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Preface

PURPOSE
The use of statistical models and methods for describing and analyzing data has become
common practice in virtually all scientific disciplines. This book provides a comprehen-
sive introduction to those models and methods most likely to be encountered and used
by students in their careers in engineering and the natural sciences. It is appropriate for
courses of one term (semester or quarter) in duration.

APPROACH

Students in a statistics course designed to serve other majors are too often initially skepti-
cal of the value and relevance of the subject matter. Our experience, however, is that
students can be turned on to the subject by the use of good examples and exercises that
blend their everyday experiences with their scientific interests. We have worked hard to
find examples involving real, rather than artificial, data—data that someone thought
was worth collecting and analyzing. Many of the methods presented throughout the
book are illustrated by analyzing data taken from a published source.

The exercises form a very important component of the book. A really good lecturer
can deceive students into thinking they have an excellent mastery of the subject, only
to discover otherwise when they start working problems. We have therefore provided a
rich assortment of exercises designed to reinforce understanding of the material. A sub-
stantial majority of these are based on real data, and we have tried as much as possible
to avoid mathematical manipulation for its own sake. Someone who attempts a good
portion of the exercises will gain a greater appreciation of the scope and applicability of
the subject than would be gleaned simply by reading the text.

Sometimes the reader may be unfamiliar with the context of a particular problem
situation (as indeed we often were), but we believe that students will find scenarios,

xi
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PREFACE

such as the one below, more appealing than they would in patently artificial situations

dealing with widgets or brand A versus brand B.

64. The use of microorganisms to dissolve metals

from ores has offered an ecologically friendly
and less expensive alternative to traditional
methods. The dissolution of metals by this
method can be done in a two-stage bioleaching

x, = pH, x, = sucrose concentration (g/L), and
x, = spore population (10° cells/ml) on y =
oxalic acid production (mg/L). The accompa-
nying SAS output resulted from a request to fit

the model with predictors x,, x,, and x; only.

process: (1) microorganisms are grown in cul-  g_ 1 ce DF  Sum of Mean F prs F

ture to produce metabolites (e.g. organic acids) Squares Square Value

and (2) ore is added to the culture medium to  Model 3 5861301 1953767 7.53 0.0052

initiate leaching. The article “Iwo-Stage Fun- ~ Brror 11 2855951 259632
: : : Corrected
gal Leaching of Vanadium from Uranium Ore
Total 14 8717252

Residue of the Leaching Stage using Statisti-
cal Experimental Design” (Annals of Nuclear
Energy, 2013: 48-52) reported on a two-stage
bioleaching process of vanadium by using
the fungus Aspergillus niger. In one study, the
authors examined the impact of the variables

Fitting the complete second-order model re-
sulted in SSResid = 541,632. Carry out a test at
significance level .01 to decide whether at least
one of the second-order predictors provides use-
ful information about oxalic acid production.

MATHEMATICAL AND COMPUTING LEVEL

The exposition is relatively modest in terms of mathematical development. Limited
use of univariate calculus is made in the first two chapters, and a bit of univariate and
multivariate calculus is employed later on. Matrix algebra appears nowhere in the book.
Thus virtually all of the exposition should be accessible to those whose mathematical
background includes one semester or two quarters of differential and integral calculus.

The computer is an indispensable tool these days for organizing, displaying, and ana-
lyzing data. We have included many examples, as illustrated on the next page, of output
from the most widely used statistical computer packages, including Minitab, SAS, R, and
JMP, both to convince students that the statistical methods discussed herein are available
in these packages and to expose them to format and contents of typical output. Because
availability of packages and nature of platforms vary widely from institution to institution,
we decided not to include instructions for obtaining output from any particular package.
Based on our experience, it should be straightforward to supplement the text by indepen-
dently introducing students to any one of the aforementioned packages. They can then be
asked to use the computer in working the many problems that contain raw data.

Example 10.2 Over the past decade researchers and consumers have shown increased interest
in renewable fuels such as biodiesel, a form of diesel fuel derived from vegetable
oils and animal fats. According to www.fueleconomy.gov, compared to petroleum

diesel, the advantages of using biodiesel include its nontoxicity, biodegradability,
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PREFACE xiii

and lower greenhouse gas emissions. One popular biodiesel fuel is fatty acid ethyl
ester (FAEE). The authors of “Application of the Full Factorial Design to Opti-
mization of Base-Catalyzed Sunflower Oil Ethanolysis” (Fuel, 2013: 433-442)
performed an experiment to determine optimal process conditions for producing
FAEE from the ethanolysis of sunflower oils. In one study, the effects of three pro-
cess factors on FAEE, purity (%) were investigated.

Factor Factor name Factor levels

A Reaction Temperature 25°C, 50°C, 75°C

B Ethanol-to-oil molar ratio 6:1, 9:1, 12:1

@ Catalyst loading 75 wt.%, 1.00 wt.%, 1.25 wt.%

(See Page 467 for the complete data)

Plots of all two-factor interactions are shown in Figure 10.18, along with the
main effects Plots for the three factors. Suppose we are interested in maximizing
the value of the response variable, FAEE purity. Looking at the interaction plots,
the combination of factor levels that best accomplishes this objective is A = 75°C,
B =12:1, and C = 1.25%. In this example, the conclusions from the interaction
plots agree with the conclusions that we would have drawn from inspecting the
main effects plots.

Interaction Plots for FAEE Main Effects Plots for FAEE
Data Means Data Means
TEMP RATIO
TEMP 96
951 —
-3 94+
90+ TEMP 75 -
85 00
. RATIO
=R 95 | — 6 g 88 T ) T 7 T T
PO L =3 b 25 0 75 3 ] 12
= RATIO P 90 [-=- 12 =
P> LOAD
85 964
..... + LOAD
954 et | et —— 075 Sl
< " ) 924
IR o LOAD = 15
— 904
85
G _ 88
25 50 75 075 1.00 125 0.75 1.00 1.25

Figure 10.18 Two-factor interaction plots and main effects plots for Example 10.2

FOCUS AND CONTENT

We have written this book for an audience whose primary interest is in statistical meth-
odology and the analysis of data. The ordering of topics herein is rather different from
what is found in virtually all competing texts. The usual approach is to inject a heavy
dose of probability at the outset, then develop probability distributions and use these as
a basis for inferential methods (drawing conclusions from data). Unfortunately, an intro-
ductory one-term course rarely allows sufficient time for comprehensive treatments of
both probability and statistical inference. If probability is emphasized, statistics gets short
shrift. An additional problem is that many students find probability to be a difficult and

Unless otherwise noted, all content on this page is © Cengage Learning.
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Xiv PREFACE

intimidating subject, so starting out in this way creates an aura of mathematical formal-
ism that makes it all too easy to lose sight of the applied and practical aspects of statistics.

Certainly descriptive statistical methods can be developed in detail with virtu-
ally no probability background, and even an understanding of the most commonly
used inferential techniques requires familiarity with only the most basic of probability
properties. So we decided to proceed along a path first blazed by David Moore and
George McCabe in their book Introduction to the Practice of Statistics, written for a non-
science audience. In their Chapter 1, the normal distribution is introduced and em-
ployed to address many interesting questions, whereas probability does not surface
until much later in the book. Our Chapter 1 first presents some basic concepts and
terminology, continues with an introduction to some descriptive techniques, and then
extends the notion of a histogram for sample data to a distribution of values for an entire
population or process. This allows us to develop and use not only the family of normal
distributions but also other continuous and discrete distributions such as the lognormal,
Weibull, Poisson, and binomial. Chapter 2 covers numerical summary measures for
sample data (e.g., the sample mean X and sample standard deviation s) in tandem with
analogous measures for populations and processes (e.g., the population or process mean
w and standard deviation o).

The focus of the first two chapters is on univariate data (observations on or values of
a single variable, such as tensile strength). In the third chapter we consider descriptive
methods for bivariate data (e.g., measuring both thickness and strength for wire speci-
mens) and then multivariate data, emphasizing in particular correlation and regression.
This chapter should be especially useful for courses in which there is insufficient time
to cover regression models from a probabilistic viewpoint (such models and inferences
based on them are the subject of Chapter 11).

Most other books intended for our target audience say rather little about how data
is obtained. Yet statistics has much to say not only about how to analyze data once it is
available but also about sensible and efficient techniques for collecting data. Several
lower-level texts, notably the one by Moore and McCabe cited earlier, successfully and
entertainingly covered this territory prior to probability and inference, and we follow
their lead with our Chapter 4. Sampling and experimental design are discussed, and the
last section contains an introduction to various aspects of measurement.

At last probability makes its appearance in Chapter 5. Our minimalist treatment
of this subject is intended to move readers expeditiously into the inferential part of the
book. Since only the notion of probability as limiting or long-run relative frequency is
needed to understand the basis for most of the usual inferential procedures, little time
is spent on topics such as addition and multiplication rules and conditional probability,
and no material on counting techniques is included here (combinations enter briefly in
Chapter 1 in connection with the binomial distribution). The concept of a random vari-
able and its probability distribution is then introduced and related to the distributional
material in Chapter 1. Finally, the notion of a statistic and its sampling distribution is
discussed and illustrated.

The remaining six chapters focus on the most widely used methods from statistical
inference. Descriptive techniques from earlier chapters, such as boxplots and quantile
plots, are employed in many of our examples. Chapter 6 covers topics from quality con-
trol and reliability. Estimation and various statistical intervals—confidence, prediction,
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PREFACE XV

and tolerance —are introduced in Chapter 7. Hypothesis testing is discussed in Chap-
ter 8. Chapter 9 covers the analysis of variance for comparing more than two popula-
tions or treatments, and these ideas are extended in Chapter 10 to the analysis of data
from designed multifactor experiments. Finally, regression models and associated infer-
ential procedures are covered in Chapter 11.

SOME SUGGESTIONS CONCERNING COVERAGE

It should be possible to cover virtually all the material in the book in a semester-long
course that meets four hours per week. For a course of this duration that meets only
three times per week or for a one-quarter course, some pruning will have to be done
(perhaps combined with reading assignments on topics not discussed in lecture). The
first four sections of Chapter 1 are essential, but Section 5 on other (than the normal)
continuous distributions and Section 6 on the binomial and Poisson distributions can
be covered very lightly or even omitted altogether. The first two sections of Chapter 2,
on measures of center and spread, are also required. The material on more detailed
summary measures (e.g., boxplots) in Section 3 can be just touched on or skipped, and
quantile plots from Section 4 can be presented very quickly.

When time does not allow for coverage of inferences in regression, we strongly
recommend that at least a bit of bivariate descriptive methods from Chapter 3 be cov-
ered. At minimum, this could consume just two or three one-hour lectures in which
scatterplots, correlation, and fitting a line by least squares are discussed. More time
would provide the opportunity to introduce r* as an assessment of fit, nonlinear rela-
tionships, and even multiple regression. If inference in regression is to be covered, this
chapter can be skipped over for the moment and then combined with Chapter 11 at the
end of the course.

Chapter 4, on obtaining data, can be covered next or postponed until later. There
is no mathematics here, only some definitions and examples, so this is one place where
a minimal amount of lecture time can be expended along with a request that students
read on their own. Most of Chapter 5 is crucial; inferential methods cannot be under-
stood without a modest exposure to probability and sampling distributions of various
statistics. The quality control and reliability techniques of Chapter 6 are attractive ap-
plications of sampling distribution and probability properties. When time is limited,
as few as two lectures might be devoted to some general concepts and a single type of
control chart. Another possibility is to postpone this material until after hypothesis test-
ing has been introduced.

From this point on, it is local option as to what is covered and in how much detail.
We certainly believe that students deserve at least minimal exposure to point estima-
tion, confidence intervals, and hypothesis testing. Time may permit presentation of
just some selected one-sample procedures (Sections 7.1, 7.2, 8.1, and perhaps a bit of
Sections 7.4 and 8.2). A longer course would accommodate topics from among predic-
tion and tolerance intervals, two-sample situations, chi-squared tests, testing the plausi-
bility of some particular type of distribution (e.g., testing the assumption that the data
came from a normal distribution), analysis of variance and experimental design, and
more on regression.
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Changes for the Third Edition

e There are nearly 200 new exercises and 40 new examples, most of which include
real data or other information from published sources.

e Chapter 1 contains a new subsection on “T'he Scope of Modern Statistics” to
illustrate how statisticians continue to develop new methodology while working
on problems in a wide spectrum of disciplines.

e Section 8.3, on hypothesis testing based on categorical data, now contains a sub-
section on Fisher’s Exact Test that is a useful alternative when assumptions for
the standard chi-squared test fail.

e Section 11.6, on regression, now contains a subsection on the multiple logistic
regression model that accommodates multiple predictor variables for a dichoto-
mous response.

e In general, the exposition has been polished, tightened, and improved.
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Data and Distributions
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1. POPULATIONS, SAMPLES,AND PROCESSES
1.2 VISUAL DISPLAYS FOR UNIVARIATE DATA

1.3 DESCRIBING DISTRIBUTIONS

1.4 THE NORMAL DISTRIBUTION

1.5 OTHER CONTINUOUS DISTRIBUTIONS

1.6 SEVERAL USEFUL DISCRETE DISTRIBUTIONS

INTRODUCTION

Statistical concepts and methods are not only useful but indeed often indispensable in
understanding the world around us. They provide ways of gaining new insights into the
behavior of many phenomena that you will encounter in your chosen field of specializa-
tion in engineering or science.

The discipline of statistics teaches us how to make intelligent judgments and in-
formed decisions in the presence of uncertainty and variation. Without uncertainty
or variation, there would be little need for statistical methods or statisticians. If every
component of a particular type had exactly the same lifetime, if all resistors produced
by a certain manufacturer had the same resistance value, if pH determinations for soil
specimens from a particular locale gave identical results,and so on, then a single obser-
vation would reveal all desired information.

An interesting manifestation of variation appeared in connection with an effort
to determine the “greenest” way to travel. The article titled “Carbon Conundrum”
(Consumer Reports, 2008: 9) described websites that help consumers calculate carbon
output. The results for carbon output for a flight from New York to Los Angeles appear
in the accompanying table.
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2 CHAPTER | Data and Distributions

Carbon Calculator CO, (Ib)
Terra Pass 1924
Conservation International 3000
Cool It 3049
World Resources Institute/Safe Climate 3163
National Wildlife Federation 3465
Sustainable Travel International 3577
Native Energy 3960
Environmental Defense 4000
Carbonfund.org 4820
The Climate Trust/CarbonCounter.org 5860
Bonneville Environmental Foundation 6732

Substantial disagreement clearly exists among these online calculators as to exactly
how much carbon is emitted, characterized in the article as “from a ballerina’s to
Bigfoot’s.” A website also was provided where readers could learn more about how the
various calculators work.

How can statistical techniques be used to gather information and draw conclusions?
Suppose, for example, that a materials engineer has developed a coating for retarding cor-
rosion in metal pipe under specified circumstances. If this coating is applied to different
segments of pipe, variation in environmental conditions and in the segments themselves will
result in more substantial corrosion on some segments than on others.Methods of statisti-
cal analysis could be used on data from such an experiment to decide whether the average
amount of corrosion exceeds an upper specification limit of some sort or to predict how
much corrosion will occur on a single piece of pipe.

Alternatively, suppose the engineer has developed the coating in the belief that it will
be superior to the currently used coating. A comparative experiment could be carried out
to investigate this issue by applying the current coating to some segments of pipe and the
new coating to other segments. This must be done with care lest the wrong conclusion
emerge. For example, perhaps the average amount of corrosion is identical for the two
coatings. However, the new coating may be applied to segments that have superior ability
to resist corrosion and under less stressful environmental conditions compared to the seg-
ments and conditions for the current coating. The investigator would then likely observe
a difference between the two coatings attributable not to the coatings themselves but just
to extraneous variation. Statistics offers not only methods for analyzing the results of ex-
periments once they have been carried out but also suggestions for how experiments can
be performed in an efficient manner to mitigate the effects of variation and have a better
chance of producing correct conclusions.

In Chapters 1-3, we concentrate on describing and summarizing statistical informa-
tion obtained from populations or processes under investigation. Chapter 4 discusses
how information can be collected either by the mechanism of sampling or by designing
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and carrying out an experiment. Chapter 5 formalizes the notion of randomness and un-
certainty by introducing the language of probability. The remainder of the book focuses
on the development of inferential methods for drawing interesting conclusions from data
in a wide variety of situations. VWe hope you will find the subject matter and our presenta-
tion to be as interesting, relevant, and exciting as we do.

1.1 POPULATIONS, SAMPLES, AND PROCESSES

Engineers and scientists are constantly exposed to collections of facts, or data, both in their
professional capacities and in everyday activities. The discipline of statistics provides meth-
ods for organizing and summarizing data and for drawing conclusions based on informa-
tion contained in the data.

An investigation will typically focus on a well-defined collection of objects constitut-
ing a population of interest. In one study, the population might consist of all gelatin cap-
sules of a particular type produced during a specified period. Another investigation might
involve the population consisting of all individuals who received a B.S. in engineering
during the most recent academic year. When desired information is available for all ob-
jects in the population, we have what is called a census. Constraints on time, money, and
other scarce resources usually make a census impractical or infeasible. Instead, a subset of
the population—a sample—is selected in some prescribed manner. Thus we might obtain
a sample of bearings from a particular production run as a basis for investigating whether
bearings are conforming to manufacturing specifications, or we might select a sample of
last year’s engineering graduates to obtain feedback about the quality of the curricula.

We are usually interested only in certain characteristics of the objects in a population:
the number of flaws on the surface of each casing, the thickness of each capsule wall, the
gender of an engineering graduate, the age at which the individual graduated, and so on.
A characteristic may be categorical, such as gender or type of malfunction, or it may be
numerical in nature. In the former case, the value of the characteristic is a category (e.g.,
female or insufficient solder), whereas in the latter case, the value is a number (e.g., age =
23 years or diameter = .502 cm). A variable is any characteristic whose value may change
from one object to another in the population. We shall generally denote variables by lower-
case letters from the end of our alphabet. Examples include

x = gender of a graduating engineer

y = number of major defects on a newly manufactured automobile

z = braking distance of an automobile under specified conditions
Data results from making observations either on a single variable or simultaneously on
two or more variables. A univariate data set consists of observations on a single variable.
For example, we might determine the type of transmission, automatic (A) or manual (M),

on each of ten automobiles recently purchased at a certain dealership, resulting in the
categorical data set

M AAAMAAMAA

The following sample of lifetimes (hours) of brand X batteries put to a certain use is a nu-
merical univariate data set:

56 51 62 60 58 65 58 55
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4 CHAPTER | Data and Distributions

We have bivariate data when observations are made on each of two variables. Our data set
might consist of a (height, weight) pair for each basketball player on a team, with the first
observation as (72, 168), the second as (75, 212), and so on. If an engineer determines the
value of both x = component lifetime and y = reason for component failure, the resulting
data set is bivariate with one variable numerical and the other categorical. Multivariate
data arises when observations are made on more than two variables. For example, a re-
search physician might determine the systolic blood pressure, diastolic blood pressure, and
serum cholesterol level for each patient participating in a study. Each observation would be
a triple of numbers, such as (120, 80, 146). In many multivariate data sets, some variables
are numerical and others are categorical. Thus the annual automobile issue of Consumer
Reports gives values of such variables as type of vehicle (small, sporty, compact, mid-size,
large), city fuel efficiency (mpg), highway fuel efficiency (mpg), drivetrain type (rear wheel,
front wheel, four wheel), and so on.

Branches of Statistics

An investigator who has collected data may wish simply to summarize and describe
important features of the data. This entails using methods from descriptive statis-
tics. Some of these methods are graphical in nature—the construction of histograms,
boxplots, and scatterplots are primary examples. Other descriptive methods involve cal-
culation of numerical summary measures, such as means, standard deviations, and cor-
relation coefficients. The wide availability of statistical computer software packages has
made these tasks much easier to carry out than they used to be. Computers are much
more efficient than human beings at calculation and the creation of pictures (once they
have received appropriate instructions from the user!). This means that the investigator
doesn’t have to expend much effort on “grunt work” and will have more time to study
the data and extract important messages. Throughout this book, we will present output
from various packages such as Minitab, SAS, and R. The R software can be downloaded
without charge from www.r-project.org.

Example 1.1 Charity is a big business in the United States. The website charitynavigator.com gives
information on approximately 5500 charitable organizations, and many smaller chari-
ties fly below the navigator’s radar screen. Some charities operate very efficiently, with
fund-raising and administrative expenses only a small percentage of total expenses,
whereas others spend a high percentage of what they take in to perform the same
activities. Here is data on fund-raising expenses as a percentage of total expenditures
for a random sample of 60 charities:

6.1 126 347 1.6 1838 22 30 2.2 5.6 3.8
2.2 3.1 1.3 1.1 141 4.0 21.0 6.1 1.3 204
7.5 39 101 81 195 52 120 158 104 5.2
64 108  83.1 3.6 6.2 63 163 127 1.3 0.8
8.8 5.1 3.7 263 6.0 480 82 117 7.2 3.9
153  16.6 8.8 12.0 47 147 64 170 25 l6.2

Without any organization, making sense of the data’s most prominent features is dif-
ficult: What is a typical (i.e., representative) value? Are values highly concentrated
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1.1 Populations, Samples, and Processes 5

about a typical value or are they quite dispersed? Are there any gaps in the data?
What fraction of the values are less than 20%? Figure 1.1 shows what is called a stem-
and-leaf display as well as a histogram. In Section 1.2, we will discuss construction
and interpretation of these data summaries. For the moment, we hope you see how
they begin to describe how the percentages are distributed over the range of possible
values from 0 to 100. A substantial majority of the charities in the sample obviously
spend less than 20% on fund-raising, and only a few percentages might be viewed as
beyond the bounds of sensible practice.

Stem-and-leaf of FundRsng N = 60
Leaf Unit = 1.0

0| 0111112222333333344
0| 55556666666778888
1| 0001222244
1| 55666789
2| 01
2| 6
3| 4
3
4
4| 8
5
5
6
6
7
7
8| 3
40
30 -
&
5
% 20 -
i
10 -
0 ﬁ—l—l | | | —

0 10 20 30 40 50 60 70 80 90
FundRsng

Figure 1.1 A Minitab stem-and-leaf display (|Oths digit truncated)
and histogram for the charity fund-raising percentage data

Having obtained a sample from a population, an investigator would frequently like to
use sample information to draw some type of conclusion (make an inference of some sort)
about the population. That is, the sample is a means to an end rather than an end in itself.

Unless otherwise noted, all content on this page is © Cengage Learning.
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6 CHAPTER | Data and Distributions

Techniques for generalizing from a sample to a population are gathered within the branch
of our discipline called inferential statistics.

Ixample 1.2 Material strength investigations provide a rich area of application for statistical
methods. The article “Effects of Aggregates and Microfillers on the Flexural Prop-
erties of Concrete” (Magazine of Concrete Research, 1997: §1-98) reported on
a study of strength properties of high-performance concrete obtained by using
superplasticizers and certain binders. The compressive strength of such concrete
had previously been investigated, but not much was known about flexural strength
(a measure of ability to resist failure in bending). The accompanying data on
flexural strength (in megapascals, MPa, where 1 Pa (pascal) = 1.45 X 10" psi) ap-
peared in the article cited:

59 72 73 63 81 68 7.0 76 68 65 70 63 79 90
8§82 87 78 97 74 77 97 78 7.7 11.6 113 11.8 10.7

Suppose we want an estimate of the average value of flexural strength for all beams
that could be made in this way (if we conceptualize a population of all such beams,
we are trying to estimate the population mean). It can be shown that, with a high
degree of confidence, the population mean strength is between 7.48 MPa and 8.80
MPa; we call this a confidence interval or interval estimate. Alternatively, this data
could be used to predict the flexural strength of a single beam of this type. With a
high degree of confidence, the strength of a single such beam will exceed 7.35 MPa;
the number 7.35 is called a lower prediction bound.

The Scope of Modern Statistics

Statistical methodology is commonly employed by investigators in virtually every disci-
pline, including such areas as

molecular biology (analysis of microarray data)

ecology (describing quantitatively how individuals in various animal and plant pop-
ulations are spatially distributed)

materials engineering (studying properties of various treatments to retard corrosion)
marketing (developing market surveys and strategies for marketing new products)
public health (identifying sources of diseases and ways to treat them)

civil engineering (assessing the effects of stress on structural elements and the im-
pacts of traffic flows on communities)

As you progress through the book, you'll encounter a wide spectrum of different
scenarios in the examples and exercises that illustrate the application of techniques
from probability and statistics. Many of these scenarios involve data or other mate-
rial extracted from articles in engineering and science journals. The methods pre-
sented here have become established and trusted tools in the arsenal of those who
work with data. Meanwhile, statisticians continue to develop new models to describe
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randomness and uncertainty and new methodology to analyze data. As evidence of
the continuing creative efforts in the statistical community, here are titles and cap-
sule descriptions of some articles that have recently appeared in statistics journals
(Journal of the American Statistical Association is abbreviated JASA, and APS is short
for the Annals of Applied Statistics, just two of the many prominent journals in the
discipline):

e “Application of Branching Models in the Study of Invasive Species” (JASA,
2012: 467-476): Seismologists often predict earthquake occurrences using what
is known as epidemic-type aftershock sequence (E'TAS) models. The name stems
from the model feature that allows earthquakes to cause aftershocks, which in turn
may induce subsequent aftershocks, and so on, thereby generating a cascading
effect. The authors propose the use of ETAS models in studying invasive plant
and animal species. In particular, the article considers the spread of an invasive
species in Costa Rica (Musa velutina, or red banana). The authors determine the
estimated spatial-temporal rate of spread of red banana plants using a space—time
ETAS model.

® “Spatio-Spectral Mixed-Effects Model for Functional Magnetic Resonance Im-
aging Data” (JASA, 2012: 568-577): For many years, scientists have attempted
to model cognitive control-related activation among specific regions of the hu-
man brain. Researchers measure this brain activity through functional magnetic
resonance imaging (fMRI). fIMRI data often exhibit spatial and temporal correla-
tions (i.c., observations made at nearby locations or time points are often strongly
related). Standard approaches to fMRI analysis, however, fail to incorporate
these relationships. The article proposes a statistical model to study activation
in specific regions in the prefrontal cortex while also incorporating the underly-
ing spatio—temporal correlations. The authors provide a simulation study that
shows that significant errors can occur by ignoring the correlation structure in
the network.

® “Active Learning Through Sequential Design, with Applications to the Detection
of Money Laundering” (JASA, 2009: 969-981): Money laundering involves con-
cealing the origin of funds obtained through illegal activities. The huge number
of transactions occurring daily at financial institutions makes detection of money
laundering difficult. The standard approach has been to extract various summary
quantities from the transaction history and conduct a time consuming investigation
of suspicious activities. The article proposes a more efficient statistical method and
illustrates its use in a case study.

e “Robust Internal Benchmarking and False Discovery Rates for Detecting Racial
Bias in Police Stops” (JASA, 2009: 661-668): Allegations of police actions that are
at least partly attributable to racial bias have become a contentious issue in many
communities. This article proposes a new method that is designed to reduce the
risk of flagging a substantial number of “false positives” (individuals falsely identi-
fied as manifesting bias). The method was applied to data on 500,000 pedestrian
stops from New York City in 2006; 15 officers from the pool of 3000 regularly in-
volved in pedestrian stops were identified as having stopped a substantially greater
fraction of black and Hispanic people than what would be predicted if bias were
absent.
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® “Measuring the Vulnerability of the Uruguayan Population to Vector-Borne Diseases
via Spatially Hierarchical Factor Models” (APS, 2012: 284-303): Vector-borne
diseases are illnesses caused by infections transmitted to people by organisms such
as insects and spiders. According to the World Health Organization, the most deadly
vector-borne disease is malaria, which kills more than 1 million people annually,
mostly African children under age five. The authors develop a statistical index
to model the vulnerability of Uruguayans to vector-borne diseases by accounting
for variation attributable to factors such as different census tracts within cities and
different cities in the country.

e “Self-Exciting Hurdle Models for Terrorist Activity” (APS, 2012: 106-124): The
authors develop a predictive model of terrorist activity by considering the daily
number of terrorist attacks in Indonesia from 1994 through 2007. The model
estimates the chance of future attacks as a function of the times since past attacks.
One feature of the model considers the excess of nonattack days coupled with
the presence of multiple coordinated attacks on the same day. The article pro-
vides an interpretation of various model characteristics and assesses its predictive
performance.

e “The BARISTA: A Model for Bid Arrivals in Online Auctions” (APS, 2007:
412-441): Online auctions such as those on eBay and uBid often have char-
acteristics that differentiate them from traditional auctions. One particularly
important such property is that the number of bidders at the outset of many
traditional auctions is fixed, whereas in online auctions this number and the
number of resulting bids are not predetermined. The article proposes a new
BARISTA (for Bid ARivals In STAges) model for describing the way in which
bids arrive that allows for higher bidding intensity not only at the outset of
the auction but also as the auction comes to a close. Various properties of the
model are investigated and then validated using data from eBay.com on auc-
tions for Palm M515 personal assistants, Microsoft Xbox games, and Cartier
watches.

Statistical information now appears with increasing frequency in the popular media, and
occasionally the spotlight is even turned on statisticians. For example, “Behind Cancer
Guidelines, Quest for Data,” a New York Times article from November 23, 2009, reported
that the new science for cancer investigations and more sophisticated methods for data
analysis spurred the U.S. Preventive Services task force to reexamine guidelines for how
frequently middle-aged and older women should have mammograms. The panel com-
missioned six independent groups to do statistical modeling. The result was a new set of
conclusions, in particular one that mammograms every two years give nearly the same
benefit as annual ones and confer only half the risk of harm. Donald Berry, a promi-
nent biostatistician, was quoted as saying he was pleasantly surprised that the task force
took the new research to heart in making its recommendations. The task force’s report
has generated much controversy among cancer organizations, politicians, and women
themselves.

We hope you will become increasingly convinced of the importance and relevance
of the discipline of statistics as you dig more deeply into the book and subject. We also
anticipate you'll be intrigued enough to want to continue your statistical education beyond
your current course.
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Enumerative Versus Analytic Studies

W. E. Deming was a very influential American statistician whose ideas concerning
the use of statistical methods in industrial production found great favor with Japanese
companies in the years after World War II. He used the phrase enumerative study to
describe investigations involving a finite collection of identifiable, unchanging objects
that make up a population. In such studies, a sampling frame—that is, a listing of the
objects to be sampled —is available or can be created. One example of such a frame is
the collection of all signatures on petitions to qualify an initiative for inclusion on the
ballot for an upcoming election. A sample is usually selected to ascertain whether the
number of valid signatures exceeds a specified value. The variable on which observa-
tions are made is dichotomous, the two possible values being valid (S, for success) and
not valid (F, for failure). As another example, the frame may contain serial numbers of
all ovens manufactured by a particular company during a particular period. A sample
may be selected to infer something about the average actual temperature of these units
when the temperature control is set to 400°F (an inference about the population mean
temperature).

Many problem situations faced by engineers involve some sort of ongoing process—a
group of interrelated activities undertaken to accomplish some objective—rather than a
specified, unchanging population. An investigator wants to learn something about how the
process is operating so that the process can then be modified to better achieve the desired
goal. Deming described such scenarios as analytic studies.

Example 1.3 The process of making ignition keys for automobiles consists of trimming and press-
ing raw key blanks, cutting grooves and notches, and then plating the keys. Dimen-
sions associated with groove and notch cutting are crucial to proper key functioning.
There will always be “normal” variation in dimensions because of fluctuations in
materials, worker behavior, and environmental conditions. It is important, though,
to monitor production to ensure that there are no unusual sources of variation, such
as incorrect machine settings or contaminated material, which might result in non-
conforming units or substantial changes in product characteristics. For this purpose,
a sample (subgroup) of five keys is selected every 20 minutes, and critical dimensions
are measured. Here are a few of the resulting observations for one particular dimen-
sion (in thousandths of an inch):

Subgroup I: 6.1 84 7.6 75 44
Subgroup 2: 8.8 83 59 74 7.6
Subgroup 3: 80 7.5 7.0 6.8 93

This is indeed sample data, which can be used as a basis for drawing conclusions.
However, the conclusions are about production process behavior rather than about
a particular population of keys.

Analytic studies sometimes involve figuring out what actions to take to improve the
performance of a future product.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



10 CHAPTER | Data and Distributions

Example 1.4 Failure in fluorescent lamps occurs when their luminosity falls below a predeter-
mined level. The article “Using Degradation Data to Improve Fluorescent Lamp
Reliability” (J. of Quality Technology, 1995: 363-369) described a case study involv-
ing fluorescent lamps of a certain type. The project engineer suggested focusing on
three factors thought to be crucial to reliability:

1. The amount of electric current in the exhaustive process
2. The concentration of the mercury dispenser in the coating process

3. The concentration of argon in the filling process

Two levels, low and high, of each factor were established, leading to eight com-
binations of factor levels (e.g., low current, high mercury concentration, and
low argon concentration). Luminance levels were then monitored over time for
certain factor-level combinations. (Because of limited resources, only four of
the eight combinations were included in the experiment, with five lamps used
at each one.) Here is data for one particular lamp for which all factor levels
were low:

Time (hr): 100 500 1000 2000 3000 4000 5000 6000
Luminance (lumens): 2810 2490 2460 2370 2320 2160 2140 2080

Statistical methods were used on the resulting data to draw conclusions about how
lamp reliability could be improved. In particular, it was recommended that high
concentration levels should be used with a low current level.

1.2  VISUAL DISPLAYS FOR UNIVARIATE DATA

Some preliminary organization of a data set often reveals useful information and opens
paths of inquiry. Pictures are particularly effective in this respect. In this section, we intro-
duce several of the most frequently used pictorial techniques.

Stem-and-Leaf Displays

A stem-and-leaf display can be an effective way to organize numerical data without
expending much effort. It is based on separating each observation into two parts:
(1) a stem, consisting of one or more leading digits, and (2) a leaf, consisting of
the remaining or trailing digit(s). Suppose, for example, that data on calibration
times (sec) for certain test devices has been gathered and that the smallest and
largest times are 11.3 and 18.8, respectively. Then we could use the tens and ones
digits as the stem of an observation, leaving the tenths digit for the leaf. Thus 11.3
would have a stem of 11 and a leaf of 3, 16.0 would have a stem of 16 and a leaf of
0, and so on. Once stem values have been chosen, they should be listed in a single
column. Then the leaf of each observation should be placed on the row of the cor-
responding stem.
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1.2 Visual Displays for Univariate Data 11

Example 1.5 The use of alcohol by college students is of great concern not only to those in the
academic community but also, because of potential health and safety consequences,
to society at large. The article “Health and Behavioral Consequences of Binge
Drinking in College” (J. of the Amer. Med. Assoc., 1994: 1672-1677) reported on
a comprehensive study of heavy drinking on campuses across the United States. A
binge episode was defined as five or more drinks in a row for males and four or more
for females. Figure 1.2 shows a stem-and-leaf display of 140 values of x = the percent-
age of undergraduate students who are binge drinkers. (These values were not given
in the cited article, but our display agrees with a picture of the data that did appear.)

4

1345678889

1223456666777889999 Stem: tens digit
0112233344555666677777888899999 Leaf: ones digit

111222223344445566666677788888999
00111222233455666667777888899
01111244455666778

AN N W= O

Figure 1.2 Stem-and-leaf display for percentage binge drinkers at
each of 140 colleges

The first leaf on the stem 2 row is 1, which tells us that 21% of the students at one
of the colleges in the sample were binge drinkers. Without the identification of stem
digits and leaf digits on the display, we wouldn’t know whether the stem 2, leaf 1 obser-
vation should be read as 21%, 2.1%, or .21%.

When creating a display by hand, ordering the leaves from smallest to largest on
each line can be time-consuming, and this ordering usually contributes little if any
extra information. Suppose the observations had been listed in alphabetical order by
school name, as

16% 33% 64% 37% 31%

Then placing these values on the display in this order would result in the stem 1 row
having 6 as its first leaf, and the beginning of the stem 3 row would be

30371...

