M1, M2, M3, M4) of the three chemicals are to be 
tested for their effects on the rate of growth of grass 
seedlings. A square plot of land is subdivided into 
four equal-size square plots, each planted with the 
same amount, by weight, of seedlings. Before the 
fertilizers are applied, each square subplot is itself 
divided into four more squares. Two experimental 
methods are proposed for applying the fertilizers to 
the subplots. In experiment A, the four fertilizers 
are randomly assigned to the large subplots, where-
as in experiment B, all four fertilizers are randomly 
assigned to the subplots of the four large plots. An 
illustration of both experimental designs follows.

M1

Experiment A

M1

M1 M1

M4 M4

M4 M4

M3 M3

M3 M3

M2 M2

M2 M2

M1

Experiment B

M4

M3 M2

M3 M2

M4 M1

M2 M1

M4 M3

M2 M3

M1 M4

	 a.	 If care were taken to ensure that there are no 
significant differences in the growing conditions 
(soil type, irrigation, drainage, sunlight, etc.) 
among the four large subplots, is one of these 
designs preferable over the other? Why?

	 b.	 If it is suspected that there could be significant 
differences in the growing conditions among 
the four main subplots, is one of the two designs 
preferable over the other? Why?

	23.	 A complex chemical experiment is conducted and, 
because the amount of precipitate produced is expect-
ed to vary, the experiment is repeated several times. 
A lengthy lab equipment setup, followed by a tedious 
experimental procedure, allows the experiment to 

	18.	 Four new word processing software programs are to 
be compared by measuring the speed with which 
various standard tasks can be completed. Before 
conducting the tests, researchers note that the 
level of a person’s computer experience is likely to 
have a large influence on the test results. Discuss 
how you would design an experiment that fairly 
compares the word processing programs while 
simultaneously accounting for possible differences 
in users’ computer proficiency.

	19.	 What primary purpose do replicated measurements 
serve in an experimental design?

	20.	 In a study of factors that affect the ability of the laser 
in a DVD player to read the information on a DVD, 
a researcher decides to examine several different pho-
toresist thicknesses used in making the plates from 
which plastic DVDs  are stamped. As a response vari-
able, the researcher decides to measure the average pit 
depth of the holes etched on the surface of the DVD. 
The experiment must be conducted under a fixed 
budget and time constraint that allows the researcher 
to analyze a sample of at most 20 DVDs.

	 a.	 Suppose that it is known that, for any fixed 
photoresist thickness, there tends to be little, 
if any, variation in the pit depths on a DVD. 
Which would be better: (1) an experiment 
with little or no replication and several pho-
toresist thickness levels or (2) an experiment 
with more replication, but fewer photoresist 
thickness levels?

	 b.	 Suppose it is known that, even for a fixed photo-
resist thickness, pit depths can vary substantially. 
Answer the question posed in part (a) for this 
situation.

	21.	 A researcher wants to test the effectiveness of a new 
fuel additive for increasing the fuel efficiency (miles 
per gallon, mpg) of automobiles. The researcher 
proposes that a car be driven for a total of 500 miles 
and that at the end of each 100-mile segment the 
fuel efficiency be measured and recorded.

	 a.	 What is the purpose of measuring efficiency 
every 100 miles? Why not just measure efficien-
cy at the end of the 500-mile course?
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be repeated up to six times in any given day. Conse-
quently, one lab assistant is assigned to set up the lab 
equipment and then conduct six runs one day. The 
next day a second lab assistant conducts another six 
runs using the same lab setup from the previous day. 
What two basic experimental design principles are 
violated by this experimental procedure?

	24.	 Refer to Example 4.15 and Figure 4.2(b). Suppose 
the hardness measurements (in Mohs) of plastics in 
four test runs are as follows:

2.6

2.8

3.2

3.6

Brand A

Machine 1

Machine 2

Brand B

	 a.	 Calculate an estimate of how much plastic hard-
ness is increased or decreased by switching from 
the brand A resin to the brand B resin.

	 b.	 Calculate an estimate of how much plastic hard-
ness is increased or decreased by switching from 
machine 1 to machine 2.

	 c.	 Because this experiment does not provide any 
estimate of the experimental error expected in 
successive experimental runs, it is impossible 
to know whether the estimated change in part 
(a) is caused by switching brands or is simply 
due to experimental variation. Describe how 
you would improve this experiment to obtain 
an estimate of the experimental error.

4.4	 Measurement Systems 

The quality of data is affected by the type of data-gathering plan followed and the reli-
ability of the instruments used to make required measurements. Previous sections of 
this chapter have dealt with concerns about data-gathering methods, especially the role 
of operational definitions and statistics in addressing these concerns. However, most 
statistical methods are not explicitly designed to address questions about the quality of 
the raw measurements themselves. Instead, concerns about measurement quality are 
usually considered separately.

The study of measurement is called metrology. Broadly speaking, metrology is 
concerned with two basic issues. The first deals with our ability to produce measure-
ments of sufficient accuracy and precision to support any analyses based on these 
measurements. The second concern is calibration. Calibration addresses the various 
systematic errors that can cause an instrument’s readings to be in error. A familiar 
example is found in common household scales, which must be “zeroed” before giv-
ing a true reading of a person’s weight. If such a scale consistently gives readings that 
are 5 lb too high, then we say that the scale is “out of calibration” and that it has an 
offset of 5 lb. Instruments are said to be “in calibration” if they give true readings, 
that is, if their offset is zero. Calibrating an instrument usually requires comparing 
its readings to those of a similar instrument that is already known to be in calibration. 
In turn, these secondary instruments must themselves be calibrated by comparison 
with yet a higher standard until we can eventually trace all such comparisons back to 
the highest measurement authority—those housed within the National Institute of 
Standards and Technology (NIST).

Accuracy and Precision
The concepts of accuracy and precision of a measuring instrument are statistical in na-
ture. Accuracy refers to the degree to which repeated measurements of a known quan-
tity x tend to agree with x. Given several repeated measurements x1, x2, x3, . . . , xn of 
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some known value x, we measure the accuracy of the readings by the difference between 
x and the average of the n readings:

accuracy 5 x 2 x

Refer to the n measurement readings displayed in the histogram in Figure 4.3. We can 
think of accuracy as the distance between the center of the histogram (i.e., the mean) 
and the true value of x.

Figure 4.3  Measurement accuracy

Measurements

Accuracy

–

The precision of an instrument describes the extent to which repeated measure-
ments tend to agree with one another. They do not necessarily have to agree with the 
true value x that is being measured. Precision, then, is a measure of variation and is es-
timated by the sample standard deviation of n repeated measurements x1, x2, x3, . . . , xn:

precision 5 s 5 A 1
n21^ (xi2 x)2

Figure 4.4 shows the various combinations of precision and accuracy that are pos-
sible in practice. The worst case occurs in Figure 4.4(a) where the measurements have 
a large variation (i.e., low precision) and are biased to the left of the true value of x. The 
best-case scenario is in Figure 4.4(d), where all the measurements are tightly packed 
around x (i.e., high precision and good accuracy).

Figure 4.4 P recision and accuracy

(a) Inaccurate and imprecise (b) Accurate, but imprecise (c) Precise, but inaccurate (d) Accurate and precise
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Repeatability and Reproducibility
The concepts of repeatability and reproducibility refer to the amount of variation that 
exists between several repeated readings made by a measurement system. Repeatability 
is the amount of variation expected when almost all external sources of measurement 
error have been controlled and held fixed. For this reason, repeatability studies are often 
conducted by the same person using a single instrument to repeatedly measure a single 
item. Repeatability is a measure of the best that one can hope to achieve from a mea-
suring instrument. Because the controlled environment of a repeatability study is hard 
to duplicate in a production environment, repeatability usually paints a very optimistic 
picture of measurement variation.

Repeatability is defined as the sample standard deviation, s, of several repeated 
measurements made under the controlled conditions described previously. When 
we make the additional assumption that the measurement errors follow a normal 
distribution, it is also common to report repeatability as 63s, because we expect the 
vast majority of the readings to fall within a range of about 3 standard deviations 
on either side of the average reading. Because precise estimation of a population 
standard deviation generally requires larger sample sizes than those necessary for 
estimating population means, we recommend against using small sample sizes in 
repeatability studies. If desired, exact sample size formulas for estimating the popu-
lation standard deviation can be used.

In a repeatability study, a worker selects a single manufactured part and measures its 
length 25 times. The measurements (in.) and their sample mean and standard de-
viation are given in Table 4.2. The repeatability of the measuring instrument can be 
reported either as the standard deviation s 5 .096 in. or in terms of 63s 5 63(.096) 5
6.288 in. The latter method has the intuitive interpretation that the instrument’s read-
ings generally lie within about .288 in. of the true length. For instance, if the worker 
measures another part and obtains a reading of 9.98 in., then the true length of that 
part should be somewhere between 9.692 and 10.268 in.

Example 4.18

Table 4.2  Data for the repeatability study of Example 4.18

Repetition Measurement (in.) Repetition Measurement (in.)

  1   9.92 14   9.90
  2 10.05 15   9.88
  3   9.99 16   9.82
  4   9.85 17   9.91
  5   9.90 18 10.05
  6 10.00 19   9.87
  7   9.99 20 10.05
  8   9.98 21   9.94
  9 10.17 22   9.75
10   9.97 23   9.89
11   9.97 24   9.85
12 10.02 25 10.12
13 10.00

x 5 9.95      s 5 .096
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Unfortunately, the terms repeatability and reproducibility are not uniquely defined 
in the literature, so you may encounter alternative definitions from time to time. One 
popular definition of repeatability is given by the formula k12s, which estimates the 
maximum difference that, with high reliability, can be expected between any two in-
strument readings. In this formula, s is the sample standard deviation and the factor k 
depends on the reliability level we specify. Tabled values of k, along with a detailed dis-
cussion of this form of repeatability, can be found in the article by Mandel and Lashof 
listed in the chapter bibliography.

As we allow more and more parts of a measurement system to vary, we move from 
repeatability to the concept of reproducibility. Reproducibility studies allow several fac-
tors to vary at the same time. In such studies, it is common to use several operators and 
several instruments to measure several production items. The idea is to see how the mea-
surement system behaves in an environment more closely resembling a real production 
environment. Reproducibility studies are usually based on simple experimental designs 
that allow us to break measurement variation into distinct components that estimate the 
contribution of the various noise factors (different operators, different parts, etc.) to the 
overall measurement error. Examples of such designs are given in Chapter 10.

Interlaboratory Comparisons
Many measurements are done by laboratories specializing in complex measurement 
procedures. This is the case, for example, for most of the nondestructive tests mentioned 
in Example 4.7. For such data, our concern centers on the consistency of the results 
reported by different laboratories. Practically speaking, we want some assurance that if 
we submit the same sample material to laboratory A and laboratory B, then the results 
reported by the two laboratories will be in close agreement.

The reliability of data from different laboratories is evaluated by means of interlabo-
ratory comparison programs. Professional organizations such as the American Society for 
Testing and Materials (see Section 4.1) run several such programs each year. For example, 
in the ASTM interlaboratory cross-check program for reformulated gasoline, participating 
laboratories are given test samples each month for measurement. The test samples are 
specially prepared under the direction of ASTM to ensure that each lab receives the same 
test material. The data from all participating laboratories is then summarized and given 
to the participating laboratories. In this way, each laboratory can evaluate its performance 
against the others and, if necessary, make changes to its measurement system.

Youden plots, introduced in 1959, are the standard technique for compar-
ing the data from a group of laboratories (Youden, W. J., “Graphical Diagnosis of 
Interlaboratory Test Results,” Industrial Quality Control, 1959: 24–28). To create 
these simple scatterplots, each laboratory is given two nearly identical test samples 
(labeled A and B) to measure. The two measurements from a given laboratory are 
then plotted as a single point on the Youden plot. The horizontal axis is used for 
the measurements of sample A and the vertical axis is used for sample B. As an aid 
in interpreting the plots, horizontal and vertical lines positioned at the medians of 
the sample A data and sample B data are included. Some typical Youden plots are 
shown in Figure 4.5 (page 190). The points generally fall close to a 45° line because 
the two samples (A and B) are similar and because each lab follows a fixed measure-
ment procedure.
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Nonsteroidal anti-inflammatory drugs (NSAIDs) are often used to reduce in-
flammation and relieve fever and pain. Examples of NSAIDs include ibuprofen, 
ketoprofen, and naproxen. In “Second Interlaboratory Exercise on Non-Steroidal 
Anti-Inflammatory Drug Analysis in Environmental Aqueous Samples” (Talanta, 
2010: 1189–1196), researchers wanted to investigate interlaboratory comparisons 
of NSAIDs in different aqueous samples. This research was conducted to ascertain 
the level of interlaboratory agreement of NSAID analyses among various European 
laboratories and also to determine possible sources of variation. In one investigation, 
each of 12 laboratories measured the concentrations of ibuprofen (ng/L) in two test 
samples of tap water. Table 4.3 shows the data from these tests as read from a graph. 
The Youden plot for this data (Figure 4.6) shows many points scattered near the 
45°-line, indicating that several of the laboratories are following different versions of 
the chemical test procedure.

Example 4.19

Figure 4.5 Typical Youden plots and their interpretation: (a) ideal situation with the points evenly 
scattered in all four quadrants; (b) laboratory 1 and laboratory 2 are using procedures that are 
systematically different from those used at the other labs;  (c) most of the labs are following slightly 
different versions of the test procedure

(a) 
Sample A 

Sample B 

(b) 
Sample A 

Lab 2 

Lab 1 

Sample B 

(c) 
Sample A 

Sample B 

Table 4.3	 Ibuprofen Concentrations (ng L–1)

Laboratory Sample A Sample B

  1 29.36 33.33
  2 30.11 41.09
  3 42.74 42.46
  4 46.09 45.20
  5 46.46 46.11
  6 49.81 48.85
  7 60.96 55.24
  8 66.53 40.63
  9 67.65 47.02
10 113.36 105.46
11 172.09 172.11
12 199.97 193.11
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Figure 4.6 Youden plot of the data in Table 4.3
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Sample B

Sample A 
100 150 200

Section 4.4 Exercises

	25.	 To estimate the accuracy and precision of an instru-
ment that measures lengths, a .300-in. gauge block 
was used as a reference standard and was measured 
five times. The resulting measurements were: .301, 
.303, .299, .305, and .304. Calculate estimates of 
both the accuracy and the precision of the measur-
ing instrument.

	26.	 Calibration is the process of comparing an instru-
ment’s measurements to those of a reliable ref-
erence standard. If necessary, the instrument is 
adjusted to bring its measurements into agreement 
with the reference standard. Explain what effect 
calibration has on the estimated precision (not the 
accuracy) of a measuring instrument.

	27.	 Many instrument makers report the accuracy of 
their instruments in terms of relative error as well as 
absolute error. The relative error in a measurement 
is defined as (m 2 x)yx ? 100%, where m is the mea-
sured value and x is the true value. Absolute error is 
given by |m 2 x|.

	 a.	 Calculate the relative errors for each of the five 
measurements in Exercise 25.

	 b. 	Relative errors are often stated in terms of the 
maximum relative error to be expected for any 

measurements within the range of an instru-
ment. Suppose, for example, that a thermom-
eter has a maximum relative error of  64% over 
its operating range of 250°F to 150°F. What 
is the maximum absolute error you would ex-
pect in a measured reading of 70°F from this 
thermometer?

	28.	 After carefully controlling all the chemical reagents 
and conditions during an experiment, a chemist 
weighs the amount of reactant produced by an ex-
periment. The chemist weighs the reactant on an 
electronic balance, then reweighs the reactant five 
times, being careful to remove and replace the re-
actant on the balance between weighings.

	 a. 	In the language of experimental design, can these 
six measurements be considered replications?

	 b. 	What type of variation is measured by calculat-
ing the sample standard deviation, s, of the six 
measurements?

	29.	 The melt f low index (MFI) of a polymer is defined 
to be the amount of the polymer (in grams) that can 
f low in 10 minutes through a standard die when 
subjected to a specified force and temperature. MFI 
is widely regarded as an important characteristic for 
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commercial polymer processing. However, there is 
a lack of reference standards for measuring MFI. To 
address this issue, the authors of “An Interlabora-
tory Comparison of the Melt Flow Index: Relevant 
Aspects for the Participant Laboratories” (Polymer 
Testing, 2007:  576–586) report MFI readings by 24 
laboratories for various polypropylene and polysty-
rene polymer samples. For one of the polypropyl-
ene polymers, each of the 24 laboratories provided 
the following replicate measurements of MFI: 

	 a.	  Create a Youden plot of this data.
	 b.	  �What conclusions can you draw regarding the 

test procedures being used in these laboratories? 
Are there any unusual MFI measurements?

Supplementary Exercises

	30.	 Consult a published reference, weather bureau, 
or Internet site to determine the operational defi-
nition used by weather forecasters when making 
statements like “There will be a 30% chance of 
rain tomorrow.”

	31.	A common method for selecting a random 
sample without replacement from the integers 
1, 2, 3, . . . , N is to generate a random sample 
with replacement (using random number tables 
or a software program) and then discard any 
duplicate numbers that appear in the sample. 
Use the sampling rules in Section 4.2 to justify 
why this procedure will produce a valid random 
sample without replacement.

	32.	 The method of capture–recapture sampling is often 
used to estimate the size of wildlife populations 
(Thompson, S. K., Sampling, John Wiley & Sons, 
New York, 1992: 212–233). To illustrate the method, 
suppose an initial sample of 100 fish from a lake are 

caught and tagged. After releasing the fish and al-
lowing sufficient time for them to mix with the rest 
of the fish in the lake, a second sample of, say, 50 fish 
are caught. The number of tagged fish in the second 
sample is counted.

	 a.	 Suppose there are five tagged fish found in the 
second sample. Because the samples are as-
sumed to be random samples from the entire 
population of T fish, the proportion of tagged 
fish in the second sample should be approxi-
mately equal to the proportion of tagged fish in 
the population. Use this fact to estimate T, the 
total number of fish in the lake.

	 b.	 Generalize your result in part (a). That is, if xtag1 
is the number of fish caught and tagged in the 
first sample and xtag2 is the number of tagged 
fish found in a second sample of size y, write an 
equation for the estimated value of  T.

	33.	 Cr(VI) is a pollutant associated with chromite ore 
processing. In a study of Cr(VI) concentrations, a 

Laboratory Replicate 1 Replicate 2

  1 11.700 11.502
  2   9.790 10.300
  3 12.760 12.073
  4 10.400   9.800
  5 10.648 10.904
  6 11.074 11.072
  7 10.820 10.746

  8 11.473 11.682
  9 10.723 11.545

Laboratory Replicate 1 Replicate 2

10 11.096 11.286
11 10.522 10.215
12 10.603 10.211
13 12.031 12.117
14 10.900 11.477
15 10.876 10.772
16 11.043 11.177
17 10.384 10.669
18 10.118 10.260
19   5.382   5.369
20 10.353 10.132
21 11.413 11.389
22 11.540 11.864
23 12.202 11.548
24 11.227 11.259
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sampling plan was devised to estimate ambient lev-
els of Cr(VI) in the air [“Background Air Concen-
trations of Cr(VI) in Hudson County, New Jersey: 
Implications for Setting Health-Based Standards 
for Cr(VI) in Soil,” J. of Air and Waste Manage-
ment, 1997: 592–597]. The authors propose using 
such background measurements as a basis for de-
veloping health-based standards for chromite ore 
processing plants.

	 a.	 In the study, background samples of air were 
selected to be representative of land use in the 
vicinity of chromite ore processing sites, but not 
so close that these samples would be affected 
by emissions from the processing plants. What 
role would such samples play in an experiment 
to subsequently evaluate emissions at chromite 
ore plants?

	 b.	 The authors used ASTM Standard Test Method 
D5281–92 when measuring the concentrations 
of Cr(VI). What experimental purpose does us-
ing such a standard serve?

	 c.	 Air samples were taken at two different locations, 
an industrial area and an undeveloped commer-
cial site. Samples were collected at each site dur-
ing six 24-hour sampling periods; wet and dry 
days were included. What general experimental 
design principles are illustrated here?

	34.	 Youden plots are frequently used to compare two dif-
ferent instruments or evaluation methods. In a study 
of lawn mower exhaust emissions (“Exhaust Emis-
sions from Four-Stroke Lawn Mower Engines,” J. of 
Air and Waste Management, 1997: 945–950), two 
methods of measuring NOx (nitrogen oxide) emis-
sion rates were compared by using both methods on 

several models of gas-powered lawn mowers. The 
following table shows NOx emission rates (grams/
kWh) for two measuring methods: STC (similar to 
certification), which measures emissions for a 10-sec 
period, and an experimental method C6M, which is 
a weighted average of emission rates obtained under 
six different combinations of running speeds, times, 
and engine loads.

NOx emission rate estimates

Lawn mower STC C6M

 1 3.03 4.40
 2 4.04 4.38
 3 5.34 7.64
 4 6.42 8.28
 5 4.17 7.21
 6 1.23 1.43
 7 4.10 3.91
 8 2.21 1.89
 9 6.57 7.14
10 3.80 4.71
11 4.76 6.80
12  .49   .01
13 1.97 2.91
14 1.64 1.23
15 3.26 2.72
16 4.20 6.95
17   .32   .11
18 7.76 8.73
19 4.79 6.75
20  .98 1.12

	 a.	 Construct a Youden plot of this data.
	 b.	 Use the methods of Chapter 3 to fit a regression 

line to this data, with STC as y and C6M as x.
	 c.	 What conclusions can you draw from the results 

in parts (a) and (b) about the two NOx measur-
ing methods?
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Probability and Sampling  
Distributions

5.1	 Chance Experiments

5.2	 Probability Concepts

5.3	 Conditional Probability and Independence

5.4	 Random   Variables

5.5	 Sampling Distributions

5.6	 Describing Sampling Distributions

Introduction

Chapter 5 marks a transition from purely descriptive methods to the inferential 
methods discussed in the remainder of this book. Beginning in this chapter, we will 
refer to any numerical measure calculated from sample data as a statistic.  As you 
have seen in Chapters 1–3, statistics such as the sample mean, standard deviation, 
and correlation coefficient are useful tools for describing sets of data. Similarly, den-
sity and mass functions provide concise descriptions of populations and ongoing 
processes. One important question left unanswered in those chapters, however, is: 
How do we know what parameter values to use in a mass function or density func-
tion? For example, the Weibull density is commonly used for modeling the lifetimes 
of products, but how do you go about selecting  numerical values for the 
Weibull parameters, � and �, that best describe the lifetimes of a particular product?

One way to answer such questions is to use statistical inference, a tech-
nique that converts the information from random samples (see Section 4.2) 
into reliable estimates of, and conclusions about, population or process parame-
ters. Sections 5.5 and 5.6 illustrate how statistical inference works. When reading 
these sections, it is important to keep in mind the crucial role played by ran-
dom sampling.  random sampling, statistics can only provide descriptive 
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summaries of the data itself.  random sampling, though, our conclusions can 
be reliably extended beyond the data, to the population or process from which 
the data arose. Figure 5.1 illustrates the difference between statistics based on 
ordinary data sets and statistics based on random samples.

Drawing conclusions from samples necessarily involves some risk. Samples, after 
all, only give approximate pictures of populations or processes. Intuition tells us that 
the clarity of these pictures ought to increase as the sample size grows, but intuition 
fails to be more precise than that. For example, when testing a large shipment of 
parts for defective items, most people would agree that finding two defective items 
in a random sample of 10 is very different from finding 200 defectives in a random 
sample of 1000.  Although the sample percentage (i.e., the statistic calculated from 
the data) is the same in both cases, the 20% defect rate in the larger sample seems 
much more credible than the 20% defect rate in the smaller sample.  To quantify just 
how much more credible the information in the larger sample is, we use the tools 
of probability. Probability methods, discussed in Sections 5.1–5.4, provide the basis 
for measuring the amount of confidence or reliability in a statistic.

5.1	 Chance Experiments �

The term chance experiment may sound self-contradictory to an engineer or a scientist. 
What could possibly be random or uncertain about a carefully planned scientific inves-
tigation? The answer, of course, lies in our definition of the term. A chance experiment, 
also called a random experiment, is simply an activity or situation whose outcomes, to 
some degree, depend on chance. To decide whether a given activity qualifies as a chance 
experiment, ask yourself the question, Will I get exactly the same result if I repeat the 
experiment more than once? If the answer is “no,” then the experiment qualifies as a 

Population
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process
Data
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(a)
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process
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Statistic

Random sample

Inference

(b)

Figure 5.1  Statistical inference:  
(a) descriptive statistics;  
(b) inferential statistics
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chance experiment. Under this rather wide definition, determining whether a metal 
part withstands a stress test, recording whether it rains tomorrow, measuring the yield of 
a chemical reaction, assessing the potency of a pharmaceutical product, or measuring 
the volume of water flowing in a drainage system all qualify as chance experiments.

Most chance experiments in the sciences arise because either (1) some natural 
phenomenon is at work, causing unpredictable changes in experimental outcomes, or 
(2) we purposely introduce randomness as a tool for extrapolating information from data 
to conclusions about populations or processes (see Section 4.3). As an example of the 
former, yields of chemical reactions often vary with each repetition of an experiment, 
no matter how hard one tries to control the conditions of the experiment. Slight differ-
ences in handling (e.g., the amount of mixing, the ambient temperature, the elapsed 
time of the reaction) or even in the behavior at the molecular level (e.g., Brownian mo-
tion, material flow) can induce small changes in experimental results. However chance 
experiments may arise, from natural forces or by statistical methodology, probability 
provides a structure for measuring and consistently handling uncertainty.

Events
Underlying the computations of probability is an organized system for describing and 
working with the outcomes of chance experiments. These outcomes can be divided into 
two types: (1) simple events, which are the individual outcomes of an experiment and, 
more generally, (2) events, which consist of collections of simple events. For instance, 
the chance experiment of conducting a series of stress tests on three metal parts has the 
eight possible outcomes PPP, PPF, PFP, FPP, PFF, FPF, FFP, and FFF, where P and  
F denote the test results “pass” and “fail,” and the order in which the letters appear cor-
responds to the part number tested (e.g., PPF indicates that the first two parts passed the 
test, but the third part failed). Each of these eight outcomes is a simple event, which, 
taken together, form the sample space of the experiment.

Events are often denoted by single uppercase letters, usually from the beginning of 
the alphabet, much like we denote constants in formulas by lowercase letters. Single-letter 
names for events are very useful when applying the probability formulas in Section 5.2.  
Thus we might denote the event that at least two parts pass the stress test by A, the event 
that exactly 1 part passes the stress test by B, and so forth. Events can also be described 
by just listing, in brackets, the simple events that comprise them. For example, the 
event that at least two parts pass the stress test corresponds to the set of outcomes {PPP, 
PPF, PFP, FPP}. If we had also chosen to denote this event by the letter A, then we 
could also write A 5 {PPP, PPF, PFP, FPP}.

Let’s continue with our example of stress-testing metal parts. Suppose that we now se-
lect and test four parts. Using sequences of Ps (for parts that pass the test) and Fs (for 
parts that fail the test), the sample space of the experiment of selecting and testing 
four metal parts is somewhat larger than that of the experiment of selecting and test-
ing three metal parts, discussed previously. In particular, the sample space consists of 
these 16 simple events: {PPPP, PPPF, PPFP, PFPP, FPPP, PPFF, PFPF, PFFP, FPPF, 
FPFP, FFPP, PFFF, FPFF, FFPF, FFFP, FFFF}. For convenience, these events are 
listed in order of decreasing numbers of Ps in each four-letter sequence.

Example 5.1
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Suppose we are interested in the events A 5 at least two parts pass the stress test and  
B 5 at most two parts pass the stress test. In terms of simple events, we can write A and B as

A 5 {PPPP, PPPF, PPFP, PFPP, FPPP, PPFF, PFPF, PFFP, FPPF, FPFP, FFPP}
B 5 {PPFF, PFPF, PFFP, FPPF, FPFP, FFPP, PFFF, FPFF, FFPF, FFFP, FFFF}

Note that A and B have several simple events in common (shown underlined).

A reasonably large percentage of C11 programs written at a particular company 
compile on the first run, but some do not (a compiler is a program that translates 
source code—in this case, C11 programs—into machine language so programs can 
be executed). Suppose an experiment consists of selecting and compiling C11 pro-
grams at this location one by one until encountering a program that compiles on the 
first run. Denote a program that compiles on the first run by S (for success) and one 
that does not by F (for failure). Although it may not be very likely, a possible outcome 
of this experiment is that the first 5 (or 10 or 20 or . . .) are F’s, and the next one is 
an S. In other words, for any positive integer n, we may have to examine n programs 
before seeing the first S. The sample space is {S, FS, FFS, FFFS, . . .}, which con-
tains an infinite number of possible outcomes. The same abbreviated form of the 
sample space is appropriate for an experiment in which, starting at a specified time, 
the gender of each newborn infant is recorded until the birth of a male is observed.

Example 5.2

Depicting Events
Various devices have been created to help visually describe the events in a sample space. 
Tree diagrams are especially useful for depicting experiments that are conducted in a 
sequence of steps, such as our example of testing three metal parts. Beginning at the left, 
each step in the sequence is given its own set of branches, which themselves form the 
starting points for all branches to their right. Figure 5.2 shows a tree diagram for the ex-
periment of selecting and testing three metal parts. Simple events are formed by follow-
ing any branch of the tree diagram from the leftmost point to one of the rightmost points.

Figure 5.2  Tree diagram for the experiment of 
selecting and testing three metal parts (branches 
forming the simple event PPF are shown shaded)
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Another visual device, the Venn diagram, is especially useful for depicting rela-
tionships between events. Venn diagrams are simple two-dimensional figures, often 
rectangles or circles, whose enclosed regions are intended to depict a collection of 
simple events, called points, in a sample space. Figure 5.3 shows a Venn diagram of 
several events based on Example 5.1. Events like A and B that contain points in com-
mon are depicted as overlapping regions in the diagram. Events that do not contain 
any common points, such as the events B 5 at most two parts pass the test and C 5 
exactly three parts pass the test, are shown as nonoverlapping regions. An event that 
contains all the points of some other event is shown as surrounding the smaller event. 
For example, the event A 5 at least two parts pass the test contains all of the simple 
events in event C 5 exactly three parts pass the test, so C is shown inside of A in 
Figure 5.3.

Figure 5.3 Venn diagram of the events  and   
in Example 5.1

Sample space

Venn diagrams and tree diagrams are indispensable tools in many parts of probabil-
ity theory, but they are not essential to conducting statistical studies. We will use these 
diagrams primarily as an aid for discussing certain probability concepts, but, beyond 
that, their use is not emphasized. The interested reader may consult texts on probability 
for more information on working with Venn diagrams.

Forming New Events
Simple events are fundamental to describing chance experiments, but the events 
that are of most interest are usually much more complex. Indeed, it is not an exag-
geration to state that the majority of probability calculations involve techniques for 
decomposing complex events into simpler ones. One of the primary methods for 
creating complex events and, therefore, for unraveling them, involves the use of the 
words and, or, and not. The following box shows how these words are used to build 
new events from old ones. Un

le
ss

 o
th

er
w

is
e 

no
te

d,
 a

ll 
co

nt
en

t o
n 

th
is

 p
ag

e 
is

 ©
 C

en
ga

ge
 L

ea
rn

in
g.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 5.1   Chance Experiments	 199

For a chance experiment and any two events A and B:

1.  �The event A or B consists of all simple events that are contained in either 
A or B. A or B can also be described as the event that at least one of A or B 
occurs.

2.  �The event A and B consists of all simple events common to both A and B. A 
and B can be described as the event that both A and B occur.

3.  �The event A=, called the complement of A, consists of all simple events that 
are not contained in A. A= is the event that A does not occur.

definitions

Refer to Example 5.1, the experiment of selecting and testing four metal parts. To 
form the event A or B, we simply list all events that are in either A or B, or in both. 
The easiest way to do this is to list all the events in A and then add the events in B 
that are not duplicates of those in A. Thus

A or B 5  �{PPPP, PPPF, PPFP, PFPP, FPPP, PPFF, PFPF, PFFP, FPPF, 
FPFP, FFPP, PFFF, FPFF, FFPF, FFFP, FFFF}

For these two events, A or B happens to contain all 16 sample space points. In a 
similar fashion, the event A and B, which consists only of the underlined events in 
both A and B, is given by

A and B 5 {PPFF, PFPF, PFFP, FPPF, FPFP, FFPP}

In this case, it is possible to give a short verbal description of the event A and B; 
namely, A and B 5 exactly two parts pass (and, hence, two fail) the stress test. Finally, 
the complement of event A is

A= 5 {PFFF, FPFF, FFPF, FFFP, FFFF}

A= can also be verbally described as the event that at most one part passes the test.

Example 5.3

When two events A and B have no simple events in common, we say that they 
are mutually exclusive or disjoint. More intuitively, mutually exclusive events are 
ones that cannot occur simultaneously; the occurrence of either event precludes the 
occurrence of the other. In a Venn diagram, mutually exclusive events are depicted 
as nonoverlapping regions. As we will see in Section 5.2, probability calculations in-
volving disjoint events are particularly simple. For this reason, we often try to decom-
pose complex events into collections of mutually exclusive events when computing 
probabilities.

Several of the previous definitions can be extended to include events formed from 
more than two events. These definitions are given in the next box.
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Given a chance experiment and any events A1, A2, A3, . . . , Ak:

1.  �The event A1 or A2 or A3 or . . . or Ak consists of all the simple events that are 
contained in at least one of the events A1, A2, A3, . . . , or Ak. It can also be de-
scribed as the event that at least one of the events A1, A2, A3, . . . , or Ak occurs.

2.  �The event A1 and A2 and A3 and . . . and Ak consists of all simple events com-
mon to all the events A1, A2, A3, . . . , and Ak. This event can be described as 
the event that all of the events A1, A2, A3, . . . , and Ak occur.

3.  �Several events A1, A2, A3, . . . , and Ak are said to be mutually exclusive or 
disjoint if no two of them have any simple events in common.

definitions

Sampling inspection is a common method for ascertaining the quality level of 
batches (called lots) of finished products. Sampling inspection can be used by a 
manufacturer to check the quality of products prior to shipment or by a customer 
to check the quality of incoming shipments before accepting them. In either case, 
sampling inspection is done by first selecting a random sample of n items from a lot 
and counting the number of sampled items that do not meet quality standards.

Suppose, for example, that n 5 20 items are randomly selected from a large lot. 
In this situation, an event that we might be interested in is A 5 the sample contains at 
most one item that fails to meet quality standards. As you can imagine from reading the 
other examples in this section, the sample space of the experiment of randomly select-
ing and testing 20 items is prohibitively large. Even a tree diagram is of no help in de-
picting the simple events or the event A itself. However, relying on only verbal descrip-
tions of the events, it is possible to decompose A into a combination of two less complex 
events: B 5 no items fail inspection and C 5 exactly one item fails inspection. In fact, 
it is not hard to see that the event B or C is the same as the event A. We write this as A 5 
B or C. Furthermore, B and C are mutually exclusive events. In Section 5.2, we show 
how to use this fact to more easily compute the probability that A occurs.

Example 5.4

	 1.	 A random sample, without replacement, of three 
items is to be selected from a population of five 
items (labeled a, b, c, d, and e).

	 a.	 List all possible different samples.
	 b.	 List the samples that correspond to the event 

A 5 items a and c are included in the sample.
	 c.	 List the samples that correspond to the comple-

ment of the event A in part (b).

	 2.	 An engineering firm is constructing power plants at 
three different sites. Define the events E1, E2, and 
E3 as follows:

Section 5.1 Exercises 

E1 5 �the plant at site 1 is completed by the  
contract date

E2 5 �the plant at site 2 is completed by the 
contract date

E3 5 �the plant at site 3 is completed by the  
contract date

		  Draw a Venn diagram that depicts these three 
events as intersecting circles. Shade the region on 
the Venn diagram corresponding to each of the fol-
lowing events (redraw the Venn diagram for each 
question):
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	 a.	 At least one plant is completed by the contract 
date.

	 b.	 All plants are completed by the contract date.
	 c.	 None of the plants is completed by the contract 

date.
	 d.	 Only the plant at site 1 is completed by the con-

tract date.
	 e.	 Exactly one of the three plants is completed by 

the contract date.
	 f.	 Either the plant at site 1 or site 2 or both of the 

two plants are completed by the contract date.

	 3.	 Let A and B denote the events A 5 there are more 
than three defective items in a random sample of 
ten items and B 5 there are fewer than six defec-
tives in a random sample of ten items.

	 a.	 Describe, in words, the event A and B.
	 b.	 Describe, in words, the event A or B.
	 c.	 Describe, in words, the complement of A.

	 4.	 Draw a Venn diagram depicting two events A and 
B that are not disjoint. Shade in the portion of this 
diagram that corresponds to the event A and B=.

	 5.	 Nuts and bolts used in aircraft manufacturing are 
called fasteners. To ensure that they are not loosened 

by vibrations during flight, some fasteners are slightly 
crimped so that they lock more tightly. The amount 
of crimping, however, must meet specific standards. 
To test finished fasteners, an initial inspection classi-
fies them into two groups: those that meet standards 
and those that do not. Of those not meeting standards, 
some are completely defective and must be scrapped, 
whereas the rest can be run through a machine that 
readjusts the amount of crimping. Of the recrimped 
fasteners, some are corrected by the recrimping opera-
tion and pass inspection, whereas the remainder can-
not be salvaged and are scrapped. Draw a tree diagram 
that depicts the testing and rework operations.

	 6.	 Information theory is concerned with the transmis-
sion of data, usually encoded as a stream of 0s and 1s, 
over communication channels. Because channels are 
“noisy,” there is a chance that some 0s sent through 
the channel are mistakenly received at the other end 
as 1s, and vice versa. The majority of digits sent, how-
ever, are not altered by the channel. Draw a tree dia-
gram that depicts the type of bit sent (either 0 or 1) and 
the type of bit received at the end of the channel.

	 7.	 Use a Venn diagram to find a simple expression for 
{A and B}= in terms of A= and B=.

5.2	 Probability Concepts �

Probability allows us to quantify the likelihood associated with uncertain events, that is, 
events that result from chance experiments. Generally speaking, the probability of an 
event can be thought of as the proportion of times that the event is expected to occur 
in the long run. This definition works well for experiments that can be repeated many 
times, such as in testing a large number of electronic components. After testing enough 
components, we begin to get a good idea of the chance (i.e., probability) that the next 
item tested will be defective or nondefective.

Probabilities are reported either as proportions (between 0 and 1) or as percentages 
(between 0% and 100%). To simplify computations with probabilities, the shorthand 
notation P(A) is used to denote the probability of an event A occurring. Thus the state-
ments P(A) 5 .30, the probability of event A occurring is .30, and the event A has a 
30% chance of occurring are equivalent. As a general rule, it is best to write probabili-
ties as proportions when performing probability calculations, converting to percent-
ages only when it helps to interpret a probability statement.

Assigning Probabilities
Writing in his treatise Théorie Analytique des Probabilités (1812), mathematician and theo-
retical astronomer Pierre Simon de Laplace (1749–1827) stated that “at bottom, the theory 
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Package No. 1 2 3 4 5 6 7 8 9 10
Did A occur N Y Y Y N N Y Y N N
Relative frequency of A 0 .5 .667 .75 .6 .5 .571 .625 .556 .5

Within the limits imposed by these axioms, there are several ways to determine 
probabilities: (1) as frequencies of occurrence, (2) from subjective estimates, (3) by 
assuming that events are equally likely, and (4) by using density and mass functions 
(see Section 5.4). Depending on the circumstances, each method has its merits. For 
example, when it is possible to repeat a chance experiment, the “frequentist” approach 
defines the probability of an event A to be the long-run ratio

P1A2 5
number of times A occurs

numbers of times experiment is repeated

The justification for this approach is that, as the number of trials increases, we expect 
this ratio to stabilize and eventually approach a limiting value, which we take as our 
definition of P(A). For example, let A be the event that a package sent within the state 
of California for 2nd-day delivery actually arrives within 1 day. The results from sending 
10 such packages (the first 10 replications) are as follows:

of probability is only common sense reduced to calculation.” With this brief statement, 
Laplace recognized that any rigorous definition of probability must satisfy certain com-
monsense requirements. For example, the probability of any event must lie between 0 and 
1. This is another way of stating the obvious condition that, in any number of repetitions 
of an experiment, no event can occur less than 0% of the time nor more frequently than 
100% of the time. In practice, this requirement provides a quick check on our probability 
calculations; calculated values that lie outside the interval [0, 1] are immediate signals that 
a mistake has occurred somewhere in the computations. Used correctly, the probability 
formulas given in this chapter will never yield probabilities outside the interval [0, 1].

A second self-evident requirement is that probabilities of events must not lead to 
logical inconsistencies. For example, it does not make sense to state that 90% of metal 
parts pass a stress test and that 20% fail the test. These two probabilities are inconsistent 
because we know that exactly 100%, not 110%, of the parts will either pass or fail the 
test. In the same vein, it would not make sense to say that 90% pass and 5% fail the test, 
since this implies the illogical conclusion that only 95% of all parts pass or fail the test. 
To avoid nonsensical statements like these, we demand that the probabilities associated 
with the simple events always total to exactly 1. Thus any sensible assignment of prob-
abilities to events must satisfy the following two basic requirements:

Probability Axioms
1.	�T he probability of any event must lie between 0 and 1. That is, 0 # ( ) # 1 for any  

event .

2.	T he total probability assigned to the sample space of an experiment must be 1.
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Figure 5.4(a) shows how the relative frequency fluctuates rather substantially over 
the course of the first 50 replications. But as the number of replications continues 
to increase, Figure 5.4(b) illustrates how the relative frequency stabilizes. Using 
Figure 5.4(b), we would be inclined to state that P(A) is close to .60.

Figure 5.4  Behavior of relative frequency: (a) initial fluctuation; (b) long-run stabilization
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Of course, the frequentist approach does not work when experiments cannot 
be faithfully replicated, as is the case with sports competitions. In these  instances, 
subjective estimates, guided by the probability axioms, can be used to arrive at 
numerical probabilities that certain teams will win or lose a game. Needless to say, 
entire texts can and have been written comparing the various methods for assigning 
probabilities to events. It is not our purpose to compare each of these methods. Instead, 
in Section 5.4, we emphasize the technique that is most often used in statistical studies, 
defining probabilities by means of mass and density functions.

The Addition Rule for Disjoint Events
Probability rules, or laws, are formulas that are intended to simplify the process of cal-
culating the probabilities of complex events. They achieve this purpose by first decom-
posing some event of interest into two or more less complex events whose probabili-
ties are more easily found. The formulas then describe how to recombine the simpler 
probabilities to find the probability of the original event. One of the most frequently 
used laws is the addition rule for disjoint events, which states that the probability of 
the event A1 or A2 or A3 or . . . or Ak is simply the sum of the individual probabilities 
P(A1) 1 P(A2) 1 P(A3) 1 1 P(Ak) as long as all the events A1, A2, A3, . . . , and Ak are 
mutually exclusive. The addition rule is usually applied to an event E by first finding a 
collection of less complicated events A1, A2, A3, . . . , and Ak that satisfy two conditions: 
(1) the events A1, A2, A3, . . . , and Ak are disjoint and (2) E 5 A1 or A2 or A3 or . . . or Ak. 
The events A1, A2, A3, . . . , Ak are sometimes said to partition the event E into mutually 
exclusive events.Un
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Complementary Events
The complement A= of an event A was defined in Section 5.1 to be the collection of 
simple events that are not in A. In more intuitive terms, it is helpful to think of A9 as the 
opposite of A when trying to express A= in words. For example, if A is the event that at 
least one metal part passes a stress test, then the opposite event must be A= 5 no metal 
parts pass the stress test. Notice that we did not need to write down the sample space of 
the experiment to arrive at this description of A=. Consider how you might describe the 
complement of A=. Since A and A= are opposites, then the complement of A= is simply 
the event A itself, which we can write as (A=)= 5 A.

Yet another way to describe the complement of an event A is to say that when 
A does not occur, then, necessarily, its complement A9 has occurred. Viewed this 
way, the symbol A is somewhat like a switch that is either on (A) or off (A=). The 
truth-table logic you would use to describe electronic circuits can then be applied 
to finding complements of complex events. For instance, consider how you might 
go about finding the complement of the event A or B. If the event A or B does not 
happen, then it must be true that both A and B do not happen, which we can express 
by writing A= and B=. In equation form, {A or B}= 5 A= and B=. Figure 5.5 shows how 
a tree diagram can be used to demonstrate the same result. The branches of the 
tree depict all possible combinations of the events A, B, A=, and B9. The top three 
branches correspond to the event A or B, which implies that its complement must 
be the bottom branch, A= and B=.

Suppose that you want to find the probability that at most one item fails to meet 
quality standards in a random sample of n 5 20 items from a large shipment of 
such items. Denote the event of interest as A 5 at most one item fails to meet a 
quality standard. In Example 5.4, we showed that A can be partitioned into the 
events B 5 no items fail inspection and C 5 exactly one item fails inspection. 
That is, we can write A 5 B or C, where B and C are disjoint events. According 
to the addition rule for disjoint events, P(A) can be found by simply adding the 
probabilities P(B) and P(C), both of which are easier to find than P(A). In fact, 
in Section 5.4 we show that the binomial mass function can be used to find both 
P(B) and P(C).

Example 5.5

The Addition Rule for Disjoint Events
Disjoint, or mutually exclusive, events are events that cannot occur simultaneously. 
For any two disjoint events  and ,

( ) 5 ( ) 1 ( )

More generally, for any collection of disjoint events 1, 2, 3, . . . , ,

( 1  2  3  . . .  ) 5 ( 1) 1 ( 2) 1 ( 3) 1 1 ( )
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Because an event A and its complement A= cannot occur simultaneously, 
complementary events are special cases of mutually exclusive events. That is, A 
and A= are disjoint. Furthermore, because we are 100% certain that exactly one of 
these events will occur, P(A or A9) 5 1. Applying the formula for mutually exclusive 
events yields

1 5 P(A or A=) 5 P(A) 1 P(A=)

which is called the law of complementary events and is usually written in the form

P(A) 5 1 2 P(A=)

The usefulness of this simple formula lies in the fact that it is sometimes easier to find 
the probability of the complement A= rather than the probability of A itself.

 and  occur

These three branches
correspond to the
event .

The remaining branch is 
the complement
of .

 and  occur

 and  occur

 and  occur

Figure 5.5  Finding the complement of the event  or 

When an event A does not occur, we say that its complement, denoted by A=, 
has occurred, and vice versa. The probabilities of A and A= are related by the 
formula P(A) 5 1 2 P(A=).

definition

Refer to Example 5.5. Suppose you want to find the probability that, of the 20 items 
randomly selected for inspection, at least one item fails to meet quality standards. 
Denote this event by D 5 at least one item fails inspection. One approach to find-
ing this probability is to partition D into the events E1, E2, E3, . . . , E20, where, for 
each i 5 1, 2, 3, . . . , 20, the Ei denotes the event that exactly i items fail inspec-
tion. Since E1 through E20 are disjoint, the addition rule says that P(D) 5 P(E1) 1  
P(E2) 1 1 P(E20). As mentioned in Example  5.5, the binomial mass function 
could then be used to find each P(Ei) in this summation.

Although the addition rule will give the correct value for P(D), an easier 
method for finding P(D) is to use the law of complementary events, P(D) 5 
1 2 P(D=). The complement of the event D 5 at least one item fails inspection is 
the event D= 5 no items fail inspection. As we will see in Section 5.4, finding P(D=) 
requires only one computation with the binomial mass function, whereas the par-
tition method requires 20 separate computations.

Example 5.6
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The General Addition Rule
For any two events  and , which need not be mutually exclusive,

( ) 5 ( ) 1 ( ) 2 ( )

 and 

Sample space

Figure 5.6 Venn diagram of  or 

The General Addition Rule
As we have seen in this section, finding the probability of an event E can be simplified 
considerably if it is possible to first express E in the form E 5 A or B, or more generally, in 
the form E 5 A1 or A2 or . . . or Ak, where the events A1, A2, . . . , Ak are mutually exclusive. 
There are times, however, when it is not so easy to break up an event E into disjoint events. 
In such cases it is helpful to have another method for finding the probability of E.

The general addition rule is used to find the probability of an event E that can be 
written in the form E 5 A or B, where events A and B are not necessarily disjoint. When 
an event is expressed in the form A or B, its probability can be calculated from the fol-
lowing formula:

P(A or B) 5 P(A) 1 P(B) 2 P(A and B)

which is called the general addition rule. This formula can be applied to any two events 
A and B.

Although it is indeed more generally applicable than the addition rule for disjoint 
events, notice that the general addition rule presupposes that you are able to find the 
probability of the event A and B, which can often be just as difficult as finding P(A or B). 
However, as you will see in Section 5.3, when A and B satisfy certain additional condi-
tions, it is relatively easy to find P(A and B).

Here is a simple intuitive justification for the general addition rule. Referring to the 
Venn diagram in Figure 5.6, imagine that the events A and B represent circular rugs on 
a floor and that we want to find the total floor area covered by these two rugs, analogous 
to determining P(A or B). For the purposes of this example, think of P(A) and P(B) rep-
resenting the floor areas covered by each rug individually. To find the total area covered Un
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In a certain residential suburb, 60% of all households get Internet service from the 
local cable company, 80% get television service from that company, and 50% get 
both services from that company. If a household is randomly selected, what is the 
probability that it gets at least one of these two services from the company? With A 5 
{gets Internet service} and B 5 {gets TV service}, the given information implies that 
P(A) 5 .6, P(B) 5 .8 and P(A and B) 5 .5. The general addition rule now yields

P(subscribes to at least one of the two services)
5 P(A or B) 5 P(A) 1 P(B) 2 P(A and B) 5 .6 1 .8 2 .5 5 .9

Example 5.7

by both rugs we could start by adding the areas of these two rugs, but then the floor area 
where the two rugs overlap has been counted twice by this simple addition. The obvi-
ous remedy is to subtract the overlapping area, represented by P(A and B), once from 
the sum, giving a final result of P(A) 1 P(B) 2 P(A and B). This is in essence how the 
general addition rule works.

Section 5.2 Exercises 

	 8.	 Two methods are proposed for testing a shipment of 
five items (call them A, B, C, D, and E). In method 1, 
an inspector randomly samples two of the five items 
and tests to see whether either item is defective. In 
method 2, an inspector randomly samples one item 
and tests it; the remaining four items are sent to a sec-
ond inspector who randomly samples one item and 
tests it. Suppose that only item A is defective in the 
shipment.

	 a.	 What is the probability that item A will be dis-
covered by method 1?

	 b.	 What is the probability that item A will be dis-
covered by method 2?

	 c.	 What general statement can you make regard-
ing the effectiveness of the two methods? Can 
your statement be extended to methods involv-
ing samples of more than two items?

	 9.	 Human visual inspection of solder joints on printed 
circuit boards can be very subjective. Part of the 
problem stems from the numerous types of solder 
defects (e.g., pad nonwetting, knee visibility, voids) 
and even the degree to which a joint possesses one 
or more of these defects. Consequently, even highly 
trained inspectors can disagree when examining 
the same circuit board. The accompanying table 
shows the results of two inspectors who examined 

the same collection of 10,000 solder joints for a par-
ticular problem:

			   Number of
defective solder

			   joints found

		  Inspector A				    724
		  Inspector B				    751
		  Common to both inspectors			   316

	 a.	 How many defective solder joints were found by 
the two inspectors?

	 b.	 How many defective solder joints found by in-
spector A were not found by inspector B?

	10.	 For any collection of events A1, A2, A3, . . . , Ak, it 
can be shown that the inequality

P(A1 and A2 and A3 and . . . and Ak)
$1 2 [P(A=

1) 1 P(A=
2) 1 P(A=

3) 1 1 P(A=
k)]

		  always holds. This inequality is particularly use-
ful when each of the events has relatively high 
probability. Suppose, for example, that a system 
consists of ten components connected in series  
(cf. Example 5.8, Section 5.3) and that each com-
ponent has a .999 probability of functioning without 
failure. What lower bound can you put on the reli-
ability (i.e., the probability of functioning correctly) 
of the system built from these ten components?
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	11.	 For any collection of events A1, A2, A3, . . . , Ak, it 
can be shown that the inequality

P(A1 or A2 or A3 or . . . or Ak)
# P(A1) 1 P(A2) 1 P(A3) 1 1 P(Ak)

		  always holds. This inequality is most useful in cases 
where the events involved have relatively small 
probabilities. For example, suppose a system con-
sists of five subcomponents connected in series  
(cf. Example 5.8) and that each component has a 
.01 probability of failing. Find an upper bound on 
the probability that the entire system fails.

	12.	 Suppose that 55% of all adults regularly consume 
coffee, 45% regularly consume carbonated soda, 
and 70% regularly consume at least one of these 
two types of drinks.

	 a.	 What is the probability that a randomly selected 
adult regularly consumes both coffee and soda?

	 b.	 What is the probability that a randomly selected 
adult doesn’t regularly consume at least one of 
these two products?

	 c.	 What is the probability that a randomly selected 
adult regularly consumes coffee but does not 
regularly consume soda?

5.3	 Conditional Probability and Independence �

Conducting experimental studies is an iterative process. An initial guess or hypothesis is 
compared with experimental data, new hypotheses are formed, more data is gathered, and 
the process repeats itself until we are satisfied with the knowledge gained from experimen-
tation. The process of adjusting our view of the world as more information is gathered can 
also be applied to calculating probabilities. In this context, we ask how the knowledge that 
a certain event B has occurred can be used to update our initial assessment of the prob-
ability that another event A will occur. Sometimes, the probability that A occurs depends 
heavily on whether B has occurred. In such cases, we use the methods of conditional 
probability. At other times, when the occurrence or nonoccurrence of B has no effect at 
all on the probability that A occurs, we say that A and B are independent events.

From the standpoint of probability calculations, independent events are especially 
easy to work with. This is one of the primary reasons that statistical methods usually in-
corporate some sort of random procedure, such as random sampling or randomization, 
as a method for ensuring that certain events will be independent.

Conditional Probability
Before shipping finished products, manufacturers routinely use automatic test equip-
ment (ATE) to assess the functionality of products and systems. In addition to giving 
physical measurements of product characteristics, ATE machines can conduct a se-
quence of complex tests that eventually result in a final “thumbs up” or “thumbs down” 
determination for the item being tested. Before testing, historical process data can be 
used to estimate the probability that any particular item will function correctly. Sup-
pose, for example, that such records show that 95% of the items in a certain product line 
perform correctly. Letting A denote the event that a randomly selected item is defect 
free, we can then say that P(A) 5 .95. Now consider how this estimate may change 
when we submit a particular item to an ATE test. Because the determinations given by 
ATE are good but not perfect, we will want to give a good deal of weight, but not 100%, 
to the ATE test result. Thus if the ATE test indicates that the item is defective, then we 
will definitely want to reduce our estimate of P(A). Alternatively, if the item passes the 
ATE test, then we will revise P(A) upward. In both cases, we want to update our estimate 
of P(A) for the item being tested by factoring in the new information from the ATE test.
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Let B 5 the item passes the ATE test. Then the conditional probability of A given 
B is denoted by P(A B). Conditional probabilities are computed from the following 
definition:

P(A|B) 5
P(A and B)

P(B)

This formula can be justified by thinking of probability as the proportion of times that 
an event occurs in a large number of trials N: About P(B) 3 N of the trials will result in 
items that pass the ATE test and about P(A and B) 3 N of the trials will correspond to 
items that not only pass the test but are truly defect-free. Thus P(A|B), the proportion 
of items that are truly defect-free out of the total number passing the ATE test, should 
be P(A and B) 3 Ny (P(B) 3 N), which simplifies to P(A and B)yP(B).

Tree diagrams are very useful for summarizing problems that involve conditional 
probabilities. Figure 5.7 shows such a diagram for our ATE example. Note that con-
ditional probabilities correspond to the branches on the tree. By writing the formula 
P(A|B) 5 P(A and B)yP(B) in the form P(A and B) 5 P(B)P(A|B), we see that the prob-
ability of taking a particular path through the diagram (from left to right) is simply the 
product of the probabilities of the branches that comprise that path.

Let A and B be two events with P(B) . 0. The conditional probability of A 
occurring given that event B has already occurred is denoted by P(A|B) and can 
be calculated from the formula P(A | B) 5 P(A and B)yP(B).

definition

( )

( | )

( | )

( | )

( | )

( )

( ) = ( ) ( )

( ) = ( ) ( )

( ) = ( ) ( )

( ) = ( ) ( )

Figure 5.7 Tree diagram for depicting probabilities

Independent Events
Conditional probability is used when the likelihood of occurrence of an event depends 
on whether or not another event occurs. At the other end of the spectrum are events 
that do not impose such restrictions on each other’s chances of occurring. Two events, 
A and B, are said to be independent if the occurrence of either event has no effect 
whatsoever on the likelihood of occurrence of the other. This definition readily extends 
to any number of events.

To understand the role played by independence in probability calculations, con-
sider the following example. To filter certain harmful particles out of a given volume 
of air, suppose we sequentially use two filters A and B, each of which captures a large 
percentage of the particles in any air passing through it. In particular, filter A allows Un
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If we think of the pass-through rates as probabilities of the events A 5 filter A lets 
through a harmful particle and B 5 filter B lets through a harmful particle, then indepen-
dence allows us to conclude that the proportion of particles left after applying both filters is

P(A and B) 5 P(A)P(B) 5 (.05)(.10)

and that the order in which we apply the filters does not affect the probability of the 
events A and B. Independent events, then, allow us to reduce the calculation of P(A and 
B) to a simple multiplication. Furthermore, it is easy to see from our filter example that 
this multiplication formula can be extended to any number of independent filters A1, A2, 
A3, . . . , Ak, whose overall pass-through rate should be

P(A1 and A2 and A3 and . . . and Ak) 5 P(A1)P(A2)P(A3)  P(Ak)

and that the order in which the filters are applied should not affect the final probability.

Initial number
of harmful particles

Filter A
(.05) (.10)(.05)

Filter B

Filter B
(.10) (.05)(.10)

Filter A

Number of harmful
particles left after �ltering

Figure 5.8 Two air filters acting independently

Two events, A and B, are independent events if the probability that either one 
occurs is not affected by the occurrence of the other. In this case,

P(A and B) 5 P(A)P(B)

Several events, A1, A2, A3, . . . , Ak, are independent if the probability of each 
event is unaltered by the occurrence of any subset of the remaining events. In 
this case, the product rule can be applied to any subset of the k events. That is, 
the probability that all the events in any subset occur equals the product of their 
individual probabilities of occurring. In particular, for all k events,

P(A1 and A2 and A3 and  and Ak) 5 P(A1)P(A2)P(A3)  P(Ak)

definition

only 5% of the particles to pass through, whereas filter B has about a 10% pass-through 
rate. If we begin with a fixed volume of air containing V harmful particles, then after 
passing through filter A, there should be (.05)V particles remaining. When this air is 
screened through filter B, an additional 90% of the remaining particles are removed, 
leaving a total of (.10)(.05)V particles after the two screenings. We then ask, Would it 
make any difference if we changed the order in which the filtering is performed? This 
is equivalent to asking, Do the two filters perform independently of one another? If the 
filters are independent, then we should be able to reverse the filtering procedure without 
changing the pass-through rates of the filters (see Figure 5.8). Thus filter B leaves (.10)
V particles, of which filter A then leaves (.05)(.10)V particles.
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Determining whether two (or more) events are independent is not quite as easy as 
deciding whether they are mutually exclusive. With independent events, we rely either 
on our intuition or on special procedures (such as random sampling and randomization). 
Intuition is what we generally employ when we assume that different tosses of a coin or 
different air filters are independent. With statistical methods, on the other hand, we rely 
on random sampling, not intuition, to ensure that events are independent. Practically 
speaking, we often assume independence when we do not know of any strong reasons 
why the events should be related. At other times, independence provides a reasonable 
approximation to the truth for the application at hand, but it may not be reasonable if 
the situation changes a little. In our filter example, for instance, independence may be 
a good assumption when the volume of particulate matter in the air is relatively large, 
but it may cease to be valid for small volumes (e.g., after being screened by one filter, 
the volume of particles may have dropped below the detection limit of the other filter).

One branch of reliability theory, called topological reliability, is concerned with 
calculating the reliability of systems comprising several components connected 
in specific patterns. One common layout for components is the series system 
(Figure 5.9), in which the system operates correctly only if each of its subcompo-
nents works correctly. A familiar example of such a system is a circuit with two 
switches, both of which must be closed for the circuit to conduct electricity. It is 
commonly assumed that the components are independent when performing reli-
ability calculations.

Suppose that the switches A and B in a two-component series system are 
closed about 60% and 80% of the time, respectively. If we assume that the clos-
ing of switch A occurs independently of switch B, the probability that the entire 
circuit is closed is

P(circuit closed) 5 P(A closed and B closed)
5 P(A closed) P(B closed)
5 (.60)(.80) 5 .48

That is, the circuit will be closed about 48% of the time.

Example 5.8

Component A Component B

Figure 5.9 A two-component series system, which functions 
correctly only if  components function correctly

Combining Several Concepts
The independence of two events A and B carries over to their complements. In particu-
lar, if A and B are independent, then any pairing of A or its complement with B or its 
complement will also produce a pair of independent events. That is, each of the pairs 
of events A9 and B, A9 and B9, and A and B9 will be independent if A and B are inde-
pendent (cf. Exercise 25). To see how this fact can be used, let’s consider a frequently 
asked probability question: What is the chance that at least one of a set of independent Un
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In an example demonstrating how vendor quality affects customer quality, H. S. 
Gitlow and D. A. Wiesner (“Vendor Relations: An Important Piece of the Quality 
Puzzle,” Quality Progress, 1988: 19–23) considered a hypothetical product consist-
ing of 50 critical parts, any one of which, if defective, could cause the finished 
product to be defective. Suppose that each of these parts is purchased from a dif-
ferent vendor. It is therefore reasonable to assume that the condition of each part, 
created by a different vendor, should be independent of the conditions of the oth-
ers. Furthermore, suppose that about 99.5% of all the parts supplied by a given 
vendor are good. What is the overall proportion of assembled products that can be 
expected to be defective?

To answer this question, let Di denote the event that the part purchased from the 
ith vendor is defective, so that P(Di) 5 .005 and P(D=

i) 5 .995. Then, the probability 
we seek is

P(at least one of the 50 parts is defective) 5 1 2 P(D=
1)P(D=

2)P(D=
3)  P(D=

50)
	 5 1 2 (.995)50 5 1 2 .7783 5 .2217

This example demonstrates the important point that it is possible for complex 
systems to have high failure rates even if the quality of their individual components 
is relatively good.

Example 5.9

events will occur? For two independent events, A and B, the event that at least one of 
these events occurs can be written {A or B}. As we showed in our discussion of comple-
mentary events, the complement of {A or B} is the event {A9 and B9}. Therefore, using 
the additional knowledge that the complements of independent events must themselves 
be independent, we can write

P(at least one of two independent events occurs)

5 P(A or B) 5 1 2 P(A= and B=) 5 1 2 P(A=)P(B=)

This formula can readily be extended to any number of independent events, A1, A2, 
A3, . . . , Ak. That is,

P(at least one of k independent events occurs)

5 1 2 P(A=
1)P(A=

2)P(A=
3)  P(A=

k)

The “at least one” rule has numerous applications, two of which are given in the 
following examples.

Consider the portion of an electronic circuit diagrammed in Figure 5.10. The cir-
cuit is primarily a parallel system (i.e., either switch A or both switches B and C 
must function if the current is to flow from left to right). The branch containing 
switches B and C, however, forms a series system. To compute the probability that a 
closed circuit is made between the left and right sides of the diagram, we must find 
the probability of the event {A or {B and C}}. Assuming that the switches function 

Example 5.10
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independently of one another and that they are closed with probabilities P(A) 5 .80, 
P(B) 5 .70, and P(C) 5 .90, we proceed as follows:

P(A or (B and C)) 5 P(A) 1 P(B and C) 2 P(A and (B and C)) 

	 5 P(A) 1 P(B)P(C) 2 P(A)P(B)P(C)	
	 5 .80 1 (.70)(.90) 2 (.80)(.70)(.90) 5 .926

Thus the circuit is closed about 92.6% of the time. Since switch A is closed 80% of 
the time, the probability that the circuit is closed must certainly exceed 80%, so our 
answer makes sense.

The general addition  
rule applied to the  
events A and  
{B and C}
Since A, B, and C  
are independent

Switch A

Switch B Switch C

Figure 5.10  Series and parallel circuit with  
three switches shown in their open positions

	 a.	 Use the addition law to show that P(A) 5  
P(A and B) 1 P(A and B9).

	 b.	 Use the conditional probability formula to 
write P(A and B) in terms of P(A | B) and P(B). 
Develop a similar formula for P(A and B9) in 
terms of P(A | B9) and P(B9).

	 c.	 Use parts (a) and (b) to show that

			   P(BuA) 5
P(AuB)P(B)

P(AuB)P(B) 1 P(AuB=)P(B=)

		  This formula, known as Bayes’ theorem, is used 
to “turn conditional probabilities around”; that 
is, it allows us to express P(B | A) in terms of 
P(A | B) and P(A | B=).

	 d.	 In Figure 5.7, the probability associated with any 
path from left to right through the tree is simply 
the product of the probabilities of the branches. 
Why?

	 e.	 Use the observation in part (d) and the condi-
tional probability formula for P(B | A) to justify 
Bayes’ theorem.

	13.	 Five companies (A, B, C, D, and E) that make elec-
trical relays compete each year to be the sole sup-
plier of relays to a major automobile manufacturer. 
The auto company’s records show that the probabili-
ties of choosing a company to be the sole supplier are

Supplier chosen: A B C D E
Probability: .20 .25 .15 .30 .10

	 a.	 Suppose that supplier E goes out of business this 
year, leaving the remaining four companies to 
compete with one another. What are the new 
probabilities of companies A, B, C, and D being 
chosen as the sole supplier this year?

	 b.	 Suppose the auto company narrows the choice 
of suppliers to companies A and C. What is the 
probability that company A is chosen this year?

	14.	 Refer to the tree diagram in Figure 5.7. Suppose 
you want to find the probability P(B | A) using the 
information available in the tree diagram. To do 
this, P(B | A) must be expressed in terms of condi-
tional probabilities, like P(A | B) and P(A9 | B).

Section 5.3 Exercises 

Un
le

ss
 o

th
er

w
is

e 
no

te
d,

 a
ll 

co
nt

en
t o

n 
th

is
 p

ag
e 

is
 ©

 C
en

ga
ge

 L
ea

rn
in

g.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



214	 chapter 5   Probability and Sampling Distributions

	15.	 In Exercise 5, suppose that 95% of the fasteners pass 
the initial inspection. Of those that fail inspection, 
20% are defective. Of the fasteners sent to the re-
crimping operation, 40% cannot be corrected and 
are scrapped; the rest are corrected by the recrimp-
ing and then pass inspection.

	 a.	 What proportion of fasteners that fail the initial 
inspection pass the second inspection (after the 
recrimping operation)?

	 b.	 What proportion of fasteners pass inspection?
	 c.	 Given that a fastener passes inspection, what is 

the probability that it passed the initial inspection 
and did not have to go through the recrimping 
operation?

	16.	 In Exercise 6, suppose that there is a probability of 
.01 that a digit is incorrectly sent over a commu-
nication channel (i.e., that a digit sent as a 1 is re-
ceived as a 0, or a digit sent as a 0 is received as a 1). 
Consider a message that consists of exactly 60% 1s.

	 a.	 What is the proportion of 1s received at the end 
of the channel?

	 b.	 If a 1 is received, what is the probability that a 1 was 
sent? Hint: Use the tree diagram from Exercise 6.

	17.	 Suppose that A and B are independent events with 
P(A) 5 .5 and P(B) 5 .6. Can A and B be mutually 
exclusive events?

	18.	 Probability calculations play an important role in 
modern forensic science (Aitken, C., Statistics and 
the Evaluation of Evidence for Forensic Scientists, 
John Wiley, New York, 1995). Suppose that a sus-
pect is found whose blood type matches a rare 
blood type found at a crime scene. Let � denote 
the frequency with which people in the popula-
tion have this particular blood type. Assuming that 
people in the population are sampled at random, 
answer the following questions:

	 a.	 What is the probability that a randomly chosen 
person from the population does not have the 
same blood type as that found at the crime scene?

	 b.	 What is the probability that none of n randomly 
chosen people will match the blood type found 
at the crime scene?

	 c.	 What is the probability that at least one person 
in a random sample of n people will match the 
blood type found at the crime scene?

	 d.	 Suppose that � 5 1026. What is the probabil-
ity that at least one person in a sample of one 
million will have a blood type matching that 
found at the crime scene?

	19.	 In forensic science, the probability that any two 
people match with respect to a given characteristic 
(hair color, blood type, etc.) is called the probability 
of a match. Suppose that the frequencies of blood 
phenotypes in the population are as follows:

A B AB  O
.42 .10 .04 .44

	 a.	 What is the probability that two randomly cho-
sen people both have blood type A?

	 b.	 Repeat the calculation in part (a) for the other 
three blood types.

	 c.	 Find the probability that two randomly chosen 
people have matching blood types. Note: A per-
son can have only one phenotype.

	 d.	 The probability that two people do not match for a 
given characteristic is called discriminating power. 
What is the discriminating power for the compari-
son of two people’s blood types in part (c)?

	20.	 A construction firm has bid on two different con-
tracts. Let E1 be the event that the bid on the first 
contract is successful, and define E2 analogously for 
the second contract. Suppose that P(E1) 5 .4 and 
P(E2) 5 .3 and that E1 and E2 are independent.

	 a.	 Find the probability that both bids are successful.
	 b.	 Find the probability that neither bid is successful.
	 c.	 Find the probability that at least one of the bids 

is successful.

	21.	 Consider a system of components connected as 
shown in the following figure.

1

2

3 4

		  Components 1 and 2 are connected in parallel, so 
that their subsystem functions correctly if either 
component 1 or 2 functions. Components 3 and 4 
are connected in series, so their subsystem works 
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only if both components work correctly. If all com-
ponents work independently of one another and 
P(a given component works) 5 .9, calculate the 
probability that the entire system works correctly.

	22.	 The reviews editor for a certain scientific journal 
decides whether the review for any particular book 
should be short (1–2 pages), medium (3–4 pages), 
or long (5–6 pages). Data on recent reviews indicates 
that 60% of them are short, 30% are medium, and the 
other 10% are long. Reviews are submitted in either 
Word or a typesetting program called LaTeX. For short 
reviews, 80% are in Word, whereas 50% of medium 
reviews are in Word and 30% of long reviews are in 
Word. Suppose a recent review is randomly selected.

	 a.	 What is the probability that the selected review 
was submitted in Word format?

	 b.	 Suppose you are told the selected review was 
submitted in Word format. What is the probabil-
ity that the review was medium in length?

	23.	 In a certain population, 1% of all individuals are 
carriers of a particular disease. A diagnostic test for 
this disease has a 90% detection rate for carriers and 
a 5% detection rate for noncarriers. Suppose that 
the diagnostic test is applied independently to two 
different samples from the same randomly selected 
individual.

	 a.	 What is the probability that both tests yield the 
same result?

	 b.	 If both tests are positive, what is the probability 
that the selected individual is a carrier?

	24.	 One of the assumptions underlying the theory of con-
trol charts (see Chapter 6) is that the successive points 
plotted on a chart are independent of one another. 

Each point plotted on a control chart can signal either 
that a manufacturing process is operating correctly or 
that it is not operating correctly. However, even when 
a process is running correctly, there is a small prob-
ability, say, 1%, that a charted point will mistakenly 
signal that there is a problem with the process.

	 a.	 What is the probability that at least one of ten 
points on a control chart signals a problem with 
a manufacturing process when in fact the pro-
cess is running correctly?

	 b.	 What is the probability that at least 1 of 25 points 
on a control chart signals a problem with a man-
ufacturing process when in fact the process is 
running correctly?

	25.	 If A and B are independent events, show that A9 
and B are also independent. Hint: Use a Venn 
diagram to show that P(A= and B) 5 P(B) 2  
P(A and B).

	26.	 In October 1994, a flaw in a certain Pentium chip 
installed in computers was discovered that could re-
sult in a wrong answer when performing a division. 
The manufacturer initially claimed that the chance 
of any particular division being incorrect was only 
1 in 9 billion, so that it would take thousands of 
years before a typical user encountered a mistake. 
However, statisticians are not typical users; some 
modern statistical techniques are so computation-
ally intensive that a billion divisions over a short 
time period is not outside the realm of possibility. 
Assuming that the 1 in 9 billion figure is correct and 
that results of different divisions are independent of 
one another. What is the probability that at least 1 
error occurs in 1 billion divisions with this chip?

5.4	 Random   Variables �

Scientific and engineering studies rely heavily on numerical measurements derived 
from experiments. Indeed, it is often easy to think in terms of measurements them-
selves, not physical outcomes, as the end products of an experiment. Although you can 
imagine the various physical materials (the outcomes) that could result from repeating 
the chemical reaction, it is much more natural to think in terms of a numerical quantity 
of interest, such as the yield that might occur. Because measurements predominate in 
scientific studies, a mechanism is needed for extending probability concepts from the 
realm of simple events to the more natural scientific domain of numerical outcomes.
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Figure 5.11 A random variable  assigns numerical  
values to the outcomes in the sample space

Sample space outcomes

Simple events that
comprise event 

Numerical measurements
from each outcome in 

Random   Variables
When the same numerical characteristic can conceivably be measured on any out-
come of a chance experiment, we say that this quantity is a random variable. For 
instance, the measured yield of a chemical reaction is a random variable. Random-
ness enters the picture because we expect there to be slight unpredictable differenc-
es between each repetition of the reaction, which, in turn, will be reflected in the 
measured yields. There can be any number of random variables associated with a 
chance experiment. In a chemical reaction, any quantifiable feature associated with 
the reaction is a random variable (e.g., yield, density, weight, viscosity, volume, and 
translucence of the material produced). To make them easier to work with, random 
variables are usually denoted by single letters near the end of the alphabet. The yield 
of a chemical reaction might simply be denoted by the letter x, the density of the ma-
terial by w, and so forth. The assignment of a letter to a random variable is sometimes 
written in the form of an equation, such as x 5 yield of a chemical reaction or w 5 
density of the material produced in the reaction.

Technically speaking, the numerical values of a random variable are not the simple 
events of a chance experiment. Instead, a random variable is a function that assigns 
numerical values to the possible outcomes of a chance experiment, as illustrated in 
Figure 5.11. Notice that it is possible for more than one point in the sample space to be 
assigned the same real number. For instance, the random variable y 5 number of metal 
parts that pass a stress test out of three randomly selected parts assigns the number y 5 2 
to each of the sample space points PPF, PFP, and FPP.

Because measurements are either discrete or continuous, random variables are 
also classified as discrete random variables or continuous random variables. Recall 
that discrete measurements generally arise when we count things, whereas continuous 
measurements are the result of using a measuring instrument. The yield of a chemical 
reaction would be a continuous random variable, whereas the number of metal parts 
passing a stress test would be a discrete random variable. Un
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Events Defined by Random Variables
Although technically accurate, the description of a random variable as a function that 
assigns numerical values to sample space outcomes is not essential to most statistical 
applications. It is usually more helpful to think of random variables simply as variables 
whose values are likely to lie within certain ranges of the real number line. For example, 
the event that at least two of four randomly selected metal parts pass a stress test can 
simply be depicted by the numbers x 5 2, 3, and 4 on the real number line, where 
x 5 number of parts passing the stress test is a discrete random variable (Figure 5.12). 
In other words, we often suppress the picture of the sample space in Figures 5.11 and 
5.12 and simply think of an event as a list or interval of numbers on the horizontal axis. 
With discrete variables, events correspond to finite or countable collections of points on 
the number line. For instance, the event {x $ 2} corresponds to the integers 2, 3, and 4 
for the random variable x 5 number of parts passing the stress test. The event {y $ 2} 
corresponds to the infinite collection of integers y 5 2, 3, 4, . . . for the variable y 5 
number of parts tested until one is found that fails the stress test. For continuous random 
variables, events such as {x . 3.21}, {x # 5.4}, or {18 # x # 21} all refer to the real num-
bers contained in these intervals.

A numerical characteristic whose value depends on the outcome of a chance 
experiment is called a random variable. A random variable is discrete if its pos-
sible values form a finite set or, perhaps, an infinite sequence of real numbers. 
Otherwise, a variable is continuous if its possible values span an entire interval 
of real numbers.

definitions

Figure 5.12 The event that at least two parts pass a stress test  
and the random variable  5 number of parts passing the 
stress test

0 1

Sample space

2 3 4

The probability laws introduced in previous sections can be applied to events 
defined by random variables. For instance, let x 5 length (in inches) of a randomly Un
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76543210

(0)

(1)

(2)

(3)

(4)

(5)

(6)
(7)

(2.3    5.4)

(2  5) = (2) + (3) + (4) + (5)

Event: 2 5  Event: 2.3  5.4

Discrete random variable Continuous random variable

5.42.3

Figure 5.13  Using mass or density functions to assign probabilities to events

When a probability distribution has one of the familiar distributional forms de-
scribed in Chapter 1, the methods described in that chapter can be used to find event 
probabilities. For example, if we believe that the length, x, of a randomly selected part 
can be described by a normal distribution with a mean of 20 cm and a standard devia-
tion of 1.8 cm, then probabilities associated with x are found by standardizing, as shown 
in Chapter 1. Thus

P(18 # x # 21) 5 Pa 18 2 20
1.8

# z #
21 2 20

1.8
b

5 P(21.11 # z # .56) 5 .5788

selected manufactured part. Then an event {18 # x # 21} can, if desired, be partitioned 
into the disjoint events {18 # x # 21} 5 {18 # x , 19} or {19 # x , 20} or {20 # x #
21}. Notice that the particular choice of strict and inclusive inequality signs is what 
causes these events to be disjoint. The addition rule for disjoint events then states that  
P(18#x  # 21) 5 P(18 # x , 19) 1 P(19 # x , 20) 1 P(20 # x # 21). Similarly, because 
the event {x . 18} is the complement of the event {x#18}, the law of complementary 
events allows us to write P(x # 18) 5 1 2 P(x . 18).

Probability Distributions
The mechanism for assigning probabilities to events defined by random variables is 
to use either a mass function (for discrete random variables) or a density function (for 
continuous variables). In either case, we first envision an event of interest as a particular 
subset of the real number line. For discrete variables, the probability of the event is 
defined to be the sum of the mass function values that lie within the event subset. For 
continuous variables, the probability of an event is defined to be the area under the 
portion of the density curve that lies over the event on the number line. Figure 5.13 
shows how a mass or density function assigns a probability to any event of interest on the 
real number line. When used to describe random variables, mass functions and density 
functions are both called probability distributions.
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Examples 5.4–5.6 describe several events related to the chance experiment of ran-
domly sampling and testing 20 items from a large shipment:

A 5 at most one of the sampled items fails to meet quality standards
B   5 none of the sampled items fails to meet quality standards
C 5 exactly one item fails to meet quality standards
D  5 at least one item fails to meet quality standards

These events can be recast in terms of the random variable x 5 number of items that 
fail to meet quality standards, as follows:

A  {x # 1}
B {x 5 0}
C {x 5 1}
D {x $ 1}

Because random sampling ensures that each of the 20 selections is independent of 
the others, a binomial mass function is a good choice for describing probabilities 
associated with x (see Section 1.6). Suppose that it is known from manufacturing 
records that about 2% of all such items do not conform to quality standards. Using 
� 5 .02 and n 5 20 in the formula for the binomial mass function, we calculate the 
probabilities of the previously described events as

P(x # 1) 5 P(x  5 0) 1 P(x 5 1)

5
20!

0! 20!
 (.02)0(.98)20 1

20!
1! 19!

 (.02)1(.98)19

5     1(.98)20	 1	 20(.02)(.98)19

5      .6676	 1	 .2725	 5.9401
	

	 P(B)	 P(C)

Thus if groups of 20 items are repeatedly selected, in the long run about 94% of all 
groups should have at most one item failing to meet standards.

Example 5.11

There are several ways to choose an appropriate probability distribution for describing 
a random variable. In the upcoming examples and chapters, we will use the following 
methods to justify our choices of probability distributions:

1.	 Examine a histogram of data, and select a familiar density or mass function 
whose shape approximately matches that of the histogram.

2.	 Use a density or mass function recommended by previous studies or profes-
sional practice.

3.	 Verify conditions that are known to give rise to certain mass or density func-
tions (see binomial distributions in Section 1.6, normal distributions in  
Section 5.6).
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The probability that at least one item fails to meet quality standards is

P(x $ 1) 5 1 2 P(x 5 0) 5 1 2 .6676 5 .3324

Notice that the addition rule and the law of complementary events were used to 
simplify the computations of P(x # 1) and P(x $ 1).

Mean and Variance of a Random Variable
The mean of a random variable x can be thought of as the long-run average value of x that 
should occur in many repeated trials of a chance experiment. Fortunately, when the prob-
ability distribution of x is known, there is no need to actually perform repeated experimen-
tal trials. Instead, we define the mean to be the mean of the population described by the 
mass or density function and then use the methods of Chapter 2 to compute it. The same 
notation � used to describe the mean of a population is now used to denote the mean of 
a random variable. For a known mass function p(x), the mean is defined as

� 5
x̂

xp(x)

For a known density function f (x), the mean is given by

� 5 #x  f (x) dx

Similarly, the variance �2 of a random variable is calculated from the familiar formulas 
in Chapter 2. The standard deviation � of a random variable is defined to be the square 
root of its variance:

�2 5 ^ (x2�)2p(x)  or  �2 5 # (x2�)2f(x) dx

The mean and standard deviation of a random variable frequently appear as param-
eters in the defining formulas for a mass or density function. For this reason, it is often 
necessary to obtain estimates of � and � before probability calculations are possible. As 
discussed later in the chapter, statistics such as the sample mean, x, and sample standard 
deviation, s, are frequently used to provide such estimates.

The reliability of a product at time t, denoted by R(t), is defined as the probability 
that the product is still working correctly after t units of time (see Section 6.6). 
For complex products consisting of several parts and subassemblies, the time x 
until a product fails often follows an exponential distribution with parameter �. 
In such applications, the mean of the distribution, � 5 1y �, is called either the 
mean time between (or before) failures (MTBF) or the mean time to failure 
(MTTF). According to the definition of R(t), the reliability can be calculated 
from the formula

	 R(t) 5 P(x  .  t) 5 #
t

�e2�x dx 5 e2�t

Example 5.12
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Suppose that the lifetime of a certain product follows an exponential distribu-
tion with an MTBF of 10,000 hr and that we want to find the proportion of such 
products that fail before 20,000 hr of service. Since MTBF 5 1y �, the value of � 
for this distribution is � 5 1y10,000 5 .0001 hr21, and the reliability function is 
given by

	 R(t) 5 P(x . t) 5 e2�t 5 e2.0001t

For t 5 20,000 hr, the reliability is then R(20,000) 5 e2(.0001)(20,000) 5 e22 5 .1353. 
That is, about 13.53% of the products will last at least 20,000 hours. The proportion 
of products that do not last at least 20,000 hours is found by using the formula for 
complementary events:

P(product fails before 20,000 hr) 5 1 2 P(product lasts at least 20,000 hr)

	 5 1 2 .1353 5 .8647

Calculations with Random Variables
Mathematical operations (e.g., addition, multiplication, exponentiation, square roots) 
can be applied to random variables. One reason for doing this is to reduce probability 
statements about one random variable to statements about a more familiar random 
variable whose probabilities are well known. This is what we do, for instance, when 
simplifying statements about a normal random variable x. By performing the arithmetic 
operations of subtraction (to form x 2 �) and division (to form (x 2 �)y�), we even-
tually reduce probability statements about x to statements about the standard normal 
variable z, whose probabilities are easily found in tables.

Resistors come in two varieties, general purpose (with tolerances of 65% or greater) 
and precision (with tolerances of 62% or less). The tolerance is the amount by which 
the true resistance can deviate from the stated resistance. For example, a 6.0-kilohm 
(kV) resistor with a tolerance of 610% can be expected to have a measured resis-
tance of 6.0 6 (.10)(6.0), that is, from 5.4 kV to 6.6 kV. Assuming that a uniform 
density adequately describes the possible values of x, then the true resistance x of a 
randomly selected 6.0-kV resistor is a random variable described by the density func-
tion (see Chapter 1 for the definition of uniform densities):

	 f (x) 5 c 1
1.2

for 5.4 , x,  6.6

0 otherwise

Suppose we want to find the probability that the conductance (defined as the recip-
rocal of resistance) is greater than a specified amount, say, .16 siemens (S). Writing 
this probability statement, we can take reciprocals of both sides to find

	 P(conductance . .16) 5 Pa 1
x

  . .16b 5  P(x , 6.25) 5 .7083

Example 5.13
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Mathematical operations can also be applied to several random variables. In sta-
tistical applications, for example, we commonly form sums of several random variables 
and ask about the probability with which these sums assume various numerical values. 
Such calculations are greatly simplified if the random variables involved are known to 
be independent of one another. Two random variables, x and y, are said to be indepen-
dent if the events {x , a} and {y , b} are independent for all possible combinations of  
real numbers a and b. For example, if x represents the lifetime of a randomly chosen elec-
tronic component (measured in hours of service) and y denotes the lifetime of another 
randomly chosen component, then, intuitively, we expect that the event {x , 1000}  
should be independent of the event {y , 500}. In fact, we expect that the choice of 1000 
and 500 is immaterial here, so that the events {x , a} and {y , b} should be indepen-
dent, regardless of the values of a and b.

Independent variables commonly arise from the application of random procedures 
such as random sampling or randomization, or from an assumption of randomness. 
For two discrete random variables with mass functions p1(x) and p2(y), independence 
also means that their joint probability p(a, b) 5 P(x 5 a and y 5 b) equals the prod-
uct of their mass functions; that is, p(a, b) 5 p1(a)p2(b) for any combination of values 
of a and b. Similarly, for continuous random variables with densities f1(x) and f2(y), 
independence allows their joint density f (x, y) to be written as a product of their 
individual densities: f (x, y) 5 f1(x)f2(y) for any values of x and y. Now let B denote a 
collection of points in the x2y plane. When x and y are independent, the probability 
that the pair (x, y) lies in B is

P(B) 5
(̂x, y)̂ B

p(x, y) 5
(̂x, y)̂ B

p1(x)p2(y)    x, y discrete

P(B) 5 ##B 
f (x, y) dx dy 5 ##B 

f1(x)f2(y) dx dy   x, y continuous

Images displayed on computer screens consist of thousands of small regions 
called picture elements, or pixels for short. The intensity of the electron beam 
focused at a given point (x0, y0) on a flat screen is usually described by two in-
dependent normal random variables x and y, with means x0 and y0, respectively. 
That is, we represent the intensity of the beam by a joint density function of two 
independent random variables. For example, Figure 5.14 shows a graph of the 
joint density function describing an electron beam focused on the point (x0, y0) 5  
(30, 50). The standard deviations of the two normal distributions are �x 5 .2 and  
�y 5 .2. Because x and y are independent, we can write the joint density as the product

f (x, y) 5 f1(x)f2(y)
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The volume under this density that sits over a given region B in the x–y 
plane describes the proportion of time that the electron beam spends in region 
B. Although the joint density can be used to find the probability associated with 
any set B of points near (30, 50) on the screen, the probability of some sets can 
be found in an easier way. For example, if we want to find the proportion of time 
that the beam spends in the region where x , 29.5 and y , 49.6, we can simply 
use the independence of x and y to obtain

P(x , 29.5 and y , 49.6) 5 P(x , 29.5)P(y , 49.6)

instead of integrating the density over the region B 5 {(x, y)|x , 29.5, y , 49.6}. 
Thus

P(x , 29.5 and y , 49.6) 5 P(x , 29.5)P(y , 49.6)

5 Paz ,
29.5 2 30

.2
bPaz ,

49.6 2 50
.2

b

5 P(z , 22.5)P(z  , 22.0)

5 (.0062)(.0228) 5 .00014

The proportion of time that the beam spends in this region is very small.
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Figure 5.14  Joint density function near the point  
( 0, 0) 5 (30, 50)
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In Sections 5.5 and 5.6, we will be concerned with sums and averages of indepen-
dent random variables. Suppose, for example, that two printed circuit boards are ran-
domly selected and tested. Let x be the number of defective computer chips found 
on one board; let y be the number of defectives found on the other board. Suppose 
the following mass functions describe x and y:

x: 1 2 3 4 y: 1 2 3 4

p1(x): .25 .25 .25 .25 p2(y): .25 .25 .25 .25

To find the mass function associated with the average number of defectives on two 
boards, w 5 (x 1 y)y2, we can use mutually exclusive events and independence to 
simplify each probability. For example, to find P(w 5 2.5), first break up the event 
{(x 1 y)y2 5 2.5} into the disjoint events {x 5 1 and y 5 4}, {x 5 2 and y 5 3}, {x 5 
3 and y 5 2}, and {x 5 4 and y 5 1}. Next, find the probabilities of these events by 
multiplying mass function values:

P(x 5 1 and y 5 4) 5 P(x 5 1)P(y 5 4) 5 (.25)(.25) 5 .0625
P(x 5 2 and y 5 3) 5 P(x 5 2)P(y 5 3) 5 (.25)(.25) 5 .0625
P(x 5 3 and y 5 2) 5 P(x 5 3)P(y 5 2) 5 (.25)(.25) 5 .0625
P(x 5 4 and y 5 1) 5 P(x 5 4)P(y 5 1) 5 (.25)(.25) 5 .0625

Finally, add the probabilities of these disjoint events to find P(w 5 2.5) 5 .2500. 
Proceeding in this manner gives the mass function of the average, w:

w: 1 1.5 2 2.5 3 3.5 4

p(w): .0625 .1250 .1875 .2500 .1875 .1250 .0625

The graphs of all three mass functions are shown in Figure 5.15. Notice that the 
mass function of the average tends to bunch more closely around its mean than do 
either of its constituent mass functions, p1(x) and p2( y). 

Example 5.15
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Figure 5.15 The mass function of an average of two independent random 
variables
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	27.	 Classify each of the following random variables as 
either discrete or continuous.

	 a.	 x 5 the number of flaws per square foot in a ran-
domly selected sheet of fabric

	 b.	 y 5 the measured concentration of chemical in 
a solution

	 c.	 w 5 the proportion of oversize bolts in a ran-
domly selected box of bolts

	 d.	 u 5 the number of errors per 1000 randomly se-
lected lines of computer code

	 e.	 v 5 the breaking strength of a randomly selected 
metal bar

	 f.	 t 5 the lifetime of a randomly selected electronic 
component

	 g.	 x 5 the number of customer complaints in a 
randomly selected week

	28.	 The probability mass function for the number x 
of coding errors found in 1000 randomly selected 
lines of computer code is given by

x: 0 1 2 3 4
p(x): .08 .15 .45 .27 .05

	 a.	 Calculate the mean number of coding errors for 
all such blocks of 1000 lines of code.

	 b.	 Calculate the variance and standard deviation 
of x.

	29.	 A chemical supply company currently has in stock 
100 pounds of a certain chemical, which it sells to its 
customers in 5-lb lots. Let x denote the number of lots 
ordered by a randomly selected customer, and sup-
pose x has the following probability mass function:

x: 1 2 3 4
p(x): .2 .4 .3 .1

	 a.	 Compute the mean number of lots ordered by a 
customer.

	 b.	 Compute the variance of the number of lots or-
dered by a customer.

	 c.	 Compute the expected number of pounds left 
after a customer’s order is shipped.

	30.	 Let x denote the number of ticketed airline pas-
sengers denied a flight because of overbooking. 
Suppose that x is a random variable for which  

p(x) 5 c(5 2 x) for x 5 0, 1, 2, 3, 4. Find the 
numerical value of c and then compute P(x . 0).

	31.	 A contractor is required by a county planning 
department to submit from one to five different 
forms, depending on the nature of the project. Let 
y 5 number of forms required of the next contrac-
tor. Suppose that it is known that the probability 
that y forms are required is proportional to y; that 
is, p(y) 5 ky for y 5 1, 2, 3, 4, and 5.

	 a.	 What is the numerical value of k?
	 b.	 What is the probability that at most three forms 

are required?
	 c.	 What is the expected number of forms required?
	 d.	 Find the standard deviation of the number of 

forms required.

	32.	 Suppose that the reaction time (sec) to a certain 
stimulus is a continuous random variable with a 
density function given by

		  f  (x) 5 e kyx for 1 # x # 10
0 otherwise

	 a.	 Sketch a graph of f(x).
	 b.	 Find the numerical value of k.
	 c.	 What is the probability that x exceeds 3?
	 d.	 What is the probability that x lies within .25 sec 

of 3?

	33.	 A printed circuit board (PCB) has 285 small holes, 
called “joints,” into which are inserted the thin 
leads or “pins” emanating from electronic com-
ponents soldered to the PCB (see Example 5.20). 
Assuming that the quality of the solder joint at any 
pin is independent of the quality at any other pin, a 
binomial mass function can be used to describe x, 
the number of defective solder joints. Answer the 
following questions, given the probability that a 
given solder joint is defective is .01:

	 a.	 What are the mean and standard deviation of 
the number of defective solder joints on a PCB?

	 b.	 What proportion of all PCBs are defect-free?
	 c.	 What is the probability that a given PCB has two 

or more defective solder joints?

	34.	 The Poisson mass function is often used in biol-
ogy to model the number of bacteria in a solution. 

Section 5.4 Exercises 
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Suppose a dilute suspension of bacteria is divided 
into several different test tubes. The number of bac-
teria x in a test tube has a Poisson mass function with 
a parameter � that represents the mean number of 
bacterial cells contained in the different test tubes.

	 a.	 Express the probability that a particular test tube 
contains no bacteria, in terms of �.

	 b.	 In terms of �, what is the probability that a test 
tube contains at least one bacterial cell?

	 c.	 After a certain period of time, all of the test 
tubes are examined, and it is found that 40% 
of the tubes contain at least one bacterial cell. 
Use your answer from part (b) to estimate �, the 
mean number of cells per test tube.

	35.	 A standard procedure for testing safety glass is to 
drop a 1/2-lb iron ball onto a 12-in. square of glass 
supported on a frame (“Statistical Methods in Plas-
tics Research and Development,” Quality Engr., 
1989: 81–89). The height from which the ball is 
dropped is determined so that there is a 50% chance 
of breaking through the glass. A breakthrough is 
considered to be a failure, whereas a ball that is 
stopped by the glass (even if the glass cracks) is con-
sidered to be a success. Suppose that 100 sheets of 
safety glass are randomly selected and tested, and 
that no change has been made in the resin used to 
manufacture the glass.

	 a.	 What is the expected number of sheets that will 
experience a breakthrough?

	 b.	 What is the probability that 60 or more sheets 
will have a breakthrough?

	36.	 The normal distribution is commonly used to model 
the variability expected when making measurements 
(Taylor, J. R., An Introduction to Error Analysis: The 
Study of Uncertainties in Physical Measurements, 
University Science Books, Sausalito, CA, 1997). In 
this context, a measured quantity x is assumed to 
have a normal distribution whose mean is assumed 
to be the “true” value of the object being measured. 
The precision of the measuring instrument deter-
mines the standard deviation of the distribution.

	 a.	 If the measurements of the length of an object 
have a normal probability distribution with a 
standard deviation of 1 mm, what is the prob-
ability that a single measurement will lie within 
2 mm of the true length of the object?

	 b.	 Suppose the measuring instrument in part (a) 
is replaced with a more precise measuring in-
strument having a standard deviation of .5 mm. 
What is the probability that a measurement 
from the new instrument lies within 2 mm of 
the true length of an object?

	37.	 Acceptance sampling is a method that uses small 
random samples from incoming shipments of prod-
ucts to assess the quality of the entire shipment. Typi-
cally, a random sample of size n is selected from a 
shipment, and each sampled item is tested to see 
whether it meets quality specifications. The number 
of sampled items that do not meet specifications is 
denoted by x. As long as x does not exceed a prespeci-
fied integer c, called the acceptance number, then the 
entire shipment is accepted for use. If x exceeds c, 
then the shipment is returned to the vendor. In prac-
tice, because n is usually small in comparison to the 
number of items in a shipment, a binomial distribu-
tion is used to describe the random variable x.

	 a.	 Suppose a company uses samples of size 
n  5 10 and an acceptance number of c 5 1 
to evaluate shipments. If 10% of the items in 
a certain shipment are defective, what is the 
probability that this shipment will be returned 
to the vendor?

	 b.	 Suppose that a certain shipment contains no 
defective items. What is the probability that the 
shipment will be accepted by the sampling plan 
in part (a)?

	 c.	 Rework part (a) for shipments that are 5%, 20%, 
and 50% defective.

	 d.	 Let � denote the proportion of defective items 
in a given shipment. Use your answers to parts 
(a)2(c) to plot the probability of accepting a 
shipment (on the vertical axis) against � 5 0, 
.05, .10, .20, and .50 (on the horizontal axis). 
Connect the points on the graph with a smooth 
curve. The resulting curve is called the operat-
ing characteristic (OC) curve of the sampling 
plan. It gives a visual summary of how the plan 
performs for shipments of differing quality.

	38.	 Refer to Exercise 37. Acceptance sampling plans that 
use an acceptance number of c 5  0 are given the 
name zero acceptance plans. Zero acceptance plans 
are not frequently used because, although they protect 
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against accepting shipments of inferior quality, they 
also tend to reject many shipments of good quality.

	 a.	 Let � denote the proportion of defective items 
in a shipment. Develop a general formula for 
the probability of accepting a shipment having 
� 3 100% defective items.

	 b.	 Plot the OC curve for the zero acceptance plan 
that uses sample sizes of n 5 10.

	 c.	 For what value of � is the probability of accept-
ing a shipment about .05?

	39.	 Qualification exams for becoming a state-certified 
welding inspector are based on multiple-choice 
tests. As in any multiple-choice test, there is a 
possibility that someone who is simply guessing 
the answers to each question might pass the test. 
Let x denote the number of correct answers given 
by a person who is guessing each answer on a 
25-question exam, with each question having five 
possible answers (for each question, assume only 
one of the five choices is correct).

	 a.	 What type of probability distribution does x 
have?

	 b.	 For the 25-question test, what are the mean and 
standard deviation of x?

	 c.	 The exam administrators want to make sure 
that there is a very small chance, say, 1%, that a 
person who is guessing will pass the test. What 
minimum passing score should they allow on 
the exam to meet this requirement?

	40.	 When used to model lifetimes of components, a 
probability distribution is said to be “memoryless” 
if, for a component that has already lasted (with-
out failure) for t hours, the probability that it lasts 
for another s hours does not depend on t. That is, 
P(x $ t 1 sux $ t) 5 P(x $ s). Show that the expo-
nential distribution is memoryless.

	41.	 The concept of the median of a set of data can also 
be applied to the probability distribution of a ran-
dom variable. If x is a random variable with density 
function f (x), then the median of this distribution is 
defined to be the value � for which half the area 
under the density curve lies to the left of �. That is, 
� is the solution to the equation  #�

2  f1x2 dx 5 1
2.  

	 a.	 Suppose the lifetime x of an electronic assem-
bly follows an exponential distribution with an 

MTBF of 500 hours (see Example 5.12 for the 
definition of MTBF). Find the median of this 
distribution. The median is the time by which 
half of all such assemblies will break down.

	 b.	 Is the median time to failure from part (a) larger 
or smaller than the mean time before failure 
(MTBF)?

	 c.	 From your answer to part (a), find a general 
formula (for any value of MTBF) for expressing 
the median time to failure in terms of the mean 
time before failure.

	42.	 On a construction site, subcontractor A is respon-
sible for completing the structural frame of a build-
ing. When this task is complete, subcontractor B 
then begins the task of installing electrical wiring 
and outlets. The following tables show estimated 
probabilities of completing each task in x days:

Framing time (days), x: 10 15 20 25 30
Probability, p1(x): .10 .20 .30 .30 .10

Wiring time (days), y: 5 10 15 20
Probability, p2(y): .20 .50 .20 .10

	 a.	 Calculate the expected completion time for 
each task.

	 b.	 Find the probability distribution of the total 
time for completing both tasks (assume that the 
framing and wiring tasks are independent).

	 c.	 What is the probability that the total time to 
complete both tasks is less than 35 days?

	 d.	 What is the expected time for completing both 
tasks?

	43.	 Let x be the cost ($) of an appetizer and y be the 
cost of a main course at a certain restaurant for a 
customer who orders both courses. Suppose that x 
and y have the following joint distribution:

y
10 15 20

5 .20 .15 .05

x 6 .10 .15 .10

7 .10 .10 .05

	 a.	 Find the probability mass function of x.
	 b.	 Find the probability mass function of y.
	 c.	 Find the probability that x 1 y # 21.
	 d.	 Are x and y independent?
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How Sampling Distributions Are Used
One way to approximate the sampling distribution of a statistic is to repeatedly select a 
large number of random samples of size n from a given population. By calculating the 
value of the statistic for each sample and forming a histogram of the results, we get an 
approximate picture of the sampling distribution of the statistic. In turn, this picture 
can be used to describe the values of the statistic that are likely to occur in any random 
sample of size n.

The sampling distribution of a statistic is a mass or density function that char-
acterizes all the possible values that the statistic can assume in repeated random 
samples from a population or process.

definition

5.5	 Sampling Distributions �

The general objective of statistical inference, as we have noted in the chapter introduc-
tion, is to answer questions about the characteristics of populations and processes. In 
particular, we wish to be able to make statements about population and process parame-
ters and to also accompany them by a measure of how much reliability or confidence we 
have in our statements. Statistical inference is based on the interplay between random 
samples (used to obtain data and calculate statistics), sampling distributions (which 
describe the behavior of such statistics), and probability (which gives quantitative mea-
sures of reliability about what the statistics say). In this section and the next, we show 
how these three tools are used in statistical inference.

The sampling distribution of a statistic is a mass or density function that character-
izes all the possible values that the statistic can assume in repeated random samples. 
Depending on the particular statistic (e.g., x, s, s2, x , range, IQR), we speak of the sam-
pling distribution of  x, the sampling distribution of s, and so forth. Every statistic has 
a sampling distribution. The sampling distribution sets the limits on which values of a 
statistic are likely and which are not.

Suppose that we draw 1000 random samples, each of size n 5 25, from a normal pop-
ulation with a mean of 50 and a standard deviation of 2. If we calculate the mean x 
of each sample, then the distribution of all 1000 x values gives a good approximation 
to the sampling distribution of  x. Figure 5.16 shows a histogram of the results of such 
an experiment. Notice that the 1000 sample means stack up around the population 
mean (� 5 50) and that variation among the sample means is smaller than variation 
in the population. In particular, none of the sample means fall outside the range of 
48.5 to 51.5 (i.e., none are more than 1.5 units away from �). In fact, it also appears 
that very few sample means fall outside the interval 49 to 51; that is, they are gener-
ally within 1 unit of �.

Example 5.16
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From the shape and location of the sampling distribution, we can begin to see 
which values of the sample statistic are more likely to occur than others. In this sense, 
the information in a sampling distribution provides a template for evaluating any sam-
ple, even future samples, from a population or process. In Figure 5.16, for instance, we 
can use the tails of the sampling distribution to place bounds on the values that x can 
assume whenever we take random samples of size 25 from a normal population with a 
mean of 50 and a standard deviation of 2. Going a step further, we can reasonably say 
that the mean affects only the location of the histogram and that the value of � affects 
only the spread of the sample results. If this is so, then we now know a lot about what to 
expect when sampling from any normal population whose standard deviation is � 5 2.

20
40
60
80

100

Distribution of sample means

Mean

48.5 49.5 50.5 51.5

Frequency

0.0

0.1

0.2

44 46 48 50 52 54 56

Population

Figure 5.16 Approximating the sampling distribution of  (  5 25)

Refer to Example 5.16. Suppose that next week we select a single sample of size 25 
from a normal population whose standard deviation is known to be � 5 2, but whose 
mean � is unknown to us. If  x 5 70 for this sample, then the results in Example 5.16 
indicate that 70 is almost certainly no farther than 1.5 units away from the population 
mean � and it is fairly likely that it is within 1 unit of �. That is, we can infer that 
the unknown population mean is almost certainly between 68.5 and 71.5, and we 
can be reasonably confident that it is between 69 and 71. In this way, by using our 
knowledge of what the sampling distribution of x looks like, we can begin to make 
inferences about the likely values of the unknown population parameter �.

Example 5.17

General Properties of Sampling Distributions
As we noted previously, sampling distributions can be created for any statistic, not just x.  
For example, Figure 5.17 shows the approximate sampling distributions of the statistics x, 
x , s, and s2, for the same 1000 samples of size n 5 25 that were used to create Figure 5.16.

What about sampling from discrete populations? In particular, suppose we want 
to use samples of size 25 to estimate the proportion � of defectives being made by a 
certain process. Denoting defective items by a “1” and nondefectives by a “0,” the mass 
function

x: 0 1

p(x): .80 .20Un
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Figure 5.17  Sampling distributions of , , , and 2

Mean

Standard deviation

Median

Variance

Figure 5.18  Sampling distribution of when
 5 25 from a process with � 5 .20

0

100

200

Frequency

0 .1 .2

Proportion

.3 .4 .5

describes such a process in which the proportion of defective items is 20%. By calculat-
ing the sample proportion defective p for each of 1000 random samples of size n 5 25, 
an approximate sampling distribution for the statistic p can be formed (Figure 5.18). 
Note that this distribution has many more possible values than just the values x 5 0 
and x 5 1 in the population (each of the values 0y25, 1y25, 2y25, 3y25, . . . , 25y25 is 
a possible value of p). The shape of this sampling distribution is similar to the one in 
Figure 5.16, although it contains some gaps because only the values of p shown previ-
ously are possible to attain in a sample of size 25.

Sampling experiments can reveal many general properties of sampling distributions. 
Consider Table 5.1, which shows the means and standard deviations of the sampling Un
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distributions in Figure 5.17 along with the actual values of the corresponding population 
parameters (for a normal population with � 5 50, � 5 2). The similarity between the 
column of population parameters and the column of means of the sampling distribu-
tions leads us to conjecture that the center (i.e., the mean) of the sampling distribution 
of a statistic may, in fact, coincide with the corresponding population parameter. When 
this happens, we say that the statistic is unbiased, or that it is an unbiased estimator of 
the population parameter. As we shall see in Section 5.6, some of the most important 
statistics we have encountered so far are unbiased.

Second, the standard deviations of the sampling distributions exhibit an important 
feature: All are smaller than the population standard deviation (�5 2). In fact, as we 
shall see in Section 5.6, an even stronger statement can be made: For the majority of 
statistics we have studied, the variation in the sampling distribution actually decreases 
as the sample size increases.

Beyond these simple observations, additional questions immediately come to mind. 
What role does the shape of the population play in controlling the shape of the sampling 
distribution? What is the effect of increasing or decreasing the sample size? Exactly how 
is the variation exhibited by the sampling distribution related to the variation in the 
population? Most of these questions can be answered in general terms by conducting a 
few more sampling experiments. Such experiments provide the motivation for the fol-
lowing general conclusions:

Table 5.1  Means and standard deviations of sampling distributions in Figure 5.17

Population  
parameter

Actual  
value

Sample mean of  
sampling distribution

Sample standard deviation 
of sampling distribution

Mean, � 50 50.000 .418

Median 50 49.982 .515

Standard deviation, � 2 1.9831 .2853

Variance, �2 4 4.0139 1.1528

General Properties of Sampling Distributions

1. � The sampling distribution of a statistic often tends to be  at the value of the 
population parameter estimated by the statistic.

2. � The spread of the sampling distributions of many statistics tends to grow smaller as the 
sample size  increases.

3. � As the sample size increases, sampling distributions of many statistics become more and 
more bell-shaped (more and more like normal distributions).

Finally, and perhaps most importantly, do we really have to conduct a lengthy sam-
pling experiment every time we want to make inferences based on a statistic generated 
from a single sample? As we shall see in Section 5.6, the surprising answer is “no.” In Un
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232	 chapter 5   Probability and Sampling Distributions

fact, the approximate shape of the sampling distribution is often known in advance, be-
fore taking even a single sample! Furthermore, knowing the specific shape of a sampling 
distribution also enables us to calculate probabilities, which allow us to quantify exactly 
what we mean by saying that, for example, the sample mean is highly likely to be within 
1 unit of the population mean.

	44.	 What primary purpose do sampling distributions 
serve in statistical inference?

	45.	 Refer to Exercise 37. Suppose that a large lot of items 
is inspected by taking a random sample of size n and 
determining the number x of defective items in the 
sample. The result is then reported in terms of the 
proportion p 5 xyn of defective items in the sample. 
Assume that the binomial distribution can be used to 
describe the behavior of the random variable x.

	 a.	 Suppose that 5% of the items in a particular lot 
are defective and that a random sample of size 
n 5 5 is to be taken from the lot. Calculate the 
probability that the sample proportion p falls 
within 1% of the true percent defective in the 
lot. That is, find p(.05 2 .01 # p # .05 1 .01)

	 b.	 Answer the question in part (a) for samples of 
size n 5 25.

	 c.	 Answer the question in part (a) for samples of 
size n 5 100. Hint: Use the normal approxima-
tion to the binomial distribution.

	46.	 Random samples of size n are selected from a popu-
lation that is uniformly distributed over the interval 
[10, 20]. Without sampling or performing any cal-
culations, describe what you expect the sampling 
distribution of the range R (R 5 largest minus 
smallest value in a sample) to look like.

	 a.	 For samples of size n 5 2, what do you predict the 
mean of the sampling distribution of R will be?

	 b.	 For samples of size n 5 100, what do you predict 
the mean of the sampling distribution of R will be?

	 c.	 Will the variance of the sampling distribution of 
R for samples of size n 5 2 be the same or dif-
ferent from the variance of the sampling distri-
bution of R for samples of size n 5 100? Give a 
simple justification for your answer based on the 
definition of the range for n 5 2 versus n 5 100.

	 d.	 What will happen to the variance of the sam-
pling distribution of R as the sample size n in-
creases? Give a simple justification for your an-
swer based on the definition of the range.

	47.	 The Food and Drug Administration (FDA) oversees 
the approval of both medical devices and new drugs. 
To gain FDA approval, a new device must be shown 
to perform at least as well, and hopefully better, than 
any similar device already on the market. Suppose a 
medical device company develops a new system for 
connecting intravenous tubes used on hospital pa-
tients. To be comparable to an already-existing prod-
uct, the force required to disconnect two tubes joined 
by the new device must not exceed 5 lb. To estimate 
the maximum force required to disconnect two tubes, 
several tests are made. For a random sample of n con-
nections, the forces x1, x2, x3, . . . , xn required to dis-
connect the tubes are recorded and the maximum, 
M, of the n readings is used to estimate the maximum 
necessary force for all such connections.

	 a.	 Suppose that the actual distribution of forces 
needed to disconnect tubes can be described by 
a uniform distribution on the interval [2, 4]. For 
a sample of size n 5 2, do you expect the mean 
of the sampling distribution of M to be closer to 
2 or 4?

	 b.	 Which do you expect to be larger, the mean of 
the sampling distribution of M for samples of size  
n 5 2 or the mean of the sampling distribution of 
M for samples of size n 5 100? Use the definition 
of the maximum of a sample to justify your answer.

	 c.	 Will the variance of the sampling distribution of M 
for samples of size n 5 2 be the same or different 
from the variance of the sampling distribution of 
M for samples of size n 5 100? Give a simple justi-
fication for your answer based on the definition of 
the sample maximum for n 5 2 versus n 5 100.

Section 5.5 Exercises 
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5.6	 Describing Sampling Distributions  �

Just as histograms of sample data provide approximations to population distributions, 
sampling experiments (Section 5.5) furnish approximate pictures of sampling distribu-
tions. We now turn our attention to developing more precise summaries of sampling 
distributions. This requires a slightly deeper investigation of the role played by random 
sampling. For instance, Example 5.15 gives a glimpse of how random sampling and the 
form of the statistic x are brought together to form a more exact picture of the sampling 
distribution of   x. The essential role of random sampling is to ensure that the sampled 
values can be considered to be independent. Independence, in turn, enables us to per-
form the necessary probability calculations to arrive at the distribution of the statistic.

In this section, we study in some detail the exact sampling distributions of the sta-
tistics x (sample mean) and p (sample proportion). These two statistics appear in a great 
many statistical techniques, and their sampling distributions serve as prototypes for all 
other sampling distributions. In subsequent chapters, we will simply state the form of 
the sampling distribution that applies to a given statistical technique.

Sampling Distribution of x
The sampling distribution of x, also called the sampling distribution of the mean, is 
the probability distribution that describes the behavior of x in repeated random samples 
from a population or process. Like any distribution, the sampling distribution of x has 
its own unique mean and standard deviation, which we denote by �x and �x, respec-
tively. The next general result relates �x and �x to the population or process mean and 
standard deviation.

Mean and Standard Deviation of the Sampling  
Distribution of 
Let  be the sample mean of a random sample 1, 2, 3, . . . ,  from a population 
or process with mean � and standard deviation �. Then, the mean of the sampling 
distribution of  coincides with �, regardless of the sample size . The spread of the 
sampling distribution, described by � = is equal to the population standard deviation 
divided by the square root of the sample size. That is,

� 5 �  and  � 5
�1  

These equations hold regardless of the particular form of the population distribution. To 
emphasize the fact that it describes a sampling distribution, not a population, �x is also 
called the standard error of x, or the standard error of the mean.

One of the key features of the standard error of the mean �x is that it decreases as 
the sample size increases. In fact, many statistics have this property (see Section 5.5). 
This makes intuitive sense, since we expect that more information ought to provide 
better estimates (i.e., smaller standard errors). As a result, increasing the size of a ran-
dom sample has the desirable effect of increasing the probability that the estimate x will 
lie close to the population mean �. 
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234	 chapter 5   Probability and Sampling Distributions

Sampling from a Normal Population
When a population follows a normal distribution, it can be shown that the sampling 
distribution of x is also normal, for any sample size n. The normality of  x, along with the 
fact that its mean �x and standard error �x can be determined from � and �, is enough 
to completely characterize the sampling distribution of x in this case. As a result, with 
the normal distribution, probabilities of events involving x reduce to straightforward 
calculations. Figure 5.19 demonstrates the effect that increasing n has on the sampling 
distribution of x.

Sampling Distribution of  (Normal Population)
When a population distribution is normal, the sampling distribution of x is also normal, 
regardless of the size of the sample.

  (  = 10)

  (  = 30)

  (  = 100)

–––––
10

–––––
30

–––––––
100

Figure 5.19 The probability that  falls within a fixed distance from � increases as  
increases

Physical characteristics of manufactured products are often well described by 
normal distributions. Suppose, for example, that we want to evaluate the length 
(in  cm) of certain parts in a production process based on the information in a 
random sample of five such parts. The parts are required to have a nominal length 
of 20 cm; past experience with this process indicates that the standard deviation 
is known to be � 5 1.8 cm. If we assume that the lengths can be described by a 

Example 5.18
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The Central Limit Theorem
As we have just seen, prior knowledge about the shape of a population distribution 
determines the sampling distribution of x. Unfortunately, possessing such knowledge is 
more often the exception than the rule. In many applications, we are faced with sam-
pling from populations whose distributions are, at best, only approximately understood 
or that sometimes deviate markedly from normality.

The remedy for this problem is to rely more heavily on the sampling process and 
less on our knowledge of the population. It is a fortunate and somewhat surprising fact 
that a complete knowledge of a population distribution is not necessary, as long as we 
compensate by selecting a large enough sample. By using a moderately large sample size 
n, it can be shown that the sampling distribution of x is approximately normal, regardless of 
the particular population distribution. This result is known as the Central Limit Theorem.

normal distribution, what is the probability that the mean of this sample will be 
within 2 mm of the current process mean �? That is, what is the probability that x 
will lie between � 2 2 and � 1 2?

The solution to this type of problem lies in recognizing that the sam-
pling distribution of x is normal with a mean of �x 5 � and standard error of 
�x 5 �y1n 5 1.8y15 5 .805. To find the probability P1� 2 2 , x , � 1 22,  we 
standardize, making sure to use the mean and standard error of x while doing this:

P(� 2 2 ,  x , � 1 2) 5 P°
� 2  2 2   �

�1n

 , z ,  

� 1 2 2 �

�1n
¢

5 Pa 22
.805

 , z ,
2

.805
b 5 .9868

That is, there is a 98.68% chance that the mean of a random sample of size n 5 5 
will be within 2 units of the population mean �. Notice how the unknown mean � 
cancels itself during the standardization. In other words, we do not need to know (or 
assume) a value for �. Instead, when we select our sample of five parts, we can be 
relatively confident that the sample mean will be no farther than 2 cm from the true 
(unknown) process mean.

The Central Limit Theorem
The sampling distribution of  can be approximated by a normal distribution when the 
sample size  is sufficiently large, irrespective of the shape of the population distribution. 
The larger the value of , the better the approximation.

Although the sampling distribution of x must reflect certain features of the popula-
tion being sampled (especially its location, �), the shape of the sampling distribution is 
primarily influenced by n. That is, as n increases, the particular shape of the population 
(e.g., uniform, exponential, normal, Weibull) exerts less and less influence on the shape 
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236	 chapter 5   Probability and Sampling Distributions

of the sampling distribution, which becomes more and more normal in appearance. 
Figure 5.20 illustrates this effect for several different populations. The closer the popu-
lation is to being normal, the more rapidly the sampling distribution of x approaches 
normality. For instance, we saw this behavior emerging in Figure 5.15, where even 
small samples of size n 5 2 from a uniform population result in a sampling distribution 
that is already beginning to take on the characteristic normal shape.

Consider the distribution shown in Figure 5.21 for the amount purchased (rounded 
to the nearest dollar) by a randomly selected customer at a particular gas station (a 
similar distribution for purchases in Britain (in pounds) appeared in the article “Data 
Mining for Fun and Profit,” Statistical Science, 2000: 111–131; there were big spikes at 
the values 10, 15, 20, 25, and 30). The distribution is obviously quite nonnormal.  We 
asked Minitab to select 1000 different samples, each consisting of n 5 15 observations, 

Example 5.19

Figure 5.20 The Central Limit Theorem:  The sampling distribution of  approaches a 
normal distribution as the sample size  increases

   

   

   

 = 10

 = 50

 = 10

 = 2

 = 2

 = 2

Uniform population

Exponential population

Normal population

Many authors use n$30 as a rough guide for what constitutes a “large enough” 
sample size for invoking the Central Limit Theorem. This is not a bad rule in general, 
but there are cases where substantially smaller values of n will suffice (e.g., with sym-
metric populations like the uniform and the normal), as well as cases where larger 
sample sizes are needed (especially for highly skewed populations). As a rule, the less 
symmetric a population is, the larger the sample size will have to be to ensure normality 
of   x. For example, in the case of an exponential population, sample sizes of 40 to 50 are 
often required to achieve normality.
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and calculate the value of the sample mean x for each one. Figure 5.22 is a histogram 
of the resulting 1000 values; this is the approximate sampling distribution of x under 
the specified circumstances. This distribution is clearly approximately normal even 
though the sample size is not very large. A normal quantile plot based on the 1000 x 
values exhibits a very prominent linear pattern.

0.16

Probability

Purchase 
amount

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00
60555045403530252015105

Figure 5.21 P robability distribution of  5 amount of gasoline purchased ($)

Density

Mean

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00
36333027242118

Figure 5.22  Approximate sampling distribution of the sample mean 
amount purchased when  5 15 and the population is as shown in Figure 5.21 
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Printed circuit boards (PCBs), used in electronic equipment such as computers and 
appliances, are laminated cards (usually green) upon which various electronic compo-
nents are mounted. One step in the manufacture of PCBs uses machines to automati-
cally insert the metal connecting pins on the components into the appropriate hole 
patterns on a PCB. Components of each type (e.g., resistors, capacitors) are adhesively 
mounted on large paper-tape rolls and fed into the machines, which then insert them 
into a PCB. The amount of time it takes to insert all the components on a given PCB 
varies somewhat from board to board because of machine downtime for replenish-
ing tape rolls and replacing components with broken pins. Suppose that an insertion 
machine can complete a certain type of PCB in an average time of 3 minutes with a 
standard deviation of .5 minute. If an order of 100 PCBs is run on this machine, what 
is the probability that the average time to complete all the boards exceeds 3.1 minutes?

Viewing the completion times as a random sample from a population with
� 5 3 and � 5 .5, we can calculate the mean and standard error of the sampling 
distribution of the average completion time (of the 100 boards) as follows:

	 �x 

5 � 5 3  and  �x 

5  

�1n
 5  

.51100
 5 .05

Because the sample size n 5 100 is large, the Central Limit Theorem allows us to 
use the normal distribution to calculate the desired probability:

P(x . 3.1) Paz .
3.1 2 3

.05
b

5 P(z . 2) 5 1 2 P(z # 2) 5 1 2 .9772 5 .0228

That is, there is only a 2.28% chance that the average completion time will exceed 
3.1 minutes. Since x  .3.1 is equivalent to (100) x .100(3.1), we can also state that 
there is a 2.28% chance that the total time for completing the 100 boards will exceed 
310 minutes (5 hours, 10 minutes).

Example 5.20

Sampling Distribution of the Sample Proportion
Qualitative information can also be included in statistical studies. To do this, we first 
numerically code such information using the following simple device: The number “1” 
is assigned to population members having a specified characteristic and “0” is assigned 
to those that do not. The population that results from this 0–1 coding scheme is pictured 
in Figure 5.23. The parameter of interest in this situation is �, the proportion of the 
population that has the characteristic of interest. Notice that � is also the height of the 
bar associated with the value of 1 in Figure 5.23.

Using the formulas in Chapter 2, we can calculate the mean, variance, and stan-
dard deviation of this population:

� 5
x̂

xp(x) 5 0(1 2 �) 1 1 ? � 5 �

�2 5
x̂

(x 2 �)2p(x) 5 �(1 2 �)

� 5 2�(1 2 �)
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Figure 5.23 The distribution of coded 
values of a qualitative characteristic: “1” 
denotes that the specified characteristic 
is present; “0” indicates that it is not

10

  

1 – 

 

  (1 – )

Sampling Distribution of 
The mean and standard error of the sampling distribution of  are given by

	 � 5 �  and  � 5 B�(1 2 �)

In addition, for a large enough , the sampling distribution of  is approximately normal. In 
general, the normal approximation is best when � $ 5 and 11 2  �2 $ 5.

Every random sample drawn from such a population will consist entirely of 0s and 
1s. Suppose, for instance, that a particular sample of size 10 contains the observations 
{0, 0, 1, 1, 0, 1, 0, 0, 1, 0}. Then the sample mean is (0 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 
1 1 0)y10 5 .40. That is, the sample mean is simply the proportion of 1s in the sample. 
We use the notation p to denote the proportion of successes, also called the sample 
proportion, in a random sample of size n.

Since p is actually a sample mean, we can use the earlier results in this section to 
determine its sampling distribution. For example, the mean and standard error of the 
sampling distribution of p are given by

�p 5  � 5  �  and  �p 5  
�1n

 5  
2�(1 2 �)1n

5 C�(1 2 �)
n

Furthermore, for a sufficiently large sample size n, the Central Limit Theorem in-
dicates that the sampling distribution of p will be approximately normal. Because 
we record only whether each sampled item has a certain characteristic or not, 
large samples are often easy to come by when estimating a population proportion 
�. As a general rule, the accuracy of the normal approximation is best when both 
n� $ 5 and n(1 2 �) $ 5.
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The fact that the formulas for �p and �p both contain the unknown parameter � 
might at first appear to negate the usefulness of the sampling distribution of p. After all, 
if the population proportion � is unknown, how can we possibly find2�(1 2 �)yn ? 
In practice, there are two relatively simple solutions to this problem: (1) Use a prede-
termined value of � that describes some hypothetical value of � against which the 
sample data is to be compared or (2) use � 5 1y2 in the formula for �p, which results 
in a conservatively large value of �p.

The second approach is based on the observation that �(1 2 �) # .25 for any value 
of � between 0 and 1.1  This means that

�p 

5 B�(1 2 �)
n

 #  A .25
n

 5  
1

21n

no matter what the true value of �. Thus, by choosing the sample size n large enough, 
1y21n  (and hence �p) can be made as small as desired. This approach is commonly 
used in all forms of survey sampling.

1 Writing �(1 2 �) as 1y4 2 (1y2 2 �)2 you can see that the maximum value 1y4 occurs when � 5 1y2. 
Alternatively, you could use calculus, setting the derivative of �(1 2 �) equal to 0, to find that � 5 1y2 
maximizes the quantity �(1 2 �.)

Control charts are graphs that monitor the movements in a sample statistic (such 
as x or p) in periodic samples taken from an ongoing process. Using the sampling 
distribution of the statistic as a yardstick, values of the statistic “too far” away from the 
center of the sampling distribution are taken to be signals of possible problems with 
the process. For example, a p chart is often used to monitor the proportion of non-
conforming products in a manufacturing process. Using past data from the process, a 
value of � is selected as being representative of the long-run behavior of the process. 
Suppose, for example, that a certain process constantly generates an average of about 
5% nonconforming products and that samples of size 100 are taken each day to test 
whether the 5% nonconformance rate has changed. On one particular day, 12 non-
conforming products appear in the sample. How do we interpret this information?

Assuming that the process is behaving as it has in the past, we set � 5 .05. For 
this value of �, n� 5 100(.05) 5 5 and n(1 2 �) 5 100(.95) 5 95, so the condition 
for applying the normal approximation is met. Furthermore, the mean and standard 
deviation of the sampling distribution of p can be calculated:

�p 5 .05  and  �p 5 B�(1 2 �)
n

5 B (.05)(1 2 .05)
100

5 .0218

Because the sampling distribution of p is approximately normal, we can evaluate the 
sample proportion of p 5 12y100 5 .12 by determining how far away it is from the mean 
of .05. Since (.12 2 .05)y.0218 5 3.21, we see that the value of .12 is 3.21 standard 
deviations above the process mean. In other words, this sample result has a very small 
probability of occurring if the process is running as usual. Our conclusion is that it is 
more likely that something has caused an increase in the process nonconformance rate.

Example 5.21
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	48.	 The inside diameter of a randomly selected piston 
ring is a random variable with a mean of 12 cm and 
a standard deviation of .04 cm.

	 a.	 Where is the sampling distribution of  x cen-
tered? What is the standard deviation of the sam-
pling distribution of x?

	 b.	 Answer the questions in part (a) for sample 
means based on samples of size 64.

	 c.	 Which is more likely to lie within .01 cm of 
12  cm, the mean of a random sample of size 16 
or the mean of a random sample of size 64?

	49.	 A survey of the members of a large professional en-
gineering society is conducted to determine their 
views on proposed changes to an ASTM measure-
ment standard. Suppose that 80% of the entire 
membership favor the proposed changes.

	 a.	 Calculate the mean and standard error of the 
sampling distribution of the proportion of engi-
neers in samples of size 25 who favor the pro-
posed changes.

	 b.	 Calculate the mean and standard error of the 
sampling distribution of the proportion of engi-
neers in samples of size 25 who do not favor the 
proposed changes.

	 c.	 Calculate the mean and standard error of the 
sampling distribution of the proportion of engi-
neers in samples of size 100 who favor the pro-
posed changes.

	50.	 A random sample of size 25 is selected from a large 
batch of electronic components, and the proportion 
of defective items in the sample is recorded. The 
proportion of defective items in the entire batch, 
however, is unknown. What is the maximum value 
that the standard error of the sampling distribution 
of the sample proportion could have?

	51.	 Refer to Exercise 48. Assume that the distribution of 
piston diameters is known to be normal.

	 a.	 Calculate the probability P111.99 # x # 12.012 
when n 5 16.

	 b.	 Calculate the probability P111.99 # x # 12.012 
when n 5 64.

	52.	 Let x1, x2, x3, . . . , x100 denote the actual weights of 
100 randomly selected bags of fertilizer.

	 a.	 If the expected weight of each bag is 50 lb and 
the standard deviation of bag weights is known 
to be 1 lb, calculate the approximate value of 
P149.75 # x # 50.252 by relying on the Central 
Limit Theorem.

	 b.	 If the expected weight per bag is 49.8 lb rather 
than 50 lb (so that, on average, the bags are un-
derfilled), calculate P149.75 # x # 50.252.

	53.	 The lifetime of a certain battery is normally distrib-
uted with a mean value of 8 hours and a standard 
deviation of 1 hour. There are four such batteries in 
a package.

	 a.	 What is the probability that the average lifetime 
of the four batteries exceeds 9 hours?

	 b.	 What is the probability that the total lifetime of 
the batteries will exceed 36 hours?

	 c.	 If T denotes the total lifetime of the four batter-
ies in a randomly selected package, find the nu-
merical value of T0 for which P1T $ T02 5 .95.

	 d.	 Refer to your answer to part (c). Suppose the bat-
tery manufacturer guarantees that any package 
of batteries that does not yield a total lifetime 
of T0 hours will be replaced free of charge to 
the customer. If it costs the manufacturer $3.00 
to replace a package of batteries (materials plus 
mailing to customer), calculate the expected 
replacement cost per package associated with a 
large shipment of batteries.

	54.	 The Rockwell hardness of certain metal pins is known 
to have a mean of 50 and a standard deviation of 1.5.

	 a.	 If the distribution of all such pin hardness mea-
surements is known to be normal, what is the 
probability that the average hardness for a ran-
dom sample of 9 pins is at least 52?

	 b.	 What is the approximate probability that the av-
erage hardness in a random sample of 40 pins is 
at least 52?

	55.	 Suppose that the sediment density (in g@cm3) of 
specimens from a certain region is normally distrib-
uted with a mean of 2.65 and a standard deviation 
of .85 (“Modeling Sediment and Water Column 
Interactions for Hydrophobic Pollutants,” Water 
Research, 1984: 169–174).

Section 5.6 Exercises 
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	 a.	 If a random sample of 25 such specimens is se-
lected, what is the probability that the sample 
average sediment density is at most 3.00? Be-
tween 2.65 and 3.00?

	 b.	 How large a sample would be required to ensure 
that the first probability in part (a) is at least .99?

	56.	 The number of flaws x on an electroplated automo-
bile grill is known to have the following probability 
mass function:

x: 0 1 2 3
p(x): .8 .1 .05 .05

	 a.	 Calculate the mean and standard deviation of x.
	 b.	 What are the mean and standard deviation of 

the sampling distribution of the average number 
of flaws per grill in a random sample of 64 grills?

	 c.	 For a random sample of 64 grills, calculate the 
approximate probability that the average num-
ber of flaws per grill exceeds 1.

	57.	 Only 2% of a large population of 100-ohm gold-band 
resistors have resistances that exceed 105 ohms.

	 a.	 For samples of size 100 from this population, 
describe the sampling distribution of the sample 
proportion of resistors that have resistances in 
excess of 105 ohms.

	 b.	 What is the probability that the proportion of re-
sistors with resistances exceeding 105 ohms in a 
random sample of 100 will be less than 3%?

	58.	 In Exercise 36, what is the probability that the aver-
age of two measurements will lie within 2 mm of 
the true length of the object?

	59.	 Roughly speaking, the Central Limit Theorem 
says that sums of independent random variables 
tend to have (approximately) normal distributions. 
Similarly, it can be shown that products of inde-
pendent positive random variables tend to have 
lognormal distributions. Recall from Section 1.5 
that a random variable x is said to have a lognor-
mal distribution with parameters � and � if the 
random variable y 5 ln(x) is normal with mean � 
and standard deviation �. The successive breaking 
of particles into finer and finer pieces, a process 
that can be modeled as a product of positive ran-
dom variables, leads to lognormal particle size dis-
tributions. In particular, small particles suspended 
in the atmosphere (called aerosols) have radii that 
can be described by a lognormal distribution, with 
parameters � 5 22.62 and � 5 .788 (Crow, E. 
L., and K. Shimizu, Lognormal Distributions: The-
ory and Applications, Marcel Dekker, New York, 
1988: 337).

	 a.	 Find the mean radius (in �m) of the atmospheric 
particles.

	 b.	 What is the probability that an atmospheric par-
ticle will have a radius exceeding .12 �m?

	60.	 Figure 5.5 shows how a tree diagram can be used 
to verify that {A or B}= 5 {A= and B=}. Use a Venn dia-
gram to prove this fact.

	61.	 A large farming area is divided into five parcels of 
land of different sizes, as follows:
Parcel: B1 B2 B3 B4 B5

Size (acres): 15 20 25 10 20
		  Because crop-bearing trees are uniformly planted 

within each parcel, the probability that a randomly 
sampled tree from the farm comes from a particular 
parcel is assumed to be proportional to the size of 
the parcel.

	 a.	 What is the probability that a randomly chosen 
tree comes from one of the first three parcels of 
land?

	 b.	 What is the probability that a randomly chosen 
tree does not come from parcel 5?

	62.	 A complex assembly contains 20 critical compo-
nents (labeled C1, C2, . . .), each having a probabil-
ity of .95 of functioning correctly. Each component 
must function correctly for the entire assembly to 
function. Let A denote the event that the assembly 
fails to function correctly and let B denote the event 
that component C1 fails to function correctly.

Supplementary Exercises
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	 a.	 Give a verbal description of the expressions A | B 
and B | A.

	 b.	 Does P(A | B) 5 P(B | A)?

	63.	 A battery-operated tool requires that each of its 
four batteries operate correctly to provide sufficient 
power to the tool. If each battery operates indepen-
dently of the others and each has a .10 chance of 
failing over a 30-hour period of operation, what is 
the probability that the tool will fail sometime dur-
ing the 30-hour operating period?

	64.	 Two pumps that are connected in parallel fail in-
dependently of one another on any given day. The 
probability that only one pump fails is .10, and the 
probability that neither of the two pumps fails is .05. 
What is the probability that both pumps fail on a 
given day? Hint: Use a Venn diagram.

	65.	 Find a formula for the probability that at least one 
of two independent events occurs. (Hint: If events 
A and B are independent, then so are the pairs of 
events A= and B, A and B=, and A= and B=.)

	66.	 Let x denote the number of nonzero digits in a ran-
domly selected zip code.

	 a.	 List the possible values of the random variable x.
	 b.	 Can two or more zip codes have the same value 

of x?

	67.	 A continuous random variable x has a density func-
tion of the form f1x2 5 .5x over the interval [0, b].

	 a.	 Find b.
	 b.	 Find the mean of the variable x.
	 c.	 Find the standard deviation of the variable x.

	68.	 According to the article “Optimization of Dis-
tribution Parameters for Estimating Probabil-
ity of Crack Detection” (J. of Aircraft, 2009: 
2090–2097), the following “Palmberg” equation 
is commonly used to determine the probability 
Pd(c) of detecting a crack of size c in an aircraft 
structure:

			   Pd(c) 5
(cyc*)�

1 1 (cyc*)�

		  where c  is the crack size that corresponds to a .5 
detection probability (and thus is an assessment of 
the quality of the inspection process).

	 a.	 Verify that Pd(c ) 5 .5.
	 b.	 What is Pd(2c ) when �5 4?
	 c.	 Suppose an inspector inspects two different panels, 

one with a crack size of c  and the other with a 
crack size of 2c . Again assuming � 5 4 and also 
that the results of the two inspections are indepen-
dent of one another, what is the probability that 
exactly one of the two cracks will be detected?

	69.	 “Travelers” are documents that accompany a prod-
uct as it sequences through various production 
steps. Travelers contain manufacturing instructions 
pertaining to the particular item or order. Suppose 
that each of 30 data fields on a particular traveler 
has a .5% chance of being filled out incorrectly. As-
sume that each field is independent of the others.

	 a.	 What is the probability that a given traveler will 
contain at least one incorrect field?

	 b.	 What is the probability that a traveler is free of 
errors?

	 c.	 What is the probability of finding two or more 
errors on a traveler?

	70.	 A continuous signal is sent over a communication 
channel. The number of errors per second, x, at the 
receiving end of the channel has a normal distribu-
tion with a mean and standard deviation of 3 and .8 
errors per second, respectively.

	 a.	 In any given 1-second period, what is the prob-
ability that no errors are transmitted?

	 b.	 Find the probability of transmitting two or more 
errors per second.

	 c.	 What is the probability that more than five er-
rors per second will be transmitted?

	71.	 Use spreadsheet (e.g., Excel™) or other software 
to approximate the sampling distribution of the 
sample mean.

	 a.	 Generate at least 100 samples of size 10 from 
a uniform distribution on the interval [10, 20]. 
Create a histogram of the 100 sample means, 
and describe the shape of the histogram.

	 b.	 Repeat part (a) by generating 100 samples of 
size 10 from an exponential distribution with a 
mean of 5.

	 c.	 Compare the shapes of the histograms in 
parts (a) and (b), and offer an explanation for any 
differences that you observe.
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	72.	 An electrical appliance uses four 1.5-volt batteries. 
The batteries are connected in series so that the total 
voltage supplied to the appliance is the sum of the 
voltages in the four batteries. Suppose that the ac-
tual voltage of all 1.5-volt batteries is known to have a 
mean of 1.5 volts and a standard deviation of .2 volt.

	 a.	 What are the mean and standard error of the 
sampling distribution of the average voltage in 
four randomly selected 1.5-volt batteries?

	 b.	 What is the mean of the sampling distribution of 
the total voltage in four randomly selected 1.5-
volt batteries?

	73.	 Five randomly selected 100-ohm resistors are con-
nected in a series circuit. Suppose that it is known 
that the population of all such resistors has a mean 
resistance of exactly 100 ohms with a standard de-
viation of 1.7 ohms.

	 a.	 What is the probability that the average resis-
tance in the circuit exceeds 105 ohms?

	 b.	 What is the probability that the total resistance 
in the circuit differs from 500 ohms by more 
than 11 ohms?

	 c.	 Find the number of resistors, n, for which
p1490 # T # 5102 5 .95, where T denotes the 
total resistance in the circuit.

	74.	 The article “Three Sisters Give Birth on the Same 
Day” (Chance, Spring 2001, 23–25) used the 
fact that three Utah sisters had all given birth on  
March 11, 1998 as a basis for posing some interest-
ing questions regarding birth coincidences.

	 a.	 Disregarding leap year and assuming that the 
other 365 days are equally likely, what is the 
probability that  three randomly selected births 
all occur on March 11? Be sure to indicate what, 
if any, extra assumptions you are making.

	 b.	 With the assumptions used in part (a), what is 
the probability that three randomly selected 
births all occur on the same day?

	 c.	 The author suggested that, based on extensive 
data, the length of gestation (time between con-
ception and birth) could be modeled as having 
a normal distribution with mean value 280 days 
and standard deviation 19.88 days. The due dates 
for the three Utah sisters were March 15, April 1, 
and April 4, respectively. Assuming that all three 
due dates are at the mean of the distribution, 

what is the probability that all births occurred on 
March 11? Hint: The deviation of birth date from 
due date is normally distributed with mean 0.

	 d.	 Explain how you would use the information in 
part (c) to calculate the probability of a common 
birth date.

	75.	 A friend who lives in Los Angeles makes frequent 
consulting trips to Washington, DC; 50% of the time 
she travels on airline #1, 30% of the time on airline 
#2, and the remaining 20% of the time on airline #3. 
For airline #1, flights are late into DC 30% of the time 
and late into LA 10% of the time. For airline #2, these 
percentages are 25% and 20%, whereas for airline #3 
the percentages are 40% and 25%. If we learn that 
on a particular trip she arrived late at exactly one of 
the two destinations, what are the posterior probabili-
ties of having flown on airlines #1, #2, and #3? Hint: 
From the tip of each first-generation branch on a 
tree diagram, draw three second-generation branches 
labeled, respectively, 0 late, 1 late, and 2 late.

	76.	 A factory uses three production lines to manufac-
ture cans of a certain type. The accompanying 
table gives percentages of nonconforming cans, 
categorized by type of nonconformance, for each of 
the three lines during a particular time period:

Line 1 Line 2 Line 3

Blemish 15 12 20

Crack 50 44 40

Pull-tab problem 21 28 24

Surface defect 10 8 15

Other 4 8 2

		  During this period, line 1 produced 500 noncon-
forming cans, line 2 produced 400 such cans, and 
line 3 was responsible for 600 nonconforming cans. 
Suppose that one of these 1500 cans is randomly 
selected.

	 a.	 What is the probability that the can was pro-
duced by line 1? That the reason for nonconfor-
mance is a crack?

	 b.	 If the selected can came from line 1, what is the 
probability that it had a blemish?

	 c.	 Given that the selected can had a surface defect, 
what is the probability that it came from line 1?
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	77.	 One satellite is scheduled to be launched from 
Cape Canaveral in Florida, and another launching 
is scheduled for Vandenberg Air Force Base in Cali-
fornia. Let A denote the event that the Vandenberg 
launch goes off on schedule, and let B represent the 
event that the Cape Canaveral launch goes off on 
schedule. If A and B are independent events with 
P(A) . P(B) and P(A or B) 5 .626, P(A and B) 5 
.144, determine the values of P(A) and P(B).

	78.	 A message is transmitted using a binary code of 
0s and 1s. Each transmitted bit (0 or 1) must pass 
through three relays before reaching a receiver. At 
each relay, the probability is .20 that the bit sent is 

different from the bit received (a reversal). Assume 
that relays operate independently of one another.

		  Transmitter� Relay 1  Relay 2  Relay 3
Receiver

	 a.	 If a 1 is sent from the transmitter, what is the 
probability that a 1 is sent by all three relays?

	 b.	 If a 1 is sent from the transmitter, what is the 
probability that a 1 is received by the receiver? 
Hint: Use a tree diagram.

	 c.	 Suppose that 70% of all bits sent from the trans-
mitter are 1s. If a 1 is received by the receiver, 
what is the probability that a 1 was sent? Hint: 
Use a tree diagram.
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6
Quality and Reliability

6.1	 Terminology

6.2	 How Control Charts Work

6.3	 Control Charts for Mean and Variation

6.4	 Process Capability Analysis

6.5	 Control Charts for  Attributes Data

6.6	 Reliability

Introduction

Statistical methods for monitoring and improving the quality of manufactured goods 
have been around since the early 1920s when Bell Laboratories engineer W. A. 
Shewhart introduced the graphical control chart method for detecting possible 
problems in manufacturing processes (Sections 6.2, 6.3, and 6.5). Current applica-
tions of statistical methods of quality assurance have widened to include service 
industries as well as traditional manufacturing applications. Since the 1980s, there 
has also been a greatly increased emphasis on the use of experimental design 
techniques that seek to identify the key factors that lead to improvements in pro-
cesses and products. Experimental design methods, which were briefly described 
in Section 4.3, are discussed in detail in Chapters 9 and 10.  Although the focus in 
Chapter 6 is on the various control charts that have been developed to monitor 
existing production systems, we also include a discussion of the important topic of 
evaluating the reliability of finished products (Section 6.6).

The statistical tools underlying the methods of this chapter are fairly basic. 
Calculations of tail areas of normal distributions are used in Section 6.4 to estimate the 
capability of a production process to produce acceptable products. Control chart 
methods in the remaining sections are based on knowing the sampling distribution 
(Sections 5.5 and 5.6) of the various statistics used to describe the output of a 
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production process. Histograms not only provide convenient summaries of process 
data but are also used to detect potential process problems (Section 6.1).

6.1	 Terminology 

Applying statistics to a specific field, such as quality control, requires some knowledge of 
the jargon used in that field. The terminology introduced subsequently is used through-
out the remaining sections of this chapter. In some cases, familiar statistical terms (such 
as discrete and continuous measurements) are given different names by quality practitio-
ners, making it necessary to know both names when working in this field.

Specification Limits
When product designs are translated into tangible entities, it becomes necessary to 
precisely define the key characteristics of a product and each of its subcomponents. For 
manufactured products, this is done by specifying the exact physical dimensions and 
other quality characteristics that finished products should have. For services, specifica-
tions often take the form of rules for processing transactions or guidelines for interacting 
with customers. In many cases, especially in manufacturing, a single value corresponds 
to the most desired quality level for a given product characteristic. We refer to this value 
as the nominal or target value of the quality characteristic.

Practically speaking, it is almost impossible to make each unit of product identical 
to the next, so some flexibility is required in achieving target values. This is done by 
choosing specification limits or tolerances that delineate the range of measured values 
that we will accept as “close enough” to the target value, in the sense that products that 
are within the specification range should be fit for their intended use.1 For example, 
car doors are made with a certain nominal width, but specification limits are neces-
sary because doors cannot be too wide (or they may not close properly) or too narrow 
(or they may fail to latch correctly). Quality characteristics that have both upper and 
lower specification limits are said to have a two-sided tolerance. Those with only one 
specification limit have a one-sided tolerance. Examples of characteristics with one-
sided tolerances include breaking strengths of materials, which have lower specifica-
tion limits, and the level of contaminants in a water supply, which have only upper 
specification limits.

Nominal values and their associated specification limits are generally stated 
together in an abbreviated form such as 1 in. 6.005 in., which describes a character-
istic with a nominal value of 1 in., a lower specification limit of .995 in., and an upper 
specification limit of 1.005 in. Together, the nominal value and specification limits are 
called the specifications or, more simply, the “specs.” When data do not exceed the 
specification limits placed on them, we say that the particular process giving rise to the 
data is “within specifications.” Otherwise, the process is said to “fail the specifications” 
or to be “out of spec.”