The display suggests that a typical or representative value is in the stem 4 row,
perhaps in the mid-40% range. The observations are not highly concentrated about
this typical value, as would be the case if all values were between 20% and 49%. The
display rises to a single peak as we move downward, and then declines; there are no
gaps in the display. The shape of the display is not perfectly symmetric, but instead
appears to stretch out a bit more in the direction of low leaves than in the direction of
high leaves. Lastly, there are no observations that are unusually far from the bulk of
the data (no outliers), as would be the case if one of the 26% values had instead been
86%. The most surprising feature of this data is that at most colleges in the sample, at
least one-quarter of the students are binge drinkers. The problem of heavy drinking on
campuses is much more pervasive than many had suspected.

Unless otherwise noted, all content on this page is © Cengage Learning.
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12 CHAPTER | Data and Distributions

A stem-and-leaf display conveys information about the following aspects of the data:

Identification of a typical or representative value
Extent of spread about the typical value
Presence of any gaps in the data

Extent of symmetry in the distribution of values
Number and location of peaks

Presence of any outlying values

Suppose in Example 1.5 that each observation had included a tenths digit as well as
the tens and ones digits: 16.4%, 36.5%, and so on. We could use two-digit leaves, so that
16.4 would have a stem of 1 and a leaf of 64; in this case, the decimal point can be omitted,
but commas are necessary between successive leaves. Because such a display can become
very unwieldy, it is customary to use single-digit leaves obtained by truncation (not round-
ing). Thus 36.7 would have stem 3 and leaf 6, and information about the tenths digit would
be suppressed.

Consider a data set consisting of exam scores all of which are in the 70s, 80s, and 90s
(an instructor’s dream!). A stem-and-leaf display with the tens digit as the stem would have
only three rows. However, a more informative display can be created by repeating each
stem value twice, once for the low leaves 0, 1, 2, 3, 4 and again for the high leaves 5, 6, 7,
8, 9. A display of the binge-drinking data with repeated stems is shown in Figure 1.3. (The
11 on the far left in the fourth row indicates that there are 11 observations on or above that
row; the (14) row contains the middle data value.)

Stem-and-leaf of pct binge N = 140
Leaf Unit = 1.0

1 0 4
1 0
4 1 134
11 1 5678889
16 2 12234
30 2 56666777889999
40 3 0112233344
61 3 555666677777888899999
(14) 4 11122222334444
65 4 5566666677788888999
46 5 001112222334
34 5 ©55666667777888899
17 6 011112444
8 6 55666778

Figure 1.3 Minitab stem-and-leaf display
using repeated stems

Suppose that a final exam in physics contained questions worth a total of 200 points
and that the only student who scored in the 100s earned 186 points. Rather than include
rows 10, 11, ..., and 18 just to show the extreme outlier 186, it is better to stop the display
with a stem 9 row and place the information HI: 186 in a prominent place to the right of
the display. The same thing can be done with outliers on the low end. '

Consider two different data sets, each consisting of observations on the same variable,
for example, exam scores for two different classes or stopping distances for cars equipped

all content on this page is © Cengage Learning.
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1.2 Visual Displays for Univariate Data 13

with two different braking systems. An investigator would naturally want to know in what
ways the two sets were similar and how they differed. This can be accomplished by using
a comparative stem-and-leaf display, in which the leaves for one data set are listed to the
right of the stems and the leaves for the other to the left. Figure 1.4 shows a small example;
the two sides of the display are quite similar, except that the right side appears to be shifted
up one row (about 10 points) from the other side.

9 658618
9447 8 13754380
2208965655 7 5312267
2432875 6 45104
5882 5 9

Figure 1.4 A comparative stem-
and-leaf display of exam scores

Dotplots

A dotplot is an attractive summary of numerical data when the data set is reasonably small or
there are relatively few distinct data values. Fach observation is represented by a dot above the
corresponding location on a horizontal measurement scale. When a value occurs more than
once, there is a dot for each occurrence, and these dots are stacked vertically. As with a stem-and-
leaf display, a dotplot gives information about location, spread, extremes, and gaps.

Example 1.6 Here is data on state-by-state appropriations for higher education as a percentage of
state and local tax revenue for fiscal year 2009-2010 (from the Statistical Abstract of the
United States). Values are listed in order of state abbreviations (AL first, WY last):

140 31 86 96 74 40 45 65 61 88

82 86 64 67 80 85 94 95 46 68

39 69 63 119 58 58 99 59 27 42

149 40 121 80 52 92 68 43 39 96

80 86 86 87 31 58 62 87 68 89

Figure 1.5 shows a dotplot of the data. The most striking feature is the substan-
tial state-to-state variability. The largest values (for New Mexico, Alabama, North
Carolina, and Mississippi) are somewhat separated from the bulk of the data and
may possibly qualify as outliers.

L]
[ ] L] L[]
L] L] L] L] o0 L]
[ ] [ ] L] L] LN ) L] L[] LN ] [ ]
[ ] ® | oo ® | 6000000 o e oeo0go000 o | [N ] | [ ] | [ ]
3.6 5.4 7.2 9.0 10.8 12.6 14.4

Figure 1.5 A dotplot of the data from Example 1.6
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14 CHAPTER | Data and Distributions

If the data set discussed in Example 1.6 had consisted of many more observations
(e.g. average per pupil spending for each school district in the U.S.), it would be quite
cumbersome to construct a corresponding dotplot. Our next technique is well suited to
such situations.

Histograms

Some numerical data is obtained by counting to determine the value of a variable (the
number of traffic citations a person received during the last year, the number of persons ar-
riving for service during a particular period), whereas other data is obtained by taking mea-
surements (weight of an individual, reaction time to a particular stimulus). The prescription
for drawing a histogram is different for these two cases.

DEFINITIONS A variable is discrete if its set of possible values either is finite or else can be listed
in an infinite sequence (one in which there is a first number, a second number,
and so on). A variable is continuous if its possible values consist of an entire
interval on the number line.

A discrete variable x almost always results from counting, in which case possible
valuesare 0, 1, 2, 3, ... or some subset of these integers. Continuous variables arise from
making measurements. For example, if x is the pH of a chemical substance, then in
theory x could be any number between 0 and 14: 7.0, 7.03, 7.032, and so on. Of course,
in practice there are limitations on the degree of accuracy of any measuring instrument,
so we may not be able to determine pH, reaction time, height, and concentration to an
arbitrarily large number of decimal places. However, from the point of view of creating
mathematical models for distributions of data, it is helpful to imagine an entire con-
tinuum of possible values.

Consider data consisting of observations on a discrete variable x. The frequency of
any particular x value is the number of times that value occurs in the data set. The relative
frequency of a value is the fraction or proportion of time the value occurs:

number of times the value occurs

relative frequency of a value = .
number of observations in the data set

Suppose, for example, that our data set consists of 200 observations on x = the number of
major defects on a new car of a certain type. If 70 of these x values are 1, then

frequency of the x value 1: 70

7
relative frequency of the x value 1:  ——= .35

200

Multiplying a relative frequency by 100 gives a percentage; in the defect example, 35% of the
cars in the sample had just one major defect. The relative frequencies, or percentages, are usually
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1.2 Visual Displays for Univariate Data 15

of more interest than the frequencies themselves. In theory, the relative frequencies should sum
to 1, but in practice the sum may differ slightly from 1 because of rounding.

Constructing a Histogram for Discrete Data

First, determine the frequency and relative frequency of each x value.Then mark possible x
values on a horizontal scale. Above each value, draw a rectangle whose height is the rela-
tive frequency (or, alternatively, the frequency) of that value (all rectangles should have the
same base width).

This construction ensures that the area of each rectangle is proportional to the relative
frequency of the value. Thus if the relative frequencies of x =1 and x = 5 are .35 and .07,
respectively, then the area of the rectangle above 1 is five times the area of the rectangle
above 5.

Example 1.7 Every corporation has a governing board of directors. The number of individuals on a
board varies from one corporation to another. One of the authors of the article “Does
Optimal Corporate Board Size Exist? An Empirical Analysis” (Journal of Applied
Finance, 2010: 57-69) provided the accompanying data on the number of directors
on the boards of a random sample of 204 corporations.

Relative Relative
Board Size Frequency Frequency Board Size Frequency TFrequency
4 3 0.0147 19 0 0.0000
5 12 0.0588 20 0 0.0000
6 13 0.0637 21 1 0.0049
7 25 0.1225 22 0 0.0000
8 24 0.1176 23 0 0.0000
9 42 0.2059 24 1 0.0049
10 23 0.1127 25 0 0.0000
11 19 0.0931 26 0 0.0000
12 16 0.0784 27 0 0.0000
13 11 0.0539 28 0 0.0000
14 5 0.0245 29 0 0.0000
15 4 0.0196 30 0 0.0000
16 1 0.0049 31 0 0.0000
17 3 0.0147 32 1 0.0049
18 0 0.0000 204 0.9997
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16 CHAPTER | Data and Distributions

The corresponding histogram in Figure 1.6 rises to a peak and then declines. The
histogram extends a bit more on the right (toward large values) than it does on the
left—a slight positive skew.

40
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Board size

Figure 1.6 Histogram of number of corporate board members

From either the tabulated information or the histogram itself, we can determine

the following:
Proportion of boards with  (relative (relative (relative
at most 10 directors = frequency + frequency + - - - + frequency
forx =4) forx=05) for x = 10)
= 0.0147 + 0.0588 + 0.0637 + 0.1225
+0.1176 + 0.2059 + 0.1127 = 0.6959
Similarly,
Proportion of boards with  (relative (relative (relative
more than 15 directors = frequency + frequency + --- + frequency

forx =16) forx = 17) for x = 32)
=0.0049 + 0.0147 + - - - + 0.0049 = 0.0343

Constructing a histogram for continuous data (measurements) entails subdividing the
measurement axis into a suitable number of class intervals or classes, such that each obser-
vation is contained in exactly one class. Suppose, for example, that we have 50 observations
on x = fuel efficiency of an automobile (mpg), the smallest of which is 27.8 and the largest 5
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1.2 Visual Displays for Univariate Data 17

of which is 31.4. Then we could use the class boundaries 27.5, 28.0, 28.5, ..., and 31.5 as
shown here:

275 280 285 290 295 300 305 310 315

A potential difficulty is that an observation such as 29.0 lies on a class boundary so it doesn’t
lie in exactly one interval. One way to deal with this problem is to use boundaries like
27.55,28.05, ..., 31.55. Adding a hundredths digit to the class boundaries prevents obser-
vations from falling on the resulting boundaries. Another way to deal with this problem is
to use the classes 27.5 — < 28.0, 28.0 — <28.5, ..., 31.0 — <31.5. Then 29.0 falls in the
class 29.0 — < 29.5 rather than in the class 28.5 — < 29.0. In other words, with this conven-
tion, an observation on a boundary is placed in the interval to the right of the boundary.
This is how Minitab constructs a histogram.

Constructing a Histogram for Continuous Data:
Equal Class Widths

Determine the frequency and relative frequency for each class. Mark the class boundar-
ies on a horizontal measurement axis. Above each class interval, draw a rectangle whose
height is the corresponding relative frequency (or frequency).

Iixample 1.8 Power companies need information about customer usage to obtain accurate fore-
casts of demand. Investigators from Wisconsin Power and Light determined energy
consumption (BTUs) during a particular period for a sample of 90 gas-heated homes.
An adjusted consumption value was calculated as follows:

consumption

adjusted consumption = :
] P (weather, in degree days)(house area)

This resulted in the accompanying data (part of the stored data set FURNACE.

MTW available in Minitab, which we have ordered from smallest to largest):
297 400 520 556 594 598 635 662 672 6.78
6.80 685 694 715 716 723 729 762 7.62 7.69
773 787 793 800 826 829 837 847 854 858
8.61 867 869 881 907 927 937 943 952 958
9.60 9.76 982 9.83 9.83 984 996 10.04 10.21 10.28
10.28 1030 1035 10.36 10.40 1049 10.50 10.64 10.95 11.09
11.12 11.21 11.29 1143 11.62 11.70 11.70 12.16 12.19 12.28
1231 1262 12.69 1271 1291 1292 13.11 13.38 1342 1343
13.47 13.60 1396 14.24 1435 15.12 1524 16.06 16.90 18.26
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18 CHAPTER | Data and Distributions

We let Minitab select the class intervals. The most striking feature of the histogram in
Figure 1.7 is its resemblance to a bell-shaped (and therefore symmetric) curve, with
the point of symmetry at roughly 10.

30F
20
=
8
o}
~
10~
0
1 35 7 9 11 13 15 17 19
BTU

Figure 1.7 Histogram of the energy
consumption data from Example 1.8

Class: 1-<33-<55-<77-<99-<1111-<1313-<1515-<17 17-<19
Frequency: 1 1 11 21 25 17 9 4 1

Relative

frequency: .011 .011 122 233 278 .189 100 044 011

From the histogram,

proportion of observations

~.0l+.0l+.12+.23=.
less than 9 b+ 12425 =57

(exact value = 34/90 = 378)

The relative frequency for the 9 — <11 class is about .27, so roughly half of this, or
.135, should be between 9 and 10. Thus

proportion of observations
less than 10

The exact value of this proportion is 47/90 = .522.

~ 37+ .135=.505 (slightly more than 50%)

There are no hard-and-fast rules concerning either the number of classes or the choice
of classes themselves. Between 5 and 20 classes will be satisfactory for most data sets. Gener-
ally, the larger the number of observations in a data set, the more classes should be used. A
reasonable rule of thumb is

number of classes = \/number of observations

ss otherwise noted, all content on this page is © Cengage Learning.

Equal-width classes may not be a sensible choice if a data set has at least one “stretched-
out tail.” Figure 1.8 (page 19) shows a dotplot of such a data set. Using a small number of 5
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Figure 1.8 Selecting class intervals when there are outliers: (a) many short

equal width intervals; (b) a few wide equal-width intervals; (c) unequal-width
intervals

equal-width classes results in almost all observations falling in just one or two of the classes.
If a large number of equal-width classes are used, many classes will have zero frequency. A
sound choice is to use a few wider intervals near extreme observations and narrower inter-
vals in the region of high concentration.

Constructing a Histogram for Continuous Data:
Unequal Class Widths

After determining frequencies and relative frequencies, calculate the height of each rect-
angle using the formula

relative frequency of the class

tangle height =
rectangie helg class width

The resulting rectangle heights are usually called densities, and the vertical scale is the
density scale. This prescription will also work when class widths are equal.

Example 1.9 Corrosion of reinforcing steel is a serious problem in concrete structures located
in environments affected by severe weather conditions. For this reason, researchers
have been investigating the use of reinforcing bars made of composite material.
One study was carried out to develop guidelines for bonding glass-fiber-reinforced
plastic rebars to concrete (“Design Recommendations for Bond of GFRP Rebars to
Concrete,” |. of Structural Engr., 1996: 247-254). Consider the following 48 obser-
vations on measured bond strength:

115 121 99 93 78 62 6.6 7.0 134 171 93 56
57 54 52 51 49 107 152 85 42 40 39 38
3.6 34 206 255 138 126 131 89 82 107 142 7.6
52 55 51 50 52 48 41 38 37 36 36 36
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20 CHAPTER | Data and Distributions

Class: 2—<4 4—-<6 6—<8 8—<1212—<2020—<30
Frequency: 9 15 5 9 8 2
Relative

frequency: 1875 3125 1042 1875 1667  .0417
Density: .094 156 .052 .047 .021 .004

The resulting histogram appears in Figure 1.9. The right or upper tail stretches
out much farther than does the left or lower tail —a substantial departure from
symmetry.

015+ [ |
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Bond strength

Figure 1.9 A Minitab density histogram for
the bond strength data of Example 1.9

When class widths are unequal, not using a density scale will give a picture with dis-
torted areas. For equal class widths, the divisor is the same in each density calculation, and
the extra arithmetic simply results in a rescaling of the vertical axis (i.e., the histogram us-
ing relative frequency and the one using density will have exactly the same appearance). A
density histogram does have one interesting property. Multiplying both sides of the formula
for density by the class width gives

relative frequency = (class width)(density)
= (rectangle width)(rectangle height)

= rectangle area

That is, the area of each rectangle is the relative frequency of the corresponding class.
Furthermore, since the sum of relative frequencies must be 1.0 (except for roundoff),
the total area of all rectangles in a density histogram is 1. It is always possible to draw a
histogram so that the area equals the relative frequency (this is true also for a histogram
of discrete data—just use the density scale). This property will play an important role in
creating models for distributions in Section 1.3.
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1.2 Visual Displays for Univariate Data 21

Histogram Shapes

Histograms come in a variety of shapes. A unimodal histogram is one that rises to a single
peak and then declines. A bimodal histogram has two different peaks. Bimodality occurs
when the data set consists of observations on two quite different kinds of individuals or
objects. For example, consider a large data set consisting of driving times for automobiles
traveling between San Luis Obispo, California, and Monterey, California (exclusive of
stopping time for sightseeing, eating, etc.). This histogram would show two peaks, one for
those cars that took the inland route (roughly 2.5 hours) and another for those cars travel-
ing up the coast (3.5-4 hours). However, bimodality does not automatically follow in such
situations. Only if the two separate histograms are “far apart” relative to their spreads will
bimodality occur in the histogram of combined data. Thus a large data set consisting of
heights of college students should not result in a bimodal histogram because the typical
male height of about 69 inches is not far enough above the typical female height of about
64-65 inches. A histogram with more than two peaks is said to be multimodal. Of course,
the number of peaks may well depend on the choice of class intervals, particularly with a
small number of observations. The larger the number of classes, the more likely it is that
bimodality or multimodality will manifest itself.

Example 1.10  Figure 1.10(a) shows a Minitab histogram of the weights (Ibs) of the 121 players
listed on the rosters of the San Francisco 49ers and the New England Patriots as of
November 28, 2012. Figure 1.10(b) is a smoothed histogram (actually what is called
a density estimate) of the data from the R software package. Both the histogram and
the smoothed histogram show three distinct peaks: The one on the right is for line-
men, the middle peak corresponds to linebacker weights, and the peak on the left is
for all other players (wide receivers, quarterbacks, etc.).
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Figure 1.10 NFL player weights: (a) histogram, (b) smoothed histogram
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22 CHAPTER | Data and Distributions

Density Estimation of NFL Player Weights
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Figure 1.10 (continued)

A histogram is symmetric if the left half is a mirror image of the right half. A bell-
shaped histogram is symmetric, but there are other unimodal symmetric histograms that
are not bellshaped; histograms with more than one peak can also be symmetric. A uni-
modal histogram is positively skewed if the right or upper tail is stretched out compared
with the left or lower tail, and negatively skewed if the longer tail extends to the left.
Figure 1.11 shows “smoothed” histograms, obtained by superimposing a smooth curve on
the rectangles, that illustrate the various possibilities.

(@) (b) (© (d)

Figure 1.11 Smoothed histograms: (a) symmetric unimodal; (b) bimodal; (c) positively skewed;
(d) negatively skewed

Categorical Data

A histogram for categorical data is often called a bar chart. In some cases, there will
be a natural ordering of classes (for example, freshman, sophomore, junior, senior,
graduate student), whereas in other cases, the order will be arbitrary (Honda, Yamaha,
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1.2 Exercises 23

Harley-Davidson, etc.). A Pareto diagram is a bar chart resulting from a quality control
study in which each category represents a different type of product nonconformity or
production problem. The categories appear in order of decreasing frequency (if a mis-
cellaneous category is needed, it is the last one).

Example 1.11 In the manufacture of printed circuit boards, finished boards are subjected to a final
inspection before they are shipped to customers. Here is data on the type of defect for
each board rejected at final inspection during a particular time period:

Type of defect Frequency Relative frequency
Low copper plating 112 615
Poor electroless coverage 35 192
Lamination problems 10 055
Plating separation 8 044
Etching problems 5 027
Miscellaneous 12 .066

Figure 1.12 is a Pareto diagram. Roughly 80% (.615 + .192) of the defects were of
one of the first two types.
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Figure 1.12 A Pareto diagram for Example I.I 1

Section 1.2 Exercises
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1. Consider the strength data for beams given in concentrated about the representative value or
Example 1.2. rather spread out?
a. Construct a stem-and-leaf display of the data. b. Does the display appear to be reasonably sym-
What appears to be a representative strength metric about a representative value, or would you
value? Do the observations appear to be highly describe its shape in some other way?
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c. Do there appear to be any outlying strength
values?

d. What proportion of strength observations in this
sample exceed 10 MPa?

. The article cited in Example 1.2 also gave the accom-

panying strength observations for cylinders:

6158 78 71 729266 83 70 83

78 81 74 85 89 98 9.7 141 126 11.2

a. Construct a comparative stem-and-leaf display of
the beam and cylinder data, then answer the ques-
tions in parts (b)—(d) of Exercise 1 for the observa-
tions on cylinders.

b. In what ways are the two sides of the display
similar? Are there any obvious differences be-
tween the beam observations and the cylinder
observations?

. The accompanying specific gravity values for vari-

ous wood types used in construction appeared in the
article “Bolted Connection Design Values Based on
European Yield Model” (]. of Structural Engr., 1993:
2169-2186):

31 35 36 36 37 38 40 40 40
A4l 41 42 42 42 42 42 43 44
45 46 46 47 A48 48 48 51 54
54 .55 58 .62 .66 .66 .67 .68 .75

Construct a stem-and-leaf display using repeated
stems, and comment on any interesting features of

the display.

. Allowable mechanical properties for structural

design of metallic aerospace vehicles requires an
approved method for statistically analyzing empiri-
cal test data. The article “Establishing Mechanical
Property Allowables for Metals” (]. of Testing and
Evaluation, 1998: 293-299) used the accompany-
ing data on tensile ultimate strength (ksi) as a basis
for addressing the difficulties in developing such a
method:

1222 1242 1243 1256 1263 1265
1265 127.2 1273 1275 1279 1286
128.8 129.0 129.2 1294 129.6 130.2
1304 1308 131.3 1314 1314 1315
1316 131.6 131.8 131.8 1323 1324
1324 1325 1325 1325 1325 1326

1327 1329 133.0 1331 133.1 1331
133.1 1332 1332 1332 1333 1333
1335 1335 1335 1338 1339 1340
1340 1340 1340 1341 1342 1343
1344 1344 1346 1347 1347 1347
1348 1348 1348 1349 1349 1352
1352 1352 1353 1353 1354 1355
1355 1356 1356 1357 1358 1358
1358 1358 1358 1359 1359 1359
1359 136.0 136.0 1361 1362 136.2
1363 1364 1364 136.6 136.8 1369
136.9 137.0 137.1 137.2 137.6 137.6
137.8 137.8 137.8 1379 1379 1382
138.2 1383 1383 1384 1384 1384
1385 1385 138.6 1387 1387 139.0
139.1 1395 139.6 139.8 139.8 140.0
140.0 140.7 140.7 1409 1409 141.2
1414 1415 1416 1429 1434 1435
143.6 143.8 1438 1439 1441 1445
1445 147.7 147.7

a. Construct a stem-and-leaf display of the data by
first deleting (truncating) the tenths digit and then
repeating each stem value five times (once for
leaves 0 and 1, a second time for leaves 2 and 3,
etc.). Why is it relatively easy to identify a repre-
sentative strength value?

b. Construct a histogram using equal-width classes
with the first class having a lower limit of 122 and
an upper limit of 124. Then comment on any in-
teresting features of the histogram.

. Consider the accompanying values of golf course

lengths (yards) for a sample of courses designated by
Golf Magazine as being among the most challenging
in the United States:

6433 6435 6464 6470 6506 6526 6527
6583 6605 6614 6694 6700 6713 6745
6770 6770 6790 6798 6850 6870 6873
6890 6900 6904 6927 6936 7005 7011
7022 7040 7050 7051 7105 7113 7131
7165 7168 7169 7209 7280

a. Would it be best to use one-digit, two-digit, or
three-digit stems as a basis for a stem-and-leaf dis-
play? Explain your reasoning.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



b. Construct a stem-and-leaf display based on
two-digit stems and two-digit leaves, with suc-
cessive leaves separated by either a comma or a
space.

c. Construct a stem-and-leaf display in which the
leaf of each observation is its tens digit (so the
ones digit is truncated). Does this display appear
to be significantly less informative about course
lengths than the display of part (b)? What ad-
vantage would this display have over the one in
part (b) if there had been 200 courses in the
sample?

6. Construct two stem-and-leaf displays for the accom-

panying set of exam scores, one in which each stem
value appears just once and the other in which stem
values are repeated:

74 89 80 93 64 67 72 70 66 85 89 81
81 71 74 82 85 63 72 81 81 95 84 8l
80 70 69 66 60 83 85 98 84 68 90 82
69 72 87 88

What feature of the data is revealed by the display
with repeated stems that is not so readily apparent in
the first display?

. Temperature transducers of a certain type are shipped
in batches of 50. A sample of 60 batches was selected,
and the number of transducers in each batch not
conforming to design specifications was determined,
resulting in the following data:

21240132053313247023
04213113412322845131
50232106421603336123

a. Determine frequencies and relative frequencies
for the observed values of x = number of noncon-
forming transducers in a batch.

b. What proportion of batches in the sample have
at most five nonconforming transducers? What
proportion have fewer than five? What propor-
tion have at least five nonconforming units?

c¢. Draw a histogram of the data using relative fre-
quency on the vertical scale, and comment on its
features.

8. In a study of author productivity (“Lotka’s Test,” Col-

lection Mgmt., 1982: 111-118), a large number of

1.2 Exercises 25

authors were classified according to the number of
articles they had published during a certain period.
The results were presented in the accompanying fre-
quency distribution:

Number
of papers: 1 2 3 4 5 6 7 8

Frequency: 784 204127 50 33 28 19 19

Number
of papers: 9 10 11 12 13 14 15 16 17

Frequency: 6 7 6 7 4 4 5 3 3

a. Construct a histogram corresponding to this fre-
quency distribution. What is the most interesting
feature of the shape of the distribution?

b. What proportion of these authors published at
least five papers? At least ten papers? More than
ten papers?

c. Suppose the five 15s, three 16s, and three 17s had
been lumped into a single category displayed as

“=15.” Would you be able to draw a histogram?
Explain.

d. Suppose that instead of the values 15, 16,
and 17 being listed separately, they had
been combined into a 15-17 category with
frequency 11. Would you be able to draw a
histogram? Explain.

. The number of contaminating particles on a silicon

wafer prior to a certain rinsing process was deter-
mined for each wafer in a sample of size 100, result-
ing in the following frequencies:

Number
ofparticles: 0 1 2 3 4 5 6 7
Frequency: 1 2 3 12 11 15 18 10
Number

of particles: 8 9 10 11 12 13 14
Frequency: 12 4 5 3 1 2 1

a. What proportion of the sampled wafers had at
least one particle? At least five particles?

b. What proportion of the sampled wafers had be-
tween five and ten particles, inclusive? Strictly
between five and ten particles?

c. Draw a histogram using relative frequency on the
vertical axis. How would you describe the shape of
the histogram?
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10. The article “Knee Injuries in Women Collegiate

11.

Rugby Players” (Amer. |. of Sports Medicine, 1997
360-362) gave the following data on type of injury
(A = mensical tear, B = MCL tear, C = ACL tear,
D = patella dislocation, & = PCL tear):

T®E > EE
O® = wm e
OQ»>0» %
00> Q0>
el A N v
T QO >
P O
o000 "
O® > > =
>o0®= 00>
T mEOO

Pl --NeNc!

O®=g>®

Construct a Pareto diagram for this data. The three
most frequently occurring types of injuries account
for what proportion of all injuries?

The article “Determination of Most Representative
Subdivision” (J. of Energy Engr., 1993: 43-55) gave
data on various characteristics of subdivisions that
could be used in deciding whether to provide electri-
cal power using overhead lines or underground lines.
Here are the values of the variable x = total length of
streets within a subdivision:

1280 5320 4390 2100 1240 3060 4770
1050 360 3330 3380 340 1000 960
1320 530 3350 540 3870 1250 2400
960 1120 2120 450 2250 2320 2400
3150 5700 5220 500 1850 2460 5850

2700 2730 1670 100 5770 3150 1890
510 240 396 1419 2109

a. Construct a stem-and-leaf display using the thou-
sands digit as the stem and the hundreds digit as
the leaf, and comment on the various features of
the display.

b. Construct a histogram using class boundaries 0,
1000, 2000, 3000, 4000, 5000, and 6000. What
proportion of subdivisions have total length less
than 2000? Between 2000 and 4000? How would
you describe the shape of the histogram?

2. 'The article cited in Exercise 11 also gave the follow-

ing values of the variables y = number of culs-de-sac
and z = number of intersections:
0020

y 1112
00112
15030

[ -
— O
S N O
S N =
—_

101
011110
102110

13.
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a. Construct a histogram for the y data. What pro-
portion of these subdivisions had no culs-de-sac?
Atleast one cul-de-sac?

b. Construct a histogram for the z data. What pro-
portion of these subdivisions had at most five
intersections? Fewer than five intersections?

The article “Ecological Determinants of Herd Size
in the Thorncraft’s Giraffe of Zambia” (Afric. |. Ecol.,
2010: 962-971) gave the following data (read from a
graph) on herd size for a sample of 1570 herds over a
34-year period.

Herdsize: 1 2 3 4 5 6 7 8
190 176 157 115 89 57 55

Herd size: 9 10 11 12 13 14 15 17
Frequency: 33 31 22 10 4 10 11 5

Frequency: 589

Herd size: 18 19 20 22 23 24 26 32
Frequency: 2 4 2 2 2 2 1 1

a. What proportion of the sampled herds had just
one giraffe?

b. What proportion of the sampled herds had six or
more giraffes (characterized in the article as “large
herds”)?

c. What proportion of the sampled herds had be-
tween 5 and 10 giraffes inclusive?

d. Draw a histogram using relative frequency on the
vertical axis. How would you describe the shape of
this histogram?

. The article “Statistical Modeling of the Time Course

of Tantrum Anger” (J. of Applied Stats, 2009: 1013—
1034) discussed how anger intensity in children’s
tantrums could be related to tantrum duration as
well as behavioral indicators such as shouting, stamp-
ing, pushing, and pulling. The following frequency
distribution was given (as well as the corresponding

histogram):
0—<2:. 136 2—<4 92 4—-<11: 71
11—<20: 26 20—<30: 7 30—<40: 3

Draw the histogram and then comment on any in-
teresting features.
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15. Automated electron backscattered diffraction is now
being used in the study of fracture phenomena.
The following information on misorientation angle
(degrees) was extracted from the article “Observations
on the Faceted Initiation Site in the Dwell-Fatigue
Tested Ti-6242 Alloy: Crystallographic Orienta-
tion and Size Effects” (Metallurgical and Materials
Trans., 2006: 1507-1518)

Class: 0—<5 5—<10 10—<I15 15—<20
Rel Freq: 177 166 175 136
Class: 20—<30 30—<40 40—<60 60—<90

Rel Freq:  .194 .078 044 .030

a. Isittrue that more than 50% of the sampled angles
are smaller than 15°, as asserted in the paper?

b. What proportion of the sampled angles are at least
30°?

c. Roughly what proportion of angles are between
10° and 25°7

d. Construct a histogram and comment on any inter-
esting features.

16. A transformation of data values by means of some
mathematical function, such as V/x or 1/x, can often
yield a set of numbers that has “nicer” statistical prop-
erties than the original data. In particular, it may be
possible to find a function for which the histogram of
transformed values is more symmetric (or even better,
more like a bellshaped curve) than the original data.
For example, the article “Time Lapse Cinematograph-
ic Analysis of Beryllium-Lung Ibroblast Interactions”
(Envir. Research, 1983: 34-43) reported the results of
experiments designed to study the behavior of certain
individual cells that had been exposed to beryllium.
An important characteristic of such an individual cell
is its interdivision time (IDT). IDT's were determined
for a number of cells both in exposed (treatment) and
in unexposed (control) conditions. The authors of the
article used a logarithmic transformation. Consider
the following representative IDT" data:

28.1 31.2 137 46.0 258 16.8 34.8 623
28,0 179 195 21.1 319 289 60.1 23.7
18.6 214 26.6 2062 32.0 435 174 388
30.6 55.6 255 521 21.0 223 155 363
19.1 384 72.8 489 214 20.7 573 40.9

17.

1.2 Exercises 27

Construct a histogram of this data based on classes
with boundaries 10, 20, 30, .... Then calculate
log,,(x) for each observation, and construct a his-
togram of the transformed data using class bound-
aries 1.1, 1.2, 1.3, .. .. What is the effect of the
transformation?

The accompanying data set consists of observa-
tions on shear strength (Ib) of ultrasonic spot
welds made on a certain type of alclad sheet.
Construct a relative frequency histogram based
on ten equal-width classes with boundaries 4000,
4200, . ... (The histogram will agree with the
one in “Comparison of Properties of Joints Pre-
pared by Ultrasonic Welding and Other Means,”
J. of Aircraft, 1983: 552-556.) Comment on its
features.

5434 4948 4521 4570 4990 5702 5241
5112 5015 4659 4806 4637 5670 4381
4820 5043 4886 4599 5288 5299 4848
5378 5260 5055 5828 5218 4859 4780
5027 5008 4609 4772 5133 5095 4618
4848 5089 5518 5333 5164 5342 5069
4755 4925 5001 4803 4951 5679 5256
5207 5621 4918 5138 4786 4500 5461
5049 4974 4592 4173 5296 4965 5170
4740 5173 4568 5653 5078 4900 4968
5248 5245 4723 5275 5419 5205 4452
5227 5555 5388 5498 4681 5076 4774
4931 4493 5309 5582 4308 4823 4417
5364 5640 5069 5188 5764 5273 5042
5189 4986

. The paper “Study on the Life Distribution of Micro-

drills” (]. of Engr. Manufacture, 2002: 301-305) re-
ported the following observations, listed in increasing
order, on drill lifetimes (number of holes that a drill
machines before it breaks) when holes were drilled in
a certain brass alloy.

I 14 20 23 31 36
59 61 65 67 68 71 74 76 78 79
81 84 85 89 91 93 96 99 101 104
105 105 112 118 123 136 139 141 148 158
161 168 184 206 248 263 289 322 388 513

39 44 47 50
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a. Why can a frequency distribution not be based

on the class intervals 0-50, 50-100, 100-150,
and so on?

. Construct a frequency distribution and histo-

gram of the natural logarithms of the lifetime
observations and comment on interesting char-

b. Construct a frequency distribution and his- acteristics.

togram of the data using class boundaries 0, d. What proportion of the lifetime observations in
50, 100, ... and then comment on interesting this sample are less than 1002 What proportion of

characteristics. the observations are at least 200?

1.3 DESCRIBING DISTRIBUTIONS

In Section 1.2, we saw that a histogram could be used to describe how values of a
variable x are distributed in a data set. In practice, a histogram is virtually always
constructed from sample data. Consider the population or process from which
a sample might be selected. It is often possible to give a concise mathematical
description of how the possible values of x are distributed or dispersed along the
number line or measurement scale. Suppose, for example, that x is the fuel effi-
ciency (mpg) of a vehicle of a particular type (a continuous variable), so that the
value of x varies from vehicle to vehicle. Knowing the distribution of x enables us
to determine the proportion of vehicles for which x is less than 32, the proportion
for which x exceeds 30.5, the proportion of vehicles having 31.5 < x < 32.5, and
so on. If x is the number of defects on an item produced by some process (a discrete
variable), then the x distribution will describe what proportion of items produced
will have x =0, what proportion will have x = 1, and so on. We now describe the
essential features of distributions for continuous variables and those for discrete
variables.

Continuous Distributions

Let x be a continuous variable, one whose value is determined by making a measurement of
some sort. Suppose we have a sample of x values from a population or ongoing process. For
example, the sample might consist of fuel efficiencies of cars selected from a large rental
fleet (a population) or waiting times for a succession of patients entering a large medical
clinic (a patient arrival process). If the sample size is small, a histogram based on only a
small number of relatively wide class intervals is appropriate. For a large sample size, many
narrow classes should be used. Let’s agree to draw our histograms using the density scale
discussed in Section 1.2 so that

e lor each rectangle, area = relative frequency of the class
e 'Total area of all rectangles = 1

With a large amount of data, a histogram based on any reasonable choice of classes should
have roughly the same shape and can very frequently be well approximated by a smooth
curve. This type of approximation is illustrated in Figure 1.13.

Many approximating curves that arise in practice can be obtained as graphs of reason-
ably simple mathematical functions. Such a mathematical function provides a very concise
description of the x distribution.
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Density Density Density

X X X

(a) (b) (©

Figure 1.13 Histograms of continuous data: (a) small number of wide classes; (b) large number of narrow
classes; (c) approximation by a smooth curve

DEFINITIONS A density function f(x) is used to describe (at least approximately) the population
or process distribution of a continuous variable x. The graph of f(x) is called the
density curve. The following properties must be satisfied:

1. f(x)=0
2. Loom f(x) dx =1 (the total area under the density curve is 1.0)

3. For any two numbers @ and b with a < b,
b

proportion of x values between @ and b = J f(x) dx
a

(This proportion is the area under the density curve and above the interval
with endpoints a and b, as illustrated in Figure 1.14.)

J)

Shaded area = proportion of x values

between a and b

Figure 1.14 The area under the density
curve is equal to the proportion of values in an
interval

There is no area under the density curve and above a single value (e.g., above 2.50), which
implies that
proportion of x values satisfying _ proportion of x values satisfying
a=x=bh a<x<h

Unless otherwise noted, all content on this page is © Cengage Learning.
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That is, the area under the curve between a and b does not depend on whether the two
interval endpoints are included or excluded.

Example 1.12 A certain daily program on a public radio station lasts | hour. Let x denote the
amount of time (hr) during which music is played. (There are no advertisements, but
the host provides occasional commentary and makes announcements.) A potential
program sponsor is interested in knowing how the value of x varies from program to
program. Consider the density function

flr)= {90x8(1 -x) 0=x=1

0 otherwise

This looks complicated, but the corresponding density curve in Figure 1.15 has a
simple and appealing shape.

fx)

0 X
0 .5 1

Figure 1.15 Density curve for Example 1.12

We see immediately that most x values are quite close to 1 and very few are small-
er than .5 (almost all programs consist of at least a half hour of music). The constant
90 in f(x) ensures that the total area under the density curve is 1.0 [f(x) = kx*(1 — x)
is a legitimate density function only for k = 90]. Various proportions of interest can
now be obtained by integration. For example,

9

9 .
x dx
7

proportion of programs ~ _ J:()Ox8(1 = QOJ Sy — 90[

with x between .7 and .9
2 L0
- 9°<9 - 10>

proportion of programs B Lo B
for which x is at least .8 — L;QOX (1 —x) dx = .624

7
9

=.587

7
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What duration value ¢ separates the smallest 50% of all x values from the largest
50%? Figure 1.16 shows the location of ¢; the corresponding equation is

j090x8<1 —x)dx=5

A
90(9— 10) =.5

Newton’s method or some other numerical technique is used to obtain the solution:
¢~ .838. That is, about 50% of all programs have music for more than .838 hr, and
about 50% have music for less than .838 hr. The value .838 is called the median of
the x distribution.

which becomes

S
4 -
3 -
Shaded area = .5
2 -
1 -
0
0 s A 1 *

Median = .838

Figure 1.16 Determining the median of the
distribution in Example |.12

Example 1.13 TLet x denote the response time (sec) at a certain on-line computer; that is, x is the
time between the end of a user’s inquiry and the beginning of the system’s response
to that inquiry. The value of x varies from inquiry to inquiry. Suppose the density
function for the distribution of x is

—.2x -
Flx) = {.Ze x=0

0 otherwise

where e represents the base of the natural logarithm system and approximately equals
2.71828. A graph of f(x) is shown in Figure 1.17. By inspection, f(x) = 0, and

oo
oo

me(x) dx = J:.Ze_'zxdx =—¢ N 1
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S f)

Shaded area = .10

L .
0 10 20 0 10 T 20

11.5 = 90th percentile

Figure 1.17 The density curve and 90th percentile for Example 1.13
The proportion of inquiries with a response time less than 5 sec is

5
[O 2 Fdi=1—¢20= 632

So 63.2% of all response times are at most 5 sec, and 36.8% of all times exceed 5 sec.
The value ¢ that separates the largest 10% of all times from the smallest 90% (called
the 90th percentile) satisfies

9= J 2e Fdx=1—¢ "
0

from which ¢ = —[In(.1)]/.2 = 11.5. Only about 10% of all inquiries will have re-
sponse times exceeding 11.5 sec.

The density function in Example 1.13 is a particular case of a more general function.

DEFINITION A variable x is said to have an exponential distribution with parameter A > 0 if
the density function for x is
{)\e’\" x=0

0 otherwise

fl) =

Fach different value of A prescribes a different exponential distribution, so we have an en-
tire family of distributions. The shape of each density curve is like the curve in Figure 1.17;
the curve starts at height A above x = 0 and decreases exponentially as x increases. The ex-
ponential distribution has been used to model many different phenomena, including time
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between successive arrivals at a service facility, the amount of time to complete a specified
task, and the 1-hr concentration of carbon monoxide in an air sample. In Sections 1.4 and
1.5, we introduce several other important continuous distributions.

Discrete Distributions

Let’s focus on a variable x whose possible values are nonnegative integers; usually the value
of x results from counting something. A histogram of sample data will have rectangles
centered at values 0, 1, 2, . .. (or some subset of these) regardless of the sample size. How-
ever, as the sample size increases, the relative frequencies (sample proportions of various
x values) tend to get closer and closer to their true population or process counterparts. We
will use the following notation:

0) = proportion of x values in the population that equal 0, or the long run
p(0) = proportion of x values in a process that equal 0

(1) = proportion of x values in the population that equal 1, or the long-run
proportion of x values in a process that equal 1

and so on. None of these proportions can be negative, and their sum must be 1 (so that
100% of the x values are included).

DEFINITION A population or process distribution for a discrete variable x is specified by a mass
function p(x) satisfying

=0 Dp)=1
where the summation is over all possible x values. Other interesting proportions

can be obtained by adding various p(x) values. In particular, if @ and b are integers
with a < b, then

proportion of x values
between @ and b (inclusive)

= pla) +pla+1)+-+p(b)

Example 1.14 Consider a package of four batteries of a particular type, and let x denote the number
of satisfactory (i.e., nondefective) batteries in the package. Possible values of x are 0,
1, 2, 3, and 4. One reasonable distribution for x is specified by the following mass
function:

24

Aot Or(H x=0,1,2,3,4

px) =
where “1” is the factorial symbol (e.g., 4! = (4)(3)(2)(1) =24, 1! =1,and 0! = 1).
This looks a bit intimidating, but there is an intuitive argument leading to p(x) that
we will mention shortly. Substituting x = 3, we get
24

pB) = gy (D' =.2916
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That is, roughly 29% of all packages will have three good batteries. Substituting the
other x values gives us the following tabulation:

Section |.3 Exercises

19.

x: 0
p(x):

.0001

1
0036 .0486 .2916 .6561

2 3 4

The proportion of packages with at least two good batteries is

proportion of packages with x
values between 2 and 4 (inclusive)

=p(2) + p(3) + p(4) = 9963

More than 99% of all packages have at least two good batteries.

In Section 1.6, we will generalize the distribution of Example 1.14 and introduce one

additional important discrete distribution.

A continuous variable x is said to have a uniform distri-
bution if the density function is given by

c. For any number k satisfying —5 <k <k + 4 <5,
what long-run proportion of temperatures will be
between kand k + 47

] a<x<bhb
fo=qb—a 21. Suppose that your morning waiting time for a bus
0 otherwise has a uniform distribution on the interval from 0
] o ; to 5 min, and your afternoon waiting time also has
Th_e correspon.dmg density “curve” has consFant this distribution. Then if x denotes the total waiting
height over the interval from a to b. Suppose the time i i . .
k ! o ime on any particular day, the density function of x
(min) taken by a clerk to process a certain application can be shown to be
form has a uniform distribution with ¢ =4 and b = 6.
a. Draw the density curve, and verify that the total 04 for0<x<5
area under the curve is indeed 1. fx) =4 4— 04 for5 =x<10
b. Inthelong run, what propor.tlon of forms will take 0 for other values of x
between 4.5 min and 5.5 min to process? At least
4.5 min to process? D he densi dverifi .
c. What value separates the slowest 50% of all pro- & e raw]t e CHSIt}(;_CuTEC’ an verify that f(x) speci-
cessing times from the fastest 50% (the median of b1 es; Tgltlmate 1}sltr1 ution. . 1 dal
the distribution)? D. In t .e oTlg run,. ﬁvbat proportglon.o?}:ﬂr tota7 a.l)?/
d. What value separates the best 10% of all process- waiting tlme.s will beat most. min? At .east i
P . At least 4 min? Between 4 min and 7 min?
ing times from the remaining 90%?
c. What value separates the longest 10% of your
20. Suppose that the reaction temperature x (°C) in a cer- daily waiting times from the remaining 90%?
tain chemical process has a uniform distribution with
a= —5and b = 5 (refer to Exercise 19 for a descrip- ~ 22. Data collected at Toronto Pearson International

tion of a uniform distribution).

a. Inthe long run, what proportion of these reactions
will have a negative value of temperature?

b. In the long run, what proportion of temperatures
will be between —2 and 2? Between —2 and 3?

Airport suggests that an exponential distribution
with A = .37 is a good model for rainfall dura-
tion in hours (Urban Stormwater Management
Planning with Analytical Probabilistic Models,
2000, p. 69).
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24.

a. What proportion of rainfall durations at this
location are at least 2 hours? At most 3 hours?
Between 2 and 3 hours?

b. What must the duration of a rainfall be to place
it among the longest 5% of all times?

. Extensive experience with fans of a certain type used

in diesel engines has suggested that the exponential

distribution with A = .00004 provides a good model

for time until failure (hr).

a. Sketch a graph of the density function.

b. What proportion of fans will last at least
20,000 hr? At most 30,000 hr? Between 20,000
and 30,000 hr?

c. What must the lifetime of a fan be to place itamong
the best 1% of all fans? Among the worst 1%?

The article “Probabilistic Fatigue Evaluation of
Riveted Railway Bridges” (]. of Bridge Engr., 2008:
237-244) suggested the exponential distribution with
A = 1/6 as a model for the distribution of stress range
(MPa) in certain bridge connections.
a. What proportion of stress ranges are at least
2 MPa? At most 7 MPa? Between 5 and 10 MPa?
b. What value separates the highest 2% of the stress
ranges from the remaining 98%?

. The actual tracking weight of a stereo cartridge set to

track at 3 g can be regarded as a continuous variable
with density function f(x) = ¢[1 — (x — 3)*] for2 <
x<4andf(x) =
a. Determine the value of ¢ [you might find it help-

ful to graph f(x)].
b. What proportion of actual tracking weights ex-

0 otherwise.

ceed the target weight?
c. What proportion of actual tracking weights are
within .25 g of the target weight?

. Let x represent the number of underinflated tires on

an automobile.

a. Which of the following p(x) functions specifies a
legitimate distribution for x, and why are the other
two not legitimate?

(i) ():3 p(l) =2

p(2) =1, p(3) = .05, p(4) =
(ii) p(0) = 4,

p(l) =p(2) =p(B3) =1, p(4) = .
(iii) p(x) = .23 —x) forx=0,1,2,3,4

20.
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b. For the legitimate distribution of part (a), deter-
mine the long-run proportion of cars having at
most two underinflated tires, the proportion hav-
ing fewer than two underinflated tires, and the
proportion having at least one underinflated tire.

. A mail-order computer business has six telephone

lines. Let x denote the number of lines in use at a
specified time. Suppose the mass function of x is
given by

x 0 1 2 3 4 5 6
plx): 10 15 20 25 20 2 2

a. Inthe long run, what proportion of the time will at
most three lines be in use? Fewer than three lines?

b. In the long run, what proportion of the time will at
least five lines be in use?

c. In the long run, what proportion of the time will
between two and four lines, inclusive, be in use?

d. In the long run, what proportion of the time will at
least four lines not be in use?

. A contractor is required by a county planning de-

partment to submit 1, 2, 3,4, or 5 forms (depending
on the nature of the project) when applying for a
building permit. Let y denote the number of forms
required for an application, and suppose the mass
function is given by p(y) = cy fory =1, 2, 3, 4, or
5. Determine the value of ¢, as well as the long-run
proportion of applications that require at most three
forms and the long-run proportion that require be-
tween two and four forms, inclusive.

Many manufacturers have quality control programs
that include inspection of incoming materials for
defects. Suppose a computer manufacturer receives
computer boards in batches of five. Two boards
are randomly selected from each batch for inspec-
tion. Consider batches for which exactly two of the
boards are defective; for convenience, number the
defective boards as 1 and 2, and the nondefective
boards as 3, 4, and 5. Let x denote the number of
defective boards among the two actually inspected,
and determine the mass function of x. Hint: One
possible sample of size 2 consists of boards 1 and
2, another of boards 1 and 3, and so on. How many
such samples are there, and what is the value of x
for each sample?
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36 CHAPTER | Data and Distributions

1.4 THE NORMAL DISTRIBUTION

The normal distribution is the most important distribution in statistics. A typical normal
density curve is shown in Figure 1.18. Many population and process variables have dis-
tributions that can be very closely fit by an appropriate normal curve. Examples include
heights, weights, and other physical characteristics of humans and animals, anthropometric
measurements on fossils, measurement errors in scientific experiments, reaction times in
psychological experiments, pollutant concentrations of various sorts, amounts dispensed
into containers by machines, thicknesses of material specimens, and numerous economic
measures and indicators. In addition, even when individual variables themselves are not
normally distributed, sums and averages of the variables will, under suitable conditions,
have approximately a normal distribution; this is the content of the Central Limit Theorem,
discussed in Chapter 5.

fx)

.06 |~

.04 |-

0 | | | | x
80 90 100 110 120

Figure 1.18 A typical normal density curve

DEFINITION A continuous variable x is said to have a normal distribution with parameters u
and o, where —c0 < u < oo and o > 0, if the density function of x is

f(X) = 71 e*(x*#)z/(zol) — <x< ®©

Again, e denotes the base of the natural logarithm system and has an approximate value
of 2.71828, whereas m represents the familiar mathematical constant approximately
equal to 3.14159.

Clearly, f(x) = 0 for any number x, but techniques from multivariable calculus must
be used to show that fio f(x) dx = 1. The graph of f(x)—the density curve—is always a
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1.4 The Normal Distribution 37

bell-shaped curve (and hence symmetric) centered at u, so w is the median of the distribu-
tion. If the value of o is close to zero, the normal curve is highly concentrated about w (little
variability in the distribution), whereas a large value of o corresponds to a curve that spreads
out a great deal (a substantial amount of variability). Figure 1.19 displays several different
normal density curves. Any normal curve has two inflection points—points at which the
curve changes from being concave downward to concave upward—that are equidistant
from p. It can be shown that the value of o is the distance from u to each inflection point,
as illustrated in Figure 1.20.

n=40, o0=2.5
w=10, =5
/\ | | |
0 10 20 30 40 50
n=70, =10
| | ]
50 60 70 80 90

Figure 1.19 Several normal density curves

Curve turns downward

.

Curve turns upward Curve turns upward

¥

1
| 0=10 | o=10 |
j———

80 90  w=100 110 120

Figure 1.20 Visual identification of u and o

Suppose that capacitors of a certain type have resistances that vary according to a nor-
mal distribution, with w = 800 megohms and o = 200 megohms. If a particular applica-
tion requires a resistance between 775 megohms and 8§50 megohms, the proportion of
capacitors with satisfactory values of resistance (x) is

proportion of x values JSSO 1

— e*(X*800)2/[2(40,000)‘ dx
between 775 and 85 775 A\ /277_(200)

Unfortunately, none of the standard integration techniques can be used to evaluate this
integral. To calculate proportions of this sort, a special normal reference distribution is
needed.
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38 CHAPTER | Data and Distributions

The Standard Normal Distribution

DEFINITIONS The normal distribution with parameter values w = 0 and o = 1 is called the
standard normal distribution. We shall use the letter z to denote a variable that
has this distribution. The corresponding density function is

1
fle)=—m=e"? —w<z<w

Vi

The standard normal density curve, or z curve, is shown in Figure 1.21. It is cen-
tered at 0 and has inflection points at *1.

Appendix Table I, which also appears on the inside front cover of the book, is a tabula-
tion of cumulative z curve areas; that is, the table gives areas under the z curve to the left of
various values (to —0), as illustrated in Figure 1.21. Entries in this table were obtained by
using numerical integration techniques, since the standard normal density function cannot
be integrated in a straightforward way. Let’s first use this table to obtain various z curve areas
and other z curve information, and then see how the table applies to any normal curve.

Shaded area = Proportion of z values less than ¢

Standard normal (z) curve

(o) SR

Figure 1.21 The standard normal (z) curve and
a cumulative z curve area

Example 1.15  The proportion of values in a standard normal distribution that are less than 1.25 is

proportion of z values _ entry in Appendix Table I at the intersection
satisfying z < 1.25 of the 1.2 row and .05 column

8944

It is also true that
proportion of z values satisfying z =< 1.25 = .8944

Similarly,
proportion of z values _ entry in —0.3 row and .08 column
satisfying z < —.38  of Appendix Table I

3520
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1.4 The Normal Distribution 39

Figure 1.22 illustrates the simple relationship between an upper-tail area and a
cumulative area.

Cumulative area
to the left of ¢

1 =Total area

Area to the right of ¢

QY e ——
ISY) SR pp—p—

Figure 1.22 Obtaining an “area to the right” from a cumulative z curve area

In particular,

tion of val
E;gff;irnlgr;; \llézl;es = area under z curve to the right of 1.25

1 — area to the left of 1.25

1 —.8944
1056

What about the area under the z curve and above the interval between —.38 and
1.25? Figure 1.23 shows that this is a difference between two cumulative areas:

proportion of z values

e P (area to the left of 1.25)

—(area of the left of —.38)
= .8944 — 3520 = .5424

The proportion of z values satisfying —.38 = z < 1.25 is also .5424.

z curve

) I

1 1

1 1

| 1 | 1 |

-38 0 1.25 0 1.25 -38 0

Figure 1.23 The area above an interval is the difference between two cumulative areas

In Example 1.15, a value on the horizontal z scale was specified and a curve area was
determined. We now reverse this process by showing how to select a value or values to cap-
ture a specified curve area.
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40 CHAPTER | Data and Distributions

Example 1.16  What value ¢ on the horizontal z axis is such that the area under the z curve to the
left of ¢ is .67? Figure 1.24 illustrates the situation.

Cumulative area = .67

z curve

|
0

SN SR pe—

Figure 1.24 Determining c to
capture a specified cumulative area

In Appendix Table I, we must look in the main body for .6700 (or the closest
entry to it). The value .6700 does indeed appear; it is at the intersection of the 0.4 row
and the .04 column. Thus ¢ = 44. That is, 67% of the area under the z curve lies to
the left of .44. Another way of expressing this is to say that .44 is the 67th percentile of
the standard normal distribution. If .6710 replaces .6700 in the question posed, the
closest tabulated entry is .6700. Rather than use linear interpolation, we generally
recommend simply using the closest entry to answer the question; our answer to the
revised question would also be (approximately) .44.

What value ¢ captures the upper-tail z curve area .05, as illustrated in Fig-
ure 1.257 The cumulative area to the left of ¢ must be .9500. A search for this area
in Appendix Table I reveals the following information about the two closest entries:

9495 is in the 1.6 row and .04 column
9505 is in the 1.6 row and .05 column

Because the desired area .9500 is halfway between the two closest entries, we use
interpolation to find ¢ = 1.645 (1.64 or 1.65 would also be acceptable answers).

Finally, what interval, symmetrically placed about zero, captures 95% of the
area under the z curve? This situation is illustrated in Figure 1.26.

zcurve

Central area = .95

Upper-tail area = .05 Lower-tail area = .025

A pb=-

0 =@ 0 c
Figure 1.25 Finding the value c to capture a Figure 1.26 Determining c to capture a
specified upper-tail area specified central z curve area
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1.4 The Normal Distribution 41

Since the lower-tail area to the left of —c¢ must be .025, the cumulative area to
the left of ¢ is .9500 + .0250 = .9750. This cumulative area is in the 1.9 row and .06
column of the z table, so ¢ = 1.96. Alternatively, the desired lower-tail area .0250 lies
in the —1.9 row and .06 column of the z table, so —¢ = —1.96 and again ¢ = 1.96.

Nonstandard Normal Distributions

Any normal curve area can be obtained by first calculating a “standardized” limit or limits,
and then determining the corresponding area under the z curve. The particulars are pre-
sented in the following proposition.

PROPOSITION Let x have a normal distribution with parameters p and o. Then the standardized
variable
X—p
o

z=

has a standard normal distribution. This implies that if we form the standardized limits

* a— M % b_/-L
a = h=——

g g

then

proportion of x values satisfying  proportion of z values satisfying
a <x<b a <z<b

proportion of x values satisfying  proportion of z values satisfying
=
x<a z<a

proportion of x values satisfying  proportion of z values satisfying
x >b z>b

Example 1.17  The time that it takes a driver to react to the brake light on a decelerating vehicle
is critical in avoiding rear-end collisions. The article “Fast-Rise Brake Lamp as a
Collision-Prevention Device” (Ergonomics, 1993: 391-395) suggests that reaction
time for an in-traffic response to a brake signal from standard brake lights can be
modeled with a normal distribution having parameters u = 1.25 sec and o = .46 sec.
In the long run, what proportion of reaction times will be between 1.00 sec and
1.75 sec? Let x denote reaction time. The standardized limits are

1.00 —1.25 1.75—-1.25

prs = T=1.09
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42 CHAPTER | Data and Distributions

Thus
proporiton of x values __ proportion of z values satistying
satisfying 1.00 <x <1.75 —-54<z<1.09
_entryin 1L.Orow, .09 entry in —0.5 row,
column of z table .04 column of z tables
= .8621 — .2946
=.5675

This calculation is illustrated in Figure 1.27.

Proportion of
x values between
1.00 and 1.75

Normal, w=1.25, o = .46
z curve

n >h—————
>
=y =

5 -

Figure 1.27 Standardizing to calculate the desired proportion in Example |.17

Similarly, if 2 sec is viewed as a critically long reaction time, the proportion of
reaction times that exceed this value is, since (2 — 1.25)/.46 = 1.63,

proportion of x values

that exceed 2.0 = proportion of z values that exceed 1.63

=] — area under z curve to the left of 1.63

1 —.9484
0516

Only a bit more than 5% of all reaction times will exceed 2 sec.

Example 1.18  The amount of distilled water dispensed by a certain machine has a normal distribu-
tion with w = 64 oz and o = .78 oz. What container size ¢ will ensure that overflow
occurs only .5% of the time? Let x denote the amount of water dispensed. The den-
sity curve for x is pictured in Figure 1.28, which shows that ¢ captures a cumulative
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1.4 The Normal Distribution 43

Normal, .= 64, o = .78 Shaded area = .995

zcurve

Y/

= o1

¢ =99.5th percentile = 66.0 2.58 = 99.5th z percentile

Figure 1.28 Distribution of amount dispensed and desired percentile for
Example 1.18

area of .995 under this normal curve. That is, ¢ is the 99.5th percentile of this normal
distribution. Standardizing then tells us that

proportion of x values tion of = val e Y 64
i = proportion of z values satisfying z 3

=.995

How can we capture cumulative area .9950 under the z curve? The 2.5 row of
Appendix Table [ has entries .9949 and .9951 in the .07 and .08 columns, respectively.
Let’s use the value 2.58 (a more detailed tabulation gives 2.576). This implies that

c— 64
78

=258

giving
c=064+258(.78) =64+ 2.0 =66 oz

Notice that the general form of the expression for ¢ in Example 1.18 is
¢ = + (z critical value) o

where the z critical value captures the desired cumulative area under the z curve. Once we
know how to capture a particular cumulative area under the z curve, it is easy to determine
how to capture the same area under any other normal curve.

A histogram of sample data may suggest that a normal curve specifies a reasonable
population or process distribution, but appropriate values of u and o still remain to be
chosen. In Chapter 2, we begin to see how this can be done.

The Normal Distribution and Discrete Populations

The normal distribution is often used as an approximation to the distribution of values in
a discrete population. For example, the distribution of x = IQ in many populations is tak-
en to be approximately normal with u = 100 and o= 15, though 1Q is an integer-valued
variable. A picture of the population distribution consists of a histogram with rectangles

Unless otherwise noted, all content on this page is © Cengage Learning.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



44 CHAPTER | Data and Distributions

centered at possible values of x. Consider the distribution of x = the number of correct
responses among 20 true—false questions included on a final exam. A picture of the distri-
bution is shown in Figure 1.29 along with the approximating normal curve. Notice that
the rectangle above 10 has its right edge at 10.5, so an approximation to the proportion of
x values that are at most 10 is the area under the normal curve to the left of 10.5 (i.e., 10.5
should be standardized to obtain the approximation).

p(x)

20

Normal curve, u=12,0=2.2

15 N

_ Normal approximation to
10 Shaded area = proportion of x values = 10
///
05 [~ “
I RN RNRAEEEN | x
012345678 910711121314151617181920

10.5

Figure 1.29 A normal approximation to the distribution of x = number of cor-
rect responses on a 20-question true—false test

Section |.4 Exercises

. Beatmost 1.78  b. Exceed .55

. Exceed —.80 d. Be between .21 and 1.21
. Be either at most —2.00 or at least 2.00

. Beatmost —4.2  g. Be atleast4.33

30. Suppose that values are repeatedly chosen from a

standard normal distribution.

a. In the long run, what proportion of values will be
at most 2.15? Less than 2.15?

b. What is the long-run proportion of selected values
that will exceed 1.50? That will exceed —2.00?

c. What is the long-run proportion of values that will
be between —1.23 and 2.85?

d. What is the long-run proportion of values that will

-0 0 ®

32. a. Whatvalue z* is such that the area under the stan-
dard normal curve to the left of z* is .9082?

b. What value z* is such that the area under the stan-

dard normal curve to the left of that value is .9080?

. c. What value z* is such that the area under the
exceed 5?7 That will exceed —5? . -

, standard normal curve to the right of z* is .121?
e. Inthe long run, what proportion of selected values

2 will satisfy |2] < 2.507 d. What value z* is such that the area under the
w .507

%

standard normal curve between — z* and z

Unless otherwise noted, all content on this page is © Cengage Learning.

31. In the long run, what proportion of values selected is .754?
from the standard normal distribution will satisfy e. How far to the right of 0 would you have to go to
each of the following conditions? capture an upper-tail z curve area of .002? How
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33.

34.

35.

36.

far to the left of 0 would you have to go to cap-
ture this same lower-tail area?

Suppose that values are successively chosen from the

standard normal distribution.

a. How large must a value be to be among the largest
15% of all values selected?

b. How small must a value be to be among the small-
est 25% of all values selected?

c. What values are among the 4% that are farthest
from 0?

Determine the following percentiles for the standard
normal distribution:
a. 9lst  b.9th

c.22nd  d.99.9th

Suppose that the thicknesses of bolts (mm) manufac-
tured by a certain process can be modeled with a nor-
mal distribution having i = 10 and o= 1. Note: The
density curve here is just the standard normal curve
shifted to be centered at 10 rather than 0.

a. What is the long-run proportion of bolts whose
thicknesses are at most 11 mm? Hint: The corre-
sponding normal curve area is identical to what z
curve area?

b. In the long run, what proportion of these bolts
will have thickness values between 7.5 mm and
12.5 mm?

c. Inthe long run, what proportion of these bolts will
have thicknesses that exceed 11.5 mm?

Suppose the flow of current (milliamps) in wire

strips of a certain type under specified conditions

can be modeled with a normal distribution hav-

ing w=20 and o=1 (think about how the cor-

responding density curve relates to the standard

normal curve).

a. What proportion of strips will have a current flow
of between 18.5 and 22 milliamps?

b. What proportion of strips will have a current flow
exceeding 15 milliamps?

c. How large must a current flow be to be among the
largest 5% of all flows?

. Mopeds (small motorcycles with an engine capacity

below 50 cm’) are popular in Europe because of their
mobility, ease of operation, and low cost. The article
“Procedure to Verify the Maximum Speed of Auto-
matic Transmission Mopeds in Periodic Motor Vehi-

38.

39.

40.

1.4 Exercises 45

cle Inspections” (]. of Automobile Engr., 2008: 1615~

1623) described a rolling bench test for determining

maximum vehicle speed. A normal distribution with

u = 46.8 km/h and o = 1.75 km/h is postulated.

a. What proportion of mopeds have a maximum
speed that is at most 50 km/h?

b. What proportion of mopeds have a maximum
speed that is at least 48 km/h?

c. What speed separates the fastest 75% of all mopeds
from the others?

Spray drift is a constant concern for pesticide ap-
plicators and agricultural producers. The inverse
relationship between droplet size and drift potential
is well known. The paper “Effects of 2,4-D Formu-
lation and Quinclorac on Spray Droplet Size and
Deposition” (Weed Technology, 2005: 1030-1036)
investigated the effects of herbicide formulation on
spray atomization. A figure in the paper suggested
the normal distribution with w = 1050 um and o =
150 wm was a reasonable model for droplet size for
water (the “control treatment”) sprayed through a
760 ml/min nozzle.
a. What proportion of all droplets have a size that is
less than 1500 wm? At least 1000 wm?
b. What proportion of all droplets have a size that is
between 1000 and 1500 wm?
c. How would you characterize the smallest 2% of
all droplets?

The article “Reliability of Domestic-Waste Biofilm

Reactors” (J. of Envir. Engr., 1995: 785-790) sug-

gests that substrate concentration (mg/cm’) of influ-

ent to a reactor is normally distributed with u = .30

and o = .06.

a. What proportion of concentration values exceed
257

b. What proportion of concentration values are at
most .10?

¢. How would you characterize the largest 5% of all
concentration values?

Consider babies born in the “normal range” of 37-43
weeks gestational age. Extensive data supports the as-
sumption that for such babies born in the United States,
birth weight is normally distributed with u = 3432 g
and o = 482 g. [The article “Are Babies Normal?”
(The American Statistician, 1999: 298-302) analyzed
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41.

1.5

DEFINITION
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data from a particular year; for a sensible choice of class

intervals, a histogram did not look normal but further

investigation revealed that this was because some hos-

pitals measured weight in grams and others measured

to the nearest ounce and then converted the data to

grams. A modified choice of class intervals that allowed

for this gave a histogram that was well described by a

normal distribution. ]

a. For babies of this type, what proportion of all birth
weights exceeds 4000 g?

b. For babies of this type, what proportion of all birth
weights is between 3000 and 4000 g?

c¢. How would you characterize the highest .1% of all
birth weights?

d. What value c¢ is such that the interval (3432 — ¢,
3432 + ¢) includes 98% of all birth weights?

Let x denote the number of flaws along a 100-m

reel of magnetic tape (values of x are whole num-

bers). Suppose x has approximately a normal distri-

bution with w = 25 and o = 5.

a. What proportion of reels will have between 20
and 40 flaws, inclusive?

OTHER CONTINUOUS DISTRIBUTIONS

42.

b. What proportion of reels will have at most 30
flaws? Fewer than 30 flaws?

Based on extensive data from an urban freeway near

Toronto, Canada, “it is assumed that free speeds

can best be represented by a normal distribution”

(“Impact of Driver Compliance on the Safety and

Operational Impacts of Freeway Variable Speed

Limit Systems” (J. of Transp. Engr., 2011: 260-268)).

The values of w and o reported in the article were

119 km/h and 13.1 km/h, respectively.

a. What percentage of vehicles have speeds that are
between 100 and 120 km/hr?

b. What speed characterizes the fastest 10% of all
speeds?

c. The posted speed limit was 100 km/hr. What
percentage of vehicles were traveling at speeds
exceeding this posted limit?

d. What two values, symmetrically placed about 119,
capture 90% of all vehicle speeds.

e. What values symmetrically placed about 119 sep-
arate .1% of the most extreme vehicle speeds from
the rest?

Normal density curves are always bell-shaped and therefore symmetric. Exponential densi-
ty curves are positively skewed but have their maximum atx = 0 and decrease as x increases.
Many histograms of data encountered in applied work are skewed and unimodal, rising to
a maximum and then declining. We now present several useful distributions that have this
property. Our survey is not exhaustive. Consult the bibliography at the end of the chapter
for information on the gamma, beta, and other distributions not discussed here.

The Lognormal Distribution

Lognormal distributions are related to normal distributions in exactly the way the name

suggests.

function of x is

flx)=

A nonnegative variable x is said to have a lognormal distribution if In(x) has a
normal distribution with parameters u and o. It can be shown that the density

o
2mox

In(x) —uJ*/(20%)

x>0

forx=0

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1.5 Other Continuous Distributions 47

Figure 1.30 illustrates density curves for several different combinations of u and o
Every lognormal distribution is positively skewed. The following example shows that by
taking logarithms, calculation of any lognormal curve area reduces to a normal distribu-
tion computation.

f)

25
20 [~
A5
10 [~

.05 [~

Figure 1.30 Lognormal density curves

Example 1.19  According to the article “Predictive Model for Pitting Corrosion in Buried Oil and
Gas Pipelines” (Corrosion, 2009: 332-342), the lognormal distribution has been re-
ported as the best option for describing the distribution of maximum pit depth data
from cast iron pipes in soil. The authors suggest that a lognormal distribution with u =
353 and o = .754 is appropriate for maximum pit depth (mm) of buried pipelines.

Since x < 2 is equivalent to In(x) < In(2) = .693,

proportion of pipelines

_ . Y . -
vith g < 2 proportion of pipelines with In(x) < .693

= area under normal (.353, .754) curve to the left of .693
= area under z curve to the left of (.693 — .353)/.754
= area under z curve to the left of 45

= .6736
Similarly, since In(1) = 0 and (0 — .353)/.754 = —0.47,

proportion of pipelines

with ] < x <2 area under z curve between — 0.47 and 0.45

= .6736 — .3192
3544

The Weibull Distribution

This distribution was introduced in 1939 by a Swedish physicist who developed many
applications over the course of the following two decades.
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DEFINITION A variable x has a Weibull distribution with parameters a and B if the density
function of x is

& a=1,-6/B)" x>0
fo=4p" ¢
0 x=0

When a = 1, the Weibull density function reduces to the exponential density function
(with A=1/B). Figure 1.31 shows several Weibull density curves. Some combinations
of @ and B result in a positive skew and others, a negative skew.

f) .
1 Y-
a =1, 8 =1 (exponential) 6k
a=2,8=1
a=2,=.5
.
x 0
0 5 10 0

Figure 1.31 Weibull density curves

Let t represent some positive number. The proportion of x values satisfying x < ¢ is

t
area under density curve to the left of ¢ = J() f(x) dx

— ] B

Thus, rather than needing a table of cumulative areas, such as the z table for normal dis-
tribution calculations, we use a simple mathematical function to get this information.

Example 1.20 In recent years the Weibull distribution has been used to model engine emissions
of various pollutants. Let x denote the amount of NO, emission (g/gal) from a cer-
tain type of four-stroke engine, and suppose that x has a Weibull distribution with
a =2 and B = 10 (suggested by information in the article “Quantification of Vari-
ability and Uncertainty in Lawn and Garden Equipment NO, and Total Hydrocar-
bon Emission Factors,” |. of the Air and Waste Management Assoc., 2002: 435-448).
The corresponding density curve looks exactly like the one in Figure 1.31 fora = 2,

Unless otherwise noted, all content on this page is © Cengage Learning.
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1.5 Exercises 49

B =1 except that now the values 50 and 100 replace 5 and 10 on the horizontal axis
(because B is a “scale parameter”). Then

proportion of engines emitting

_ 1 _ —(10/10* _ 1 _ -1 _
less than 10 g/gal =l-e =]l—e =.632

The proportion of engines emitting at most 25 g/gal is .998, so the distribution is almost
entirely concentrated on values between 0 and 25. The value ¢ which separates the 5% of
all engines having the largest amounts of NO, emissions from the remaining 95% satisfies

95=1—¢" 1

[solating the exponential term on one side, taking logarithms, and solving the result-
ing equation gives ¢ = 17.3 as the 95th percentile of the emissions distribution.