1 In the 1970s, quality was defined to be “fitness for use.” Around 1983, the American Society for Quality 
Control (ASQC) expanded the definition to “quality is the totality of features and characteristics of a product 
or service that bear on its ability to satisfy given needs.”
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Conformance and Nonconformance
When a product or process fails to meet its specifications, there is a need to classify the 
seriousness of the situation. Sometimes out-of-spec conditions lead to problems that are 
very serious and prevent a product from ever being used. At other times, problems caused 
by not meeting specifications may be only cosmetic. To distinguish between these two 
extremes, quality practitioners have adopted the following classification scheme. Products 
that do not meet their specifications are called nonconforming and the problems or flaws 
in such nonconforming items are called nonconformities. A nonconforming product 
is not necessarily unfit for any use. For example, the fact that a chemical concentration is 
lower than its LSL does not necessarily mean that the chemical will fail to have a desired 
effect; it may just require a longer reaction time than if the concentration exceeds the 
LSL. In the garment industry, shirts that have minor nonconformities are still usable and 
are sold as seconds in discount stores. However, when nonconformities become so serious 
that a product is no longer fit for its intended use, we say that it is defective. A defective 
product can contain one or more defects that cause it to be classified as defective.

The Process Approach
In modern quality programs, each step in a product’s manufacture or each step in a 
service procedure is viewed as a separate process to be performed. Every such process 
has inputs (from the preceding process steps) and outputs (for use in the succeeding 
steps). It is common practice to use a systems diagram to depict the various process steps 
and their interconnections (Figure 6.1). Quality control efforts that are directed at key 
processes or subprocesses, with an eye to solving problems and maintaining consistent 
output, are called process control activities. When statistical methods are used for this 
purpose, such activities are referred to as statistical process control (SPC). Manag-
ing these numerous applications of SPC and other quality improvement tools usually 
requires well-designed implementation programs, the most popular of which are TQM 
(Total Quality Management) and SIX-SIGMA. Detailed descriptions of these programs 
can be found in many quality control textbooks.

Using statistical methods to control processes is accomplished by identifying key 
product characteristics, measuring them, and then converting the data into sample statis-
tics. Both continuous and discrete measurements are used in quality control procedures. 
Continuous data, those obtained from measuring instruments, is also called variables 

The  largest allowable value that a quality characteristic can have is called the 
upper specification limit (USL); the smallest allowable value is called the lower 
specification limit (LSL).

definitions

A  product is nonconforming if it has one or more nonconformities that cause 
it, or an associated product or service, not to meet a specification requirement.
A defective product is one that has one or more defects that cause it, or an associ-
ated product or service, not to satisfy intended usage requirements.

definitions
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data in the quality professions. Discrete data, those that arise by counting things, is called 
attributes data. These names are commonly used to describe the various statistical tech-
niques used in quality control. For example, control charts are classified as variables 
control charts or attributes control charts, depending on the kind of data used to form 
the charts (see Sections 6.2, 6.3, and 6.5).

Histograms
As shown in Figures 6.2 and 6.3, histograms are very effective tools for understanding 
processes that generate variables data. Because many processes tend to produce vari-
ables data that follow normal distributions, normal curves are often superimposed over 
such histograms. This technique is so commonly used that it is standard practice to 
describe a process’s output by drawing a normal curve centered at the sample mean of 
the data, sometimes without even including the histogram of the data. When specifica-
tion limits are included as well, we get a visual picture of how a process is behaving with 
respect to its specifications (Figure 6.2). From this figure, it is easy to see how much of 
the process data is nonconforming, that is, outside of the specification range.

Figure 6.1  System diagrams: (a) envisioning each step 
in creating a product as a process; (b) products and 
services broken into a series of subprocesses

ProcessInputs Outputs

(a)

(b)

Figure 6.2  Normal curve describing process measurements

Process
average

LSL USL
Measurement

Histograms are often used to give warnings of possible process problems. A smoothly 
running process usually generates data whose histogram appears similar to that in Fig-
ure 6.2. Irregularities in a process are evidenced by histogram shapes that differ from 
a normal curve. Figure 6.3 shows some of the typical histogram shapes that can occur 
along with the most likely reasons for their appearance.Un

le
ss

 o
th

er
w

is
e 

no
te

d,
 a

ll 
co

nt
en

t o
n 

th
is

 p
ag

e 
is

 ©
 C

en
ga

ge
 L

ea
rn

in
g.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



250	 chapter 6   Quality and Reliability

Figure 6.3 Typical histograms of process data
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Section 6.1 Exercises

	 1.	 General-purpose resistors are color-coded with a se-
quence of four rings that identify the nominal value 
of the resistance (in ohms) and the plus and minus 
tolerance (expressed as a percentage of the nominal) 
to be expected in the actual resistance. For example, 
bands (in order) of green, blue, brown, and gold de-
note a resistor with a nominal value of 560 ohms and 
a tolerance of 65%. What are the specification limits 
(in ohms) for the process that produces such resistors?

	 2.	 Determining whether structural materials conform 
to specifications often requires special test equip-
ment (which can be expensive) and test procedures 
(which require specialized training). Consequently, 
independent testing and evaluation labs have arisen 
to perform such tests. One of the measures of the 
quality of the services provided by such labs is the 
waiting time before test results are available. Does 
the characteristic waiting time have a one- or a two-
sided tolerance?

	 3.	 A standard legal envelope is 4 inches wide by 
9.5 inches long. Normally, 8.5-inch by 11-inch pages 
are folded in thirds before they are inserted into such 
envelopes. Viewing page folding as a process whose 
measurable output is the width of the folded page, an-
swer the following questions:

	 a.	 What specification limit does the envelope size 
place on the page-folding process?

	 b.	 What are the penalties for exceeding the upper 
specification?

	 4.	 Citrus products must have a certain sugar content, 
measured in degrees Brix, to be judged satisfactory 
to sell to grocery stores. Suppose that a certain batch 
of oranges fails to meet the specified Brix level. 
Which classification would you apply to these or-
anges, defective or nonconforming?

	 5.	 Measurements are to be taken on each of the follow-
ing characteristics. In each case, indicate whether 
the resulting measurements would be classified as 
variables or attributes data.

	 a.	 The number of flaws per square foot in a large 
sheet of metal

	 b.	 The concentration of a chemical solution used 
in an electroplating process

	 c.	 The thread diameter of a bolt
	 d.	 The number of bolts in a batch that have over-

size thread diameters
	 e.	 The proportion of bolts in a batch that have 

oversize thread diameters
	 f.	 The torque applied to an airplane wing fastener 

(bolts and nuts used in aerospace are called 
fasteners)

	 g.	 The number of errors in 1000 lines of computer 
code

	 h.	 The time between breakdowns of a certain 
machine

	 i.	 The breaking strength of a molded plastic part

	 6.	 The following are measurements (in inches) of a 
quality characteristic with specification limits of 
2.50 6 .05 in.:

2.54 2.52 2.50 2.52 2.50 2.50 2.47 2.48
2.51 2.53 2.53 2.51 2.50 2.47 2.49 2.50
2.50 2.50 2.46 2.48 2.48 2.50 2.51 2.53
2.51 2.53 2.53 2.52 2.47 2.51

	 a.	 Create a histogram of the data.
	 b.	 Estimate the mean and standard deviation of 

the process from which this data was taken.
	 c.	 What percentage of these measurements falls 

above the USL? What percentage of the mea-
surements falls below the LSL?

	 d.	 Assuming that the process from which the 
data was taken can be described by a normal 
density function, what percentage of the pro-
cess data is expected to fall above the USL 
[use your estimates from part (b)]? What per-
centage of the process data is expected to fall 
below the LSL?

	 e.	 Explain the reason for the difference in your an-
swers to parts (c) and (d).

	 7.	 If the measuring instrument used in Exercise 6 is 
out of calibration and is giving readings that are, 
say, .02 in. higher than the true length of an object, 
what is the effect on the estimated proportions of 
conforming and nonconforming products?

	 8.	 A cork intended for use in a wine bottle is consid-
ered acceptable if its diameter is between 2.9 cm 
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and 3.1 cm (so the lower specification limit is 
LSL 5 2.9 cm, and the upper specification limit is 
USL 5 3.1 cm).

	 a.	 If cork diameter is a normally distributed vari-
able with mean value 3.04 cm and standard 
deviation .02 cm, what is the probability that 

6.2	 How Control Charts Work 

The recognition that variation is unavoidable in every repetitive process was well understood 
by the early pioneers of statistical quality control. To identify, and, when possible, eliminate 
sources of process variation, W. A. Shewhart introduced the control chart method in 1924. 
Shewhart envisioned two types of variation that, when combined, account for all the varia-
tion in a process. The first type, common cause variation, is the result of the myriad im-
perceptible changes, or common causes, that occur in the everyday operation of a process. 
Common causes are essentially the noise in a production system and, as such, common 
cause variation is considered to be expected, but uncontrollable variation. Controllable 
variation, on the other hand, is variation for which we can find definite assignable causes, 
also called special causes. Assignable causes are frequently found when there are changes in 
brands of raw materials, turnover in the workforce, or machine wear or breakdown. Control 
charts are designed as a method for detecting the existence of assignable causes.

Control Charts
Control charts are constructed by taking successive samples from the output of a pro-
cess, making measurements on the sampled items, and then plotting summary statistics 
of these results. Figure 6.4 shows a typical control chart. The samples, also called sub-
groups, of size n are taken at regular intervals of time. For each subgroup, a summary 
statistic is calculated and plotted (on the vertical axis) versus the subgroup number (on 
the horizontal axis). Any statistic of interest can be calculated, but the most commonly 
used are x (subgroup mean), R (subgroup range), s (subgroup standard deviation), p 
(proportion nonconforming), c (number of nonconformities), and u (nonconformities 
per unit). A control chart derives its name from the name of the particular statistic 

a randomly selected cork will conform to 
specification?

	 b.	 If instead the mean value is 3.00 and the standard 
deviation is .05, is the probability of conforming 
to specification smaller or larger than it was in 
part (a)?

Figure 6.4 The Shewhart control chart
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calculated in the subgroups. For example, an x chart (read “x bar chart”) is one that 
monitors successive subgroup means, an R chart monitors subgroup ranges, and so forth.

The control limits and centerline of a control chart are based on the sampling 
distribution (see Sections 5.5 and 5.6) of the chart statistic. The smaller of the two con-
trol limits is called the lower control limit (LCL) and the larger one is called the upper 
control limit (UCL). In the United States, control limits are set at a distance of 3 stan-
dard errors (i.e., 3 standard deviations of the subgroup statistic) from the mean of the 
sampling distribution. This is based on the fact that many sampling distributions closely 
approximate normal distributions, the majority of whose probability, about 99.73%, lies 
within 3 standard deviations of the mean. For example, in an x chart, the standard error 
�y1n of the sampling distribution of  x is used to establish the control limits, which in 
theory would be set at � 6 3�y1n. In practice, of course, estimates of the process mean 
� and process standard deviation � must be used in this formula. In England and other 
countries, control limits are set by specifying the probability, typically around 99%, that 
lies under the sampling distribution curve between the control limits.

Plotted points that fall outside (i.e., above the UCL or below the LCL) are inter-
preted as signals of possible special causes, whereas points within the control limits are 
usually (but not always) associated with common cause variation, that is, the absence 
of special causes. It is also important to remember that control limits are different from 
specification limits, which are not plotted on a control chart.

Statistical Control
When all the points on a control chart lie between the control limits and when there are no 
other anomalous patterns in the charted points, a process is said to be in a state of statistical 
control or, more briefly, “in control.” Otherwise, the process is said to be “out of control.” 
The phrase out of control, which can sometimes be misinterpreted, is only a way of indicat-
ing that control chart points are behaving in a nonrandom fashion. It does not imply that 
the process itself is bad nor does it necessarily imply that any nonconforming products are 
being made. “Out of control” simply means that assignable causes are likely to be present.

When control charts were first introduced, the primary signal of an “out-of-control” 
condition was when one or more points were outside one of the control limits. If the 
sampling distribution of the subgroup statistic is approximately normal, this means that 
there is a probability of about .0027 (or .27%) that a control chart point will fall outside 
one of the control limits when no assignable causes are present. That is, when a process is 
running smoothly and no special causes are operating, there is a relatively small chance 
(.27%) that a control chart point will give a false positive—mistakenly signaling the pres-
ence of a special cause. On the other hand, when special causes are present, there is also 
a chance that the chart will fail to detect them. To increase the sensitivity of a chart for 
detecting special causes, while still maintaining the false positive rate at .27%, an extended 
set of “out-of-control” rules is often used. The “out-of-control” rules in Figure 6.5 are 
commonly used by quality control software to help detect the presence of special causes.

Rational Subgroups
Selecting rational subgroups is key to the proper use of control charts. The name ratio-
nal subgroup is intended to remind us that the subgroups are chosen in a thoughtful 
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Figure 6.5 E xtended list of  “out-of-control” rules for Shewhart charts
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manner and are usually not random samples. Instead, rational subgroups should be 
chosen in a way that maximizes the ability of the chart to detect special causes. The goal 
is to have the variation within any rational subgroup represent the common cause varia-
tion in the process. In this way, any significant variation between subgroups can be 
attributed to possible special causes. Randomness and sampling distributions enter the 
picture when we make the assumption that there are no special causes at work, in which 
case each rational subgroup can be considered to be a random sample from the process. 
That is, if a process is in control, then successive items (and subgroups of such items) 
should vary according to a system of random causes, which then permits us to use the 
properties of a sampling distribution to form control limits.

One commonly used method for forming rational subgroups is to choose subgroup 
elements over a fairly short span of time. The time span should be short enough so that it 
is unlikely for the occurrence of a special cause to overlap two subgroups. For example, 
if differences between raw materials are a potential source of process problems, then 
subgroups should be formed such that all elements in each subgroup correspond to only 
one type of raw material. Then, if a problem occurs when raw materials are changed, 
the data in all subgroups occurring after the change of materials will differ from the data 
in the subgroups taken before the change, and the control chart points calculated from 
such subgroups will have a good chance of detecting the problem.

A general strategy for deciding how to form rational subgroups is (1) to decide which 
causes are important to detect and which are not, then (2) to design subgroups that 
maximize the chance of detecting the important causes and relegate the unimportant 
causes to the within-subgroup variation. For instance, suppose that daily changes in 
temperature are known to have a small, but inconsequential, effect on the lengths of 
plastic parts, whereas impurities in batches of raw plastic pellets are known to have a 
serious effect on part lengths. If each batch of pellets lasts, say, for 4 hours of produc-
tion, then subgroups of size 6 might be formed once an hour by selecting one part about 
every 10 minutes after a new batch of pellets is opened. In this way, each subgroup of 
6 would represent a specific batch, but several different temperatures would be repre-
sented over each 1-hour collection period.

Section 6.2 Exercises

	 9.	 Two identical machines are used to make a par-
ticular metal part. The finished parts from both 
machines are mixed together on a conveyor system 
that moves the parts to a subsequent assembly op-
eration. Consider the following two methods for 
generating rational subgroups for a control chart of 
this process:

	 a.	 Method 1: Five parts per hour are sampled from 
the finished parts on the conveyor system each 
hour.

	 b.	 Method 2: Before reaching the conveyor sys-
tem, a sample of five parts is taken from the 
output of machine 1; an hour later, five parts 

are taken from the output of machine 2; an 
hour later, five parts are sampled from ma-
chine 1; and so forth.

Which method of choosing rational sub-
groups would be better able to detect when one 
of the machines is not in statistical control?

	10.	 When a process is in a state of statistical control, 
all of the points on a control chart should fall 
within the control limits. However, it is undesir-
able that all of the points should fall extremely 
near, or exactly on, the centerline of the control 
chart. Why?
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	11.	 U.S. companies commonly use 3-sigma limits to 
establish control limits. Some other countries (e.g., 
Great Britain) use control limits that are 3.09 sigmas 
from the chart’s centerline.

	 a.	 Using the normal distribution, what is the prob-
ability that a single control chart point falls 
above the UCL in a 3-sigma control chart?

	 b.	 Using the normal distribution, what is the 
probability that a single control chart point 
falls above the UCL in a 3.09-sigma control 
chart?

	12.	 Suppose that the measuring instrument used to 
obtain data from a certain process is out of cali-
bration, so that each of its reported measurements 
is off by 1� units from the true value. What effect 
does this have on the signals given by the x and R 
charts?

	13.	 Using the extended list of “out-of-control” rules 
in Figure 6.5 (page 254), determine whether the 
processes that give rise to the adjacent control 
charts appear to be in statistical control. Circle any 
points at which an out-of-control condition is first 
signaled.

6.3	 Control Charts for Mean  and  Variation 

In this section, we introduce the most commonly used Shewhart charts for monitoring 
the mean and variation of a process. The important thing to remember about such 
charts is that they are generally used in pairs, one chart to track the process average and 
one for the process variation. Furthermore, the chart for process variation is created first 
because its centerline is a key ingredient in calculating the control limits for the chart 
that monitors the process average.

Shewhart originally used the sample mean x and the sample range R as the sub-
group statistics to use in control charts for variables data. These charts, called x and R 
charts (read “x bar and R charts”) are still among the most frequently used variables 
control charts. They serve as the prototype for understanding how all other Shewhart 
charts are intended to operate.

Figure for Exercise 13
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Theoretically, the control limits for the x chart are based on 3-sigma limits of the 
sampling distribution of the statistic x:

UCL 5 � 1 3 
�1n
  and  LCL 5 � 2 3 

�1n

where � and � denote, respectively, the long-run process mean and standard deviation 
of the process. Of course, these formulas cannot be used directly since both � and � 
must first be estimated from the available process data. The process average is estimated 
by the average of k successive subgroup means:

x 5
1
k ^

k

i51
xi

The estimate is denoted by x (read “x double bar”) because it is an average of several 
averages; x is also called the grand mean of the subgroup means. To obtain a reason-
able estimate of �, the following two-stage procedure is used. First, the chart for process 
variation (the R chart) is brought into statistical control. This ensures that the process 
variation is stable and, therefore, that the centerline of the R chart is a reliable estimate 
of the average range of subgroups of size n from the process. Second, this centerline 
is converted into an estimate of the process standard deviation �, which is then put 
into the expression x 6 3�y1n to obtain the approximate control limits for the x chart. 
Fortunately, the control limits of the R chart also turn out to be simple functions of the 
centerline of the R chart.

The R Chart
To construct an R chart, we use the data from some number, k, of successive subgroups 
of process measurements. It is usually recommended that about 20 to 25 subgroups be 
used. If possible, the same sample size n is used to form each subgroup. The centerline 
of the R chart is denoted by R and is calculated by averaging the sample ranges R1, R2, 
R3, . . . , Rk of the k subgroups:

R 5
1
k

 ^
k

i51
 Ri

R serves as an estimate of �R, the mean of the sampling distribution of the ranges (for 
samples of size n) from the process. Let �R denote the standard deviation of this sam-
pling distribution; the 3-sigma limits, �R  

6  3�R, are used to form the control limits for 
the R chart. Assuming that the process measurements can be adequately described by 
a normal distribution, it can be shown that the control limits for the R chart are given 
by

UCL 5 D4R  and  LCL 5 D3R

where D3 and D4 are constants that depend on the subgroup size, n. Values of D3 and 
D4 are found in Appendix Table XI, which lists such constants for a variety of different 
types of control charts.

After finding the centerline and control limits, the R chart is constructed by simply 
plotting the k subgroup ranges Ri(i 5 1, 2, . . . , k) versus the subgroup index, i, and then 
drawing horizontal lines to represent the centerline R and control limits. Using the 
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“out-of-control” rules listed in Section 6.2, we examine the R chart to see whether these 
k ranges seem to be in statistical control. If any out-of-control conditions are found, it is 
recommended that the subgroup(s) associated with these problems be eliminated and 
that the centerline and control limits be recalculated based on the reduced number of 
subgroups. When doing this, subgroups should be eliminated only if definite assign-
able causes can be found for the out-of-control signal associated with these subgroups. 
Out-of-control subgroups for which no assignable cause can be found should not be 
eliminated.

When the R chart is deemed to be in a state of statistical control, the centerline 
R can then be considered to be a reliable estimate of the average range (of samples of 
size n) from a normal population. This estimate can then be converted into an esti-
mate for the process standard deviation by means of the formula

�n 5
R
d2

where d2 is found in the table of control chart constants (Appendix Table XI). The 
estimate �n  of � is used to calculate the control limits of the x chart and to assess the 
capability of the process to meet the specification limits (see Section 6.4).

The x Chart
Once the R chart is in control, the x chart is then constructed. Any subgroups that were 
eliminated during the construction of the R chart should automatically be eliminated 
from the x chart calculations. Given that we have k valid subgroups of data, whose 
subgroup means are denoted by x1, x2, x3, . . . , xk, the centerline of the x chart is just the 
average of the subgroup means,

x 5
1
k ^

k

i51
xi

as mentioned previously. The control limits are found by replacing � and � by the esti-
mates x and Ryd2 in the control limit formulas:

UCL 5 � 1 3 
�1n

x 1 3 
R yd21n
  and  LCL 5 � 2 3 

�1n
x 2 3 

R yd21n

Letting A2 5 3yd21n, we shall now use the following estimated limits:

UCL x 1 A2R  and  LCL x 2 A2R

where the constant A2 depends on the particular subgroup size, n, and is found in 
Appendix Table XI. These formulas show how the centerline R of the R chart directly 
affects the control limits of the x chart.

The process of making ignition keys for automobiles consists of trimming and pressing 
raw key blanks, cutting grooves, cutting notches, and plating. Some of the dimensions, 
such as the depth of grooves and notches, are critical to the proper functioning of the 
keys. Table 6.1 contains measurements (in inches) of a particular groove depth on the 

Example 6.1
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side of each key. Due to the high volume of keys processed per hour, the sampling 
frequency is chosen to be five keys every 20 minutes. For convenience, the subgroup 
means and standard deviations are also given in Table 6.1, along with the grand mean 
x 5 .007966 and the average range R 5 .002400. The relevant control chart constants 
for subgroups of size n 5 5 are D4 5 2.114, D3 5 0, and A2 5 .577 (Appendix Table XI).

The initial estimates of the control limits for the R chart are

UCL 5 D4R 5 (2.114)(.002400) 5 .005074
LCL  5 D3R 5 (0)(.002400) 5 0

The corresponding control chart is shown in Figure 6.6. Because there do not appear 
to be any out-of-control points in the chart, no subgroups need be dropped, and we 
can proceed immediately to the construction of the x chart.

The control limits for the x chart are

UCL 5 x 1 A2R 5 .007966 1 (.577)(.002400) 5 .009351

LCL 5 x 2 A2R 5 .007966 2 (.577)(.002400) 5 .006581
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Table 6.1	 Ignition key data for Example 6.1

Subgroup 
number i Groove depth (inches) xi Ri

  1 .0061 .0084 .0076 .0076 .0044 .00682 .0040

  2 .0088 .0083 .0076 .0074 .0059 .00760 .0029

  3 .0080 .0080 .0094 .0075 .0070 .00798 .0024

  4 .0067 .0076 .0064 .0071 .0088 .00732 .0024

  5 .0087 .0084 .0088 .0094 .0086 .00878 .0010

  6 .0071 .0052 .0072 .0088 .0052 .00670 .0036

  7 .0078 .0089 .0087 .0065 .0068 .00774 .0024

  8 .0087 .0094 .0086 .0073 .0071 .00822 .0023

  9 .0074 .0081 .0086 .0083 .0087 .00822 .0013

10 .0081 .0065 .0075 .0089 .0097 .00814 .0032

11 .0078 .0098 .0081 .0062 .0084 .00806 .0036

12 .0089 .0090 .0079 .0087 .0090 .00870 .0011

13 .0087 .0075 .0089 .0076 .0081 .00816 .0014

14 .0084 .0083 .0072 .0100 .0069 00816 .0031

15 .0074 .0091 .0083 .0078 .0077 .00806 .0017

16 .0069 .0093 .0064 .0060 .0064 .00700 .0033

17 .0077 .0089 .0091 .0068 .0094 .00838 .0026

18 .0089 .0081 .0073 .0091 .0079 .00826 .0018

19 .0081 .0090 .0086 .0087 .0080 .00848 .0010

20 .0074 .0084 .0092 .0074 .0103 .00854 .0029

x 5 .007966 R 5 .002400
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x and s Charts
Various alternatives to x and R charts have been proposed over the years. Because there 
are many different statistics available for measuring central tendency, along with several 
measures for variation, just about any combination of the two can be used to monitor 
a process average and variation. One combination that is frequently used is the x and 
s chart. The procedure for constructing x and s charts parallels that for x and R charts: 
The variation chart (i.e., the s chart) is first brought into statistical control, then the x 
chart is constructed using control limits formed from the centerline of the s chart.

The x chart is shown in Figure 6.7. None of the points is outside the control units, 
although there is a run of eight consecutive points above the centerline (subgroups 
8–15). According to the extended list of  “out-of-control” rules in Section 6.2, this run 
of points is not quite long enough to signal an out-of-control condition.

0
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Sample number

LCL = 0
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–

Figure 6.6   chart for the data of  Table 6.1

Figure 6.7   chart for the data of Table 6.1

0

.0065

Sample number

LCL = .006581

Sample mean

10 20

.0075

.0085

.0095
UCL = .009351

 = .007966––

Un
le

ss
 o

th
er

w
is

e 
no

te
d,

 a
ll 

co
nt

en
t o

n 
th

is
 p

ag
e 

is
 ©

 C
en

ga
ge

 L
ea

rn
in

g.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 6.3   Control Charts for Mean  and  Variation 	 261

Starting with k subgroups, each of size n, we denote the individual subgroup stan-
dard deviations by s1, s2, s3, . . . , sk. Their average, s, forms the centerline of the s chart:

s 5
1
k ^

k

i51
si

s is an estimate of �s, the mean of the sampling distribution of the sample standard 
deviation based on samples of size n. Following the usual 3-sigma procedure, control 
limits for the s chart can be shown to have the form

UCL 5 B4s  and  LCL 5 B3s

where B3 and B4 depend on the subgroup size, n, and are found in Appendix Table XI. 
In addition, to calculate the capability of a process, the standard deviation of the process 
measurements can be estimated by

�n 5
s
c4

where c4 is yet another control chart constant found in Appendix Table XI. The same 
extended list of “out-of-control” rules used for x and R charts can be applied to x and s 
charts (see Figure 6.5 on page 254).

For the x chart, the grand average of the subgroup means forms the centerline of 
the chart, as follows:

x 5
1
k

 ^
k

i=1
xi

Following the same procedure as with the x and R charts, we form the control limits for 
the x chart by substituting an estimate of � into the theoretical 3-sigma limits. In this 
case, the estimate is syc4, which is based on the s chart:

UCL 5 � 1 3
�1n

x 1 3
syc41n
  and  LCL 5 � 2 3

�1n
x 2 3

syc41n

By letting A3 5 3yc41n, we can write these control limits in the simpler form

UCL 5 x 1 A3s  and  LCL 5 x 2 A3s

In this example, we reanalyze the key groove data of Table 6.1, this time using 
x and  s charts. Using the average of the 20 subgroup standard deviations, 
s 5 .0009672, along with the control chart constants B3 5 0 and B4 5 2.089 from 
Appendix Table XI (for subgroups of size n 5 5), we calculate the control limits 
for the s chart to be

UCL 5 B4s 5 (2.089)(.0009672) 5 .002020

and

LCL 5 B3s 5 (0)(.0009672) 5 0

Example 6.2
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The s chart, shown in Figure 6.8, does not exhibit any out-of-control conditions. 
With respect to the x chart, the centerline is still calculated as the average of the 
subgroup averages:

x 5
1
k

 ^
k

i=1
xi 5 .007966

as in Example 6.1. For subgroups of size n 5 5, the factor A3 5 1.427 is found from 
Appendix Table XI. This gives control limits of

UCL 5 x 1 A3s 5 .007966 1 (1.427)(.0009672) 5 .009346

LCL 5 x 2 A3s 5 .007966 2 (1.427)(.0009672) 5 .006586

Note that these limits are very close to the limits obtained from the R chart (UCL 5 
.009351 and LCL 5 .006581). Consequently, the x chart is almost identical to that 
of Example 6.1, and, in particular, it gives no out-of-control signals (see Figure 6.9 
below).

Figure 6.8   chart for groove depth data
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Figure 6.9   chart for groove depth data
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The choice between running a combination of x and s charts or one of x and R 
charts is largely a matter of personal preference. Although some authors recommend s 
charts in lieu of R charts because the sample standard deviation s makes more efficient 
use of the data than does R, the difference in efficiency is actually very small for the 
small subgroup sizes used in control charts, so x and R charts will almost always lead 
to the same conclusions as x and s charts. If control charts are done by hand, then the 
R chart method is definitely preferable because of the ease in calculating the ranges of 
small samples. If a computer is available, then computational difficulty is immaterial, 
and one might as well use the x and s chart approach.

Section 6.3 Exercises

	14.	 The control limits on x charts become closer 
together as the subgroup size n is increased (i.e., 
the A2 factor decreases as n increases). For a process 
that is in statistical control, does this imply that a 
control chart point is more likely to fall outside the 
control limits of an x chart based on a larger sub-
group size rather than a smaller subgroup size?

	15.	 Subgroups of four power units are selected once 
each hour from an assembly line, and the high-
voltage output of each unit is measured. Suppose 
that the sum of the ranges of 30 such subgroups is 
85.2. Calculate the centerline and control limits of 
an R chart for this data.

	16.	 Hourly samples of size 3 are taken from a process 
that produces molded plastic containers, and a 
critical dimension is measured. Data from the most 
recent 20 samples is given here:

Hour x1 x2 x3 Hour x1 x2 x3

  1 .36 .39 .36 11 .36 .32 .36
  2 .33 .35 .30 12 .38 .47 .35
  3 .51 .41 .42 13 .29 .45 .39
  4 .42 .37 .34 14 .44 .38 .43
  5 .39 .38 .38 15 .38 .37 .37
  6 .33 .41 .45 16 .31 .43 .38
  7 .43 .39 .41 17 .39 .49 .35
  8 .41 .32 .32 18 .43 .36 .38
  9 .37 .42 .36 19 .40 .45 .32
10 .26 .42 .32 20 .40 .40 .32

	 a.	 Construct an R chart for this data. Are any out-
of-control signals indicated by this chart?

	 b.	 Construct an x chart for this data, and check for 
signs of special causes.

	17.	 Refer to the data of Exercise 16.
	 a.	 Construct an s chart for this data, and check for 

special causes.
	 b.	 Construct an x chart for this data. Why are the 

control limits of this chart different from those in 
Exercise 16(b)?

	18.	 When installing a bath faucet, it is important to 
properly fasten the threaded end of the faucet stem 
to the water-supply line. The threaded stem dimen-
sions must meet product specifications, otherwise 
malfunction and leakage may occur. Authors of 
“Improving the Process Capability of a Boring 
Operation by the Application of Statistical Tech-
niques” (Intl. J. Sci. Engr. Research, Vol. 3, Issue 5, 
May 2012) investigated the production process of a 
particular bath faucet manufactured in India. The 
article reported the threaded stem diameter (target 
value being 13 mm) of each faucet in 25 samples of 
size 4 as shown here:

Subgroup x1 x2 x3 x4

  1 13.02 12.95 12.92 12.99
  2 13.02 13.10 12.96 12.96
  3 13.04 13.08 13.05 13.10
  4 13.04 12.96 12.96 12.97
  5 12.96 12.97 12.90 13.05
  6 12.90 12.88 13.00 13.05
  7 12.97 12.96 12.96 12.99
  8 13.04 13.02 13.05 12.97
  9 13.05 13.10 12.98 12.96
10 12.96 13.00 12.96 12.99
11 12.90 13.05 12.98 12.88
12 12.96 12.98 12.97 13.02
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Subgroup x1 x2 x3 x4

13 13.00 12.96 12.99 12.90
14 12.88 12.94 13.05 13.00
15 12.96 12.96 13.04 12.98
16 12.99 12.94 13.00 13.05
17 13.05 13.02 12.88 12.96
18 13.08 13.06 13.10 13.05
19 13.02 13.05 13.04 12.97
20 12.96 12.90 12.97 13.05
21 12.98 12.99 12.96 13.00
22 12.97 13.02 12.96 12.99
23 13.04 13.00 12.98 13.10
24 13.02 12.90 13.05 12.97
25 12.93 12.88 12.91 12.90

	 a.	 Construct an R chart for this data. Are there any 
out-of-control signals present?

	 b.	 Construct an x chart for this data. Are there any 
out-of-control signals present?

	 c.	 If there are any out-of-control conditions found 
in parts (a) or (b), recalculate and interpret the 
revised x and R charts after eliminating these 
subgroups. (doing this assumes that assignable 
causes for out-of-control subgoups can be found 
prior to their elimination).

	19.	 The following table gives sample means and stan-
dard deviations, each based on subgroups of six 
observations of the refractive index of fiber-optic 
cable:

Day x s Day x s
  1 95.47 1.30 13 97.02 1.28
  2 97.38 .88 14 95.55 1.14
  3 96.85 1.43 15 96.29 1.37
  4 96.64 1.59 16 96.80 1.40
  5 96.87 1.52 17 96.01 1.58
  6 95.52 1.27 18 95.39 .98
  7 96.08 1.16 19 96.58 1.21
  8 96.48 .79 20 96.43 .75
  9 96.63 1.48 21 97.06 1.34
10 96.50 .80 22 98.34 1.60
11 97.22 1.42 23 96.42 1.22
12 96.55 1.65 24 95.99 1.18

	 a.	 Construct an s chart for this data.
	 b.	 Construct an x chart for this data.

20.   In Exercise 19, suppose that an assignable cause 
was found for the unusually high average refractive 
index in subgroup 22.

	 a.	 Recompute the control limits for both the 
x and s charts after removing the data from 
day 22.

	 b.	 Do the charts in part (a) indicate that there are 
any other out-of-control signals present?

	21.	 Because processes are designed to produce prod-
ucts with fixed nominal dimensions, it is quite com-
mon to find that most of the variation in sample 
data occurs in the rightmost one or two decimal 
places. For example, the following data comes from 
a process making parts whose nominal length is re-
quired to be .254 inch:

Subgroup x1 x2 x3 Subgroup x1 x2 x3

  1 .258 .254 .256 11 .253 .257 .254
  2 .253 .251 .253 12 .252 .253 .258
  3 .252 .258 .256 13 .258 .253 .257
  4 .252 .252 .255 14 .251 .257 .256
  5 .254 .252 .256 15 .256 .254 .257
  6 .253 .254 .256 16 .251 .255 .253
  7 .251 .257 .257 17 .252 .256 .255
  8 .252 .251 .255 18 .251 .256 .253
  9 .251 .255 .257 19 .253 .252 .254
10 .257 .255 .255 20 .255 .252 .253

To simplify control chart calculations for such data, 
practitioners often code the data by transforming 
the measurements into deviations from the nomi-
nal value and then multiplying by a suitable power 
of 10 to eliminate decimal points. In the foregoing 
data, for example, a reading of .258 would be con-
verted to .258 2 .254 (the deviation from the nomi-
nal value), and then multiplied by 1000. Thus .258 
transforms into 4, .254 transforms into 0, .256 be-
comes 2, .251 becomes 23, and so forth.

	 a.	 Use the formulas for the control limits of x and 
R charts to explain why the signals given by 
charting the deviations from nominal values will 
always be identical to the signals given by chart-
ing the untransformed process data.

	 b.	 Transform the data in this problem as described, 
and then create x and R charts of the transformed 
data. Use the extended list of out-of-control con-
ditions (Figure 6.5) to evaluate these charts.
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	 c.	 For comparison, create the x and R charts of the 
untransformed data, and evaluate these charts as 
in part (b).

	22.	 Three-dimensional (3D) printing is a manufacturing 
technology that allows the production of three-dimen-
sional solid objects through a meticulous layering 
process performed by a 3D printer. 3D printing has 
rapidly become a time-saving and economical way to 
create a wide variety of products such as medical im-
plants, furniture, tools, and even jewelry. The article 
“Improving the Process Capability of a Boring Op-
eration by the Application of Statistical Techniques” 
(MIT Intl. J. Mech. Engr., 2012: 31–38) considered 
the production process of metal castings by using a 
3D printer manufactured by ZCorporation. Data was 
collected on 16 batches (each having two castings), 
where the outer diameter of each casting (in mm) was 
recorded. The target diameter of each casting was 60 
mm. The corresponding data is given here:

Batch x1 x2

  1 59.664 59.675
  2 59.661 59.648
  3 59.679 59.652
  4 59.665 59.654
  5 59.667 59.678
  6 59.673 59.657
  7 59.676 59.661
  8 59.648 59.651

Batch x1 x2

  9 59.681 59.675
10 59.655 59.672
11 59.691 59.676
12 59.682 59.651
13 59.651 59.682
14 59.668 59.685
15 59.691 59.682
16 59.661 59.673

	 a.	 Construct an R chart for this data. Are there 
any out-of-control signals present?

	 b.	 Construct an x chart for this data. Are there any 
out-of-control signals present?

	23.	 Reconsider the data from Exercise 16.
	 a.	 Estimate the process standard deviation.
	 b.	 Suppose the specification limits on the process 

are .40 6 .08. Assuming that a normal distribu-
tion can be used to describe the process mea-
surements, estimate the proportion of the pro-
cess measurements above the USL and below 
the LSL.

	24.	 Reconsider the results from Exercise 17(a).
	 a.	 Estimate the process standard deviation.
	 b.	 If the specification limits for the process are 

.40 6 .08, estimate the proportions of the pro-
cess measurements above the USL and below 
the LSL. Compare your results to those in 
Exercise 23(b).

6.4	 Process Capability Analysis

After all special causes have been identified and eliminated, a process is said to be in a 
state of statistical control. One of the desirable features of a controlled process is that it is 
predictable, in the sense that the process average and standard deviation are reasonably 
stable over time. This makes it possible to get a clear picture of how the process output 
compares to the requirements, or specifications, that are placed on the process. Without 
statistical control, it is difficult, if not impossible, to reliably evaluate the capability of a 
process to perform as required.

Process capability is evaluated by comparing process performance with process re-
quirements. Since meeting specification limits is one of the most basic requirements, capa-
bility analyses usually involve specification limits somewhere in their calculations. Process 
data, usually from a control chart, is used to describe how a process is actually performing. 
Data from the chart’s subgroups is used to estimate the process average and standard devia-
tion. These, in turn, are transformed into estimates of the proportions of measurements that 
fall inside or outside of the specification limits. This last step requires that an assumption be 
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made about the type of probability distribution that the process is thought to follow. Since 
many process characteristics tend to follow normal distributions, the majority of capability 
calculations are based on this distribution. In recent years, capability indexes have also been 
developed for nonnormal process data. We do not discuss the calculations required for non-
normal data, which are much more laborious than the relatively simple computations for 
normal processes, but we do provide references on this material for the interested reader.

Estimating the Process Mean and Variation
The best source of data for estimating process variation usually comes from the control 
chart used to bring the process into statistical control. In particular, variation estimates 
are derived from charts that monitor process variation, such as the R and s charts. As 
we saw in Section 6.3, depending on which variation chart is used, the process standard 
deviation � is estimated by one of two formulas,

�n 5
R
d2
  or  �n 5

s
c4

Both of these formulas are based only on the within-subgroups variation present in the 
data. It is also good to keep in mind that both formulas are based on the assumption 
that the process data follows a normal distribution. If you have reason to believe that 
the process is not normally distributed, then these estimates would not be appropriate.

Another method of estimating the process standard deviation is to pool the subgroup 
data used to make the control chart and calculate the sample standard deviation, s,  
of the entire set of data. For instance, rather than computing Ryd2 or syc4 from, say, 20 
subgroups of size 5, you could calculate s for the combined group of 100 measurements. 
The reason that this is permissible is that no assignable causes should be present in the 
control chart data for a process that is in control and, consequently, there should be 
no significant difference between the subgroup-to-subgroup variation and the within-
subgroup variation (as estimated by Ryd2 or syc4), which makes subgroup pooling an ac-
ceptable procedure. If a process is not in control, however, s will usually be much larger 
than either Ryd2 or syc4. When evaluating process capability indexes, it is often useful 
to know which of these methods is being used to estimate the process variation. In the 
ensuing discussion, we denote the estimated process average and standard deviation by 
�n  and �n , regardless of the method of estimation used.

Capability studies generally use the grand mean x of the subgroup data to estimate 
the process average, that is, �n 5 x. This works well for data whose distributions are fairly 
symmetric, such as the normal distribution. Under the assumption that a process follows 
a normal distribution, the 3-sigma region on either side of the process average is often 
called the process spread:

process spread 5 �n 6 3�n

This name arose from the fact that, for normal distributions, most (about 99.73%) of the 
process observations lie within 3 sigmas of the mean.

Nonconformance Rates
The proportion of the process measurements that fall above the upper specification 
limit or below the lower limit are called nonconformance rates or nonconformance 
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proportions. Assuming that the process measurements follow a normal distribution, we 
estimate these rates as follows:

proportion above USL 5 P(x . USL) Paz .
USL 2 �n

�n
b

proportion above LSL 5 P(x , LSL) Paz ,
LSL 2 �n

�n
b

In these definitions, x is a normal random variable whose distribution describes the pro-
cess data, and z denotes a standard normal variable. The shaded regions in Figure 6.10 
show the nonconformance proportions for normally distributed process data.

Figure 6.10  Nonconformance proportions  
for normally distributed process data

(  > USL)(  < LSL)

LSL USLˆ

Nonconformance rates are usually expressed in terms of either percentages  (%) 
or parts per million (ppm). One nonconforming (or defective) item in a collection of a 
million items is called one part per million, abbreviated as 1 ppm. Thus a nonconfor-
mance rate of .25% could also be expressed as 2500 ppm. For convenience, Table 6.2 
shows the equivalent percentage and ppm rates for a range of values that can occur in 
practice. To establish small ppm rates, the standard normal table (Appendix Table I), 
which is traditionally limited to values of z between 23 and 13 or so, must be extended 
to accommodate the large z values required for calculations in ppm.

Table 6.2	C onverting from percentage  
nonconforming to parts per million

Percentage (%) Parts per million (ppm)

10.0 100,000

5.0 50,000

1.0 10,000

.1 1,000

.01 100

.001 10

.0001 1

Because the control charts of the ignition key process in Example 6.1 do not indicate 
any out-of-control conditions, the process appears to be in statistical control.  Suppose 
that the specification limits for the groove depth of the keys are .0072 6 .0020 inch. 

Example 6.3
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Capability Indexes
Process spread, as defined by the interval �n 6 3�n , gives a measure of how a process is cur-
rently performing. The width of this interval is 6 �n . Alternatively, the distance between the 
specification limits, USL 2 LSL, provides a measure of the maximum process spread we 
are willing to tolerate. By comparing the two measures, it is possible to give a very succinct 
summary of the capability of a process to meet its specification limits. We refer to the pro-
cess spread as the actual process spread and to USL 2 LSL as the allowable process spread. 
The process capability index, denoted by Cp, is defined by the ratio

Cp 5
allowable spread 

actual spread
5

USL 2 LSL
6 �n

where �n  is an estimate of the process standard deviation.
The Cp index is interpreted as follows. If Cp 5 1, then the process is said to be mar-

ginally capable of meeting its specification limits. This occurs when the process is ex-
actly centered midway between its specification limits (i.e., when �n 5 (USL 1 LSL)y2 
and the actual process spread uses all of the allowable spread. As you can see from 
Figure 6.11, this is a fairly tenuous situation since even the slightest movement of the 
process mean will lead to an increase in the overall nonconformance rate of the process. 
Normally, we would like the Cp to exceed 1, since then there is a higher likelihood that 
the process measurements will be able to stay within the specification limits, even if 
the mean wanders a little. A Cp that exceeds 1.33 (i.e., an 8-� spread that fits within the 

Assuming that the process data is normally distributed, we can estimate the process 
standard deviation using the centerline of the R chart,

�n 5
R
d2

5
.002400
2.326

5 .00103

Alternatively, the variation can be estimated by syc4 from the centerline of the s chart. 
The nonconformance rates can then be estimated by

P(x . USL) Paz .
USL 2 �n

�n
b

                      5 Paz .
.0092 2 .007966

.00103
b 5 P(z . 1.20) 5 .1151

P(x , LSL) Paz ,
LSL 2 �n

�n
b

 5 Paz ,
.0052 2 .007966

.00103
b 5 P(z , 22.69) 5 .0036

In percentage terms, we estimate that about 11.51% of the output of this process ex-
ceeds the upper specification limit, whereas only .36% is below the lower limit. This 
gives rise to a total percentage of 11.51% 6 .36% 5 11.87%, which is unacceptably 
high. Thus statistical control alone does not necessarily guarantee that a process will 
successfully meet its specification limits.
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Figure 6.11  Interpretation of the process 
capability index 

USLLSL

 < 1.0
Process is not capable.

USLLSL

 = 1.0
Process is marginally

capable.

USLLSL

 > 1.0
Process is capable.

specification limits) is usually considered fairly good and is commonly used as a goal by 
many companies. On the other hand, Cp values that are less than 1 imply that a process 
is not capable of meeting the specification limits.

The Cp is one of four commonly used indexes, originally invented in Japan, which 
are routinely used in modern quality improvement programs. The indexes derive their 
usefulness from the fact that they convey much information in a very simple fashion. 
Capability indexes also have the advantage of being unitless measures, making them 
useful for comparing related and unrelated processes alike. For example, if the copper 
plating thickness (in inches) from a chemical plating process has a Cp of .81, whereas 
the resistance (in ohms) of certain electronic components has a Cp of 2.30, then we can 
conclude that the electronic process is the more capable of the two, even though their 
measurement units, inches and ohms, are unrelated.

One drawback of the Cp is that it does not take the process location (i.e., the mean) 
into account. For this reason, it is often said that Cp measures only the potential for a 
process to meet its specifications. For example, Figure 6.12 shows two process distribu-
tions, both with Cp values of 2.0, one centered between the specification limits and the 
other located near the upper limit. Although the latter process currently has a very high 
nonconformance rate, it still has the potential to be capable because its Cp exceeds 1.0. 
However, it will realize this potential only if the process average can be moved closer to 
the center of the specification range.

An index that does take the process mean into account is the Cpk index:

Cpk 5 minimum c USL 2 �n

3�
, 

�n 2 LSL
3�n

d
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Figure 6.12   is not affected by the process average

USLLSL

 = 2.0

USLLSL

 = 2.0

For normally distributed data, �n  is taken to be the centerline of the x chart and �n  is 
chosen to be R yd2, syc4, or perhaps the combined-subgroup estimate s mentioned previ-
ously. The k in the subscript of Cpk refers to the so-called k factor:

k 5
(USL 1 LSL)y2 2 �n

(USL 2 LSL)y2

which measures the extent to which the process location �n  differs from the midpoint of 
the specification region. It can be shown that k lies between 0 and 1 and that Cp and Cpk 
are related by the formula

Cpk 5 (1 2 k)Cp

Since 0 # k # 1, this formula shows that Cpk never exceeds Cp and that Cpk 5 Cp pre-
cisely when the process is centered midway between its specification limits. When used 
together, Cp and Cpk  give a clear picture of process performance as well as process 
potential.

Nonconformance rates for the groove dimension data (Table 6.1) are calculated in 
Example 6.3, where we concluded that the process had poor capability. The reason for the 
poor capability can be found by comparing the Cp and Cpk indexes. Using the estimates

�n 5 .007966  and  �n 5 .00103
from Example 6.3 along with the specification limits USL 5 .0092 and LSL 5 .0052, 
we calculate the k factor as follows:

k 5
(USL 1 LSL)y2 2 �n

(USL 2 LSL)y2
5

(.0092 1 .0052)y2 2 .007966
(.0092 2 .0052)y2

5 .383

Example 6.4
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The Cp and Cpk indexes are

 Cp 5
.0092 2 .0052

6(.00103)
5 .647

 Cpk 5 (1 2 k)Cp 5 (1 2 .383)(.647) 5 .399

Neither index exceeds 1.0. The value of Cpk = .399 is a measure of how the process 
is currently performing with respect to meeting the specifications. The fact that Cp 
and Cpk are unequal is evidence that the process location has shifted away from the 
center of the specification region. However, even if the process could be adjusted so 
that it is centered within the specification region, a Cp of .647, which is less than 1.0, 
indicates that the process will still not have good capability. Clearly, attention must 
be focused on reducing the variation of the groove cutting process as well as bringing 
the process average closer to the midpoint of the specifications.

The Cp and Cpk indexes are used for quality characteristics that have two-sided 
tolerances, that is, processes with both upper and lower specification limits. Some char-
acteristics, however, can have one-sided tolerances. The breaking strength of a material, 
for instance, usually has a lower specification limit, but no upper specification, since 
we normally want materials to have a certain minimum strength but we do not care by 
how much they exceed that minimum. One-sided capability indexes are used for such 
processes. In fact, the definitions of upper and lower capability indexes are contained 
within the definition of the Cpk. For processes having only a lower specification limit, 
LSL, the lower capability index Cpl is defined by

Cpl 5
�n 2 LSL

3�n

Similarly, for processes having only an upper specification USL, the upper capability 
index Cpu is given by the formula

Cpu 5
USL 2 �n

3�n

The reason 3�n  rather than 6�n  appears in the denominators is that one-sided capability 
indexes compare only one side of the process distribution, the upper or lower, to the 
corresponding upper or lower specification limit.

Even when a process has both upper and lower specification limits, calculating 
Cpu and Cpl is worthwhile because the smaller of the statistics indicates the direction in 
which the process average has shifted away from the nominal value. In fact, from the 
formulas it is apparent that Cpk is equal to the smaller of Cpl and Cpu:

Cpk 5 minimum3Cpl, Cpu4
For data that is normally distributed, it is convenient to transform Cpu and Cpl into 

their corresponding nonconformance rates using the following relationships:

P(x . USL) Paz .
USL 2 �n

�n
b 5 P(z . 3Cpu)

P(x , LSL) Paz ,
LSL 2 �n

�n
b 5 P(z , 2 3Cpl)
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Another way of describing capability is to estimate what proportion of the allowed 
process spread, USL 2 LSL, is “used up” by the process spread 6�n . This proportion, 
6�ny(USL 2 LSL), is called the capability ratio. As you can see, the capability ratio is 
simply the reciprocal of the Cp index,

capability ratio 5
1

Cp

When expressed as a percentage, the capability ratio is referred to as the percentage 
of specification used by the process. Notice that the Cpk is not used in this definition. 
The reason is that one usually wants to know how much of the specification range is 
used under ideal circumstances (i.e., when the process is centered). For instance, in 
Example 6.4, the Cp index of the groove depth data was shown to be .647. This means 
that the capability ratio is 1@.647@1.55, or in percentage terms, 155%. In other words, 
the process spread 6�n  uses about 155% of the allowed tolerance, which is not good. 
Capable processes should use up less than 100% of the allowed tolerance.

Using Capability Indexes
The interpretation of capability indexes can be complicated by the presence of measure-
ment errors and assumptions about the process distribution. It should be stressed that the 
interpretations given in this section are made under the assumptions that (1) a process is 
in statistical control, (2) measurement errors are negligible, and (3) the process follows 
a normal distribution. Keep in mind that capability indexes are statistics that arise from 
taking sample data from a process. As such, capability indexes will exhibit some degree 
of sampling variability. That is, you should expect these indexes to vary a little with each 
new set of data. If desired, the amount of sampling variability can be estimated (see, 
for example, Kane, V. E., 1986, “Process Capability Indexes,” J. Quality Technology, 
1986: 41–52). In addition, if you suspect that the process data does not follow a normal 
distribution, then you will want to use indexes designed to handle nonnormal process 
data. The references at the end of the chapter give methods for handling such situations.

Using the results of Examples 6.3 and 6.4, we calculate the Cpu and Cpl indexes for 
the groove depth data of Table 6.1 as follows:

Cpl 5
�n 2 LSL

3�n
 5

.007966 2 .0052
3(.00103)

5 .895

Cpu 5
USL 2 �n

3�n
 5

.0092 2 .007966
3(.00103)

5 .399

This information could be used, if desired, to calculate Cpk:

Cpk 5 minimum[Cpu, Cpl] 5 minimum[.399, .895] 5 .399

Because both Cpu and Cpl are less than 1.0, we can conclude that the process is not 
performing well with respect to meeting either of its specification limits. Further-
more, the fact that Cpl is the smaller of the two indexes means that the process aver-
age has shifted to the right of the midpoint of the specification region.

Example 6.5
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Section 6.4 Exercises

	25.	 Why must a process be in a state of statistical con-
trol before its capability can be measured?

	26.	 A process has a Cp index of 1.2 and is centered on 
its nominal value. What proportion of the specifica-
tion range is used by the process measurements?

	27.	 A computer printout shows that a certain process 
has a Cp of 1.6 and a Cpk of .9. Assuming that the 
process is in control, what do these indexes say 
about the capability of this process?

	28.	 A process with specification limits of 5 6 .01 has a Cp 
of 1.2 and a Cpk of 1.0. What is the estimated process 
average x from which these indexes are calculated?

	29.	 It can be shown that the following equation always 
holds for processes that can be described by a normal 
distribution (Farnum, N. R., Modern Statistical Qual-
ity Control and Improvement, Duxbury, Belmont, 
CA, 1994: 235):

		  proportion out of specification
5 P(z $ 3Cpk) 1 P(z $ 6Cp 2 3Cpk)

		  Use this equation with the Cp and Cpk from 
Exercise 27 to estimate the proportion of the pro-
cess that is not within the specification limits.

	30.	 Use the formula given in Exercise 29 to calculate 
the proportion of the process that is out of specifica-
tion in Exercise 28.

	31.	 Use the data in Exercise 6 to calculate the Cp, Cpu, 
Cpl, and Cpk indexes. What do the indexes indicate 
about the capability of the process?

	32.	 Using the data of Exercise 16, we estimated the 
process standard deviation in Exercise 23. If the 
specification limits for the process are .40 6 .08, 
calculate the Cp and Cpk indexes. What conclu-
sions can you draw about the capability of the 
process?

	33.	 The data of Exercise 21 was analyzed by first trans-
forming it into deviations from the nominal value 
and then running x and R charts on the transformed 
data. Suppose the specification limits on the pro-
cess are .254 6 .01 inch.

	 a.	 Describe a procedure for calculating capability 
indexes from the transformed data.

	 b.	 Calculate the Cp, Cpu, Cpl, and Cpk indexes from 
the transformed data.

	34.	 Based on your analysis in Exercise 18, if the speci-
fication limits for the process are 13 6 .2, calculate 
the Cp and Cpk indexes. What conclusions can you 
draw about the capability of the process?

	35.	 Using the data of Exercise 22, if the specification 
limits for the process are 60 ± .4, calculate the Cp 
and Cpk indexes. What conclusions can you draw 
about the capability of the process?

6.5	 Control Charts for  Attributes Data 

In quality control, counted data is called attributes data. Attributes data arises when we 
check products to see whether they possess a specified characteristic or attribute. Those 
that have the attribute in question are said to be conforming and those without it are called 
nonconforming. Attributes, or product characteristics, can be either precisely defined or 
fairly subjective in nature. For example, the testing of electronic devices usually results in 
a clear decision as to which devices are nonconforming (those that fail to function cor-
rectly) and which are conforming. Alternatively, when an injection-molded dashboard 
of a car is inspected for small pinholes and other blemishes, deciding which dashboards 
are nonconforming is a more subjective matter. Attributes measurements are frequently 
used in situations where variable measurements are not practical and human judgment 
is needed. In addition to classifying entire products as conforming or nonconforming, it is 
also possible to count the number of flaws or nonconformities on a single unit of product.

Control charts for monitoring the proportion of nonconforming items in subgroups 
are called p charts. Monitoring the number of nonconforming items is accomplished 
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with the np chart. For products that are created in distinct units, such as components or 
appliances, the c chart is used to track the number of nonconformities in subgroups of 
such items. When products are not made in distinct units, such as reels of wire, fabric, 
or paper, then the u chart is used to monitor the number of nonconformities in speci-
fied “units” of such products.

Interpreting the Control Limits
The plotted points on control charts for nonconforming items (p and np charts) or on 
charts for nonconformities (c and u charts) gauge the numbers or proportions of prob-
lems found in each subgroup. Points that are above the chart’s UCL indicate abnormally 
high levels of problems. Assignable causes for such problems should be immediately 
sought and eliminated. Points that fall below the LCL, however, indicate abnormally 
low problem levels. Although such points certainly qualify as out of control, they are 
also evidence that some assignable cause has brought about a temporary, but welcome, 
improvement in the process. In this situation, the goal changes to one of finding the as-
signable cause and then taking steps, not to eliminate it, but to ensure that it continues 
to exist in the future.

p and np Charts
The proportions of nonconforming items in successive subgroups of size n are plotted 
on p charts. If we assume that all the subgroups come from a stable process in which 
the true proportion of nonconforming items is �, each of the subgroup proportions p1, 
p2, p3, . . . , pk is a statistic whose sampling distribution (see Section 5.5) has a mean and 
standard deviation of

�p 5 �  and  �p 5 B� (1 2 �)
n

In theory, the 3-sigma control limits for the p chart are formed by �p 6 3�p. In 
practice, of course, we must first estimate � and then substitute this estimate into 
the formulas.

To estimate �, the k subgroup proportions are averaged. This average is denoted by

p 5
1
k ^

k

i51
pi

and is used as the centerline of the chart. Substituting p for �, we find the control limits 
for the p charts as

UCL 5 p 1 3Bp(1 2 p)
n

LCL 5 p 2 3Bp(1 2 p)
n

Sometimes, because of the small values of  p that are encountered in practice, the LCL 
can be negative. When this happens, we replace the LCL by 0 since it is impossible to 
have negative nonconformance rates.

In the frequently occurring case where the subgroup sizes n1, n2, n3, . . . , nk are not 
all equal, the calculations for the centerline and control limits are modified as follows. 
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Letting x1, x2, x3, . . . , xk denote the numbers of nonconforming items in each subgroup, 
we estimate the centerline of the p chart by

p 5
x1 1 x2 1 x3 1 1 xk

n1 1 n2 1 n3 1 1 nk

This formula is conveniently remembered as “the total number of nonconforming items 
over the total sample size.” The formula is more general than the equal-samples formula 
and, for that reason, it is sometimes the only formula cited by some texts for estimating �. 
When the subgroup sizes are unequal, the control limits are calculated separately for each 
subgroup. That is, the control limits for the ith subgroup are

UCL 5 p 1 3Bp(1 2 p)
ni

LCL 5 p 2 3Bp(1 2 p)
ni

Aerospace  contractors and subcontractors must often demonstrate, using control charts, 
that their manufacturing processes are capable of meeting ever-increasing quality stan-
dards for military systems and hardware (“Department of Defense Renews Emphasis 
on Quality,” Quality Progress, March 1988: 19–21). Many such systems include printed 
circuit board (PCB) assemblies with various electronic components soldered to them. 
Components are soldered in place by means of a wave solder machine, which passes 
the PCBs on a conveyor over a surface of liquid solder. Soldered PCBs are then con-
nected to test stations, which electronically test the circuits and classify each board as 
either conforming or nonconforming. Table 6.3 contains records of the daily numbers 
of rejected (nonconforming) PCBs for a 30-day period. For this data,

p 5
14 1 22 1 9 1 1 12

286 1 281 1 310 1 1 289
5 .054

Example 6.6

Table 6.3    Daily records of numbers of tested and rejected circuit board assemblies

Day Rejects Tested Proportion Day Rejects Tested Proportion
  1 14 286 .049 16 15 297 .051
  2 22 281 .078 17 14 283 .049
  3   9 310 .029 18 13 321 .040
  4 19 313 .061 19 10 317 .032
  5 21 293 .072 20 21 307 .068
  6 18 305 .059 21 19 317 .060
  7 16 322 .050 22 23 323 .071
  8 16 316 .051 23 15 304 .049
  9 21 293 .072 24 12 304 .039
10 14 287 .049 25 19 324 .059
11 15 307 .049 26 17 289 .059
12 16 328 .049 27 15 299 .050
13 21 296 .071 28 13 318 .041
14   9 296 .030 29 19 313 .061
15 25 317 .079 30 12 289 .042
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Since different numbers of PCBs are tested each day, the control limits for a p chart 
of the data are calculated separately for each subgroup:

UCL 5 p 1 3Bp(1 2 p)
ni

 5 .054 1 3B (.054)(1 2 .054)
ni

5 .054 1
.67812ni

 LCL 5 p 2 3Bp(1 2 p)
ni

         5 .054 2 3B (.054)(1 2 .054)
ni

5 .054 2
.67812ni

Figure 6.13 shows the p chart for using these control limits. Note that the smaller the 
subgroup size ni, the wider the control limits. Since the chart shows no signs of any 
out-of-control conditions, we conclude that the process is in control and currently 
operating at about a 5.4% nonconforming rate.

Figure 6.13   chart of the data in Table 6.3

0
0 Subgroup (day) number

Average LCL = .01402

Proportion

10 20 30

.05

.10
Average UCL = .09368

 = .05385–

If you have the ability to choose constant subgroup sizes in your particular 
application, then the p chart calculations can be further simplified. In fact, with 
a constant base of comparison (i.e., constant subgroup size n), there is no need to 
even convert the numbers of nonconforming items into the subgroup proportions 
p1, p2, p3, . . . , pk. Instead, we can simply plot the numbers of nonconforming items 
x1, x2, x3, . . . , xk on the chart. This chart is called an np chart because the number 
of nonconforming items in a subgroup is simply n times the proportion of noncon-
forming items.

If x1, x2, x3, . . . , xk denote the numbers of nonconforming items in k subgroups, 
then the centerline of the np chart is simply np, where p is calculated by either of the Un

le
ss

 o
th

er
w

is
e 

no
te

d,
 a

ll 
co

nt
en

t o
n 

th
is

 p
ag

e 
is

 ©
 C

en
ga

ge
 L

ea
rn

in
g.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 6.5   Control Charts for  Attributes Data	 277

formulas for p used with the p chart. Similarly, the 3-sigma control limits for the np 
chart are found by multiplying each of the control limits of the p chart by n:

UCL 5 np 1 32np(1 2 p)

LCL 5 np 2 32np(1 2 p)

As in the p chart, if the LCL turns out to be negative, we replace it by 0.

In complex systems, items are routed through a succession of different processes be-
fore emerging as finished products or completed services. In “build to order” systems, 
for example, individual orders are routed through slightly different paths from other 
orders, according to a customer’s specific design requirements. A common method for 
tracking an item’s progress during this journey is to attach paperwork to each order that 
describes the requirements for every step of the production process. These documents, 
often called travelers, are created before an order is processed. It is imperative that they 
be correct, since incorrect travelers are essentially recipes for nonconforming products!

To monitor the quality of such paperwork, suppose that periodic samples 
of 100  travelers are examined for errors, where a nonconforming document 
is defined to be one that contains at least one error. Table 6.4 shows data from 
25 daily samples of size 100 travelers and the corresponding numbers of noncon-
forming ones. The total number of nonconformities in the 25 samples is 272, so  
p5 272y[(25)(100)] 5 .1088 and, therefore, np 5 100(.1088) 5 10.88. The control 
limits are

UCL 5 np 1 32np(1 2 p)  5 10.88 1 3210.88(1 2 .1088) 5 20.22

LCL 5 np 2 32n p2(1 2 p) 5 10.88 2 3210.88(1 2 .1088) 5 1.54

Example 6.7

Table 6.4    Numbers of documents containing errors in samples of 100 documents

Day Number Sample Size Day Number Sample Size

  1 10 100 14 21 100

  2 12 100 15 20 100

  3 10 100 16 12 100

  4 11 100 17 11 100

  5   6 100 18   6 100

  6   7 100 19 10 100

  7 12 100 20 10 100

  8 10 100 21 11 100

  9  6 100 22 11 100

10 11 100 23 11 100

11  9 100 24   6 100

12 14 100 25   9 100

13 16 100

Un
le

ss
 o

th
er

w
is

e 
no

te
d,

 a
ll 

co
nt

en
t o

n 
th

is
 p

ag
e 

is
 ©

 C
en

ga
ge

 L
ea

rn
in

g.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



278	 chapter 6   Quality and Reliability

c and u Charts
Because an object can have any number of flaws, or nonconformities, it is important 
to establish an inspection unit when working with c and u charts. The inspection unit 
defines the fixed unit of output that will be regularly sampled and examined for non-
conformities. Inspection units are often single units of product, such as a single printed 
circuit board or a single television. Inspection units can also be collections of items, 
which might be used when one examines accounting records for errors by looking at 
batches of 100 accounting records per day. The inspection unit is then 100 records, and 
the number of nonconformities for such an inspection unit is the total number of errors 
found in each such batch. Products are usually grouped in batches like this when the 
nonconformance rate is small and large samples are needed to detect nonconformities. 
Choosing an inspection unit is especially important with continuous processes, such 
as the production of long rolls of paper, wire, fabric, or metal. To count the number of 
surface flaws in long rolls of metal, for example, it would not be practical to look at every 
square foot of the metal surface. Instead, we decide on a fixed-size inspection unit, say, a 
2-square-foot section of metal, and count the number of nonconformities found therein.

The number of nonconformities per unit (i.e., per inspection unit) is denoted by c. 
To create a c chart, a sample of k successive inspection units is examined, and the num-
bers of nonconformities c1, c2, c3, . . . , ck found in these units are counted. The centerline 
of the chart, denoted by c, is the average

c 5
1
k

 ^
k

i51
ci

The np chart (Figure 6.14) shows one point (subgroup 14) above the UCL. Production 
records for day 14 should be examined for a possible assignable cause. If one is found, 
then subgroup 14 should be eliminated from the calculations, and an np chart with a 
revised centerline and control limits should be used to monitor subsequent data.

Figure 6.14   chart from Minitab for the data of Table 6.4 
(Minitab labels the first out-of-control point with a “1”)

0
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One measure of software quality is the number of coding errors made by program-
mers per 1000 lines of computer code. Using K to denote 1000, the inspection unit 
“a thousand lines of code” is usually abbreviated as KLOC (i.e., K Lines Of Code). 
The data in Table 6.5 shows the defects per KLOC obtained from weekly test logs in 
a software company. The average number of errors per KLOC is c 5 134y30 5 4.467. 
The upper and lower control limits of the chart are then

UCL 5 c 1 31c 5 4.467 1 314.467 5 10.807

LCL 5 c 2 31c 5 4.467 2 314.467 5 21.874

Because the LCL is negative, we reset it to 0 and then construct the c chart shown in 
Figure 6.15. Note that the two points at weeks 18 and 19 are touching the lower con-
trol limit and that there are several runs of points on the same side of the centerline. 
According to the extended “out-of-control” rules in Section 6.2, these observations 
do not quite qualify as out-of-control signals, but they are close. It might therefore 

Example 6.8
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For a stable process, the number of nonconformities, c, is modeled by a Poisson distribu-
tion. Since the mean and variance of a Poisson distribution are equal (see Chapter 2) and 
since the mean is estimated by the centerline c, the 3-sigma control limits of the c chart are

UCL 5 c 1 32c

LCL 5 c 2 32c

As in the p and np charts, negative LCLs are replaced by 0. However, this problem can 
be avoided if the inspection unit is chosen so that c exceeds 9 (see Exercise 38).

Table 6.5    Number of errors per 1000 lines of code

Week Errors Week Errors

  1 6 16 3

  2 7 17 2

  3 7 18 0

  4 6 19 0

  5 8 20 1

  6 6 21 2

  7 5 22 5

  8 8 23 1

  9 1 24 7

10 6 25 7

11 2 26 1

12 5 27 5

13 5 28 5

14 4 29 8

15 3 30 8
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Sometimes it is neither possible nor convenient to use inspection units based on 
collections of units of a product. This is especially the case for continuous processes, 
such as the manufacture of sheet metal and plastic or rolls of paper, tubing, wire, and 
fabric. It is not convenient, nor is it necessary, to inspect entire rolls of fabric for non-
conformities. Instead, smaller samples of such products are used to form control charts. 
This is accomplished by first deciding on an inspection unit of a specified size, such as 
a 2-square-foot area of fabric or, perhaps, a 2-yard section of wire. The second step is 
to obtain small samples of the product for testing, but these samples need not neces-
sarily coincide with the chosen inspection unit. For example, a 4-yard section of wire 
might be examined for flaws on one day and a half-yard section on another. To make a 
fair comparison between samples of different sizes, however, we divide the number of 
flaws found in any sample by the number of inspection units represented in the sample. 
For instance, if three flaws are found in the 4-yard section of wire and we are using an 
inspection unit of 2 yards, the nonconformity rate would be recorded as 1.5 flaws per 
unit, since 4 yards represents two inspection units. Similarly, three flaws in a half-yard 
section of wire is more serious, because this is equivalent to 12 flaws per 2 yards, or 
12 flaws per unit.

To account for variable numbers of inspection units in our subgroups, c charts 
are replaced by u charts based on the adjusted per unit rates described previously. If 
subgroup i contains ci nonconformities and represents ni inspection units, then the non-
conformities per unit, ui, is simply

ui 5
ci

ni

Note that the numbers of inspection units, ni, represented in a sample does not have to 
be an integer.

be rewarding to conduct a small search for reasons why the error rate was so low in 
weeks 18 and 19.

0

0

Subgroup (week) number

LCL = 0

Sample count

10 20 30

5

10
UCL = 10.81

 = 4.467–

Figure 6.15   chart for the data of Table 6.5
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The  data in Table 6.6 shows the number of flaws found in 30 samples of fabric 
and corresponding sizes of the samples examined (in square feet). Suppose  
an inspection unit of 2 square feet is used to monitor the quality of this fabric.  
Table 6.6 also shows the conversion of the raw nonconformity rates into the per unit 
rates, ui. The u chart of this data (Figure 6.16) reveals several out-of-control points, 
some bad (above the UCL) and some good (below the LCL). Before this control 
chart can be used to monitor subsequent production, a search should be made 
for possible assignable causes and then appropriate actions taken. A revised chart, 
after eliminating out-of-control points, would then be used to monitor subsequent 
samples from the process.

Example 6.9
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For k subgroups of such data, the statistics u1, u2, u3, . . . , uk are plotted on the u 
chart. The centerline on the chart is

u 5
total nonconformities in the k subgroups

total number of inspection units

 5
c1 1 c2 1 c3 1 1 ck

n1 1 n2 1 n3 1 1 nk

Because the subgroup size ni usually varies from sample to sample, control limits for 
the u chart are computed separately for each subgroup:

UCL 5 u 1 3A u
ni

LCL 5 u 2 3A u
ni

Table 6.6   Number of flaws  and per unit rates  in 30 fabric samples

Sample size Sample size
i ci (ft2) ui i ci (ft2) ui

  1 12 3.9 6.15 16 29 9.8   5.92
  2 18 9.0 4.00 17 18 8.8   4.09
  3 27 6.7 8.06 18 28 7.1   7.89
  4 64 9.2 13.91 19 10 3.3   6.06
  5 11 3.6 6.11 20 47 5.9 15.93
  6 13 6.7 3.88 21 21 5.2   8.08
  7 25 8.3 6.02 22  6 5.6   2.14
  8 22 5.6 7.86 23 16 8.0   4.00
  9 43 6.1 14.10 24 27 8.9   6.07
10 17 4.2 8.10 25 21 5.3   7.92
11   0 8.4 .00 26 12 3.1   7.74
12 14 6.8 4.12 27 19 6.2   6.13
13   9 4.4 4.09 28 14 4.8   5.83
14 16 5.2 6.15 29 42 8.3 10.12
15   0 7.8 .00 30 19 4.7   8.09
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Figure 6.16   chart for the data of  Table 6.6

0

0
Subgroup number

Average LCL = 1.508

Count per unit

10 20 30

5

15

10
Average UCL = 11.48

 = 6.496–

Section 6.5 Exercises

	36.	 Explain the difference in the actions taken on a 
process when a point on a p chart exceeds the upper 
control limit versus the actions taken when a point 
falls below the lower control limit.

	37.	 For a fixed subgroup size n, find the smallest value 
of p that will give a positive lower control limit on a 
p chart.

	38.	 Control limits for attributes charts are never nega-
tive, and it is desirable that they be positive. For a 
c chart, what values of the centerline c will ensure 
that the lower control limit is positive?

	39.	 The following data shows the number of noncon-
forming items found in 30 successive lots, each of 
size 50, of a finished product:
4 3 0 2 2 2 0 1 1 0
3 2 1 1 0 0 2 4 2 5
0 0 1 1 0 3 2 1 2 4

	 a.	 Construct a control chart for the proportion of 
nonconforming items per lot.

	 b.	 Interpret the chart in part (a).

	40.	 On each of 25 days, 100 printed circuit boards are 
subjected to thermal cycling; that is, they are sub-
jected to large changes in temperature, a procedure 
known to cause failures in boards with weak circuit 
connections. Of the boards tested, a total of 578 fail 
to work properly after the thermal cycling test.

	 a.	 From this information, calculate the centerline 
and control limits for a p chart.

	 b.	 The highest number of failures on a given day was 
39 and the lowest number was 13. Would either of 
these points indicate an out-of-control condition?

	 c.	 If your answer to part (b) is “yes,” then eliminate 
the out-of-control point(s) from the data and re-
compute the centerline and control limits of the 
p chart.

	41.	 After assembly and wiring of the individual keys, 
computer keyboards are tested by an automated test 
station that pushes each key several times. Daily re-
cords are kept of the number of keyboards inspected 
and the number that fail the inspection. Data from 
25 successive manufacturing days is given here.

Day
Number 

tested
Number 

failed Day
Number 

tested
Number 

failed
  1 2186 28 11 2141 31
  2 2131 21 12 2019 18
  3 2158 22 13 2027 27
  4 2307 14 14 2376 25
  5 2262 17 15 2118 27
  6 2379 27 16 2251 14
  7 2069 18 17 2068 31
  8 2264 20 18 2242 23
  9 2383 18 19 2089 23
10 2350 19 20 2387 36
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Day
Number 

tested
Number 

failed Day
Number 

tested
Number 

failed
21 2011 38 24 2375 20
22 2059 13 25 2029 30
23 2045 11

	 a.	 Calculate the centerline of a p chart for this data.
	 b.	 Construct the control limits for the p chart.
	 c.	 Are there any signs of out-of-control conditions 

in this data?

	42.	 The following observations are the number of de-
fects in 25 1-square-yard specimens of woven fabric 
(read across):
3 7 5 3 4 2 8 4 3 3 6 7 2
3 2 4 7 3 2 4 4 1 4 5 6

	 a.	 Construct a c chart for this data.
	 b.	 Check the chart for any out-of-control signals 

and, if necessary, eliminate such points from the 
data and reconstruct the c chart.

	43.	 Off-color flaws in aspirin are caused by extremely 
small amounts of iron that change color when wet 
aspirin comes into contact with the sides of drying 
containers (“People: The Only Thing That Makes 
Quality Work,” Quality Progress, Sept. 1988: 63–67). 
Such flaws are not harmful but are nonetheless un-
attractive to consumers. At one Dow Chemical 
plant, a 250-lb sample is taken out of every batch of 
aspirin, and the number of off-color flaws is counted. 
The following table shows the numbers of flaws per 
250-lb sample for a period of 25 days:

Number Number
Day of flaws Day of flaws
  1 46 10 44
  2 51 11 47
  3 56 12 51
  4 57 13 46
  5 37 14 49
  6 51 15 48
  7 47 16 59
  8 34 17 53
  9 30 18 61

Number Number
Day of flaws Day of flaws
19 63 23 42
20 42 24 39
21 45 25 38
22 43

		  Construct an appropriate control chart for this data, 
and examine it for any evidence of a lack of statisti-
cal control.

	44.	 Forty consecutive automobile dashboards are exam-
ined for signs of pinholes in the plastic molding. 
The numbers of pinholes found are (read across)

6 2 3 2 5 2 2 3 2 4 9
4 0 5 0 6 5 4 2 3 3 1
4 1 7 3 3 5 7 3 6 7 6
4 5 3 8 5 4 3

	 a.	 Construct a control chart for the number of pin-
holes per dashboard.

	 b.	 Interpret the chart in part (a).

	45.	 Painted metal panels are examined after baking at 
high temperatures to harden the paint. Because the 
manufacturer produces panels of several different 
sizes, inspectors simply record the number of blem-
ishes found along with the known area of the panel 
(ft2). The following table shows the number of sur-
face flaws found on 20 successive panels:

Panel
Number 
of flaws

Area of 
panel Panel

Number 
of flaws

Area of 
panel

  1   3 .8 11   1 .6
  2   2 .6 12   3 .8
  3   3 .8 13   5 .8
  4   2 .8 14   4 1.0
  5   5 1.0 15   6 1.0
  6   5 1.0 16 12 1.0
  7 10 .8 17   3 .8
  8 12 1.0 18   3 .6
  9   4 .6 19   5 .6
10   2 .6 20   1 .6
	 a.	 Construct a u chart for this data.
	 b.	 Examine the chart in part (a) for any out-of-

control points.

6.6	 Reliability

Implicit in our understanding of the term quality is a product’s ability to perform its 
intended function for a reasonable period of time. Unless expressly designed for short-
term or one-time jobs, products that fail after only a brief period of use are not normally 
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considered to be of high quality. In addition to applying quality improvement methods 
to create products, attention must also be paid to making these products last.

The field of reliability is concerned with the time aspect of quality. Reliability tech-
niques are used to estimate the useful lifetime of products, to detect and fix the types of 
problems that occur with time, and to aid in establishing warranty, replacement, and 
repair policies. Directly related to reliability are issues of product safety and product li-
ability, both of great importance to consumers and companies alike.

Failure Laws
The length of time that a product lasts until it fails, or ceases to operate correctly, is 
called its lifetime. Lifetimes are measured in terms of how a product is used. Many 
product lifetimes are simply measured in units of time (minutes, hours, etc.), as, for 
example, in a wall clock battery that begins its useful life when installed in a clock and 
fails sometime later when the clock stops. For items such as lightbulbs, that usually do 
not operate continuously, lifetimes refer to the accumulated operating time a product 
experiences before failure (i.e., the total number of hours during which the bulb was 
on). With tires, the number of miles driven is usually a better indicator of product life 
than simply the time that the tires have been on the car. Mechanical devices, such as 
springs, have lifetimes measured in cycles of operation, where, for example, a cycle 
might be defined to be one compression and release of the spring. Whatever units are 
used, time or cycles, we define a product’s lifetime to be a measure of the total accu-
mulated exposure to failure, often called the time on test, that the product experiences 
prior to failure.

Lifetimes are modeled as continuous random variables and, as such, their prob-
ability distributions are described by probability density functions (pdf’s). Lifetimes can 
take on nonnegative numerical values, even zero (e.g., products that fail immediately), 
so density functions such as the exponential, Weibull, and lognormal are frequently 
used to model lifetimes. Distributions that allow negative values, such as the normal 
distribution, can also be used as long as their parameters are chosen in a manner that 
gives negligible probability to negative lifetimes. When used to model lifetimes, density 
functions are also called failure laws.

Choosing an appropriate failure law for a particular product or set of data can be 
done in several ways:

1.		� There may be a physical or mathematical reason that justifies the use of a 
particular density (e.g., the Central Limit Theorem justifies using the normal 
distribution for sums and averages).

2.		� Quantile plots (see Section 2.4) may show that a particular density provides a 
good fit to available data.

3.		 A failure law may have already been used by others and found to work well.

Because of the vast amount of research that has already been done on many products 
and materials, item (3) in the preceding list often leads to a good failure law choice. It 
is also useful to keep in mind the following brief list of situations that may provide the 
necessary justification needed in item (1):

   	 Normal failure laws often apply in situations where lifetimes are the result of a 
sum of many other variable quantities.
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   	 Exponential failure laws apply to products whose current ages do not have 
much effect on their remaining lifetimes. This is the “memoryless” property of 
exponential distributions (see Exercise 61). Typical applications: fuse lifetimes, 
interarrival times, alpha ray arrivals, Geiger counter ticks).

   	 Lognormal failure laws work well when the degradation in lifetime is propor-
tional to the previous amount of degradation (typical applications: corrosion, 
crack growth, diffusion, metal migration, mechanical wear).

   	 Weibull failure laws are good models for the failure time of the weakest compo-
nent of a system (e.g., capacitor, bearing, relay, and pipe joint failures).

The  lognormal distribution is often used to model tread wear of tires. To fit a log-
normal distribution to such data, suppose a tire manufacturer uses warranty data to 
estimate that the mean time to failure (measured in total miles driven) for a certain 
tire model is 40,000 miles with a standard deviation of 7500 miles. Denoting tire life-
times (in miles) by a random variable x, the parameters of the lognormal distribution 
can be calculated using the formulas (see pages 69 and 77)

E(x) 5 e�1(�2y2)  and  V(x) 5 e2�1�21e�2

2 12
which can be solved for the lognormal parameters � and �:

�2 5 lna1 1
V(x)

[E(x)]2 b 5 lna1 1
75002

[40,000]2 b 5 .034552

so � 5 .185882 and

� 5 ln(E(x)) 2
�2

2
5 ln(40,000) 2

.034552
2

5 10.57936

Example 6.10

Reliability and Hazard Functions
Letting f (x) be the density function (failure law) for a random variable x that describes 
the lifetime of a product, the reliability at time t, denoted R(t), is the probability that 
the product lasts longer than time t:

reliability at time t 5 R(t) 5 P(T . t) 5 #
t

f  (x) dx

Directly related to R(t) is a function Z(t) called the failure rate or hazard function:

failure rate at time t 5 Z(t) 5
f  (t)
R(t)

Z(t) is interpreted as the instantaneous rate of failure at time t, meaning that of those 
items that have not failed before time t, the proportion that will fail in the small interval 
of time from t to t 1 Dt is approximately Dt ? Z(t). The failure rate function is very use-
ful for describing the manner in which failures occur.
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The normal and lognormal distributions do not have closed-form expressions for 
either the reliability or the hazard functions; however, the exponential and Weibull 
distributions do have simple closed-form expressions for R(t) and Z(t):

Density R(t) Z(t)

Exponential: �e2�x (� . 0) e2�t �  (a constant)

Weibull: �

��   x�21e2(xy�)�

(�, � . 0) e2(ty�)� �

�� t�21

(recall that the exponential is a special case of the Weibull when � 5 1y� and � 5 1).
Figure 6.17 shows graphs of  Z(t) for various values of � (the “shape” parameter) for 

the Weibull distribution. Notice that for 0 , � , 1 the failure rate decreases with time, for 
� 5 1 (i.e., the exponential distribution) the failure rate is constant, and for � . 1 the failure 
rate increases with time. In the case of the exponential distribution (� 5 1), the fact that the 
failure rate is constant is often interpreted as saying that products that have exponential fail-
ure law are “memoryless.” That is, no matter how old such products are, their failure rates 
are always the same. This means, after any time t, such products are essentially “as good as 
new.” In fact, this may be a good approximation to the behavior of items such as fuses—if 
a fuse has not burned out by time t, then it is probably very nearly as good as a new fuse.

In Example 6.10, warranty data on tire failures was used to estimate the parameters  
� 5 10.57936 and � 5 .185882 of a lognormal distribution that describes tread wear 
(in miles). Denoting tread life by x, the reliability function for x can be calculated using 
the fact that ln(X) follows a normal distribution with mean � and standard deviation �:

R(t) 5 P(x . t) 5 P(ln(x) . ln(t)) 5 Paz .
ln(t) 2 �

�
b 5 1 2 Fa ln(t) 2 �

�
b

where F(z) denotes the cumulative probability for the standard normal distribution 
(see Appendix Table I). Although there is no closed-form expression for R(t), it is easy 
to use Table I or statistical software to create a graph of R(t), as shown in Figure 6.18. 

Example 6.11

Figure 6.17  Failure rates of  Weibull distributions for various values of the shape 
parameter �
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Similarly, the hazard function Z(t) can be computed and plotted, as shown in Figure 6.19. 
Notice that the failure rate is an increasing function for the lognormal distribution.

	 6.6   Reliability	 287

System Reliability
Products that consist of large assemblies of components can be at risk of failure if one or 
more of their individual parts fails. Studying how a product’s components are connected 
and how this affects product lifetime is referred to as topological or system reliability.

Systems or assemblies are usually comprised of successive levels of subsystems 
whose individual reliabilities are easy to estimate. By finding the subsystem reliabilities 
first, one can often combine these estimates into an overall estimate of product reliabil-
ity. The particular combination depends on how the subsystems are connected.

Series systems are defined to be systems whose individual components are connect-
ed end-to-end in a “series.” Figure 6.20 shows a diagram of the typical series system. The 
main aspect of such systems is that they can only function as long as every component 

Figure 6.18  Graph of the reliability function for the 
lognormal distribution of Example 6.11
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Figure 6.19  Graph of the hazard function for the lognormal 
distribution of Example 6.11

0 300002000010000 40000 50000 60000
0

.0001

.0002

 ( )

Un
le

ss
 o

th
er

w
is

e 
no

te
d,

 a
ll 

co
nt

en
t o

n 
th

is
 p

ag
e 

is
 ©

 C
en

ga
ge

 L
ea

rn
in

g.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



288	 chapter 6   Quality and Reliability

of the system functions correctly. Examples of series systems would be the tires on a 
vehicle, batteries in a flashlight, and the power supply and CPU in a computer.

Parallel systems are ones whose components function in parallel, that is, those 
systems that will function as long as at least one of their components functions correctly. 
Figure 6.21 shows a diagram of a typical parallel system comprised of n components. 
Parallel systems are often used to build redundancy into a product; that is, the com-
ponents in parallel systems serve as “backups” for each other so that if one component 
fails, then the entire system will not necessarily fail. Such systems are often used to 
increase the reliability of a product. Examples of parallel systems include computer 
routing systems, pacemakers, and safety systems on airplanes.

The fundamental result for computing the reliability R(t) of a parallel system in 
terms of the reliabilities Ri(t) of its n components is

Figure 6.20  Diagram of a series system

Component 1 Component 2 Component 3 Component . . .

If all  components in a series system function  of one another, then the reli-
ability function ( ) for the entire system is simply the product of the reliability functions 
of the  components. That is:

( ) 5 1( ) ? 2( ) ? 3( )  ( )

If all  components in a parallel system function  of one another, then the reli-
ability function ( ) for the entire system is given as

( ) 5 1 2 [1 2 1( )] ? [1 2 2( )4 ? [1 2 3( )]  [1 2 ( )]

If we denote the reliability at time t of the ith component by Ri(t), then the fundamental 
theorem of series systems can be summarized as follows:

Figure 6.21  Diagram of a parallel system
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The concepts of series and parallel systems can be used either separately or in 
combination when analyzing the reliability of complex systems. The basic method is, 
when possible, to break down a complex system into various combinations of series and/
or parallel subsystems. The reliabilities of such subsystems can then be calculated from 
the theorems in this section and they, in turn, can often be combined to calculate the 
overall product or system reliability.

Routers are used in the telecommunications industry to transmit data (in the form of 
digitized electronic signals) from one location to another. Because many important 
business and scientific organizations depend upon the continuous availability of data, 
routing systems must be highly reliable. The usual way of increasing reliability in rout-
ing systems is to include various sources of redundancy in the form of parallel subsys-
tems. For example, Figure 6.22 shows a routing system that uses two identical routers 
in parallel. In addition, each router contains four different power sources (arranged in 
parallel) and two “supervisor cards” (also in parallel) that direct the router’s actions.

Assuming all power sources are of the same kind, each with reliability function 
Rp(t), and that they act independently of one another, the reliability of each set of 
four power sources is 1 2 [1 2 Rp(t)]

4. Making the same assumptions for the super-
visor cards [cards are independent and have a common reliability function Rs(t)], 
the reliability of each set of two cards is 1 2 [1 2 Rs(t)]

2]. Since the power sources 
in each router are connected in series to the supervisor cards, the reliability of a 
single router must be the product of the power source reliability and the supervisor 
card reliability: {1 2 [1 2 Rp(t)]

4} ? {1 2 [1 2 Rs(t)]
2}.

Since both routers are connected in parallel, the overall reliability for the rout-
ing system is 1 2 [1 2 {1 2 [1 2 Rp(t)]

4} ? {1 2 [1 2 Rs(t)]
2}2]. The final step would 

be to determine the particular form of the failure laws for the power sources and 
supervisor cards (e.g., exponential or Weibull) and substitute these numerical expres-
sions into the overall reliability formula.

Example 6.12

Figure 6.22  Redundancy in a routing system: 
two routers, four power supplies per router, 
two supervisor cards per router

Router 1
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Section 6.6 Exercises

46.	 Intravenous (IV) tubes that deliver liquids (drugs, 
saline solution, food, etc.) to medical patients are 
connected by inserting a plastic prong (called a 
canula) from one tub through a rubber membrane 
in the connector of another tube. Canula systems 
are needleless and therefore eliminate the pos-
sibility of needle punctures to nurses or patients 
when connecting IV tubes. When disconnected, 
the surface of the rubber membrane closes up, re-
sealing the end of the tube. However, after many 
such connections and disconnections, the rubber 
membrane may eventually wear out and fail to 
close properly.

Suppose the number of times (i.e., cycles) you 
can connect and disconnect such a system until a 
membrane wears out is modeled by an exponential 
distribution with a mean time to failure of � 5 500 
cycles.

	 a.	 What is the probability that a given canula con-
nection will last for at least 100 cycles?

	 b.	 Find the number of cycles, t, for which the reli-
ability equals .95 (i.e., 95%).

	 c.	 Suppose a manufacturer of such systems wants 
to increase their reliability by specifying that 
R(100) 5 .95. What is the mean time to failure 
(in cycles) for such a system?

	47.	 Reliability of mechanical springs is measured in 
terms of how many times (i.e., cycles) the spring can 
be compressed and released. Suppose that the life-
time of a certain type of spring can be modeled by 
a Weibull distribution with shape parameter � 5 4 
and scale parameter � 5 600,000.

	 a.	 Calculate the reliability at t 5 400,000 cycles.
	 b.	 Calculate the reliability at t 5 800,000 cycles.
	 c.	 Calculate the reliability at t 5 �5 600,000 cy-

cles. Note that R(�) is always the same number 
for any Weibull distribution.

	 d.	 Write the hazard function. Is the failure rate in-
creasing, decreasing, or flat?

	48.	 Is the exponential distribution a reasonable one for 
modeling human lifetimes? To answer this ques-
tion, suppose the mean lifetime is about 75 years 
and that lifetimes follow an exponential distribu-
tion with parameter � 5 1y75 5 .0133.

	 a.	 Use this model to calculate the percentage of 
people living over 150 years.

	 b.	 Next, calculate the percentage of people living 
less than 10 years.

	 c.	 Based on results in (a) and (b), do you think the 
exponential distribution is a good one for mod-
eling human lifetimes?

	 d.	 Answer part (c) using only the “memoryless” 
property of the exponential distribution.

	49.	 a. � Assume that a certain product can be modeled 
with a normal failure law having a mean lifetime 
of � 5 10 years and standard deviation � 5 2 
years. Use a spreadsheet program or other soft-
ware to create a graph of the failure rate, Z(t), for 
such a product.

	 b.	 Based on your result in part (a), what type of fail-
ure rate (decreasing, constant, or increasing) do 
products with normal failure laws have?

	50.	 Estimates of Weibull parameters can be obtained 
using simple linear regression (see Section 3.3). De-
noting the lifetime of a product by t, the Weibull 
cumulative area function can be written as F(x) 5

1 2 e2(xy�)�, and it is easy to show algebraically 
that  ln3ln (1y1 2 F(x))4 5 � ln(x) 2 � ln(�) (see 
page 93). For an ordered set of data x1 # x2 # x3 #  
# xn, we associate xi with the [(i 2 .5)yn]th sample 
quantile of the Weibull distribution. That is, we use 
pi 5 (i 2 .5)yn in place of F(x) and perform a regres-
sion of  ln[ln(1y1 2 pi)] on ln(xi) to find estimates of 
� and �.

	 a.	 Using the data of Example 2.18 (page 93), esti-
mate the parameters of the Weibull distribution 
that fit this data.

	 b.	 Compare the estimates from part (a) with those 
obtained in Example 7.18 (page 338).

	51.	 RAID (Redundant Arrays of Inexpensive Disks) 
structures consist of various combinations of 
computer disks that use parallel design elements 
to achieve high reliability. Suppose that a RAID 
system consists of three disks (A, B, and C) and 
three “mirror” disks that contain complete copies 
of the data in the first three disks. Suppose each 
A, B, and C disk is connected in parallel to its 
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corresponding mirror disk and that the three such 
pairs of disks are connected in series.

	 a.	 Draw a diagram of this RAID system.

	 b.	 Suppose any disk has an exponential lifetime 
(in months) with parameter � 5 .025. Calculate 
the reliability of this system.

Supplementary Exercises

	52.	 When affixed to an object, each piece of paper in 
a pad of adhesive notepaper must stay in place but 
must also be easily removable. The strength of the 
adhesive used is a critical quality characteristic of 
such pads. For this type of product, does adhesive 
strength have a one- or a two-sided tolerance?

	53.	 In a bottling process, a beam of light is passed 
through the necks of bottles passing by on a conveyor 
system. Underfilled bottles, which allow the beam 
of light to pass through, trip a sensor that routes the 
bottles off the conveyor system. Bottles with liquid 
levels above the level of the light beam do not trigger 
the sensor, thereby meeting the required fill specifi-
cation; these bottles are then shipped to customers. 
Describe the shape of the distribution of fill volumes 
for the bottles that pass this inspection.

	54.	 Instead of constructing x and R charts for 30 sub-
groups of size 4, a friend suggests the simpler al-
ternative of calculating the standard deviation s  of 
the 30 means to establish 3-sigma limits for a con-
trol chart. That is, it is suggested that the 30 means 
be plotted on a chart with control limits x 6 3s . 
Sample means that fall outside these control limits 
would indicate process problems. Explain what is 
wrong with this procedure.

	55.	 A tool that drills holes in metal parts eventually 
wears out and periodically must be replaced. If the 
hole diameters drilled by this machine are moni-
tored on a control chart, describe the type of pat-
tern you would expect to see on the chart as the 
drill wears out.

	56.	 A manufacturer of dustless chalk monitors the 
consistency of chalk by running an s chart on the 
density of chalk in subgroups of size 8. The most 
recent 24 such subgroups had the accompanying 
sample standard deviations (read across):

.204 .315 .096 .184 .230 .212 .322 .287

.145 .211 .053 .145 .272 .351 .159 .214

.388 .187 .150 .229 .276 .118 .091 .056

	 a.	 Construct an s chart based on this data.
	 b.	 Check the chart in part (a) for any out-of-control 

points. If there are any, eliminate them from the 
data and reconstruct the s chart. Repeat this 
process, if necessary, until there are no out-of-
control signals in the s chart.

	57.	 The deviations from nominal transformation in Exer-
cise 21 can be used in so-called short-run processes. 
Even though small numbers of different-size parts are 
created by such processes, the deviations from the 
various nominal values of these parts provide informa-
tion about the particular process, not the parts, that 
is common to all the parts. For example, consider a 
milling process in which metal bars of various sizes 
are machined to specified lengths. The size of the bars 
submitted to the machining process may vary from 
hour to hour, so there may be insufficient data to cre-
ate control charts on any particular bar size. However, 
by subtracting the nominal value from each batch of 
bars, the resulting subgroups of data are sufficient to 
create a control chart for the milling process itself. The 
following table shows the raw length measurements of 
milled steel bars of various sizes, denoted P1, P2, P3, 
and P4. The nominal length for bars of type P1 is .125; 
for bars of type P2, .250; for P3, .375; and for P4, .500.

Subgroup x1 x2 x3 x4 Part type

  1 .251 .252 .250 .249 P2
  2 .372 .378 .379 .375 P3
  3 .247 .249 .254 .251 P2
  4 .248 .247 .250 .252 P2
  5 .249 .249 .250 .249 P2
  6 .125 .127 .125 .126 P1
  7 .372 .374 .375 .376 P3
  8 .499 .502 .495 .503 P4
  9 .124 .121 .123 .126 P1
10 .126 .126 .130 .122 P1
11 .375 .374 .378 .379 P3
12 .249 .249 .250 .247 P2
13 .250 .253 .251 .248 P2
14 .249 .250 .249 .249 P2
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Subgroup x1 x2 x3 x4 Part type

15 .252 .250 .251 .247 P2
16 .251 .249 .250 .250 P2
17 .126 .127 .122 .125 P1
18 .123 .123 .123 .128 P1
19 .252 .250 .247 .248 P2
20 .502 .496 .502 .502 P4

	 a.	 Using the nominal lengths given, convert this 
data into the deviations from nominal format.

	 b.	 Construct x and R charts of the transformed 
data in part (a). Evaluate the charts, and com-
ment on the milling process.

	58.	 Explain why it is possible for all the measurements 
in a given sample to lie within the specification lim-
its and for the same data to yield a nonzero estimate 
of the proportion of the process data that exceeds 
the specification limits.

	59.	 For a certain process, x and R charts based on sub-
groups of size 5 have centerlines of 14.5 and 1.163, 
respectively. Given that the process has specification 
limits of 12 and 16, calculate Cp, Cpu, Cpl, and Cpk.

	60.	 For a fixed value of p, how large does the subgroup 
size n have to be to yield a positive lower control 
limit on a p chart?

	61.	 A “memoryless” system or component is one that 
satisfies the following property: If it has already 
lasted for t1 hours, then the probability it lasts for 
another t2 hours is the same as its initial prob-
ability of lasting t2 hours. Prove that the exponen-
tial distribution is memoryless. That is, prove that 

P(X . t1 1 t2 u X . t1) 5 P(X . t2) for a random 
variable X that has an exponential distribution 
with parameter �.

	62.	 Suppose that two components with reliabilities 
R1(t) and R2(t) are connected in series, but that 
the two components do not necessarily function 
independently of one another. Show in this 
case that min5R1(t), R2(t)6 # R1(t)R2(t) 1 1

4.

	63.	 Show that any series system consisting of two 
components with reliabilities R1(t) and R2(t) can 
never have a system reliability R(t) that exceeds 
the reliability of its weakest link, that is, R(t) # 
min{R1(t), R2(t)}.

	 a.	 Prove this under the assumption that the two 
components function independently of one 
another.

	 b.	 Then prove it in the more general case, 
where the two components may or may not 
function independently of one another.

1 2

3

	64.	 A small system contains three components that 
are connected according to the following dia-
gram. Assuming that the components all func-
tion independently of one another, find the 
general expression for the system reliability R(t) 
in terms of the component reliabilities R1(t), 
R2(t), and R3(t).
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7
Estimation and 
Statistical Intervals

7.1	 Point Estimation

7.2	 Large-Sample Confidence Intervals for 

a Population Mean

7.3	 More Large-Sample Confidence Intervals

7.4	 Small-Sample Intervals Based on a Normal 

Population Distribution

7.5	 Intervals for m1 m2 Based on Normal 

Population Distributions

7.6	 Other Topics in Estimation (Optional)

Introduction

The general objective of statistical inference is to use sample information as 
a basis for drawing various types of conclusions. In an estimation problem, we 
want to make an educated guess about the value of some population charac-
teristic or parameter, such as the population mean battery lifetime �, the pro-
portion � of all components of a certain type that need service while under 
warranty, or the difference �1 2 �2 between the population mean lifetimes for 
two different types of batteries.  The simplest type of estimate is a  
a single number that represents our best guess for the value of the parameter. 
Thus we might report a point estimate of 758 hours for the population mean 
lifetime of all brand X 100-watt lightbulbs; we are not saying that � 5 758, only 
that sample data suggests 758 as a very plausible value for �. Point estimation 
is discussed in Section 7.1.
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A point estimate of a parameter almost surely differs by at least a small amount 
from the actual value of the parameter. That is, there is almost always at least a small 
error in the estimate. Our estimate, for example, may be 758 hours when � is actually 
750 hours. It would be nice if our estimates could provide some indication of preci-
sion; this is the purpose of a confidence interval (interval estimate).  Such estimates, as 
well as several other types of intervals, are presented in Sections 7.2–7.5.  Section 7.6 
briefly considers several other topics relating to estimation.

7.1	 Point Estimation �

A point estimate of some parameter � is a single number, calculated from sample data, 
that can be regarded as an educated guess for the value of �. We might, for example, 
report 32.5 mpg as a point estimate of the population mean fuel efficiency � for all cars 
of a particular type under specified conditions. Or we might decide that .350 is a point 
estimate for the proportion � of all individuals who would try a particular product again 
after using a free trial sample.

A point estimate is usually obtained by selecting a suitable statistic and calculating 
its value for the given sample data. For example, a natural statistic to use for estimating 
a population mean � is the sample mean x, and a sensible way to estimate a population 
variance �2 is to compute the value of the sample variance s2. The statistic used to cal-
culate an estimate is sometimes called an estimator, and the symbol �n is frequently used 
to denote either the estimator or the resulting estimate. Thus the statement

�n 5 x 5 32.5

says that the point estimate of the population mean � is 32.5 and that this estimate was 
calculated using the sample mean x as the estimator.

A commonly used method of estimating the size of a wildlife population is to perform 
a capture/recapture experiment. Suppose a biologist wishes to estimate the number 
of fish in a certain lake; that is, the parameter to be estimated is the population 
size N. An initial sample of 100 fish is selected, each one is tagged, and the tagged 
fish are returned to the lake. After a time period sufficient to allow the tagged fish to 
mix with the other fish in the lake, a second sample of 250 fish is selected. If 25 of the 
fish in the recapture sample are tagged, what is a sensible estimate for N? Because 
10% of the fish in the recapture sample are tagged, it is reasonable to estimate that 
10% of all fish in the lake are tagged. Since we know that a total of 100 fish were 
initially tagged, this suggests that we use 1000 as a point estimate of N.

More generally, if M denotes the number of fish initially tagged, n the size of the 
recapture sample, and x the number of tagged fish in the recapture sample (so x is a 
random variable), the proposed estimator of N is Nn 5 [Mnyx]. (The square bracket 
notation [c] denotes the largest whole number that is at most c; this takes care of cases 
where Mn@x  is not a whole number.)

Example 7.1
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Frequently, there is more than one estimator that can sensibly be used to calculate 
an estimate, as the following example shows.

In situations where there is more than one sensible estimator available, criteria for 
selecting an estimator are needed. We now turn to a brief discussion of desirable proper-
ties of estimators.

Properties of Estimators
One desirable property that a good estimator should possess is that it be unbiased. An 
estimator is unbiased if, in repeated random samples, the numerical values of the es-
timator stack up around the population parameter that we are trying to estimate. An 
often-used analogy is to think of each value of an estimator as a shot fired at a target, the 
target being the population parameter of interest. As long as all the shots fall in a pattern 
with the target value in the middle, we say that the shots are unbiased. Notice that we 
do not require that any of the individual shots actually hit the target; we require only 
that they be centered around the target value. If the majority of the shots are centered 
somewhere else, then we say that they exhibit a certain amount of bias.

In terms of sampling distributions, an estimator is said to be unbiased if the mean 
of its sampling distribution coincides with the parameter that is being estimated. For 
instance, we know from Section 5.5 that the sampling distribution of the statistic x has a 
mean value of � x, which equals the mean � of the population from which the samples 
are taken. Then x is said to be an estimator of the parameter � and, because � x 5 �,  

Consider a population of N 5 5000 invoices. Associated with each invoice is its “book 
value,” the recorded amount of that invoice. Let T 5 $1,761,300 denote the known 
total book value. Unfortunately, some of the book values are erroneous. An audit will 
be carried out by randomly selecting n invoices and determining the audited (i.e., 
correct) value for each one. Suppose the sample gives the following results:

Invoice: 1 2 3 4 5
Book value: 300 720 526 200 127
Audited value: 300 520 526 200 157
Error: 0 200 0 0 230

Let y 5 sample mean book value 5 $374.60, x 5 sample mean audited value 5 
$340.60, and e 5 sample mean error 5 $34.00. Each of the following estimators for 
the total audited (i.e., correct) value and resulting estimates is sensible:

mean per unit statistic 5 N  x; estimate 5 5000(340.60) 5 $1,703,000
difference statistic 5 T 2 Ne; estimate 5 1,761,300 2 (5000)(34)
	 5 $1,591,300
ratio statistic 5 T(xyy); estimate 5 (1,761,300)(340.6y374.6) 5 $1,601,438

The choice among these estimates is not clear-cut. In fact, all three of the estimators 
have been advocated by those employing statistical methodology in auditing.

Example 7.2
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x is also an unbiased estimator of �. In general, for any population parameter � and any 
estimator �n of that parameter, Figure 7.1 illustrates what it means for �n to be unbiased 
or biased.

Some of the most important statistics we have studied are unbiased estimators of 
certain population parameters. For example, it can be shown that the sample mean x is 
an unbiased estimator of the population mean �, the sample variance s2 is an unbiased 
estimator of the population variance �2, and the sample proportion p is an unbiased esti-
mator of the population proportion �. One important exception is the sample standard 
deviation s, which turns out to be a slightly biased estimator of the population standard 
deviation �. Fortunately, for large samples, the amount of bias in s is negligible. For 
small samples from a normal population, there is a simple correction factor that can be 
applied to s that converts it into an unbiased statistic for estimating �.

Unbiasedness does not imply that the estimate computed from any particular 
sample will coincide with the value of the parameter being estimated. Consider, for 
example, using the sample proportion p to estimate the population proportion � based 
on a sample of size n 5 25, and suppose that � 5 .7. Then �p 5 .7, so the sampling dis-
tribution of p is centered at .7. However, with x denoting the number of “successes” in 

Denote a population parameter generically by the letter � and denote any estima-
tor of this parameter by �n. Then �n is an unbiased estimator if ��n 5 �. Otherwise, 
�n is said to be biased, and the quantity ��n 2 �. is called the bias of �n.

definitions

Figure 7.1  Sampling distribution of an estimator �n
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the sample, p 5 xy25 Þ .7 for any possible value of x. That is, even though p is unbiased 
for estimating �, the value of the estimate calculated from any particular sample will 
inevitably differ from �. Nevertheless, if sample after sample is selected and the value 
of p calculated for each one, unbiasedness implies that the long-run average of these 
estimates will be the correct value, .7.

A second desirable property that estimators often possess is consistency. If �n de-
notes an estimator of some population parameter �, then �n is said to be consistent 
if the probability that it lies close to � increases to 1 as the sample size increases. 
Simply stated, consistent estimators become more and more accurate as the sample 
size increases. That is, as you increase n, it becomes more and more likely that such 
estimators will be very close to the parameter they are intended to estimate. The most 
common method for showing that an estimator is consistent is to show that its standard 
error decreases as the sample size increases. For instance, because the standard error 
of x is �x 5 �y1n, which must necessarily decrease as n increases, the sample mean 
qualifies as a consistent estimator of �. This means that for any interval around �, 
no matter how small the interval, we can eventually select n large enough so that the 
sampling distribution lies almost entirely within the interval. This property is illus-
trated in Figure 5.19. Although there are some estimators that are not consistent, such 
examples are fairly rare. In fact, all of the statistical applications in this text involve 
consistent estimators.

Section 7.1 Exercises

	 1.	 A single plastic part is randomly selected from a 
large population of such parts. Can the length of 
the chosen part be considered an unbiased estima-
tor of the average length of all the parts?

	 2.	 A random sample of ten homes in a particular area, 
each heated with natural gas, is selected, and the 
amount of gas (therms) used during January is deter-
mined for each home. The resulting observations are 
103, 156, 118, 89, 125, 147, 122, 109, 138, and 99.

	 a.	 Use an unbiased estimator to compute a point 
estimate of �, the average amount of gas used 
by all houses in the area.

	 b.	 Use an unbiased estimator to compute a point 
estimate of �, the proportion of all homes that 
use over 100 therms.

	 3.	 Random samples of size n are taken from a nor-
mal population whose standard deviation is known 
to be 5.

	 a.	 For random samples of size n 5 10, calculate the 
area under the sampling distribution curve for 
x between the values � 2 1 and � 1 1. That is, 
find the probability that the sample mean lies 
within 61 unit of the population mean.

	 b.	 Repeat the probability calculation in part (a) for 
samples of size n 5 50, n 5 100, and n 5 1000.

	 c.	 Graph the probabilities you found in parts (a) 
and (b) versus their corresponding sample sizes, 
n. What can you conclude from this graph?

	 4.	 Random samples of n trees are taken from a large 
area of forest, and the proportion of diseased trees in 

If the probability that an estimator �n falls close to a population parameter � can be 
made as near to 1 as desired by increasing the sample size n, then �n is said to be 
a consistent estimator of �.

definition
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298	 chapter 7   Estimation and Statistical Intervals

each sample is determined. The actual proportion 
of diseased trees, �, is unknown.

	 a.	 For random samples of size n 5 10, calcu-
late the area under the sampling distribution 
curve for p between the points � 2 .10 and 
� 1 .10. That is, find the probability that the 
sample  proportion lies within6.10 (i.e., 10%) 
of the population proportion. Use the formula 
for the upper bound on the standard error of p 
(see Section 5.6) in your calculations.

	 b.	 Repeat the probability calculation in part (a) for 
samples of size n 5 50, n 5 100, and n 5 1000. 
(Use the normal approximation to the binomial.)

	 c.	 Graph the probabilities you found in parts 
(a)  and (b) versus their corresponding sample 
sizes, n. What can you conclude from this graph?

	 5.	 Random samples of size n are selected from a 
normal population whose standard deviation � is 
known to be 2.

	 a.	 Suppose you want 90% of the area under 
the sampling distribution of x to lie within 
61 unit of a population mean �. Find the 

7.2	 �Large-Sample Confidence Intervals  
for a Population Mean �

A point estimate, because it is a single number, by itself provides no information about 
the precision and reliability of estimation. Consider, for example, using the statistic x 
to calculate a point estimate for the true average breaking strength (g) of paper towels 
of a certain brand, and suppose that x 5 9322.7. Because of sampling variability, it is 
virtually never the case that x 5 �. The point estimate says nothing about how close it 
might be to �. An alternative to reporting a single most plausible value of the parameter 
being estimated is to calculate and report an entire interval of plausible values—an 
interval estimate or confidence interval (CI). A confidence interval is always calculated 
by first selecting a confidence level, which is a measure of the degree of reliability of the 
interval. A confidence interval with a 95% confidence level for the true average break-
ing strength might have a lower limit of 9162.5 and an upper limit of 9482.9. Then at 
the 95% confidence level, any value of � between 9162.5 and 9482.9 is plausible. A 
confidence level of 95% implies that 95% of all samples would give an interval that 
includes �, or whatever other parameter is being estimated, and only 5% of all samples 
would yield an erroneous interval. The most frequently used confidence levels are 95%, 
99%, and 90%. The higher the confidence level, the more strongly we believe that the 
value of the parameter being estimated lies within the interval.

Information about the precision of an interval estimate is conveyed by the width of 
the interval. If the confidence level is high and the resulting interval is quite narrow, our 

minimum sample size n that satisfies this re-
quirement.

	 b.	 Repeat the calculations in part (a) for areas of 
80%, 95%, and 99%.

	 c.	 Plot the sample sizes found in parts (a) and (b) 
versus their corresponding probabilities. What 
can you conclude from this graph?

	 6.	 Each of 150 newly manufactured items is exam-
ined, and the number of surface flaws per item is 
recorded, yielding the following data:

Number of flaws: 0 1 2 3 4 5 6 7
Observed frequency: 18 37 42 30 13 7 2 1

		  Let x denote the number of flaws on a randomly 
chosen item, and assume that x has a Poisson distri-
bution with parameter �.

	 a.	 Find an unbiased estimator for � and compute 
the estimate using the data. Hint: The mean of 
a Poisson random variable equals �.

	 b.	 What is the standard error of the estimator in 
part (a)? Hint: The variance of a Poisson random 
variable also equals �.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 7.2   Large-Sample Confidence Intervals for a Population Mean  	 299

knowledge of the value of the parameter is reasonably precise. A very wide confidence in-
terval, however, gives the message that there is a great deal of uncertainty concerning the 
value of what we are estimating. Figure 7.2 shows 95% confidence intervals for true average 
breaking strengths of two different brands of paper towels. One of these intervals suggests 
precise knowledge about �, whereas the other suggests a very wide range of plausible values.

A Confidence Interval for m  
with Confidence Level 95%
A confidence interval for a population or process mean � is based on the following 
properties of the sampling distribution of x:

�x 5 �  �x 5
�1n

When n is large, the x distribution is approximately normal (this is the Central Limit 
Theorem). Standardizing x by subtracting its mean value and dividing by its standard 
deviation gives the following standardized variable, denoted by z to emphasize that its 
distribution is approximately standard normal (the z curve):

z 5
x 2 �

�y1n

The difficulty with this standardized variable is that, in practice, the value of the 
population or process standard deviation � will almost never be known to an investiga-
tor. Consider instead the standardized variable in which � is replaced by the sample 
standard deviation s:

x 2 �

sy1n

Because there is sampling variability in this second standardized variable both in the nu-
merator (because of  x) and in the denominator (the value of s will also vary from sample 
to sample), it would seem as though its distribution should be more spread out than the 
z curve. But appearances are deceiving! It turns out that when n is large, replacement of 
� by s does not add much variability; in this case, the variable z 5 (x 2 �)y(sy1n) also 
has approximately a standard normal distribution.

A confidence interval with a 95% confidence level is obtained by starting with a 
central z curve area of .95. As Figure 7.3 illustrates, the z critical values 1.96 and 21.96 
capture this area (consult Appendix Table I).

The foregoing facts justify the following probability statement:

Pa21.96 ,
x 2 �

sy1n
, 1.96b .95

Figure 7.2 C onfidence intervals indicating precise (brand 1)  
and imprecise (brand 2) information about �
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Now let’s manipulate the inequalities inside the parentheses to isolate � in the middle 
and move everything else to the two extremes. This is achieved as follows:

1.	 Multiply all three terms by  sy1n.
2.	 Subtract x from all three terms (leaving only 2� in the middle).
3.	 Multiply by 21 (causing the direction of each inequality to reverse).

The result is x 1 1.96(sy1n) . � . x 2 1.96(sy1n), or, rewriting the terms in reverse 
order,

x  2 1.96 
s1n

 , � , x  1 1.96 
s1n

These new inequalities are algebraically equivalent to those we started with, so 
the probability associated with the new inequalities is also (approximately) .95. That is, 
think of x 2 1.96(sy1n)  as the lower limit and x 1 1.96(sy1n) as the upper limit of an 
interval. Both of these limits involve x and s, so the values of both limits will vary from 
sample to sample. With a probability of approximately .95, the selected sample will be 
such that the value of � is captured between these two interval limits. Substituting the 
values of n, x, and s from any particular sample into these expressions gives a confidence 
interval for � with a confidence level of approximately 95%.

A large-sample confidence interval for m with a confidence level of (approxi-
mately) 95% has

lower confidence limit 5 2 1.96 1
upper confidence limit 5 1 1.96 1

The interval is centered at  and extends out the same distance, 1.96 y1 ,  to each side, 
so it can be written in abbreviated form as

6 1.96 1
This formula is valid whatever the shape of the population distribution.

Figure 7.3 C apturing a central  curve area of .95
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The two limits x 6 (1.96)sy1n can also be obtained by replacing each , inside the 
parentheses in the probability statement by 5 and solving the two resulting equations 
for �.

The alternating-current (AC) breakdown voltage of an insulating liquid indicates 
its dielectric strength. The article “Testing Practices for the AC Breakdown Voltage 
Testing of Insulation Liquids” (IEEE Electrical Insulation Magazine, 1995: 21–26) 
gave the accompanying sample observations on breakdown voltage (kV) of a particu-
lar circuit under certain conditions:

62 50 53 57 41 53 55 61 59 64 50 53 64 62 50 68
54 55 57 50 55 50 56 55 46 55 53 54 52 47 47 55
57 48 63 57 57 55 53 59 53 52 50 55 60 50 56 58

Figure 7.4 shows the output from the JMP software’s Analyze/Distribution com-
mand. The boxplot of the data shows a high concentration in the middle half of the 
data (narrow box width). There is a single outlier at the upper end, but this value 
is actually a bit closer to the median (55) than is the smallest sample observation.

Summary quantities include n 5 48, x 5 54.7, and s 5 5.23. The 95% confidence 
interval is then

54.7 6 1.96 
5.23248

5 54.7 6 1.5 5 (53.2, 56.2)

That is,

53.2 , � , 56.2

with a confidence level of approximately 95%. The interval is reasonably narrow, 
indicating that we have precisely estimated �. Note that our lower and upper interval 
endpoints match JMP’s “Lower 95% Mean” and “Upper 95% Mean,” respectively.

Example 7.3

99.5%
97.5%
90.0%
75.0%
50.0%
25.0%
10.0%
2.5%
0.5%
0.0%

100%

40 45 50 55 60 65 70

Distributions

Voltage

Quantiles Moments

maximum

minimum

quartile

quartile
median

68
68

41
41

57
55

67.1
62.1

50.5
47.9

42.125

Mean
Std Dev
Std Err Mean
Upper 95% Mean
Lower 95% Mean
N

54.708333
5.230672

0.7549825
56.227162
53.189505

48

Figure 7.4  Output from JMP for the breakdown voltage data from Example 7.3
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302	 chapter 7   Estimation and Statistical Intervals

The 95% confidence interval for � in the foregoing example is (53.2, 56.2). It is 
tempting to say that there is a 95% chance that � is between 53.2 and 56.2. Do not yield 
to this temptation! The 95% refers to the long-run percentage of all possible samples re-
sulting in an interval that includes �. That is, if we consider taking sample after sample 
from the population and use each one separately to compute a 95% confidence interval, 
in the long run roughly 95% of these intervals will capture �. Figure 7.5 illustrates this 
for 100 samples; 93 of the resulting intervals include �, whereas 7 do not. Without 
knowing the value of �, we cannot tell whether our interval (53.2, 56.2) is one of the 
good 95% or the bad 5% of all intervals that might result. The confidence level refers to 
the method used to construct the interval rather than to any particular calculated interval.

Other Confidence Levels and a General Formula
The confidence level of 95% was inherited from the probability .95 with which we be-
gan the derivation of the interval. This probability in turn dictated the use of the z criti-
cal value 1.96 in the confidence interval formula. It follows that if we want a confidence 
level of 99%, we should identify the z critical value that captures a central z curve area 
of .99. Figure 7.6 shows how this is done. In Appendix Table I, the closest entries for the 
cumulative area .9950 are .9949, in the 2.5 row and .07 column, and .9951, in the same 

Figure 7.5  95% confidence intervals for � from 100 different  
samples (* identifies an interval that does not include �)

Un
le

ss
 o

th
er

w
is

e 
no

te
d,

 a
ll 

co
nt

en
t o

n 
th

is
 p

ag
e 

is
 ©

 C
en

ga
ge

 L
ea

rn
in

g.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 7.2   Large-Sample Confidence Intervals for a Population Mean  	 303

row and .08 column. Thus 2.576 (or 2.58, to be conservative) should be used in the CI 
formula in place of 1.96 to obtain the higher confidence level.

It should be clear at this point that any confidence level can be achieved simply by 
finding the z critical value that captures the corresponding z curve area. For example, it is 
easily verified that the interval from 21.28 to 1.28 contains above it about 80% of the area 
under the z curve, so using 1.28 in place of 1.96 gives a CI with confidence level 80%.

Why settle for 95% confidence when 99% confidence is possible? The price of a 
higher confidence level is that the resulting interval is wider. The width of the 95% 
interval is 2(1.96sy1n), whereas the 99% interval has a width of 2(2.576sy1n). The 
higher reliability of the 99% interval entails a loss in precision (as indicated by the wider 
interval). Many investigators think that a 95% confidence level gives a reasonable com-
promise between reliability and precision.

Choosing the Sample Size
The half-width 1.96sy1n of the 95% CI is sometimes called the bound on the error of 
estimation associated with a 95% confidence level; that is, with 95% confidence, the 
point estimate x will be no farther than this from �. Before obtaining data, an investi-
gator may wish to determine a sample size for which a particular value of the bound 

A large-sample confidence interval for a population or process mean m is given 
by the formula

6 (   ) 1
As a general rule, this interval is appropriate when the sample size exceeds 30.  The three 
most commonly used confidence levels, 90%, 95%, and 99%, use  critical values of 1.645, 
1.96, and 2.576, respectively.

Figure 7.6  Finding the  critical value for a 99% confidence level
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304	 chapter 7   Estimation and Statistical Intervals

is achieved. For example, with � representing the average fuel efficiency (mpg) for all 
cars of a certain type, the objective of an investigation may be to estimate � to within 
1 mpg with 95% confidence. More generally, suppose we wish to estimate � to within 
an amount B (the specified bound on the error of estimation) with 95% confidence. 
This implies that B 5 1.96sy1n, from which

n 5 c 1.96s
B

d
2

The difficulty with this formula is that calculating the value of n requires having s, 
which is of course not available until a sample has been selected. Instead, prior infor-
mation about � may be used as a basis for a reasonable guess for s. Alternatively, for a 
population distribution that is not too skewed, dividing the range (difference between 
the largest and smallest values) by 4 often gives a rough idea of what s might be.

The sample size associated with an error bound B for any other confidence level, such 
as 99%, results from replacing 1.96 in the formula for n by the corresponding critical 
value, for example, 2.576.

One-Sided Confidence Intervals  
(Confidence Bounds)
The confidence intervals discussed thus far give both a lower confidence bound and an 
upper confidence bound for �. In some circumstances, an investigator will want only 
one of these two types of bounds. For example, a psychologist may wish to calculate a 
95% upper confidence bound for true average reaction time to a particular stimulus, or 
a reliability engineer may want only a lower confidence bound for true average lifetime 
of components of a certain type. It is easily verified that the cumulative area under the 
curve to the left of 1.645 is .95, implying that

Pa x 2 �

sy1n
 , 1.645b .95

Manipulating the inequality inside the parentheses to isolate � on one side gives the 
equivalent inequality � . x 2 1.645sy1n; the expression on the right is the desired 
lower confidence bound. Starting with P(21.645 , z) .95 and manipulating the 
inequality results in the upper confidence bound. A similar argument gives a one-sided 
bound associated with any other confidence level.

Refer to Example 7.3 on breakdown voltage. Suppose that the investigator believes 
that almost all values in the population distribution are between 40 and 70. Then 
(70 2 40)y45 7.5 gives a reasonable value for s. The appropriate sample size for 
estimating true average breakdown voltage to within 1 kV with confidence level 95% 
is now

n 5 c (1.96)(7.5)
1

d
2

217

Example 7.4
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A large-sample upper confidence bound for m is

� , 1 (  critical value) 1
and a large-sample lower confidence bound for m is

� . 2 (  critical value) 1
The three most commonly used confidence levels, 90%, 95%, and 99%, use  critical values 
of 1.28, 1.645, and 2.33, respectively.

	 7.	 Assuming that n is large, determine the confidence 
level for each of the following two-sided confidence 
intervals:

	 a.	 x 6 3.09sy1n	 b.	 x 6 2.81sy1n 
	 c.	 x 6 1.44sy1n	 d.	 x 6 sy2n 

	 8.	 What z critical value in the large-sample two-sided 
confidence interval for � should be used to obtain 
each of the following confidence levels?

	 a.	 98%	 b.	 85%
	 c.	 75%	 d.	 99.9%

	 9.	 Discuss how each of the following factors affects the 
width of the large-sample two-sided confidence in-
terval for �:

	 a.	 Confidence level (for fixed n and s)
	 b.	 Sample size n (for fixed confidence level and s)
	 c.	 Sample standard deviation s (for fixed confi-

dence level and n)

	10.	 Each of the following is a confidence interval for 
� 5 true average (i.e., population mean) resonance 

Section 7.2 Exercises

Recently there has been increased use of titanium and its alloys in aerospace 
and automotive applications. These alloys are highly durable and have a high 
strength-to-weight ratio. However, machining of titanium is difficult due to its low 
thermal conductivity. The authors of “Modelling and Multi-Objective Optimiaz-
tion of Process Parameters of Wire Electrical Discharge Machining Using Non-
Dominated Sorting Genetic Algorithm-II” (J. of Engr. Manuf., 2012: 1186–2001), 
Investigated different settings that impact wire electrical discharge machining of 
titanium 6-2-4-2. A characteristic of interest was surface roughness (in �m) of 
the metal after machining. In one particular investigation a sample of 54 surface 
roughness observations gave a sample mean of 1.9042 �m and a sample stan-
dard deviation of .1455 �m. An upper confidence bound for true average surface 
roughness � with confidence 95% is

1.9042 1 1.645 
(.1455)154

5 1.9042 1 .0326 5 1.9368

That is, with a confidence level of 95%, the value of � lies in the interval (2 , 1.9368). 
Since negative values for surface roughness are not possible, we revise this interval 
to (0, 1.9368).

Example 7.5

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



306	 chapter 7   Estimation and Statistical Intervals

frequency (Hz) for all tennis rackets of a certain 
type:

		  (114.4, 115.6)    (114.1, 115.9)

	 a.	 What is the value of the sample mean resonance 
frequency?

	 b.	 Both intervals were calculated from the same 
sample data. The confidence level for one of 
these intervals is 90% and for the other is 99%. 
Which of the intervals has the 90% confidence 
level, and why?

	11.	 Suppose that a random sample of 50 bottles of a par-
ticular brand of cough syrup is selected, and the al-
cohol content of each bottle is determined. Let � de-
note the average alcohol content for the population 
of all bottles of the brand under study. Suppose that 
the resulting 95% confidence interval is (7.8, 9.4).

	 a.	 Would a 90% confidence interval calculated from 
this same sample have been narrower or wider 
than the given interval? Explain your reasoning.

	 b.	 Consider the following statement: There is a 
95% chance that � is between 7.8 and 9.4. Is 
this statement correct? Why or why not?

	 c.	 Consider the following statement: We can be 
highly confident that 95% of all bottles of this 
type of cough syrup have an alcohol content that 
is between 7.8 and 9.4. Is this statement correct? 
Why or why not?

	 d.	 Consider the following statement: If the process of 
selecting a sample of size 50 and then computing 
the corresponding 95% interval is repeated 100 
times, 95 of the resulting intervals will include �. 
Is this statement correct? Why or why not?

	12.	 Heavy-metal pollution of various ecosystems is a se-
rious environmental threat, in part because of the 
potential transference of hazardous substances to 
humans via food. The article “Cadmium, Zinc, and 
Total Mercury Levels in the Tissues of Several Fish 
Species from La Plata River Estuary, Argentina” 
(Environmental Monitoring and Assessment, 1993: 
119–130) reported the following summary data on 
zinc concentration (�g@g) in the liver of fish:

Species n x s
Mugil liza 56 9.15 1.27
Pogonias cromis 61 3.08 1.71

	 a.	 Calculate a 95% two-sided confidence inter-
val for population mean concentration for the 
Mugil liza species.

	 b.	 Calculate a 99% two-sided confidence inter-
val for population mean concentration for the 
Pogonias cromis species. Why is this interval 
wider than the interval of part (a) even though it 
is based on a somewhat larger sample size?

	13.	 Young people may feel they are carrying the weight 
of the world on their shoulders when in reality they 
are too often carrying an excessively heavy back-
pack. The article “Effectiveness of a School-Based 
Backpack Health Promotion Program” (Work, 
2003: 113–123) reported the following data for a 
sample of 131 sixth graders: for backpack weight 
(lbs), x 5 13.83, s 5 5.05; for backpack weight as a 
percentage of body weight, a 95% CI for the popu-
lation mean was (13.62; 15.89).

	 a.	 Calculate and interpret a 99% CI for population 
mean backpack weight.

	 b.	 Obtain a 99% CI for population mean weight as 
a percentage of body weight.

	 c.	 The American Academy of Orthopedic Surgeons 
recommends that backpack weight be at most 
10% of body weight. What does your calculation 
of part (b) suggest and why?

	14.	 The article “Extravisual Damage Detection? Defining 
the Standard Normal Tree” (Photogrammetric Engr. 
and Remote Sensing, 1981: 515–522) discusses the use 
of color infrared photography in identification of nor-
mal trees in Douglas fir stands. Among data reported 
were summary statistics for green-filter analytic opti-
cal densitometric measurements on samples of both 
healthy and diseased trees. For a sample of 69 healthy 
trees, the sample mean dye-layer density was 1.028, 
and the sample standard deviation was .163.

	 a.	 Calculate a 95% two-sided CI for the true aver-
age dye-layer density for all such trees.

	 b.	 Suppose the investigators had made a rough guess 
of .16 for the value of s before collecting data. 
What sample size would be necessary to obtain an 
interval width of .05 for a confidence level of 95%?

	15.	 The negative effects of ambient air pollution on 
children’s lung function has been well established, 
but less research is available about the effects of 
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indoor air pollution. The authors of “Indoor Air 
Pollution and Lung Function Growth Among 
Children in Four Chinese Cities” (Indoor Air, 
2012: 3–11) investigated the relationship between 
indoor air pollution metrics and lung function 
growth among children ages 6–13 years living in 
four Chinese cities. For each subject in the study, 
the authors measured an important lung-capacity 
index known as FEV1, the forced volume (in ml) of 
air that is exhaled in 1 second. Higher FEV1 values 
are associated with greater lung capacity.

			   Burning coal inside houses can lead to increased 
levels of indoor air toxins that may have negative effects 
on lung function. Among the children in the study, 
514 came from households that use coal for cooking 
or heating or both. Their FEV1 mean was 1427 with 
standard deviation 325. (Using a complex statistical 
procedure the authors went on to show that burning 
coal had a clear negative effect on mean FEV1 levels.)

	 a.	 Calculate and interpret a 95% (two-sided) con-
fidence interval for true average FEV1 level in 
the population of all children from which the 
sample was selected.

	 b.	 Suppose the investigators had made a rough 
guess of 320 for the value of s before collecting 
data. What sample size would be necessary to 
obtain an interval width of 50 ml for a confi-
dence level of 95%?

	16.	 The article “Evaluating Tunnel Kiln Performance” 
(Amer. Ceramic Soc. Bull., August 1997: 59–63) 
gave the following summary information for frac-
ture strengths (MPa) of n = 169 ceramic bars fired 
in a particular kiln: x 5 89.10, s 5 3.73.

	 a.	 Calculate a two-sided confidence interval for true 
average fracture strength using a confidence level 
of 95%. Does it appear that true average fracture 
strength has been precisely estimated?

	 b.	 Suppose the investigators had believed a priori 
that the population standard deviation was 
about 4 MPa. Based on this supposition, how 

large a sample would have been required to esti-
mate � to within .5 MPa with 95% confidence?

	17.	 When the population distribution is normal and n 
is large, the statistic s has approximately a normal 
distribution with �s �, �s �y12n. Use this fact 
to develop a large-sample two-sided confidence 
interval formula for �. Then calculate a 95% con-
fidence interval for the true standard deviation of 
the fracture strength distribution based on the data 
given in Exercise 16 (the cited paper gave compel-
ling evidence in support of assuming normality).

	18.	 Determine the confidence level for each of the fol-
lowing large-sample one-sided confidence bounds:

	 a.	 Upper bound:	 x 1 .84sy1n
	 b.	 Lower bound:	 x 2 2.05sy1n
	 c.	 Upper bound:	 x 1 .67sy1n

	19.	 The charge-to-tap time (min) for a carbon steel in 
one type of open hearth furnace was determined 
for each heat in a sample of size 36, resulting in a 
sample mean time of 382.1 and a sample standard 
deviation of 31.5. Calculate a 95% upper confi-
dence bound for true average charge-to-tap time.

	20.	 A Brinell hardness test involves measuring the di-
ameter of the indentation made when a hardened 
steel ball is pressed into material under a standard 
test load. Suppose that the Brinell hardness is de-
termined for each specimen in a sample of size 32, 
resulting in a sample mean hardness of 64.3 and a 
sample standard deviation of 6.0. Calculate a 99% 
lower confidence bound for true average Brinell 
hardness for material specimens of this type.

	21.	 The article “Ultimate Load Capacities of Expan-
sion Anchor Bolts” (J. of Energy Engr., 1993: 
139–158) gave the following summary data on 
shear strength (kip) for a sample of 3y8-in. anchor 
bolts: n 5 78, x 5 4.25, s 5 1.30. Calculate a lower 
confidence bound using a confidence level of 90% 
for true average shear strength.

7.3	 More Large-Sample Confidence Intervals �

In Section 7.2, we used properties of the sampling distribution of  x as a basis for obtaining 
a confidence interval formula for estimating � when the sample size was large. In this 
section, we develop a large-sample interval formula for �, the proportion of individuals 
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or objects in a population or process that possess a particular characteristic, and also for 
�1 2 �2, the difference between two population or process means. These intervals are 
based on sampling distribution properties of appropriate statistics.

A Large-Sample Confidence Interval for p
Let � denote the proportion of individuals or objects in a population or process that pos-
sess a particular characteristic (the successes). For example, � might represent the propor-
tion of all components of a certain type that do not need service while under warranty, the 
proportion of all computers sold at a certain store that are laptop models, or the propor-
tion of patients suffering from a certain disease who respond favorably to a particular treat-
ment. An inference about � will be based on a random sample of size n selected from 
the population or process. The natural statistic for estimating � is the sample proportion

p 5
number of successes in the sample

n

For example, if n 5 5 and the resulting sample is SFFSS (the first, fourth, and fifth sam-
pled individuals possess the property of interest but the second and third do not), then 
p 5 3y5 5 .60. The value of p is also .60 for the outcomes SSSFF and SFSFS, whereas it is 
.20 for the outcome FSFFF and 1 for the outcome SSSSS. When n 5 5, the six possible val-
ues of p are 0, .2, .4, .6, .8, and 1. The larger the sample size, the more values of p are possible.

The value of � for any such population is a fixed number between 0 and 1. If, however, 
we select sample after sample of size n from the same population or process, the value of p 
will vary from sample to sample. In the case n 5 5, a first sample might give p 5 .6, a second 
sample p 5 .8, a third sample p 5 .6 again, and so on. The sampling distribution of the 
statistic p describes this long-run variation. Consider again n 5 5 and suppose that � 5 .6. 
Using the same reasoning that led to the binomial distribution in Chapter 1, the long-run 
proportion of samples with p 5 1 (corresponding to the single outcome SSSSS) is (.6)5 5 
.078. Similarly, there are five outcomes for which p 5 .8 (FSSSS, . . . , SSSSF), and the cor-
responding long-run proportion is 5(.6)4(.4) 5 .259. The complete sampling distribution is

p: 0 .2 .4 .6 .8 1
Long-run proportion (probability): .010 .077 .230 .346 .259 .078

We can then easily verify that the mean value of the statistic p is

�p 5 0(.010) 1 .2(.077)1 

…11(.078) 5 .60

That is, the sampling distribution of p is centered exactly at the value of what the statis-
tic is trying to estimate. This is true regardless of the values of � and n—the statistic is 
unbiased. Notice, however, that it is not highly likely that p 5 �; the sampling distribu-
tion is quite spread out about its mean value.

General properties of the sampling distribution of :

1.	 � 5 � 

2.	 � 5 2�(1 2 �)y  

3.	 If both � . 5 and (1 2 �) . 5, the sampling distribution is approximately normal.
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Because n is in the denominator under the square root in the expression for �p, the 
standard deviation decreases and the sampling distribution becomes more and more 
concentrated about � as the sample size increases. The two inequality conditions in the 
third property are designed to ensure that there is enough symmetry in the sampling dis-
tribution so that a normal curve with mean value � and standard deviation �p provides 
a good approximation to a histogram of the actual distribution. For example, if n 5 100 
but � 5 .02, there is too much (positive) skewness for the approximation to work well 
(much of the distribution is concentrated on the values 0, .01, .02, .03, and .04, and the 
rest trails out to 1, so there is almost no lower tail).

The foregoing properties allow us to form a variable having approximately a stan-
dard normal distribution when n is large:

z 5
p 2 �2�(1 2 �)yn

Using z  to denote an appropriate z critical value (1.96, 1.645, etc.), we have that

Pa2 z* ,
p 2 �2�(1 2 �)yn

, z* b 1 2 �

As suggested earlier in the derivation of our first confidence interval for �, consider re-
placing each , inside the parentheses by 5 and solving the two resulting equations for 
� to obtain the confidence limits. Unfortunately, these equations are not as easy to solve 
as were the earlier ones. This is because � appears both in the numerator and in the 
denominator. The equations are therefore both quadratic. Using the general formula for 
the solution to a quadratic equation gives the following confidence interval.

A confidence interval for a population proportion p is

1
*2

2
6 * B (1 2 )

1
*2

4 2

1 1
*2

where * denotes an appropriate critical value, the 2 sign in the numerator gives the lower 
confidence limit, and the 1 sign gives the upper confidence limit.  The  critical values cor-
responding to the most frequently used confidence levels, 90%, 95%, and 99%, are 1.645, 
1.96, and 2.576, respectively.  A lower confidence bound for � results from using only 
the 2 sign in the formula (along with the appropriate *), and using only the 1 sign gives 
an upper confidence bound.

Although the preceding interval was derived from the large-sample distribution 
of p, recent research has shown that it performs well even when n is quite small. 
Additionally, the actual confidence level achieved by the interval is almost always 
quite close to the desired level corresponding to the choice of any particular z critical 
value. For example, using 1.96 as the z critical value implies a desired confidence 
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level of 95%, and the actual confidence level (long-run capture percentage if the 
formula is used repeatedly on different samples) will almost always be roughly 95%. 
When n is quite large, the three terms in the CI formula involving z* are negligible 
compared to the three remaining terms. In this case, the CI reduces to the traditional 
interval

p 6 (z critical value)2p(1 2 p)yn

This latter interval has the same general form as our earlier large-sample interval 
for �.

The article “Repeatability and Reproducibility for Pass/Fail Data” (J. of Testing and 
Eval., 1997: 151–153) reported that in n 5 48 trials in a particular laboratory, 16 
resulted in ignition of a particular type of substrate by a lighted cigarette. Let � de-
note the long-run proportion of all such trials that would result in ignition. A point 
estimate for � is p 5 16y48 5 .333. A confidence interval for � with a confidence 
level of approximately 95% is

.333 1 (1.96)2y96 6 1.962(.333)(.667)y48 1 (1.96)2y9216

1 1 (1.96)2y48

	 5
.333 6 .139

1.08
5 (.217, .474)

This interval is rather wide, indicating imprecise information about �. The tradi-
tional interval is

.333 6 1.962(.333)(.667)y48 5 .333 6 .133 5 (.200, .466)

These two intervals would be in much closer agreement were the sample size sub-
stantially larger.

Example 7.6

A Bound on the Error of Estimation
The quantity 1.96�p 5 1.962�(1 2 �)yn gives a bound on the error of estimation with 
a 95% confidence level in the sense that in the long run, p should be within this 
distance of � for roughly 95% of all samples. If the desired value of the bound is B, 
equating this to 1.96�p and solving for the necessary sample size n gives

n 5 �(1 2 �) c 1.96
B

d
2

If some other confidence level is desired, the corresponding z critical value replaces 
1.96. The difficulty with using this formula is that it involves the unknown �. A conser-
vative approach utilizes the fact that �(1 2 �) is largest when � 5 .5. The sample size 
resulting from this choice of � will be large enough so that the bound B is achieved with 
the desired confidence level no matter what the value of �.
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A Large-Sample Confidence Interval for m1 2 m2

The symbols � and � have been used to denote the mean value and standard deviation, 
respectively, of a population, process, or treatment response distribution. When two different 
populations, processes, or treatments are being compared, different subscripts will be used 
to differentiate characteristics of the first from those of the second. Similar notation is used 
to distinguish between the two sample sizes, sample means, and sample standard deviations.

A survey is to be carried out to estimate the proportion of all registered voters in a 
particular state who favor certain term limits for their state legislators. How many 
people should be included in a random sample to estimate this proportion to within 
the amount .05 with 95% confidence? Substituting � 5 .5 in the formula for n gives

n 5 .5(1 2 .5)(1.96y.05)2 5 384.16

so a sample size of 385 should be used. The resulting 95% confidence interval for 
� will have a half-width of at most .05 regardless of the value of p. Notice that this 
sample size is far larger than what appeared in the previous example, which explains 
why that interval was so wide.

Example 7.7

It is assumed that the observations in the first sample were obtained completely inde-
pendently from those in the second sample. Notice that our notation allows for the 
possibility that the two sample sizes might be different. This might happen because 
one population, process, or treatment is more expensive to sample than the other, or 
perhaps because observations are “lost” in the course of obtaining data; for example, 
several animals receiving a first diet die (hopefully for reasons unrelated to the diet).

Notation
	 Mean		  Standard
	 value	V ariance	 deviation

Population, process, or treatment 1	 �1	 �2
1	 �1

Population, process, or treatment 2	 �2	 �2
2	 �2

				    Sample
	 Sample	 Sample	 Sample	 standard
	 size	 mean	 variance	 deviation
Sample from population, process,
or treatment 1	 1	 1	

2
1	 1

Sample from population, process,
or treatment 2	 2	 2	

2
2	 2

A study  was carried out to compare population mean lifetimes (hr) for two different 
brands of AA alkaline batteries used in a particular manner. Here, �1 is the mean 
lifetime of all brand 1 batteries and �1 is the population standard deviation of brand 1 

Example 7.8
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Properties of the Sampling Distribution of x1 2 x2

1. � �
12 2

5 �
1
2 �

2
5 �1 2 �2, so that 1 2 2 is an unbiased statistic for estimating 

�1 2 �2.

2. � �2
 12 2

5 �2
 1

1 �2
 2

5
�2

1

1

1
�2

2

2

,  from which the standard deviation of 1 2 2 is 

�
 12 2

5 C�2
1

1

1
�2

2

2

3. � If both population distributions are normal, the sampling distribution of 1 2 2 is normal.

4. � If both the sample sizes are large, then the sampling distribution of 1 2 2 will be 
approximately normal irrespective of the shapes of the two population distributions 
(a consequence of the Central Limit Theorem).

Both x1 and x2 vary in value from sample to sample, and this will also be true of their 
difference. For example, repeating the study described in Example 7.8 with the same 
sample sizes might result in x1 5 4.02 and x2 5 4.75, giving the estimate 2.73. Just as a 
confidence interval for a single � was based on properties of the x sampling distribution, 
a confidence interval for �1 2 �2 is derived from properties of the sampling distribution 
of the statistic x1 2 x2. These properties follow from the following general results:

1.	 For any two random variables x and y,

�x2y 5 mean value of the difference 5 �x 2 �y
 5 difference between the two means

2.	 If x and y are two independent random variables, then

�2
x2y 5 variance of a difference 5 �2

x 1 �2
y 5 sum of the variances

3.	 If x and y are independent random variables, each with a normal distribution, then 
the difference x 2 y also has a normal distribution. If each variable is approximately 
normal, then the distribution of the difference is also approximately normal.

lifetimes; �2 and �2 are the mean value and standard deviation for the distribution of 
brand 2 lifetimes. Values of the summary quantities calculated from the two resulting 
samples are as follows:

Brand 1:	 n1 5 50	 x1 5 4.15	 s1 5 1.79
Brand 2:	 n2 5 45	 x2 5 4.53	 s2 5 1.64

Consider estimating the difference �1 2 �2. The natural statistic for estimating 
�1 is x1, and the statistic x2 gives an estimate for �2. The difference between the two 
x’s then gives an estimate of the difference between the two �’s. The point estimate 
from the data is 4.15 2 4.53 5 2.38. That is, we estimate that, on average, brand 2 
batteries last .38 hr longer than do brand 1 batteries. If the labels 1 and 2 on the two 
brands had been reversed, the point estimate would be .38, and the interpretation 
would be the same as with the original labeling.
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The unbiasedness of x1 2 x2 means that the sampling distribution of this sta-
tistic is always centered at the value of what the statistic is trying to estimate. If, 
for example, �1 5 110 and �2 5 100, then the sampling distribution is centered at 
110 2 100 5 10, whereas if �1 5 100 and �2 5 105, the mean value of the statistic 
is 100 2 105 5 25. In addition to knowing that the sampling distribution is cen-
tered at the right place, we would also like it to be highly concentrated about its 
center. This will be the case if the variance and standard deviation of the statistic are 
small. The two �2 values are in the numerator of the variance and the n’s are in the 
denominator. So when there is little variability in the two population, process, or 
treatment distributions (small values of �2), the variance and standard deviation will 
be small even when the sample sizes are small. On the other hand, a great deal of 
variability in each distribution can be counteracted by increasing the sample sizes 
to again obtain a small variance and standard deviation (at the price of expending 
more resources to collect data).

Now consider using the foregoing results to standardize x1 2 x2 when both sample 
sizes are large. This entails subtracting the mean value of the statistic and then dividing by 
its standard deviation. The standard deviation involves �2

1 and �2
2, and the values of these 

variances are almost never available to an investigator. Fortunately, because of the large 
n’s, we can replace the �2 values by the sample variances and still end up with a z variable.

When 1 and 2 are both large, the standardized variable

5
1 2 2 2 (�1 2 �2)C 2

1

1

1

2
2

2

has approximately a standard normal distribution (the  curve). Using this variable in the 
same way that  variables were used earlier to obtain confidence intervals for � and for � 
gives the following large-sample confidence interval formula for estimating �1 2 �2:

1 2 2 6 (  critical value)C 2
1

1

1

2
2

2

This formula is valid irrespective of the shapes of the two underlying distributions. The 
three most frequently used confidence levels of 95%, 99%, and 90% are achieved by using 
the  critical values 1.96, 2.576, and 1.645, respectively.