2

Selecting an Appropriate Distribution

The choice of an appropriate distribution for a continuous variable x is usually based on
sample data. An investigator must first decide whether a particular family, such as the
Weibull family or the normal family, is reasonable. Then any parameters of the chosen
family must be estimated to find a particular member of the family that in some sense best
fits the data. These issues are considered in subsequent chapters.

Section 1.5 Exercises

43. A theoretical justification based on a certain mate- kg/day/km) could be modeled with a lognormal dis-

rial failure mechanism underlies the assumption tribution having u = 9.164 and o = .385.

that ductile strength of a material has a lognormal a. What proportion of source loads are at most

distribution. Suppose the values of the parameters are 15,000 kg/day/km?

u=5ando=.1. b. What interval (a, b) is such that 95% of all

a. What proportion of material specimens have a source loads have values in this interval, 2.5%
ductile strength exceeding 1202 What proportion have values less than @, and 2.5% have values
have a ductile strength of at least 120? exceeding b?

b. What proportion of material specimens have a
ductile strength between 110 and 130?
c. If the smallest 5% of strength values were unac-

45. The article “Response of SiG/Si;N, Composites
Under Static and Cyclic Loading—An Experimen-
tal and Statistical Analysis” (]. of Engr. Materials
and Technology, 1997: 186-193) suggests that ten-

ceptable, what would be the minimum accept-

able strength? sile strength (MPa) of composites under specified

44. Nonpoint source loads are chemical masses that conditions can be modeled by a Weibull distribu-

travel to the main stem of a river and its tributaries in tion with @ = 9 and o= 180.

flows that are distributed over relatively long stream a. Sketch a graph of the density function.

reaches in contrast to those that enter at well-defined b. What proportion of specimens of this type have

and regulated points. The article “Assessing Uncer- strength values exceeding 1757

tainty in Mass Balance Calculation of River Nonpoint c. What proportion of specimens of this type have

Source Loads” (]. of Envir. Engr., 2008: 247-258) strength values between 150 and 1757

suggested that for a certain time period and location, d. What strength value separates the weakest 10%

x = nonpoint source load of total dissolved solids (in of all specimens from the remaining 90%?
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Suppose that fracture strength (MPa) of silicon nitride

braze joints under certain conditions has a Weibull dis-

tribution with & =5 and B = 125 (suggested by data

in the article “Heat-Resistant Active Brazing of Silicon

Nitride: Mechanical Evaluation of Braze Joints,” Weld-

ing J., August 1997: 300s-304s).

a. What proportion of such joints have a fracture
strength of at most 100? Between 100 and 150?

b. What strength value separates the weakest 50% of
all joints from the strongest 50%?

c. What strength value characterizes the weakest 5%
of all joints?

. The Weibull distribution discussed in this section has

a positive density function for all x > 0. In some situ-
ations, the smallest possible value of x will be some
number vy that exceeds zero. A shifted Weibull distri-
bution, appropriate in such situations, has a density
function for x > vy obtained by replacing x with x — y
in the earlier density function formula. The article
“Predictive Posterior Distributions from a Bayesian
Version of a Slash Pine Yield Model” (Forest Science,
1996: 456-463) suggests that the values y = 1.3 c¢m,
a =4, and B = 5.8 specify an appropriate distribu-
tion for diameters of trees in a particular location.
a. What proportion of trees have diameters between
2and 4 cm?
b. What proportion of trees have diameters that are
atleast 5 cm?
c. What is the median diameter of trees, that is, the
value separating the smallest 50% from the largest
50% of all diameters?

The paper “Study on the Life Distribution of Micro-
drills” (J. of Engr. Manufacture, 2002: 301-305) re-
ported the following observations, listed in increasing
order, on drill lifetime (number of holes that a drill
machines before it breaks) when holes were drilled in
a certain brass alloy.
a. Construct a histogram of the data using class
boundaries 0, 50, 100, . . .

ment on interesting characteristics.

and then com-

’

SEVERAL USEFUL DISCRETE DISTRIBUTIONS

49.

50.

b. Construct a histogram of the natural logarithms of
the lifetime observations, and comment on inter-
esting characteristics.

11 14 20 23 31 36 39 44

47 50 59 61 65 67 68 71
7476 78 79 81 84 85 91

93 9 99 101 104 105 105 112
118 123 136 139 141 148 158 16l
168 184 206 248 263 289 322 388
513

The authors of the paper from which the data in
the previous exercise was extracted suggested that a
reasonable probability model for drill lifetime was a
lognormal distribution with u = 4.5 and o = .8.

a. What proportion of lifetime values are at most 100?
b. What proportion of lifetime values are at least

200? Greater than 200?

The article cited in Example 1.20 proposed the log-

normal distribution with w =4.5 and o = .625 as a

model for total hydrocarbon emissions (g/gal).

a. What proportion of engines emit at least 50 g/gal?
Between 50 and 150 g/gal?

b. What value ¢ separates the best 1% of engines
with respect to THC emissions from the remain-

ing 99%?

. The article “On Assessing the Accuracy of Offshore

Wind Turbine Reliability-Based Design Loads from

the Environmental Contour Method” (Intl. ]. of Off-

shore and Polar Engr., 2005: 132-140) proposes the

Weibull distribution with « = 1.817 and 8 = .863 as

a model for l-hour significant wave height (m) at a

certain site.

a. What proportion of wave heights are at most 0.5 m?

b. What proportion of wave heights are between 0.2
and 0.6 m?

c. Whatis the 90th percentile of the wave height dis-
tribution? The 10th percentile?

A distribution for a discrete variable x is specified by a mass function p(x) satisfy-
ing p(x) > 0 for every possible value and >p(x) = 1. Here p(0) is the population
or long-run process proportion of x values that equal 0, p(1) is the proportion of
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1.6 Several Useful Discrete Distributions 51

values that equal 1, and so on. We now introduce the two discrete distributions
that appear most frequently in statistical applications: the binomial and the Poisson
distributions.

The Binomial Distribution

Cartridges for a certain type of rollerball pen are sold two to a package. Suppose that 20%
of all such cartridges leak, making them unsatisfactory, and the other 80% do not leak. Let’s
also assume that the condition of the second cartridge in a package—satisfactory or unsat-
isfactory—is independent of the first cartridge’s condition. By this we mean that in packages
with a satisfactory first cartridge, 80% of the second cartridges are satisfactory, and in packag-
es with an unsatisfactory first cartridge, 80% of the second cartridges are satisfactory. In other
words, the percentage of satisfactory second cartridges is not affected by the condition of the
first cartridge. We will use SS to denote a package with two satisfactory cartridges, and SF
to denote a package with a satisfactory first cartridge and an unsatisfactory second cartridge
(S for success and F for failure). Then 80% of all packages will have a first S, and of these, a
further 80% will have a second S, giving 80% of 80% or 64% SS’s. Similarly, of the 80% of
all packages that have a first S, 20% will have a second cartridge that is an F, so 20% of 80%
or 16% of all packages will be SF’s. This is also the percentage of all packages that are FS’s:
80% of 20% or 16%. Finally, 20% of 20% or 4% of all packages are FF’s. Notice that these

percentages result from multiplying pairs of proportions:

SS: (:8)(.8) = .64 or 64%

SF: (.8)(.2) = .16 or 16%
FS: (.2)(.8) = .16 or 16%
FF: (2)(.2) = .04 or 4%

Now let x be the number of S’s in a package. Possible values of x are 0, 1, and 2. Our
calculations imply that the proportion of all packages with x = 0 is .04 and the proportion
of all packages with x = 2 is .64. Because 16% of all packages are SE’s and 16% are FS’s,

(proportion of all packages with x = 1) = .16 + .16 = .32

That is, in the long run, 32% of all packages will have x = 1 (this also comes from 1 —
04 — .64).

Suppose instead that cartridges come in packages of four. Again let x be the
number of S’s in a package. One way to get a package with x = 2 is SSF'F, and by
independence, the percentage of all such packages is 20% of 20% of 80% of 80% or
100[(.8)(.8)(.2)(.2)] = 2.56%, or a proportion of .0256. But there are in fact five other
ways, for a total of six possibilities:

Outcome for which x = 2 Proportion
SSFF (S in 1 and 2) (.8)(.8)(.2)(.2) = .0256
SFSF (Sin 1 and 3) (.8)(.2)(.8)(.2) = .0256
SFFS (Sin 1 and 4) 0256
FSSF (Sin 2 and 3) 0256
FSES (Sin 2 and 4) 0256
FFSS (Sin 3 and 4) .0256
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The population or long-run process proportion of packages having x = 2 is then the sum
of these six values of .0256, or 6(.0256) =.1536. Similarly, there are four possibilities for
x = 1 —the single satisfactory cartridge could be the first, second, third, or fourth one in
the package. The proportion of SFFE’s is (.8)(.2)(.2)(.2) = .0064, which is also the pro-
portion of FSFF’s, FFSF’s, and FFFS’s. Adding .0064 four times gives

(proportion of packages with x = 1) = 4(.8)(.2)* = .0256
By the same reasoning,
(proportion of packages with x = 3) = 4(.8)(.2) = .4096

so roughly 41% of all packages will have three satisfactory cartridges.

What if packages have ten cartridges, and you want to know what proportion have six
S's? It is extremely tedious to list all possibilities, but fortunately this is unnecessary. There
is a straightforward counting technique to determine the number of possible outcomes hav-
ing any particular x value.

The Binomial Distribution

Suppose that items or entities of some sort come in batches or groups of size n. Let 7 denote
the proportion of all items in the population or process that are satisfactory (S, for success), so
the proportion of all items that are unsatisfactory (F, for failure) is | — 7. Assume that the condi-
tion of any particular item (S or F) is independent of that of any other item. The binomial vari-
able x is the number of S’s in a batch or group.The mass function of x is given by the formula

p(x) = proportion of batches with x S’s

n!
=——X7(-m"" x=0l,...,n
x!(n — x)! ( )

In the case of a population, the formula gives good approximations as long as the total
number of items examined in all batches is at most 5% of the population size (answers
are exact if the population size is infinite). For a process, it is required that the value of
77 remain constant over time (a stable process).

In the mass function formula, #(1 — )" " generalizes the multiplications
(.8)°(.2) and (.8)%(.2)* in the pen cartridge example. The factorial expression is the
number of possible outcomes for a batch of size n that have x S’s. For example, when
n=4%andx = 2,

4 (000 _ 46 _
=0l @)~ @m0 @)

as we saw previously. You can find a derivation of this formula in several of the refer-
ences listed in the bibliography.
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Example 1.21 The binomial distribution is used extensively in genetic applications. An early
genetics article (“The Progeny in Generation I}, to I'}; of a Cross Between a Yel-
low-Wrinkled and a Green-Round Seeded Pea,” . of Genetics, 1923: 255-331)
reported on an experiment in which four-seeded pea pods from a dihybrid cross
were examined. The variable of interest was x = the number of YR (yellow and
round) peas in a pod. Mendelian laws of inheritance imply that 7 = 9/16 = .5625
[from (3/4)(3/4)]. Now consider peas with eight-seeded pods. The proportion of all
pods with five YR peas is

8!
(5H3Y
= 56(.5625)°(4375)* = 2641

(proportion with x = 5) = (.5625)°(.4375)?

The proportion of all pods with at least five such peas is

(proportion with x = 5) = p(5) + p(6) + p(7) + p(8)
= 2641 + .1698 4 .0624 + 0.100 = .5063

In the long run, slightly more than 50% of all pods will have five or more YR peas
and slightly less than 50% will have four or fewer YR peas. The complete distribution
of x is as follows:

7% 0 1 2 3 4 5 6 7 8

p(x): .0013 .0138 .0621 .1598 .2567 .2641 .1698 .0624 .0100

Figure 1.32 shows a picture of this distribution. The binomial histogram has a slight
negative skew (it is symmetric only when 7 = .5).
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Figure 1.32 A binomial histogram when n = 8 and 7 = .5625
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Use of the binomial distribution formula can be tedious when n is large. Appendix
Table 1I gives a tabulation of p(x) for a few selected values of n and 7. This will allow
you to practice binomial calculations without referring to the formula. Alternatively,
values of p(x) for any n and 7 can be obtained from Minitab and other statistical com-
puter packages.

The Poisson Distribution

The Poisson distribution is usually used as a model for the number of times an “event”
of some sort occurs during a specified time period or in a particular region of space.
Examples include the number of accidents that occur on a segment of highway during
a particular 24-hour period, the number of blemishes on the exterior of a new automo-
bile, the number of customers in a grocery store’s express line on Wednesday at 6 p.m.,
and the number of plants of a particular species that are found in a chosen geographic
sampling region.

The Poisson Distribution

The Poisson mass function is

—A X

p(x) = x=0,1,2,3,...

x!

where the parameter A must satisfy A > 0.

The condition p(x) = 0 is clearly satisfied. The fact that >~ , p(x) = 1 is a consequence
of multiplying both sides of the following infinite series expansion by e M

2 3

A __ . -
d=THA+T o

We shall see in Chapter 2 that A can be interpreted as the average rate at which events
occur.

Example 1.22 Let x denote the number of creatures of a particular type captured in a trap during
a given time period. Suppose that x has a Poisson distribution with 4.5, so, on aver-
age, traps will contain 4.5 creatures. [ The article “Dispersal Dynamics of the Bivalve
Gemma Gemma in a Patchy Environment (Ecological Monographs, 1995: 1-20) sug-
gests this model; the bivalve Gemma gemma is a small clam]. The proportion of traps
with five creatures is

2—45(4.5>5

(proportion with x = 5) = - 1708
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The proportion of traps having at most five creatures is
(proportion with x = 5) = p(0) + p(1) + - - - + p(5) = .7029 (roughly 70%)

so the proportion of traps with at least six creatures is 1 —.7029 =.2971. As x
increases, p(x) decreases but never quite reaches zero. The proportions for the first
13 x values follow; their sum is .9992. Figure 1.33 shows the corresponding Poisson

histogram.
X: 0 1 2 3 4 5 6
p(x): .0I11 .0500 .1125 .1687 .1898 .1708 .1281
X: 7 8 9 10 11 12

p(x): 0824 .0463 .0232 .0104 .0043 .0016

Proportion
20 [— -
AS = N —_
10 = ]
.05 =
0 VI—JTI HEENEE NN |

0 2 4 6 8 10 12

Figure 1.33 Poisson histogram when A= 4.5

A small tabulation of the Poisson mass function for selected values of » appears in Ap-
pendix Table 1.

The Poisson Approximation to the Binomial Distribution

Often a binomial scenario involves a group size n that is quite large in combination with
a success proportion 7 close to zero. Under such circumstances, the binomial mass func-
tion can be well approximated by the Poisson mass function with A= n7r. In particular, if
n =100, 7= .01, and A= n7 = 20, then

! _ s
L (1 —ay =t

xl(n —x)! x!

A more formal statement of this result is that the Poisson mass function on the right-
hand side is the limit of the binomial function on the leftasn — «, # — 0O insucha
way that nm — A.
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Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



56

Example 1.23

Section 1.6 Exercises

52.

CHAPTER | Data and Distributions

Components of a certain type are shipped from a supplier to customers in lots of 5000.

Because the purchaser cannot check the condition of each component, a sample of 25
is selected and tested. The entire lot will then be accepted only if the number of compo-
nents x that do not conform to specification is at most three (so here S’s are nonconform-
ing units, not what we usually think of as a success). Suppose that .5% of all components
are nonconforming, giving A = 100(.005) = .5. Then the proportion of acceptable lots is

proportion of lots with x =3

=p(0) + p(1) + p(2) + p(3)
_ 100! 0 wo , ., 100! ; o
= Dioor 005 (995) 4 - + 5 5(.005)°(.995)
e ’(.5) e ’(.5)°
“T-F -}—T

=.6065 +.3033 +.0758 + .0126

=.9982

The exact proportion using the binomial mass function is .6058 + .3044 + .0757 +

0124 = .9983.

Many applications of the Poisson distribution are in fact based on an underlying
binomial situation without the values of n and 7 being stated explicitly. For example,
a very large number of vehicles may pass over a given stretch of highway during a par-
ticular time period, but the long-run proportion of vehicles receiving speeding tickets
will be quite small, so the number of ticketed vehicles will have at least approximately

a Poisson distribution.

When circuit boards used in the manufacture of com-

pact disc players are tested, the long-run percentage

of defectives is 5%. Let x denote the number of de-

fective boards in a batch of 25 boards, so that x has a

binomial distribution with n = 25 and 7 = .05.

a. What proportion of batches have at most 2 defec-
tive boards?

b. What proportion of batches have at least 5 defec-
tive boards?

c. What proportion of batches will have all 25 boards
free of defects?

. A company packages its crystal goblets in boxes con-

taining six goblets. Suppose that 12% of all its goblets

54.

have cosmetic flaws and that the condition of any par-

ticular goblet with respect to flaws is independent of

the condition of any other goblet.

a. What proportion of boxes will contain only one
goblet with a cosmetic flaw?

b. What proportion of boxes will contain at least two
goblets with cosmetic flaws?

c. What proportion of boxes will have between
one and three goblets, inclusive, with cosmetic
faws?

On his way to work, a friend of ours must pass through
ten traffic signals. Suppose that in the long run, she
encounters a red light at 40% of these signals and that
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whether any particular signal is red is independent of

whether any other one is red.

a. On what proportion of days will our friend en-
counter at most two red lights? At least five red
lights?

b. On what proportion of days will our friend en-
counter between two and five (inclusive) red
lights?

. Suppose that 10% of all bits transmitted through

a digital communication channel are erroneously

received and that whether any particular bit is er-

roneously received is independent of whether any

other bit is erroncously received. Consider sending

a very large number of messages, each consisting of

20 bits.

a. What proportion of these messages will have at
most 2 erroneously received bits?

b. What proportion of these messages will have at
least 5 erroneously received bits?

c. For what proportion of these messages will more
than half the bits be erroneously received?

Components arrive at a distributor in very
large batches. A batch can be characterized as ac-
ceptable only if the fraction of defective compo-
nents in the batch is at most .10. The distributor
decides to randomly select ten components from
the batch, test each one, and accept the batch
only if the sample contains at most two defec-
tive components. Assume that the condition of
any particular component is independent of any
other.

a. Ifthe actual fraction of defectives in each batch is
only 7 = .01, what proportion of batches will be
accepted? Repeat this calculation for the follow-
ing values of 7r: .05, .10, .20, and .25.

b. A graph of the proportion of batches accepted
versus the actual fraction of defectives m is
called the operating characteristic curve. Use
the results of part (a) to sketch this curve for
0=m=1 (proportion of batches accepted is
on the vertical axis and 7 is on the horizontal
axis).

c. Suppose the distributor decides to be more
demanding by accepting a batch only if
the sample contains at most one defective
component. Repeat parts (a) and (b) with

57.

59.

60.

1.6 Exercises 57

this new acceptance sampling plan. Does
this plan appear more satisfactory than the
original plan?

Suppose that the number of drivers who travel be-

tween a particular origin and destination during a

designated time period has a Poisson distribution

with parameter A = 20 (suggested in the article

“Dynamic Ride Sharing: Theory and Practice,” |.

of Transp. Engr., 1997: 308-312). In the long run,

in what proportion of time periods will the number

of drivers

a. Beatmost 107

b. Exceed 207

c. Be between 10 and 20, inclusive? Be strictly
between 10 and 20?

. Let x be the number of material anomalies occur-

ring in a particular region of an aircraft gas-turbine

disk. The article “Methodology for Probabilistic

Life Prediction of Multiple-Anomaly Materials”

(Amer. Inst. of Aeronautics and Astronautics |.,

2006: 787-793) proposes a Poisson distribution for

x. Suppose that A = 4.

a. What proportion of gas-turbine disks have exactly
one anomaly?

b. What proportion of gas-turbine disks have at least
three anomalies?

c. What proportion of gas-turbine disks have be-
tween one and six anomalies inclusive?

Let x denote the number of trees in a quarter-acre
plot within a certain forest. Suppose that x has a
Poisson distribution with A = 20 (corresponding to
an average density of 80 trees per acre). In what pro-
portion of such plots will there be at least 15 trees?
At most 25 trees?

An article in the Los Angeles Times (Dec. 3, 1993)
reports that 1 in 200 people carry the defective
gene that causes colon cancer. Let x denote the
number of people in a group of size 1000 who
carry this defective gene. What is the approximate
distribution of x? Use this approximate distribu-
tion to determine the proportion of all such groups
having at least 8 people who carry the defective
gene, as well as the proportion of all such groups
for which between 5 and 10 people (inclusive)
carry the defective gene.
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Supplementary Exercises

61

62

63.

CHAPTER | Data and Distributions

. The accompanying frequency distribution of fracture
strength (MPa) observations for ceramic bars fired
in a particular kiln appeared in the article “Evaluat-
ing Tunnel Kiln Performance” (Amer. Ceramic Soc.

Bull., August 1997: 59-63).

81— 83— 85— 87— 89—
Clas g3 <85 <87 <89 <91
Frequency: 6 7 17 30 143
Class. 91— 93— 95— 97—

<93 <95 <97 <99
Frequency: 28 22 13 3

a. Construct a histogram based on relative frequen-
cies, and comment on any interesting features.

b. What proportion of the strength observations are
atleast 857 Less than 957

c. Roughly what proportion of the observations are
less than 90?

. The article cited in Exercise 61 presented compel-
ling evidence for assuming that fracture strength
(MPa) of ceramic bars fired in a particular kiln
is normally distributed (while commenting that
the Weibull distribution is traditionally used as

3.75,

which is consistent with data given in the article.

a model). Suppose that w = 90 and o =

a. In the long run, what proportion of bars would
have strength values less than 907 Less than 95?7 At
least 95?

b. In the long run, what proportion of bars would
have strength values between 85 and 957 Between
80 and 100?

c. What value is exceeded by 90% of the fracture
strengths for all such bars?

d. What interval centered at 90 includes 99% of all

fracture strength values?

Once an individual has been infected with a cer-
tain disease, let x represent the time (days) that
elapses before the individual becomes infectious.
The article “The Probability of Containment for
Multitype Branching Process Models for Emerg-
ing Epidemics” (]. of Applied Probability, 2011:
173-188) proposes a Weibull distribution with & =
2.2and B = 1.1 for x — .5 (i.e. the Weibull density
curve is shifted to the right of 0 by .5; Minitab refers
to .5 as the value of the threshold parameter).

64.

65.

66.

a. What proportion of elapsed times exceed
1.5 days?

b. What is the 90th percentile of the elapsed time
distribution?

Let x denote the distance (m) that an animal moves

from its birth site to the first territorial vacancy it en-

counters. Suppose that for banner-tailed kangaroo

rats, x has an exponential distribution with parame-

ter A = .01386 (as suggested in the article “Compe-

tition and Dispersal from Multiple Nests,” Ecology,

1997: 873-883).

a. What proportion of distances are at most 100 m?
At most 200 m? Between 100 m and 200 m?

b. What proportion of distances are at least 50 m?

c. What is the median distance, that is, the value that
separates the smallest 50% of all distances from
the largest 50%?

Suppose the unloading time x (centiminutes) of

a forwarder in a harvesting operation could be as-

sumed to be lognormal with u = 6.5 and o = .75,

as suggested in the article “Simulating a Harvester-

Forwarder Softwood Thinning” (Forest Products .,

May 1997: 36-41).

a. What proportion of unloading times exceed 10007
20007 30002

b. What proportion of times are between 2500 and
5000?

c. What value characterizes the fastest 10% of all
times?

d. Sketch a graph of the density function of x. Is the
positive skewness quite pronounced?

In an experiment, 25 laminated glass units configured
in a particular way are subjected to an impact test (cf.
“Performance of Laminated Glass Units Under Simu-
lated Windborne Debris Impacts,” J. of Architectural
Engr., 1996: 95-99). We are interested in the number
of units that sustain an inner glass ply fracture. Sup-
pose that the long-run proportion of all such units that
fracture is .20. In the long run, for what proportion of
such experiments will the number of fractures be

a. Atleast 10?

b. Atmost 57

c. Between 5 and 10 inclusive?

d. Strictly between 5 and 10?
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67.

68.

Airlines frequently overbook flights. Suppose that for
a plane with 100 seats, an airline takes 110 reserva-
tions. Let x represent the number of people with res-
ervations who actually show up for a sold-out flight.
From past experience, we know that the distribution
of x is as follows:

x: 95 96 97 98 99 100 101 102 103

p(x): .05 .10 .12 .14 24 .17 .06 .04 .03
Xx: 104 105 106 107 108 109 110
p(x): .02 .01 .005 .005 .005.0037.0013

a. For what proportion of such flights is the airline
able to accommodate everyone who shows up
for the flight?

b. For what proportion of all such flights is it not pos-
sible to accommodate all passengers?

c. For someone who is trying to get a seat on such
a flight and is number 1 on the standby list,
what proportion of the time is such an indi-
vidual able to take the flight? Answer the ques-
tion for individuals who are number 3 on the
standby list.

The accompanying data are observations on shower
flow rate for a sample of 129 houses in Perth, Australia
(“An Application of Bayes Methodology to the Analy-
sis of Diary Records in a Water Use Study,” |. Amer.
Stat. Assoc., 1987: 705-711):

46 123 71 70 40 92 67 69
1.5 51 38 11.2 105 143 80 88
64 51 56 96 75 75 62 58
23 34 104 98 66 37 64 6.0
83 65 76 93 92 73 50 63
138 62 54 48 75 60 69 108
75 66 50 33 76 39 119 22
150 72 61 153 189 72 54 55
43 90 127 113 74 50 35 82
84 73 103 119 60 56 95 93
104 97 51 67 102 62 84 70
48 56 105 146 108 155 75 64
34 55 66 59 150 96 78 7.0
69 41 36 119 37 57 68 113
93 96 104 93 69 98 91 106
45 62 83 32 49 50 60 82
6.3

69.

70.

Supplementary Exercises 59

a. Construct a stem-and-leaf display of the data.

b. What is a typical or representative flow value?
Does the data appear to be highly concentrated or
quite spread out about this typical value?

c. Does the distribution of values appear to be rea-
sonably symmetric? If not, how would you de-
scribe the departure from symmetry?

d. Does the data set appear to contain any outliers?

e. Construct a histogram using class boundaries 2, 3,
4,5,6,7,8,9,10, 12, 14, 16, and 20. From your
histogram, approximately what proportion of the
observations are at most 117 Compare this with
the exact proportion that are at most 11.

Let x denote the vibratory stress (psi) on a wind
turbine blade at a particular wind speed in a wind
tunnel. The article “Blade Fatigue Life Assessment
with Applications to VAWTS” (]. of Solar Energy
Engr., 1982: 107-111) proposes the Rayleigh distri-
bution as a model; the density function is

X 2 2
X rles)

fly=1 0’

x>0

0 otherwise

a. Verify that f(x) is a legitimate density function.

b. Suppose that & = 100 (a value suggested by a
graph in the cited article). What proportion of vi-
bratory stress values will be at most 2007 At least
200? Between 100 and 200?

The article “Error Distribution in Navigation” (J. In-
stitute of Navigation, 1971: 429-442) suggests that
the frequency distribution of positive errors (magni-
tudes of errors) is well approximated by an exponen-
tial distribution. Let x denote the lateral position
error (nautical miles), which can be either positive
or negative, and suppose the density function of x is
f(x) = (1)e M for —eo < x < oo,
a. Sketch the corresponding density curve, and verify
that f(x) is a legitimate density function.
b. What proportion of errors are negative? At most 2?
Between —1 and 2?

. “T'ime headway” in traffic flow is the elapsed time be-

tween the time that one car finishes passing a fixed
point and the instant that the next car begins to pass
that point. Let x be the time headway (sec) for two
consecutive cars on a freeway during a period of heavy
flow. The following density function is essentially the
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60 CHAPTER | Data and Distributions

one suggested in “The Statistical Properties of Freeway
Trafhc” (Transportation Research, 1977: 221-228):

—15(:-.5) -
f<x>={.15e x>.5

0 otherwise

a. Sketch the corresponding density curve, and verify
that f (x) is a legitimate density function.

b. What proportion of time headways are at most
5 sec? Between 5 and 10 sec?

c. What value separates the smallest 50% of all time
headways from the largest 50%?

d. What value characterizes the largest 10% of all
time headways?

72. A k-out-of-n system is one that will function if and
only if at least k out of the n individual components
in the system function. If individual components
function independently of one another and the
long-run proportion of components that function
is .9, what is the long-run proportion of 3-out-of-5
systems that will function?

-

73. An insurance company offers its policyholders a num-
ber of different premium payment options. Let x de-
note the number of months between successive pay-
ments chosen by a policyholder. For any particular
number k, the proportion of x values that are at most k
(e, =k) is called a cumulative proportion.Consider
the following cumulative proportions: 0 for x < 1, .30
forl ,=x<3, 40for3=x<4, 45for4 =x<6,.60
for6=x<12,and | forx= 12.

a. Graph this cumulative proportion function, that

is, graph (proportion of x values = k) versus k.

b. Determine the mass function of x. Hint: The cu-
mulative proportion function jumps only at pos-
sible values of x.

c. Use the cumulative proportion function to deter-
mine the proportion of all policyholders for which
3 = x =6, and check to see that the mass function
gives this same proportion.

74. Based on data from a dart-throwing experiment, the
article “Shooting Darts” (Chance, Summer 1997,
16-19) proposed that the horizontal and vertical er-
rors from aiming at a point target should be indepen-
dent of one another, each with a normal distribution
having parameters u = 0 and o It can then be shown
that the density function of the distance from the tar-
get to the landing point is

fo)=—5¢""  y>0

0_2

a. This pdfis a member of what family introduced in
this chapter?

b. If o = 20 mm (close to the value suggested in the
paper), what proportion of darts will land within
25 mm (roughly 1 in.) of the target?

75. The bursting strength of wine bottles of a certain type
is normally distributed with parameters uw = 250 psi
and o = 30 psi. If these bottles are shipped 12 to a
carton, in what proportion of cartons will at least one
of the bottles have a bursting strength exceeding 300
psi? Hint: Think of a bottle as a success S if its burst-
ing strength exceeds 300 psi.
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Numerical Summary
Measures

MichaelTaylor/Shutterstoc}

2.1 MEASURES OF CENTER

2.2 MEASURES OF VARIABILITY

2.3 MORE DETAILED SUMMARY QUANTITIES
2.4 QUANTILE PLOTS

INTRODUCTION

In Chapter |, we learned how to describe sample data using either a stem-
and-leaf display or a histogram. We then saw how a density function or mass
function could be used to represent the distribution of a variable x in an entire
population or process. Often an investigator will want to obtain or convey in-
formation about particular characteristics of data. In this chapter, we first in-
troduce several numerical summary measures that describe where a sample or
distribution is centered. Another important aspect of a sample or distribution
is the extent of spread about the center. In Section 2.2, we develop the most
useful measures of variability. In Section 2.3, we consider more detailed data
summaries and how they can be combined to yield concise yet informative data
descriptions. Once sample data has been obtained, it is often important to know
whether it is plausible that the data came from a particular type of distribution,
such as a normal distribution or a Weibull distribution. In Section 2.4, we show
how to construct a picture from which the plausibility of any particular type of
underlying distribution can be judged.

61
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62 CHAPTER 2 Numerical Summary Measures

2.1 MEASURES OF CENTER

A preliminary sense of where a data set is centered can be gleaned from a stem-and-leaf
display or a histogram. A precise quantitative assessment entails calculating a measure of
center such as the mean or median; the resulting number can then be regarded as being rep-
resentative or typical of the data. First, we consider measures of center for sample data, and
then we turn our attention to analogous measures for distributions of a numerical variable x.

Measures of Center for Data

Suppose that the sample consists of observations on a numerical variable x. We shall
use the letter n to represent the sample size (number of observations in the sample, e.g.,
n = 10). The individual observations will be denoted by x, x,, . . ., x,. The subscripts
typically refer to the time order in which the observations were obtained—the first ob-
servation is x,, the second observation is x,, and so on. In general, the subscripts are un-
related to the magnitudes of the observations: x, is not usually the smallest observation,
nor is x,, the largest sample value.

The Sample Mean

The most frequently used measure of center is simply the arithmetic average of the n
observations.

DEFINITION The sample mean of observations xy, . . ., x,, denoted by x, is given by

n
+x, 4+ 2.
S I Xy =1
x: =
n n

The numerator of x can be written more informally as >x,, where the summation
is over all sample observations.

For reporting x, we recommend using decimal accuracy of one digit more than the ac-
curacy of the x/s. Thus if observations are stopping distances with x; = 125, x, = 131,
and so on, we might have x = 127.3 ft.

Example 2.1 In recent years there has been growing commercial interest in the use of what is
known as internally cured concrete. This concrete contains porous inclusions most
commonly in the form of lightweight aggregate (LWA). In the article “Characterizing
Lightweight Aggregate Desorption at High Relative Humidities Using a Pressure Plate
Apparatus” (J. of Materials in Civil Engr., 2012: 961-969), researchers examined
various physical properties of 14 LWA specimens. The following are the 24-hour
water absorption percentages for the 14 specimens:

x, =160 x,=305 x=177 x =175 «x =141
x,=10.0 x, =156 «x =150 x =191 x,=179

189 x,=185 x;=122 x,=060

X1
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2.1 Measures of Center 63

Figure 2.1 shows a stem-and-leaf display of the data (the tenths digit is truncated);
a water absorption percentage in the midteens appears to be “typical.” With
>x; = 229.0, the sample mean is x = % = 16.36, a value consistent with informa-
tion conveyed by the stem-and-leaf display.

0H | 6

1L | 024

1H | 556777889

2L

2H

3L 0

Figure 2.1 A stem-and-leaf display
of the water absorption data

The mean suffers from one deficiency that makes it an inappropriate measure of
center under some circumstances: Its value can be greatly affected by the presence
of even a single outlier (unusually large or small observation). In Example 2.1, the
value x, = 30.5 is obviously an outlier. Without this observation, x = 15.27; the outlier
increases the mean by more than 1%. If the 30.5 observation were replaced by the
relatively large value 90.0, a really extreme outlier, then x = 288.5/14 = 20.61, which is
larger than any of the other observations!

The Sample Median

An alternative measure of center that resists the effects of outliers is the median. The me-
dian strip of a roadway divides the roadway into two equal parts, and the sample median does
the same for the sample. If, for example, n = 5 and the observations are ordered from small-
est to largest, the third observation from either end is the median. When n = 6, though,
there are two middle values in the ordered list; the median is the average of these two values.

DEFINITION The sample median, denoted by x, is obtained by first ordering the sample obser-
vations from smallest to largest. Then

+1
single middle value = (nz>th value on ordered list n odd

5=
ft
average of Wo _ average of %th and (Z + l>th values n even

middle values

Example 2.2 People not familiar with classical music might tend to believe that a composer’s in-
structions for playing a particular piece are so specific that the duration would not
depend at all on the performer(s). However, there is typically plenty of room for
interpretation, and orchestral conductors and musicians take full advantage of this.
We went to the website ArkivMusic.com and selected a sample of 12 recordings of
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64 CHAPTER 2 Numerical Summary Measures

Beethoven’s stunningly beautiful Symphony No. 9 (the “Chorale”), and found the
following durations (min) listed in increasing order:

62.3 62.8 63.6 652 657 664 674 684 68.8 70.8 757 79.0
Figure 2.2 is a dotplot of the data:

T T T
60 65 70 75 80

Duration

Figure 2.2 Dotplot of the data from Example 2.2

Since n = 12 is even, the sample median is the average of the n/2 = sixth and
(n/2 + 1) = seventh values from the ordered list:

7= AR _ 6609
2
Note thatif the largest observation 79.0 had not been included in the sample, then the
resulting sample median for the n = 11 remaining observations would have been the
single middle value 67.4 [the (n + 1)/ 2 = sixth ordered value —i.e., the sixth value in
from either end of the ordered list|. The sample mean is x = >x, = §16.1/12 = 68.01,
a bit more than a full minute larger than the median. The mean is pulled out a bit
relative to the median because the sample “stretches out” somewhat more on the up-
per end than on the lower end.