An experiment carried out to study various characteristics of anchor bolts resulted in 
78 observations on shear strength (kip) of 3y8-in. diameter bolts and 88 observations 
on strength of 1y2-in. diameter bolts. Summary quantities from Minitab follow, and 
a comparative boxplot appears in Figure 7.7. The sample sizes, sample means, and 
sample standard deviations agree with values given in the article “Ultimate Load 
Capacities of Expansion Anchor Bolts” (J. Energy Engr., 1993: 139–158). The sum-
maries suggest that the main difference between the two samples is in where they are 

Example 7.9
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centered. Let’s now calculate a confidence interval for the difference between true 
average shear strength for 3y8-in. bolts (�1) and true average shear strength for 1y2-in. 
bolts (�2) using a confidence level of 95%:

4.25 2 7.14 6 (1.96)C(1.30)2

78
1

(1.68)2

88
5  22.89 6 (1.96)(.2318)

	 5 22.89 6 .45 5 (23.34,22.44)

Variable N Mean Median TrMean StDev SEMean
diam 3/8 78 4.250 4.230 4.238 1.300 0.147

Variable Min Max Q1 Q3
diam 3/8 1.634 7.327 3.389 5.075

Variable N Mean Median TrMean StDev SEMean
diam 1/2 88 7.140 7.113 7.150 1.680  0.179

Variable Min Max Q1 Q3
diam 1/2 2.450 11.343  5.965 8.447

That is, with 95% confidence, 23.34 , �1 2 �2 , 22.44. We can therefore be highly 
confident that the true average shear strength for the 1y2-in. bolts exceeds that for  
the 3y8-in. bolts by between 2.44 kip and 3.34 kip. Notice that if we relabel so that �1 
refers to 1y2-in. bolts and �2 to 3y8-in. bolts, the confidence interval is now centered 
at 12.89 and the value .45 is still subtracted and added to obtain the confidence 
limits. The resulting interval is (2.44, 3.34), and the interpretation is identical to that 
for the interval previously calculated.

Figure 7.7 A comparative boxplot of the shear strength data
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	22.	 The American Taxpayer Relief Act of 2012 was 
passed by the U.S. Congress on January 1, 2013. 
This act helped address what became famously 
known as the “fiscal cliff” crisis. However, dur-
ing the last months of 2012, heated debates con-
cerning the crisis were ongoing in Congress, and 
there was growing concern political gridlock was 
preventing solution of the crisis by the end-of-
year deadline. In mid-December, a USA Today–
Gallup poll reported that only 18% of a sample 
of 1025 adult Americans approved of the job 
Congress was doing in working toward a solution 
to the looming fiscal cliff. Calculate a two-sided 
confidence interval using a 99% confidence level 
for the proportion of all U.S. adults who approved 
of the congressional handling of the crisis in 
December 2012.

	23.	 TV advertising agencies face growing challenges 
in reaching audience members because viewing 
TV programs via digital streaming is increasingly 
popular. The Harris poll reported on November 13, 
2012, that 53% of 2343 American adults surveyed 
said they have watched digitally streamed TV pro-
gramming on some type of device.

	 a.	 Calculate and interpret a confidence interval at 
the 99% confidence level for the proportion of 
all adult Americans who have watched streamed 
programming.

	 b.	 What sample size would be required for the 
width of a 99% CI to be at most .05 irrespective 
of the value of p?

	24.	 In a sample of 1000 randomly selected consumers 
who had opportunities to send in a rebate claim 
form after purchasing a product, 250 said they 
never did so (“Rebates: Get What You Deserve,” 
Consumer Reports, May 2009: 7). Reasons cited 
for their behavior included too many steps in the 
process, rebate amount too small, missed deadline, 
fear of being placed on a mailing list, lost receipt, 
and doubts about receiving the money. Calculate 
an upper confidence bound at the 95% confidence 
level for the true proportion of such consumers who 
never apply for a rebate. Based on this bound, is 
there compelling evidence that the true proportion 

of such consumers is smaller than 1y3? Explain 
your reasoning.

	25.	 The technology underlying hip replacements has 
changed as these operations have become more 
popular (more than 250,000 in the United States 
in 2008). Starting in 2003, highly durable ceramic 
hips were marketed. Unfortunately, for too many 
patients the increased durability has been counter-
balanced by an increased incidence of squeaking. 
The May 11, 2008 issue of The New York Times 
reported that in one study of 143 individuals who 
received ceramic hips between 2003 and 2005, 10 
developed squeaking problems.

	 a.	 Calculate a lower confidence bound at the 95% 
confidence level for the true proportion of such 
hips that develop squeaking.

	 b.	 Interpret the 95% confidence level used in 
part (a).

	26.	 Researchers have developed a chemical treat-
ment that retards the growth of trees of a certain 
type whose branches pose a safety threat to power 
lines. However, an overly severe application of the 
treatment can cause trees to die. In an experiment 
involving one particular treatment level applied to 
250 trees, 38 trees died.

	 a.	 Calculate and interpret a 95% confidence inter-
val for the proportion of all such trees that would 
die if the treatment were applied at the tested 
level.

	 b.	 The traditional CI for � discussed in Section 
7.3 is based on the sample proportion p having 
approximately a normal sampling distribution, 
so the confidence level is only approximate 
rather than exact. Recent research has shown 
that under certain circumstances, its actual 
confidence level can deviate dramatically from 
the nominal one chosen by the investigator 
(e.g., the actual level may be quite different 
from the 95% level selected). An article by 
two statisticians (Agresti, A., and B. A. Coull, 
“Approximate Is Better Than ‘Exact’ for Inter-
val Estimation of a Binomial Proportion,” The 
American Statistician, May 1998: 119–126) 
has suggested the following remedy in the case 

Section 7.3 Exercises
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of a 95% confidence level: Add 2 to both the 
number of successes and the number of fail-
ures and then use the traditional formula. Do 
this for the data described in this exercise, and 
compare the resulting interval to the one you 
calculated in part (a).

	27.	 Let �1 and �2 denote the proportion of successes 
in population 1 and population 2, respectively. An 
investigator sometimes wishes to calculate a confi-
dence interval for the difference �1 2 �2 between 
these two population proportions. Suppose random 
samples of size n1 and n2, respectively, are indepen-
dently selected from the two populations, and let p1 
and p2 denote the resulting sample proportions of 
successes. If the sample sizes are sufficiently large 
(apply the rule of thumb appropriate for a single 
proportion to each sample separately), the statistic 
p1 2 p2 has approximately a normal sampling dis-
tribution with mean value �1 2 �2 and standard 
deviation 1�1(1 2 �1)yn1 1 �2(1 2 �2)yn2. The 
estimated standard deviation of this statistic results 
from replacing each π under the square root by the 
corresponding p.

	 a.	 Use the foregoing facts to obtain a large-sample 
two-sided 95% confidence interval formula for 
estimating �1 2 �2.

	 b.	 Is the response rate for questionnaires affected 
by including some sort of incentive to respond 
along with the questionnaire? In one experi-
ment, 110 questionnaires with no incentive 
resulted in 75 being returned, whereas 98 
questionnaires that included a chance to win 
a lottery yielded 66 responses (“Charities, No; 
Lotteries, No; Cash, Yes,” Public Opinion 
Quarterly, 1996: 542–562). Calculate a two-
sided 95% CI for the difference between the 
true response proportions under these circum-
stances. Does the interval suggest that, in fact, 
the values of �1 and �2 are different? Explain 
your reasoning.

	 c.	 Recent research has shown that “coverage 
probability” and small-sample behavior are 
improved by adding one success and one fail-
ure to each sample and then using the formula 
you obtained in part (a). Do this for the data of 
part (b).

	28.	 The article “The Effects of Cigarette Smoking and 
Gestational Weight Change on Birth Outcomes 
in Obese and Normal-Weight Women” (Amer. 
J. of Public Health, 1997: 591–596) reported on 
a random sample of 487 nonsmoking women of 
normal weight (body mass index between 19.8 
and 26.0) who had given birth at a large metro-
politan medical center. It was determined that 
7.2% of these births resulted in children of low 
birth weight (less than 2500 g). The article also 
reported that 6.8% of a sample of 503 nonsmok-
ing obese women (body mass index . 29) gave 
birth to children of low birth weight. Calculate a 
95% lower confidence bound for the difference 
between the population proportion of normal-
weight nonsmoking women and the population 
proportion of obese nonsmoking women who give 
birth to children of low birth weight. Hint: Refer 
to the previous problem.

	29.	 Let �1 and �2 denote the proportions of successes 
in two different populations. Rather than estimate 
the difference �1 2 �2 as described in Exercise 27, 
an investigator will often wish to estimate the ratio 
of the two �’s. If, for example, �1  

y�2 5 3,  then 
successes occur three times as frequently in popu-
lation 1 as they do in population 2. Alternatively, 
if the �’s refer to success proportions for two dif-
ferent treatments, then a ratio of 3 implies that the 
first treatment is three times as likely to result in a 
success as is the second treatment. Consider inde-
pendent random samples of sizes n1 and n2 from 
the two different populations, which result in sam-
ple proportions p1 and p2, respectively. Also let u 5 
number of successes in the first sample and v 5 
number of successes in the second sample. When 
the n’s are both large, the statistic ln(p1  

yp2)has ap-
proximately a normal sampling distribution with 
approximate mean value and standard deviation 
ln(�1y�2) and 2(n1 2 u)y(un1) 1 (n2 2 v)yvn2), 
respectively.

	 a.	 Use these facts to obtain a large-sample two-
sided 95% CI for ln(�1  

y�2) and a CI for �1  

y�2 
itself.

	 b.	 The article cited in Exercise 27 stated that in 
addition to 75 of 110 questionnaires without 
an incentive to respond being returned, 78 of 
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100 questionnaires that included a prepaid 
cash amount of $5 were returned. Calculate 
a 95% confidence interval for the ratio of the 
proportion of questionnaires returned when 
such a cash incentive is included to the pro-
portion returned in the absence of any incen-
tive. Does the interval suggest that such an 
incentive may not increase the likelihood of 
response?

	30.	 A manufacturer of small appliances purchases plas-
tic handles for coffeepots from an outside vendor. If 
a handle is cracked, it is considered defective and 
must be discarded. A very large shipment of handles 
is received. The proportion of defective handles, �,
is of interest. How many handles from the shipment 
should be inspected to estimate � to within .1 with 
99% confidence?

	31.	 A manufacturer of exercise equipment is interested 
in estimating the proportion � of all purchasers of 
one of its products who still own the product two 
years after purchase. What sample size is required 
to estimate this proportion to within .05 with a con-
fidence level of 90%?

	32.	 Use the accompanying data to estimate with a 95% 
confidence interval the difference between true aver-
age compressive strength (N/mm2) for 7-day-old con-
crete specimens and true average strength for 28-day-
old specimens (“A Study of Twenty-Five-Year-Old 
Pulverized Fuel Ash Concrete Used in Foundation 
Structures,” Proc. Inst. Civil Engrs., 1985: 149–165):

		    7-day old:	 n1 5 68       x1 5 26.99   s1 5 4.89 

		  28-day old:	 n2 5 74       x2 5 35.76   s2 5 6.43

	33.	 Relative density was determined for one sample of 
second-growth Douglas fir 2 3 4s with a low per-
centage of juvenile wood and another sample with 
a moderate percentage of juvenile wood, resulting 
in the following data (“Bending Strength and Stiff-
ness of Second-Growth Douglas Fir Dimension 
Lumber,” Forest Products J., 1991: 35–43):

Type n x s
Low 35 .523 .0543
Moderate 54 .489 .0450

		  Estimate the difference between true average 
densities for the two types of wood in a way 
that conveys information about reliability and 
precision.

	34.	 Is there any systematic tendency for part-time 
college faculty to hold their students to different 
standards than full-time faculty do? The article 
“Are There Instructional Differences Between 
Full-Time and Part-Time Faculty?” (College 
Teaching, 2009: 23–26) reported that for a 
sample of 125 courses taught by full-time faculty, 
the mean course GPA was 2.7186 and the stan-
dard deviation was .63342, whereas for a sample 
of 88 courses taught by part-timers, the mean 
and standard deviation were 2.8639 and .49241, 
respectively.

			   Calculate a confidence interval at the 99% 
level to estimate the true mean GPA difference be-
tween full-time and part-time faculty. Does it ap-
pear that true average course GPA for part-time fac-
ulty differs from that for faculty teaching full-time? 
Explain your reasoning.

	35.	 An experiment was performed to compare the 
fracture toughness of high-purity Ni-maraging 
steel with commercial-purity steel of the same 
type. For 32 high-purity specimens, the sample 
mean toughness and sample standard deviation of 
toughness were 65.6 and 1.4, respectively, whereas 
for 32  commercialpurity specimens, the sample 
mean and sample standard deviation were 59.2 
and 1.1, respectively. Estimate the difference be-
tween true average toughness for the high-purity 
steel and that for the commercial steel using a 
lower 95% confidence bound. Does your estimate 
demonstrate conclusively that this difference ex-
ceeds 5? Explain your reasoning.

	36.	 An investigator wishes to estimate the difference 
between population mean lifetimes of two different 
brands of batteries under specified conditions. If the 
population standard deviations are both roughly 
2 hr and equal sample sizes are to be selected, what 
value of the common sample size n will be neces-
sary to estimate the difference to within .5 hr with 
95% confidence?
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7.4	 �Small-Sample Intervals Based  
on a Normal Population Distribution �

Suppose we select a random sample of components of a certain type and determine the 
lifetime of each one, resulting in data x1, x2, . . . , xn. This sample can be used as a basis 
for calculating one of three different kinds of statistical intervals:

1.	� An interval of plausible values for the population mean lifetime, that is, a confi-
dence interval for �

2.	� An interval of plausible values for the lifetime of a single component of this type 
that you are planning to buy at some time in the near future, that is, a prediction 
interval for a single x value

3.	� An interval of values that includes a specified percentage, for example, 90%, of 
the lifetime values for components in the population, that is, a tolerance interval 
for a chosen percentage of x values in the population distribution

We have already seen how to calculate a z confidence interval for � when n is large. 
In this section, we assume that the sample has been selected from a normal population 
distribution, and show how each of the three types of intervals can be obtained.

t Distributions and the One-Sample 
t Confidence Interval
When the population distribution is normal, the sampling distribution of x is also normal 
for any sample size n. This in turn implies that z 5 (x 2 �)y(�y1n) has a standard nor-
mal distribution (the z curve). The large-sample interval for � presented in Section 7.2 
was based on replacing � by s in z; for large n, little extra variability is introduced by this 
substitution, so (x 2 �)y(sy1n) also has approximately a standard normal distribution in 
this case. However, for small n this is no longer true. The standardized variable with s in 
the denominator varies much more in value from sample to sample than does the first 
variable. The following proposition introduces a new type of probability distribution 
needed for a small-sample interval.

Let x1, x2, . . . , xn be a random sample from a normal distribution. Then the standard-
ized variable

t 5
x 2 �

sy1n

	has a type of probability distribution called a t distribution with n 2 1 degrees of free-
dom (df).�

Proposition

A passing acquaintance with properties of t distributions is important for an under-
standing of various inferential procedures based on these distributions.
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Formulas for the large-sample z intervals utilized z critical values, numbers like 
1.96 and 2.33, that captured certain central or cumulative areas under the z curve. 
Formulas for t intervals require t critical values, which play the same role for various t 
curves. Appendix Table IV gives a tabulation of such values. Each row of the table cor-
responds to a different number of df, and each column gives critical values that capture 
a particular central area and the corresponding cumulative area. For example, the t criti-
cal value at the intersection of the 12 df row and the .95 central area column is 2.179, 
so the area under the 12 df t curve between 22.179 and 2.179 is .95. The cumulative 
area under this t curve all the way to the left of 2.179 is the central area .95 plus the 
lower tail area .025, or .975. This is illustrated in Figure 7.9. The critical value 2.179 
can then be used to calculate a two-sided confidence interval with a confidence level 
of 95%. A one-sided interval, which gives either an upper confidence bound or a lower 
confidence bound, with confidence level 95% necessitates going to the .95 cumulative 
area column; for 12 df, the required critical value is 1.782.

Figure 7.8 compares the z curve to several different t curves.

Properties of  Distributions

1. �A ny particular  distribution is specified by the value of a parameter called the 
 abbreviated df.  There is one  distribution with 1 df, another with 

2 df, yet another one with 3 df, and so on.  The number of df for a  distribution can be 
any positive integer.

2. � The density curve corresponding to any particular  distribution is bell-shaped and cen-
tered at 0, just like the  curve.

3. �A ny  curve is more spread out than the  curve.

4. �A s the number of df increases, the spread of the corresponding  curve decreases. Thus 
the most spread out of all  curves is the one with 1 df, the next most spread out is the 
one with 2 df, and so on.

5. �A s the number of df increases, the sequence of  curves approaches the  curve. (The  
curve is sometimes referred to as the  curve with df 5 .)

0–1–2–3 31 2

 curve

 curve for 12 df  curve for 4 df

Figure 7.8 C omparison of the  curve to several 
 curves
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As we move from left to right in any particular row of the table, the critical values in-
crease. This is because capturing a larger central or cumulative area requires going farther 
out into the tail of the t curve. Starting with 1 df, the rows increase by 1 df until reaching 
30 df, and then they jump to 40, 60, 120, and finally to ; this last row contains z critical 
values. Once past 30 df, there is little difference between the t curves and the z curve as far 
as the areas of interest to us are concerned. Rather than using the 30, 40, 60, and 120 rows 
or trying to interpolate, we recommend that z critical values be used whenever df . 30.

The large-sample z CI for � was obtained by using the (approximate) standard 
normal variable z 5 (x 2 �)y(sy1n) as the basis for a probability statement and then 
manipulating inequalities to isolate �. An analogous derivation, based on the fact 
that t 5 (x 2 �)y(sy1n) has a t distribution with n 2 1 df, gives the following one-
sample t CI.

As part of a larger project to study the behavior of stressed-skin panels, a structural 
component being used extensively in North America, the article “Time-Dependent 
Bending Properties of Lumber” (J. of Testing and Eval., 1996: 187–193) reported 
on various mechanical properties of Scotch pine lumber specimens. Consider the 

Example 7.10

One-Sample  Confidence Intervals
Let  and  be the sample mean and sample standard deviation of a random sample of size 
 from a normal population or process distribution.  Then a two-sided confidence interval 

for the population or process mean � has the form

6 (  critical value) 1
 critical values for the most frequently used confidence levels, corresponding to particular 

central  curve areas, are given in Appendix Table IV. An upper confidence bound results 
from replacing 6 in the given formula by 1, whereas a lower confidence bound uses 2 in 
place of6. For such a one-sided interval, a  critical value in the cumulative area column 
corresponding to the desired confidence level is used.

Figure 7.9   critical values illustrated

 curve
for 12 dfShaded cumulative area  .95

0–2.179 2.1790 1.782

Shaded area  .95

Tail area  .05 Tail area  .025

Cumulative area  .975
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following observations on modulus of elasticity (MPa) obtained 1 minute after load-
ing in a certain configuration:

10,490 16,620 17,300 15,480 12,970 17,260 13,400 13,900
13,630 13,260 14,370 11,700 15,470 17,840 14,070 14,760

Figure 7.10 shows a normal quantile plot obtained from Minitab. The straightness 
of the pattern in the plot provides strong support for assuming that the population 
distribution of modulus of elasticity is at least approximately normal.

Hand calculation of the sample mean and standard deviation is simplified by 
subtracting 10,000 from each observation: yi 5 xi 2 10,000. It is easily verified that 
^yi 5 72,520 and ^y2

i 5 392,083,800, from which y 5 4532.5 and sy 5 2055.67. Thus 
x 5 14,532.5 and sx 5 2055.67 (adding or subtracting the same constant from each 
observation does not affect variability). The sample size is 16, so a confidence interval 
for population mean modulus of elasticity is based on 15 df. A confidence level of 95% 
for a two-sided interval requires the t critical value of 2.131. The resulting interval is

x 6 (t critical value) 
s1n

5 14,532.5 6 (2.131) 
2055.67116

	  5 14,532.5 6 1095.2 5 (13,437.3, 15,627.7) 

This interval is quite wide both because of the small sample size and because of the 
large amount of variability in the sample. A 95% lower confidence bound is obtained 
by using 2 and 1.753 in place of 6 and 2.131, respectively.

A Prediction Interval for a Single x Value
Rather than wanting to estimate the population or process mean � based on a sample  
x1, . . . , xn, the individual who obtained the data may wish to use it as a basis for predict-
ing a single x value that has not yet been observed, for example, the lifetime of the next 

Figure 7.10 A normal quantile plot of the modulus of elasticity data
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component to be purchased, the number of calories in the next frozen dinner to be 
consumed, and so on. Again we assume that the underlying distribution is normal. A 
point prediction for x is just x, which is also a point estimate for �. An entire interval of 
plausible values for x is based on the prediction error x 2 x. The value of x is of course 
subject to uncertainty, and so is x before obtaining data. The expected or mean value 
of the prediction error is

�(x2x) 5 �x 2 �x 5 � 2 � 5 0

Since the xi values in the sample are assumed independent of the “future” x value, the 
variance of the prediction error is the sum of the variance of x and the variance of x:

�2
( x2x) 5 �x

2 1 �2
x 5

�2

n
1 �2 5 �2a1 1

1
n
b

Statistical theory then says that if we use these results to standardize the prediction error 
(with s2 used in place of �2), we obtain a t variable based on n 2 1 df.

The interpretation of a 95% prediction level is analogous to that of a 95% confi-
dence level. If the two-sided interval is used repeatedly on different samples, in the long 
run about 95% of the calculated intervals will include the value of x that is being pre-
dicted. (If the samples are selected from entirely different population distributions, such 
as a sample of component lifetimes, then a sample of fuel efficiencies for automobiles, 
then a sample of service times for customers, etc., then in the long run about 95% of the 
intervals will include the actual values of the variables being predicted.) Notice that if 
the 1 under the square root in the 6 factor is suppressed, the earlier confidence interval 
formula results. This implies that the prediction interval is wider than the confidence 
interval, often much wider because 1 will generally dominate 1yn. There is a lot more 
uncertainty in predicting the value of a single observation x than there is in estimating 
a mean value �.

When the underlying distribution is normal, the standardized variable

5
2A1 1

1

has a  distribution based on  2 1 df.  This implies that a two-sided prediction interval for 
 has the form

6 (  critical value) ? A1 1
1

An upper prediction bound and a lower prediction bound result from using 1 and 2, 
respectively, in place of 6  and selecting the appropriate  critical value from the corre-
sponding cumulative area column of the  table rather than the central area column.
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Tolerance Intervals
Consider a population of automobiles of a certain type, and suppose that under specified 
conditions, fuel efficiency (mpg) has a normal distribution with � 5 30 and � 5 2. Then 
since the interval from 21.645 to 1.645 captures 90% of the area under the z curve, 90% 
of all these automobiles will have fuel efficiency values between � 2 1.645� 5 26.71 
and � 1 1.645� 5 33.29. But what if the values of � and � are not known? We can 
take a sample of size n, determine the fuel efficiencies, x, and s, and form the interval 
whose lower limit is x 2 1.645s and whose upper limit is x 1 1.645s. However, because 
of sampling variability in the estimates of � and �, there is a good chance that the result-
ing interval will include less than 90% of the population values. Intuitively, to have an 
a priori 95% chance of the resulting interval including at least 90% of the population 
values, when x and s are used in place of � and �, we should also replace 1.645 by some 
larger number. For example, when n 5 20, the value 2.310 is such that we can be 95% 
confident that the interval x 6 2.310s will include at least 90% of the fuel efficiency 
values in the population.

Reconsider the modulus of elasticity data introduced in the previous example. Sup-
pose that one more specimen of lumber is to be selected for testing. A 95% prediction 
interval for the modulus of elasticity of this single specimen uses the same t critical 
value and values of n, x, and s used in the confidence interval calculation:

14,532.5 6 (2.131)(2055.67)A1 1
1
16

5 14,532.5 6 4515.5

	 5 (10,017.0, 19,048.0)

This interval is extremely wide, indicating that there is great uncertainty as to what 
the modulus of elasticity for the next lumber specimen will be. Notice that the 6
factor for the confidence interval is 1095.2, so the prediction interval is roughly four 
times as wide as the confidence interval.

Example 7.11

Let  be a number between 0 and 100. A tolerance interval for capturing at least 
% of the  values in a normal population distribution with a confidence level 95% has 

the form

6 (tolerance critical value) ?

Tolerance critical values for  5 90, 95, and 99 in combination with various sample sizes 
are given in Appendix Table V.   This table also includes critical values for a confidence level 
of 99% (these values are larger than the corresponding 95% values). Replacing 6 by 1 
gives an upper tolerance bound and using 2 in place of 6 results in a lower tolerance 
bound. Critical values for obtaining these one-sided bounds also appear in Appendix 
Table  V.
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Intervals Based on Nonnormal  
Population Distributions
The one-sample t CI for � is robust to small or even moderate departures from normal-
ity unless n is quite small. By this we mean that if a critical value for 95% confidence, 
for example, is used in calculating the interval, the actual confidence level will be rea-
sonably close to the nominal 95% level. If, however, n is small and the population 
distribution is highly nonnormal, then the actual confidence level may be considerably 
different from the one you think you are using when you obtain a particular critical 
value from the t table. It would certainly be distressing to believe that your confidence 
level is about 95% when in fact it was really more like 88%! The bootstrap technique, 
introduced in Section 7.6, has been found to be quite successful at estimating param-
eters in a wide variety of nonnormal situations.

In contrast to the confidence interval, the validity of the prediction and tolerance 
intervals described in this section is closely tied to the normality assumption. These 
latter intervals should not be used in the absence of compelling evidence for normality. 
The excellent reference Statistical Intervals, mentioned previously, discusses alternative 
procedures of this sort for various other situations.

Let’s return to the modulus of elasticity data discussed in Examples 7.10 and 7.11, 
where n 5 16, x 5 14,532.5, s 5 2055.67, and a normal quantile plot of the data in-
dicated that population normality was quite plausible. For a confidence level of 95%, 
a two-sided tolerance interval for capturing at least 95% of the modulus of elasticity 
values for specimens of lumber in the population sampled uses the tolerance critical 
value of 2.903. The resulting interval is

14,532.5 6 (2.903)(2055.67) 5 14,532.5 6 5967.6 5 (8564.9, 20,500.1)

We can be highly confident that at least 95% of all lumber specimens have modulus 
of elasticity values between 8564.9 and 20,500.1.

The 95% CI for � was (13,437.3, 15,627.7), and the 95% prediction interval for 
the modulus of elasticity of a single lumber specimen was (10,017.0, 19,048.0). Both 
the prediction interval and the tolerance interval are substantially wider than the 
confidence interval.

Example 7.12

Section 7.4 Exercises

	37.	 Determine the t critical value that will capture the 
desired t curve area in each of the following cases:

	 a.	 Central area 5 .95, df 5 10
	 b.	 Central area 5 .95, df 5 20
	 c.	 Central area = .99, df 5 20
	 d.	 Central area 5 .99, df 5 50
	 e.	 Upper-tail area 5 .01, df 5 25
	 f.	 Lower-tail area 5 .025, df 5 5

	38.	 Determine the t critical value for a two-sided confi-
dence interval in each of the following situations:

	 a.	 Confidence level 5 95%, df 5 10
	 b.	 Confidence level 5 95%, df 5 15
	 c.	 Confidence level 5 99%, df 5 15
	 d.	 Confidence level 5 99%, n 5 5
	 e.	 Confidence level 5 98%, df 5 24
	 f.	 Confidence level 5 99%, n 5 38
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	39.	 Determine the t critical value for a lower or an up-
per confidence bound for each of the situations de-
scribed in Exercise 38.

	40.	 According to the article “Fatigue Testing of Con-
doms” (Polymer Testing, 2009: 567–571), “tests 
currently used for condoms are surrogates for the 
challenges they face in use,” including a test for 
holes, an inflation test, a package seal test, and 
tests of dimensions and lubricant quality. The in-
vestigators developed a new test that adds cyclic 
strain to a level well below breakage and deter-
mines the number of cycles to break. A sample of 
20 condoms of one particular type resulted in a 
sample mean number of 1584 and a sample stan-
dard deviation of 607. Calculate and interpret a 
confidence interval at the 99% confidence level 
for the true average number of cycles to break. 
(Note: The article presented the results of hypoth-
esis tests based on the t distribution; the validity 
of these depends on assuming normal population 
distributions.)

	41.	 Ultra high performance concrete (UHPC) is a rela-
tively new construction material that offers strong 
adhesive properties with other materials. The 
authors of “Adhesive Power of Ultra High Perfor-
mance Concrete from a Thermodynamic Point of 
View” (J. of Materials in Civil Engr., 2012: 1050–
1058) investigated the intermolecular forces for 
UHPC connected to various substrates. As reported 
in the article, here are the work of adhesion mea-
surements (in mJ/m2) for five samples of UHPC 
adhered to steel:

107.1 109.5 107.4 106.8 108.1

	 a.	 Is it plausible that the given sample observations 
were selected from a normal distribution?

	 b.	 Calculate a two-sided 95% confidence interval 
for the true average work of adhesion for UHPC 
adhered to steel. Does the interval suggest that 
107 is a plausible value for the true average work 
of adhesion for UHPC adhered to steel? What 
about 110?

	42.	 The article “Measuring and Understanding the 
Aging of Kraft Insulating Paper in Power Transform-
ers” (IEEE Electrical Insul. Mag., 1996: 28–34) 

contained the following observations on degree of 
polymerization for paper specimens for which vis-
cosity times concentration fell in a certain range:

418 421 421 422 425 427
431 434 437 439 446 447
448 453 454 463 465

	 a.	 Construct a boxplot of the data and comment 
on any interesting features.

	 b.	 Is it plausible that the given sample observations 
were selected from a normal distribution?

	 c.	 Calculate a two-sided 95% confidence interval 
for true average degree of polymerization (as did 
the authors of the article). Does the interval sug-
gest that 440 is a plausible value for true average 
degree of polymerization? What about 450?

	43.	 Haven’t you always wanted to own a Porsche? We 
investigated the Boxster (their cheapest model) 
and performed an online search at www.cars 
.com on December 30, 2012. Asking prices were 
well beyond our meager professorial salaries, so 
instead we focused on odometer readings (mile-
age). Here are reported readings for a sample of 
16 Boxsters:

1445 25,822 26,892 29,860
35,285 47,874 49,544 64,763
72,698 75,732 84,457 91,577
93,000 109,538 113,399 137,652

		  A normal quantile plot supports the assumption 
that mileage is at least approximately normally dis-
tributed. The R software reports the following sum-
mary statistics for this data:
> summary(odometer, digits=6)

Min 1st Qu Median Mean
1445.0 33928.8 68730.5 66221.1

3rd Qu Max
91932.8 137652.0 

> sd(odometer)

37683.17

	 a.	 Estimate true average mileage in a way that con-
veys information about precision and reliability.

	 b.	 Predict the mileage for a single Porsche Box-
ster in a way that conveys information about 
precision and reliability. How does the pre-
diction compare to the estimate calculated in 
part (a)?
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	44.	 A new concrete structure that experiences crack-
ing within the first seven days after setting is often 
said to have experienced “early-age cracking.” 
This is usually a precursor to later-age cracking 
and other problems that lead to an overall weak-
ening of the structure. According to the article 
“Early-Age Cracking Tendency and Ultimate De-
gree of Hydration of Internally Cured Concrete” 
(J. of Materials in Civil Engr., 2012: 1025–1033), 
more than 60% of surveyed transportation agen-
cies regard early-age transverse cracking to be 
problematic. The authors investigated the ef-
fectiveness of a process known as internal curing 
to mitigate early-age cracking of bridge deck 
concretes.

			   One important mechanical property of con-
crete is its modulus of elasticity (in GPa), which 
is the material’s tendency to be deformed elasti-
cally when subjected to an applied force. A higher 
modulus of elasticity indicates a stiffer material. As 
reported in the article, the following are modulus 
of elasticity measurements for seven specimens of 
internally cured concrete that have been set for one 
week:

27.0 25.5 28.5 34.0 31.0 34.5 32.5

	 a.	 Is it plausible that this sample was selected from 
a normal population distribution?

	 b.	 Estimate true average modulus of elasticity for 
these mixtures in a way that conveys informa-
tion about precision and reliability.

	 c.	 Predict the modulus of elasticity for a single 
mixture in a way that conveys information about 
precision and reliability. How does the predic-
tion compare to the estimate calculated in 
part (b)?

	45.	 The article “Concrete Pressure on Formwork” 
(Mag. of Concrete Res., 2009: 407–417) gave the 
following observations on maximum concrete pres-
sure (kN/m2):

33.2 41.8 37.3 40.2 36.7
39.1 36.2 41.8 36.0 35.2
36.7 38.9 35.8 35.2 40.1

	 a.	 Is it plausible that this sample was selected from 
a normal population distribution?

	 b.	 SAS reports the following summary information 
for this data:

The MEANS Procedure

Analysis Variable : pressure 

Lower 95% Upper 95%
CL for Mean CL for Mean Mean Std Error

36.1892782 39.0373884 37.6133333 0.6639612

		  Calculate a two-sided 95% confidence interval 
for the population mean of maximum pressure 
and confirm the lower and upper endpoints re-
ported by SAS.

	 c.	 Calculate an upper confidence bound with con-
fidence level 95% for the population mean of 
maximum pressure.

	 d.	 Calculate an upper prediction bound with level 
95% for the maximum pressure of a single obser-
vation. How does the prediction compare to the 
estimate calculated in part (b)?

	46.	 A study of the ability of individuals to walk in a 
straight line (“Can We Really Walk Straight?” Amer. 
J. of Physical Anthro., 1992: 19–27) reported the ac-
companying data on cadence (strides per second) 
for a sample of n 5 20 randomly selected healthy 
men:

.95 .85 .92 .95 .93 .86 1.00 .92 .85 .81

.78 .93 .93 1.05 .93 1.06 1.06 .96 .81 .96

		  A normal quantile plot gives substantial support 
to the assumption that the population distribution 
of cadence is approximately normal. A descriptive 
summary of the data from Minitab follows:

Variable N Mean Median TrMean StDev SEMean

cadence 20 0.9255 0.9300 0.9261 0.0809 0.0181
Variable Min Max Q1 Q3

cadence 0.7800 1.0600 0.8525 0.9600

	 a.	 Calculate and interpret a 95% confidence inter-
val for population mean cadence.

	 b.	 Calculate and interpret a 95% prediction inter-
val for the cadence of a single individual ran-
domly selected from this population.

	 c.	 Calculate an interval that includes at least 99% 
of the cadences in the population distribution 
using a confidence level of 95%.

	47.	 A sample of 25 pieces of laminate used in the 
manufacture of circuit boards was selected and 
the amount of warpage (in.) under particular 
conditions was determined for each piece, resulting 
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in a sample mean warpage of .0635 and a sample 
standard deviation of .0065.

	 a.	 Calculate a prediction for the amount of warpage 
of a single piece of laminate in a way that pro-
vides information about precision and reliability.

	 b.	 Calculate an interval for which you can have 
a high degree of confidence that at least 95% 
of all pieces of laminate result in amounts of 
warpage that are between the two limits of the 
interval.

	48.	 A more extensive tabulation of t critical values than 
what appears in this book shows that for the t distribu-
tion with 20 df, the areas to the right of the values .687, 
.860, and 1.064 are .25, .20, and .15, respectively. 
What is the confidence level for each of the following 
three confidence intervals for the mean � of a normal 
population distribution? Which of the three intervals 
would you recommend be used, and why?

	 a.	 (x 2 .687sy121, x 1 1.725sy121)
	 b.	 (x 2 .860sy121, x 1 1.325sy121)
	 c.	 (x 2 1.064sy121, x 1 1.064sy121)

7.5	 �Intervals for m1 2 m2 Based 
on Normal Population Distributions �

In Section 7.3, we showed how to obtain a large-sample confidence interval for a differ-
ence between two population, process, or treatment means. The validity of the interval 
required that the two samples be selected independently of one another, and the deriva-
tion involved standardizing x1 2 x2 to obtain a variable having approximately a standard 
normal distribution. In this section, we first consider two independent samples with at 
least one of the sample sizes being small and then an interval calculated from paired data.

The Two-Sample t Interval
The one-sample t confidence interval for � presented in Section 7.4 can be used for any 
sample size n provided that the population distribution is at least approximately normal. 
The validity of the two-sample t interval requires that both population, process, or treat-
ment response distributions be normal.

Consider two normal distributions with mean values �1 and �2, respectively. Suppose 
a random sample of size n1 is selected from the first distribution, resulting in a sample 
mean of x1 and a sample standard deviation of s1.  A random sample from the second 
distribution, selected independently of that from the first one, yields sample mean x2 
and sample standard deviation s2.  Then the standardized variable

t 5
x1 2 x2 2 (�1 2 �2)C s2

1

n1
1

s2
2

n2

has approximately a t distribution with df estimated from the sample by the following 
formula:

df 5
(se1)

2 1 (se2)
2 2

(se1)
4

n1 2 1
1

(se2)
4

n2 2 1

where se 5 sy1n (Note: df should be rounded down to the nearest integer).�

Proposition
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The standardized variable in the box is identical to the one used in our previous de-
velopment of the large-sample interval; it is labeled t here simply to emphasize that it 
now has approximately a t rather than a z distribution. The only difference between the 
formulas for the two intervals is that the formula here uses a t critical value instead of a z 
critical value. Separate normal quantile plots of the observations in the two samples can 
be used as a basis for checking that the normality assumption is plausible.

Which way of dispensing champagne, the traditional vertical method or a tilted beer-
like pour, preserves more of the tiny gas bubbles that improve flavor and aroma? The 
following data was reported in the article “On the Losses of Dissolved CO2 during 
Champagne Serving” (J. Agr. Food Chem., 2010: 8768–8775).

Temp (°C) Type of Pour n Mean (g/L) SD
18 Traditional 4 4.0 .5
18 Slanted 4 3.7 .3
12 Traditional 4 3.3 .2
12 Slanted 4 2.0 .3

Assuming the sampled distributions are normal, let’s calculate confidence intervals 
for the difference between true average dissolved CO2 loss for the traditional pour 
and that for the slanted pour at each of the two temperatures. For the 18°C tempera-
ture, the number of degrees of freedom for the interval is

df 5
1.52

4 1 .32

4 22

(.52y4)2

3 1
(.32y4)2

3

5
.007225

.00147083
5 4.91

Rounding down, the CI will be based on 4 df. For a confidence interval of 99%, 
Appendix Table IV gives t critical value 5 4.604. The desired interval is

4.0 2 3.7 6 (4.604)B .52

4
1

.32

4
5 .3 6 (4.604)(.2915) 5 .3 6 1.3 5 (21.0, 1.6)

Thus, we can be highly confident that 21,0 , �12�2 , 1.6, where �1 and �2 are 
true average losses for the traditional and slant methods, respectively. Notice that this 
CI contains 0; so at the 99% confidence level, it is plausible that �1 2 �2 5 0—that 
is, that �1 5 �2. Note that if the 1 and 2 labels had been reversed, the resulting inter-
val would have been (21.6, 1.0), with exactly the same interpretation.

Example 7.13

This implies that a confidence interval for m1 2 m2 in this situation is

x1 2 x2 6 (t critical value)C s2
1

n1
1

s2
2

n2

t critical values corresponding to the most frequently used confidence levels appear in 
Appendix Table IV.�
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The df formula for the 12°C comparison yields df 5 .00105625y .00020208 5 5.23. 
The required df is 5, and Appendix Table IV gives t critical value 5 4.032 for a 99% 
CI. The resulting interval is (.6, 2.0). Thus, 0 is not a plausible value for this dif-
ference. It appears from the CI that the true average loss when the slant method is 
used is smaller than that when the traditional method is used, so the slant method is 
better at this temperature. This, in fact, was the conclusion reported in the popular 
media.

There is a special confidence interval formula for the case of normal population 
distributions having �1 5 �2. It is called the pooled t confidence interval; “pooled” 
refers to the fact that s1 and s2 are combined to estimate the common population stan-
dard deviation. Recent studies have shown that the behavior of this interval is rather 
sensitive to the assumption of equal population standard deviations. If they are not in 
fact the same, the actual confidence level may be quite different from the nominal 
level (e.g., the actual level may deviate substantially from an assumed 95% level). For 
this reason we recommend the use of the two-sample t interval we have described un-
less there is compelling evidence for at least approximate equality of the population 
standard deviations.

A Confidence Interval from Paired Data
Let �1 denote the population mean height for all married males and �2 represent the 
population height for all married females (both in inches). One way to estimate �1 2 �2 
would be to obtain two independent samples of heights, one for married males and the 
other for married females, and (assuming normality) use the two-sample t interval just 
discussed. Another possibility, though, is to randomly select n married couples and de-
termine the height of the male and the female in each couple. This results in a sample 
of pairs of numerical values. The first observation might be (69, 66), the second (73, 63), 
the third (66, 68), and so on. Because tall men tend to marry tall women and short men 
tend to marry short women, it is unreasonable to think that the two variables height of 
male and height of female in a married couple are independent. This invalidates the use 
of the two-sample t interval.

Conceptualize the entire population of pairs from which our sample was selected. 
For each such pair, we can subtract the second number from the first to obtain a differ-
ence value. The difference is 3 for the pair (69, 66), 22 for the pair (66, 68), and so on. 
Now let �d denote the population mean difference, that is, the average of all differences 
in the population. It can be shown that

�d 5 �1 2 �2

where �1 is the population mean value of all first numbers within pairs and �2 is defined 
similarly for all second numbers. The importance of this relationship is that if we can 
obtain a CI for �d, it will also be a CI for �1 2 �2. A CI for �d can be calculated from 
the differences for pairs in the sample. In particular, if the population distribution of 
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The Paired-  Interval
Let  and  denote the sample mean and sample standard deviation, respectively, for a 
random sample of  differences. If the distribution from which this sample was selected is 
normal, a confidence interval for �  (i.e., for �1 2 �2) is given by

6 (  critical value) 1
The  critical value is based on  2 1 df. If  is large, the Central Limit Theorem ensures the 
validity of the interval without the normality assumption.

Example 7.10 in the previous section gave data on the modulus of elasticity obtained 
1 minute after loading in a certain configuration. The cited article also gave the 
values of modulus of elasticity obtained 4 weeks after loading for the same lumber 
specimens. The data is presented here.

Example 7.14

Observation 1 minute 4 weeks Difference
  1 10,490    9110 1380
  2 16,620 13,250 3370
  3 17,300 14,720 2580
  4 15,480 12,740 2740
  5 12,970 10,120 2850
  6 17,260 14,570 2690
  7 13,400 11,220 2180
  8 13,900 11,100 2800
  9 13,630 11,420 2210
10 13,260 10,910 2350
11 14,370 12,110 2260
12 11,700    8620 3080
13 15,470 12,590 2880
14 17,840 15,090 2750
15 14,070 10,550 3520
16 14,760 12,230 2530

The normal quantile plot of the differences shown in Figure 7.11 appears to be 
reasonably straight, though the point on the far left deviates somewhat from a line 
determined by the other points. (Use of a formal inferential procedure presented in 
Chapter 8 indicates that it is reasonable to assume that the population distribution of 
the differences is approximately normal.)

the differences can be assumed to be normal, then a one-sample t interval based on the 
sample differences is appropriate.
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The sample consists of 16 pairs, so a 99% confidence interval based on 15 df 
requires the t critical value 2.947. With d 5 2635.6 and sd 5 508.64, the interval is

2635.6 6 (2.947) 
508.64216

5 2635.6 6 374.7 5 (2260.9, 3010.3)

We can be highly confident, at the 99% confidence level, that the true average 
modulus of elasticity after 1 minute exceeds that after 4 weeks by between roughly 
2261 MPa and 3010 MPa. This interval is rather wide, partly because of the high 
confidence level and partly because there is a reasonable amount of variability in the 
sample differences.

Although the two-sample t CI should not be used here because the 1-minute 
observations are not independent of the 4-week observations, the resulting interval 
has limits of roughly 705 and 4566. This interval is a great deal wider than the cor-
rect interval. The reason for this is that there is much less variability in the differ-
ences than there is in either the 1-minute observations or the 4-week observations  
(sd 5 509, s1 5 2056, and s2 5 1902).
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In practice, it is frequently the case that a CI calculated from paired data is 
much narrower than a CI calculated from two independent samples. This is because 
numbers within pairs often tend to be rather similar—when one is relatively large 
(small), the other tends to be relatively large (small) also. The implication is that 
the differences will show much less variation than that in either of two independent 
samples. In Example 7.14, there is a natural pairing, but this is not always the case. In 
medical experimentation, investigators frequently create matched pairs by selecting 
patients so that within each pair, the two individuals are as similar as possible with 
respect to age, general physical condition, and physiological variables, such as blood 
pressure, heart rate, and so on. Then the differences within pairs will largely reflect 
the differences between the two treatments rather than extraneous variation from all 
other factors.

Figure 7.11  Normal quantile plot of the differences from Example 7.14
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	49.	 The firmness of a piece of fruit is an important 
indicator of fruit ripeness. The Magness–Taylor 
firmness (N) was determined for one sample of 
20  golden apples with a shelf life of zero days, 
resulting in a sample mean of 8.74 and a sample 
standard deviation of .66, and another sample of 
20 apples with a shelf life of 20 days, with a sample 
mean and sample standard deviation of 4.96 and 
.39, respectively. Calculate a confidence interval 
for the difference between true average firmness 
for zero-day apples and true average firmness for 
20-day apples using a confidence level of 95%, and 
interpret the interval.

	50.	 Anorexia nervosa (AN) is a psychiatric condition 
leading to substantial weight loss among wom-
en fearful of becoming overweight. The article 
“Adipose Tissue Distribution After Weight Resto-
ration and Weight Maintenance in Women with 
Anorexia Nervosa” (Amer. J. of Clinical Nutr., 2009: 
1132–1137) used whole-body magnetic resonance 
imagery to determine various tissue characteristics 
for both an AN sample of individuals who had un-
dergone acute weight restoration and maintained 
their weight for a year and a comparable (at the out-
set of the study) control sample. Here is summary 
data on intermuscular adipose tissue (IAT, in kg).

Condition
Sample  

Size
Sample 
Mean

Sample  
SD

AN 16 .52 .26
Control   8 .35 .15

		  Assume that both samples were selected from 
normal distributions.

	 a.	 Calculate an estimate for true average IAT un-
der the described AN protocol; do so in a way 
that conveys information about the reliability 
and precision of the estimation.

	 b.	 Calculate an estimate for the difference between 
true average AN IAT and true average control 
IAT; do so in a way that conveys information 
about the reliability and precision of the estima-
tion. What does your estimate suggest about true 
average AN IAT relative to true average control 
IAT?

	51.	 Refer to Exercise 42 in Section 7.4. The cited ar-
ticle also gave the following observations on degree 
of polymerization for specimens having viscosity 
times concentration in a higher range:

429 430 430 431 436 437

440 441 445 446 447

	 a.	 Construct a comparative boxplot for the two 
samples, and comment on any interesting 
features.

	 b.	 Calculate a 95% confidence interval for the dif-
ference between true average degree of polym-
erization for the middle range and that for the 
high range. Does the interval suggest that �1 
and �2 may in fact be different? Explain your 
reasoning.

	52.	 The degenerative disease osteoarthritis most fre-
quently affects weight-bearing joints such as the 
knee. The article “Evidence of Mechanical Load 
Redistribution at the Knee Joint in the Elderly 
when Ascending Stairs and Ramps” (Annals of 
Biomed. Engr., 2008: 467–476) presented the fol-
lowing summary data on stance duration (ms) for 
samples of both older and younger adults.

Age
Sample  

Size
Sample 
Mean

Sample  
SD

Older 28 801 117
Younger 16 780   72

		  Assume that both stance duration distributions are 
normal.

	 a.	 Calculate and interpret a 99% CI for true aver-
age stance duration among elderly individuals.

	 b.	 Calculate a 99% CI for the difference between 
true average stance duration for the elderly and 
the younger individuals. Does your interval sug-
gest that true average stance duration is larger 
among elderly individuals than among younger 
individuals?

	53.	 Arsenic is a known carcinogen and poison. The stan-
dard laboratory procedures for measuring arsenic 
concentration (�g/L) in water are expensive. Con-
sider the accompanying summary data and Minitab 

Section 7.5 Exercises
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output for comparing a laboratory method to a new 
relatively quick and inexpensive field method (from 
the article “Evaluation of a New Field measurement 
Method for Arsenic in Drinking Water Samples,” 
J. of Envir. Engr., 2008: 382–388).

Two-Sample T-Test and CI
Sample N Mean StDev SE Mean

1 3 19.70 1.10 0.64
2 3 10.90 0.60 0.35

Estimate for difference: 8.800
95% CI for difference: (6.498, 11.102)

		  Calculate a two-sided 95% confidence interval 
for the difference in population means and con-
firm the lower and upper endpoints reported by 
Minitab. Based on the interval, what conclusion 
you can draw about the two methods? Why?

	54.	 Suppose not only that the two population or treat-
ment response distributions are normal but also 
that they have equal variances. Let �2 denote the 
common variance. This variance can be estimated 
by a “pooled” (i.e., combined) sample variance as 
follows:

		  s2
p 5 a n1 2 1

n1 1 n2 2 2
bs2

1 1 a n2 2 1

n1 1 n2 2 2
bs2

2

		  (n1 1 n2 2 2 is the sum of the df’s contributed by 
the two samples). It can then be shown that the 
standardized variable

		  t 5
(x1 2 x2) 2 (�1 2 �2)

spA 1
n1

1
1
n2

		  has a t distribution with n1 1 n2 22 df.
	 a.	 Use the t variable above to obtain a pooled t 

confidence interval formula for �1 2 �2.
	 b.	 A sample of ultrasonic humidifiers of one par-

ticular brand was selected for which the observa-
tions on maximum output of moisture (oz) in a 
controlled chamber were 14.0, 14.3, 12.2, and 
15.1. A sample of the second brand gave out-
put values 12.1, 13.6, 11.9, and 11.2 (“Multiple 
Comparisons of Means Using Simultaneous 
Confidence Intervals,” J. of Quality Technology, 
1989: 232–241). Use the pooled t formula from 
part (a) to estimate the difference between true 

average outputs for the two brands with a 95% 
confidence interval.

	 c.	 Estimate the difference between the two �>s 
using the two-sample t interval discussed in 
this section, and compare it to the interval of 
part (b).

	55.	 Along any major freeway we often encounter 
service (or logo) signs that give information on 
attractions, camping, lodging, food, and gas ser-
vices in advance of the off-ramp that leads to such 
services. These signs typically do not provide in-
formation on distances. Researchers in Virginia, 
with cooperation from the Virginia Department 
of Transportation, performed an experiment to 
see if the addition of distance information on the 
service signs would affect drivers. The results of 
this experiment were reported in “Evaluation of 
Adding Distance Information to Freeway-Specific 
Service (Logo) Signs” (J. of Transp. Engr., 2011: 
782–788).

			   In one investigation, the authors selected six 
sites along Virginia interstate highways where ser-
vice signs are posted. For each site, crash data was 
obtained for a three-year period before distance in-
formation was added to the service signs and for a 
one-year period afterward. The number of crashes 
per year before and after the sign changes were 
made are given here:

Before: 15 26 66 115 62 64
After: 16 24 42 80 78 73

	 a.	 Calculate a confidence interval for the popula-
tion mean difference in the number of crashes 
per year before and after the sign changes were 
made. Provide an interpretation for this interval.

	 b.	 If a seventh site were to be randomly selected 
among locations bearing service signs, between 
what values would you predict the difference in 
number of crashes to lie?

	56.	 Lactation promotes a temporary loss of bone mass to 
provide adequate amounts of calcium for milk pro-
duction. The paper “Bone Mass Is Recovered from 
Lactation to Postweaning in Adolescent Mothers 
with Low Calcium Intakes” (Amer. J. of Clinical 
Nutr., 2004: 1322–1326) gave the following data on 
total body bone mineral content (TBBMC) (g) for 
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a sample both during lactation (L) and in the post-
weaning period (P).

Subject L P
  1 1928 2126
  2 2549 2885
  3 2825 2895
  4 1924 1942
  5 1628 1750
  6 2175 2184
  7 2114 2164
  8 2621 2626
  9 1843 2006
10 2541 2627

	 a.	 Construct a comparative boxplot of TBBMC for 
the lactation and postweaning periods and com-
ment on any interesting features.

	 b.	 Estimate the difference between true average 
TBBMC for the two periods of concrete in a 
way that conveys information about precision 
and reliability. Does it appear plausible that the 
true average TBBMCs for the two periods are 
identical? Why or why not?

	57.	 The paper “Quantitative Assessment of Glenohu-
meral Translation in Baseball Players” (Amer. J. of 
Sports Med., 2004: 1711–1715) considered various 
aspects of shoulder motion for a sample of pitch-
ers and another sample of position players [gleno-
humeral refers to the articulation between the hu-
merus (ball) and the glenoid (socket)]. The authors 
kindly supplied the following data (for 19 position 
players and 17 pitchers) on anteroposterior transla-
tion (mm), a measure of the extent of anterior and 
posterior motion, for both dominant nondominant 
arms.

	 a.	 Estimate the true average difference in transla-
tion between dominant and nondominant arms 
for pitchers in a way that conveys information 
about reliability and precision. Interpret the re-
sulting estimate.

	 b.	 Repeat part (a) for position players.
	 c.	 The authors asserted that “pitchers have greater 

difference in side-to-side anteroposterior transla-
tion of their shoulders compared with position 
players.” Do you agree? Explain.

Pos Dom Tr Pos ND Tr Pit Dom Tr Pit ND Tr
  1 30.31 32.54 27.63 24.33
  2 44.86 40.95 30.57 26.36
  3 22.09 23.48 32.62 30.62
  4 31.26 31.11 39.79 33.74
  5 28.07 28.75 28.50 29.84
  6 31.93 29.32 26.70 26.71
  7 34.68 34.79 30.34 26.45
  8 29.10 28.87 28.96 21.49
  9 25.51 27.59 31.19 20.82
10 22.49 21.01 36.00 21.75
11 28.74 30.31 31.58 28.32
12 27.89 27.92 32.55 27.22
13 28.48 27.85 29.56 28.86
14 25.60 21.95 28.64 28.58
15 20.21 21.59 28.58 27.15
16 33.77 32.48 31.99 29.46
17 32.59 32.48 27.16 21.26
18 32.60 31.61
19 29.30 27.46

	58.	 Dentists make many people nervous (even more 
so than statisticians!). To assess any effect of such 
nervousness on blood pressure, the systolic blood 
pressure of each of 60 subjects was measured both 
in a dental setting and in a medical setting (“The 
Effect of the Dental Setting on Blood Pressure 
Measurement,” Amer. J. of Public Health, 1983: 
1210–1214). For each subject, the difference 
between dental setting pressure and medical set-
ting pressure was computed; the resulting sample 
mean difference and sample standard deviation of 
the differences were 4.47 and 8.77, respectively. 
Estimate the true average difference between 
blood pressures for these two settings using a 99% 
confidence interval. Does it appear that the true 
average pressure is different in a dental setting 
than in a medical setting?

	59.	 Antipsychotic drugs are widely prescribed for condi-
tions such as schizophrenia and bipolar disease. The 
article “Cardiometabolic Risk of Second-Generation 
Antipsychotic Medications During First-Time Use in 
Children and Adolescents” (J. of the Amer. Med. As-
soc., 2009: 1765–1773) reported on body composition 
and metabolic changes for individuals who had taken 
various antipsychotic drugs for short periods of time.
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	 a.	 The sample of 41 individuals who had taken 
aripiprazole had a mean change in total cho-
lesterol (mg/dL) of 3.75, and the estimated 
standard error sd   y1n was 3.878. Calculate a 
confidence interval with confidence level ap-
proximately 95% for the true average increase in 

In a random sample of ten electronic components, suppose that the first, third, 
and tenth components fail to function correctly when tested. Using the 0–1 coding 
scheme introduced in Section 5.6, we can write the data in this sample as x1 5 1, 
x2 5 0, x3 5 1, x4 5 0, . . . , x10 5 1, where a “0” indicates that the component func-
tioned correctly and a “1” indicates that it did not work correctly.

Since this data comes from a random sample, we can assume that the outcome 
involving the first item sampled is independent of the outcome involving the second 
component sampled, and so forth. Therefore, if � denotes the unknown proportion 
of defective components in the manufacturing process from which the sample was 
obtained, then the probability of getting the particular sample can be written as

P(x1 5 1 and x2 5 0 and x3 5 1 and … and x10 5 1)

 5 P(x1 5 1) P(x2 5 0) P(x3 5 1) 

…
 P(x10 5 1)

 5 �(1 2 �)� 

…
 � 5 �3(1 2 �)7

The expression �3(1 2 �)7 represents the likelihood of our sample result occurring, 
and it is abbreviated as L(�) 5 �3(1 2 �)7. We now ask, For what value of � is the 
observed sample most likely to have occurred? That is, we want to find the value of 
� that maximizes the probability �3(1 2 �)7. This requires setting the derivative of 
L(�) equal to 0 and solving for �. However, to simplify the calculations, we first take 
the natural logarithm of L(�) 5 �3(1 2 �)7:

ln(L(�)) 5 ln3�3(1 2 �)74 5 3  ln(�) 1 7 ln(1 2 �)

and then take the derivative1:

d
d�

  ln(L(�)) 5
3
�

2
7

1 2 �

Example 7.15

total cholesterol under these circumstances (the 
cited article included this CI).

	 b.	 For the sample of 45 individuals who had taken 
olanzapine, the article reported (7.38, 9.69) as a 
95% CI for true average weight gain (kg). What 
is a 99% CI?

7.6	 Other Topics in Estimation (Optional) �

Maximum Likelihood Estimation
Maximum likelihood estimation is a technique for automatically generating point esti-
mators. This widely used procedure can be applied to any mass or density function, and 
the resulting estimators can be shown to have certain desirable statistical properties. As 
its name suggests, this technique is based on trying to find the value of an estimator that 
is most likely, given the particular set of sample data.

1 Since ln(x) is an increasing function of x, the value of � that maximizes ln(L(�)) will be the same value 
that maximizes L(�).
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The exponential distribution is commonly used to describe the lifetimes of certain 
products (see Example 5.12). Suppose that a sample of n 5 12 electric appliances 
are tested continuously until each ceases to function. The length of time that each 
appliance lasted (in hours) follows:

10,502 9560 11,671 12,825 8987 7924
9508 8875 14,439 11,320 6549 10,654 

To use maximum likelihood estimation to find the parameter � of the exponential 
distribution that describes this data, we proceed as follows. Suppose x1, x2, x3,…, xn 

Example 7.16

Setting this expression equal to 0 and solving for �, we find that the solution equals 
3/10 5 .30. The value .30 is said to be the maximum likelihood estimate of the pro-
cess proportion defective �. Notice that this estimate happens to be the ratio of the 
number of defective components in the sample divided by the sample size, that is, 
the sample proportion, p. In fact, this is true in general, regardless of the particular 
sample data, so we can also say that the sample proportion is a maximum likelihood 
estimator for a population or process proportion.

The technique in the previous example can be put into a general form that applies 
to any mass or density function. Let f (x) denote either a mass or density function that 
is defined by a set of parameters �1, �2,…, �k. Given the data x1, x2, x3, . . . , xn in any 
random sample from a population whose distribution is described by f (x), we form the 
likelihood function

L(�1, �2,…, �k) 5 f  (x1)f  (x2)f  (x3)  f ( xn)

where each f (xi) is formed by simply substituting the ith data point xi into the func-
tion f (x). When f (x) is a mass function, L can be interpreted as the probability that the 
sample result occurs. When f (x) is a density, L is not a probability and, in this case, we 
simply call it a likelihood function.

The maximum likelihood estimators of the parameters �1, �2,…, �k are the par-
ticular values of �1, �2,…, �k that maximize the function L(�1, �2,…, �k). The usual 
method for finding these parameter values is to treat L(�1, �2,…, �k) as a function of 
k variables and use calculus to find the extreme points of the function. For k 5 1, 
ordinary differentiation is required; for k $ 2, partial derivatives are needed. Because 
L(�1, �2,…, �k) is a product of several functions, it is usually easier to work with its natu-
ral logarithm ln(L(�1, �2,…, �k)), which facilitates differentiation by converting L into 
a sum of functions:

ln(L(�1, �2,…, �k)) 5 ln( f (x1)) 1 ln( f (x2)) 1 ln( f (x3))1…1 ln( f (xn))

Because ln(x) is an increasing function of x, the values of �1, �2,…, �k that maximize 
ln(L(�1, �2,…, �k)) are the same ones that maximize L(�1, �2,…, �k).
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In Example 2.17, n 5 17 observations on length-diameter ratio were plotted on a 
normal quantile plot, and it was determined that a normal distribution provides a 
good fit to this data. To find the maximum likelihood estimators of the parameters 
� and �2 of the normal distribution that best fits this data, let x1, x2, x3,…, xn denote 
any random sample from a normal distribution. Then the likelihood function based 
on this data is as follows.

L(�, �2) 5 f   (x1)f  (x2)f   (x3)  f   (xn)

 5 a 122��2
 e2

1
2
a

x1 2 �

�
b

2

b a 122��2
 e2

1
2
a x2 2 �

�
b

2

b

a 122��2
 e2

1
2
a

xn 2 �

�
b

2

b

 5 a 1
2��2 b

ny2

e2
1
2 ^ a

xi 2 �

�
b

2

Taking logarithms,

ln(L(�, �2)) 5 2
n
2

 ln(2��2) 2
1

2�2 ^ (xi 2 �)2

Example 7.17

is any random sample from an exponential distribution with parameter �. Since the 
exponential density function is of the form f (x) 5 �e2�x, the likelihood function as-
sociated with the sample data is

L(�) 5 f  (x1)f  (x2)f  (x3)    f  (xn)

 5 (�e2�x1)(�e2�x2)(�e2�x3) 

…
 (�e2�xn)

 5 �ne2�^xi

Taking logarithms,

ln(L(�)) 5 n ln(�) 2 � ^  xi

Equating the derivative of this function to 0 and solving for �, we find

d
d�

  (ln(L(�)) 5 ny� 2 ^xi 5 0      so  � 5
n

^xi

5
1
x

Thus the maximum likelihood estimator of � is �n  =1yx. For the lifetime of the appli-
ances, this estimate is �n 5 1y10,234.5 5 .0000977 5 9.77 3 1025.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



338	 chapter 7   Estimation and Statistical Intervals

Since this is a function of two variables, the partial derivatives with respect to � and 
�2 must be set to 0 and the resulting two equations solved. Omitting the details, we 
find the maximum likelihood estimators to be

�n 5 x  �n 2 5
1
n ^  (xi 2 x)2

Note that the first estimator, �n , is unbiased, but the second estimator, �n 2, is slightly 
biased (recall that the unbiased estimator of �2 is the sample variance s2, which uses 
a denominator of n 2 1, not n). For the length-diameter ratio data, the maximum 
likelihood estimates are �n 5 x 5 47.31 and �n 2 5 57.153.

In Example 2.18, the following data on tensile strength for multi-wall carbon nano-
tubes was thought to follow a Weibull distribution:

17.4 22.3 23.7 30.0 44.2 49.3 52.7 54.8 62.1
66.2 84.9 90.1 90.3 91.1 99.5 101.6 108.5 109.5

119.1 127.0 132.9 140.8 141.0 175.0 231.8 259.7

In general, let x1, x2, x3,…, xn be a random sample from a Weibull distribution with 
parameters � and � and density function

f (x) 5
�

��   x�21e2(x@�)�

As in Example 7.17, the likelihood function L(�, �) is a function of two variables. So 
we must take partial derivatives of ln(L(�, �)), set them equal to 0, and solve the two 
resulting equations. Omitting the algebraic details, we find the following equations:

� 5 £ ^xi
� ln(xi)

^xi
�

2
^  ln(xi)

n
§

21

  � 5 a ^xi
�

n
b

1y�

These two equations cannot be solved explicitly for the maximum likelihood es-
timates �n  and �n. Instead, for each sample x1, x2, x3,…, xn, the equations must be 
solved using an iterative numerical procedure. For the tensile strength data, the max-
imum likelihood estimates are �n 5 1.727 and �n 5 109.304. These estimates can be 
obtained by using the survival package in R or by using the optimization procedure 
PROC NLP in SAS.

Example 7.18

As you can see from these examples, maximum likelihood estimators are not always 
unbiased. In many cases, however, this bias can be removed by using a simple mul-
tiplicative correction factor. In Example 7.17, for instance, the maximum likelihood 
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Properties of Maximum Likelihood Estimators (MLEs)

1. � For large , the sampling distribution of an MLE is approximately normal and the 
estimator is unbiased or nearly so, with a variance smaller than that of any other 
estimator.

2. �    For any function (·), if �n  is the MLE of a parameter �, then (�n) is 
the MLE of (�).

In Example 7.16, we showed that the MLE of � in an exponential distribution is 
�n 5 1yx. Since the mean of an exponential distribution is related to � by the equation 
� 5 1y�, the MLE of � is simply 1y�n 5 x. That is, given g(�) 5 1y�, then since �n  is 
the MLE for �, g(�n) is the MLE for g(�).

Example 7.19

Density Estimation
In many applications, populations or processes can be described by normal density 
curves. Given a random sample of size n from a normal population, the density curve 
can be approximated by simply using the sample statistics x and s in place of the param-
eters � and � in the formula for the density curve:

f(x)
122�s2

 e2
1
2
a x 2 x

s
b

2

Although this function can be graphed by itself, it is often good practice to superimpose 
a plot of f (x) over a histogram of the sample data from which x and s were calculated. 
When the bars in the histogram represent densities (see p. 19), the graph of f (x) will 
be of the same scale as the histogram, because both will have a total area of 1. When 
the histogram bars are simply frequencies, then f (x) must be multiplied by an appropri-
ate factor so that its area coincides with the area under the histogram. If w denotes the 
width of each histogram bar and there are n data points in the sample, then the total 
area encompassed by a frequency histogram is w ? n.  Therefore, to make the approxi-
mate density function plot correctly over such a histogram, we must plot the function 
w ? n ? f  (x) instead of f (x).

estimator of �2 in a normal distribution is slightly biased, but that bias can be corrected 
by simply multiplying the estimator by the factor ny(n 2 1). Note that as n increases, 
the bias becomes negligible and the correction factor is essentially equal to 1. Beyond 
some slight problems with unbiasedness, maximum likelihood estimators have several 
properties that make them highly useful in practice. The two most important properties 
are listed in the following box.
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Kernel Density Estimation
Some populations and processes are not adequately described by common density 
curves. In such cases, the population density curve can be approximated by using the 
method of kernel density estimation. Creating a kernel density estimate is very similar 
to creating a histogram. In a histogram, the bar over any class interval can be thought of 
as a stack of several equal-size rectangles, each representing a single data point in that 
class. In the kernel density estimate, these n rectangles are replaced by n normal density 
curves centered at the n data points. The kernel function is then defined to be the aver-
age of these n normal densities. The kernel function is used as an approximation to the 
population density curve. Figure 7.12 illustrates this procedure on a small data set. Note 
that the kernel function in this figure is shown as the sum of the individual densities, not 
the average, to highlight the shape of the kernel function.

To put a normal density curve around each point in a set of data x1, x2, x3,…, xn, we 
must determine the appropriate mean and variance to use. Let

s2 5
1

n 2 1
 ^

n

i51
(xi 2 x)2

denote the sample variance of the n data points; the normal density centered at xi has a 
mean and standard deviation of

� 5 xi  � 5 �s

where � is a positive number called the smoothing parameter or window width. The 
smoothing parameter controls the spread of each of the normal distributions centered at 
the data points. These distributions have densities defined by

fi(x) 5
1

�s22�
 e2

1
2
a

x 2 xi

�s
b

2

  for 2 , x ,

Figure 7.12  A kernel function for the data 
(1, 1.5, 1.8, 2, 2.1, 2.2, 2.5, 3)
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The tragedy that befell the space shuttle Challenger and its astronauts in 1986 led to 
a number of studies to investigate the reasons for mission failure. Attention quickly 
focused on the behavior of the rocket engine’s O-rings. Here is data consisting of ob-
servations on x 5 O-ring temperature (°F) for each test firing or actual launch of the 
shuttle rocket engine (Presidential Commission on the Space Shuttle Challenger 
Accident, Vol. 1, 1986: 129–131).

31 40 45 49 52 53 57 58 58
60 61 61 63 66 67 67 67 67
68 69 70 70 70 70 72 73 75
75 76 76 78 79 80 81 83 84

The sample standard deviation of this data is s 5 12.159. Suppose we choose a 
smoothing parameter of � 5 .5. Starting with the leftmost point in the data, x1 5 31, 
we then form the normal density curve with mean � 5 31 and standard deviation 
� 5 �s 5 (.5)(12.159) 5 6.0795:

f1(x) 5
1

6.079522�
 e2

1
2
a x 2 31

6.0795
b

2

Proceeding to the next largest data point, x2 5 40, we create a density curve with 
mean � 5 40 and � 5 �s 5 6.0795:

f2(x) 5
1

6.079522�
 e2

1
2
a x 2 40

6.0795
b

2

After continuing in this manner through all n 5 36 data points, we take the 
average of all 36 density functions to form the kernel function k(x). Fig-
ure 7.13(a) shows the plot of k(x) along with a histogram of the O-ring data. For 
comparison, Figure 7.13(b) shows a kernel function based on a value of � 5 .2. 
Although the choice of � is subjective, the value of � 5 .5 provides a smoother fit 
to the data.

Example 7.20

The kernel function is then given by the formula

k(x) 5
1
n ^

n

i51
fi(x)  for  2 , x ,

The effect of the smoothing constant is illustrated in the following example. 
Briefly, small values of � yield kernel functions that follow the data very closely and, 
therefore, often have a choppy appearance similar to a histogram of the data. Larger 
values of � lead to smoother-looking kernel functions.
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Bootstrap Confidence Intervals
The confidence interval formulas we developed in the preceding sections require a 
knowledge of one or both of the following: (1) the exact distribution (e.g., the nor-
mal) of the population sampled and (2) a mathematical expression for the standard 
error of the statistic used to form the interval. Although requirement 1 becomes less 
important as the sample size increases, requirement 2 cannot be ignored. Compli-
cating the situation further is the fact that many statistics have standard error for-
mulas that are only approximations based on the assumption of normal populations. 
The sample correlation coefficient, r, is one such example. Even under the assump-
tion of sampling from a bivariate normal population, the sampling distribution of r 
has no simple form, and formulas for the standard error of r are only approximations.

Figure 7.13  Kernel functions fit to the O-ring data of Example 7.20: 
(a) � 5 .5; (b) � 5 .2
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In an effort to avoid such problems, Efron (“Bootstrap Methods: Another Look at 
the Jackknife,” Annals of Statistics, 1979: 1–26) introduced a computer-intensive method 
called the bootstrap method. The term bootstrap, a reference to the phrase “to pull oneself 
up by one’s own bootstraps,” is intended to describe the way in which bootstrap procedures 
approximate the sampling distribution of a statistic—by drawing large numbers of random 
samples from a single sample of data. The bootstrap is only one example of a general class 
of methods, called resampling procedures, based on the idea that there is information to 
be gained by sampling from a sample. The bootstrap method is described as follows:

Outline of the Bootstrap Method
1.	 Obtain a random sample of size n from a population or process.
2.	 Generate a random sample of size n, with replacement, from the original sample 

in step 1.
3.	 Calculate a statistic of interest for the sample in step 2.
4.	 Repeat steps 2 and 3 a large number of times to form the approximate sampling 

distribution of the statistic.

Sampling with replacement (see Section 4.2) is the key to the proper use of the 
bootstrap method. Otherwise, sampling n items without replacement from a set of n 
data values would always yield the original n items and, hence, the same calculated 
statistic for each sample. Much computational effort is necessary to draw repeated 
samples, often as many as 1000, and to calculate and compile a sampling distribu-
tion. Such effort, which would have been out of the question in the precomputer 
era, is a simple task for today’s computers.

Understanding how the bootstrap works is easier than understanding why it works. 
At first glance, the procedure seems to give something for nothing. It requires no distri-
butional assumptions about a population, needs no standard error formulas, and gener-
ates the sampling distribution of a statistic from the information in only a single sample. 
Roughly speaking, resampling methods work because random subsamples of a random 
sample are also random samples from a population (see Sampling Rules, Section 4.2). 
Consequently, each bootstrap sample qualifies as a genuine random sample of size n 
drawn, with replacement, from a population. This means that statistics calculated from 
such samples can properly be used to form a sampling distribution.

Bootstrap Intervals for the Mean
Bootstrap confidence intervals, also called bootstrap percentile intervals, for estimat-
ing a population or process are generated using the general format outlined previously. 
A large number, B, of bootstrap samples are randomly selected and the sample mean 
x is calculated for each sample. A (1 – �)100% confidence interval for � is formed 
by finding the upper and lower (�y2)100% percentiles of the B sample means. The 
bootstrap procedure can be applied to large-sample and small-sample problems alike.

Choosing a value of B that makes B(�y2) an integer simplifies the work, because 
the percentiles can be found by just counting in B(�y2) units from both ends of the 
sorted list of sample means. Empirical studies have shown that values of B in the range 
of 500 to 1000 generally give good results. For the typical confidence levels used in prac-
tice (e.g., 90%, 95%, 99%), the choice B 5 1000 will satisfy all of these requirements. In 
general, larger values of B should be used for larger confidence levels.
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Two-Sample Bootstrap Intervals
Bootstrap methods can readily be applied to statistics based on two or more samples. 
The procedures are intuitive extensions of the ones illustrated previously. For the case 
of two independent random samples of size n1 and n2 (Section 7.5), each bootstrap 
sample consists of a pair of samples, one of size n1 drawn from the first sample, the other 
of size n2 drawn from the second sample. The difference of these two sample means is 
recorded, and the next bootstrap pair is drawn until B such differences have been ob-
tained. The percentile method is then used to obtain the desired confidence limits. For 
paired data, the procedure is even easier: Select B bootstrap samples from the original n 
differences between the two paired samples of n data points. Again, we use the percentile 
method to form the confidence limits.

In Example 7.3 (Section 7.2), the large-sample confidence interval formula 
x 6 1.96sy1n was used to find a 95% confidence interval for the mean breakdown 
voltage (in kV) for a particular electronic circuit. Using the sample of n = 48 observa-
tions, this interval was determined to be (53.2, 56.2). For comparison, we now use this 
data to find a 95% bootstrap interval for the mean.

A histogram of B 5 1000 samples, drawn with replacement from the original 
sample, is shown in Figure 7.14. Since 1 2 � 5 .95, the upper and lower endpoints 
of the confidence interval are found by counting in B(�y2) 5 1000(.05/2) 5 25 
units from each end of the sorted list of 1000 sample means. For the sample 
means shown in Figure 7.14, the 25th largest value is 53.21 and the 975th largest 
value is 56.13, giving a confidence interval of (53.2, 56.1). Note how close the 
bootstrap interval is to the earlier interval (53.2, 56.2). This is not an accident. 
Bootstrap intervals usually agree closely with traditional confidence intervals 
when all the assumptions necessary for the traditional interval are met.

Example 7.21

Figure 7.14   5 1000 bootstrapped sample means from the data in Example 7.3
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Comments
Since its inception in 1979, the bootstrap method has been successfully applied to many 
different situations, including regression and correlation analysis, as well as other ad-
vanced statistical procedures. During this time, computer power and availability have 
also dramatically increased, making the bootstrap a realistic option for data analysis. It 
is now relatively easy to write macros in any statistical or spreadsheet software program 
to carry out bootstrap computations.

As a rule, bootstrap intervals generally agree fairly well with traditional confidence 
interval results when the assumptions necessary for the traditional interval are met. In 
those cases where the assumptions are not met (e.g., when populations are not normally 
distributed), bootstrap intervals offer the additional advantage of giving more realistic 
results than traditional confidence intervals. For further reading on this subject, the 
book by Efron and Tibshirani entitled An Introduction to the Bootstrap offers a useful 
guide to applying the bootstrap (Efron, B., and R. J. Tibshirani, An Introduction to the 
Bootstrap, Chapman and Hall, New York, 1993).

Section 7.6 Exercises

	60.	 Refer to Exercise 42 of Section 7.4.
	 a.	 Use the bootstrap method to find a 95% boot-

strap interval for the mean of the population 
from which the data of Exercise 42 was obtained.

	 b.	 Compare your result in part (a) to the 95% con-
fidence interval found in Exercise 42(c).

	61.	 Refer to Exercise 46 of Section 7.4.
	 a.	 Use the bootstrap method to find a 95% boot-

strap interval for the mean of the population 
from which this data was obtained.

	 b.	 Compare your result in part (a) to the 95% con-
fidence interval found in Exercise 46(a).

	62.	 In Exercise 14 (Section 7.2), the sample mean and 
standard deviation of the dye-layer density of aerial 
photographs of 69 forest trees were found to be 1.028 
and .163, respectively. Because the raw data is not 
available, a researcher suggests using a computer to 
generate a random sample of 69 observations from 
a normal distribution whose mean and standard de-
viation are 1.028 and .163, respectively. If necessary, 
after obtaining the sample, the data are adjusted so 
that their sample mean and standard deviation co-
incide exactly with 1.028 and .163. A 95% bootstrap 
interval is then generated using this simulated data.

	 a.	 Under what conditions will this procedure pro-
vide a reliable interval estimate?

	 b.	 Use the procedure outlined in this exercise to 
generate a 95% bootstrap interval for the aver-
age dye-layer density.

	 c.	 Compare your result in part (b) to the 95% 
confidence interval found in Exercise 14(a).

	63.	 A random sample of n electronic assemblies is 
selected from a large shipment, and each assem-
bly is tested on an automatic test station. The 
number x of assemblies that do not perform cor-
rectly is determined. Let � denote the propor-
tion of assemblies in the entire shipment that 
are defective.

	 a.	 In terms of x, what is the maximum likelihood 
estimator of �?

	 b.	 Is the estimator in part (a) unbiased?
	 c.	 What is the MLE of (1 2 �)5, the probability 

that none of the next five assemblies tested is 
defective?

	64.	 Let x denote the proportion of an allotted time 
frame that a randomly selected worker spends per-
forming a manufacturing task. Suppose the prob-
ability density function of x is

f(x) 5 e (� 1 1)x� for 0 # x # 1
0 otherwise

where the value of � must be larger than 1.
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	 a.	 Derive the maximum likelihood estimator of � 
for a random sample of size n.

	 b.	 A random sample of ten workers yielded the fol-
lowing data on x: .92, .79, .90, .65, .86, .47, .73, 
.97, .94, .77. Use this data to obtain an estimate 
of �.

	65.	 The shear strength x of a random sample of spot 
welds is measured. Shear strengths (in psi) are as-
sumed to follow a normal distribution.

	 a.	 Find the maximum likelihood estimator of the 
strength that is exceeded by 5% of the popula-
tion of welds. That is, find a maximum likeli-
hood estimator for the 95th percentile of the 
normal distribution based on a random sample 
of size n. Hint: Determine the relationship 
between the 95th percentile and � and �, then 
use the invariance property of MLEs.

	 b.	 A random sample of ten spot-weld strengths 
yields the following data (in psi): 392, 376, 
401, 367, 389, 362, 409, 415, 358, 375. Use 
the result in part (a) to find an estimate of the 
95th percentile of the distribution of all weld 
strengths.

	66.	 Refer to Exercise 65. Suppose the strength x of an-
other randomly selected spot weld is measured.

	 a.	 Find a maximum likelihood estimator of the 
probability that x is less than 400. That is, find 
the MLE for P(x , 400).

	 b.	 Use the result in part (a) with the data from 
Exercise 65(b) to estimate P(x , 400).

	67.	 A random sample x1, x2, x3,…, xn is selected from 
a shifted exponential distribution whose probability 
density function is given by

f (x) 5 e�e2�(x2�) for x $ �

0 otherwise

When � 5 0, this probability density function re-
duces to the probability density function of the ex-
ponential distribution.

	 a.	 Obtain maximum likelihood estimators of both 
� and �.

	 b.	 In traffic flow research, time headway is defined 
to be the elapsed time between the moment 
that one car finishes passing a fixed point and 
the instant that the next car begins to pass that 

point. The random variable x = time headway 
has been modeled by a shifted exponential dis-
tribution. For a random sample of ten headway 
times—3.11, .64, 2.55, 2.20, 5.44, 3.42, 10.39, 
8.93, 17.82, and 1.30—use the results from part 
(a) to find estimates of � and �.

	68.	 A specimen is weighed twice on the same scale. Let 
x and y denote the two measurements. Suppose x 
and y are independent of one another and are as-
sumed to follow normal distributions with the same 
mean � (the true weight of the specimen) and the 
same variance �2.

	 a.	 For a random sample of n specimens, show 
that the maximum likelihood estimator 
of �2 is given by (1y4n) ^(xi 2 yi)

2, where 
(x1, y1), (x2, y2),…,(xn, yn) denote the n pairs of 
scale measurements. Hint: The sample vari-
ance of two measurements z1 and z2 equals 
(z1 2 z2)

2y2.
	 b.	 Five randomly chosen specimens are weighed, 

yielding the following data: (3.10, 3.12), (3.52, 
3.45), (4.22, 4.30), (2.98, 3.06), and (5.43, 5.38). 
Use the result in part (a) to find an estimate of �2.

	69.	 Suppose someone suggests using a smoothing 
parameter of � 5 2 to create a kernel density graph. 
Do you expect the graph to provide a useful picture 
of the data? Why?

	70.	 Refer to the data in Exercise 46 of Section 7.4.
	 a.	 Use a smoothing parameter of � 5 .5 to create a 

kernel density plot for this data.
	 b.	 Repeat part (a) using a smoothing parameter of 

� 5 .3.
	 c.	 Which of the plots in parts (a) and (b) appears to 

fit the data better?

	71.	 Suppose the smallest distance d between any two 
successive measurements in an ordered set of data 
(i.e., measurements sorted from smallest to largest) 
is 3 units.

	 a.	 If s denotes the sample standard deviation of  the 
measurements in a sample of size n, would 
� 5 dy(3s) lead to a kernel density graph with a 
choppy appearance or a smooth appearance? Why?

	 b.	 Will values of � that are greater than dy(3s) lead 
to choppier- or smoother-looking kernel density 
estimates?
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	72.	 Refer to the data in Exercise 42 of Section 7.4.
	 a.	 Use a smoothing parameter of � 5 .5 to create a 

kernel density plot for this data.
	 b.	 Repeat part (a) using a smoothing parameter of 

� 5 .3.
	 c.	 Which of the plots in parts (a) and (b) appears to 

fit the data better?

	73.	 A kernel function is fit to the data in a sample of 
size n. Later, a researcher realizes that the larg-
est observation in the sample was actually a typo-
graphical error and, because the original lab data 
no longer exists, this data point is removed from the 
sample, leaving a sample of n 2 1 measurements. 

The researcher wants to fit a new kernel function 
to the reduced sample of n 2 1 data points. To pro-
duce a graph that has about the same smoothness 
as the original kernel function, will the value of � 
have to be raised or lowered?

	74.	 In Example 1.8 (Chapter 1), a histogram was fit 
to the energy consumption data (in BTUs) from a 
sample of 90 homes. Using this data, experiment 
with different values of � until you find a value that 
gives a kernel density estimate that approximates 
the shape of the histogram of this data shown in 
Figure 1.7.

Supplementary Exercises

	75.	 Exercise 4 of Chapter 1 presented a sample of n = 
153 observations on ultimate tensile strength.

	 a.	 Obtain a lower confidence bound for popula-
tion mean strength. Does the validity of the 
bound require any assumptions about the popu-
lation distribution? Explain.

	 b.	 Is any assumption about the tensile strength dis-
tribution required prior to calculating a lower 
prediction bound for the tensile strength of the 
next specimen selected using the method de-
scribed in this section? Explain.

	 c.	 Use a statistical software package to investi-
gate the plausibility of a normal population 
distribution.

	 d.	 Calculate a lower prediction bound with a pre-
diction level of 95% for the ultimate tensile 
strength of the next specimen selected.

	76.	 Anxiety disorders and symptoms can often be ef-
fectively treated with benzodiazepine medications. 
It is known that animals exposed to stress exhibit 
a decrease in benzodiazepine receptor binding in 
the frontal cortex. The paper “Decreased Benzo-
diazepine Receptor Binding in Prefrontal Cortex 
in Combat-Related Posttraumatic Stress Disorder” 
(Amer. J. of Psychiatry, 2000: 1120–1126) described 
the first study of benzodiazepine receptor binding 
in individuals suffering from PTSD. The accompa-
nying data on a receptor binding measure (adjusted 

distribution volume) was read from a graph in 
the paper.

PTSD:     10, 20, 25, 28, 31, 35, 37, 38, 38, 39, 
39, 42, 46
Healthy:  23, 39, 40, 41, 43, 47, 51, 58, 63, 
66, 67, 69, 72

	 a.	 Is it plausible that the population distribu-
tions from which these samples were se-
lected are normal?

	 b.	 Calculate an interval for which you can 
be 95% confident that at least 95% of all 
healthy individuals in the population have 
adjusted distribution volumes lying be-
tween the limits of the interval.

	 c.	 Predict the adjusted distribution volume of 
a single healthy individual by calculating a 
95% prediction interval. How does this in-
terval’s width compare to the width of the 
interval calculated in part (b)?

	 d.	 Estimate the difference between the true 
average measures in a way that conveys in-
formation about reliability and precision.

	77.	 The article “Quantitative MRI and Electro-
physiology of Preoperative Carpal Tunnel 
Syndrome in a Female Population” (Ergonom-
ics, 1997: 642–649) reported that (2 473.3, 
1691.9) was a large-sample 95% confidence in-
terval for the difference between true average 
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thenar muscle volume (mm3) for sufferers of carpal 
tunnel syndrome and true average volume for non-
sufferers. Calculate a 90% confidence interval for 
this difference.

	78.	 Acrylic bone cement is commonly used in to-
tal joint arthroplasty as a grout that allows for the 
smooth transfer of loads from a metal prosthesis to 
bone structure. The paper “Validation of the Small-
Punch Test as a Technique for Characterizing the 
Mechanical Properties of Acrylic Bone Cement” 
(J. of Engr. In Med., 2006: 11–21) gave the follow-
ing data on breaking force (N):

Temp Medium n x s
37° Dry 6 325.73 34.97
37° Wet 6 306.09 41.97

		  Assume that all population distributions are normal.
	 a.	 Estimate true average breaking force in a dry 

medium at 37° in a way that conveys informa-
tion about reliability and precision. Interpret 
your estimate.

	 b.	 Estimate the difference between true average 
breaking force in a dry medium at 37° and true 
average force at the same temperature in a wet 
medium, and do so in a way that conveys infor-
mation about precision and reliability. Then in-
terpret your estimate.

	79.	 An experiment was carried out to compare various 
properties of cotton/polyester spun yarn finished 
with softener only and yarn finished with softener 
plus 5% DP-resin (“Properties of a Fabric Made with 
Tandem Spun Yarns,” Textile Res. J., 1996: 607–
611). One particularly important characteristic of 
fabric is its durability, that is, its ability to resist wear. 
For a sample of 40 softener-only specimens, the 
sample mean stoll-flex abrasion resistance (cycles) 
in the filling direction of the yarn was 3975.0, with a 
sample standard deviation of 245.1. Another sample 
of 40 softener-plus specimens gave a sample mean 
and sample standard deviation of 2795.0 and 293.7, 
respectively. Calculate a confidence interval with 
confidence level 99% for the difference between 
true average abrasion resistances for the two types 
of fabric. Does your interval provide convincing evi-
dence that true average resistances differ for the two 
types of fabric? Why or why not?

	80.	 As reported by the Pew Research Center’s Social and 
Demographic Trends Project in September 2012, a 
survey of 6500 American households revealed that 
a record 19% owed student loan debt in 2010 (a 
sharp increase from the 15% that owed such debt 
in 2007).

	 a.	 Calculate and interpret a 95% CI for the pro-
portion of all American households in 2010 that 
owed student loan debt.

	 b.	 What sample size is required if the desired width 
of the 95% CI is to be at most .04, irrespective of 
the sample results?

	 c.	 Does the upper limit of the interval in part (a) 
specify a 95% upper confidence bound for the 
proportion being estimated? Explain.

	81.	 Torsion during hip external rotation (ER) and ex-
tension may be responsible for certain kinds of in-
juries in golfers and other athletes. The article “Hip 
Rotational Velocities During the Full Golf Swing” 
(J. of Sports Sci. and Med., 2009: 296–299) reported 
on a study in which peak ER velocity and peak IR 
(internal rotation) velocity (both in deg ? sec21) 
were determined for a sample of 15 female colle-
giate golfers during their swings. The following data 
was supplied by the article’s authors:
Golfer ER IR diff z quan

  1 2130.6 298.9 231.7 21.28
  2 2125.1 2115.9 29.2 20.97
  3 251.7 2161.6 109.9 0.34
  4 2179.7 2196.9 17.2 20.73
  5 2130.5 2170.7 40.2 20.34
  6 2101.0 2274.9 173.9 0.97
  7 224.4 2275.0 250.6 1.83
  8 2231.1 2275.7 44.6 20.17
  9 2186.8 2214.6 27.8 20.52
10 258.5 2117.8 59.3 0.00
11 2219.3 2326.7 107.4 0.17
12 2113.1 2272.9 159.8 0.73
13 2244.3 2429.1 184.8 1.28
14 2184.4 2140.6 243.8 21.83
15 2199.2 2345.6 146.4 0.52

	 a.	 Is it plausible that the differences came from a 
normally distributed population?

	 b.	 Estimate the true average difference in peak 
ER and IR velocities in a way that conveys 
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information about reliability and precision. 
Interpret the resulting estimate.

	82.	 It is important that face masks used by firefighters be 
able to withstand high temperatures. In a test of one 
type of mask, the lenses in 11 of the 35 masks popped 
out at a temperature of 250°F. Calculate a lower con-
fidence bound for the proportion of all such masks 
whose lenses would pop out at this temperature us-
ing both the method suggested in Section 7.3 and 
the method suggested in Exercise 26(b).

	83.	 Suppose an investigator wants a confidence interval 
for the median � of a continuous distribution based 
on a random sample x1,…, xn without assuming 
anything about the shape of the distribution.

	 a.	 What is P(x1 , �), the probability that the first 
observation is smaller than the median?

	 b.	 What is the probability that both the first and 
the second observations are smaller than the 
median?

	 c.	 Let yn 5 max  {x1,…, xn}. What is P(yn , �)? 
Hint: The condition that yn is less than � is 
equivalent to what about x1,…, x2?

	 d.	 With y1 5 min {x1,…, xn}, what is P(� , y1)?
	 e.	 Using the results of parts (c) and (d), what is

P(y1 , � , yn)? Regarding (y1, yn) as a confi-
dence interval for �, what is the associated con-
fidence level?

	 f.	 An experiment carried out to study the curing 
time (hr) for a particular experimental adhesive 
yielded the following observations:

		  31.2    36.0    31.5    28.7    37.2
		  35.4    33.3    39.3    42.0    29.9

Referring back to part (e), determine the con-
fidence interval and the associated confidence 
level.

	 g.	 Assuming that the data in part (f) was selected 
from a normal distribution (is this assumption 
justified?), calculate a confidence interval for � 
(which for a normal distribution is identical to �) 
using the same confidence level as in part (f ), 
and compare the two intervals.

	84.	 Consider the situation described in Exercise 83.
	 a.	 What is P(x1 , �, x2 . �, x3 . �,…, xn . �), 

that is, the probability that only the first 

observation is smaller than the median and all 
others exceed the median?

	 b.	 What is the probability that only x2 is smaller 
than the median and all other n 2 1 observations 
exceed the median?

	 c.	 What is the probability that exactly one of the 
xi’s is less than �?

	 d.	 What is P(� , y2), where y2 denotes the second 
smallest xi? Hint: � , y2 occurs if either all n of 
the observations exceed the median or all but 
one of the xi’s does.

	 e.	 With yn21 denoting the second largest xi, what is
P(� . yn21)?

	 f.	 Using the results of parts (d) and (e), what is 
P(y2 , � , yn21)? What does this imply about 
the confidence level associated with the inter-
val (y2, yn21)? Determine the interval and as-
sociated confidence level for the data given in 
Exercise 83.

	85.	 Suppose we have obtained a random sample 
x1,…, xn from a continuous distribution and wish 
to use it as a basis for predicting a single new ob-
servation xn11 without assuming anything about the 
shape of the distribution. Let y1 and yn denote the 
smallest and largest, respectively, of the n sample 
observations.

	 a.	 What is P(xn11 , x1)?
	 b.	 What is P(xn11 , x1 and xn11 , x2), that is, the 

probability that xn11 is the smallest of these 
three observations?

	 c.	 What is P(xn11 , y1)? What is P(xn11 . yn)?
	 d.	 What is P(y1 , xn11 , yn), and what does this 

say about the prediction level associated with 
the interval (y1, yn)? Determine the interval and 
associated prediction level for the curing time 
data given in Exercise 83.

	86.	 The derailment of a freight train due to the 
catastrophic failure of a traction motor arma-
ture bearing provided the impetus for a study 
reported in the article “Locomotive Traction 
Motor Armature Bearing Life Study” (Lubri-
cation Engr., Aug. 1997: 12–19). A sample of 
17  high-mileage traction motors was selected 
and the amount of cone penetration (mm@10) 
was determined both for the pinion bearing and 
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for the commutator armature bearing, resulting 
in the following data:

Motor: 1 2 3 4 5 6
Commutator: 211 273 305 258 270 209
Pinion: 226 278 259 244 273 236
Motor: 7 8 9 10 11 12
Commutator: 223 288 296 233 262 291
Pinion: 290 287 315 242 288 242
Motor: 13 14 15 16 17
Commutator: 278 275 210 272 264
Pinion: 278 208 281 274 268

Calculate an estimate of the population mean dif-
ference between penetration for the commutator 
armature bearing and penetration for the pinion 
bearing, and do so in a way that conveys infor-
mation about the reliability and precision of the 
estimate. (Note: A normal quantile plot validates 
the necessary normality assumption.) Would you 
say that the population mean difference has been 
precisely estimated? Does it look as though popu-
lation mean penetration differs for the two types 
of bearings? Explain.

	87.	 The article cited in Exercise 86 also included the 
following data on percentage of oil remaining for 
the commutator bearings:

71.02    86.49    81.14    84.89    87.42
84.49    82.09    80.97    69.80    89.29
86.10    86.80    83.41    60.56    88.80
86.41    86.19

Would you use the one-sample t confidence in-
terval to estimate the population mean and medi-
an? Estimate the population median percentage 
of oil left using the interval suggested in Exer
cise 84, and determine the corresponding confi-
dence level.

	88.	 Wire electrical-discharge machining (WEDM) is 
a process used to manufacture conductive hard 
metal components. It uses a continuously mov-
ing wire that serves as an electrode. Coated wires 
have been used to substantially increase the cut-
ting speed and precision of the process. Coating 
on the wire electrode allows for cooling of the 
wire electrode core and provides an improved 
cutting performance.

			   The article “High-Performance Wire Electrodes 
for Wire Electrical-Discharge Machining—A Review” 
(J. of Engr. Manuf., 2012: 1757–1773) gave the follow-
ing sample observations on total coating layer thick-
ness (in �m) of eight wire electrodes used for WEDM:

21 16 29 35 42 24 24 25
	 a.	 Is it plausible that the given sample observations 

were selected from a normal distribution?
	 b.	 Calculate and interpret a 95% CI for true average 

total coating layer thickness in all such electrodes.
	 c.	 Predict the total coating layer thickness for a 

single electrode in a way that conveys informa-
tion about precision and reliability.

	89.	 Nine Australian soldiers were subjected to extreme 
conditions that involved a 100-min walk with a 25-lb 
pack when the temperature was 40°C (104°F). One of 
them overheated (above 39°C) and was removed from 
the study. Here are the rectal Celsius temperatures of 
the other eight at the end of the walk (“Neural Net-
work Training on Human Body Core Temperature 
Data,” Combatant Protection and Nutrition Branch, 
Aeronautical and Maritime Research Laboratory of 
Australia, DSTO TN-0241, 1999):

38.4 38.7 39.0 38.5 38.5 39.0 38.5 38.6

		  We would like to get a 95% confidence interval for 
the population mean.

	 a.	 Compute the t-based confidence interval of 
Section 7.4.

	 b.	 Use the bootstrap method to find a 95% bootstrap 
interval for the population mean.

	 c.	 Compare your results in parts (a) and (b).

	90.	 Suppose that samples of size n1, n2, and n3 are in-
dependently selected from three different popula-
tions. Let �i and �i (i 5 1, 2, 3) denote the popula-
tion means and standard deviations, and consider 
estimating � 5 a1�1 1 a2�2 1 a3�3, where the ai>s 
are specified numerical constants. A point estimate 
of � is �n 5 a1x1 1 a2x2 1 a3x3. When the sample 
sizes are all large, �n  has approximately a normal 
distribution with variance

		  �2
�n

5 a2
1 ?

�2
1

n1
1 a2

2 ?
�2

2

n2
1 a2

3 ?
�2

3

n3
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An estimated variance s2
n�
 results from replacing the 

�2>s; by the s2>s; �n can then be standardized to ob-
tain a z variable from which the confidence interval 
�n 6  (z crit)s

n�
 is obtained. Suppose that samples of 

three different brands of tires with identical lifetime 
ratings—a store brand (1) and two national brands 
(2 and 3)—are selected, and the lifetime of each 
tire is determined, resulting in the following data:

Sample
Sample Sample standard

Brand size mean deviation
1 40 38,376 1522
2 32 41,569 1711
3 32 42,123 1645

Calculate and interpret a confidence interval with 
confidence level 95% for � 5 �1 2 (�2 1 �3)y2.

	91.	 Recent information suggests that obesity is an in-
creasing problem in America among all age groups. 
The Associated Press (October 9, 2002) reported that 
1276 individuals in a sample of 4115 adults were 
found to be obese (a body mass index exceeding 30; 
this index is a measure of weight relative to height).

	 a.	 Estimate the proportion of all American adults 
who are obese in a way that conveys informa-
tion about the reliability and precision of the 
estimate.

	 b.	 A 1998 survey based on people’s own assess-
ments revealed that 20% of all adult Americans 
consider themselves obese. Does the estimate of 
part (a) suggest that the 2002 percentage is more 
than 1.5 times the 1998 percentage? Explain.

	92.	 The one-sample CI for a normal mean and PI for a 
single observation from a normal distribution were 
both based on the central t distribution. A CI for a 
particular percentile (e.g., the 1st percentile or the 
95th percentile) of a normal population distribution 
is based on the noncentral t distribution. A particular 
distribution of this type is specified by both df and 
the value of the noncentrality parameter �(� 5 0 
gives the central t distribution). The key result is that 
the variable

t 5

x 2 �

�y1n
2 (z percentile)1n

sy�

		  has a noncentral t distribution with df 5 n 2 1 and 
� 5 (2z percentile)1n. Let  t.025.v, � and t.975,v, � de-
note the critical values that capture lower tail area 
.025 and upper tail area .025, respectively, under 
the noncentral t curve with v df and noncentrality 
parameters (when � 5 0, t.025 5 2t.975, since central 
t distributions are symmetric about 0).

	 a.	 Use the given information to obtain a formula 
for a 95% confidence interval for some particular 
percentile of a normal population distribution.

	 b.	 For � 5 6.58  and df 5 15, t.025  and  t.975 are 
(from Minitab) 4.1690 and 10.9684, respectively. 
Use this information to obtain a 95% CI for the 
5th percentile of the modulus of elasticity distri-
bution considered in Example 7.10.
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8
Testing Statistical  
Hypotheses

8.1	 Hypotheses and Test Procedures

8.2	 Tests Concerning Hypotheses About Means

8.3	 Testing Concerning Hypotheses  

About a Categorical Population

8.4	 Testing the Form of a Distribution

8.5	 Further Aspects of Hypothesis Testing

Introduction

Estimation of a parameter does not explicitly involve making a decision; instead we 
wish to determine the most plausible value (a point estimate) or a range of plausible 
values (a confidence interval). In contrast, the objective of a hypothesis-testing analysis  
is to decide which of two competing claims (hypotheses) is true. We have already 
encountered an informal situation of this sort in the context of quality control: At  
each time point, we used sample information to decide whether a process was 
out of control. The decision rule involved control limits, with the out-of-control 
conclusion justified only if the value of some quality statistic fell outside the limits.

In Section 8.1, we discuss the forms of hypotheses about parameters and the 
general nature of  for deciding between the two relevant hypotheses. 
Test procedures based on  distributions are developed in Section 8.2 for testing 
hypotheses about a single mean � or about the difference �1 2 �2 between two 
means. Sections 8.3 and 8.4 introduce procedures for hypotheses about certain 
population proportions and population distributions. Finally, in Section 8.5, we con-
sider a variety of issues and concepts relating to the behavior of test procedures. 
Hypothesis testing methods, as well as estimation methods, will be used extensively 
throughout the remainder of the book.
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8.1	 Hypotheses and Test Procedures �

A statistical hypothesis, or just hypothesis, is a claim or assertion either about one or 
more population or process characteristics (parameters) or else about the form of the 
population or process distribution. Here are some examples of legitimate hypotheses:

1.	 Parameter:	 � 5 �proportion of e-mail messages emanating from a certain 
system that are undeliverable

	 Hypothesis:	 � , .01

2.	 Parameters:	 �1 5 �true average lifetime for a particular name-brand tire 
(miles)

			  �2 5  true average lifetime for a less expensive store-brand tire
	 Hypothesis:	 �1 2 �2 . 10,000

3.	 Parameters:	 �1 5 �proportion of individuals in a certain population with an 
AA genotype for a particular genetic characteristic

	 �2 5 proportion of individuals with an Aa genotype

	 �3 5 proportion of individuals with an aa genotype

	 Hypothesis:	 �1 5 .25,  �2 5 .50,  �3 5 .25

4.	 Population distribution: f (x), where x 5 �the time between successive  
adjustments of a lathe process to 
correct for tool wear

	 Hypothesis:	� x  has  an  exponential  distribution,  that  is,  f1x2 5 �e2�x for
some  � . 0

In any hypothesis-testing problem, there are two competing hypotheses under con-
sideration. One hypothesis might be � 5 1000 and the other � Þ 1000, or we might be 
considering � 5 .10 versus � , .10. If it were possible to carry out a census of the entire 
population, we would know which of the two hypotheses is correct, but almost always 
our conclusion must be based on information in sample data. A test of hypotheses is a 
method for using sample data to decide between the two competing hypotheses under 
consideration. We initially assume that one of the hypotheses, the null hypothesis, is 
correct; this is the “prior belief” claim. We then consider the evidence (sample data), 
and we reject the null hypothesis in favor of the competing claim, called the alternative 
hypothesis, only if there is convincing evidence against the null hypothesis.

The null hypothesis, denoted by H0, is the assertion that is initially assumed to be 
true. The alternative hypothesis, denoted by Ha, is the claim that is contradictory to 
H0. The null hypothesis will be rejected in favor of the alternative hypothesis only if 
sample evidence suggests that H0 is false. If the sample does not strongly contradict 
H0, we will continue to believe in the truth of the null hypothesis. The two possible 
conclusions from a hypothesis-testing analysis are then reject H0 or fail to reject H0.

definitions
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Making a decision in a criminal trial is similar to what is involved in testing hypotheses. 
The null hypothesis, the claim initially believed to be true, is that the accused is innocent 
(“innocent until proven guilty”). The jury is instructed not to switch its belief to the alterna-
tive hypothesis that the accused is guilty unless there is serious and compelling evidence 
for reaching that conclusion. The burden of proof is on the prosecution to demonstrate 
conclusively from the evidence that the accused is guilty. In hypothesis testing, the burden 
of proof is on the alternative hypothesis; in the absence of evidence strongly contradictory 
to H0 and much more consistent with Ha, we continue to believe in the null hypothesis.

The selection of the claim believed true (H0) and the claim that will bear the 
burden of proof (Ha) depends on the objectives of the study. In general, if an investi-
gator wishes to demonstrate conclusively that a particular assertion is correct, or wants 
to see strong evidence for an assertion before taking action, that assertion should be 
incorporated in Ha. Frequently in science, a researcher develops a new theory that 
stands in contrast to currently accepted theory. If the current theory is identified as 
H0, and the new theory as Ha (the research hypothesis), and if H0 can then be rejected, 
the investigator will have compelling evidence that the new theory is correct.

Because of machining process variability, bearings produced by a certain machine  
do not have identical diameters. Let � denote the true average diameter for bearings cur-
rently being produced. The machine was initially calibrated to achieve the design spec-
ification � 5 .5 in. However, the manufacturer is now concerned that the diameters no 
longer conform to this specification. That is, the hypothesis � Þ .5 must now be consid-
ered a possibility. If sample evidence suggests that this latter hypothesis is indeed correct,  
the production process will have to be halted while recalibration takes place. Stopping 
the process is quite costly, so the manufacturer wants to be sure that recalibration is nec-
essary before this is done. Under these circumstances, a sensible choice of hypotheses is

	 H0: � 5 .5 (the specification is being met, so recalibration is unnecessary)
	 Ha: � Þ .5

Only compelling sample evidence would then result in H0 being rejected in favor 
of Ha.

Example 8.1

In many hypothesis-testing problems that we will consider, the null and alternative 
hypotheses assume particular forms. H0 will be

population or process characteristic 5 some hypothesized value

Ha then results from replacing the “5” in H0 by one of the three possible inequalities: 
.,,, orÞ ; the relevant inequality again depends on the research objectives. One 
example of this is H0: � 5 .002 versus Ha: � , .002, where � is the process standard 
deviation of bearing diameter.

A pack of a certain brand of cigarettes displays the statement “1.5 mg nicotine aver-
age per cigarette by FTC method.” Let � denote the mean nicotine content per 
cigarette for all cigarettes of this brand. The advertised claim is that � 5 1.5. People 

Example 8.2
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Since the alternative hypothesis in Example 8.2 asserted that � . 1.5, it might have 
seemed sensible to state H0 as the inequality � # 1.5. This assertion is in fact the implicit 
null hypothesis, but we will state H0 explicitly as a claim of equality. There are several 
reasons for this. First of all, the development of a test procedure is most easily understood 
if there is a unique value of � (or �, or whatever other parameter is under consideration) 
when H0 is true. Second, suppose sample data gives much more support to � . 1.5 
than to � 5 1.5. Then there would also be more support for � . 1.5 than for � # 1.5. 
If, on the other hand, � 5 1.5 is much more plausible than � . 1.5 in light of the data,  
then � # 1.5 would also be deemed more plausible than � . 1.5. So the conclusion 
when testing H0: � 5 1.5 versus Ha: � . 1.5 should be identical to that when consider-
ing the more realistic null hypothesis � # 1.5 against this alternative. Similarly, what-
ever conclusion reached when testing H0: � 5 .1 versus Ha: � , .1 would also apply to 
the implicit null hypothesis H0: � $ .1.

Errors in Hypothesis Testing
Once hypotheses have been formulated, we need a method for using sample data to 
determine whether H0 should be rejected. A decision rule used for this purpose is called 
a test procedure. Just as a jury may reach the wrong verdict in a trial, there is some 
chance that the use of a test procedure may result in an erroneous conclusion. One 
incorrect conclusion in a judicial setting is for a jury to convict an innocent person, and 
another is for a guilty person to be set free. Similarly, there are two possible errors to 
consider when developing a test procedure.

who smoke this brand would probably be disturbed if it turned out that true average 
nicotine content exceeded the claimed value, since excessive nicotine ingestion is a 
known health hazard. Suppose a sample of cigarettes of this brand is selected and the 
nicotine content of each cigarette is determined. Evidence from this sample against 
the company’s claim would have to be quite strong before the accusation is made 
that the claim is false, since serious financial and legal consequences could ensue 
from any such action. This suggests that we test

H0: � 5 1.5     (the advertised claims is correct)

against the alternative hypothesis

Ha: � . 1.5         (true average nicotine level exceeds the advertised value)

and reject H0 in favor of Ha only if sample evidence is very compelling for this conclusion.

A type I error is the error of rejecting H0 when H0 is actually true.
A type II error consists of not rejecting H0 when H0 is false.

definitions

No reasonable test procedure can guarantee complete protection against either type of 
error; this is the price we pay for basing our inference on sample data.
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Suppose you have to purchase tires for your vehicle and have narrowed your choice 
to a certain name-brand tire and another tire sold only through a particular chain of 
stores. The name-brand tire is more expensive to purchase than the store-brand tire, but 
the extra expense would be justified if the lifetime of the former significantly exceeded 
that of the latter. Let �1 denote true average tire lifetime for the brand-name tire under 
specified testing conditions, and let �2 denote true average lifetime for the store-brand 
tire under these conditions. You have decided that the extra expense can be justified 
only if �1 exceeds �2 by more than 10,000 miles, and you want to see persuasive evi-
dence before incurring this extra expense. The natural choice of hypotheses is then

H0: �1 2 �2 5 10,000
Ha: �1 2 �2 . 10,000

A type I error here involves rejecting H0 and purchasing the name-brand tire when 
its true average mileage does not exceed that of the store-brand tire by more than 
10,000 miles. A type II error consists of not rejecting H0 and purchasing the less 
expensive tire when the true average lifetime of the name-brand tire actually does 
exceed that of the store brand by more than 10,000 miles.

Recall that when sampling a population or a process, sampling variability will 
virtually always be present. In particular, the value of a sample mean x may be rather 
different from the value of �. In the tire situation, even if �1 2 �2 does equal 10,000, 
the name-brand tires in the sample may be unusually good and the store-brand 
sample unusually bad, yielding data for which H0 should be rejected. On the other 
hand, perhaps �1 2 �2 5 12,000, so H0 is false; yet there is some chance that the 
store-brand sample would be unusually good and the name-brand sample not so 
impressive, suggesting that H0 should not be rejected.

Example 8.3

If a test procedure cannot offer guaranteed protection against committing either a 
type I error or a type II error, we would at least like the chance of making either type of 
error to be small.

The probability of making a type I error is denoted by � and is called the level of 
significance or significance level of the test. Thus a test with � 5 .01 is said to 
have a significance level of .01. This means that if H0 is actually true and the test 
procedure is used repeatedly on different samples selected from the population 
or process, in the long run H0 would be incorrectly rejected only 1% of the time. 
The probability of a type II error is denoted by �.

definition

The ideal of � 5 0 and � 5 0 cannot be achieved as long as a conclusion is to be based 
on sample data. The test procedures used in practice allow the user to specify the sig-
nificance level � to be employed in the test. So why would someone ever select a sig-
nificance level like .10 or .05 when a smaller significance level such as .01 can also be 
employed? Why not always select a very small value for �? The answer is that the two 
error probabilities are inversely related to one another. Changing the test procedure to 
obtain a smaller probability of making a type I error inevitably makes it more likely that 
a type II error will be committed if H0 happens to be false (just as changing the rules of 
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evidence to make it less likely that an innocent person will be convicted also makes it 
more likely that a guilty person will go free). If a type I error is much more serious than 
a type II error, a very small value of � is reasonable. When a type II error could have 
quite unpleasant consequences, it is better to use a larger � to keep � under control. 
This leads to the following general principle for specifying a test procedure:

After thinking about the relative consequences of type I and type II errors, decide on 
the largest � that is tolerable for the situation under consideration. Then employ a test 
procedure that uses this maximum acceptable value—rather than anything smaller—
as the significance level (because using a smaller level would increase �). In following 
this principle, we are making � as small as possible subject to keeping a clamp on �.

Thus if you decide that � 5 .05 is tolerable, you should not use a test with � 5 .01 or .001, 
because doing so would inflate �. The significance levels used most frequently in practice 
are .05 and .01 (a 1-in-20 or 1-in-100 chance of rejecting H0 when it is true), but the level 
that you decide to employ should reflect the seriousness of errors in your specific situation.

Test Statistics and P-Values
A test of hypotheses is carried out by employing what is called a test statistic, the func-
tion of the data that is computed and used to decide between H0 and Ha. Suppose, 
for example, that � is the true average flexural strength of concrete beams of a certain 
type. These beams will not be used in a certain application unless there is strong evi-
dence that � exceeds 600 psi. The appropriate hypotheses then are H0: � 5 600 versus 
Ha: � . 600. A sample of beams will be selected, and the strength determined for each 
one. Obviously the value of the sample mean x will provide information about the value 
of �. Recall the following properties of the sampling distribution of x:

�x 5 � (the sampling distribution is centered at �)

When n is large, x has approximately a normal sampling distribution (the Central 
Limit Theorem) with standard error

�x 5
�1n
  estimated by 

s1n
in which case the standardized variables

	 z 5
x 2 �

�y1n
  z 5

x 2 �

sy1n

both have an approximately standard normal distribution (the z curve).

When H0 is true, �x 5 600, whereas when H0 is false, we expect x to exceed 600. The 
difference x 2 600 is the distance between the sample mean and what we expect it to 
be when H0 is true. Consider the test statistic

z 5
x 2 600
sy1n

The division by sy1n expresses the distance as some number of (estimated) standard 
deviations of x. If, for example, z 5 3.0, then the observed x value is 3 standard deviations 
larger than what would be expected were H0 true—a result not very consistent with H0. A 
z value of .5 results from an x value that is only half a standard deviation larger than what 
is expected when the null hypothesis is true; this distance is not at all contradictory to H0.
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Having decided on a test statistic and calculated its value for the given sample, we now 
ask the following key question: If H0 is true, how likely is it that a test statistic value at least as 
contradictory to H0 as the one obtained would result? If the likelihood of this is very small, 
then the test statistic value is quite extreme relative to what the null hypothesis suggests and 
very contradictory to H0. On the other hand, if there is a large chance of a value at least this 
extreme occurring when H0 is true, then what was observed is reasonably consistent with H0.

The P-value, or observed significance level (OSL), is the probability, calculated 
assuming H0 is true, of obtaining a test statistic value at least as contradictory to H0 
as the value that actually resulted. The smaller the P-value, the more contradic-
tory is the data to H0. The null hypothesis should then be rejected if the P-value 
is sufficiently small. In particular, the following decision rule specifies a test with 
the desired significance level (type I error probability) �:

Reject H0 if P@value # �.
Do not reject H0 if P@value . �.

definition

The recommended daily dietary allowance (RDA) for zinc among males older than 
50 years is 15 mg/day (World Almanac, 1992). The article “Nutrient Intakes and Dietary 
Patterns of Older Americans: A National Study” (J. of Gerontology, 1992: M145–M150) 
reported the following data on zinc intake for a sample of males age 65–74 years:

n 5 115  x 5 11.3  s 5 6.43
Does this data suggest that �, the average daily zinc intake for the entire population 
of males age 65–74, is less than the RDA? The relevant hypotheses are

H0: � 5 15

Ha: � , 15
Figure 8.1 shows a boxplot of data consistent with the given summary quantities. 

Roughly 75% of the sample observations are smaller than 15 (the top edge of the box is 
at the upper quartile). Furthermore, the observed x value, 11.3, is certainly smaller than 
15, but this could be just the result of sampling variability when H0 is true. Is it plausible 
that a sample mean this much smaller than what was expected if H0 were true occurred 
as a result of chance variation, or is � , 15 a better explanation for what was observed?

Example 8.4

Figure 8.1  Boxplot for zinc intake data
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The appropriate test statistic for testing the stated hypotheses is

z 5
x 2 15
sy1n

Because n is large here, when H0 is true z has approximately a standard normal distri-
bution (because z was formed by standardizing x using 15, the mean value of x under 
H0). This implies that the P-value will be a z-curve area. The test statistic value is

z 5
x 2 15
sy1n

5
11.3 2 15

6.43y1115
5

23.7
.600

5 26.17

Values of z at least as contradictory to H0 as this are those even smaller than 26.17 
(those resulting from x values that are even farther below 15 than 11.3). Thus

P@value 5 P(z , 26.17 when H0 is true)

 5 area under the standard normal (z) curve to the left of 26.17

 0

There is virtually no chance of seeing a z value this extreme as a result of chance 
variation alone when H0 is true. If a significance level of .01 is used, then

P@value 0 # .01 5 �

so the null hypothesis should be rejected. Because the P-value is so small, the null 
hypothesis would in fact be rejected at any reasonable significance level, even .001 
or smaller. The data is much more consistent with the conclusion that true average 
intake is in fact smaller than the RDA.

In Example 8.4, given that the alternative hypothesis asserted � , 15, it might 
seem reasonable to state H0 as � $ 15, previously referred to as the implicit null hypoth-
esis. However, our null hypothesis is explicitly stated as a claim of equality (H0: � 5 15). 
On page 355 we asserted the conclusion using H0: � 5 15 versus H0: � , 15 would be 
identical to that when considering H0: � $ 15 versus Ha: � , 15. Let us see why this is 
the case.

In the previous example, we tested H0: � 5 15 versus Ha: � , 15 and rejected H0 
in favor of Ha. Thus, we believe that � , 15 is a much more plausible assertion than 
� 5 15. It follows logically that we would also believe that � , 15 is a much more plau-
sible than the claim that � 5 16, or the claim that � 5 17, and so on. In other words, 
when we reject H0: � 5 15 in favor of Ha: � , 15, we are also implicitly saying that 
� , 15 is much more plausible than any value of � that exceeds 15. This is why explicit 
consideration of the null hypothesis with a claim of equality is equivalent to considering 
the more realistic H0 that includes an appropriate inequality.

Let �0 denote the value of � asserted by the null hypothesis (�0 5 15 in Example 8.4). 
The test statistic for testing hypotheses about � when the sample size n is large is

z 5
x 2 �0

s y1n
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Figure 8.2  Determination of the -value when the test statistic is 

-value  area in upper tail

 curve

Calculated  

0

0

0

-value  sum of area in two tails

 curve

Calculated 

-value  area in lower tail
 curve

Calculated  

1.  Upper-tailed test

a contains the inequality >

2.  Lower-tailed test

a contains the inequality <

3.  Two-tailed test

a contains the inequality 

When H0 is true, this test statistic will have approximately a standard normal distribu-
tion (this will be true for any test statistic labeled z in this book). The P-value is then a 
z-curve area that depends on the inequality in H0:

Inequality in H0 P-value Type of test
. Area to the right of the calculated z Upper-tailed
, Area to the left of the calculated z Lower-tailed
Þ 2 ? (tail area captured by calculated z) Two-tailed

These three cases are illustrated in Figure 8.2.

As an example of the latter case, suppose that we are testing
H0: � 5 .5 versus Ha: � Þ .5

where � denotes true average bearing diameter. The large-sample test statistic is

z 5
x 2 .5
sy1n

In this situation, values of x either much larger or much smaller than .5, corresponding 
to z values far from zero in either direction, are inconsistent with H0 and give support to 
Ha. If, for example, z 5 22.76, then

	 P@value 5 P(observing a z value at least as contradictory to H0 as 22.76
	  when H0 is true) Un
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 5 P(either z # 22.76 or z $ 2.76 when z has approximately
	  a standard normal distribution)

 5 (area under z curve to the left of 22.76)
	  1 (area under z curve to the right of 2.76)

 5 2(area under z curve to the left of 22.76)

 5 2(.0029) 5 .0058

The P-value would also be .0058 if z 5 2.76. Using a significance level of .05, H0 would 
be rejected because P-value # �.

Section 8.1 Exercises

	 1.	 State whether each of the following assertions is a 
legitimate statistical hypothesis and why:

	 a.	 H: � . 100	 b.	 H: x 5 45
	 c.	 H: � Þ 2.0	 d.	 H: s # .50
	 e.	 H: �1   

y�2 , 1	 f.	 H: x1 2 x2 5 25.0
	 g.	 H: � , .01, where � is the parameter of an expo-

nential distribution used to model component 
lifetime

	 h.	 H: � 5 .10, where � is the population propor-
tion of components that need warranty service

	 i.	 H: x 5 sound intensity of a certain source (deci-
bels) has a lognormal distribution

	 j.	 H: x 5 rupture strength of a certain material 
(10,000 N/cm2) has a Weibull distribution with 
� 5 8 and � 5 50

	 2.	 To decide whether the pipe welds in a nuclear 
power plant meet specifications, a random sam-
ple of welds is to be selected and the strength of 
each weld (force required to break the weld) de-
termined. Suppose a population mean strength of 
100 lb/in2 is the dividing line between welds meet-
ing specification or not doing so. Explain why it 
might be better to test the hypotheses H0: � 5 100 
versus Ha: � . 100 rather than H0: � 5 100 versus 
Ha: � , 100.

	 3.	 Many older homes have electrical systems that use 
fuses rather than circuit breakers. A manufacturer 
of 40-amp fuses wants to make sure that the true 
average amperage at which its fuses burn out is 
indeed 40. If the average amperage is lower than 
40, purchasers will complain because the fuses will 
have to be replaced too frequently, whereas if the 

average exceeds 40, the manufacturer might be 
liable for damage to an electrical system due to fuse 
malfunction. After obtaining data from a sample of 
fuses, what null and alternative hypotheses would 
be of interest to the manufacturer?

	 4.	 Before agreeing to purchase a large order of polyeth-
ylene sheaths for a particular type of high-pressure, 
oil-filled submarine power cable, a company wants 
to see conclusive evidence that the population stan-
dard deviation of sheath thickness is less than .05 mm.  
What hypotheses should be tested, and why? In this 
context, what are the type I and type II errors?

	 5.	 A new design for the braking system on a certain 
type of car has been proposed. For the current sys-
tem, the true average braking distance at 40 mph 
under specified conditions is known to be 120 ft. It is 
proposed that the new design be implemented only 
if sample data strongly indicates a reduction in true 
average braking distance for the new design. State 
the relevant hypotheses, and describe the type I and 
type II errors in the context of this situation.

	 6.	 A mixture of pulverized fuel ash and Portland ce-
ment to be used for grouting should have a true aver-
age compressive strength of more than 1300 KN/m2. 
The mixture will not be used unless experimental 
evidence indicates conclusively that the strength 
specification has been met. State the relevant hy-
potheses, and describe the type I and type II errors 
in the context of this problem.

	 7.	 A regular type of laminate is currently being used by 
a manufacturer of circuit boards. A special laminate 
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has been developed in an attempt to reduce warpage. 
The regular laminate will be used on one sample of 
specimens and the special laminate on another sam-
ple; the amount of warpage will then be determined 
for each specimen. The manufacturer will then 
switch to the special laminate only if it can be dem-
onstrated that the true average amount of warpage 
for that laminate is less than for the regular laminate. 
State the relevant hypotheses, and describe the type I 
and type II errors in the context of this situation.

	 8.	  a.  �Use the definition of a P-value to explain why 
H0 would certainly be rejected if P-value 5 
.0003.

	 b.	 Use the definition of a P-value to explain why 
H0 would definitely not be rejected if P-value 5 
.350.

	 9.	 For which of the given P-values will the null hy-
pothesis be rejected when using a test with a signifi-
cance level of .05?

	 a.	 .001	 b.	 .021	 c.	 .078
	 d.	 .047	 e.	 .156

	10.	 For each of the given pairs of P-values and signifi-
cance levels, state whether H0 should be rejected.

	 a.	 P@value 5 .084, � 5 .05
	 b.	 P@value 5 .003, � 5 .001
	 c.	 P@value 5 .048, � 5 .05
	 d.	 P@value 5 .084, � 5 .10
	 e.	 P@value 5 .039, � 5 .01
	 f.	 P@value 5 .017, � 5 .10

	11.	 Let � denote the true average reaction time to a cer-
tain stimulus. A test of H0: � 5 5 versus Ha: � . 5 
will be based on a large sample size so that when 
H0 is true, the test statistic z 5 (x 2 5) y(s y1n)  
has approximately a standard normal distribution 
(the z curve). Determine the value of z and the cor-
responding P-value in each of the following cases:

	 a.	 n 5 50, x 5 5.23, s 5 .89
	 b.	 n 5 35, x 5 5.72, s 5 1.01
	 c.	 n 5 40, x 5 5.35, s 5 1.67

	12.	 Newly purchased automobile tires of a certain type 
are supposed to be filled to a pressure of 34 psi. Let � 
denote the true average pressure. A test of H0: � 5 34 
versus Ha: � Þ 34 will be based on a large sample of 
tires so that the test statistic z 5 (x 2 34) y(s1n) will 

have approximately a standard normal distribution 
when H0 is true. Determine the value of z and the 
P-value in each of the following cases:

	 a.	 n 5 50, x 5 34.43, s 5 1.06
	 b.	 n 5 50, x 5 33.57, s 5 1.06
	 c.	 n 5 32, x 5 33.25, s 5 1.89
	 d.	 n 5 36, x 5 34.66, s 5 2.53

	13.	 It is specified that a certain type of iron should 
contain .85 gm of silicon per 100 gm of iron 
(.85%). The silicon content of each of 32 randomly 
selected iron specimens was determined, and the 
accompanying Minitab output resulted from a test 
of the appropriate hypotheses:

	Variable	 N	 Mean	 StDev	SE Mean	 Z	P-Value

	sil cont	32	 0.8228	 0.1894	 0.0335	-0.81	 0.42

	 a.	 What hypotheses were tested?
	 b.	 What conclusion would be reached for a signifi-

cance level of .05, and why? Answer the same 
question for a significance level of .10.

	14.	 Lightbulbs of a certain type are advertised as having 
an average lifetime of 750 hours. The price of these 
bulbs is very favorable, so a potential customer has 
decided to go ahead with a purchase arrangement 
unless it can be conclusively demonstrated that the 
true average lifetime is smaller than what is adver-
tised. A random sample of 50 bulbs was selected, 
the lifetime of each bulb determined, and the ap-
propriate hypotheses were tested using Minitab, 
resulting in the accompanying output:

	Variable	 N	 Mean	 StDev	 SEMean	 Z	 P-Value

	lifetime	 50	738.44	 38.20	 5.40	 -2.14	 0.016

	 a.	 How can you tell from the output that the alter-
native hypothesis was not Ha: � . 750?

	 b.	 What conclusion would be appropriate for a 
significance level of .05? A significance level 
of .01? What significance level and conclusion 
would you recommend?

	15.	 A sample of 40 speedometers of a particular type is se-
lected, and each speedometer is calibrated for accura-
cy at 55 mph, resulting in a sample mean and sample 
standard deviation of 53.87 and 1.36, respectively. 
Does this data suggest that the true average reading 
when speed is 55 mph is in fact something other than 
55? State the relevant hypotheses, calculate the value 
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of the appropriate z statistic, determine the P-value, 
and state the conclusion for a significance level of .01.

	16.	 To obtain information on the corrosion-resistance 
properties of a certain type of steel conduit, 35 
specimens are buried in soil for an extended pe-
riod. The maximum penetration (in mils) is then 
measured for each specimen, yielding a sample 
mean penetration of 52.7 and a sample standard 
deviation of 4.8. The conduits were manufactured 
with the specification that true average penetration 
be at most 50 mils. Does the sample data indicate 
that specifications have not been met? State the rel-
evant hypotheses, calculate the value of the appro-
priate z statistic, determine the P-value, and state 
the conclusion for a significance level of .05.

	17.	 Automatic identification of the boundaries of sig-
nificant structures within a medical image is an 
area of ongoing research. The article “Automatic 
Segmentation of Medical Images Using Image 
Registration: Diagnostic and Simulation Applica-
tions” (J. of Medical Engr. and Tech., 2005: 53–63) 
discussed a new technique for such identification. 

A measure of the accuracy of the automatic region 
is the average linear displacement (ALD). The 
paper gave the following ALD observations for a 
sample of 49 kidneys (units of pixel dimensions).

1.38 0.44 1.09 0.75 0.66 1.28 0.51
0.39 0.70 0.46 0.54 0.83 0.58 0.64
1.30 0.57 0.43 0.62 1.00 1.05 0.82
1.10 0.65 0.99 0.56 0.56 0.64 0.45
0.82 1.06 0.41 0.58 0.66 0.54 0.83
0.59 0.51 1.04 0.85 0.45 0.52 0.58
1.11 0.34 1.25 0.38 1.44 1.28 0.51

	 a.	 Summarize and describe the data.
	 b.	 Is it plausible that ALD is at least approximately 

normally distributed? Must normality be as-
sumed prior to testing hypotheses about true 
average ALD? Explain.

	 c.	 The authors commented that in most cases the 
ALD is better than or on the order of 1.0. Does 
the data in fact provide strong evidence for 
concluding that true average ALD under these 
circumstances is less than 1.0? Carry out an ap-
propriate test of hypotheses.

8.2	 Tests Concerning Hypotheses About Means �

In this section, we consider hypotheses either about a single population or process 
mean � or about a difference �1 2 �2 between two such means. Our test procedures 
will utilize test statistics that have either exactly or approximately a t distribution when 
the null hypothesis H0 is true. This implies that the P-value for the test—the prob-
ability, calculated assuming that H0 is true, of observing a test statistic value at least as 
contradictory to the null hypothesis as what was obtained—will be a t-curve tail area of 
some sort. The particular tail area that is relevant depends on whether the alternative 
hypothesis Ha contains an inequality of the form ., ,, or Þ.

-Values for  Tests
Inequality in Ha Type of test Determination of the P-value

. Upper-tailed Area under the relevant  curve to 
the  of the calculated 

, Lower-tailed Area under the relevant  curve to 
the  of the calculated 

Þ Two-tailed Twice the tail area captured by the 
calculated  under the relevant  curve

By the “relevant” curve, we mean the one having the appropriate number of df. 
The three cases are illustrated in Figure 8.3.
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364	 chapter 8   Testing Statistical Hypotheses

Appendix Table VI contains a tabulation of t-curve upper-tail areas. Each differ-
ent column of the table is for a different number of df, and the rows are for calculated 
values of the test statistic t ranging from 0.0 to 4.0 in increments of .1. For example, 
the number .074 appears at the intersection of the 1.6 row and the 8 df column, so 
the area under the 8 df curve to the right of 1.6 (an upper-tail area) is .074. Because 
t curves are symmetric, .074 is also the area under the 8 df curve to the left of 21.6 
(a lower-tail area).

Suppose, for example, that a test of H0: � 5 100 versus Ha: � . 100 is based on the 
8 df t distribution. If the calculated value of the test statistic is t 5 1.6, then the P-value 
for this upper-tailed test is .074. Because .074 exceeds .05, we would not be able to 
reject H0 at significance level .05. If the alternative hypothesis is Ha: � , 100 and a test 
based on 20 df yields t 5 23.2, then Appendix Table VI shows that the P-value is the 
captured lower-tail area .002. The null hypothesis can be rejected at either level .05 or 
.01. Consider testing H0: �1 2 �2 5 0 versus Ha: �1 2 �2 Þ 0; the null hypothesis states 
that the means of the two populations are identical, whereas the alternative hypothesis 
states that they are different without specifying a direction of departure from H0. If the 
test is based on 20 df and t 5 3.2, then the P-value for this two-tailed test is 2(.002) 5 
.004. This would also be the P-value for t 5 23.2. The tail area is doubled because 
values both larger than 3.2 and smaller than 23.2 are more contradictory to H0 than 
what was calculated (values farther out in either tail of the t curve). Notice that if the 

Figure 8.3  -values for  tests: (1) upper-tailed; (2) lower-tailed; (3) two-tailed
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calculated value of t exceeds 4.0, for all but very small df’s the captured tail area is negli-
gible. Also note that the table jumps from 40 df to 60 df to 120 df to  (the z or standard 
normal curve). For example, for 45 df, one could either interpolate between 40 df and 
60 df, or use the z-curve area as an approximation.

Tests Concerning a Single Mean
Consider testing hypotheses about the mean � of a single population or process. The 
null hypothesis will be a statement of equality, such as H0: � 5 100. The alternative hy-
pothesis Ha will contain one of three possible inequalities. A general description of the 
test procedures necessitates using a symbol to denote the value of � asserted to be true 
by the null hypothesis. We use �0 to denote this null value. Thus the general form of 
the null hypothesis will be H0: � 5 �0, and the contradictory claim will be Ha: � . �0, 
Ha: � , �0, or Ha: � Þ �0.

Suppose that the sample x1, . . . , xn has been randomly selected from a normal 
population or process distribution (recall from Chapter 2 that the plausibility of this can 
be checked by constructing a normal quantile plot). Then, as discussed in the develop-
ment of a confidence interval for �, the standardized variable

t 5
x 2 �

s y1n

has a t distribution with n 2 1 degrees of freedom. Our test statistic results from replac-
ing � by the null value �0. For H0: � 5 100, this gives the test statistic

t 5
x 2100
s y1n

The key result is that when the null hypothesis is true, the test statistic has a t distribu-
tion based on n 2 1 df; this is what justifies computing the P-value as described at the 
beginning of this section.

The One-Sample  Test
Null hypothesis:	�  0: � 5 �0

Test statistic:	�  5
2 �0

y1  

-value:	�C alculated by reference to the  curve for  2 1 df. The test is upper-tailed  
when the alternative hypothesis is a: � . �0, lower-tailed in the case 

a: � , �0, and two-tailed if the alternative is a: � Þ �0.
Assumption:	�  1, 2,…,  is a random sample from a normal population or process 

distribution. If  is large (usually  . 30 suffices), this normality assump-
tion is no longer necessary, because the Central Limit Theorem guaran-
tees that the  sampling distribution is approximately normal whatever 
the shape of the population or process distribution. The test statistic 
can then be denoted by  rather than , and the -value is obtained from 
the  (standard normal) curve.
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Glycerol is a major by-product of ethanol fermentation in wine production and 
contributes to the sweetness, body, and fullness of wines. The article “A Rapid and 
Simple Method for Simultaneous Determination of Glycerol, Fructose, and Glucose  
in Wine” (American J. of Enology and Viticulture, 2007: 279–283) includes the fol-
lowing observations on glycerol concentration (mg/mL) for samples of standard-
quality (uncertified) white wines: 2.67, 4.62, 4.14, 3.81, 3.83. Suppose the desired 
concentration value is 4. Does the sample data suggest that true average concen-
tration is something other than the desired value? The normal quantile plot in 
Figure 8.4 provides strong support for assuming that the population distribution of 
glycerol concentration is normal. Let’s carry out a test of appropriate hypotheses 
using the one-sample t test with a significance level of .05. 

Our analysis employs a sequence of steps that we advocate using for any hy-
pothesis-testing investigation:

1.	 Parameter of interest: � 5 true average glycerol concentration
2.	 Null hypothesis: H0: � 5 4
3.	 Alternative hypothesis: Ha: � Þ 4

4.	 Test statistic formula: t 5 x 2 4
s y1n

    (do not substitute sample quantities yet)

5.	 Computation of test statistic value: x 5 3.814, s 5 .718, and 

t 5
3.814 2 4
.718 y15

5 2.58 2.6

6.	 Determination of the P-value: The test is based on n 2 1 5 4 df. Appendix 
Table VI shows that the area under the 4 df curve to the right of .6 is .290. 

Example 8.5

Figure 8.4  Normal quantile plot for the data of Example 8.5
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Suppose the sample size in Example 8.5 had been 45 rather than 5, with the same 
values of x and s. The normality assumption for glycerol concentration becomes un-
necessary. The test statistic would be labeled z, and its value would be z 5 21.74. 
Appendix Table I shows that the area under the z curve to the left of 21.74 is .0409, so 
the P-value is 2(.0409) 5 .0818 and H0 would be rejected at level .10 but not at levels 
.05 or .01.

Tests Concerning a Difference Between  
Two Means: Independent Samples
Hypothesis testing often is used as a basis for comparing two populations, processes, or treat-
ments. For example, data might be collected to decide whether population mean fuel ef-
ficiency for a particular compact car exceeds that for a certain midsize car by more than 4 
miles per gallon. Alternatively, two coatings for retarding corrosion might be available for 
treating a certain type of pipe. An experiment might then be carried out to decide whether 
the true average amount of corrosion when the first coating is used differs from the true 
average amount when the second coating is used; the two coatings are the treatments being 
studied. The same notation for the two population, process, or treatment means employed 
in connection with confidence intervals in the previous chapters will be used here:
	 �1 5 �mean of population or process 1, or the true average response when treat-

ment 1 is applied
	 �2 5 �mean of population or process 2, or the true average response when treat-

ment 2 is applied

Therefore the area under the 4 df curve to the left of 2.6 is .290. Because 
the test is two-tailed, P-value 5 2(.290) 5 .580.

7.	 Conclusion: The specified significance level is  � 5 .05. Since P-value 5 
.580 . .05 5 �, we cannot reject H0 at this (or any other reasonable) signifi-
cance level. The data does not provide strong evidence for concluding that 
population mean glycerol concentration differs from 4. Notice that in not 
rejecting H0, we may be committing a type II error (not rejecting the null 
hypothesis when it is false); we hope, though, we came to this conclusion 
for the right reason!

The R output from a request to carry out the test follows. The P-value differs 
slightly from ours because R uses more decimal accuracy in computing t. Thus, 
if H0 were true, about 59% of all samples would yield a value of t more extreme 
than what we obtained. We decided not to reject H0 because 2.58 is not in the 
most extreme 5% of all t values.

One Sample t-test

data: concentration

t = -0.5789, df = 4, p-value = 0.5937

alternative hypothesis: true mean is not equal to 4

95 percent confidence interval: 2.921875 4.706125

sample estimates: mean of x 	 3.814 
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Inferences about the value of �1 relative to �2 are based on two independently obtained 
random samples, one from the first population, process, or treatment and the other 
from the second. Let
	 n1 5 number of observations in the first sample
	 x1 5 sample mean of these n1 observations
	 s2

1 5 sample variance of these n1 observations

and n2, x2, and s2
2 are defined analogously with respect to the second sample. Assume that 

both population, process, or treatment response distributions are normal. A confidence 
interval for the difference �1 2 �2 was based on the fact that the standardized variable

t 5
x1 2 x2 2 (�1 2 �2)C s2

1

n1
1

s2
2

n2

has approximately a t distribution. Suppose the null hypothesis is H0: �1 2 �2 5 4 (i.e., 
the value of �1 is 4 larger than the value of �2). A test statistic results from replacing 
�1 2 �2 in the numerator of t by the null value 4. The test statistic then has approxi-
mately a t distribution when the null hypothesis is true. The test will be upper-tailed if 
the alternative hypothesis is Ha: �1 2 �2 . 4, lower-tailed if the alternative contains the 
inequality ,, and two-tailed if Þ appears in Ha.

A general description of the test procedure requires the use of a symbol for the null 
value; we use the Greek letter D for that purpose. Most frequently, in practice, D 5 0, 
in which case the null hypothesis says there is no difference between the two �’s.

The Two-Sample  Test
Null hypothesis:	�  0: �1 2 �2 5 D �(D denotes the null value, a number appropriate to 

the problem situation under consideration)

Test statistic:	�  5
1 2 2 2 DC 2

1

1

1

2
2

2

-value:	� When 0 is true, the test statistic has approximately a  distribution 
with

	 df 5
3( 1)

2 1 ( 2)
24 2

( 1)
4

1 2 1
1

( 2)
4

2 2 1

	� where 5  y1  (df should be rounded down to the nearest whole 
number). The -value should then be calculated by reference to the 
corresponding  curve according to whether the test is upper-, lower-, 
or two-tailed.

Assumptions:	�T he two random samples are selected independently, both from under-
lying normal population, process, or treatment response distributions.  
If the sample sizes are large (usually both 1 . 30 and 2 . 30 will suffice), 
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The deterioration of many municipal pipeline networks across the country is a grow-
ing concern. One technology proposed for pipeline rehabilitation uses a flexible lin-
er threaded through existing pipe. The article “Effect of Welding on a High-Density 
Polyethylene Liner” (J. of Materials in Civil Engr., 1996: 94–100) reported the fol-
lowing data on tensile strength (psi) of liner specimens both when a certain fusion 
process was used and when this process was not used:

	 1.	 No fusion:	 2748	 2700	 2655	 2822	 2511
			   3149	 3257	 3213	 3220	 2753
	 n1 5 10  x1 5 2902.8  s1 5 277.3  se1 5 87.69

	 2.	 Fused:	 3027	 3356	 3359	 3297	 3125	 2910	 2889	 2902
	 n2 5 8  x2 5 3108.1  s2 5 205.9  se2 5 72.80

Figure 8.5 shows normal probability plots from Minitab. These plots employ a 
probability scale rather than the normal quantiles discussed previously, but the criti-
cal issue is the same: Is the pattern of plotted points reasonably close to linear? There 
certainly is some wiggling in these plots, but not enough to suggest that the normal-
ity assumption is implausible. Furthermore, the P-values that appear along with the 
plots are for formal tests of the assertion that the underlying distributions are normal 
(we discuss this test in Section 8.4). Because each P-value exceeds .1, the hypothesis 
of normality cannot be rejected.
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Figure 8.5  Normal probability plots from Minitab of the tensile 
strength data

the Central Limit Theorem implies that the normality assumption is no 
longer necessary. In this case, the test statistic can be denoted by , and 
the -value calculated by reference to the  curve.
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370	 chapter 8   Testing Statistical Hypotheses

The authors of the article stated that the fusion process increased the average 
tensile strength. The message from the comparative boxplot of Figure 8.6 is not all 
that clear. Let’s carry out a test of hypotheses to see whether the data supports this 
conclusion.

	1.	Let �1 be the true average tensile strength of specimens when the no-fusion 
treatment is used and �2 denote the true average tensile strength when the 
fusion treatment is used.

	2.	H0: �1 2 �2 5 0   (�no difference in the true average tensile strengths for 
the two treatments)

	3.	Ha: �1 2 �2 , 0   � (true average tensile strength for the no-fusion treatment 
is less than that for the fusion treatment, so the investiga-
tors’ conclusion is correct)

Figure 8.6 A comparative boxplot of the tensile strength data
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	4.	The null value is D 5 0, so the test statistic is

t 5
x1 2 x2C s2

1

n1
1

s2
2

n2

	5.	We now compute both the test statistic value and the df for the test:

t 5
2902.8 2 3108.1C(277.3)2

10
1

(205.9)2

8

5
2205.3
113.97

5 21.8

	 df 5
3(87.69)2 1 (72.80)24 2

(87.69)4y9 1 (72.80)4y7
5 15.94

so the test will be based on 15 df.
	6.	Appendix Table VI shows that the area under the 15 df t curve to the right 

of 1.8 is .046, so the P-value for a lower-tailed test is also .046. The following 
Minitab output summarizes all the computations:
Twosample T for nofusion vs fused

		  N	 Mean	 StDev	 SE Mean
nofusion	 10	 2903	 277	 88
fused		  8	 3108	 206	 73

95% C.I. for mu nofusion-mu fused: (–448, 38)
T-Test mu nofusion = mu fused (vs <): T= – 1.80 P = 0.046 DF=15

7.	 Using a significance level of .05, we can barely reject the null hypothesis in 
favor of the alternative hypothesis, confirming the conclusion stated in the 
article. However, someone demanding more compelling evidence might 
select � = .01, a level for which H0 cannot be rejected.

Suppose the issue in Example 8.6 had been whether fusing increased true aver-
age strength by more than 100 psi. Then the relevant hypotheses would have been 
H0 5 �1 2 �2 5 2100 versus Ha: �1 2 �2 , 2 100; that is, the null value would have 
been D 5 2100.

Tests Concerning a Difference Between  
Two Means: Paired Data
A comparison of two population, process, or treatment means is often carried out by col-
lecting data in pairs. Suppose, for example, that two different fertilizer formulations are 
being compared with respect to crop yield. Variation in soil characteristics, amount of 
precipitation, amount of sunshine, and various other factors can affect yield. To protect 
against this extraneous variation, an investigator could select pairs of plots (the experi-
mental units) so that within each pair the two plots are as similar as possible with respect 
to any characteristics that might have a bearing on yield. Then the first fertilizer could 
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372	 chapter 8   Testing Statistical Hypotheses

The Paired  Test
Null hypothesis	 0: � 5 D � (equivalent to �1 2 �2 5 D) where �  denotes the popula-

tion mean difference

Test statistic:	�  5
2 D

  

y1  ,  where

5 number of sample differences (pairs)

1, 2, . . . ,  5 these  sample differences
		  5 sample mean difference
		  5 sample standard deviation of the differences

-value:	�C alculated from the  curve with  2 1 df as described previously. The 
test is upper-tailed, lower-tailed, or two-tailed, depending on whether the 
inequality in a is ., ,, or Þ , respectively.

Assumptions:	�T he sample differences 1, . . . ,  have been randomly selected from a dif-
ference population having a normal distribution. If  is large, the normality 
assumption is not necessary; the test statistic is labeled , and the -value 
is determined from the  curve.

Musculoskeletal neck-and-shoulder disorders are all too common among office 
staff who perform repetitive tasks using visual display units. The article “Upper-
Arm Elevation During Office Work” (Ergonomics, 1996: 1221–1230) reported 
on a study to determine whether more varied work conditions would have any 
impact on arm movement. The accompanying data was obtained from a sample 
of n 5 16 subjects. Each observation is the amount of time, expressed as a pro-
portion of total time observed, during which arm elevation was below 30°. The 
two measurements from each subject were obtained 18 months apart. During 
this period, work conditions were changed, and subjects were allowed to engage 

Example 8.7

be applied to one plot within each pair and the second formulation used on the other 
plot. This pairing is really a special case of blocking, as discussed in Chapter 4. The 
homogeneity of experimental units within each block (pair) makes it easier to detect a 
difference between the treatments if a difference actually exists.

Again, let �1 and �2 denote the two population, process, or treatment response 
means. The pairs in a sample can be viewed as having been selected from a much larger 
population of pairs. Now conceptualize subtracting the second number in each such 
pair from the first number to obtain a population of differences. If we let �d denote the 
population mean difference, it follows that

�d 5 �1 2 �2

This relationship implies that any hypothesis about �1 2 �2 is equivalent to a hypothe-
sis about �d. For example, the assertion that �1 2 �2 5 10 is the same as the claim 
�d 5 10. But hypotheses about �d can be tested by using the sample differences. In 
particular, assuming that the underlying distribution of differences is normal, we can 
use a one-sample t test based on these sample differences.
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in a wider variety of work tasks. Does the data suggest that true average time dur-
ing which elevation is below 30° differs after the change from what it was before 
the change?

Subject: 1 2 3 4 5 6 7 8
Before: 81 87 86 82 90 86 96 73
After: 78 91 78 78 84 67 92 70
Difference: 3 24 8 4 6 19 4 3

Subject: 9 10 11 12 13 14 15 16
Before: 74 75 72 80 66 72 56 82
After: 58 62 70 58 66 60 65 73
Difference: 16 13 2 22 0 12 29 9

Figure 8.7 shows a normal probability plot of the 16 differences; the pattern in the 
plot is quite straight, supporting the normality assumption. A boxplot of these differ-
ences appears in Figure 8.8; the boxplot is located considerably to the right of zero, 
suggesting that perhaps �d . 0 (note also that 13 of the 16 differences are positive 
and only two are negative).

Figure 8.7 A normal probability plot from Minitab of the 
differences in Example 8.7
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Figure 8.8 A boxplot of the differences in  Example 8.7
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Let’s now use the recommended sequence of steps to test the appropriate 
hypotheses.

	1.	Let �d denote the true average difference between elevation time before the 
change in work conditions and time after the change.

	2.	H0: �d 5 0 � (there is no difference between true average time before the 
change and true average time after the change)

	3.	Ha: �d Þ 0

	4.	 t 5
d 2 0
sd y1n

5
d

sd y1n

	5.	n 5 16, ^di 5 108, ^d2
i 5 1746, from which d 5 6.75, sd 5 8.234, and 

t 5
6.75

8.234y116
5 3.28 3.3

	6.	Appendix Table VI shows that the area to the right of 3.3 under the t curve 
with 15 df is .002. The inequality in Ha implies that a two-tailed test is appro-
priate, so the P-value is approximately 2(.002) 5 .004 (Minitab gives .0051).

	7.	Since .004 , .01, the null hypothesis can be rejected at either significance 
level .05 or .01. It does appear that the true average difference between times 
is something other than zero; that is, true average time after the change is 
different from that before the change.

Suppose the question posed had been, Does it appear that the change in work  
conditions decreases true average time by more than 5? The relevant hypoth-
eses would then be H0: �d 5 5 versus Ha: �d . 5, for which the test statistic is 
t 5 (d 2 5)y(sd y1n ).

In Section 8.4, we show how a test of the null hypothesis that a population distribu-
tion is normal can be based on a normal quantile or probability plot. In Section 8.5, we 
discuss several further aspects of hypothesis testing, including the determination of type 
II error probabilities for t tests.

Section 8.2 Exercises

	18.	 Give as much information as you can about the  
P-value of a t test in each of the following situations:

	 a.	 Upper-tailed test, df 5 8, t 5 2.0
	 b.	 Lower-tailed test, df 5 11, t 5 22.4
	 c.	 Two-tailed test, df 5 15, t 5 21.6
	 d.	 Upper-tailed test, df 5 19, t 5 2.4
	 e.	 Upper-tailed test, df 5 5, t 5 5.0
	 f.	 Two-tailed test, df 5 40, t 5 24.8

19.   The paint used to make lines on roads must reflect 
enough light to be clearly visible at night. Let � denote 

the true average reflectometer reading for a new type of 
paint under consideration. A test of H0: � 5 20 versus 
Ha: � . 20 will be based on a random sample of size n 
from a normal population distribution. What conclu-
sion is appropriate in each of the following situations?

	 a.	 n 5 15, t 5 3.2, � 5 .05
	 b.	 n 5 9, t 5 1.8, � 5 .01
	 c.	 n 5 24, t 5 2.2

	20.	 A certain pen has been designed so that true 
average writing lifetime under controlled conditions 
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(involving the use of a writing machine) is at least 10 
hours. A random sample of 18 pens is selected, the 
writing lifetime of each is determined, and a normal 
quantile plot of the resulting data supports the use of 
a one-sample t test.

	 a.	 What hypotheses should be tested if the investi-
gators believe a priori that the design specifica-
tion has been satisfied?

	 b.	 What conclusion is appropriate if the hypoth-
eses of part (a) are tested, t 5 22.3, and � 5 .05?

	 c.	 What conclusion is appropriate if the hypothe-
ses of part (a) are tested, t 5 21.8, and � 5 .01?

	 d.	 What should be concluded if the hypotheses of 
part (a) are tested and t 5 23.6?

	21.	 The true average diameter of ball bearings of a cer-
tain type is supposed to be .5 in. A one-sample t test 
will be carried out to see whether this is the case. 
What conclusion is appropriate in each of the fol-
lowing situations?

	 a.	  n 5 13, t 5 1.6, � 5 .05
	 b.	  n 5 13, t 5 21.6, � 5 .05
	 c.	  n 5 25, t 5 22.6, � 5 .01
	 d.	  n 5 25, t 5 23.9

	22.	 The article “The Foreman’s View of Quality Con-
trol” (Quality Engr., 1990: 257–280) described 
an investigation into the coating weights for large 
pipes resulting from a galvanized coating process. 
Production standards call for a true average weight 
of  200 lb per pipe. The accompanying descriptive 
summary and boxplot are from Minitab.

Variable	N	 Mean	Median	TrMean	StDev	SEMean
ctg wt	 30	206.73	206.00	206.81	 6.35	 1.16

Variable	 Min	 Max	 Q1	 Q3
ctg wt	 193.00	 218.00	 202.75	 212.00

200 210190 220

Coating weight

	 a.	 What does the boxplot suggest about the status 
of the specification for true average coating 
weight?

	 b.	 A normal quantile plot of the data was quite 
straight. Use the descriptive output to test the 
appropriate hypotheses.

	23.	 Exercise 5 in Chapter 2 gave n 5 12 observations 
on daily energy demand readings (kW h) for 
remote telecommunications stations throughout 
Cameroon, from which the sample mean and 
sample standard deviation are 32.59 and 10.66, re-
spectively. Suppose the investigators had believed a 
priori that true average daily energy demand would 
be at most 30 kW h. Does the data contradict this 
prior belief? Assuming normality, test the appropri-
ate hypotheses using a significance level of .05.

	24.	 Reconsider the sample observations introduced in 
Exercise 15 in Chapter 2 on the required force (N) 
to cause initial cracks in a thin enclosure for a sub-
dermally implanted biotelemetry device:

2006.1 2065.2 2118.9 1686.6 1966.9 1792.5

		  Suppose the device will not be used unless the 
true average required force to cause initial cracks 
exceeds 1800 N. Does this requirement appear to 
have been satisfied? State and test the appropriate 
hypotheses.

	25.	 Poly(3-hydroxybutyrate) (PHB), a semicrystalline 
polymer that is fully biodegradable and biocompat-
ible, is obtained from renewable resources. From a 
sustainability perspective, PHB offers many attrac-
tive properties though it is more expensive to pro-
duce than standard plastics. The authors of “The 
Melting Behaviour of Poly(3-Hydroxybutyrate) by 
DSC. Reproducibility Study” (Polymer Testing, 
2013: 215–220) wanted to investigate various physi-
cal properties of PHB by using a differential scan-
ning calorimeter (DSC).

		  For each of 12 PHB specimens, the authors used a 
DSC to measure the melting point (in °C) of the 
polymer, which is the temperature for 99% comple-
tion of the fusion process.

180.5 181.7 180.9 181.6 182.6 181.6
181.3 182.1 182.1 180.3 181.7 180.5

		  A normal probability plot of the data shows a rea-
sonably linear pattern, so it is plausible that the 
population distribution of PHB melting points as Un
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376	 chapter 8   Testing Statistical Hypotheses

measured by DSC is at least approximately normal.  
The sample mean and standard deviation are 181.4 
and .7242, respectively. Is there compelling evi-
dence for concluding that true average melting 
point  exceeds 181°C? Carry out a test of hypotheses 
using a significance level of .05.

	26.	 The relative conductivity of a semiconductor 
device is determined by the amount of impurity 
“doped” into the device during its manufacture.  
A silicon diode to be used for a specific purpose 
requires an average cut-on voltage of .60 V, and if 
this is not achieved, the amount of impurity must 
be adjusted. A sample of diodes was selected and 
the cut-on voltage was determined. The accompa-
nying SAS out-put resulted from a request to test 
the appropriate hypotheses.

	 N	 Mean	 Std Dev	 T	 Prob>|T|

	15	0.0453333	 0.0899100	1.9527887	 0.0711

		  (Note: SAS explicitly tests H0: � 5 0, so to test  
H0: � 5 .60, the null value .60 must be subtracted 
from each xi; the reported mean is then the average 
of the (xi 2 .60) values. Also, SAS’s P-value is always 
for a two-tailed test.) What would be concluded for 
a significance level of .01? .05? .10?

	27.	 Determine the number of degrees of freedom 
for the two-sample t test in each of the following 
situations:

	 a.	 n1 5 10, n2 5 10, s1 5 5.0, s2 5 6.0
	 b.	 n1 5 10, n2 5 15, s1 5 5.0, s2 5 6.0
	 c.	 n1 5 10, n2 5 15, s1 5 2.0, s2 5 6.0
	 d.	 n1 5 12, n2 5 24, s1 5 5.0, s2 5 6.0

	28.	 Urban storm water can be contaminated by many 
sources, including discarded batteries. When rup-
tured, these batteries release metals of environmen-
tal significance. The article “Urban Battery Litter” 
(J. of Environ. Engr., 2009: 46–57) presented sum-
mary data for characteristics of a variety of batteries 
found in urban areas around Cleveland.

		  Here are data on zinc mass (g) for two different 
brands of size D batteries:

Brand
Sample 

Size 
Sample 

Mean
Sample  

SD
Duracell 15 138.52 7.76
Energizer 20 149.07 1.52

		  Assuming that both zinc mass distributions are at 
least approximately normal, carry out a test at sig-
nificance level .05 to decide whether true average 
zinc mass is different for the two types of batteries.

	29.	 Quantitative noninvasive techniques are needed 
for routinely assessing symptoms of peripheral 
neuropathies, such as carpal tunnel syndrome 
(CTS). The article “A Gap Detection Tactility Test 
for Sensory Deficits Associated with Carpal Tun-
nel Syndrome” (Ergonomics, 1995: 2588–2601) 
reported on a test that involved sensing a tiny gap 
in an otherwise smooth surface by probing with a 
finger; this functionally resembles many work-re-
lated tactile activities, such as detecting scratches 
or surface defects. When finger probing was not 
allowed, the sample average gap detection thresh-
old for n1 5 8 normal subjects was 1.71 mm, and 
the sample standard deviation was .53; for n2 5 
10 CTS subjects, the sample mean and sample 
standard deviation were 2.53 and .87, respectively. 
Does this data suggest that the true average gap 
detection threshold for CTS subjects exceeds that 
for normal subjects? State and test the relevant hy-
potheses using a significance level of .01.

	30.	 According to the article “Fatigue Testing of Con-
doms” (Polymer Testing, 2009: 567–571), “tests 
currently used for condoms are surrogates for the 
challenges they face in use,” including a test for 
holes, an inflation test, a package seal test, and tests 
of dimensions and lubricant quality. The investiga-
tors developed a new test that adds cyclic strain to a 
level well below breakage and determines the num-
ber of cycles to break.

			   The article reported that for a sample of  
20 natural latex condoms of a certain type, the sample 
mean and sample standard deviation of the number 
of cycles to break were 4358 and 2218, respectively, 
whereas a sample of 20 polyisoprene condoms gave a 
sample mean and sample standard deviation of 5805 
and 3990, respectively. Is there strong evidence for 
concluding that the true average number of cycles to 
break for the polyisoprene condom exceeds that for 
the natural latex condom by more than 1000 cycles? 
Carry out a test using a significance level of .01. 
(Note: The cited paper reported P-values of t tests for 
comparing means of the various types considered.)
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	31.	 Fusible interlinings are being used with increasing 
frequency to support outer fabrics and improve the 
shape and drape of various pieces of clothing. The 
article “Compatibility of Outer and Fusible Inter-
lining Fabrics in Tailored Garments” (Textile Res. J.,  
1997: 137–142) gave the accompanying data on ex-
tensibility (%) at 100 gm/cm for both high-quality 
fabric (H) and poor-quality fabric (P) specimens:

H: 1.2     .9     .7   1.0   1.7   1.7   1.1    .9   1.7
1.9   1.3   2.1   1.6   1.8   1.4   1.3   1.9   1.6
 .8   2.0    1.7   1.6   2.3   2.0

P: 1.6   1.5   1.1   2.1   1.5   1.3   1.0   2.6

	 a.	 Construct normal quantile plots to verify the 
plausibility of both samples having been selected 
from normal population distributions.

	 b.	 Construct a comparative boxplot. Does it sug-
gest that there is a difference between true 
average extensibility for high-quality fabric spec-
imens and that for poor-quality specimens?

	 c.	 The sample mean and standard deviation for 
the high-quality sample are 1.508 and .444, re-
spectively, and those for the poor-quality sample 
are 1.588 and .530. Use the two-sample t test to 
decide whether true average extensibility differs 
for the two types of fabrics.

	32.	 The article cited in Exercise 41 in Chapter 7 
gave the following data on work of adhesion mea-
surements (in mJ/m2) for samples of ultra-high 
performance concrete adhered to two types of 
substrates:

Substrate Observations
Steel: 107.1 109.5 107.4 106.8 108.1
Glass: 122.4 124.6 121.6 120.6 123.3

		  Assuming that both samples were selected from 
normal distributions, carry out a test of hypotheses 
to decide whether the true average work of adhe-
sion for the glass substrate is more than 12 mJ/m2 
higher than that for the steel substrate.

	33.	 The article “The Influence of Corrosion Inhibitor 
and Surface Abrasion on the Failure of Aluminum-
Wired Twist-on Connections” (IEEE Trans. on Com-
ponents, Hybrids, and Manuf. Tech., 1984: 20–25) re-
ported data on potential drop measurements for one 
sample of connectors wired with alloy aluminum 

and another sample wired with EC aluminum. Does 
the accompanying SAS output suggest that the true 
average potential drop for alloy connections (type 1) 
is higher than that for EC connections (as stated in 
the article)? Carry out the appropriate test using a sig-
nificance level of .01. In reaching your conclusion, 
what type of error might you have committed? Note: 
SAS reports the P-value for a two-tailed test.

	Type	 N	 Mean	 Std Dev	 Std Error
	 1	 20	 17.4990	 0.55012821	 0.12301241
	 2	 20	 16.9000	 0.48998389	 0.10956373

	Type	 Variances	 T	 DF	 Prob>|T|
	 1	 Unequal	 3.6362	 37.5	 0.0008

	 2	 Equal	 3.6362	 38.0	 0.0008

	34.	 The article “Evaluation of a Ventilation Strategy 
to Prevent Barotrauma in Patients at High Risk for 
Acute Respiratory Distress Syndrome” (New England 
J. of Medicine, 1998: 355–358) reported on an ex-
periment in which 120 patients with similar clinical 
features were randomly divided into a control group 
and a treatment group, each consisting of 60 of the 
patients. The sample mean ICU stay (days) and sam-
ple standard deviation for the treatment group were 
19.9 and 39.1, respectively, whereas these values for 
the control group were 13.7 and 15.8.

	 a.	 Calculate a point estimate for the difference be-
tween true average ICU stay for the treatment 
and control groups. Does this estimate suggest 
that there is a significant difference between 
true average stays under the two conditions?

	 b.	 Answer the question posed in part (a) by carry-
ing out a formal test of hypotheses. Is the result 
different from what you conjectured in part (a)?

	 c.	 Does it appear that ICU stay for patients 
given the ventilation treatment is normally 
distributed? Explain your reasoning.

	35.	 According to the article “Modelling and Predict-
ing the Effects of Submerged Arc Weldment Pro-
cess Parameters on Weldment Characteristics and 
Shape Profiles” (J. of Engr. Manuf., 2012: 1230–
1240), the submerged arc welding (SAW) process 
is commonly used for joining thick plates and 
pipes. During welding, the SAW electrode causes 
a slight deformation on and in the surface of the 
base metal. This deformation is known as the 
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SAW weldment profile; research has shown that its 
shape could be related to plate melting efficiency.

			   Authors of the article wanted to investigate how 
certain settings of the welding process affect macro-
structure zones of the SAW weldment profile. The 
heat affected zone (HAZ), a band created within the 
base metal during welding, was of particular interest. 

			   The article reported the impact of various 
SAW process settings (including current, voltage, 
and welding speed) on characteristics of the weld-
ment profile. In one investigation, the SAW pro-
cess was run on various current settings (A) and the 
depth (mm) of the HAZ was recorded. The data be-
low is partitioned across high (525 A) and nonhigh  
(,525 A) current settings:

NonHigh: 1.04 1.15 1.23 1.69 1.92 1.98 2.36 2.49 2.72
1.37 1.43 1.57 1.71 1.94 2.06 2.55 2.64 2.82

High: 1.55 2.02 2.02 2.05 2.35 2.57 2.93 2.94 2.97

		  Does it appear that true average HAZ depth is larger 
for the high current condition than for the nonhigh 
current condition? Carry out a test of appropriate 
hypotheses using a significance level of .01.

	36.	 Which factors are relevant to the time a consumer 
spends looking at a product on the shelf prior to 
selection? The article “Effects of Base Price Upon 
Search Behavior of Consumers in a Supermarket” 
(J. Econ. Psychol., 2003: 637–652) reported the fol-
lowing data on elapsed time (sec) for fabric softener 
purchasers and washing-up liquid purchasers; the 
former product is significantly more expensive than 
the latter. These products were chosen because 
they are similar with respect to allocated shelf space 
and number of alternative brands.

Product
Sample 

Size
Sample 
Mean

Sample 
SD

Fabric softener 15 30.47 19.15
Washing-up liquid 19 26.53 15.37

	 a.	 What if any assumptions are needed before the 
t inferential procedure can be used to compare 
true average elapsed times?

	 b.	 Carry out a test of hypotheses to decide whether 
the true average difference in elapsed times dif-
fers from zero.

	37.	 Exercise 54 in Chapter 7 presented a t variable 
appropriate for making inferences about �1 2 �2

when both population distributions are normal 
and, in addition, it can be assumed that �1 5 �2.

	 a.	 Describe how this variable can be used to form a 
test statistic and test procedure, the pooled t test, 
for testing H0: �1 2 �2 5 D.

	 b.	 Use the pooled t test to test the relevant hypotheses 
based on the SAS output given in Exercise 33.

	 c.	 Use the pooled t test to reach a conclusion in 
Exercise 35.

	38.	 The drug diethylstilbestrol was used for years by 
women as a nonsteroidal treatment for pregnancy 
maintenance, but it was banned in 1971 when 
research indicated a link with the incidence of 
cervical cancer. The article “Effects of Prenatal 
Exposure to Diethylstilbestrol (DES) on Hemi-
spheric Laterality and Spatial Ability in Human 
Males” (Hormones and Behavior, 1992: 62–75) dis-
cussed a study in which ten males exposed to DES 
and their unexposed brothers underwent various 
tests. This is the summary data on the results of a 
spatial ability test:

		  exposed mean 5 12.6
		  unexposed mean 5 13.8
		  standard error of difference 5

sd1n
5 .5

		  Does DES exposure appear to be associated with 
reduced spatial ability? State and test the appropri-
ate hypotheses using � 5 .05. Does the conclusion 
change if � 5 .01 is used?

	39.	 Parents often urge their children to “sit up 
straight” when dining to practice good table 
manners. Although proper posture is part of 
maintaining good etiquette, research has shown 
that it can also help in reducing musculoskeletal 
disorders (MSDs). The authors of “Reducing 
Musculoskeletal Disorders Among Computer 
Operators: Comparison Between Ergonomics 
Interventions at the Workplace” (Ergonomics, 
2012: 15711–1585) investigated the impact of 
a workplace intervention for reducing MSDs 
for computer workers. For one group of workers 
the intervention was in the form of a short oral 
presentation on how to sit; the preferred heights 
of chairs, tables, keyboards, and screens; and 
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optimal positions of the back, shoulders, elbows, 
and wrists.

			   Both an MSD score and a rapid upper limb 
assessment (RULA) score were obtained for each 
participant. The MSD score is the total number of 
painful body parts reported by the individual. The 
RULA score is a rating of the individual’s posture, 
with lower numbers indicating better posture. Each 
score was determined both before and after the oral 
presentation intervention. (The textbook author 
who found this article did find that his own posture 
improved at least while he was typing this exercise 
in the manuscript.)

Measurement
Sample 

Size

Mean  
Difference  

(After–Before)
SD of  

Difference

MSD Score 21 .19 1.03

RULA Score 21 21.52 1.56

	 a.	 Assuming that the difference in MSD scores 
(After–Before) is approximately normal, carry 
out a test at significance level .05 to decide 
whether true average difference in MSD scores 
is different from zero.

	 b.	 Assuming that the difference in RULA scores 
(After–Before) is approximately normal, carry 
out a test at significance level .05 to decide 
whether true average difference in RULA scores 
is different from zero.

	 c.	 From parts (a) and (b) you should have found 
that for one score the intervention had a sig-
nificant impact but not for the other score. 
Keeping in mind what the scores measure, can 
you offer an explanation of why this may have 
occurred? (For a group of computer workers 
who were exposed to a more rigorous type of 
intervention, the article reported that interven-
tion was beneficial for both MSD and RULA 
scores.)

	40.	 The article “Selection of a Method to Determine 
Residual Chlorine in Sewage Effluents” (Water 
and Sewage Works, 1971: 360–364) reported the 
results of an experiment in which two different 
methods of determining chlorine content were 
used on samples of Cl2-demand-free water for 

various doses and contact times. Observations are 
in mg/L.

Sample
1 2 3 4

MSI method .39   .84 1.76 3.35
SIB method .36 1.35 2.56 3.92

5 6 7 8
MSI method 4.69 7.70 10.52 10.92
SIB method 5.35 8.33 10.70 10.91

		  Does the true average content measured by one 
method appear to differ from that measured by the 
other method? State and test the appropriate hy-
potheses. Does the conclusion depend on whether 
a significance level of .05, .01, or .001 is used?

	41.	 Shoveling is not exactly a high-tech activity but will 
continue to be a required task even in our informa-
tion age. The article “A Shovel with a Perforated 
Blade Reduces Energy Expenditure Required for 
Digging Wet Clay” (Human Factors, 2010: 492–502)  
reported on an experiment in which each of 13 
workers was provided with both a conventional 
shovel and a shovel whose blade was perforated 
with small holes. The authors of the cited article 
provided the following data on stable energy 
expenditure [kcal/kg(subject)/lb(clay)]:

Worker: 1 2 3 4 5 6 7
Conventional: .0011 .0014 .0018 .0022 .0010 .0016 .0028
Perforated: .0011 .0010 .0019 .0013 .0011 .0017 .0024

Worker: 8 9 10 11 12 13
Conventional: .0020 .0015 .0014 .0023 .0017 .0020
Perforated: .0020 .0013 .0013 .0017 .0015 .0013

		  Carry out a test of hypotheses at significance level 
.05 to see if true average energy expenditure using 
the conventional shovel exceeds that using the per-
forated shovel.

	42.	 The article “Supervised Exercise Versus Non-
Supervised Exercise for Reducing Weight in 
Obese Adults” (J. Sport. Med. Phys. Fit., 2009: 
85–90) reported on an investigation in which 
participants were randomly assigned either to a 
supervised exercise program or a control group. 
Those in the control group were told only that 

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



380	 chapter 8   Testing Statistical Hypotheses

they should take measures to lose weight. After  
4 months, the sample mean decrease in body fat for 
the 17 individuals in the experimental group was 
6.2 kg with a sample standard deviation of 4.5 kg, 
whereas the sample mean and standard deviation for 
the 17 people in the control group were 1.7 kg and 
3.1 kg, respectively. Assume normality of the two 
body fat loss distributions (as did the investigators).
	 Does it appear that true average decrease in 
body fat is more than 2 kg larger for the experimen-
tal condition than for the control condition? Carry 
out a test of appropriate hypotheses using a signifi-
cance level of .01.

	43.	 The article “The Accuracy of Stated Energy Con-
tents of Reduced-Energy, Commercially Prepared 

Foods” (J. of the Amer. Dietetic Assoc., 2010: 116–
123) presented the accompanying data on vendor-
stated gross energy and measured value (both in kcal) 
for 10 different supermarket convenience meals):

Meal: 1 2 3 4 5 6 7 8 9 10
Stated: 180 220 190 230 200 370 250 240 80 180
Meas.: 212 319 231 306 211 431 288 265 145 228

		  Carry out a test of hypotheses to decide whether the 
true average % difference from that stated differs from 
zero. (Note: The article stated “Although formal 
statistical methods do not apply to convenience 
samples, standard statistical tests were employed to 
summarize the data for exploratory purposes and to 
suggest directions for future studies.”)

8.3	 �Tests Concerning Hypotheses  
About a Categorical Population �

In this section, we consider several hypothesis-testing situations involving categorical, 
as opposed to numerical, populations. Suppose that each individual or object in the 
population can be placed in one of k nonoverlapping categories. For example, systems 
of a particular type may consist of four components, and the failure of each system 
may be attributed to failure of one particular component. The four relevant categories 
would then be “failure of first component,” . . . , “failure of fourth component.” The 
null hypothesis will specify a particular value for each one of the category proportions 
(i.e., probabilities). In the system example, H0 might specify that each of the long-run 
failure proportions is .25; that is, a failure is equally likely to be attributed to any one of 
the four components. A more complicated situation is that in which each individual or 
object can be categorized with respect to two different categorical factors. For example, 
each new automobile of a certain type might be classified with respect to color—white, 
black, blue, etc.—and also with respect to the type of transmission—automatic or man-
ual. We shall consider testing the null hypothesis that categories of the first factor occur 
independently of those of the second, for example, that car color is independent of type 
of transmission, that political party registration is independent of preferred religious de-
nomination, and so on. These tests are based on a type of probability distribution that we 
have not yet encountered, so we first digress from testing to introduce this distribution.

Chi-Squared Distributions
Just as with t distributions, there is not a single chi-squared distribution. Rather there 
is an entire family of distributions. A particular member of the family is identified by 
specifying some number of degrees of freedom. Thus there is one chi-squared distribu-
tion with 1 df, another with 2 df, yet another with 3 df, and so on. Curves corresponding 
to several different chi-squared distributions are shown in Figure 8.9. There is no den-
sity to the left of zero, so negative values of chi-squared variables are precluded. Each 
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Figure 8.9 C hi-squared curves

df = 8

df = 12
df = 20

chi-squared curve is positively skewed; as the number of df increases, the curves stretch 
farther and farther to the right and become more symmetric.

Our chi-squared tests are all upper-tailed, so the P-value is the area captured under 
a particular chi-squared curve to the right of the calculated test statistic value. The 
fact that t curves were all centered at zero allowed us to tabulate t-curve tail areas in a 
relatively compact way, with the left margin giving values ranging from 0.0 to 4.0 on 
the horizontal t scale and various columns displaying corresponding upper-tail areas for 
various df’s. The rightward movement of chi-squared curves as df increases necessitates 
a somewhat different type of tabulation. The left margin of Appendix Table VII displays 
various upper-tail areas: .100, .095, .090, . . . , .005, and .001. Each column of the table 
is for a different value of df, and the entries are values on the horizontal chi-squared axis 
that capture these corresponding tail areas. For example, moving down to tail area .085 
and across to the 2 df column, we see that the area to the right of 4.93 under the 2 df 
chi-squared curve is .085 (see Figure 8.10). To capture this same upper-tail area under 
the 10 df curve, we must go out to 16.54. In the 2 df column, the top row shows that if 
the calculated value of the chi-squared variable is smaller than 4.60, the captured tail 
area (the P-value) exceeds .10. Similarly, the bottom row in this column indicates that 
if the calculated value exceeds 13.81, the tail area is smaller than .001 (P-value < .001).

Figure 8.10 C apturing a particular upper-tail area under a  
chi-squared curve

 4.93

Shaded area = .085

Chi-squared curve for 2 df

Tests Based on Univariate Categorical Data
Suppose that each individual or object in a population or process can be placed in one 
of k nonoverlapping categories. Let

�1 5 population or long-run process proportion falling in the first category
	 .	 .
	 .	 .
	 .	 .

�k 5 population or long-run process proportion falling in the kth categoryUn
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The �’s can also be interpreted as probabilities; �i is the probability that a randomly 
selected individual or object will fall in the ith category. The null hypothesis completely 
specifies the value of each �i; we denote these hypothesized values by adding a sub-
script 0 to each �i (as we used �0 to denote the null value in a test involving �):

�i0 5 value of �i asserted to be true by the null hypothesis (i 5 1, . . . , k)

As an example, suppose that the genotype for a particular genetic characteristic can be 
either AA, Aa, or aa (k 5 3). The standard genetic argument in this situation implies 
the null hypothesis

H0: �1 5 .25, �2 5 .50, �3 5 .25

The alternative hypothesis states simply that the specification in H0 is not correct—that 
is, at least one of the �i0’s is incorrect (because the hypothesized values add to 1.0, if a 
particular value is incorrect, at least one other value must also be incorrect). A test of these 
hypotheses will be based on a random sample taken from the population or process. Each 
individual or object in the sample will belong in exactly one of the k categories; thus we 
will have a sample consisting of univariate categorical data. For example, we might select 
n 5 100 individuals and find that the first has genotype Aa, the second has genotype aa, 
the third and fourth both have genotype Aa, the fifth has genotype AA, and so on. Let

n1 5 number of sampled individuals or objects falling in the first category
	 .	 .
	 .	 .
	 .	 .

nk 5 number of sampled individuals or objects falling in the kth category

The ni values are called observed category frequencies or counts. In the genetics 
example with k 5 3, we might have n 5 100, n1 5 20, and n2 5 53, from which  
n3 5 100 2 20 2 53 5 27.

The central idea of the test procedure is to compare the observed counts with what 
would be expected were H0 true. If, for example, the three hypothesized values are .25, 
.50, and .25, and n 5 100, then when the null hypothesis is true,

expected number in the first category 5 n�10 5 100(.25) 5 25

expected number in the second category 5 n�20 5 100(.50) 5 50

expected number in the third category 5 n�30 5 100(.25) 5 25

More generally,

expected frequency for category i when H0 is true 5 n�i0    (i 5 1, . . . , k)

That is, expected frequencies under H0 are obtained by multiplying each hypothesized 
value by the sample size. Intuitively, the data supports the null hypothesis when the 
observed frequencies are similar to the expected frequencies. If some of the observed 
frequencies differ substantially from what would be expected if H0 were true, the null 
hypothesis is no longer tenable.

We now need a quantitative measure of how different the observed frequencies 
are from the expected frequencies, assuming H0 is true. A first thought is to subtract 
each expected frequency from the corresponding observed frequency to obtain a 

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 8.3   Tests Concerning Hypotheses About a Categorical Population 	 383

deviation, square these deviations, and add them together. Symbolically, this would be 
^(ni 2 n�i0)

2. Suppose, however, that

	 n1 5 95,  n�10 5 100

	 n2 5 15,  n�20 5 20

Then both deviations are 25, so they both contribute the same amount to our quanti-
tative measure of discrepancy. However, the observed frequency for the first category 
is only 5% smaller than what was expected, whereas the observed frequency for the 
second category is fully 25% smaller than what we would expect if the null hypothesis 
were true. Our proposed measure does not reflect the fact that, on a percentage basis, 
the discrepancy for the second category is more sizable than that for the first category. 
The chi-squared test statistic takes into account percentage deviations.

The Chi-Squared Test Based on Univariate Categorical Data
Hypotheses:	�  0: �1 5 �10, . . . , � 5 � 0

a: the specification of � ’s in 0 is not correct

Test statistic:	�  2 5
5̂1

 
( 2 �  0)2

�  0
5 ^  

(observed 2 expected)2

expected

		�  (Many sources denote this statistic by 2, read “chi-squared,” but to avoid 
confusing this with a parameter we don’t want to use a Greek letter.)

		�T  he smallest possible value of this test statistic is 2 5 0 (when observed 5  
expected for every category), which provides the strongest possible sup-
port for the null hypothesis. The larger the value of 2, the stronger is the 
evidence against 0.

-value:	�T he key result underlying the test procedure is that when 0 is true 
and �  0 . 5 for  5 1, . . . ,  (i.e., all expected counts exceed 5), 2 has 
approximately a chi-squared distribution with  21 df. The -value is 
then approximately the area under the  2 1 df chi-squared curve to 
the right of the calculated 2 value (information about tail areas for chi-
squared curves appears in Appendix Table VII). If one or more expected 
counts is at most 5, categories should be combined in a sensible way so 
that the resulting expected counts are large enough.

A number of psychologists have considered the relationship between various deviant be-
haviors and geophysical variables such as the lunar phase. The article “Psychiatric and 
Alcoholic Admissions Do Not Occur Disproportionately Close to Patients’ Birthdays” 
(Psychological Reports, 1992: 944–946) investigated whether the chance of a patient’s 
admission date for a particular treatment is smaller or larger than would be the case 

Example 8.8
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under the assumption of complete randomness. Disregarding leap year, there are 365 
possible admission days, so complete randomness would imply a probability of 1/365 
for each day. However, this results in far too many categories and expected counts that 
are too small for the chi-squared test. So the following four categories were established:

	1.	Within 7 days of an individual’s birthday (7 days before to 7 days after)
	2.	Between 8 and 30 days, inclusive, from the birthday
	3.	Between 31 and 90 days, inclusive, from the birthday
	4.	More than 90 days from the birthday

Let �i denote the true proportion of individuals in category i (i 5 1, 2, 3, 4). Then 
complete randomness with respect to admission date implies that

�1 5 15y365 5 .041  �2 5 46y365 5 .126  �3 5 .329
	 �4 5 1 2 (.041 1 .126 1 .329) 5 .504

Thus the relevant hypotheses are

H0: �1 5 .041, �2 5 .126, �3 5 .329, �4 5 .504

versus

Ha: the specification of �’s in H0 is not correct

The cited article gave data for n 5 200 patients admitted for alcoholism treatment. 
The expected counts when H0 is true are then

	 expected count for category 1 5 n�10 5 200(.041) 5 8.2
	 n�20 5 200(.126) 5 25.2  n�30 5 200(.329) 5 65.8
	 n�40 5 200 2 (8.2 1 25.2 1 65.8) 5 100.8 35 200(.504)4
Since all expected counts exceed 5, the chi-squared test can be used. The observed 
counts along with their expected counterparts are as follows:

Category: 1 2 3 4
Observed: 11 24 69 96
Expected: 8.2 25.2 65.8 100.8

The value of the chi-squared statistic is thus

X2 5
(11 2 8.2)2

8.2
1

(24 2 25.2)2

25.2
1

(69 2 65.8)2

65.8
1

(96 2 100.8)2

100.8
	  5 .96 1 .06 1 .16 1 .23
	  5 1.41

The test is based on k 2 1 5 3 df. The smallest entry in the 3 df column of Appendix 
Table VII is 6.25, corresponding to an upper-tail area of .10. Because 1.41 , 6.25, 
the area captured to the right of 1.41 exceeds .10. That is, P-value ..10, so H0 can-
not be rejected at any reasonable significance level. Our analysis is consistent with 
the title of the cited article; we have no evidence to suggest that admission date is 
anything other than random.
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Testing for Homogeneity of Several  
Categorical Populations
Suppose now that an investigator is interested in several different categorical popula-
tions or processes, each one consisting of the same categories. For example, there 
are gas stations selling four different brands of gasoline at a particular freeway inter-
change: Arco (A), Chevron (C), Mobil (M), and Union (U). Each station sells three 
different grades of gasoline: regular (R), plus (P), and super (S). The four relevant 
populations consist of the customers purchasing gasoline at each of the four stations, 
and the grades of gas are the categories. For any particular one of these four popula-
tions, there is some proportion of individuals in each of the three categories; these 
proportions sum to 1.0 for each population. Table 8.1 displays two different possible 
configurations of population proportions. In the first one, the proportion of individu-
als in the R category is the same for each population, and the proportion of individu-
als in the P category is also identical for the four populations. This, of course, implies 
that the proportion in the last category (S) is constant across the four populations. The 
populations are said to be homogeneous with respect to the categories when this is 
the case—that is, when the proportion in the first category is the same for all popula-
tions, the proportion in the second category is also identical for all populations, and 
so on. The second configuration in Table 8.1 corresponds to nonhomogeneous popu-
lations; the proportions in the various categories are not constant across the popula-
tions. Of course, the first configuration in Table 8.1 is not the only one for which the 
populations are homogeneous; any configuration for which the proportions in any 
particular column are identical (e.g., .7 for the first column, .2 for the second, and .1 
for the third) satisfies the stated condition.

Table 8.1	T wo possible configurations of proportions for four categorical populations

(a) Homogeneous populations (b) Nonhomogeneous populations

Category Category

R P S R P S

Population

A .50 .30 .20

Population

A .50 .30 .20

C .50 .30 .20 C .60 .25 .15

M .50 .30 .20 M .50 .25 .25

U .50 .30 .20 U .65 .25 .10

The null hypothesis that we wish to test is that the populations are homogeneous. 
For this purpose, we require a separate random sample from each of the populations; 
let’s denote the corresponding sample sizes by n1, n2, and so on. Of the n1 individuals 
or objects selected from the first population, some number will fall in the first category, 
some number will be in the second category, and so on. This is also the case for the 
samples from the other populations. The resulting category frequencies or counts can 
be displayed in a rectangular table called a contingency table; there is a row for each 
population and a column for each category. The row sums of these observed frequen-
cies are the sample sizes, so they are fixed by the experimenter. Table 8.2 shows one 
possible set of observed frequencies when each sample size is 200.Un
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Table 8.2	A  contingency table in the case of  
four populations, each with three categories

Category

R P S Sample size

Population

A 107   62   31 n1 5 200

C  95   67   38 n2 5 200

M 103   57   40 n3 5 200

U  98   59   43 n4 5 200

Number in category 403 245 152          800

Homogeneity asserts that there is a common value of �1, the proportion in the first 
category, for all populations, a common value of �2 for all populations, and so on. If the 
values of these �’s were known, then just as in the case of a single population, expected 
frequencies would result from multiplying these �’s by the various sample sizes. Let’s now 
assume that the populations are homogeneous and estimate the �’s from the observed 
frequencies. Consider the frequencies in Table 8.2. Sensible estimates of �1, �2, and �3 
are then just the proportions of the total sample size 800 falling in the various categories:

	 estimate of �1 5  proportion of total sample size in first category
	 5 403y800 5 .50375
	 estimate of �2 5  proportion of total sample size in second category
	 5 245y800 5 .30625
	 estimate of �3 5  proportion of total sample size in third category
	 5 152y800 5 .19000

Multiplying these estimates by n1 5 200 gives the estimated expected frequencies for 
the sample from the first population (assuming homogeneity). For example,

estimated expected frequency for the first category in the first sample

5 200a 403
800

b 5 100.75

Notice that this estimated expected frequency is the product of the row total (200) and 
the column total (403) divided by the “grand” total (800). This is in fact the general 
prescription for obtaining estimated expected frequencies: (row total)(column total)y
grand total. Once these have been calculated, the value of a chi-squared statistic can 
be obtained exactly as in the case of a single population, by summing the quantities 
(observed 2 expected)2yexpected over all cells in the contingency table.

The Chi-Squared Test for Homogeneity of Several  
Categorical Populations
(The word  may be replaced by  everywhere.)

Denote the number of populations by  and the number of categories for each popu-
lation by  (the same  categories for all  populations).
Hypotheses:	�  0: the  populations are homogeneous with respect to the categories

(i.e., the proportion of each population falling in the first category is the 
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same for all populations, the proportion falling in the second category is 
also the same for all populations, and so on)

a: the populations are not homogeneous
(for at least one of the  categories, the proportions are not identical for 
all populations)

Test statistic:	� Suppose the observed counts are displayed in a contingency table consist-
ing of  rows, one for the sample from each population, and  columns, one 
for each category (an  by  table). Then the  expected frequency 
corresponding to any particular observed frequency (i.e., to any particular 
cell of the table) is computed as

estimated expected frequency 5
(row total)(column total)

	 where  is the sum of the individual sample sizes. The test statistic is then

2 5 ^
all  cells

(observed 2 estimated expected)2

estimated expected

-value:	� When 0 is true and all estimated expected frequencies exceed 5, 2 has ap-
proximately a chi-squared distribution with df 5 (  2 1)(  2 1). Because any 
value larger than the calculated 2 is even more contradictory to 0, the test 
is upper-tailed and the -value is approximately the area to the right of the cal-
culated 2 under the (  2 1)(  2 1) chi-squared curve. If at least one estimated 
expected counts is  at most 5, categories should be combined in a sensible way.

A company packages a particular product in cans of three different sizes, each one 
using a different production line. Most cans conform to specifications, but a quality 
control engineer has identified the following reasons for nonconformance:

1.  Blemish on can
2.  Crack in can
3.  Improper pull tab location
4.  Pull tab missing
5.  Other

A sample of nonconforming units is selected from each of the three lines, and each 
unit is categorized according to reason for nonconformity, resulting in the following 
contingency table data:

Reason for nonconformity
Sample

Blemish Crack Location Missing Other size
1 34   65 17    21 13 150

Production 2 23   52 25   19   6 125
line 3 32   28 16    14  10 100

Total 89 145 58    54  29 375

Example 8.9
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Does the data suggest that the proportions falling in the various nonconformance 
categories are not the same for the three lines? The parameters of interest are the 
various proportions, and the relevant hypotheses are
H0: �the production lines are homogeneous with respect to the five nonconformance 

categories
Ha: the production lines are not homogeneous with respect to the categories
To calculate X2, we must first compute the estimated expected frequencies (assuming 
homogeneity). Consider the first nonconformance category for the first production 
line. When the lines are homogeneous,

estimated expected number among the 150 selected units that are blemished

	 5
(first row total)(first column total)

total of sample sizes
5

(150)(89)
375

5 35.60

The contribution of the cell in the upper-left corner to X2 is then

	
(observed 2 estimated expected)2

estimated expected
5

(34 2 35.60)2

35.60
5 .072

The other contributions are calculated in a similar manner. Table 8.3 shows Minitab 
output for the chi-squared test. The observed count is the top number in each cell, 
and directly below it is the estimated expected count. The contribution of each cell 
to X2 appears below the counts, and the test statistic value is X2 5 14.159. All esti-
mated expected counts  exceed 5, so combining categories is unnecessary. The test 
is based on (3 2 1)(5 2 1) 5 8 df. Our chi-squared table shows that the values that 
capture upper-tail areas of .08 and .075 under the 8 df curve are 14.06 and 14.26, 
respectively. Thus the P-value is between .075 and .08; Minitab gives P-value 5 .079. 
The null hypothesis of homogeneity should not be rejected at the usual significance 
levels of .05 or .01, but it would be rejected for the higher � of .10.

Table 8.3  Minitab output for the chi-squared test of Example 8.9

Expected counts are printed below observed counts
	 blem	 crack	 loc	 missing	 other	 Total
1	 34	 65	 17	 21	 13	 150
	 35.60	 58.00	 23.20	 21.60	 11.60
2	 23	  52	 25	 19	 6	 125
	 29.67	 48.33	 19.33	 18.00	 9.67
3	 32	 28	 16	 14	 10	 100
	 23.73	 38.67	 15.47	 14.40	 7.73
Total	 89	 145	 58	 54	 29	 375
Chisq = 0.072 + 0.845 + 1.657 + 0.017 + 0.169 + 1.498 + 0.278 +
	 1.661 + 0.056 + 1.391 + 2.879 + 2.943 + 0.018 + 0.011 +
	 0.664 = 14.159
df = 8, p = 0.079

Testing for Independence of Two Categorical  
Factors in a Single Population
Rather than comparing several different categorical populations or processes, consider 
a single population or process in which each individual or object can be classified both Un
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with respect to a first categorical factor A and with respect to a second such factor B. For 
example, each car of a certain type manufactured in a particular year can be classified 
with respect to body style—two-door coupe, four-door sedan, or hatchback—and with 
respect to color—white, black, blue, green, or red. Suppose we take a sample of size n 
and classify each sampled individual or object with respect to both the A factor (style) 
and the B factor (color). The resulting counts can be displayed in a contingency table 
having a row for each category of the A factor and a column for each category of the B 
factor—a 3 by 5 table in the example under consideration. In this situation, neither the 
row nor the column totals are fixed in advance, only the sum of all counts, which equals 
n. The number in the upper-left corner would be the number of sampled automobiles 
that are both coupes and white, and so on. The null hypothesis of interest in this situa-
tion is that the two factors A and B are independent; that is, knowing the body style does 
not change the likelihood of a particular color and vice versa.

Although homogeneity and independence are two different scenarios, the follow-
ing can be shown: (1) The estimated expected frequencies in the test of independence 
are calculated exactly as they were for the test of homogeneity: row total times column 
total divided by n; (2) X2 is still an appropriate test statistic; (3) the test is still upper-
tailed; and (4) the test is based on the same number of df as the homogeneity test.

Fisher’s Exact Test
Suppose a company uses one of two methods (A and B) in the manufacture of printed 
circuit boards. A random sample of 15 boards is taken from the production line and 
each board is inspected for the existence of any major defects. The following table pro-
vides a cross-classification of the boards:

Method A Method B
Defects Present 7 1
Defects Absent 1 6

Consider carrying out a test of hypotheses where the null asserts that production meth-
od is independent of board condition and the alternative is that there is dependence. 
Here we would not be able to apply the chi-squared test due to the fact that estimated 
expected frequencies will not all exceed 5. In such situations the chi-squared test is 
known to yield unreliable results. Note in the following chi-square test output from 
Minitab that a warning appears concerning cells having small expected counts.

Expected counts are printed below observed counts

		  Method A	  Method B	 Total
	 Defects Present 	 7	 1	 8
		  4.27	 3.73 
	 Defects Absent 	 1	 6	 7
		  3.73	 3.27 

	 Total 	 8	 7	  15

Chi-Sq = 8.040, DF = 1, P-Value = 0.005
4 cells with expected counts less than 5.

For a contingency table having more than two rows and two columns, if any estimated 
expected count is at most 5, it may be possible to consolidate some categories and 
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generate a new contingency table whose estimated expected counts would all exceed 5. 
However, this option would not be available for a contingency table with two rows and 
two columns as the minimum number of categories for each variable has been reached. 
Instead of using the chi-square approach, we now introduce a different method that is 
popularly known as Fisher’s Exact Test. 

Recall in our example that 8 out of the 15 boards were produced using Method A 
and a total of 8 printed circuit boards had defects. If the null hypothesis of indepen-
dence between production method and board condition is true, given that Method A 
accounts for 8 out of the 15 boards and that 8 out of the boards had defects, what is the 
probability that we would obtain results at least as extreme as what we observed? This 
probability is the P-value for Fisher’s Exact Test; it can be computed explicitly by using 
a particular discrete distribution.

First, let us consider all possible contingency table configurations under the 
assumption that Method A accounts for 8 out of the 15 boards and that 8 out of the 
boards had defects. Figure 8.11 reveals that there are only 8 possible contingency 
tables. If the null hypothesis is true, it can be shown that the probability of each of 
the 8 possible outcomes can be determined by a discrete distribution known as the 
hypergeometric. Statistical software packages can readily compute probabilities from 
this distribution.

A B A B A B A B

Present 8 0 Present 7 1 Present 6 2 Present 5 3

Absent 0 7 Absent 1 6 Absent 2 5 Absent 3 4

Prob. 5 .0002 Prob. 5 .0087 Prob. 5 .0914 Prob. 5 .3046

A B A B A B A B

Present 4 4 Present 3 5 Present 2 6 Present 1 7

Absent 4 3 Absent 5 2 Absent 6 1 Absent 7 0

Prob. 5 .3807 Prob. 5 .1828 Prob. 5 .0305 Prob. 5 .0012

Figure 8.11 All possible contingency tables and corresponding hypergeometric 
probabilities

With all table probabilities in hand, we can now obtain P-value information. 
Our originally observed contingency table yielded 7 boards having defects manu-
factured by Method A. The corresponding table probability is .0087. To determine 
the P-value we need to consider other tables that would be at least as extreme than 
what was observed. This would include any tables having a corresponding prob-
ability that is less than or equal to .0087. From Figure 8.11 we see that only two 
other tables qualify (with probabilities. 0002 and .0012). Combining these prob-
abilities, we have P-value 5 .0087 1 .0002 1 0012 5 .0101. Thus, at the .05 signifi-
cance level we can reject the null hypothesis of independence between production Un
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method and board condition. Figure 8.12 is the corresponding output from SAS for 
our example:

Fisher’s Exact Test

Cell (1,1) Frequency (F)	 7
Left-sided Pr <= F	 0.9998
Right-sided Pr >= F	 0.0089

Table Probability (P)	 0.0087
Two-sided Pr <= P	 0.0101

	 Sample Size = 15

Figure 8.12  SAS Output for Fisher’s Exact Test

From the output, the P-value we computed corresponds to the probability reported next 
to Two-sided Pr ,5 P as we were interested in testing if any type of dependence 
existed. As the output suggests, we can use a directional alternative for Fisher’s Exact 
Test as well. Consult the book by Agresti cited in the chapter bibliography for more 
details on this test.

Section 8.3 Exercises

	44.	 Say as much as you can about the P-value for a chi-
squared test in each of the following situations:

	 a.	 X2 5 7.5, df 5 2	 b.	 X2 5 13.0, df 5 6
	 c.	 X2 5 18.0, df 5 9	 d.	 X2 5 21.3, df 5 4
	 e.	 X2 5 5.0, df 5 3

	45.	 A statistics department at a large university main-
tains a tutoring service for students in its introduc-
tory service courses. The service has been staffed 
with the expectation that 40% of its clients would 
be from the business statistics course, 30% from en-
gineering statistics, 20% from the statistics course 
for social science students, and the other 10% from 
the course for agriculture students. A random sam-
ple of n 5 120 clients revealed 52, 38, 21, and 9 
from the four courses. Does this data suggest that 
the percentages on which staffing was based are not 
correct? State and test the relevant hypotheses us-
ing � 5 .05.

	46.	 Criminologists have long debated whether there is 
a relationship between weather and violent crime. 
The author of the article “Is There a Season for 
Homicide?” (Criminology, 1988: 287–296) classi-
fied 1361 homicides according to season, resulting in 

the accompanying data. Does this data suggest that 
the homicide rate somehow depends on the season? 
State the relevant hypotheses, then test using � 5 .05.

Season: Winter Spring Summer Fall
Frequency: 328 334 372 327

	47.	 The article “Racial Stereotypes in Children’s Tele-
vision Commercials” (J. of Adver. Res., 2008: 80–93) 
reported the following frequencies with which eth-
nic characters appeared in recorded commercials 
that aired on Philadelphia television stations.

Ethnicity:
African 

American Asian Caucasian Hispanic
Frequency: 57 11 330 6

		  The 2000 census proportions for these four ethnic 
groups are .177, .032, .734, and .057, respectively. 
Does the data suggest that the proportions in com-
mercials are different from the census proportions? 
Carry out a test of appropriate hypotheses using a 
significance level of .01.

	48.	 An information retrieval system has ten storage lo-
cations. Information has been stored with the ex-
pectation that the long-run proportion of requests Un
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for location i is given by �i 5 (5.5 2 i 2 5.5 )y30. A 
sample of 200 retrieval requests gave the following 
frequencies for locations 1–10, respectively: 4, 15, 
23, 25, 38, 31, 32, 14, 10, and 8. Use a chi-squared 
test at significance level .10 to decide whether the 
data is consistent with the a priori proportions.

	49.	 The article “The Gap Between Wine Expert Rat-
ings and Consumer Preferences” (Intl. J. of Wine 
Business Res., 2008: 335–351) studied differences 
between expert and consumer ratings by consider-
ing medal ratings for wines: gold (G), silver (S), or 
bronze (B). Three categories were then established: 

	 1.	 Rating is the same [(G,G), (B,B), (S,S)].
	 2.	 Rating differs by one medal [(G,S), (S,G), (S,B), 

(B,S)]. 
	 3.	 Rating differs by two medals [(G,B), (B,G)].

		  The observed frequencies for these three categories 
were 69, 102, and 45, respectively. On the hypoth-
esis of equally likely expert ratings and consumer 
ratings being assigned completely by chance, each 
of the 9 medal pairs has probability 1y9. Carry out 
an appropriate chi-squared test using a significance 
level of .10.

	50.	 A random sample of smokers was obtained, and each 
individual was classified by both gender and age when 
he or she first started smoking. The data in the ac-
companying table is consistent with summary results 
reported in the article “Cigarette Tar Yields in Rela-
tion to Mortality in the Cancer Prevention Study II 
Prospective Cohort” (British Med. J., 2004: 72–79).

Gender
Male Female

,16 25 10
Age 16–17 24 32

18–20 28 17
.20 19 34

	 a.	 Calculate the proportion of males in each age 
category; do the same for females. Based on 
these proportions, does it appear there might 
be an association between gender and the age 
when an individual first smokes?

	 b.	 Carry out a test of hypotheses to decide whether 
there is an association between the two factors.

	51.	 A placebo—that is, a fake medication or treatment—
is well known to sometimes have a positive effect just 
because patients often expect the medication or treat-
ment to be helpful. The article “Beware the Nocebo 
Effect” (The New York Times, Aug. 12, 2012) gave ex-
amples of a less familiar phenomenon: the tendency 
for patients informed of possible side effects to actu-
ally experience those side effects. The article cited 
a study reported in The Journal of Sexual Medicine 
in which a group of patients diagnosed with benign 
prostatic hyperplasia was randomly divided into two 
subgroups. One subgroup of size 55 received a com-
pound of proven efficacy along with counseling that 
a potential side effect of the treatment was erectile 
dysfunction. The other subgroup of size 52 was giv-
en the same treatment without counseling. The per-
centage of the no-counseling subgroup that reported 
one or more sexual side effects was 15.3%, whereas   
43.6% of the counseling subgroup reported at least 
one sexual side effect. State and test the appropriate 
hypotheses at significance level .05 to decide wheth-
er the nocebo effect is operating here. (Hint: First 
arrange the data into a contingency table comparing 
subgroup versus presence of side effects.)

	52.	 A random sample of individuals who drive to work 
in a large metropolitan area was obtained, and each 
individual was categorized with respect to both size of 
vehicle and commuting distance (in miles). Does the 
accompanying data suggest that there is an association 
between type of vehicle and commuting distance?

Commuting Distance
0 2 ,10  10 2 ,20  $20

Type of 
vehicle

Subcompact  6 27 19
Compact  8 36 17
Midsize 21 45 33
Full-size 14 18  6

X2 5 14.16

	 a.	 Does this situation call for a test of homogeneity 
or a test of independence?

	 b.	 State and test the appropriate hypotheses using 
� 5 .05.

	53.	 We often think that occupational hazards are pri-
marily experienced by those who work under 
dangerous conditions (e.g., construction workers, 
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law enforcement officers, dockworkers). Clearly, 
a dangerous job can lead to illness or death. But 
can the psychological stress of a work environment 
affect employees’ overall health? This issue was in-
vestigated in the article “Are There Health Effects 
of Harassment in the Workplace? A Gender-Sensi-
tive Study of the Relationships Between Work and 
Neck Pain” (Ergonomics, 2012: 147–159). The re-
searchers wanted to identify workplace physical and 
psychosocial risk factors for neck pain among male 
and female workers. They also wanted to study the 
relationship between neck pain and intimidation 
or sexual harassment in the workplace. (Advanced 
statistical techniques were used to show that neck 
pain was significantly associated with intimidation 
at work among both male and female workers.)

			   This study was based on a representative sam-
ple (5405 men, 3987 women) of the Quebec work-
ing population. The following cross-classification 
table for this sample on gender versus level of neck 
pain is consistent with data reported in the article:

Gender
Men Women

Never 3048 1842
Pain Occasionally 1767 1411

At Least Failry Often 590 734

		  Does it appear that there might be an association 
between gender and neck pain? Carry out a test of 
hypotheses using the .01 significance level.

	54.	 The article cited in Exercise 53 classified each 
member of the sample of workers with respect to 
both gender and level of work-related psychologi-
cal demands. The following table is consistent with 
summary results reported in the article:

Gender

Men Women
Low 1692 1324

Job Demand Medium 1838 1352
High 1875 1311

		  Does it appear that there might be an association 
between gender and work-related psychological de-
mands? Carry out a test of hypotheses using the .05 
significance level.

	55.	 Children often suffer from a condition known as ton-
sillitis in which the tonsils become sore or swollen. 
When the condition becomes chronic, many sufferers 
have their tonsils surgically removed by the tonsillec-
tomy (TE) procedure. TE is one of the most common 
surgeries performed in children and young adults 
worldwide. However, because of the invasive nature 
of the surgery, TE patients often experience severe 
postoperative complications. Tonsillotomy (TT), an al-
ternative procedure to surgically removing the tonsils, 
has become increasingly popular because studies have 
shown it to be less invasive and to have lower risk of 
postoperative complications. 

			   The article “Differences in Pain and Nau-
sea in Children Operated on by Tonsillectomy or 
Tonsillotomy—a Prospective Follow-Up Study” 
(J. of Advanced Nursing, 2012) examined the dif-
ferences in postoperative pain, nausea, and time of 
discharge in children 3–12 years of age after TE or 
TT. To compare differences in postoperative nau-
sea, researchers kept track of the number of pre-
scriptions of ondansetron (a drug to treat nausea 
and vomiting) that were issued to the TE and TT 
children. Four out of 34 TE children compared to 
none of the 53 TT children received such prescrip-
tions.

	 a.	 Suppose we are interested in testing whether 
surgery method affects the provision of ondan-
setron prescriptions. Determine the estimated 
expected counts based on the chi-squared test 
method. Do all expected counts exceed 5?

	 b.	 Use Fisher’s exact test to analyze this data and 
report the P-value based on a two-sided alterna-
tive (as did the authors of the cited article). If 
your software does not perform this test, there 
are many online calculators that will report 
the P-value based on this test. One such site is  
http://research.microsoft.com/en-us/um 
/redmond/projects/mscompbio/fisherexacttest

	56.	 For many years, federal equal employment oppor-
tunity laws have prohibited compensation discrimi-
nation. However, according to the U.S. Equal Em-
ployment Opportunity Commission (EEOC), pay 
disparities continue to exist in various demographic 
groups. According to the EEOC website (visited 
on January 13, 2013), Section 10 of the EEOC 
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Compliance Manual describes the standards and 
suggested steps for investigating a charge of com-
pensation discrimination. In the statistical analysis 
section, Fisher’s exact test is recommended as the 
test of choice. The following is based on the exam-
ple found in the EEOC Compliance Manual.

			   Suppose the employees of a particular com-
pany can be classified into one of two groups (1 

and 2). There are 14 members in group 1 and  
17 in group 2. Eight members of group 1 and three 
members of group 2 earn salaries greater than the 
company median salary. Use Fisher’s exact test at 
significance level .05 to investigate whether group 
affiliation has an effect on salary status. (The previ-
ous exercise identifies a website that will carry out 
the calculations.)

8.4	 Testing the Form of a Distribution �

An investigator, having obtained a sample x1, x2, . . . , xn from some underlying popu-
lation or process distribution, will often wish to know whether it is plausible that the 
underlying distribution is a member of a particular family, such as the normal family, 
Weibull family, or (in the case of discrete count data) the Poisson family. In this section, 
we first present a special test for the normal case and then show more generally how a 
test based on the chi-squared distribution can be carried out.

Is the Population Distribution Normal?
The validity of many inferential procedures, such as the one- and two-sample t inter-
vals and tests presented in this chapter and in Chapter 7, requires that the underlying 
distribution(s) be at least approximately normal. If an assumption of normality is not justi-
fied, alternative methods of analyzing the data must be used. In Chapter 2, we suggested 
the use of a normal quantile plot to assess the plausibility of the underlying distribution 
being normal. The construction involved first determining the (.5yn)th quantile of the 
standard normal distribution, the (1.5yn)th quantile, the (2.5yn)th quantile, and so on 
[these are the values that separate, for i 5 1, . . . , n, the smallest 100((i 2 .5)yn)% of the 
distribution from the remaining part]. These quantiles are then paired with the smallest 
sample observation, the second smallest observation, the third smallest, and so on, and 
the resulting pairs are plotted on a rectangular coordinate system. Normality is suggested 
by a plot in which the points fall reasonably close to some straight line. A plot with a sub-
stantial nonlinear pattern of some sort (e.g., curvature, or one or more points far from the 
line determined by the remaining points) casts doubt on population or process normality.

Some users of statistical methodology will not be comfortable with a subjective assess-
ment of the visual evidence in a plot. After all, people may argue about what is reasonably 
close or what constitutes a substantial departure. Recall that in Chapter 3 we proposed the 
sample correlation coefficient r as a measure of the strength of any linear relationship in a 
bivariate sample. Consider the correlation coefficient r   calculated from the pairs in a nor-
mal quantile plot to be our test statistic for the null hypothesis of normality. Because larger 
observations are paired with larger z quantiles, the points in the plot increase in height when 
moving from left to right. That is, the points in the plot slope upward, implying that r   must 
be positive. A value of r   quite close to 1.0 gives evidence of a very straight pattern in the plot 
and is thus supportive of normality. Suppose, for example, that we calculate r   5 .962. Then 
any test statistic value smaller than .962 is even more contradictory to the null hypothesis 
than what was obtained. For this reason, the test is lower-tailed; the P-value is the area under 
the r   sampling distribution curve (when H0 is true) to the left of the calculated r  .
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The test described in the next box involves a slight modification of what we have 
so far suggested. For technical reasons, rather than using z quantiles corresponding to 
(i 2 .5)yn, quantiles corresponding to (i 2 .375)y(n 1 .25) are used. These alternative 
“plotting positions” do not greatly alter the appearance of the plot, but they have been 
found to improve the behavior of the test.

The Ryan–Joiner Test for Normality
(  This test is very similar to another procedure called the Wilk–Shapiro test.)

Null hypothesis:	 1, . . . ,  comes from a normal distribution.

Alternative hypothesis:	�T he sampled distribution is not normal.

Test statistic:	�   5 the sample correlation coefficient calculated from  
(  quantile, observation) pairs, where the  quantiles are for 
proportions (  2 .375)y (  1 .25),  5 1, . . . , .

-value:	�T he sampling distribution of   when 0 is true is differ-
ent for each sample size . The -value is the area under 
the appropriate one of these sampling distribution curves 
to the left of the calculated   . Appendix Table XII gives, for 
various sample sizes, the values that capture lower-tail areas 
of .10, .05, and .01. Unless the calculated   value coincides 
with one of these tabulated values, one of the following four 
statements about the -value can be made: (1) -value ..10, 
(2) .05 , -value , .10, (3) .01, -value , .05, (4) -value , 
.01. The statistical package Minitab will give -value informa-
tion for this test upon request.

The following sample of n 5 17 observations on length-diameter ratio (LDR) mea-
surements based on static pile load tests first appeared in Example 2.17.

Quantile: 21.89 21.35 21.05 20.82 20.63 20.46 20.30 20.15 0.00
LDR: 30.86 37.68 39.04 42.78 42.89 42.89 45.05 47.08 47.08

Quantile: 0.15 0.30 0.46 0.63 0.82 1.05 1.35 1.89

LDR: 48.79 48.79 52.56 52.56 54.8 55.17 56.31 59.94

We asked Minitab to carry out the Ryan-Joiner test, and the result appears in 
Figure 8.13. The test statistic value is r  5 .990, and Appendix Table XII gives .9549 
as the critical value that captures lower-tail area .10 under the r  sampling distribution 
curve when n 5 17 and the underlying distribution is actually normal. Since .990 .  
.9549, we conclude that P-value 5 area to the left of .9881 . .10, which is what the 
Minitab output of Figure 8.13 reports. The P-value is larger than any reasonable 
significance level, so there is absolutely no reason to doubt that the length-diameter 
ratio is normally distributed.

Example 8.10
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Chi-Squared Tests
Carrying out a chi-squared test requires that categories be established so that observed fre-
quencies can be compared with those expected if the hypothesized family is correct. Sup-
pose, for example, that we have observations on x 5 number of defects for a sample of 200 
automobiles. Possible values of x are 0, 1, 2, . . . . A reasonable null hypothesis is that x has 
a Poisson distribution. We might select the x value 0 as the first category, the value 1 as the 
second category, 2 as the third category, 3 as the fourth category, and aggregate all x values 
that are at least 4 as the remaining catchall category. The form of the Poisson mass function 
is p(x) 5 e2��xyx! for x 5 0, 1, 2, . . . . Substituting x 5 0, 1, 2, and 3 and multiplying each 
result by n 5 200 would give the expected frequencies for the first four categories; the last ex-
pected frequency could then be obtained by adding the first four and subtracting from 200.

However, carrying this out requires that we have a value of the parameter �. The null 
hypothesis states only that the distribution is Poisson, without specifying the correct �. So 
the value of � must be estimated from the data before a test can be conducted, and the cor-
rect way to do this is to use the method of maximum likelihood introduced in Chapter 7. 
The estimate should be based on the grouped data (i.e., the number of observations falling 
in each of the five categories) rather than the individual observations, but this is virtually 
never done. Instead, the estimate �n 5 x based on the full data is customarily used (this es-
timate is intuitively appealing because the mean value of a Poisson variable is just �x 5 �). 
Furthermore, the estimation of any parameters before calculating expected frequencies and 
carrying out the test reduces the number of degrees of freedom on which the test is based.

Each parameter that must be estimated from the data before calculating expected fre-
quencies and carrying out a chi-squared test reduces the number of df for the test by one.  
Thus if the test is based on  categories, all (estimated) expected counts are at least 5; and 
if  parameters were estimated, the test is based on  2 1 2  df.
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Figure 8.13 Minitab output from the Ryan-Joiner test for the data of
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For a Poisson distribution, using the five categories suggested previously would result 
in a test based on df 5 5 2 1 2 1 5 3 (provided that all expected counts were at least 5).  
A chi-squared test for normality (not recommended because the Ryan–Joiner test, as 
well as other tests, have smaller type II error probabilities for the same significance 
level) would require estimating both � and �, reducing degrees of freedom by two.

Consider the accompanying data on the number of Larrea divaricata plants found 
in each of n 5 48 identically shaped sampling regions (ecologists call such regions 
quadrats), taken from the article “Some Sampling Characteristics of Plants and 
Arthropods in the Arizona Desert” (Ecology, 1962: 567–571):

Number of plants: 0 1 2 3 at least 4
Frequency: 9 9 10 14 6

The author of the article fit a Poisson distribution to this data. Suppose that the six 
observations in the last category were actually 4, 4, 5, 5, 6, and 6; it is easily verified 
that �n 5 x 5 2.10 (the value reported in the article). The (estimated) expected fre-
quency for the first category is then

48 c e22.1(2.1)0

0!
d 5 5.88

The other four expected frequencies, calculated in the same way, are 12.34, 12.96, 
9.07, and (by subtraction) 7.75. All expected frequencies exceed 5, so the test will be 
based on 5 2 1 2 1 5 3 df. The test statistic value is

X2 5
(9 2 5.88)2

5.88
1 … 1

(6 2 7.75)2

7.75
5 6.31

The two smallest critical values in the 3 df column of our chi-squared table (Appen-
dix Table VII) are 6.25 and 6.36, corresponding to upper-tail areas of .100 and .095, 
respectively. Thus the approximate P-value for the test is slightly less than .10. At a 
significance level of either .05 or .01, there is little reason to doubt that the distribu-
tion of the number of plants per quadrat is Poisson.

Example 8.11

In the case of continuous data, the categories are simply class intervals. For example, 
we might select the following six classes: (2 , 85), (85, 95), (95, 100), (100, 105), (105, 
115), and (115, ). After estimating any parameters, the estimated expected frequency for 
the fourth class would be n ? 3#105

100  
f (x) dx4, where parameters in the density function f (x) 

are replaced by their estimates.

Section 8.4 Exercises

	57.	 Consider the Ryan–Joiner test for population 
normality.

	 a.	 Give as much information as possible for the 
P-value in each of the following situations:

		  i.	 n 5 10, r  5 .95
		  ii.	 n 5 10, r  5 .90

		  iii.	 n 5 25, r  5 .983
		  iv.	 n 5 25, r  5 .915

	 b.	 For each of the situations in part (a), state 
whether the null hypothesis would be rejected 
when using a significance level of .05.
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	58.	 The article cited in Exercise 31 of Section 8.2 
gave the following observations on bending rigid-
ity (�N ? m) for medium-quality fabric specimens, 
from which the accompanying Minitab output was  
obtained:

24.6 12.7 14.4  30.6 16.1   9.5 31.5 17.2
46.9 68.3 30.8 116.7 39.5 73.8 80.6 20.3
25.8 30.9 39.2  36.8 46.6 15.6 32.3

Would you use a one-sample t confidence interval 
to estimate true average bending rigidity? Explain 
your reasoning.

	59.	 The article from which the data in Exercise 44 of 
Chapter 7 was obtained also gave the following 
data on the compressive strength (in MPa) for 7 
specimens of internally cured concrete that have 
been set for 28 days:

38.7 40.1 40.3 47.5 48.0 56.0 61.1

		  Minitab gives r  5 .953 as the value of the cor-
relation coefficient test statistic and reported that  

P-value ..10. Would you use the one-sample t test 
to test hypotheses about the value of the true aver-
age compressive strength? Why or why not?

	60.	 The data in Exercise 40 is paired, so a paired  
t analysis is appropriate if it is plausible that the val-
ues of the differences were selected from a normal 
distribution. Based on the accompanying plot from 
Minitab, does this appear to be the case?
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	61.	 The article cited in Exercise 88 of Chapter 7 
gave the following observations on conductivity  
(% IACS) for eight wire electrodes used for wire 
electrical-discharge machining:

31 28 26 24 33 65 29 29

	 a.	 Employ software to perform a test for normal-
ity (such as the Ryan-Joiner test) using a signifi-
cance level of .05.

	 b.	 Note that there is one unusually high conduc-
tivity reading. Suppose the researchers discov-
ered there was a recording error for this observa-
tion. Remove it and repeat part (a). How does 
the removal of the observation affect the test for 
normality?

	62.	 In a genetics experiment, investigators examined 
300 chromosomes of a particular type and counted 
the number of sister-chromatid exchanges on 
each one (“On the Nature of Sister-Chromatid 
Exchanges in 5-Bromodeoxyuridine-Substituted 
Chromosomes,” Genetics, 1979: 1251–1264). A 
Poisson model was hypothesized for the distribution 
of the number of exchanges. Test the fit of such a 
model to the accompanying data by first estimating 
� and then combining the frequencies for x 5 8 
and x 5 9.

x: 0 1 2 3 4 5 6 7 8 9
Frequency: 6 24 42 59 62 44 41 14 6 2

	63.	 In an investigation into the distribution of out-
put tuft weight x of cotton fibers when the input 
weight was x0, a truncated exponential distribu-
tion, f (x) 5 (�e2�x)y(1 2 e2�x0) for 0 , x , x0, was 
hypothesized (“Some Studies on Tuft Weight Dis-
tributions in the Opening Room,” Textile Res. J., 

1976: 567–573). The mean value of this distribution 
is � 5 (1y�) 2 (x0 

e2�x0)y(1 2 e2�x0). Replacing � by 
x and � by �n  and solving for the latter quantity gives 
an estimate of �. The expected frequencies for vari-
ous categories (class intervals) can then be calcu-
lated. Use the accompanying data along with x 5 
13.086 to decide whether the truncated exponen-
tial distribution is a plausible model (x0 5 70 here).

Class: 02,8 82,16 162,24
Frequency: 20 8 7

Class: 242,32 322,40 402,48
Frequency: 1 2 1

Class: 482,56 562,64 642,70
Frequency: 0 1 0

	64.	 It is hypothesized that when homing pigeons are 
disoriented in a certain manner, they will exhibit 
no preference for any direction of flight after take-
off (the direction x, a continuous variable, should 
be uniformly distributed on the interval from 0° 
to 360°, so f (x) 5 1y360 on this interval). To test 
this, 50 pigeons were disoriented and released, 
resulting in the following observed directions. 
Use a chi-squared test based on eight classes to 
test the appropriate hypotheses at a significance 
level of .05.

171 338 238 37 92 287 203 320 88

36 131 32 61 250 99 138 155 183

201 312 89 158 206 170 204 46 323

289 141 319 242 179 249 185 277 95

46 197 251 196 326 124 350 112 37

104 290 47 310 86

8.5	 Further Aspects of Hypothesis Testing �

Our focus in hypothesis testing thus far has been on an intuitive development of test 
procedures in various situations and their application to sample data. In this section, we 
consider several somewhat more conceptual issues: the distinction between statistical 
and practical significance of a test result, the interpretation and determination of type II 
error probabilities, a test procedure that is distribution-free in the sense that its validity 
does not depend on any restrictive assumptions, the relation between confidence in-
tervals and test procedures, and a general principle for construction of test procedures.
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Statistical Versus Practical Significance
Carrying out a test amounts to deciding whether the value obtained for the test statistic 
could plausibly have resulted when H0 is true. If the value does not deviate too much 
from what is expected when the null hypothesis is true, there is no compelling reason 
for rejecting H0 in favor of Ha. But suppose that the P-value is quite small, indicating a 
test statistic value that is quite inconsistent with H0. One could continue to believe that 
H0 is true and that such a value arose just through chance variation (a very unusual and 
unrepresentative sample). However, in this case a more plausible explanation for what 
was observed is that the null hypothesis is false and Ha is true.

When the P-value is smaller than the chosen significance level �, it is customary 
to say that the result is statistically significant. The finding of statistical significance 
means that, in the investigator’s opinion, the observed deviation from what was expect-
ed under H0 cannot plausibly be attributed to sampling variability alone. However, 
statistical significance cannot be equated with the conclusion that the true situation 
differs from what H0 states in any practical sense. That is, even after the null hypothesis 
has been rejected, the data may suggest that there is no practical difference between the 
true value of the parameter and what the null hypothesis asserts that value to be.

Samples of two different automobile braking systems were selected and the braking 
distance (ft) for each was determined under specified experimental conditions, re-
sulting in the following summary information:

n1 5 100  x1 5 120  s1 5 5.0

n2 5 100  x2 5 118  s2 5 5.0

Does it appear that true average braking distance for the first system differs from that 
for the second system? The relevant hypotheses are H0: �1 2 �2 5 0 versus the alter-
native Ha: �1 2 �2 Þ 0, and

z 5
x1 2 x2C s2

1

n1
1

s2
2

n2

5
120 2 118C 25
100

1
25
100

5
2

.707
5 2.83

The P-value for this two-tailed z test is then 2 ? (area under z curve to the right of 2.83) 5  
.0046. Thus the null hypothesis should be rejected at a significance level of .05 or 
even at .01. We say that the data is statistically significant at either of these levels. 
However, because of the rather large sample sizes and relatively small standard devia-
tions, it appears that �1 2 �2 x1 2 x2 5 2.0. From a practical point of view, a 2-foot 
difference in true average braking distance would appear to be relatively unimport-
ant. This is an instance of statistical significance without any evidence of a practi-
cally significant difference.

Example 8.12

Type II Error Probabilities
A test carried out at a specified significance level � is one for which the probability 
of a type I error—the probability of rejecting the null hypothesis when it is true—is 
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the chosen �. Using a small significance level results in a test that has good protection 
against the commission of a type I error. However, if at the same time the likelihood of 
committing a type II error—not rejecting the null hypothesis when in fact it is false—is 
large, then the test procedure will be quite ineffective at detecting departures from the 
null hypothesis. For example, consider testing H0: � 5 100 versus Ha: � . 100 using a 
test with a significance level of � 5 .01. If this test is used repeatedly on different samples 
selected from the population of interest and if H0 is in fact true, in the long run only 
1% of all samples will result in the incorrect rejection of the null hypothesis. Suppose, 
though, that the alternative � 5 105 represents an important departure from the null hy-
pothesis, but that in this situation � 5 P(type II error) 5 .75. Then if the test procedure 
is used over and over on different samples and in fact � really is 105 rather than 100, in 
the long run only 25% of all samples will result in the rejection of H0, whereas the other 
75% of all samples will yield an incorrect conclusion. The test procedure has rather 
poor ability to detect a departure from the null hypothesis that has substantial practical 
significance. In general, it makes little sense to expend the resources necessary to acquire 
sample data and carry out a test if the test procedure has very poor ability to detect impor-
tant departures from the null hypothesis. This is why we recommend investigating the 
likelihood of committing a type II error before a test with a specified � is used.

One way to determine � is to use an appropriate set of curves. Figure 8.14 shows 
three different � curves for a one-tailed t test (appropriate for either the alternative 
Ha: � . �0 or the alternative Ha: � . �0). Obtaining � requires that we specify an alter-
native value of � (e.g., 105 in the situation considered in the previous paragraph) and 
also that we select a realistic value of the population or process standard deviation �. 
Then we calculate the value of

d 5
(alternative value of �) 2 �0

�

the distance between the alternative value and the null value expressed as some number 
of population standard deviations. Thus d 5 2 means that the alternative value of � is 2 

Figure 8.14  Selected � curves for the one-tailed  test
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population standard deviations away from the null value. Finally, locate the value of d 
on the horizontal axis, move directly up to the curve for n 2 1 df, and move over to the 
vertical axis to read the value of �.

The following general properties provide insight into how � behaves.

1.	 The larger the number of degrees of freedom, the lower is the corresponding � 
curve for any value of d. Because df increases as the sample size increases, we 
have the intuitively plausible result that � decreases as n increases.

2.	 The farther the alternative value of interest is from the null value, the larger the 
value of d. Because every curve decreases as d increases, it follows that � will be 
smaller for an alternative value far from what the null hypothesis asserts than for 
a value close to �0. Thus the test is more likely to detect a large departure from 
�0 than a small departure.

3.	 The larger the value of �, the smaller the value of d and the larger the resulting 
value of � corresponding to any particular alternative value of �. That is, the 
more underlying variability there is in the population or process, the more dif-
ficult it will be to detect a departure from H0 of any given magnitude. Selecting 
a relatively large value of � for the calculation gives a pessimistic value of �.

In recent years, the use of � curves has been superseded by statistical software, which is 
quicker and avoids the visual inaccuracies associated with the curves. In particular, Minitab 
will determine the power of the one-sample t test, where power 5 1 2 �, once the differ-
ence between the null value and alternative value of � and also the value of � have been 
specified (small � is equivalent to large power; a powerful test is one that has large power 
and therefore good ability to discriminate between the null hypothesis and the alternative 
value of �). In addition, instead of specifying n and asking for power, the user can specify 
the desired power for the given difference and ask Minitab for the necessary sample size.

The true average voltage drop from collector to emitter of insulated gate bipolar tran-
sistors of a certain type is supposed to be at most 2.5 volts. An investigator selects a 
sample of n 5 10 such transistors and uses the resulting voltages as a basis for testing 
H0: � 5 2.5 versus Ha: � . 2.5 using a t test with significance level � 5 .05. If the 
standard deviation of the voltage distribution is � 5 .100, how likely is it that H0 will 
not be rejected when in fact � 5 2.6?

The difference value is 2.6 2 2.5 5 .1. Providing this information to Minitab 
along with the sample size, value of �, and the fact that the test is upper-tailed 
results in power 5 .8975, from which � .1. The investigator may think that this 
value of � is too large for such a substantial departure from H0. When Minitab is 
supplied with the difference .1, � 5 .1, and the target power of .95 (� 5 .05) for 
an upper-tailed test with � 5 .05, the necessary sample size is returned as 13. The 
actual power in this case is .9597, whereas using n 5 12 would result in power 
being somewhat below the target.

Example 8.13

Type II error probabilities for other tests can be determined in a similar manner using 
appropriate statistical software.
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You might ask whether there is another test procedure, based on a different test statis-
tic (a different function of the sample data), that outperforms the one-sample t test in the 
sense that it has the same significance level � but smaller type II error probabilities. It turns 
out that there is no such test as long as the population distribution is normal. The one-
sample t test is really the best possible test in this situation. Furthermore, if the population 
distribution is not too far from being normal, no test can improve on the one-sample t test 
by very much. However, if the population distribution is highly nonnormal (heavy-tailed, 
highly skewed, or multimodal), the t test should not be used. Then it is time to consult your 
friendly neighborhood statistician to see what alternative methods of analysis are available.

An Alternative Two-Sample Test for  
Hypotheses About m1 2 m2

Unfortunately, the two-sample t test does not have the same status as does the one- 
sample test. The two-sample t test is an intuitively reasonable procedure that appears to 
protect against both type I and type II errors, but it is not known whether it is the best 
test in the sense described previously (smallest �s for any given �). Furthermore, if the 
population distributions are not normal, there are better tests available. We now give a 
brief description of one such test, called the Wilcoxon rank-sum test or alternatively the 
Mann–Whitney test (after the statisticians who discovered the procedure). The validity 
of the test procedure requires that both population or process distributions be continu-
ous with the same shapes and spreads, so that the only possible difference between them 
is the location of the center. The two-sample t test does not require equal variances, so 
the new situation is more restrictive in this respect. However, the Wilcoxon test does not 
require normal distributions, making it more widely applicable in this sense.

The test is based on a random sample from the first distribution and another ran-
dom sample, selected independently of the first one, from the second distribution. Let’s 
take the n1 observations in the first sample and combine them with the n2 observations 
from the second sample. Suppose that there are no tied values in this combined sample 
(all n1 1 n2 observations are distinct). We assign a rank to each value in the combined 
sample: The smallest value gets a rank of 1, the second smallest rank 2, and so on, until 
finally the largest value has rank n1 1 n2. The following example, with n1 5 4 and n2 5 3,  
consists of observations on fuel efficiencies (mpg) for two different types of cars:

Distribution from which the
observation was selected: 2 2 1 2 1 1 1

Combined sample (ordered): 27.8 29.0 29.3 29.8 31.0 32.1 33.0
Rank: 1 2 3 4 5 6 7

Consider testing H0: �1 2 �2 5 0 versus Ha: �1 2 �2 . 0. The key idea behind the 
test is that, if the null hypothesis is true, observations from the two samples should be 
intermingled in magnitude, so that the ranks are intermingled. However, when �1 ex-
ceeds �2, observations in the first sample will tend to be larger than those in the second 
sample. In this case, the larger ranks will be assigned to sample 1 observations and the 
smaller ranks to the observations from sample 2. The Wilcoxon test statistic w is the 
sum of the ranks assigned to observations in the first sample. For the data introduced,

w 5 sum of ranks for observations in sample 1 5 3 1 5 1 6 1 7 5 21
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Because the inequality . appears in Ha, values of w larger than 21 are even more con-
tradictory to the null hypothesis than the value actually obtained. Thus

P-value 5 P(w $  21 when H0 is true)

Now the only set of four ranks for which w 5 21 is the one that resulted, and the only 
possible w value larger than 21 is w 5 22, which occurs when the ranks are 4, 5, 6, and 
7. So

P-value 5 P(ranks are 3, 5, 6, and 7 or 4, 5, 6, and 7 when H0 is true)

But when the null hypothesis is true, all seven observations have actually been selected 
from the same distribution, in which case any set of four ranks for the observations in 
the first sample has the same chance of resulting—the set 1, 2, 5, 7 or the set 1, 3, 4, 6, 
and so on. It is not difficult to see that there are 35 possible sets of four ranks that can be 
selected from the ranks 1, . . ., 7.1 Since only two of these 35 sets have w $  21,

P@value 5
2
35

5 .0571

When H0 is true and this test statistic is used repeatedly on different samples, in the long 
run about 5.7% of all samples will give a w value at least as contradictory to the null 
hypothesis as what we obtained. The P-value is small enough to justify rejection of H0 
at level .10 but not at level .05.

Unless n1 and n2 are quite small, it can be time-consuming to determine the sets of 
ranks corresponding to w values at least as extreme as what was obtained to calculate the P-
value. We recommend using a statistical computer package for this purpose. The Wilcox-
on test is valid whatever the nature of the two distributions as long as they are continuous 
with the same shapes and spreads. This test is often described as being distribution-free (or 
nonparametric), meaning that it is valid for a wide variety of underlying distributions rather 
than just one particular type of distribution. The t test is not distribution-free, because its 
validity is predicated on the two distributions being at least approximately normal. There 
are a number of other distribution-free tests in a statistician’s toolbox, many of them based 
on ranks of the observations. The best of these tests, including the Wilcoxon test, perform 
almost as well as tests such as the t test that are developed with specific types of distribu-
tions in mind. That is, for the same significance level �, type II error probabilities for the 
distribution-free tests are not much larger than those of the best tests in various situations. 
Consult one of the chapter references for more information on procedures of this type.

The Relationship Between Test Procedures  
and Confidence Intervals
Suppose the two-sided large-sample confidence interval for a population mean � at the 
95% confidence level based on a particular sample is (103.5, 108.2). Consider using 
this same sample to test, at a significance level of .05, the null hypothesis H0: � 5 �0 
against the two-sided alternative Ha: � Þ �0. It is not difficult to see that if the null value 
�0 is a number in the confidence interval, such as 105 or 107.5, then the P-value will 
exceed .05, so H0 cannot be rejected. If, however, �0 lies outside the confidence interval 

1 In general, there are (n1 1 n2)!y(n1!)(n2!) ways to select the n1 ranks for the observations from the first sample.
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(e.g., 100 or 110), then the P-value # .05 and H0 can be rejected. In other words, the 
95% interval consists precisely of all values �0 for which the null hypothesis H0: � 5 �0 
cannot be rejected at a significance level of .05. This is intuitively reasonable, since the 
confidence interval consists of all plausible values of � at the designated confidence lev-
el, and not rejecting H0 means that �0 is plausible. The following generalization of this 
situation describes an important relationship between tests and confidence intervals.

Let �nL denote the lower confidence limit for some parameter � and �nU denote the upper 
confidence limit, where the confidence level is 100(1 2 �),. Consider the test procedure 
that rejects H0: � 5 �0 in favor of a: � Þ �0 if �0 lies outside the interval and does not 
reject the null hypothesis if �0 falls between �nL and �nU. (Notice that there is no explicit test 
statistic, but we still have a decision rule.) This test procedure has a significance level of �.

The result is important because a confidence interval can be used as a basis for 
testing hypotheses, and, by the same token, there is a confidence interval procedure cor-
responding to any particular test procedure. (Our discussion has focused on two-sided 
confidence intervals and two-tailed tests, but one-sided confidence intervals that specify 
a lower or an upper confidence bound give rise to one-tailed tests and vice versa.) For 
example, in Chapter 7 we discussed the bootstrap method for calculating confidence 
intervals; these intervals also form the basis for bootstrap tests of hypotheses. Similarly, 
the Wilcoxon rank-sum test, which was described previously, gives rise to a distribution-
free confidence interval for �1 2 �2. In summary, the duality between tests and confi-
dence intervals has led to the development of many important inferential procedures.

A General Principle for Obtaining Test Procedures
The test procedures considered so far have all been developed in an ad hoc manner; 
an intuitively plausible test statistic was selected and its sampling distribution when 
H0 is true was obtained so that the P-value could be calculated. Many frequently used 
test procedures can be derived using a general technique called the likelihood ratio 
principle. Suppose that the mass or density function for a single observation to be ran-
domly selected from some population or process is f (x; �). Recall from our discussion 
of maximum likelihood estimation that if the n sample observations x1, . . . , xn are inde-
pendently selected from this distribution (a random sample), then the likelihood is the 
joint mass or density function f (x1; �) f (x2; �) f (xn; �), regarded as a function of �. 
For example, for a random sample from a Poisson distribution, the likelihood would be

�x1 e2�

x1!
 … �xn e2�

xn!
5

�
^xi e2n�

x1!…xn!

Now consider general null and alternative hypotheses of the form H0: � V0 ver-
sus Ha: � Va( is read as “lies in the set. . . ”). For example, V0 might be the single 
value 10, and Va might consist of all numbers except 10, whence the hypotheses are 
H0: � 5 10 versus Ha: � Þ 10. Now consider the following likelihood ratio test statistic:

(x) 5 likelihood ratio test statistic 5
maximum value of likelihood for all � V0

maximum value of likelihood for all � Va
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where x is compact notation for x1, . . . , xn. If the numerator of this statistic is much 
larger than the denominator (the ratio is much larger than 1.0), then there is a value of 
� specified by the null hypothesis for which the observed data is a lot more likely than it 
would be for any value of � specified by the alternative hypothesis. If, however, the ratio 
is much smaller than 1.0, there is an alternative value of � for which the observed data is 
much more likely than would be the case if the null hypothesis were true. A ratio of the 
latter sort therefore suggests rejecting H0 in favor of Ha. Suppose, for example, that the 
value of (x) is .2. Then values of this statistic smaller than .2 are even more contradic-
tory to H0 than what was obtained, implying that

P@value 5 P( (x) # .2 when H0 is true)

Suppose that the population distribution is normal and that we wish to test the null 
hypothesis H0: � 5 �0 against one of the three alternatives considered previously. It is 
not at all obvious by inspection, and the argument requires a bit of tedious algebra, but 
it can be shown that application of the likelihood ratio principle here gives rise to the 
one-sample t test. So this test procedure can be derived from a general principle for test 
construction rather than being justified simply on intuitive grounds. This is also true of 
a number of test procedures to be considered in the next several chapters.

	65.	 Let x denote the IQ of a child randomly selected 
from a certain large geographical region. Suppose x 
is known to have (approximately) a normal distribu-
tion with � 5 15. A parent group wishes to test the 
hypothesis H0: � 5 100 versus Ha: � . 100, hoping 
to reject the null hypothesis and be able to claim 
that the average IQ of their children exceeds the 
nationwide average. The test statistic in this situa-
tion is z 5 (x 2 100)y(15y1n).

	 a.	 Determine the P-value of the test for each of 
the following values of n when x 5 101 (which 
suggests that if there is a departure from H0, it 
is  of little practical significance): i. 100, ii. 400, 
iii. 1600, iv. 2500.

	 b.	 At a significance level of .01, rejecting H0 is ap- 
propriate if the P-value #  .01, equivalent to z $  
2.33, that is, x $ 100 1 (2.33)(15)y1n. Deter-
mine the value of the type II error probability � 
when � 5 101 for each of the sample sizes given 
in part (a). Is a large sample size likely to result in 
rejecting H0 even in the absence of a practically 
significant departure from H0?

	66.	 The Charpy V-notch impact test is to be applied 
to a sample of 20 specimens of a certain alloy to 
determine transverse lateral expansion at 110°F. 

To be suitable for a particular application, true 
average expansion should be less than 75 mils. 
The alloy will not be used unless there is strong 
evidence that the criterion has been met. Assum-
ing a normal distribution and a test with � 5 .01, 
what is the probability that a type II error will be 
committed and the alloy not used when in fact 
� 5 72 and � 5 5? What is this probability when 
� 5 70 and � 5 5?

	67.	 A sample of 15 radon detectors of a particular type 
is to be selected, and each will be exposed to  100 
pCi/L of radon. The resulting data will be used to test 
whether the population mean reading is in fact 100. 
Suppose that the reading x has a normal distribution 
within the population. Write a paragraph or two ex-
plaining the following Minitab output to someone 
who is familiar with the elements of hypothesis test-
ing but not with type II error probabilities:

Testing mean = null (versus not = null)
Calculating power for mean = null + difference
Alpha = 0.01 Sigma = 1

		  Sample
	Difference	 Size	 Power
	 0.5	 15	 0.1944
	 0.8	 15	 0.5619

Section 8.5 Exercises
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Alpha = 0.01	 Sigma = 0.8

		  Sample
	Difference	 Size	 Power
	 0.5	 15	 0.3311
	 0.8	 15	 0.7967

Alpha = 0.01	 Sigma = 0.8

		  Sample	 Target	 Actual
	Difference	 Size	 Power	 Power
	 0.5	 42	 0.9000	 0.9047
	 0.8	 19	 0.9000	 0.9147

	68.	 The article “A Study of Wood Stove Particulate 
Emission” (J. of the Air Pollution Control Fed., 
1979: 724–728) reported the following data on 
burn time (hr) for specimens of oak and pine. 
Use Wilcoxon’s test at a significance level of .05 
to decide whether true average burn time for oak 
exceeds that for pine. Hint: With n1 5 6 and n2 5 
8, when H0 is true, P(w $  c) 5 .054 for c 5 58 
and is .010 for c 5 63.

Pine: .98 1.40 1.33 1.52 .73 1.20

Oak: 1.72 .67 1.55 1.56 1.42 1.23 1.77 .48

	69.	 In an experiment to compare the bond strength of 
two different adhesives, each adhesive was used in 

five bondings of two surfaces, and the force necessary 
to separate the two surfaces was determined for each 
bonding, resulting in the following data:

Adhesive 1: 229 286 245 299 250
Adhesive 2: 216 179 183 247 232

		  Use the Wilcoxon rank-sum test to decide whether 
true average bond strengths differ for the two adhe-
sives. Hint: For these sample sizes, when H0 is true, 
P(w $  c) 5 .048 for c 5 36, .028 for c 5 37, and .008 
for c 5 39. Furthermore, when H0 is true, the distri-
bution of w is symmetric about n1(n1 1 n2 1 1)y2, so 
in this case P(w #  c) 5 .048 for c 5 19.

	70.	 The confidence interval associated with Wilcoxon’s 
rank-sum test has the following general form. First, 
subtract each observation in the first sample from ev-
ery observation in the second sample to obtain a set 
of n1n2 differences. Then the confidence interval ex-
tends from the cth smallest of these differences to the 
cth largest difference, where the value of c depends 
on the desired confidence level. In the case n1 5  
n2 5 5, c 5 4 results in a confidence level of 94.4%, 
which is as close to 95% as can be obtained. Deter-
mine this CI for the strength data in Exercise 69.

Supplementary Exercises

	71.	 Have you ever been frustrated because you could not 
get a container of some sort to release the last bit of its 
contents? The article “Shake, Rattle, and Squeeze: 
How Much Is Left in That Container?” (Consumer 
Reports, May 2009: 8) reported on an investigation 
of this issue for various consumer products. Suppose 
five 6.0-oz tubes of toothpaste of a particular brand 
are randomly selected and squeezed until no more 
toothpaste will come out. Then each tube is cut 
open and the amount remaining is weighed, result-
ing in the following data (consistent with what the 
cited article reported): .53, .65, .46, .50, .37. Does it 
appear that the true average amount left is less than 
10% of the advertised net contents?

	 a.	 Check the validity of any assumptions necessary 
for testing the appropriate hypotheses.

	 b.	 Carry out a test of the appropriate hypotheses 
using a significance level of .05. Would your 

conclusion change if a significance level of .01 
had been used?

	 c.	 Describe in context type I and II errors, and say 
which error might have been made in reaching 
a conclusion.

	72.	 The article cited in Exercise 25 of Section 8.2 gave 
the following data on mass crystallinity (in %) for 
12 samples of the PHB polymer:

42.97 38.81 38.83 41.03 41.25 36.99
49.57 41.77 34.50 44.77 36.92 40.48

	 a.	 Is it plausible that the mass crystallinity for this 
type of polymer is normally distributed?

	 b.	 Suppose researchers wanted to investigate 
whether the true average mass crystallinity ex-
ceeds 40%. Carry out a test of appropriate hy-
potheses using a significance level of .05.

	 Supplementary Exercises	 407
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	73.	 The following summary data on daily caffeine con-
sumption for a sample of adult women appeared 
in the article “Caffeine Knowledge, Attitudes, and 
Consumption in Adult Women” (J. of Nutrition 
Educ., 1992: 179–184): n 5 47, x 5 215 mg, s 5 
235 mg, range of data: 5–1176.

	 a.	 Does it appear plausible that the population distri-
bution of daily caffeine consumption is normal? 
Is it necessary to assume a normal population 
distribution to test hypotheses about population 
mean consumption? Explain your reasoning.

	 b.	 Suppose it had previously been believed that pop-
ulation mean consumption was at most 200 mg. 
Does the given data contradict prior  belief?

	74.	 Contamination of mine soils in China is a serious en-
vironmental problem. The article “Heavy Metal Con-
tamination in Soils and Phytoaccumulation in a Man-
ganese Mine Wasteland, South China” (Air, Soil, and 
Water Res., 2008: 31–41) reported that, for a sample of 
3 soil specimens from a certain restored mining area, 
the sample mean concentration of total Cu was 45.31 
mg/kg with a corresponding (estimated) standard error 
of the mean of 5.26. It was also stated that the China 
background value for this concentration was 20. The 
results of various statistical tests described in the article 
were predicated on assuming normality.

			   Does the data provide strong evidence for 
concluding that the true average concentration in 
the sampled region exceeds the stated background 
value? Carry out a test at significance level .01.

	75.	 In an investigation of the toxin produced by a certain 
poisonous snake, a researcher prepared 26 different 
vials, each containing 1 g of the toxin, and then 
determined the amount of antitoxin necessary to 
neutralize the toxin. The sample average amount of 
antitoxin necessary was found to be 1.89 mg, and the 
sample standard deviation was .42. Previous research 
had indicated that the true average neutralizing 
amount was 1.75 mg/g of toxin. Does the new data 
contradict the value suggested by prior research? 
State and test the relevant hypotheses using � 5 .05.

	76.	 When the population distribution is normal, it can 
be shown that the variable X2 5 (n 2 1)s2y�2 has 
a chi- squared distribution with n 2 1 df. This can 
be used as a basis for testing H0: � 5 �0, as follows: 

Replace �2 in X2 by its hypothesized value �2
0 to 

obtain a test statistic. If the alternative hypothesis is 
Ha: � . �0, the P-value is the area under the n 2 1 
df chi-squared curve to the right of the calculated X2 
(an upper-tailed test).

	 a.	 To ensure reasonably uniform characteristics 
for a particular application, it is desired that the 
true standard deviation of the softening point 
of a certain type of petroleum pitch be at most 
.50°C. The softening points of ten different 
specimens were determined, yielding a sample 
standard deviation of .58°C. Assume that the 
distribution from which the observations were 
selected is normal. Does the data contradict the 
uniformity specification? State and test the ap-
propriate hypotheses using � 5 .01.

	 b.	 Suppose that the investigator who performed 
the experiment described in part (a) had wished 
to test H0: � 5 .70 versus Ha: � , .70. Can this 
test be carried out using the chi-squared table in 
this book? Why or why not?

	77.	 Let � denote the proportion of “successes” in some 
population. Consider selecting a random sample of 
size n, and let p denote the sample proportion of 
successes (number of successes in the sample divid-
ed by n). Suppose we wish to test H0: � 5 �0. When 
H0 is true and both n�0 . 5 and n(1 2 �0) . 5, the 
sampling distribution of p is approximately nor-
mal with mean value �0 and standard deviation 2�0(1 2 �0)yn. This implies that a “large-sample” 
test statistic is z 5 (p 2 �0)y2�0(1 2 �0)yn (i.e., 
we standardize p assuming that H0 is true); the  
P-value is calculated as was done in Section 8.1 for 
a z test concerning �.

			   Seat belts help prevent injuries in vehicle ac-
cidents, but they don’t offer complete protection 
in extreme situations. A sample of 319 front-seat 
occupants involved in head-on collisions in a cer-
tain region resulted in 95 who sustained no inju-
ries (“Influencing Factors on the Injury Severity 
of  Restrained Front Seat Occupants in Car-to-Car 
Head-on Collisions,” Accident Analysis and Preven-
tion, 1995: 143–150). Does this data suggest that 
less than one-third of all such accidents result in 
no injuries? State and test the relevant hypotheses 
using a significance level of .05.
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	78.	 Some of the deadliest mass shootings in U.S. histo-
ry occurred in 2012. These events led to many calls 
for stricter national gun control. On December 
27, 2012, the Gallup organization reported that 
roughly 600 of 1038 American adults surveyed said 
they would be in favor of strengthening laws cover-
ing the sale of firearms. 

	 a.	 Does this provide strong evidence for conclud-
ing that more than 50% of the population of 
American adults was in favor of making laws 
covering the sale of firearms more strict? Con-
duct an appropriate test of hypotheses using a 
.01 significance level. (Hint: Read the first para-
graph of the previous problem.)

	 b.	 This poll was conducted December 19–22, 
just days after a mass shooting at an elementary 
school in Connecticut. Discuss what effects this 
event may have had on the  poll’s outcome.

	79.	 Headability is the ability of a cylindrical piece 
of material to be shaped into the head of a bolt, 
screw, or other cold-formed part without crack-
ing. The article “New Methods for Assessing Cold 
Heading Quality” (Wire J. Intl., Oct. 1996: 66–72) 
described the result of a headability impact test 
applied to 30 specimens of aluminum killed steel 
and 30 specimens of silicon killed steel. The 
sample mean headability rating number for the 
steel specimens was 6.43 and the sample mean for 
aluminum specimens was 7.09. Suppose that the 
sample standard deviations were 1.08 and 1.19, re-
spectively. Do you agree with the article’s authors 
that the difference in headability ratings is signifi-
cant at the 5% level?

	80.	 The article “Two Parameters Limiting the Sensitivity 
of Laboratory Tests of Condoms as Viral Barriers”  
(J. of Testing and Eval., 1996: 279–286) reported that, 
in brand A condoms, among 16 tears produced by a 
puncturing needle, the sample mean tear length was 
74.0 �m, whereas for the 14 brand B tears, the sample 
mean length was 61.0 �m (determined using light 
microscopy and scanning electron micrographs). 
Suppose the sample standard deviations are 14.8 
and 12.5, respectively (consistent with the sample 
ranges given in the article). The authors commented 
that the thicker brand B condom displayed a smaller 
mean tear length than the thinner brand A condom. 

Is this difference in fact statistically significant? State 
the appropriate hypotheses and test at � 5 .05.

	81.	 Information about hand posture and forces gener-
ated by the fingers during manipulation of various 
daily objects is needed for designing high-tech hand 
prosthetic devices. The article “Grip Posture and 
Forces During Holding Cylindrical Objects with 
Circular Grips” (Ergonomics, 1996: 1163–1176) 
reported that for a sample of 11 females, the sample 
mean four-finger pinch strength (N) was 98.1 and 
the sample standard deviation was 14.2. For a sam-
ple of 15 males, the sample mean and sample stan-
dard deviation were 129.2 and 39.1, respectively.

	 a.	 A test carried out to see whether true average 
strengths for the two genders were different re-
sulted in t 5 2.51 and P-value 5 .019. Does the 
appropriate test procedure described in this chap-
ter yield this value of t and the stated P-value?

	 b.	 Is there substantial evidence for concluding that 
true average strength for males exceeds that for 
females by more than 25 N? State and test the 
relevant hypotheses.

	82.	 The article “Pine Needles as Sensors of Atmospheric 
Pollution” (Environ. Monitoring, 1982: 273–286) 
reported on the use of neutron-activity analysis to 
determine pollutant concentration in pine needles. 
According to the article’s authors, “These obser-
vations strongly indicated that for those elements 
which are determined well by the analytical proce-
dures, the distribution of concentration is lognor-
mal. Accordingly, in tests of significance the loga-
rithms of concentrations will be used.” The given 
data refers to bromine concentration in needles 
taken from a site near an oil-fired steam plant and 
from a relatively clean site. The summary values 
are means and standard deviations of the log-trans-
formed observations.

Site
Sample 

Size

Mean  
log  

concentration

Standard  
Deviation  

of log  
concentration

Steam plant 8 18.0 4.9
Clean 9 11.0 4.6

		  Let �1*  be the true average log concentration at the 
first site and define �2*  analogously for the second site.
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	 a.	 Use the pooled t test (based on assuming nor-
mality and equal standard deviations), described 
in Exercise 37, to decide at significance level 
.05 whether the two concentration distribution 
means are equal.

	 b.	 If �1*  and �2* , the standard deviations of the 
two log concentration distributions, are not 
equal, would �1 and �2, the means of the con-
centration distributions, be equal if �1*  5 �2*? 
Explain your reasoning.

	83.	 The article cited in Exercise 78 of Chapter 7 gave 
additional data on breaking force (N):

Temp Medium n x s
22° Dry 6 170.60 39.08
37° Dry 6 325.73 34.97
22° Wet 6 366.36 34.82
37° Wet 6 306.09 41.97

	 a.	 Is there strong evidence for concluding that true 
average force in a dry medium at the higher 
temperature exceeds that at the lower tempera-
ture by more than 100 N?

	 b.	 Is there strong evidence for concluding that true 
average force in a wet medium at the lower tem-
perature exceeds that at the higher temperature 
by more than 50 N?

	84.	 Long-term exposure of textile workers to cotton dust 
released during processing can result in substantial 
health problems so textile researchers have been inves-
tigating methods that will result in reduced risks while 
preserving important fabric properties. The accompa-
nying data on roving cohesion strength (kN?m/kg) for 
specimens produced at five different twist multiples is 
from the article “Heat Treatment of Cotton: Effect on 
Endotoxin Content, Fiber and Yarn Properties, and 
Processability” (Textile Research J., 1996: 727–738):

Twist multiple: 1.054 1.141 1.2451.370 .481
Control strength: .45 .60 .61 .73 .69
Heated strength: .51 .59 .63 .73 .74

		  The authors of the cited article stated that strength 
for heated specimens appeared to be slightly higher 
on average than for the control specimens. Is the 
difference statistically significant? State and test the 
relevant hypotheses using � 5 .05.

	85.	 Tardive dyskinesia refers to a syndrome comprising a 
variety of abnormal involuntary movements assumed 
to follow long-term use of antipsychotic drugs. An ex-
periment carried out to investigate the effect of the 
drug deanol also used a placebo treatment, some-
thing that resembled deanol in every way but was 
known to be inert and have absolutely no medical 
effect. The two treatments were administered for 4 
weeks each in random order to 14 patients, resulting 
in the following total severity index scores (“Double 
Blind Evaluation of Deanol in Tardive Dyskinesia,” 
J. of the Amer. Med. Assoc., 1978: 1997–1998):

Patient: 1 2 3 4 5 6 7
Deanol: 12.4 6.8 12.6 13.2 12.4 7.6 12.1
Placebo: 9.2 10.2 12.2 12.7 12.1 9.0 12.4

Patient: 8 9 10 11 12 13 14
Deanol: 5.9 12.0 1.1 11.5 13.0 5.1 9.6
Placebo: 5.9 8.5 4.8 7.8 9.1 3.5 6.4

		  Does the data indicate that, on average, deanol 
yields a higher total severity index score than does 
the placebo treatment?

	86.	 The authors of the article “Predicting Professional 
Sports Game Outcomes from Intermediate Game 
Scores” (Chance, 1992: 18–22) used statistical anal-
ysis to determine whether there was any merit to 
the idea that basketball games are not settled until 
the last quarter, whereas baseball games are “over” 
by the seventh inning. They also considered foot-
ball and hockey. Data was collected for a sample of 
games of each type, selected from all games played 
during the 1990 season for baseball and football 
and during the 1990–1991 season for the other two 
sports. For each game, the late-game leader was 
determined, and it was noted whether the leader 
actually ended up winning the game. The leader 
was defined as the team ahead after three quarters 
in basketball and football, two periods in hockey, 
and seven innings in baseball. The results follow:

Sport Leader wins Leader loses

Basketball 150 39

Baseball   86   6

Hockey   65 15

Football   72 21
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		  Do the four sports appear to be identical with respect 
to the proportion of games won by the late-game 
leader? State and test the appropriate hypotheses us-
ing � 5 .05. Do you think your conclusion can be 
attributed to a single sport being an anomaly?

	87.	 As the population ages, there is increasing concern 
about accident-related injuries to the elderly. The 
article “Age and Gender Differences in Single-Step 
Recovery from a Forward Fall” (J. of Gerontology, 
1999: M444–M50) reported on an experiment 
in which the maximum lean angle—the furthest 
a subject is able to lean and still recover in one 
step—was determined for both a sample of younger 
females (21–29 years) and a sample of older females 
(67–81 years). The following observations are con-
sistent with summary data given in the article:

YF: 29 34 33 27 28 32 31 34 32 27
OF: 18 15 23 13 12

		  Does the data suggest that true average maximum 
lean angle for older females is more than 10 degrees 
smaller than it is for younger females? State and test 
the relevant hypotheses at significance level .10.

	88.	 Adding computerized medical images to a data-
base promises to provide great resources for physi-
cians. However, there are other methods of obtain-
ing such information, so the issue of efficiency of 
access needs to be investigated. The article “The 
Comparative Effectiveness of Conventional and 
Digital Image Libraries” (J. of Audiovisual Media 
in Medicine, 2001: 8–15) reported on an experi-
ment in which 13 computer-proficient medical 
professionals were timed both while retrieving an 
image from a library of slides and while retrieving 
the same image from a computer database with a 
Web front end.

Subject: 1 2 3 4 5 6 7
Slide: 30 35 40 25 20 30 35
Digital: 25 16 15 15 10 20 7
Difference: 5 19 25 10 10 10 28

Subject: 8 9 10 11 12 13
Slide: 62 40 51 25 42 33
Digital: 16 15 13 11 19 19
Difference: 46 25 38 14 23 14

		  Does the true mean difference between slide retriev-
al time and digital retrieval time appear to exceed  
10 sec? Be sure to check the validity of any assump-
tions on which your chosen inferential method is 
based.

	89.	 The NCAA basketball tournament begins with 
64 teams that are apportioned into four regional 
tournaments, each involving 16 teams. The 16 
teams in each region are then ranked (seeded) 
from 1 to 16. During the 12-year period from 
1991 to 2002, the top-ranked team won its re-
gional tournament 22 times, the second-ranked 
team won 10 times, the third-ranked team was 
5 times, and the remaining 11 regional tourna-
ments were won by teams ranked lower than 
3. Let Pij denote the probability that the team 
ranked i in its region is victorious in its game 
against the team ranked j. Once the Pij’s are avail-
able, it is possible to compute the probability that 
any particular seed wins its regional tournament 
(a complicated calculation because the number 
of outcomes in the sample space is quite large). 
The paper “Probability Models for the NCAA 
Regional Basketball Tournaments” (The Ameri-
can Statistician, 1991: 35–38) proposed several 
different models for the Pij’s.

	 a.	 One model postulated Pij 5 .5 1 �(i 2 j) with 
� 5 1y32 (from which P16.1 5 �, P16.2 5 2�, etc.). 
Based on this, P(seed #1 wins) 5 .27477, P(seed 
#2 wins) 5 .20834, and P(seed #3 wins) 5  
.15429. Does this model appear to provide a 
good fit to the data?

	 b.	 A more sophisticated model has Pij 5 .5 1  
.2813625(zi 2 zj) where the z’s are measures 
of relative strengths related to standard normal 
percentiles (percentiles for successive highly seed-
ed teams are closer together than is the case for 
teams seeded lower, and .2813625 ensures that the 
range of probabilities is the same as for the model 
in part (a)). The resulting probabilities of seeds 
1, 2, or 3 winning their regional tournaments are 
.45883, .18813, and .11032, respectively. Assess 
the fit of this model.

	90.	 One way to reduce the equipment problems that 
occur during die casting is to apply a thin coating to 
the core pins. The paper “Tool Treatment Extends 
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Core and Pin Life” (Die Casting Engineer, March/
April 1999: 88) reported on an experiment in which 
one group of core pins was coated using the tradi-
tional nitride process and a second group was coat-
ed using a new thermal diffusion process. Use the 
accompanying data to decide at significance level 
.01 whether there is strong evidence for concluding 
that true average lifetime for the thermal treatment 
is more than four times that of the nitride treat-
ment. Hint: Consider the parameter � 5 4�1 2 �2 
with corresponding estimator �n 5 4x1 2 x2. This 

estimator is unbiased and normally distributed 
provided that the two population distributions are 
normal, and its variance can be determined from 
the fact that for any two independent random vari-
ables y1 and y2 and numerical constants a1 and a2, 
V(a1y1 1 a2y2) 5 a2

1V(y1) 1 a2
2V(y2).

Nitrite: 9000 20,000 10,000 20,000
21,000 3000 4000

Thermal: 49,000 23,000 20,000 100,000
114,000 35,000 30,000
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The Analysis of  Variance

9.1	 Terminology and Concepts

9.2	 Single-Factor Anova

9.3	 Interpreting Anova Results

9.4	 Randomized Block Experiments

Introduction

As we saw in Chapter 8, there is more than one way to make comparisons be-
tween two populations or processes. Choosing the best approach involves using 
one’s technical knowledge of a problem to select an appropriate statistical tech-
nique. In some cases, the independent samples test (Section 8.2) may be the best 
approach. At other times, the paired-samples test (also Section 8.2) may be supe-
rior. In Chapter 9, both of these methods are extended to comparisons between 
more than two population means. The independent samples test generalizes to the 
single-factor analysis of variance (Section 9.2), whereas the paired-samples test 
generalizes to the randomized block design (Section 9.4). The procedures in  
Chapter 9 are the tip of a large statistical iceberg called experimental design, 
which is discussed further in Chapter 10.

One of the important features of the designs in Chapter 9 is that they com-
bine the sample data from several populations into a  test capable of de-
tecting when one or more of the population means differ from the rest. That is, 
analysis of variance tests are not conducted by simply performing the two-sample 
tests of Chapter 8 on all the different pairings of several populations. Only after 
an analysis of variance test signals a possible difference between the population 
means do we begin to conduct multiple comparisons of the populations, dis-
cussed in Section 9.3, to pinpoint the specific populations whose means differ 
from one another.

9
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414	 chapter 9   The Analysis of  Variance

9.1	 Terminology and Concepts �

Although the focus in this chapter is on detecting differences between several population 
or process means, the primary tool used in these tests is based on a comparison of vari-
ances. Consequently, the procedures in this chapter have collectively become known as 
the analysis of variance. This phrase is often shortened to the acronym ANOVA.

ANOVA methods are concerned with testing null hypotheses of the form
H0: the means of several populations or processes are the same

The alternative hypothesis Ha is that at least two of the means differ from each other. Letting 
�1, �2, �3,…, �k denote k population or process means, H0 and Ha can be written as

H0: �1 5 �2 5 �3 5 … 5 �k

	 Ha: at least two of the �i’s are different

Some typical ANOVA applications follow:

    	 Do four different brands of gasoline have different effects on automobile fuel effi-
ciency? (H0: the mean fuel efficiency (mpg) obtained is the same for all four brands.)

    	 Is there any difference in crop yields when five different fertilizers are used? (H0: 
the mean crop yield per acre is the same for all five fertilizers.) What about using 
four different watering schedules? (H0: the mean crop yield per acre is the same 
for each watering schedule.)

    	 Will three different levels of a chemical concentration have differing effects on 
an electroplating process? (H0: the mean plating thickness is the same for all 
three concentration levels.)

In each of these examples, the populations share some common characteristic, 
called a factor or treatment, whose various levels or treatment levels distinguish one 
population from another. For example, when testing for possible differences in fuel effi-
ciency among four brands of gasoline, the factor of interest is gasoline brand, which has 
four different levels, for example, brand 1, brand 2, brand 3, and brand 4. Alternatively, 
we could refer to gasoline brand as a treatment with the four brands representing the 
treatment levels. The k levels of a factor correspond to the k different populations being 
compared in the test of the hypothesis H0: �1 5 �2 5 �3 5 … 5 �k.

Comparisons between populations are made by choosing a numerical quantity, 
called a response variable, that is measured for each sampled item. In the fuel effi-
ciency study, for example, fuel efficiency (mpg) would be the response variable, and we 
would measure the mpg for cars selected to use gasoline of brand 1, brand 2, brand 3,  
and brand 4, respectively. Using this terminology, these three examples can be sum-
marized as follows:

Factor Levels Response

Gasoline Brand 1, brand 2, brand 3, brand 4 Fuel efficiency, in mpg 
Fertilizer Fertilizer 1, fertilizer 2, fertilizer 3 Crop yield, in bushels/acre 
Chemical
concentration	

Concentration 1, concentration 2,
concentration 3

Plating thickness, in mm 
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When an ANOVA problem is expressed in terms of a factor and a response, the goal 
of the study is to determine whether the different factor levels have different effects on 
the response variable. Think of the factor as the independent variable and the response 
as the dependent variable. It often helps to draw a picture, as shown in Figure 9.1, to 
visualize the data from an ANOVA study.

Of course, populations may be characterized by several factors, not just one, and 
each factor can have any number of levels. Populations that represent different levels of 
a single factor are said to form a one-way classification, and we compare these popula-
tions using a single-factor (one-way) ANOVA. Characterizing populations by two fac-
tors is called a two-way classification, and so forth. Techniques for studying two or more 
factors are presented in Chapter 10.

How ANOVA Tests Work
Like the two-sample tests in Chapter 8, ANOVA procedures use just one test for com-
paring k population means. Suppose, for example, that we select random samples from 
each of k 5 4 populations and present the data in a graph such as that in Figure 9.1. 
This is the natural extension of the independent samples situation of Section 8.2. To 
determine whether the population means differ, the ANOVA approach compares the 
variation between the four sample means to the inherent variability within each sample 
(see Figure 9.2). The more the sample means differ, the larger will be the between-
samples variation shown at the right in Figure 9.2. The test statistic that compares these 
two types of variation is the ratio of the between-samples variation to the within-samples 
variation,

test statistic5
between@samples variation
within@samples variation

Figure 9.3 shows how this test statistic behaves when there is no difference be-
tween the four means (i.e., when H0: �1 5 �2 5 �3 5 �4 is true) and when the means 
do differ (when H0 is false). In essence, large values of the test statistic tend to support 

Figure 9.1  Visualizing data from an ANOVA study
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416	 chapter 9   The Analysis of  Variance

the alternative hypothesis (that some of the means differ from the others), whereas small 
values of the statistic support the null hypothesis.

Figure 9.2  ANOVA methods compare  variation to 
 variation

1 2
Sample number

3 4

Variation within samples

Variation between
sample means

1
–

2
–

3
–

4
–

Figure 9.3  How an ANOVA test works

1 2

between-samples variation
within-samples variation

is small

3 4

When 0 is true: When 0 is false:

1 2 3 4

between-samples variation
within-samples variation

is large

F Distributions
When the hypothesis H0: �1 5 �2 5 �3 5 … 5 �k is true, it can be shown that the 
test statistic described previously follows a continuous probability distribution called  
an F distribution. F distributions arise in statistical tests that involve ratios of two varia-
tion measures, such as the ratio of between-samples variation to within-samples varia-
tion, as shown in Figure 9.3. The variation measures used in an F ratio are based on 
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certain sums of squares calculated from the sample data, and each sum of squares has 
an associated number of degrees of freedom. The numerator degrees of freedom, de-
noted df1, is the number of degrees of freedom associated with the sum of squares in the 
numerator of an F ratio. Similarly, df2 denotes the denominator degrees of freedom. 

There is a different F distribution for every different combination of positive in-
tegers df1 and df2. For example, there is an F distribution with 4 numerator degrees  
of freedom and 12 denominator degrees of freedom, another with 3 numerator degrees 
of freedom and 20 denominator degrees of freedom, and so forth. Because they are 
ratios of nonnegative quantities, variables that follow F distributions have only nonnega-
tive values, and their density curves have a shape similar to that shown in Figure 9.4.

ANOVA tests, as Figure 9.3 illustrates, are upper-tailed tests. In other words, only 
large values of the F ratio lead to rejecting H0; small values do not reject H0. In terms 
of P-values, this means that the P-value associated with a calculated F ratio is the area 
under the F distribution to the right of the calculated F ratio. Figure 9.4 shows the P-value 
associated with a calculated F ratio of 9.15 based on df1 5 4 and df2 5 6. Tables of critical 
values for F distributions can be found in Appendix Table VIII.

The F table (Table VIII) contains critical F values associated with tail areas of .10, 
.05, .01, and .001. To use the table with an F ratio based on df1 5 4 and df2 5 6, read 
across the top of the table to find the column with df1 5 4 and read down the left side of 
the table to find the row with df2 5 6. At the intersection of this column and row, there 
will be four critical values, corresponding to right-tail probabilities of .10, .05, .01, and 
.001. For example, a P-value of .01 is associated with an F ratio of 9.15, a P-value of .05 
is associated with an F ratio of 4.53, and so forth.

  = 9.15

Shaded area = -value = .01

 curve for df1 = 4 and df2 = 6

0

Figure  9.4  -value for an upper-tailed  test

Section 9.1 Exercises

	 1.	 Three types of wood (denoted A, B, and C) are  
being considered for use in a building project. Each 
type of wood differs in cost, so the builder is inter-
ested in keeping costs down as well as in selecting 
wood that will be strong enough. To determine 
whether there is a difference between the aver-
age strengths of the three types of wood, a random  
sample of ten beams of each type is selected and 
their strengths are measured.

	 a.	 What hypotheses would you test in such a study? 
Describe, in words, the parameters that appear 
in the hypotheses.

	 b.	 Suppose an ANOVA test indicates that beams of 
types A and B are not significantly different in 
strength from one another, but that both types 
are significantly stronger than beams of type C. If 
the builder’s objective is to use as strong a beam 
as possible, what type of beam should be used?Un
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select the factor level having the largest sample 
mean. This strategy has been called the “pick the 
winner” approach in the literature on experimental 
design. Explain what is wrong with this approach 
and why it does not take the place of an ANOVA test.

	 6.	 Use the table of F distribution critical values (Ap-
pendix Table VIII) to find

	 a.	 The F critical value based on df1 5 5 and df2 5 8 
that captures an upper-tail area of .05

	 b.	 The F critical value based on df1 5 8 and df2 5 5 
that captures an upper-tail area of .05

	 c.	 The F critical value based on df1 5 5 and df2 5 8 
that captures an upper-tail area of .01

	 d.	 The F critical value based on df1 5 8 and df2 5 5 
that captures an upper-tail area of .01

	 e.	 The 95th percentile of an F distribution with  
df1 5 3 and df2 5 20

	 f.	 The probability P(F # 6.16) for df1 5 6 and  
df2 5 4

	 g.	 The probability P(4.74 # F # 7.87) for df1 5 10 
and df2 5 5

	 7.	 Based on your answers to Exercise 6(a)–(d), what 
effect does interchanging df1 and df2 have on the 
critical F value (for a fixed upper-tail area)?

	 8.	 An experiment was carried out to compare flow 
rates for four different types of nozzles.

	 a.	 Samples of five type-A nozzles, six type-B noz-
zles, seven type-C nozzles, and six type-D noz-
zles were tested. ANOVA calculations yielded 
an F value of 3.68 with df1 5 3 and df2 5 20. 
State and test the relevant hypotheses using  
� 5 .01 .

	 b.	 Analysis of the data using statistical software 
yielded a P-value of P 5 .029. Using � 5 .01, 
what conclusion would you draw regarding the 
test in part (a)?

	 9.	 In a test of the hypothesis H0: �1 5 �2 5 �3 5 �4,
samples of size 6 were selected from each of four 
populations, and an F statistic value of 4.12 was cal-
culated (using the methods in the next section). The 
appropriate degrees of freedom for the F distribution 
in this exercise are df1 5 3, df2 5 20. Using � 5 .05, 
conduct the test to determine whether you can con-
clude that there are differences between �1, �2, �3, 
and �4 .

	 c.	 Suppose the ANOVA test does not reveal any sig-
nificant differences in strength between the three 
types of beams. If the builder must use one of the 
three types, which type should be chosen?

	 2.	 Suppose you have a fixed budget to allocate to the 
samples used in a study of the effect of the factor 
“chemical concentration” on the plating thickness 
of electroplated plastic parts. Describe in general 
terms how you would allocate the samples. Spe-
cifically, what information would make you want 
to use fewer levels of chemical concentration and, 
correspondingly, more plastic parts at each concen-
tration level? Conversely, what scenario would lead 
you to use a larger number of concentration levels 
and, therefore, fewer plastic parts per concentration 
level? Include the two sources of variation in an 
ANOVA experiment in your answers.

	 3.	 In a one-way ANOVA test for comparing the mean 
strengths (in kilograms) of three different alloys, 
suppose that the measuring instrument used is 
out of calibration, causing it to give readings that 
are consistently 2.5 kilograms higher than the true 
measured strength. Using the general description of 
the techniques given in this section, explain what 
effect you think such data would have on the results 
of an ANOVA test comparing samples of the three 
alloys. Do you think an ANOVA test based on ac-
curate measurements of the same samples of alloys 
will lead to a different conclusion?

	 4.	 Repeated measurements in an ANOVA study are 
supposed to indicate what would happen if another 
researcher tried to repeat your study. In particular, 
simply measuring the same sampled item several 
times, which gives repeated measurements of that 
item, is not considered to be a valid form of replica-
tion. Instead, several different items should each be 
measured once. What is the danger in using repeated 
measurements of the same item instead of truly repli-
cating an experimental result? What do you expect the 
effect on the F statistic to be if repeated measurements 
of a single item are used at each level of a factor?

	 5.	 As a simple method of determining which of k factor  
levels maximizes the average value of a certain re-
sponse variable, inexperienced researchers some-
times calculate the k sample means and then simply 

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 9.2   Single-Factor ANOVA	 419

The double bar in the notation for the grand average is meant to imply that x is an 
average of averages. More accurately, x is a weighted average of the k sample means:

x 5 an1

n
bx1 1 an2

n
bx2 1 an3

n
bx3 1 … 1 ank

n
bxk

where the weights n1 yn, n2 yn, n3 yn, …, nk yn, sum to 1 (because n 5  n1 1  n2 1
n3 1 … 1 nk). Alternatively, x can also be thought of as the sample mean of the com-
bined group of n response values.

With this notation, the treatment sum of squares (denoted SSTr) and error sum of 
squares (denoted SSE) are defined as

SSTr 5 n1(x1 2 x)2 1 n2(x2 2 x)2 1 n3(x3 2 x)2 1 … 1 nk(xk 2 x)2

	 SSE 5 ^
n1

j51
(x1j 2 x1)

2 1 ^
n2

j51
(x2j 2 x2)

2 1 ^
n3

j51
(x3j 2 x3)

2

	 1…1^
nk

j51
(xk j 2 xk)

2

SSTr and SSE form the basis of the between-samples variation and within-samples 
variation described in Section 9.1. Before these quantities are used to conduct the 
hypothesis test, however, they must be adjusted to take into account the effects of sample 
sizes. This is done later in the section.

SSE can also be written in the form

SSE 5 (n1 2 1)s2
1 1 (n2 2 1)s2

2 1 (n3 2 1)s2
3 1 … 1 (nk 2 1)s2

k

ANOVA Notation
Sample sizes: 1, 2, 3, . . . , 

Sample means: 1, 2, 3, . . . , 

Sample variances: 2
1, 

2
2, 

2
3, . . . , 

2

Total sample size:  5  1 1  2 1  3 1 
… 1  

Grand average:  5 average of all  responses

9.2	 Single-Factor ANOVA �

Notation and Formulas
One way to test the null hypothesis H0: �1 5 �2 5 �3 5 … 5 �k is to compare the 
means of random samples selected from each of the k populations specified by H0. This 
method of sampling is the basis of the completely randomized design. The sample 
sizes n1, n2, n3, . . . , and nk do not have to be equal. Let xij denote the measured response 
for the jth item in a sample from the ith population. The following notation will be used 
in our computations:
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which more clearly shows how SSE combines or pools the information in the k sample 
variances s2

1, s
2
2, s

2
3, . . . , s

2
k. Together, these two sources of variation comprise the total 

sum of squares (denoted SST). That is,

SST 5 SSTr 1 SSE

where SST is the sum of squared deviations from the grand mean:

SST 5 ^
k

i51
^
ni

j51
(xij 2 x  )2

Hypothesis Tests
Until now, our ANOVA formulas have been merely arithmetic constructs. To put these 
ingredients together to form a statistical procedure, we must be willing to make a few 
assumptions about the populations being studied. ANOVA tests, in particular, are based 
on the following assumptions:

ANOVA Assumptions
1.	 All of the k population variances are equal (i.e., �2

1 5 �2
2 5 �2

3 5 … 5 �2
k)

2.	 Each of the k populations follows a normal distribution.

These assumptions are identical to those for the two-sample equal-variance procedures 
in Exercise 54 of Chapter 7 and Exercise 37 of Chapter 8, which, in fact, are just special 
cases (when k 5 2) of the more general single-factor ANOVA test we are currently dis-
cussing. If the ratio of the largest sample variance to the smallest one does not exceed 4 
by very much, then Assumption 1 is plausible. And for very small sample sizes, this rule 
is conservative, so 4 can be replaced by 6. Formal test procedures can be found in the 
chapter references. Assumption 2 can be checked by examining normal quantile plots 
of each sample or, if sample sizes are quite small, a single quantile plot of the deviations 
xij 2 xi calculated separately within each sample.

When sampling from normal populations, each sum of squares (such as SST, SSTr, 
and SSE) has its own unique number of degrees of freedom. Furthermore, just as SST 
can be decomposed into the sum of SSTr and SSE, the degrees of freedom associated with 
these sums of squares also decompose in a similar fashion. In a one-way classification, the 
total degrees of freedom (associated with SST) is n 2 1, which equals the sum of k 2 1 
(the degrees of freedom for treatments) plus n 2 k (the degrees of freedom for error)1:

1 The total degrees of freedom is always n 2 1, regardless of the ANOVA test we use. However, the other sums 
of squares have df values that depend on the particular test. For example, the df for SSE in a one-way ANOVA 
is different from the df for SSE in a two-way ANOVA.

Sums of Squares and Their Degrees of Freedom  
(Single-factor ANOVA)
Decomposition of sums of squares:	 SST   5 SSTr  1 SSE

Decomposition of degrees of freedom:	 n 2 1 5 k 2 1   1 n 2 k
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Our purpose in finding the degrees of freedom is to convert the sums of squares 
into mean squares by dividing each sum of squares by its associated df. Thus we define

Mean square for treatments (between-samples) 5 MSTr 5
SSTr
k 2 1

 

	 Mean square error (within-samples) 5 MSE 5
SSE
n 2 k

MSTr and MSE serve as our measures of the between-samples and within-samples varia-
tion described in Section 9.1. All of this information is usually organized into an ANOVA 
table (Figure 9.5). The ANOVA table is arranged in column form to emphasize the fact 
that the sums of squares and degrees of freedom sum to SST and n 2 1, respectively.

Source of variation df SS MS F P-value

Between samples (treatments) k 2 1 SSTr MSTr MSTryMSE
Within samples (error) n 2 k SSE MSE

Total variation n 2 1 SST

Figure 9.5  ANOVA table for the one-way classification

The entry in the F column of the ANOVA table is the test statistic value

F 5
MSTr
MSE

which is used to test the hypothesis H0: �1 5 �2 5 �3 5 …�k. This F distribution has 
(k 2 1, n 2 k) degrees of freedom since the numerator in MSTryMSE has df 5 k 2 1 
and the denominator has df 5 n 2 k. As we mentioned in Section 9.1, the test proce-
dure is always right-tailed; that is, the P-value associated with an F statistic is equal to 
the area to the right of the statistic under the appropriate F density curve. We reject H0 
whenever the P-value of the test statistic F is less than or equal to the desired signifi-
cance level �. Software packages usually include the P-value in the table.

One-Way ANOVA   Test (Significance level �)
Null hypothesis:	 0: �1 5 �2 5 �3 5 … 5 �

Alternative hypothesis:	 At least two ’s are different.

Test statistic:	 5
MSTr
MSe

-value:	�   is the area under the  density with (  2 1,  2 ) degrees 
of freedom to the right of the calculated .

Decision:	R eject 0 if -value # � .

Numerous factors contribute to the smooth running of an electric motor (“Increas-
ing Market Share Through Improved Product and Process Design: An Experimental 
Approach,” Quality Engineering, 1991: 361–369). In particular, it is desirable to keep 
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motor noise and vibration to a minimum. To study the effect that the brand of bearing 
has on motor vibration, five different motor bearing brands were examined by install-
ing each type of bearing on different random samples of six motors. The amount of 
motor vibration (measured in microns) was recorded when each of the 30 motors 
was running. The data for this study is given in Table 9.1. Because each sample of  
six motors was selected independently of the other samples, this is a completely ran-
domized design with the factor brand at five levels (brand 1, brand 2, . . . , brand 5). 
Determining whether the bearing brands have different effects on the response vari-
able (motor vibration) can be accomplished with a one-way ANOVA test. The null 
hypothesis is H0: �1 5 �2 5 �3 5 �4 5 �5, where �i average vibration (in microns) for 
motors using bearings of brand i. We use a significance level of .05 to conduct this test.

Table 9.1	� Vibration (in microns) in five groups of electric motors  
with each group using a different brand of bearing

Brand 1 Brand 2 Brand 3 Brand 4 Brand 5
13.1 16.3 13.7 15.7 13.5
15.0 15.7 13.9 13.7 13.4
14.0 17.2 12.4 14.4 13.2
14.4 14.9 13.8 16.0 12.7
14.0 14.4 14.9 13.9 13.4
11.6 17.2 13.3 14.7 12.3

Mean: 13.68 15.95 13.67 14.73 13.08
St. dev.: 1.194 1.167  .816  .940  .479

ANOVA Table

Source df SS MS F
Factor  4 30.88 7.72 8.45
Error 25 22.83   .913

Total 29 53.71

The ANOVA calculations proceed as follows. The sum of all n 5 30 values 
in the data is 426.7, so the grand mean is x 5 426.7y30 5 14.22. Alternatively, we 
could use the sample means to find x:

	 x 5 an1

n
bx1 1 an2

n
bx2 1 an3

n
bx3 1 … 1 an5

n
bx5

 5 a 6
30

b (13.68) 1 a 6
30

b (15.95) 1 a 6
30

b (13.67) 1 a 6
30

b (14.73)

 1 a 6
30

b (13.08)

	  5 14.22

Furthermore,

SSTr 5 n1(x1 2 x  )2 1 n2(x2 2 x  )2 1 n3(x3 2 x  )2 1 … 1 n5(x5 2 x  )2

5 6(13.68 2 14.22)2 1 6(15.95 2 14.22)2 1 … 1 6(13.08 2 14.22)2

5 30.88
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and

	SSE 5 (n1 2 1)s2
1 1 (n2 2 1)s2

2 1 (n3 2 1)s2
3 1 … 1 (n5 2 1)s2

5

	 5 (6 2 1)(1.194)2 1 (6 2 1)(1.167)2 1 … 1 (6 2 1)(.479)2

	 5 22.83

Putting these results into the formulas for MSTr and MSE, we find

MSTr 5
SSTr
k 2 1

5
30 .88
5 2 1

5 7 .72

	 MSE 5
SSE
n 2 k

5
22 .83
30 2 5

5 .913

which yields the test statistic value

F 5
MSTr
MSE

5
7 .72
.913

5 8 .45

Using Appendix Table VIII for the F distribution with (k 2 1, n 2 k) 5 (5 2 1, 30 2 5) 5  
(4, 25) degrees of freedom, we find that the P-value associated with the test statistic  
F 5 8.45 is less than .001. Since this P-value is smaller than the prescribed � of .05, 
we can reject the hypothesis that all five means are equal and conclude that the type 
of motor bearing used does have a significant effect on motor vibration. In particular, 
a visual inspection of the sample means in Table 9.1 suggests that brand 5 is the best 
choice for reducing vibration. In Section 9.3, we present a statistical procedure to 
sort out which brands are indeed the better ones to use.

Section 9.2 Exercises

	10.	 Five brands of raw materials are tested for their 
effect on a process yield. Random samples of size 10  
are used for each of the materials. Complete the 
following ANOVA table for this experiment:

		  Source of
		  variation	 df	 SS	 MS	 F
		  Brand	 	 	 	 15.32
		  Error	 	 	 .64
		  Total
		  variation	 	

	11.	 An experiment was carried out to compare elec-
trical resistivity for six different low-permeability 
concrete bridge deck mixtures. There were 26 mea-
surements on concrete cylinders for each mixture; 
these were obtained 28 days after casting. The en-
tries in the accompanying ANOVA table are based 
on information in the article “In-Place Resistivity of 
Bridge Deck Concrete Mixtures” (ACI Materials J.,  

2009: 114–122). A partial ANOVA table for this 
data follows:

Source df
Sum of 
Squares Mean Square F

Mixture
Error 13.929

Total 5664.415

	 a.	 Fill in the missing entries in the ANOVA table.
	 b.	 State the null and alternative hypotheses of in-

terest in this experiment.
	 c.	 Use � 5  .05 to carry out the hypothesis test in 

part (b).

	12.	 Super duplex stainless steels (SDSS) are iron-
based alloys that offer an excellent combination of 
toughness and mechanical strength. Such alloys 
are useful for many applications in the chemical 
and petrochemical industries. Recent research 
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has shown that the pulsed current gas tungsten arc 
welding (PCGTAW) process offers superior SDSS 
welds compared to other methods. The authors of 
“Optimization of Experimental Conditions of the 
Pulsed Current GTAW Parameters for Mechani-
cal Properties of SDSS UNS S32760 Welds Based 
on the Taguchi Design Method” (J. of the Air and 
Waste Mgmt. Assoc., 2012: 1978–1988) researched 
the impact of different PCGTAW process param-
eters on mechanical properties of the welds of a par-
ticular SDSS. One investigation focused on seeing 
how pulse current (A) of the PCGTAW affects the 
toughness (J) of the SDSS welds. Here are experi-
mental results for toughness measurements under 
three pulse current settings:

Pulse Current: 100 100 100 120 120 120 140 140 140
Toughness: 39 47 44 52 56 53 40 46 42

		  Use � 5  .05 to conduct the test for whether there are 
any differences in the true average weld toughness 
that may be attributable to the different pulse currents.

	13.	 The article “Influence of Contamination and 
Cleaning on Bond Strength to Modified Zirconia” 
(Dental Materials, 2009: 1541–1550) reported on 
an experiment in which 50 zirconium-oxide disks 
were divided into 5 groups of 10 each. Then a dif-
ferent contamination/cleaning protocol was used 
for each group. The following summary data on 
shear bond strength (MPa) appeared in the article:

Treatment: 1 2 3 4 5
Sample mean: 10.5 14.8 15.7 10.0 21.6
Sample sd: 4.5 6.8 6.5 6.7 6.0

	 a.	 State the hypotheses of interest in this experiment.
	 b.	 Using a significance level of .01, can you con-

clude that there is a difference between the 
mean shear bond strength of the five groups?

	14.	 In “Investigation on Machining Performance of 
Inconel 718 Under High Pressure Cooling Con-
ditions” (J. of Mech. Engr., 2012: 683–690), re-
searchers varied selected high-pressure jet-assisted 
(HPJA) machining parameters for the nickel-based 
alloy Inconel 718 and investigated their effect on  
tool wear.

			   In one experiment, the researchers machined 
six specimens of Inconel 718 at each of three differ-

ent HPJA coolant pressure levels (.6, 10, and 30 MPa) 
and recorded the corresponding average tool flank 
wear (ATFW), a combination of abrasive and depth 
of cut notch wear:

Pressure
.6: 145.00 158.14 157.32 409.42 143.00 135.50
10: 75.00 113.82 76.02 378.65 61.58 183.39
30: 94.03 65.90 102.31 131.62 53.12 108.41

		  Consider conducting an ANOVA test to see if there 
are any differences in the true mean ATFW caused 
by the different coolant pressures. The validity of an 
ANOVA test depends on the extent to which the two 
fundamental ANOVA assumptions (normal popula-
tions; equal population variances) are satisfied.

	 a.	 Create a single normal probability (quantile) 
plot based on the deviations of the sample data 
from the sample mean for each of the three sam-
ples. Does the assumption of normality appear 
to hold?

	 b.	 The assumption of equal population variances 
is plausible if the ratio of the largest sample 
variance to the smallest sample variance is not 
much more than 4. Is it plausible that the popu-
lation variances are approximately equal?

	15.	 It is common practice in many countries to destroy 
(shred) refrigerators at the end of their useful lives. 
In this process, material from insulating foam may  
be released into the atmosphere. The article “Release 
of Fluorocarbons from Insulation Foam in Home 
Appliances During Shredding” (J. of the Air and Waste 
Mgmt. Assoc., 2007: 1452–1460) gave the following 
data on foam density (g/L) for each of two refrigerators 
produced by four different manufacturers:

Manufacturer: 1 1 2 2 3 3 4 4

Foam Density: 30.4 29.2 27.7 27.1 27.1 24.8 25.5 28.8

		  Does it appear that true average foam density is not the 
same for all these manufacturers? State and test the 
relevant hypotheses using a significance level of � 5
.05. Summarize your analysis in an ANOVA table.

	16.	 According to “Evaluating Fracture Behavior of Brit-
tle Polymeric Materials Using an IASCB Specimen” 
(J. of Engr. Manuf., 2013: 133–140), researchers 
have recently proposed an improved test for the in-
vestigation of fracture toughness of brittle polymeric 
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materials. The authors applied this new fracture 
test to the brittle polymer polymethylmethacrylate 
(PMMA), more popularly known as Plexiglas, 
which is widely used in commercial products.

			   The test was performed by applying asymmet-
ric three-point bending loads on PMMA specimens 
and varied the location of one of the three load-
ing points to determine its effect on fracture load. 
In one experiment, three loading point locations 
based on different distances (mm) from the center 
of the specimen’s base were selected, resulting in 
the following fracture load data (kN):

Distance Fracture Load
42 2.62 2.99 3.39 2.86
36 3.47 3.85 3.77 3.63

31.2 4.78 4.41 4.91 5.06

		  Here is the corresponding Minitab ANOVA table:

One-way ANOVA: Fracture versus Distance

Source DF SS MS F P
Dist. 2 6.7653 3.3826 48.58 0.000
Error 9 0.6267 0.0696
Total 11 7.3920

	 a.	 Use your calculator to confirm Minitab’s com-
putations.

	 b.	 At a significance level of .01, can you conclude 
there is a difference among true average fracture 
loads for the three loading point locations?

	 c.	 Returning to the Minitab output, note that the 
number reported under P corresponds to the  
P-value. Is the P-value exactly zero? What does it 
mean when Minitab reports 0.000?

	17.	 In an experiment to study the possible effects of four 
different concentrations of a chemical on heights of 
newly grown plants, suppose that an ANOVA test 
is conducted and that plant height is measured in 
inches. At a later date, the experimenter decides that 
plant heights should have been measured in centi-
meters instead of inches. After multiplying the data 
in the original samples by 2.54 (1 in. 5 2.54 cm),  
the experimenter wants to know what effect this 
data conversion will have on the conclusions drawn 
from the ANOVA test.

	 a.	 Use the formulas for SSTr, SSE, SST, MSE, 
and MSTr to discuss the effect that changing 

from inches to centimeters has on the ANOVA 
calculations.

	 b.	 Based on your conclusions in part (a), what gen-
eral statement can you make about the effect of 
changing units of measure in an ANOVA test?

	18.	 The accompanying summary data on skeletal-
muscle citrate synthase activity (nmol/min/mg) 
appeared in the article “Impact of Lifelong Seden-
tary Behavior on Mitochondrial Function of Mice 
Skeletal Muscle” (J. of Gerontology, 2009: 927–939):

Young
Old

Sedentary
Old

Active
Sample size 10 8 10
Sample mean 46.68 47.71 58.24

		  Suppose that the total sum of squares for the experi-
mental data is SST 5 2116.81.

	 a.	 Construct an ANOVA table for this experiment.
	 b.	 Using � 5  .05, can you conclude that true aver-

age activity differs for the three groups?

	19.	 A study was conducted to determine whether cer-
tain physical properties of asphalt are related to 
portions of a gel permeation chromatogram of the 
asphalt (“Methodology for Defining LMS Por-
tion in Asphalt Chromatogram,” J. of Materials in 
Civil Engr., 1997: 31–39). To determine whether 
certain bands or slices of the chromatogram can 
be used to distinguish different aging conditions 
in asphalt, samples of grade AC-10 asphalt were 
sampled from several sources and artificially aged, 
some samples for 5 hours and others for 24 hours. 
Another group of samples was not aged. The fol-
lowing table shows the percentage area of the 
same slice of the chromatograms of these samples 
(i.e., area of the slice as a percentage of the entire 
chromatogram):

Age of asphalt

0 hours 5 hours 24 hours
Mean 3.43 3.18 3.22
Standard deviation .22 .13 .11
Sample size 6 6 6

		  Can you conclude (using � 5 .05) that there is a 
difference between the means for the three age 
categories?
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	20.	 To assess the reliability of timber structures and 
related building design codes, many researchers 
have studied strength factors of structural lum-
ber. In one such study (“Size Effects in Visually 
Graded Softwood Structural Lumber,” J. of Ma-
terials in Civil Engr., 1995: 19–29), three species 
of Canadian softwood were analyzed for bending 
strength. Because the amount of bending de-
pends on the width and length of a board and the 
particular stress applied, the board dimensions 
were kept the same in each of the three wood spe-
cies. Wood samples were selected from randomly 
selected sawmills, and, according to ASTM Stan-
dard D 4761, each sample was conditioned by 
kiln and air drying to achieve approximately a 
15% moisture content. The results of the experi-
ment are given here.

Bending strength (in MPa) 

Species

Douglas-Fir: 65 46 52 39 41 44

Hem-Fir: 45 48 32 30 47 50

Spruce Pine- Fir: 42 38 30 28 39 40

		  Using a significance level of 5%, conduct an 
ANOVA test to determine whether there is a dif-
ference in the mean bending strengths among the 
three types of wood.

	21.	 Pegged mortise and tenon joints have been used 
to build wooden structures for centuries. Since 
the mid-1960s, there has been renewed interest in 
this method of timber connection because of its 
inherent strength compared with other methods 
of connection. In a recent study of the bearing 
strength of white oak dowels, a random sample of 
white oak boards was used to create several pegs, 
from which a random sample of pegs was drawn 
(“Characterization of Bearing Strength Factors 
in Pegged Timber Connections,” J. of Structural 
Engr., 1997: 326–332). To determine whether 
the bearing strength of a peg is affected by the di-
rection with which forces are applied to the peg, 
three different peg orientations were used in the 
study: 0°, 45°, and 90°. The pegs were randomly 
assigned to one of the three orientations, and a 
stress measurement (in MPa) was recorded for 
each peg:

Peg orientation

Sample
number 0° 45° 90°

1 17.7 22.0 19.3

2 17.4 18.7 20.8

3 17.1 20.5 27.5

4 17.3 19.5 19.6

5 16.8 17.4 19.3

6 22.4 22.0 22.3

7 22.3 19.4 22.9
8 20.4 18.3 19.6

	 a.	 Conduct an ANOVA test to determine whether 
the mean bearing strength of the pegs is affected 
by the orientation of the pegs in the joint con-
nection (use � 5 .05).

	 b.	 Would you say the test results in part (a) are fa-
vorable or unfavorable for the practice of using 
wooden pegs in timber connections?