The largest observation or even the largest two or three observations in Ex-
ample 2.2 can be increased by an arbitrary amount without impacting x. Similarly,
decreasing several of the smallest observations by any amount does not affect the me-
dian. In contrast to x, the median is impervious to many outliers.

Trimmed Means

A trimmed mean is a compromise between X and &; it is less sensitive to outliers than
the mean but more sensitive than the median. The observations are again first ordered
from smallest to largest. Then a trimming percentage 100r% is chosen, where
r is a number between 0 and .5. Suppose that r = .1, so the trimming percentage
is 10%. Then if n = 20, 10% of 20 is 2; the 10% trimmed mean results from deleting
(trimming) the largest two and the smallest two observations, and then averaging the
remaining 16 values. Notice that the trimming percentage specifies the number of
observations to be deleted from each end of the ordered list. The sample mean is a 0%
trimmed mean, whereas the median is a trimmed mean corresponding to the largest
possible trimming percentage (e.g., a 45% trimmed mean when n = 20).

Example 2.3 Consider the following 20 observations, ordered from smallest to largest, each repre-
senting the lifetime (hr) of a certain type of incandescent lamp:
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2.1 Measures of Center 65

612 623 666 744 883 898 964 970 983 1003
1016 1022 1029 1058 1085 1088 1122 1135 1197 1201

The sample mean is x = 19,299/20 = 965.0, and x = (1003 + 1016)/2 = 1009.5.
The 10% trimmed mean is

_ 19,299 — 612 — 623 — 1197 — 1201
Fit0) = T =979.1

The effect of trimming here is to produce a central value that is somewhat larger than
the mean yet considerably below the median. Similarly, the 20% trimmed mean
averages the middle 12 values to obtain X, = 999.9, which is even closer to the
median. The various measures of center are illustrated in the dotplot of Figure 2.3.

Tlm
600 800 T 1000T 1200
% 7

Figure 2.3 Dotplot of lifetimes and measures of center for Example 2.3

Statisticians generally recommend a trimming percentage between 5% and
25%. Notice that (r)(n) may not be a whole number; if r = .10 and n = 25, then
(r)(n) = 2.5. Eliminating two observations from each end gives a trimming percent-
age of 8%, whereas eliminating three observations gives 12%. The resulting two x,’s
can then be averaged to obtain the 10% trimmed mean. More generally, a trimmed
mean for any trimming percentage can be obtained by interpolation.

Measures of Center for Distributions

The primary measure of center for a discrete distribution is the mean value, and both the
mean value and the median are frequently used measures for continuous distributions.

Discrete Distributions

Plastic parts manufactured using an injection molding process may exhibit one or more
defects, including sinks, scratches, black spots, and so on. Let x represent the number of
defects on a single part, and suppose the distribution of x is as follows:

X: 0 1 2 3 4
px): .80 14 .03 .02 01

A picture of the distribution appears in Figure 2.4. Where is this distribution centered?
That is, what is the mean or long-run average value of x? A first thought might be to sim-
ply average the five possible values of x to obtain a mean value of 2.0. But this entails
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66 CHAPTER 2 Numerical Summary Measures

giving the same weight to each possible value, whereas the distribution indicates that
x = 0 occurs much more frequently than any of the other values. So what is needed is
a weighted average of x values.

Proportion

.80 [—

70

.50

40

20 [~

0 | I I T E B
0 1 2 3 4

Figure 2.4 Distribution of x, the number of defects on a
manufactured plastic part

DEFINITION The mean value (alternatively, expected value) of a discrete variable x, denoted
by w, or just u [alternatively, E(x)] is given by

=D xplx)

where the summation is over all possible x values.

Example 2.4 We return now to the plastic part scenario introduced at the outset of this subsection.
The mean value of x, the number of defects on a part, is

4
M= ZX'P(X)

= 0(p(0)) + 1
= (0)(:80) + (
= .30

When we consider the population of all such parts, the population mean value of
x is .30. Alternatively, .30 is the long-run average value of x when part after part is
monitored. It can also be shown that the histogram of the distribution of Figure 2.4
will balance on the tip of a fulerum placed on the horizontal axis only if the tip is
at .30; w is the balance point of the distribution.
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2.1 Measures of Center 67

In Example 2.4, w is not a possible value of x. In the same way, if x is the number of
children in a household, the population mean value of x might be 1.7 even though there
are no households with 1.7 children.

In Chapter 1, we introduced two important types of discrete distributions, the bi-
nomial distribution and the Poisson distribution. The binomial distribution models the
number of “successes” in a group of n items when conditions of individual items are
independent of one another and the long-run proportion of successes is 7 (a number
between 0 and 1). The mean value of x is

Zxx' (n —x)' m(l= )

The summation looks very intimidating, but fortunately some algebraic manipulation
vields an extremely simple result.

If x is a binomial variable with parameters n = group size and = = success proportion,
then

n.

Thus if n = 10 and 7= .8, u=(10)(.8) = §; we “expect” eight of the ten items to be
successes, a very intuitive result.
When x is a Poisson variable with parameter A,

=S —,\/\;L oo /\/\x
B, = Z
x=0 x=
o 7)\Axfl
/\le (x = D!

If we now lety = x — 1, the range of summation is from y = 0 to oe:
oo ei,\)\/v

=0

= A - (sumof a Poisson mass function) = A(1) = A

Let x be a Poisson variable with parameter A. The mean value of x is A itself.

Suppose, for example, that x is the number of burnt potato chips in a 13-oz bag. If x
has a Poisson distribution with parameter A = 2.5, then p_= 2.5; the population mean
number of burnt chips per bag is 2.5.

Continuous Distributions

A distribution for a continuous variable x is specified by a density function f(x) whose
graph is a smooth curve. To obtain u, we replace summation in the discrete case by
integration and replace the mass function p(x) by the density function.
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DEFINITION The mean value (or expected value) of a continuous variable x with density
function f(x) is given by

w, = Jix - f(x) dx

Just as w in the discrete case is the balance point for the histogram corresponding to p(x),
in the continuous case w is the balance point for the density curve corresponding to f(x).

Example 2.5 The distribution of the amount of gravel (tons) sold by a particular construction sup-
ply company in a given week is a continuous variable x with density function
flx) = 1.5(1 — x%) 0=x=1

(flx) = 0 outside the interval from 0 to 1). The density curve is shown in Figure 2.5.
Knowledge of the mean value of x will help the company decide on a price for the gravel:

= f xf(x) dx = jolx[l.S(l — )] dx

1 XZ X4
= 1.5J0(x—x3) =15 (2—4>

1

=375

0

1.5

n

Figure 2.5 The density curve
and mean value for Example 2.5

In Chapter 1, we introduced the normal distribution with parameters w and o. The
symmetry of the associated density curve about w certainly suggests that w is the mean
value, and this is indeed the case:

o0

[ Ade=[ (u+x—wfin de

— o0

- 1 v 2 2\ *
:MJ_ LN “)/<Z”)dx+f (x — )

ye_yz/zdy using y = _—

:w;r
V27— Y
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The latter integral is zero because the integrand g(y) is an odd function (g(—y) =
—g(y)), which gives the desired result.

A lognormal variable x is one for which In(x) has a normal distribution with mean
value p. That is, p,, ) = . Therefore, it might seem that u, = ¢*, but this is not the
case. It can be shown that

.= ep.+¢rz/2
x

In Example 1.19 of Chapter 1, uw=.353 and o =.754, from which we calculate
e =142 whereas
_ e,asa+.§(.754)l =159

The mean value of a Weibull variable is a somewhat complicated expression involving
the parameters a and B. Consult the chapter references for details.

u and x

Ifx,, ..., x, have been randomly selected from some population or process distribution
with mean value u, then the sample mean x gives a point estimate for w. In Example 2.1,
we calculated X =16.36, so a reasonable educated guess for the population mean
water-absorption percentage is 16.36%. Estimation—both point (a single number) and
interval—will be discussed in Chapter 7.

The Median of a Distribution

Just as the sample median x separates the sample into two equal halves, the median g
of a continuous distribution divides the area under the density curve into two equal
halves. The defining condition is

Example 2.6 (Example 2.5 continued) The median for the distribution of weekly gravel sales
satisfies

n
=.5

0

P x3
j 15(1 — ) dx = 1.5(x —)
) 3

Using ¢ in place of f, we have the cubic equation 1.5(c —c¢’/3) = .5, whose so-
lution is ¢ = i = .347. We previously calculated the mean as u, = .375, which
is somewhat larger than the median because the distribution is positively skewed
(see Figure 2.5).

Figure 2.6 shows the relationship between the mean and the median for various
types of unimodal distributions or (smoothed) histograms. The median of a discrete dis-
tribution can also be defined; see one of the chapter references for details.
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Section 2.1 Exercises

CHAPTER 2 Numerical Summary Measures

Mean = Median

Median Mean

Mean Median

Figure 2.6 The relationship between the mean and the median for a continuous

distribution or smoothed histogram

Just as the sample mean gives a point estimate of the population mean p, the sam-
ple median x gives a point estimate of the population median. If the population distribu-
tion is symmetric (as is any normal distribution), both x and x are estimates of the same
population characteristic, namely, the point of symmetry. The issue of which estimate to

use will be addressed in Section 7.1.

1. The May 1, 2009, issue of The Montclarian reported
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the following sales figures ($ 1000s) for a sample of
homes in Alameda, California, that were sold the
previous month:

590 815 575 608
408 540 555 679

a. Calculate and interpret the sample mean and

350 1285

median.

b. Suppose the sixth observation had been 985
rather than 1285. How would the mean and me-
dian change?

c. Calculate a 20% trimmed mean by first trimming
the two smallest and two largest observations.

d. Calculate a 15% trimmed mean.

. Exposure to microbial products, especially endo-

toxin, may affect human vulnerability to allergic
diseases. The article “Dust Sampling Methods
for Endotoxin—An Essential but Underestimated
Issue” (Indoor Air, 2006: 20-27) considered various
issues associated with determining endotoxin con-
centration. The following data on concentration
(EU/mg) in settled dust for one sample of urban
homes and another of farm homes was kindly
supplied by the authors of the article.

U: 6.0 50 11.0  33.0 40 50
80.0 180 350 17.0 23.0

L 40 140 110 9.0 9.0 8.0

40 20.0 5.0 89 210 92

3.0 2.0 0.3

a. Determine the sample mean for each sample.
How do they compare?

b. Determine the sample median for each sample.
How do they compare? Why is the median for
the urban sample so different from the mean for
that sample?

c. Calculate the trimmed mean for each sample
by deleting the smallest and largest observation.
What are the corresponding trimming percent-
ages? How do the values of these trimmed
means compare to the corresponding means
and medians?

. The production of Bidri is a traditional craft of India.

Bidriware (bowls, vessels, and so on) is cast from an
alloy containing primarily zinc along with some
copper. Consider the following observations on
copper content (%) for a sample of Bidri artifacts in
London’s Victoria and Albert Museum (“Enigmas
of Bidri,” Surface Engr., 2005: 333-339), which are
listed in increasing order:
2.0 2425 26 26 27 2.7
2.8 3.0 3.1 3.2 3.3 3.3 3.4
3.4 3.6 3.6 36 36 37 44
46 47 48 53 101
a. Construct a stem-and-leaf display of the data.
How does it suggest that the sample mean and
median will compare?
b. Calculate the values of the sample mean and
median. Hint: >x; = 95.0.
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c. By how much could the largest observation,
10.1, be increased without affecting the value
of the sample median? By how much could this
value be decreased without affecting the value of
the sample median?

4. Suppose that after computing X, based on n sample

6.

x_, another observation x

observations x,, ..., x,, 41 be-
comes available. What is the relationship between
the mean of the first n observations, the new ob-
servation, and the mean of all n+ 1 observations?
The mean of the 10 observations in Exercise 1
is 640.5. If an 11th property had sold at a price
of 780, what would be the mean sale price for all

11 properties?

. In the article “Evaluation of Optimal Power Op-

tions for Base Transceiver Stations of Mobile
Telephone Networks Cameroon” (Solar Energy,
2012: 2935-2949), researchers recorded site spe-
cific information for remote telecommunications
stations throughout Cameroon. The following ob-
servations are daily energy demand readings (kWh)
for 12 stations:

24.58
36.59

17.76
31.79

2344
35.57

26.99
36.59

27.23
40.51

30.77
59.31

Without doing any computation, how do you think
the sample mean compares to the sample median?
What would you report as representative, or typical,
of the daily energy demand for these stations? What
prompted your choice?

Blood pressure values are often reported to the
nearest 5> mmHg (100, 105, 110, and so on). Sup-
pose the actual blood pressure values for nine ran-
domly selected individuals are

118.6
122.0

127.4
108.3

138.4
131.5

130.0
133.2

113.7

a. What is the median of the reported blood pres-
sure values?

b. Suppose the blood pressure of the second indi-
vidual is 127.6 rather than 127.4 (a small change
in a single value). How does this affect the me-
dian of the reported values? What does this say
about the sensitivity of the median to rounding
or grouping in the data?

7.

9.

10.

11.

2.1 Exercises 71

An experiment to study the lifetime (hr) for a cer-
tain type of component involved putting ten com-
ponents into operation and observing them for
100 hours. Eight of the components failed during
that period, and those lifetimes were recorded.
Denote the lifetimes of the two components still
functioning after 100 hours by 100+. The resulting
sample observations were 48, 79, 100+, 35, 92, 86,
57, 17, 100+, and 29. Which of the measures of
center discussed in this section can be calculated,
and what are the values of those measures? Note:
The data from this experiment is said to be “cen-
sored on the right”; patient lifetimes in medical ex-
perimentation are sometimes obtained in this way.

. Atarget is located at the point 0 on a horizontal axis.

Let x be the landing point of a shot aimed at the
target, a continuous variable with density function
f(x) =.75(1 — x*) for =1 =x = 1. What is the mean
value of x?

Let x denote the amount of time for which a book

on 2-hour reserve at a college library is checked out

by a student, and suppose that x has density func-

tion f(x) = .5x for 0 <x < 2.

a. What is the mean value of x? Why is the mean
value not 1, the midpoint of the interval of posi-
tive density?

b. What is the median of this distribution, and how
does it compare to the mean value?

c. What proportion of checkout times are within
one-half hour of the mean time? What propor-
tion are within one-half hour of the median time?

Let x have a uniform distribution on the interval from
ato b, so the density function of x is f (x) = 1/(b — a)
for a = x = b. What is the mean value of x?

The weekly demand for propane gas (1000s of gal-
lons) at a certain facility is a continuous variable
with density function

()

0 otherwise

l=x=2

fx) =

Determine both the mean value and the median.
In the long run, in what proportion of weeks will
the value of x be between the mean value and the
median?
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12.

13.

14.

2.2

CHAPTER 2 Numerical Summary Measures

Refer to Exercise 27 of Section 1.3, in which x was
the number of telephone lines in use at a speci-
fied time. If u = 2.64, what are the values of p(5)
and p(6)?

The distribution of the number of underinflated
tires x on an automobile is given in Exercise 26a(ii)
of Section 1.3. Determine the mean value of x.

Sometimes, rather than wishing to determine the
mean value of x, an investigator wishes to determine
the mean value of some function of x. Suppose, for
example, that a repairman assesses a fixed charge of
$25 plus $40 an hour that he spends on a job. Then
the revenue resulting from a job that takes x hours
is h(x) = 25+40x. If x is a continuous variable,

MEASURES OF VARIABILITY

the mean value of any function h(x) is computed

similarly to the way in which w itself is computed:

Hoy = fh(x) f(x) dx.

a. Refer to Exercise 9. Suppose the library, in a
desperate search for revenue to fund its op-
erations, charges a student h(x) = x* dollars
to check a book out on 2-hour reserve for
x hours. What is the mean value of the check-
out charge?

b. Suppose that h(x) = a + bx, a linear function of
x. Show that w; , = a + by (this is true for x con-
tinuous or discrete). If the mean value of repair
time is .5 hr for the repair situation mentioned
at the outset of this problem, what is the mean
value of repair revenue?

Reporting a measure of center gives only partial information about a data set or distribu-
tion. Different samples or distributions may have identical measures of center yet differ
from one another in other important ways. For example, for a normal distribution with
parameters u and o, the normal curve becomes more spread out as the value of o in-
creases. Figure 2.7 shows dotplots of three samples with the same mean and median, yet
the extent of spread about the center is different for all three samples. The first sample
has the largest amount of variability, the third has the smallest amount, and the second
is intermediate to the other two in this respect.

*
@)
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O0000 O ©)
00000 O @)
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Figure 2.7 Samples with identical measures of center but different

amounts of variability

Measures of Variability for Sample Data

The simplest measure of variability in a sample is the range, which is the difference
between the largest and smallest sample values. Notice that the value of the range
for sample 1 in Figure 2.7 is much larger than it is for sample 3, reflecting more vari-
ability in the first sample than in the third one. A defect of the range, though, is that
it depends on only the two most extreme observations and disregards the positions
of the remaining n — 2 values. Samples 1 and 2 in Figure 2.7 have identical ranges,
yet when we take into account the observations between the two extremes, there is
much less variability or dispersion in the second sample than in the first one.

Unless otherwise noted, all content on this page is © Cengage Learning.
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2.2 Measures of Variability 73

Our primary measures of variability involve quantities called deviations from the
mean: X, — X, X, — X, ..., x, — x. That s, the deviations from the mean are obtained by
subtracting x from each of the n sample observations. A deviation will be positive if the
observation is larger than the mean (to the right of the mean on the measurement axis)
and negative if the observation is smaller than the mean. If all the deviations are small in
magnitude, then all x;’s are close to the mean and there is little variability. On the other
hand, if some of the deviations are large in magnitude, then some x;’s lie far from ¥, sug-
gesting a greater amount of variability. A simple way to combine the deviations into a
single quantity is to average them (sum them and divide by ). Unfortunately, there is a
major problem with this suggestion:

n
sum of deviations = z (x,—x)=0

i=1

so that the average deviation is always zero (because >j_ X=X+ --+X=nx =
Sis1x,). In practice, the sum of the deviations may not be identically zero because of
rounding in x. The greater the decimal accuracy used in x, the closer the sum will be
to zero.

How can we change the deviations to nonnegative quantities so the positive and
negative deviations do not counteract one another when they are combined? One pos-
sibility is to work with the absolute values of the deviations and calculate the average
absolute deviation X |x; — x|/n. Because the absolute value operation leads to a number
of theoretical difficulties, consider instead the squared deviations (x, — %)%, (x, —=X)%, ...,
(x, — X)*. We might now use the average squared deviation ¥ (x, — ¥)*/n, but for several
reasons we will divide the sum of squared deviations by n — 1 rather than n.

DEFINITIONS The sample variance, denoted by s, is given by
2 _ Z(xi _E>Z _ Sxx

n—1 n—1

The sample standard deviation, denoted by s, is the (positive) square root of the

variance:
2

§ = S

An alternative computational formula for s*is given in Exercise 18.

The unit for s is the same as the unit for each of the x/s. If, for example, the observa-
tions are fuel efficiencies in miles per gallon (mpg), then we might have s = 2.0 mpg. A
rough interpretation of the sample standard deviation is that it is the size of a typical or rep-
resentative deviation from the sample mean within the given sample. Thus if s = 2.0 mpg,
then some x.’s in the sample are closer than 2.0 to x whereas others are farther away; 2.0 is a
representative (or standard) deviation from the mean fuel efficiency. If s = 3.0 for a second
sample of cars of another type, a typical deviation in this sample is roughly one and one-half
times what it is in the first sample, an indication of greater variability in the second sample.
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Example 2.7 The website www.fueleconomy.gov contains a wealth of information about the fuel
characteristics of various vehicles. In addition to EPA mileage ratings, there are many
vehicles for which users have reported their own values of fuel efficiency (mpg). Con-
sider the following sample of n = 11 efficiencies for the 2009 Ford Focus equipped
with an automatic transmission (for this model, EPA reports an overall rating of
27 mpg—24 mpg in city driving and 33 mpg in highway driving):

Car 3% X, — X (x, — %)*
1 273 —5.96 35.522
2 279 —5.36 28.730
3 32.9 —0.36 0.130
4 35.2 1.94 3.764
5 44.9 11.64 135.490
6 39.9 6.64 44.090
7 30.0 —3.26 10.628
8 29.7 —3.56 12.674
9 28.5 —4.76 22.658

10 32.0 —1.26 1.588

11 37.6 4.34 18.836

x;=365.9 2 =% =.04 S(x,—x)>=314110 x=33.26
Effects of rounding account for the sum of deviations differing slightly from zero. The
numerator of s* is S, = 314.110, from which

, S, 314110
ST o1 11-1

=31.41, s=5.60

The size of a representative deviation from the sample mean 33.26 is roughly 5.6 mpg.

Note: Of the nine people who also reported driving behavior, only three did more
than 80% of their driving in highway mode; we bet you can guess which cars they
drove. We haven'’t a clue why all 11 reported values exceed the EPA figure: Maybe
only drivers with really good fuel efficiencies communicate their results.

One explanation for the use of n — 1 in s goes back to the fact that > (x, — x) = 0.
Suppose that n = 5 and that x,—Xx=—4,x, —X=0,x;—x=1, and x; —x= —8§.
Since the sum of these four deviations is —5, the remaining deviation must be
x; — X =5 (so that the sum of all five deviations is zero). More generally, once any
n — 1 of the deviations are available, the value of the remaining deviation is deter-
mined. The n deviations actually contain only n — 1 independent pieces of informa-
tion about variability. Statisticians express this by saying that s* and s are based on
n — 1 degrees of freedom (df). Many inferential procedures encountered in later
chapters are based on some appropriate number of df.

The Variance and Standard Deviation of a Discrete Distribution

Let x be a discrete variable with mass function p(x) and mean value w. Just as w itself is
a weighted average of possible x values, where the weights come from the mass function,
the variance is a weighted average of the squared deviations (x — ) for possible x values.
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DEFINITIONS The variance of a discrete distribution for a variable x specified by mass function
p(x), denoted by a7 or just o (alternatively, V(x)), is given by

o = D= pl)

where the sum is over all possible x values. The standard deviation is o, the posi-
tive square root of the variance.

If a particular x value is far from u, resulting in a large squared deviation, it will
still not contribute much to variability in the distribution if p(x) is quite small. This
is desirable because any x value for which p(x) is quite small will be observed very
infrequently in a long sequence of selections from the population or process. Just
as s can be interpreted as the size of a representative deviation from the sample
mean, o can be interpreted as the size of a typical deviation from the population
Or process mean.

Example 2.8 Consider a computer system consisting of the computer itself, a monitor, and a printer.
Let x denote the number of system components that need service while under war-
ranty; possible x values are 0, 1, 2, and 3. Suppose that p(0) = .532, p(1) = 389,
p(2) = .076, and p(3) = .003 (these come from individual component failure propor-
tions of .2, .3, and .05 along with an assumption of component independence, so that
these proportions can be multiplied as we originally did in a binomial calculation).
Then w = .55 and

o= (x— ) px)

(0 — .55)%(.532) + (1 — .55)2(.389) + (2 — .55)%(.076)
+ (3 — .55)2(.003)

16093 + 07877 + .15979 + .01801 = 41750

from which o = .646.

An alternative computational formula for calculating o’ is given in Exercise 26, which
is similar to the computational formula for s> in Exercise 18.

Recall that the mean value of the binomial distribution based on group size n and
item success proportion 7 is just nr. The variance is also a simple expression, though
verification of this result involves some tedious manipulation of summations:

, nl

=0 x!(n—x)! (1 =) " =nm(l —m)

The standard deviation of a binomial distribution is then o = Vnar(1 — 7). Note that
o =0 if 7= 0 (in which case, every item is a failure, so x = 0 always) or =1 (ev-
ery item a success, so x = n always). The variance and standard deviation are largest
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when 7= .5[7(1 — 7r) is maximized for this value], that is, when there is a 50-50 split
between successes and failures. As 77 moves toward either 0 or 1, the variance and stan-
dard deviation decrease. If identical components are shipped in groups of size 25 and
the long-run success (doesn’t need warranty service) proportion is 77 = .9, then

w=259=225 o=V2509)(1)=V225=150

The mean value of a Poisson distribution with parameter A is A itself, and this is also
the variance of the distribution:
,e '\

=
‘= —A) ——=A
o ;](x -

(Again, much summation manipulation is required.) The standard deviation is, of course,
V. If the number of blemishes x on surfaces of a certain part has a Poisson distribution
with parameter A = 3.5, then the mean value is 3.5 and the standard deviation is 1.87.

The Variance and Standard Deviation of a Continuous Distribution

The variance of a continuous distribution with density function f(x) is obtained by re-
placing summation in the discrete case by integration and substituting f(x) for p(x).

DEFINITIONS The variance of a continuous distribution specified by density function f(x) is

o0

o= [ (e flx) dx

The standard deviation o is again the positive square root of the variance.

Example 2.9 The distribution of x = gravel sales during a given week (tons), introduced in
Example 2.5, was specified by the density function f(x) = 1.5(1 — x?) for x between
0 and 1. We found the mean value to be w = .375. The variance of the distribution is

1
pr =j0<x— 375)% - 1.5(1 — ) dx

Multiplying the factors in the integrand gives 1.5(—x* + .75x* + .859375x% — .75x +
.140625). Integrating this fourth-degree polynomial term by term gives o* = .059375
and o = .244.

The Case of a Normal Distribution

The two parameters of a normal distribution were denoted by w and o. We have already
seen that w is in fact the mean value, and it should come as no surprise that the second
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parameter is the standard deviation of the distribution. That is, a bit of integration ma-
nipulation shows that

- 1
Vix) = J x— )
W= s

o ) gy = 2

Let k be some fixed positive number. Consider the area under a normal curve with
parameters w and o that lies within k standard deviations of the mean value. That is,
we wish to determine the proportion of x values that lie in the interval from w — ko to
u + ko. Standardizing the interval limits gives

_k —
uz_k
g g

+ ko —
prko—p_,

Thus the desired proportion is the area under the standard normal (z) curve between
—k and k. This shows that the area within k standard deviations of the mean under any
normal curve depends only on k and not on the particular normal curve under consider-
ation. For k = 1, the desired proportion is the area under the z curve between —1 and 1.
From Appendix Table I, this area is .8413 — .1587 = .6826 = .68. Similar calculations
for k = 2 and k = 3 give .9544 and .9974, respectively. Thus for any variable x whose
distribution is well approximated by a normal curve:

Approximately 68% of the values are within 1 standard deviation of the mean.
Approximately 95% of the values are within 2 standard deviations of the mean.
Approximately 99.7% of the values are within 3 standard deviations of the mean.

These three statements together are often referred to as the empirical rule; the name
reflects the fact that histograms of a great many data sets have at least roughly the shape
of a normal curve.

Other Continuous Distributions

A variable x is said to have a lognormal distribution with parameters u and o if In(x) is
normally distributed with mean value w and standard deviation o In Section 2.1, we
pointed out that the mean value of x itself is not w. Similarly, the variance of x is not .
It can be shown that

2

V(x)= ez’”‘rl(e” -1

The variance of a variable having a Weibull distribution is even more complicated than
the mean value; consult one of the chapter references.

o’ and s*

The sample mean X is a sensible estimate (educated guess) for the value of the population
or process mean . Similarly, the sample variance should be defined so that it gives a rea-
sonable estimate of the population or process variance 0. Recall that o involves squared
deviations from p, that is, quantities of the form (x — w)”. If the value of u were known
to an investigator, a good estimate of & based on sample observations x,, .. ., x, would be
S (x, — w)*/n. It is natural to replace pu by X when the value of the former quantity is
unknown. However, it can be shown that >(x, — X< 2(x; — w)? unless X =, so X is
“closer” to the sample observations than is w. To compensate for this reduction in sum of
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Section 2.2 Exercises

15.

16.

CHAPTER 2 Numerical Summary Measures

squares, the value of the denominator n should also be reduced. According to a technical
criterion called unbiasedness, the sample size n should be replaced by the number of df
n — 1. The resulting sample variance s” will tend to provide good estimates of o,

In the article “Mechanical Reliability of Devices Sub-
dermally Implanted into the Young of Long-Lived and
Endangered Wildlife” (]. of Materials Engr. and Perfor-
mance, 2012: 1924-1931), researchers examined the
mechanical reliability of a thin enclosure for a biote-
lemetry device to be subdermally implanted in young
wild animals. Six enclosure specimens were subjected
to puncture tests. Each specimen was placed in a test
apparatus, and researchers recorded the necessary
force (N) for the puncture head to cause initial cracks
in the enclosure. Here is the corresponding data:
2006.1  2065.2 2118.9
1686.6  1966.9 1792.5
a. Calculate x and the deviations from the mean.
b. Use the deviations calculated in part (a) to ob-
tain the sample variance and the sample stan-
dard deviation.
c. Compute the sample standard deviation using a
calculator or software function to confirm the ac-
curacy of your answer in (b).

Return to the puncture test data given in Exercise 15.
a. Subtract 100 from each observation to obtain a
sample of transformed values. Now calculate the
sample variance of these transformed values and
compare it to s* for the original data.
b. Considerasamplex,, ..., x, andlety, = x, — ¢ for
i=1,2,...,n,wherecis some specified number.
Give a general argument to show that the sample
variance of the y/s is identical to that of the x/s.
Hint: How are y and x related?

. Suppose the following represent quiz scores (out of

15 points) for students in two different study groups:

Group 1: 10, 14, 8,7,12,7,11
Group 2: 5, 8,9.5,8.5,9,9.5, 13

a. Compute the mean and standard deviation for
each group.

b. Determine the range for each data set.

c. Create a dotplot for each data set and ensure you
use the same axis scale for each.

18.

19.

d. Notice that one group exhibits the smaller stan-
dard deviation but the other exhibits the smaller
range. Explain how it is possible for a data set to
have the smallest standard deviation yet not have
the smallest range. Hint: Keep in mind how stan-
dard deviation measures variability and compare
the dotplots you created.

Traumatic knee dislocation often requires surgery to
repair ruptured ligaments. One measure of recovery
is range of motion (measured as the angle formed
when, starting with the leg straight, the knee is bent
as far as possible). The given data on postsurgical
range of motion appeared in the article “Recon-
struction of the Anterior and Posterior Cruciate
Ligaments After Knee Dislocation” (Amer. |. Sports
Med., 1999: 189-197):

154 142 137 133 122 126
135 108 120 127 134 122

a. What are the values of the sample mean and

135

sample median?
b. An alternative computing formula for the nu-
merator of §° is:

1
S, =3(x,— %"=k ——(Zx,)*
n

Using this formula, determine the sample variance
of the data.
Hint: Sx, = 1695, Sx; = 222,581.

In the article “X-Ray Computed Tomography and
Nondestructive Evaluation of Clogging in Porous
Concrete Field Samples” (. of Materials in Civil
Engr.,2012: 1103-1109), investigators determined the
clogging percentage in porous concrete samples cored
from parking lots. Porosity profiles using computed
tomography scanned images were used in this study.
The following represent the average porosity (%) using
a gravimetric method for nine concrete cores:

8.10  20.50  26.54 19.68 14.87
1436 9.19 2355 2227
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20.

21.

22.

23.

Calculate and interpret the values of the sample
mean and sample standard deviation for this data.

Use the alternative computing formula for S, as
shown in Exercise 18 to determine the sample stan-
dard deviation for the average porosity measure-
ments presented in Exercise 19.

Consider the following information on ultimate
tensile strength (Ib/in.) for a sample of n = 4 hard
zirconium copper wire specimens (from “Charac-
terization Methods for Fine Copper Wire,” Wire |.
Intl., August 1997: 74-80):

x=76,831 s =180 smallestx,= 76,683
largest x; = 77,048

Determine the values of the two middle sample ob-
servations (and don’t do it by successive guessing!).
Hint: See Exercise 18 part b.

The federal test procedure (FTP) for determin-
ing the levels of various types of vehicle emissions
is time-consuming and expensive to perform. Ac-
cording to the article “Motor Vehicle Emissions
Variability” (J. of the Air and Waste Mgmnt. Assoc.,
1996: 667-675), there is a widespread belief that
repeated FTP measurements on the same vehicle
would yield identical (or nearly identical) results.
The accompanying data is from one particular ve-
hicle characterized as a high emitter:

HC (gm/mi): 13.8
CO (gm/mi): 118

18.3
149

32.2
232

32.5
236

a. Compute the sample standard deviations for the
HC and CO observations. Does the widespread
belief appear to be justified?

b. The sample coefficient of variation s/x (or 100s/x)
assesses the extent of variability relative to the
mean. Values of this coefficient for several different
data sets can be compared to determine which
data sets exhibit more or less variation. Carry out
such a comparison for the given HC and CO data.

Suppose, as in Exercise 57 of Chapter 1, that the
number of drivers traveling between a particular
origin and destination during a designated time pe-
riod has a Poisson distribution with A = 20. In the
long run, during what proportion of such periods
will the number of drivers be

24.

26.

27.

28.

29.

2.2 Exercises 79

a. Within 5 of the mean value?
b. Within 1 standard deviation of the mean value?

Suppose that x, the number of flaws on the surface

of a boiler of a certain type, has a Poisson distribu-

tion with A = 5. For what proportion of such boilers

will the number of flaws

a. Be within 1 standard deviation of the mean
number of flaws?

b. Exceed the mean number of flaws by more than
2 standard deviations?

. Letx represent the number of underinflated tires on

an automobile of a certain type, and suppose that

p(0) = 4 p(1) = p(2) = p(3) = .1, and p4) = 3,

from which uw=1.8.

a. Calculate the standard deviation of x.

b. For what proportion of such cars will the num-
ber of underinflated tires be within 1 standard
deviation of the mean value? More than 3 stan-
dard deviations from the mean value?

Use the fact that (x — w)* = x* — 2ux + u* to show
that o = Sx’p(x) — u* for a discrete variable x.
Then use this result to compute the variance for
the variable whose distribution is given in the pre-
vious problem. Hint: Substitute the alternative
expression for (x — w)* in the definition of ¢, and
break the summation into three separate terms; the
argument in the continuous case involves replacing
summation with integration.

If x has a uniform distribution on the interval from a
tob [f(x) = 1/(b — a)], from which u = (a + b)/2,
show that o = (b — a)*/12. If task completion time
is uniformly distributed with a = 4 and b = 6, what
proportion of times will be farther than 1 standard
deviation from the mean value of completion
time?

Suppose that bearing diameter x has a normal distri-
bution. What proportion of bearings have diameters
that are within 1.5 standard deviations of the mean
diameter? That exceed the mean diameter by more
than 2.5 standard deviations?

Historical data implies that 20% of all components
of a certain type need service while under warranty.
Suppose that whether any particular component
needs warranty service is independent of whether
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30.
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any other component does. If these components
are shipped in batches of 25 and x denotes the
number of components in a batch that need war-
ranty service, determine the standard deviation of
x and then the proportion of batches for which the
number of components that need warranty service
exceeds the mean number by more than 2 standard
deviations.

If the unloading time of a forwarder in a harvesting
operation is lognormally distributed with a mean
value of 900 and a standard deviation of 725, what
are the values of the parameters p and o2 Note: An
expression for the mean value of a lognormal vari-
able is given in Section 2.1, and an expression for
the variance appears in this section.

MORE DETAILED SUMMARY QUANTITIES

31.

32.

If component lifetime is exponentially distributed
with parameter A, obtain an expression for the pro-
portion of components whose lifetime exceeds the
mean value by more than 1 standard deviation. Hint:
According to Exercise 26, o :jomxzf(x) dx — u?;
now use integration by parts.