	22.	 Friction in machining processes generates high 
cutting temperatures that ultimately lead to wear 
and thermal damage of cutting tools. Fluid is tra-
ditionally used to reduce cutting temperature, but 
this can lead to environmental pollution, health 
hazards, and higher production costs. An alterna-
tive and novel process known as dry cutting uses 
no cooling liquids and has shown great promise 
for the machining industry to produce compo-
nents in an economical and ecologically desirable 
manner.

			   Within the dry cutting device an interchange-
able cooling structure is placed near the cutting tip. 
The authors of “Design and Analysis of an Internally 
Cooled Smart Cutting Tool for Dry Cutting” ( J. of 
Engr. Manuf., 2012: 585–591) investigated how 
various physical characteristics of the cooling com-
partment affect cutting temperature. Data from one 
experiment that compared thickness of the cooling 
structure (mm) to the corresponding cutting tem-
perature (K) is given here:

Thickness Temperature
0.5 425.60 426.95 424.30

1.0 415.38 415.04 418.71
1.5 416.91 418.84 418.63
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		  Using a significance level of 5%, can it be concluded 
that there is a difference among the true mean 
temperature measurements for the three structure 
thicknesses?

	23.	 In Exercise 3, a measuring instrument that was 
out of calibration was used to measure strengths  
(in kg) of three different alloys. Use the formulas 
in Section 9.2 to give a more specific answer to the 
question posed in Exercise 3. That is,

	 a.	 Using the formulas for SSTr, SSE, SST, MSE, 
MSTr, and F, describe the exact effect the 

calibration problem in Exercise 3 will have on 
the entries in the ANOVA table.

	 b.	 Based on your conclusions in part (a), what gen-
eral statement can you make about the effect of 
calibration problems in measuring the response 
variable of a single-factor ANOVA test?

	24.	 Check the validity of the two fundamental ANOVA 
assumptions for the data in Exercise 21 by following 
the steps stated in Exercise 14.

9.3	 Interpreting ANOVA Results �

Effects Plots
A useful way to summarize the results of an ANOVA test is to create a graph showing, 
on average, how a response variable changes as the levels of the independent variable 
change. Such graphs are called effects plots because they depict the effect of changing 
the levels of the independent variable. For a factor with k levels, this amounts to simply 
plotting the sample averages x1, x2, x3, . . . , xk versus the integers 1, 2, 3, . . . , k. To make 
the graph easier to read, the k averages are also joined by straight-line segments. By fol-
lowing these line segments from point to point, we get a clearer picture of the relation-
ship between the response and independent variables in an experiment.

Statistical software programs often include effects plots to accompany ANOVA cal-
culations. When you look at such printouts, remember that effects plots depict only the 
between-samples variation in the experiment. They do not show the within-samples 
variation and, consequently, cannot be used as substitutes for ANOVA tests. Techni-
cally, effects plots are only used after an ANOVA test shows that the independent vari-
able is statistically significant. Even then, effects plots give a general picture and do 
not conclusively indicate which factor levels are truly distinct from others. Making that 
determination requires the use of the multiple comparisons procedures presented later 
in this section.

In Example 9.1, we compared five different brands of motor bearings to find out 
which brands, if any, are better for reducing motor vibration. Because the ANOVA 
test in that example shows that the factor “brand” is statistically significant, it is per-
missible to create the effects plot for the five sample means given in Table 9.1. This 
plot (Figure 9.6) clearly shows that the sample from brand 5 gives the lowest average 
vibration. However, this fact still does not allow us to conclusively say that brand 5 is 
the best. It might prove to be the case, for instance, that brands 1 and 3 are about the 
same as brand 5 in their effectiveness for reducing vibration, even though the effects 
plot shows that their sample means are slightly higher than the mean for brand 5. 
Example 9.3 further clarifies the results of this study.

Example 9.2
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Multiple Comparisons: Tukey’s Method
If the F statistic in a single-factor ANOVA test is not significant, then we have no statis-
tical evidence for concluding that the mean response differs at any of the k treatment 
levels. Depending on the particular problem at hand, a nonsignificant ANOVA test 
result can be as important as a significant result. Suppose, for instance, that the test in 
Example 9.1 had turned out to be nonsignificant, so that no statistically significant dif-
ferences were detected between the five brands of bearings. As long as we are confident 
that a sufficient amount of data was used to ensure the reliability of the experimental 
results, a nonsignificant test result would allow us to freely choose any of the five brands 
to use in producing electric motors. This would be very useful information because the 
decision of which brand to use could then be based on other considerations, such as a 
brand’s reliability or unit cost.

If the F statistic in an ANOVA test is significant, however, we must do further test-
ing before drawing conclusions. The most common method for doing this involves the 
use of a multiple comparisons procedure. There are several such procedures in the 
statistics literature. The one we present, called Tukey’s procedure, was developed by 
Princeton statistician John Tukey, who is better known to scientists and engineers for 
inventing the fast Fourier transform (FFT) method and for introducing the term bit as 
a shortened version of binary digit.

Tukey’s procedure allows us to conduct separate tests to decide whether �i 5 �j for 
each pair of means in an ANOVA study of k population means. The method is based on 
the selection of a “family” significance level, �, that applies to the entire collection of 
pairwise hypothesis tests. For example, when using the Tukey procedure with a signifi-
cance level of, say, 5%, we are assured that there is at most a 5% chance of obtaining a 
false positive among the entire set of pairwise tests. That is, there is at most a 5% chance 
of mistakenly concluding that two population means differ when, in fact, they are equal. 
This is very different from simply conducting all the pairwise tests as individual tests, 
each at a � 5 .05, which can result in a high probability of finding false positives among 
the pairwise tests.

Figure 9.6 E ffects plot of the data in Table 9.1
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Consider first the case of equal sample sizes. Tukey’s procedure is based on 
comparing the distance between any two sample means, xi 2 xj , to a threshold val-
ue T that depends on � as well as on the MSE from the ANOVA test. The formula  
for T is

T 5 q�AMSE
ni

where ni is the size of the sample drawn from each population. The value of q� is found from 
a table of right-tail values of a statistic, q, that follows the Studentized range distribution.  
A table of the values of q� is given in Appendix Table IX. The Studentized range distribution 
is a probability distribution that depends on a pair of degrees of freedom (k, m), where

k 5  number of population means to be compared

	 m 5 error degrees of freedom

	 5 n 2 k, for single@factor ANOVA

	 n 5 n1 1 n2 1 n3 1 … 1 nk

	 5 total number of observations used in the ANOVA study

To determine whether two means �i and �j differ, we simply compare xi 2 xj  to T. If 
xi 2 xj  exceeds T, then we conclude that �i Þ �j. Otherwise, we cannot conclude that 

there is a difference between the two means.

Tukey’s Procedure for Equal Sample Sizes

1.  Select a family significance level � at which to conduct the hypothesis tests.

2.  Compute 5 �A .

3.  Conclude that � Þ �   if  2 . .

4. � Use bars to connect each pair of means  and  for which 2  does  exceed  
 in Step 3. The corresponding means �  and �  of such pairs are not considered to dif-

fer statistically from one another.

One easy method for keeping track of the results of all these pairwise tests is to ar-
range the sample means x1, x2, x3, . . . , xk in increasing order, plot the ordered means 
along a horizontal line, and then draw horizontal bars connecting pairs of means that 
are no farther than T units apart. These connecting bars are usually drawn in several 
rows beneath the corresponding means to keep the diagram uncluttered. The bars show 
which population means do not significantly differ from one another. Likewise, means 
that are not connected by a bar do differ significantly from one another. Figure 9.7 
illustrates how this graphical procedure would be used to summarize the multiple com-
parisons of an ANOVA test using k 5 4 populations.
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Because the ANOVA test in Example 9.1 is significant, it is necessary to conduct a 
multiple comparisons procedure to delineate exactly which of the five bearing brands 
are better than the others. Using Tukey’s procedure with a family significance level of 
� 5 .05, we calculate the critical distance between sample means to be

T 5 q�AMSE
ni

5 (4 .15)A .913
6

5 1 .62

where q� is based on (k, n 2 k) 5 (5, 25) degrees of freedom and is approximated by inter-
polating between the values of q.05(5, 24) and q.05(5, 30) found in Appendix Table IX. The 
pairwise distances between the five sample means in Table 9.1 are then compared to T:

Samples     Distance            T Conclusion
1, 2 |13.68 2 15.95| 5 2.27 . 1.62 �1 differs from �2

1, 3 |13.68 2 13.67| 5    .01 , 1.62
1, 4 |13.68 2 14.73| 5 1.05 , 1.62
1, 5 |13.68 2 13.08| 5    .60 , 1.62
2, 3 |15.95 2 13.67| 5 2.28 . 1.62 �2 differs from �3

2, 4 |15.95 2 14.73| 5 1.22 , 1.62
2, 5 |15.95 2 13.08| 5 2.87 . 1.62 �2 differs from �5

3, 4 |13.67 2 14.73| 5 1.06 , 1.62
3, 5 |13.67 2 13.08| 5    .59 , 1.62
4, 5 |14.73 2 13.08| 5 1.65 . 1.62 �4 differs from �5

The information from these ten tests is summarized in Figure 9.8 by arranging 
the five sample means in ascending order and then drawing rows of bars connecting 
the pairs whose distances do not exceed T 5 1.62. Starting at the left, the top row 
connects the means that do not significantly differ from �5; the next row shows the 
means that do not differ from �4; etc. Using this diagram along with the effects plot 
(Figure 9.6), we can now summarize what is happening in the ANOVA test. Although 
brand 5 has the lowest mean, it does not significantly differ from brands 1 and 3 in its 
effect on vibration. We can conclude, however, that brand 5 is definitely better than 
brands 2 and 4. Thus the choice of which bearing brand is best has been narrowed 
to brands 1, 3, and 5. If we are satisfied that the average vibration levels produced 
by these three brands are acceptable for use in the motors, then the choice could be 

Example 9.3

Figure 9.7  Using bars to connect means that do not significantly 
differ for 1 5 5, 2 5 2, 3 5 1, 4 5 3, and critical value  5 2.5
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further narrowed by considering additional factors, such as unit cost and reliability. 
Figure 9.9 shows the SAS output from the application of Turkey’s procedure.

Figure 9.8  Summarizing the ten comparisons from Tukey’s procedure  
for the data of Example 9.1

Brand 5

13.08

Brand 3

13.67

Brand 1

13.68

Brand 4

14.73

Brand 2

15.95

Figure 9.9 Turkey’s Method in SAS
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Experimental designs that use the same sample size for each treatment level are 
called balanced designs, whereas those with different sample sizes for some treatment 
levels are called unbalanced designs. For an unbalanced design, the Tukey procedure 
is often run by choosing the minimum of the numbers n1, n2, n3, . . . , nk to use in the 
calculation of the critical value T. This leads to a slightly larger value of T than neces-
sary for multiple comparisons; consequently, this practice is considered a conservative 
procedure. That is, differences between sample means that exceed T would surely re-
main significant if larger values of ni were to be used in the calculation of T. Other mod-
ifications of Tukey’s procedure include using Tij 5 q�1(MSEy2)(1yni 1 1ynj) in place 
of q�1MSE yni when comparing two sample means based on unequal sample sizes.

One question that sometimes arises when first encountering multiple comparisons pro-
cedures is: Why not simply conduct such procedures at the outset and bypass the step of 
conducting the ANOVA test? One answer is that most multiple comparison procedures tend 
to be not quite so powerful as the ANOVA test for detecting differences between means. The 
main reason for this is that, faced with a large number of pairwise hypothesis tests, multiple 
comparisons procedures attempt to avoid the problem of making too many type I errors Un
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432	 chapter 9   The Analysis of  Variance

(i.e., falsely detecting differences between means that are, in fact, equal) by using family 
significance levels. These family significance levels essentially put more demands on the 
individual pairwise tests than we might normally do if we were comparing only one pair of 
means, not several. By controlling the overall, or family, error rate of all the tests, each of 
the individual pairs tested must pass a higher standard (i.e., the significance levels for each 
individual test are much smaller than the family error rate). The end result is that a multiple 
comparisons procedure can sometimes miss significant findings that the ANOVA test would 
not fail to detect. For these and other reasons, it is usually recommended that multiple com-
parisons procedures be run after determining that the appropriate ANOVA test is significant.

Multiple Comparisons to a Control: Dunnett’s Method
Many scientific studies involve comparisons of several treatment populations to a fixed 
control population. For example, in tests for levels of contaminants in water, water 
samples taken downstream from an industrial discharge source are usually compared to 
a control sample of water taken upstream from the source. Many biological studies com-
pare the potential effects of drugs or other treatments on treated samples to a control 
sample that is not treated. In such studies, we are mainly interested in the comparisons 
between the k 2 1 treatment means and the mean of a single control sample, but we are 
not necessarily interested in making all possible pairwise comparisons between samples. 
Multiple comparisons procedures, such as Tukey’s method, which take into account all 
possible pairwise comparisons, are usually too conservative for applications involving 
control groups. Consequently, alternative procedures, such as Dunnett’s method, are 
used when only comparisons to a control are desired.

The steps in Dunnett’s method are similar to those in Tukey’s method except that 
the critical value T is computed as

T 5 t�(k 2 1, n 2 k)2MSE(1yni 1 1ync)

where nc denotes the sample size used in the control group and ni is the sample size of 
the treatment group being compared to the control. The critical value t�(k 2 1, n 2 k), 
called Dunnett’s t, is based on (k 2 1, n 2 k) degrees of freedom, where n is the total 
of the sample sizes used in the experiment. Values of t�(k 2 1, n 2 k) can be found in 
Appendix Table X. Instead of making all k(k 2 1)y2 possible pairwise comparisons, 
Dunnett’s method involves only k 2 1 comparisons of the k 2 1 treatment means to the 
single control group mean.

To illustrate Dunnett’s method, we reconsider the data of Example 9.1. Suppose that 
bearings of brand 2 are currently used to manufacture the electric motors and that 
we want to compare each of four competing brands to brand 2. To conduct such a 
test of k 5 5 means, we would use Dunnett’s method and compare the k 2 1 5 4 
treatment samples (brands 1, 3, 4, and 5) to the control sample (brand 2). Because 
the sample sizes are equal, the same T value would be used for all four comparisons. 
Using a family significance level of a � 5 .05, we find

T 5 t�(k 2 1, n 2 k)BMSEa 1
ni

1
1
nc
b 5 (2.61)B (.913)a 1

6
1

1
6
b 5 1.440

Example 9.4
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Fixed and Random Effects
Factor or treatment levels used in an experiment arise in essentially two ways, each of  
which forces a different interpretation on the results of an ANOVA test. Sometimes, the  
factor levels chosen may be the only ones of interest to us. This would be the case, for in-
stance, if the five brands of motor bearings studied in Examples 9.1–9.4 are the only brands 
of such motor bearings currently available in the market. In this situation, our conclusions 
pertain only to these five brands and to comparisons between them. A factor whose levels are 
the only ones of interest in an experiment is called a fixed factor, and ANOVA models based 
on such factors are said to be fixed effects models. Alternatively, the levels of a factor may 
be only a sample from a larger population of possible levels. When this is the case, we call 
the factor a random factor, and ANOVA models based on such factors are called random  
effects models. For example, if the five brands studied in Example 9.1 are only a sample from 
a large population of possible brands, then “brand” would be considered a random factor.

It is important to understand the difference between fixed and random factors for 
two reasons: (1) The computations of F ratios for testing whether a factor is significant 
usually depend on whether the factor is fixed or random, and (2) the interpretation of 
the ANOVA results differs for the two types of factor. The first fact is especially impor-
tant when working with multifactor models (see Chapter 10). With more than one fac-
tor in a model, some factors may be random whereas others are fixed. In such cases, the 
F ratios for random factors are often calculated differently from F ratios for fixed factors. 
Fortunately, though, for single-factor ANOVA models, it turns out that the statistical test 
procedure is identical for either the random or the fixed effects model.

For example, the single-factor ANOVA test of Example 9.1 would be conducted in 
exactly the same manner, regardless of whether the factor “brand” was considered to 
be fixed or random. The interpretations, though, would differ in the following ways. If 
“brand” is a fixed factor, then we would report the ANOVA results by pointing out the 
significant differences between the population means, �1, �2, �3, . . . , and �k . Further-
more, the conclusions of the study would not be extended beyond these populations. 
If “brand” is a random factor, however, then the purpose of the study is to extrapolate 
the ANOVA findings to the larger population from which the factor levels are cho-
sen. In particular, we are interested in estimating how much of the variability in the 

where the value of t.05(4, 25) is found in Appendix Table X to be approximately 2.61. 
The four comparisons to the control sample yield the following results:

Samples     Distance            T Conclusion

2, 1 |15.95 2 13.68| 5 2.27 . 1.440 �1 differs from �2

2, 3 |15.95 2 13.67| 5 2.28 , 1.440 �3 differs from �2

2, 4 |15.95 2 14.73| 5 1.22 < 1.440
2, 5 |15.95 2 13.08| 5 2.87 < 1.440 �5 differs from �2

There is no need to create a bar diagram as in Tukey’s method because all four com-
parisons are being made to a single population, brand 2. The results of the test show 
that brands 1, 3, and 5 each differ significantly from brand 2, so we are free to choose 
among these three brands when considering a replacement for brand 2.
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434	 chapter 9   The Analysis of  Variance

sample results is due to the variability between the various brands in the population 
(from which the five brands in the study were selected) and how much is due to the 
experimental error. These two components of variance sum to the total variation, �2:

�2 5 �2
� 1 �2

«

where �2
� denotes the variability in the population from which the treatment levels 

are chosen and �2
« is the experimental, or within-samples, error. In the random effects 

model, the hypotheses we test are H0: �
2
� 5 0 versus Ha: �

2
� . 0 . For the case of equal 

sample sizes, estimates of �2
� and �2

« are given by the formulas

	 �n 2
« 5 MSE

	 �n 2
� 5

MSTr 2 MSE
ni

The study of nondestructive forces and stresses in materials furnishes important 
information for efficient engineering design. The paper “Zero-Force Travel-Time 
Parameters for Ultrasonic Head-Waves in Railroad Rail” (Materials Evaluation, 
1985: 854–858) reports on a study of travel time for a certain type of wave that results 
from longitudinal stress of rails used for railroad track. Three measurements were 
made on each of six rails randomly selected from a population of rails. The investiga-
tors used random effects ANOVA to decide whether some of the variation in travel 
time could be attributed to “between-rail variability.” The data for this experiment 
and the corresponding ANOVA table appear in Table 9.2.

The error variance is estimated by �n 2
« 5 MSE 5 16.17, and the estimated var- 

iation in the population of rails is �n 2
� 5 (MSTr 2 MSE)yni 5 (1862.1 2 16.17)y3 5 

615.31. Furthermore, since the F ratio of 115.2 is highly significant (i.e., it has a low 
P-value), we can conclude that the differences between rails are an important source 
of travel-time variability.

Table 9.2	 Wave travel times (in nanoseconds)
                Observations      Sample mean

Rail 1 55 53 54 54.00
Rail 2 26 37 32 31.67
Rail 3 78 91 85 84.67
Rail 4 92 100 96 96.00
Rail 5 49 51 50 50.00
Rail 6 80 85 83 82.67
ANOVA Table

Source df SS MS F
Treatments   5 9310.5 1862.1 115.2
Error 12 194.0 16.17
Total 17 9504.5

Example 9.5
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Section 9.3 Exercises

	25.	 Explain why creating an effects plot does not take 
the place of performing an ANOVA test.

	26.	 Refer to the data from Exercise 18.
	 a.	 Create an effects plot of the data.
	 b.	 Use Tukey’s multiple comparisons procedure to 

determine which groups differ from one another 
with respect to CS activity.

	27.	 An experiment to compare the wall coverage area 
of five different brands of yellow interior latex paint 
used 4 gallons of each brand. The sample means of 
the coverage areas (in ft2/gal) for the five brands were: 
462.0, 512.8, 437.5, 469.3, 532.1. The MSE was 272.8 
and the computed F statistic for the ANOVA test was 
found to be significant at � 5 .05. Use Tukey’s test 
(at � 5 .05) to investigate the pairwise differences be-
tween the coverage areas of the five brands of paint.

	28.	 In Exercise 27, suppose that the third sample mean 
is 427.5 (instead of 437.5). Use Tukey’s procedure 
to see which population averages can be considered 
different from one another (� 5 .05). Use the meth-
od of placing bars under those means that are not 
statistically different from one another. Write a short 
sentence summarizing your conclusions. Assume 
the MSE remains the same as in Exercise 27.

	29.	 Repeat Exercise 28 for the case where the sample 
means are 462.0, 502.8, 427.5, 469.3, 532.1 (i.e., 
the second and third sample means have been 
changed from their original values in Exercise 27).

	30.	 Refer to the data from Exercise 19.
	 a.	 Construct an effects plot for this data.
	 b.	 Use Tukey’s method with � 5 .05 to determine 

which age categories differ from each other.
	 c.	 Suppose that asphalt that is not aged is taken 

to be a control group. Use Dunnett’s method 
with � 5 .05 to decide whether one or both of 
the aged asphalt groups differ from the control 
group.

	31.	 Exercise 11 described an experiment in which 26 
resistivity observations were made on each of six 
different concrete mixtures. The article cited there 
gave the following sample means: 14.18, 17.94, 
18.00, 18.00, 25.74, 27.67. Apply Tukey’s method 
using � 5  .05 to identify significant differences, 
and describe your findings (use MSE 5 13.929).

	32.	 In Exercise 16, samples of three different loading 
points were tested to determine whether there were 
differences among their average fracture loads.

	 a.	 Draw an effects plot for the data. 
	 b.	 Using � 5  .05, apply Tukey’s method to deter-

mine which if any of the loading points differ 
from the others. 

	33.	 Using a significance level of � 5  .05, apply Tukey’s 
method to the data of Exercise 12. Is there a pulse 
current that seems to be the best choice to yield 
maximum average toughness? 

9.4	 Randomized Block Experiments �

Using one’s knowledge about a problem, whether it comes from technical experience or 
common sense, often helps guide the choice of an experimental design. For instance, 
consider how additional knowledge might affect a comparison of the fuel efficiency 
(measured in miles per gallon) of several different brands of gasoline. Our first inclination 
might be to conduct this study as a completely randomized design (Section 9.2) involv-
ing the hypothesis H0: �1 5 �2 5 �3 5 … 5 �k, where �i 5 average mpg obtained using 
brand i. However, there is a potential problem: Experience tells us that compact cars get 
better fuel efficiency (higher mpg) than mid-size cars, which, in turn, are more efficient 
than luxury cars. So what would happen if our random sampling happened to produce 
a disproportionate number of compact cars in sample 1 (cars that use brand 1)? Clearly, 
the average mpg of the cars in such a sample would probably be higher than the average 
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mpg for the other samples, even if brand 1 were the worst of the four in terms of average 
fuel efficiency. In fact, it is easy to imagine many scenarios in which the sample means 
might reflect more about the particular sizes of the automobiles chosen than about the 
efficiency of the gasoline brands. To avoid such problems, we should use an experimental 
design that ensures that each brand of fuel is tested on the same range of car sizes.

External influences, such as car size, can be thought of as additional factors to be 
included in an experimental design. There is usually no need to test such external factors 
for statistical significance. Either common sense or technical knowledge tells us that they 
are influential, and our reason for considering them is to make sure that they do not in-
validate conclusions about the factor in which we are truly interested (e.g., brand of fuel).

The effect of such external influences can be eliminated, or at least substantially 
reduced, by using them as blocks in an experiment. Blocks are groups of items in a 
population that have similar characteristics, such as the block of compact cars and the 
block of mid-size cars. By making sure that a member of each block is included in each 
of the samples, we can eliminate the effect of external factors on the differences between 
average responses for the factor we are studying.

For example, to eliminate the influence of car size in the fuel efficiency study, we 
could select a range of car sizes, call them B1, B2, B3, . . . , Bb, and then make sure that 
each gasoline brand is used on a car from each of these blocks. Denoting the levels of 
the factor “gasoline brand” by A1, A2, A3, . . . , Aa, we can summarize the data from such 
an experiment in matrix form (Figure 9.10).

The design in Figure 9.10, called a randomized block design, is the natural exten-
sion of the paired-samples test of Section 8.2. In Figure 9.10, blocks of homogeneous 
experimental units take the place of the data pairs of Section 8.2. Notice, for instance, 
that the observations in any two rows of this matrix are paired because each level of the 
blocking factor is represented in each row. Just as in the paired-samples test, the effect 
of the different blocks is subtracted out when calculating the difference between any 
two row means (i.e., the differences in the average responses for the levels of factor A).

Figure 9.10 Data layout for a randomized block design
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levels (SSTr), one representing the variation between the block means (SSB), and the error 
term (SSE, which accounts for all other variation):

SST 5 SSTr 1 SSB 1 SSE
SST, SSTr, and SSB are computed from the formulas shown in the following box:

Sums of Squares Formulas for  
a Randomized Block Experiment
�  5 observation on factor level  in block 

	 SST 5
5̂1 5̂1

(
 

2   )2

	 SSTr 5
5̂1

( 2   )2,  where  denotes the mean of the data the th row

	 SSB 5
5̂1

( 2   )2, where  denotes the mean of the data in the th column

The remaining term, SSE, is computed by rewriting the ANOVA decomposition as
SSE 5 SST 2 SSTr 2 SSB

Hypothesis Tests
Under the usual ANOVA assumptions of normal populations and equal variances, the 
total degrees of freedom associated with SST is n 2 1, where n 5 a ? b. The degrees 
of freedom for treatments and the blocking factor B are a 2 1 and b 2 1, respectively. 
The remaining degrees of freedom, (a 2 1)(b 2 1), are associated with the error term:
	 ANOVA decomposition:	 SST  5  SSTr	 1  SSB  1    SSE
	 Degrees of freedom:	 ab 2 1 5 (a 2 1)	 1 (b 2 1)   1 (a 2 1)(b 2 1)
The mean squares are given by

MSTr (treatments) 5
SSTr
a 2 1

MSB (blocks)    5
SSB
b 2 1

MSE (error)    5
SSE

(a 2 1)(b 2 1)

The hypothesis tests for a randomized block design are summarized in the fol-
lowing box:

Randomized Block Test (Significance level �)
Hypothesis	 Test statistic	 Decision

0: �there is no 
treatment effect

5
MSTr
MSe

with [  2 1, (  2 1)(  2 1)] df

Reject 0 if  # �
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The applications of statistics to crop studies, which began in the 1920s, frequently 
makes use of a particular blocking variable, the plot. As farmers have long known, dif-
ferent plots of land have unique combinations of water, sunlight, and soil chemicals, 
each having a significant effect on crop growth and yield. Oranges, for example, are 
so sensitive to different amounts of sunlight that it is a well-known fact that the sweet-
est oranges come from the south side of the tree.2

In a study of different rootstocks for orange trees, four different varieties of 
rootstock are tested by planting each variety on the same ten plots of land.3 The 
numbers of oranges produced by these trees are recorded in Figure 9.11. In this 
study, the factor A 5 “variety” has a 5 4 levels. The blocking factor B 5 “plot” has  
b 5 10 levels.

The grand average of the 40 values is x 5 11.4, and the ANOVA calculations for 
this data are as follows:

SSTr 5 b^
a

i51
(Ai 2 x)2

	 5 103(10 .4 2 11 .4)2 1 (10 .5 2 11 .4)2 1 (13 .4 2 11 .4)2

	 1 (11 .3 2 11 .4)24 5 58 .2

	SSB 5 a^
b

j51
(Bj 2 x)2

 	 5 43(12.25 2 11.4)2 1 (13.0 2 11.4)2 1 … 1 (13.5 2 11.4)24 5 49.1

Example 9.6

2	 McPhee, J., Oranges, Farrar, Straus, Giroux, New York, 1967, p. 8.
3	 Oranges, like roses, are grown by grafting plants with desirable characteristics onto the root structure  
of another plant whose root system is known to be resistant to disease and other problems.

0: �there is no 
block effect

5
MSB
MSe

with [(  2 1), (  2 1)(  2 1)] df

Reject 0 if # �

(In each case, the alternative hypothesis is that the particular effect exist.)

Figure 9.11  Number of oranges per tree (in 100s) for Example 9.6
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	SST 5 ^
a

i51
^

b

j51
(xij 2 x)2

	 5 (11 2 11.4)2 1 (12 2 11.4)2 1 (10 2 11.4)2 1 … 1 (11 2 11.4)2

	 1 (14 2 11 .4)2 5 113 .6

By subtraction, SSE 5 SST 2 SSTr 2 SSB 5 113.6 2 58.2 2 49.1 5 6.3. All of this 
information is summarized in the ANOVA table:

Source of variation df SS MS F
Treatments (variety) a 2 1 5   3 58.2  19.4 83.15
Blocks (plots) b 2 1 5   9 49.1 5.456 23.38
Error (a 2 1)(b 2 1) 5 27 6.3 .2333

Total variation ab 2 1 5 39 113.6

Using a significance level of a � 5 .05, we can conclude that the different va-
rieties do have different mean yields since F 5 MSTryMSE 5 83.15 has a P-value 
smaller than .05. We can also conclude that the different plots have differing effects 
on yield since F 5 MSB/MSE 5 23.38 also has a P-value smaller than .05, although 
this conclusion only confirms our original belief about the effect of different plots.

When H0 is rejected, Tukey’s method can be applied to identify significant dif-
ferences among treatments.

Section 9.4 Exercises 

	34.	 A pharmaceutical company wants to begin testing a 
drug designed to reduce blood pressure. The compa-
ny wants to test the drug by measuring the blood pres-
sures of two samples of people, those who take the 
drug for a prescribed period of time and those who 
do not take this drug (or any other medications dur-
ing the test period). Because researchers know that 
several human characteristics (e.g., age, weight, diet, 
exercise) may have considerable effects on the experi-
mental results, they want to run their experiment as 
a randomized block design. Using the characteristics 
mentioned, describe how the researchers should go 
about creating the blocks for such an experiment.

	35.	 A consumer protection organization wants to com-
pare the annual power consumption of five different 
brands of dehumidifiers. Because power consumption 
depends on the prevailing humidity level, each brand 
was tested at four different humidity levels, ranging 
from moderate to heavy humidity. For each brand, 
a sample of four humidifiers was randomly assigned, 

one each, to the four humidity levels. The resulting 
annual power consumption (in kilowatt-hours) is given 
in the following table:

Humidity level

Brand 1 2 3 4

1 685 792 838 875
2 722 806 893 953

3 733 802 880 941

4 811 888 952 1005
5 828 920 978 1023

	 a.	 Using � 5 .01, can you conclude that there is a 
difference between the power consumptions of 
the five brands?

	 b.	 Using � 5 .01, can you conclude that there are 
differences in power consumption between the 
levels of the blocking factor “humidity”? Does 
this result support the experimenters’ use of hu-
midity as a blocking factor?
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	36.	 A certain county uses three assessors to determine 
the values of residential properties. To see whether 
the three assessors differ in their assessments, five 
houses are selected and each assessor is asked to 
determine the market value of each house. Let 
A denote the factor “assessors” and B denote the 
blocking factor “houses.” An ANOVA calcula-
tion revealed that SSA 5 11.7, SSB 5 113.5, and  
SSE 5 25.6.

	 a.	 Using � 5 .05, test the hypothesis that there are 
no differences between the average values re-
ported by the three assessors.

	 b.	 Based on the ANOVA results, was the use of 
houses as a blocking factor warranted in this 
study?

	37.	 The article “A Software-Based Resource Selection 
Process in Competitive Network Environment 
Using ANOVA (A Case Study)” (Intl. J. of Comp. 
Appl., 2012: 17–21) reported on a study in which 
three types of lathes were compared. Each of three 
operators used each of the lathes for the equivalent 
of a full workday shift. For each shift, the research-
ers recorded the percentage of acceptable products 
manufactured by the operator. The data from the 
experiment is given here:

Lathe Brand
1 2 3

Operator
1 86 86 88
2 85 86 91
3 82 83 85

	 a.	 Using the three operators as blocks, can you 
conclude that there is a difference among the 
percent of acceptable products due to lathes? 
(Use � 5  .05) 

	 b.	 Can you conclude that the different operators 
have differing effects on product acceptability 
rate? (Use � 5  .05).

	38.	 In the article “The Effects of a Pneumatic Stool 
and a One-Legged Stool on Lower Limb Joint Load 
and Muscular Activity During Sitting and Rising” 
(Ergonomics, 1993: 519–535), the following data 
is given on the effort (measured on the Borg scale) 
required by a subject to arise from sitting on four dif-
ferent stools. Because it was suspected that different 

people could exhibit large differences in effort, even 
from the same type of stool, a sample of nine people 
was selected and each was tested on all four stools:

Subject

1 2 3 4 5 6 7 8 9

Type of  
stool

A 12 10 7 7 8 9 8 7 9
B 15 14 14 11 11 11 12 11 13

C 12 13 13 10 8 11 12 8 10

D 10 12 9 9 7 10 11 7 8

	 a.	 Using a significance level of � 5 .05, can you 
conclude that there is a difference in the average 
effort required to rise from each type of stool?

	 b.	 Do the differences in rising effort that the 
researchers expected seem to be confirmed by 
the data?

	39.	 To assess the potential risks associated with failure 
of a particular process, investigators often perform 
a failure modes and effects analysis (FMEA). An 
FMEA identifies opportunities for failure, known 
as failure modes, in a given process. Each mode is 
assessed with a numeric score based on (1) severity 
of the consequences of failure, (2) likelihood of 
failure occurrence, and (3) likelihood that failure 
would not be detected. The product of these scores 
is the risk priority number (RPN) for the mode. 
Modes having the highest RPN values are usually 
given the highest priority in carrying out further 
analyses.

			   The article “Continuous Quality Improvement 
in Investment Castings: An Experimental Study us-
ing a Modified FMEA Approach Called FEAROM”  
(Eur. J. of Sci. Res., 2012: 308–325) reported on a study 
that compared four design methods (M1, M2, M3, M4)  
in preproduction trials of the upper range for a particu-
lar casting valve. The design methods are applied by 
human operators, which introduces potential operator-
to-operator variation in RPN values. To account 
for this, each of the four design methods was used  
(in random order) by all 21 individuals in the study.

			   The data was analyzed by the R software, giv-
ing the following output. Note that the format of 
the ANOVA table in R is very similar to the one 
we use, except R eliminates the row of “totals” and  
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uses the word residuals instead of error. The column 
labeled ‘Pr(>F)’ represents P-value.

Df Sum Sq Mean Sq F-value Pr(F)
DESIGN ? 519515 ? ? ?
PERSON ? ? 5023 ? 0.445
Residuals ? 293009 ?

	 a.	 Fill in the missing values in the table above.
	 b.	 Using � 5  .05, can it be concluded that there is 

a difference in the true average RPN among the 
four design methods?

	 c.	 Do the person-to-person differences in RPN 
seem to be confirmed by the data? Explain.

	40.	 In the study described in Exercise 20, the wood 
grade is known to affect wood strength. To incor-
porate this information, three wood grades were 
studied: SS (select structural), grade 2, and grade 3. 
Wood grades are determined by visual inspection. 
The following table shows bending strengths from 
testing wood samples of each type and grade:

Wood grade

SS Grade 2 Grade3

Species

Douglas Fir 65 43 41
Hem-Fir 45 38 32
Spruce-Pine-Fir 42 35 30

	 a.	 Using the three wood grades as blocks, can you 
conclude that there is a difference between the 
mean bending strengths of the three species of 
wood? (use  � 5 .05 .)

	 b.	 Can you conclude that there are differences be-
tween the mean bending strengths for the three 
grades of wood? (use  � 5 .05 .)

	 c.	 Suppose that wood with a large bending strength 
is needed for a particular structure and that any 
wood grade is acceptable. Which type and grade 
of wood is best for such a structure?

	 d.	 Explain why your conclusions about wood types 
in this experiment differ from the conclusions 
reached in Exercise 20.

	41.	 Example 4.15 (Chapter 4) describes a randomized 
block experiment for comparing three different 
methods (A, B, and C) of curing concrete. Different 
batches of concrete are used as the blocks in the ex-
periment. For convenience, the data from Table 4.1  
is repeated here:

Strength (in MPa)

Batch Method A Method B Method C

1 30.7 33.7 30.5

2 29.1 30.6 32.6

3 30.0 32.2 30.5

4 31.9 34.6 33.5
5 30.5 33.0 32.4
6 26.9 29.3 27.8
7 28.2 28.4 30.7
8 32.4 32.4 33.6
9 26.6 29.5 29.2

10 28.6 29.4 33.2

	 a.	 Using a significance level of 5%, can you con-
clude that there is a difference in mean concrete 
strength between the three curing methods?

	 b.	 Can you conclude that there are differences be-
tween the batch means? (Use  � 5 .05.)

	 c.	 Suppose that you ignore the fact that the batches 
are blocks in this experiment and that you sim-
ply run a one-factor ANOVA test, treating the 
three columns of data as three random samples. 
Using a significance level of .05, what conclu-
sion do you reach regarding the differences be-
tween the three curing methods?

Supplementary Exercises

	42.	 The authors of  “Statistical Analysis and Optimiza-
tion Study on the Machinability of BerylliumCopper 
Alloy in Electro Discharge Machining” (J. of 

Engr. Manuf., 2012: 1847–1861) investigated 
the machinability of berylliumcopper alloy in an 
electro discharge machining (EDM) process. The 
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accompanying data resulted from an EDM process 
using an oil dielectric medium where researchers 
applied four different EDM pulse times (�  s) and 
recorded the corresponding material removal rate 
(MRR, in mm3/s).

MRR

20 0.1797 0.3353 0.4073 0.7548

Pulse 40 0.2433 0.3830 0.5625 0.7258

Time 60 0.2338 0.3372 0.5552 0.7453

80 0.1341 0.2806 0.5502 0.8212

		  Use � 5  .05 to conduct the test for whether there 
are any differences in the true average MRR that 
may be attributable to the different pulse times.

	43.	 The lumen output was determined for three dif-
ferent brands of 60-watt soft-white light bulbs, with 
eight bulbs of each brand tested. From the result-
ing lumen measurements, the following sums of 
squares were computed: SSE 5 4773.3 and SSTr 5  
591.2.

	 a.	 State the hypotheses of interest. Describe, 
in words, the parameters that appear in the 
hypotheses.

	 b.	 Compute each of the entries in the ANOVA 
table for this experiment.

	 c.	 Using � 5 .05, can you conclude that there are 
any differences between the average lumen out-
puts for the three brands?

	44.	 In the study described in Exercise 12, the authors 
also investigated how pulse current affects the hard-
ness of the SDSS welds. Hardness is measured in 
HV (known as the Vickers number; higher values 
indicate harder metals).

Pulse Current: 100 100 100 120 120 120 140 140 140

Hardness: 326 296 312 245 273 276 299 296 282

		  Use � 5 .05 to conduct the test for whether there 
are any differences in the true average weld hard-
ness attributable to the different pulse currents.

	45.	 In the special case where df1 5 1, the right-tail 
areas associated with an F distribution are related to 
similar areas under a t distribution’s density curve. 

In particular, it can be shown that F� 5 (t�@2)
2, for 

an F distribution with df1 5 1 and any value of df2 
and for a t distribution with df 5 df2. The subscripts 
� and �@2 on F� and t�@2 denote right-tail areas of 
� and �@2 under the density curves for the F and t 
distributions, respectively.

	 a.	 Verify this relationship by looking up F.05(df1 5 
1, df2 5 10) and t.025(df 5 10) in the F and t ta-
bles, Appendix Tables VIII and IV, respectively.

	 b.	 For � 5 .05, the values of t�@2 approach 
z�@2 5 1 .96 as the degrees of freedom increase. 
What limit does F.05(df1 5 1, df2) approach as 
df2 increases?

	46.	 Consider the following data on plant growth after the 
application of five different types of growth hormone:

Data

A 13 17 7 14

B 21 13 20 17

C 18 15 20 17

D 7 11 18 10

E 6 11 15 8

	 a.	 Perform the F test for this single-factor ANOVA 
at � 5 .05 .

	 b.	 Apply Tukey’s procedure to this data with 
� 5 .05 . Compare your results to the conclu-
sion obtained in part (a).

	47.	 Consider a single-factor ANOVA in which samples 
of size 5 each are measured at each of three levels 
of a certain factor. The means of the three samples 
are 10, 12, and 20. Find a value of SSE that satisfies 
the following two requirements:

(1)  The calculated F statistic is larger than the tabled 
value of F for � 5 .05, df1 5 2, and df2 5 12, 
so the hypothesis H0: �1 5 �2 5 �3 is rejected at 
� 5 .05 .

(2)  When Tukey’s procedure is applied, none of the 
three �i’s can be said to differ from one another 
(again using � 5 .05).

	48.	 For the data referenced in Exercise 39, the article re-
ported that there was a difference in RPN means for 
the four design methods (M1, M2, M3, M4). Perform 
a post hoc analysis by applying Tukey’s procedure 
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(as the authors did) using the following output from 
the SAS software:

Alpha = 0.05 df = 60 MSE = 4883.488
Critical Value of Studentized Range = 

3.73709

Minimum Significant Difference = 56.989

Means with the same letter are not signifi-
cantly different.

Tukey Grouping Mean N trt
A 336.00 21 M2
A
A 301.00 21 M4

B 171.43 21 M3
B
B 155.71 21 M1

	49.	 In Exercise 47, suppose that the three sample means 
are 10, 15, and 20. Can you now find a value of SSE 
that satisfies the two conditions in Exercise 47?

	50.	 Helmet-mounted displays (HMDs) are computer 
displays that are presented on see-through screens 
attached to the helmets of helicopter pilots. 
HMDs are normally employed to aid night flights. 
In a study of HMDs, researchers tested Apache 
helicopter pilots to determine whether the pres-
ence of in-flight vision problems has an effect on 
a pilot’s ability to focus the HMD panel. Thirteen 
pilots were divided into two groups: those who 
experience certain in-flight vision problems and 
those who do not. Subjects were asked to set the 
focus of the HMD for a fixed test pattern, and their 
focus settings were then measured with a dioptom-
eter (“Oculomotor Responses with Aviator Helmet-
Mounted Displays and Their Relation to In-Flight 
Symptoms,” Human Factors, 1995: 699–710). The 
data from one such experiment is given here:

		  In-Flight symptom tested: Distance
		  misperception (measurements are in diopters)

Symptom
present

Symptom
absent

Sample size 9 4
Sample mean 2.83 2.70
Sample standard deviation .172 .184

	 a.	 Using � 5 .01, conduct an ANOVA test to 
determine whether there is a difference in the 
average focus settings between the two groups of 
pilots.

	 b.	 Which test procedure in Chapter 8 could have 
been used on this data in place of the ANOVA 
test in part (a)?

	 c.	 Conduct the appropriate test you identified in 
part (b), using � 5 .01, and compare your an-
swer to the answer in part (a).

	51.	 The results on the effectiveness of line dry-
ing on the smoothness of fabric were studied 
in the paper “Line-Dried vs. Machine-Dried 
Fabrics: Comparison on Appearance, Hand, and 
Consumer Acceptance” (Home Econ. Research J.,  
1984: 27–35). Smoothness scores were given 
for nine types of fabric and five different dry-
ing methods. Because the different types of fab-
ric were expected to have large differences in 
smoothness, regardless of drying method, each of 
the five drying methods was used on five samples 
of each fabric type. The smoothness scores for this 
experiment were as follows:

Drying method

Fabric type 1 2 3 4 5

Crepe 3.3 2.5 2.8 2.5 1.9
Double knit 3.6 2.0 3.6 2.4 2.3
Twill 4.2 3.4 3.8 3.1 3.1
Twill mix 3.4 2.4 2.9 1.6 1.7
Terry 3.8 1.3 2.8 2.0 1.6
Broadcloth 2.2 1.5 2.7 1.5 1.9
Sheeting 3.5 2.1 2.8 2.1 2.2
Corduroy 3.6 1.3 2.8 1.7 1.8
Denim 2.6 1.4 2.4 1.3 1.6

	 a.	 Construct an ANOVA table for this experiment.
	 b.	 Using a significance level of .05, can you con-

clude that there is a difference between the 
mean smoothness scores for the five drying 
methods?

	52.	 A consumer protection organization carried out 
a study to compare the electricity usage for four 
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different types of residential air-conditioning sys-
tems. Each system was installed in five homes and 
the monthly electricity usage (in kilowatt-hours)  
was measured for a particular summer month. 
Because of the many differences that can exist 
between residences (e.g., floor space, type of in-
sulation, type of roof, etc.), five different groups 
of homes were identified for study. From each 
group of homes of a similar type, four homes were 
randomly selected to receive one of the four air-
conditioning systems. The resulting data is given 
in the table.

Type of home

1 2 3 4 5

1 116 118 97 101 115

Air-
conditioning
system

2 171 131 105 107 129

3 138 131 115 93 110

4 141 141 115 93 99

	 a.	 Construct an ANOVA table for this experiment.
	 b.	 Using a significance level of .05, can you con-

clude that there is a difference between the 
monthly mean kilowatt-hours of electricity used 
by the four types of air conditioners?
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Experimental Design

10.1	 Terminology and Concepts

10.2	 Two-Factor Designs

10.3	 Multifactor Designs

10.4	 2k Designs

10.5	 Fractional Factorial Designs

Introduction

Methods of experimental design are used to evaluate the effects of several dif-
ferent treatments on a response variable. In the field of agronomy, where experi-
mental design techniques were first applied in the 1920s, different fertilizer blends 
(the treatments) were applied to a crop in an effort to find the particular blend 
that maximized crop yield (the response).  The essential statistical ideas underlying 
experimental design lie in the commonsense notion that the usefulness of the con-
clusions drawn from an experiment will critically depend on how the experiment 
is conducted.

Scientific applications of experimental design methods are often called design 
of experiments (abbreviated DOE). Furthermore, the designs discussed in this 
chapter are from a special class called factorial designs.  The multifactor designs 
presented in this chapter are an extension of the single-factor designs discussed 
in Chapter 9. Consequently, the terminology in Section 10.1 builds on that already 
introduced in Chapter 9. Sections 10.2 and 10.3 show how to conduct factorial 
experiments and how to interpret the results from such experiments.

Throughout the chapter, the statistical tool of analysis of variance 
(ANOVA) is used to analyze the data from experiments and to make decisions 
about whether a given factor has a significant impact on a response variable.  

10
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446	 chapter 10   Experimental Design

In addition, the graphical tools of effects plots and probability plots provide 
very simple, yet powerful methods for visually summarizing the results of an ex-
periment and for sorting out factors that are influential from those that are not. 
Effects plots, which were introduced in Section 9.3, are discussed in Section 10.2, 
and probability (quantile) plots, first introduced in Section 2.4, are used through-
out Sections 10.4 and 10.5.

Sections 10.4 and 10.5 deal with a class of factorial designs called 2k designs. 
These designs have been widely used in industrial and scientific applications. Because 
each factor in a 2  design is restricted to only two levels, the resulting statistical 
analyses are simplified, making these designs very intuitive and easy to use.

10.1	 Terminology and Concepts �  

Much of the terminology of experimental design has already been introduced in 
Sections 4.3 and 9.1. Recall from those discussions that a response variable, or more 
simply, a response, is a measurable characteristic of a product or process that we would 
like to study. The object of the study is to determine the extent to which various factors 
(also called independent variables) affect the values of the response variable. Experi-
ments are carried out by simply changing the levels of each factor and then measuring 
whether, and by how much, the response changes. Experimental designs are specific 
procedures that stipulate exactly how each factor is to be varied to obtain the most infor-
mation from the experimental data.

One of the most surprising things to come out of Fisher’s original work on experi-
mental design in the 1920s was the realization that the intuitive one-factor-at-a-time ap-
proach to experimentation has several disadvantages. One-factor-at-a-time experiments 
are conducted by allowing one factor to vary at a time, keeping the levels of all other 
factors fixed while doing so. By successively testing each factor in this manner, an ex-
perimenter hopes to determine both the individual and combined effects that the factors 
have on a response variable. Fisher pointed out how inefficient the one-factor-at-a-time 
approach is and suggested that better experiments could be designed by using factorial 
designs along with the statistical tools of randomization, replication, and blocking 
(Section 4.3).

There are several major difficulties with one-factor-at-a-time experiments: (1) They 
require more experimental runs than do the factorial designs discussed in this chapter; 
(2) they are incapable of detecting how the interplay between two or more factors influ-
ences a response variable; and (3) they usually cannot detect the specific levels of each 
factor that will optimize a response variable. In short, one-factor-at-a-time experiments 
fail to achieve most of the important goals of an experimenter.

We illustrate each of these shortcomings by reconsidering the discussion from 
Example 4.15. In that example, two factors, the particular injection molding ma-
chine used (machine 1 or machine 2) and the brand of plastic pellets used (brand A 
or brand B) in the machines were thought to affect the hardness of molded plastic 
parts. In the terminology of experimental design, machine and brand are the factors 
and plastic hardness is the response variable. Using the one-factor-at-a-time ap-
proach, an experimenter might conduct a series of six tests, as shown in Figure 10.1.  

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 10.1   Terminology and Concepts 	 447

A

1

Brand

Machine

B

2

Figure 10.1 E xperimental 
runs in a one-factor-at-a-time 
experiment

The arrows in the figure indicate the direction in which the factor is varied (e.g., test 
runs for brand are first done for brand A and machine 1). Two experimental runs 
are made at each fixed combination of factor settings to help increase the preci-
sion of the estimates derived from the data. Employing repeated measurements, or 
replication, is an intuitive method often used in experiments to reduce errors intro-
duced by outside factors that can bias experimental results. Along the horizontal axis 
in Figure 10.1, the experimenter holds the brand factor fixed (i.e., only brand A is 
used) and allows the machine factor to vary. Then, holding the machine factor fixed 
(at machine 1), the brand factor is varied as shown on the vertical axis. A total of 
six experimental measurements are made using this one-factor-at-a-time method. To 
estimate the effect of changing from machine 1 to machine 2, the experimenter can 
compare the average of the two response values for machine 1 with the average of the 
two responses for machine 2. The difference between these two averages is a measure 
of how much the response changes when the machine factor is varied. Similarly,  
the difference in the two averages associated with brands A and B can be used to 
measure the effect of varying the brand factor.

Figure 10.1 highlights one of three problems with one-factor-at-a-time experi-
ments mentioned above: the inability of this design to capture all the information 
about the interplay between factors. Suppose, for illustration, that the plastic of brand 
B works about the same as brand A does in machine 1, but that brand B works signifi-
cantly better in machine 2 than in machine 1. If so, such information would not be 
seen in the results of the experiment shown in Figure 10.1. Instead, the data from the 
one-factor-at-a-time experiment would show that there was very little effect on hard-
ness when changing the brand factor, since brand B is evaluated only on machine 1.  
From those results, an experimenter would incorrectly conclude that changing 
plastic brands has little effect on the hardness of the molded parts. As you can see 
from Figure 10.1, this potential problem is caused by the fact that the one-factor-at-
a-time approach does not include any experimental runs using plastic of brand B on 
machine 2.

In contrast, the designs introduced in this chapter are constructed to expressly take 
into account the possibility of significant interplay between factors. In statistics, such in-
terplay between factors is called interaction. Two or more factors are said to interact if, 
as described in the previous paragraph, the magnitude of a factor’s effect on the response 
variable depends on the particular level(s) of the other factor(s) in the experiment.  Un
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448	 chapter 10   Experimental Design

In our example, the effect of changing plastic brands on plastic hardness was negligible 
when machine 1 was used, but the brand effect becomes substantial when machine 2 
was used. Thus there is an interaction between brand and machine. Interactions be-
tween factors are discussed in more detail in Section 10.2.

Figure 10.2 shows an experimental design that does allow for detecting such an 
interaction, if it exists. This design is an example of the factorial designs discussed 
throughout the chapter. One of the important features of such designs is that experi-
mental tests are conducted at many, if not all, combinations of the levels of the factors. 
In particular, note that the design in Figure 10.2 includes a test measurement for the 
combination of machine 2 with plastic brand B. If there is an interaction between the 
two factors, this design will be able to detect it.

Another significant feature of the design in Figure 10.2 is that only one measure-
ment is made at each of the combinations of factor levels, which means that a total of 
four experimental runs are needed. This brings up the question of whether this four-run 
experiment is capable of estimating the factor effects with the same precision as the 
one-factor-at-a-time experiment, in which each factor effect is estimated as the differ-
ence between two averages, each based on two measurements. To answer this question, 
we denote the four test measurements in Figure 10.2 by y1, y2, y3, and y4. First consider 
the factor machine. The difference y2 2 y1 estimates the change in plastic hardness 
caused by changing machines when brand A is used on both machines. Similarly, the 
difference y4 2 y3 estimates the effect of changing machines when brand B is used on 
both. Therefore, by averaging these two estimates, we obtain a more precise estimate of 
the effect of changing machines:

machine effect 5
1
2

 [(y2 2 y1) 1 (y4 2 y3)]

By rearranging this expression, we can write the machine effect in the form

machine effect 5
1
2

 ( y2 1 y4) 2
1
2

 ( y1 1 y3)

which shows that the machine effect is estimated by the difference between two av-
erages, each based on two measurements, just as is done in the one-factor-at-a-time 
experiment that uses six experimental runs. Thus the four-run factorial not only is able 
to achieve the same degree of precision as the one-factor-at-a-time experiment but also 

Figure 10.2 A factorial 
design using two factors
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does so with fewer experimental runs. Using the same reasoning, we can show that the 
factor brand is also measured with the same precision and can be written

brand effect 5
1
2

 ( y3 1 y4) 2
1
2

 ( y1 1 y2)

As the preceding paragraph illustrates, factorial experiments are more efficient than 
one-at-a-time experiments. In fact, as you will see in later sections, the efficiency of 
factorial designs compared to one-factor-at-a-time experiments increases as more and 
more factors are included in an experiment. As Figure 10.2 shows, factorial experi-
ments achieve their efficiency by using the data more than once. Note, for example, 
that the same four data values in Figure 10.2 are used in both of the effects estimates 
described in the previous paragraph. Cuthbert Daniel, one of the pioneers in apply-
ing factorial designs to industrial processes, describes this feature of factorial designs as 
“making each piece of data work twice,” an expression originally credited to the statisti-
cian W. J. Youden.1

To demonstrate that one-factor-at-a-time experiments do not generally yield the op-
timum settings for each factor, it is helpful to imagine what would happen if we were for-
tunate enough to know the exact relationship between the factors and the response vari-
able. Suppose, for instance, that such information is available for a particular response 
value y and two factors whose measured values are denoted by x1 and x2. Thus we can 
find the exact value of y associated with any two values of x1 and x2 and, therefore, create 
a graph of y versus x1 and x2. Such a graph is called a response surface. Figure 10.3 is 
an idealized example of a response surface, which illustrates how the percentage yield 
y of a process might be related to the levels of two factors known to affect process yield. 
From this graph, it is easy to find the particular values of x1 and x2 that will maximize the 
percentage yield y. In a real experiment, of course, the shape of the response surface is 
unknown, and the experimenter’s goal is to come as close as possible to the settings of x1 
and x2 that optimize the response variable.

1 Daniel, C., Application of Statistics to Industrial Experimentation, John Wiley & Sons, New York, 1976: 3.

Figure 10.3 A response surface of process yield  (in percent) versus the 
values 1 and 2 of two factors
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Another way to summarize the information in a response surface is to create a 
contour plot. Contour plots are similar to two-dimensional topographical maps in that 
they consist of a series of lines in the plane connecting all points (x1, x2) with a common 
y value. For example, by connecting all points (x1, x2) whose associated y value is 90%, 
a contour line is formed in the plane. By comparing the contours associated with other 
y values, the reader can then form a mental image of how the height of the response 
surface changes. Figure 10.4 shows a contour plot created from the response surface of 
Figure 10.3. Notice how much easier the contour plot makes the task of finding the x1 
and x2 coordinates of the point where the surface achieves its maximum. For this reason, 
we will now use the contour plot to illustrate why one-factor-at-a-time experiments gen-
erally fail to find the optimum factor settings.

Figures 10.5 and 10.6 show two different experimental strategies that could be fol-
lowed in a one-factor-at-a-time experiment. Suppose, for illustration, that a process is 
currently running with the two factors set at the values associated with point A in the 
figures. Starting with Figure 10.5, suppose that an experimenter begins by varying the 
values of x1 (keeping x2 fixed) and tries to maximize the process yield. As Figure 10.5 
shows, the best value of x1 occurs near point B in the figure. Next, keeping x1 fixed at 
its value from point B, the experimenter then varies x2 until its optimum value is found 
near point C. The experimenter would conclude that both factors had been optimized 
and that the best process yield possible is about 86%.

Figure 10.4  Contour plot of the response surface in Figure 10.3
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Figure 10.5  Contour plot of a one-factor-at-a-time experiment: changing 1 to 
a new value, then changing 2
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Figure 10.6  Contour plot of a one-factor-at-a-time experiment: separate 
searches for 1 and 2 values are combined
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Figure 10.7  Using factorial designs to search for optimum factor settings
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Alternatively, an experimenter could employ the strategy shown in Figure 10.6, in 
which x1 is first varied until point B is found, x1 is returned to its original value from 
point A, and then x2 is varied until its best value is found at point C. Putting these results 
together, the experimenter might surmise that the best combination of x1 and x2 is at 
point D, which uses the x1 coordinate from point B along with the x2 coordinate from 
point C. This time, the experimenter concludes that the optimum process yield is about 
79%. In both cases, the experimenter has indeed improved the process yield, but in 
neither case has the optimum yield been located.

In practice, one-factor-at-a-time procedures usually require that several experi-
ments be conducted to ascertain the approximate location of the points B and C 
illustrated in Figures 10.5 and 10.6. Thus not only do such experiments generally 
fail to pinpoint optimal factor settings but several repeated tests are also needed to 
do so. By comparison, factorial experiments require much less experimentation and 
usually come closer to achieving the goal of finding optimum factor settings. To see 
why this happens, consider Figure 10.7, which shows the results of running a facto-
rial experiment near the starting point A. Based on the size of the response values at 
the four corners of this factorial design, it is readily apparent that the experimenter 
should move in the direction indicated by the arrow in Figure 10.7. By repeating 
this process at points B and C, the experimenter quickly determines the optimum 
factor settings.
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	 1.	 What statistical purpose does replication serve in an 
experimental design?

	 2.	 Factors A and B are thought to have an effect on a 
certain response value, y. The following table con-
tains data on the response variable measured at each 
combination of the two levels of factors used in a  
study:

Factor A level

1 2

Factor B level
1 5.2 7.4
2 4.0 6.3

	 a.	 Calculate an estimate of the effect of changing 
factor A from level 1 to level 2.

	 b.	 Calculate an estimate of the effect of changing 
factor B from level 1 to level 2.

	 3.	 Suppose that the response surface for a two-factor ex-
periment can be described by the function f  (x, y) 5  
e(21y2)[(x22)21(y25)2].

	 a.	 Use a computer package to create a graph of the 
response surface.

	 b.	 From the graph in part (a), determine the ap-
proximate coordinates of the point (x, y) at which 
the response surface is at its maximum.

	 c.	 Find an equation that describes the typical con-
tour of the response surface.

	 d.	 Sketch some of the contours using your answer 
to part (b). From this sketch, determine the ap-
proximate coordinates of the point at which the 
response surface is at its maximum from these 
contours.

 	 4.	 Suppose that the response surface for a two-factor ex-
periment can be described by the function f  (x, y) 5  
e2(x2y)2

.
	 a.	 Use a computer package to create a graph of the 

response surface.
	 b.	 Find an equation that describes the contours of 

the response surface.
	 c.	 Sketch some of the contours using the equation(s) 

in part (b). Using these results, determine from 
these contours the approximate coordinates of 
the point(s) at which the response surface is at its 
maximum.

Section 10.1 Exercises 

10.2	 Two-Factor Designs �

In a two-factor design, two factors (labeled A and B in the ensuing discussion) are 
specified along with the number of levels of each factor, which are denoted by a and b, 
respectively. For example, suppose that we want to expand the motor vibration study de-
scribed in Example 9.1 to include two factors, A 5 brand of bearing used in the motor 
and B 5 material used for the motor casing. If we decide to use five bearing brands and 
three types of casing material, then a 5 5 and b 5 3 for such an experiment.

A two-factor design is often denoted as an a  b design (read “a by b design”). The 
design in the previous paragraph would therefore be called a 5 × 3 design. In addition to 
allowing us to quickly read the number of levels for each factor, this notation reminds us of 
multiplication (e.g., 5 3 3 5 15), because the product of a and b happens to be the number 
of distinct treatments (i.e., different combinations of factor levels) created by the two factors. 
Thus in the motor vibration study, there are 15 distinct combinations of bearing brand and 
casing material that must be included in the experiment. Although it is certainly possible to 
conduct any number of tests at each factor–level combination, it simplifies the calculations 
if we choose the same number of items for each such treatment. Designs that use the same 
number of samples for each factor–level combination are called balanced designs. We will 
use the letter r (which stands for repeated measures or replicates) to denote the common 
sample size selected from each factor–level combination in a balanced design.
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Figure 10.8  Data layout for a balanced 
two-factor design with  replicates per cell
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10 + 14 + ... + 27––––––––––––––
6

 
18 + 14 + ... + 25––––––––––––––

6

Factor 

Factor 

2

21 = 19 =

The most convenient way to keep track of the information in a two-way design is to 
display it in matrix form, as shown in Figure 10.8. Each of the a 3 b combinations has 
its own cell in which r response values are recorded. With r values in each of the a 3 b 
cells, the total number of experimental runs is n 5 a 3 b 3 r.

Main Effects and Interactions
Graphs of the average response versus the factor levels can reveal much about the influ-
ence the factors have on a response variable. Such graphs are called effects plots since 
they illustrate the effect that changing the levels of a factor has on the response variable. 
Recall that effects plots for one-factor experiments were first introduced in Section 9.3.

One simple rule governs all effects plots: A plotted point corresponding to any factor 
level (or factor–level combination) is simply the average of all response values in which 
that factor level (or factor–level combination) is present. The following example illus-
trates the process of creating effects plots from the data in a two-way design matrix. 
Suppose the data for a 3 3 2 design is as follows:

In the margins of the matrix, we have included the averages of all the responses in 
the rows and columns. For instance, the average response for the first row is 14, which 
is the average of all four numbers in that row. Notice that these four numbers each cor-
respond to the first level of factor A, which we will denote by A1 in the graphs that follow. 
Also, because we have used a balanced design, each level of B is included an equal 
number of times in these four numbers, which is what makes the average response of 14 
a good representation of what to expect at level A1. As you can see, each level of B is also 
represented in the four numbers used to find the average responses for levels A2 and A3.  Un
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Figure 10.9  Plotting the main effects of factors  and  

1 2

Main effect for Main effect for

3 1 2

Response

14

20

26

21
19

Following our general rule for computing effects averages, we compute the average 
responses for B1 and B2 from six numbers, because each column (i.e., each level of B) 
in the matrix contains a total of six measurements.

By plotting the average response versus the levels of a factor, we obtain a graph of the 
main effect of that factor. In Figure 10.9, for example, the plots of the main effects of factors 
A and B in our example show that the average response tends to increase as factor A changes 
from level A1 to A2 to A3, whereas changing factor B from B1 to B2 has the effect of decreas-
ing the average response from 21 to 19. Plotting both the A and B main effects on the same 
graph allows you to easily compare the magnitudes—of the A and B effects. In those cases 
where the average response stays relatively constant from level to level (e.g., if the average 
response had been 20 at all three levels of A), we say that a factor has no main effect.

From Figure 10.9, we can see that going from level A1 to level A3 has the net effect of 
raising the average response by 12 units (i.e., from 14 at A1 to 26 at A3) and that going from 
B1 to B2 lowers the average response by 2 units (from 21 at B1 to 19 at B2). Looking at this 
figure, it is tempting to want to treat A and B separately, by simply choosing desirable set-
tings first for A, then for B. If this were always the case, it would make the results of a two-way 
experiment exceedingly easy to interpret. Unfortunately, things are not always that simple.

It is possible, as noted in Section 10.1, that two (or more) factors do not act inde-
pendently of one another. Two factors are said to interact when the effect of changing 
the levels of one factor depends on the particular level of the other factor. This is the case 
in our example. The following calculations show that the effect of changing factor A 
depends on the particular setting of factor B:

Effect of changing A (B fixed at B1) Effect of changing A (B fixed at B2)

A1 and B1 (10 1 14)y2 5 12
A2 and B1 (23 1 21)y2 5 22
A3 and B1 (31 1 27)y2 5 29

s17
A1 and B2 (18 1 14)y2 5 16
A2 and B2 (16 1 20)y2 5 18
A3 and B2 (21 1 25)y2 5 23

s7

Notice that the effect of going from A1 to A3 is an increase of 17 units when B is at level 
B1, whereas the corresponding increase is only 7 units when B is at level B2. Thus the 
effect of changing the levels of A seems to depend on the particular level of B.Un
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456	 chapter 10   Experimental Design

Like main effects, such two-factor interaction effects can also be plotted. This can 
be done as shown in Figure 10.10 by overlaying separate graphs, one for each level of 
factor B. Alternatively, the two values of B could be used on the horizontal axis with 
three overlaid graphs (one for each level of A). The presence of interaction between 
two factors is indicated by graphs that either cross one another or, more generally, are 
not parallel. Parallel graphs, as depicted in Figure 10.11, are a sign of no interaction 
between the factors. Why?

Keep in mind that effects plots do not take the place of statistical tests. You should 
always run an ANOVA test first to determine which of the effects are significant and 
which are not. It may turn out, for example, that the interaction effect is not statistically 
significant, in which case you can interpret the main effects without worrying about 
factor interactions. At other times, you may discover that a factor that you initially 
thought was important turns out to have no significant effect on the response variable.

When statistical testing shows that an interaction effect is significant, then the re-
sults of the experiment must be interpreted by examining the interaction plots, not the 
main effects plots. When interactions exist, the conclusions drawn from the main effects 
plots may or may not agree with those drawn from the interaction plots. On the other 
hand, if the interaction between factors is not significant, then you can simply examine 
and interpret the main effects plots. For instance, in our example, neither the main 
effect for factor B nor the interaction effect is significant at � 5 .05 (see Exercise 6). 
This means that we need only examine the main effects plot for factor A. If the goal of 
the study is, say, to maximize the response value, then the main effects plot suggests that  
we set factor A at level 3. Because the main effect for factor B is not significant and 
because the interaction between A and B is not significant, choosing either level of B 
should give substantially the same response value.

ANOVA Formulas
All ANOVA procedures share a common goal: to analyze the total variation (SST) in 
a response variable by breaking it into identifiable sources of variation. This is accom-
plished by defining a separate sum of squares for each source of variation and then 

Figure 10.10  A two-factor  
interaction plot
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Figure 10.11  A plot showing no  
interaction between factors  and 
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2 In the precomputer era, shortcut formulas were often used instead of the formulas we have given. The 
interested reader may consult other texts for these formulas.

Sums of Squares Formulas (Balanced Two-Way ANOVA)

	 SSa 5
5̂1

( 2  )2

	 SSB 5
5̂1

( 2  )2

	 SST 5 sum of squared deviations of all individual response values 
	 from the grand average, 

	 5
5̂1 5̂1 5̂1

(  2  )2

	 SSe 5 sum of squared deviations of response values  from the corresponding
	 cell means, 

	 5
5̂1 5̂1 5̂1

(  2 )2

	 SS(aB) 5 SST 2 SSa 2 SSB 2 SSe

where
	5	 th observation when  is at level  and  is at level 
5	number of levels of factor 
5	number of levels of factor 
5	number of replications per cell

	 	5	average of all response values associated with the th level of factor 
	 	5	average of all response values associated with the th level of factor 

decomposing SST into a sum of these components. Such formulas are called ANOVA 
decompositions.

The general ANOVA decomposition for a two-factor analysis of variance is

SST 5 SSA 1 SSB 1 SS(AB) 1 SSE

where SSA, SSB, and SS(AB) denote the sums of squares associated with factor A, factor 
B, and the AB interaction, respectively. SSE, the error or residual sum of squares, rep-
resents the variation from all sources of variation other than A, B, and their interaction. 
The formulas for these sums of squares are given in the following box.2 Note that once 
SST, SSA, SSB, and SSE are computed, SS(AB) can easily be found by rewriting the 
ANOVA decomposition as

SS(AB) 5 SST 2 SSA 2 SSB 2 SSE

Hypothesis Tests
We now proceed to find the degrees of freedom and mean squares associated with each 
source of variation. The total degrees of freedom is n 2 1, where n 5 abr. The degrees 
of freedom associated with a factor is simply its number of levels minus 1, and the 
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458	 chapter 10   Experimental Design

degrees of freedom for an interaction term is the product of the degrees of freedom of 
the corresponding factors. The error degrees of freedom equals ab(r – 1). Decomposi-
tion of degrees of freedom mimics that for sums of squares:

	 ANOVA
decomposition:	 SST	 5 	 SSA	 1 	 SSB	 1 	 SS(AB)	 1 	 SSE

Degree of
freedom:    abr 2 1 5 (a 2 1) 1 (b 2 1) 1 (a 2 1)(b 2 1) 1 ab(r 2 1)

By dividing each sum of squares by its degrees of freedom, we form the mean squares:

MSA 5
SSA
a 2 1

  MS(AB) 5
SS(AB)

(a 2 1)(b 2 1)

MSB 5
SSB
b 2 1

    MSE 5
SSE

ab(r 2 1)

These are used to form the F ratios used in our hypothesis tests. In a two-way ANOVA, we 
can conduct separate tests for the presence of each main effect and the interaction effect. 
In each such test, the null hypothesis is that the effect does not exist, and the alternative 
hypothesis is that the effect is present. To conclude, for example, that the factor A (or B) 
effect is present means that the average response differs at different levels of A (or B). The 
following box summarizes the test procedures for a two-factor ANOVA. An ANOVA table 
(Figure 10.12) provides the most convenient way to summarize these results.

Two-Way ANOVA Tests (Significance Level �)
To test these 
hypotheses:

Test 
statistic

Degrees of freedom for 
P-value determination

0 : There is no main 
	 effect for 

5
MSa
MSe

2 1, ( 2 1)

0 : There is no main  
	 effect for 

5
MSB
MSe

2 1, ( 2 1)

0 : There is no  
	 interaction effect 5

MS(aB)

MSe

( 2 1)( 2 1), ( 2 1)

Reject 0 if -value # � (In each case,  is that the particular effect  exist.)
If 0  is rejected, then the interaction plot takes precedence over the main effects plots 
when interpreting the effects of  and . 

Source of variation df SS MS F

Factor A a 2 1 SSA MSA MSA/MSE
Factor B b 2 1 SSB MSB MSB/MSE
AB interaction (a 2 1)(b 2 1) SS(AB) MS(AB) MS(AB)/MSE
Error ab(r 2 1) SSE MSE

Total variation abr – 1 SST

Figure 10.12 ANOVA table for the two-way classification Un
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Technically speaking, the statistical tests just described are based on a fixed effects 
model, in which the particular levels of A and B are assumed to be the only ones 
of interest in the study. If, on the other hand, we think of the levels only as samples 
from all of the possible levels of A and B, then a random effects model should be 
used. Recall that the distinction between fixed and random effects was first introduced 
in Section 9.3. Although the distinction between fixed and random factors does not 
alter the ANOVA calculations for one-factor experiments (Chapter 9), this situation 
changes for multifactor designs. In particular, the calculation of F ratios for random 
effects models and mixed models (one factor fixed, the other random) are slightly dif-
ferent from those of the fixed effects models. These topics are beyond the scope of our 
introductory discussion. Throughout this chapter, we consider all factors in a design 
to be fixed factors.

Refer to Example 9.1, where we examined the possible causes of electric motor vibra-
tion. Suppose that we have identified two product characteristics (factors) that are 
thought to influence the amount of vibration (the response, measured in microns) 
of running motors: factor A 5 the brand of bearing used in the motor and B 5 the 
material used for the motor casing. Figure 10.13 shows the data from an experiment 
in which a 5 5 brands of bearings were tested along with b 5 3 types of casing mate-
rial (steel, aluminum, and plastic). Two motors (r 5 2) were constructed and tested 
for each of the ab 5 5 ? 3 5 15 combinations of bearing brand and casing type, giving 
a total sample size of abr 5 5 ? 3 ? 2 5 30.

Before proceeding with the ANOVA calculations, it is instructive to look at the 
margins of the data array in Figure 10.13. In particular, note that there appears to be 
very little difference between the average responses for the three levels of factor B, 
which is a preliminary indication that factor B may have little or no effect on reduc-
ing vibration.

Example 10.1

Figure 10.13  Data on electric motor vibration for 
Example 10.1

1 2 3

1

2

3

4

13.1, 13.2

16.3, 15.8

13.7, 14.3

15.7, 15.8

15.0, 14.8

15.7, 16.4

13.9, 14.3

13.7, 14.2

14.0, 14.3

17.2, 16.7

12.4, 12.3

14.4, 13.9

5 13.5, 12.5 13.4, 13.8 13.2, 13.1

14.07

16.35

13.48

14.62

13.25

14.39 14.52 14.15

Factor 
(brand)

Factor 
(casing material)

Averages:

Averages:
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460	 chapter 10   Experimental Design

The sum of all 30 response values is 430.6, so the grand average is y 5
430.6y30 5 14.353, which, with the row averages A1 5 14.07, A2 5 16.35, A3 5
13.48, A4 5 14.62, and A5 5 13.25 gives

SSA 5  b ? r^
a

i51
(Ai 2 y  )2

5 3 ? 23(14.07 2 14.353)2 1 (16.35 2 14.353)2 1 (13.48 2 14.353)2

1 (14.62 2 14.353)2 1 (13.25 2 14.353)24
5 636.1181254 5 36.709

Similarly, the column averages B1 5 14.39, B2 5 14.52, B3 5 14.15 yield

SSB 5 a ? r^
b

j51
(Bj 2 y)2

5 5 ? 23(14.39 2 14.353)2 1 (14.52 2 14.353)2 1 (14.15 2 14.353)24
5 103.0704674 5 .705

The total sum of squares is the sum of the squared differences of all 30 values from y:

	 SST 5 (13.1 2 14.353)2 1 … 1 (13.1 2 14.353)2 5 50.655

whereas SSE is the sum of the squared differences of each response value from its 
own cell mean,

	 SSE 5 3(13.1 2 13.15)2 1 (13.2 2 13.15)24
	 1 3(15.0 2 14.9)2 1 (14.8 2 14.9)24 1 …

	 5 1.670
By subtraction, SS(AB) 5 SST 2 SSA 2 SSB 2 SSE 5 50.655 2 36.709 2 .705 2
1.670 5 11.571. These results, along with their associated degrees of freedom and 
mean squares, are summarized in the following ANOVA table:

Source of variation df SS MS F
Factor A
(bearing brand) 5 2 1 5     4 36.709 36.709y4 5 9.177 9.177y .1113 5 82.45
Factor B
(casing material) 3 2 1 5     2 .705 .705y2 5     .353 .353y .1113 5     3.17
AB interaction (5 2 1)(3 2 1) 5     8 11.571 11.571y8 5 1.446 1.446y .1113 5 12.99
Error 5 · 3(2 2 1) 5 15 1.670 1.670y15 5 .1113

Total variation 5 · 3 · 2 2 1 5 29 50.655

At a significance level of � 5 .05, let’s first test for the presence of any interac-
tions.  Because the P-value for F 5 12.99 (based on df1 5 8, df2 5 15) is less than 
.001, H0AB must be rejected. It appears that there is interaction between the two fac-
tors. Therefore we should consider the corresponding effects plot (see Figure 10.14) 
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to draw conclusions. Although the casing material does not have a significant effect 
by itself, it does influence the A main effect (because the AB interaction is signifi-
cant). The lowest vibration occurs for bearing brand A3, but only if casing B3 (plastic 
casing) is used with A3.

Figure 10.14  Effects plot for Example 10.1

1
12

13

14

15

16

17

2 3 4 5
Factor 

1

3

2

Response

Section 10.2 Exercises 

 	 5.	 Why do parallel line segments in effects plots indi-
cate that there is no interaction between two factors?

 	 6.	 In the example discussed on page 454, perform the 
necessary hypothesis tests to show that neither fac-
tor B nor the two-factor AB interaction is significant 
(using � 5 .05).

  	7.	 A fixed effects model is used to analyze two factors, 
each of which has five levels. Three replicated mea-
surements are available for each combination of 
factor levels. Complete the following ANOVA table 
for this experiment:

Source of 
variation df SS MS F
Factor A 20
Factor B 8.1
AB interaction
Error 2
Total variation 200

  	8.	 A chemical engineer conducts an experiment to 
test the effects of gas flow rate (factor A) and liquid 
flow rate (factor B) on the gas film heat transfer co-
efficient (in Btu/hr ft2). Four levels of each factor 
are used in the study, and two replications are con-
ducted at each combination of factor levels:

Factor B

1 2 3 4

1 200, 211 226, 219 240, 249 261, 250
2 278, 267 312, 324 330, 337 381, 375

Factor A 3 369, 355 416, 402 462, 457 517, 524
4 500, 487 575, 593 645, 632 733, 718

	 a.	 Is there evidence of a significant interaction be-
tween the two factors? Use � 5 .01. 

  	b.	 Use � 5 .01 to test the hypothesis that gas flow 
rate has no effect on the heat transfer coefficient.

  	c.	 Use � 5 .01 to test the hypothesis that liquid flow 
rate has no effect on the heat transfer coefficient.
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462	 chapter 10   Experimental Design

    	9.	The following data was obtained in an experiment 
to investigate whether the yield from a certain 
chemical process depends on either the chemical 
formulation of the input materials or the mixer 
speed, or on both factors:

 Speed
60 70 80

189.7 185.1 189.0
1 188.6 179.4 193.0

190.1 177.3 191.0
Formulation

165.1 161.7 163.3
2 165.9 159.8 166.6

167.6 161.6 170.3

		  A statistical software package gave these results: 
SS(formulation) 5 2253.44, SS(speed) 5 230.81, 
SS(interaction) 5 18.58, and SSE 5 71.87.

  	a.	 Does there appear to be interaction between the 
two factors? (Use � 5 .05.)

  	b.	 Does the yield appear to depend on either the 
formulation or the speed? (Use � 5 .05.)

	10.	 Draw an interaction plot for the data of Exercise 9.

	11.	 Lightweight aggregate asphalt mix has been found 
to have lower thermal conductivity, which is desir-
able, than a conventional mix would have. The 
article “Influence of Selected Mix Design Factors 
on the Thermal Behavior of Lightweight Aggregate 
Asphalt Mixes” (J. of Testing and Eval., 2008: 1–8) 
reported on an experiment in which various thermal 
properties of mixes were determined. Three different 
binder grades were used in combination with three 
different coarse aggregate contents (%), with two ob-
servations made for each such combination, result-
ing in the conductivity data (W/m∙K) given here:

Coarse Aggregate Content (%)
38 41 44

Asphalt 
Binder
Grade

PG58 .835, .845 .822, .826 .785, .795
PG64 .855, .865 .832, .836 .790, .800
PG70 .815, .825 .800, .820 .770, .790

 	 a.	  Test for the presence of interaction between the 
two factors. Use � 5 .01.

 	 b.	 Use � 5 .01 to test the hypothesis that coarse 
aggregate content has no effect on thermal con-
ductivity.

 	 c.	 Use � 5 .01 to test the hypothesis that asphalt 
binder grade has no effect on thermal conductivity.

  	12.	Factorial designs have been used to study produc-
tivity of software engineers (“Experimental Design 
and Analysis in Software Engineering,” Software 
Engineering Notes, 1995: 14–16). Suppose that an 
experiment is conducted to study the time it takes 
to code a software module. Factors that may affect 
the coding time are the size of the module and 
whether the programmer has access to a library of 
previously coded submodules. Module size is stud-
ied at two levels, large and small, whereas access to 
a library of submodules is either available or not. Af-
ter running a two-factor design on sample modules, 
suppose that the interaction between module size 
and library access is found to be significant.

  	a.	 If the goal is to reduce coding time, describe the 
conclusions you can draw from the experiment 
if the interaction plot looks like this:

Small Large
Module size

No library access

Library access

Coding time

  	b.	 What possible reasons can you give for an inter-
action plot that looks like the following one?

Small Large
Module size

No library access
Library access

Coding time

	13.	 The article “Fatigue Limits of Enamel Bonds with 
Moist and Dry Techniques” (Dental Materials, 
2009: 1527–1531) described an experiment to in-
vestigate the ability of adhesive systems to bond to 
mineralized tooth structures. The response variable 
is shear bond strength (MPa), and two different Un

le
ss

 o
th

er
w

is
e 

no
te

d,
 a

ll 
co

nt
en

t o
n 

th
is

 p
ag

e 
is

 ©
 C

en
ga

ge
 L

ea
rn

in
g.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 10.3   Multifactor Designs	 463

adhesives—Adper Single Bond Plus (SBP) and 
OptiBond Solo Plus (OBP)—were used in combi-
nation with two different surface conditions. The 
accompanying data was supplied by the authors of 
the article. The first 12 observations came from the 
SBP-dry treatment, the next 12 from the SBP-moist 
treatment, the next 12 from the OBP-dry treatment, 
and the last 12 from the OBP-moist treatment.

SBP-Dry 56.7 57.4 53.4 54.0 49.9 49.9
56.2 51.9 49.6 45.7 56.8 54.1

SBP-Moist 49.2 47.4 53.7 50.6 62.7 48.8
41.0 57.4 51.4 53.4 55.2 38.9

OBP-Dry 38.8 46.0 38.0 47.0 46.2 39.8
25.9 37.8 43.4 40.2 35.4 40.3

OBP-Moist 40.6 35.5 58.7 50.4 43.1 61.7
33.3 38.7 45.4 47.2 53.3 44.9

	 a.	 Construct a comparative boxplot of the data on 
the four different treatments and comment.

	 b.	 Carry out an appropriate analysis of variance 
and state your conclusions (use a significance 
level of .01 for any tests). Include any graphs 
that provide insight.

	 c.	 If a significance level of .05 is used for the two-
way ANOVA, the interaction effect is significant 
(just as in general different glues work better 
with some materials than with others). So now 
it makes sense to carry out a one-way ANOVA 
on the four treatments SBP-D, SBP-M, OBP-D, 
and OBP-M. Do this and identify significant dif-
ferences among the treatments.

 	14.	 Experiments often have more than one response 
value of interest. In the article “Towards Improving 
the Properties of Plaster Moulds and Castings” (J. 
Engr. Manuf., 1991: 265–269), a study was under-

taken to determine the effects of carbon fiber (in %) 
and sand addition (in %) on two response variables, 
casting hardness and wet-mold strength.

Sand  
addition (%)

Carbon fiber  
addition (%)

Casting  
hardness

Wet-mold 
strength

  0 0 61.0 34.0
  0 0 63.0 16.0
15 0 67.0 36.0
15 0 69.0 19.0
30 0 65.0 28.0
30 0 74.0 17.0
  0 .25 69.0 49.0
  0 .25 69.0 48.0
15 .25 69.0 43.0
15 .25 74.0 29.0
30 .25 74.0 31.0
30 .25 72.0 24.0
  0 .50 67.0 55.0
  0 .50 69.0 60.0
15 .50 69.0 45.0
15 .50 74.0 43.0
30 .50 74.0 22.0
30 .50 74.0 48.0

	 a.	 Construct an ANOVA table for the effects of 
these factors on wet-mold strength. Test for the 
presence of significant effects using � 5 .05.

 	 b.	 Construct an ANOVA table for the effects of 
these factors on casting hardness. Test for the 
presence of significant effects using � 5 .05.

 	 c.	 From your results in parts (a) and (b), what levels 
of each factor would you select to maximize wet-
mold strength? What factor levels would you 
choose to maximize casting hardness?

10.3	 Multifactor Designs �

The two-factor designs of Section 10.2 can be extended to include any number of factors A, 
B, C, D, . . . , each with its own number of levels a, b, c, d, . . . , and so on. These factorial 
designs, as they are called, require that experimental runs be made at all possible combina-
tions of the factor levels. As in the two-factor case, the total sample size for a factorial design 
is the product of the number of factor levels times the number of replicates, r. A four-factor 
experiment, for example, would require n 5 a ? b ? c ? d ? r sample measurements. Need-
less to say, sample sizes can grow rapidly as more and more factors are included in an experi-
ment, a problem that is addressed in Sections 10.4 and 10.5 of this chapter.
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The “3” notation used to describe two-factor designs also provides compact descrip-
tions of multifactor designs. For instance, a 3 3 2 3 2 factorial design is one that has 
three factors A, B, and C, with a 5 3 levels of A, b 5 2 levels of B, and c 5 2 levels of C.  
Figure 10.15 shows a data layout for such a design. Note that the number of replicates, r, 
is not included in this notation. To indicate that repeated measurements have been made 
at each factor–level combination, we simply state this fact when referring to the design, for 
example, a replicated 3 3 2 3 2 design, or a 3 3 2 3 2 design with r  replicates.

Main Effects and Interactions
In multifactor designs, main effects and two-factor interactions are interpreted in the 
same manner as in two-factor designs (Section 10.2). With more than two factors, 
however, the opportunity arises to incorporate even higher-order interactions, such as 
the interaction between three or more factors. Notationally, a three-factor interaction 
between factors A, B, and C is denoted by either ABC or A 3 B 3 C, a four-factor in-
teraction is denoted by either ABCD or A 3 B 3 C 3 D, and so forth. The basic rule 
for interpreting interaction terms is the same as in Section 10.2: If an interaction is 
statistically significant, then each of the component factors’ effects will depend on the 
particular combination of the other factors in the interaction term. For instance, the 
presence of a significant ABC interaction means that the effect of factor A is different at 
different settings of factors B and C, or, equivalently, that the effect of B depends on the 
levels of A and C, or that the effect of C depends on the levels of A and B.

Operationally, the presence of an interaction term indicates that we must first look at in-
teraction plots, not main effects plots, when interpreting the experimental results. However, 
factors that are not involved in significant interaction terms may be interpreted by simply 
examining their main effects plots. For example, suppose that an ANOVA test reveals that 
both the main effect for factor A and the BC interaction are significant. This means that we 
can look at the main effects plot for A when deciding on the best setting for A, but the BC 
interaction plot must be consulted when determining the best settings for factors B and C.

ANOVA Formulas
ANOVA decompositions for factorial designs contain a sum of squares term for every 
possible main effect and interaction. For example, a factorial design based on factors A, 
B, and C gives rise to three main effects terms (A, B, and C), three two-factor interactions 

Figure 10.15  Data layout for a 3 3 2 3 2 
factorial design (three levels of factor ,  
two levels of , two levels of )
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(AB, AC, and BC), and one three-factor interaction (ABC). The sum of squares for an 
interaction term is denoted by putting the interaction term in parentheses after the SS 
notation. Thus SS(AB) denotes the sum of squares associated with the AB interaction, 
and so on. The ANOVA decomposition for a three-factor model is given by

SST 5 SSA 1 SSB 1 SSC 1 SS(AB) 1 SS(AC) 1 SS(BC) 1 SS(ABC) 1 SSE

where SST (the total sum of squares) measures the total variation in the response data 
and SSE (the error sum of squares) is the variation from all sources other than the factors 
included in the experiment.

For a three-factor design including every possible main effect and interaction, com-
putational formulas for sums of squares are given in the following box. The key is to start 
by computing the sums of squares of main effects and then use these results to find sums 
of squares for the two-factor interactions. Similarly, the sums of squares of the two-factor 
interactions are used to find SS(ABC). Although the patterns evident in these formulas 
can be extended to the case of four or more factors, in practice one usually relies on 
statistical software to perform the calculations.

Sum of Squares Formulas (Balanced Three-Factor ANOVA)
Let  denote the grand total of all  5  response values.

	  SSa 5 ^  
51

2

2
2

, where 5 sum of all data for  th level of factor 

	  SSB 5 ^  
51

2

2
2

, where 5 sum of all data for th level of factor 

	 SSC 5 ^  
51

2

2
2

, where 5 sum of all data for th level of factor 

	 SS(aB) 5
5̂1

 
5̂1

2

2
2

2 SSa 2 SSB, where 5 sum of all data for
	 ith level of  and  th level of 

	 SS(aC) 5
5̂1

 ^
c

k51

 2

br
2

2

abcr
2 SSa 2 SSC, where 5 sum of all data for  th

	 level of  and th level of 

	 SS(BC) 5
5̂1

 
5̂1

2

2
2

2 SSB 2 SSC, where 5 sum of all data for
	  th level of  and th level of 

	 SS(aBC) 5 SST 2 SSa 2 SSB 2 SSC 2 SS(aB) 2 SS(aC) 2 SS(BC) 2 SSe

	 SST 5 sum of squared deviations of all 5  response values from the
	  grand average of the data

	 SSe 5 sum over all cells of squared deviations of cell entries from corresponding
	  cell means

For a three-factor design restricted to main effects and two-factor interactions (i.e., a 
design that excludes the ABC interaction), we can determine the sums of squares for total 
variation, main effects, and two-factor interactions using the computational formulas in 
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the foregoing box. However, now that we are excluding the ABC term, the SSE must 
necessarily change. It is no longer just the sum of squared cell deviations (shown in the 
foregoing table), but it will now be increased by an amount equal to SS(ABC). The cor-
rect ANOVA decomposition will now be given by

SST 5 SSA 1 SSB 1 SSC 1 SS(AB) 1 SS(AC) 1 SS(BC) 1 SSE

Rearrangement of this decomposition yields an expression for the new SSE:

SSE  5 SST 2 SSA 2 SSB 2 SSC 2 SS(AB) 2 SS(AC) 2 SS(BC).

Comparing SSE  to the SSE for the full three-factor model, we see that the error term 
now includes the ABC contribution in the sense that SSE  5 SSE 1 SS(ABC).

Similarly, if we want to restrict the model to only main effects, the ANOVA decom-
position becomes

SST 5 SSA 1 SSB 1 SSC 1 SSE

from which

SSE  5 SST 2 SSA 2 SSB 2 SSC.

Again, the SSE  term has simply absorbed the SSE for the full three-factor model and 
all sums of squares of the terms omitted from this model. This also happens when terms 
from a two-factor design are dropped (cf. page 457) or, in general, from a model having 
any number of factors, including multiple regression models (discussed in Chapter 11).

Hypothesis Tests
Hypothesis tests concerning main effects and interactions are based on the familiar 
ANOVA assumption that the response values at each fixed factor–level combination 
follow a normal distribution and that the variances of these distributions are the same, 
regardless of the particular factor–level combination. From these assumptions, a sepa-
rate degrees of freedom and mean square can be computed for each source of variation. 
The total degrees of freedom is n 2 1, where n is the total number of experimental 
runs. The degrees of freedom for each main effect equals its number of levels minus 1 
and the degrees of freedom for any interaction term is simply the product of the degrees 
of freedom for its component factors. The mean square associated with any main ef-
fect or interaction equals its sum of squares divided by its degrees of freedom. All of this 
information is summarized in the form of an ANOVA table. For example, Figure 10.16 
shows the general form of the ANOVA table for a three-factor design.

Figure 10.16 ANOVA table for a factorial design with three factors, , , and 

Source of variation df SS MS F
A a 2 1 SSA MSA MSA/MSE
B b 2 1 SSB MSB MSB/MSE
C c 2 1 SSC MSC MSC/MSE
AB (a 2 1)(b 2 1) SS(AB) MS(AB) MS(AB)/MSE
AC (a 2 1)(c 2 1) SS(AC) MS(AC) MS(AC)/MSE
BC (b 2 1)(c 2 1) SS(BC) MS(BC) MS(BC)/MSE
ABC (a 2 1)(b 2 1)(c 2 1) SS(ABC) MS(ABC) MS(ABC)/MSE
Error abc(r 2 1) SSE MSE
Total variation abcr 2 1 SST
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Over the past decade researchers and consumers have shown increased interest 
in renewable fuels such as biodiesel, a form of diesel fuel derived from vegetable 
oils and animal fats. According to www.fueleconomy.gov, compared to petroleum 
diesel, the advantages of using biodiesel include its nontoxicity, biodegradability and 
lower greenhouse gas emissions. One popular biodiesel fuel is fatty acid ethyl ester 
(FAEE). The authors of “Application of the Full Factorial Design to Optimization 
of Base-Catalyzed Sunflower Oil Ethanolysis” (Fuel, 2013: 433−442) performed an 
experiment to determine optimal process conditions for producing FAEE from the 
ethanolysis of sunflower oils. In one study, the effects of three process factors on 
FAEE purity (%) were investigated. 

Factor  Factor name Factor levels
A  Reaction Temperature 25°C, 50°C, 75°C

B  Ethanol-to-oil molar ratio 6:1, 9:1, 12:1

C  Catalyst loading .75 wt.%, 1.00 wt.%, 1.25 wt.%

Table 10.1 shows the data from this 3 3 3 3 3 experiment. Note that there are  
r 5 2 repeated tests run at each combination of factor levels. Figure 10.17 shows 
the resulting ANOVA table. All effects except the BC and ABC interaction effects 
are significant at � 5  .05. Because some interaction terms are significant, the 
interaction plots must be examined when drawing conclusions about the factor 
effects.

Plots of all two-factor interactions are shown in Figure 10.18, along with the 
main effects plots for the three factors. Suppose we are interested in maximizing 
the value of the response variable, FAEE purity. Looking at the interaction plots,  
the combination of factor levels that best accomplishes this objective is A 5 75°C,  
B 5 12:1, and C 5 1.25%. In this example, the conclusions from the interaction 
plots agree with the conclusions that we would have drawn from inspecting the main 
effects plots.

Table 10.1 Purity (%) of fatty acid ethyl ester

Ratio
6:1 9:1  12:1

Loading  .75 1.00 1.25 .75 1.00 1.25 .75 1.00 1.25
25 81.07 88.71 95.42 81.54 89.12 96.32 86.07 92.05 97.02

82.22 87.61 94.06 82.82 86.49 95.45 87.73 91.72 96.16
50 87.31 89.52 94.68 87.99 90.05 96.44 89.61 90.32 98.30

87.94 88.75 95.45 88.98 90.42 96.47 89.02 90.61 96.62
75 90.66 91.60 93.65 92.14 92.55 97.41 92.88 96.12 97.66

91.87 92.34 95.73 92.22 97.06 97.08 93.30 97.41 97.59

Temp
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468	 chapter 10   Experimental Design

Source df SS MS F P
A   2 215.38 107.69 112.07 .0000

B   2 74.51 37.26 38.77 .0000

C   2 602.72 301.36 313.60 .0000

AB   4 13.45 3.36 3.50 .0200

AC   4  107.41  26.85  27.94 .0000

BC   4  4.37 1.09 1.14 .3598

ABC   8 12.47  1.56  1.62 .1649

Error 27 25.95 .961 

Total 53 1056.26

Figure 10.17 ANOVA for the data of Table 10.1

Figure 10.18 Two-factor interaction plots and main effects plots for Example 10.2
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Based on years of empirical evidence, the results of a factorial experiment usually show 
that, over the range of factor levels studied, only a few factors are significant and even fewer 
interaction terms are significant. When all main effects and interactions are significant, the 
experimenter should carefully examine how the test runs were conducted to make sure that 
correct procedures were followed. Recall from Section 4.3 that the proper method of con-
ducting repeated tests is to completely replicate the experimental conditions for each test. 

For example, in Example 10.2, the two repeated tests made at A 5 25 C, B 5 
6:1 molar ratio, and C 5 .75 wt.% catalyst loading should be conducted by resetting 
the apparatus used in the first test, substituting a new sunflower oil sample using the 
specified molar ratio and catalyst loading, allowing the temperature to change and be 
reset to 25°C, and then running the second test. If, instead, the experimenter simply 
leaves the apparatus from the first test in place and immediately conducts a second test, 
then the variation between the two FAEE purity responses is more likely to be a mea-
sure of the repeatability of the purity measurement system. It will not truly capture the 
experimental error we would expect for any sunflower oil sample under the conditions 
A 5 25°C, B 5 6:1 molar ratio, and C 5 .75 wt.% catalyst loading. Test runs that are 
incorrectly conducted by simply taking two successive measurements usually result in 
underestimating the experimental error MSE, thereby artificially increasing the F ratios 
on which hypothesis tests are based.

Section 10.3 Exercises 

	15.	 Highly precise finishing methods are important for 
the manufacturing of ultraprecision optical parts but 
conventional polishing methods have proven to be 
unsatisfactory. Magnetic abrasive finishing (MAF),  
a relatively new technology that uses abrasive 
particles surrounded by magnets that generate a 
magnetic field around the polishing area, has drawn 
attention as an alternative finishing method. The 
authors of “Run-to-Run Process Control of Magnetic 
Abrasive Finishing Using Bonded Abrasive Particles”  
(J. of Engr. Manuf., 2012: 1963–1975) examined 
the impact of MAF process control parameters on 
finishing outcomes. To see whether average surface 
roughness (Ra) is affected by the abrasive size (A), 
abrasive quantity (B), and quill gap (C), an experi-
ment using three sizes, three quantities, and three 
gaps was performed, with two replicates at each 
of the factor combinations. The resulting sums of 
squares were SSA 5 210.67, SSB 5 132.17, SSC 5  
2586.35, SS(AB) 5 57.48, SS(AC) 5 636.84, 
SS(BC) 5 875.00, SS(ABC) 5 888.52, SSE 5 
5416.67 and SST 5 10,803.70.

	 a.	 Construct an ANOVA table for this data.
	 b.	 Test to see whether any interaction effects are 

significant at � 5 .05.

	 c.	 Test to see whether any main effects are signifi-
cant at � 5 .05.

	16.	 Factorial designs have been used in forestry to assess 
the effects of various factors on the growth behavior 
of trees. In one such experiment, researchers 
thought that healthy spruce seedlings should bud 
sooner than diseased spruce seedlings (“Practical 
Analysis of Factorial Experiments in Forestry,” 
Canadian J. of Forestry, 1995: 446-461). In addi-
tion, before planting, seedlings were also exposed 
to three levels of pH to see whether this factor has 
an effect on virus uptake into the root system. The 
following table shows data from a 2 3 3 experiment 
to study both factors:

pH
3 5.5 7

1.2, 1.4, .8, .6, 1.0, 1.0,
Diseased 1.0, 1.2, .8, 1.0, 1.2, 1.4,

1.4 .8 1.2
Health status

1.4, 1.6, 1.0, 1.2, 1.2, 1.4,
Healthy 1.6, 1.6, 1.2, 1.4, 1.2, 1.2,

1.4 1.4 1.4
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		  The response variable is an average rating of five buds 
from a seedling. The ratings are 0 (bud not broken),  
1 (bud partially expanded), and 2 (bud fully expanded).

	 a.	 Using a significance level of 5%, conduct an 
ANOVA test for this data. Indicate which factors 
are significant and whether the interaction term 
is significant.

	 b.	 Create an effects plot for the factors that were 
found to be significant in part (a).

	 c.	 What conclusions can you draw regarding the 
effects of the two factors on bud rating?

	17.	 The output of a continuous extruding machine that 
coats steel pipe with plastic was studied as a function 
of thermostat temperature profile (A, at three levels), 
type of plastic (B, at three levels), and the speed (C, at 
three levels) of the rotating screw that forces the plas-
tic through a tube-forming die. Two replications were 
obtained at each factor–level combination, yielding 
a total of 54 observations. The sums of squares were  
SSA 5 14,144.44, SSB 5 5,511.27, SSC 5 244,696.39, 
SS(AB) 5 1,069.62, SS(AC) 5 62.67, SS(BC) 5  
331.67, SSE 5 3127.50, and SST 5 270,024.33.

	 a.	 Construct an ANOVA table for this experiment.
	 b.	 Use the appropriate F ratios to show that none of 

the two- or three-factor interactions is significant 
at � 5 .05.

	 c.	 Which main effects are significant at � 5 .05?

	18.	 To see whether the force in drilling is affected by the 
drilling speed (A), feed rate (B), or material used (C), 
an experiment using four speeds, three rates, and two 
materials was performed, with two replicate samples 
drilled at each combination of levels of the three 
factors. A software package was used to obtain the sums 
of squares for the experimental data: SSA 5 19,149.73, 
SSB 5 2,589,047.62, SSC 5 157,437.52, SS(AB) 5 
53,238.21, SS(AC) 5 9,033.73, SS(BC) 5 91,880.04, 
SSE 5 56,819.50, and SST 5 2,983,164.81.

	 a.	 Construct an ANOVA table for this experiment, 
and identify significant effects using � 5  .01.

	 b.	 Is there any single factor that appears to have 
no effect on thrust force? If so, how would you 
go about choosing the level of this factor that 
would minimize thrust force?

	19.	 An experiment was conducted to investigate how the 
length of steel bars is affected by the time of day (A),  

heat treatment applied (B), and machine used (C). 
The three times were 8:00 a.m., 11:00 a.m., and 
3:00 p.m. Two types of heat and four machines were 
used. The data from this 3 3 2 3 4 factorial design 
is given in the following table. Note: Data is coded as 
1000(length 2 4.380); this does not affect the analysis.

B1

C1 C2 C3 C4

A1 6, 9, 1, 3 7, 9, 5, 5 1, 2, 0, 4 6, 6, 7, 3
A2 6, 3, 1, 21 8, 7, 4, 8 3, 2, 1, 0 7, 9, 11, 6
A3 5, 4, 9, 6 10, 11, 6, 4 21, 2, 6, 1 10, 5, 4, 8

B2

C1 C2 C3 C4

A1 4, 6, 0, 1 6, 5, 3, 4 21, 0, 0, 1 4, 5, 5, 4
A2 3, 1, 1, 22 6, 4, 1, 3 2, 0, 21, 1 9, 4, 6, 3
A3 6, 0, 3, 7 8, 7, 10, 0 0, 22, 4, 24 4, 3, 7, 0

	 a.	 Construct an ANOVA table for this data.
	 b.	 Test to see whether any interaction effects are 

significant at � 5  .05.
	 c.	 Test to see whether any main effects are signifi-

cant at � 5  .05.

	20.	 The deposition of thick protective coatings on 
substrates can be facilitated by laser cladding, in 
which an alloy powder is melted on the substrate 
surface. Experiments were conducted to determine 
how three processing parameters, laser power (A), 
scanning velocity (B), and powder flow rate (C) af-
fect the coating hardness. (“Laser Cladding: An Ex-
perimental Study of Geometric Form and Hardness 
of Coating Using Statistical Analysis,” J. of Engr. 
Manuf., 2006: 1549–1554). Each factor had three 
levels, and there was one observation at each factor-
level combination. The following corresponds to 
the ANOVA table from the article; only main effects 
and two-factor interactions were considered there:

SOURCE DF SS MS
? ? ? 63.24
? 2034.74 ? ?
? ? 480.26 ?
? ? ? 6.48
? 729.04 ? ?
? ? 115.26 ?

Error ? ? 104.26
Total ? ?
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	 a.	 Fill in the missing entries in the table.
	 b.	 Identify significant effects using � 5 .01.

	21.	 Recently, nickel titanium (NiTi) shape memory 
alloy (SMA) has become widely used in medical 
devices. This is attributable largely to the alloy’s 
shape memory effect (material returns to its origi-
nal shape after heat deformation), superelasticity, 
and biocompatibility. An alloy element is usually 
coated on the surface of NiTi SMAs to prevent 
toxic Ni release. The alloy element is coated 
by laser cladding, a technique first described in 
Exercise 20.

			   The authors of “Parametrical Optimization  
of Laser Surface Alloyed NiTi Shape Memory 
Alloy with Co and Nb by the Taguchi Method” 
(J. of Engr. Manuf., 2012: 969–979) conducted 
a study to see whether the percent by weight of 
nickel in the alloyed layer is affected by carbon 
monoxide powder paste thickness (A, at three 
levels), scanning speed (B, at three levels), and 
laser power (C, at three levels). One observation 
was made at each factor-level combination (Note: 
Thickness column headings were incorrect in the 
cited article):

Paste Thickness
Power Speed  .2  .3  .4

600 600 38.64 35.13 19.20

900 38.16  34.24 26.23

1200  37.54  33.46  30.44

700 600  36.56  35.91  34.62

900  39.16  33.10  28.71

1200 37.06 31.78 21.50

800  600 39.44 40.42 37.21

900 39.34 37.64 35.65

1200  39.30 34.97  32.50

	 a.	 Construct an ANOVA table for this experi-
ment, including all main effects and two-
factor interactions (as did the authors of the 
cited article).

	 b.	 Use the appropriate F ratios to show that none 
of the two-factor interactions is significant at 
� 5 .05.

	 c. Which main effects are significant at � 5 .05?

	22.	 A four-factor factorial design was used to investigate  
the effect of fabric (A), type of exposure (B), level of  
exposure (C), and fabric direction (D) on the extent  
of color change as measured by a spectrocolorimeter  
(from “Accelerated Weathering of Marine Fabrics,”  
J. Testing and Eval., 1992: 139–143). Two observa- 
tions were made at each combination of the factor  
levels. The resulting mean squares were MSA 5  

2,207.329, MSB 5 47.255, MSC 5 491.783,  
MSD 5 .44, MS(AB) 5 15.303, MS(AC) 5

275.446, MS(AD) 5 .470, MS(BC) 5 2.141, 
MS(BD) 5 .273, MS(CD) 5 .247, MS(ABC) 5

3.714, MS(ABD) 5 4.072, MS(ACD) 5 .767, 
MS(BCD) 5 .280, and MSE 5 .977. Perform an 
analysis of variance using � 5 .01 for all tests, and 
summarize your conclusions.

	23.	 One property of automobile air bags that contrib-
utes to their ability to absorb energy is the per-
meability of the woven material used to construct 
the air bags. Understanding how permeability 
is influenced by various factors is important for 
increasing effectiveness. In one study, the ef-
fects of three factors were studied: temperature 
(A), fabric denier (B), and air pressure (C). Two 
specimens were measured at each factor-level 
combination (“Analysis of Fabrics Used in Passive 
Restraint Systems—Airbags,” J. of the Textile Insti-
tute, 1996: 554–571).

Temperature

8 50 75
Pressure 17.2 34.4 103.4 17.2 34.4 103.4 17.2 34.4 103.4

420-D 73 157 332 52 125 281 37 95 276
80 155 332 51 118 264 31 106 281

630-D 35 91 288 16 72 169 30 91 213
43 98 271 12 78 173 41 100 211

840-D 125 234 477 90 149 338 102 170 307
111 233 464 100 155 350 98 160 311

Denier

	 a.	 Construct an ANOVA table for this data.
	 b.	 Test to see whether any interaction effects are 

significant at � 5 .01.
	 c.	 Test to see whether any main effects are signifi-

cant at � 5 .01.
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10.4	 2k Designs �

The minimum number of experimental runs needed for a factorial experiment can 
increase rapidly as more factors are added to an experiment. Recall, for instance, that 
to study factor A at three levels, factor B at two levels, and factor C at four levels, a 
minimum of 3 3 2 3 4 5 24 runs are needed, one run for each different combination 
of factor levels. If each test run is replicated r times, then the total number of runs will 
further increase by a factor of r. As a consequence, the cost of resources needed to con-
duct a factorial experiment can quickly become prohibitive.

One method of combating the problem of extremely large numbers of runs is to use 
only two levels of each of the factors of interest. Using this approach to study k different 
factors, each having only two levels, the minimum number of experimental runs need-
ed is 2 2 2  … 2 5 2k, which is the reason such experiments are called 2k factorial 
designs. These designs are very popular in the research and development of products 
and processes, not only because they require smaller sample sizes but also because the 
associated statistical analyses are exceedingly simple and, if necessary, can even be done  
by hand.

Coding Schemes and the Design Matrix
It is convenient to use coding schemes to describe the factor levels in a 2k experiment. 
Two such schemes are in common use, one based on 1 and – signs, the other based 
on using lowercase English letters. The 1 and 2 sign scheme is particularly useful for 
simplifying the computations needed for the analysis of a 2k design. The other coding 
scheme is better for compactly describing the particular combinations of factor levels 
used in an experiment. It is useful to understand both methods.

In the 1 and 2 coding method, 11 is used to denote one level of a factor, often 
called the high level, whereas –1 is used to denote the low level. For example, if 
a factor such as temperature is studied at the two levels 60°F and 100°F, then we 
would use 21 to code 60°F and 11 to code 100°F. Although it does not matter 
which factor level is assigned 11 or 21, for numerical factors (such as temperature) 
it is usually best to assign the 11 coding to the numerically larger of the two levels. 
For qualitative factors, such as the brand of raw material used, it does not matter 
which brand is assigned the 11 or 21 code. When creating models that relate the 
factors to the response variable, the actual factor settings are called the uncoded 
factor levels.

Uncoded factor Coded factor

levels levels
Factor A
temperature

60°F 21 (low level of A)

100°F 11 (high level of A)

The 6 1 coding scheme provides a quick method for listing all 2k experimental 
runs. Using capital letters A, B, C, . . . , to denote the names of the k factors in an experi-
ment, we form k columns of 11 and 21 values according to the following rule:
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		  Creating the Design Matrix for a 2k Experiment

Column 1:	� Starting with 21, create a column of length 2k by alternating 21 and 
11 values.

Column 2:	� Create a column of alternating blocks of two 21 values and two 11 
values.

Column 3:	� Create a column of alternating blocks of four 21 values and four 11 
values.

Column 4:	� Create a column of alternating blocks of eight 21 values and eight 11 
values.

	 .	 .
	 .	 .
	 .	 .
�Continue in this manner, using block sizes that are successive powers of 2, until all 
k columns have been formed.

When these columns are placed side by side, they form the design matrix of the experi-
ment, in which each row specifies a particular combination of factor settings. That is, 
each row constitutes one of the 2k experimental test runs. The order in which these runs 
are listed in the design matrix is called Yates standard order after Frank Yates, a col-
league of Fisher’s who helped develop the methodology of factorial designs.

For a 23 experiment based on the factors A, B, and C, the eight experimental runs in 
Yates standard order are as follows:

Run A B C
1 21 21 21
2 11 21 21
3 21 11 21
4 11 11 21
5 21 21 11
6 11 21 11
7 21 11 11
8 11 11 11

Example 10.3

The alternative coding scheme used with 2k designs is based on lowercase letters a, b, c, d, . . . , 
which are intended to denote the high levels of the corresponding factors A, B, C, D, . . . . To denote a 
particular experimental run, we form a string of lowercase letters, showing which factors in the run are 
set to their high levels. Letters are omitted for factors that are set to their low levels. For instance, in a 23 
experiment with factors A, B, and C, the combination of letters ab refers to the test run in which both A 
and B are set at their high levels and C is set at its low level. Similarly, the letter b denotes the run with B 
high and both A and C low. The notation (1) is used for the one test run in which all factors are set to their  
low levels.
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Conducting an Experiment
Yates’s method for generating the columns of the design matrix provides a quick 
and organized method for laying out the factor–level combinations of a 2k experi-
ment. However, when it comes to actually performing the experimental tests, test 
runs should be conducted in random order. Randomization of experimental runs, first 
discussed in Section 4.3, helps reduce the possible effects of unknown factors on the 
test results.

To see why randomization is used, suppose that we begin to conduct the runs 
in a 23 experiment in standard order (as in Example 10.3) but that unforeseen prob-
lems occur and only half the runs can be performed in one day, the remaining runs 
being postponed until later in the week. Because the runs are not randomized, 
factor C is always at its low level during the first day of testing. Later in the week, 
the remaining runs will be conducted when C is at its high level and when other 
external conditions may possibly have changed. Consequently, any effect that C has 
on the response will be commingled with the effects of changing conditions during 
the week. If statistical tests eventually show that factor C has a significant effect on 
the response, the experimenter will not be able to tell whether this effect is really 
caused by factor C or, instead, if it is caused by changes in other conditions that 
might have arisen between the two days of testing. If the test runs had been ran-
domized, there would have been a much smaller chance that such external factors 
could systematically influence the test results. For instance, it is highly unlikely that 
a randomized run sequence would have resulted in having C always at its low level 
during the first half of the runs.

Using the letter coding method, the eight test runs of the 23 experiment in Example 
10.3 are coded as follows. The table shows the letter codes that correspond to runs 
that have been written in Yates standard order:

Run A B C Letter code
1 21 21 21 (1)

2 11 21 21 a

3 21 11 21 b

4 11 11 21 ab

5 21 21 11 c

6 11 21 11 ac

7 21 11 11 bc

8 11 11 11 abc

Example 10.4

To randomize the test runs in a 23 experiment, first find the total number of runs 
required, including replicated runs. For example, if we decide to conduct two rep-
licate runs for each factor–level combination, then a total of N 5 r2k 5 2 × 23 5 16  

Example 10.5

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 10.4   2  Designs	 475

Calculating Effects Estimates
Main effects and two-factor interaction effects can be plotted for a 23 experiment in 
exactly the same manner as described for general factorial designs in Sections 10.2 and 
10.3. Furthermore, in 2k designs, it is also possible to calculate a numerical estimate for 
each main effect and interaction effect. Main effects and two-factor interaction effects 
are defined as follows:

The main effect of a factor is the average response value for all test runs at the 
high level of the factor minus the average response value for runs at the low level 
of the factor.
The two-factor interaction effect is one-half of the difference between the main 
effects of one factor calculated at the two levels of the other factor.

definitions

test runs must be conducted. Using a random number generator in a statistical 
computer program or spreadsheet, choose a random sample of size N, without 
replacement, from the integers 1, 2, 3, . . . , N. Assign the first random number 
chosen to the first row in the design matrix, the second random number to the 
second row, and so forth. These numbers indicate the order in which the tests are 
to be conducted.

Suppose, for instance, that the random sample of 1, 2, 3, . . . , 16 turns out  
to be

8  6  10  16  4  15  7  3  14  1  11  12  5  13  2  9

Proceeding down the rows of the design matrix, we write the first set of eight random 
numbers. Returning to the top row, we record the second set of eight random num-
bers. According to this randomization, the experimenter should begin by conduct-
ing run 2, followed by run 7, then run 8, run 5, run 5, run 2, and so forth. The 
response value measured at each run is recorded in the row corresponding to its test 
number.

Run A B C Run order Responses
1 21 21 21 8 14 y11, y12

2 11 21 21 6 1 y21, y22

3 21 11 21 10 11 y31, y32

4 11 11 21 16 12 y41, y42

5 21 21 11 4 5 y51, y52

6 11 21 11 15 13 y61, y62

7 21 11 11 7 2 y71, y72

8 11 11 11 3 9 y81, y82
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These definitions are best understood by considering a numerical example. The 
24 experiment in Table 10.2 shows four process variables used in the first stages of 
an industrial chemical reaction. The response variable is the percentage of a critical 
chemical that is converted during the first stage of the reaction. (We thank Eric Ziegel 
of AMOCO Corp. for providing this data.)

Table 10.2  24 experiment for studying the effects of four 
factors on the percent yield of a chemical reaction

Factor Low level High level

A, Pressure(psi) 14.0 20.0

B, Steam ratio 7.5 11.5

C, Throughput rate .52 .66

D, Temperature (°F) 1150 1200

Run A B C D y
1 21 21 21 21 27.22

2 1 21 21 21 25.19

3 21 1 21 21 23.23

4 1 1 21 21 18.93

5 21 21 1 21 25.32

6 1 21 1 21 22.61

7 21 1 1 21 26.80

8 1 1 1 21 20.20

9 21 21 21 1 44.53

10 1 21 21 1 42.44

11 21 1 21 1 43.78

12 1 1 21 1 37.66

13 21 21 1 1 42.16

14 1 21 1 1 38.97

15 21 1 1 1 48.85

16 1 1 1 1 42.05

The main effect for factor D in this experiment is calculated as follows:

 main effect for D 5
1
8

 (44.53 1 42.44 1 43.78 1 … 1 42.05)

	 2
1
8

 (27.22 1 25.19 1 23.23 1 … 1 20.20)

	 5 42.56 2 23.69 5 18.87
That is, we estimate that changing factor D from its low to its high level results in an in-
crease of about 18.87 in the response variable. Figure 10.19 shows the main effect graph for  
factor D. Note that the vertical distance (dashed line) in this graph is the numerical 
value of the main effect. The sloped line connecting the two average response values 
shows whether the effect is increasing or decreasing the response value as we change 
from the low to the high level of the factor. Un
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The interaction effect between two factors A and B is denoted by writing either AB or  
A 3 B. Both notations are found in the literature. The interaction between three fac-
tors A, B, and C is written either as ABC or A 3 B 3 C; four-factor interactions are 
written ABCD or A 3 B 3 C 3 D, and so forth. To illustrate the calculation of a two-
factor interaction effect, consider the BC interaction for the experiment in Table 10.2.  
Figure 10.20 shows the BC interaction graph created by plotting the average response 
values for all four combinations of levels of B and C. Each plotted point is now the aver-
age of four data points, not eight. For instance, the point where B is low and C is low is 
the average of the data points 27.22, 25.19, 44.53, and 42.44. With B on the horizontal 
axis, the pairs of points with the same level of C are joined by line segments. These two 
lines show the main effect of changing B from low to high while holding each level of C 
fixed. As you can see from the graph, the effect of changing B from low to high is very 
different for the two levels of C. The BC interaction is defined to be one-half of the dif-
ference between the main effect for B with C at its high level and the main effect for B 
with C at its low level:

BC interaction effect 5
1
2
3(34.48 2 32.27) 2 (30.90 2 34.85)4 5 3.08

	 	
	 B effect when C is held at 1 1  B effect when C is held at 2 1

Figure 10.19  Main effect for factor   
for the data of Table 10.2

– +

18.87 = Main effect for 

Response

42.56

23.69

Figure 10.20   interaction effect for the data of Table 10.2

– +

+

–

 interaction = half of the
 effect (when  is held at +1)

minus the  effect (for  held at –1)

Response

34.48

34.85

32.27

30.90

We leave it as an exercise for the reader to show that the calculation of an interac-
tion effect does not depend on the order in which the factors appear. That is, the BC Un
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and CB interaction effects are exactly the same and are both treated as measures of the 
same two-factor interaction.

The definitions of higher-order interaction effects become more complex as the 
number of factors increases. For example, the three-factor ABC interaction is defined 
to be one-half of the difference between the AB interaction values calculated at the two 
levels of C. As is the case with all interaction calculations, this definition is symmetric 
in the sense that the ABC interaction can also be calculated by using the difference 
between the BC interactions at the two levels of A or by using the difference between 
the AC interaction values at the two levels of factor B.

Fortunately, there is a much simpler method for calculating interactions of any 
order. Starting with the design matrix, we first create additional columns by forming 
all possible products (two at a time, three at a time, etc.) of columns in the design 
matrix. It is convenient to append these columns to the right of the design matrix. 
For example, an AB column is formed by multiplying the corresponding entries in 
columns A and B, an ABC column is formed by multiplying across the rows of A, B, 
and C, and so forth. Next, a contrast is calculated for each column in the extended 
matrix by multiplying the signs in a particular column by the column of response 
values and then summing. In the case where there are repeated runs at each factor–
level setting (as illustrated in Example 10.5), the column signs are multiplied by the 
total of the responses at each factor–level combination. Each contrast is given the 
name of the column from which it is constructed. For instance, in a 23 design, there 
will be contrasts for A, B, C, AB, AC, BC, and ABC. The final step is to divide each 
contrast by half the number of runs:

effect estimate 5
contrast

r2k21 5
contrast

half the number of runs

The resulting values will be the estimates for each main effect and each interaction 
effect.

To calculate all main effects and interaction effects for the 24 design in Table 10.2, 
the design matrix (in Yates standard order) is first extended to include all possible 
products of columns. For illustration, the BC and ABC columns are shown here.  
As part of Exercise 25, the reader should fill in the remaining columns.

Run A B C D AB  AC  AD BC BD  CD ABC ABD  ACD  BCD  ABCD y

1 21 21 21 21 11 21 27.22

2   1 21 21 21 11 11 25.19

3 21   1 21 21 21 11 23.23

4   1   1 21 21 21 21 18.93

5 21 21   1 21 21 11 25.32

6   1 21   1 21 21 21 22.61

7 21   1   1 21 11 21 26.80

8   1   1   1 21 11 11 20.20

Example 10.6

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 10.4   2  Designs	 479

Run A B C D AB  AC  AD BC BD  CD ABC ABD  ACD  BCD  ABCD y

 9 21 21 21   1 11 21 44.53

10   1 21 21   1 11 11 42.44

11 21   1 21   1 21 11 43.78

12   1   1 21   1 21 21 37.66

13 21 21   1   1 21 11 42.16

14   1 21   1   1 21 21 38.97

15 21   1   1   1 11 21 48.85

16   1   1   1   1 11 11 42.05

As a check on your calculations, each column in the extended design matrix should 
consist of exactly half 11s and half 21s. By multiplying each entry in an effect 
column by the corresponding entry in the response column and summing, we obtain 
the contrast for each effect. For instance, the A, BC, and ABC contrasts are

A contrast 5 227.22 1 25.19 2 23.33 1 18.93 2 25.32 1 22.61
	 226.80 1 20.20 2 44.53 1 42.44 2 43.78 1 37.66
	 242.16 1 38.97 2 48.85 1 42.05
	 5 233.84

BC contrast 5 227.22 1 25.19 2 23.23 2 18.93 2 25.32 2 22.61
	 126.80 1 20.20 1 44.53 1 42.44 2 43.78 2 37.66
	 242.16 2 38.97 1 48.85 1 42.05
	 5 24.62

ABC contrast 5 227.22 1 25.19 1 23.23 2 18.93 1 25.32 2 22.61
	 126.80 1 20.20 2 44.53 1 42.44 1 43.78 2 37.66
	 142.16 2 38.97 2 48.85 1 42.05
	 5 21.20

Because the total number of test runs is 16, each contrast is divided by 8 (half the 
number of runs) to obtain the effect estimates:

Main effect for A 5
233.84

8
5 24.23

	 BC interaction effect 5
24.62

8
5 3.08

	 ABC interaction effect 5
21.20

8
5 2.15

Analyzing a 2k Experiment
Having obtained estimates of all main effects and interaction effects, we must now use a 
statistical procedure to sort the important effects from the unimportant ones. The particu-
lar procedure used depends on whether the experiment is replicated. If only one response 
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value is measured for each test run, then there is no replication of test runs; consequently, 
no estimate of experimental error is available. In this commonly occurring situation, the 
recommended procedure is to create a normal quantile or probability plot of the effects and 
fit, by eye, a straight line through the “small” effects, that is, the effects with magnitudes close 
to zero. Only the effects that do not fall on or near the straight line are considered to be the 
important ones. The effects falling near the line are thought to be due to experimental error 
or “noise.” To date, there is no universally agreed-upon method for deciding which group 
of “small” effects to fit with a straight line. Fortunately, though, decades of empirical stud-
ies have shown that the nonsignificant effects usually comprise the majority of the plotted 
points, so fitting an appropriate straight line is usually fairly easy.

The 15 effects A, B, C, D, AB, . . . , ABCD for the 24 experiment in Table 10.2 are shown 
in a normal quantile plot in Figure 10.21. As expected, many of the small effects tend to 
fall very close to a straight line (fit by eye). The effects that fall off the line appear to be 
A, D, AB, BD, and BC, although it is possible the last three may be close enough to the 
line to ignore. Based on these results, we tentatively propose that these five effects are 
the only ones that matter in the experiment. In particular, factor D (temperature) has 
a large positive effect on the response variable (% of chemical converted). Specifically, 
changing D from its low to high level causes an increase in the percentage of chemi-
cal converted. The situation for the other factors is not as clear since the three smaller 
interaction terms, AB, BD, and BC, are potentially significant, which means that their 
interaction plots must be examined before deciding on the best settings for these factors.

Example 10.7

Figure 10.21  Normal quantile plot of the effects (response is % conversion)

0

–1

0

1

10 20
Effect

Normal quantile

Another method for separating the important effects from the others is to assume 
that certain higher-order effects are nonsignificant and to use these effects to obtain an 
estimate of the experimental error. This procedure is based on decades of empirical 
evidence suggesting that main effects and two-factor interaction effects are usually the 
most important ones in an experiment. Given a choice, the method based on normal Un
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probability plotting is usually more reliable than simply making assumptions about the 
outcomes of an experiment. However, when a normal probability plot suggests that the 
higher-order interactions may indeed be insignificant, there is more justification for 
combining these effects to calculate an SSE.

Suppose that m effects, call them E1, E2, E3, . . . , Em, are thought to be insig-
nificant. To create an estimate of the variance of any effect, we form the average of the 
squared effect values:

variance of any effect 
1
m ^

m

i51
E2

i

This estimate has m degrees of freedom associated with it. Consequently, confi-
dence intervals for the remaining effects in the experiment can be constructed by using 
the following formula:

 confidence interval for effect  E:  E 6 (t critical value)A 1
m ^

m

i51
E2

i (df 5 m)

The normal quantile plot in Figure 10.21 shows that only a few of the main 
effects and two-factor interactions are likely to be significant for the experiment in  
Table 10.2. Consequently, it is reasonable to assume that at least the three-factor and 
four-factor interactions are negligible and can be safely used to derive confidence 
intervals for the remaining 10 effects. Combining these m 5 5 effects allows us to 
approximate the variance of any effect as follows:

Effect 
name Effect estimate Squared effect

1 ABC 2.150 (2.150)2

2 ABD 2.185 (2.185)2

3 ACD   .150 (.150)2

4 BCD   .748 (.748)2

5 ABCD   .255  (.255)2

Sum 5 .70375

 variance of any effect  .70375/5 5  .14075

We can then determine the 95% confidence interval for an effect E as follows:

E 6 t�y2A 1
m ^

m

i51
E2

i 5 E 6 (t critical value for 5 df)2.14075

5 E 6 (2.571)(.3752)

    5  E 6 .965

For instance, a 95% confidence interval for the D effect is 18.87 6 .965. Since this in-
terval does not contain 0, we conclude that the D effect is significantly different from 0. 
Similarly, a 95% interval estimate for the BC interaction is 3.08 6 .965, which indicates 
that the BC interaction is also significant. The same effects identified by the normal 
quantile plot (A, D, AB, BC, and BD) turn out to be the only significant effects identi-
fied when we assume that the three- and four-factor interactions are negligible.

Example 10.8
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Compact discs (CDs) and digital video discs (DVDs) are manufactured by the same 
process. First, a master disc is created by baking a photosensitive material on a round 
glass plate. Next, timed pulses from a laser beam etch digital signals in a tight spiral 
on the plate. The plate is then “developed” to reveal a sequence of surface “pits” that 
encode the digital information. Master plates are electroplated to produce metal 
“stampers,” which, when placed in plastic injection molding machines, press thou-
sands of copies of the final disc.

Some of the factors that affect the mastering stage are listed here, along with the 
factor levels that were used in a 23 experiment on compact discs. The goal of the ex-
periment was to minimize an electronic response called “jitter,” which is a measure 
of how well the CD can be read by a CD-ROM device. The factor “linear velocity” is 
a measure of the speed with which the laser travels in a slowly increasing spiral path 
as it burns the pits in the photosensitive material.

Factor Low level High level
Laser power 90% 110%
Developing time 20 sec 30 sec
Linear velocity 1.20 1.30

Data from two replicated runs of the 23 experiment is given in Table 10.3. The 
16 test runs were conducted in random order, but the data is presented in the table 
in Yates standard order. By extending the design matrix (see Example 10.6) and 
applying the columns of “1” and “2” signs to the column of response totals, we 
obtain the contrasts, effects, and sums of squares listed below Table 10.3.

Example 10.9

When test runs are replicated, that is, when r $ 2, then a 2k experiment can be ana-
lyzed using ANOVA techniques. The sum of squares for any main effect or interaction 
effect can easily be computed from the effect’s contrast:

sum of squares for an effect 5
contrast 

2

r2k 5
contrast 

2

total number of runs

The error sum of squares, SSE, can be computed in two ways: (1) by calculating the 
total sum of squares, SST, for the data and then subtracting the sums of squares of the 
effect estimates or (2) directly, by finding the error variation for each of the 2k test runs. 
Both methods are illustrated in Example 10.9.

Table 10.3  Data for the 23 experiment in Example 10.9
Response

Run A B C values
1 21 21 21 34 40
2    1 21 21 26 29
3 21    1 21 33 35
4    1    1 21 21 22
5 21 21    1 24 23
6    1 21    1 23 22
7 21    1    1 19 18
8    1    1    1 18 18
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Effect Symbol Contrast Effect estimate Effect sum of squares
Laser power A 247.0 247.0y8 5 25.875 (247.0)2y16 5 138.063
Linear velocity B 237.0 237.0y8 5 24.625 (237.0)2y16 5 85.563 
Developing time C 275.0 275.0y8 5 29.375 (275.0)2y16 5 351.563
Laser power 3
 Linear velocity AB     25.0    25.0y8 5 2.625    (25.0)2y16 5 1.563
Laser power 3
 Developing time AC        41.0     41.0y8 5 5.125     (41.0)2y16 5 105.063
Linear velocity 3
 Developing time BC     21.0    21.0y8 5 2.125    (21.0)2y16 5 .063
Laser power 3
 Linear velocity 3
 Developing time ABC            7.0       7.0y8 5 .875        (7.0)2y16 5 3.063

The total sum of squares SST can be found by calculating the sample variance of all 
16 measurements and then multiplying by 15. Thus SST 5 15(6.8869)2 5 711.441. 
Subtracting all of the effects sums of squares from SST gives the value of SSE 5 
711.441 2 138.063 2 85.563 2…2 .063 2 3.063 5 26.5. Alternatively, the error 
variation can be calculated separately for each run by finding ^r

i51(yi 2 y)2 and then 
summing all 23 5 8 results:

Run ^
r

i51
(yi 2 y)2

1 18.0
2  4.5
3  2.0
4   .5
5   .5
6   .5
7   .5
8   .0

         SSE 5 26.5
Finally, converting SSE to MSE by dividing by the error degrees of freedom  
(r 2 1)2k, we have the following ANOVA table from Minitab:
Source DF SS MS

1 138.063 138.063 41.68 0.000 *
1 85.563 85.563 25.83 0.000 *
1 351.563 351.563 106.13 0.000 *
1 1.563 1.563 0.47 0.512
1 105.063 105.063 31.72 0.000 *
1 0.063 0.063 0.02 0.894
1 3.063 3.063 0.92 0.364

Error 8 26.500 3.313
Total 15 711.441
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At a significance level of � 5  .01, this table shows that the significant effects 
are A, B, C, and the AC interaction. Because B does not appear to interact with A 
or C (i.e., neither the AB nor the BC interaction is significant), we can immediately 
conclude that increasing the linear velocity will, on average, cause the response vari-
able to decrease by about 4.625 units. Because the AC interaction is significant, it is 
necessary to examine the AC interaction plot before deciding on the proper settings 
for A and C (Figure 10.22). From the plot, we see that the settings that minimize the 
response variable are A 5 21 and C 5 11. In this example, the conclusions from 
the interaction plot do not agree with those from the main effects plots, which would 
have (incorrectly) indicated that both A and C should be set at their 21 levels.

Figure 10.22 Laser power × developing time interaction plot  
for Example 10.9
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Laser power low,  = –1
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Fitting a Model
After the important effects have been identified, it is often useful to write an equation 
for predicting the response value. Although in other applications this task would require 
the methods of regression analysis (Chapters 3 and 11), the special arrangement of 
factor levels in a factorial design makes it especially easy to find prediction equations. All 
that is needed is to define k predictor variables, one for each factor in a 2k experiment. 
These predictor variables, also called indicator variables or dummy variables, use the 
same 11 and 21 coding that we used to form the design matrix. For example, the indi-
cator variable for factor A is denoted by xA and is defined as follows:

xA 5 e11 When A is at its high level
21 When A is at its low level  

In the same fashion, indicator variables xB, xC, . . . are defined for the remaining factors 
in the experiment. Interaction terms are represented by products of the indicator vari-
ables for the factors comprising the interaction term. For instance, the AB interaction 
term in a prediction equation is represented by the product xAxB, the ABC interaction 
by the product xAxBxC, and so forth. Un
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To write a prediction equation based on certain main effects and interactions, we 
simply include the associated indicator variables (or products of indicators) accompanied 
by coefficients that are exactly half of the corresponding effect estimates. For instance, 
if factor A is to be included in the equation, then we include the term cxA, where the 
coefficient c equals one-half of the estimated main effect for A. As another example, to 
include the AB interaction term, we would write cxAxB, where the constant c is now one-
half of the estimated AB interaction effect. In this manner, a separate term is included 
for each effect that we choose to put in the model. These terms, along with the grand 
average of all the data, are then added together to form the desired prediction equation.

In Example 10.9, our analysis showed that the important effects are A, B, C, and 
the AC interaction. The corresponding effect estimates are 25.875 (A), 24.625 (B), 
29.375 (C), and 5.125 (AC). Furthermore, the grand average of all 16 data points 
in the experiment is 25.313. Using indicator variables xA, xB, and xC, the prediction 
equation based on A, B, C, and AC is

predicted
value of y 5 yn 5 25.313 2 2.938xA 2 2.313xB 2 4.688xC 1 2.563xAxC

This equation can then be used to find predicted values of the response variable  
for selected values of factors A, B, and C. For example, suppose that we set A high 
and both B and C low. This corresponds to the choice xA 5 11, xB 5 21, xC 5 21. 
Substituting these values into the prediction equation, we get

yn 5 25.313 2 2.938( 1 1) 2 2.313( 2 1) 2 4.688( 2 1) 1 2.563( 1 )( 2 1)
	    5 26.813 
Notice that the predicted value of 26.813 agrees reasonably well with the average of 
the two response values (26 and 29) that were measured at this combination of factor 
settings.

Example 10.10

Prediction equations are used for several purposes: (1) to generate diagnostic checks 
on the adequacy of the chosen model, (2) to create response surface and contour plots, 
and (3) to establish factor settings that lie between the 11 and 21 levels. Discussing all 
of these applications is beyond the scope of our presentation. However, Example 10.11 
illustrates how the prediction equation can help in choosing factor settings.

Based on our analysis of the compact disc experiment in Examples 10.9 and 10.10, 
the prediction equation

yn 5  25.313 2 2.938xA 2 2.313xB 2 4.688xC 1 2.563xAxC

should provide an adequate description of how the response variable is affected by 
the factors A (laser power), B (linear velocity), and C (developing time). To increase 
the speed with which discs are manufactured, the compact disc company would like 
to set the linear velocity (factor B) as fast as possible, while shortening the developing 
time as much as possible. Within the range of factor values studied in this experiment, 

Example 10.11
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Section 10.4 Exercises

this means that they would like to operate the mastering process at the high setting for 
B and the low setting for C. Given this situation, what setting should they choose for 
the laser power if the goal is to minimize the response variable “jitter”?

Substituting xB 5 11 and xC 5 21 into the prediction equation and collecting 
terms, we find that

yn 5 25.313 2 2.938xA 2 2.313( 1 1) 2 4.688( 2 1) 1 2.563xA( 2 1)

or
	 yn 5 27.688 2 5.501xA

From this equation, we see that minimizing the response value y can be accomplished 
by making xA as large as possible. Within the range of values studied in the experiment, 
the best setting for xA should be xA 5 11; that is, laser power should be set at its high 
level of 110%. When this is done, the value of the response variable should be about 
27.688 2 5.501(11) 5 22.187. If the value of 22.187 is small enough to satisfy customer 
requirements for jitter, then the company can proceed to use these factor settings. If not, 
then it can further reduce the jitter by choosing the settings xA 5 21, xB 5 11, and xC 5 
11 as in Example 10.9, even though these settings will necessarily increase the produc-
tion time for each master disc (since developing time, C, will now be at its high level).

	24.	 Write the design matrix (in Yates standard order) for 
a complete 23 experiment. Denote the response mea-
surements associated with the runs as y1, y2, . . . , y8.

	 a.	 Using the definition that the BC interaction is 
one-half the difference between the main ef-
fect for B with C at its high level and the main 
effect for B at its low level, write the formula 
for the BC interaction in terms of the data y1, 
y2, . . . , y8.

	 b.	 Reversing the order of the factors, repeat the cal-
culation in part (a) for the CB interaction.

	 c.	 Show that the formulas in parts (a) and (b) are 
equivalent.

	25.	 Fill in the remaining columns of contrasts for the 24 
design in Example 10.6.

	26.	 Polyolefin blends and composites can often 
improve the strength of existing polymers. In 
a study to determine which blends lead to in-
creased material strength, composites of isotactic 
polypropylene (PP) and linear low-density polyeth-
ylene (LLDPE) were mixed with red mud (RM) 
particles (“Application of Factorial Design of Ex-
periments to the Quantitative Study of Tensile 

Strength of Red Mud Filled PP/LLDPE Blends,” 
J. of Materials Science Letters, 1996: 1343–1345). 
The factors studied were the ratio of PP to LLDPE 
and the amount of red mud particles (in parts per 
hundred parts of resin). The levels at which these 
factors were studied are given in the following 
table:

Lower level Upper level

PP/LLDPE ratio .25  4
RM particles 4 10

		  Composites made with each combination of factor 
levels were strength tested, with the following 
results:

Strength
(in MPa)

PP/ Repli- Repli-
LLPDE RM cation cation

Run ratio particles 1 2
1  4 10 19.3 20.2
2 .25 10  8.1  9.7
3  4  4 20.3 24.5
4 .25  4 10.4 11.8
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	 a.	 Calculate the main effects and the two-factor 
interaction effect for this experiment.

	 b.	 Create the ANOVA table for the experiment. 
Which factors appear to have an effect on 
strength? (Use � 5  .05.)

	 c.	 Draw the main effects and interaction effects 
plots for the factors identified in part (b).

	 d.	 Which settings (high or low) of the factors in 
part (b) lead to maximizing the strength of a 
composite?

	 e.	 Using the important effects identified in part (b), 
write a model for predicting strength of a composite.

	27.	 The following data resulted from a study of the 
dependence of welding current on three factors: 
welding voltage (A), wire feed speed (B), and tip-
to-workpiece distance (C). Two levels of each factor 
were used, with two replicate observations made at 
each combination of factor levels.

Test run Response values
(1) 200.0, 204.2
a 215.5, 219.5
b 272.7, 276.9
ab 299.5, 302.7
c 166.6, 172.6
ac 186.4, 192.0
bc 232.6, 240.8
abc 253.4, 261.6

	 a.	 Create the ANOVA table for this experiment.
	 b.	 At � 5 .01, which effects appear to be important?

	28.	 The article “Effect of Cutting Conditions on Tool 
Performance in CBN Hard Turning” ( J. of Manuf. 
Processes, 2005: 10–16) reported the accompanying 
data, from a 23 design, on cutting speed (m/s), feed 
(mm/rev), depth of cut (mm), and tool life (min). 
Perform an ANOVA to investigate two-factor inter-
actions and main effects.
Obs Cut spd Feed Cut Depth Life

1 1.21 0.061 0.102 27.5
2 1.21 0.168 0.102 26.5
3 1.21 0.061 0.203 27.0
4 1.21 0.168 0.203 25.0
5 3.05 0.061 0.102 8.0
6 3.05 0.168 0.102 5.0
7 3.05 0.061 0.203 7.0
8 3.05 0.168 0.203 3.5

	29.	 As with many dried products, sun-dried tomatoes 
can exhibit an undesirable discoloration during the 
drying and storage process. A replicated 23 experi-
ment was conducted in an effort to optimize color 
by considering storage time, temperature, and pack-
aging type (“Use of Factorial Experimental Design 
for Analyzing the Effect of Storage Conditions on 
Color Quality of Sun-Dried Tomatoes,” Sci. Res. 
and Essays, 2012: 477–489). In the following table, 
higher values of the response variable (based on 
chromaticity measurements) are associated with 
higher color quality:

Color Quality

Storage Storage Replication Replication 
Run  time  temp Packaging 1 2

1 2 2 2 2.38 2.40 
2 1 2 2 2.38 2.40
3 2 1 2 2.42 2.40
4  1  1 2 2.31 2.29
5 2 2  1 2.38 2.40
6 1 2 1 2.38 2.40
7 2  1  1 1.94 1.94 
8  1 1 1 1.93 1.92

	 a.	 Calculate all main effects and two-factor inter-
action effects.

	 b.	 Construct an ANOVA table and use it as a basis 
for deciding which factors appear to affect color 
quality (Use � 5 .01).

	 c.	 Create main effects and interaction effects plots 
for the factors identified in part (b).

	 d.	 Which settings (high or low) of the factors in 
part (b) lead to maximizing color quality?

	30.	 Self-consolidating concrete (SCC) is a highly flow-
able product that can easily fill heavily congested 
reinforcement areas. Despite its low viscosity, SCC 
also maintains high stability to prevent segregation. 
The authors of “Effect of SCC Mixture Composi-
tion on Thixotropy and Formwork Pressure” (J. Ma-
ter. Civ. Engr., 2012: 876–888) conducted a study 
to determine the effect of three mixture param-
eters—base material slump flow (A), sand-to-total 
aggregate ratio by volume (B), and relative content 
of coarse aggregate (C)—on characteristics of the 
resulting SCC mixtures. The following table gives 
the coded factor levels along with values of the time 
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(s) required for the SCC mixture to reach 500-mm 
slump flow.

Run Slump S/A Coarse Time
1 21 21 21 1.71
2 21 21 1 3.19
3 21 1 21 1.75
4 21 1 1 3.06
5 1 21 21 .88
6 1 21 1 2.44
7 1 1 21 1.34
8 1 1 1 3.37

	 a.	 Calculate all main effects and interaction 
effects.

	 b.	 Create a probability plot of the effects from part (a). 
Which effects appear to be important?

	 c.	 Which settings (high or low) of the factors in 
part (b) lead to maximizing the response vari-
able? Which settings lead to minimizing the 
value of the response variable?

	 d.	 Determine a model equation relating time need-
ed to reach 500-mm slump flow to the effects 
identified in part (b).

	31.	 Combustion experiments of medium crude oil 
were conducted to determine which of three factors 
(oxygen partial pressure, oxygen flow rate, and oxy-
gen molar concentration) affect various aspects of 
the combustion process. (“Factorial Analysis of In 
Situ Combustion Experiments,” Trans. of the Insti-
tution of Chemical Engineers, 1991: 237–244). Two 
response variables, combustion time (in hours) and 
coke burnoff (in grams/hour), were studied using a 
full 23 design with no replications:

Molar Com- Coke
Partial Flow concen- bustion burn

Run pressure rate tration time off
1 –1 –1 –1 10.6 5.73
2   1 –1 –1 11.2 5.70
3 –1   1 –1 24.4 3.05
4   1   1 –1 20.3 2.87
5 –1 –1   1  9.2 5.57
6   1 –1   1  7.0 5.87
7 –1   1   1 14.3 3.13
8   1   1   1 17.5 3.05

	 a.	 For the response variable combustion time, cal-
culate all main effects and interaction effects for 
this experiment.

	 b.	 Create a probability plot of the effects in part (a). 
Which effects appear to be important?

	 c.	 Which settings (high or low) of the factors in 
part  (b) lead to maximizing combustion time? 
Which settings lead to minimizing combustion 
time?

	 d.	 Determine a model equation relating combus-
tion time to the effects identified in part (b).

	 e.	 Repeat parts (a)–(d) for the response variable 
coke burnoff.

	32.	 Impurities in the form of iron oxides lower the 
economic value and usefulness of industrial miner-
als, such as kaolins, to ceramic and paper-processing 
industries. A 24 experiment was conducted to assess 
the effects of four factors on the percentage of iron re-
moved from kaolin samples (“Factorial Experiments 
in the Development of a Kaolin Bleaching Pro-
cess Using Thiourea in Sulphuric Acid Solutions,” 
Hydrometallurgy, 1997: 181–197). The factors and 
their levels are displayed in the following table:

Low High
level level

Factor Description Units (21) (11)
A H2SO4 M .10 .25
B Thiourea g/l 0.0 5.0
C Temperature °C 70  90
D Time min 30 150

		  The data from an unreplicated 24 experiment is 
given in the table below:

Iron Iron
Test extraction Test extraction
run (%) run (%)
(1)  7 d 28
a 11 ad 51
b  7 bd 33
ab 12 abd 57
c 21 cd 70
ac 41 acd 95
bc 27 bcd 77
abc 48 abcd 99
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	 a.	 Calculate all main effects and two-factor inter-
action effects for this experiment.

	 b.	 Create a probability plot of the effects. Which 
effects appear to be important?

	 c.	 Which settings (high or low) of the factors in 
part (b) lead to maximizing the percentage of 
iron extracted?

	 d.	 Write a model for predicting iron extraction per-
centage from the factors identified in part (b).

	33.	 An unreplicated 25 experiment was performed to 
determine which factors affect the percent of arse-
nic removed from contaminated water by electro-
coagulation (EC) (“Prediction of Arsenic Removal 
by Electrocoagulation: Model Development by 
Factorial Design,” J. Hazard. Toxic Radioact. Waste, 
2011: 48–54). The factors and corresponding levels 
are shown here along with the resulting data.

Factor Description Units Low level High level
(21) (11)

A Time s 30 120
B Currcnt amp .6 3.0
C EC area cm2 57 91.2
D Volume L 1 3
E Arsenic mg/L .23 1.18

Test 
run

Removal 
(%)

Test 
run

Removal 
(%)

Test 
run

Removal 
(%)

Test 
run

Removal 
(%)

(1) 48.70 d 35.70 e 57.20 de 36.40
a 86.50 ad 59.60 ae 81.00 ade 52.50
b 89.10 bd 69.10 be 85.10 bde 61.00
ab 97.00 abd 89.10 abe 96.90 abde 89.30
c 58.30 cd 37.00 ce 57.60 cde 47.50
ac 84.80 acd 64.80 ace 78.80 acde 55.90
bc 90.90 bcd 71.70 bce 87.30 bcde 58.50
abc 95.20 abcd 93.90 abce 97.10 abcde 89.00

	 a.	 Calculate all main effects and two-factor inter-
action effects.

	 b.	 Create a probability plot of the effects. Three 
effects in particular should appear to be impor-
tant; what are they?

	 c.	 Which settings (high or low) of the factors in 
part (b) lead to maximizing the percentage of 
arsenic extracted?

	 d.	 Develop a model equation for predicting arsenic 
removal percentage from the factors identified 
in part (b).

10.5	 Fractional Factorial Designs �

The two experiments analyzed in Section 10.4 exhibit a phenomenon commonly found 
in 2k designs: Only a few main effects and interactions are important. Most of the effects, 
especially the higher-order interactions, tend not to be significant. Early researchers quickly 
devised methods for taking advantage of this situation. One such method was discussed in 
Section 10.3, where higher-order interaction effects are sometimes assumed to be negligible 
and are then pooled to form an estimate of the experimental error for testing the remaining 
effects in an experiment. Another procedure that relies on the scarcity of significant interac-
tion effects is the method of fractional factorial designs discussed in this section.

An important reason for using fractional factorial designs is that full factorial designs, 
in which all 2k tests are conducted at least once, expend a large amount of resources in esti-
mating interaction terms. That is, as the number of factors k increases, the ratio of the num-
ber of main effects to the total number of effects shrinks rapidly in a 2k design. Table 10.4  
(page 490) illustrates how quickly this ratio declines. For instance, in a full 26 experiment 
with 64 test runs, only 9.5% of the effects calculated are main effects. The remaining 
90.5% of the estimates are devoted to interaction effects, many of which are not likely to 
be of statistical or practical importance. Because simple models based on main effects 
and, perhaps, some two-factor interactions tend to predominate in actual applications, full 
2k designs can be somewhat inefficient for studying large numbers of experimental factors.
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Creating a Fraction of a 2k Design
To reduce the problem of estimating large numbers of possibly unimportant interaction 
effects, fractional factorial designs are created by replacing some of the higher-order 
interaction terms by additional experimental factors. For example, suppose that we want 
to study four factors, A, B, C, and D, but that we want to use 8 test runs rather than the 
16 runs required by a full 24 design. To do this, first write down the extended design 
matrix for the full 23 design (i.e., the 2k design with 8 runs):

A B C AB AC BC ABC
21 21 21 11 11 11 21
11 21 21 21 21 11 11
21 11 21 21 11 21 11
11 11 21 11 21 21 21
21 21 11 11 21 21 11
11 21 11 21 11 21 21
21 11 11 21 21 11 21
11 11 11 11 11 11 11

Next, since the highest-order interaction is least likely to be important, replace the ABC 
column by the letter D. This is abbreviated by writing D 5 ABC. Then erase all remain-
ing interaction columns to obtain the design matrix:

A B C D
21 21 21 21
11 21 21 11
21 11 21 11
11 11 21 21
21 21 11 11
11 21 11 21
21 11 11 21
11 11 11 11

Table 10.4   Percentage (rounded) of main effect estimates in a full 2  design

Number Number of Number of Total number of Percentage of
of factors main effects interaction effects effects (2k 2 1) main effects

 1  1    0    1 100
 2  2    1    3  67
 3  3    4    7  43
 4  4   11   15  27
 5  5   26   31  16
 6  6   57   63 9.5
 7  7  120  127 5.5
 8  8  247  255 3.1
 9  9  502  511 1.8
10 10 1013 1023 1.0
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This four-column matrix is the design matrix of a fractional factorial design based on 
four factors. In fact, these 8 test runs correspond to certain rows in the full 24 design, as 
shown (shaded) here.

Run A B C D
  1 21 21 21 21
  2 11 21 21 21
  3 21 11 21 21
  4 11 11 21 21
  5 21 21 11 21
  6 11 21 11 21
  7 21 11 11 21
  8 11 11 11 21
  9 21 21 21 11
10 11 21 21 11
11 21 11 21 11
12 11 11 21 11
13 21 21 11 11
14 11 21 11 11
15 21 11 11 11
16 11 11 11 11

Because the 8 test runs comprise only a fraction of the 16 runs required in a full 24 
design, we say that the 8-run experiment is a fractional factorial experiment. Further-
more, since this design uses only half of the 16 runs, we say that it is a half fraction of 
the full factorial design based on four factors.

All of the information about the 8-run design can be compactly summarized using 
the following notation system. The particular fractional factorial design we have created 
is denoted as a 2421 design. This notation carries the following information:

1.	 The design has 8 test runs (because 2421 5 23 5 8).
2.	 Four factors are studied in the experiment.
3.	 Each factor has two levels.
4.	 One factor (factor D) has been added to a full design based on 8 runs.
5.	 The design uses a fraction, 1/21, of the runs of a full 2k design.

In general, any fractional factorial design can be described by the notation 2k2p, which 
is intended to convey that

1.	 The design has a total of 2k2p test runs.
2.	 k factors are studied in the experiment.
3.	 Each factor has two levels.
4.	 p factors have been added to a full design based on 2k2p runs.
5.	 The design uses a fraction, 1@2p, of the runs of a full 2k design.

The general procedure for creating a fractional factorial design is similar to that in 
the previous example: First, create the extended design matrix for a full design based 
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Finding the Alias Structure
The reward for using fractional factorial designs is a substantial reduction in the re-
quired number of test runs. It stands to reason, however, that there is also a price to 
pay. After all, how can a 2421 design with 8 test runs be expected to give exactly the 
same quality of information about four factors that a full 24 design with 16 runs can? 
What is lost in a fractional design is the ability to clearly distinguish some of the ef-
fects from one another. To illustrate, consider the 2421 design created previously by 
the assignment D 5 ABC. We immediately see that the D effect and the ABC effect 
cannot be distinguished from one another because the same column of 11s and 21s 
in the design matrix is used to compute both the ABC and D effects. Consequently, 
D and ABC are said to be aliases of one another. We also say that the D effect is con-
founded with the ABC effect. Of course, the reason that we chose to alias D with the 
ABC column in the first place was that we hoped the ABC effect would be negligible. 
If this turns out to be the case, then we will have obtained a main effect estimate for 
D using only 8 runs.

Unfortunately, the assignment D 5 ABC induces even more confounding than 
you might first imagine. Consider, for example, the AB and the CD interactions. In 
Exercise 36, you are asked to show, by multiplying the appropriate columns, that the AB 
and CD columns are identical. Thus not only are D and ABC aliased but AB and CD 
are also aliased. In fact, there are many sets of aliased effects generated by our original 
choice of D 5 ABC. The entire set of aliases in a fractional factorial design is called the 
alias structure of the design.

As is the case with all the other aspects of 2k designs, there is a fairly easy method for 
writing down the alias structure of a fractional design. This method depends on some 
simple observations about multiplying columns of 11s and 21s:

Suppose that you want to study five factors using only 8 test runs. How do you 
create a fractional factorial design to accomplish this? First, start with the full 23 
design (i.e., the full 2k design that has 8 runs). Write the column headings of the 
extended design matrix: A, B, C, AB, AC, BC, and ABC. Finally, choose two of 
the interaction columns, say, ABC and AC, and assign the additional two factors, 
D and E, to these columns. Denote this column assignment by writing D 5 ABC 
and E 5 AC. Because we are adding two factors (D and E) to a full design based 
on three factors (A, B, and C), this design is called a 2522 fractional factorial. To 
create the design matrix for this particular 2522 experiment, first write the design 
matrix in Yates standard order for the 23 experiment with factors A, B, and C. 
Then append columns D and E. The entries in D are found by multiplying the 
entries of columns A, B, and C. Similarly, the entries in column E are found by 
multiplying the entries of columns A and C. Exercise 35 asks you to write this 
design matrix.

Example 10.12

on k 2 p test runs, and then rename p of the interaction columns with the p additional 
factors. It is convenient to use sequential capital English letters to denote the factors.  
As we will see subsequently, the choice of which columns to replace with the additional 
factors is important and cannot simply be made arbitrarily.
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1.	 First, the letter I denotes the column consisting entirely of 11s.
2.	 Note that any column multiplied by itself yields column I. For example, 

A ? A 5 A2 5 I, B ?  B 5 B2 5 I, and so forth.
3.	 Multiplying column I by any other column does not change the column. For 

example, A ? I 5 I ?  A 5 A.

Using these facts, we can obtain the alias structure of any fractional factorial as follows:

Finding the Alias Structure of a Fractional Factorial

1. First, write the p assignments of additional factors in equation form. These p 
equations are called the design generators.

2. Multiply each generator from Step 1 by its left side to put each generator into 
the form I 5 w, where w is a “word” composed of several letters represent-
ing particular experimental factors (e.g., D 5 ABC becomes I 5 ABCD). It 
is also possible to create words with “2” signs, such as D 5 2ABC. If this is 
done, the resulting design will use a different fraction of the runs from the 
full 2k design.

3. Letting I 5 w1,  I 5 w2, . . . ,  I 5 wp denote the p design generators from Step 2, 
form all possible products of the words wi (one at a time, two at a time, three at 
a time, etc.). Use the fact that squares of factors can be eliminated (e.g., A2 5 I 
and multiplying by I does not change anything). There will be a total of 2p words 
formed. This collection is called the defining relation of the design.

4. Multiply each word in the defining relation by all 2k 2 1 effects based on k fac-
tors. Use the fact that squares of factors cancel out to simplify the products. The 
result is called the alias structure of the design.

As the following examples show, finding the alias structure is not as complicated a task 
as the procedure may indicate.

Let’s determine the alias structure of the 2421 design where D is aliased with 
ABC. The generator of this design is D 5 ABC. Multiplying both sides by D gives 
D ? D 5 D(ABC), or I 5 ABCD. Since there is only one “word” in this equation, 
the defining relation is also of the form I 5 ABCD. Multiplying each of the 24 21 
effects by the relation I 5 ABCD yields the following:

Effect Aliases Effect Aliases
A 5 BCD BD 5 AC
B 5 ACD CD 5 AB
C 5 ABD ABC 5 D
D 5 ABC ABD 5 C
AB 5 CD ACD 5 B
AC 5 BD ABCD 5 A
AD 5 BC ABCD 5 I
BC 5 AD

Example 10.13
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Analyzing a Fractional Factorial Experiment
Fractional factorial designs are also called screening designs because they are used to 
separate the few important effects from the many unimportant effects in the early stages 
of experimentation. Because of their emphasis on studying a large number of factors 
with as small a number of runs as possible, replicated fractional factorials are fairly 
rare. It is much more likely to find fractional designs run using only one test run for 

There is a lot of repetition in this list. Eliminating duplicate equations, we can sum-
marize the alias structure of the design as follows:

A 5 BCD AB 5 CD
B 5 ACD AC 5 BD
C 5 ABD AD 5 BC
D 5 ABC ABCD 5 I

The alias structure can be summarized as follows: (1) Each main effect is aliased 
with a three-factor interaction; (2) all two-factor interactions are aliased with one 
another; and (3) the single four-factor interaction is aliased with the grand average 
of the data.

The 2522 design of Example 10.12 provides a better illustration of how the defining 
relation is formed. Recall that the design generators in that example are D 5 ABC 
and E 5 AC. Writing these in the form I 5 ABCD and I 5 ACE, we can see that the 
defining relation is formed from the “words” ABCD and ACE and all possible prod-
ucts of these words. Since there is only one such product, namely, (ABCD)(ACE) 5 
A2BC2DE 5 BDE, the defining relation is I 5 ACE 5 BDE 5 ABCD. Multiplying 
each of the 25 2 1 effects through by the defining relation gives the following alias 
structure (Exercise 37):

I 5 ACE 5 BDE 5 ABCD
A 5 CE 5 BCD 5 ABDE
B 5 DE 5 ACD 5 ABCE
C 5 AE 5 ABD 5 BCDE
D 5 BE 5 ABC 5 ACDE
E 5 AC 5 BD 5 ABCDE
AB 5 CD 5 ADE 5 BCE
AD 5 BC 5 ABE 5 CDE

Notice that each main effect is now aliased with at least one two-factor interaction as 
well as higher-order interactions in this design.

Example 10.14
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each combination of factor levels. Therefore, normal quantile or probability plots are 
generally used to analyze fractional designs. In those fortunate cases where replicated 
test runs are available, ordinary ANOVA tests can be used to distinguish the important 
effects from the others.

To begin the analysis of an unreplicated fractional design, first compute all 2k2p 
effects (this includes the grand average) associated with the design. Then construct a 
normal plot of all effects except the grand average. Analyze the plot in the usual fashion 
by fitting a straight line, by eye, through the effects with small magnitudes. Finally, use 
the alias structure to formulate the model that is most likely to explain the pattern in the 
plot. One common practice is to opt for main effects and two-factor interactions rather 
than higher-order effects when formulating a tentative model.

Pyrometallurgical processes are normally used to extract manganese from raw 
mineral ores, but alternative methods based on chemical reactions are currently 
being studied. One such method, based on reductive chemical leaching, uses 
sucrose in a solution of sulfuric acid to extract manganese dioxide (“Fractional 
Factorial Experiments in the Development of Manganese Dioxide Leaching by 
Sucrose in Sulfuric Acid Solutions,” Hydrometallurgy, 1994: 215–230). In this in-
vestigation, five factors were studied to determine their effect on the percentage 
of manganese dioxide, MnO2, obtained from the leaching process (Table 10.5, 
page 496).

A 2521 design with generator E 5 ABCD was used. From the data in Table 10.5, 
a normal quantile plot of the effects was created (Figure 10.23, page 496). From this 
plot, it appears that only factors A (sucrose concentration), B (particle size of ore), 
and E (sulfuric acid concentration) have a significant effect on the percentage of 
MnO2 extracted by the leaching process. None of the interaction terms appears to be 
significant. The effect estimates are

Factor Main effect
A (sucrose)   10.69
B (size)   11.19
E (H2SO4) 232.69

From these results, we can conclude that raising the sucrose concentration and using 
ores of larger particle size tend to increase the MnO2 yield. In addition, because rais-
ing the sulfuric acid concentration tends to reduce the yield, it would be better to use 
the lower concentration. We divide the effects by 2 to obtain the model coefficients. 
In addition, we can write a model for predicting the percentage yield, y, given the 
(coded) values of the variables xA, xB, and xE.

yn 5 42.97 1 5.35xA 1 5.60xB 2 16.35xE

The fact that lowering the sulfuric acid concentration has such a large effect on yield 
suggests that further experiments be conducted with even lower H2SO4 levels.

Example 10.15
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Table 10.5  25–1 design for studying the effects of five factors  
on percentage yield of a chemical process

Factor Factor name Low level High level

A Sucrose (g/L) 5 10
B Ore particle size (�m) 90–125 200–300
C Mixing rate (min–1) 150 200
D Temperature (°C) 30 50

E Sulfuric acid (M) 1 2

Particle Yield
Run Sucrose size Agitation Temperature H2SO4 %

 1 21 21 21 21    1 14.0
 2    1 21 21 21 21 56.0
 3 21    1 21 21 21 63.5
 4   1    1 21 21    1 38.0
 5 21 21    1 21 21 48.0
 6    1 21    1 21    1 25.5
 7 21    1    1 21    1 26.5
 8    1    1    1 21 21 81.0
 9 21 21 21    1 21 45.0
10    1 21 21    1    1 25.0
11 21    1 21    1    1 24.0
12    1    1 21    1 21 51.5
13 21 21    1    1    1 18.0
14    1 21    1    1 21 67.5
15 21    1    1    1 21 62.0
16    1    1    1    1    1 42.0

Figure 10.23 Normal quantile plot of the effects (response is yield %)
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Section 10.5 Exercise

	34.	 In a 2723 fractional factorial design,
	 a.	 How many factors are being studied?
	 b.	 How many experimental runs are required  

(assuming no replications)?
	 c.	 What fraction of the runs of a full 27 design are 

used by this experiment?

	35.	 Fill in all the columns in the design matrix for the 
2522 design of Example 10.12.

	36.	 A 2421 design is specified by setting D 5 ABC.
	 a.	 Fill in the columns of the design matrix for this 

fractional factorial design.
	 b.	 By multiplying the appropriate columns in the 

design matrix from part (a), show that AB and 
CD contrasts are identical.

	37.	 Using the design generators I 5 ABCD and I 5 
ACE, verify all the entries in the alias structure of 
the 2522 design of Example 10.14.

	38.	 A quarter-fraction of a 27 experiment (factors A, 
B, . . . , G) is constructed using the design genera-
tors ABCDE 5 F and CDE 5 G.

	 a.	 How many experimental runs (assuming no rep-
lications) must be conducted?

	 b.	 Write down the alias structure for this design.

	39.	 A fractional factorial experiment with 16 test runs 
was conducted to determine the effects of several 
factors on the antioxidant capacity in carotenoid ex-
tracts of the bacterium Thermus filiformis (“Evalua-
tion of Biomass Production, Carotenoid Level and 
Antioxidant Capacity Produced by Thermus Fili-
formis Using Fractional Factorial Design,” Braz. J. 
Microbiol., 2012: 126–134). The variables studied 
were temperature (at 65°C and 75°C), pH (at 7 and 8),  
tryptone (at 5 and 10 g/L), yeast extract (at 5 and  
10 g/L),  and Nitsch’s trace elements (2 and 5 mL/L). 
The Nitsch’s trace elements factor was aliased with 
the highest-order interaction term.

	 a. 	What are k and p for this 2k2p design?
	 b. 	Determine the alias structure of the design.
	 c. 	Suppose that it is reasonable to assume that all in-

teractions consisting of three or more factors are 
negligible. In this case, will any of the estimates of 
the remaining effects be aliased with one another?

	40.	 Metal “leads” that protrude from electronic compo-
nents often have their bases sealed with glass to protect 
against moisture ingress. Fractures in the glass can be 
caused by bending or twisting the leads and by large 
thermal changes. In an experiment designed to evalu-
ate how different factors affect the peak stress applied 
to a glass seal, the following factors and factor levels 
were studied (“A Fractional Factorial Numerical 
Technique for Stress Analysis of Glass-to-Metal Lead 
Seals,” J. of Electronic Packaging, 1994: 98–104):

Low High
level level

Factor Description (L, in.) (H, in.)
s Half the distance between

neighboring leads .025  .35
wlead Horizontal width of lead .010 .020
hlead Distance from package

base to center of lead .127 .381
rport Radius of port in package

for lead seal .4572 .5588
twall Wall thickness of

package .030 .050

		  The design matrix for the study was

Run s wlead hlead rport twall

 1 L L L L L
 2 L L L H H
 3 L L H L H
 4 L L H H L
 5 L H L L H
 6 L H L H L
 7 L H H L L
 8 L H H H H
 9 H L L L H
10 H L L H L
11 H L H L L
12 H L H H H
13 H H L L L
14 H H L H H
15 H H H L H
16 H H H H L

	 a.	 Find k and p for this 2k2p design.
	 b.	 Determine the alias structure of this design.
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	41.	 In an effort to reduce the variation in copper plat-
ing thickness on printed circuit boards, a fraction-
al factorial design was used to study the effect of 
three factors—anode height (up or down), circuit 
board orientation (in or out), and anode placement 
(spread or tight)—on plating thickness (“Charac-
terization of Copper Plating Process for Ceramic 
Substrates,” Quality Engr., 1990: 269–284). The 
following factor combinations were run:

Anode Board Anode Thickness
height orientation placement variation

2 2 2 11.63
2 1 1  3.57
1 2 1  5.57
1 1 2  7.36

	 a.	 Find k and p for this 2k2p design.
	 b.	 Determine the alias structure of this design.
	 c.	 Calculate estimates of the effects for this experi-

ment.
	 d.	 Assuming that the AB interaction is negligible, 

use this information to obtain an estimate of 
SSE and perform hypothesis tests for both main 
effects. (Use � 5 .05.)

	 e.	 From the results in part (d), which factors have a 
significant effect on plating thickness variation?

	 f.	 If the objective of the study is to minimize the 
variation in plating thickness, what setting of 
each factor do you recommend?

	42.	 Lateritic nickel ore deposits are an important 
source of nickel. Atmospheric acid leaching (AL) 
has grown in popularity as a method to extract 
nickel from such deposits. In the AL process, a 
high concentration of ferric iron may remain 
in the leach solution which would diminish the 
purity of the desired nickel. A study was con-
ducted to investigate how five AL process factors 
impact iron removal efficiency (%) from leach 
solutions. These factors were pH (2 versus 4), tem-
perature (25°C and 85°C), neutralizing agents 
[15% (W/W) MgO and 25% (W/W) CaCO3], Fe/
Ni ratio (6 versus 18), and stirring speed (200 and 
500 rpm) (“The Effect of Iron Precipitation Upon 
Nickel Losses from Synthetic Atmospheric Nickel 
Laterite Leach Solutions: Statistical Analysis and 
Modelling,” Hydrometallurgy, 2011: 140–152). 

Here is data from the resulting fractional factorial 
experiment:

pH Temp Agents Ratio Speed Iron Removal (%)
2 2 2 1 1 29.19
1 2 2 2 1 84.72
2 1 2 2 2 95.25
1 1 2 1 2 96.08
2 2 1 1 2 49.89
1 2 1 2 2 87.92
2 1 1 2 1 89.22
1 1 1 1 1 96.17

	 a.	 What are k and p for this 2k2p design?
	 b.	 Determine the alias structure of this design. 

Hint: Each of the last two design columns is a 
product of two of the initial three columns.

	 c.	 Calculate estimates of the effects for this study.
	 d.	 Create a normal probability plot for the effects 

determined in part (b) and identify any effects 
that appear to be important.

	43.	 Exercise 39 described a half-fraction of a factorial 
experiment in which the Nitsch’s trace elements 
factor was aliased with the highest-order interaction 
term. The response variable, antioxidant capacity, 
was measured in percent protection against singlet 
oxygen [O2(

1Dg)]. The cited article reported the fol-
lowing data:

Temp pH Yeast Tryptone Nitsch %Prot
2 2 2 2 1 51.5
1 2 2 2 2 85.1
2 1 2 2 2 46.1
1 1 2 2 1 49.0
2 2 1 2 2 33.6
1 2 1 2 1 82.9
2 1 1 2 1 57.1
1 1 1 2 2 71.9
2 2 2 1 2 34.4
1 2 2 1 1 42.7
2 1 2 1 1 31.4
1 1 2 1 2 64.8
2 2 1 1 1 4.3
1 2 1 1 2 40.4
2 1 1 1 2 48.9
1 1 1 1 1 60.5

	 a.	 Calculate estimates of the various effects.
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Supplementary Exercises

	44.	 The following data was used to investigate whether 
the compressive strength of concrete depends on the 
type of capping material used or on type of curing 
method used. The numbers in the matrix are totals, 
each based on three replications. In addition, SSE 5 
4716.67 and SST 5 35,954.31 for this data.

Curing method
1 2 3 4 5

Capping 
material 

1 1847 1942 1935 1891 1795
2 1779 1850 1795 1785 1626
3 1806 1892 1889 1891 1756

	 a.	 Construct an ANOVA table for this experiment.
	 b.	 Using � 5 .01, test to see whether either factor 

or their interaction is significant. Describe your 
conclusions from these tests.

	45.	 In an experiment to assess the effects of curing 
time (factor A) and type of mix (factor B) on the 
compressive strength of concrete cylinders, three 
different curing times were used in combination 
with four different mixes, with three replicate ob-
servations obtained for each of the 12 factor–level 
combinations. The resulting sums of squares were 
SSA 5 30,763.0, SSB 5 34,185.6, SSE 5 97,436.8, 
and SST 5 205,966.6.

	 a.	 Construct an ANOVA table for this experiment.
	 b.	 Using � 5 .05, can you conclude that there is a 

significant interaction between the two factors?
	 c.	 Test, at � 5 .05, the hypothesis that factor A has 

no effect on compressive strength.
	 d.	 Test, at � 5 .05, the hypothesis that factor B has 

no effect on compressive strength.

	46.	 The authors of the article cited in Exercise 15 also 
performed an experiment to see whether the maxi-
mum peak to valley profile height (Rmax) is affected by 
the abrasive size (A), abrasive quantity (B), and quill  

gap (C); the experiment involved three sizes, three 
quantities, and three gaps, with two replicates at 
each of the factor combinations. The resulting sums 
of squares were SSA 5 12,209.77 SSB 5 19,641.09  
SSC 5 367,688.98 SS(AB) 5 8721.72 SS(AC) 5 
40,008.11 SS(BC) 5 44,347.01 SS(ABC) 5 94,554.41 
SSE 5 334,393.64 and SST 5 921,564.7275.

	 a.	 Construct an ANOVA table for this data.
	 b.	 Test to see whether any interaction effects are 

significant at � 5 .05.
	 c.	 Test to see whether any main effects are signifi-

cant at � 5 .05.

	47.	 Exercise 20 described an experiment involving 
three processing parameters: laser power (A), scan-
ning velocity (B), and powder flow rate (C). Another 
experiment considered how depth penetration of 
the cladding layer is affected by these same factors. 
Each factor had three levels and there was one ob-
servation at each factor combination. Here is the 
ANOVA table from the article, which only consid-
ered main effects and two-factor interactions:

SOURCE DF SS MS
? ? ? 162.38
? 0.080570 ? ?
? ? 0.130195 ?
? ? ? 0.56
? 0.145137 ? ?
? ? ? 0.76

Error ? ? 0.006387
Total ? ?

	 a.	 Fill in the missing entries in the table.
	 b.	 Identify significant effects using � 5 .01

	48.	 The article “An Assessment of the Effects of Treat-
ment, Time, and Heat on the Removal of Erasable 
Pen Marks” (J. Testing and Eval., 1991: 394–397) 
reports the following sums of squares for the response 

	 b.	 Suppose that additional experimentation shows 
that only those effects whose magnitudes exceed 
15 are important. Which factors or interactions 
have a significant effect on percent protection?

	 c.	 Create an effects plot for the important effects 
identified in part (b).

	 d.	 If the objective of the study is to maximize 
percent protection, what setting of each factor 
do you recommend?
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variable “degree of removal of marks” (larger values 
of this variable are associated with more complete re-
moval of marks): SSA 5 39.171, SSB 5 .665, SSC 5 
21.508, SS(AB) 5 1.432, SS(AC) 5 15.953, SS(BC) 5  
1.382, SS(ABC) 5 9.016, and SSE 5 115.820. Four 
different laundry treatments (factor A), three differ-
ent types of pen (factor B), and six different fabrics 
(factor C) were used in the experiment. Three obser-
vations were obtained for each combination of the 
factor levels. Perform an analysis of variance using 
� 5 .01 for all tests, and state your conclusions.

	49.	 The article cited in Exercise 21 also reported on an-
other experiment in which the authors investigated 
whether the percent by weight of nickel in the al-
loy layer is affected by niobium powder paste thick-
ness (A, at three levels), scanning speed (B, at three 
levels), and laser power (C, at three levels). One ob-
servation was made at each factor-level combination, 
yielding the accompanying data (Note: Thickness 
column headings were incorrect in the cited article):

Paste Thickness 
Power Speed .2 .3 .4 

700 600 17.14 20.16 18.73 
900 24.75 17.19 26.54 

1200 18.78 18.80 21.42 
800 600 26.55 13.03 18.92 

900 19.96 29.37 21.41
1200 26.66 19.80 22.01 

900 600 33.33 27.65 28.71 
900 37.33 28.81 23.22 

1200 34.98 26.40 15.44

	 a.	 Construct an ANOVA table for this experiment 
including only main effects and two-factor inter-
actions (as did the authors of the cited article).

	 b.	 Use the appropriate F ratios to show that none 
of the two-factor interactions are significant at 
� 5 .05.

	 c.	 Which main effects are significant at � 5 .05?

	50.	 Even under the increased levels of security sought 
by current airport security practices, airports try to 
assure rapid processing of individuals through secu-
rity checkouts. In an experiment designed to find 
combinations of factors that will minimize travelers’ 
processing times at security checkpoints, three fac-
tors were studied: the number of ticket checkers (2 
or 3), the number of X-ray machines (1 or 2), and 
the number of metal detectors (1 or 2) (“Operation 
of Airport Security Checkpoints Under Increased 
Threat Conditions,” J. of Transp. Engr.,1996: 264–
269). Each of the possible combinations of these 
factors was studied by using eight separate random 
samples of 67 travelers. The processing times  
(in seconds) are summarized in the table below.

	 a.	 Calculate all main effects and interaction effects 
for this experiment.

	 b.	 Pool the standard deviations of the replicated 
runs to find a value for SSE.

	 c.	 Using the SSE from part (b), determine which 
effects are significant (at � 5 .05).

	 d.	 Which settings (high or low) of the factors in 
part (c) lead to minimizing processing time?

	 e.	 What is the best way to staff a security check-
point if management wants to limit the number 

Processing time
Ticket X-ray Metal Number of Standard

Test checkers machines detectors replicates Mean deviation
1 2 2 2 67 39.10  1.29
2 3 2 1 67 46.50  4.30
3 2 2 1 67 50.56  5.41
4 3 2 2 67 35.07  1.05
5 2 1 2 67 93.37 37.75
6 3 1 1 67 90.55 33.52
7 2 1 1 67 97.70 34.79
8 3 1 2 67 88.86 37.58
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of employees to five per checkpoint? Note: X-ray 
machines and metal detectors each require one 
operator.

	 f.	 Is the disparity in magnitudes of the standard 
deviations a possible cause for concern in this 
experiment?

	51.	 Shea tree oxidation experiments were conducted to 
determine which of three factors (reaction time, air 
pressure, reaction temp.) affect various aspects in con-
verting the woody biomass into a renewable biofuel. 
Optimal enzymatic conversion of the Shea tree into 
ethanol occurs when the cellulose content is maxi-
mized and lignin content is minimized (“Optimiza-
tion of Pretreatment Conditions Using Full Factorial 
Design and Enzymatic Convertibility of Shea Tree 
Sawdust,” Biomass and Bioenergy, 2013: 130–138). 
The response variable lignin removal (g/kg) was stud-
ied using a full 23 design with no replication:

Run Time Pressure Temp Lignin
1 21 21 21   30
2    1 21 21 110
3 21    1 21 241
4    1    1 21 192
5 21 21    1 116
6    1 21    1 201
7 21    1    1 230
8    1    1    1 191

	 a.	 Calculate all main effects and interaction effects 
for this experiment.

	 b.	 Create a probability plot of the effects in part (a).
	 c.	 Suppose that additional experimentation shows 

that only those effects whose magnitudes exceed 
40 are important. Which factors or interactions 
have a significant effect on lignin removal?

	 d.	 Draw an effects plot for the important effects 
identified in part (c).

	 e.	 Suppose that additional experiments show that 
the AB and BC interactions are not significant. 
If the objective of the study is to maximize lig-
nin removal, what setting of each factor do you 
recommend?

	52.	 ln an automated chemical coating process, the 
speed with which objects on a conveyor belt are 
passed through a chemical spray (belt speed), the 

amount of chemical sprayed (spray volume), and 
the brand of chemical used (brand) are factors that 
may affect the uniformity of the coating applied. 
 A replicated 23 experiment was conducted in an 
effort to increase the coating uniformity. In the 
following table, higher values of the response 
variable are associated with higher surface uni-
formity:

Surface
uniformity

Repli- Repli-
Spray Belt cation cation

Run volume speed Brand 1 2
1 2 2 2 40 36
2 1 2 2 25 28
3 2 1 2 30 32
4 1 1 2 50 48
5 2 2 1 45 43
6 1 2 1 25 30
7 2 1 1 30 29
8 1 1 1 52 49

	 a.	 Calculate all main effects and two-factor inter-
action effects for this experiment.

	 b.	 Create the ANOVA table for this experiment. 
Which factors appear to have an effect on sur-
face uniformity? (Use � 5  .01).

	53.	 A half-fraction of a 25 experiment is used to study 
the effects of heating time (A), quenching time (B), 
drawing time (C), position of heating coils (D), and 
measurement position (E) on the hardness of steel 
castings. The following data was obtained:

Test run Obs Test run Obs
a 70.4 acd 66.6
b 72.1 ace 67.5
c 70.4 ade 64.0
d 67.4 bcd 66.8
e 68.0 bce 70.3
abc 73.8 bde 67.9
abd 67.0 cde 65.9
abe 67.8 abcde 68.0

		  Assuming that second- and higher-order interac-
tions are negligible, conduct tests (at � 5 .01) for 
the presence of main effects.
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Inferential Methods  
in Regression  
and Correlation

11.1	 Regression Models Involving a Single  

Independent Variable

11.2	 Inferences About the Slope Coefficient b

11.3	 Inferences Based on the Estimated  

Regression Line

11.4	 Multiple Regression Models

11.5	 Inferences in Multiple Regression

11.6	 Further Aspects of Regression Analysis

Introduction

Regression and correlation were introduced in Chapter 3 as techniques for 
describing and summarizing data consisting of observations on a dependent or 
response variable  and one or more independent variables. We first focused 
on the case of a single independent variable  and suggested constructing a 
scatterplot of sample data ( 1, 1), . . . , ( , ) to gain preliminary insight into 
the nature of any relationship between the two variables. When the scatterplot 
exhibits a linear pattern, a line fit to the data by the principle of least squares 
provides a convenient summary of the approximate relationship; the coefficient 
of determination 2 describes what proportion of the total variation in the ob-
served  values can be attributed to this relation. Substituting a particular  
value into the linear equation results in a  for the value of  that 
would be observed if one more observation were made at this particular  value. 

11

503

N
ig

ht
m

an
19

65
/S

hu
tte

rs
to

ck
.c

om

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



504	 chapter 11   Inferential Methods in Regression and Correlation

When data is available on  independent variables ( $ 2) 1, . . . , , the same 
line of reasoning leads to a best-fit prediction equation having the general form 
n 5 1 1 1 1 1   and a value of the coefficient of multiple determination 

2.  Again, a point prediction of  results from substituting specified values of the 
’s into the prediction equation.

In this chapter, we introduce probabilistic models as a way of describing situa-
tions where there is uncertainty in the value of  even after the values of selected 
predictor variables have been specified. Such models are then used to test various 
hypotheses of interest and to calculate both confidence intervals for mean  values 
and prediction intervals for individual  values to be observed at some future time. 
We also show how the sample correlation coefficient  can be used to test hypoth-
eses about the  �.

11.1	 �Regression Models Involving  
a Single Independent Variable �

A deterministic relationship between two variables x and y is one in which the value of y 
is completely and uniquely determined, with no uncertainty, by the value of x. Such a 
relationship can be described using traditional mathematical notation: y 5 f (x), where 
f (x) is a specified function, such as 10 1 2x, 5e2.2x, or 100 2 4y1x. In many engineer-
ing and science applications, it is unreasonable to assume that the variables of interest 
are deterministically related. For example, there is presumably a strong relationship 
between x 5 engine horsepower and y 5 time to go from 0 mph to 60 mph. Yet it 
is possible for two different engines with the same x values to result in two different 
values of y, so that the value of the latter variable is not determined solely by the value 
of the former.

A description of the relations between variables x and y that are not deterministi-
cally related can be given by specifying a probabilistic model. The general form of an 
additive probabilistic model allows y to deviate from f (x) by a random amount. The 
model equation is

y 5 deterministic function of x 1 random deviation
	 5 f (x) 1 e

(The random deviation e is sometimes referred to as a random error.) Consider graphing 
f (x) on a two-dimensional rectangular coordinate system. If we fix x at the value x  and 
make an observation on y, in the absence of the random deviation, the resulting point 
(x , y) would fall exactly on the graph. However, if e . 0, the point falls above the graph, 
whereas e , 0 implies that the point falls below the graph. So the role of the random 
deviation is to allow observed points to deviate from the graph of the deterministic func-
tion by random amounts.

Occasionally, some sort of theoretical argument will suggest an appropriate choice 
of f (x). Most frequently, though, a scatterplot of the data is used for this purpose. When 
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Randomness in e implies that y itself is subject to uncertainty. The foregoing 
assumptions about the distribution of e imply that the distribution of y values in re-
peated sampling satisfies certain properties. Consider y when x equals some fixed 
value x , and let

	 �y?x 
* 5 mean or expected value of y when x 5 x

	 �2
y?x 

* 5 variance of y when x 5 x

	 �y?x 
* 5 standard deviation of y when x 5 x

The simple linear regression model assumes that there is a line with slope � and 
vertical or y intercept �, called the true or population regression line. When a 
value of the independent variable x is fixed and an observation on the dependent 
variable y is made, the variables are related by the model equation

y 5 � 1 �x 1 e
Without the random deviation e, all points would fall exactly on the population 
regression line. We shall assume that for any fixed x value, e has a normal distri-
bution with mean value 0 (�e 5 0) and standard deviation � (�e 5 �). We also 
assume that the random deviations e1, e2, . . . , en associated with different obser-
vations are independent of one another.

DEFINITIONS

Figure 11.1  Several observations resulting from the simple linear 
regression model

Observation when  = 1
(positive deviation)

1

2

Observation when  = 2
(negative deviation)

Population regression
line (slope )

 = vertical
       intercept

 = 1  = 2

 0

0

Figure 11.1 shows several observations in relation to the population regression line.

the plot shows a linear pattern, it is natural to take f (x) to be a linear function, resulting 
in what is called the simple linear regression model.
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506	 chapter 11   Inferential Methods in Regression and Correlation

For example, if x 5 engine horsepower and y 5 time to go from 0 to 60 mph, then

�y?200 5 mean time to go from 0 to 60 mph when horsepower is 200
�y?200 5 standard deviation of time when horsepower is 200

Because � and � in the equation y 5 � 1 �x* 1 e are fixed numbers, so is � 1 �x*. 
Taking the mean value on both sides of this equation then gives (since �e 5 0)

�y?x 
* 5 � 1 �x*

which is just the height of the population regression line above the value x 5 x . Simi-
larly, taking the variance on both sides of the equation and using the fact that the vari-
ance of a constant is zero gives

�2
y?x 

* 5 �2
e 5 �2  �y?x 

* 5 �

That is, for a given value of x, the amount of variability in y is the same as the amount 
of variability in e, which in turn is the amount of variability about the population line. 
Finally, e is assumed to have a normal distribution, and the sum of a constant � 1 �x* 
and a normally distributed variable itself has a normal distribution. Thus the distribu-
tion of y for any fixed x value is normal.

For any fixed  value, the dependent variable  has a normal distribution with

mean  value
for fixed 

5
height of the population
regression line above 

5 � 1 �

(so the population regression line is the line of mean  values) and

standard deviation of  for fixed  value 5 �

The slope � of the population regression line is the mean or expected change in  
associated with a 1-unit increase in . The value of � determines the extent to which 
( , ) observations deviate from the population regression line—roughly speaking, it 
is the size of a “typical” deviation from the line. Most or even all of the ( , ) observa-
tions will fall quite close to the population line when � is close to 0, but when � is 
large there are likely to be some large deviations from the line. Finally, independence 
of the ’s corresponding to different observations implies that the different ’s are 
independent.

The key features of the model are illustrated in Figures 11.2 and 11.3. The three 
normal curves in Figure 11.2 have identical spreads because the amount of variability 
in y is the same at each x value.
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Recently the use of granite in construction and as an ornamental material has grown 
in popularity. However, due to its textural properties, granite is a difficult material to 
process by traditional machining methods. Abrasive waterjet (AWJ) is an advanced 
cutting process that has shown promise in improving granite machining. The authors 
of “Performance of Abrasive Waterjet in Granite Cutting: Influence of the Textural 
Properties” (J. of Materials in Civil Engr., 2012: 944–949) examined the effect of 
textural properties on the cutting performance of AWJ. The article suggested the 
simple linear regression model as a way to relate y 5 AWJ cut depth (mm) to x 5 
granite grain size (mm).

Example 11.1

Figure 11.2 The simple linear regression model

 + 3

 + 2

 + 1

Mean value  + 1

Standard deviation 
Normal curve

Mean value  + 2
Standard deviation 
Normal curve

Mean value  + 3
Standard deviation 
Normal curve

 =
the population
regression line
(line of mean values) 

 + 

1 2 3

Three different  values

Figure 11.3  Data from the simple linear regression model: (a) s small; (b) s large

(a)

Population regression line

(b)

Population regression line
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508	 chapter 11   Inferential Methods in Regression and Correlation

In practice, the judgment as to whether the simple linear regression model is ap-
propriate is virtually always based on sample data and a scatterplot. The plot should 
show a linear rather than a curved pattern, and the vertical spread of points should be 
relatively homogeneous throughout the range of x values. Figure 11.4 shows plots with 
three different patterns, only one of which is consistent with the model.

Suppose that the parameter values for the actual model (as suggested by data in 
the cited article) are

� 5 2.4  � 5 25.5  � 5 .9 mm

Then for any particular fixed x value, y is normally distributed with

mean value 5 �y?x 5 25.5 2 .4x

standard deviation 5 �y?x 5 .9

For example, when x 5 5, AWJ cut depth has mean value 5 25.5 2 .4(5) 5 23.5 mm.  
Because 23.5 6 2� 5 21.7 and 25.3, roughly 95% of all AWJ cut depths made when 
granite grain size is 5 mm will be between these limits. The slope � 5 2.4 is the 
mean decrease in AWJ cut depth associated with a 1-mm increase in granite grain 
size. Thus, if we make one observation on AWJ cut depth when x 5 5 and another 
when x 5 6, we expect the former cut depth to exceed the latter by .4 mm (but the 
actual difference in y values will almost always be either larger or smaller than this 
because observations will deviate from the population line).

Estimating Model Parameters
Estimates of the three parameters �, �, and �2 (or �) are based on n sample observations 
(x1, y1), (x2, y2), . . . , (xn, yn) assumed to have been obtained independently according to 
the simple linear regression model; that is, y1 5 � 1 �x1 1 e1, y2 5 � 1 �x2 1 e2, and so 
on. Denote estimates of the intercept and slope by a and b, respectively. These estimates 
come from applying the principle of least squares introduced in Chapter 3; the least 
squares line has smaller sum of squared vertical deviations than does any other line.

Figure 11.4  Some commonly encountered patterns in scatterplots: (a) consistent with 
the simple linear regression model; (b) suggests a nonlinear probabilistic model;  
(c) suggests that variability in  changes with 
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The least squares estimates of the slope � and intercept � of the population regression 
line are the slope and intercept, respectively, of the least square line, given by

 5 point estimate of � 5

 5 point of estimate of � 5 2

where

 5 ^  2 ° ^ ^ ¢

 5 ^ 2 2
1^ 22

The estimate of the population regression line is then just the least squares line

n 5 1

Let x  denote some particular value of the predictor variable x. Then a 1 bx  has two 
different interpretations:

1.	 It is a point estimate of the mean y value when x 5 x  (i.e., of � 1 �x ).
2.	 It is a point prediction of an individual y value to be observed when x 5 x .

Variations in clay brick masonry weight have implications not only for structural and 
acoustical design but also for design of heating, ventilating, and air conditioning sys-
tems. The article “Clay Brick Masonry Weight Variation” (J. of Architectural Engr., 1996: 
135–137) gave a scatterplot of y 5 mortar dry density (lb/ft3) versus mortar air content (%) 
for a sample of mortar specimens, from which the following representative data was read:

x: 5.7 6.8 9.6 10.0 10.7 12.6 14.4 15.0 15.3

y: 119.0 121.3 118.2 124.0 112.3 114.1 112.2 115.1 111.3

x: 16.2 17.8 18.7 19.7 20.6 25.0

y: 107.2 108.9 107.8 111.0 106.2 105.0

The scatterplot of this data in Figure 11.5 certainly suggests the appropriateness of the 
simple linear regression model; there appears to be a substantial negative linear rela-
tionship between air content and density, one in which density tends to decrease as air 
content increases.

The values of the summary statistics required for calculation of the least squares 
estimates are

^xi 5 218.1  ^yi 5 1693.6  ^x2
i 5 3577.01

^xiyi 5 24,252.54  ^y2
i 5 191,672.90

Example 11.2
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510	 chapter 11   Inferential Methods in Regression and Correlation

Inferences based on the fitted model require that the error standard devia-
tion be estimated. The estimate is based on calculating the vertical deviations from 
the estimated regression line. First, the predicted or fitted values are obtained by 
substituting the x values from the sample into the equation of the estimated regres-
sion line: yn1 5 a 1 bx1, yn2 5 a 1 bx2, and so on. The residuals are then the differences 
between the observed y values and the predicted y values: y1 2 yn1, . . . , yn 2 ynn. These are  
the vertical deviations from the points in the scatterplot to the estimated regression line 
(least squares line). Squaring and summing these residuals gives residual or error sum 
of squares, denoted by either SSResid or by SSE:

SSResid 5 ^ (yi 2 yni)
2 5 Syy 2 bSxy

from which

 Sxy 5 24,252.54 2
(218.1)(1693.6)

15
5 2372.404000

 Sxx 5 3577.01 2
(218.1)2

15
5 405.836000

 b 5
2372.404000
405.836000

5 2.917622 2.9176

 a 5
1693.6

15
2 (2.917622)a 218.1

15
b 5 126.248889 126.25

The equation of the estimated regression line (the least squares line) is then

yn 5 126.25 2 .9176x

Substitution of the air content value 12.0 into this equation gives yn 5 115.24, which 
can be interpreted either as a point estimate of the mean dry density for all specimens 
whose air content is 12% or as a prediction for the dry density of a single mortar speci-
men whose air content is 12%.

Figure 11.5  Scatterplot of the data from Example 11.2
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Each sum of squares in statistics has associated with it a specified number of degrees 
of freedom. In simple linear regression, SSResid is based on n 2 2 df, because before 
SSResid can be calculated, the two parameters � and � must be estimated, resulting 
in a loss of 2 df (just as in the case of a single sample, estimating � by x gives the sum 
of squares ^(xi 2 x)2 based on n 2 1 df). The statistic for estimating the third model 
parameter �2 is the mean square error, obtained by dividing error SS by its df:

 estimate of �2 5 s2
e 5

SSResid
n 2 2

 estimate of � 5 se 5 2s2
e

Roughly speaking, se is the size of a typical deviation in the sample from the estimated 
regression line.

In Chapter 3, SSResid was interpreted as a measure of the variation in observed y 
values not explained by the approximate linear relationship between x and y. We also 
introduced total sum of squares

SSTo 5 Syy 5 ^ (yi 2 y)2 5 ^y2
i 2

1^yi22

n

interpreted as a measure of total variation in the observed y values. In the present con-
text, the coefficient of determination

r2 5 1 2
SSResid

SSTo

is interpreted as the proportion of observed y variation that can be attributed to (or, 
equivalently, explained by) the simple linear regression model relationship between y 
and x. The closer r2 is to 1.0, the better the model explains the y variation. The differ-
ence between SSTo and SSResid is itself a sum of squares, called regression sum of 
squares, which is interpreted as explained variation:

SSRegr 5 SSTo 2 SSResid  r2 5
SSRegr
SSTo

Let’s reconsider the data on x 5 air content and y 5 mortar dry density from  
Example 11.2. The first predicted value and residual are

 yn1 5 126.248889 2 .917622(5.7) 5 121.0184

 y1 2 yn1 5 119.0 2 121.0184 5 22.0184

(The negative residual implies that the point (5.7, 119.0) lies below the estimated 
regression line.) The relevant sums of squares are

SSTo 5 Syy 5 191,672.90 2 (1693.6)2y15 5 454.1693

SSResid 5 Syy 2 bSxy 5 454.1693 2 (2.917622)(2372.4040) 5 112.4432

Example 11.3
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512	 chapter 11   Inferential Methods in Regression and Correlation

from which the coefficient of determination is

r2 5 1 2
112.4432
454.1693

5 .752

Thus roughly 75% of the observed variation in density can be attributed to the simple 
linear regression model relationship between density and air content. SSResid is 
based on 15 2 2 5 13 df, and the estimates of the “error” variance and standard 
deviation are

s2
e 5

112.4432
13

5 8.6495  se 5 2.941

Figure 11.6 shows output from the SAS software package. Values on the output agree 
quite closely with our hand calculations.

Figure 11.6  SAS output for the data of Example 11.3
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Exponential Regression
A scatterplot of data obtained in a scientific or engineering investigation will often show 
curvature rather than a linear pattern. The scatterplot of Figure 11.7 shows a monotonic 
pattern, a tendency for y to decrease as x increases (alternatively, y might tend to in-
crease as x increases). In this case, an exponential regression model may be a reasonable 
way to relate y to x. The model equation is multiplicative rather than additive:

y 5 �e�x ? «, « . 0

(The multiplicative random deviation is denoted by « to avoid confusion with the base e 
of the natural logarithm system, whose value is approximately 2.7182818.) The popula-
tion regression function is �e  �x. When « . 1, the point (x, y) lies above the graph of the 
regression function, and « , 1 implies that the point lies below the graph. Now consider 
the percentage change in the population regression function when x increases by 1:

100  

3�e  �(x11) 2 �e  �x4
�e  �x 5 100(e  � 2 1)

a constant not dependent on x. In simple linear regression, when x increases by 1 unit, 
on average y will increase by a constant amount �; in this case, when x increases by  
1 unit, on average y will increase (or decrease, if � , 0) by a constant percentage.

Figure 11.7 A scatterplot consistent with an exponential  
regression model (  5 time to rupture a brass specimen,  
 5 applied stress)
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Let’s now take the logarithm of both sides of the model equation:

y 5 ln (y) 5 ln (�) 1 �x 1 ln («) 5 � 1 � x 1 «

where � 5 ln (�), � 5 �, and « 5 ln («). This is exactly the equation for simple linear 
regression. Thus to say that y and x are related via the exponential regression model is 
the same as saying that ln(y) and x are related by the simple linear regression model 
(provided that ln(«) is normally distributed, which is equivalent to « itself having a 
lognormal distribution). In particular, using the previous formulas for the slope and 
intercept of the least squares line on the (xi, ln(yi)) pairs gives point estimates of � and Un
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514	 chapter 11   Inferential Methods in Regression and Correlation

ln (�), respectively. A point estimate of � results from taking the antilog of the estimate 
for ln (�). Figure 11.8 shows the result of transforming the y values in Figure 11.7 by logs 
and then fitting the simple linear regression model. The r2 value from this regression is 
obviously very high, so the simple linear regression model explains virtually all of the 
observed variation in ln(time to rupture).

	 b.	 What change in flow rate can be expected 
when pressure drop increases from 10 in. to 
15 in.?

	 c.	 What is the expected (i.e., true average) flow 
rate when the pressure drop is 10 in.? When the 
pressure drop is 15 in.?

	 d.	 Suppose that � 5 .025 and consider making 
repeated observations on flow rate when the 
pressure drop is 10 in. What is the long-run 

	 1.	 The flow rate y (m3/min) in a device used for air-
quality measurement depends on the pressure drop 
x (in. of water) across the device’s filter. Suppose 
that for x values between 5 and 20, the two variables 
are related according to the simple linear regression 
model with true regression line y 5 2.12 1 .095x.

	 a.	 What is the expected (i.e., true average) change 
in flow rate associated with a 1-in. increase in 
pressure drop? Explain.

Section 11.1 Exercises

Figure 11.8  Minitab output from fitting the simple linear regression  
model to the ( , ln( )) pairs resulting from the data of Figure 11.7
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The key point here is that making a transformation [transformed y 5 ln(y)] results 
in the simple linear regression model. There are many other models nonlinear in y or x 
for which a transformation on one or both of the variables recaptures the simple linear 
regression model. Parameters of the original model can then be estimated in a relatively 
straightforward way.
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proportion of observed flow rates that will exceed 
.835 [that is, what is P(y . .835 when x 5 10)]?

	 2.	 In a certain chemical process the reaction time y (hr)  
is known to be related according to the simple 
linear regression model to the temperature x (°F) 
in the chamber in which the reaction takes place. 
The model equation is y 5 5.00 2 .01x 1 e, with 
� 5 .075.

	 a.	 What is the true average change in reaction 
time associated with a 1°F increase in tempera-
ture? A 10°F increase in temperature?

	 b.	 What is the true average reaction time when 
temperature is 200°F? When temperature is 
250°F?

	 c.	 What is P(2.4 , y , 2.6 when x 5 250)? If an in-
vestigator makes five independent experimental 
runs, each for a temperature of 250°F, what is 
the probability that all five observed reaction 
times are between 2.4 and 2.6?

	 3.	 Let V be the vapor pressure of water (mm Hg) at a 
specific temperature T (°K). The Clausius–Clapeyron 
equation from physical chemistry suggests that y 5 
ln(V) is related to x 5 1/      T according to the simple 
linear regression model.

	 a.	 What is the implied probabilistic relationship 
between V and T?

	 b.	 If the coefficients in the simple linear regres-
sion model are � 5 20.607 and � 5 25200.762, 
what would you predict for the value of vapor 
pressure when temperature is 300?

	 4.	 The article “Characterization of Highway Runoff 
in Austin, Texas, Area” (J. of Envir. Engr., 1998: 
131–137) gave a scatterplot, along with the least 
squares line, of x 5 rainfall volume (m3) and y 5 
runoff volume (m3) for a particular location. The 
accompanying values were read from the plot:

x: 5 12 14 17 23 30 40 47
y: 4 10 13 15 15 25 27 46

x: 55 67 72 81 96 112 127
y: 38 46 53 70 82 99 100

	 a.	 Does a scatterplot of the data support the use of 
the simple linear regression model?

	 b.	 Calculate point estimates of the slope and inter-
cept of the population regression line.

	 c.	 Calculate a point estimate of the true average 
runoff volume when rainfall volume is 50.

	 d.	 Calculate a point estimate of the error standard 
deviation �.

	 e.	 What proportion of the observed variation in run-
off volume can be attributed to the simple linear  
regression relationship between runoff and rainfall?

	 5.	 The bond behavior of reinforcing bars is an im-
portant determinant of strength and stability. The 
article “Experimental Study on the Bond Behavior 
of Reinforcing Bars Embedded in Concrete Sub-
jected to Lateral Pressure” (J. of Materials in Civil 
Engr., 2012: 125–133) reported the results of one ex-
periment in which the researchers applied varying 
levels of lateral pressure on 21 concrete cube speci-
mens, each with an embedded 16-mm plain steel 
round bar, and measured the corresponding bond 
capacity. Due to differing concrete cube strengths 
( fcu, in MPa), the applied lateral pressure was 
equivalent to a fixed proportion of the specimen’s  
fcu (0, .1fcu, . . . , .6fcu). Also, since bond strength can 
be heavily influenced by the specimen’s fcu, bond 
capacity was expressed as the ratio of bond strength 
(MPa) to 1fcu. 

Pressure:
Ratio:

0
0.123

0
0.100

0
0.101

.1
0.172

.1
0.133

.1
0.107

.2
0.217

Pressure:
Ratio:

.2
0.172

.2
0.151

.3
0.263

.3
0.227

.3
0.252

.4
0.310

.4
0.365

Pressure:
Ratio:

.4
0.239

.5
0.365

.5
0.319

.5
0.312

.6
0.394

.6
0.386

.6
0.320

	 a.	 Does a scatterplot of the data support the use of 
the simple linear regression model?

	 b.	 Calculate point estimates of the slope and inter-
cept of the population regression line.

	 c.	 Calculate a point estimate of the true average 
bond capacity when lateral pressure is .45fcu.

	 d.	 Calculate a point estimate of the error standard 
deviation �.

	 6.	 A study reported in the article “The Effects of Water 
Vapor Concentration on the Rate of Combustion 
of an Artificial Graphite in Humid Air Flow” 
(Combustion and Flame, 1983: 107–118) gave 
data on x 5 temperature of a nitrogen–oxygen mix-
ture (1000s of °F) under specified conditions and  
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516	 chapter 11   Inferential Methods in Regression and Correlation

y 5 oxygen diffusivity. Summary quantities are

n 5 9 ^  xi 5 12.6 ^  yi 5 27.68

^  x2
i 5 18.24 ^  xiyi 5 40.968

^  y2
i 5 93.3448

	 a.	 Assuming that the variables are related by the 
simple linear regression model, determine the 
equation of the estimated regression line.

	 b.	 Calculate a point estimate of mean diffusivity 
when temperature is 1.5. How does this point 
estimate compare to a point prediction of the 
diffusivity value that would result from making 
one more observation when temperature is 1.5?

	 c.	 Estimate the error standard deviation �.
	 d.	 Calculate and interpret the coefficient of deter-

mination.

	 7.	 Timber piles are often used to buttress multiple- 
span simply supported (MSSS) bridges that are com-
monly found in rural areas. The authors of “Bridge 
Timber Piles Load Rating under Eccentric Loading 
Conditions” (J. Bridge Engr., 2012: 700–710) exam-
ined the effect of various geometric and structural 
characteristics on the critical rating (an overall struc-
tural assessment score) of MSSS bridges. The article 
reported the following data (read from a graph) for x 5  
timber pile length (m) and y 5 critical rating for a 
particular timber profile at various damage levels.

x 5 Timber pile 
length (m): 7.32 7.93 8.54 9.14 9.75
y  5 Critical rating 
(damage 5 0%): 59.09 54.79 49.74 44.11 37.99
y  5 Critical rating 
(damage 5 20%): 57.52 52.63 44.28 33.85 25.74
y  5 Critical rating 
(damage 5 40%): 43.94 30.70 19.12 9.77 2.48

	 a.	 Create the scatterplots for the pairs (x, y ), (x, y ),  
and (x, y ). Does each scatterplot suggest that 
a simple linear regression model holds for the 
respective variables?

	 b.	 For each pair, calculate point estimates of the 
slope and intercept of the respective population 
regression line and determine the correspond-
ing coefficients of determination.

	 c.	 Given the slope coefficients from the regression, 
summarize the relationship between critical 

rating and pile length as timber damage changes 
from 0%, to 20%, and to 40%.

	 d.	 Calculate a point estimate of the error standard 
deviation � for each of the pairs. How do these 
point estimates change as timber damage in-
creases from 0% to 20% and then to 40%?

	 8.	 Exercise 30 in Section 3.4 gave data on x 5 testing 
temperature and y 5 dynamic shear modulus for a 
particular asphalt binder type. A scatterplot of x and 
y  5  log(y) shows a substantial linear pattern, sug-
gesting that these variables are related by the simple 
linear regression model.

	 a.	 What probabilistic model for relating y = 
dynamic shear modulus to x 5 testing tempera-
ture is implied by the simple linear regression 
relationship between x and  y9?

	 b.	 Summary quantities calculated from the data are

		  n 5  7  ^  xi 5 211.4  ^  y i 5 40.64  

		  ^  xi
2 5 8449.68  ^  (y i)

2 5 282.58     

		  ^  xi y i 5 917.48

		  Calculate estimates of the parameters for the model 
in part (a), and then obtain a point prediction of 
dynamic shear modulus when temperature is 35°F.

	 9.	 The authors of the article “Long-Term Effects 
of Cathodic Protection on Prestressed Concrete 
Structures” (Corrosion, 1997: 891–908) presented 
a scatterplot of y 5 steady-state permeation flux 
(�  A ycm2) versus x 5 inverse foil thickness (cm21); 
the substantial linear pattern was used as a basis for 
an important conclusion about material behavior. 
This is the Minitab output from fitting the simple 
linear regression model to the data.

The regression equation is
flux = –0.398 + 0.260 invthick

Predictor Coef Stdev t-ratio p
Constant –0.3982 0.5051 –0.79 0.460
invthick 0.26042 0.01502 17.34 0.000

s = 0.4506 R-sq = 98.0% R-sq(adj) = 97.7%

Analysis of Variance

Source DF SS MS F p
Regression 1 61.050 61.050 300.64 0.000
Error 6 1.218 0.203
Total 7 62.269
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inv- Stdev. St.

Obs. thick flux Fit Fit Residual Resid

1 19.8 4.3 4.758 0.242 –0.458 –1.20

2 20.6 5.6 4.966 0.233 0.634 1.64

3 23.5 6.1 5.722 0.203 0.378 0.94

4 26.1 6.2 6.399 0.182 –0.199 –0.48

5 30.3 6.9 7.493 0.161 –0.593 –1.41

6 43.5 11.2 10.930 0.236 0.270 0.70

7 45.0 11.3 11.321 0.253 –0.021 –0.06

8 46.5 11.7 11.711 0.271 –0.011 –0.03

	 a.	 Interpret the estimated slope and the coefficient 
of determination.

	 b.	 Calculate a point estimate of true average flux 
when inverse foil thickness is 23.5.

	 c.	 Predict the value of flux that would result from a 
single observation made when inverse foil thick-
ness is 45.

	 d.	 Verify that the sum of the residuals is zero and 
that squaring and summing the residuals results 
in the value of SSResid given in the output.

11.2	 Inferences About the Slope Coefficient b �

The slope � of the population regression line is the true average change in the depen-
dent variable y associated with a 1-unit increase in the independent variable x. The 
slope of the least squares line, b, gives a point estimate of �. A confidence interval is 
a more effective way to estimate a parameter than is a point estimate, because it gives 
information about reliability (via the confidence level) and precision (from the width of 
the interval). Recall that the development of the one-sample t confidence interval for a 
population mean � was based on properties of the sampling distribution of the statistic 
x: �x 5 �, �x 5 �y1n, and that x is normally distributed when the population itself has 
a normal distribution. These results in turn implied that the standardized variable

t 5
x 2 �

sy1n

has a t distribution with n 2 1 degrees of freedom, from which the interval estimate x 6  
(t critical value) (sy1n) emerges.

In the same way that the statistic x varies in value from sample to sample, the sta-
tistic b does also. For example, if the slope of the population regression line is actually 
� 5 25.0, a first sample might result in b 5 24.2, a second in an estimate of 26.5, a third 
in 25.4, and so on.

Properties of the Sampling Distribution of 

1. � � 5 � (The sampling distribution is always centered at the value of what the statistic 
is trying to estimate; that is,  is an unbiased statistic.)

2. � � 5 �y2  , where 5 ^( 2  )2 5 ^ 2 2 (^ )2y .

The estimated standard deviation of  results from replacing � by its estimate :

5   y1
3. �   is normally distributed (because  in the model equation is assumed to have a normal 

distribution).
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The smaller the value of �b, the more precisely � will tend to be estimated. Because � 
is in the numerator, the less variability there is about the population line, the smaller is 
the standard deviation of b and the more concentrated is its sampling distribution. The 
value of � is, of course, not under our control. However, we may be able to have an 
impact on the value of Sxx. Because this quantity is in the denominator of �b, the larger 
its value, the smaller is the value of the standard deviation. Since Sxx is a measure of how 
much the xi values in the sample spread out, the implication is that spreading out the 
values of the independent variable tends to give a more precise estimate than if these 
values were quite close together. Intuitively, if the sample xi values were highly concen-
trated, very small changes in the resulting yi’s might substantially affect the slope of the 
least squares line, whereas such changes would have little effect on the slope if the xi’s 
were quite spread out. So if the investigator can select the x values at which observations 
will be made (frequently not possible in social science and business scenarios), they 
should be spread out as much as possible while still preserving the approximate linearity 
of the relationship between x and y.

A Confidence Interval for the Slope Parameter
Just as in the case of x and �, the foregoing properties allow us to form a t variable, 
which then gives rise to the desired confidence interval.

The standardized variable

5
2 �

has a  distribution based on 2 2 df.  This in turn implies that a confidence interval  
for � is

6 (  critical value)

Appendix Table IV contains  critical values corresponding to the most frequently used 
confidence levels.

Let’s reconsider the data on air content and mortar dry density introduced in 
Examples 11.2 and 11.3. In this context, � is the average or expected change in dry 
density associated with an increase of 1% in air content. We previously calculated 
Sxx 5 405.836000, b 5 2.918, and se 5 2.941, from which the estimated standard 
deviation (standard error) of b is

sb 5
2.9411405.836

5 .1460

The confidence interval is based on n 2 2 5 15 2 2 5 13 df, and the correspond-
ing t critical value for a confidence level of 95% is 2.160. The confidence interval is

2 .918 6 (2.160)(.1460) 5 2.918 6 .315 5 (21.233,2.603)

Example 11.4
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Testing Hypotheses About b
The form of the null hypothesis when testing hypotheses about a population or process 
mean � was H0: � 5 �0, where the symbol �0 (“mu naught”) represented the value of 
� asserted to be true by the null hypothesis, or simply the null value. The test statistic 
resulted from using the null value to standardize x: t 5 (x 2 �0)y(sy1n). Let �0 denote 
the null value when testing hypotheses about �. Then when H0: � 5 �0 is true, the 
statistic t 5 (b 2 �0)ysb has a t distribution based on n 2 2 df. The P-value for the test 
(probability of obtaining a value of b more contradictory to H0 than the value actually 
obtained from the given sample) is then a t curve tail area whose computation depends 
on the nature of the inequality in the alternative hypothesis.

With a high degree of confidence, we estimate that an average decrease in density of 
between .603 lby ft3 and 1.233 lby ft3 is associated with a 1% increase in air content (at 
least for air content values between roughly 5 and 25%, corresponding to the x values 
in our sample). The interval is reasonably narrow, indicating that the slope of the 
population line has been precisely estimated. Notice that the interval includes only 
negative values, so we can be quite confident of the tendency for density to decrease 
as air content increases.

Looking back to the SAS output of Figure 11.6, we find the value of sb in the 
Parameter Estimates table as the second number in the Standard Error column. 
All of the widely used statistical packages include this estimated standard error in 
output. There is also an estimated standard error for the statistic a, from which a 
confidence interval for the intercept � of the population regression line can be 
calculated.

Null hypothesis:	 0: � 5 �0

Test statistic:	 5
2 �0, which is based on 2 2 df

	Alternative hypothesis	T ype of test	 P-value

a: � . �0	 Upper-tailed	A rea under the 2 2 df
			    curve to the right of the
			   calculated 

a: � , �0	 Lower-tailed	A rea under the 2 2 df
			    curve to the left of the
			   calculated 

a: � Þ �0	T wo-tailed	T wice the area under the
			   2 2 df  curve to the right
			   of the calculated |   

Upper-tail areas captured under various  curves are given in Appendix Table VI. Because  
 curves are symmetric about zero, these are also lower-tail areas.
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In practice, the most frequently tested null hypothesis is H0: � 5 0. When the slope 
of the population regression line is zero, there is no useful linear relationship between x 
and y. The usual alternative hypothesis is Ha: � Þ 0, according to which there is a useful 
linear relationship between the two variables. A test of these two hypotheses is often re-
ferred to as the model utility test in simple linear regression. Unless H0 can be rejected 
at a reasonably small significance level, the simple linear regression model should not be 
used as a basis for making various inferences (e.g., for predicting y from knowledge of x).  
In practice, the model will generally be judged useful by this test when r2 is reasonably 
large. On occasion, the alternatives Ha: � . 0 or Ha: � , 0 may be of interest; the for-
mer says that there is in fact a positive linear relationship between the two variables (a 
tendency for y to increase linearly as x increases). The test statistic in all three cases is 
the t-ratio, bysb.

The presence of hard alloy carbides in high chromium white iron alloys results in 
excellent abrasion resistance, making them suitable for materials handling in the 
mining and materials processing industries. The accompanying data on x 5 retained 
austentite content (%) and y 5 abrasive wear loss (mm3) in pin wear tests with garnet 
as the abrasive was read from a plot in the article “Microstructure-Property Relation-
ships in High Chromium White Iron Alloys” (Intl. Materials Reviews, 1996: 59–82).

x: 4.6 17.0 17.4 18.0 18.5 22.4 26.5 30.0 34.0
y: .66 .92 1.45 1.03 .70 .73 1.20 .80 .91
x: 38.8 48.2 63.5 65.8 73.9 77.2 79.8 84.0
y: 1.19 1.15 1.12 1.37 1.45 1.50 1.36 1.29

A scatterplot of the data (not shown) suggests that the simple linear regression may 
specify a useful relationship between these two variables. Is this indeed the case? 
Let’s base our analysis on the SAS output in Figure 11.9.

Example 11.5

Figure 11.9  SAS output from a simple linear regression of the data in Example 11.5
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Regression and ANOVA
An alternative to the t test for model utility is based on the decomposition of total sum 
of squares into regression or model sum of squares and error sum of squares:

SSTo 5 SSRegr 1 SSResid

where df 5 1 for SSRegr and df 5 n 2 2 for SSResid. The two mean squares are then 
MSRegr 5 SSRegry1 and MSResid 5 SSResidy (n 2 2), and the F ratio is given by F 5  
MSRegryMSResid. The calculations are usually summarized in an ANOVA table, as 
shown in Table 11.1.

Table 11.1  ANOVA table for simple linear regression

Source of
variation df

Sum of
squares Mean square F P-value

Model Area to right of
(Regression) 1 SSRegr SSRegr MSRegryMSResid calculated F

Error n 2 2 SSResid SSResidy(n 2 2)

Total n 2 1 SSTo

Looking at the ANOVA table on the SAS output of Figure 11.9, we see that the 
calculated F ratio for the data of Example 11.5 is F 5 15.444, and the corresponding  
P-value (the area under the F curve with 1 numerator and 15 denominator df to the 

The parameter of interest is �, the average change in wear loss associated with a 
1% (i.e., 1-unit) increase in austentite content. The relevant hypotheses are

H0: � 5 0  (the model is not useful)
Ha: � Þ 0  (there is a useful linear relationship between the variables)

The test statistic is the model utility t-ratio t 5 bysb. From the Parameter Estimates 
table in Figure 11.9,

b 5 .007570  sb 5 .00192626  t 5
.007570

.00192626
5 3.93 3.9

The two-tailed test is based on n 2 2 5 15 df. In Appendix Table VI, the area under 
the 15 df t curve to the right of 3.9 is .001, so the P-value for the test is roughly .002. 
Figure 11.9 gives this P-value as .0013 (so the area to the right of 3.93 must be about 
.00065). Clearly the P-value is smaller than either .05 or .01. H0 can obviously be 
rejected in favor of the conclusion that there is a useful linear relationship. Notice 
that the r2 value is .507, which is not terribly impressive. But as long as n is not too 
small, the model will be judged useful even when r2 is moderate to small.

The article’s authors asserted that “increasing the austentite content leads to 
greater wear rates with garnet as the abrasive.” The implied alternative hypothesis 
is Ha: � . 0 (a positive linear relationship). The P-value for this upper-tailed test is 
about .001 (more exactly, .00065), which clearly supports the authors’ contention.
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right of 15.444) is .0013. That this P-value is identical to the P-value for the model utility 
t test is no accident: It can be shown that t2 5 F [(3.930)2 5 15.444 in Example 11.5], 
and the distribution of the square of a t variable with � df is the F distribution with 1 
numerator and � denominator df. However, in multiple regression, the test for model 
utility is an F test, and t tests are used for another purpose.

Correlation Revisited
The sample correlation coefficient r was introduced in Chapter 3 as a measure of the 
extent of linear association between values of x and y in a sample. An analogous mea-
sure for the entire population from which the sample of pairs was selected is called the 
population correlation coefficient and is denoted by �. The most important properties 
of r are also satisfied by �; in particular,21 # � # 1, so the closer � is to 1 or 21, the 
stronger the linear relationship within the population. The value � 5 0 indicates the 
complete absence of any linear relationship in the population. Even if � 5 0, the value 
of r will usually differ somewhat from zero because of sampling variability—r is a sta-
tistic and its value will vary from sample to sample in the same way that x and b do. It 
is therefore important to have a formal test of the null hypothesis that � 5 0. The usual 
test procedure assumes that (x1, y1), . . . , (xn, yn) have been randomly selected from a 
bivariate normal population distribution (introduced in Section 3.6). This assumption 
is difficult to check. A partial assessment of plausibility is based on constructing one 
normal quantile plot of the x’s and another of the y’s. A nonlinear pattern in either plot 
is a warning of implausibility.

A Test for Linear Association in a Bivariate Normal Population
Null hypothesis:	 0: � 5 0

Test statistic:	 5
1 2 221 2 2

  where 5 1
 

When 0 is true, the test statistic has a  distribution based on 2 2 df, so a -value is 
computed as was done for previous  tests. In particular, the usual alternative hypothesis is 

a: � Þ 0 (no linear association, positive or negative, in the population), for which the test 
is two-tailed and the -value is twice the tail area captured by the calculated |    .

Neurotoxic effects of manganese are well known and are usually caused by high oc-
cupational exposure over long periods of time. In the fields of occupational hygiene 
and environmental hygiene, the relationship between lipid peroxidation, which is 
responsible for deterioration of foods and damage to live tissue, and occupational 
exposure has not been previously reported. The article “Lipid Peroxidation in Work-
ers Exposed to Manganese” (Scand. J. Work and Environ. Health, 1996: 381–386) 
gave data on x 5 manganese concentration in blood (ppb) and y 5 concentration 
(�molyL) of malondialdehyde, which is a stable product of lipid peroxidation, both 

Example 11.6
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The hypothesis H0: � 5 0 for the model utility test in regression also asserts that 
there is no linear relationship between x and y. Although it is certainly not obvious by 
inspection, it can be shown that the t-ratio bysb is algebraically identical to the t statistic 
in the previous box for testing � 5 0. The value of the latter statistic is easier to compute, 
since it requires only r and not any of the calculations appropriate for regression.

Test procedures for H0: � 5 �0 when �0 Þ 0 are rather complicated, as is the proce-
dure for obtaining a confidence interval for �. Please consult one of the chapter refer-
ences for further information.

for a sample of 22 workers exposed to manganese and for a control sample of 45 indi-
viduals. The value of r for the control sample was .29, from which

t 5
(.29)145 2 221 2 (.29)2

2.0

The corresponding P-value for a two-tailed t test based on 43 df is roughly .052 (the 
cited article reported only that P-value ..05). We would not want to reject the as-
sertion that � 5 0 at either significance level .01 or .05. For the sample of exposed 
workers, r 5 .83 and t 6.7, clear evidence that there is a linear relationship in the 
entire population of exposed workers from which the sample was selected.

	10.	 Exercise 4 of Section 11.1 gave data on x 5 rainfall 
volume and y 5 runoff volume (both in m3). Use 
the accompanying Minitab output to decide wheth-
er there is a useful linear relationship between rain-
fall and runoff, and then calculate a confidence in-
terval for the true average change in runoff volume 
associated with a 1-m3 increase in rainfall volume.

The regression equation is
runoff = –1.13 + 0.827 rainfall

Predictor Coef Stdev t-ratio p
Constant –1.128 2.368 –0.48 0.642
rainfall 0.82697 0.03652 22.64 0.000
s =5.240 R-sq = 97.5% R-sq(adj) = 97.3%

	11.	 In the same way that bysb is the t-ratio for testing 
H0: � 5 0, the t-ratio aysa is appropriate for testing 
H0: � 5 0, where sa is the estimated standard devia-
tion of the statistic a and the test is again based on 
n 2 2 df. The null hypothesis says that the vertical 
intercept of the population line is zero, so that the 
line passes through the origin (0, 0). Carry out this 
test using the information given in Exercise 10.

Section 11.2 Exercises

	12.	 Use the computer output given in Exercise 9 of 
the previous section to decide whether the simple 
linear regression model specifies a useful relation-
ship between flux and inverse foil thickness.

	13.	 Exercise 22 (Section 3.3) of Chapter 3 gave SAS 
output from a regression of amount of oil recovered 
from wheat straw on amount of oil added.

	 a.	 Does the simple linear regression model appear 
to specify a useful relationship between these 
two variables? State the relevant hypotheses, 
and carry out a test in two different ways.

	 b.	 If the roles of the two variables were reversed, 
so that the amount of oil recovered from wheat 
straw was the independent variable, what would 
be the value of the t-ratio for testing model 
utility? (Answer without actually carrying out 
another regression analysis, and explain your 
reasoning.)

	14.	 Exercise 20 (Section 3.3) of Chapter 3 presented 
data on y 5 dielectric constant and x 5 air void (%) 
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	17.	 A sample of n 5 13 steel specimens was selected, 
and the values of x 5 nickel content and y 5 per-
centage austentite were determined, resulting in

^(xi 2 x)2 5 1.183 ^(yi 2 y)2 5 .05080

^(xi 2 x)(yi 2 y) 5 .2073

		  Does there appear to be a positive linear relation-
ship between these two variables in the sampled 
population? State and test the relevant hypotheses.

	18.	 In what was surely an unpleasant data collection ex-
perience, the article “Annual Variations of Odor Con-
centrations and Emissions from Swine Gestation, 
Farrowing, and Nursery Buildings” (J. of the Air 
and Waste Mgmnt., 2011: 1361–1368) reported on 
monthly odor concentrations and emission rates from 
a Canadian swine farm for a period of one year. One 
study objective was to identify possible relationships, 
if any, between odor and presence of other gases such 
as ammonia (NH3), hydrogen sulfide (H2S), carbon 
dioxide (CO2), and methane (CH4). Identifying such 
relationships would be helpful in that the gas concen-
tration could be used as an odor indicator.

	 a.	 A scatterplot of the n 5 32 observations on y 5 
odor concentration (OU/m3) and x 5 H2S con-
centration (ppb) suggested the plausibility of a 
positive linear relationship. The coefficient of 
determination for the simple linear regression 
of y on x was .58. State and test the relevant hy-
potheses to see if the message from the scatter-
plot can be confirmed.

	 b.	 A scatterplot of the n 5 32 observations on y 5 
odor concentration (OU/m3) and x 5 CH4 con-
centration (ppm) also suggested the plausibility of 
a positive linear relationship. The coefficient of 
determination for the simple linear regression of y 
on x was 0.33. State and test the relevant hypoth-
eses to see if the message from the scatterplot can 
be confirmed.

	19.	 How does lateral acceleration—side forces ex-
perienced in turns that are largely under driver 
control—affect nausea as perceived by bus pas-
sengers? The article “Motion Sickness in Public 
Road Transport: The Effect of Driver, Route, and 
Vehicle” (Ergonomics, 1999: 1646–1664) reported 
data on x 5 motion sickness dose (calculated in 
accordance with a British standard for evaluating 

for 18 asphalt mixture samples having 5% asphalt 
content. The following R output is from a simple 
linear regression of y on x:

Estimate
Std.
Error

t
value

Pr
(>|t|)

(Intercept) 4.858691 0.059768 81.293 <2e-16
AirVoid -0.074676 0.009923 -7.526 1.21e-06

Residual standard error: 0.03551 on 16  

degrees of freedom

Multiple R-squared: 0.7797,     

Adjusted R-squared: 0.766

F-statistic: 56.63 on 1 and 16 DF, p-value: 1.214e-06

Analysis of Variance Table

Response: Dielectric

DF Sum Sq Mean Sq F value Pr(>F)

AirVoid 1 0.071422 0.071422 56.635 1.214e-06

Residuals 16 0.020178 0.001261

	 a.	 What are the values of SSRegr, SSResid, and 
SSTo?

	 b.	 Determine and interpret the value of r2 for this 
regression. What is the corresponding value of r? 
Note that the sign of r can be determined based 
on the output.

	 c.	 Use the output to calculate a confidence interval 
with a confidence level of 95% for the slope � of 
the population regression line and interpret the 
resulting interval.

	 d.	 Suppose it had previously been believed that when 
air void increased by 1 percent, the associated true 
average change in dielectric constant would be at 
least 2.05. Does the sample data contradict this 
belief? State and test the relevant hypotheses.

	15.	 Suppose that the unit of measurement for y 5 wear 
loss in Example 11.5 is changed from mm3 to in3, 
which amounts to multiplying each y value by the 
same conversion factor c. How does this change 
affect the value of the t-ratio for testing model 
utility? Explain your reasoning.

	16.	 The value of the sample correlation coefficient is 
.722 for the n 5 14 observations on average ante-
rior maximum inclination angle (AMIA) in both 
the clockwise (Cl) and counterclockwise (Co) di-
rections given in Exercise 10 (Section 3.2) of Chap-
ter 3. Carry out a test at significance level .05 to de-
cide whether these two variables are linearly related 
in the population from which the data was selected 
(assuming that the population distribution is bivari-
ate normal).
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similar motion at sea) and y 5 reported nausea (%). 
Relevant summary quantities are

n 5 17 ^xi 5 221.1 ^yi 5 193

^x2
i 5 3056.69 ^xiyi 5 2759.6

^y2
i 5 2975

		  Values of dose in the sample ranged from 6.0 to 17.6.
	 a.	 Assuming that the simple linear regression 

model is valid for relating these two variables 
(this is supported by the raw data), calculate and 
interpret an estimate of the slope parameter that 
conveys information about the precision and 
reliability of estimation.

	 b.	 Does it appear that there is a useful linear rela-
tionship between these two variables?

	 c.	 Would it be sensible to use the simple linear re-
gression model as a basis for predicting % nausea 
when dose 5 5.0? Explain your reasoning.

	 d.	 When Minitab was used to fit the simple linear 
regression model to the raw data, the observa-
tion (6.0, 2.50) was flagged as possibly having 
a substantial impact on the fit. Eliminate this 
observation from the sample and recalculate the 
estimate of part (a). Based on this, does the obser-
vation appear to be exerting an undue influence?

	20.	 Mineral mining is one of the most important eco-
nomic activities in Chile. Mineral products are fre-
quently found in saline systems composed largely of 
natural nitrates. Freshwater is often used as a leach-
ing agent for the extraction of nitrate, but the Chilean 
mining regions have scarce freshwater resources. An 
alternative leaching agent is seawater. The authors 
of “Recovery of Nitrates from Leaching Solutions 
Using Seawater” (Hydrometallurgy, 2013: 100–105) 
evaluated the recovery of nitrate ions from discarded 
salts using freshwater and seawater leaching agents. 
Tests were performed in salt columns irrigated at 
the same rate for a period of more than 150 hours. 

Here is data on x 5 leaching time (h), yfw 5 nitrate  
extraction percentage (freshwater), and ysw 5 nitrate 
extraction percentage (seawater):

11.3	 Inferences Based on the Estimated Regression Line �

Once the simple linear regression model has been judged useful by the model utility 
test discussed in Section 11.2, the estimated model can be used as the basis for further 
inferences. Let x  denote a particular value of the independent or predictor variable x. 
In this section, we show how to obtain a confidence interval for the mean y value when 

x: 25.5 31.5 37.5 43.5 49.5 55.5
yfw: 25.7 43.2 55.3 62.9 68.6 73.2
ysw: 26.4 40.1 50.2 57.4 62.7 67.3

x: 61.5 67.5 73.5 79.5 85.5 91.5
yfw: 76.7 79.4 81.8 83.7 85.1 86.5
ysw: 71.4 74.7 77.8 80.3 82.3 84.1

x: 97.5 103.5 109.5 115.5 121.5 127.5
yfw: 87.7 88.6 89.6 90.5 90.7 91.2
ysw: 85.5 86.6 87.9 89.0 89.9 90.6

x: 133.5 139.5 145.5 151.5 157.5
yfw: 91.9 92.5 93.1 93.9 94.7
ysw: 91.2 91.8 92.3 92.8 93.3

	 a.	 Construct scatterplots of yfw versus x and ysw ver-
sus x. Note the nonlinearity of the plots. Would 
it be reasonable to describe the patterns in both 
plots as curved and monotonic?

	 b.	 In Section 3.4, we described how a power trans-
formation can be applied to create a linear pat-
tern in the transformed data. Using the trans-
formation x 5 1yx, construct scatterplots of yfw 
versus x , and ysw versus x . For each set of pairs, 
calculate point estimates of the slope and inter-
cept of the respective population regression line.

	 c.	 Does the simple linear regression model appear 
to specify a useful relationship between either 
dependent variable and x  in part (b)? State and 
test the relevant hypotheses.

	 d.	 The researchers concluded that the freshwater 
and seawater leaching agents yield similar nitrate 
extraction efficiencies. Using the regression mod-
els from part (b), calculate a point estimate of true 
nitrate extraction percentage when leaching time 
is 150 hours. Are the two estimates similar?
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x 5 x  and also how to calculate a prediction interval for the value of a single y to be 
observed at some time in the future when x 5 x . For example, x might be the tensile 
force applied to a steel specimen (1000s of lb) and y the resulting amount of elonga-
tion (thousandths of an inch). Then we might wish to calculate a confidence interval 
(interval of plausible values) for the average amount of elongation for all specimens to 
which a tensile force of 5000 lb is applied (so x  5 5). Alternatively, we might subject a 
single specimen to a force of 5000 lb and wish to calculate a prediction interval (interval 
of plausible values) for the resulting amount of elongation.

Recall that substituting a particular value x  into the equation of the estimated re-
gression line gives a number yn 5 a 1 bx* that has two different interpretations: It can be 
regarded either as a point estimate of the mean y value when x 5 x  or as a point predic-
tion of the y value that would result from making a single observation when x has this 
value. Because the point estimate and point prediction are single numbers, they convey 
no information about the reliability or precision of estimation or prediction. An interval 
gives information about reliability through its confidence or prediction level (e.g., 95%) 
and about precision from the width of the interval.

Before we obtain sample data, both a and b are subject to sampling variability—that 
is, they are both statistics whose values will vary from sample to sample. Suppose, for 
example, that � 5 50 and � 5 2. Then a first sample of (x, y) pairs might give a 5 52.35,  
b 5 1.895, a second sample might result in a 5 46.52, b 5 2.056, and so on. It follows that 
yn 5 a 1 bx* itself varies in value from sample to sample, so it is a statistic. If the intercept 
and slope of the population line are the aforementioned values 50 and 2, respectively, and 
x  5 10, then this statistic is trying to estimate the value 50 1 2(10) 5 70. The estimate 
from a first sample might be 52.35 1 1.895(10) 5 71.30, from second sample might be 
46.52 1 2.056(10) 5 67.08, and so on. In the same way that a confidence interval for � 
was based on properties of the sampling distribution of b, a confidence interval for a mean 
y value in regression is based on properties of the sampling distribution of the statistic yn.

Properties of the Sampling Distribution of  1 
Let  denote a particular value of the independent variable . Then the sampling distribu-
tion of the statistic n 5 1  has the following properties:

1.  �The mean value of this statistic is � 1 �x , so the sampling distribution is centered at 
the value that the statistic is attempting to estimate (i.e., the statistic is unbiased for 
estimating � 1 � ).

2. The standard deviation of the statistic is

�
n

5 �C1
1

( * 2  )2

The  standard deviation of the statistic n, which we denote by 
n

, results from 
replacing � in this expression by its estimate, .

3. �T he assumptions that any particular random deviation  in the model equation is nor-
mally distributed and that different deviations are independent of one another imply 
that n  itself is normally distributed.
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The values of both �yn and syn increase as the value of (x* 2 x)2 gets larger. That is, 
these standard deviations increase in value as the specified value x  deviates farther from 
x, the center of the x values for the sample observations. Thus the farther x  is from x, the 
less precisely yn tends to estimate � 1 �x*.

A Confidence Interval for a Mean y Value
In the same way that a confidence interval for the slope was based on the t variable 
t 5 (b 2 �)ysb, a confidence interval here is based on a standardized variable having a  
t distribution.

The standardized variable

5
n 2 (� 1 � *)

n

has a  distribution based on  2 2 df, where

n

5 B 1
1

( * 2   )2

This implies that a confidence interval for a bx*, the mean  value when  5 *, is

n 6 (   critical  value)
n

The  critical values corresponding to the usual confidence levels are given in Appendix 
Table IV; a value from the  2 2 df row of this table should be used.

Corrosion of steel reinforcing bars is the most important durability problem for 
reinforced concrete structures. Carbonation of concrete results from a chemical 
reaction that lowers the pH value by enough to initiate corrosion of the rebar. 
Representative data on x 5 carbonation depth (mm) and y 5 strength (MPa) for 
a sample of core specimens taken from a particular building follow (read from 
a plot in the article “The Carbonation of Concrete Structures in the Tropical 
Environment of Singapore,” Magazine of Concrete Res., 1996: 293–300):

x: 8.0 15.0 16.5 20.0 20.0 27.5 30.0 30.0 35.0
y: 22.8 27.2 23.7 17.1 21.5 18.6 16.1 23.4 13.4

x: 38.0 40.0 45.0 50.0 50.0 55.0 55.0 59.0 65.0
y: 19.5 12.4 13.2 11.4 10.3 14.1 9.7 12.0 6.8

A scatterplot of the data (see Figure 11.11 on p. 529) gives strong support to use of the 
simple linear regression model. Relevant quantities are as follows:

^xi 5 659.0  ^x2
i 5 28,967.50  x 5 36.61111  Sxx 5 4840.7778

^yi 5 293.2  ^xiyi 5 9293.95  ^y2
i 5 5335.76

b 5 2.297561  a 5 27.182936  SSResid 5 131.2402
r2 5 .766  se 5 2.8640

Example 11.7
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Let’s now calculate a confidence interval, using a 95% confidence level, for the 
mean strength for all core specimens having a carbonation depth of 45 mm—that is, 
a confidence interval for � 1 �(45). The interval is centered at

yn 5 a 1 b(45) 5 27.18 2 .2976(45) 5 13.79

The estimated standard deviation of the statistic yn is

syn 5  2.8640B 1
18

1
(45 2 36.6111)2

4840.7778
5 .7582

The 16 df t critical value for a 95% confidence level is 2.120, from which we deter-
mine the desired interval to be

13.79 6 (2.120)(.7582) 5 13.79 6 1.61 5 (12.18, 15.40)

The narrowness of this interval suggests that we have reasonably precise informa-
tion about the mean value being estimated. Remember that if we recalculated this 
interval for sample after sample, in the long run about 95% of the calculated intervals 
would include � 1 �(45). We can only hope that this mean value lies in the single 
interval that we have calculated.

Figure 11.10 shows Minitab output resulting from a request to fit the simple 
linear regression model and calculate confidence intervals for the mean value of 
strength at depths of 45 mm and 35 mm. The intervals are at the bottom of the 
output; note that the second interval is narrower than the first, because 35 is much 
closer to x than is 45. Figure 11.11 (on page 529) shows a Minitab scatterplot with 
(1)  curves corresponding to the confidence limits for each different x value and 
(2) prediction limits, to be discussed shortly. Notice how the curves get farther and 
farther apart as x moves away from x.

The regression equation is
strength = 27.2 – 0.298 depth

Predictor Coef Stdev t-ratio p

Constant 27.183 1.651 16.46 0.000
depth –0.29756 0.04116 –7.23 0.000
s = 2.864   R-sq = 76.6%   R-sq(adj) = 75.1%

Analysis of Variance

SOURCE DF SS MS F P

Regression 1 428.62 428.62 52.25 0.000
Error 16 131.24 8.20
Total 17 559.86

Fit Stdev.Fit 95.0%  C.I. 95.0%  P.I.
13.793 0.758 (12.185, 15.401) (7.510, 20.075)

Fit Stdev.Fit 95.0%  C.I. 95.0%  P.I.
16.768 0.678 (15.330, 18.207) (10.527, 23.009)

Figure 11.10  Minitab regression output for the data of Example 11.7
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Figure 11.11  Minitab scatterplot with confidence intervals and prediction intervals for 
the data of Example 11.7
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A Prediction Interval for a Single y Value
Suppose an investigator is contemplating making a single observation on the depen-
dent variable y at some future time when x has the value x . Let y  denote the resulting 
future observation. The point prediction for y  is yn 5 a 1 bx , and this is also the point 
estimate for � 1 �x , the mean y value when x 5 x . Consider the errors of estimation 
and prediction:

estimation error 5 estimate 2 true  value 5 yn 2 (� 1 �x*)

prediction error 5 prediction 2 true  value 5 yn 2 y*

The estimation error is the difference between a random quantity (yn) and a fixed quan-
tity, whereas the prediction error is the difference between two random quantities. This 
implies that there is more uncertainty associated with making a prediction than with 
estimating a mean y value. The mean value of the prediction error is

�yn2y* 5 �yn 2 �y* 5 � 1 �x* 2 (� 1 �x*) 5 0

Furthermore, yn and y  are independent of one another, because the former is based on 
the sample data and the latter is to be observed at some future time. This implies that

�2
yn 2y* 5 �2

yn 1 �2
y* 5 �2 c 1

n
1

(x* 2 x)2

Sxx
d 1 �2
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530	 chapter 11   Inferential Methods in Regression and Correlation

The standard deviation of the prediction error is the square root of this expression, and 
the estimated standard deviation results from replacing �2 by s2

e. Using these results to 
standardize the prediction error gives a t variable from which the prediction interval is 
obtained.

Without s2
e under the square root in the prediction interval formula, we would have 

the confidence interval formula. This implies that the prediction interval (PI) is wider 
than the confidence interval (CI)—often much wider because s2

e is frequently much 
larger than s2

yn . The prediction level for the interval is interpreted in the same way that 
a confidence level was previously interpreted. If a prediction level of 95% is used in 
calculating interval after interval from different samples, in the long run about 95% of 
the calculated intervals will include the value y  that is being predicted. Of course, we 
will not know whether the single interval that we have calculated is one of the good 95% 
until we have observed y .

The standardized variable

5
n 2 *2 2 1 2

n

has a  distribution with 2 2 df. This implies that a prediction interval for a future 
y value y* to be observed when x  x* is

n 6 (  critical value)2 2 1 s2
n

Let’s return to the carbonation depth–strength data of Example 11.7 and calculate a 
95% prediction interval for a strength value that would result from selecting a single 
core specimen whose carbonation depth is 45 mm. Relevant quantities from that 
example are

yn 5 13.79  syn 5 .7582  se 5 2.8640

For a prediction level of 95% based on n 2 2 5 16 df, the t critical value is 2.120, 
exactly what we previously used for a 95% confidence level. The prediction interval 
is then

13.79 6 (2.120)2(2.8640)2 1 (.7582)2 5 13.79 6 (2.120)(2.963)

 5 13.79 6 6.28 5 (7.51, 20.07)

Plausible values for a single observation on strength when depth is 45 mm are (at 
the 95% prediction level) between 7.51 MPa and 20.07 MPa. The 95% confidence 
interval for mean strength when depth is 45 was (12.18, 15.40). The prediction in-
terval is much wider than this because of the extra (2.8640)2 under the square root. 
Figure 11.10, the Minitab output in Example 11.7, shows this interval as well as the 
confidence interval.

Example 11.8
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Simultaneous Intervals
Suppose we wish to calculate a confidence interval for the mean y value or a prediction 
interval for a future y value both when x 5 x*

1 and also when x 5 x*
2, two different values 

of the predictor variable. If the confidence or prediction level for each individual inter-
val is 95%, then the joint or simultaneous level of confidence for both intervals will be 
smaller than 95%. For example, from Examples 11.7 and 11.8, we can be 95% confident 
that a y value to be observed when x 5 45 will be in the interval (7.51, 20.07) and also 
95% confident that a y value to be observed when x 5 35 will lie in the interval (10.53, 
23.01). The degree of confidence in the simultaneous statements

7.51 , 1st y , 20.07,  10.53 , 2nd  y , 23.01

must be less than 95%. It is very difficult to say exactly what the degree of simulta-
neous confidence is, because the two intervals are not based on independent data 
sets [if they were, the simultaneous level would be 100(.95)2 90%]. What can be 
said is that the simultaneous confidence level will be at least 100(1 2 2(.05))%, that 
is, at least 90%. More generally, if k different intervals are calculated, each using a 
confidence or prediction level of  100(1 2 �)%, then the simultaneous confidence 
or prediction level for all k intervals will be at least 100(1 2 k�)%. Thus if three 
different 99% confidence intervals were computed, the simultaneous confidence 
level would be at least 97%. There is a special table of t critical values for which the 
simultaneous level for k intervals is at least 95% (k 5 2, 3, 4, . . .) and another such 
table for at least 99%; the tabulated numbers are called Bonferroni t critical values 
after the mathematician whose inequality justifies the “at least” statement. If more 
than two or three of these intervals are calculated, they will have to be quite wide to 
guarantee at least the desired level.

Section 11.3 Exercises

	21.	 Mist (airborne droplets or aerosols) is generated 
when metal-removing fluids are used in machin-
ing operations to cool and lubricate the tool and 
workpiece. Mist generation is a concern to OSHA, 
which has recently lowered substantially the work-
place standard. The article “Variables Affecting 
Mist Generation from Metal Removal Fluids” 
(Lubrication Engr., 2002: 10–17) gave the accom-
panying data on x 5 fluid flow velocity for a 5% 
soluble oil (cm/sec) and y 5 the extent of mist drop-
lets having diameters smaller than 10 �m (mg/m3):
x: 89 177 189 354 362 442 965
y: .40 .60  .48 .66  .61 .69 .99

	 a.	 The investigators performed a simple linear 
regression analysis to relate the two variables. 
Does a scatterplot of the data support this strategy?

	 b.	 What proportion of observed variation in mist 
can be attributed to the simple linear regression 
relationship between velocity and mist?

	 c.	 The investigators were particularly interested in 
the impact on mist of increasing velocity from  
100 to 1000 (a factor of 10 corresponding to the 
difference between the smallest and largest x val-
ues in the sample). When x increases in this way, 
is there substantial evidence that the true average 
increase in y is less than .6?

	 d.	 Estimate the true average change in mist associ-
ated with a 1 cm/sec increase in velocity, and 
do so in a way that conveys information about 
precision and reliability.

	22.	 Phenolic compounds are found in the effluents of 
coal conversion processes, petroleum refineries, 
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532	 chapter 11   Inferential Methods in Regression and Correlation

herbicide manufacturing, and fiberglass manufac-
turing. These compounds are toxic, carcinogenic, 
and have contributed over the past decades to 
environmental pollution of aquatic environments. 
In one study reported in “Photolysis, Biodegrada-
tion, and Sorption Behavior of Three Selected 
Phenolic Compounds on the Surface and Sediment 
of Rivers” (J. of Envir. Engr., 2011: 1114–1121), the 
authors examined the sorption characteristics of 
three selected phenolic compounds. The following 
data on y 5 sorbed concentration (�g/g) and x 5 
equilibrium concentration (�g/mL) of 2, 4-Dinitro-
phenol (DNP) in a particular natural river sediment 
was read from a graph in the article.

x: 0.11 0.13 0.14 0.18 0.29 0.44 0.67 0.78 0.93
y: 1.72 2.17 2.33 3.00 5.17 7.61 11.17 12.72 14.78

	 a.	 Calculate point estimates of the slope and inter-
cept of the population regression line.

	 b.	 Using the simple linear regression model fit 
to this data, confirm that yn 5 3.404, syn 5 .107 
when x 5 .2, and yn 5 6.616, syn 5 .088 when x 5 
.4. Explain why syn is larger when x 5 .2 than 
when x 5 .4.

	 c.	 Calculate a confidence interval with a confi-
dence level of 95% for the true average DNP 
sorbed concentration of all river sediment speci-
mens using an equilibrium concentration of .4.

	 d.	 Calculate a prediction interval with a prediction 
level of 95% for the DNP sorbed concentration 
of a single river sediment specimen using an 
equilibrium concentration of .4.

	 e.	 If a 95% CI is calculated for true average DNP 
sorbed concentration when equilibrium con-
centration is .2, what will be the simultaneous 
confidence level for both this interval and the 
interval calculated in part (c)?

	23.	 Refer to Exercise 6 of Section 11.1.
	 a.	 Predict oxygen diffusivity for a single observa-

tion to be made when temperature is 1500°F, 
and do so in a way that conveys information 
about reliability and precision.

	 b.	 Would a prediction interval for diffusivity when 
temperature is 1200°F using the same predic-
tion level as in part (a) be wider or narrower 
than the interval of part (a)? Answer without 
computing this second interval.

	24.	 The simple linear regression model provides a very 
good fit to the data on rainfall and runoff volume 
given in Exercise 4 of Section 11.1. The equation 
of the least squares line is yn 5 21.128 1 .82697x, 
r2 5 .975, and se 5 5.24. Use the fact that syn 5 1.44 
when rainfall volume is 40 m3 to predict runoff in a 
way that conveys information about reliability and 
precision. Does the resulting interval suggest that 
precise information about the value of runoff for 
this future observation is available? Explain your 
reasoning.

	25.	 The article “Root Dentine Transparency: Age 
Determination of Human Teeth Using Comput-
erized Densitometric Analysis” (Amer. J. of Physi-
cal Anthro., 1991: 25–30) reported on an inves-
tigation of methods for age determination based 
on tooth characteristics. A single observation on 
y 5 age (yr) was made for each of the following 
values of x 5 % of root with transparent dentine: 
15, 19, 31, 39, 41, 44, 47, 48, 55, 64. Consider 
the following six intervals based on the resulting 
data: (i) a 95% CI for mean age when x 5 35; 
(ii) a 95% PI for age when x 5 35; (iii) a 95% CI 
for mean age when x 5 42; (iv) a 95% PI for age 
when x 5 42; (v) a 99% CI for mean age when  
x 5 42; (vi) a 99% PI for age when x 5 42. With-
out computing any of these intervals, what can be 
said about their relative widths?

	26.	 During oil drilling operations, components of the 
drilling assembly may suffer from sulfide stress 
cracking. The article “Composition Optimiza-
tion of High-Strength Steels for Sulfide Cracking 
Resistance Improvement” (Corrosion Sci., 2009: 
2878–2884) reported on a study in which the 
composition of a standard grade of steel was ana-
lyzed. The following data on y 5 threshold stress  
(% SMYS) and x 5 yield strength (MPa) was read 
from a graph in the article (which also included the 
equation of the least squares line).

x: 635 644 711 708 836 820 810
y: 100 93 88 84 77 75 74

x: 870 856 923 878 937 948
y: 63 57 55 47 43 38

	 a.	 Does a scatterplot support the use of the simple 
linear regression model for relating y to x?
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	 b.	 What proportion of observed variation in stress 
can be attributed to the approximate linear rela-
tionship between the two variables?

	 c.	 Determine a 90% confidence interval for the 
true average threshold stress of all similar steel 
specimens whose yield strength is 800 MPa.

	 d.	 Determine a 90% prediction interval for the 
threshold stress of a single steel specimen whose 
yield strength is 800 MPa.

	27.	 Milk is an important source of protein. How does 
the amount of protein in milk from a cow vary 
with milk production? The article “Metabolites of 
Nucleic Acids in Bovine Milk” (J. of Dairy Science, 
1984: 723–728) reported the accompanying data 
on x 5 milk production (kg/day) and y 5 milk 
protein (kg/day) for Holstein-Friesan cows:

x: 42.7 40.2 38.2 37.6 32.2 32.2 28.0 
y: 1.20 1.16 1.07 1.13 .96 1.07 .85

x: 27.2 26.6 23.0 22.7 21.8 21.3 20.2 
y: .87 .77 .74 .76 .69 .72 .64

		  Relevant calculated values include Sxx 5 762.012, 
b 5 .024576, a 5 .175576, SSTo 5 .48144, and 
SSResid 5 .02120.

	 a.	 Does the simple linear regression model specify 
a useful relationship between production and 
protein?

	 b.	 Estimate true average protein for all cows whose 
production is 30 kg/day; use a confidence interval 
with a confidence level of 99%. Does the result-
ing interval suggest that this mean value has been 
precisely estimated? Explain your reasoning.

	 c.	 Calculate a 99% prediction interval for the protein 
from a single cow whose production is 30 kg/day.

	28.	 Obtain an expression for sa, the estimated standard 
deviation of the intercept of the least squares line. 
Then use the fact that t 5 (a 2 �)ysa has a t distribu-
tion with n 2 2 df to test H0: � 5 0 for the data in 
Exercise 27 (this null hypothesis says that the popu-
lation regression line passes through the origin). 
Hint: When x 5 0, yn 5 a 1 b(0) 5 a,  and we have 
a general expression for syn.

11.4	 Multiple Regression Models 

The regression models considered thus far have involved relating the dependent or 
response variable y to a single independent or predictor variable x. But it is virtually 
always the case that a model relating y to two or more predictors will explain more 
variation and provide better predictions than will a model with just a single predic-
tor. For example, we should be able to predict fuel efficiency of a car more precisely 
from knowing both engine size and weight of the car than from knowing only one 
of these variables. Let k denote the number of predictor variables to be used in a 
model, and denote the predictors themselves by x1, x2, . . . , xk (previously x1, x2, . . .  
represented various values of the single variable x, whereas now they represent dif-
ferent variables). For example, let y be the concentration of a certain chemical 
contaminant in an industrial worker’s bloodstream. Then we might use the four 
predictors

x1 5 number of years of exposure to the contaminant
x2 5 number of years since the last exposure
x3 5 age of the worker
x4 5 a quantitative index of body mass

It is almost never true that the value of y is completely and uniquely determined 
by values of x1, . . . , xk. A probabilistic relationship is obtained by starting with some 
deterministic function f (x1, . . . , xk) and adding (or perhaps multiplying by) a random 
deviation e to incorporate uncertainty due to various other factors.
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534	 chapter 11   Inferential Methods in Regression and Correlation

Let x*
1, x*

2, . . . , x*
k denote particular values of the predictors. Then the model equa-

tion and assumptions about e imply that

(mean y value when x1 5 x*
1,…, xk 5 x*

k) 5 � 1 �1x*
1 1 … 1 �k x*

k

(variance of y when x1  5 x*
1,…, xk 5 x*

k) 5 �2

As in simple linear regression, if �2 is quite close to 0, any particular observed y value 
will tend to be quite near its mean value. When �2 is large, many of the y observations 
may deviate substantially from their mean y values.

The slope coefficient � in simple linear regression was interpreted as the mean 
change in y associated with a 1-unit increase in the value of x. Each population regres-
sion coefficient in multiple regression has a similar interpretation. For example, �2 is 
the mean change in y associated with a 1-unit increase in x2 provided that the values of 
the remaining predictors x1, x3, . . . , xk are held fixed.

A general additive multiple regression model, which relates a dependent vari-
able y to k predictor variables x1, x2, . . . , xk, is given by the model equation

y 5 � 1 �1x1 1 �2x2 1 … 1 �k xk 1 e

The random deviation e is assumed to be normally distributed with mean value 
0 and variance �2 for any particular values of the predictors, and the e’s resulting 
from different observations are assumed to be independent of one another. The
�i>s are called population regression coefficients, and the deterministic portion 
� 1 �1x1 1 … 1 �k xk is the population regression function.

definitions

Cardiorespiratory fitness is widely recognized as a major component of overall physi-
cal well-being. Direct measurement of maximal oxygen uptake (VO2max) is the 
single best measure of such fitness, but direct measurement is time-consuming and 
expensive. It is therefore desirable to have a prediction equation for VO2max in terms 
of easily obtained quantities. Consider the variables

y  5 VO2max (Lymin)  x1 5 weight (kg)  x2 5 age (yr)

x3 5 time necessary to walk 1 mile (min)

x4 5 heart rate at the end of the walk (beatsymin)

Here is one possible model, for male students, consistent with the information given 
in the article “Validation of the Rockport Fitness Walking Test in College Males and 
Females” (Research Quarterly for Exercise and Sport, 1994: 152–158):

y 5 5.0 1 .01x1 2 .05x2 2 .13x3 2 .01x4 1 e  � 5 .4

The population regression function is

mean y valued for fixed x1, . . . , xk 5 5.0 1 .01x1 2 .05x2 2 .13x3 2 .01x4

Example 11.9
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For individuals whose weight is 76 kg, age is 20 yr, walk time is 12 min, and heart 
rate is 140 beats/min,

mean value of VO2max 5 5.0 1 .01(76) 2 .05(20) 2 .13(12) 2 .01(140)
5 1.80 L/min

With 2� 5 .80, it is quite likely (a probability of roughly .95) that an actual y value 
observed when the xi’s are as stated will be within .80 of the mean value, that is, in 
the interval from 1.00 to 2.60.

The value �2 5 2.05 is interpreted as the average change in VO2max (here a 
decrease) associated with a 1-year increase in age while weight, walk time, and heart 
rate are all held fixed. The three other �i>s associated with predictors have similar 
interpretations.

A Special Case: Polynomial Regression
Consider again the case of a single independent variable x, and suppose that a scatter-
plot of the n sample (x, y) pairs has the appearance of Figure 11.12. The simple linear 
regression model is clearly not appropriate. It does, however, look as though a parabola, 
the graph of a quadratic function y 5 � 1 �1x 1 �2x

2, would provide a very good fit to 
the data for appropriately chosen values of � and the �i>s. Because no quadratic would 
give a perfect fit, we need a probabilistic model that allows observed points to deviate 
from the parabola. Adding a random deviation e to the quadratic function gives such a 
model:

y 5 � 1 �1x 1 �2x
2 1 e

If we rewrite this equation with x1 5 x and x2 5 x2, a special case of the general 
multiple regression model with k 5 2 results. Notice that one of the two predictors is a 
mathematical function of the other one: x2 5 (x1)

2. In general, in a multiple regression 
model, it is perfectly legitimate to have one or more of the k predictors that are mathemati-
cal functions of other predictors. For example, we will shortly discuss models that include 
an interaction predictor of the form x3 5 x1x2, a product of two other predictors. In particu-
lar, the general polynomial regression model begins with a single independent variable x  
and creates predictors x1 5 x, x2 5 x2, . . . , xk 5 xk for some specified value of k.

Figure 11.12 A scatterplot consistent 
with a quadratic regression model

Un
le

ss
 o

th
er

w
is

e 
no

te
d,

 a
ll 

co
nt

en
t o

n 
th

is
 p

ag
e 

is
 ©

 C
en

ga
ge

 L
ea

rn
in

g.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



536	 chapter 11   Inferential Methods in Regression and Correlation

The kth-degree polynomial regression model

y 5 � 1 �1x 1 �2 x2 1 … 1 �k xk 1 e

is a special case of the general additive multiple regression model with x1 5 x, 
x2 5 x2, . . . , xk 5 xk. The population regression function is

mean y value for fixed x 5 � 1 �1x 1 … 1 �k x  

k

The most important special case other than simple linear regression (k 5 1) is the 
quadratic regression model

y 5 � 1 �1x 1 �2x
2 1 e

This model replaces the line of mean y values in simple linear regression with a 
parabolic curve of mean values � 1 �1x 1 �2x

2. If �2 , 0, the curve opens down-
ward, as in Figure 11.13(a), whereas it opens upward when �2 . 0. A less fre-
quently encountered case is that of cubic regression, in which k 5 3.

definitions

Figure 11.13 P olynomial regression models: (a) quadratic regression model with �2 , 0; 
(b) quadratic regression model with �2 . 0; (c) cubic regression model with �3 . 0

(a) (b) (c)

Researchers have examined a variety of climatic variables in an attempt to gain an 
understanding of the mechanisms that govern rainfall runoff. The article “The Appli-
cability of Morton’s and Penman’s Evapotranspiration Estimates in Rainfall-Runoff 
Modeling” (Water Resources Bull., 1991: 611–620) reported on a study in which data 
on x 5 cloud cover and y 5 daily sunshine (hr) was gathered from a number of dif-
ferent locations. The authors used a cubic regression model to relate these variables. 
Suppose that the actual model equation for a particular location is

y 5 11 2 .400x 2 .250x2 1 .005x3 1 e

Then the regression function is
(mean daily sunshine for given cloud cover x) 5 11 2 .400x 2 .250x2 1 .005x3

For example,
(mean daily sunshine when cloud cover is 4) 5 11 2 .400(4) 2 .250(4)2 1 .005(4)3

5 5.72
If � 5 1, it is quite likely that an observation on daily sunshine made when x 5 4 
would be between 3.72 and 7.72 hr.

Example 11.10
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The interpretation of �i given previously for the general multiple regression 
model is not legitimate in polynomial regression. This is because all predictors are 
functions of x, so xi 5 (x)i cannot be increased by 1 unit while the values of all other 
predictors are held fixed. In general, the interpretation of regression coefficients 
requires extra care when some predictor variables are mathematical functions of 
other variables.

Interaction Between Variables
Suppose that an industrial chemist is interested in the relationship between product 
yield (y) from a certain reaction and two independent variables, x1 5 reaction tem-
perature and x2 5 pressure at which the reaction is carried out. The chemist initially 
proposes the relationship

y 5 1200 1 15x1 2 35x2 1 e

for temperature values between 80 and 100 in combination with pressure values rang-
ing from 50 to 70. The population regression function 1200 1 15x1 2 35x2 gives the 
mean y value for any particular values of the predictors. Consider this mean y value for 
three different particular temperature values:

x1 5 90:    mean y value 5 1200 1 15(90) 2 35x2 5 2550 2 35x2
x1 5 95:    mean y value 5 2625 2 35x2
x1 5 100:    mean y value 5 2700 2 35x2

Graphs of these three mean y value functions are shown in Figure 11.14(a). Each graph 
is a straight line, and the three lines are parallel, each with a slope of 235. Thus irre-
spective of the fixed value of temperature, the average change in yield associated with a 
1-unit increase in pressure is 235.

Mean  value Mean  value

2 2
(a) (b)

2700 
 35

2  (
1  = 100)

2625 
 35

2  (
1  = 95)

2550 
 35

2  (
1  = 90)

3000 
 40

2  (
1  = 100)

2625 
 35

2  (
1  = 95)

2250 
 30

2  (
1  = 90)

Figure 11.14  Graphs of the mean y value for two different models:  
(a)  1200 1 15 1 2 35 2; (b)  24500 1 75 1 1 60 2 2 1 2Un
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Since chemical theory suggests that the decline in average yield when pressure x2 
increases should be more rapid for a high temperature than for a low temperature, the 
chemist now has reason to doubt the appropriateness of the proposed model. Rather 
than the lines being parallel, the line for a temperature of 100 should be steeper than 
the line for a temperature of 95, and that line in turn should be steeper than the line for 
x1 5 90. A model that has this property includes, in addition to predictors x1 and x2, a 
third predictor variable, x3 5 x1x2. One such model is

y 5 24500 1 75x1 1 60x2 2 x1x2 1 e

for which the population regression function is 24500 175x1 1 60x2 2 x1x2. This gives

mean y value when temperature is 100 5 24500 1 (75)(100) 1 60x2 2 100x2

 5 3000 2 40x2

mean value when temperature is 95 5 2625 2 35x2

mean value when temperature is 90 5 2250 2 30x2

These are graphed in Figure 11.14(b), where it is clear that the three slopes are differ-
ent. Now each different value of x1 yields a line with a different slope, so the average 
change in yield associated with a 1-unit increase in x2 depends on the value of x1. When 
this is the case, the two variables are said to interact.

The general equation for a multiple regression model based on two independent 
variables x1 and x2 that also includes an interaction predictor is

y 5 �0 1 �1x1 1 �2x2 1 �3x3 1 e  with  x3 5 x1x2

When x1 and x2 do interact, this model will usually give a much better fit to resulting 
data than would the no-interaction model. Failure to consider a model with interaction 
too often leads an investigator to conclude incorrectly that the relationship between y 
and a set of independent variables is not very substantial.

More than one interaction predictor can be included in the model when more than 
two independent variables are available. If, for example, three independent variables x1, 
x2, and x3 are available, one possible model is

y 5 � 1 �1x1 1 �2x2 1 �3x3 1 �4x1x2 1 �5x1x3 1 �6x2x3 1 e

If the change in the mean y value associated with a 1-unit increase in one inde-
pendent variable depends on the value of a second independent variable, there is 
interaction between these two variables. Denoting the two independent variables 
by x1 and x2, we can model this interaction by including as an additional predictor 
x3 5 x1x2, the product of the two independent variables.

definition
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One could even include a three-way interaction x7 5 x1x2x3, although in practice this  
is rarely done. In applied work, quadratic predictors such as x2

1 and x2
2 are often in-

cluded to model a curved relationship between y and several independent variables. A 
frequently used model with k 5 5 based on two independent variables x1 and x2 is the 
full quadratic or complete second-order model

y 5 � 1 �1x1 1 �2x2 1 �3x1x2 1 �4x
2
1 1 �5x

2
2 1 e

This model replaces the straight lines of Figure 11.14 with parabolas (each one is 
the graph of the population regression function as x2 varies when x1 has a particular 
value). Starting with four independent variables x1,…, x4, one could create a model 
with four quadratic predictors and six two-way interaction predictor variables. Clearly, 
a great many different models can be created from just a small number of independent 
variables. In Section 11.6 we briefly discuss methods for selecting one model from a 
number of competing models.

Qualitative Predictor Variables
Thus far we have explicitly considered the inclusion of only quantitative (numerical) 
predictor variables in a multiple regression model. Using simple numerical coding, 
qualitative (categorical) variables, such as bearing material (aluminum or copper/lead) 
or type of wood (pine, oak, or walnut), can also be incorporated into a model. Let’s first 
focus on the case of a dichotomous variable, one with just two possible categories—
male or female, U.S. or foreign manufacture, and so on. With any such variable, we 
associate a dummy or indicator variable x whose possible values 0 and 1 indicate which 
category is relevant for any particular observation.

The article “Estimating Urban Travel Times: A Comparative Study” (Trans. Res., 
1980: 173–175) described a study relating the dependent variable y 5 travel time 
between locations in a certain city and the independent variable x2 5 distance be-
tween locations. Two types of vehicles, passenger cars and trucks, were used in the 
study. Let

x1 5 e1 if the vehicle is a truck
0 if the vehicle is a passenger car

One possible multiple regression model is

y 5 � 1 �1x1 1 �2x2 1 e

The mean value of travel time depends on whether a vehicle is a car or a truck:

mean time 5 � 1 �2x2 	 when x1 5 0 (cars)

mean time 5 � 1 �1 1 �2x2  when x1 5 1 (trucks)

The coefficient �1 is the difference in mean times between trucks and cars with 
distance held fixed; if �1 . 0, on average it will take trucks longer to traverse any 
particular distance than it will for cars.

Example 11.11
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You might think that the way to handle a three-category situation is to define a 
single numerical variable with coded values such as 0, 1, and 2 corresponding to the 
three categories. This is incorrect, because it imposes an ordering on the categories that 
is not necessarily implied by the problem context. The correct approach to incorporat-
ing three categories is to define two different dummy variables. Suppose, for example, 
that y is the lifetime of a certain cutting tool, x1 is cutting speed, and there are three 
brands of tool being investigated. Then let

x2 5 e1 if a brand A tool is used
0 otherwise

    x3 5 e1 if a brand B tool is used
0 otherwise

When an observation on a brand A tool is made, x2 5 1 and x3 5 0, whereas for a brand 
B tool, x2 5 0 and x3 5 1. An observation made on a brand C tool has x2 5 x3 5 0, and 
it is not possible that x2 5 x3 5 1 because a tool cannot simultaneously be both brand 

A second possibility is a model with an interaction predictor:

y 5 � 1 �1x1 1 �2x2 1 �3x1x2 1 e

Now the mean times for the two types of vehicles are

mean time 5 � 1 �2x2              when x1 5 0
mean time 5 � 1 �1 1 (�2 1 �3) x2    when x1 5 1

For each model, the graph of the mean time versus distance is a straight line for 
either type of vehicle, as illustrated in Figure 11.15. The two lines are parallel for 
the first (no-interaction) model, but in general they will have different slopes when 
the second model is correct. For this latter model, the change in mean travel time 
associated with a 1-mile increase in distance depends on which type of vehicle is 
involved—the two variables “vehicle type” and “travel time” interact. Indeed, data 
collected by the authors of the cited article suggested the presence of interaction.

Figure 11.15  Regression functions for models with one dummy variable ( 1) and 
one quantitative variable 2: (a) no interaction; (b) interaction
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A and brand B. The no-interaction model would have only the predictors x1, x2, and x3. 
The following interaction model allows the mean change in lifetime associated with a 
1-unit increase in speed to depend on the brand of tool:

y 5 � 1 �1x1 1 �2x2 1 �3x3 1 �4x1x2 1 �5x1x3 1 e

Construction of a picture like Figure 11.14 with a graph for each of the three possible 
(x2, x3) pairs gives three nonparallel lines (unless �4 5 �5 5 0).

More generally, incorporating a categorical variable with c possible categories into 
a multiple regression model requires the use of c 2 1 indicator variables (e.g., five 
brands of tools would necessitate using four indicator variables). Thus even one cat-
egorical variable can add many predictors to a model.

Nonlinear Multiple Regression Models
Many nonlinear relationships can be put in the form of our basic additive model equa-
tion by transforming one or more of the variables. For example, taking the logarithm on 
both sides of the multiplicative exponential model equation

y 5 �0e
�1x11�2x21 1�kxk «, « . 0

gives an equation of the desired form [with � 5 ln(�0)]. An appropriate transformation 
could be suggested by theory or by various plots of the data, such as those to be discussed 
in Section 11.6. There are also relationships that cannot be linearized by means of a 
transformation, necessitating more complex methods of analysis. Consult one of the 
chapter references for more information.

Section 11.4 Exercises

	29.	 A trucking company considered a multiple regres-
sion model for relating the dependent variable y 5 
total daily travel time for one of its drivers (hours) 
to the predictors x1 5 distance traveled (miles) and 
x2 5 the number of deliveries made. Suppose that 
the model equation is
y 5 2.800 1 .060x1 1 .900x2 1 e

	 a.	 What is the mean value of travel time when dis-
tance traveled is 50 miles and three deliveries 
are made?

	 b.	 How would you interpret �1 5 .060, the coeffi-
cient of the predictor x1? What is the interpreta-
tion of �2 5 .900?

	 c.	 If � 5 .5 hour, what is the probability that travel 
time will be at most 6 hours when three deliveries 
are made and the distance traveled is 50 miles?

	30.	 Consider the regression model y 5 26.50 1.250x1 1 
.600x2 2 .150x3 1 .160x4 1 e, where y 5 gasoline yield 

(% of crude oil), x1 5 crude oil gravity ( API), x2 5 
crude oil vapor pressure (PSIA), x3 5 crude oil ASTM 
10% point ( F), and x4 5 gasoline end point ( F).

	 a.	 Interpret the population regression coefficients 
�1 and �3.

	 b.	 What is the mean yield when x1 5 40, x2 5 5,  
x3 5 230, and x4 5 360?

	31.	 High-alumina refractory castables have been exten-
sively investigated in recent years because of their 
significant advantages over other refractory brick of 
the same class: lower production and application 
costs, versatility, and performance at high tempera-
tures. The authors of “Processing of Zero-Cement 
Self-Flow Alumina Castables” (The Amer. Ceramic 
Soc. Bull., 1998: 60–66) proposed a quadratic regres-
sion model to describe the relationship between x 5 
viscosity (MPa ∙ sec) and y 5 free flow (%). Suppose 
the actual model is y 5 2296 1 2.20x 2 .003x2 1 e.
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	 a.	 Graph the true regression function y 5 2296 1 
2.20x – .003x2 for x values between 350 and 485.

	 b.	 Would mean free flow percentage be higher for 
a viscosity value of 450 or 470?

	 c.	 What is the change in mean free flow percent-
age when the viscosity increases from 450 to 
460? From 460 to 470?

	32.	 Let y 5 wear life of a bearing, x1 5 oil viscosity, 
and x2 5 load. Suppose that the multiple regression 
model relating life to viscosity and load is

y 5 125.0 1 7.750x1 1 .0950x2 2 .0090x1x2 1 e

	 a.	 What is the mean value of life when viscosity is 
40 and load is 1100?

	 b.	 When viscosity is 30, what is the change in 
mean life associated with an increase of 1 in 
load? When viscosity is 40, what is the change 

11.5	 Inferences in Multiple Regression 

We now assume that a dependent or response variable y is related to k independent, 
predictor, or explanatory variables x1, . . . , xk via the general additive multiple regression 
model

y 5 � 1 �1x1 1 … 1 �kxk 1 e

discussed in Section 11.4. Estimation of model parameters and other inferences are 
based on a sample of n observations, each one consisting of k 1 1 numbers: a value 
of x1, a value of x2, . . . , a value of xk, and a value of y. As in simple linear regression, 
the principle of least squares is used to estimate the population regression coefficients 
�, �1, . . . , �k. The least squares estimates a, b1, b2, . . . , bk are chosen to minimize the 
sum of squared deviations:

^
all obs

[y 2 (a 1 b1x1 1 … 1 bk xk)]
2

As described in Section 3.5, the minimization requires taking k 1 1 partial derivatives, 
equating these to zero to obtain a system of linear equations (the normal equations), and 
solving this system for the estimates. There are formulas for the least squares estimates, 
but the only sensible way to express them is to use the branch of mathematics called 
matrix algebra. Fortunately, this is not necessary for our purposes; these formulas have 
been programmed into all of the most popular statistical computer packages. When 
using any particular package, it is necessary only to enter the data, make an appropriate 
request, and know how to find the estimates on the output. The estimated regression 
equation yn 5 a 1 b1x1 1 … 1 bk xk can then be used to estimate a mean y value or pre-
dict a single y value.

in mean life associated with an increase of 1 in 
load?

	33.	 Let y 5 sales at a fast-food outlet (1000s of $), x1 5 
number of competing outlets within a 1-mile radius, 
x2 5 population within a 1-mile radius (1000s of 
people), and x3 be an indicator variable that equals 
1 if the outlet has a drive-up window and 0 other-
wise. Suppose that the true regression model is

y 5 10.00 2 1.2x1 1 6.8x2 1 15.3x3 1 e

	 a.	 What is the mean value of sales when the 
number of competing outlets is 2, there are 
8000 people within a 1-mile radius, and the 
outlet has a drive-up window?

	 b.	 What is the mean value of sales for an out-let 
without a drive-up window that has 3 competing 
outlets and 5000 people within a 1-mile radius?
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The article “How to Optimize and Control the Wire Bonding Process: Part II (Solid 
State Technology, Jan. 1991: 67–72) described an experiment carried out to assess the 
impact of the variables x1 5 force (g), x2 5 power (mW), x3 5 temperature (°C), and 
x4 5 time (ms) on y 5 ball bond shear strength (g). The following data1 was gener-
ated to be consistent with the information given in the article:

Observation Force Power Temperature Time Strength
1 30 60 175 15 26.2
2 40 60 175 15 26.3
3 30 90 175 15 39.8
4 40 90 175 15 39.7
5 30 60 225 15 38.6
6 40 60 225 15 35.5
7 30 90 225 15 48.8
8 40 90 225 15 37.8
9 30 60 175 25 26.6

10 40 60 175 25 23.4
11 30 90 175 25 38.6
12 40 90 175 25 52.1
13 30 60 225 25 39.5
14 40 60 225 25 32.3
15 30 90 225 25 43.0
16 40 90 225 25 56.0
17 25 75 200 20 35.2
18 45 75 200 20 46.9
19 35 45 200 20 22.7
20 35 105 200 20 58.7
21 35 75 150 20 34.5
22 35 75 250 20 44.0
23 35 75 200 10 35.7
24 35 75 200 30 41.8
25 35 75 200 20 36.5
26 35 75 200 20 37.6
27 35 75 200 20 40.3
28 35 75 200 20 46.0
29 35 75 200 20 27.8
30 35 75 200 20 40.3

A statistical computer package gave the following least squares estimates:

a 5 237.48  b1 5 .2117  b2 5 .4983  b3 5 .1297  b4 5 .2583

Example 11.12

1 From the book Statistics Engineering Problem Solving by Stephen Vardeman, an excellent exposition 
of the territory covered by our book, albeit at a somewhat higher level.
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Substituting the values of the predictors from the successive observations into the 
equation for the estimated regression gives the predicted or fitted values yn1, yn2,…, ynn. For 
example, since the values of the four predictors for the last observation in Example 11.12 
are 35, 75, 200, and 20, respectively, the corresponding predicted value is yn30 5 38.41. 
The residuals are the differences y1 2 yn1,…, yn 2 ynn? The last residual in Example 11.12 
is 40.3 2 38.41 5 1.89. The closer the residuals are to zero, the better the job our estimat-
ed equation is doing in predicting the y values corresponding to values of the predictors in 
our sample. Squaring these residuals and summing gives residual or error sum of squares 
^(yi 2 yni)

2, denoted by SSResid. The number of df associated with SSResid is n 2 (k 1 1). 
The explanation is that the k 1 1 parameters �, �1,…, �k have to be estimated from the 
data before SSResid can be calculated, resulting in a loss of this many df (in simple linear 
regression, k 5 1 so df 5 n 2 2). The variance �2 of a random deviation e in the model 
equation is estimated by s2

e 5 SSResid y[n 2 (k 1 1)], and se is the estimate of �. For the 
data of Example 11.12, SSResid 5 665.12, so 665.12y[30 2 (4 1 1)] 5 26.60 and the 
estimated standard deviation is 5.16. We estimate that, roughly speaking, the size of a typi-
cal deviation of y from its mean value will be about 5.2 g.

Model Utility
A very important quantity introduced in Section 3.5 is the coefficient of multiple 
determination, R2, given by

R2 5 1 2
SSResid

SSTo
  where SSTo 5 ^ (yi 2 y)2

R2 is interpreted as the proportion of variation in the observed y values that can be attributed 
to (or explained by) the model relationship between y and the predictors. The closer R2 is to 
1, the more effectively the model has explained variation in y by relating it to the predictors. 
The coefficient of multiple determination for the data of Example 11.12 is .714, so some-
what more than 70% of the observed variation in strength can be attributed to the model 
relationship between strength and the four predictors force, power, temperature, and time.

Thus we estimate that .1297 gm is the average change in strength associated with a 
1-degree increase in temperature when the other three predictors are held fixed; the 
other estimated coefficients are interpreted in a similar manner.

The estimated regression equation is

yn 5 237.48 1 .2117x1 1 .4983x2 1 .1297x3 1 .2583x4

A point prediction of strength resulting from a force of 35 g, power of 75 mW, tem-
perature of 200 degrees, and time of 20 ms is

yn 5 237.48 1 (.2117)(35) 1 (.4983)(75) 1 (.1297)(200) 1 (.2583)(20)

 5 38.41 g

This is also a point estimate of the mean value of strength for the specified values of 
force, power, temperature, and time.
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The value of R2 cannot decrease when an extra predictor is added to the model, 
and it will generally increase. Furthermore, the value of R2 can almost always be made 
very close to 1 simply by using a model whose number of predictors is quite close to the 
sample size, even if many of these predictors are “frivolous” in the sense that they would 
contribute only marginally to explaining variation in y. Because R2 can be misleading in 
this way, a quantity called adjusted R2 is included on multiple regression output from 
most statistical computer packages. It is defined by

adjusted R2 5 1 2
SSResidy[n 2 (k 1 1)]

SSToy(n 2 1)
5 1 2 c n 2 1

n 2 (k 1 1)
d SSResid

SSTo

Replacing the expression in brackets on the far right by 1 gives R2 itself. Since this expres-
sion is less than 1, the adjusted R2 is smaller than R2. This downward adjustment will 
be small when R2 is reasonably high and this has been achieved by using a model with 
relatively few predictors compared to the sample size. For example, adjusted R2 for the 
model fit in Example 11.12 is .668, which is not all that much smaller than R2 itself. The 
adjustment will be more dramatic when R2 is not so high or when k is large relative to n.

High values of R2 and adjusted R2 certainly suggest that the model fit is a useful one. 
But how large should these values be before we draw this conclusion? It is desirable to 
have a formal test procedure so that we will not be led astray by intuition. Recall that the 
null hypothesis for the model utility test in simple linear regression was that � 5 0; its 
interpretation was that there is no useful linear relationship between y and the single pre-
dictor x. Here, the null hypothesis states that there is no useful linear relationship between 
y and any of the k predictors included in the model. The test is based on F distributions, 
which were first encountered in Chapter 9 in connection with the analysis of variance.

The Model Utility   Test in Multiple Regression

Null hypothesis:    0: �1 5 �2 5 5 � 5 0

Alternative hypothesis:    a: at least one among �1, . . . , �  is not zero

test statistic:  5

2y
(1 2 2)y[ 2 ( 1 1)]

5
MSRegr

MSResid

where

MSResid 5 SSresidy[( 2 ( 1 1)]

MSRegr  5 SSRegryk
SSRegr  5 SSto 2 SSResid

The larger the value of 2, the larger the value of  will be, implying that the test is upper-
tailed (as were  tests in ANOVA). When 0 is true, the test statistic has an  distribution 
based on  numerator and  2 (  1 1) denominator df.  The -value for the test is the area 
under the corresponding  curve to the right of the calculated value of . Partial informa-
tion about this -value can be obtained from the table of  critical values given in Appendix 
Table VIII. As usual, the null hypothesis is rejected if the -value is less than or equal to the 
chosen significance level.
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A large value of R2 is no guarantee that the model will be judged useful by the F test. If k is 
large relative to n, F will not exceed 0 by a great deal and the P-value will not be very small.

Returning to the bond shear strength data of Example 11.12, a model with k 5 4 
predictors was fit, so the relevant hypotheses are

H0: �1 5 �2 5 �3 5 �4 5 0

Ha: at least one of these four �’s is not zero

Figure 11.16 shows output from the JMP statistical package. The values of the es-
timated coefficients, se (Root Mean Square Error), R2, and adjusted R2 agree with 
those given previously.

The value of the model utility F ratio is

F 5
R2yk

(1 2 R2)y[n 2 (k 1 1)]
5

.713959y4

.286041y(30 2 5)
5 15.60

Example 11.13

Figure 11.16  Multiple regression output from JMP for 
the data of Example 11.12
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This value also appears in the F Ratio column of the ANOVA table in Figure 11.16. 
The largest F critical value for 4 numerator and 25 denominator df in our F table is 
6.49, which captures an upper-tail area of .001. Thus P-value < .001. The ANOVA 
table in the JMP output (Figure 11.16) shows that P-value < .0001. This is a highly 
significant result. The null hypothesis should be rejected at any reasonable signifi-
cance level. We conclude that there is a useful linear relationship between y and at 
least one of the four predictors in the model. This does not mean that all four predic-
tors are useful; we will say more about this subsequently.

Inferences About an Individual bi

Just as the value of the estimated slope coefficient b in simple linear regression 
varies from sample to sample, so too does the value of any estimated coefficient bi in 
multiple regression. That is, bi is a statistic, therefore it has a sampling distribution. 
It can be shown that the sampling distribution is normal (a consequence of the as-
sumption that the random deviation e is normally distributed and that the various 
deviations are independent of one another). The mean value of the statistic bi is 
�i. That is, the sampling distribution is always centered at the value of what the 
statistic is trying to estimate, so the statistic is unbiased. We denote the estimated 
standard deviation of bi by sbi

; the formulas for these estimated standard deviations 
are complicated, but their values will be available on output from all of the most 
popular statistical computer packages. In the JMP output of Figure 11.16, the es-
timated standard deviations are shown in the Std Error column right next to the 
estimated coefficients. These quantities are the basis for calculating confidence in-
tervals and testing hypotheses.

The standardized variable

5
2 �

has a  distribution based on  2 (  1 1) df.   This implies that a confidence interval for �  is

6 (  critical value)

The test statistic for 0: � 5 is

5
2 hypothesized value

The test is upper-, lower-, or two-tailed, depending on whether the inequality in a is ., ,, 
or Þ . In practice, the most frequently tested null hypothesis is 0: � 5 0.  The interpreta-
tion of 0 is that  , the predictor  
provides no useful information about .
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The JMP output of Figure 11.16 gives b2 5 .498333, sb2
5 .070191, and error df 5  

n 2 (k 1 1) 5 25. The t critical value for a confidence interval for �2 with a 
confidence level of 95% is 2.060. The confidence interval is

.498333 6 (2.060)(.070191) .498 6 .145 5 (.353, .643)

We therefore estimate with a high degree of confidence that, when the value of 
power is increased by 1 mw while force, temperature, and time are all held fixed, the 
associated change in average strength will be between .353 gm and .643 gm.

Example 11.14

In Example 3.15 from Section 3.5, we gave a data set consisting of 13 observa-
tions on the variables y 5 adsorption, x1 5 extractable iron, and x2 5 extractable 
aluminum. Figure 11.17 is the Minitab output from fitting the model y 5 � 1 
�1x1 1 �2x2 1 �3x3 1 e, where x3 5 x1x2 is an interaction predictor.

Judging from the P-value of .000 for the model utility test, the fitted model 
specifies a very useful relationship between y and the predictors. Provided that iron 
and aluminum are retained in the model, does the interaction predictor appear to 
provide useful information about adsorption? The relevant hypotheses are

H0: �3 5 0

Ha: �3 Þ 0

The test statistic is the t-ratio b3  

ysb3
, with value .0005278y.0006610 5 .80. Our table 

of t curve tail areas shows that the area under the 13 2 (3 1 1) 5 9 df curve to the 
right of .8 is .222 (see Appendix Table VI), so the P-value for the two-tailed test is 
.444 (.445 according to Minitab). The null hypothesis should not be rejected at any 
reasonable significance level. It is very plausible that �3 5 0, from which we con-
clude that the interaction predictor does not appear to provide useful information 
beyond what is provided by the predictors iron and aluminum.

Example 11.15

Figure 11.17  Minitab output for Example 11.15
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More Intervals
Because the individual estimated coefficients vary from sample to sample, so will 
the value of yn 5 a 1 b1x1 1 … 1 bk xk for fixed values of x1, . . . , xk. Properties of the 
sampling distribution of the statistic yn can be used to obtain both a confidence inter-
val for a mean y value and a prediction interval for a single y value when the predictors 
have specified values. Both intervals are based on n 2 (k 1 1) df and have the same 
general form as in the case of simple linear regression. The CI for a mean y value is

yn 6 (t critical value)syn

and the PI for a single as-yet-unobserved y value is

yn 6 (t critical value)2s2
e 1 sy

2
n

where syn is the estimated standard deviation of the statistic yn. The PI is always wider 
than the corresponding CI.

Figure 11.18 shows Minitab output from fitting the model, using only the predictors x1 
and x2, to the adsorption data referred to in Example 11.15. About 95% of the observed 
variation in adsorption can be attributed to the model relationship. The P-value for 
model utility is .000, confirming the utility of the chosen model. The P-values corre-
sponding to t-ratios for the two � coefficients are .004 and .000, respectively, indicating 
that neither of these predictors should be deleted from the model when the other one is 
retained. That is, both predictors appear to provide useful information about y. The last 
line of the output gives estimation and prediction information when x1 5 200 and x2 5  
40. The values of yn and syn are 29.16 and 1.76, respectively. The limits of both a 95%  
CI for mean adsorption and a 95% PI for a single adsorption value are also displayed. 
Notice how much wider the PI is than the CI. Even with a very high R2 value, there 
is still a reasonable amount of uncertainty involved in predicting a single value of 
adsorption.

Example 11.16

Figure 11.18  Minitab output for Example 11.16
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Eliminating a Group of Predictors
The null hypothesis in the model utility test asserts that none of the predictors is useful. 
The usefulness of a single predictor can be assessed using a t-ratio. Sometimes an inves-
tigator will want to know whether any of the predictors in some specified group provides 
useful information. Let

g 5 number of predictors in the group under investigation

The relevant hypotheses are

H0: all �’s corresponding to the g predictors in the group have value 0
Ha: at least one of the �’s referred to in H0 is not 0

The alternative hypothesis is interpreted as saying that at least one predictor in the group 
does provide useful information about y.

The test is carried out by fitting two different models: the “full” model, consist-
ing of all predictors (those in the group of interest and those not being considered for 
deletion), and the “reduced” model, which contains only those predictors not in the 
specified group. This results in an SSResid(full) value and an SSResid(red) value. The 
former SSResid cannot be larger than the latter, because it results from adding extra 
predictors (those in the group) without deleting anything. The usefulness of at least one 
predictor in the group is suggested by an SSResid(full) value that is a good deal smaller 
than the SSResid(red) value, because much less variation is left unexplained by the full 
model than by the reduced model. The test statistic is

F 5
[SSResid(red) 2 SSResid(full)]yg

SSResid(full)y[n 2 (k 1 1)]

The test is upper-tailed and is based on the F distribution having g numerator df and  
n 2 (k 1 1) denominator df.

For the bond shear strength data given in Example 11.12, the model with the four 
predictors force, power, temperature, and time gave SSResid 5 665.12, R2 5 .714, 
and adjusted R2 5 .668. Now consider as the full model the complete second-order 
model containing not only x1–x4 but also 4 quadratic predictors and 6 interaction 
predictors, for a total of 14 predictors. The estimated regression equation is

strength 5 21 2 2.30force 2 .08power 1 .836temp 2 3.99time
1.0240for*pow 2 .0093for*temp 1 .0755for*time

2.00467pow*temp 1 .0237pow*time
1.0007temp*tim 1 .0152forsqd 1 .00130powsqd
2.00011tempsqd 2 .0078timesqd

with SSResid(full) 5 426.93, R2 5 .816, adjusted R2 5 .645, and P-value 5 .002 for 
the model utility F test. Should any of the second-order predictors be retained in the 
model? The relevant null hypothesis is

H0: �5 5 �6 5 … 5 �14 5 0

Example 11.17
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In Chapter 3, we discussed briefly fitting more general kinds of functions to bivari-
ate or multivariate data using the LOWESS technique or a general additive relation-
ship. Inferential techniques for fits of these types are still in the developmental stages. 
Confidence intervals, for example, can be calculated using the bootstrap method pre-
sented in Chapter 7. Statistical packages such as R and SAS will do this sort of thing 
without much difficulty. Please consult a more advanced reference for details. In the 
next section, we consider further aspects of regression modeling, including checking 
model adequacy and variable selection.

whereas the alternative hypothesis states that at least one of these �’s is not zero (that 
is, there is at least one useful second-order predictor). The number of predictors in 
the subset being considered for deletion is g 5 10, which is numerator df; denomina-
tor df is 30 2 (14 1 1) 5 15. The test statistic value is

F 5
(665.12 2 426.93)y10

426.93y15
5 .84

for which P-value > .10. The null hypothesis should not be rejected at any reason-
able significance level. None of the second-order predictors appears to provide useful 
information beyond what is contained in the four first-order predictors.

Section 11.5 Exercises

	34.	 The article “Validation of the Rockport Fitness Walk-
ing Test in College Males and Females” (Research 
Quarterly for Exercise and Sport, 1994: 152–158) 
recommended the following estimated regression 
equation for relating y 5 VO2max (L/min, a mea-
sure of cardiorespiratory fitness) to the predictors 
x1 5 gender (female 5 0, male 5 1), x2 5 weight 
(lb), x3 5 1-mile walk time (min), and x4 5 heart rate 
at the end of the walk (beats/min):

yn 5 3.5959 1 .6566x1 1 .0096x2 2 .0996x3

2.0080x4

	 a.	 How would you interpret the estimated coeffi-
cient b3 5 2.0996?

	 b.	 How would you interpret the estimated coeffi-
cient b1 5 .6566?

	 c.	 Suppose that an observation made on a male 
whose weight was 170 lb, walk time was 11 min, 
and heart rate was 140 beats/min resulted in  
VO2max 5 3.15. What would you have predict-
ed for VO2max in this situation, and what is the 
value of the corresponding residual?

	 d.	 Using SSResid 5 30.1033 and SSTo 5 102.3922, 
what proportion of observed variation in VO2max 
can be attributed to the model relationship?

	35.	 Exercise 35 of Section 3.5 gave data on x1 5 wire 
feed rate, x2 5 welding speed, and y 5 deposition 
rate of a welding process. Minitab output from fit-
ting the multiple regression model with x1 and x2 as 
predictors is given here.

The regression equation is

DepRate = 0.0558 + 0.375 FeedRate + 0.00278 WeldSpd

Predictor Coef Stdev t-ratio p
Constant 0.05580 0.07836 0.71 0.485
FeedRate 0.374917 0.007476 50.15 0.000
WeldSpd 0.002775 0.001121 2.47 0.023

s = 0.0448530  R-sq = 99.3%  R-sq(adj) = 99.2%

Analysis of Variance

SOURCE DF SS MS  F p
Regression 2 5.0726 2.5363 1260.71 0.000
Error 19 0.0382 0.0020
Total 21 5.1108

	 a.	 Carry out the model utility test.
	 b.	 Calculate and interpret a 95% confidence interval 

for �2, the population regression coefficient of x2.
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	 c.	 When x1 5 11.5 and x2 5 40, the estimated stan-
dard deviation of yn is syn 5 .02438. Calculate a 
95% confidence interval for true average deposi-
tion rate for the given values of x1 and x2.

	 d.	 Calculate a 95% prediction interval for the de-
position rate resulting from a single experimen-
tal run with x1 5 11.5 and x2 5 40.

	36.	 Exercise 37 of Section 3.5 gave R output for a re-
gression of y 5 deposition over a specified time pe-
riod on two complex predictors x1 and x2 defined in 
terms of PAH air concentrations for various species, 
total time, and total amount of precipitation. Use 
the output in that exercise to answer the following:

	 a.	 Does there appear to be a useful linear relation-
ship between y and at least one of the predictors?

	 b.	 The estimated standard deviation of yn when x1 
is 20,000 and x2 is .002 is syn 5 21.7. Calculate a 
95% confidence interval for the mean value of 
deposition under these circumstances.

	 c.	 Fitting the model with predictors x1 and x2 gave 
SSResid 5 27,454, whereas fitting with x1, x2, 
and x3 5 x1x2 resulted in SSResid 5 20519. 
Using � 5 .01, can we conclude that the x1x2 
term adds useful information to a ‘reduced’ 
model containing only x1 and x2? Note: when  
g 5 1, the resulting F test gives the same con-
clusion as the t-test for whether a single vari-
able (here, x1x2) contributes useful information 
to a model.