The sample mean and sample standard devia-
tion for the sample of n = 100 shear strength ob-
servations given in Exercise 17 of Section 1.2 are
5049.16 and 351.45, respectively. What percent-
age of the observations in the sample are within
1 standard deviation of the mean, and how does this
compare to the corresponding percentage given by
the empirical rule? Answer this question also for
2 standard deviations and for 3 standard deviations.

The median separates a data set or distribution into two equal patrts, so that 50% of the
values exceed the median and 50% are smaller than the median. Quartiles and percentiles
give more detailed information about location of a data set or distribution by considering
percentages other than 50%. In this section, we also develop another measure of spread
based on the quartiles, the interquartile range (IQR). The median and IQR can be used
together to give a concise yet informative visual summary of sample data called a boxplot.

Quartiles and the Interquartile Range

The lower and upper quartiles along with the median separate a data set or distribution
into four equal parts: 25% of all values are smaller than the lower quartile, 25% exceed
the upper quartile, and 25% lie between each quartile and the median. This is illustrated
for a continuous distribution or smoothed histogram in Figure 2.8.

25% 25% 25% 25%
Lower T Upper
quartile Median quartile

Figure 2.8 lllustrating the quartiles

Let’s first consider quartiles for sample data. There are several different sensible
ways to define the sample quartiles. We will use a definition that requires a minimal
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Example 2.10

2.3 More Detailed Summary Quantities 81

amount of computation; statistical computer packages actually calculate quartiles by
interpolation (our quartiles are called fourths in some sources).

Separate the n ordered sample observations into a lower half and an upper half; if
n is an odd number, include the median x in each half. Then

lower quartile = median of the lower half of the data
upper quartile = median of the upper half of the data

The interquartile range (IQR), a measure of variability that is resistant to the
effect of outliers, is the difference between the two quartiles:

IOR = upper quartile — lower quartile

Reconsider the flexural strength data for beams given in Example 1.2. A stem-and-
leaf display of the 27 observations follows:

5
6
7
8
9
10
11

Because n = 27 is odd, the median x = 7.7 is included in each half of the data:

Lower half: 5.9 63 63 65 68 68 7.0 7.0 72 73 74 7.6 7.7 7.7
Upper halt: 7.7 7.8 7.8 79 81 82 87 9.0 9.7 9.710.711.311.611.8

588

234677889 Stem: ones digit
7 Leaf: tenths digit
7

W] O — O W O

70+7.0 8.7+9.0
— - 7.0 upper quartile = — - 8.85

IOR=8.85—7.0=1.85

lower quartile =

Notice that if the largest observation, 11.8, were increased by any amount, the up-
per quartile and therefore the IOR would not be affected, whereas such an increase
would change the sample variance and standard deviation. Similarly, a decrease in
several of the smallest observations has no impact on the quartiles or the IOR.

The following output is from the summary and IOR commands from the R
software. The former command requests that the values of various summary quanti-
ties be calculated:

> summary (flexural)

Min. 1lst Qu. Median Mean 3rd Qu. Max.
5.900 7.000 7.700 8.141 8.850 11.800
> IQR (flexural)

[1] 1.85

Minitab’s reported value for the quartile O3 is 9.000, a bit different from what R returns.
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Now consider a continuous variable x whose distribution is described by a density
function f(x). Recall that the median & results from solving the equation

(so that half the area under the density curve lies to the left of ). The lower quartile ¢,
and upper quartile g, are solutions to

jq] f(x) dx = .25 jwﬂx) dx = .25

— o0

Fxample 2.11  The exponential distribution with parameter A has density function Ae ™ for x > 0.
For any positive number c,

Jjoof(x> dx = ‘[OC)\eiAX dx=1—e "¢

J Ae Mdx =

C

Equating either of these quantities to .5 and solving for ¢ gives ¢ = o = —In(.5)/A =
.693/A. Equating each of these two quantities to .25 gives

g, =—In(.75)/A = 288/  q,= —In(25)/A = 1.386/A

Suppose, for example, that times (min) between successive arrivals at a shipping ter-
minal are exponentially distributed with A = .1. Then ¢, = 2.88 min, & = 6.93 min,
and ¢, = 13.86 min. The upper quartile is much farther from the median than is the
lower quartile because the distribution has a substantial positive skew (the mean value
of x is 1/A = 10, much larger than the median).

Example 2.12 The quartiles of a normal distribution are easily expressed in terms of u and o. First,
consider a variable z having the standard normal distribution. Symmetry of the stan-
dard normal curve about 0 implies that o = 0. Looking for .2500 inside Appendix
Table I, we obtain the following information:

area to the left of —.67: 2514
area to the left of —.68: .2483

Since .25 is roughly halfway between these two tabled areas, we take —.675 as the
lower quartile. By symmetry, .675 is the upper quartile.

It is then easily verified that if x has a normal distribution with mean value u and
standard deviation o,

upper quartile = u + .6750  lower quartile = u — .675¢
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That is, for any normal distribution, the quartiles are .675 standard deviation to ei-
ther side of the mean. The interquartile range is w + .6750 — (u — .6750) = 1.350.
A familiar example is 1O scores in the general population, where u = 100, o= 15,
¢, =89.875=90, and g, = 110. Roughly 25% of all people have scores below
90 and roughly 25% have scores exceeding 110.

The relation IOR = 1.350 suggests that if the sample IOR is very different from
1.35s, it is not plausible that the underlying distribution is normal. In Example 2.10,
1.35s = 2.2, which is not much greater than the IOR of 1.85. A graphical technique
for assessing the plausibility of a normal population or process distribution is pre-
sented in the next section.

For our purposes, it is not necessary to discuss quartiles for a discrete distribution.

Boxplots

A boxplot is a visual display of data based on the following five-number summary:
smallestx;,  lower quartile median upper quartile  largest x;

To create a boxplot, first draw a horizontal measurement scale. Then place a rectangle
above this axis; the left edge of the rectangle is at the lower quartile, and the right edge is
at the upper quartile (so box width = IQR). Place a vertical line segment or some other
symbol inside the rectangle at the location of the median; the position of the median
symbol relative to the two edges conveys information about skewness in the middle 50%
of the data. Finally, draw “whiskers” out from either end of the rectangle to the smallest
and largest observations. A boxplot with a vertical orientation can also be drawn by mak-
ing obvious modifications in the construction process.

Example 2.13 Returning to the article on lightweight aggregates referenced in Example 2.1, the
researchers also reported specific gravity measurements for all 14 LWA specimens:

1.10 1.29 1.38 1.39 1.40 1.45 1.46
1.48 1.49 1.50 1.51 1.51 1.56 1.62

The five-number summary is as follows:

Smallestx; = 1.10  lower quartile = 1.39  x = 1.47 upper quartile = 1.51
Largest x, = 1.62

Figure 2.9 shows the resulting boxplot.

The right edge of the box is closer to the median than is the left edge, indicating
a substantial skew in the middle half of the data. The box width (IQR) is also reason-
ably large relative to the range of the data (distance between the tips of the whiskers).
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1 1 1 1 1 1
1.1 12 1.3 1.4 1.5 1.6

Specific gravity

Figure 2.9 A boxplot of the LVWA data generated by the R software

A boxplot is certainly more compact than a stem-and-leaf display or histogram, but
it is sometimes inferior to these latter two descriptive techniques because a boxplot can
mask important characteristics of the data, such as the presence of clusters. The main
attraction of boxplots is that they give a quick visual comparison. A comparative or side-
by-side boxplot is a very effective way of revealing similarities and differences between
two or more data sets consisting of observations on the same variable.

Example 2.14  The article “Compression of Single-Wall Corrugated Shipping Containers Using
Fixed and Floating Test Platens” (. of Testing and Evaluation, 1992: 318-320) de-
scribes an experiment in which several different types of boxes were compared with
respect to compression strength. Consider the following observations on four dif-
ferent types of boxes (summary quantities for this data are in good agreement with
values given in the cited article):

Type of box Compression strength (Ib)
1 655.5 7883 7343 7214 679.1 699.4
2 789.2 772.5 7869 686.1 732.1 7748
3 737.1 639.0 6963 671.7 717.2 727.1
4 535.1 628.7 5424 559.0 586.9 520.0

Figure 2.10 is a comparative boxplot of this data produced by the Minitab statistical
package. (Recall that Minitab uses definitions of the quartiles that differ somewhat
from ours.) The most striking feature of the comparative boxplot is that strength
values for the fourth type of box appear to be considerably smaller than those for the
three other types; this suggests that the population mean strength for type 4 boxes is
less than the mean strengths for the other three types. The differences between box
types seem pretty clear-cut because within-sample variation is small relative to the
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separation between sample means and medians. When this is not the case, an infer-
ential method called single-factor analysis of variance, discussed in Chapter 9, is used
to investigate differences among three or more populations or treatments.

800 [~

700 |- |

CompStr

600 -

500 &= I 1 1 |

Type

Figure 2.10 A Minitab comparative boxplot of
the compressive strength data

Boxplots That Show Outliers

A boxplot can be embellished to indicate explicitly the presence of outliers.

DEFINITIONS Any observation farther than 1.5 IQR from the closest quartile is an outlier. An
outlier is extreme if it is more than 3 IOR from the nearest quartile, and it is mild
otherwise.

Many inferential procedures are based on the assumption that the sample came from
a normal distribution. Even a single extreme outlier in the sample warns the investiga-
tor that such procedures should not be used, and the presence of several mild outliers
conveys the same message.

Let’s now modify our previous construction of a boxplot by drawing a whisker out
from each end of the box to the smallest and largest observations that are not outliers. Each
mild outlier is represented by a closed circle and each extreme outlier by an open circle.
Some statistical computer packages do not distinguish between mild and extreme outliers.

Example 2.15  The National Health and Nutrition Examination Survey (NHANES), a massive
annual program conducted by the National Center for Health Statistics, is a series
of cross-sectional nationally representative surveys that include demographic,
socioeconomic, dietary, and health-related questions. The information from the
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surveys is used to assess the health and nutritional status of adults and children in
the United States.

One variable measured is the high-density lipoprotein (HDL) cholesterol level
(mg/dl) of each survey participant. The following 30 HDL observations were ob-
tained from the 2009-2010 NHANES data set:

11 32 33 41 45 46 47 48 48 49
49 50 52 55 57 57 59 61 63 63
66 67 71 71 71 72 73 76 111 144

Relevant summary quantities are

x =57 lower quartile = 48 upper quartile = 71
IOR = 23 1.51I0R = 34.5 310R =69

Thus, any observation smaller than 48 — 34.5 = 13.5 or larger than 71 + 34.5 =
105.5 is an outlier. There is one outlier at the lower end of the sample and two at the
upper end. Because 71 + 69 = 140, the largest observation of 144 is an extreme out-
lier; the other outlier is mild. The whiskers extend out to 32 and 76, the most extreme
observations that are not outliers. The resulting boxplot is in Figure 2.11.

I I I I I I I I I
0 20 40 60 80 100 120 140 160

HDL

Figure 2.11 A boxplot of the HDL cholesterol data showing mild and
extreme outliers

Percentiles

Let p denote a number between 0 and 1. Then the (100p)th percentile, n,—also called
the pth quantile—separates the smallest 100p% of the data or distribution from the
remaining values. For example, 90% of all values lie below the 90th percentile, 1, (the
Oth quantile), and only 10% of all values exceed the 90th percentile. The median is
the 50th percentile, and the lower and upper quartiles are the 25th and 75th percentiles,
respectively. For a continuous distribution, 7, is the solution to the equation

[ fodx=p

That s, p is the area under the density curve to the left of 1. Figure 2.12 illustrates the
definition.
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S

Shaded area = p

My

Figure 2.12 The (100p)th percentile of a continuous
distribution

Example 2.16  Appendix Table I gives cumulative z curve areas for the standard normal distribution.
To find the 90th percentile, we look for cumulative area .9000 inside the table. The
entry closest to .9000 is .8997 in the 1.2 row and .08 column, so 14~ 1.28. By sym-
metry, the 10th z percentile (.1th quantile) is 7, = —1.28. It then follows that for the
normal distribution with mean value w and standard deviation o,

ny=pn+ 1.280 n,=pn—1280

Once a particular z percentile is determined, the corresponding percentile for any
normal distribution is easily calculated.

Percentiles for discrete distributions will not be needed in this book. In general,
percentiles for sample data require interpolation between successive sample values. In
Section 2.4, we use percentiles that correspond to the ordered sample observations. For
example, if n =10, we will regard the smallest sample observation as the fifth sample
percentile, the second smallest observation as the 15th sample percentile, and so on.

Section 2.3 Exercises

Unless otherwise noted, all content on this page is © Cengage Learning.

33. Reconsider the accompanying data on postsurgical b. Construct a boxplot based on the five-number
range of motion introduced in Exercise 18 of this summary and comment on its features.
chapter: c. How large or small does an observation have to
154 142 137 133 122 126 135 be to qualify as an outlier? As an extreme out-
135 108 120 127 134 122 lier?
a. What are the values of the quartiles? What is the d. By how much could the largest observation be
value of the IOR? decreased without affecting the IOR?
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Here is a description from the R software of the
strength data given in Exercise 4 from Chapter 1.

Min. 1st Qu. Median
122.2 133.0 135.4
Mean 3rd Qu. Max.

135.4 138.2 147.7

a. Comment on any interesting features.
b. Construct a boxplot of the data and comment on
what you see.

The diameter length of contact windows used in in-
tegrated circuits is normally distributed. About 5%
of all lengths exceed 3.75 um, and about 1% of all
lengths exceed 3.85 wm. What are the mean value
and standard deviation of the length distribution?

The following data on distilled alcohol content (%)
for a sample of 35 port wines was extracted from
the article “A Method for the Estimation of Alcohol
in Fortified Wines Using Hydrometer Baumé and
Refractometer Brix” (Amer. ]. Enol. Vitic., 2006:
486-490). Each value is an average of two duplicate

measurements.

1635 1885 1620  17.75 1958
17.73 2275 2378 2325 19.08
19.62  19.20  20.05 1785 19.17
1948  20.00 1997 1748 17.15
19.07 1990  18.68 1882  19.03
1945 1937 1920  18.00  19.60
19.33  21.22 1950 1530  22.25

a. Determine the value of the IOR.

b. Are there any outliers in the sample? Any ex-
treme outliers?

c. Constructa boxplot and comment on its features.

d. By how much could the largest observation be
decreased without affecting the value of the IOR?

Grip is applied to produce normal surface forces
that compress the object being gripped. Examples
include two people shaking hands and a nurse
squeezing a patient’s forearm to stop bleeding. The
article “Investigation of Grip Force, Normal Force,
Contact Area, Hand Size, and Handle Size for Cy-
lindrical Handles” (Human Factors, 2008: 734-744)
included the following data on grip strength (N) for
a sample of 42 individuals:

38.

39.

40.

16 18 18 26 33 41 54
56 66 68 87 91 95 98

106 109 111 118 127 127 135
145 147 149 151 168 172 183
189 190 200 210 220 229 230
233 238 244 259 294 329 403

Construct a boxplot that shows outliers and com-
ment on its features.

A sample of 20 glass bottles of a particular type
was selected, and the internal pressure strength of
each bottle was determined. Consider the follow-
ing partial sample information:

median = 202.2

lower quartile = 196.0

upper quartile = 216.8

1258 188.1 193.7
2213 230.5 2502

three smallest observations:
three largest observations:

a. Are there any outliers in the sample? Any ex-
treme outliers?

b. Construct a boxplot that shows outliers, and
comment on any interesting features.

A company utilizes two different machines to manu-
facture parts of a certain type. During a single shift, a
sample of n = 20 parts produced by each machine is
obtained, and the value of a particular critical dimen-
sion for each part is determined. The accompanying
comparative boxplot is constructed from the resulting
data. Compare and contrast the two samples.

Machine

| | | |
85 95 105 115

Dimension

Figure for Exercise 39

Recall from Exercise 2 the data on the concen-
tration (EU/mg) in settled dust for one sample of

Unless otherwise noted, all content on this page is © Cengage Learning.

urban homes and another of farm homes:
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U 60 50 110 330 40 5.0 Engr., 1995: 483-490). Discuss any interesting
800 180 350 17.0 23.0 features.

F: 40 140 11.0 90 9.0 80 43. Exercise 46 from Section 1.5 suggested a Weibull
40 200 50 89 21.0 92 distribution with @ =5 and 8 =125 as a model
30 20 03 for fracture strength of silicon nitride braze

a. Determine the medians, quartiles, and IQRs
for the two samples.

b. Are there any outliers in either sample? Any
extreme outliers?

c. Construct a comparative boxplot and use it as
a basis for comparing and contrasting the two
samples.

The authors of the article cited in Exercise 2 also
provided endotoxin concentrations in dust from
vacuum-cleaner dust bags:

U: 34.0 49.0 13.0 33.0 24.0 24.0 35.0 104.0
34.0 40.0 38.0 1.0

F: 20 640 6.0 17.0 350 11.0 17.0 13.0
50 27.0 23.0 28.0 10.0 13.0 0.2

Construct a comparative boxplot (which ap-

peared in the cited paper), and compare and

contrast the two samples.

The comparative boxplot (see below) of gasoline
vapor coefficients for vehicles in Detroit appeared
in the article “Receptor Modeling Approach to
VOC Emission Inventory Validation” (]. of Envir.

Gas vapor coefficient

44,

joints.

a. What are the quartiles of this distribution, and
what is the value of the IQR?

b. Suppose that the value of B is changed to
12.5. Determine the values of the quartiles
and the value of the IOR. Note: In essence,
this amounts to dividing each observation in
the population distribution by 10, because B
is a “scale” parameter and changing its value
stretches or compresses the x scale without
changing the shape of the distribution.

Reconsider the lognormal distribution with p =

9.164 and o =.385 proposed in Exercise 44 from

Section 1.5 as a model for the distribution of non-

point source load of total dissolved solids (in kg/

day/km).

a. What are the values of the quartiles?

b. What is the value of the 95th percentile of the
concentration distribution?

c. If w were 10.164 rather than 9.164, would the
values of the two quartiles simply increase by
an identical amount?

70 |~
[e]

60 =
g s0 |-
S 40 |~
2 0 °
= °
& 20 e
fu; 10 % %
é 0 Time
B 6AM. S8AM. 12noon 2P.M. 10P.M.
= Figure for Exercise 42
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24 QUANTILE PLOTS

An investigator frequently wishes to know whether it is plausible that a numerical sample
X}, X5, . . ., x, was selected from a particular type of population distribution (e.g., a normal
distribution). For one thing, many inferential procedures are based on the assumption
that the underlying distribution is of a specified type. The use of such procedures is in-
appropriate if the actual distribution differs greatly from the assumed type. Additionally,
understanding the underlying distribution can sometimes give insight into the physical
mechanisms involved in generating the data. An effective way to check a distributional
assumption is to construct a quantile plot (sometimes called a probability plot). The es-
sence of such a plot is that if the plot is based on the correct distribution, the points in the
plot will fall close to a straight line. If the actual distribution is quite different from the
one used to construct the plot, the points should depart substantially from a linear pattern.

Sample Quantiles

The details involved in constructing quantile plots differ a bit from source to source. The
basis for our construction is a comparison between quantiles of the sample data and the
corresponding quantiles of the distribution under consideration. Recall that for any num-
ber p between 0 and 1, the pth quantile n, is such that area p lies to the left of n, under the
density curve. For example, Appendix Table I shows that the .9th quantile (90th percen-
tile) for the standard normal distribution is approximately 1.28, the .1th quantile is roughly
—1.28, the .8th quantile is about .84, and of course the .5th quantile (the median) is 0.

Roughly speaking, sample quantiles are defined in the same way that quantiles of a
population or process distribution are defined. The .5th sample quantile should separate
the smallest 50% of the sample from the largest 50%, the .9th sample quantile should be
such that 90% of the sample lies below that value and only 10% above, and so on. Our
interest here is only in the value of p corresponding to each of the sample observations
when ordered from largest to smallest. Recall that when n is odd, the sample median
or .5th quantile is the middle value in the ordered list; for example, the sixth smallest
value when n =11. This amounts to regarding the middle observations as being half
in the lower half of the data and half in the upper half. Similarly, suppose that n = 10.
Then if we call the third smallest value the .25th quantile, we are regarding that value
as being half in the lower group (consisting of the two smallest observations) and half in
the upper group (comprising the seven largest observations). This leads to the following
general definition of sample quantiles:

DEFINITION Let x,j, denote the smallest sample observation, x,, the second smallest sample
observation, . . ., and x, the largest sample observation. We take x;, to be the
(:5/n)th sample quantile, x5 to be the (1.5/n)th sample quantile, . . ., and finally
X, to be the [(n —.5)/n]th sample quantile. That is, for i =1,..., n, x;; is the
[(i — .5)/n]th sample quantile.

Thus when n = 20, X, is the .025th quantile, x,, is the .075th quantile, X3, is the .125th
quantile, . . ., and x5 is the .975th quantile (97.5th percentile).
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2.4 Quantile Plots 91

A Normal Quantile Plot

Suppose now that fori =1, .. ., n, the quantities (i — .5)/n are calculated and the cor-
responding quantiles are determined for a specified population or process distribution
whose plausibility is being investigated. If the sample were actually selected from the
specified distribution, the sample quantiles should be reasonably close to the corre-
sponding distributional quantiles. That is, for i = 1, . . ., n, there should be reasonable
agreement between x, and the [(i —. 5)/n]th quantile for the specified distribution.
After determining the appropriate quantiles for the distribution being investigated, form
the n pairs as follows:

((i)th quantile, xm), ((f)th quantile, xm), ce << n ; 'S)th quantile, x(n)>

In other words, pair the smallest quantile with the smallest observation, the second
smallest quantile with the second smallest observation, and so on. Fach such pair can
be plotted as a point on a two-dimensional coordinate system. If the first number in each
pair is close to the second number, the points in the plot will fall close to a 45° line [one
with slope 1 passing through the point (0, 0)].

For example, this program can be carried out to decide whether a normal distribution
with w =100 and o = 15 is plausible. First the appropriate z quantiles are determined;
then the desired normal quantiles are expressed in the form u + (corresponding z quan-
tile)o. However, an investigator is typically not interested in knowing whether a particular
normal distribution is plausible but instead whether some normal distribution is plausible.
It is clearly inefficient to construct a separate normal quantile plot for each of a large
number of different choices of w and . Fortunately, this is not necessary because there
is a linear relationship between z quantiles and those for any other normal distribution:

quantile for normal (u, o) distribution = u + (corresponding z quantile)o

DEFINITION A normal quantile plot is a plot of the (z quantile, observation) pairs. The lin-
ear relation between normal (u, o) quantiles and z quantiles implies that if the
sample has come from a normal distribution with particular values of u and o, the
points in the plot should fall close to a straight line with slope o and vertical in-
tercept . Thus a plot for which the points fall close to some straight line suggests
that the assumption of a normal population or process distribution is plausible.

Note that if a straight line is fit to the points in the plot, the intercept and slope give esti-
mates of u and o, respectively, though these will typically differ from the usual estimates
X and s.

Example 2.17  There has been recent increased use of augered cast-in-place (ACIP) and drilled dis-
placement (DD) piles in the foundations of buildings and transportation structures. In
the article “Design Methodology for Axially Loaded Auger Cast-in-Place and Dirilled
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Displacement Piles” (J. Geotech. Geoenviron. Engr., 2012: 1431-1441) researchers
propose a design methodology to enhance the efficiency of these piles. The authors re-
ported the following length-diameter ratio measurements based on 17 static-pile load
tests on ACIP and DD piles from various construction sites. The values of p for which

z percentiles are needed are (1 — .5)/17 = .029, (2 — .5)/17 = .088, ..., and .971.

Xy 30.86  37.68 39.04 4278 42.89 4289 4505 47.08 47.08
z percentile: —1.89 —1.35 —1.05 —0.82 —0.63 —0.46 —0.30 —0.15 0.00
Xy 48.79 48.79 5256 52.56 54.8 55.17 56.31 59.94

zpercentile:  0.15 030 046 063 082 1.05 135 1.89

Figure 2.13 shows the corresponding normal quantile plot as generated by the
ggnorm function in the R software. The pattern in the plot is quite straight, indicat-
ing it is plausible that the population distribution of length-diameter ratio is normal.

Normal quantile plot for length-diameter ratio

60 - °

551+ o ©

L/D
I
[

T

°

30+
1 I I I 1
=) =Il 0 1 2
Normal quantile

Figure 2.13 Normal quantile plot from R for the length-diameter
ratio data

The judgment as to whether a plot does or does not show a substantial linear pattern is
somewhat subjective. Particularly when 7 is small, normality should not be ruled out unless
the departure from linearity is very clear-cut. Figure 2.14 displays several plots that suggest a
nonnormal population or process distribution. In Section 8.4, we show how a quantitative as-
sessment of the extent to which points in a two-dimensional plot fall close to a straight line can
be used as the basis of an inferential procedure for deciding whether normality is plausible.
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2.4 Quantile Plots 93

(a) (b) (©)

Figure 2.14 Quantile plots that are inconsistent with an underlying normal
distribution

Minitab will automatically obtain the z percentiles in response to an “NSCORE”
command, but it uses something a bit different from (i — .5)/n as a basis for this calcula-
tion. Minitab also has a normal plot command in its graphics menu; the resulting plot
has x on the horizontal axis and a nonlinear vertical axis constructed so that normal data
should plot close to a straight line.

Plots for Other Distributions

It is easy to assess the plausibility of a lognormal population or process distribution, be-
cause to say that x is lognormally distributed is to say that In(x) has a normal distribution.
Thus one simply calculates In(x;), . . ., In(x,,) and uses these quantities in place of
X(1)s -+ + » X,y in @ normal quantlle plot

For a Weibull distribution,

p = area to the left of n,= 1 — ¢ (/A"

In(1—p) = —(Z")

Multiplying by —1 and taking logs again gives
In[=In(1 = p)] = e[In(n,) = In(B)] = aIn(n,) +y where y= —a In(B)

Thus there is a linear relation between the logarithm of Weibull quantiles and
In[=In(1 = p)]. This suggests that we calculate In(x)), . . ., In(x,,) and then plot the
(In[=In(1 = p)], In(x)) pairs. If the plot is reasonably straight, it is plausible that the
sample has come from some Weibull distribution.

This implies that

Example 2.18  For many years it has been well established that the Weibull distribution is useful
in modeling the strength of fibers used in composite materials such as carbon
graphite, Kevlar, and glass. With the advent of nanotechnology where materials can
be developed at miniscule levels, scientists have questioned whether the Weibull
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94 CHAPTER 2 Numerical Summary Measures

distribution is applicable to model material strength even at the nanoscale. In the
article “Stochastic Strength of Nanotubes: An Appraisal of Available Data” (Com-
posites Sci. and Tech., 2005: 2380-2384) researchers reported the tensile strengths
of three different types of nanotubes and assessed whether the Weibull distribution
would serve as a reasonable model for each type.

The following represent the tensile strengths (in GPa) for 26 multiwall carbon
nanotubes produced by chemical vapor deposition; their average diameter is
roughly 97 nm. Note that the values of p. = (i —.5)/ 26 are also given:

xg: 174223 237 300 442 493 527 548 621 662
p;: 0.019 0.058 0.096 0.135 0.173 0.212 0.250 0.288 0.327 0.365
X 849 901 903 911 995 101.6 1085 1095 119.1 127.0
p;: 0.404 0.442 0481 0.519 0.558 0.596 0.635 0.673 0.712 0.750
xp: 1329 140.8 141.0 175.0 231.8 259.7
p;: 0.788 0.827 0.865 0.904 0.942 0.981

Figure 2.15 is a plot of the (In[—In(1 — p)], In(x)) pairs. Although there is some wig-
gling especially in the lower part of the plot, the overall pattern is reasonably straight
and so the assumption of an underlying Weibull distribution for tensile strength for
this type of nanotube appears to be acceptable. The article also showed that the
Weibull distribution was a good fit in modeling tensile strength for the two other
nanotube types discussed.

50

4.5 eoo

In(x)
[ ]

35

30

1 1 1 1 1 1
—4 -3 -2 -1 0 1

In(=In(1—p))

°
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Figure 2.15 A Weibull plot of the nanotube tensile strength data
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2.4 Exercises 95

Most statistical computer packages make it easy to do the arithmetic necessary to
obtain the quantities to be plotted. In addition, the Minitab graphics menu has a Weibull
plot option, making it unnecessary for the user to do any arithmetic before obtaining the
plot. The x values are plotted directly on the horizontal axis, and the vertical axis is
constructed using a nonlinear scale so that data from a Weibull distribution should plot

close to a straight line.

Plots based on other distributions can also be constructed. Consult chapter refer-
ences and software packages for more information.

The accompanying normal quantile plot was con-
structed from a sample of 30 readings on tension for
mesh screens behind the surface of video display
tubes used in computer monitors. Does it appear
plausible that the tension distribution is normal?

Tension
[ ]
°
N .... [ ]
o’
L
° °

. ! L ' ' Normal quantile
-2 -1 0 1

The following are modulus of elasticity observa-

tions for cylinders given in the article cited in
Example 1.2:

37.0 375 381 40.0 40.2 40.8 41.0
420 43.1 439 441 446 45.0 46.1
47.0 620 643 0688 70.1 745

Use the quantiles for a sample of size 20 given in
this section to construct a normal quantile plot, and
comment on the plausibility of a normal population
distribution.

A sample of 15 female collegiate golfers was
selected, and the clubhead velocity (km/hr) of each
golfer while swinging a driver was determined,
resulting in the following data (“Hip Rotational
Velocities During the Full Golf Swing,” |. of Sports
Science and Medicine, 2009: 296-299):

69.0 69.7 72.7 80.3 81.0

85.0 86.0 86.3 86.7 87.7

89.3 90.7 91.0 92.5 93.0

The corresponding z percentiles are

—-1.83 —128 —097 —073 —0.52

—034 —0.17 0.0 0.17 0.34
0.52 0.73 0.97 1.28 1.83

Construct a normal quantile plot and a dotplot. Is it
plausible that the population distribution is normal?

48. The accompanying observations are precipitation

values during March over a 30-year period in
Minneapolis-St. Paul.

J7 0 1.200 3.00 1.62 281 248
1.74 47 3.09 131 187 .96
81 143 151 32 118 1.89
1.20 337 210 .59 135 .90
1.95 220 .52 81 475 205

a. Construct and interpret a normal quantile plot
for this data set.

b. Calculate the square root of each value and then
constructa quantile plot based on this transformed
data. Does it seem plausible that the square root of
precipitation is normally distributed?

c. Repeat part (b) after transforming by cube roots.

49. The article “A Probabilistic Model of Fracture in

Concrete and Size Effects on Fracture Toughness”
(Magazine of Concrete Res., 1996: 311-320) gives
arguments for why fracture toughness in concrete
specimens should have a Weibull distribution and
presents several histograms of data that appear well
fit by superimposed Weibull curves. Consider the
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following sample of size n = 18 observations on
toughness for high-strength concrete (consistent
with one of the histograms); values of p, = (i — .5)/ 18
are also given:

Obs: 47 .58 .65 .69 72 74
pi: 0278 0833 .1389 .1944 .2500 .3056
Obs: .77 .79 80 81 82 .84
p: 3611 4167 4722 5278 .5833 .6389
Obs: .86 .89 91 .95 1.01  1.04
p: 6944 7500 .8056 .8611 9167 .9722

Construct a Weibull quantile plot and comment.

In the article “Weibull Parameter of Oil-Immersed

transformer oil gap under various oil flow velocities
and exposure to temporary overvoltage. Consider
the following breakdown time data (in s) from their
experiment where an oil flow at 16 cm/s and an over-
voltage of 81kV were applied.

72 100 180 250 36.0 380

46.0 63.0 71.0 76.0 920  95.0

104.0 152.0 198.0 226.0 2350 247.0
361.0 392.0

Construct a Weibull plot and comment on the
plausibility of breakdown time having a Weibull
distribution.

Transformer to Evaluate Insulation Reliability on  51. The accompanying figures show (a) a normal quan-
Temporary Overvoltage” (IEEE Trans. on Dielectrics tile plot of the observations on cell interdivision time
and Elec. Insul., 2010: 1863-1868), researchers in- (IDT) given in Exercise 16 of Section 1.2 and (b) a
vestigated the reliability of oil-immersed transformers normal quantile plot of the logarithms of the IDTs.
under various conditions. In one experiment, the What do these plots suggest about the distribution of
researchers measured the breakdown time of the cell interdivision time?
IDT
70 [~ ¢
60 [— °*®
..

50— 0

40 s

30

20 [~ .

[ ] o
10—
I I I | Normal quantile
-2 -1 0
(@)
In(IDT)
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o
35
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L] ....
251
I | I ' Normal quantile
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Figure for Exercise 51
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Supplementary Exercises

52. A plot to assess the plausibility of an exponential

population distribution can be based on quantiles
of the exponential distribution having A =1 (i.e.,
the exponential distribution with density function
f(x) = e *forx>0). This is because A, like o for
a normal distribution, is a scale parameter. Con-
sider the following failure time observations (1000s
of hours) resulting from accelerated life testing of
16 integrated circuit chips of a certain type:
82.8 11.6 3595 5025 307.8 179.7

242.0 265 2448 3043 379.1

212.6 2299 5589 366.7 204.6

Construct a quantile plot and comment on the
plausibility of failure time having an exponential
distribution.

Supplementary Exercises 97

53. The article “Families of Distributions for Hourly

Median Power and Instantaneous Power of Received
Radio Signals” (J. of Research for the National
Bureau of Standards, 1963: 753-762) suggests the
lognormal distribution for x = hourly median pow-
er (decibels) of received radio signals transmitted
between two cities. Consider the following sample
of hourly median power readings:

27 54 97 228 305 557 66.2 973
186.5 240.0

a. Is it plausible that these observations were sam-
pled from a normal distribution?

b. Is it plausible that these observations were sam-
pled from a lognormal distribution?

54. Anxiety disorders and symptoms can often be ef-

fectively treated with benzodiazepine medications.
It is known that animals exposed to stress exhibit
a decrease in benzodiazepine receptor binding in
the frontal cortex. The paper “Decreased Benzo-
diazepine Receptor Binding in Prefrontal Cortex
in Combat-Related Posttraumatic Stress Disorder”
(American ]. of Psychiatry, 2000: 1120-1126) de-
scribed the first study of benzodiazepine receptor
binding in individuals suffering from PTSD. The
accompanying data on a receptor binding measure
(adjusted distribution volume) was read from a
graph in the paper:

PTSD: 10 20 25 28 31 35 37 38 38
39 39 42 46

Healthy: 23 39 40 41 43 47 51 58
63 66 67 69 72

a. Calculate and interpret the values of the mean,
median, and standard deviation for each of the
two samples.

b. Calculate a trimmed mean for each sample by
deleting the smallest and largest observations.
What is the trimming percentage? What effect
does trimming have?

c¢. Determine the value of the interquartile range
for each sample. Does either sample contain any
outliers? Any extreme outliers?

d. Construct a comparative boxplot, and comment
on interesting features.

e. Would you recommend estimating the differ-
ence between the true average binding mea-
sure of PTSD individuals and the true average
measure for healthy individuals using a method
based on assuming that each sample was select-
ed from a normal population distribution? Ex-
plain your reasoning.

55. A sample of 77 individuals working at a particular

office was selected, and the noise level (dBA) expe-
rienced by each one was determined, yielding the
following data (“Acceptable Noise Levels for Con-
struction Site Offices,” Building Serv. Engr. Res.
and 'Tech., 2009: 8§7-94).

553 553 553 559 559 559
559 561 561 561 561 56.1
56.1 568 568 57.0 570 57.0
57.8 57.8 57.8 579 579 579
58.8 58.8 588 598 59.8 598
622 622 638 638 638 0639
639 639 o647 647 0647 65.1
651 651 653 653 653 653
674 674 674 674 687 687
68.7 687 69.0 704 704 712
712 712 73.0 73.0 731 731
746 746 746 746 793 793
793 793 83.0 830 83.0
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Use various techniques discussed in this chapter to
organize, summarize, and describe the data.