	37.	 The article “Analysis of the Modeling Method-
ologies for Predicting the Strength of Air-Jet Spun 
Yarns” (Textile Res. J., 1997: 39–44) reported on a 
study carried out to relate yarn tenacity (y, in g/tex) to 
yarn count (x1, in tex), percentage polyester (x2), first 
nozzle pressure (x3, in kg/cm2), and second nozzle 
pressure (x4, in kg/cm2). The estimate of the constant 
term in the corresponding multiple regression equa-
tion was 6.121. The estimated coefficients for the 
four predictors were 2.082, .113, .256, and 2.219, 
respectively, and the coefficient of multiple determi-
nation was .946.

	 a.	 Assuming that the sample size was n 5 25, state 
and test the appropriate hypotheses to decide 
whether the fitted model specifies a useful linear 
relationship between the dependent variable 
and at least one of the four model predictors.

	 b.	 Again using n 5 25, calculate the value of ad-
justed R2.

	 c.	 Calculate a 99% confidence interval for true 
mean yarn tenacity when yarn count is 16.5, yarn 
contains 50% polyester, first nozzle pressure is 3, 
and second nozzle pressure is 5 if the estimated 
standard deviation of predicted tenacity under 
these circumstances is .350.

	38.	 A regression analysis carried out to relate y 5 repair 
time for a water filtration system (hr) to x1 5 elapsed 
time since the previous service (months) and x2 5  
type of repair (1 if electrical and 0 if mechani-
cal) yielded the following model based on n 5 12 
observations: yn 5 .950 1 .400x1 1 1.250x2. In addi-
tion, SSTo 5 12.72, SSResid 5 2.09, and sb2

5 .312.
	 a.	 Does there appear to be a useful linear relation-

ship between repair time and the two model 
predictors? Carry out a test of the appropriate 
hypotheses using a significance level of .05.

	 b.	 Given that elapsed time since the last service re-
mains in the model, does type of repair provide 
useful information about repair time? State and 
test the appropriate hypotheses using a signifi-
cance level of .01.

	 c.	 Calculate and interpret a 95% confidence inter-
val for �2.

	 d.	 The estimated standard deviation of a prediction 
for repair time when elapsed time is 6 months and 
the repair is electrical is .192. Predict repair time 
under these circumstances by calculating a predic-
tion interval with a 99% prediction level. Does the 
resulting interval suggest that the estimated model 
will give an accurate prediction? Why or why not?

	39.	 The accompanying data on x 5 frequency (MHz) 
and y 5 power (W) for a certain laser configuration 
was read from a graph in the article “Frequency 
Dependence in RF Discharge Excited Waveguide 
CO2 Lasers” (IEEE J. of Quantum Electronics, 
1984: 509–514):

x: 60 63 77 100 125 157 186 222
y: 16 17 19 21 22 20 15 5

		  Fitting a quadratic regression model to this 
data yielded the following summary quantities: 
a 5 21.5127, b1 5 .391902, b2 5 2.00163141, 
SSResid 5 .29, SSTo 5 202.87, and sb2

 5 .00003391.
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	 a.	 Why is b2 negative rather than positive?
	 b.	 What proportion of observed variation in output 

power can be attributed to the model relation-
ship between power and frequency?

	 c.	 Carry out a test of hypotheses to decide whether 
the quadratic regression model is useful.

	 d.	 Carry out a test of hypotheses to decide whether 
the quadratic predictor should be retained in 
the model.

	 e.	 When x 5 150, the estimated standard deviation 
of yn is syn 5 .1410. Calculate a 99% confidence 
interval for true average power when frequency 
is 150, and also a 99% prediction interval for 
a single output power observation to be made 
when frequency is 150.

	40.	 The article “Sensitivity Analysis of a 2.5 kW Proton 
Exchange Membrane Fuel Cell Stack by Statistical 
Method” (J. of Fuel Cell Sci. and Tech., 2009: 1–6) 
used regression methodology to investigate the rela-
tionship between fuel cell power (W) and the inde-
pendent variables x1 5 H2 pressure (psi), x2 5 H2 flow 
(stoc), x3 5 air pressure (psi), and x4 5 airflow (stoc).

			   Here is the Minitab output from fitting the mod-
el with the aforementioned independent variables as 
predictors (also fit by the authors of the cited article):

Predictor Coef SE Coef T p
Constant 1507.3 206.8 7.29 0.000
x1 -4.282 4.969 -0.86 0.407
x2 7.46 62.11 0.12 0.907
x3 -0.9162 0.6227 -1.47 0.169
x4 90.60 24.84 3.65 0.004

s = 4.6885  R-sq = 59.6%  R-sq(adj) = 44.9%

SOURCE DF SS MS F p
Regression 4 40048 10012 4.06 0.029
Res.Error 11 27158 2469

Total 15 67206

	 a.	 Does there appear to be a useful relationship be-
tween power and at least one of the predictors? 
Carry out a formal test of hypotheses.

	 b.	 Fitting the model with predictors x3, x4, and the 
interaction x3x4 gave R2 5 .834. Does this model 
appear to be useful? Can an F test be used to com-
pare this model to the model of part (a)? Explain.

	 c.	 Fitting the model with all 4 predictors as well 
as all second-order interactions gave R2 5 .960  

(this model was also fit by the investigators). 
Does it appear that at least one of the inter-
action predictors provides useful information 
about power over and above what is provided 
by the first-order predictors? State and test the 
appropriate hypotheses using a significance 
level of .05.

	41.	 The article “The Undrained Strength of Some 
Thawed Permafrost Soils” (Canadian Geotechnical 
J., 1979: 420–427) reported the following data on 
undrained shear strength of sandy soil (y, in kPa), 
depth (x1, in m), and water content (x2, in %):

Obs Depth Watcont Shstren
  1 8.9 31.5 14.7
  2 36.6 27.0 48.0
  3 36.8 25.9 25.6
  4 6.1 39.1 10.0
  5 6.9 39.2 16.0
  6 6.9 38.3 16.8
  7 7.3 33.9 20.7
  8 8.4 33.8 38.8
  9 6.5 27.9 16.9
10 8.0 33.1 27.0
11 4.5 26.3 16.0
12 9.9 37.8 24.9
13 2.9 34.6 7.3
14 2.0 36.4 12.8

		  Fitting the model with predictors x1 and x2 only 
gave SSResid 5 894.95, whereas fitting the com-
plete second-order model with predictors x1, x2, 
x2

1, x
2
2, and x1x2 resulted in SSResid 5 390.64. Carry 

out a test at significance level .01 to decide whether 
at least one of the second-order predictors provides 
useful information about shear strength.

	42.	 Soluble dietary fiber (SDF) can provide health ben-
efits by lowering blood cholesterol and glucose lev-
els. The article “Effects of Twin-Screw Extrusion on 
Soluble Dietary Fiber and Physicochemical Prop-
erties of Soybean Residue” (Food Chemistry, 2013: 
884–889) reported the following data on y 5 SDF 
content (%) in soybean residue and the three predic-
tors x1 5 extrusion temperature (in C), x2 = feed 
moisture (in %), and x3 5 screw speed (in rpm) of a 
twin-screw extrusion process.
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Obs x1 x2 x3 y
  1 35 110 160 11.13
  2 25 130 180 10.98
  3 30 110 180 12.56
  4 30 130 200 11.46
  5 30 110 180 12.38
  6 30 110 180 12.43
  7 30 110 180 12.55
  8 25 110 160 10.59
  9 30 130 160 11.15
10 30   90 200 10.55
11 30   90 160 9.25
12 25   90 180 9.58
13 35 110 200 11.59
14 35   90 180 10.68
15 35 130 180 11.73
16 25 110 200 10.81
17 30 110 180 12.68

	 a.	 The authors fit the complete second-order 
model with predictors x1, x2, x3, x1

2, x2
2, x3

2, x1x2, 
x1x3, and x2x3, which resulted in SSResid 5 .215 
and SSTo 5 16.798. Determine the correspond-
ing values of R2 and adjusted R2.

	 b.	 If we include in the model only the predictors x1, 
x2, and x3, the corresponding SSResid 5 11.428. 
Carry out a test at significance level .01 to decide 
whether at least one of the second-order predictors 
provides useful information about SDF content.

	43.	 The use of high-strength steels (HSS) rather than 
aluminum and magnesium alloys in automotive 
body structures reduces vehicle weight. However, 
HSS use is still problematic because of difficul-
ties with limited formability, increased springback, 
difficulties in joining, and reduced die life. The 
article “Experimental Investigation of Springback 
Variation in Forming of High Strength Steels” (J. of 
Manuf. Sci. and Engr., 2008: 1–9) included data 
on y 5 springback from the wall opening angle and 
x 5 blank holder pressure (BHP). Three different 
material suppliers and three different lubrication 
regimens (no lubrication, lubricant 1, and lubri-
cant 2) were also utilized.

	 a.	 What predictors would you use in a model to in-
corporate supplier and lubrication information 
in addition to BHP?

	 b.	 The accompanying Minitab output resulted from 
fitting the model of part (a) (the articles authors 
also used Minitab; amusingly, they employed a sig-
nificance level of .06 in various tests of hypotheses). 
Does there appear to be a useful relationship be-
tween the response variable and at least one of the 
predictors? Carry out a formal test of hypotheses.

	 c.	 When BHP is 1000, material is from supplier 1, and 
no lubrication is used, syn 5 .524. Calculate a 95% 
PI for the springback that would result from making 
an additional observation under these conditions.

	 d.	 From the output, it appears that lubrication regi-
men may not be providing useful information. 
A regression with the corresponding predictors 
removed resulted in SSResid 5 48.426. What is 
the coefficient of multiple determination for this 
model, and what would you conclude about the 
importance of the lubrication regimen?

	 e.	 A model with predictors for BHP, supplier, and 
lubrication regimen, as well as predictors for in-
teractions between BHP and both supplier and 
lubrication regiment, resulted in SSResid 5 
28.216 and R2 5 .849. Does this model appear 
to improve on the model with just BHP and pre-
dictors for supplier? Use � = .05.

Predictor Coef SE Coef T p
Constant 21.5322 0.6782 31.75 0.000
BHP -0.0033680 0.0003919 -8.59 0.000
Supp1_1 -1.7181 0.5977 -2.87 0.007
Supp1_2 -1.4840 0.6010 -2.47 0.019
Lub_1 -0.3036 0.5754 -0.53 0.602
Lub_2 0.8931 0.5779 1.55 0.133

s = 1.18413  R-sq = 77.5%  R-sq(adj) = 73.8%

SOURCE DF SS MS F p
Regression 5 144.915 28.983 20.67 0.000
Res.Error 30 42.065 1.402
Total 35 186.980

	44.	 Coir fiber, derived from coconut, is an eco-friendly 
material with great potential for use in construc-
tion. The article “Seepage Velocity and Piping 
Resistance of Coir Fiber Mixed Soils” (J. of Irrig. 
and Drainage Engr., 2008: 485–492) included 
several multiple regression analyses. The article’s 
authors kindly provided the accompanying data 
on x1 5 fiber content (%), x2 5 fiber length (mm),  
x3 5 hydraulic gradient (no unit provided), and y 5 
seepage velocity (cm/sec).
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Obs cont lngth grad vel Obs cont lngth grad vel
  1 0.0   0 0.400 0.027 26 1.5 50 1.141 0.058
  2 0.0   0 0.716 0.050 27 1.5 50 1.474 0.082
  3 0.0   0 0.925 0.080 28 1.5 50 1.581 0.112
  4 0.0   0 1.098 0.099 29 1.5 50 1.983 0.144
  5 0.0   0 1.226 0.107 30 1.0 25 0.462 0.028
  6 0.0   0 1.427 0.140 31 1.0 25 0.705 0.059
  7 0.0   0 1.709 0.178 32 1.0 25 0.987 0.084
  8 0.0   0 1.872 0.200 33 1.0 25 1.154 0.101
  9 0.5 50 0.380 0.022 34 1.0 25 1.479 0.150
10 0.5 50 0.774 0.040 35 1.0 25 1.786 0.194
11 0.5 50 1.056 0.060 36 1.0 25 1.957 0.218
12 0.5 50 1.329 0.111 37 1.0 40 0.419 0.030
13 0.5 50 1.598 0.158 38 1.0 40 0.705 0.050
14 0.5 50 1.799 0.188 39 1.0 40 0.979 0.068
15 1.0 50 0.410 0.026 40 1.0 40 1.226 0.091
16 1.0 50 0.577 0.038 41 1.0 40 1.470 0.126
17 1.0 50 0.748 0.049 42 1.0 40 1.744 0.168
18 1.0 50 0.927 0.060 43 1.0 60 0.436 0.034
19 1.0 50 1.090 0.070 44 1.0 60 0.650 0.051
20 1.0 50 1.239 0.088 45 1.0 60 0.889 0.068
21 1.0 50 1.496 0.111 46 1.0 60 1.222 0.093
22 1.0 50 1.744 0.134 47 1.0 60 1.477 0.112
23 1.0 50 1.915 0.145 48 1.0 60 1.726 0.139
24 1.5 50 0.444 0.014 49 1.0 60 1.983 0.173
25 1.5 50 0.821 0.037

	 a.	 Here is output from fitting the model with the 
three xi’s as predictors:

Predictor Coef SE Coef T p

Constant -0.002997 0.007639 -0.39 0.697

fib cont -0.012125 0.007454 -1.63 0.111

fib lngth -0.0003020 0.0001676 -1.80 0.078

hyd grad 0.102489 0.004711 21.76 0.000

s = 0.0162355  R-sq = 91.6%  R-sq(adj) = 91.1%

Source DF SS MS F p

Regression 3 0.129898 0.043299 164.27 0.000

Residual Error 45 0.011862 0.000264

Total 48 0.141760

		  How would you interpret the number –.0003020 
in the Coef column on the output?

	 b.	 Does fiber content appear to provide useful 
information about velocity provided that fiber 
length and hydraulic gradient remain in the 
model? Carry out a test of hypotheses at � 5 .05.

	 c.	 Fitting the model with just fiber length and hy-
draulic gradient as predictors gave the estimated 
regression coefficients a 5 2.005315, b1  5 
2.0004968, and b2 5 .102204 (the t-ratios for 
these two predictors are both highly significant). 
In addition, syn 5 .00286 when fiber length 5 25 
and hydraulic gradient 5 1.2. Is there convinc-
ing evidence that true average velocity is some-
thing other than .1 in this situation? Carry out a 
test using a significance level of .05.

	 d.	 Fitting the complete second-order model (as 
did the article’s authors) resulted in SSResid 5 
.003579. Does it appear that at least one of the 
second-order predictors provides useful informa-
tion over and above what is provided by the three 
first-order predictors? Test the relevant hypotheses 
at � 5 .05.

11.6	 Further Aspects of Regression Analysis 

This last section surveys a variety of issues in regression analysis, including diagnostic 
checks for model adequacy, identification of unusual observations, selection of a good 
group of predictors from a candidate pool, problems associated with a strong linear 
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556	 chapter 11   Inferential Methods in Regression and Correlation

The adsorption data introduced in Example 3.15, repeated here, is used in several 
examples in the previous section. The residuals are based on the model with the two 
predictors x1 5 iron content and x2 5 aluminum content.

Obs Iron Aluminum Adsorption Residual

Estimated 
standard 
deviation

Standardized 
residual

1 61 13   4 2.06305 3.64425 2.01730
2 175 21 18 21.70661 3.72079 2.45867
3 111 24 14 .46130 4.02690 .11455
4 124 23 18 3.34477 4.04931 .82601
5 130 64 26 23.64064 3.50644 21.03827
6 173 38 26 .58585 4.14741 .14126
7 169 33 21 22.21821 4.09222 2.54206
8 169 61 30 22.99022 4.07688 2.73346
9 160 39 28 3.70238 4.18323 .88505

10 244 71 36 28.93520 4.03193 22.21611
11 257 112 65 4.29026 2.98776 1.43595
12 333 88 62 1.09857 2.99775 .36647
13 199 54 40 6.07079 4.18560 1.45040

Example 11.18

relationship among the predictors, and a model appropriate when y is a 0–1 variable 
corresponding to a success–failure dichotomy.

Checking Model Adequacy
In Section 11.5, we presented inferential methods based on the general additive multiple re-
gression model. These methods are appropriate only if the model assumptions, for example, 
normality of the random deviation e in the model equation, are satisfied. Checks of model 
adequacy are usually based on the residuals, and in particular various plots involving these 
or related quantities. Recall that the residuals are the differences y1 2 yn1, y2 2 yn2,…, yn 2 ynn 
between observed and predicted y values. Before the data is obtained, each one of these 
residuals is subject to randomness; we do not know a priori whether any particular residual 
will be 23.2, 5.7, 0, or any other possible value. If the correct model has been fit, the mean 
value of any particular residual is zero. Unfortunately, the amount of variability in any 
particular residual will depend on the values of the predictors at which the corresponding 
observation is made. This can make it difficult to compare the various residuals to one an-
other. One remedy for this difficulty is to standardize the residuals:

standardized residual 5
residual 2 0

estimated standard deviation of residual

 5
residual

estiamted standard deviation of residual

The most popular statistical packages will produce these standardized residuals on request.
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Notice that the estimated standard deviations for the 11th and 12th observations 
are much smaller than those of most other observations. This is because the x1 and 
x2 values for these two observations are quite far from the center of the data. This is 
analogous to the least squares line in simple linear regression being pulled toward an 
observation whose x value is far to the left or right of the other x values; there is less 
variability in the corresponding residual than for the other observations. The only 
unusually large residual here is for the 10th observation; because the standardized 
residual is 22.22, the residual 28.94 is more than 2 standard deviations smaller than 
what would be expected if the correct model had been fit.

We previously advocated the use of a normal quantile plot to check a normality 
assumption. In regression, we suggest that the assumption of normally distributed random 
deviations be investigated by constructing a normal quantile plot of the standardized re-
siduals. A reasonably linear pattern in this plot suggests that normality is plausible.

Figure 11.19 shows a normal quantile plot of the standardized residuals for the ad-
sorption data given in Example 11.18. The straightness of the plot casts little doubt 
on the assumption that the random deviation e is normally distributed.

Example 11.19

–2 –1 0 1 2
–2.5

–1.5

–.5

.5

1.5

Normal quantile

Standardized residual

Figure 11.19 A normal quantile plot of the standardized residuals 
from Example 11.18

Another model assumption is that the variance �2 of a random deviation is a constant; 
that is, it does not depend on the values of the predictors. This can be checked by plotting 
the standardized residuals against each predictor in turn—one plot of standardized residu-
als versus x1, another of standardized residuals versus x2, and so on. Ideally, the points in 
each of these plots should appear randomly placed with no discernible pattern. If there is 
any marked tendency for the points in one of these plots to spread out substantially more at 
one end than the other, the constant variance assumption is suspect. Remedial action must 
be taken, and the advice of a statistician should be sought. Additionally, if there is substan-
tial curvature in a plot, the population regression function in the chosen model has been Un
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558	 chapter 11   Inferential Methods in Regression and Correlation

incorrectly specified. It would then be necessary to try transforming one or more of the vari-
ables or introducing new predictors, for example, quadratic predictors. Some statisticians 
suggest replacing plots of the standardized residuals (or residuals) versus each predictor by 
a single omnibus plot of the standardized residuals (or residuals) versus the predicted values 
(yn’s). Again, any marked deviation from randomness is a call for remedial action. A plot of 
yn versus y gives a visual impression of how well the model is predicting for the observations 
in the sample. The closer the points in this plot are to a 45° line, the better the predictions; 
the vertical deviations from this line are just the residuals. Finally, if the observations were 
obtained in time sequence, the standardized residuals should be plotted in time order to 
see whether there is an effect over time. Such an effect might indicate that the e’s for suc-
cessive observations are not independent, necessitating a more complex model.

Figure 11.20 shows the suggested plots for the adsorption data. Given that there are 
only 13 observations in the data set, there is not much evidence of a pattern in any 
of the first three plots other than randomness. The point at the bottom of each of 
these three plots corresponds to the observation with the large residual. We will say 
more about such observations subsequently. For the moment, there is no compelling 
reason for remedial action.

Example 11.20

50 150 250 350
–2.5

–1.5

–.5

.5

1.5

Iron

Standardized residual

0 50 100
–2.5

–1.5

–.5

.5

1.5

Aluminum

Standardized residual

0 302010 40 6050
–2.5

–1.5

–.5

.5

1.5

Predicted 

Standardized residual

0 302010 70605040
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(a) (b)

(c) (d)

Figure 11.20  Diagnostic plots for the adsorption data: (a) standardized residual 
versus 1  (b) standardized residual versus 2  (c) standardized residual versus n  
and (d) n versus 
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Identifying Unusual Observations
Two different types of unusual observations can occur in a regression data set: those with 
extreme y values and those with extreme values of the predictors (the xi’s). Extreme y 
values are indicated by standardized residuals quite different from zero. Minitab, for ex-
ample, will flag any observation for which a standardized residual exceeds 2 in absolute 
value. There is one such observation in the adsorption data set.

One way to recognize an observation whose predictor values are unusual relies on 
the fact that each predicted value is a linear function of all the observed y values:

yn1 5 h11y1 1 h12y2 1 … 1 h1nyn

yn2 5 h21y1 1 h22y2 1 … 1 h2nyn

The hij coefficients depend only on the values of the predictors for the various observa-
tions and not on the resulting y values. The coefficient h11 is the weight given to y1 in 
computing the corresponding predicted value, and an analogous interpretation applies 
to h22, . . . , hnn. Intuitively, a large value of hii for any particular i identifies an observa-
tion that is heavily weighted in calculating the corresponding predicted value. The first 
observation is said to have high leverage—high potential influence—if h11 is large rela-
tive to the other hii’s. The influence is only potential because whether an observation is 
actually influential depends on its y value as well as the values of the predictors. Minitab 
will flag any observation whose hii exceeds 3(k 1 1)yn  (^  hii 5 k 1 1, so an observation 
is flagged if its hii is three times the average of all the hii’s). The hii’s for the adsorption 
data are as follows:

.308     .278     .154     .145     .359     .103     .127     .133     .088     .152     .535     .531     .087

Since 3(k 1 1)yn 5 3(3)y13 5 .692, no observation can be characterized as having high 
leverage.

A commonly used strategy for assessing the impact of an “unusual” observation—
either a large standardized residual or high leverage—is to remove the observation from 
the data set and refit the same model using the remaining observations. If any of the 
calculated quantities, such as the bi’s, R

2, and se, change substantially from their values 
before deletion of the unusual observation, the regression analysis is unstable. When the 
observation with the large standardized residual was removed from the adsorption data, 
estimated coefficients and other quantities changed very little. When large changes do 
occur, one possibility is to use a “robust” fitting technique for which estimated coef-
ficients are not so heavily affected by unusual observations as they may be for a least 
squares fit. Consult one of the chapter references for more information on these matters.

Model Selection
An investigator has obtained data on a response variable y and a “candidate pool” of p 
predictors (some of which may be mathematical functions of others, such as interaction 
or quadratic predictors) and wishes to fit a multiple regression model. Frequently, some 
of these p predictors are only weakly related to y or contain information that duplicates 
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560	 chapter 11   Inferential Methods in Regression and Correlation

information provided by some of the other predictors. So the issue is how to select a 
subset of predictors from the candidate pool to obtain an effective model.

One type of model selection strategy involves fitting all possible models, computing 
one or more summary quantities from each fit, and comparing these quantities to iden-
tify the most satisfactory model. With p predictors in the pool, there are 2p possible mod-
els when the model that contains none of the predictors is counted (because there are 
two possibilities for each predictor, it could be included in the model or not included). 
When p exceeds 5, it is obviously time-consuming to sit in front of a computer and 
explicitly request that each possible model in turn be fit. Several of the most powerful 
statistical computer packages have an all-subsets option, which will give limited output 
from several of the best (according to criteria discussed shortly) models of each different 
size. Once the field has been narrowed, the fit of each finalist can then be examined in 
more detail. Minitab can be used for this purpose as long as p # 31 (for p 5 31, over 
2 billion models are under consideration).

Suppose that p is small enough for the all-subsets option to be feasible. What crite-
ria can be used to select a winner? An obvious and appealing choice is the coefficient of 
multiple determination, R2. Certainly for two models containing the same number of 
predictors, if the corresponding R2 values are quite different, the model with the larger 
value should be preferred to the one with the smaller value. However, using R2 as a 
basis for choosing between models that contain different numbers of predictors is not 
so straightforward. The reason is that adding a predictor to a model can never result in 
a decrease in R2; there is almost always an increase, though it may be quite small. In 
particular, let

R2
i  5 largest R2 value for any model containing i predictors (i 5 1, 2, . . . , p)

Then R1
2 # R1

2 # # Rp
2. The objective then is not simply to find the model with the 

largest R2 value; the model with all p predictors from the candidate pool does that. In-
stead, we should look for a model that contains relatively few predictors but has a large 
R2 value. The model should be such that no other model containing more predictors 
yields much of an improvement in R2 value. Suppose, for example, that p 5 5 and that

R2
1 5 .427  R2

2 5 .733  R2
3 5 .885  R2

4 5 .898  R2
5 5 .901

The best three-predictor model seems to be a good choice, since it substantially im-
proves on the best one- and two-predictor models, whereas very little is gained by using 
more than three predictors.

A small increase in R2 resulting from the addition of a predictor to a model may be 
offset by the increased complexity of the new model and the reduction in df associated 
with SSResid (resulting in less precise estimates and predictions). This is the rationale 
for adjusted R2, which can either decrease or increase when a predictor is added to the 
model. We can then think of identifying the model whose adjusted R2 is largest and then 
consider only this model and any others whose adjusted R2 values are nearly as large.

When considering models containing some fixed number of predictors, for exam-
ple, k 5 8, there may be several different models whose R2 and adjusted R2 values are 
rather close to one another. By focusing only on the model with the highest values of 
these two criterion measures, we may miss out on other good models that are easier 
to interpret and use for estimation and prediction. For this reason, most all-subsets 
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procedures allow the analyst to specify some number of models c of each given size 
(e.g., c 5 3) for which output should be provided.

One other criterion for model selection that has been used with increasing 
frequency in recent years is Mallows’ CP. Let �i denote the mean or expected value 
of yi, which is the value of the response variable for the ith observation in our sample. 
Then after fitting any particular model, yni calculated from the fit provides an estimate 
of �i, and the total expected estimation error for all observations in the data set is 
^  E [(yni 2 �i)

2]. Mallows’ CP is an estimate of this total expected estimation error nor-
malized in a certain way. It is desirable to choose a model for which CP is small. One 
additional consideration is that to protect against possible biases in estimates of popula-
tion regression coefficients, it is desirable to have CP k 1 1 when the model under 
consideration has k predictors.

The bond shear strength data introduced in Section 11.5 contains values of four 
different independent variables x1–x4. We found that the model with only these four 
variables as predictors was useful and that there was no compelling reason to con-
sider the inclusion of second-order predictors. Figure 11.21 is the Minitab output 
that results from a request to identify the two best models of each given size.

The best two-predictor model, with predictors power and temperature, seems to 
be a very good choice on all counts: R2 is significantly higher than for models with 
fewer predictors yet almost as large as for any larger models, adjusted R2 is almost at 
its maximum for this data, and CP is small and close to 2 1 1 5 3.

Example 11.21

Figure 11.21  Output from Minitab’s Best Subsets option

The choice of a “best” model in Example 11.21 seemed reasonably clear-cut. This 
is often not the case. More typically, there will be several different models that are more 
or less equally appealing in terms of the criteria discussed here. These finalists would 
then have to be examined in more detail to choose the best model.

If the number of predictors in the candidate pool is too large or if suitable software 
is not available, an alternative to an all-subsets or best regression approach is to use an 
automatic selection procedure. The most easily understood such procedure is backward 
elimination. First, fit the model containing all predictors in the candidate pool, then 
eliminate predictors one by one until at some point all remaining predictors seem im-
portant. This involves looking at the t-ratios bi 
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562	 chapter 11   Inferential Methods in Regression and Correlation

model at each stage of the process. The obvious candidate for elimination is the predic-
tor corresponding to the t-ratio closest to zero. The most frequently used rule of thumb 
in practice is to stop eliminating predictors when all t-ratios either exceed 2 or are less 
than 22. Some packages use F ratios, which are the squares of t-ratios, with a cutoff of 4.

Another automatic selection procedure is forward selection, in which predictors from 
the candidate pool are added to the model one-by-one until, at a certain point, none of 
the predictors not already added appears useful. Suppose, for example, that p 5 10 and 
that x1, x6, and x9 have already been added. Then at the next stage, each four-predictor 
model that includes these three predictors along with one of the predictors not yet added 
would be fit (e.g., the model with predictors x1, x6, x9, and x2). The t-ratios for the coef-
ficients corresponding to not-yet-entered predictors are the basis for deciding whether to 
enter at least one more predictor or to terminate. A 6 2 cutoff is frequently employed. 
Clearly, forward selection involves fitting many more models than is the case with back-
ward elimination; for example, at the first stage, all p one-predictor models must be fit to 
decide whether at least one predictor should enter.

Figure 11.22 shows Minitab output from the backward elimination procedure ap-
plied to the bond shear strength data (this was done within Minitab’s Stepwise op-
tion). At the first stage, the t-ratio closest to zero was 1.01 for the � coefficient cor-
responding to the predictor force. Since this t-ratio is between 22 and 2, force is 
eliminated (this would also have been the case if the t-ratio had been 21.01). At 
the next stage, the model with the three remaining predictors was fit. The predictor 
time now qualifies for elimination, since the corresponding t-ratio 1.23 is closest 
to 0 and between 22 and 2. When the model with the two remaining predictors is 
fit, both the corresponding t-ratios exceed 2 in absolute value, and the procedure is 
terminated. The resulting model is the same one that we suggested previously based 
on all-subsets considerations.

Example 11.22

Figure 11.22  Backward elimination output from Minitab
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A variation on this is stepwise regression, in which predictors are added one-by-one 
with the option of deleting a predictor at some later stage that was added previously. The 
justification for this variation is that a predictor that earlier seemed important may be-
come redundant once several other predictors have been entered into the model. The 
models identified by backward elimination, forward selection, and stepwise regression 
may not be the same. Furthermore, none of these automatic selection procedures may 
identify the model selected using the all-subsets criteria. Our recommendation is that 
all-subsets be used in preference to any of the automatic selection procedures whenever 
possible.

Multicollinearity
When the values of the single predictor x in a simple linear regression analysis are all 
quite close to one another, sb will usually be quite large, indicating that the slope coeffi-
cient � has been imprecisely estimated. The analogous situation in multiple regression is 
referred to as multicollinearity. When the model to be fit includes the k predictors x1, . . . , 
xk, there is said to be multicollinearity if there is a strong linear relationship between these 
predictors (so multicollinearity has nothing to do with the response variable y). Severe 
multicollinearity leads to poorly estimated population regression coefficients and various 
other problems. The most straightforward way to recognize the presence of multicol-
linearity is to fit k different regression models, each of which has one of the x variables as 
the dependent variable and the other k 2 1 predictors as the independent variables (e.g., 
if k 5 5, there would be five regressions, the first with x1 as the dependent variable, the 
second with x2 playing this role, and so on). If one or more of the resulting R2 values is 
close to 1, multicollinearity exists. If you use Minitab to regress y against the k predictors, 
a warning message will appear if any of these R2’s exceeds .99, and the package will not 
allow you to include all predictors if any R2 exceeds .9999. Many analysts would be more 
conservative and say that multicollinearity is a problem if any R2 exceeds .9.

When values of the predictor variable are under the control of the experimenter, 
as was the case in the bond shear strength example, a careful choice of values will 
preclude multicollinearity from arising. It is, however, often a problem in social sci-
ence or business applications, where data results simply from observation rather than 
from intervention by an investigator. Statisticians have proposed various remedies 
for the problems associated with multicollinearity, but a discussion would take us 
beyond the scope of this book (after all, we want to leave something for your next 
statistics course!).

Logistic Regression
The simple linear regression model is appropriate for relating a quantitative response 
variable y to a quantitative predictor x. Suppose that y is a dichotomous variable with 
possible values 1 and 0 corresponding to success and failure. Let � 5 P(S) 5 P(y 5 1). 
Frequently, the value of � will depend on the value of some quantitative variable x. For 
example, the probability that a car needs warranty service of a certain kind might well 
depend on the car’s mileage, or the probability of avoiding an infection of a certain type 
might depend on the dosage in an inoculation. Instead of using just the symbol � for the 
success probability, we now use �(x) to emphasize the dependence of this probability 
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564	 chapter 11   Inferential Methods in Regression and Correlation

on the value of x. The simple linear regression equation y 5 � 1 �x 1 e is no longer ap-
propriate, for taking the mean value on each side of the equation gives

�y 5 1 ? �(x) 1 0 ? (1 2 �(x)) 5 �(x) 5 � 1 �x

Whereas �(x) is a probability and therefore must be between 0 and 1, � 1 �x need not 
be in this range.

Instead of letting the mean value of y be a linear function of x, we now consider a 
model in which some function of the mean value of y is a linear function of x. In other 
words, we allow �(x) to be a function of � 1 �x rather than � 1 �x itself. A function that 
has been found quite useful in many applications is the logit function,

�(x) 5
e�1�x

1 1 e�1�x

Figure 11.23 shows a graph of �(x) for particular values of � and � with � . 0. As x 
increases, the probability of success increases. For � negative, the success probability 
would be a decreasing function of x.

Logistic regression means assuming that �(x) is related to x by the logit function. 
Straightforward algebra shows that

�(x)
1 2 �(x)

5 e�1�x

The expression on the left-hand side is called the odds. Suppose, for example, that 
� (60)y[1 2 �(60)] 5 3. Then when x 5 60 a success is three times as likely as a fail-
ure. We now see that the logarithm of the odds is a linear function of the predictor. In 
particular, the slope parameter � is the change in the log odds associated with a 1-unit 
increase in x. This implies that the odds itself changes by the multiplicative factor e  

� 
when x increases by 1 unit.

Figure 11.23  A graph of a logit function
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Fitting the logistic regression to sample data requires that the parameters � and � 
be estimated. This is usually done using the maximum likelihood technique described 
in Chapter 7. The details are quite involved, but fortunately the most popular statistical 
computer packages will do this on request and provide quantitative and pictorial indica-
tions of how well the model fits.

Here is data on launch temperature and the incidence of failure for O-rings in 
24 space shuttle launches prior to the Challenger disaster of 1986.

Temperature Failure Temperature Failure
53 Y 70 Y
57 Y 72 N
63 N 73 N
66 N 75 N
67 N 75 Y
67 N 76 N
67 N 76 N
68 N 78 N
69 N 79 N
70 N 80 N
70 Y 81 N
70 N

Figure 11.24 shows Minitab output for a logistic regression analysis and a graph of 
the estimated logit function from the R software. We have chosen to let � denote 
the probability of failure. The graph of decreases as temperature increases because 
failures tended to occur at lower temperatures than did successes. The estimate of 
� is b 5 2.232, and the estimated standard deviation of b is sb 5 .1082. Provided 
that n is large enough, and we assume it is in this case, b has approximately a normal 
distribution. If � 5 0 (temperature does not affect the likelihood of O-ring failure), 
z 5 bysb has approximately a standard normal distribution. The value of this z-ratio is 
22.14, and the P-value for a two-tailed test is .032 (some packages report a chi-square 
value, which is just z2, with the same P-value). At significance level .05, we reject the 
null hypothesis of no temperature effect.

The estimated odds of failure for any particular temperature value x is

�(x)
1 2 �(x)

5 e15.04292.232163x

This implies that the odds ratio, the odds of failure at a temperature of x 1 1 divided 
by the odds of failure at a temperature of x, is

 
�(x 1 1)y[1 2 �(x 1 1)]

�(x)y[1 2 �(x)]
5 e2.232163 5 .7928

Example 11.23
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Predictor Coef SE Coef z p
Odds 

Ratio
95% 

Lower
CI  

Upper

Constant 15.0429 7.37862 2.04 0.041
Temp -0.232163 0.108236 -2.14 0.032 0.79 0.64 0.98

The interpretation is that for each additional degree of temperature, we estimate that 
the odds of failure will decrease by a factor of .79 (21%). A 95% CI for the true odds 
ratio also appears on the output.

The launch temperature for the Challenger mission was only 31°F. This temper-
ature is much smaller than any value in the sample, so it is dangerous to extrapolate 
the estimated relationship. Nevertheless, it appears that O-ring failure is virtually a 
sure thing for a temperature this small.

55

0.0

0.2

0.4

0.6

0.8

1.0

Failure
No Failure
Predicted Probability of Failure

60 65 70

N

N

N

Y Y Y Y Y Y
Y

Y

N
NN N N N N N N N N N N

Temperature

Fa
ilu

re

75 80

N

(b)

Figure 11.24  (a) Logistic regression output from Minitab for Example 11.23;  
(b) graph of estimated logistic function from R

Binary Logistic Regression: Failure versus Temp

Logistic Regression Table

Our treatment of logistic regression modeling can be extended in an obvious way 
to incorporate more than one predictor. The probability of success � is now a function 
of the predictors x1, x2, . . . , xk:

�(x1, . . . , xk) 5
e�1�1x11…1�k xk

1 1 e�1�1x11…1�k xk
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Simple algebra yields an expression for the odds:
�(x1, . . . , xk)

1 2 �(x1, . . . , xk)
5 e�1�1x11…1�k  

xk

The interpretation of �i (i 5 1, . . . , k) is analogous to the interpretation for � given 
in the logit function containing only a single predictor x. That is, for i 5 1, . . . , k, the 
following argument shows that the odds changes by the multiplicative factor e�i when xi 
increases by 1 unit and all other predictors remain fixed.

 
�(x1, . . . , xi 1 1, . . . , xk)

1 2 �(x1, . . . , xi 1 1, . . . , xk)
5 e�1�1x11…�i(xi11)1…1�k   xk

 5 e�1�1x11…�ixi1
…1�k xk1�i

 5
�(x1, . . . , xk)

1 2 �(x1, . . . , xk)
 e  

�i

Again, statistical software must be used to estimate parameters, calculate relevant stan-
dard deviations, and provide other inferential information.

Data was obtained from 189 women who gave birth during a particular period 
at the Baystate Medical Center in Springfield, Massachusetts, in order to iden-
tify factors associated with low birth weight. The accompanying Minitab output 
resulted from a logistic regression in which the dependent variable indicated 
whether (1) or not (0) a child had low birth weight (,2500 g), and predictors were 
weight of the mother at her last menstrual period, age of the mother, and an indi-
cator variable for whether (1) or not (0) the mother had smoked during pregnancy.

Logistic Regression Table

Predictor Coef SE Coef z p
Odds 
Ratio

95% 
Lower

CI 
Upper

Constant 2.06239 1.09516 1.88 0.060

Wt -0.01701 0.00686 -2.48 0.013 0.98 0.97 1.00

Age -0.04478 0.03391 -1.32 0.187 0.96 0.89 1.02

Smoke 0.65480 0.33297 1.97 0.049 1.92 1.00 3.70

It appears that age is not an important predictor of low birth weight, provided that the 
two other predictors are retained. The other two predictors do appear to be informa-
tive. The point estimate of the odds ratio associated with smoking status is 1.92 (ratio 
of the odds of low birth weight for a smoker to the odds for a nonsmoker); at the 95% 
confidence level, the odds of a low-birth-weight child could be as much as 3.7 times 
higher for a smoker than what it is for a nonsmoker.

Example 11.24

Please see one of the chapter references for more information on logistic regres-
sion, including methods for assessing model effectiveness and adequacy.

We have reached the end of our exposition, but hopefully this is not the end of your 
statistical education. Our hope is that you have enjoyed the journey through statistics 
thus far and that you will find many opportunities to apply the concepts and methods 
in the near future. Enjoy!!
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	45.	 Reconsider the data on x 5 inverse thickness and  
y 5 flux from Exercise 9 of Section 11.1. The values 
of the standardized residuals from a simple linear 
regression analysis and the corresponding normal 
quantiles follow:

x: 19.8 20.6 23.5 26.1
Standardized
residual: 21.20  1.64   .94  2.48
z quantile: 2.85  1.43   .85  2.47

x: 30.3 43.5 45.0 46.5
Standardized
residual: 21.41   .70  2.06  2.03
z quantile: 21.43   .47  2.15   .15

	 a.	 Does it appear plausible that the random de-
viations in the simple linear regression model 
equation are normally distributed?

	 b.	 Construct a plot of the standardized residuals 
versus x and comment.

	46.	 Exercise 41 of Section 11.5 gave data on y 5 shear 
strength of a soil specimen, x1 5 depth, and x2 5 
water content. The data is presented again, along 
with the standardized residuals and corresponding 
normal scores obtained from fitting the complete 
second-order model.

Obs Shstren Depth Watcont Stresid NQuant
  1 14.7  8.9 31.5 21.50075 21.20448
  2 48.0 36.6 27.0   .53889   .89743
  3 25.6 36.8 25.9  2.52893 2.65862
  4 10.0  6.1 39.1  2.17350  2.26585
  5 16.0  6.9 39.2    .33350    .45321
  6 16.8  6.9 38.3   .04076  2.08767
  7 20.7  7.3 33.9  2.41791  2.45321
  8 38.8  8.4 33.8  2.16543  1.70991
  9 16.9  6.5 27.9   .22720   .26585
10 27.0  8.0 33.1   .43788   .65862
11 16.0  4.5 26.3   .19601   .08767
12 24.9  9.9 37.8  2.90858  2.89743
13  7.3  2.9 34.6 21.53399 21.70991
14 12.8  2.0 36.4  1.02146  1.20448

	 a.	 Construct a normal quantile plot of the stan-
dardized residuals to see whether it is plausible 
that the random deviations in the fitted model 
come from a normal distribution.

	 b.	 Plot the standardized residuals against depth 
and against water content, and comment on the 
plots.

	47.	 The accompanying table shows the smallest value 
of SSResid for each number of predictors k (k 5 
1, 2, 3, 4) for a regression problem in which y 5 
cumulative heat of hardening in cement, x1 5 % 
tricalcium aluminate, x2 5 % tricalcium silicate, 
x3 5 % aluminum ferrate, and x4 5 % dicalcium 
silicate:

Number of 
predictors k Predictors SSResid

1 x4 880.85
2 x1, x2   58.01
3 x1, x2, x3   49.20
4 x1, x2, x3, x4   47.86

		  In addition, n 5 13 and SSTo 5 2715.76.
	 a.	 Use the criteria discussed in the text to recom-

mend the use of a particular model.
	 b.	 Would the forward selection method of model 

selection have considered the best two-predictor 
model? Explain your reasoning.

	48.	 A study carried out to investigate the relationship 
between a response variable relating to pressure 
drops in a screen-plate bubble column and the pre-
dictors x1 5 superficial fluid velocity, x2 5 liquid 
viscosity, and x3 5 opening mesh size resulted in 
the accompanying data (top of page 569; “A Corre-
lation of Two-Phase Pressure Drops in Screen-Plate 
Bubble Column,” Canad. J. of Chem. Engr., 1993: 
460–463).

			   The standardized residuals and hii values re-
sulted from the model that included the three in-
dependent variables as predictors. Are there any 
unusual observations?

Section 11.6 Exercises
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Data for Exercise 48

Obs Velocity Viscosity Mesh size Response
Standardized 

residual hii

 1 2.14  10.00 .34 28.9 2.01721 .202242
 2 4.14  10.00 .34 26.1 1.34706 .066929
 3 8.15  10.00 .34 22.8  .96537 .274393
 4 2.14   2.63 .34 24.2 1.29177 .224518
 5 4.14   2.63 .34 15.7  2.68311 .079651
 6 8.15   2.63 .34 18.3  .23785 .267959
 7 5.60   1.25 .34 18.1  .06456 .076001
 8 4.30   2.63 .34 19.1  .13131 .074927
 9 4.30   2.63 .34 15.4  2.74091 .074927

10 5.60  10.10 .25 12.0 21.38857 .152317
11 5.60  10.10 .34 19.8  2.03585 .068468
12 4.30  10.10 .34 18.6  2.40699 .062849
13 2.40  10.10 .34 13.2 21.92274 .175421
14 5.60  10.00 .55 22.8 21.07990 .712933
15 2.14 112.00 .34 41.8 21.19311 .516298
16 4.14 112.00 .34 48.6  1.21302 .513214
17 5.60  10.10 .25 19.2  .38451 .152317
18 5.60  10.10 .25 18.4  .18750 .152317
19 5.60  10.10 .25 15.0  2.64979 .152317

	49.	 The article “Anatomical Factors Influencing Wood 
Specific Gravity of Slash Pines and the Implica-
tions for the Development of a High-Quality Pulp-
wood” (TAPPI, 1964: 401–404) reported the results 
of an experiment in which 20 specimens of slash 
pine wood were analyzed. A primary objective was 
to relate wood specific gravity (y) to various other 
wood characteristics. Consider the accompanying 
data (top of page 570) on y and the predictors x1 5 
number of fibers/mm2 in springwood, x2 5 number 
of fibers/mm2 in summerwood, x3 5 springwood %, 
x4 5 % springwood light absorption, and x5 5 % 
summerwood light absorption.

			   Based on the accompanying Minitab output, 
which model(s) would you recommend investigat-
ing in more detail?

s s s s s

p u p u u

f f p l l

R-Sq i i e a a

Vars R-Sq (adj) C-p s b b r b b

1 56.4 53.9 10.6 0.021832 X

1 10.6 5.7 38.5 0.031245 X

1 5.3 0.1 41.7 0.032155 X

2 65.5 61.4 7.0 0.019975 X X

2 62.1 57.6 9.1 0.020950 X X

2   60.3 55.6 10.2 0.021439 X X

3 72.3 67.1 4.9 0.018461 X X X

3 71.2 65.8 5.6 0.018807 X X X

3 71.1 65.7 5.6 0.018846 X X X

4 77.0 70.9 4.0 0.017353 X X X X

4 74.8 68.1 5.4 0.018179 X X X X

4 72.7 65.4 6.7 0.018919 X X X X

5 77.0 68.9 6.0 0.017953 X X X X X
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	50.	 The accompanying Minitab output resulted from 
applying both the backward elimination method 
and the forward selection method to the wood spe-
cific gravity data given in Exercise 49. Explain for 
each method what occurred at every iteration of the 
algorithm.

Response is spgrav on 5 predictors, with N = 20

Step 1 2 3 4

Constant 0.4421 0.4384 0.4381 0.5179

sprngfib 0.00011 0.00011 0.00012

T-Value 1.17 1.95 1.98

sumrfib 0.00001

T-Value 0.12

%sprwood –0.00531 –0.00526 –0.00498 –0.00438

T-Value –5.70 –6.56 –5.96 –5.20

spltabs –0.0018 –0.0019

T-Value –1.63 –1.76

sumltabs 0.0044 0.0044 0.0031 0.0027

T-Value 3.01 3.31 2.63 2.12

S 0.0180 0.0174 0.0185 0.0200

R-Sq 77.05 77.03 72.27 65.50

Response is spgrav on 5 predictors, with N = 20

Step 1 2

Constant 0.7585 0.5179

%sprwood –0.00444 –0.00438

T-Value –4.82 –5.20

sumltabs 0.0027

T-Value 2.12

S 0.0218 0.0200

R-Sq 56.36 65.50

	51.	 The article “The Analysis and Selection of Variables 
in Linear Regression” (Biometrics, 1976: 1–49) con-
sidered a data set of 32 observations on the follow-
ing variables: y 5 fuel efficiency, x1 5 engine type 
(straight or V), x2 5 number of cylinders, x3 5 trans-
mission type (manual or automatic), x4 5 number 
of transmission speeds, x5 5 engine size, x6 5 horse-
power, x7 5 number of carburetor barrels, x8 5 final 
drive ratio, x9 5 weight, and x10 5 quarter-mile time. 
Use the summary information (top of page 571) on 
the best model of each given size to select a model, 
and explain the rationale for your choice.

Data for Exercise 49

Obs
Springwood 

fibers
Summerwood 

fibers
% 

Springwood

% 
Springwood 

light  
absorption

%  
Summerwood 

light  
absorption

Specific 
gravity

  1 573 1059 46.5 53.8 84.1 .534
  2 651 1356 52.7 54.5 88.7 .535
  3 606 1273 49.4 52.1 92.0 .570
  4 630 1151 48.9 50.3 87.9 .528
  5 547 1135 53.1 51.9 91.5 .548
  6 557 1236 54.9 55.2 91.4 .555
  7 489 1231 56.2 45.5 82.4 .481
  8 685 1564 56.6 44.3 91.3 .516
  9 536 1182 59.2 46.4 85.4 .475
10 685 1564 63.1 56.4 91.4 .486
11 664 1588 50.6 48.1 86.7 .554
12 703 1335 51.9 48.4 81.2 .519
13 653 1395 62.5 51.9 89.2 .492
14 586 1114 50.5 56.5 88.9 .517
15 534 1143 52.1 57.0 88.9 .502
16 523 1320 50.5 61.2 91.9 .508
17 580 1249 54.6 60.8 95.4 .520
18 448 1028 52.2 53.4 91.8 .506
19 476 1057 42.9 53.2 92.9 .595
20 528 1057 42.4 56.6 90.0 .568
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Number of 
predictors

Variables  
included R2

Adjusted 
R2

  1 9 .756 .748
  2 2, 9 .833 .821
  3 3, 9, 10 .852 .836
  4 3, 6, 9, 10 .860 .839
  5 3, 5, 6, 9, 10 .866 .840
  6 3, 5, 6, 8, 9, 10 .869 .837
  7 3, 4, 5, 6, 8, 9, 10 .870 .832
  8 3, 4, 5, 6, 7, 8, 9, 10 .871 .826
  9 1, 3, 4, 5, 6, 7, 8, 9, 10 .871 .818
10 All independent 

variables .871 .809

	52.	 Refer to the wood specific gravity data presented 
in Exercise 49. The following R2 values resulted 
from regressing each predictor on the other four 
predictors (in the first regression, the dependent 
variable was x1 and the predictors were x2 2 x5, 
etc.): .628, .711, .341, .403, and .403. Does mul-
ticollinearity appear to be a substantial problem? 
Explain.

	53.	 The article “Response Surface Methodology for 
Protein Extraction Optimization of Red Pepper 
Seed” (Food Sci. and Tech., 2010: 226–231) gave 
data on the response variable y 5 protein yield (%) 
and the independent variables x1 5 temperature 
(°C), x2 5 pH, x3 5 extraction time (min), and x4 5 
solvent/meal ratio.

	 a.	 Fitting the model with the four xi’s as predictors 
yielded the following output:

Predictor Coef SE Coef T P

Constant -4.586 2.542 -1.80 0.084

x1 0.01317 0.02707 0.49 0.631

x2 1.6350 0.2707 6.04 0.000

x3 0.02883 0.01353 2.13 0.044

x4 0.05400 0.02707 1.99 0.058

Source DF SS MS F P

Regression 4 19.8882 4.9721 11.31 0.000

Res. Error 24 10.5513 0.4396

Total 28 30.4395

		  Calculate and interpret the values of R2 and 
adjusted R2. Does the model appear to be useful?

	 b.	 Fitting the complete second-order model gave 
the following results:

Predictor Coef SE Coef T P

Constant -119.49 18.53 -6.45 0.000

x1 -0.1047 0.2839 -0.37 0.718

x2 28.678 3.625 7.91 0.000

x3 0.4074 0.1303 3.13 0.007

x4 0.2711 0.2606 1.04 0.316

x1sqd -0.000752 0.002110 -0.36 0.727

x2sqd -1.6452 0.2110 -7.80 0.000

x3sqd 0.0002121 0.0005275 0.40 0.694

x4sqd -0.015152 0.002110 -7.18 0.000

x1x2 0.02150 0.02687 0.80 0.437

x1x3 0.000550 0.001344 0.41 0.688

x1x4 -0.000800 0.002687 -0.30 0.770

x2x3 -0.05900 0.01344 -4.39 0.001

x2x4 0.03900 0.02687 1.45 0.169

x3x4 0.002725 0.001344 2.03 0.062

S = 0.268703 R-Sq = 96.7% R-Sq(adj) = 93.4%

Analysis of Variance

Source DF SS MS F P

Regression 14 29.4287 2.1020 29.11 0.000

Res. Error 14 1.0108 0.0722

Total 28 30.4395

		  Does at least one of the second-order predictors 
appear to be useful? Carry out an appropriate 
test of hypotheses.

	 c.	 From the output in part (b), we conjecture that 
none of the predictors involving x1 are provid-
ing useful information. When these predictors 
were eliminated, the value of SSResid for the 
reduced regression model is 1.1887. Does this 
support the conjecture?

	 d.	 Here is output from Minitab’s best subsets op-
tion, with just the single best subset of each 
size identified. Which model(s) would you 
consider using (subject to checking model 
adequacy)?
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1 2 3 4 x x x x x x
s s s s 1 1 1 2 2 3

Mallows x x x x q q q q x x x x x x
Vars R-Sq R-Sq(adj) Cp S 1 2 3 4 d d d d 2 3 4 3 4 4

1 52.7 50.9 174.4 0.73030 X
2 67.9 65.4 112.5 0.61349 X X
3 77.5 75.0 73.1 0.52124 X X X
4 83.4 80.7 50.8 0.45835 X X X X
5 90.9 88.9 21.4 0.34731 X X X X X
6 94.6 93.1 7.9 0.27422 X X X X X X
7 95.8 94.4 4.7 0.24683 X X X X X X X
8 96.2 94.6 5.1 0.24137 X X X X X X X X
9 96.4 94.7 6.1 0.23962 X X X X X X X X X

10 96.6 94.6 7.5 0.24132 X X X X X X X X X X
11 96.6 94.4 9.4 0.24716 X X X X X X X X X X X
12 96.6 94.1 11.2 0.25328 X X X X X X X X X X X X
13 96.7 93.8 13.1 0.26041 X X X X X X X X X X X X X
14 96.7 93.4 15.0 0.26870 X X X X X X X X X X X X X X

	54.	 It seems reasonable that the size of a cancerous 
tumor should be related to the likelihood that the 
cancer will spread (metastasize) to another site. 
The article “Molecular Detection of p16 Promoter 
Methylation in the Serum of Patients with Esopha-
geal Squamous Cell Carcinoma” (Cancer Res., 
2001: 3135–3138) investigated the spread of esoph-
ageal cancer to the lymph nodes. With x 5 size of 
a tumor (cm) and y 5 1 if the cancer does spread, 
consider the logistic regression model with a 5 22 
and b 5 .5 (values suggested by data in the article).

	 a.	 Tabulate values of x, �(x), the odds �(x)y[1 2
�(x)], and the log odds for x 5 0, 1, 2, . . . , 10.

	 b.	 Explain what happens to the odds when x is in-
creased by 1. Your explanation should involve 
the .5 that appears in the formula for �(x).

	 c.	 For what value of x are the odds 1? 5? 10?

	55.	 Kyphosis refers to severe forward flexion of the spine 
following corrective spinal surgery. A study carried 

out to determine risk factors for kyphosis reported 
the accompanying ages (months) for 40 subjects at 
the time of the operation; the first 18 subjects did 
have kyphosis and the remaining 22 did not.
Kyphosis: 12 15 42 52 59 73

82 91 96 105 114 120
121 128 130 139 139 157

No kyphosis: 1 1 2 8 11 18
22 31 37 61 72 81
97 112 118 127 131 140

151 159 177 206

		  Use the Minitab logistic regression output below 
to decide whether age appears to have a significant 
impact on the presence of kyphosis.

	56.	 The following data resulted from a study commis-
sioned by a large management consulting company 
to investigate the relationship between amount of 
job experience (months) for a junior consultant 

Logistic Regression Table for Exercise 55

Odds 95% CI
Predictor Coef StDev Z P Ratio Lower Upper
Constant –0.5727 0.6024 –0.95 0.342
age 0.004296 0.005849 0.73 0.463 1.00 0.99 1.02

Logistic Regression Table for Exercise 56

Odds 95% CI
Predictor Coef StDev Z P Ratio Lower Upper
Constant –3.211 1.235 –2.60 0.009
age 0.17772 0.06573 2.70 0.007 1.19 1.05 1.36
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and the likelihood of the consultant being able to 
perform a certain complex task.

Success: 8 13 14 18 20 21 21 22 25
26 28 29 30 32

Failure: 4 5 6 6 7 9 10 11 11
13 15 18 19 20 23 27

		  Interpret the Minitab logistic regression output 
(p. 572), and sketch a graph of the estimated proba-
bility of task performance as a function of experience.

	57.	 Pillar stability is a most important factor to ensure 
safe conditions in underground mines. The authors 
of “Developing Coal Pillar Stability Chart Using 
Logistic Regression” (Intl. J. of Rock Mechanics & 
Mining Sci., 2013: 55–60) used a logistic regres-
sion model to predict pillar stability. The article 
reported the following data on x1 5 pillar height to 
width ratio, x2 5 pillar strength to stress ratio, and 
pillar stability for 29 coal pillars.

ID x1 x2 Stable? | ID x1 x2 Stable?
1 1.80 2.40 Y | 10 3.59 5.55 Y
2 1.65 2.54 Y | 11 8.33 2.58 Y
3 2.70 0.84 Y | 12 2.86 2.00 Y
4 3.67 1.68 Y | 13 2.58 3.68 Y
5 1.41 2.41 Y | 14 2.90 1.13 Y
6 1.76 1.93 Y | 15 3.89 2.49 Y
7 2.10 1.77 Y | 16 0.80 1.37 N
8 2.10 1.50 Y | 17 0.60 1.27 N
9 4.57 2.43 Y | 18 1.30 0.87 N

ID x1 x2 Stable? | ID x1 x2 Stable?
19 0.83 0.97 N | 25 0.94 1.30 N
20 0.57 0.94 N | 26 1.58 0.83 N
21 1.44 1.00 N | 27 1.67 1.05 N
22 2.08 0.78 N | 28 3.00 1.19 N
23 1.50 1.03 N | 29 2.21 0.86 N
24 1.38 0.82 N |

		  The corresponding logistic regression output from 
R is given here:

Coefficients:

Estimate
Std. 
Error z value Pr(>|z|)

(Intercept) -13.146 5.184 -2.536 0.0112
x1 2.774 1.477 1.878 0.0604
x2 5.668 2.642 2.145 0.0319

	 a.	 Use the output to determine whether the two 
predictor variables appear to have a significant 
impact on pillar stability. Use � 5 .1.

	 b.	 Provide interpretations for e2.774 and e5.668.
	 c.	 Determine an estimate (as the authors did) for 

the probability of pillar stability for each of the  
29 pillars using the parameter estimates given in 
the output. Then label each pillar as “stable” if the 
estimated probability is at least .75 and “unstable” 
otherwise. How many of the pillars that were ac-
tually stable were correctly designated as “stable”? 
How many unstable pillars were correctly desig-
nated as “unstable”?

Supplementary Exercises

	58.	 Suppose data was collected on y 5 bulk density  
(kg/m3) and x 5 moisture content (%) for a sample 
of six seeds of a particular type resulting in the ac-
companying scatterplot.
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		  Here is the Mintab output from a request to fit a 
simple linear regression model of y on x:

The regression equation is
density = 545 - 5.46 moisture

Predictor Coef SE Coef T p
Constant 545.23 28.19 19.34 0.000
moisture -5.463 1.786 -3.06 0.038

		  Noticing the relatively small P-value for the mois-
ture predictor, a fellow student concludes that, 
based on the model utility test, there is a useful lin-
ear relationship between the two variables. Com-
ment on the validity of this conclusion. How useful 
is this Minitab output (keeping in mind the scat-
terplot of the data)?Un
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	59.	 The accompanying data was read from a scatterplot 
in the article “Urban Emissions Measured with 
Aircraft” (J. of the Air and Waste Mgmt. Assoc., 
1998: 16–25). The response variable is DNOy and 
the explanatory variable is DCO.
DCO: 50 60 95 108 135
DNOy: 2.3 4.5 4.0 3.7 8.2
DCO: 210 214 315 720
DNOy: 5.4 7.2 13.8 32.1

	 a.	 Fit an appropriate model to the data and judge 
the utility of the model.

	 b.	 Predict the value of DNOy that would result from 
making one more observation when DCO is 
400, and do so in a way that conveys information 
about precision and reliability. Does it appear 
that DNOy can be accurately predicted? Explain.

	 c.	 The largest value of DCO is much greater than the 
other values. Does this observation appear to have 
had a substantial impact on the fitted equation?

	60.	 Astringency is the quality in a wine that makes a wine 
drinker’s mouth feel slightly rough, dry, and puckery. 
The paper “Analysis of Tannins in Red Wine Us-
ing Multiple Methods: Correlation with Perceived 
Astringency” (Amer. J. Enol. Vitic., 2006: 481–485) 
reported on an investigation to assess the relationship 
between perceived astringency and tannin concen-
tration using various analytic methods. Here is data 
provided by the authors on x 5 tannin concentra-
tion by protein precipitation and y 5 perceived 
astringency as determined by a panel of tasters.
x: 0.718 0.808 0.924 1.000
y: 0.428 0.480 0.493 0.978
x: 0.667 0.529 0.514 0.559
y: 0.318 0.298 20.224 0.198
x: 0.766 0.470 0.726 0.762
y: 0.326 20.336 0.765 0.190

x: 0.666 0.562 0.378 0.779
y: 0.066 20.221 20.898 0.836
x: 0.674 0.858 0.406 0.927
y: 0.126 0.305 20.577 0.779
x: 0.311 0.319 0.518 0.687
y: 20.707 20.610 20.648 20.145
x: 0.907 0.638 0.234 0.781
y: 1.007 20.090 21.132 0.538

x: 0.326 0.433 0.319 0.238
y: 21.098 20.581 20.862 20.551

		  Relevant summary qualities are as follows:

^xi 5 19.404, ^yi 5 2.549, ^x2
i 5 13.248032

^y2
i 5 11.835795, ^xiyi 5 3.497811

Sxx 5 13.248032 2 (19.404)2y32 5 1.48193150,
Syy 5 11.82637622

Sxy 5 3.497811 2 (19.404)(2.549)y32 5 3.83071088

	 a.	 Fit the simple linear regression model to this 
data. Then determine the proportion of ob-
served variation in astringency that can be at-
tributed to the model relationship between as-
tringency and tannin concentration.

	 b.	 Calculate and interpret a confidence interval for 
the slope of the true regression line.

	 c.	 Estimate true average astringency when tannin 
concentration is .6, and do so in a way that con-
veys information about reliability and precision.

	 d.	 Predict astringency for a single wine sample 
whose tannin concentration is .6, and do so in 
a way that conveys information about reliability 
and precision.

	61.	 In a discussion of the article “Tensile Behavior of 
Slurry Infiltrated Mat Concrete (SIMCON)” (ACI 
Materials J., 1998: 77–79), the discussant presented 
data on y 5 toughness (psi) and x 5 aspect ratio. He 
stated that “a (simple linear) regression analysis clear-
ly shows that the aspect ratio is not a reliable variable 
that can be used to predict toughness.” The following 
observations were read from a graph in the article:

x:  500 500 500 500 500 715 715 715 715 715
y:  33 34 35 38 40 35 36 37 39 44

	 a.	 Why is the relationship between these two vari-
ables clearly not deterministic?

	 b.	 Fit the simple linear regression model, and state 
whether you agree with the discussant’s assessment.

	 c.	 Even if the y values had been much closer to-
gether, so that the model could be judged use-
ful, would there be any way to check model 
adequacy to decide whether a quadratic regres-
sion model would be more appropriate? Explain 
your reasoning.

	62.	 The accompanying data on y 5 energy output (W) 
and x 5 temperature difference (K) was provided 
by the authors of the article “Comparison of Energy 
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and Exergy Efficiency for Solar Box and Parabolic 
Cookers” (J. of Energy Engr., 2007: 53–62).

x: 23.20 23.50 23.52 24.30 25.10 26.20
y: 3.78 4.12 4.24 5.35 5.87 6.02

x: 27.40 28.10 29.30 30.60 31.50 32.01
y: 6.12 6.41 6.62 6.43 6.13 5.92

x: 32.63 33.23 33.62 34.18 35.43 35.62
y: 5.64 5.45 5.21 4.98 4.65 4.50

x: 36.16 36.23 36.89 37.90 39.10 4166
y: 4.34 4.03 3.92 3.65 3.02 2.89

		  The article’s authors fit a cubic regression model to 
the data. Here is Minitab output from such a fit.

The regression equation is
y = -134 + 12.7 x - 0.377 x**2 + 0.00359 x**3

Predictor Coef SE Coef T P
Constant -133.787 8.048 -16.62 0.000
x 12.7423 0.7750 16.44 0.000
x**2 -0.37652 0.02444 -15.41 0.000
x**3 0.0035861 0.0002529 14.18 0.000

s = 0.168354 R-Sq = 98.0% R-Sq(adj) = 97.7%

Analysis of Variance

Source DF SS MS F P
Regression 3 27.9744 9.3248 329.00 0.000
Res. Error 20 0.5669 0.0283
Total 23 28.5413

	 a.	 What proportion of observed variation in energy 
output can be attributed to the model relationship?

	 b.	 Fitting a quadratic model to the data results in 
R2 5 .780. Calculate adjusted R2 for this model 
and compare to adjusted R2 for the cubic 
model.

	 c.	 Does the cubic predictor appear to provide use-
ful information about y over and above that 
provided by the linear and quadratic predictors? 
State and test the appropriate hypotheses.

	 d.	 When x 5 30, syn5.0611. Calculate a 95% CI 
for true average energy output in this case, and 
also a 95% PI for a single energy output to be 
observed when temperature difference is 30.

	63.	 Secondary settling tanks play an important role in 
the performance of suspended-growth activated-
sludge processes. The article “Sludge Volume Index 

Settleability Measures” (Water Environ. Research, 
1998: 87–93) included a scatterplot of y 5 final set-
tled height fraction versus x 5 initial solids concen-
tration (g/L), from which the following data was read:

x: .5 .9 1.1 1.7 2.0 2.2 2.7 3.0 3.3 4.2
y: .06 .08 .10 .13 .15 .16 .18 .17 .15 .27

x: 4.5 5.3 5.8 5.9 6.2 6.8 7.2 9.1 9.4 10.4
y: .30 .25 .31 .32 .48 .43 .32 .40 .61 .57

		  Summary quantities include n 5 20,

		  ^xi 5 92.2    ^x2
i 5 591.46

		  ^yi 5 5.44    ^y2
i 5 1.9674

		  ^xiyi 5 33.577

	 a.	 The article included the statement “the linear 
correlation coefficient, r2 5 .89.” Is this entire 
statement correct? If not, why, and what part is 
correct?

	 b.	 Carry out a test of appropriate hypotheses to see 
whether there is in fact a linear relationship be-
tween the two variables.

	 c.	 The standardized residuals from fitting the sim-
ple linear regression model are (in increasing 
order of x values) 2.04, 2.05, .14, .13, .22, .21, 
.11, 2.37, 21.04, .36, .63, 21.08, 2.43, 2.34, 
2.40, .88, 21.62, 22.04, 1.90, and .05. Does a 
plot of the standardized residuals versus x show 
a disturbing pattern? Explain.

	64.	 The use of microorganisms to dissolve metals from 
ores has offered an ecologically friendly and less 
expensive alternative to traditional methods. The 
dissolution of metals by this method can be done 
in a two-stage bioleaching process: (1) microorgan-
isms are grown in culture to produce metabolites 
(e.g. organic acids) and (2) ore is added to the 
culture medium to initiate leaching. The article 
“Two-Stage Fungal Leaching of Vanadium from 
Uranium Ore Residue of the Leaching Stage us-
ing Statistical Experimental Design” (Annals of 
Nuclear Energy, 2013: 48–52) reported on a two-
stage bioleaching process of vanadium by using 
the fungus Aspergillus niger. In one study, the au-
thors examined the impact of the variables x1 5 
pH, x2 5 sucrose concentration (g/L), and x3 5 
spore population (106 cells/ml) on y 5 oxalic acid 
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production (mg/L). The accompanying SAS out-
put resulted from a request to fit the model with 
predictors x1, x2, and x3 only.

Source DF Sum of 
Squares

Mean 
Square

F 
Value

Pr > F

Model 3 5861301 1953767 7.53 0.0052
Error 11 2855951 259632
C. Total 14 8717252

		  Fitting the complete second-order model resulted 
in SSResid 5 541,632. Carry out a test at signifi-
cance level .01 to decide whether at least one of the 
second-order predictors provides useful informa-
tion about oxalic acid production.

	65.	 The article cited in Exercise 64 also examined the 
effect of x1 5 pH, x2 5 sucrose concentration (g/L), 
and x3 5 spore population (106 cells/ml) on y 5 
gluconic acid production (mg/L). The accompany-
ing SAS output resulted from a request to fit the 
model with predictors x1, x2, and x3 only.

Source DF Sum of 
Squares

Mean 
Square

F 
Value

Pr > F

Model 3 74027925 24675975 178.18 <.0001
Error 11 1523351 138486
C. Total 14 75551276

		  Fitting the complete second-order model resulted 
in SSResid 5 805,534. Carry out a test at signifi-
cance level .01 to decide whether at least one of the 
second-order predictors provides useful informa-
tion about oxalic acid production.

	66.	 The accompanying data was taken from the article 
“Applying Stepwise Multiple Regression Analysis 
to the Reaction of Formaldehyde with Cotton Cel-
lulose” (Textile Research J., 1984: 157–165). The 

dependent variable is durable press rating, a quan-
titative measure of wrinkle resistance, and the four 
independent variables are formaldehyde concentra-
tion, catalyst ratio, curing temperature, and curing 
time, respectively.

	 a.	 Fitting the model with the four independent 
variables as predictors resulted in the following 
Minitab output. Does the fitted model appear to 
be useful?

The regression equation is
durpr = –0.912 + 0.161 formconc
	 + 0.220 catratio + 0.0112 temp
	 + 0.102 time

Predictor Coef StDev T p
Constant –0.9122 0.8755 –1.04 0.307
formconc 0.16073 0.06617 2.43 0.023
catratio 0.21978 0.03406 6.45 0.000
temp 0.011226 0.004973 2.26 0.033
time 0.10197 0.05874 1.74 0.095

S = 0.8365 R-Sq = 69.2% R-Sq(adj) = 64.3%
Analysis of Variance

Source DF SS MS F P
Regression 4 39.3769 9.8442 14.07 0.000
Error 25 17.4951 0.6998
Total 29 56.8720

	 b.	 Estimate, in a way that conveys information 
about precision and reliability, the average 
change in durability press rating associated with 
a 1-degree increase in curing temperature when 
concentration, catalyst ratio, and curing time all 
remain fixed.

	 c.	 Given that catalyst ratio, curing temperature, 
and curing time all remain in the model, do you 
think that formaldehyde concentration provides 
useful information about durable press rating?

Data for Exercise 66

Obs
Formaldehyde
concentration

Catalyst
ratio

Curing
temperature

Curing
time

Durable
press rating

 1  8  4 100 1 1.4

 2  2  4 180 7 2.2
 3  7  4 180 1 4.6
 4 10   7 120 5 4.9
 5   7   4 180 5 4.6

(Continued)
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Obs
Formaldehyde
concentration

Catalyst
ratio

Curing
temperature

Curing
time

Durable
press rating

  6   7   7 180 1 4.7

  7   7 13 140 1 4.6

  8   5   4 160 7 4.5

  9   4   7 140 3 4.8

10   5   1 100 7 1.4

11   8 10 140 3 4.7

12   2   4 100 3 1.6

13   4 10 180 3 4.5

14   6   7 120 7 4.7

15 10 13 180 3 4.8

16   4 10 160 5 4.6

17   4 13 100 7 4.3

18 10 10 120 7 4.9

19   5   4 100 1 1.7

20   8 13 140 1 4.6

21 10   1 180 1 2.6

22   2 13 140 1 3.1

23   6 13 180 7 4.7

24   7   1 120 7 2.5

25   5 13 140 1 4.5

26   8   1 160 7 2.1

27   4   1 180 7 1.8

28   6   1 160 1 1.5

29   4   1 100 1 1.3

30   7 10 100 7 4.6

	 d.	 Now consider models based not only on these 
four independent variables but also on second-
order predictors (four xi

2 predictors and six xixj 
predictors). Use a statistical computer package 
to identify a good model based on this candidate 
pool of predictors.

	67.	 A study was carried out to investigate the relation-
ship between brightness of finished paper (y) and 
the variables percentage of H2O2 by weight, per-
centage of NaOH by weight, percentage of silicate 
by weight, and process temperature (“Advantages 

of CEHDP Bleaching for High Brightness Kraft Pulp 
Production,” TAPPI, 1964: 170A–173A). Each inde-
pendent variable was allowed to assume five different 
values, and these values were coded for regression 
analysis as follows:

Coded
Variable value: –2 –1 0 1  2
H2O2 .1 .2 .3 .4 .5
NaOH .1 .2 .3 .4 .5
Silicate .5 1.5 2.5 3.5 4.5
Temperature 130 145 160 175 190
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		  The data follow:

Obs H2O2 NaOH
Sili-
cate

Temp-
erature

Bright-
ness

  1 21 21 21 21 83.9
  2 1 21 21 21 84.9
  3 21 1 21 21 83.4
  4 1 1 21 21 84.2
  5 21 21 1 21 83.8
  6 1 21 1 21 84.7
  7 21 1 1 21 84.0
  8 1 1 1 21 84.8
  9 21 21 21 1 84.5
10 1 21 21 1 86.0
11 21 1 21 1 82.6
12 1 1 21 1 85.1
13 21 21 1 1 84.5
14 1 21 1 1 86.0
15 21 1 1 1 84.0
16 1 1 1 1 85.4
17 22 0 0 0 82.9
18 2 0 0 0 85.5
19 0 22 0 0 85.2
20 0 2 0 0 84.5
21 0 0 22 0 84.7
22 0 0 2 0 85.0
23 0 0 0 22 84.9
24 0 0 0 2 84.0
25 0 0 0 0 84.5
26 0 0 0 0 84.7
27 0 0 0 0 84.6
28 0 0 0 0 84.9
29 0 0 0 0 84.9
30 0 0 0 0 84.5
31 0 0 0 0 84.6

	 a.	 When the complete second-order coded model 
was fit, the estimate of the constant term was 84.67; 
the estimated coefficients of the linear predictors 
were .650, 2.258, .133, and .108, respectively; the 
estimated quadratic coefficients were 2.135, .028, 
.028, and –.072, respectively; and the estimated 
coefficients of the interaction predictors were .038, 
2.075, .213, .200, 2.188, and .050, respectively. 
Calculate a point prediction of brightness when 
H2O2 is .4%, NaOH is .4%, silicate is 3.5%, and 

temperature is 175. What are the values of the re-
siduals for the observations made with these values 
of the independent variables?

	 b.	 Express the estimated regression in uncoded form.
	 c.	 SSTo 5 17.2567 and R2 for the model of part (a)  

is .885. When a model that includes only the 
four independent variables as predictors is fit, 
R2 5 .721. Carry out a test at level .05 to decide 
whether at least one of the second-order predic-
tors provides useful information about brightness.

	68.	 Three sets of journal bearing tests were run on a 
Mil-L-8937-type film at each combination of three 
loads (psi) and three speeds (rpm). The wear life 
(hr) was recorded for each run, resulting in the fol-
lowing data (“Accelerated Testing of Solid Film 
Lubricants,” Lubrication Engr., 1972: 365–372):

Load Load
Speed (1000s) Life Speed (1000s) Life

20   3 300.2  60   6 65.9
20   3 310.8  60 10 10.7
20   3 333.0  60 10 34.1
20   6   99.6  60 10 39.1
20   6 136.2 100   3 26.5
20   6 142.4 100   3 22.3
20 10   20.2 100   3 34.8
20 10   28.2 100   6 32.8
20 10 102.7 100   6 25.6
60   3   67.3 100   6 32.7
60   3   77.9 100 10   2.3
60   3   93.9 100 10   4.4
60   6   43.0 100 10   5.8
60   6   44.5

	 a.	 With w 5 wear life, s 5 speed, and l 5 load (in 
1000s), fit the model with dependent variable w 
and predictors s and l, and assess the utility of 
the fitted model.

	 b.	 The cited article contains the comment that a 
lognormal distribution is appropriate for wear 
life, since ln(w) is known to follow a normal law. 
The suggested model is w 5 3�y(s 

�l 

� )4«, where 
« denotes a random deviation and �, �, and 
� are parameters. Estimate the model param-
eters, and obtain a prediction interval for wear 
life when speed is 60 rpm and load is 6000 psi. 
(Hint: Transform the model equation so it has 
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the appearance of the general additive multiple 
regression model equation.)

	69.	 Normal hatchery processes in aquaculture inevi-
tably produce stress in fish, which may negatively 
impact growth, reproduction, flesh quality, and 
susceptibility to disease. Such stress manifests itself 
in elevated and sustained corticosteroid levels. The 
article “Evaluation of Simple Instruments for the 
Measurement of Blood Glucose and Lactate, and 
Plasma Protein as Stress Indicators in Fish” (J. of 
the World Aquaculture Society, 1999: 276–284) de-
scribed an experiment in which fish were subjected 
to a stress protocol and then removed and tested at 
various times after the protocol had been applied. 
The accompanying data on x 5 time (min) and y 5 
blood glucose level (mmol/L) was read from a plot:

x: 2 2 5 7 12 13 17 18 23 24 26 28
y: 4.0 3.6 3.7 4.0 3.8 4.0 5.1 3.9 4.4 4.3 4.3 4.4

x: 29 30 34 36 40 41 44 56 56 57 60 60
y: 5.8 4.3 5.5 5.6 5.1 5.7 6.1 5.1 5.9 6.8 4.9 5.7

		  Use the methods developed in this chapter to analyze 
the data, and write a brief report summarizing your 
conclusions (assume that the investigators are partic-
ularly interested in glucose level 30 min after stress).

	70.	 The article “Evaluating the BOD POD for As-
sessing Body Fat in Collegiate Football Players” 
(Medicine and Science in Sports and Exercise, 
1999: 1350–1356) reports on a new air displace-
ment device for measuring body fat. The custom-
ary procedure utilizes the hydrostatic weighing 
device, which measures the percentage of body fat 
by means of water displacement. Here is represen-
tative data read from a graph in the paper.

Obs BOD HW Obs BOD HW
1   2.5   8.0 11 12.2 15.3
2   4.0   6.2 12 12.6 14.8
3   4.1   9.2 13 14.2 14.3
4   6.2   6.4 14 14.4 16.3
5   7.1   8.6 15 15.1 17.9
6   7.0 12.2 16 15.2 19.5
7   8.3   7.2 17 16.3 17.5
8   9.2 12.0 18 17.1 14.3
9   9.3 14.9 19 17.9 18.3

10 12.0 12.1 20 17.9 16.2

	 a.	 Use various techniques to decide whether it is 
plausible that the two techniques measure on 
average the same amount of fat.

	 b.	 Use the data to develop a way of predicting an 
HW measurement from a BOD POD measure-
ment, and investigate the effectiveness of such 
predictions.

	71.	 Curing concrete is known to be vulnerable to 
shock vibrations, which may cause cracking or 
hidden damage to the material. As part of a study 
of vibration phenomena, the paper “Shock Vibra-
tion Test of Concrete” (ACI Materials J., 2002: 
361–370) reported the accompanying data on peak 
particle velocity (mm/sec) and ratio of ultrasonic 
pulse velocity after impact to that before impact in 
concrete prisms:

Obs ppv Ratio Obs ppv Ratio
  1 160 .996 16   708 .990
  2 164 .996 17   806 .984
  3 178 .999 18   884 .986
  4 252 .997 19   526 .991
  5 293 .993 20   490 .993
  6 289 .997 21   598 .993
  7 415 .999 22   505 .993
  8 478 .997 23   525 .990
  9 391 .992 24   675 .991
10 486 .985 25 1211 .981
11 604 .995 26 1036 .986
12 528 .995 27 1000 .984
13 749 .994 28 1151 .982
14 772 .994 29 1144 .962
15 532 .987 30 1068 .986

		  Transverse cracks appeared in the last 12 prisms, 
whereas there was no observed cracking in the first 
18 prisms.

	 a.	 Construct a comparative boxplot of ppv for the 
cracked and uncracked prisms, and comment. 
Then estimate the difference between true aver-
age ppv for cracked and uncracked prisms in 
a way that conveys information about precision 
and reliability.

	 b.	 The investigators fit the simple linear regression 
model to the entire data set consisting of 30 obser-
vations, with ppv as the independent variable and 
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ratio as the dependent variable. Use a statistical 
software package to fit several different regression 
models, and draw appropriate inferences.

	72.	 Have you ever wondered whether soccer players 
suffer adverse effects from hitting “headers”? The 
authors of the article “No Evidence of Impaired 
Neurocognitive Performance in Collegiate Soccer 
Players” (The Amer. J. of Sports Medicine, 2002: 
157–162) investigated this issue from several 
perspectives.

	 a.	 The paper reported that 45 of the 91 soccer 
players in their sample had suffered at least one 
concussion, 28 of 96 nonsoccer athletes had suf-
fered at least one concussion, and only 8 of 53 
student controls had suffered at least one con-
cussion. Analyze this data and draw appropriate 
conclusions.

	 b.	 For the soccer players, the sample correlation 
coefficient calculated from the values of x 5 
soccer exposure (total number of competitive 
seasons played prior to enrollment in the study) 
and y 5 score on an immediate memory recall 
test was r 5 2.220. Interpret this result.

	 c.	 Here is summary information on score on a con-
trolled oral word association test for the soccer 
and nonsoccer athletes:

n1 5 26  x15 37.50  s1 5 9.13
n2 5 56  x25 39.63  s2 5 10.19

		  Analyze this data and draw appropriate conclu-
sions.

	 d.	 Considering the number of prior nonsoccer con-
cussions, the values of mean 6 sd for the three 
groups were .30 6 .67, .49 6 .87, and .19 6 .48.  
Analyze this data and draw appropriate conclusions.

Bibliography

Please see the bibliography for Chapter 3.
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Table I   The standard normal distribution (cumulative z curve areas)

	 z 	 .00	 .01	 .02	 .03	 .04	 .05	 .06	 .07	 .08	 .09

	 3.8	 .0001	 .0001	 .0001	 .0001	 .0001	 .0001	 .0001	 .0001	 .0001	 .0000
3.7	 .0001	 .0001	 .0001	 .0001	 .0001	 .0001	 .0001	 .0001	 .0001	 .0001

	 3.6	 .0002	 .0002	 .0001	 .0001	 .0001	 .0001	 .0001	 .0001	 .0001	 .0001
	 3.5	 .0002	 .0002	 .0002	 .0002	 .0002	 .0002	 .0002	 .0002	 .0002	 .0002
	 3.4	 .0003	 .0003	 .0003	 .0003	 .0003	 .0003	 .0003	 .0003	 .0003	 .0002
	 3.3	 .0005	 .0005	 .0005	 .0004	 .0004	 .0004	 .0004	 .0004	 .0004	 .0003
	 3.2	 .0007	 .0007	 .0006	 .0006	 .0006	 .0006	 .0006	 .0005	 .0005	 .0005
	 3.1	 .0010	 .0009	 .0009	 .0009	 .0008	 .0008	 .0008	 .0008	 .0007	 .0007
	 3.0	 .0013	 .0013	 .0013	 .0012	 .0012	 .0011	 .0011	 .0011	 .0010	 .0010
	 2.9	 .0019	 .0018	 .0018	 .0017	 .0016	 .0016	 .0015	 .0015	 .0014	 .0014
	 2.8	 .0026	 .0025	 .0024	 .0023	 .0023	 .0022	 .0021	 .0021	 .0020	 .0019
	 2.7	 .0035	 .0034	 .0033	 .0032	 .0031	 .0030	 .0029	 .0028	 .0027	 .0026
	 2.6	 .0047	 .0045	 .0044	 .0043	 .0041	 .0040	 .0039	 .0038	 .0037	 .0036
	 2.5	 .0062	 .0060	 .0059	 .0057	 .0055	 .0054	 .0052	 .0051	 .0049	 .0048
	 2.4	 .0082	 .0080	 .0078	 .0075	 .0073	 .0071	 .0069	 .0068	 .0066	 .0064
	 2.3	 .0107	 .0104	 .0102	 .0099	 .0096	 .0094	 .0091	 .0089	 .0087	 .0084
	 2.2	 .0139	 .0136	 .0132	 .0129	 .0125	 .0122	 .0119	 .0116	 .0113	 .0110
	 2.1	 .0179	 .0174	 .0170	 .0166	 .0162	 .0158	 .0154	 .0150	 .0146	 .0143
	 2.0	 .0228	 .0222	 .0217	 .0212	 .0207	 .0202	 .0197	 .0192	 .0188	 .0183
	 1.9	 .0287	 .0281	 .0274	 .0268	 .0262	 .0256	 .0250	 .0244	 .0239	 .0233
	 1.8	 .0359	 .0351	 .0344	 .0336	 .0329	 .0322	 .0314	 .0307	 .0301	 .0294
	 1.7	 .0446	 .0436	 .0427	 .0418	 .0409	 .0401	 .0392	 .0384	 .0375	 .0367
	 1.6	 .0548	 .0537	 .0526	 .0516	 .0505	 .0495	 .0485	 .0475	 .0465	 .0455
	 1.5	 .0668	 .0655	 .0643	 .0630	 .0618	 .0606	 .0594	 .0582	 .0571	 .0559
	 1.4	 .0808	 .0793	 .0778	 .0764	 .0749	 .0735	 .0721	 .0708	 .0694	 .0681
	 1.3	 .0968	 .0951	 .0934	 .0918	 .0901	 .0885	 .0869	 .0853	 .0838	 .0823
	 1.2	 .1151	 .1131	 .1112	 .1093	 .1075	 .1056	 .1038	 .1020	 .1003	 .0985
	 1.1	 .1357	 .1335	 .1314	 .1292	 .1271	 .1251	 .1230	 .1210	 .1190	 .1170
	 1.0	 .1587	 .1562	 .1539	 .1515	 .1492	 .1469	 .1446	 .1423	 .1401	 .1379
	 0.9	 .1841	 .1814	 .1788	 .1762	 .1736	 .1711	 .1685	 .1660	 .1635	 .1611
	 0.8	 .2119	 .2090	 .2061	 .2033	 .2005	 .1977	 .1949	 .1922	 .1894	 .1867
	 0.7	 .2420	 .2389	 .2358	 .2327	 .2296	 .2266	 .2236	 .2206	 .2177	 .2148
	 0.6	 .2743	 .2709	 .2676	 .2643	 .2611	 .2578	 .2546	 .2514	 .2483	 .2451
	 0.5	 .3085	 .3050	 .3015	 .2981	 .2946	 .2912	 .2877	 .2843	 .2810	 .2776
	 0.4	 .3446	 .3409	 .3372	 .3336	 .3300	 .3264	 .3228	 .3192	 .3156	 .3121
	 0.3	 .3821	 .3783	 .3745	 .3707	 .3669	 .3632	 .3594	 .3557	 .3520	 .3483
	 0.2	 .4207	 .4168	 .4129	 .4090	 .4052	 .4013	 .3974	 .3936	 .3897	 .3859
	 0.1	 .4602	 .4562	 .4522	 .4483	 .4443	 .4404	 .4364	 .4325	 .4286	 .4247
	 0.0	 .5000	 .4960	 .4920	 .4880	 .4840	 .4801	 .4761	 .4721	 .4681	 .4641

0

Tabulated area Standard normal ( ) curve

*
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Table I   The standard normal distribution 

	z 	 .00	 .01	 .02	 .03	 .04	 .05	 .06	 .07	 .08	 .09

	0.0	 .5000	 .5040	 .5080	 .5120	 .5160	 .5199	 .5239	 .5279	 .5319	   .5359
	0.1	 .5398	 .5438	 .5478	 .5517	 .5557	 .5596	 .5636	 .5675	 .5714	   .5753
	0.2	 .5793	 .5832	 .5871	 .5910	 .5948	 .5987	 .6026	 .6064	 .6103	   .6141
	0.3	 .6179	 .6217	 .6255	 .6293	 .6331	 .6368	 .6406	 .6443	 .6480	   .6517
	0.4	 .6554	 .6591	 .6628	 .6664	 .6700	 .6736	 .6772	 .6808	 .6844	   .6879
	0.5	 .6915	 .6950	 .6985	 .7019	 .7054	 .7088	 .7123	 .7157	 .7190	   .7224
	0.6	 .7257	 .7291	 .7324	 .7357	 .7389	 .7422	 .7454	 .7486	 .7517	   .7549
	0.7	 .7580	 .7611	 .7642	 .7673	 .7704	 .7734	 .7764	 .7794	 .7823	   .7852
	0.8	 .7881	 .7910	 .7939	 .7967	 .7995	 .8023	 .8051	 .8078	 .8106	   .8133
	0.9	 .8159	 .8186	 .8212	 .8238	 .8264	 .8289	 .8315	 .8340	 .8365	   .8389
	1.0	 .8413	 .8438	 .8461	 .8485	 .8508	 .8531	 .8554	 .8577	 .8599	   .8621
	1.1	 .8643	 .8665	 .8686	 .8708	 .8729	 .8749	 .8770	 .8790	 .8810	   .8830
	1.2	 .8849	 .8869	 .8888	 .8907	 .8925	 .8944	 .8962	 .8980	 .8997	   .9015
	1.3	 .9032	 .9049	 .9066	 .9082	 .9099	 .9115	 .9131	 .9147	 .9162	   .9177
	1.4	 .9192	 .9207	 .9222	 .9236	 .9251	 .9265	 .9279	 .9292	 .9306	   .9319
	1.5	 .9332	 .9345	 .9357	 .9370	 .9382	 .9394	 .9406	 .9418	 .9429	   .9441
	1.6	 .9452	 .9463	 .9474	 .9484	 .9495	 .9505	 .9515	 .9525	 .9535	   .9545
	1.7	 .9554	 .9564	 .9573	 .9582	 .9591	 .9599	 .9608	 .9616	 .9625	   .9633
	1.8	 .9641	 .9649	 .9656	 .9664	 .9671	 .9678	 .9686	 .9693	 .9699	   .9706
	1.9	 .9713	 .9719	 .9726	 .9732	 .9738	 .9744	 .9750	 .9756	 .9761	   .9767
	2.0	 .9772	 .9778	 .9783	 .9788	 .9793	 .9798	 .9803	 .9808	 .9812	   .9817
	2.1	 .9821	 .9826	 .9830	 .9834	 .9838	 .9842	 .9846	 .9850	 .9854	   .9857
	2.2	 .9861	 .9864	 .9868	 .9871	 .9875	 .9878	 .9881	 .9884	 .9887	   .9890
	2.3	 .9893	 .9896	 .9898	 .9901	 .9904	 .9906	 .9909	 .9911	 .9913	   .9916
	2.4	 .9918	 .9920	 .9922	 .9925	 .9927	 .9929	 .9931	 .9932	 .9934	   .9936
	2.5	 .9938	 .9940	 .9941	 .9943	 .9945	 .9946	 .9948	 .9949	 .9951	   .9952
	2.6	 .9953	 .9955	 .9956	 .9957	 .9959	 .9960	 .9961	 .9962	 .9963	   .9964
	2.7	 .9965	 .9966	 .9967	 .9968	 .9969	 .9970	 .9971	 .9972	 .9973	   .9974
	2.8	 .9974	 .9975	 .9976	 .9977	 .9977	 .9978	 .9979	 .9979	 .9980	   .9981
	2.9	 .9981	 .9982	 .9982	 .9983	 .9984	 .9984	 .9985	 .9985	 .9986	   .9986
	3.0	 .9987	 .9987	 .9987	 .9988	 .9988	 .9989	 .9989	 .9989	 .9990	   .9990
	3.1	 .9990	 .9991	 .9991	 .9991	 .9992	 .9992	 .9992	 .9992	 .9993	   .9993
	3.2	 .9993	 .9993	 .9994	 .9994	 .9994	 .9994	 .9994	 .9995	 .9995	   .9995
	3.3	 .9995	 .9995	 .9995	 .9996	 .9996	 .9996	 .9996	 .9996	 .9996	   .9997
	3.4	 .9997	 .9997	 .9997	 .9997	 .9997	 .9997	 .9997	 .9997	 .9997	   .9998
	3.5	 .9998	 .9998	 .9998	 .9998	 .9998	 .9998	 .9998	 .9998	 .9998	   .9998
	3.6	 .9998	 .9998	 .9999	 .9999	 .9999	 .9999	 .9999	 .9999	 .9999	   .9999
	3.7	 .9999	 .9999	 .9999	 .9999	 .9999	 .9999	 .9999	 .9999	 .9999	   .9999
	3.8	 .9999	 .9999	 .9999	 .9999	 .9999	 .9999	 .9999	 .9999	 .9999	 1.0000

0

Tabulated area Standard normal ( ) curve
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Table II   The binomial distribution

n  5

p

x	 0.05	 0.1	 0.2	 0.25	 0.3	 0.4	 0.5	 0.6	 0.7	 0.75	 0.8	 0.9	 0.95

0	 .774	 .590	 .328	 .237	 .168	 .078	 .031	 .010	 .002	 .001	 .000	 .000	 .000
1	 .203	 .329	 .409	 .396	 .360	 .259	 .157	 .077	 .029	 .015	 .007	 .000	 .000
2	 .022	 .072	 .205	 .263	 .309	 .346	 .312	 .230	 .132	 .088	 .051	 .009	 .001
3	 .001	 .009	 .051	 .088	 .132	 .230	 .312	 .346	 .309	 .263	 .205	 .072	 .022
4	 .000	 .000	 .007	 .015	 .029	 .077	 .157	 .259	 .360	 .396	 .409	 .329	 .203
5	 .000	 .000	 .000	 .001	 .002	 .010	 .031	 .078	 .168	 .237	 .328	 .590	 .774

n  10

p

	x	 0.05	 0.1	 0.2	 0.25	 0.3	 0.4	 0.5	 0.6	 0.7	 0.75	 0.8	 0.9	 0.95

  0	 .599	 .349	 .107	 .056	 .028	 .006	 .001	 .000	 .000	 .000	 .000	 .000	 .000
  1	 .315	 .387	 .268	 .188	 .121	 .040	 .010	 .002	 .000	 .000	 .000	 .000	 .000
  2	 .075	 .194	 .302	 .282	 .233	 .121	 .044	 .011	 .001	 .000	 .000	 .000	 .000
  3	 .010	 .057	 .201	 .250	 .267	 .215	 .117	 .042	 .009	 .003	 .001	 .000	 .000
  4	 .001	 .011	 .088	 .146	 .200	 .251	 .205	 .111	 .037	 .016	 .006	 .000	 .000
  5	 .000	 .001	 .026	 .058	 .103	 .201	 .246	 .201	 .103	 .058	 .026	 .001	 .000
  6	 .000	 .000	 .006	 .016	 .037	 .111	 .205	 .251	 .200	 .146	 .088	 .011	 .001
  7	 .000	 .000	 .001	 .003	 .009	 .042	 .117	 .215	 .267	 .250	 .201	 .057	 .010
  8	 .000	 .000	 .000	 .000	 .001	 .011	 .044	 .121	 .233	 .282	 .302	 .194	 .075
  9	 .000	 .000	 .000	 .000	 .000	 .002	 .010	 .040	 .121	 .188	 .268	 .387	 .315
10	 .000	 .000	 .000	 .000	 .000	 .000	 .001	 .006	 .028	 .056	 .107	 .349	 .599
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Table II   The binomial distribution 

n  15

p

	x	 0.05	 0.1	 0.2	 0.25	 0.3	 0.4	 0.5	 0.6	 0.7	 0.75	 0.8	 0.9	 0.95

  0	 .463	 .206	 .035	 .013	 .005	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000
  1	 .366	 .343	 .132	 .067	 .030	 .005	 .000	 .000	 .000	 .000	 .000	 .000	 .000
  2	 .135	 .267	 .231	 .156	 .092	 .022	 .004	 .000	 .000	 .000	 .000	 .000	 .000
  3	 .031	 .128	 .250	 .225	 .170	 .064	 .014	 .002	 .000	 .000	 .000	 .000	 .000
  4	 .004	 .043	 .188	 .225	 .218	 .126	 .041	 .007	 .001	 .000	 .000	 .000	 .000
  5	 .001	 .011	 .103	 .166	 .207	 .196	 .092	 .025	 .003	 .001	 .000	 .000	 .000
  6	 .000	 .002	 .043	 .091	 .147	 .207	 .153	 .061	 .011	 .003	 .001	 .000	 .000
  7	 .000	 .000	 .014	 .040	 .081	 .177	 .196	 .118	 .035	 .013	 .003	 .000	 .000
  8	 .000	 .000	 .003	 .013	 .035	 .118	 .196	 .177	 .081	 .040	 .014	 .000	 .000
  9	 .000	 .000	 .001	 .003	 .011	 .061	 .153	 .207	 .147	 .091	 .043	 .002	 .000
10	 .000	 .000	 .000	 .001	 .003	 .025	 .092	 .196	 .207	 .166	 .103	 .011	 .001
11	 .000	 .000	 .000	 .000	 .001	 .007	 .041	 .126	 .218	 .225	 .188	 .043	 .004
12	 .000	 .000	 .000	 .000	 .000	 .002	 .014	 .064	 .170	 .225	 .250	 .128	 .031
13	 .000	 .000	 .000	 .000	 .000	 .000	 .004	 .022	 .092	 .156	 .231	 .267	 .135
14	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .005	 .030	 .067	 .132	 .343	 .366
15	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .005	 .013	 .035	 .206	 .463

n  20

p

	x	 0.05	 0.1	 0.2	 0.25	 0.3	 0.4	 0.5	 0.6	 0.7	 0.75	 0.8	 0.9	 0.95

  0	 .358	 .122	 .012	 .003	 .001	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000
  1	 .377	 .270	 .058	 .021	 .007	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000
  2	 .189	 .285	 .137	 .067	 .028	 .003	 .000	 .000	 .000	 .000	 .000	 .000	 .000
  3	 .060	 .190	 .205	 .134	 .072	 .012	 .001	 .000	 .000	 .000	 .000	 .000	 .000
  4	 .013	 .090	 .218	 .190	 .130	 .035	 .005	 .000	 .000	 .000	 .000	 .000	 .000
  5	 .002	 .032	 .175	 .202	 .179	 .075	 .015	 .001	 .000	 .000	 .000	 .000	 .000
  6	 .000	 .009	 .109	 .169	 .192	 .124	 .037	 .005	 .000	 .000	 .000	 .000	 .000
  7	 .000	 .002	 .055	 .112	 .164	 .166	 .074	 .015	 .001	 .000	 .000	 .000	 .000
  8	 .000	 .000	 .022	 .061	 .114	 .180	 .120	 .035	 .004	 .001	 .000	 .000	 .000
  9	 .000	 .000	 .007	 .027	 .065	 .160	 .160	 .071	 .012	 .003	 .000	 .000	 .000
10	 .000	 .000	 .002	 .010	 .031	 .117	 .176	 .117	 .031	 .010	 .002	 .000	 .000
11	 .000	 .000	 .000	 .003	 .012	 .071	 .160	 .160	 .065	 .027	 .007	 .000	 .000
12	 .000	 .000	 .000	 .001	 .004	 .035	 .120	 .180	 .114	 .061	 .022	 .000	 .000
13	 .000	 .000	 .000	 .000	 .001	 .015	 .074	 .166	 .164	 .112	 .055	 .002	 .000
14	 .000	 .000	 .000	 .000	 .000	 .005	 .037	 .124	 .192	 .169	 .109	 .009	 .000
15	 .000	 .000	 .000	 .000	 .000	 .001	 .015	 .075	 .179	 .202	 .175	 .032	 .002
16	 .000	 .000	 .000	 .000	 .000	 .000	 .005	 .035	 .130	 .190	 .218	 .090	 .013
17	 .000	 .000	 .000	 .000	 .000	 .000	 .001	 .012	 .072	 .134	 .205	 .190	 .060
18	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .003	 .028	 .067	 .137	 .285	 .189
19	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .007	 .021	 .058	 .270	 .377
20	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .001	 .003	 .012	 .122	 .358
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Table II   The binomial distribution 

n  25

p

	x	 0.05	 0.1	 0.2	 0.25	 0.3	 0.4	 0.5	 0.6	 0.7	 0.75	 0.8	 0.9	 0.95

  0	 .277	 .072	 .004	 .001	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000
  1	 .365	 .199	 .023	 .006	 .002	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000
  2	 .231	 .266	 .071	 .025	 .007	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000
  3	 .093	 .227	 .136	 .064	 .024	 .002	 .000	 .000	 .000	 .000	 .000	 .000	 .000
  4	 .027	 .138	 .187	 .118	 .057	 .007	 .000	 .000	 .000	 .000	 .000	 .000	 .000
  5	 .006	 .065	 .196	 .164	 .103	 .020	 .002	 .000	 .000	 .000	 .000	 .000	 .000
  6	 .001	 .024	 .163	 .183	 .148	 .045	 .005	 .000	 .000	 .000	 .000	 .000	 .000
  7	 .000	 .007	 .111	 .166	 .171	 .080	 .015	 .001	 .000	 .000	 .000	 .000	 .000
  8	 .000	 .002	 .062	 .124	 .165	 .120	 .032	 .003	 .000	 .000	 .000	 .000	 .000
  9	 .000	 .000	 .030	 .078	 .134	 .151	 .061	 .009	 .000	 .000	 .000	 .000	 .000
10	 .000	 .000	 .011	 .042	 .091	 .161	 .097	 .021	 .002	 .000	 .000	 .000	 .000
11	 .000	 .000	 .004	 .019	 .054	 .146	 .133	 .044	 .004	 .001	 .000	 .000	 .000
12	 .000	 .000	 .002	 .007	 .027	 .114	 .155	 .076	 .011	 .002	 .000	 .000	 .000
13	 .000	 .000	 .000	 .002	 .011	 .076	 .155	 .114	 .027	 .007	 .002	 .000	 .000
14	 .000	 .000	 .000	 .001	 .004	 .044	 .133	 .146	 .054	 .019	 .004	 .000	 .000
15	 .000	 .000	 .000	 .000	 .002	 .021	 .097	 .161	 .091	 .042	 .011	 .000	 .000
16	 .000	 .000	 .000	 .000	 .000	 .009	 .061	 .151	 .134	 .078	 .030	 .000	 .000
17	 .000	 .000	 .000	 .000	 .000	 .003	 .032	 .120	 .165	 .124	 .062	 .002	 .000
18	 .000	 .000	 .000	 .000	 .000	 .001	 .015	 .080	 .171	 .166	 .111	 .007	 .000
19	 .000	 .000	 .000	 .000	 .000	 .000	 .005	 .045	 .148	 .183	 .163	 .024	 .001
20	 .000	 .000	 .000	 .000	 .000	 .000	 .002	 .020	 .103	 .164	 .196	 .065	 .006
21	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .007	 .057	 .118	 .187	 .138	 .027
22	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .002	 .024	 .064	 .136	 .227	 .093
23	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .007	 .025	 .071	 .266	 .231
24	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .002	 .006	 .023	 .199	 .365
25	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .001	 .004	 .072	 .277
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Table III   The Poisson distribution

l

	x	 .1	 .2	 .3	 .4	 .5	 .6	 .7	 .8	 .9	 1.0

  0	 .905	 .819	 .741	 .670	 .607	 .549	 .497	 .449	 .407	 .368
  1	 .090	 .164	 .222	 .268	 .303	 .329	 .348	 .359	 .366	 .368
  2	 .005	 .016	 .033	 .054	 .076	 .099	 .122	 .144	 .165	 .184
  3		  .001	 .003	 .007	 .013	 .020	 .028	 .038	 .049	 .061
  4				    .001	 .002	 .003	 .005	 .008	 .011	 .015
  5							       .001	 .001	 .002	 .003
  6										          .001

l

	x	 2.0	 3.0	 4.0	 5.0	 6.0	 7.0	 8.0	 9.0	 10.0	 15.0	 20.0

  0	 .135	 .050	 .018	 .007	 .002	 .001	 .000	 .000	 .000	 .000	 .000
  1	 .271	 .149	 .073	 .034	 .015	 .006	 .003	 .001	 .000	 .000	 .000
  2	 .271	 .224	 .147	 .084	 .045	 .022	 .011	 .005	 .002	 .000	 .000
  3	 .180	 .224	 .195	 .140	 .089	 .052	 .029	 .015	 .008	 .000	 .000
  4	 .090	 .168	 .195	 .175	 .134	 .091	 .057	 .034	 .019	 .001	 .000
  5	 .036	 .101	 .156	 .175	 .161	 .128	 .092	 .061	 .038	 .002	 .000
  6	 .012	 .050	 .104	 .146	 .161	 .149	 .122	 .091	 .063	 .005	 .000
  7	 .003	 .022	 .060	 .104	 .138	 .149	 .140	 .117	 .090	 .010	 .001
  8	 .001	 .008	 .030	 .065	 .103	 .130	 .140	 .132	 .113	 .019	 .001
  9		  .003	 .013	 .036	 .069	 .101	 .124	 .132	 .125	 .032	 .003
10		  .001	 .005	 .018	 .041	 .071	 .099	 .119	 .125	 .049	 .006
11			   .002	 .008	 .023	 .045	 .072	 .097	 .114	 .066	 .011
12			   .001	 .003	 .011	 .026	 .048	 .073	 .095	 .083	 .018
13				    .001	 .005	 .014	 .030	 .050	 .073	 .096	 .027
14					     .002	 .007	 .017	 .032	 .052	 .102	 .039
15					     .001	 .003	 .009	 .019	 .035	 .102	 .052
16						      .001	 .005	 .011	 .022	 .096	 .065
17						      .001	 .002	 .006	 .013	 .085	 .076
18							       .001	 .003	 .007	 .071	 .084
19								        .001	 .004	 .056	 .089
20								        .001	 .002	 .042	 .089
21									         .001	 .030	 .085
22										          .020	 .077
23										          .013	 .067
24										          .008	 .056
25										          .005	 .045
26										          .003	 .034
27										          .002	 .025
28										          .001	 .018
29											           .013
30											           .008
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Table IV     critical values for confidence and prediction intervals

Central area 5 confidence/prediction level
    for two-sided interval:	 80%	 90%	 95%	 98%	 99%	 99.8%	 99.9%
Cumulative area 5 confidence/prediction
    level for one-sided interval:	 90%	 95%	 97.5%	 99%	 99.5%	 99.9%	 99.95%

	     1	 3.078	 6.314	 12.706	 31.821	 63.657	 318.310	 636.620
	     2	 1.886	 2.920	 4.303	 6.965	 9.925	 22.326	 31.598
	     3	 1.638	 2.353	 3.182	 4.541	 5.841	 10.213	 12.924
	     4	 1.533	 2.132	 2.776	 3.747	 4.604	 7.173	 8.610
	     5	 1.476	 2.015	 2.571	 3.365	 4.032	 5.893	 6.869
	     6	 1.440	 1.943	 2.447	 3.143	 3.707	 5.208	 5.959
	     7	 1.415	 1.895	 2.365	 2.998	 3.499	 4.785	 5.408
	     8	 1.397	 1.860	 2.306	 2.896	 3.355	 4.501	 5.041
	     9	 1.383	 1.833	 2.262	 2.821	 3.250	 4.297	 4.781
	   10	 1.372	 1.812	 2.228	 2.764	 3.169	 4.144	 4.587
	   11	 1.363	 1.796	 2.201	 2.718	 3.106	 4.025	 4.437
	   12	 1.356	 1.782	 2.179	 2.681	 3.055	 3.930	 4.318
	   13	 1.350	 1.771	 2.160	 2.650	 3.012	 3.852	 4.221
	   14	 1.345	 1.761	 2.145	 2.624	 2.977	 3.787	 4.140
	   15	 1.341	 1.753	 2.131	 2.602	 2.947	 3.733	 4.073
	   16	 1.337	 1.746	 2.120	 2.583	 2.921	 3.686	 4.015
	 Degrees of	   17	 1.333	 1.740	 2.110	 2.567	 2.898	 3.646	 3.965
	 freedom	   18	 1.330	 1.734	 2.101	 2.552	 2.878	 3.610	 3.922
	   19	 1.328	 1.729	 2.093	 2.539	 2.861	 3.579	 3.883
	   20	 1.325	 1.725	 2.086	 2.528	 2.845	 3.552	 3.850
	   21	 1.323	 1.721	 2.080	 2.518	 2.831	 3.527	 3.819
	   22	 1.321	 1.717	 2.074	 2.508	 2.819	 3.505	 3.792
	   23	 1.319	 1.714	 2.069	 2.500	 2.807	 3.485	 3.767
	   24	 1.318	 1.711	 2.064	 2.492	 2.797	 3.467	 3.745
	   25	 1.316	 1.708	 2.060	 2.485	 2.787	 3.450	 3.725
	   26	 1.315	 1.706	 2.056	 2.479	 2.779	 3.435	 3.707
	   27	 1.314	 1.703	 2.052	 2.473	 2.771	 3.421	 3.690
	   28	 1.313	 1.701	 2.048	 2.467	 2.763	 3.408	 3.674
	   29	 1.311	 1.699	 2.045	 2.462	 2.756	 3.396	 3.659
	   30	 1.310	 1.697	 2.042	 2.457	 2.750	 3.385	 3.646
	   40	 1.303	 1.684	 2.021	 2.423	 2.704	 3.307	 3.551
	   60	 1.296	 1.671	 2.000	 2.390	 2.660	 3.232	 3.460
	 120	 1.289	 1.658	 1.980	 2.358	 2.617	 3.160	 3.373
	 	 1.282	 1.645	 1.960	 2.326	 2.576	 3.090	 3.291

– critical value   critical value

0

Central area density curve

  critical value

0

Cumulative area density curve
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Table VI   Tail areas for  curves

df	 t	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12

0.0	 .500	 .500	 .500	 .500	 .500	 .500	 .500	 .500	 .500	 .500	 .500	 .500
0.1	 .468	 .465	 .463	 .463	 .462	 .462	 .462	 .461	 .461	 .461	 .461	 .461
0.2	 .437	 .430	 .427	 .426	 .425	 .424	 .424	 .423	 .423	 .423	 .423	 .422
0.3	 .407	 .396	 .392	 .390	 .388	 .387	 .386	 .386	 .386	 .385	 .385	 .385
0.4	 .379	 .364	 .358	 .355	 .353	 .352	 .351	 .350	 .349	 .349	 .348	 .348
0.5	 .352	 .333	 .326	 .322	 .319	 .317	 .316	 .315	 .315	 .314	 .313	 .313
0.6	 .328	 .305	 .295	 .290	 .287	 .285	 .284	 .283	 .282	 .281	 .280	 .280
0.7	 .306	 .278	 .267	 .261	 .258	 .255	 .253	 .252	 .251	 .250	 .249	 .249
0.8	 .285	 .254	 .241	 .234	 .230	 .227	 .225	 .223	 .222	 .221	 .220	 .220
0.9	 .267	 .232	 .217	 .210	 .205	 .201	 .199	 .197	 .196	 .195	 .194	 .193
1.0	 .250	 .211	 .196	 .187	 .182	 .178	 .175	 .173	 .172	 .170	 .169	 .169
1.1	 .235	 .193	 .176	 .167	 .162	 .157	 .154	 .152	 .150	 .149	 .147	 .146
1.2	 .221	 .177	 .158	 .148	 .142	 .138	 .135	 .132	 .130	 .129	 .128	 .127
1.3	 .209	 .162	 .142	 .132	 .125	 .121	 .117	 .115	 .113	 .111	 .110	 .109
1.4	 .197	 .148	 .128	 .117	 .110	 .106	 .102	 .100	 .098	 .096	 .095	 .093
1.5	 .187	 .136	 .115	 .104	 .097	 .092	 .089	 .086	 .084	 .082	 .081	 .080
1.6	 .178	 .125	 .104	 .092	 .085	 .080	 .077	 .074	 .072	 .070	 .069	 .068
1.7	 .169	 .116	 .094	 .082	 .075	 .070	 .066	 .064	 .062	 .060	 .059	 .057
1.8	 .161	 .107	 .085	 .073	 .066	 .061	 .057	 .055	 .053	 .051	 .050	 .049
1.9	 .154	 .099	 .077	 .065	 .058	 .053	 .050	 .047	 .045	 .043	 .042	 .041
2.0	 .148	 .092	 .070	 .058	 .051	 .046	 .043	 .040	 .038	 .037	 .035	 .034
2.1	 .141	 .085	 .063	 .052	 .045	 .040	 .037	 .034	 .033	 .031	 .030	 .029
2.2	 .136	 .079	 .058	 .046	 .040	 .035	 .032	 .029	 .028	 .026	 .025	 .024
2.3	 .131	 .074	 .052	 .041	 .035	 .031	 .027	 .025	 .023	 .022	 .021	 .020
2.4	 .126	 .069	 .048	 .037	 .031	 .027	 .024	 .022	 .020	 .019	 .018	 .017
2.5	 .121	 .065	 .044	 .033	 .027	 .023	 .020	 .018	 .017	 .016	 .015	 .014
2.6	 .117	 .061	 .040	 .030	 .024	 .020	 .018	 .016	 .014	 .013	 .012	 .012
2.7	 .113	 .057	 .037	 .027	 .021	 .018	 .015	 .014	 .012	 .011	 .010	 .010
2.8	 .109	 .054	 .034	 .024	 .019	 .016	 .013	 .012	 .010	 .009	 .009	 .008
2.9	 .106	 .051	 .031	 .022	 .017	 .014	 .011	 .010	 .009	 .008	 .007	 .007
3.0	 .102	 .048	 .029	 .020	 .015	 .012	 .010	 .009	 .007	 .007	 .006	 .006
3.1	 .099	 .045	 .027	 .018	 .013	 .011	 .009	 .007	 .006	 .006	 .005	 .005
3.2	 .096	 .043	 .025	 .016	 .012	 .009	 .008	 .006	 .005	 .005	 .004	 .004
3.3	 .094	 .040	 .023	 .015	 .011	 .008	 .007	 .005	 .005	 .004	 .004	 .003
3.4	 .091	 .038	 .021	 .014	 .010	 .007	 .006	 .005	 .004	 .003	 .003	 .003
3.5	 .089	 .036	 .020	 .012	 .009	 .006	 .005	 .004	 .003	 .003	 .002	 .002
3.6	 .086	 .035	 .018	 .011	 .008	 .006	 .004	 .004	 .003	 .002	 .002	 .002
3.7	 .084	 .033	 .017	 .010	 .007	 .005	 .004	 .003	 .002	 .002	 .002	 .002
3.8	 .082	 .031	 .016	 .010	 .006	 .004	 .003	 .003	 .002	 .002	 .001	 .001
3.9	 .080	 .030	 .015	 .009	 .006	 .004	 .003	 .002	 .002	 .001	 .001	 .001
4.0	 .078	 .029	 .014	 .008	 .005	 .004	 .003	 .002	 .002	 .001	 .001	 .001
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Table VI   Tail areas for  curves 

df	 t	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24

0.0	 .500	 .500	 .500	 .500	 .500	 .500	 .500	 .500	 .500	 .500	 .500	 .500
0.1	 .461	 .461	 .461	 .461	 .461	 .461	 .461	 .461	 .461	 .461	 .461	 .461
0.2	 .422	 .422	 .422	 .422	 .422	 .422	 .422	 .422	 .422	 .422	 .422	 .422
0.3	 .384	 .384	 .384	 .384	 .384	 .384	 .384	 .384	 .384	 .383	 .383	 .383
0.4	 .348	 .347	 .347	 .347	 .347	 .347	 .347	 .347	 .347	 .347	 .346	 .346
0.5	 .313	 .312	 .312	 .312	 .312	 .312	 .311	 .311	 .311	 .311	 .311	 .311
0.6	 .279	 .279	 .279	 .278	 .278	 .278	 .278	 .278	 .278	 .277	 .277	 .277
0.7	 .248	 .247	 .247	 .247	 .247	 .246	 .246	 .246	 .246	 .246	 .245	 .245
0.8	 .219	 .218	 .218	 .218	 .217	 .217	 .217	 .217	 .216	 .216	 .216	 .216
0.9	 .192	 .191	 .191	 .191	 .190	 .190	 .190	 .189	 .189	 .189	 .189	 .189
1.0	 .168	 .167	 .167	 .166	 .166	 .165	 .165	 .165	 .164	 .164	 .164	 .164
1.1	 .146	 .144	 .144	 .144	 .143	 .143	 .143	 .142	 .142	 .142	 .141	 .141
1.2	 .126	 .124	 .124	 .124	 .123	 .123	 .122	 .122	 .122	 .121	 .121	 .121
1.3	 .108	 .107	 .107	 .106	 .105	 .105	 .105	 .104	 .104	 .104	 .103	 .103
1.4	 .092	 .091	 .091	 .090	 .090	 .089	 .089	 .089	 .088	 .088	 .087	 .087
1.5	 .079	 .077	 .077	 .077	 .076	 .075	 .075	 .075	 .074	 .074	 .074	 .073
1.6	 .067	 .065	 .065	 .065	 .064	 .064	 .063	 .063	 .062	 .062	 .062	 .061
1.7	 .056	 .055	 .055	 .054	 .054	 .053	 .053	 .052	 .052	 .052	 .051	 .051
1.8	 .048	 .046	 .046	 .045	 .045	 .044	 .044	 .043	 .043	 .043	 .042	 .042
1.9	 .040	 .038	 .038	 .038	 .037	 .037	 .036	 .036	 .036	 .035	 .035	 .035
2.0	 .033	 .032	 .032	 .031	 .031	 .030	 .030	 .030	 .029	 .029	 .029	 .028
2.1	 .028	 .027	 .027	 .026	 .025	 .025	 .025	 .024	 .024	 .024	 .023	 .023
2.2	 .023	 .022	 .022	 .021	 .021	 .021	 .020	 .020	 .020	 .019	 .019	 .019
2.3	 .019	 .018	 .018	 .018	 .017	 .017	 .016	 .016	 .016	 .016	 .015	 .015
2.4	 .016	 .015	 .015	 .014	 .014	 .014	 .013	 .013	 .013	 .013	 .012	 .012
2.5	 .013	 .012	 .012	 .012	 .011	 .011	 .011	 .011	 .010	 .010	 .010	 .010
2.6	 .011	 .010	 .010	 .010	 .009	 .009	 .009	 .009	 .008	 .008	 .008	 .008
2.7	 .009	 .008	 .008	 .008	 .008	 .007	 .007	 .007	 .007	 .007	 .006	 .006
2.8	 .008	 .007	 .007	 .006	 .006	 .006	 .006	 .006	 .005	 .005	 .005	 .005
2.9	 .006	 .005	 .005	 .005	 .005	 .005	 .005	 .004	 .004	 .004	 .004	 .004
3.0	 .005	 .004	 .004	 .004	 .004	 .004	 .004	 .004	 .003	 .003	 .003	 .003
3.1	 .004	 .004	 .004	 .003	 .003	 .003	 .003	 .003	 .003	 .003	 .003	 .002
3.2	 .003	 .003	 .003	 .003	 .003	 .002	 .002	 .002	 .002	 .002	 .002	 .002
3.3	 .003	 .002	 .002	 .002	 .002	 .002	 .002	 .002	 .002	 .002	 .002	 .001
3.4	 .002	 .002	 .002	 .002	 .002	 .002	 .002	 .001	 .001	 .001	 .001	 .001
3.5	 .002	 .002	 .002	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .001
3.6	 .002	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .001
3.7	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .001
3.8	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .000	 .000	 .000
3.9	 .001	 .001	 .001	 .001	 .001	 .001	 .000	 .000	 .000	 .000	 .000	 .000
4.0	 .001	 .001	 .001	 .001	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000
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Table VI   Tail areas for  curves 

df	 t	 25	 26	 27	 28	 29	 30	 35	 40	 60	 120	 `(  z)

0.0	 .500	 .500	 .500	 .500	 .500	 .500	 .500	 .500	 .500	 .500	 .500
0.1	 .461	 .461	 .461	 .461	 .461	 .461	 .460	 .460	 .460	 .460	 .460
0.2	 .422	 .422	 .421	 .421	 .421	 .421	 .421	 .421	 .421	 .421	 .421
0.3	 .383	 .383	 .383	 .383	 .383	 .383	 .383	 .383	 .383	 .382	 .382
0.4	 .346	 .346	 .346	 .346	 .346	 .346	 .346	 .346	 .345	 .345	 .345
0.5	 .311	 .311	 .311	 .310	 .310	 .310	 .310	 .310	 .309	 .309	 .309
0.6	 .277	 .277	 .277	 .277	 .277	 .277	 .276	 .276	 .275	 .275	 .274
0.7	 .245	 .245	 .245	 .245	 .245	 .245	 .244	 .244	 .243	 .243	 .242
0.8	 .216	 .215	 .215	 .215	 .215	 .215	 .215	 .214	 .213	 .213	 .212
0.9	 .188	 .188	 .188	 .188	 .188	 .188	 .187	 .187	 .186	 .185	 .184
1.0	 .163	 .163	 .163	 .163	 .163	 .163	 .162	 .162	 .161	 .160	 .159
1.1	 .141	 .141	 .141	 .140	 .140	 .140	 .139	 .139	 .138	 .137	 .136
1.2	 .121	 .120	 .120	 .120	 .120	 .120	 .119	 .119	 .117	 .116	 .115
1.3	 .103	 .103	 .102	 .102	 .102	 .102	 .101	 .101	 .099	 .098	 .097
1.4	 .087	 .087	 .086	 .086	 .086	 .086	 .085	 .085	 .083	 .082	 .081
1.5	 .073	 .073	 .073	 .072	 .072	 .072	 .071	 .071	 .069	 .068	 .067
1.6	 .061	 .061	 .061	 .060	 .060	 .060	 .059	 .059	 .057	 .056	 .055
1.7	 .051	 .051	 .050	 .050	 .050	 .050	 .049	 .048	 .047	 .046	 .045
1.8	 .042	 .042	 .042	 .041	 .041	 .041	 .040	 .040	 .038	 .037	 .036
1.9	 .035	 .034	 .034	 .034	 .034	 .034	 .033	 .032	 .031	 .030	 .029
2.0	 .028	 .028	 .028	 .028	 .027	 .027	 .027	 .026	 .025	 .024	 .023
2.1	 .023	 .023	 .023	 .022	 .022	 .022	 .022	 .021	 .020	 .019	 .018
2.2	 .019	 .018	 .018	 .018	 .018	 .018	 .017	 .017	 .016	 .015	 .014
2.3	 .015	 .015	 .015	 .015	 .014	 .014	 .014	 .013	 .012	 .012	 .011
2.4	 .012	 .012	 .012	 .012	 .012	 .011	 .011	 .011	 .010	 .009	 .008
2.5	 .010	 .010	 .009	 .009	 .009	 .009	 .009	 .008	 .008	 .007	 .006
2.6	 .008	 .008	 .007	 .007	 .007	 .007	 .007	 .007	 .006	 .005	 .005
2.7	 .006	 .006	 .006	 .006	 .006	 .006	 .005	 .005	 .004	 .004	 .003
2.8	 .005	 .005	 .005	 .005	 .005	 .004	 .004	 .004	 .003	 .003	 .003
2.9	 .004	 .004	 .004	 .004	 .004	 .003	 .003	 .003	 .003	 .002	 .002
3.0	 .003	 .003	 .003	 .003	 .003	 .003	 .002	 .002	 .002	 .002	 .001
3.1	 .002	 .002	 .002	 .002	 .002	 .002	 .002	 .002	 .001	 .001	 .001
3.2	 .002	 .002	 .002	 .002	 .002	 .002	 .001	 .001	 .001	 .001	 .001
3.3	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .000
3.4	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .000	 .000
3.5	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .001	 .000	 .000	 .000
3.6	 .001	 .001	 .001	 .001	 .001	 .001	 .000	 .000	 .000	 .000	 .000
3.7	 .001	 .001	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000
3.8	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000
3.9	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000
4.0	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .000
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Table VII    Chi-squared critical values

	Right-tail area	 df  1	 df  2	 df  3	 df  4	 df  5

..100	 ,2.70	 ,4.60	 ,6.25	 ,7.77	 ,9.23
	 0.100	 2.70	 4.60	 6.25	 7.77	 9.23
	 0.095	 2.78	 4.70	 6.36	 7.90	 9.37
	 0.090	 2.87	 4.81	 6.49	 8.04	 9.52
	 0.085	 2.96	 4.93	 6.62	 8.18	 9.67
	 0.080	 3.06	 5.05	 6.75	 8.33	 9.83
	 0.075	 3.17	 5.18	 6.90	 8.49	 10.00
	 0.070	 3.28	 5.31	 7.06	 8.66	 10.19
	 0.065	 3.40	 5.46	 7.22	 8.84	 10.38
	 0.060	 3.53	 5.62	 7.40	 9.04	 10.59
	 0.055	 3.68	 5.80	 7.60	 9.25	 10.82
	 0.050	 3.84	 5.99	 7.81	 9.48	 11.07
	 0.045	 4.01	 6.20	 8.04	 9.74	 11.34
	 0.040	 4.21	 6.43	 8.31	 10.02	 11.64
	 0.035	 4.44	 6.70	 8.60	 10.34	 11.98
	 0.030	 4.70	 7.01	 8.94	 10.71	 12.37
	 0.025	 5.02	 7.37	 9.34	 11.14	 12.83
	 0.020	 5.41	 7.82	 9.83	 11.66	 13.38
	 0.015	 5.91	 8.39	 10.46	 12.33	 14.09
	 0.010	 6.63	 9.21	 11.34	 13.27	 15.08
	 0.005	 7.87	 10.59	 12.83	 14.86	 16.74
	 0.001	 10.82	 13.81	 16.26	 18.46	 20.51

,0.001	 .10.82	 .13.81	 .16.26	 .18.46	 .20.51

	Right-tail area	 df  6	 df  7	 df  8	 df  9	 df  10

..100	 ,10.64	 ,12.01	 ,13.36	 ,14.68	 ,15.98
	 0.100	 10.64	 12.01	 13.36	 14.68	 15.98
	 0.095	 10.79	 12.17	 13.52	 14.85	 16.16
	 0.090	 10.94	 12.33	 13.69	 15.03	 16.35
	 0.085	 11.11	 12.50	 13.87	 15.22	 16.54
	 0.080	 11.28	 12.69	 14.06	 15.42	 16.75
	 0.075	 11.46	 12.88	 14.26	 15.63	 16.97
	 0.070	 11.65	 13.08	 14.48	 15.85	 17.20
	 0.065	 11.86	 13.30	 14.71	 16.09	 17.44
	 0.060	 12.08	 13.53	 14.95	 16.34	 17.71
	 0.055	 12.33	 13.79	 15.22	 16.62	 17.99
	 0.050	 12.59	 14.06	 15.50	 16.91	 18.30
	 0.045	 12.87	 14.36	 15.82	 17.24	 18.64
	 0.040	 13.19	 14.70	 16.17	 17.60	 19.02
	 0.035	 13.55	 15.07	 16.56	 18.01	 19.44
	 0.030	 13.96	 15.50	 17.01	 18.47	 19.92
	 0.025	 14.44	 16.01	 17.53	 19.02	 20.48
	 0.020	 15.03	 16.62	 18.16	 19.67	 21.16
	 0.015	 15.77	 17.39	 18.97	 20.51	 22.02
	 0.010	 16.81	 18.47	 20.09	 21.66	 23.20
	 0.005	 18.54	 20.27	 21.95	 23.58	 25.18
	 0.001	 22.45	 24.32	 26.12	 27.87	 29.58

,0.001	 .22.45	 .24.32	 .26.12	 .27.87	 .29.58
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Table VII    Chi-squared critical values 

	Right-tail area	 df  11	 df  12	 df  13	 df  14	 df  15

..100	 ,17.27	 ,18.54	 ,19.81	 ,21.06	 ,22.30
	 0.100	 17.27	 18.54	 19.81	 21.06	 22.30
	 0.095	 17.45	 18.74	 20.00	 21.26	 22.51
	 0.090	 17.65	 18.93	 20.21	 21.47	 22.73
	 0.085	 17.85	 19.14	 20.42	 21.69	 22.95
	 0.080	 18.06	 19.36	 20.65	 21.93	 23.19
	 0.075	 18.29	 19.60	 20.89	 22.17	 23.45
	 0.070	 18.53	 19.84	 21.15	 22.44	 23.72
	 0.065	 18.78	 20.11	 21.42	 22.71	 24.00
	 0.060	 19.06	 20.39	 21.71	 23.01	 24.31
	 0.055	 19.35	 20.69	 22.02	 23.33	 24.63
	 0.050	 19.67	 21.02	 22.36	 23.68	 24.99
	 0.045	 20.02	 21.38	 22.73	 24.06	 25.38
	 0.040	 20.41	 21.78	 23.14	 24.48	 25.81
	 0.035	 20.84	 22.23	 23.60	 24.95	 26.29
	 0.030	 21.34	 22.74	 24.12	 25.49	 26.84
	 0.025	 21.92	 23.33	 24.73	 26.11	 27.48
	 0.020	 22.61	 24.05	 25.47	 26.87	 28.25
	 0.015	 23.50	 24.96	 26.40	 27.82	 29.23
	 0.010	 24.72	 26.21	 27.68	 29.14	 30.57
	 0.005	 26.75	 28.29	 29.81	 31.31	 32.80
	 0.001	 31.26	 32.90	 34.52	 36.12	 37.69

,0.001	 .31.26	 .32.90	 .34.52	 .36.12	 .37.69

	Right-tail area	 df  16	 df  17	 df  18	 df  19	 df  20

..100	 ,23.54	 ,24.77	 ,25.98	 ,27.20	 ,28.41
	 0.100	 23.54	 24.76	 25.98	 27.20	 28.41
	 0.095	 23.75	 24.98	 26.21	 27.43	 28.64
	 0.090	 23.97	 25.21	 26.44	 27.66	 28.88
	 0.085	 24.21	 25.45	 26.68	 27.91	 29.14
	 0.080	 24.45	 25.70	 26.94	 28.18	 29.40
	 0.075	 24.71	 25.97	 27.21	 28.45	 29.69
	 0.070	 24.99	 26.25	 27.50	 28.75	 29.99
	 0.065	 25.28	 26.55	 27.81	 29.06	 30.30
	 0.060	 25.59	 26.87	 28.13	 29.39	 30.64
	 0.055	 25.93	 27.21	 28.48	 29.75	 31.01
	 0.050	 26.29	 27.58	 28.86	 30.14	 31.41
	 0.045	 26.69	 27.99	 29.28	 30.56	 31.84
	 0.040	 27.13	 28.44	 29.74	 31.03	 32.32
	 0.035	 27.62	 28.94	 30.25	 31.56	 32.85
	 0.030	 28.19	 29.52	 30.84	 32.15	 33.46
	 0.025	 28.84	 30.19	 31.52	 32.85	 34.16
	 0.020	 29.63	 30.99	 32.34	 33.68	 35.01
	 0.015	 30.62	 32.01	 33.38	 34.74	 36.09
	 0.010	 32.00	 33.40	 34.80	 36.19	 37.56
	 0.005	 34.26	 35.71	 37.15	 38.58	 39.99
	 0.001	 39.25	 40.78	 42.31	 43.81	 45.31

,0.001	 .39.25	 .40.78	 .42.31	 .43.81	 .45.31
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Table VIII     critical values

	 Numerator df

		  Area	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10

	   1	 .100	     39.86	     49.50	     53.59	     55.83	     57.24	     58.20	     58.91	     59.44	     59.86	     60.19
		  .050	   161.40	   199.50	   215.70	   224.60	   230.20	   234.00	   236.80	   238.90	   240.50	   241.90
		  .010	 4052.00	 5000.00	 5403.00	 5625.00	 5764.00	 5859.00	 5928.00	 5981.00	 6022.00	 6056.00
	   2	 .100	       8.53	       9.00	       9.16	       9.24	       9.29	       9.33	       9.35	       9.37	       9.38	       9.39
		  .050	     18.51	     19.00	     19.16	     19.25	     19.30	     19.33	     19.35	     19.37	     19.38	     19.40
		  .010	     98.50	     99.00	     99.17	     99.25	     99.30	     99.33	     99.36	     99.37	     99.39	     99.40
		  .001	   998.50	   999.00	   999.20	   999.20	   999.30	   999.30	   999.40	   999.40	   999.40	   999.40
	   3	 .100	       5.54	       5.46	       5.39	       5.34	       5.31	       5.28	       5.27	       5.25	       5.24	       5.23
		  .050	     10.13	       9.55	       9.28	       9.12	       9.01	       8.94	       8.89	       8.85	       8.81	       8.79
		  .010	     34.12	     30.82	     29.46	     28.71	     28.24	     27.91	     27.67	     27.49	     27.35	     27.23
		  .001	   167.00	   148.50	   141.10	   137.10	   134.60	   132.80	   131.60	   130.60	   129.90	   129.20
	   4	 .100	       4.54	       4.32	       4.19	       4.11	       4.05	       4.01	       3.98	       3.95	       3.94	       3.92
		  .050	       7.71	       6.94	       6.59	       6.39	       6.26	       6.16	       6.09	       6.04	       6.00	       5.96
		  .010	     21.20	     18.00	     16.69	     15.98	     15.52	     15.21	     14.98	     14.80	     14.66	     14.55
		  .001	     74.14	     61.25	     56.18	     53.44	     51.71	     50.53	     49.66	     49.00	     48.47	     48.05
	   5	 .100	       4.06	       3.78	       3.62	       3.52	       3.45	       3.40	       3.37	       3.34	       3.32	       3.30
		  .050	       6.61	       5.79	       5.41	       5.19	       5.05	       4.95	       4.88	       4.82	       4.77	       4.74
		  .010	     16.26	     13.27	     12.06	     11.39	     10.97	     10.67	     10.46	     10.29	     10.16	     10.05
		  .001	     47.18	     37.12	     33.20	     31.09	     29.75	     28.83	     28.16	     27.65	     27.24	     26.92
	   6	 .100	       3.78	       3.46	       3.29	       3.18	       3.11	       3.05	       3.01	       2.98	       2.96	       2.94
		  .050	       5.99	       5.14	       4.76	       4.53	       4.39	       4.28	       4.21	       4.15	       4.10	       4.06
		  .010	     13.75	     10.92	       9.78	       9.15	       8.75	       8.47	       8.26	       8.10	       7.98	       7.87
		  .001	     35.51	     27.00	     23.70	     21.92	     20.80	     20.03	     19.46	     19.03	     18.69	     18.41
	   7	 .100	       3.59	       3.26	       3.07	       2.96	       2.88	       2.83	       2.78	       2.75	       2.72	       2.70
		  .050	       5.59	       4.74	       4.35	       4.12	       3.97	       3.87	       3.79	       3.73	       3.68	       3.64
		  .010	     12.25	       9.55	       8.45	       7.85	       7.46	       7.19	       6.99	       6.84	       6.72	       6.62
		  .001	     29.25	     21.69	     18.77	     17.20	     16.21	     15.52	     15.02	     14.63	     14.33	     14.08
	   8	 .100	       3.46	       3.11	       2.92	       2.81	       2.73	       2.67	       2.62	       2.59	       2.56	       2.54
		  .050	       5.32	       4.46	       4.07	       3.84	       3.69	       3.58	       3.50	       3.44	       3.39	       3.35
		  .010	     11.26	       8.65	       7.59	       7.01	       6.63	       6.37	       6.18	       6.03	       5.91	       5.81
		  .001	     25.41	     18.49	     15.83	     14.39	     13.48	     12.86	     12.40	     12.05	     11.77	     11.54
	   9	 .100	       3.36	       3.01	       2.81	       2.69	       2.61	       2.55	       2.51	       2.47	       2.44	       2.42
		  .050	       5.12	       4.26	       3.86	       3.63	       3.48	       3.37	       3.29	       3.23	       3.18	       3.14
		  .010	     10.56	       8.02	       6.99	       6.42	       6.06	       5.80	       5.61	       5.47	       5.35	       5.26
		  .001	     22.86	     16.39	     13.90	     12.56	     11.71	     11.13	     10.70	     10.37	     10.11	       9.89
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Table VIII     critical values 

	 Numerator df

		  Area	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10

	 10	 .100	       3.29	       2.92	       2.73	       2.61	       2.52	       2.46	       2.41	       2.38	       2.35	       2.32
		  .050	 4.96	 4.10	 3.71	 3.48	 3.33	 3.22	 3.14	 3.07	 3.02	 2.98
		  .010	 10.04	 7.56	 6.55	 5.99	 5.64	 5.39	 5.20	 5.06	 4.94	 4.85
		  .001	 21.04	 14.91	 12.55	 11.28	 10.48	 9.93	 9.52	 9.20	 8.96	 8.75
	 11	 .100	 3.23	 2.86	 2.66	 2.54	 2.45	 2.39	 2.34	 2.30	 2.27	 2.25
		  .050	 4.84	 3.98	 3.59	 3.36	 3.20	 3.09	 3.01	 2.95	 2.90	 2.85
		  .010	 9.65	 7.21	 6.22	 5.67	 5.32	 5.07	 4.89	 4.74	 4.63	 4.54
		  .001	 19.69	 13.81	 11.56	 10.35	 9.58	 9.05	 8.66	 8.35	 8.12	 7.92
	 12	 .100	 3.18	 2.81	 2.61	 2.48	 2.39	 2.33	 2.28	 2.24	 2.21	 2.19
		  .050	 4.75	 3.89	 3.49	 3.26	 3.11	 3.00	 2.91	 2.85	 2.80	 2.75
		  .010	 9.33	 6.93	 5.95	 5.41	 5.06	 4.82	 4.64	 4.50	 4.39	 4.30
		  .001	 18.64	 12.97	 10.80	 9.63	 8.89	 8.38	 8.00	 7.71	 7.48	 7.29
	 13	 .100	 3.14	 2.76	 2.56	 2.43	 2.35	 2.28	 2.23	 2.20	 2.16	 2.14
		  .050	 4.67	 3.81	 3.41	 3.18	 3.03	 2.92	 2.83	 2.77	 2.71	 2.67
		  .010	 9.07	 6.70	 5.74	 5.21	 4.86	 4.62	 4.44	 4.30	 4.19	 4.10
		  .001	 17.82	 12.31	 10.21	 9.07	 8.35	 7.86	 7.49	 7.21	 6.98	 6.80
	 14	 .100	 3.10	 2.73	 2.52	 2.39	 2.31	 2.24	 2.19	 2.15	 2.12	 2.10
		  .050	 4.60	 3.74	 3.34	 3.11	 2.96	 2.85	 2.76	 2.70	 2.65	 2.60
		  .010	 8.86	 6.51	 5.56	 5.04	 4.69	 4.46	 4.28	 4.14	 4.03	 3.94
		  .001	 17.14	 11.78	 9.73	 8.62	 7.92	 7.44	 7.08	 6.80	 6.58	 6.40
	 15	 .100	 3.07	 2.70	 2.49	 2.36	 2.27	 2.21	 2.16	 2.12	 2.09	 2.06
		  .050	 4.54	 3.68	 3.29	 3.06	 2.90	 2.79	 2.71	 2.64	 2.59	 2.54
		  .010	 8.68	 6.36	 5.42	 4.89	 4.67	 4.32	 4.14	 4.00	 3.89	 3.80
		  .001	 16.59	 11.34	 9.34	 8.25	 7.57	 7.09	 6.74	 6.47	 6.26	 6.08
	 16	 .100	 3.05	 2.67	 2.46	 2.33	 2.24	 2.18	 2.13	 2.09	 2.06	 2.03
		  .050	 4.49	 3.63	 3.24	 3.01	 2.85	 2.74	 2.66	 2.59	 2.54	 2.49
		  .010	 8.53	 6.23	 5.29	 4.77	 4.44	 4.20	 4.03	 3.89	 3.78	 3.69
		  .001	 16.12	 10.97	 9.01	 7.94	 7.27	 6.80	 6.46	 6.19	 5.98	 5.81
	 17	 .100	 3.03	 2.64	 2.44	 2.31	 2.22	 2.15	 2.10	 2.06	 2.03	 2.00
		  .050	 4.45	 3.59	 3.20	 2.96	 2.81	 2.70	 2.61	 2.55	 2.49	 2.45
		  .010	 8.40	 6.11	 5.18	 4.67	 4.34	 4.10	 3.93	 3.79	 3.68	 3.59
		  .001	 15.72	 10.66	 8.73	 7.68	 7.02	 6.56	 6.22	 5.96	 5.75	 5.58
	 18	 .100	 3.01	 2.62	 2.42	 2.29	 2.20	 2.13	 2.08	 2.04	 2.00	 1.98
		  .050	 4.41	 3.55	 3.16	 2.93	 2.77	 2.66	 2.58	 2.51	 2.46	 2.41
		  .010	 8.29	 6.01	 5.09	 4.58	 4.25	 4.01	 3.84	 3.71	 3.60	 3.51
		  .001	 15.38	 10.39	 8.49	 7.46	 6.81	 6.35	 6.02	 5.76	 5.56	 5.39
	 19	 .100	 2.99	 2.61	 2.40	 2.27	 2.18	 2.11	 2.06	 2.02	 1.98	 1.96
		  .050	 4.38	 3.52	 3.13	 2.90	 2.74	 2.63	 2.54	 2.48	 2.42	 2.38
		  .010	 8.18	 5.93	 5.01	 4.50	 4.17	 3.94	 3.77	 3.63	 3.52	 3.43
		  .001	 15.08	 10.16	 8.28	 7.27	 6.62	 6.18	 5.85	 5.59	 5.39	 5.22
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Table VIII     critical values 

	 Numerator df

		  Area	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10

	 20	 .100	       2.97	      2.59	       2.38	       2.25	       2.16	       2.09	       2.04	       2.00	       1.96	       1.94
		  .050	 4.35	 3.49	 3.10	 2.87	 2.71	 2.60	 2.51	 2.45	 2.39	 2.35
		  .010	 8.10	 5.85	 4.94	 4.43	 4.10	 3.87	 3.70	 3.56	 3.46	 3.37
		  .001	 14.82	 9.95	 8.10	 7.10	 6.46	 6.02	 5.69	 5.44	 5.24	 5.08
	 21	 .100	 2.96	 2.57	 2.36	 2.23	 2.14	 2.08	 2.02	 1.98	 1.95	 1.92
		  .050	 4.32	 3.47	 3.07	 2.84	 2.68	 2.57	 2.49	 2.42	 2.37	 2.32
		  .010	 8.02	 5.78	 4.87	 4.37	 4.04	 3.81	 3.64	 3.51	 3.40	 3.31
		  .001	 14.59	 9.77	 7.94	 6.95	 6.32	 5.88	 5.56	 5.31	 5.11	 4.95
	 22	 .100	 2.95	 2.56	 2.35	 2.22	 2.13	 2.06	 2.01	 1.97	 1.93	 1.90
		  .050	 4.30	 3.44	 3.05	 2.82	 2.66	 2.55	 2.46	 2.40	 2.34	 2.30
		  .010	 7.95	 5.72	 4.82	 4.31	 3.99	 3.76	 3.59	 3.45	 3.35	 3.26
		  .001	 14.38	 9.61	 7.80	 6.81	 6.19	 5.76	 5.44	 5.19	 4.99	 4.83
	 23	 .100	 2.94	 2.55	 2.34	 2.21	 2.11	 2.05	 1.99	 1.95	 1.92	 1.89
		  .050	 4.28	 3.42	 3.03	 2.80	 2.64	 2.53	 2.44	 2.37	 2.32	 2.27
		  .010	 7.88	 5.66	 4.76	 4.26	 3.94	 3.71	 3.54	 3.41	 3.30	 3.21
		  .001	 14.20	 9.47	 7.67	 6.70	 6.08	 5.65	 5.33	 5.09	 4.89	 4.73
	 24	 .100	 2.93	 2.54	 2.33	 2.19	 2.10	 2.04	 1.98	 1.94	 1.91	 1.88
		  .050	 4.26	 3.40	 3.01	 2.78	 2.62	 2.51	 2.42	 2.36	 2.30	 2.25
		  .010	 7.82	 5.61	 4.72	 4.22	 3.90	 3.67	 3.50	 3.36	 3.26	 3.17
		  .001	 14.03	 9.34	 7.55	 6.59	 5.98	 5.55	 5.23	 4.99	 4.80	 4.64
	 25	 .100	 2.92	 2.53	 2.32	 2.18	 2.09	 2.02	 1.97	 1.93	 1.89	 1.87
		  .050	 4.24	 3.39	 2.99	 2.76	 2.60	 2.49	 2.40	 2.34	 2.28	 2.24
		  .010	 7.77	 5.57	 4.68	 4.18	 3.85	 3.63	 3.46	 3.32	 3.22	 3.13
		  .001	 13.88	 9.22	 7.45	 6.49	 5.89	 5.46	 5.15	 4.91	 4.71	 4.56
	 26	 .100	 2.91	 2.52	 2.31	 2.17	 2.08	 2.01	 1.96	 1.92	 1.88	 1.86
		  .050	 4.23	 3.37	 2.98	 2.74	 2.59	 2.47	 2.39	 2.32	 2.27	 2.22
		  .010	 7.72	 5.53	 4.64	 4.14	 3.82	 3.59	 3.42	 3.29	 3.18	 3.09
		  .001	 13.74	 9.12	 7.36	 6.41	 5.80	 5.38	 5.07	 4.83	 4.64	 4.48
	 27	 .100	 2.90	 2.51	 2.30	 2.17	 2.07	 2.00	 1.95	 1.91	 1.87	 1.85
		  .050	 4.21	 3.35	 2.96	 2.73	 2.57	 2.46	 2.37	 2.31	 2.25	 2.20
		  .010	 7.68	 5.49	 4.60	 4.11	 3.78	 3.56	 3.39	 3.26	 3.15	 3.06
		  .001	 13.61	 9.02	 7.27	 6.33	 5.73	 5.31	 5.00	 4.76	 4.57	 4.41
	 28	 .100	 2.89	 2.50	 2.29	 2.16	 2.06	 2.00	 1.94	 1.90	 1.87	 1.84
		  .050	 4.20	 3.34	 2.95	 2.71	 2.56	 2.45	 2.36	 2.29	 2.24	 2.19
		  .010	 7.64	 5.45	 4.57	 4.07	 3.75	 3.53	 3.36	 3.23	 3.12	 3.03
		  .001	 13.50	 8.93	 7.19	 6.25	 5.66	 5.24	 4.93	 4.69	 4.50	 4.35
	 29	 .100	 2.89	 2.50	 2.28	 2.15	 2.06	 1.99	 1.93	 1.89	 1.86	 1.83
		  .050	 4.18	 3.33	 2.93	 2.70	 2.55	 2.43	 2.35	 2.28	 2.22	 2.18
		  .010	 7.60	 5.42	 4.54	 4.04	 3.73	 3.50	 3.33	 3.20	 3.09	 3.00
		  .001	 13.39	 8.85	 7.12	 6.19	 5.59	 5.18	 4.87	 4.64	 4.45	 4.29
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Table VIII     critical values 

	 Numerator df

		  Area	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10

	   30	 .100	       2.88	       2.49	       2.28	       2.14	       2.05	       1.98	       1.93	       1.88	       1.85	       1.82
		  .050	 4.17	 3.32	 2.92	 2.69	 2.53	 2.42	 2.33	 2.27	 2.21	 2.16
		  .010	 7.56	 5.39	 4.51	 4.02	 3.70	 3.47	 330	 3.17	 3.07	 2.98
		  .001	 13.29	 8.77	 7.05	 6.12	 5.53	 5.12	 4.82	 4.58	 4.39	 4.24
	   40	 .100	 2.84	 2.44	 2.23	 2.09	 2.00	 1.93	 1.87	 1.83	 1.79	 1.76
		  .050	 4.08	 3.23	 2.84	 2.61	 2.45	 2.34	 2.25	 2.18	 2.12	 2.08
		  .010	 7.31	 5.18	 4.31	 3.83	 3.51	 3.29	 3.12	 2.99	 2.89	 2.80
		  .001	 12.61	 8.25	 6.59	 5.70	 5.13	 4.73	 4.44	 4.21	 4.02	 3.87
	   60	 .100	 2.79	 2.39	 2.18	 2.04	 1.95	 1.87	 1.82	 1.77	 1.74	 1.71
		  .050	 4.00	 3.15	 2.76	 2.53	 2.37	 2.25	 2.17	 2.10	 2.04	 1.99
		  .010	 7.08	 4.98	 4.13	 3.65	 3.34	 3.12	 2.95	 2.82	 2.72	 2.63
		  .001	 11.97	 7.77	 6.17	 5.31	 4.76	 4.37	 4.09	 3.86	 3.69	 3.54
	   90	 .100	 2.76	 2.36	 2.15	 2.01	 1.91	 1.84	 1.78	 1.74	 1.70	 1.67
		  .050	 3.95	 3.10	 2.71	 2.47	 2.32	 2.20	 2.11	 2.04	 1.99	 1.94
		  .010	 6.93	 4.85	 4.01	 3.53	 3.23	 3.01	 2.84	 2.72	 2.61	 2.52
		  .001	 11.57	 7.47	 5.91	 5.06	 4.53	 4.15	 3.87	 3.65	 3.48	 3.34
	 120	 .100	 2.75	 2.35	 2.13	 1.99	 1.90	 1.82	 1.77	 1.72	 1.68	 1.65
		  .050	 3.92	 3.07	 2.68	 2.45	 2.29	 2.18	 2.09	 2.02	 1.96	 1.91
		  .010	 6.85	 4.79	 3.95	 3.48	 3.17	 2.96	 2.79	 2.66	 2.56	 2.47
		  .001	 11.38	 7.32	 5.78	 4.95	 4.42	 4.04	 3.77	 3.55	 3.38	 3.24
	 240	 .100	 2.73	 2.32	 2.10	 1.97	 1.87	 1.80	 1.74	 1.70	 1.65	 1.63
		  .050	 3.88	 3.03	 2.64	 2.41	 2.25	 2.14	 2.04	 1.98	 1.92	 1.87
		  .010	 6.74	 4.69	 3.86	 3.40	 3.09	 2.88	 2.71	 2.59	 2.48	 2.40
		  .001	 11.10	 7.11	 5.60	 4.78	 4.25	 3.89	 3.62	 3.41	 3.24	 3.09
	 	 .100	 2.71	 2.30	 2.08	 1.94	 1.85	 1.77	 1.72	 1.67	 1.63	 1.06
		  .050	 3.84	 3.00	 2.60	 2.37	 2.21	 2.10	 2.01	 1.94	 1.88	 1.83
		  .010	 6.63	 4.61	 3.78	 3.32	 3.02	 2.80	 2.64	 2.51	 2.41	 2.32
		  .001	 10.83	 6.91	 5.42	 4.62	 4.10	 3.74	 3.47	 3.27	 3.10	 2.96
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Table X    Critical values for Dunnett’s Method

Two-sided comparisons

k  1  number of treatment means (excluding control)

	n  k	 1	 2	 3	 4	 5	 6	 7	 8	 9

	     5	 2.57	 3.03	 3.29	 3.48	 3.62	 3.73	 3.82	 3.90	 3.97
	     6	 2.45	 2.86	 3.10	 3.26	 3.39	 3.49	 3.57	 3.64	 3.71
	     7	 2.36	 2.75	 2.97	 3.12	 3.24	 3.33	 3.41	 3.47	 3.53
	     8	 2.31	 2.67	 2.88	 3.02	 3.13	 3.22	 3.29	 3.35	 3.41
	     9	 2.26	 2.61	 2.81	 2.95	 3.05	 3.14	 3.20	 3.26	 3.32
	   10	 2.23	 2.57	 2.76	 2.89	 2.99	 3.07	 3.14	 3.19	 3.24
	   11	 2.20	 2.53	 2.72	 2.84	 2.94	 3.02	 3.08	 3.14	 3.19
	   12	 2.18	 2.50	 2.68	 2.81	 2.90	 2.98	 3.04	 3.09	 3.14
	   13	 2.16	 2.48	 2.65	 2.78	 2.87	 2.94	 3.00	 3.06	 3.10
	   14	 2.14	 2.46	 2.63	 2.75	 2.84	 2.91	 2.97	 3.02	 3.07
	   15	 2.13	 2.44	 2.61	 2.73	 2.82	 2.89	 2.95	 3.00	 3.04
	   16	 2.12	 2.42	 2.59	 2.71	 2.80	 2.87	 2.92	 2.97	 3.02
	   17	 2.11	 2.41	 2.58	 2.69	 2.78	 2.85	 2.90	 2.95	 3.00
	   18	 2.10	 2.40	 2.56	 2.68	 2.76	 2.83	 2.89	 2.94	 2.98
	   19	 2.09	 2.39	 2.55	 2.66	 2.75	 2.81	 2.87	 2.92	 2.96
	   20	 2.09	 2.38	 2.54	 2.65	 2.73	 2.80	 2.86	 2.90	 2.95
	   24	 2.06	 2.35	 2.51	 2.61	 2.70	 2.76	 2.81	 2.86	 2.90
	   30	 2.04	 2.32	 2.47	 2.58	 2.66	 2.72	 2.77	 2.82	 2.86
	   40	 2.02	 2.29	 2.44	 2.54	 2.62	 2.68	 2.73	 2.77	 2.81
	   60	 2.00	 2.27	 2.41	 2.51	 2.58	 2.64	 2.69	 2.73	 2.77
	 120	 1.98	 2.24	 2.38	 2.47	 2.55	 2.60	 2.65	 2.69	 2.73
	 	 1.96	 2.21	 2.35	 2.44	 2.51	 2.57	 2.61	 2.65	 2.69

a Reproduced with permission from C. W. Dunnett, “New Tables for Multiple Comparison with a 
Control,” Biometrics, Vol. 20, No. 3, 1964, and from C. W. Dunnett, “A Multiple Comparison Procedure 
for Comparing Several Treatments with a Control,” Journal of the American Statistical Association, Vol. 50, 
1955.
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Table XI    Control chart constants

	 Process	 Process	 Process
	 variation	 average	 standard deviation

	Sample
	size (n)	 D3	 D4	 B3	 B4	 A2	 A3	 A6	 A7	 d2	 c4	 d3

	   2	 0.000	 3.267	 0.000	 3.267	 1.880	 2.659	 1.880	 1.880	 1.128	 0.7979	 0.853
	   3	 0.000	 2.574	 0.000	 2.568	 1.023	 1.954	 1.187	 1.067	 1.693	 0.8862	 0.888
	   4	 0.000	 2.282	 0.000	 2.266	 0.729	 1.628	 0.796	 0.796	 2.059	 0.9213	 0.880
	   5	 0.000	 2.114	 0.000	 2.089	 0.577	 1.427	 0.691	 0.660	 2.326	 0.9400	 0.864
	   6	 0.000	 2.004	 0.030	 1.970	 0.483	 1.287	 0.549	 0.580	 2.534	 0.9515	 0.848
	   7	 0.076	 1.924	 0.118	 1.882	 0.419	 1.182	 0.509	 0.521	 2.704	 0.9594	 0.833
	   8	 0.136	 1.864	 0.185	 1.815	 0.373	 1.099	 0.434	 0.477	 2.847	 0.9650	 0.820
	   9	 0.184	 1.816	 0.239	 1.761	 0.337	 1.032	 0.412	 0.444	 2.970	 0.9693	 0.808
	 10	 0.223	 1.777	 0.284	 1.716	 0.308	 0.975	 0.365	 0.419	 3.078	 0.9727	 0.797
	 11	 0.256	 1.744	 0.321	 1.679	 0.285	 0.927	 0.350	 0.399	 3.173	 0.9754	 0.787
	 12	 0.283	 1.717	 0.354	 1.646	 0.266	 0.886	 0.317	 0.382	 3.258	 0.9776	 0.778
	 13	 0.307	 1.693	 0.382	 1.618	 0.249	 0.850	 0.306	 0.368	 3.336	 0.9794	 0.770
	 14	 0.328	 1.672	 0.406	 1.594	 0.235	 0.817	 0.282	 0.356	 3.407	 0.9810	 0.763
	 15	 0.347	 1.653	 0.428	 1.572	 0.223	 0.789	 0.274	 0.346	 3.472	 0.9823	 0.756
	 16	 0.363	 1.637	 0.448	 1.552	 0.212	 0.763	 0.257	 0.337	 3.532	 0.9835	 0.750
	 17	 0.378	 1.622	 0.466	 1.534	 0.203	 0.739	 0.250	 0.329	 3.588	 0.9845	 0.744
	 18	 0.391	 1.608	 0.482	 1.518	 0.194	 0.718	 0.237	 0.322	 3.640	 0.9854	 0.739
	 19	 0.403	 1.597	 0.497	 1.503	 0.187	 0.698	 0.231	 0.315	 3.689	 0.9862	 0.734
	 20	 0.415	 1.585	 0.510	 1.490	 0.180	 0.680	 0.218	 0.308	 3.735	 0.9869	 0.729
	 21	 0.425	 1.575	 0.523	 1.477	 0.173	 0.663	 0.215	 0.303	 3.778	 0.9876	 0.724
	 22	 0.434	 1.566	 0.534	 1.466	 0.167	 0.647	 0.204	 0.298	 3.819	 0.9882	 0.720
	 23	 0.443	 1.557	 0.545	 1.455	 0.162	 0.633	 0.202	 0.292	 3.858	 0.9887	 0.716
	 24	 0.451	 1.548	 0.555	 1.445	 0.157	 0.619	 0.192	 0.288	 3.895	 0.9892	 0.712
	 25	 0.459	 1.541	 0.565	 1.435	 0.153	 0.606	 0.191	 0.284	 3.931	 0.9896	 0.708

a  Values in this table were generated using MathCAD version 3.1 software.
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Table XII   Approximate critical values for the  
Ryan-Joiner test of normality

			   a

		  .10	 .05	 .01

	   4	 .8951	 .8734	 .8318
	   5	 .9033	 .8804	 .8319
	   6	 .9114	 .8893	 .8409
	   7	 .9186	 .8978	 .8517
	   8	 .9248	 .9054	 .8622
	   9	 .9301	 .9121	 .8718
	 10	 .9347	 .9179	 .8804
	 11	 .9387	 .9230	 .8880
	 12	 .9422	 .9275	 .8947
	 13	 .9454	 .9315	 .9008
	 14	 .9481	 .9351	 .9061
n	 15	 .9506	 .9383	 .9109
	 16	 .9529	 .9411	 .9153
	 17	 .9549	 .9437	 .9192
	 18	 .9567	 .9461	 .9228
	 19	 .9584	 .9483	 .9260
	 20	 .9600	 .9503	 .9290
	 25	 .9662	 .9582	 .9407
	 30	 .9707	 .9639	 .9490
	 40	 .9767	 .9715	 .9597
	 50	 .9807	 .9764	 .9664
	 60	 .9835	 .9799	 .9709
	 75	 .9865	 .9835	 .9756

Source: Minitab Reference Manual.
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Chapter 1

  1.	 a.	   5    9
		    6    3  8  8  5  3
		    7    2  3  0  6  0  9  8  4  7  8  7	 stem: ones
		    8    1  2  7	 leaf: tenths
		    9    0  7  7
		  10    7
		  11    6  3  8

		�  A value close to 8.0 is representative. There ap-
pears to be a substantial amount of dispersion in 
the data.

	 b. � There is clearly asymmetry, a skewness toward 
larger values (positive skewness).

	 c.  No        d.  .148, or roughly 15%

  3.	 3L	       1
	 3H    5  6  6  7  8	 stem: tenths
	 4L       0  0  0  1  1  2  2  2  2  2  3  4	 leaf: hundredths
	 4H    5  6  6  7  8  8  8
	 5L        1  4  4
	 5H    5  8
	 6L        2
	 6H    6  6  7  8
	 7L
	 7H    5

	� A specific gravity of roughly .45 is typical. The data 
spreads out quite a bit about this typical value. 
There is asymmetry in the distribution of values. 
The observation .75 appears at first glance to be a 

“mild” outlier, but this is simply a consequence of 
using repeated stems.

  5.	 a.	� Two-digit stems. One-digit stems would give a 
display with too few rows to be informative, and 
three-digit stems would result in far too many 
rows.

	 b.	 64    33  35  64  70
		  65    06  26  27  83	 stem: thousands 
		  66    05  14  94	     and hundreds
		  67    00  13  45  70  70  90  98	 leaf: tens and
		  68    50  70  73  90	     ones
		  69    00  04  27  36
		  70    05  11  22  40  50  51
		  71    05  13  31  65  68  69
		  72    09  80

	 c.	 64    3  3  6  7
		  65    0  2  2  8	 stems: thousands 
		  66    0  1  9	     and hundreds
		  67    0  1  4  7  7  9  9	 leaf: tens
		  68    5  7  7  9
		  69    0  0  2  3
		  70    0  1  2  4  5  5
		  71    0  1  3  6  6  6
		  72    0  8

		�  The second display is essentially as informative 
as the first. With 200 observations, the first dis-
play would be very cumbersome.

Answers to  
Odd-Numbered Exercises
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  7.	 a.	 # Nonconforming	 Frequency	 Rel. freq.

	 0	   7	   .117
	 1	 12	   .200
	 2	 13	   .217
	 3	 14	   .233
	 4	   6	   .100
	 5	   3	   .050
	 6	   3	   .050
	 7	   1	   .017
	 8	   1	   .017
		  60	 1.001

	 b.	 .917, .867, 1 2 .867 5 .133
	 c.	� The histogram has a substantial positive skew. 

It is centered somewhere between 2 and 3 and 
spreads out quite a bit about its center.

  9.	 a.	 .99 (99%), .71 (71%)
	 b.	 .64 (64%), .44 (44%)
	 c.	� Strictly speaking, the histogram is not unimodal, 

but is close to being so with a moderate positive 
skew. A much larger sample size would likely 
give a smoother picture.

11.	a.	 0    3  3  9  5  5  9  4  5  1  5  2  3
		  1    2  2  0  0  3  2  1  8  6  8  4	 stem: thousands
		  2    1  4  1  2  3  4  4  7  7  1	 leaf: hundreds
		  3    0  3  3  3  8  1  1
		  4    3  7
		  5    3  7  2  8  7

		�  A typical value is one in the low 2000s; there is 
much variability in the data, no gaps, and the 
display is close to being unimodal with a posi-
tive skew.

	 b.		  Class	 Frequency	 Rel. Freq.

		        0–,1000	 12	 .255
		  1000–,2000	 11	 .234
		  2000–,3000	 10	 .213
		  3000–,4000	   7	 .149
		  4000–,5000	   2	 .043
		  5000–,6000	   5	 .106
			   47	 1.000

		  .489, .149; see the description in (a)
13.	a.	 589/1570 5 .3752
	 b.	� 1 2 (589 1 190 1 176 1 157 1 115)y1570 5 

.2185
	 c.	� (115 1 89 1 57 1 55 1 33 5 31)y1570 5 

.2420
	 d.	 The shape of this histogram is positively skewed.

15.	a.	 Yes, .518.
	 b.	 .152.
	 c.	 .408.
	 d.	� The distribution is heavily positively skewed. 

Though angles can range from 0° to 90°, 
approximately 85% of all angles are less than 30°. 
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17.		  Class	 Freq.	 Rel. Freq.

	 4000–,4200	   1	 .01
	 4200–,4400	   2	 .02
	 4400–,4600	   9	 .09
	 4600–,4800	 13	 .13
	 4800–,5000	 18	 .18
	 5000–,5200	 22	 .22
	 5200–,5400	 20	 .20
	 5400–,5600	   7	 .07
	 5600–,5800	   7	 .07
	 5800–,6000	   1	 .01
			   100	 1.00
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	� The histogram is quite symmetric and indeed ap-
proximately bell-shaped. A representative strength 
value is something in the neighborhood of 5000; 
the data spreads out rather substantially about this 
representative value.

19.	a.	 2 3
1
2

5 1        b.  .5        c.  5        d.  5.8

21.	a.	� The density curve is a triangle over the inter-
val [0, 10]. Total area under curve 5 1

2 (base)
(height) 5 1

2 (10)(.2) 5 1.

	 b.	� Proportion (x # 3) 5 .18, Proportion (x $ 7) 5 
.18, Proportion (x $ 4) 5 .68, Proportion  
(4 , x , 7) 5 .50

	 c.	 7.7639
23.	b.	 .449, .699, .148        c.  115,129.25; 251.26
25.	a.	 .75        b.  .5 (50%)        c.  .367
27.	a.	 .70, .45        b.  .10        c.  .65        d.  .45
29.	   x:	  0     1     2
	 p(x):	 .3    .6    .1
31.	a.	 .9625        b.  .2912        c.  .7881
	 d.	 .3037        e.  .0456        f.  <0        g.  <0
33.	a.	 <1.04 or larger        b.  <2.675 or smaller
	 c.	 larger than 2.05 or smaller than 22.05
35.	a.	 .8413        b.  .9876        c.  .0668
37.	a.	 .9664        b.  .2451        c.  45.62 km/h
39.	a.	 .7967        b.  .0004
	 c.	 Those larger than .399
41.	a.	 .8633        b.  .8643, .8159
43.	a.	� Proportion (x . 120) 5 Proportion (x $ 120) 5 

.9834 
	 b.	 .0905
	 c.	 125.90
45.	a.

49.	a.	 .5517 
	 b.	� Proportion (x . 200) 5 Proportion (x $ 200) 5 

.1587
51.	a.	 .3099        b.  .4035 2 .0678 5 .3357
	 c.	� 90th percentile 5 1.3657, 10th percentile 5 .2501
53.	a.	 .3799        b.  .1557        c.  .5330
55.	a.	 Proportion (x # 2) 5 .677 (from Table II)
	 b.	 Proportion (x $ 5) 5 .043
	 c.	 Proportion (x $ 11) 5 .000
57.	a.	 Proportion (x # 10) 5 .01 (Table III, � 5 20)
	 b.	 Proportion (x . 20) 5 .428
	 c.	� Proportion (10 # x # 20) 5 .556, Proportion 

(10 , x , 20) 5 .461
59.	� Using Table III (� 5 20), Proportion (x $ 15) 5 

.894. Proportion (x # 25) 5 .902.
61.	a.	� The histogram is reasonably symmetric and 

bell-shaped. A representative value is about 90.
	 b.	� Proportion (x $ 85) 5 .9231. Proportion  

(x , 95) 5 .9053.
	 c.	� .0355 1 .0414 1 .1006  1  .1775 1 .2544/2 5 .4822
63.	a.  .4445        b.  2.107
65.	a.	 .2946, .0708, .0222        b.  .0348         
	 c.	� 254.3 separates the fastest 10% of all times from 

the slowest 90%.        d.  The distribution is 
quite positively skewed.

67.	a.	 .82        b.  .18        c.  .65, .27
69.	b.	 .8647, .1353, .4712
71.	b.	 .491, .269        c.  5.12
	 d.	 15.85 separates the largest 10% from the others.
73.	b.	   x:	   1       3       4       6     12
		  p(x):	 .30    .10    .05    .15    .40
	 c.	 .30
75.	 .4423

Chapter 2

  1.	 a.	� x 5 640.5, x~ 5 582.5. The average sale price for 
a home in this sample was $640,500. Half the 
sales were for less than $582,500. 

	 b.	 Mean becomes 610.5, median is unchanged.
	 c.	� xtr(20) 5 591.2 ($591,200).
	 d.	� xtr(15) 5 (591.2 1 596.3)/2 5 593.75 ($593,750).

  3.	 a.	   2    0  4  5  6  6  7  7  8
		    3    0  1  2  3  3  4  4  6  6  6  6  7
		    4    4  6  7  8	 stem: ones
		    5    3	 leaf: tenths
		    6    
		    7  
		    8  
		    9  
		  10    1

height  .2

0 105

0.02

0.01

0.00
100 125 150 175 200 225

	 b.	 .4602        c.  .3636        d.  140.18
47.	a.	 .0456        b.  .8474        c.  6.592
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	� Due to the strong positive skew, the sample mean 
will be greater than the sample median.

	 b.	 x 5 3.654, x~ 5 3.35
	 c.	 By any amount. By no more than 6.7.
  5.	� Due to the unusually large observation 59.31, the 

sample mean will be greater than the sample me-
dian. Since the mean can be inflated when an un-
usually large observation exists, the median (31.28) 
appears to be a more representative value.

  7.	 x~5 68.0, 20% xtr 5 66.2, 30% xtr 5 67.5
  9.	 a.	 4y3 because of skewness
	 b.	 1.414, so � , �~  because of negative skewness.
	 c.	 .615, .707
11.	� � 5 1.614, �~  5 1.64, .032 (a bit more than 3% of 

all weeks)
13.	 1.8
15.	a.	� x 5 1939.367, and the deviations are 66.733, 

125.833, 179.533, 2252.767, 27.533, and 
2146.867.

	 b.	 27747.695, 166.576
17.	a.	� Group 1 has mean 5 9.86, SD 5 2.67. Group 2 

has mean 5 8.93, SD 5 2.37. 
	 b.	 Group 1 has range 5 7, Group 2 has range 5 8.
	 c. 

29.	 �2 5 n�(1 2 �) 5 (25)(.20)(.80) 5 4 � 5 2
	 P(x . � 1 2�) 5 P(x . 5 1 2(2)) 5 P(x . 9) 5 .017
31.	 .135
33.	a.	� Lower quartile 5 122, upper quartile 5 135, 

IQR 5 13
	 b.	� The proximity of the upper quartile to the 

median suggests a negative skew. The variation 
seems quite large and there do not appear to be 
any outliers.

	 c.	� Observations less than 102.5 and greater than 
154.5 would be outliers, and observations less 
than 83 and greater than 174 would be extreme 
outliers.

	 d.	� Decrease the maximum by any amount and the 
IQR remains unchanged.

35.	� 5 3.51, � 5 .146
37.	� min 5 16; lower quartile 5 87; median 5 140; 

upper quartile 5 210; max 5 403. A mild high 
outlier is above 394.5 N and an extreme high 
outlier is above 579 N. The value 403 N is a mild 
outlier. The distribution has positive skew.

39.	� The most noticeable feature of the comparative 
boxplots is that machine 2’s sample values have 
considerably more variation than do machine 1’s 

4.8

Group1

Group2

6.0 7.2 8.4 9.6 10.8 12.0 13.2

	 d.	� The standard deviation measures spread by 
incorporating the deviation of each observation 
from the sample mean. Many observations of 
Group 2 are clustered near its sample mean of 
8.93, whereas the observations of Group 1 are 
farther away from its sample mean of 9.86. So, 
although Group 2 data exhibits a larger range, it 
also yields the smaller standard deviation.

19.	� The sample mean of 17.67 can be considered a 
representative value for this data. The standard 
deviation is 6.41. In general, the size of a typical 
deviation from the sample mean is about 6.41.  
Some observations may deviate from 17.67 by a 
little more than this, some by less.

21.	 76,683 and 76,910
23.	a.	 .785
	 b.	 .688
25.	a.	 1.72
	 b.	 .3, 0
27.	 .423

sample values. However, a typical value, as mea-
sured by the median, seems to be about the same 
for the two machines. The only outlier that exists is 
from machine 1.

41.	� The endotoxin concentration in urban homes gener-
ally exceeds that in farm homes. The range of endo-
toxin concentrations for urban homes exceeds that for 
farm homes. For the urban homes data, there is one 
mild outlier (1) and one extreme outlier (104). For 
the farm homes data there is one mild outlier (64). 

43.	a.	 IQR 5 (qu 2 ql) 5 (133.44 2 97.43) 5 36.01
	 b.	 IQR 5 (13.34 2 9.74) 5 3.6
45.	� The general pattern is reasonably straight and a de-

parture from linearity is not clear-cut. One should 
not rule out normality of the tension distribution.

47.	� The plot shows some nontrivial departures from 
linearity, especially in the lower tail of the distribu-
tion. This indicates a normal distribution might 
not be a good fit to the population distribution of 
clubhead velocities for female golfers.
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49.	� The corresponding probability plot appears suf-
ficiently straight to lead us to agree with the argu-
ment that the distribution of fracture toughness in 
concrete specimens could well be modeled by a 
Weibull distribution

51.	� Clearly, the variable IDT is not normally distrib-
uted, since its normal quantile plot is nonlinear.  
IDT is likely to be lognormally distributed since 
the normal quantile plot of ln(ITD) is quite linear.

53.	a.	� Clearly, the variable, hourly median power, is 
not normally distributed, as the normal quantile 
plot is curvilinear.

	 b.	� By taking the natural logarithm of the variable 
and constructing a normal quantile plot, the 
plot looks quite linear indicating that it is plau-
sible that these observations were sampled from 
a lognormal distribution.

55.	� The corresponding histogram shows the noise 
distribution is bimodal (but close to unimodal) 
with a positive skew and no outliers. The mean 
noise level is 64.89 dB and the median noise level 
is 64.7 dB. The IQR of the noise measurements is 
about 70.4 2 57.8 5 12.6 dB.

57.	b.	 x16 5 12.53125, s16 5 .532
59.	a.	� The initial Se concentrations in the treatment 

and control groups are not that different. The 
median initial Se concentrations for the treat-
ment and control groups are 10.3 mg/L and 
10.5 mg/L, respectively, each with IQR of about 
1.25 mg/L. So, the two groups of cows are com-
parable at the beginning of the study.

	 b.	� The final Se concentrations of the two groups are 
extremely different. The median final Se con-
centration for the control group is 9.3 mg/L, the 
median Se concentration in the treatment group 
is now 103.9 mg/L, nearly a 10-fold increase.

61. a.

Percentage within Chebyshev’s Rule Empirical Rule

1� No statement About 68%
2� At least 75% About 95%
3� At least 89% About 99.7%

	� Chebyshev’s inequality is more conservative than is 
the empirical rule.  

	 b.
Percentage within Chebyshev’s Rule Exponential

1� No statement 86.47%
2� At least 75% 95.02%
3� At least 89% 98.17%

	 c.	� Chebyshev’s inequality may not accurately 
estimate any particular distribution as it must 
accommodate all distributions.

63.	a.	 xtr (6.7) 5 10.67, xtr (13.3) 5 10.58

	 b.	 xtr (10) 5 a (10.67 1 10.58)
2

b 5 10.625

	 c.	� Interpolate between xtr (6.25) and xtr (12.5) to obtain 
xtr (10)

65.	� The mean and the midrange are sensitive to outli-
ers. The median, the trimmed mean, and the mid-
hinge are not sensitive to outliers.

67.	a.	� Aortic root diameters for males have mean 
3.64 cm, median 3.70 cm, standard deviation 
0.269 cm, and IQR 0.40. The correspond-
ing values for females are x 5 3.28 cm, x~ 5 
3.15 cm, s 5 0.478 cm, and IQR 5 0.50 cm. 
Aortic root diameters are typically smaller for 
females than for males, and females show more 
variability. The distribution for males is nega-
tively skewed, while the distribution for females 
is positively skewed.

	 b.	� For females (n 5 10), the 10% trimmed mean 
is the average of the middle 8 observations:  
xtr(10) 5 3.24 cm. For males (n 5 13), the  
1y13 trimmed mean is 40.2y11 5 3.6545, and 
the 2y13 trimmed mean is 32.8y9 5 3.6444. 
Interpolating, the 10% trimmed mean is xtr(10) 5 
0.7(3.6545) 1 0.3(3.6444) 5 3.65 cm.

69.	 .0228, .1587

Chapter 3

  1.	� The scatterplot exhibits a negative linear associa-
tion between the variables.

  3.	� The scatterplot exhibits a positive linear association 
between the variables. One unusual observation 
(with # beds 5 68) deviates from the linear pattern.

  5.	 b.	 Yes
	 c.	� There appears to be an appropriate quadratic 

relationship (points fall closest to a parabola).
  7.	� The scatterplot exhibits a negative linear associa-

tion between the variables.
  9.	 a.	 Positive        b.  Negative        c.  Positive
	 d.	 Little or none        e.  Negative
	 f.	 Little or none
11.	� r 5 .4806, a weak to moderate linear correlation 

exists
13.	� If, for example, 18 is the minimum age of eligibil-

ity, then for most people y < x 2 18.
15.	2.9
17.	a.  .733        b.  .9985

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 Answers to Odd-Numbered Exercises	 609

19.	a.	� yn 5 2305.88 1 9.96x. The coefficient of deter-
mination is .124, which is quite low. The linear 
regression model accounts for only 12.4% of the 
variability of colony density.

	 b.	� yn 5 34.37 1 .78x. The coefficient of determina-
tion is .024, which is much lower than before. 
The linear regression model accounts for only 
2.4% of the variability of colony density. The 
elimination of the observation has a drastic 
impact on the regression model.

21.	a.	� The scatterplot reveals a roughly positive linear 
relationship.

	 b.	� yn 5 231.80 1 .987x. A one-MPa increase in 
cube strength is associated with a .987 MPa 
increase in the predicted axial strength for these 
asphalt samples. 

	 c.	� r2 5 .630. That is, 63.0% of the observed varia-
tion in axial strength of asphalt samples of this 
type can be attributed to its linear relationship 
with cube strength.

	 d.	 se 5 6.625. 
23.	a.	� yn 5 11.013 2 .448x. A one percent increase 

in fiber weight is associated with a .448 MPa 
increase in the predicted compressive strength. 

	 b.	 .694
	 c.	 yn 5 8.101 MPa
	 d.	� The observed range for x was 0 to 10%. 

25% is well outside this range and the ex-
trapolated prediction could be unreliable. For 
x 5 25, yn 5 2.187 MPa, a nonsensical value.

25.	 a.	� No, if the values of Cc were perfectly linearly 
related to the e0 values, then one line would 
exactly satisfy all points in the scatterplot.

	 b.	 yn 5 2.144 1 .337x
	 c.	 .874
	 d.	� yn 5 .227 when x 5 1.10. Predicting y when  

x 5.80 would not be advisable as this is an 
example of extrapolation.

27.	� Data set #1: scatterplot yields a rough linear 
relationship. Data set #2: scatterplot reveals a 
quadratic relationship, so a linear  relationship does 
not hold. Data set #3: scatterplot shows a clear outlier. 
Without this observation, a linear relationship holds 
very well. Data set #4: scatterplot (containing a clear 
outlier) shows a linear relationship does not hold.

29.	a.	� It is not appropriate to fit a straight line to this 
data as there is clear curvature to the scatterplot.

	 b.	� A scatterplot of (x, 1yy) yields rough linearity. 
The least squares line is 1yyn 5 .105 2 21.02x 
with corresponding r2 5 .868.

31.	b.	� The ln(x) versus y transformation seems to do 
the best job, though it yields a somewhat low  
r2 5 .497.

	 c.	� yn 5 .0197 2 .0013* ln(5000) 5 .0086
33.	a.	� No, there is a quadratic relationship between 

strength and thickness, so a quadratic model 
should be fit.

	 b.	� yn 5 14.521 1 .0432x 2 .00006x2. At x 5 500, 
yn 5 21.121. The residual plot shows no unusual 
pattern and R2 5 .780. The quadratic fit seems 
adequate.

35.	a.	 yn 5 4.479. Residual 5 4.454 2 4.479 5 2.0025
	 b.	 12.03836y5.1109 5 .9925.
37.	a.	� 92.34% of the observed variability in 

hydrocarbon deposition can be attributed to the 
given multiple regression model involving x1 
and x2. 

	 b.	 yn 5 37.476
	 c.	 Yes, it is legitimate to interpret b2 in this way. 
39.	 a.	� For yn 5 a 1  b1x1 1 b2x2 1  b3x3, R

2 5 .0165. 
The second model gives R2 5 .9866. Clearly, the 
second model yields a superior fit to the data.

	 b.	 yn 5 .3569, residual 5 2.1549.
	 c.	 yn 5 .1801, residual 5 2.0219.
	 d.	� The larger residual magnitude based on 

yn 5 a 1  b1x1 1 b2x2 1  b3x3 is reasonable 
given the corresponding low coefficient of 
determination. 

41.	a.	� a 5 89.111, b1 5 2.050, b2 5 6.564, b3 5 
227.418, R2 5 .9175

	 b.	� a 5 55.703, b1 5 .018, b2 5 8.719, b3 5 
211.313, b4 5 2.005, b5 5 2.033, b6 5 .105, 
R2 5 .9237

	 c.	� a 5 81.233, b1 5 .123, b2 5 26.837, b3 5 
242.035, b4 5 2.005, b5 5 2.033, b6 5 .105, 
b7 5 2.0001, b8 5 1.945, b9 5 10.241, R2 5 
.9679

43.	a.	 .030    b.  .120    c.  .105    d.  2.80 
	 e.	 4.90
45.	 9375, .302, no
47.	b.	 35, 5, 26        c.  .632
49.	a.	 yn 5 1.6932 1 .0805x
	 b.	 yn 5 220.0514 1 12.1149x
	 c.	 .975 for both regressions
51.	a.	 109.07        b.  R2 5 .893
	 c.	 yn ,  0, which is ridiculous.
53.	a.	 No
	 b.	� ln( y) 5 27.2557 1 8328.4yx, yn 5 74.6, r2 5  .953
55.	 ln( y) 5 23.7372 2 .12395ln(x), r2 5 46.9,
	 y 5 .00829 when x 5 5000
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Chapter 4

  1.	� Operational definitions are used to define measure-
ment procedures. Benchmarks are existing objects 
or procedures used to compare two or more prod-
ucts or processes.

  3.	� Example: Temperature at 2:00 p.m. in a fixed, un-
shaded area on top of City Hall

  5.	 ISP ppm is an operational definition.
  7.	� Here is one possibility. Divide the one-square-mile 

area of forest into 100 smaller regions each of equal 
size (each area would be (1y10)th of a mile by  
(1y10)th of a mile). Call each region a cluster. Ran-
domly sample n of these clusters. Within each sam-
pled cluster study all of the trees that are growing.

  9.	a.	� Both methods are capable of generating 
random samples from the block of trees. By 
Researcher A’s suggestion the chance a tree is 
selected is: 

		  a 5
40

b a 6
25

b 5 0.03. Each tree has this same

		�  chance of selection, making this sampling 
scheme a random sampling scheme. By Re-
searcher B’s suggestion the chance of selection 

a 30
1000

b 5 0.03 is for each tree.

	 b. 	�Stratified random sampling.
11.	� Use 5RANDBETWEEN (1,1000) which uses sam-

pling with replacement.
13.	a.	 10,000      b.  70      c.  .0786      d.  .0098

15.	a.	� Since wi can be shown to be equal to 
Ni�i

^
k

i51
Ni�i

,

		  this yields Neyman allocation.
	 b.	� Since wi can be shown to be equal to

		
Nj

N1 1 N2 1 1 Nk
5

Nj

N
, this yields proportional 

		  allocation.
17.	 2.576, the required sample size increases
19.	� Biases tend to be eliminated when several mea-

surements are averaged; but more importantly, the 
variation between repeated measurements gives a 
measure of experimental error.

21.	 a.	� Variation in fuel efficiency between 100-mile 
segments can be quantified if one measures fuel 
efficiency every segment. If one measures ef-
ficiency at the end of the 500-mile course, there 
is no measure of experimental error.

	 b.	� The researcher should consider specifying 
those variables that may affect fuel efficiency. 

Examples include: type and condition of the 
vehicle, tire pressure, driving speed and style, 
environmental conditions, etc…

	 c.	� To draw conclusions about the effectiveness of 
the new fuel additive, the researcher may want 
to assess the effectiveness under different experi-
mental conditions by introducing experimental 
factors and blocking variables. For example, the 
researcher may wish to determine the effect that 
“vehicle type” has on the response.  

23.	� Two basic experimental design principles are 
violated; replication and randomization.  

25.	� x 5 .3024, accuracy 5 (x 2 x) 5 (.3024 2 .300) 5 
.0024. Precision 5 s 5 .0024083.

27.	a. 	Measurement, m	 Relative Error

	 .301	 .333%
	 .303	 1%
	 .299	 2.333%
	 .305	 1.67%
	 .304	 1.33%
	 b. 	�The maximum absolute error you would expect 

in a measured reading of 70 degrees Fahrenheit 
from this thermometer is: (70)(.04) 5 2.8 
degree Fahrenheit

29.	b. 	�The Youden plot for this data shows many 
points near the 45 degree line, indicating that 
several of the laboratories are following slightly 
different versions of the test procedure. Lab 19 
clearly made unusual measurements.

31.	� Suppose you take a random sample of size n 
with replacement. Then according to Rule 1 
in Section 4.2, the complement of this random 
sample is also a random sample. Notice that 
the complement will contain no duplicates. 
Finally, using Rule 1 again, the complement of 
the complement will be a random sample and 
is equivalent to the original random sample but 
with duplicates discarded (i.e., a random sample 
without replacement).

33.	a.	� The background samples of air would be used 
as a benchmark of the ambient levels of Cr(VI) 
in the air. Then the background samples can 
be compared to the plant samples in order to 
estimate the increase in Cr(VI) pollutant at 
chromite ore plants.

	 b. �	ASTM Standard Test Method D5281-92 is the 
operational definition for how measurements 
are to be made. Using this method, the authors 
hope to reduce measurement variation so that 
any changes in Cr(VI) concentrations can be 
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meet standards

do not meet 
standards

scrap

readjust crimp
meet standards

scrap

attributed to the chromite ore plants and not to 
variation in the measurement system.

	 c. 	�The location at which an air sample is taken 
can be considered an experimental factor (i.e., 
independent variable). The six sampling periods 
illustrate the experimental principle of replica-
tion. Distinguishing between wet and dry days 
constitutes blocking.

Chapter 5

  1.	 a.	� There are 10 possible such samples of size 3:
		�  {a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e},  

{a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}
	 b.	 A 5 {{a, b, c}, {a, c, d}, {a, c, e}}
	 c.	� A9 5 {{a, b, d}, {a, b, e}, {a, d, e}, {b, c, d},  

{b, c, e}, {b, d, e}, {c, d, e}}
  3.	 a.	� A and B is the event “either 4 or 5 defectives in 

the sample.”
	 b.	� A or B is the event “there is at least one defec-

tive in the sample.”
	 c.	� A9 is the event “there are at most 3 defectives in 

the sample.”
  5.	

15.	a.	 (.80)(.60) 5 .48
	 b.	 .95 1 (.05)(.80)(.60) 5 .974
	 c.	 P(F |  I) 5 P(F and I)yP(I) 5 .95y.974 5 .9754
17.	� The probabilities of independent events A and B 

must satisfy the equation P(A and B) 5 P(A) ? P(B). 
If A and B were also mutually exclusive, then P(A 
and B) would equal 0, which would mean that  
P(A) ? P(B) 5 P(A and B) 5 0. But, P(A) ? P(B) 5  
.5 ? .6 5 .3. So, A and B cannot be mutually 
exclusive.

19.	a.	 (.42)(.42) 5 .1764    b.  .01, .0016, .1936
	 c.	 .1764 1 .01 1.0016 1 .1936 5 .3816 
	 d.  1 2 (.3816) 5 .6184
21.	 .81 1 .99 2 .8019 5 .9981
23.	a.	 .9042  b.  .7660
25.	� Using the addition law for exclusive events,  

P(B) 5 P(A and B) 1 P(A9 and B), which can be 
rearranged as P(A9 and B) 5 P(B) 2 P(A and B). 
Using the fact that A and B are independent,  
P(A and B) 5 P(A) ? P(B), so, P(A9 and B) 5  
P(B) 2 P(A and B) 5 P(B) 2 P(A) ?  P(B) 5  
[1 2 P(A)] ? P(B) 5 P(A9) ? P(B), which shows that 
A9 and B are independent.

27.	a.	 Discrete        b.  Continuous        c.  Discrete
	 d.	 Discrete          e.  Continuous            f.  Continuous
	 g.	 Discrete
29.	a.	 2.3        b.  .81        c.  88.5 lb
31.	a.	 k 5 1y15        b.  .40
	 c.	 11y3 5 3.667        d.  1.2472
33.	a.	 Mean 5 2.85; standard deviation 5 1.6797
	 b.	 .05702        c.  .77883
35.	a.	 Binomial; mean 5 50
	 b.	� Normal approximation (with continuity 

correction) to binomial gives .0287.
37.	a.	 1 2 .736 5 .264
	 b.	� 1, because there will be no defectives in any  

sample
	 c.	 .086 (for 5%); .624 (for 20%); .989 (for 50%)
39.	a.	 Binomial with n 5 25, � 5 1y5
	 b.	 Mean 5 5; standard deviation 5 2
	 c.	� Closest integer score S that satisfies P(x $ S) 5 

.01 is S 5 11.
41.	a.	 Median 5 346.57 hours
	 b.	 Median is smaller than mean.
	 c.	 Median 5 2ln(.50)y � 5 .693y � 5 .693�
43.	a.	 P(x 5 5) 5 .40; P(x 5 6) 5 .35; P(x 5 7) 5 .25
	 b.	� P( y 5 10) 5 .40; P( y 5 15) 5 .40;  

P( y 5 20) 5 .20
	 c.	� No, because P(x 5 5 and y 5 10) 5 .20 Þ (.40)

(.40) 5 P(x 5 5)P( y 5 10)

  7.	� The event A and B is the shaded area where A and 
B overlap in a Venn diagram. Its complement con-
sists of all events that are either not in A or not in 
B (or not in both). That is, the complement can be 
expressed as A9 or B9.

  9.	 a.	� 1159 distinct joints were identified by the in-
spectors together.

	 b.	 A and B9 contains 724 2 316 5 408 solder joints.
11.	P(A1 or A2 or A3 or . . . or Ak)
	 # P(A1) 1 P(A2) 1 P(A3) 1  1 P(Ak)
	 5 .01 1 .01 1  1 .01 5 10(.01) 5 .10
13.	a.	� P(A | E9) 5 P(A and E9)yP(E9) 5 P(A)yP(E9) 5 

.20y(1 2 .10) 5 .20y.90 5 20/90.
		�  P(B |  E9) 5 P(B and E9)yP(E9) 5 P(B)yP(E9) 5 

.25y(1 2 .10) 5 .25y.90 5 25/90.
		�  P(C |  E9) 5 P(C and E9)yP(E9) 5 P(C)yP(E9) 5 

.15y(1 2.10) 5 .15y.90 5 15/90.
		�  P(D |  E9) 5 P(D and E9)yP(E9) 5 P(D)yP(E9) 5 

.30y(1 2 .10) 5 .30y.90 5 30/90.
	 b.	� P(A |  B, D, E not chosen) 5 P(A)y(1 2 (.25 1 

.30 1 .10) 5 .20y.35 5  20y35.
		�  P(C |  B, D, E not chosen) 5 P(C)y(1 2 (.25 1 

.30 1 .10) 5 .15y.35 5  15y35.
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45.	a.	� 0, because x cannot take values between .2 and .3
	 b.	 .36498
	 c.	 .�3544 (without continuity correction); .5098 

(with continuity correction)
47.	a.	� Mean of sampling distribution should be closer  

to 4.
	 b.	� Mean of sampling distribution based on n 5 100 

will be closer to 4.
	 c.	� Variance of sampling distribution based on n 5 

2 will be larger.
49.	a.	 Mean 5 .80; standard deviation 5 .08
	 b.	 Mean 5 .20; standard deviation 5 .08
	 c.	 Mean 5 .80; standard deviation 5 .04
51.	a.	 .6826        b.  .9544
53.	a.	 .0228        b.  .0228; same as in (a)
	 c.	 8.8225 hours        d.  $0.15 per package
55.	a.	 .9803; .4803              b.  31.91, or n 5 32
57.	a.	� Sampling distribution is approximately normal 

with �p 5 .02 and �p 5 .014
	 b.	 .7611
59.	a.	 �x 5 exp(� 1 �2y2) 5 .099308        b.  .2643
61.	a.	 2y3        b.  7y9
63.	� As long as P(A) and P(B) are both positive, A and B 

cannot be independent.
65.	� P(A or B) 5 1 2 P(A9)P(B9) if A and B are 

independent.
67.	a.	 b 5 2        b.  � 5  4y3
	 c.	 �2 5 32y243, so � 5 .36289
69.	a.	 .1396      b.  .8604      c.  .0099
71.	a.	� The shape of the histogram should be symmet-

ric and bell shaped
	 b.	� The shape of the histogram should be positively 

skewed.
	 c.	� For the uniform distribution, a sample size of 

10 is sufficiently large to produce a reasonable 
normal sampling distribution of  x. However, for 
the exponential distribution, a sample size of 
10 is not yet sufficiently large to produce a normal 
sampling distribution of  x.

73.	a.	 0      b.  .0038      c.  6
75.	� For flights coming into DC: P(1 u late) 5 .4918, 

P(2 u late) 5 .2459, P(3 u late) 5 .2623
	� For flights coming into LA: P(1 u late) 5 .3125,  

P(2 u late) 5 .375, P(3 u late) 5 .3125 
77.	P(A) 5 .45, P(B) 5 .32

Chapter 6

  1.	� Tolerance 5 6(.05)(560) 5 28 ohm, so LSL 5 532 
and USL 5 588.

  3.	 a.	� The envelope puts an upper specification limit 
of 4.00 inches on the width of a folded letter.

	 b.	� Possible penalties: refold letter (rework), bend 
letter to fit envelope (lower quality), reprint and 
fold new letter (scrap and rework).

  5.	 a.	 Attributes data        b.   Variables data
	 c.	 Attributes data         d.  Attributes data
	 e.	 Attributes data               f.   Variables data
	 g.	 Attributes data        h.   Variables data
	 i.	 Variables data
  7.	� Some unacceptable parts whose true lengths are 

.02 inch or less below the LSL will give measured 
lengths above the LSL (and will then be incor-
rectly classified as acceptable). Conversely, some 
acceptable parts whose true lengths are less than 
.02 inch below the USL will have measured 
lengths above the USL (which incorrectly classifies 
them as unacceptable).

  9.	� Method 2 would be a better rational subgrouping 
scheme.

11.	a.	 P(z . 3) 5 .0013      b.  P(z . 3.09) 5 .001
13.	Chart #1: � Test #3 is found [Six points in a row 

are steadily increasing, starting with 
point #3.]

	 Chart #2: � Even though there are no tests found, 
Test #7 (which requires that 15 points 
in a row be in zone C) seems likely to 
occur. 

	 Chart #3: � Test #2 is found [Nine points in a row 
on one side of the centerline, starting 
with point #2.]

	 Chart #4: � Both Tests #5 and 6 are found starting 
with point #1. 

15.	Centerline R 5 a85.2
30

b 5 2.84

	 UCLR 5 D4R 5 (2.282)(2.84) 5 6.48

	 LCLR 5 D3R 5 (0)(2.84) 5 0
17.	a.	� On the s chart no rules for statistical control are 

broken. So, we would conclude that the process 
variation is in statistical control.

	 b.	� The control limits of Exercise 16(b) are based 
on a different formula compared to that used in 
17(b). However, the control limits in both exer-
cises are similar in values.

19.	a.	� Centerline 5 1.2642, UCL 5 2.4905,  
LCL 5 .0379

	 b.	� Centerline 5 96.503, UCL 5 98.1300,  
LCL 5 94.8760

21.	a.	� If each xi value is transformed into yi 5  
b(xi 2 a), where a and b are constants and  
b . 0, then for any set of n values, y 5 b(x 2 a) 
and Ry 5 bRx. From these two relationships, 
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simple algebra will show that, for example,  
x . UCL (of the x-data) if and only if y . 
UCL (of the y-data). That is, the xx charts 
based on untransformed data and transformed 
data will give the same signals. In the same 
manner, it can be shown that the R charts for 
both transformed and untransformed data give 
the same signals.

	 b.	� R chart: centerline 5 4.200, UCL 5 10.8108, 
LCL 5 0

		�  xx chart: centerline 5 .1833, UCL 5 4.4799, 
LCL 5 24.1133

		�  There are no “out-of-control” conditions in 
either chart.

	 c.	� R chart: centerline 5 .0042, UCL 5 .01081, 
LCL 5 0

		�  xw chart: centerline 5 .25418, UCL 5 .25848, 
LCL 5 .2499

		�  There are no “out-of-control” conditions in 
either chart.

23.	a.	� .04932        b.  P(x . USL) 5 .0228,  
P(x , LSL) 5 .1075

25.	� If a process is not in statistical control, then we do 
not have stable output and so there is no use in 
comparing this output to the specifications. 

27.	� Since the Cp . 1, we know that the process has 
the potential of meeting both specifications. 
However, since the Cpk , 1, the process is not 
actually capable of meeting both specifications.  

29.	 .0035
31.	� Cp 5 .785, Cpu 5 .733, Cpl 5 .837, Cpk 5 .733.
	 The process does not have good capability.
33.	a.	� To compute capability indexes on the trans-

formed process data, the control chart statistics 
from the transformed data should be used. So, 
x 5 .1833, R 5 4.200. Also, the process speci-
fications need to be transformed. So, USL 5 
10 and LSL 5 210. Using these values the Cp 
indexes can be computed for the transformed 
data.

	 b.	� Cp 5 1.34, Cpu 5 1.32, Cpl 5 1.37, Cpk 5 1.32. 
The process is capable.

35.	Cp 5 10.789, Cpk 5 1.842. The process is capable.
37.	 9y(n 1 9)

39.	a.�	 p 5 a 49
1500

b 5 .032667, LCL = 0, UCL = .1081

	 b.	� There are no signs of any ‘out of control’ condi-
tions and we conclude that the process is in 
statistical control.

41.	a.	 .01043

	 b.	
UCL 5 .01043 1 3B (.01043)(.98957)

ni

LCL 5 .01043 2 3B (.01043)(.98957)
ni

	 c.	� On day 21, the proportion of keyboards failing 
inspection is .0189. This value is above the up-
per control limit and the production process of 
that day should be investigated.

43.	A c-chart is required in this case. 

	 Computations are: c 5 a1,179
25

b 5 47.16

	
UCL 5 47.16 1 3147.16 5 67.76
LCL 5 47.16 2 3147.16 5 26.56

	� When analyzing the control chart we do not see 
any “out of control” conditions. However, the last 
6 days of production have produced below average 
numbers of flaws and these days may need to be 
investigated.

45	 a.	� u 5 a 91
15.8

b 5 5.759. The general control chart

		  formulas are:

		  UCL 5 5.759 1 3B 5.759
ni

		  LCL 5 5.759 2 3B 5.759
ni

	 b.	� Panels #7 and 8 seem to have significantly larger 
flaw rates than the process average. Test #5  
(two out of three points in a row outside of 
2 standard deviations) is observed.  

47.	a.	 R(400,000) 5 e2(400,000y600,000)4

5 .82075

	 b.	 R(800,000) 5 e2(800,000y600,000)4

5 .0424

	 c.	 R(600,000) 5 e2(600,000y600,000)4

5 1ye 5 .3679

	 d.	� Z(t) 5
(�y��)t  

�21exp{2(ty�)�}

exp{2(ty�)�}
5

�

��  t  

�21. The

		  failure function is increasing.
49.	b.	 The normal failure laws have an increasing rate.

51.	b.	� R(t) 5 [R1(t)]
3 5 (1 2 [1 2 e2.025t] ? [1 2 e2.025t])3

53.	� The shape of the distribution of fill volumes that pass 
inspection is truncated on the left, since bottles with 
fill volumes below the lower specification have been 
inspected out, resulting in the left part of the distribu-
tion being “cut-off .”  The histogram illustrates a nor-
mal distribution that has been truncated at the LSL.
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55.	� As the drill wears out it may not be able to drill the 
hole diameters properly. On a control chart this 
problem will likely manifest itself as a slow trend 
down in the hole diameters that are being drilled. 
That is, the hole diameters may get smaller and 
smaller. Test #3 on the conditions for an “out of 
control” process may occur.

57.	b.	� When analyzing the control chart we do not see 
any “out of control” conditions. We conclude 
that the milling process is in statistical control.  

59.	a.	 Cp 5 1.33,  Cpu 5 1, Cpl 5 1.67, Cpk 5 1.
61.	� It can be shown that P(x . t1 1 t2 u x . t1)

5
P(x . t1 1 t2)

P(x . t1)
5 e2t2 � 5 P(x . t2)

63.	a.	� Since this system is connected in series, the 
overall reliability is R(t) 5 R1(t) ? R2(t).  
Note that R1(t) # 1 and R2(t) # 1, and so 
R(t) # R1(t) and R(t) # R2(t). Thus, the over-
all reliability never exceeds the reliability of 
any of its individual components. That is, 
R(t) # min{R1(t), R2(t)}.

	 b.	� In the case where the components are not nec-
essarily independent, then R(t) = P(T . t) 5 
P(both components last longer than t) 5 P(T1 . t  
and T2 . t). Since {T1 . t and T2 . t} is the in-
tersection of the two events {T1 . t} and  
{T2 . t}, it’s probability cannot exceed P(T1 . t) 
or P(T2 . t). That is, R(t) # min[P(T1 . t),  
P(T2 . t)] 5 min[R1(t), R2(t)].

Chapter 7

  1.	� Yes, because the length x can also be thought of as 
a sample average based on a sample size of n 5 1.

  3.	 a.	 .4714
	 b.	� .8414 (n 5 50); .9544 (n 5 100) approximately 

1 (n 5 1000)
	 c.	� The probability that the sample mean lies within 

61 unit of � increases as the sample size n  
increases.

  5.	 a.	 1n 5 2(1.645), so n $ 11
	 b.	 80%: 1n 5 2(1.282), so n $ 7
		  95%: 1n5 2(1.960), so n $ 16
		  99%: 1n 5 2(2.576), so n $ 27
	 c.	� Increasing the probability that x lies within 

1 unit of � requires corresponding increases in 
the sample size n.

  7.	 a.	 99.8%        b.  99.5%        c.  85%        d.  68%
  9.	 a.	 Increased interval width
	 b.	 Decreased interval width
	 c.	 Increased interval width

11.	a.	 Narrower        b.  No        c.  No        d.  No
13.	a.	� (12.69, 14.97). We are 99% confident the aver-

age backpack weight of 6th graders is between 
12.69 and 14.97 pounds

	 b.	 (13.26, 16.25).
	 c.	� The average backpack weight as a percentage 

of body weight of 6th graders seems well above 
the recommendation as 10% is well outside the 
interval (13.26, 16.25).

15.	 a.	� (1398.90, 1455.10). We are 95% confident that 
the true average FEV1 level for the given popu-
lation is between 1398.90 and 1455.10 ml.

	 b.	 158

17.	 s 6 (z critical value)a s12n
b  5 (3.332, 4.128)

19.	 390.74 min
21.	 4.062 kip
23.	a.	� (.50, .56). We are 99% confident the propor-

tion of all adult Americans who have watched 
streamed programming is between 50 and 56%.

	 b.	 664
25.	a.	 .042
	 b.	� If we were to sample repeatedly, the calculation 

method in (a) is such that � will exceed the cal-
culated lower confidence bound for 95% of all 
possible random samples of n 5 143 individuals 
who received ceramic hips.

27.	a.	 p1 2 p2

		  6 (z critical value)Bp1(1 2 p1)
n1

1
p2(1 2 p2)

n2

	 b.	 (2.118, .136), no
	 c.	 (2.118, .135)
29.	a.	 (A, B) 5 ln(p1yp2)

		  6 (z critical value) An1 2 u

n1u
1

n2 2 v

n2v
, (eA, eB)

	 b.	 (.970, 1.349), yes
31.	 271
33.	 (.012, .056), using a 95% confidence level
35.	 4.3, no
37.	a.	 2.228        b.  2.086        c.  2.845
	 d.	 2.680        e.  2.485        f.  2.571
39.	a.	 1.812        b.  1.753        c.  2.602        d.  3.747
	 e.	 2.1716 (from Minitab)        f.  Roughly 2.43
41.	a.	� Yes, a normal quantile plot shows a somewhat 

linear relationship.
	 b.	� (106.4, 109.1). Based on this interval, 107 is a 

plausible value but 110 is not plausible for the 
true average work of adhesion.
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43.	a.	� We are 95% confident that the true average 
mileage is between 46,145.4 and 86,296.8.

	 b.	� We are 95% confident that the mileage for a 
single vehicle is between 0 and 148,995.4. This 
interval is much wider than the interval from 
part (a).

45.	a.	� Using a normal probability plot, we ascertain 
that it is plausible that this sample was taken 
from a normal population distribution.

	 c.	 38.78
	 d.	� 42.29, a higher upper bound than that found in 

part (c).
47.	 a.	� A 95% prediction interval for the amount of 

warpage of a single piece of laminate is .0635 6  
.0137

	 b.	 (.0464, .0806)
49.	� (3.43, 4.13). Thus, with 95% confidence, we can 

say that the true average firmness for zero-day ap-
ples exceeds that of 20-day apples by between 3.43 
and 4.13 N.

51.	a.	� The most notable feature of these boxplots is 
the larger amount of variation present in the 
mid-range data as compared to the high-range 
data. Otherwise, both boxplots look reasonably 
symmetric and there are no outliers present.

	 b.	� A 95% confidence interval for (� mid range 2 
� high range) is (27.84, 9.54). Since plausible 
values for (�1 2 �2) are both positive and nega-
tive (i.e., the interval spans zero), we would 
conclude that there is not sufficient evidence to 
suggest that �1 and �2 differ.

53.	� Assuming sample “1” corresponds to the lab 
method, the CI says we’re 95% confident that the 
true mean arsenic concentration measurement 
using the lab method is between 6.498 �g/L and 
11.102 �g/L higher than using the field method.

55.	a.	� A 95% confidence interval for �d is (214.83, 
26.50). Since this interval contains negative and 
positive values, there is not sufficient evidence 
to suggest that �d is different from zero.

	 b.	� A 95% prediction interval for the difference d is 
(248.85, 60.51).

57.	a.	� (2.03, 6.10). We are 95% confident that the 
true mean difference between dominant and 
nondominant arm translation for pitchers is be-
tween 2.03 and 6.10.

	 b.	� (20.54, 1.01). We are 95% confident that the 
true mean difference between dominant and 
nondominant arm translation for position play-
ers is between 2.54 and 1.01.

	 c.	� Let �1 and �2 represent the true mean differ-
ences in side-to-side AP translation for pitchers 
and position players, respectively. To generate a 
confidence interval for �1 2 �2, we use the dif-
ferences utilized in parts (a) and (b). A 95% con-
fidence interval for �1 2 �2 is (1.69, 5.98). Since 
both endpoints are positive, we concur with the 
authors’ assessment that this difference is greater, 
on average, in pitchers than in position players.

59.	a.	 (23.85, 11.35)
	 b.	 (7.02, 10.06)
61.	a.	� 95% bootstrap interval is (431.82, 445.65) based 

on 200 bootstrap replications. (Note that all 
bootstrap intervals will differ slightly from one 
another.)

	 b.	� t interval: (430.51, 446.08); bootstrap interval: 
(431.82, 445.65)

63.	a.	 MLE for � is xyn.
	 b.	 xyn is an unbiased estimator of �.
	 c.	 MLE for (1 2 �)5 is (1 2 xyn)5.
65.	a.	� MLE is x 1 11.645(s ), where s  equals

		  sAn 2 1
n

,

		�  where s is the sample standard deviation of the 
data.

	 b.	 403.3
67.	a.	 �n 5 min(x1, x2,…, xn); �n 5 1y(x 2 �n)
	 b.	 �n 5 .64; �n 5 1y(5.58 2 .64) 5 .202
69.	� � 5 2 is too large; the resulting kernel density will 

not show much detail in the data.
71.	a.	� The kernel density graph will have a very 

choppy appearance.
	 b.	� Larger values of � will result in smoother kernel 

density curves.
73.	  � will have to be raised.
75.	a.	 � . 134.78
	 b.	 Tensile strengths should be normally distributed.
	 c.	� A histogram of the data appears approximately 

bell-shaped, so the normality assumption is a 
good one for this data.

	 d.	 � . 127.81
77.	 (2299.3, 1517.9)
79.	 (1024.0, 1336.0), yes
81.	a.	� A normal probability plot shows it is reasonable 

to assume the sample was taken from a normal 
population distribution.

	 b.	� Letting d 5 peak ER velocity–peack IR veloc-
ity, a 95% confidence interval for �d is (34.1, 
130.9). Since both endpoints are positive, we 
conclude that IR and ER differ significantly, 
with ER being the higher of the two.
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83.	a.	 .5        b.  .25        c.  (.5)n        d.  (.5)n

	 e.	 1 2 2(.5)n, 100[1 2 2(.5)n]
	 f.	 (28.7, 42.0), 99.8%
	 g.	 (28.62, 40.28), narrower than (f)
85.	a.	 1y2        b.  1y3        c.  1y(n 1 1), 1y(n 1 1)
	 d.	� 1 2 2y(n 1 1), 100[1 2 2y(n 1 1)]%,  

(28.7, 42.0), 81.8%
87.	No, (69.80, 88.80), 99.97%
89.	a.	 (38.46, 38.84)
	 b.	� (Answers will vary): For a simulation pro-

grammed in R using 1000 bootstrapped means, 
a 95% bootstrap interval for the population 
mean was (38.51, 38.81). This interval agrees 
closely with the interval from part (a).

91.	a.	 (.296, .324)
	 b.	� Since the interval value dips below 30%, we 

cannot conclude that the 2002 percentage is 
more than 1.5 times the 1998 percentage.

Chapter 8

  1.	 a.	 Yes        b.  No        c.  Yes        d.  No
	 e.	 Yes        f.  Yes        g.  Yes        h.  Yes
	 i.	 Yes        j.  Yes
  3.	 H0: � 5 40 versus Ha: � Þ 40
  5.	� H0: � 5 120 versus Ha: � , 120. Type I: Con-

clude that the new system does reduce average 
distance when in fact it does not. Type II: Con-
clude that the new system does not reduce average 
distance when in fact it does.

  7.	� With �1 for regular and �2 for special, H0: �1 2 �2 5   
0 versus Ha: �1 2 �2 . 0. Type I: Conclude that 
the special outperforms the regular laminate when 
this is not the case. Type II: Conclude that the 
regular laminate is at least as good as the special 
laminate when in fact the special does yield an 
improvement.

  9.	 a.	 Reject H0.        b.  Reject H0.
	 c.	 Don’t reject H0.        d.  Reject H0.
	 e.	 Do not reject H0.
11.	a.	 1.83, .0336        b.  4.22, approximately 0
	 c.	 1.33, .0918
13.	a.	 H0: � 5 .85 versus Ha: � Þ .85
	 b.	� Don’t reject H0, because P-value . �. Same 

conclusion and reason.
15.	� H0: � 5 55 versus Ha: � Þ 55, z 5 25.25,  

P-value < 0, reject H0
17.	a.	� Using software, x 5 0.75, x~ 5 0.64, s 5 .3025, 

IQR 5 .505. These summary statistics, as well 
as a boxplot (not shown) indicate substantial 
positive skewness, but no outliers. 

	 b.	� No, it is not plausible from the results in part a 
that the variable ALD is normal. However, since 
n 5 49, normality is not required for the use of 
z inference procedures.

	 c.	� H0: � 5 1.0 versus Ha: � , 1.0. z 5 25.79; at 
any reasonable significance level, we reject the 
null hypothesis. Yes, the data provides strong evi-
dence that the true average ALD is less than 1.0.

19.	a.	 P-value 5 P(t . 3.2) 5 .003, reject H0.
	 b.	 P-value 5 P(t . 1.8) 5 .055, do not reject H0.
	 c.	 P-value 5 P(t . 2.2) 5 .578, do not reject H0. 
21.	a.	� P-value 5 2P(t . 1.6) 5 2(.068) 5 .136, do not 

reject H0.
	 b.	� P-value 5 2P(t , 21.6) 5 2(.068) 5 .136, do 

not reject H0.
	 c.	� P-value 5 2P(t , 22.6) 5 2(.008) 5 .016, do 

not reject H0.
	 d.	� P-value 5 2P(t , 23.9)  2(0) 0, reject H0.
23.	� H0: � 5 30 versus Ha: � , 30. t 5 0.84, P-value 5 

.209, do not reject H0.
25.	� H0: � 5 181 versus Ha: � . 181. t 5 1.91,  

P-value 5 .041, reject H0.
27.	a.	 17        b.  21        c.  18        d.  26
29.	� H0: (�1 2 �2) 5 0 versus Ha: (�1 2 �2) , 0.  

t 5 22.46  22.5, df 5 15, P-value 5 .012.  
Do not reject H0.

31.	a.	� Normal quantile plots show sufficient linearity 
for each data set. Therefore, it is plausible that 
both samples have been selected from normal 
population distributions.

	 b.	� The comparative boxplot does not suggest a 
difference between average extensibility for the 
two types of fabrics.

	 c.	� H0: (�H 2 �P) 5 0 versus  Ha:(�H 2 �P) Þ  0.   
t 5 2.38, df 5 10, P-value 5 .71. Do not reject 
H0.

33.	� H0: (�1 2 �2) 5 0 versus Ha: (�1 2 �2) . 0. When 
assuming unequal variances, t 5 3.6362, the  
corresponding df is 37.5, and, the P-value for our 
upper-tailed test would be [(.0008)y2] 5 .0004.  
(Note: P-value 5 P(t . 3.6362) 5 .0004) Reject 
H0. We could have committed a Type I error.

35.	� H0: (�H 2 �NH) 5 0 versus Ha: (�H 2 �NH) . 0.  
t 5 2.09, df 5 17, P-value 5 .026. Do not reject 
H0.

37.	a.	� Use t 5
(x1 2 x2) 2 D

spA 1
n1

 1
1
n2

 with corresponding

		�  df 5 (n1 1 n2 2 2). sp is defined in Exercise 54 
in Chapter 7.
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	 b.	� t 5 3.6362, df 5  (n1 1 n2 2 2) 5 (20  1  20 2  
2) 5 38, P-value 5 P(t . 3.6362) 5 (.0008y2) 5 
.0004. Reject H0.

	 c.	� t 5 2.01074, df 5 (n1 1 n2 2 2) 5 (9 1 18 2 
2) 5 25, P-value 5 P(t . 2.01074) 5 .0276. Do 
not reject H0.

39.	a.	� For MSD, H0: �d 5 0 versus Ha: �d Þ 0. t 5 .85, 
df 5 20, P-value 5 .408. Do not reject H0.

	 b.	� For RULA, H0: �d 5 0 versus Ha: �d Þ 0.  
t 5 24.47, df 5 20, P-value , .001. Reject H0.

	 c.	� Measurements were taken before and after 
intervention. The intervention in the form of 
a short oral presentation would most likely not 
lead to instant reductions in musculoskeletal 
disorders (MSD). However, such an interven-
tion could cause an immediate change in one’s 
posture, and therefore have a major impact on 
one’s RULA score.

41.	� H0: �d 5 0 versus Ha: �d . 0. t 5 2.68, df 5 12, 
P-value 5 .01. Reject H0.

43.	 �First, compute the percent change, (measured–
stated)/stated, for each meal. Let � denote the true 
average percentage change for all supermarket  
convenience meals. H0: � 5 0 versus Ha: � Þ 0.  
t 5 3.90, df 5 9, P-value 5 .004. Reject H0.

45.	H0: �1 5 .40 �2 5 .30 �3 5 .20 �4 5 .10 versus
	� Ha: The Statistics Department’s expectations are 

not correct. 
	 �2 5 1.57, df 5 3, P-value . .10. Do not reject H0.
47.	� H0: �1 5 .177, �2 5 .032, �3 5 .734, �4 5 .057. 

The alternative hypothesis is that at least one of 
these proportions is incorrect. �2 519.6, P-value , 
.001. Reject H0.

49.	� H0: �1 5  3y9, �2 5  4y9, �3 5 2y9. The alternative 
hypothesis is that at least one of these proportions 
is incorrect. �2 5 .6875, P-value . .10. Do not 
reject H0.

51.	� This is a �2 test of the homogeneity of several 
proportions. The hypotheses to test are:

	� H0: the groups are homogeneous with respect to 
side effects versus

	� Ha: the groups are not homogeneous with respect 
to side effects

	� Counseling Group: 24 had at least one side effect, 
31 had none. No-Counseling Group: 8 had at  
least one side effect, 44 had none. �2 5 10.177,  
P-value 5 .0014. Reject H0.

53.	 �This is a �2 test of the homogeneity of several 
proportions. The hypotheses to test are:

	� H0: the genders are homogeneous with respect to 
neck pain versus

	� Ha:  the genders are not homogeneous with respect 
to neck pain

	 �2 5 142.1, P-value , .001. Reject H0.
55.	a.	� The four expected counts are 1.56, 2.44, 32.44, 

50.56. Two of the cells have expected counts 
less than 5.

	 b.	� Fisher’s exact test P-value 5 .02083. We con-
clude at � 5 5% that surgery method affects the 
provision of ondanestron.

57.	a.	    i.	Since r  . .9347, P-value . .10
		�    ii.	Since .8804 , r  , .9180, .01 , P-value , .05
		  iii.	Since r  . .9662, P-value . .10
		   iv.	Since r  , .9408, P-value , .01
	 b.	    i.	Fail to reject H0, since P-value . .05
		   ii.	Reject H0, since P-value , .05
		  iii.	Fail to reject H0, since P-value . .05
		   iv.	Reject H0, since P-value , .05
59.	 �The Ryan-Joiner test P-value is larger than .10, so 

we conclude that this data could reasonably have 
come from a normal population. We can safely 
use a one-sample t-test to test hypotheses about the 
value of the true average compressive strength.

61.	a.	� The Ryan-Joiner test P-value is less than .01, 
so it is implausible that this data came from a 
normal population. In particular, the observa-
tion 65 is a clear outlier. 

	 b.	� The Ryan-Joiner test P-value is larger than .10, 
so we conclude that the data without the outlier 
could reasonably have come from a normal 
population.

63.	� �n 5 .0742, combine the last six intervals to obtain  
X2 5 1.34 based on 2 df, so a truncated exponen-
tial distribution is plausible.

65.	a.	 .2514, .0918, .0038, .0004
	 b.	 .9515, .8413, .3669, .1587
67.	� Two-sided test of H0: � 5 100 versus Ha: � Þ 100 

at � 5 .01 with n 5 15 is proposed. � is thought to 
be between .8 and 1. The first two printouts show 
that power of detecting shifts of .5� or .8� will be 
very low. Last printout shows that power can be in-
creased to 90% by increasing sample size to 42 (for 
a .5� shift) and 19 (for a .8� shift).

69.	� P-value 5 .056, so at significance level .05, H0  
cannot be rejected.
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71.	a.	� The corresponding probability plot suggests the 
data is consistent with a normally distributed 
population. So, we are comfortable proceeding 
with the t procedure.

	 b.	� H0: � 5 0.6 versus Ha: � , 0.6, t 5 22.14, 
P-value 5 .0495, reject H0 when � 5 5%, do 
not reject H0 when � 5 1%.

	 c.	� In this context, a Type I error would be to 
conclude that less than 10% of the tube’s 
contents remain after squeezing, on average, 
when in fact 10% (or more) actually remains. 
When we rejected H0 at the 5% level, we may 
have committed a Type I error. A Type II error 
occurs if we fail to recognize that less than 10% 
of a tube’s contents remains, on average, when 
that’s actually true (i.e., we fail to reject the 
false null hypothesis of � 5 0.6 oz). When we 
failed to reject H0 at the 1% level, we may have 
committed a Type II error.

73.	a. 	�Since the mean, x 5 215, is so much lower 
than the midrange (about 585), one would 
suspect the distribution is positively skewed. 
However, it is not necessary to assume normal-
ity if the sample size is “large enough,” due to 
the central limit theorem. Since n 5 47, we can 
proceed with a test of hypothesis about the true 
mean consumption.

	 b.	� H0: � 5 200 versus Ha: � . 200, z 5 .44,  
P-value 5 .33, do not reject H0.

75.	� H0: � 5 1.75 versus Ha: � Þ 1.75, t 5 1.70,  
P-value 5 .102, do not reject H0.

77.	� H0: � 5 1y3 versus Ha: � , 1y3, z 5 21.35,  
P-value 5 .0885, do not reject H0.

79.	� H0: (�1 2 �2) 5 0 versus Ha: (�1 2 �2) Þ 0,  
z 5 2.25, P-value 5 .0244, reject H0.

81.	a.	� H0: (�1 2 �2) 5 0 versus Ha: (�1 2 �2) Þ 0.  
Using the unpooled t-test statistic we have t 5 
2.84 and df 5 18. This results in a P-value 5 
2[P(t . 2.8)] 5 2(.006) 5 .012. These values 
differ slightly from t 5 2.51 and P-value 5 .019.

	 b.	� H0: (�1 2 �2) 5 25 versus Ha: (�1 2 �2) . 25, 
the unpooled t-test statistic value is .556,  
P-value 5 .278, do not reject H0.

83.	a.	� H0: �37,dry 2 �22,dry 5 100 v. Ha: �37,dry 2 �22,dry .
100. The relevant test statistic value is t 5 2.58, 
df 5 9, P-value 5 .015, reject H0 when � 5 5%.

	 b.	� H0: �22,wet 2 �37,wet 5 100 v. 
Ha: �22,wet 2 �37,wet . 50. The relevant test  
statistic value is t 5 .46, df 5 9, P-value 5 .328, 
do not reject H0.

85.	� H0: �d 5 0 versus Ha: �d . 0, d 5 .821, sd 5 2.52,  
t 5 1.22, P-value 5 .126, do not reject H0.

87.	 �H0: �1 2 �2 5 10 versus Ha: �1 2 �2 . 10, t 5 2.49, 
df 5 5, P-value 5 .027, reject H0 when � 5 5%.

89.	� a.	� H0: �1 5 .27477, �2 5 .20834, �3 5 .15429, 
�4 5 .3626. The alternative hypothesis is that 
at least one of these proportions is incorrect. 
�2 5 9.02, .01 , P-value , .05. Reject H0 when 
� 5 5%. Thus, the above model is questionable.

	 b.	� H0: �1 5 .45883, �2 5 .18813, �3 5 .11032, 
�4 5 .24272. The alternative hypothesis is that 
at least one of these proportions is incorrect. 
�2 5 .157, P-value . .10. Do not reject H0. 
Thus, the proposed model appears to fit the data 
quite well.

Chapter 9

  1.	 a.	� H0: �A 5 �B 5 �C; where �i 5 average 
strength of wood of Type i.

	 b.	� Use either Type A or B, but choose the less  
expensive of the two types.

	 c.	 Choose the least expensive of the three types.
  3.	� The two ANOVA tests will give identical  

conclusions.
  5.	� There is no way of knowing whether there is a 

statistically significant difference between the 
means. When there is no difference, the “pick 
the winner” strategy doesn’t allow you to choose 
between the population based on other criteria 
(e.g., cost, time, etc.).

  7.	� F.05(5, 8) Þ F.05 (8, 5) and F.01(5, 8) Þ F.01(8, 5)
  9.	� F 5 4.12 exceeds F.05(3, 30), so conclude that 

there is a difference among the means.

11.	a.	 Source	 df	 SS	 MS	 F

		  Treatments	     5	 3575.065	 715.013	 51.3
		  Error	 150	 2089.350	  13.929
		  Total	 155	 5664.415
	 b.	� H0: �1 5 5 �6 versus Ha: at least two of the  

�i’s are different.
	 c.	 P-value is P(F5,150  51.3)  0, reject H0
13.	a.	� H0:  �1 5 5 �5 versus Ha: at least two of the 

�i’s are different.
	 b.	� F 5 4.14, using software P-value 5 .0061,  

reject H0
15.	� H0: �1 5  �2 5 �3 5 �4 versus Ha: at least two of 

the �i’s are different. F 5 2.31, P-value . .10, do 
not reject H0

17.	a.	� SST, SSTr, and SSE are each multiplied by a 
factor of (2.54)2, but the F ratio does not change.
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	 b.	� Changing the units of measurement will change 
the sum of squares column in the ANOVA  
table, but the degrees of freedom and F ratio 
will remain unchanged.

19.	� SSTr 5 .2164; SSE 5 .3870; F ratio 5 4.194 is 
significant at 5% level. There is evidence of a  
difference between the means.

21.	a.	� SSTr 5 25.80; SSE 5 115.48; SST 5 141.28;  
F ratio 5 2.35 is not significant at 5% level. 
There is no evidence of a difference between 
the means.

	 b.	� Favorable, because pegs have same strength 
regardless of positioning

23.	a.	� The ANOVA table entries will be unchanged by 
the calibration error.

	 b.	� If all data points are shifted (up or down) by the 
same amount �, this will not affect any of the en-
tries in the ANOVA table; however, the means of 
each sample will shift by an amount equal to �.

25.	� An effects plot does not show the within-samples 
variance, only the between-groups variation.

27.	q.05(5, 15) 5 4.37, so T 5 36.09.
437.5    462.0    469.3    512.8    532.1

29.	T 5 36.09 as in Problem 27. 
	 427.5	 462.0	 469.3	 502.8	 532.1

                        
                          

                      
31.	q.05(6,150)  q.05(6,120) 5 4.10, T 5 3.00. 

14.18    17.94    18.00    18.00    25.74    27.67
33.	� q.05(3, 6) 5 4.34, T 5 7.92. There are 2 distinct 

sets: Set 1 (42.67, 43.33), Set 2 (53.67).
42.67    43.33    53.67

35.	a.	� F ratio for Brands 5 95.57 is significant at � 5 
1%. There is a difference between the brands.

	 b.	� F ratio for Humidity 5 278.20 is significant at  
� 5 1%. Humidity levels do affect power con-
sumption, so it was wise to use humidity as a 
blocking factor.

37.	 a.	� F ratio for Brand 5 8.96 is significant at � 5 
5%. There is a difference among lathe brands.

	 b.	� F ratio for Operators 5 10.78 is significant at  
� 5 5%. There is a difference among operators.

39.	a.	
	 Df	 Sum Sq	 Mean Sq	 F-value	 Pr(F)

DESIGN	  3	 519515	 173171.67	 35.46	<.0001

PERSON	 20	 100460	 5023.00	 1.03	 0.445

Residuals	 60	 293009	 4883.48

	 b.	 Yes, P-value ,.0001.
	 c.	� Corresponding F ratio 5 1.03 with P-value 5 

.445. The person-to-person differences in RPN 
are not confirmed by the data.

41.	a.	� F ratio for Methods 5 8.69 is significant at  
� 5 5%. Curing methods do have differing ef-
fects on strength.

	 b.	� F ratio for Batches 5 7.22 is significant at  
� 5 5%. Different batches do have an effect on 
strength.

	 c.	� F ratio for Methods 5 2.83, which is not signifi-
cant at � 5 .05. Conclusion: Curing method 
does not have an effect on strength.

43.	a.	� H0: �1 5 �2 5 �3 versus Ha: at least two of the 
population means differ

	 b.	 Source	 df	 SS	 MS	 F

		  Factor	 2	 591.20	 295.6	 1.3
		  Error	 21	 4773.3	 227.3
		  Total	 23	 5364.50
	 c.	 Corresponding P-value . .10.  Do not reject H0. 
45.	a.	� F.05(1, 10) 5 4.96 and t.025(10) 5 2.228. (2.228)2 <  

4.96; the equality is approximate because the F 
and t table entries are rounded.

	 b.	 F.05(1, df2) approaches 3.8416, the square of 1.96.
47.	� MSTr 5 140, so if F ratio . F.05(2, 12) 5 3.89, 

then MSE , 140y3.89 5 35.99. q.05(3, 12) 5 3.77, 
so to have T . 10 (i.e., largest mean 2 smallest 
mean), MSE must exceed (5)(10y3.77)2 5 35.18. 
Therefore, if 35.18 , MSE , 35.99, then the 
two conditions will be satisfied. In terms of SSE, 
422.16 , SSE , 431.88.

49.	� For condition 1 to be satisfied it can be shown that 
SSE , 385.60. For condition 2 to be satisfied it 
can be shown that SSE . 422.15. Therefore, no 
SSE value exists that can satisfy both conditions.

51.	a.

Source	 df	 SS	 MS	 F	 P-value

Drying method	   4	 14.962	 3.741	 36.70	 0.000
Fabric type	   8	 9.696	 1.212	 11.89	 0.000
Error	 32	 3.262	 0.102
Total	 44	 27.920

	 b.	� The null hypothesis of interest is H0: there are 
no differences in mean smoothness scores for 
the five drying methods. The F-ratio for “drying 
method” is F 5 36.7, P-value , .001. reject H0.

Chapter 10

  1.	� Replication allows you to obtain an estimate of the 
experimental error.

  3.	 a.	 Surface is a dome over the x–y plane
	 b.	 Maximum occurs at x 5 2, y 5 5.
	 c.	 Contours are circles centered at (x, y) 5 (2, 5).
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  5.	� When the lines in the AB interaction plot are par-
allel, the effect of changing factor A (factor B) from 
one level to another will be the same for each level 
of factor B (factor A).

  7.	 Source	 DF	 SS	 MS	 F

	 Factor A	   4	   20.0	 5	 2.5
	 Factor B	   4	   64.8	 16.2	 8.1
	 Interaction	 16	   15.2	 .95	 .475
	 Error	 50	 100.0	 2
	 Total	 74	 200.0

  9.	 a.	� F ratio for Interaction is 1.545, which does not 
exceed F.05(2, 12) 5 3.89, so there is no evi-
dence of interaction between the factors.

	 b.	� F ratio for Formulation 5 376.25, F ratio for 
Speed 5 19.269. Both factors have an effect on 
yield.

11.	a.	 �F ratio for the Interaction 5 1.10, which is not 
significant at � 5 .05.

	 b.	� F ratio for the Aggregate Content 5 56.06, 
which is significant at � 5 .05.

	 c.	� F ratio for the Asphalt Grade 5 14.12, which is 
significant at � 5 .05.

13	 b.	� At the .01 level, there is not a statistically 
significant interaction between adhesive and 
condition’s effects on shear bond strength. 
Ignoring the interaction effect, condition (dry/
moist) is not statistically significant, while adhesive 
(OBP/SBP) is highly statistically significant. 

	 c.	� Using Tukey’s procedure for a one–way 
ANOVA using the four groups (OBP–D, OBP–
M, SBP–D, SBP–M) yields the following result:

		  OBP–D	 OBP–M	 SBP–M	 SBP–D
		  39.9	 46.1	 50.8	 53.0
		                             

                                           
15.	a.	 Software gives the following table:
Source	 DF	 SS	 MS	 F	 P-value

A	     2	 210.67	 105.33	 0.53	 0.60
B	     2	 132.17	 66.09	 0.33	 0.72
C	     2	 2586.35	 1293.18	 6.45	 0.01
AB	     4	 57.48	 14.37	 0.07	 0.99
AC	     4	 636.84	 159.21	 0.79	 0.54
BC	     4	 875.00	 218.75	 1.09	 0.38
ABC	     8	 888.52	 111.06	 0.55	 0.81
Error	   27	 5416.67	 200.62
Total	   53	 10803.70
	 b.	� There are no significant interaction effects.
	 c.	� The only significant main effect is for C (quill 

gap) having F ratio 5 6.45.

17.	a.	
Source	 DF	 SS	 MS	 F

A	   2	   14,144.44	 7,072.22	      61.06
B	   2	     5,511.27	 2,755.64	      23.79
C	   2	 244,696.39	 2,348.20	 1,056.27
AB	   4	     1,069.62	    267.20	        2.31
AC	   4	          62.67	      15.67	          .14
BC	   4	        311.67	      82.92	          .72
ABC	   8	     1,080.77	    135.10	        1.17
Error	 27	     3,127.50	    115.83
Total	 53	 270,024.33
	 b.	� All F ratios for interaction terms are smaller 

than corresponding tabled F.05 values.
	 c.	� All three main effects are significant.
19.	a.	 Source	 DF	 SS	 MS	 F

		  A	   2	      12.896	     6.448	   1.04
		  B	   1	    100.042	 100.042	 16.10
		  C	   3	    393.417	 131.139	 21.10
		  AB	   2	        1.646	       .823	     .13
		  AC	   6	      71.021	   11.837	   1.90
		  BC	   3	        1.542	       .514	     .08
		  ABC	   6	        9.771	     1.628	     .26
		  Error	 72	  477.50	     6.215
		  Total	 95	 1,037.833
	 b.	 Main effects for factors B and C are significant.
	 c.	 None of the interaction terms are significant.
21.	a.	 Software gives the following table:

	 	 Source	 DF	 SS	 MS	 F	 P-value

		  A	 2	 124.60	 62.30	 4.85	 0.04
		  B	 2	 20.61	 10.30	 0.80	 0.48
		  C	 2	 356.95	 178.47	 13.89	 0.00
		  AB	 4	 57.49	 14.37	 1.12	 0.41
		  AC	 4	 61.39	 15.35	 1.19	 0.38
		  BC	 4	 11.06	 2.76	 0.22	 0.92
		  Error	 8	 102.78	 12.85
		  Total	 26	 734.88
	 b.	� The appropriate F ratios for the AB, AC, and BC  

interactions are 1.12, 1.19, and .22, respectively. 
These F ratios are all not statistically significant 
at � 5 .05.

	 c.	� The main effects for A (paste thickness) and 
for C (laser power) have corresponding F ratios 
4.85 and 13.98 respectively. These F ratios are 
all statistically significant at � 5 .05.
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23.	a.	
Source	 df	 SS	 MS	 F	 P-value

A	   2	 34436	 17218	 436.92	 0.000
B	   2	 105793	 52897	 1342.3	 0.000
C	   2	 516398	 258199	 6552.04	 0.000
AB	   4	 6868	 1717	 43.57	 0.000
AC	   4	 10922	 2731	 69.29	 0.000
BC	   4	 10178	 2545	 64.57	 0.000
ABC	   8	 6713	 839	 21.3	 0.000
Error	 27	 1064	 39 
Total	 53	 692372

	 b.	� The appropriate F ratios for the AB, AC, BC, 
and ABC interactions are 43.57, 69.29, 64.57, 
and 21.3, respectively. These F ratios are all  
statistically significant at � 5 .01.

	 c.	� The appropriate F ratios for the A, B, and C 
main effects are 436.92, 1342.3 and 6552.04, 
respectively. These F ratios are all statistically 
significant at � 5 .01.

25.	AB  AC  AD  BD  CD  ABD  ACD  BCD  ABCD

1 1 1 1 1 21 21 21 1
21 21 21 1 1 1 1 21 21
21 1 1 21 1 1 21 1 21

1 21 21 21 1 21 1 1 1
1 21 1 1 21 21 1 1 21

21 1 21 1 21 1 21 1 1
21 21 1 21 21 1 1 21 1

1 1 21 21 21 21 21 21 21
1 1 21 21 21 1 1 1 21

21 21 1 21 21 21 21 1 1
21 1 21 1 21 21 1 21 1

1 21 1 1 21 1 21 21 21
1 21 21 21 1 1 21 21 1

21 1 1 21 1 21 1 21 21
21 21 21 1 1 21 21 1 21

1 1 1 1 1 1 1 1 1

27.	a.	 Source	 df	 SS	 MS	 F	 P-value

	 	 A	 1	 1685.1	 1685.1	 102.38	 0.000
		  B	 1	 21272.2	 21272.2	 1292.36	 0.000
		  C	 1	 5076.6	 5076.6	 308.42	 0.000
		  AB	 1	 36.6	 36.6	 2.22	 0.174
		  AC	 1	 0.4	 0.4	 0.03	 0.877
		  BC	 1	 109.2	 109.2	 6.63	 0.033
		  ABC	 1	 23.5	 23.5	 1.43	 0.266
		  Error	 8	 131.7	 16.5
		  Total	 15	 28335.3
	 b.	� At � 5 .01, all three main effects are impor-

tant, since each of their P-values is less than 
.001.  No significant interaction effects exist, 
when testing at � 5.01.

29.	a.	� Let A 5 storage time, B 5 storage temp, C 5 
packaging type.

		  Term	 Effect

		  A	 20.03125
		  B	 20.24625
		  C	 20.21125
		  AB	 20.03125
		  AC	 0.02375
		  BC	 20.21125
		  ABC	 0.02375
	 b.	
Source	 DF	 SS	 MS	 F	 P-value

A	   1	 0.003906	 0.003906	 25.00	 0.001
B	   1	 0.242556	 0.242556	 1552.36	 0.000
C	   1	 0.178506	 0.178506	 1142.44	 0.000
AB	   1	 0.003906	 0.003906	 25.00	 0.001
AC	   1	 0.002256	 0.002256	 14.44	 0.005
BC	   1	 0.178506	 0.178506	 1142.44	 0.000
ABC	   1	 0.002256	 0.002256	 14.44	 0.005
Error	   8	 0.001250	 0.000156		
Total	 15	 0.613144			 
		�  All interaction and main effects are significant 

at � 5.01.
	 d.	� A (storage time), B (storage temp), and C (packag-

ing type) should be set to their low values.
All contrasts and effects are shown here:
Effect 
Name Contrast Effect

Effect 
Name Contrast Effect

Effect 
Name Contrast Effect

A 233.84 24.23 AC 24.76 20.595 ABC 21.20 20.150
B 26.94 20.8675 AD 22.56 20.320 ABD 21.408 20.185
C 3.98 0.4975 BC 24.62 3.0775 ACD 1.20 0.150
D 150.94 18.8675 BD 15.42 1.9275 BCD 5.98 0.7475
AB 213.8 21.725 CD 3.26 0.4075 ABCD 2.04 0.255
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31.	a.	 Term	 Effect

		  A	 2.625
		  B	 9.625
		  C	 24.625
		  AB	 .175
		  AC	 1.125
		  BC	 21.825
		  ABC	 2.525

	 b.	 Factors B and C appear to be significant.
	 c.	 B at its high level and C at its low level.
	 d.	 yn 5 14.313 1 4.813xB 2 2.313xC

	 e.	 Term	 Effect

		  A	 .002
		  B	 22.693
		  C	 .067
		  AB	 2.132
		  AC	 .108
		  BC	 .063
		  ABC	 2.058

		�  Only factor B appears to be significant. Set fac-
tor B at its low level. Prediction equation is yn 5 
4.371 2 1.347xB.

33.	a.	� Let A 5 time, B 5 current, C 5 EC area,  
D 5 volume, E 5 arsenic.

Term Effect Term Effect Term Effect

A 20.019 AB 23.169 BD 2.906

B 26.119 AC 21.181 BE 21.456

C 2.131 AD 2.131 CD 1.069

D 217.531 AE 21.281 CE 20.594

E 22.519 BC 21.256 DE 21.331
		  b.	�The important effects appear to be the main 

effects A (time), B (current), and D (volume).
		  c.	� A (time) and B (current) should be set to 

their high values. D (volume) should to set to 
its low value.

		  d.	�Grand mean 5 71.953, Coefficient for  
A 5 (20.019y2) 5 10.010, Coefficient for  
B 5 (26.119y2) 5 13.060, Coefficient for  
D 5(217.531/2) 5 28.766. So, the  
prediction equation is: 

			   yn 5 71.953 1 10.010xA 1 13.060xB 2 8.766xD

35.	A	 B	 C	 D	 E

	 21	 21	 21	 21	 1
	 1	 21	 21	 1	 21
	 21	 1	 21	 1	 1
	 1	 1	 21	 21	 21
	 21	 21	 1	 1	 21
	 1	 21	 1	 21	 1
	 21	 1	 1	 21	 21
	 1	 1	 1	 1	 1
37.	� By multiplying each of the 2521 effects through by 

the defining relation I 5 ACE 5 BDE 5 ABCD 
you obtain the following alias structure:

	� A 5 CE 5 BCD 5 ABDE, B 5 DE 5 ACD 5 
ABCE, C 5 AE 5 ABD 5 BCDE, D 5 BE 5 
ABC 5 ACDE, E 5 AC 5 BD 5 ABCDE, AB 5 
CD 5 ADE 5 BCE, AD 5 BC 5 ABE 5 CDE

39.	a.	 k 5 5 and p 5 1
	 b.	� Let A 5 temp, B 5 pH, C 5 yeast, D 5 

Tryptone, and E 5 Nitsch. A 5 BCDE, B 5 
ACDE, C 5 ABDE, D 5 ABCE, E 5 ABCD, 
AB 5 CDE, AC 5 BDE, AD 5 BCE, AE 5 
BCD, BC 5 ADE, BD 5 CE, BE 5 ACD,  
CD 5 ABE, CE 5 ABD, DE 5 ABC

	 c.	�� The four–way interactions are confounded with 
the main effects. The two–way interactions are 
confounded with the three–way interactions.  
So, if all interactions consisting of three or more 
factors are negligible, none of the estimates of 
the remaining effects will be confounded with 
one another.

41.	a.	 k 5 3 and p 5 1
	 b.	� Let A 5 anode height, B 5 board orientation, 

C 5 anode placement. The design generator in 
this design is E 5 ABCD. The alias structure is: 
A 5 2BC, B 5 2AC, C 5 2AB

	 c.	 Effect Name	 Effect

		  A	 23.135
		  B	 21.135
		  C	 24.925
	 d.	� SSE 5 (24.925)2 5 24.26, SSTo 5 (s2)(3) 5 

(3.4338)2(3) 5 35.37, SSA 5 (23.135)2 5 9.83, 
SSB 5 (21.135)2 51.29. When testing at � 5 
.05, neither factor A nor factor B is important, 
since their corresponding P-values (.639 and 
.856) are so large.

	 e.	� Based on our analysis in part (d), we cannot con-
clude that factors A or B are significant.  Also, we 
assumed factor C was not significant in order to 
test for the significance of factors A and B.
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	 f.	� Since we have found no significant differences 
between the factors, the decision about how 
to minimize the variation in plating thickness 
would not be made using the statistical analy-
sis from early parts of this problem. However, 
based solely on the sign of the effect for each 
factor, one might conclude that all three fac-
tors should be set at the high level (11), in 
order to minimize the variation in plating 
thickness.

43.	a.	� Let A 5 temp, B 5 pH, C 5 yeast, D 5  
Tryptone, and E 5 Nitsch. Using the DOE 
command in Minitab, the effects estimates are:

Term Effect Coef Term Effect Coef

Constant 50.288 AD 21.400 20.700

A 23.750 11.875 AE 21.050 20.525

B 6.850 3.425 BC 12.450 6.225

C 20.675 20.337 BD 14.100 7.050

D 218.725 29.363 BE 22.700 21.350

E 25.725 22.863 CD 24.125 22.062

AB 28.075 24.037 CE 8.225 4.112

AC 4.200 2.100 DE 26.675 23.337
	� Estimates of the three and four-way interaction 

terms would be determined by the estimates of the  
corresponding aliased term. See Exercise 39 for 
alias structure. 
b.	 A(5BCDE), D (5ABCE)

	 d.	� Settings that maximize percent protection are: A 
high and D low.

45.	a.	 Source	 df	 SS	 MS	 F

		  A	 2	 30,763.00	 15,381.50	 3.79
		  B	 3	 34,185.60	 11,395.20	 2.81
		  AB	 6	 43,581.20	 7,263.53	 1.79
		  Error	 24	 97,436.80	 4,059.87	
		  Total	 35	 205,966.60
	 b.	� The F ratio for the interaction effect is 1.79 

which is not significant at the 5% level.
	 c.	� The F ratio for the A main effect is 3.79 which 

is significant at the 5% level.
	 d.	� The F ratio for the B main effect is 2.81 which 

is not significant at the 5% level.

47.	a.	 Source	 df	 SS	 MS	 F

		  A	 2	 2.0742	 1.0371	 162.38
		  B	 2	 0.080570	 0.0403	 6.31
		  C	 2	 0.2604	 0.130195	 20.38
		  AB	 4	 0.0143	 0.0036	 0.56
		  AC	 4	 0.145137	 0.0363	 5.68
		  BC	 4	 0.0194	 0.0049	 0.76
		  Error	 8	 0.0511	 0.006387	
		  Total	 26	 2.4195		
	 b.	� The significant effects are the A and C main  

effects.
49.	a.	 Source	 df	 SS	 MS	 F

		  A	 2	 326.67	 163.34	 5.89
		  B	 2	 43.83	 21.92	 0.79
		  C	 2	 123.84	 61.92	 2.23
		  AB	 4	 48.51	 12.13	 0.44
		  AC	 4	 168.26	 42.06	 1.52
		  BC	 4	 23.49	 5.87	 0.21
		  Error	 8	 221.68	 27.71
		  Total	 26	 956.28	 36.78
	 b.	� The two–way interactions AB, AC, and BC have 

corresponding F ratios .44, 1.52, and .21 respec-
tively. None of these values are significant at the 
5% level.

	 c.	 Only main effect A is significant at the 5% level. 
51.	a.	� Let A 5 time, B 5 pressure, C 5 temp. Using 

the DOE command in Minitab, the effects  
estimates are:

Term Effect Coef Term Effect Coef

Constant 163.88 AB –63.25 –31.62

A 19.25 9.63 AC 3.75 1.88

B 99.25 49.62 BC –47.25 –23.62

C 41.25 20.63 ABC 1.25 0.62
	 c.	 B, C, AB, BC
	 d.	� Settings that maximize lignin removal are:  

B high and C  high.
53.	� Caution: test runs are not in Yates order; pooled 

SS for 2-factor interactions is 18.12 with 10 degrees 
of freedom, so MSE 5 1.812; SSA 5 .856, SSB 
5 11.391, SSC 5 1.380, SSD 5 44.56, SSE 5 
14.25. Factors B, D, and E are significant at  
a 5 .01.
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Chapter 11

  1.	 a.	 .095        b.  .475
	 c.	 .830, 1.305        d.  .4207
  3.	 a.	 V 5 g0 ? g1

1/T ? «        b.  26.341
  5.	 a.	 Yes, a linear model seems appropriate.
	 b.	  yn 5 .1012 1 .4607x
	 c.	 .3085
	 d.	 .0011
  7.	 a.	� Yes, a linear model seems appropriate for each 

pair of variables.
	 b.	� yn0%5 123.501 2 8.711x, yn20% 5 158.570 2 

13.562x, yn40% 5 167.282 2 17.113x
	� c.	� As timber damage increases, the linear relation-

ship between pile length and critical rating 
becomes increasingly negative.

	 d.	� se 5 .45 at 0%, se 5 3.01 at 20%, se 5 4.7 at 
40%. As timber damage increases, the estimated 
value se also increases.

  9.	 a.	� For a one unit increase in inverse foil thickness, 
one would expect a .260 unit increase in flux. 
98% of the observed variation in flux can be  
attributed to the simple linear regression rela-
tionship between flux and inverse foil thickness.

	 b.	 5.712
	 c.	 11.302

11.	H0: �50 versus Ha: � Þ 0, t5a a
sa
b5a 2 1.128

2.368
b5 

	 2.48, P-value 5 .642, do not reject H0.
13.	a.	� Method 1:  Hypothesis Test, H0: � 5 0 versus 

Ha: � Þ 0, t 5 54.56, P-value , .0001, reject H0 
and conclude that there is a useful linear rela-
tionship between these two variables. Method 2: 
A confidence interval for � 5 b 6 (t critical 
value)∙sb. A 95% confidence interval for � is: 
.87825 6 (2.179)(.01610) 5 (0.8432, 0.9133), 
using t critical value for df 5 (n 2 2) 5  
(14 2 2) 5 12. The plausible values are all 
positive so we conclude there is a useful linear 
relationship between the two variables.

	 b.	� The t ratio for testing model utility would  
be the same value regardless of which of the 
two variables was defined to be the inde-
pendent variable. This can be easily seen by 
looking at the t test statistic for testing if the 
population correlation coefficient is equal to 
zero. In that equation the only values required 
are the sample size (n) and the sample cor-
relation coefficient (r). Both r and n are not 
dependent on which variable was the indepen-
dent variable.

15.	� As we saw in Exercise 13(b), the t ratio for testing 
the model utility is dependent only on the sample 
size and the sample correlation coefficient. Neither 
of these quantities is unit dependent. So, multiply-
ing the dependent variable by a constant will have 
no effect on the t test statistic.

17.	� H0: � 5 0 versus Ha: � > 0, t 5 5.25, P-value , 
.0001, reject H0.

19.	a.	� b 5 1.378. There is, on average, a 1.378% in-
crease in reported nausea for each unit increase 
in motion sickness dose.

	 b.	� t 5 3.422. Yes, there is a useful relationship be-
tween the two variables.

	 c.	� It would be possible, but not advisable because  
x 5 5 is outside the range of the x data.

	 d.	 b 5 1.424
21.	a.	 The scatterplot appears to be quite linear.
	 b.	 .931
	 c.	� If increasing velocity by 900 cm/sec results  

in an average change in the response of .6,  
then our true population slope coefficient is  
�5.6y90056.667 3 1024. H0 : �56.66731024 
versus Ha : � , 6.667 3 1024, t 5 2.6016,  
P-value . .10, do not reject H0.

	 d.	� We are 95% confident that the true average  
change in mist associated with a 1 cm/sec  
increase in velocity is between 4.26 3 1024 and
8.159 3 1024.

23.	a.	 A 95% prediction interval is (3.2833, 3.6067).
	 b.	 �The interval when the temperature is 1200 de-

grees will be wider than when the temperature 
is 1500 degrees. This is because 1200 degrees is 
200 degrees away from the mean temperature  
of 1400 degrees whereas 1500 degrees is only  
100 degrees away from the mean temperature.

25.	� The mean x value is 40.3. Intervals with x val-
ues farther away from this mean are wider. Also, 
prediction intervals are wider than confidence 
intervals. And, 99% intervals are wider than 95% 
intervals. Therefore, (i) will be wider than  
(iii), (i) will be more narrow than (ii), (ii) will be 
wider than (iv), (iii) will be more narrow than  
(iv) and (v).

27.	a.	� t 5 16.2, P-value < 0, conclude there is a use-
ful linear relationship.

	 b.	 (.879, .947)        c.  (.780, 1.046)
29.	a.	 4.9 hr
	 b.	� When number of deliveries is held fixed, the 

average change in travel time associated with a 
1-mile increase in distance traveled is .060 hr. 
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When distance traveled is held fixed, the average 
change in travel time associated with one extra 
delivery is .900 hr.

	 c.	 .9861
31.	b.	� For x 5 350, y 5 106.5. For x 5 485, y 5 

65.325. The mean free flow percentage is 
higher when viscosity is 350.

	 c.	� The change in mean free flow percentage  
as viscosity increases from 450 to 460 is  
81.2 2 86.5 5 25.3. The change in mean free 
flow percentage as viscosity increases from  
460 to 470 is 75.3 2 81.2 5 25.9.

33.	a.	 77.3        b.  40.4
35.	 a.	� To test H0: �1 5 �2 5 0 versus Ha: at least one of 

�1 and �2 is not zero, F 5 MSRegr/MSResid 5 
1260.71 (from printout), P-value < .001, reject H0.

	 b.	� A 95% confidence interval for �2: b2 6  
(t-critical)sb2

 5 .002775 6 (2.093)(.001121) 5 
(0.00043, 0.00512).

	 c.	� For x1 5 11.5 and x2 5 40, yn 5 4.478. A 95% 
confidence interval for true average deposition 
rate is 4.478 6 (2.093)(.02438) 5 (4.42697, 
4.52903).

	 d.	�  se 5 .04485, prediction interval is  
4.478 6 (2.093) 2(.04485)2 1 (.02438)2  
5 (4.371, 4.585).

		�  This interval contains the interval from part (c) 
as expected.

37.	a.	� F 5 87.6, P-value 5 0; there does appear to be 
a useful linear relationship between y and at 
least one of the predictors.

	 b.	 .935        c.  (9.095, 11.087)
39.	b.	 .9986
	 c.  P-value 5 0; judge the model useful.
	 d.	� t 5 48, P-value 5 0; the quadratic predictor 

does appear useful.
	 e.	 (20.00, 21.14), (19.44, 21.70)
41.	� F 5 3.44, .05 , P-value , .10, conclude that the 

second-order predictors do not provide useful  
information.

43.	 a.	� The variable “supplier” has three categories, so we 
need two indicator variables: x2 5 1 for supplier  
1 (0 otherwise), x3 5 1 for supplier 2 (0 otherwise). 
Likewise for “lubrication” we have two indicator 
variables: x4 5 1 for lubricant 1 (0 otherwise),  
x5 5 1 for lubricant 2 (0 otherwise).

	 b.	� H0: �1 5 �2 5 �3 5 �4 5 �5 5 0 versus Ha: at 
least one �i Þ  0. F 5 20.67, P-value < .001, 
reject H0.

	 c.	� (13.80, 19.09)
	 d.	� .741, a negligible drop in R2, suggesting the 

lubrication regimen indicator variables are not 
important. A formal “full” versus “reduced” 
model test confirms this suggestion.

	 e.	� The corresponding “full” versus “reduced” 
model test uses the null hypothesis that the 
interaction terms are not statistically significant 
contributors to the model. F 5 3.19, .01 , 
P-value , .05, reject H0 at the .05 level and 
conclude that the interaction terms, as a group, 
do contribute significantly to the regression 
model.

45.	a.	� Since the plot of normal quantiles versus 
standardized residuals looks linear, we would 
conclude that the standardized residuals are 
normally distributed.

	 b.	� The plot of x versus the standardized residuals 
has no discernible pattern. So, we would con-
clude that our simple linear regression model 
assumptions are being met.

47.	a.	� We would recommend the model with  
k 5 2. This model has a substantially higher 
R2 adjusted value over the model with k 5 1. 
And, the models with k 5 3 and k 5 4 give 
little improvement.

	 b.	� No, a forward selection method would not have 
considered the k 5 2 model described in the ex-
ample. Forward selection would let x4 enter the 
model first and would not delete it at the next 
stage.

49.	� The model with four variables including all but 
the summerwood fiber variable would seem best. 
R2 is as large as any of the models, including the 
5 variable model. R2 adjusted is at its maximum 
and CP is at its minimum. As a second choice, 
one might consider the model with k 5 3 which 
excludes the summerwood fiber and springwood 
% variables.

51.	� The model using the three variables x3, x9, x10 
would seem best. It has an adjusted R2 only slightly 
smaller than the largest adjusted R2. As a second 
choice, the two predictor model is also quite 
good.
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53.	a.	� R2 5 1 2
SSE
SST

5 1 2
10.5513
30.4395

 5 .653 or 

		  65.3%, while adjusted R2 5 1 2
MSE
MST

5

		  1 2
10.5513y24

30.4395y28
 5 .596 or 59.6%. Yes, the model 

		  appears to be useful.
	 b.	� The corresponding “full” versus “reduced” 

model test uses the null hypothesis that the 
10 second-order interaction terms are not sta-
tistically significant contributors to the model. 
F 5 13.21, P-value < .001, reject H0 at the 
.01 level and conclude that at least one of the 
second-order terms is a statistically significant 
predictor of protein yield.

	 c.	� We want to compare the “full” model with 14 
predictors in (b) to a “reduced” model with 5 
fewer predictors (x1, x

2
1, x1x2, x1x3, x1x4). F 5 .62, 

P-value > .10, fail to reject H0; therefore, it in-
deed appears that the five predictors involving x1 
could all be removed.

	 d.	� The “best” models seem to be the 7-, 8-, 9-, and 
10-variable models. All of these models have 
high adjusted R2 values and low Mallows’ CP 
values compared to the other models.

55.	� H0: � 5 0 versus Ha: � Þ 0, z 5 .73, P-value is 
.463, do not reject the null hypothesis. There is 
insufficient evidence to claim that age has a signifi-
cant impact on the presence of kyphosis.

57.	a.	� For x1 5 pillar height to width ratio, H0: �1 5 0 
versus Ha: �1 Þ 0, z 5 1.878, P-value 5 .0604, 
reject H0. For x2 5 pillar strength to stress ratio, 
H0: �2 5 0 versus Ha: �2 Þ 0, z 5 2.145,  
P-value 5 .0319, reject H0. Each of the vari-
ables appears to have a significant impact on 
pillar stability.

	 b.	� The odds of pillar stability changes by the multi-
plicative factor e2.774 5 16.02 when x1 increases by 
1 and x2 remains fixed. The odds of pillar stability 
changes by the multiplicative factor e5.668 5 289.46 
when x2 increases by 1 and x1 remains fixed.

	 c.	� The table of observations with corresponding 
probabilities and labels is shown below. Based 
on this, only two observations had a label that 
did not match actual stability status. The pil-
lar with ID #3 was labeled as “unstable” when 
in fact it was stable. The pillar with ID #28 
was labeled as “stable” when in fact it was 
unstable.

ID x1 x2 Stable? Prob Label

  1 1.8 2.4 Y 0.996 stable
  2   1.65   2.54 Y 0.997 stable
  3 2.7   0.84 Y 0.29 unstable
  4   3.67   1.68 Y 0.999 stable
  5   1.41   2.41 Y 0.988 stable
  6   1.76   1.93 Y 0.936 stable
  7 2.1   1.77 Y 0.938 stable
  8 2.1 1.5 Y 0.765 stable
  9   4.57   2.43 Y 1 stable
10   3.59   5.55 Y 1 stable
11   8.33   2.58 Y 1 stable
12   2.86 2 Y 0.998 stable
13   2.58   3.68 Y 1 stable
14 2.9   1.13 Y 0.787 stable
15   3.89   2.49 Y 1 stable
16 0.8 1.37 N 0.041 unstable
17 0.6 1.27 N 0.014 unstable
18 1.3 0.87 N 0.01 unstable
19   0.83 0.97 N 0.005 unstable
20   0.57 0.94 N 0.002 unstable
21   1.44 1 N 0.03 unstable
22   2.08 0.78 N 0.05 unstable
23 1.5 1.03 N 0.041 unstable
24   1.38 0.82 N 0.009 unstable
25   0.94 1.3 N 0.04 unstable
26   1.58 0.83 N 0.017 unstable
27   1.67 1.05 N 0.072 unstable
28 3 1.19 N 0.872 stable
29   2.21 0.86 N 0.105 unstable

59.	 a.	� A simple linear regression model seems to fit the 
data well. The least squares regression equation is: 

		�  yn 5 2.220 1 .0436x. The model utility test 
obtained from Minitab produces a t test statistic 
equal to 12.72. The corresponding P-value is 
extremely small. So, we have sufficient evidence 
to claim that ΔCO is a good predictor of ΔNOy.

	 b.	� yn 5  2.220 1  .04362(400) 5  17.228. A  
95% prediction interval produced by Minitab 
is (11.953, 22.503). Since this interval is so 
wide, it does not appear that ΔNOy is accurately 
predicted.
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	 c.	� The large ΔCO value has extremely high le-
verage. The least squares line that is obtained 
when excluding the value is yn 5  1.00 1  .0346x. 
The R2 value with the value included is 96% 
and is reduced to 75% when the value is ex-
cluded. The value of se with the value included 
is 2.024 and with the value excluded is 1.96. So, 
the large ΔCO value does appear to affect our 
analysis in a substantial way.

61.	� a.	 Same x values yet different y values
	 b.	� b 5 .01023, sb 5 .009577, t 5 1.1,  

P-value < .3; model cannot be judged useful.
63.	a.	� The statement is incorrect. r2 is not the “linear 

correlation coefficient.” r2 is the coefficient of 
determination. The linear correlation coeffi-
cient is r and r 5  2.89 5  .9434.

	 b.	� H0: � 5 0 versus Ha: � Þ 0. The value of the  
t test statistic equals 12.06. The corresponding 
P-value is extremely small. So, we reject the 
null hypothesis and conclude that there is a lin-
ear relationship between the two variables.

	 c.	� As x increases so does the variation in the stan-
dardized residuals. This fact is inconsistent with 
our constant variance assumption of a least 
squares regression analysis.

65.	a.	� The full model contains k 5 9 predictors. The 
reduced model contains 3 predictors.

		�  H0: �4 5  5 �9 5 0 versus H0: At least one of 
the �’s is not zero. 

�F 5 c (15233512805534)y6

(805534)y(15210)
d  5  .743, P-value  . 

.10, do not reject H0. There is not sufficient 
evidence to claim that the second-order predic-
tors provide useful information beyond what is 
contained in the three first-order predictors.

67.	a.	�  yn 5 84.67 1 .650 2 .258 1 .133 1 .108 2 .135 1
		  .028 1 .028 2 .072 1 .038 2 .075 1 .2131
		  .200 2 .188 1 .050 5 85.39
		�  The value of the residual for the one observa-

tion made under the specified conditions is:  
(y 2 yn) 5 (85.4 2 85.39) 5 .01

	 b.	� Let z1, z2, z3, z4 denote the uncoded variables. 
Then, z1 5 .1x1 1 .3, z2 5 .1x2 1 .3, z3 5 x3 1 
2.5, z4 5 15x4 1 160. Equivalently, x1 5 10z1 2 3, 
x2 5 10z2 2 3, x3 5 z3 2 2.5, x4 5 (z4 2 160)/15. 

		�  Substitution yields the following least squares 
regression coefficients:

Term Coefficient
Constant 76.437
z1 27.35
z2 9.61
z3 2.915
z4 .09632

z2
1

213.452

z2
2

2.798

z2
3

.02798

z2
4

2.0003201

z1 z2 3.750
z1 z3 2.7500
z1 z4 .14167
z2 z3 2.000
z2 z4 2.1250
z3 z4 .00333

	 c.	� The full model contains k 5 14 variables.  
The reduced model contains 4 variables.  
H0: � 5 5  5 � 14 5 0 versus H0: At least one 
of the � ’s is not zero. SSResid(full) 5 1.9845, 
SSResid(reduced) 5 4.8146.

		�  The value of the test statistic is:

		  F 5 c (4.8146 2  1.9845)y10

(1.9845)y(31 2  15)
d  5  2.28,  

		�  .05 , P-value , .10, do not reject the null 
hypothesis. There is not sufficient evidence at 
the 5% level to claim that the second-order pre-
dictors provide useful information beyond what 
is contained in the four first-order predictors.

69.	� A plot of y versus x suggests that simple linear 
regression model may be appropriate, but a graph 
of the residuals versus fitted values questions the 
validity of a simple linear regression model. Fit-
ting higher order models (such as second and 
third-order) may be more appropriate.

	�	  The second-order model has R2 5 65.3% 
and adjusted R2 5 62%, whereas the third-order 
model has R2 5 70.7% and adjusted R2 5 66.3%. 
Comparing adjusted R2 values the third-order 
model seems to perform slightly better. From the 
second-order model, we predict y (at x 5 30) to be 
3.45 1 .0618(30) 2 .000377(302) 5 4.9647.  
For the third-order model, our estimate for y is 
3.94 2 .045(30) 5 .0041(302) 2 .000048(303) 5
4.984. Both models appear to give roughly the 
same estimate.

71.	a.	� The boxplot shows that the shapes of the ppv for 
the cracked and uncracked prisms appear to be 
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fairly symmetric. The boxplot further suggests 
that the ppv for the cracked prisms tend to be 
greater than the ppv for the uncracked prisms. 
Let �1 5 the true mean ppv for uncracked 
prisms and �2 5 the true mean ppv for cracked 
prisms. A 95% confidence interval for (�22�2), 
using the critical t value 5 2.093 based on  
19 df, is:

		  (482.7 2 827.4) 6 2.093B 233.72

18
1

295.32

12
 

		�  2344.7 6 2.093(101.494), or (2557.127,  
2132.273).

	 b.	� Using Minitab, we can use the best subsets 
option using the PPV, PPV2, the indica-
tor variable Crack? (0 if there is no crack 

present and 1 if there is a crack), and the in-
teraction term PPV*Crack?. The best subsets 
regression suggests that the single quadratic 
term PPV2 is the single most useful predic-
tor. The quadratic regression model, which 
has the R2 value of 61.2%, has the equation
yn 5 .996719 2 .00000001(PPV)2. The next 
most useful single predictor is the PPV term. 
This simple linear regression model, which 
has the R2 value of 57.7%, has the equation
yn 5 1.00161 2 .000018(PPV). Models involving 
more than 1 term don’t appear to explain the 
ratio variable any more significantly, since the 
R2 values of such models are not much different 
than the model that simply uses PPV2 or PPV.
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A

Absolute error, 191
Acceptance sampling, 226
Accuracy of measuring data, 

186–187
Addition rule in probability, 

203–204, 206–207
Additive (probabilistic) model,  

504, 534
Adjusted coefficient of multiple 

determination, 545
Alias structures, 492–494
All subsets regression, 560–561
Allowable process spread, 268
Alternative hypothesis, 353
American Society for Testing and 

Materials (ASTM), 164, 189
Analysis of variance (ANOVA), 414

interpretation of results, 
427–435

multiple comparisons, 428–432
randomized block, 435–441
and regression, 521–522
single-factor (one-way), 419–427
two-factor (two-way), 457

Analytic studies, 9–10
ANOVA. See Analysis of variance 

(ANOVA)
ANOVA assumptions, 420
ANOVA decompositions, 420,  

437, 457
ANOVA formulas, 456–457, 

464–466
ANOVA table, 421, 466, 521
ANOVA tests, 415–416, 417

629

Assignable causes, 252
Association and causation, 115
Attributes control charts, 249
Attributes data, 249, 273–283
Automatic selection procedure, 561
Axioms of probability, 202

B

Backward elimination, 561
Balanced designs, 431, 453
Balanced three-factor ANOVA, 465
Bar charts, 22–23
Bayes’ theorem, 213
Benchmarks, 165–166
Best regression approach, 561
Between samples variation, 419
Bias, 296

in estimation, 295
Bimodal histogram, 21
Binomial distribution, 51–54

mean value, 67
Poisson approximation to, 55–56
table, 584–586
variance of, 75

Bivariate data, 4, 102
fitting a line to, 117–132

Bivariate normal distribution, 
154–155, 522

Block sum of squares (SSB), 437
Blocking, 183–184, 446
Blocks, 183, 436
Bonferroni t critical values, 531
Bootstrap, 343

test of hypotheses, 405

Bootstrap confidence intervals, 
342–344, 551

Bootstrap percentile intervals, 343
Bound on the error of estimation, 

172, 303–304, 310–311
Boxplots, 80, 83–86

comparative, 84
and outliers, 85–86

C

c charts, 278–282
Calibration, 186, 191
Capability, process, 265–273

nonconformance rates,  
266–268

Capability indexes, 268–272
Capability ratio, 272
Capture-recapture experiment, 294
Categorical data analysis, 380–394

Fisher’s exact test, 389–391
homogeneity, test for,  

385–389
univariate, 381–384

Category proportions, 380
Causation, 115
Cells, 454
Censored data, 71
Census, 3
Center, measures of, 62–72
Centerlines, 253
Central limit theorem, 235–238
Chance experiments, 195–201
Chart statistic, 253
Chebyshev’s inequality, 99–100
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Chi-squared distributions,  
380–381

table, 381, 593–594
Chi-squared tests

for distribution, 396–397
for homogeneity, 386–387
for univariate categorical 

data, 383
upper-tailed test, 381

Class interval (classes), 16–17
Cluster sampling, 177
Clusters, 177
Code of Federal Regulations, 164
Coding schemes, 472–474
Coefficient of determination, 

123–124, 511
Coefficient of multiple determina-

tion, 136–137, 144, 544–545
model selection, 559–563

Coefficient of variation, 79
Common causes, 252
Comparative boxplots, 84
Comparative stem-and-leaf 

displays, 13
Complement of an event, 199, 

204–205
Complete second-order model, 

145, 539
Completely randomized 

design, 419
Components of variance, 434
Conditional probabilities, 208–215
Confidence bounds, 304–305, 309
Confidence intervals, 298, 299–303

bootstrap, 342–344
difference between means, 

311–314, 327–335, 329–331, 
344, 405

large-sample, 298–317, 300, 
303, 311–314

for the mean, 343–344
mean y value in regression, 

527–529
median, 349
one sided, 304–305
from paired data, 329–331
paired t, 330
pooled t, 329
for population proportions, 309
prediction intervals, 530

regression coefficient, 547, 549
sample size determination, 

303–304, 310–311
simultaneous, 531
slope of regression line, 517
and test procedures, 404–405
Wilcoxon’s rank-sum test, 407

Confidence levels, 172–173
for confidence intervals, 298, 

299–303
Conformance, 248
Conforming data, 273
Confounding, 492
Consistent estimator, 297
Contingency table, 385
Continuous distributions, 28–33, 

46–50
mean (expected) value, 220
measures of center for, 67–70
percentiles of, 86–87
variance and standard deviation 

of, 76–78, 220
Continuous variables, 14

histogram of, 16–20
random, 216–217, 218

Contour, 450
Contour plots, 450, 451
Contrast, 478
Control charts, 240, 246, 252–256

attributes data, 273–283
c charts, 278–282
constants, 258, 602
for mean and variation, 256–265
np charts, 274–278
p charts, 240, 273–278
R charts, 257–258, 263
s charts, 260–263
u charts, 274, 278–282
variables, 249
x chart, 258–260, 260–263

Control limits, 253
Controlled studies, 180

recomputing, 258
Correlation, 108, 522

and the bivariate normal  
distribution, 154–155

Correlation coefficient, 108–117
Pearson’s sample, 108–114
population, 114–115, 154, 522

Counts, 382

Covariance, 154
Critical values

t, 319
tolerance, 323
z (standard normal), 299–300, 

302–303
Cubic regression, 536
Cumulative proportion  

(frequency), 60

D

Data, 3
attributes, 249, 273–283
bivariate, 4
censored, 71
from experiments, 179–186
measurement systems, 186–192
measures of center for, 62–65
measures of variability for, 

72–74
multivariate, 4
operational definitions of, 

162–166
from sampling, 166–179
univariate, 3

Decomposition, 420
Defective products, 248
Defining relations, 493
Degrees of freedom

chi-squared distributions, 380
chi-squared test, 396
F distribution, 417
interactions, 458
single-factor ANOVA, 420
single sample, 74
Studentized range 

distribution, 429
t distribution, 318, 319
total, 457, 466

Deming, W. Edwards, 9, 163
Denominator degrees of 

freedom, 417
Density curves, 29
Density estimation, 21–22, 339
Density functions, 29

joint, 153
probability, 218

Density scale, 19

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 Index	 631

Experiments
chance, 195–201
data from, 179–186
fractional factorial, 491
randomized block, 435
2k, 474–475

Explanatory variables, 117. See also 
Predictor variables

Exponential distribution, 32–33
Exponential regression, 513–514
Extrapolation, danger of, 121
Extreme outliers, 85

F

F distribution, 416–417
table, 417, 595–598

F table, 417
F test

model utility in regression, 
522, 545

one-way ANOVA, 421
Factor levels, 181, 472
Factorial designs, 446, 452, 

463–464
fractional, 489–499
2k, 472–489

Factors, 414, 446
interactions, 455
main effect, 475

Failure, mean time between, 220
Failure laws, 284–285
Failure rates, 285
Family of distributions, 32
Family significance level, 429, 432
Fisher’s exact test, 389–391
Fitted (predicted) values, 122, 

510, 544
Five-number summary, 83
Fixed effects, 433–434
Fixed effects model, 459
Fixed factor, 433
Forward selection, 562
Fourths (quartiles), 81
Fractional factorial designs, 

489–499
and alias structures, 493
experiments, 491

Frame, sampling, 168

Dummy (indicator) variable,  
484, 539

Dunnett’s method, 432–433
Dunnett’s t, 432, 601

E

Ecological correlation, 117
Effects

fixed, 433–434
and interaction, 454–456
main, 454–456
random, 433–434
sum of squares, 482
variance, 481

Effects estimates, 475–479
Effects plots, 427–428, 454
Empirical rule, 77
Enumerative studies, 9–10
Error degrees of freedom, 458
Error sum of squares (SSE), 122, 

136, 437, 457
ANOVA notation, 419
in regression, 510, 544

Error variance, 434
Errors in hypothesis testing, 

355–357
types I and II errors, 355

Estimate, interval. See Confidence 
intervals

Estimate, point, 293–294
Estimated regression line, infer-

ences on, 525–533
Estimation error, 529
Estimator, point. See Point 

estimation
Events, 196–197

complementary, 199, 204–205
depicting, 197–198
disjoint (mutually exclusive), 

199, 200, 204–205
forming, 198–200
independent, 209–213
simple, 196

Expected value. See Means
Experimental designs, 162, 179, 

246, 445
Experimental errors, 182
Experimental units, 181

Dependent variables, 115, 117, 181
ANOVA problems, 415

Descriptive statistics, 4, 195
Design generators, 493
Design matrix, 472–474, 490–491
Design of experiments (DOE), 

179, 445
Destructive testing, 167
Deterministic relationship, 504
Deviations from the mean, 73
Discrete distributions, 33–34, 50–60

mean (expected) value, 220
measures of center for, 65–67
normal approximations to, 

43–44
variance and standard deviation 

of, 74–76, 220
Discrete variables, 14

histogram of, 14–16
random, 216–217, 218

Disjoint events, 199, 200, 204–205
addition rule for, 203–204

Distribution-free methods, 404
Distributions

binomial, 51–54
bivariate normal, 154–155, 522
Chi-squared, 380–381, 396–397
continuous, 28–33
discrete, 33–34
exponential, 32–33
F, 416–417
hypergeometric, 390
joint, 151–157
lognormal, 46–47
marginal, 153, 156
measures of center for, 31, 

65–70
multivariate normal, 156
normal, 36–46
Poisson, 54–56
probability, 218–220
Rayleigh, 59
sampling, 228–232
standard normal, 38–41
Studentized range, 429
t, 318–321
test of hypotheses, 394–399
uniform, 34
Weibull, 47–49

Dotplot, 13–14
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Frequency, 14
cumulative, 60
relative, 14–15

Frequentist approach to probability, 
202–203

Full factorial designs, 489
Full model, 550
Full quadratic model, 145, 539

G

Galton, Francis, 121–122
General addition rule, 206
General additive fit, 146–148
General additive model, 534
Goodness-of-fit tests, 119
Grand mean, 257

H

Half fraction design, 491
Hazard functions, 285–287
High level, 472
High leverage, 559
High-leverage observations, 129–130
Histograms, 14–23, 247

of process data, 249–250
shapes of, 21–22

Homogeneity, test for, 385–389
Hypergeometric distribution, 390
Hypothesis, 353

and test procedures, 353–363
Hypothesis testing. See Test of 

hypotheses

I

Implicit null hypothesis, 359
Independence

of joint distributions, 155–156
of random variables, 222
and the sample mean, 233
test for, 388–389

Independent events, 209–213
Independent variables, 115, 

155–156, 181, 446. See also 
Predictor variables

ANOVA problems, 415

Indicator variables, 484, 539
Inferential statistics, 6, 195
Influential observations, 559
Inspection units, 278
Interaction effects, 454–456, 477
Interaction predictors, 145
Interactions, 447–448

and degrees of freedom, 458
of factors, 455
multifactor designs, 464
two-factor designs, 454–456
between variables, 537–539

Intercept of a line, 118
Interlaboratory comparisons, 

189–191
International Organization for  

Standardization (ISO), 165
Interquartile range (IQR), 80–83

and boxplots, 83–86
Interval estimates, 298
Invariance property, 339

J

Joint density, function, 153
Joint distributions, 151–157

mean values of, 154
Joint mass function, 152
Joint probabilities, 222

K

Kernel density estimation, 340–342
Kernel function, 340
k-out-of-n system, 60

L

Laplace, Pierre Simon de, 201–202
Large-sample confidence intervals, 

298–317
Leaf, 10
Least squares, weighted, 137
Least squares coefficients, 135, 143
Least squares estimates, 509

in multiple regression, 542
Least squares fit, 119

Least squares line, 119–121, 508–509
assessing the fit of, 122–124
polynomial functions, 135–136
and residual plots, 127
standard deviation about, 

125–126
Level of significance, 356
Levels, 414, 446, 472
Leverage, 559
Likelihood functions, 336
Likelihood ratio principles, 405
Likelihood ratio test statistics, 

405–406
Logistic regression, 563–567
Logit functions, 564
Lognormal distribution, 46–47, 242

mean value, 69
and quantile plots, 93
variance of, 77

Low level, 472
Lower capability index, 271
Lower confidence bound, 305
Lower control limit (LCL), 253
Lower quartile, 80–81
Lower specification limit (LSL), 248
Lower-tailed test, 360, 363–364
LOWESS, 137, 138, 551

M

Main effects, 458
of a factor, 475
multifactor designs, 464
two-factor designs, 454–456

Mallows’ CP, 561
Mann-Whitney test, 403–404
Marginal distribution, 153, 156
Mass function, 33

binomial distribution, 52
joint, 152
Poisson distribution, 54
probability, 218, 222

Matched pairs, 331
Maximum likelihood estimation, 

335–339
Mean. See also specific  

distributions
bootstrap confidence intervals, 

343–344
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Nonnormal population  
distributions, 324

Nonparametric tests, 404
Nonrandom samples, 170–171
Nonstandard normal distribution, 

41–43
Normal distribution, 36–46

bivariate, 154–155
central limit theorem, 235–238
discrete populations, approxima-

tions to, 43–44
empirical rule, 77
hypothesis testing, 359–360
mean value of, 69
nonstandard, 41–43
percentiles of, 40, 87
and quantile plots, 91–93, 557
Ryan-Joiner test for, 395
of the sample mean, 234
small-sample intervals based on, 

318–327
standard, 38–41
standard deviation of, 76–77
testing for, 394–396
variance of, 76–77

Normal equations, 542
of the least squares line, 119

np charts, 274–278
Null hypothesis, 353

implicit, 359
Null value, 365
Numerator degrees of freedom, 417

O

Observational studies, 180–181
Observed category frequencies,  

382
Observed significance level (OSL), 

358. See also P-values
Odd ratio, 565
Odds, 564
Offset, 186
One-factor-at-a-time experiments, 

446–449
One-sample confidence interval, 

318–321
One-sample prediction interval, 

318, 321–323

Mixed models, 459
Model adequacy, 556–558
Model parameters, estimating, 

508–512
Model selection, 559–563
Model utility, 522, 544–547
Model utility test

multiple regression, 545
simple linear regression, 

520, 525
Monotonic pattern scatterplots, 513
Multicollinearity, 563
Multifactor designs, 463–471

main effects, 464
Multimodal histogram, 21
Multiple comparison 

procedures, 428
Dunnett’s, 432
Tukey’s, 428–431

Multiple regression
inferences in, 542–555
models, 533–542

Multivariate data, 4
Multivariate data sets, 102
Multivariate normal 

distribution, 156
Mutually exclusive events,  

199, 200
addition rules for, 203–204, 

206–207

N

National Institute of Standards and 
Technology (NIST), 165, 
186

Negative skew, 22
Neyman allocation, 173
No main effect, 455
Nominal values, 247
Nonconformance rates,  

266–268
Nonconforming data, 273
Nonconformities, 248, 266–268

Poisson distribution, 279
Nondestructive testing, 167
Nonlinear regression models, 541
Nonlinear relationships,  

132–140

confidence interval for  
difference of, 311–314

confidence intervals for, 
343–344

of continuous distributions, 
67–69, 220

control charts for, 256–265
deviations from the, 73
of discrete distributions, 65–67, 

220
distribution of sample, 233–235
of a function, 72
hypothesis testing about, 

363–380
of joint distributions, 154
population, estimating, 171–175
of random variables, 220–221
sample, 62–63
of sample population  

proportions, 239
standard error of, 233
test of hypotheses, 363–380, 

365–367
trimmed, 64–65

Mean square, 421, 466
Mean square error, 421, 511
Mean square for treatments 

(MSTr), 421
Mean squares, 458
Mean time to (before) failure, 220
Measurement systems, 186–192
Measures of center

continuous distributions,  
67–70

data, 62–65
discrete distributions, 65–67

Measures of variability, 72–74
Median

confidence intervals, 349
of continuous distributions, 

69–70
of a distribution, 31
sample, 63–64

Memoryless property, 227,  
285, 286

Metrology, 186
Midhinge, 99
Midrange, 99
Mild outliers, 85
Minitab, 4
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Probability density functions, 218
joint, 222

Probability distributions, 218–220. 
See also individual  
distributions

Probability plots. See Quantile plots
Procedures, 170
Process, 9
Process capability, 265–273

indexes, 268–272
nonconformance rates, 266–268

Process control activities, 248
Process mean, 266
Process spread, 266
Process variation, 266
Product rule for probabilities, 210
Professional standards, 163–165
Proportion

distribution of sample, 238–240
population, estimate of, 175–177

Proportional allocation, 173

Q

Quadratic predictors, 145
Quadratic regression, 135–137, 535

model, 536
Quadrats, 174, 177
Qualitative predictor variables, 

539–541
Quantile, 87
Quantile plots, 90–97

for normal distributions, 
91–93, 557

sample quantiles, 90
Weibull distribution, 93–94

Quartiles, 80–83

R

R charts, 257–258, 263
R software, 4
Random deviation (error), 504
Random effects, 433–434
Random effects model, 459
Random experiments, 195
Random factors, 433
Random number generator, 168

for nonconformities, 279
table, 587
variance of, 76

Polynomial functions, 135–137
Polynomial regression, 135–137, 

535–537
Pooled t confidence intervals, 329
Pooled t test, 378
Population, 3, 166
Population correlation 

coefficient, 114–115, 522
Population proportions, 309

estimating, 175–177
Population regression coefficients, 

534
Population regression functions, 

513, 534
Population regression line, 505
Positive skew, 16, 22
Power function relationship, 135
Power of a test, 402
Power transformations, 132–135
Practical significance, 400
Precision of measuring data, 187
Predictable controlled process, 265
Predicted values, 122, 484, 510, 544

sampling distribution, 526
Prediction bounds, 322
Prediction errors, 529
Prediction intervals

and confidence intervals, 530
in multiple regression, 549
one-sample, 318, 321–323
in simple linear regression, 

529–530
Predictor variables, 117, 140–151

qualitative, 539–541
Predictors

creating new, 145–146
eliminating a group of, 550–551
interaction, 145
model selection, 559–563
quadratic, 145

Probabilistic models, 504
Probability

concepts of, 201–208
conditional, 208–215
joint, 222
mass function, 218, 222
of a match, 214

One-sample t test, 402–403
test of hypotheses, 365–367

One-sided confidence intervals, 
304–305

One-sided tolerances, 247
One-tailed t test, 401–402
One-way ANOVA, 415

F test, 421
Operating characteristic curve, 57
Operational definitions, 162–166
Out of control rules, 253–254
Outliers, 11

in boxplots, 85–86
and sample means, 63
and sample medians, 63, 64
and trimmed means, 64

P

p charts, 240, 273–278
P-values, 358

for a chi-squared test, 381
test of hypotheses, 357–361
for t tests, 363

Paired data, 327, 371–374
confidence interval from, 

329–331
Paired t intervals, 330
Paired t test, 372
Parallel systems, 212–213,  

288–289
Pareto diagrams, 23
Pearson’s sample correlation 

coefficient, 108–111
and the coefficient of 

determination, 124
properties of, 111–114

Percentiles, 86–87
of a normal distribution, 40

Plots for checking model adequacy, 
556, 557, 558

Point estimates, 293–294
Point estimation, 294–298

maximum likelihood, 335
unbiased, 295–297

Poisson distribution, 54–56
approximation to binomial, 

55–56
mean value, 67
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Sampling inspection, 200
Sampling plans, 162
SAS software, 4
Scatterplot matrix, 142
Scatterplots, 102–107, 508

and correlation, 108
monotonic pattern, 513
of nonlinear relationships, 

132–140
smoothing, 137–138
Youden plots, 189–191

Screening designs, 494
Series system, 211, 212–213, 

287–289
Shewhart, W.A., 252
Shewhart chart, 254, 256
Shifted Weibull distribution, 50
Significance, statistical vs.  

practical, 400
Significance level, 356
Simple events, 196
Single factor ANOVA
Simple linear regression model, 

505, 507, 525
Simple random sampling (SRS), 

171
Simultaneous confidence  

intervals, 531
Single-factor ANOVA, 419–427

and boxplots, 85
degrees of freedom, 420
notation, 419
test of hypotheses, 420–423

Six sigma, 248
Skewed histogram, 22
Skewed Weibull density  

curves, 48
Slope of a line, 118

in multiple regression, 547
in regression, 501, 505,  

517–525
Small-sample intervals, 318–327
Smoothed histograms, 21–22
Smoothing a scatter plot, 1 

37–138
Smoothing parameters,  

340–341
Software packages, 4
Special causes, 252
Specification limits, 247–248

Resampling procedures, 343
Research hypothesis, 354
Residual plots, 126–129, 557–558
Residual sum of squares (SSResid), 

122–123, 136, 144, 510
multiple regression, 544

Residuals, 122, 510
multiple regression, 544
standardized, 558

Resistant line, 129
Response surface, 449
Response variables, 117, 162, 181, 

414, 446
predicting, 484–486

Robust interval, 324
Ryan-Joiner test, 395

for normality, 395, 603

S

s charts, 260–263
Sample mean, 62–63

sampling distribution of, 
233–238

Sample median, 63–64
Sample proportion, 175

sampling distribution of, 
238–240, 308

Sample regression line, 119–121
Sample size determination

and confidence intervals, 
303–304, 310–311

estimation, 173
Sample space, 196
Samples, 3, 166
Sampling cluster, 177
Sampling data, 166–179

with or without replacement, 168
stratified, 171

Sampling distributions, 228–232
of the chart statistic, 253
of the difference between two 

means, 312–313
of the estimated slope, 517, 547
of a predicted value, 526
of a sample mean, 233–238
of a sample proportion, 

238–240, 308
Sampling frames, 9, 168

Random sampling, 167, 168–170, 
194

and nonrandom samples, 
170–171

and sampling distributions, 228
stratified sampling, 171–177

Random variables, 215–227
Randomization, 182–183, 446, 474
Randomized block design, 436
Randomized block experiments, 

435–441
Range, 72
Rank, 403
Rational subgroups, 253–255
Rayleigh distribution, 59
Reduced models, 550
Redundancy, 288
Regression, 121–122

and analysis of variance 
(ANOVA), 521–522

cubic, 536
exponential, 513–514
line, 505, 525–533
logistic, 563–567
model selection, 559–563
multiple, 533–542
nonlinear, 541
polynomial, 135–137, 535–537
quadratic, 535
simple linear, 505, 507
single independent variable, 

504–517
slope of a line, 501, 505, 

517–525
unusual observations in, 559

Regression analysis, 117, 555–573
Regression coefficients, 547, 549
Regression sum of squares  

(SSRegr), 511
Relative error, 191
Relative frequency, 14–15
Reliability, 283–291

and hazard functions, 285–287
system, 287–289
at time t, 285

Repeatability, 188–189
Repeated stems, 12
Replicate, 463
Replication, 182, 446, 447
Reproducibility, 188–189
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multifactor designs, 466–469
normal distribution, 359–360
one-sample t test, 365–367
paired t test, 372
procedures for, 405–406
P-values, 357–361
single-factor ANOVA, 420–423
steps, 366–367

Test procedures, 355
confidence intervals, 404–405
hypothesis, 353–363

Test statistics, 357–361
Tolerance critical value, 323, 589
Tolerance intervals, 318, 323–324
Tolerances, 247
Topological reliability, 211, 287
Total degrees of freedom,  

457, 466
Total quality management (TQM), 

248
Total sum of squares (SSTo), 122, 

437, 456–457
ANOVA, 420
regression, 136, 144

Transformations, 132–135, 514
of data, 26

Treatment levels, 181, 414
Treatment sum of squares (SSTr), 

419, 437
Treatments, 414
Tree diagrams, 197
Trimmed mean, 64–65
Trimming percentage, 64–65
True regression line, 505
Truncation, 12
Tukey, John, 428
Tukey’s method, 428–432
2k designs, 472–489

analyzing experiments, 479–484
fraction of, 490
models, fitting, 484–486

Two-factor ANOVA, 458
Two-factor designs, 453–463, 

457–461
Two-factor interaction effects,  

456, 475
Two-sample bootstrap  

intervals, 344
Two-sample t interval, 327–329

block sum of squares (SSB), 437
effect, 482
error. See Error sum of squares 

(SSE)
regression, 511
residual. See Residual sum of 

squares (SSResid)
total. See Total sum of squares 

(SSTo)
treatment, 419, 437

Symmetric histogram, 22
System reliability, 287–289

T

t confidence interval, 318–321,  
327, 329

t critical values, 319
t distributions, 318–321
t table, 319, 364, 588, 590–592
t test, 365–367, 368–369

one sample, 365, 402–403
one-tailed, 401–402
paired, 372
P-values, 363
two sample, 368–369

Target value, 247
Test of hypotheses, 353, 437

about categorical populations, 
380–394

about means, 363–380
bootstrap, 405
chi-squared tests, 396–397
and confidence intervals, 

404–405
difference between means, 

367–374, 371–374, 403–404
distribution, form of, 394–399
errors in, 355–357
for a group of predictors, 

550–551
homogeneity, 385–388
hypothesis testing, 437
independence, 388–389
large-sample, 359–361
Mann-Whitney, 403–404
means, 365–367
model utility, 520, 545

Standard deviation
about the least squares line, 

125–126
of a continuous distribution, 

76–78
of a discrete distribution, 74–76
of the normal distribution, 76–77
sample, 73
of the sample mean, 233
of sampling statistics, 526, 528

Standard error, 173–174, 233
of the sample proportion, 239

Standard normal distribution, 38–41
table, 582–583
table of values, 38

Standard order, 473–474
Standardized limits, 41
Standardized residuals, 558

plot, 557–558
Standardized variables, 41
Standards, 163–165

professional, 161
Statistic, 194
Statistical control, 253
Statistical hypothesis, 353
Statistical inferences, 194, 195
Statistical process control   

(SPC), 248
Statistical significance, 400
Statistically significant results, 400
Statistics, 1

descriptive, 4
inferential, 6
scope of, 6–8

Stem, 10
Stem-and-leaf displays, 10–13

comparative, 13
Stepwise regression, 563
Straight line, fitting to, 118–121
Strata, 171
Stratified sampling, 171–177
Studentized range distribution, 429

table, 429, 599–600
Subgroups, 252

rational, 253–255
Sum of squares, 436–437, 444–445, 

456–457
balanced three-factor  

ANOVA, 465
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quantile plots, 93–94
shifted, 50
variance of, 77

Weighted least squares, 137
Whiskers, 83
Wilcoxon rank-sum confidence 

interval, 405
Wilcoxon rank-sum test, 403–404

confidence intervals, 407
Window width, 340
Within-samples variation, 419

X

x charts, 258–260, 260–263

Y

Yates, Frank, 473
Yates’ standard orders, 473–474
Youden, W.J., 449
Youden plots, 189–191

Z

z confidence interval, 318
z critical values, 299–300, 302–303, 

309–310
z curve, 38
z (standard normal) distribution, 

38–41
critical values, 299–300, 

302–303
z table, 582–583
Zero acceptance plan, 226

V

Variability, measures of, 72–80
Variables, 3

continuous, 14, 16–20
control charts, 249
dependent, 115, 181
discrete, 14–16
dummy (indicator), 484, 539
independent, 115, 181
random, 215–227
response. See Response  

variables
selection of, 559–563

Variables data, 248–249
Variance

analysis of variance (ANOVA), 
See Chapter 9.

of an effect, 481
components of, 434
of a continuous distribution, 

76–78, 220
of a difference, 312
of a discrete distribution, 74–76, 

220
model assumption for, 557
of random variables, 220–221
sample, 73

Variation
coefficient of, 79
control charts for, 256–265

Venn diagrams, 198

W

Weibull distribution, 47–49
mean value of, 69
parameter estimation, 290

Two-sample t test, 368–369
Two-sample tests

bootstrap confidence  
intervals, 344

difference of means, 403–404
t test, 368–369

Two-sided tolerances, 271
Two-tailed test, 360, 363–364
Type I error, 355

probabilities, 358
Type II error, 355

probabilities, 400–403

U

u charts, 274, 278–282
Unbalanced designs, 431
Unbiased estimators, 231,  

295–297
Unbiasedness, 231
Uncorrelated variables, 156
Uniform distribution, 34
Unimodal histogram, 21
Unitless measures, 269
Univariate data, 3

and hypothesis testing, 381–384
visual displays for, 10–28

Unusual observations in  
regression, 559

Upper capability index, 271
Upper confidence bound, 305
Upper control limit (UCL), 253
Upper quartile, 80–81
Upper specification limit (USL), 

248
Upper-tailed test, 360, 363–364

ANOVA tests, 417
chi-squared test, 381
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