Three different C,F, flow rates (SCCM) were con-
sidered in an experiment to investigate the effect
of flow rate on the uniformity (%) of the etch on a
silicon wafer used in the manufacture of integrated
circuits, resulting in the following data:

125: 2.6 2.7 3.0 32 38 46
160: 3.6 42 42 46 49 50
200: 29 34 35 41 46 5.1

Compare and contrast the uniformity observations
resulting from these three different flow rates.

,x,, and let x, and s; de-
note the sample mean and variance, respectively, of
the first k observations.

a. Show that

k _
ksiﬂ =(k— 1)3}3 + r+1 (pey — Xk)z

b. Suppose that a sample of 15 strands of drap-
ery yarn has resulted in a sample mean thread
elongation of 12.58 mm and a sample standard
deviation of .512 mm. A 16th strand results in
an elongation value of 11.8. What are the val-
ues of the sample mean and sample standard
deviation for all 16 elongation observations?

. In 1997 a woman sued a computer keyboard man-

ufacturer, charging that her repetitive stress inju-
ries were caused by the keyboard (Genessy v. Dig-
ital Equipment Corp.). The jury awarded about
$3.5 million for pain and suffering, but the court
then set aside that award as being unreason-
able compensation. In making this determina-
tion, the court identified a “normalative” group
of 27 similar cases and specified a reasonable
award as one within 2 standard deviations of
the mean of the awards in the 27 cases. The 27
awards were (in $1000s) 37, 60, 75, 115, 135,
140, 149, 150, 238, 290, 340, 410, 600, 750,
750, 750, 1050, 1100, 1139, 1150, 1200, 1200,
1250, 1576, 1700, 1825, and 2000, from which
x, = 20,179, inz =24,657,511. What is the maxi-
mum possible amount that could be awarded un-
der the 2 standard deviation rule?

59.

60.

A deficiency of the trace element selenium in the
diet can negatively affect growth, immunity, muscle
and neuromuscular function, and fertility. The
introduction of selenium supplements to dairy cows
is justified when pastures have low selenium levels.
Authors of the paper “Effects of Short-Term Supple-
mentation with Selenised Yeast on Milk Production
and Composition of Lactating Cows” (Australian |.
of Dairy Tech., 2004: 199-203) supplied the follow-
ing data on milk selenium concentration (mg/L)
for a sample of cows given a selenium supplement
and a control sample given no supplement, both
initially and after a nine-day period.

Obs Init Se Init Cont Final Se Final Cont
1 114 9.1 138.3 9.3
2 9.6 8.7 104.0 8.8
3 10.1 9.7 96.4 8.8
4 8.5 10.8 89.0 10.1
5 10.3 10.9 88.0 9.6
6 10.6 10.6 103.8 8.6
7 11.8 10.1 147.3 10.4
8 9.8 12.3 97.1 12.4
9 10.9 8.8 172.6 9.3

10 10.3 104 146.3 9.5
11 10.2 10.9 99.0 8.4
12 11.4 104 122.3 8.7
13 9.2 11.6 103.0 12.5
14 10.6 10.9 117.8 9.1
15 10.8 121.5

16 8.2 93.0

a. Do the initial Se concentrations for the supple-
ment and control samples appear to be similar?
Use various techniques from this chapter to
summarize the data and answer the question
posed.

b. Again use methods from this chapter to summa-
rize the data and then describe how the final Se
concentration values in the treatment group dif-
fer from those in the control group.

An inequality developed by the Russian mathema-
tician Chebyshev gives information about the per-
centage of values in any sample or distribution that
fall within a specified number of standard deviations
of the mean. Let k denote any number satisfying
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k = 1. Then at least 100(1 — 1/ k%)% of the values

are within k standard deviations of the mean.

a. What does Chebyshev’s inequality say about
the percentage of values that are within 2 stan-
dard deviations of the mean? Within 3 standard
deviations of the mean? Within 5 standard de-
viations? Within 10 standard deviations?

b. What does Chebyshev’s inequality say about the
percentage of values that are more than 2 stan-
dard deviations from the mean? More than 3
standard deviations from the mean?

c. Suppose the distribution of slot width on a
forging has a mean value of 1.000 in. and a
standard deviation of .0025 in. What percent-
age of such forgings have a slot width that is be-
tween .995 in. and 1.005 in.? If specifications
are 1.000 = .005 in., what percentage of slot
widths will conform to specifications?

d. Refer to part (c¢). What percentage of such forg-
ings will have a slot width that is outside the
interval from .995 in. to 1.005 in. (i.e., either
less than 995 or greater than 1.005)? What
can be said about the percentage of widths
that exceed 1.005 in.?

Reconsider Chebyshev’s inequality as stated in the

previous exercise.

a. Compare what the inequality says about the per-
centage within 1, 2, or 3 standard deviations of
the mean value to the corresponding percent-
ages given by the empirical rule.

b. An exponential distribution with parameter A
has both mean value and standard deviation
equal to 1/A. If component lifetime is exponen-
tially distributed with a mean value of 100 hr,
what percentage of these components have life-
times within 1 standard deviation of the mean
lifetime? Within 2 standard deviations? Within
3 standard deviations? Compare these to the per-
centages given by Chebyshev’s inequality.

c. Why do you think the percentages from Che-
byshev’s inequality so badly understate the
actual percentages in the situations of parts

(a) and (b)?

Consider a sample x|, . . ., x, with mean X and stan-
dard deviation s, and let z; = (x, — X)/s. What are the
mean and standard deviation of the z;'s?

63.

64.

65.

Supplementary Exercises 99

The accompanying observations are carbon mon-
oxide levels (ppm) in air samples obtained from a
certain region:

9.3
7.9

10.7 85 9.6
13.2 11.0 88

122 16,6 9.2
13.7 121 9.8

10.5

a. Calculate a trimmed mean by trimming the
smallest and largest observations, and give the
corresponding trimming percentage. Do the
same with the two smallest and two largest values
trimmed.

b. Using the results of part (a), how would you cal-
culate a trimmed mean with a 10% trimming
percentage?

c. Suppose there had been 16 sample observations.
How would you go about calculating a 10%
trimmed mean?

Specimens of three different types of rope wire were
selected, and the fatigue limit (MPa) was deter-
mined for each specimen, resulting in the accom-

panying data:

Type 1: 350 350 350 358 370 370 370 371
371 372 372 384 391 391 392

Type 2: 350 354 359 363 365 368 369 371
373 374 376 380 383 388 392

Type 3: 350 361 362 364 364 365 366 371
377 377 377 379 380 380 392

a. Construct a comparative boxplot, and comment
on similarities and differences.

b. Construct a comparative dotplot (a dotplot for
each sample with a common scale). Comment
on similarities and differences.

c. Does the comparative boxplot of part (a) give an
informative assessment of similarities and differ-
ences? Explain your reasoning.

The three measures of center introduced in this
chapter are the mean, median, and trimmed
mean. Two additional measures of center that are
occasionally used are the midrange, which is the
average of the smallest and largest observations,
and the midhinge, which is the average of the two
quartiles. Which of these five measures of center
are resistant to the effects of outliers and which
are not? Explain your reasoning.
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CHAPTER 2 Numerical Summary Measures

The capacitance (nf) of multilayer ceramic capaci-

tors supplied by a certain vendor is normally distrib-

uted with mean value 98 and standard deviation 2.

Specifications for these capacitors are 100 % 5 nf.

a. What proportion of these capacitors will con-
form to specification?

b. Suppose that these capacitors are shipped in
batches of size 20. Let x denote the number of ca-
pacitors in a batch that conform to specification.
Provided that capacitances of successive capaci-
tors are independent of one another, what kind of
distribution does x have? In the long run, in what
proportion of batches will at least 19 of the 20 ca-
pacitors conform to specifications? Hint: Think of
a capacitor that conforms to specification as a “suc-
cess,” so x is the number of successes in the batch.

67. Aortic stenosis refers to a narrowing of the aortic

valve in the heart. The paper “Correlation Analysis
of Stenotic Aortic Valve Flow Patterns Using Phase
Contrast MRI” (Annals of Biomed. Engr., 2005:
878-887) gave the following data on aortic root
diameter (cm) and gender for a sample of patients
having various degrees of aortic stenosis:

69.

median = 500 mode = 500
sd =96 minimum = 220 maximum = 925
5th percentile = 400 10th percentile = 430
90th percentile = 640  95th percentile = 720

mean = 535

What can you conclude about the shape of a histo-
gram of this data? Explain your reasoning.

Let x denote the maximum physical stress that a
unit of a certain product encounters during its life-
time. Suppose that x is normally distributed with
99th percentile = 5.33 and 10th percentile = 1.72
(suggested in the article “A Formulation of Product
Reliability through Environmental Stress Testing
and Screening,” |. of the Institute of Envir. Sciences,
1994: 50-56; the unit for x was unspecified). What
proportion of these units have maximum stress val-
ues exceeding 5? What proportion have maximum
stress values less than 2?

. The indoor thermal climate is an important

characteristic affecting the health and pro-
ductivity of workers in buildings. The paper
“Adaptive Comfort Temperature Model of Air-
Conditioned Buildings in Hong Kong” (Building

M: 37 34 37 40 39 and Environment, 2003: 837-852) reported data
38 34 36 31 40 on a number of building characteristics mea-
34 38 35 sured during the summer and also during the
F- 38 26 32 30 43 winter. Consider the accompanying values of
35 31 31 32 30 relative humidity.
a. Compare and contrast the diameter observations Summer: 57.18 58.11 56.53 58.61 57.40 62.64
for the two genders. 61.72 57.26 5343 53.71 58.64 45.12
b. Calculate a 10% trimmed mean for each of the 47.52 54.47 55.88 51.08 53.69 54.37
two samples and compare to other measures of 54.36 61.01 52.66 56.20 48.40 46.99
center (for the male sample, the interpolation 50.63 5240 52.20 55.95 53.77
method mentioned in Section 2.1 must be used). Winter:  52.20 41.83 55.63 54.18 54.56 56.20
68. A study carried out to investigate the distribution of 58.09 5670 57.57 58.70 56.15 59.77
total braking time (reaction time plus accelerator- 61.58 61.81 6248 63.31 55.57 62.25
to-brake movement time, in ms) during real driving ;7};2 ;;?Z 62.52 52.80 57.20 59.27

conditions at 60 km/hr gave the following summary
information on the distribution of times (“A Field
Study on Braking Responses during Driving,” Ergo-
nomics, 1995: 1903-1910):

Use methods from this and the previous chapter
to describe, summarize, compare, and contrast the
summer and winter relative humidity data.

Bibliography

Please see the bibliography for Chapter 1.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Bivariate and Multivariate
Data and Distributions

Giancarlo Liguori

3.1 SCATTERPLOTS

3.2 CORRELATION

3.3 FITTINGA LINETO BIVARIATE DATA
3.4 NONLINEAR RELATIONSHIPS

3.5 USING MORETHAN ONE PREDICTOR
3.6 JOINT DISTRIBUTIONS

INTRODUCTION

Now that we have acquired some facility for working with univariate data and
distributions, it’s time to expand our horizons. A multivariate data set consists of
observations made simultaneously on two or more variables. One important special
case is that of bivariate data, in which observations on only two variables, x and y, are
available. In Section 3.1, we introduce the scatterplot, a picture for gaining insight
into the nature of any relationship between x and y.

Next, we discuss the correlation coefficient, which is a measure of how
strongly two variables are related. In many investigations, one primary objective
is to predict y from the value of x—for example, to predict yield from a chemical
reaction at a particular reaction temperature. If the scatterplot shows a linear
pattern, the natural strategy is to fit a straight line to the data and use it as the
basis for predictions, as we do in Section 3.3. If a scatterplot shows curvature,
fitting a nonlinear function, such as a quadratic or an exponential function, is
appropriate; we show how this can be done in Section 3.4. Multiple regression
functions, in which y is related to two or more predictor variables, are the
subject of Section 3.5. Finally, Section 3.6 introduces bivariate and multivariate

101
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102 CHAPTER 3 Bivariate and Multivariate Data and Distributions

distributions for population or process variables. In Chapter |1, we return to
this type of data and describe how formal conclusions about relationships can
be drawn by using methods from statistical inference.

3.1 SCATTERPLOTS

A multivariate data set consists of measurements or observations on each of two or
more variables. One important special case, bivariate data, involves only two vari-
ables, x and y. For example, x might be the distance from a particular highway and y,
the lead content of the soil at that distance. When both x and y are numerical variables,
each observation consists of a pair of numbers, such as (14, 5.2) or (27.63, 18.9). The
first number in a pair is the value of x and the second number is the value of y.

An unorganized list of such pairs yields little information about the distribution of
either the x values or the y values separately, and even less information about whether
the two variables are related to one another. In Chapter 1, we saw how pictures could
help make sense of univariate data. The most important picture based on bivariate
numerical data is a scatterplot. Each observation (pair of numbers) is represented by
a point on a rectangular coordinate system, as shown in Figure 3.1(a). The horizontal
axis is identified with values of x and is scaled so that any x value can be easily located.
Similarly, the vertical or y axis is marked for easy location of y values. The point cor-
responding to any particular (x, y) pair is placed where a vertical line from the value on
the x axis intersects a horizontal line from the value on the y axis. Figure 3.1(b) shows
the point representing the observation (4.5, 15); it is above 4.5 on the horizontal axis
and to the right of 15 on the vertical axis.

y y
40 - 40 |
30 30 Point
corresponding
20 | 20 | to (4.5, 15)
y=15—>F-—-——--------————- M
10 | 10 | |
1 1 1 1 1 X 1 1 1 1 | 1 x
1 2 3 4 5 1 2 3 4 1 5
(a) (b) x=45

Figure 3.1 Constructing a scatterplot: (a) rectangular coordinate system for a scatterplot
of bivariate data; (b) the point corresponding to the observation (4.5, |5)

Example 3.1 Visual and musculoskeletal problems associated with the use of visual display
terminals (VD'T's) have become rather common in recent years. Some research-
ers have focused on vertical gaze direction as a source of eye strain and irritation.
This direction is known to be closely related to ocular surface area (OSA), so a

Unless otherwise noted, all content on this page is © Cengage Learning.
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3.1 Scatterplots 103

method of measuring OSA is needed. The accompanying representative data on
y = OSA (cm?) and x = width of the palprebal fissure (i.e., the horizontal width
of the eye opening, in cm) is from the article “Analysis of Ocular Surface Area for
Comfortable VDT Workstation Layout” (Ergonomics, 1996: 877-884). The order in
which observations were obtained was not given, so for convenience they are listed
in increasing order of x values.

Obs: 1 2 3 4 5 6 7 8 9 10
7= 40 42 48 51 57 60 70 75 75078
y: 1.02 121 88 98 152 1.83 150 1.80 1.74 1.63

Obs: 11 12 13 14 15 16 17 18 19 20
X 8495 99 1.03 112 115 1.20 1.25 1.25 1.28
y: 200 2.80 248 247 3.05 3.18 376 3.68 3.82 3.21

Obs: 21 22 23 24 25 26 27 28 29 30
7 130 134 137 140 143 146 149 155 158 1.60
y: 427 312 399 375 410 418 377 434 421 492

Thus (x, y,) = (.40, 1.02), (x5, ys) = (.57, 1.52), and so on. A Minitab scatterplot is
shown in Figure 3.2; we used an option that produced a dotplot of both the x values
and y values individually along the right and top margins of the plot, which makes it
easier to visualize the distributions of the individual variables (histograms or boxplots
are alternative options).

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Palwidth

Figure 3.2 Scatterplot from Minitab for the data from Example 3.1, along with
dotplots of x and y values
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104 CHAPTER 3 Bivariate and Multivariate Data and Distributions

Here are some things to notice about the data and plot:

e Several observations have identical x values yet different y values (for
example, xg = x4 = .75, but yg = 1.80 and y, = 1.74). Thus the value of y is
not determined solely by x but also by various other factors.

e There is a strong tendency for y to increase as x increases. That is, larger
values of OSA tend to be associated with larger values of fissure width—a
positive relationship between the variables.

e [t appears that the value of y could be predicted from x by finding a line that
is reasonably close to the points in the plot (the authors of the cited article
superimposed such a line on their plot). In other words, there is evidence of a
substantial (though not perfect) linear relationship between the two variables.

The horizontal and vertical axes in the scatterplot of Figure 3.2 intersect at the
point (0, 0). In many data sets, the values of x or y or the values of both variables differ
considerably from zero relative to the range(s) of the values. For example, a study of
how air conditioner efficiency is related to maximum daily outdoor temperature might
involve observations for temperatures ranging from 80°F to 100°F. When this is the
case, a more informative plot would show the appropriately labeled axes intersecting at
some point other than (0, 0).

Example 3.2 Arsenic is found in many ground waters and some surface waters. Recent re-
search on health effects has prompted the Environmental Protection Agency
to reduce allowable arsenic levels in drinking water; as a result, many water
systems are no longer compliant with standards. This has spurred interest in
the development of methods to remove arsenic. The accompanying data on
x = pH and y = arsenic removed (%) by a particular process was read from a
scatterplot in the article “Optimizing Arsenic Removal During Iron Removal:
Theoretical and Practical Considerations” (J. of Water Supply Res. and Tech.,
2005: 545-560):

x: 7.01 7.1 7.12 724 794 794 8.04 8.05 8.07
y: 60 67 66 52 50 45 52 48 40

890 894 895 897 898 985 986 9.86 9.87
23 20 40 31 276 9 22 13 7

53

Figure 3.3 shows two Minitab scatterplots of this data. In Figure 3.3(a), the software
selected the scale for both axes. We obtained Figure 3.3(b) by specifying scaling for
the axes so that they would intersect at roughly the point (0, 0). The second plot
is much more crowded than the first one; such crowding can make it difficult to
ascertain the general nature of any relationship. For example, curvature can be over-
looked in a crowded plot.
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Figure 3.3 Minitab scatterplots of the data in Example 3.2

Section 3.1 Exercises

1.
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(b)

Large values of arsenic removal tend to be associated with low pH, a negative or in-
verse relationship. Furthermore, the two variables appear to be at least approximately
linearly related, although the points in the plot would spread out somewhat about
any superimposed straight line (such a line appeared in the plot in the cited article).

In the article “Analysis of the Thermal Properties of
Air-Conditioning-Type Building Materials” (Solar
Energy, 2012: 2967-2974), researchers investigated
thermal properties of building materials that are
used across a variety of climate regions. One prop-
erty of interest was solar absorptance, a measure of
an object’s ability to absorb solar radiation. To reduce
building energy consumption, it would be desirable
for the building material to have higher solar absorp-
tance in colder climates and lower solar absorptance
in warmer climates. The following data (read from a
graph) shows solar absorptance levels under different
temperature conditions for a building material called
G178, which changes color depending on tempera-
ture, thereby allowing for variable absorptance.

Temperature (in°C): 2 9 20 28 39

Solar Absorptance: .81 .78 .69 .65 .48

Create a scatterplot for this data. How would you
characterize the relationship between these two vari-
ables? Is the desired inverse relationship between tem-
perature and absorptance evident for this material?

2.

The article “Case Adaptation Method of Case-Based
Reasoning for Construction Cost Estimation in Ko-
rea” (]. Constr. Engr. Mgmt., 2012: 43-52) provided
data on military barrack projects undertaken by the
Korean Ministry of National Defense from 2004 to
2008. Two variables of interest were the floor area of
a barrack and the corresponding cost (in $US). The
corresponding data is given here:

Floor Area: Cost:
382 418,930
571 609,386
618 755,489
726 660,527
802 864,438
959 1,003,495

1066 895,947
1306 1,461,549
1873 1,899,494
2460 2,331,632
3134 2,833,203
4989 4,750,468
6918 5,331,390
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a. Construct stem-and-leaf displays of both floor area
and cost. Comment on any interesting features.

b. Do the values of cost appear to be perfectly
linearly related to the floor area values?

c. Construct a scatterplot of the data. Does
it appear that cost could be accurately
predicted by the value of floor area? Explain
your reasoning.

. In the article referenced in Exercise 2, the relation-

ship between the number of beds in a barrack and
the cost of the building was also investigated.

Number of Beds Cost
22 418,930
40 609,386
40 755,489
38 660,527
24 864,438
54 1,003,495
59 895,947
98 1,461,549
106 1,899,494
142 2,331,632
190 2,833,203

68 4,750,468
392 5,331,390

Construct a scatterplot based on this data. What ap-
pears to be the nature of the relationship between
these two variables? Do you notice anything pecu-
liar in the graph?

. Open water oil spills, such as the Deepwater

Horizon spill of 2010, can wreak terrible conse-
quences on the environment and be expensive to
clean up. Many physical and biological methods
have been developed to recover oil from water
surfaces. In the article “Capacity of Straw for Re-
peated Binding of Crude Oil from Salt Water and
Its Effect on Biodegradation” (J. Hazard. Toxic
Radioact. Waste, 2012: 75-78), researchers exam-
ined how wheat straw could be used to extract
crude oil from a water surface. An experiment
was conducted in which crude oil (0 to 16.9 g)
was added to 100 mL of saltwater in separate
Petri dishes. Wheat straw (2 g) was then added to
each dish and all dishes were shaken at 70 rpm
overnight. The following data read from a graph

is based on the amount of oil added (in g) and
the corresponding amount of oil recovered (in g)
from wheat straw.

Oil Added Oil Recovered
1.0 0.610
1.5 0.840
2.1 1.512
2.8 1.792
3.6 2.952
4.5 2.880
5.5 4.400
6.6 5.346
7.8 6.396
9.1 7.189

10.5 8.085
12.0 9.840
13.6 11.696
15.2 13.224
16.9 14.365

a. For each observation, determine the percentage
of oil recovery by wheat straw. Is this percentage
relatively constant across all observations? Was
the percentage higher at certain added oil levels
over others?

b. Do the values of the recovered oil appear to be
perfectly linearly related to the added oil values?
Why or why not?

c. Construct a scatterplot of the data. Does it
appear that recovered oil could be accurately
predicted by the value of added oil? Explain

your reasoning.

5. The article “Objective Measurement of the

Stretch-ability of Mozzarella Cheese” (]. of Texture
Studies, 1992: 185-194) reported on an experi-
ment to investigate how the behavior of mozzarella
cheese varied with temperature. Consider the ac-
companying data on x = temperature and y =
elongation (%) at failure of the cheese. Note: The
researchers were Italian and used real mozzarella
cheese, not the poor cousin widely available in the
United States.

xx 59 63 68 72 74 78 83
y: 118 182 247 208 197 135 132

a. Construct a scatterplot in which the axes
intersect at (0, 0). Mark 0, 20, 40, 60, 80, and
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100 on the horizontal axis and 0, 50, 100, 150,
200, and 250 on the vertical axis.

b. Construct a scatterplot in which the axes
intersect at (55, 100), as was done in the cited
article. Does this plot seem preferable to the one
in part (a)? Explain your reasoning.

c. What do the plots of parts (a) and (b) suggest
about the nature of the relationship between the
two variables?

6. Calcium phosphate cement is gaining increasing
attention for use in bone repair applications. The
article “Short-Fibre Reinforcement of Calcium
Phosphate Bone Cement” (]. of Engr. in Med.,
2007: 203-211) reported on a study in which
polypropylene fibers were used in an attempt to
improve fracture behavior. The following data on
x = fiber weight (%) and y = compressive strength
(MPa) was provided by the article’s authors.

0.00 000 000 000 000 1.25
994 1167 1100 1344 920 992
v 125 125 125 250 250 250
v 979 1099 1132 1229 869 991
x 250 250 500 500 500 5.00
y: 1045 1025 789 7.61 807  9.04
x 750 750 750 750 1000 10.00
663 643  7.03 763 735 694
x 1000 10.00
y 702 767

Construct a scatterplot of the data. How would you
describe the nature of the relationship between the
two variables?

7. In surface water hydrology, a common problem
is the estimation of long-term annual yield from
ungauged watersheds. In the article “General-
ized Mediterranean Annual Water Yield Model:
Grunsky’s Equation and Long-Term Average
Temperature” (J. Hydrol. Engr., 2011: 874-879),
researchers propose a generalized water yield
model for watersheds. One important watershed-
specific component of the model is «, a coeffi-
cient characterizing the watershed’s annual water
vield response to annual precipitation. The article
provided the following data from 16 California

R = R’ =
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coastal watersheds for @ (in wm™") and average
long-term annual temperature (T in °C):

8.51 8.69 9.01 9.50 10.00 10.60 11.00 11.60
40 42 40 43 40 38 40 30

11.60 12.60 12.60 13.60 14.20 15.30 17.90 17.90
41 027 28 19 22 19 13 .09

Construct a scatterplot of the data. How would you
describe the nature of the relationship between the
two variables?

. Researchers considered how the construction

cost of highway resurfacing projects in Kentucky
were affected by that state’s asphalt price index
(API) and diesel price index (DPI) among other
factors. From about the mid-1990s to 2010, Ken-
tucky’s annual average API and DPI were found
to be closely related to the annual average crude
oil price. Based on this, the authors suggested
that crude oil price could be used to predict API
and DPI (“Prices of Highway Resurfacing Proj-
ects in Economic Downturn: Lessons Learned
and Strategies Forward,” |. Mgmnt. Engr., 2012,
391-397).

Consider the following monthly API and state-
wide crude oil index (COI) values for California
during 2010-11, obtained from the California
Department of Transportation.

COI API COlI API

385.1 4151 4743 4771
408.0  377.0 4834  488.9
400.8  402.8 5049  586.3
426.0 4273 616.1 6347
437.0 4369 656.6  667.5
384.0  360.8 606.0 5922
3933 3723 579.0  565.9
402.9  417.2 5884  570.5
404.2 3765 536.8  589.7
399.5 4241 585.9 5598
4389 4322 5925 637.0
447.8  450.6 650.0  625.0

Construct a scatterplot of the data. How would you
describe the nature of the relationship between the
two variables? Does it seem to be the case that COI
and API are closely related?
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108 CHAPTER 3 Bivariate and Multivariate Data and Distributions

3.2 CORRELATION

A scatterplot of bivariate numerical data gives a visual impression of how strongly x values
and y values are related. However, to make precise statements and draw reliable conclu-
sions from data, we must go beyond pictures. A correlation coefficient (from co-relation)
is a quantitative assessment of the strength of relationship between x and y values in a set of
(x, y) pairs. In this section, we introduce the most frequently used correlation coefficient.

Figure 3.4 displays scatterplots that indicate different types of relationships between
the x and y values. The plot in Figure 3.4(a) suggests a very strong positive relationship
between x and y, that is, a strong tendency for y to increase as x increases. Iigure 3.4(b)
gives evidence of a substantial negative relationship: As x increases, there is a tendency
for y to decrease (as would probably be the case for x = amount of time per week that
a high school student spends watching television and y = amount of time the student
spends studying). The plot of Figure 3.4(c) indicates no strong relationship between
the two variables; there is no tendency for y to either increase or decrease as x increases.
Finally, as illustrated in Figure 3.4(d), a scatterplot can show a strong positive (or
negative) relationship through a pattern that is curved rather than linear in appearance.

y y y y
X X X c ° X
@ ) © @

Figure 3.4 Scatterplots illustrating various types of relationships: (a) positive relationship, linear pattern;
(b) negative relationship, linear pattern; (c) no relationship or pattern; (d) positive relationship, curved pattern

Pearson’s Sample Correlation Coefficient

Let (x}, y)), (x5, ¥5), - - ., (x,, y,) denote a sample of (x, y) pairs. Consider subtracting x
from each x value to obtain the x deviations, x, — X, . . ., x, — X, and also subtracting
y from each y value to give y, — ¥, ..., y, — . Then multiply each x deviation by the
corresponding y deviation to obtain products of deviations of the form (x — X)(y — y).
The scatterplot in Figure 3.5(a) indicates a substantial positive relationship. A ver-
tical line through x and a horizontal line through y divide the plot into four regions.
In region I, both x and y exceed their mean values, so x —x and y — y are both posi-
tive numbers. It then follows that (x — x)(y — ¥) is positive. The product of deviations
is also positive for any point in region III, because both deviations are negative and
multiplying two negative numbers gives a positive number. In each of the other two
regions, one deviation is positive and the other is negative, so (x — x)(y — ) is negative.
Because almost all points lie in regions I and IlI, almost all products of deviations are
positive. Thus the sum of products, >(x; — Xx)(y; — ), will be a large positive number.

Unless otherwise noted, all content on this page is © Cengage Learning.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3.2 Correlation 109

y y
| |
| |
1T - [ - !
x—f<0 : xf,_v I : I
y-y>0 I y-y>0 I
| |
| ° ° |
| o ° |
| |
I. ° . |
| o!
—_ e | |
yf-—- R - e
° | Yr——mm——"—- FTTT T
ol L e
. ! le
© I e
| |
mo. - v |
_ ! _ 11T ! 1\Y%
y 0 ! y 0 |
- x - x
X X
(a) (b)
y
|
|
|
11 : 1
|
|
|
o) .
° :.
_ |
yf-————"""~, A ————.—:—*——. ————————
|
. :.
|
|
|
|
III :IV
|
|
- X
X
(©)

Figure 3.5 Subdividing a scatterplot according to the signs of x —x andy —y:
(2) a positive relation; (b) a negative relation; (c) no strong relation

Similar reasoning for the data displayed in Figure 3.5(b), which exhibits a strong
negative relationship, implies that >(x;, — X)(y; —y) will be a large negative number.
When there is no evidence of a strong relationship, as in Figure 3.5(c), positive and
negative products of deviations tend to counteract one another, giving a value of the
sum that is close to zero. In summary, >(x, — x)(y, — ¥) seems to be a reasonable mea-
sure of the degree of association between the x and y values; it will be a large positive
number, a large negative number, or a number close to zero according to whether there
is a strong positive, a strong negative, or no strong relationship.
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110 CHAPTER 3 Bivariate and Multivariate Data and Distributions

Unfortunately, our proposal has a serious deficiency: Its value depends on the
choice of unit of measurement for both x and y. Suppose, for example, that x is height.
Fach x value expressed in inches will be 12 times the corresponding value expressed
in feet, and the same will then be true of x. It follows that the value of X (x, — X)(y, — )
when the x unit is inches will be 12 times what it is when the unit is feet. A measure of
the inherent strength of the relationship should give the same value whatever the units
for the variables; otherwise our impressions may be distorted by the choice of units.

A straightforward modification of our initial proposal leads to the most popular
measure of association, one that is free of the defect just alluded to and has other attrac-
tive properties.

DEFINITION Pearson’s sample correlation r is given by
2w Rm=y) Sy
\/ 2= @z\/Z()’i -y V8.V,

Computing formulas for the three summation quantities are

5, - - 21
S, = Z)’IZ B (Z)’i)z

n

(>x) )

Sxy = inyi -

n

r

Use of the computing formulas makes all the subtraction needed to obtain the devia-
tions unnecessary. Instead, the following five summary quantities are needed: >x;, 2y,
Sx?, 3y? Sx;y,. The following example shows how a tabular format facilitates the cal-
culations (we'll get to the issue of interpretation in a moment).

Example 3.3 The catch basin in a storm-sewer system is the interface between surface runoff and
the sewer. A catch-basin insert is a device for retrofitting catch basins to improve
their pollutant removal properties. The article “An Evaluation of the Urban Storm-
water Pollutant Removal Efficiency of Catch Basin Inserts” (Water Envir. Res., 2005:
500-510) reported on tests of various inserts under controlled conditions for which
inflow is close to what can be expected in the field. Consider the following data, read
from a graph in the article, for one particular type of insert on x = amount filtered
(1000s of liters) and y = % total suspended solids removed.

xx 23 45 68 91 114 136 159 182 205 228
y: 533 269 548 338 299 82 172 122 32 111
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3.2 Correlation 1

The accompanying table contains five columns for the x, y, x*, y%, and xy values,
respectively. The sum of each column is given at the bottom of the table.

2
X y X" y

Xy

23 53.3 529 2840.89 1225.9
45 26.9 2025 723.61 1210.5
68 54.8 4624 3003.04 3726.4
91 33.8 §281 1142.44 3075.8
114 29.9 12996 894.01 3408.6
136 8.2 18496 67.24 1115.2

159 17.2 25281 295.84 2734.8
182 12.2 33124 148.84 2220.4
205 3.2 42025 10.24 656
228 11.1 51984 123.21 2530.8
1251 250.6 199,365 9249.36 21,9044

1 | ! ! 1

2x; 2y; St Syl 2%; y;
Then
(1251)?
S, =199,365 — o - 42,865,
(250.6)*
S =9249.36 — = 2969.3
» 10
(1251)(250.6)
S, = 21,9044 — — 0 —9446
from which
r= 40 = — 837

V42,865V 2969.3

Properties and Interpretation of r

1. The value of r does not depend on the unit of measurement for either variable. If,
for example, x is height, the factor of 12 that appears in the numerator when changing
from feet to inches will also appear in the denominator, so the two will cancel and leave
r unchanged. The same value of r results from height expressed in inches, meters, or
miles. [f y is temperature, expressing values in °F, °C, or °K will give the same value of r.
The correlation coefficient measures the inherent strength of relationship between two
numerical variables.

2. The value of r does not depend on which of the two variables is labeled x. Thus
if we had let x = % removed and y = amount filtered in Example 3.3, the same value,
r = —.837, would have resulted.

3. Thevalue of r is between —1 and +1. A value near the upper limit, +1, is indicative
of a substantial positive relationship, whereas an r close to the lower limit, —1, suggests a
prominent negative relationship. Figure 3.6 shows a useful informal way to describe the
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112 CHAPTER 3 Bivariate and Multivariate Data and Distributions

strength of relationship based on r. It may seem surprising that a value of r as extreme as —.5
or .5 should be in the “weak” category; an explanation for this is given later in the chapter.

Strong Moderate Weak Moderate Strong
[ e e

-1 -8 -5 0 5 .8 1

Figure 3.6 Describing the strength of relationship

4. r= 1 only when all the points in a scatterplot of the data lie exactly on a straight
line that slopes upward. Similarly, r = —1 only when all the points lie exactly on a
downward-sloping line. Only when there is a perfect linear relationship between x and
y in the sample will r take on one of its two possible extreme values.

5. The value of r is a measure of the extent to which x and y are linearly related—that
is, the extent to which the points in the scatterplot fall close to a straight line. A value
of r close to zero does not rule out any strong relationship between x and y; there could
still be a strong relationship but one that is not linear.

Example 3.4 As far back as Leonardo da Vinci, height and wingspan (measured from fingertip to
fingertip between outstretched hands) were known to be closely related. For the fol-
lowing actual measurements (in inches) from 16 students in a statistics class notice
how close the two values are.

Height: 59.0 720 670 635 680 660 71.0 69.0
Wingspan: 575 705 69.0 635 710 67.0 715 685
Height: 73.0 69.0 69.5 720 735 73.0 740 70.0

Wingspan: 740 69.5 71.0 715 750 755 745 73.0

The scatterplot in Figure 3.7 shows an approximately linear shape, and the point
cloud is roughly elliptical. The correlation is computed to be 0.955. If the measure-
ments were converted to centimeters, the correlation would remain unchanged.

75 ®e

70

65 -

Wingspan

551 | | | | | | | |
60 62 64 66 68 70 72 74

Height

Figure 3.7 Wingspan plotted against height
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S
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Example 3.6
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The article “Quantitative Estimation of Clay Mineralogy in Fine-Grained Soils”
(J. Geotech. Geoenviron. Engr., 2011: 997-1008) reported on various chemical prop-
erties of natural and artificial soils. Consider the accompanying data on the cation
exchange capacity (CEC, in meq/100 g) and specific surface area (SSA, in m*/g) of
20 natural soils. A scatterplot appears in Figure 3.8.

CEC: 66 121 134 101 77 89 63 57 117 118

SSA: 175 324 460 288 205 210 295 161 314 265

CEC: 76 125 75 71 133 104 76 96 58 109

SSA: 236 355 240 133 431 306 132 269 158 303
Minitab gave the following output in response to a request for r:

Correlation of SSA and CEC = 0.853

There is evidence of a moderate to strong positive relationship.

500 |
[ ]
[ ]
400
[ ]
[ ]
= 300 |- . e . °
175 [ ]
o °
L)
200 |- . °
[ ]
L)
L] ]
100
L L L L L L L L L L

50 60 70 80 90 100 110 120 130 140
CEE

Figure 3.8 Scatterplot of the data from Example 3.5

The accompanying data on y = glucose concentration (g/L) and x = fermentation
time (days) for a particular brand of malt liquor was read from a scatterplot appearing
in the article “Improving Fermentation Productivity with Reverse Osmosis” (Food

Tech., 1984: 92-96):

X: 1 2 3 4 5 6 7 8
y: 74 54 52 51 52 53 58 71

The scatterplot of Figure 3.9 (page 114) suggests a strong relationship, but not a lin-
car one, between x and y. With

Dx=36 > =204 Dy,=465 > yl=27615 > xy =209
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80 |-

60 -

50 !

Figure 3.9 Scatterplot of the data from Example 3.6

we have
B (36)(465)
Sxy = 2094 — 5 - 1.5000
_ (36)° _ _
S.= 204—7—42 Syy_ 586.875
P = 0 = .0096 = .01

V42V 586.875

This shows the importance of interpreting r as measuring the extent of any linear rela-
tionship. We should not conclude that there is no relation whatsoever just because r = 0.

The Population Correlation Coefficient

The sample correlation coefficient r measures how strongly the x and y values in a
sample of pairs are related to one another. There is an analogous measure of how
strongly x and y are related in the entire population of pairs from which the sample
(X1, ¥1),--+» (x,, y,) was obtained. It is called the population correlation coefficient
and is denoted by p (notice again the use of a Greek letter for a population character-
istic and a Roman letter for a sample characteristic). We will never have to calculate p
from the entire population of pairs, but it is important to know that p satisfies proper-
ties paralleling those of r:

1. pisanumberbetween —1 and +1 that does not depend on the unit of measure-
ment for either x or y, or on which variable is labeled x and which is labeled y.

2. p= +lor—1ifand only if all (x, y) pairs in the population lie exactly on a
straight line, so p measures the extent to which there is a linear relationship in
the population.
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In Chapter 11, we show how the sample characteristic r can be used to make an
inference concerning the population characteristic p. In particular, r can be used to
decide whether p = 0 (no linear relationship in the population).

Correlation and Causation

A value of r close to | indicates that relatively large values of one variable tend to
be associated with relatively large values of the other variable. This is far from say-
ing that a large value of one variable causes the value of the other variable to be
large. Correlation (Pearson’s or any other) measures the extent of association, but
association does not imply causation. It frequently happens that two variables are
highly correlated not because one is causally related to the other but because they are
both strongly related to a third variable. Among all elementary-school children, there
is a strong positive relationship between the number of cavities in a child’s teeth and
the size of his or her vocabulary. Yet no one advocates eating foods that result in more
cavities to increase vocabulary size (or working to decrease vocabulary size to protect
against cavities). Number of cavities and vocabulary size are both strongly related to
age, so older children tend to have higher values of both variables than do younger
ones. Among children of any fixed age, there would undoubtedly be little relationship
between number of cavities and vocabulary size.

Scientific experiments can frequently make a strong case for causality by care-
fully controlling the values of all variables that might be related to the ones un-
der study. Then, if y is observed to change in a “smooth” way as the experimenter
changes the value of x, the most plausible explanation would be a causal relationship
between x and y. In the absence of such control and ability to manipulate values of
one variable, we must admit the possibility that an unidentified underlying third
variable is influencing both the variables under investigation. A high correlation in
many uncontrolled studies carried out in different settings can marshal support for
causality—as in the case of cigarette smoking and cancer—but proving causality is
often a very elusive task.

Section 3.2 Exercises

9. For each of the following pairs of variables, indicate 10. Head movement evaluations are important be-

whether you would expect a positive correlation,

a negative correlation, or little or no correlation.

Explain your choice.

a. Maximum daily temperature and cooling cost

b. Interest rate and number of loan applications

c. Incomes of husbands and wives when both have
full-time jobs

d. Vehicle speed (mph, from 20 to 100) and fuel
efficiency (mpg)

e. Fuel efficiency and 3-year operating cost

f. Distance from a Stanford University student’s
home town to campus and grade point average

cause individuals, especially those who are dis-
abled, may be able to operate communications
aids in this manner. The article “Constancy
of Head Turning Recorded in Healthy Young
Humans” (J. of Biomed. Engr., 2008: 428-4306)
reported data on ranges in maximum inclination
angles of the head in the clockwise anterior, pos-
terior, right, and left directions for 14 randomly
selected subjects. Consider the accompanying
data on average anterior maximum inclination
angle (AMIA) in both the clockwise (Cl) and
counterclockwise (Co) directions.
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Subj: 1 2 3 4 5 6 7
Cl: 57.9 357 54.5 56.8 51.1 70.8 77.3
Co: 442 521 60.2 52.7 472 65.6 714

Subj: 8 9 100 11 12 13 14
Cl: 51.6 547 63.6 59.2 59.2 558 385
Co:  48.8 53.1 66.3 59.8 475 64.5 34.5

a. Construct boxplots of both the clockwise and
counterclockwise direction observations, and
comment on any interesting features.

b. Construct a scatterplot of the data. What does it
suggest about the general nature of the relation-
ship between Cl and Co?

c. Calculate the value of the sample correlation
coefficient. Does it confirm your impression
from the scatterplot?

Torsion during external rotation and extension
of the hip may explain why acetabular labral
tears occur in professional athletes. The article
“Hip Rotational Velocities During the Full
Golf Swing” (J. of Sports Sci. and Med., 2009:
296-299) reported on an investigation in which
lead hip internal peak rotational velocity (x) and
trailing hip peak external rotational velocity (y)
were determined for a sample of 15 golfers. Data
provided by the article’s authors was used to cal-
culate the following summary quantities:

S (x, — %)} = 64,732.83,

S (3, = ) = 130,566.96,
x.—x)(y.—vy)= , 87
(=0 —y) = 44,1858

Based on this, compute the sample correlation
coefficient and interpret its value. How would you
characterize this correlation—as strong, moderate,
or weak?

2. Historically, reinforced concrete structures used

externally bonded steel plates to add strength
and support. Recently, fiber reinforced polymer
(FRP) plates have been used instead of steel
plates because of their superior properties. In
the article “Interfacial Bond Strength Character-
istics of FRP and RC Substrate” (]J. of Compos.

13.

Constr., 2012: 35-43), investigators developed a
method to mathematically model bond strength
between a carbon FRP and a concrete substrate.
For each of 15 carbon FRP-concrete samples,
the article reported the maximum transferable
load (kN) calculated by the model and compared
this with the corresponding maximum transfer-
able load (kN) as measured in the laboratory.
The data is given here:

Calc:  Meas: Calc:  Meas:
14.2 13.7 14.3 13.4

16.0 13.7 214 214

16.5 15.4 17.6 14.8

15.9 15.4 8.6 7.4

18.8 16.2 10.3 7.4

17.9 16.3 11.9 14.7

13.1 13.7 18.7 18.2

15.4 16.2

a. Construct a scatterplot of the data. Does it seem
to be the case that, in general, when the mea-
sured load is low (high), the calculated load is
also low (high)? For each sample, are the two
variables relatively close in value?

b. Calculate the value of the sample correlation
coefficient. Does it confirm your impression
from the scatterplot?

The article “Behavioural Effects of Mobile Tele-
phone Use During Simulated Driving” (Ergo-
nomics, 1995: 2536-2562) reported that for a
sample of 20 experimental subjects, the sample
correlation coefficient for x = age and y = time
since the subject had acquired a driving license
(yr) was .97. Why do you think the value of r
is so close to 17 (The article’s authors gave an
explanation.)

14. An employee of an auction house has a list of

25 recently sold paintings. Eight artists were
represented in these sales. The sale price of each
painting is on the list. Would the correlation coef-
ficient be an appropriate way to summarize the
relationship between artist (x) and sale price (y)?
Why or why not?
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16.

A sample of automobiles traversing a certain stretch
of highway is selected. Each automobile travels at a
roughly constant rate of speed, though speed does
vary from auto to auto. Let x = speed and y = time
needed to traverse this segment of highway. Would
the sample correlation coefficient be closest to .9,
3, =3, or —.9? Explain.

Suppose that x and y are positive variables and thata

3.3 Fitting a Line to Bivariate Data 17

a. Calculate the sample correlation coefficient for
the nine (x, y) pairs.

b. Let x| be the average score on the first midterm
exam for the 8 A.M. students and y, be the average
score on the second midterm for these students.
Denote the two averages for the noon students by
X, and y,, and for the night students by X; and y;.
Calculate r for these three (x, ) pairs.

| ! c. Construct a scatterplot of the nine (x, y) pairs
sample of n pairs results in r = 1. If the sample cor- .
i o S and another one of the three pairs of averages.
relation coefficient is computed for the (x, y°) pairs, ‘ ‘ ,
. ) ) Can you see why r in part (a) is smaller than r in
will the resulting value also be approximately 17 . ,
. part (b)? Does this suggest that a correlation co-
Explain. . « .
efficient based on averages (called an “ecologi-

17. Nine students currently taking introductory statis- cal” correlation) might be misleading? Explain.

tics are randomly selected, and both the first mid- 18. Suppose data is collected on two quantitative vari-

term exam score (x) and the second midterm score ables, x and y. Let r be the corresponding sample cor-

(y) are determined. Three of the students have the relation coefficient for (x, y). The x and y values are

class at 8 A.Mm., another three have it at noon, and then transformed as follows: x' = a + bx, y’ = ¢ + dy

the remaining three have a night class. The result- where a, b, ¢, and d are constants. Let 7' be the cor-

ing (x, y) pairs are as follows: responding sample correlation coefficient for (x', y').

8am.: (70,60) (72,83) (94,85) a. Show thatx’ = a + bxandy’ = ¢ + dy.
Noon:  (80,72) (60,74) (55, 58) b. Show thats, = bs, and s, = ds,.
Night:  (45,63) (50,40) (35, 54) c. Show thatr =7

3.3 FITTINGA LINETO BIVARIATE DATA

Given two numerical variables x and y, the general objective of regression analysis is
to use information about x to draw some type of conclusion concerning y. Often an
investigator wants to predict the y value that would result from making a single obser-
vation at a specified x value—for example, to predict product sales y for a sales region
in which advertising expenditure x is one million dollars. The different roles played by
the two variables are reflected in standard terminology: y is called the dependent or
response variable, and x is referred to as the independent, predictor, or explanatory
variable.

A scatterplot of y versus x frequently exhibits a linear pattern. In such cases, it is
natural to summarize the relationship between the variables by finding a line that is
as close as possible to the points in the plot. Before doing so, let’s quickly review some
elementary facts about lines and linear relationships.

Suppose a car dealership advertises that a particular type of vehicle can be rented
on a one-day basis for a flat fee of $25 plus an additional $.30 per mile driven. If such a
vehicle is rented and driven for 100 miles, the dealer’s revenue y is

y =25+ (:30)(100) = 25 + 30 = 55
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118 CHAPTER 3 Bivariate and Multivariate Data and Distributions

More generally, if x denotes the distance driven in miles, then

y =25+ 30x

That is, x and y are linearly related.

The general form of a linear relationship between x and y is y =a + bx. A par-
ticular relation is specified by choosing values of a and b, for example, y = 10 + 2x or
y =100 — 5x. If we choose some x values and calculate y = a + bx for each value, the
points in the scatterplot of the resulting (x, y) pairs fall exactly on a straight line. The value
of b, the slope of the line, is the amount by which y increases when x increases by 1 unit.
The vertical or y intercept « is the height of the line above the value x = 0. The equation
y = 10 + 2x has slope b = 2, so each 1-unit increase in x results in an increase of 2 in y.
When x = 0, y = 10 and the height at which the line crosses the vertical axis is 10. To
draw the line corresponding to this equation, select any two x values (e.g., x = 5 and x =
10). Substitute these values into the equation to obtain the corresponding y values (y = 20
and y = 30) and thus two (x, y) points on the line. Finally, connect these two points with
a straightedge.

Fitting a Straight Line

The line that gives the most effective summary of an approximate linear relation is the
one that in some sense is the best-fitting line, the one closest to the sample data. Con-
sider the scatterplot and line shown in Figure 3.10. Let’s focus on the vertical deviations
from the points to the line. For example,

deviation from (15, 47) = height of point—height of line
=47 —[10 + 2(15)]

=7
y
(15, 47) N
50 |-
y=10+2x
40 |-
30

K (13, 28)

20

10

| | | | |
5 10 15 20 25

Figure 3.10 Vertical deviations from points to
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3.3 Fitting a Line to Bivariate Data 19

Similarly,
deviation from (13, 28) = 28 — [10 + 2(13)] = =8

A positive deviation results from a point that lies above the chosen line, and a negative
deviation from a point that lies below this line. A particular line gives a good fit if the
deviations from the line are small in magnitude, that is, reasonably close to zero.

We now need a way to combine the n deviations into a single measure of fit. The
standard approach is to square the deviations (to obtain nonnegative numbers) and sum
these squared deviations.

DEFINITIONS The most widely used criterion for assessing the goodness of fit of a line y = a +
bx to bivariate data (x,y,), .. ., (x,, y,) is the sum of the squared deviations about
the line:

2 (a+ b =y = (a+bx)[ ++ [y, = (a+ bx,)]*

According to the principle of least squares, the line that gives the best fit to
the data is the one that minimizes this sum; it is called the least squares line or
sample regression line.

To find the equation of the least squares line, let g(a@, b) = [y, — (@ + bx,)|-
Then the intercept a and slope b of the least squares line are the values of @ and
b that minimize g(d, b). These minimizing values are obtained by taking the par-
tial derivative of the g function first with respect to @ and then with respect to b,
and equating these two partial derivatives to zero (this is analogous to solving the
single equation f(z) = 0 to find the value of z that minimizes a function of a single
variable). This results in the following two equations in two unknowns, called the
normal equations:

nd + (inﬁ:Zy,» (in)EJr(inz)E:ZXiyi

These equations are easily solved because they are linear in the unknowns (a conse-
quence of using squared deviations in the fitting criterion).

The slope b of the least squares line is given by

_ in)’i - (ZX;)(ZYi)/" _ Sy

EX:Z - (in)z/n - Sixx

The vertical intercept a of the least squares line is

b

a =y — bx

The equation of the least squares line is often written as y = a + bx, where the
above y emphasizes that y is a prediction of y that results from the substitution of

WAy
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120 CHAPTER 3 Bivariate and Multivariate Data and Distributions

any particular x value into the equation. Notice that the numerator and denominator
of b appeared previously in the formula for the sample correlation coefficient r.

Example 3.7 The cetane number is a critical property in specifying the ignition quality of a fuel
used in a diesel engine. Determining this number for a biodiesel fuel is expensive and
time consuming. The article “Relating the Cetane Number of Biodiesel Fuels to Their
Fatty Acid Composition: A Critical Study” (J. of Automobile Engr., 2009: 565-583) in-
cluded the following data on x = iodine value (g) and y = cetane number for a sample
of 14 biofuels. The iodine value is the amount of iodine necessary to saturate a sample
of 100 g of oil.

7 132.0 129.0 120.0 113.2 105.0 920  84.0
y: 46.0 48.0 51.0 52.1 54.0 520  59.0

Xx: 83.2 88.4 59.0 80.0 81.5 71.0  69.2
y: 58.7 61.6 64.0 61.4 54.6 58.8  58.0

The necessary summary quantities for hand calculation can be obtained by plac-
ing the x values in a column and the y values in another column and then creating
columns for x*, xy, and y” (the latter value is not needed at the moment but will be
used shortly). Calculating the column sums gives

Y =13075, Yy, =7792,  >xl=12891393,
Sxy,=7134730, >y =43745.22

from which
T = % = 93.392857, y = % = 55.657143
S, = 128913.93 — (1307.5)2/14 = 6802.7693
Sxy = 71,347.30 — (1307.5)(779.2)/14 = —1424.41429
Thus
—1424.41429
b= 68027603 —.20938742

a = 55.657143 — (—.20938742)(93.392857) = 75.212432

and the equation of the least squares line is y = 75.212 — .2094x, exactly that re-
ported in the cited article.

Figure 3.11 generated by the statistical computer package Minitab shows
that the least squares line is a very good summary of the relationship between the
two variables. A prediction of the cetane number when the iodine value is 100 is
y =75.212 — .2094(100) = 54.27. The slope of the least squares line tells us that
a decrease of roughly .209 in cetane number is associated with a 1-gram increase
in iodine value.
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3.3 Fitting a Line to Bivariate Data 121

Cet Num = 75.21 — 0.2094 Iod Val

60 -

55

Cet num

45
| | | | | | | | | |

50 60 70 30 90 100 110 120 130 140
Tod val

Figure 3.11 Scatterplot from Minitab for Example 3.7 with least squares
line superimposed

The least squares line should not be used to make a prediction for an x value much
beyond the range of the data, such as x = 50 or x = 250 in Example 3.7. The danger
of extrapolation is that the fitted relationship (here, a line) may not be valid for such x
values.

Regression

The term regression comes from the relationship between the least squares line and the
sample correlation coefficient. Let s, and s, denote the sample standard deviations of the
x and y values, respectively. Algebraic manipulation gives

Sy . B Sy B
RORSEOS

If r = 1 and we substitute x = x + s_(an x value 1 standard deviation above the
mean x value), then y =y + s, which is 1 standard deviation above the mean y
value. If, however, r = .5 and this x value is substituted, then =y + .55, which is
only half a y standard deviation above the mean. More generally, when —1 <r <1,
for any x value, the corresponding predicted value y will be closer in terms of stan-
dard deviations to y than is x to X; that is, y is pulled toward (regressed toward)
the mean y value. This regression effect was first noticed by Sir Francis Galton
in the late 1800s when he studied the relation between father’s height and son’s
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122 CHAPTER 3 Bivariate and Multivariate Data and Distributions

height; the predicted height of a son was always closer to the mean height than was
his father’s height.

Assessing the Fit of the Least Squares Line

How effectively does the least squares line summarize the relationship between the
two variables? In other words, how much of the observed variation in y can be attrib-
uted to the approximate linear relationship and the fact that x is varying? A quantita-
tive assessment is based on the vertical deviations from the least squares line. The
height of the least squares line above x, is §; = a + bx,, and y, is the height of the
corresponding point in the scatterplot, so the vertical deviation (residual) from this
point to the line is y; — (a + bx,). Substituting the remaining x values into the equa-
tion gives other predicted (or fitted) values y, = a + bx,,...,y, =a + bx,, and
the other residuals y, — ¥, ..., y, — 7, are again obtained by subtraction. A residual
is positive if the corresponding point in the scatterplot lies above the least squares
line and negative if the point lies below the line. It can be shown that when predicted
values and residuals are based on the least squares line, X(y, —9,) = 0, so of course
the average residual is zero.

Variation in y can effectively be explained by an approximate straight-line relation-
ship when the points in the scatterplot fall close to the least squares line—that is, when
the residuals are small in magnitude. A natural measure of variation about the least
squares line is the sum of the squared residuals (squaring before combining prevents
negative and positive residuals from counteracting one another). A second sum of
squares assesses the total amount of variation in observed y values.

DEFINITIONS Residual sum of squares, denoted by SSResid, is given by

SSRCSld = Z<y1 - )A]i)z = ()’1 - j}l)z toet ()]n - )Azn)z
(alternatively called error sum of squares and denoted by SSE).
Total sum of squares, denoted by SSTo, is defined as

SSTo=> (3, =9’ = =9+ +,—y)’

Alternative notation for SSTo is S, , and a computing formula is

Sy - (Z)’i)z

n

A computing formula for residual sum of squares makes it unnecessary to calcu-
late the residuals:

SSResid = SSTo — bS,,

Because b and S, have the same sign, bS, is a positive quantity unless b = 0, so the
computing formula shows that SSResid = SSTo if b = 0 and SSResid < SSTo otherwise.
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3.3 Fitting a Line to Bivariate Data 123

To avoid any rounding effects, use as much decimal accuracy in b as possible when
computing SSResid.

SSResid is often referred as a measure of “unexplained” variation; it is the amount
of variation in y that cannot be attributed to the linear relationship between x and y.
The more points in the scatterplot deviate from the least squares line, the larger the
value of SSResid and the greater the amount of y variation that cannot be explained
by a linear relation. Similarly, SSTo is interpreted as a measure of total variation; the
larger the value of SS'To, the greater the amount of variability in the observed y;s. The
ratio SSResid/SSTo is the fraction or proportion of total variation that is unexplained
by a straight-line relation. Subtracting this ratio from 1.0 gives the proportion of total
variation that is explained.

DEFINITION The coefficient of determination, denoted by r*, is given by
5 SSResid
r=1-—o—
SSTo

It is the proportion of variation in the observed y values that can be attributed to
(or explained by) a linear relationship between x and y in the sample. Multiplying
r* by 100 gives the percentage of y variation attributable to the approximate linear
relationship. The closer this percentage is to 100%, the more successtul is the
relationship in explaining variation in y.

Example 3.8 The scatterplot of the iodine value and cetane number data in Figure 3.11 portends
a reasonably high r* value. With

S,y = —1424.41429 (the numerator of b) b= —.20938742
Dy, =7792 D yF=43,745.22

we have

SST = 43,745.22 — (779.2)}/14 = 377.174
SSE = 377.174 — (—.20938742)(—1424.41429) = 78.920

The coefficient of determination is then
r*=1—SSE/SST =1 — (78.920)/(377.174) = .791

That is, 79.1% of the observed variation in cetane number is attributable to
(can be explained by) the simple linear regression relationship between cetane
number and iodine value (r* values are even higher than this in many scientific
contexts, but social scientists would typically be ecstatic at a value anywhere near
this large).
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124 CHAPTER 3 Bivariate and Multivariate Data and Distributions

The wide availability of good statistical computer packages makes it unnec-
essary to hand calculate the various quantities involved in a regression analysis.
Figure 3.12 shows partial Minitab output for the cetane number—iodine value data
of Examples 3.7 and 3.8; the package will also provide the predicted values and
residuals as well as other information on request. The formats used by other pack-
ages differ slightly from that of Minitab, but the information content is very similar.
Quantities such as the standard deviations, t-ratios, F, and P-values are discussed in
Chapter 11.

The regression equation is
cet num = 75.2 - 0.209 iod val

Predictor Coef ,a b SE Coef T P
Constant 75.212’% 2.984 25.21 0.000
iod val -0.20939 0.03109 -6.73 0.000

S = 2.56450 R-Sq = 79.1%_ R-Sqg(adj) = 77.3%

10072
Analysis of Variance SSResid
Source DF SS MS F P
Regression 1 298.25/ 298.25 45.35 0.000
Residual Error 12 78.92 6.58
Total 13 377.17<——58To

Figure 3.12 Minitab output for the regression of
Examples 3.7 and 3.8

The symbol r was used in Section 3.2 to denote Pearson’s sample correlation coef-
ficient. It is not coincidental that * is used to represent the coefficient of determination.
The notation suggests how these two quantities are related:

(correlation coefficient)* = coefficient of determination

Thus, if r = .8 or r = —.8 then r* = .64, so that 64% of the observed variation in
the dependent variable can be attributed to the linear relationship. Notice that
because the value of r does not depend on which variable is labeled x, the same is
true of r*. The coefficient of determination is one of the very few quantities calcu-
lated in the course of a regression analysis whose value remains the same when the
role of dependent and independent variables are interchanged. When r = .5, we
get ¥ = .25, 50 only 25% of the observed variation is explained by a linear relation.
This is why values of r between —.5 and .5 can fairly be described as evidence of a
weak relationship.
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3.3 Fitting a Line to Bivariate Data 125

Standard Deviation About the Least Squares Line

The coefhicient of determination measures the extent of variation about the best-
fit line relative to overall variation in y. A high value of r* does not by itself prom-
ise that the deviations from the line are small in an absolute sense. A typical observa-
tion could deviate from the line by quite a bit, yet these deviations might still be small
relative to overall y variation. Recall that in Chapter 2 the sample standard deviation
s="V3(x —%)%(n — 1) was used as a measure of variability in a single sample; roughly
speaking, s is the typical amount by which a sample observation deviates from the mean.
There is an analogous measure of variability when a line is fit by least squares.

DEFINITION The standard deviation about the least squares line is given by
SSResid

g = |22

¢ n—2

Roughly speaking, s, is the typical amount by which an observation deviates from the
least squares line. Justification for division by n — 2 and the use of the subscript ¢ are
given in Chapter 11.

Example 3.9 The values of x = commuting distance and y = commuting time were determined
for workers in samples from three different regions. Data is presented in Table 3.1;
the three scatterplots are displayed in Figure 3.13.

For sample 1, a rather small proportion of variation in y can be attributed to
an approximate linear relationship, and a typical deviation from the least squares
line is roughly 4. The amount of variability about the line for sample 2 is the
same as for sample 1, but the value of 7* is much higher because y variation is
much greater overall in sample 2 than in sample 1. Sample 3 yields roughly the
same high value of * as does sample 2, but the typical deviation from the line for
sample 3 is only half that for sample 2. A complete picture of variation requires
that both r* and s, be computed.

Table 3.1 Data for three regions (Example 3.9)

8 1 2 3

E-j» x y x y x

z 15 4 5 16 5 8
z 6 35 10 32 10 16
E 17 4 15 44 15 22
] 18 42 20 45 20 23
£ 19 49 25 63 25 31
s 20 46 50 115 50 60
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y y y
120 |~ 120 [~ 120 [~
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Figure 3.13 Scatterplots and summary quantities for Example 3.9

Plotting the Residuals (Optional)

It is important to have methods for identifying unusual or highly influential observa-
tions and revealing patterns in the data that may suggest how an improved fit can be
achieved. A plot based on the residuals is very useful in this regard.

DEFINITION A residual plot is a plot of the (x, residual) pairs—that is, of the pairs
(xp, y1 = V1)s (X9 Y3 = V5)s -« o, (x,, ¥, — ¥,)—or of the residuals versus predicted
values—the pairs (3, y; = V), - - > 0, ¥, = V,)-

A desirable plot exhibits no particular pattern, such as curvature or much greater
spread in one part of the plot than in another part. Looking at a residual plot after fitting
a line amounts to examining y after removing any linear dependence on x. This can
sometimes more clearly show the existence of a nonlinear relationship.

Example 3.10  Consider the accompanying data (page 127) on x = height (in.) and y = average
weight (Ib) for American females aged 30-39 (taken from The World Almanac and
Book of Facts). The scatterplot displayed in Figure 3.14(a) appears rather straight.
However, when the residuals from the least squares line (y = —98.23 4+ 3.596x) are
plotted, substantial curvature is apparent (even though r* = .99). It is not accurate to
say that weight increases in direct proportion to height (linearly with height). Instead,
average weight increases somewhat more rapidly in the range of relatively large
heights than it does for relatively small heights.

Unless otherwise noted, all content on this page is © Cengage Learning.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3.3 Fitting a Line to Bivariate Data 127

x: 58 59 60 61 62 63 64 65
y: 113 115 118 121 124 128 131 134
7% 66 67 68 69 70 71 72
y: 137 141 145 150 153 159 164
y Residual
3 | L]
170 |~ O
[ ] 2 — L ]
160 | .
° 1 °
150 |- .
_,\, ° 62 70
> 0 — — x
140 |- . C s8 66
° -1 °
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Figure 3.14 Plots of data from Example 3.10: (a) scatterplot; (b) residual plot

We also hope that there are no unusual points in the plot. A point falling far
above or below the horizontal line at height zero corresponds to a large residual,
which may indicate some type of unusual behavior, such as a recording error, non-
standard experimental condition, or atypical experimental subject. A point whose
x value differs greatly from others in the data set may have exerted excessive influ-
ence in determining the fitted line. One method for assessing the impact of such
an isolated point on the fit is to delete it from the data set and then recompute the
best-fit line and various other quantities. Substantial changes in the equation, pre-
dicted values, 7%, and s, warn of instability in the data. More information may then
be needed before reliable conclusions can be drawn.

Example 3.11 Bioaerosols are airborne particles such as bacteria or pollen that, when found in
indoor environments, may cause infectious or allergic health effects. The Andersen
method for determining bioaerosol concentration requires a 2-7-day incubation
period. The article “Measurement of Indoor Bioaerosol Levels by a Direct Count-
ing Method” (J. of Envir. Engr., 1996: 374-378) discussed an alternative technique,
the FFDC method. Consider the accompanying data, read from a plot in the cited
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128 CHAPTER 3 Bivariate and Multivariate Data and Distributions

article, on x = concentration using Andersen method (CFU/m’) and y = concentra-
tion using FFDC method (no./m’):

Observation x y y Residual
1 119 239 225.1 13.9
2 140 262 240.3 21.7
3 150 202 247.6 —45.6
4 157 224 252.7 =287
5 171 255 262.8 =78
6 200 292 283.9 8.1
7 218 350 296.9 53.1
8 250 298 320.2 —22.2
9 272 313 336.2 =232

10 321 415 371.7 433
11 573 542 554.7 —12.7

The equation of the least squares line is § = 138.68 + .726x, with r* = .901. (The
slope, intercept, and r* differ very slightly from values given in the article.)

o7

500 40 - °10
2 20r,°
§ 4001 g 0
S =
a o Potentially 4 0
= influential ~ © =

300 observation 20 oo

o]
—40
200 © ! ! ! ! o8 1 1 1
200 300 400 500 300 400 500
Andconc Predicted
(a) (b)

Figure 3.15 Plots from R for the bioaerosol data of Example 3.1 1:
(@) least squares line for the full sample

- - - least squares line when the potentially influential observation is deleted
(b) residuals versus predicted values

Figure 3.15 shows a scatterplot and a residual plot (here, residuals versus predicted
values) from R (this package has excellent graphics capabilities). There is no single
residual that is much larger in magnitude than the other residuals. The most strik-
ing feature here is that x;; is much larger than any other x value in the sample, so
that (x,, y;;) is an observation with potentially high influence (sometimes called a
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high-leverage observation). This point would not in fact be highly influential if it fell
close to the least squares line based on just the first ten observations. However, the
equation of this line is § = 115.09 + .850x with #* = .757; this r* value is much
lower than the original value, and the slope and intercept have also changed substan-
tially. Without the influential observation, evidence for a very strong linear relation-
ship between concentrations assessed by the two methods is not nearly so compelling.

Resistant Lines

As Example 3.11 shows, the least squares line can be greatly affected by the presence
of even a single observation that shows a large discrepancy in the x or y direction
from the rest of the data. When the data set contains such unusual observations, it
is desirable to have a method for obtaining a summarizing line that is resistant to
the influence of these stray values. In recent years, many methods for obtaining a
resistant (or robust) line have been proposed, and various statistical packages will
fit such lines. Consult a statistician or a book on exploratory data analysis to obtain

more information.

19. The invasive diatom species Didymosphenia gemi-

nata has the potential to inflict substantial eco-
logical and economic damage in rivers. The article
“Substrate Characteristics Affect Colonization by
the Bloom-Forming Didymosphenia geminata”
(Aquatic Ecology, 2010: 33-40) described an in-
vestigation of colonization behavior. One aspect of
particular interest was whether y = colony density
was related to x = rock surface area. The article
contained a scatterplot and summary of a regression
analysis. Here is representative data:

x50 71 55 50 33 58 79
y: 152 1929 48 22 2 5 35

x 260 69 44 37 70 20 45 49
y: 7209 38 171 13 43 185 25

a. Determine the equation of the least squares line
for this data and then calculate and interpret the
cocefficient of determination.

b. The second observation has a very extreme
y value (in the full data set consisting of 72 ob-
servations, there were 2 of these). This obser-
vation may have had a substantial impact on

the form of the regression function and subse-
quent conclusions. Eliminate it and redo part
(a). What do you conclude?

20. Electromagnetic technologies such as ground pen-

etrating radar offer effective nondestructive sensing
techniques to determine a continuous profile of a
pavementstructure. The propagation of electromag-
netic waves through the structure depends critically
on the dielectric properties of the media. However,
little research has been done on the characteriza-
tion of dielectric properties of asphalt mixtures. The
article “Dielectric Modeling of Asphalt Mixtures
and Relationship with Density” (J. Transp. Engr.,
2011: 104-111) reported on the dielectric response
with percent air voids for various asphalt mixtures at
7-GHz frequency. The following data, kindly pro-
vided by the authors of the cited article, compares
y = dielectric constant and x = air void (%) for 18
samples having 5% asphalt content:

y: 455 449 450 447 447 445
x: 435 479 557 520 5.07 5.79

y: 440 434 443 443 442 440
x: 536 640 5.66 590 649 5.70
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130 CHAPTER 3 Bivariate and Multivariate Data and Distributions

y: 433 444 440 426 432 434
x: 649 637 651 788 674 7.08

a. Does a scatterplot of the data suggest it is reason-
able to assume an approximate linear relation-
ship between x and y?

b. Find the equation of the least squares line for
this data and interpret its slope.

c. Determine the proportion of observed variation
in the response variable that can be attributed
to the approximate linear relationship between
strength and fiber weight.

d. Does a residual plot indicate any deficiency in a
straight line fit? Explain your reasoning.

21. For the past decade rubber powder has been used
in asphalt cement to improve performance. The
article “Experimental Study of Recycled Rubber-
Filled High-Strength Concrete” (Magazine of
Concrete Res., 2009: 549-556) included on a re-
gression of y = axial strength (MPa) on x = cube
strength (MPa) based on the following sample

data:

x: 1123 97.0 927 86.0 102.0
y: 750 71.0  57.7 487 743
x: 992 958 1035 89.0 86.7
y: 733 68.0 593 5738 48.5

a. Does a scatterplot of the data suggest an appro-
priate linear relationship between x and y?

b. Obtain the equation of the least squares line and
interpret its slope.

c. Calculate and interpret the coefficient of
determination.

d. Roughly what is the size of a typical deviation of
points in the scatterplot from the least squares
line?

22. Recall the data from Exercise 4 based on amount
of oil added (in g) and the corresponding amount
of oil recovered (in g) from wheat straw. Suppose
that we want to use the least squares line to predict
the amount of oil recovered from the wheat straw
based on the initial amount of oil added. Consider
the accompanying output from the SAS statistical
computer package.

Dependent Variable: oil_recov
Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 289.45805 289.45805 2977.07 <.0001
Error 13 1.26398 0.09723
C Total 14 290.72203
Root MSE 0.31182 R-Square 0.9957
Dep Mean 6.07513 Adj R-Sqg 0.9953
c.V. 5.13266
Parameter Estimates
Parameter Standard t
Variable DF Estimate Error Value Pr > |t]
Intercept 1 -0.52343 0.14528 -3.60 0.0032
oil added 1 0.87825 0.01610 54.56 <.0001
Predict
Obs Dep Var Value Residual
1 0.6100 0.3548 0.2552
2 0.8400 0.7939 0.0461
3 1.5120 1.3209 0.1911
4 1.7920 1.9357 -0.1437
5 2.9520 2.6383 0.3137
6 2.8800 3.4287 -0.5487
7 4.4000 4.3069 0.0931
8 5.3460 5.2730 0.0730
9 6.3960 6.3269 0.0691
10 7.1890 7.4686 -0.2796
11 8.0850 8.6982 -0.6132
12 9.8400 10.0155 -0.1755
13 11.6960 11.4207 0.2753
14 13.2240 12.8259 0.3981
15 14.3650 14.3189 0.0461
Sum of Residuals 0

Sum of Squared Residuals 1.2640

a. Wirite the equation of the least squares line and
use it to predict the value of recovered oil when
added oil is 10 g.

b. What are the values of SSResid, SSTo, 7, and
s,? Do these values suggest that the least squares
line provides an effective summary of the rela-
tionship between the two variables?

c. Construct a plot of the residuals. What does it
suggest?

23. Recall the data from Exercise 6 involving x = fiber
weight (%) and y = compressive strength (MPa).

a. Determine the equation of the least squares line
and interpret its slope.

b. Determine the proportion of observed variation
in strength that can be attributed to the approxi-
mate linear relationship between strength and
fiber weight.
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c. Predict the value of the compressive strength
when the fiber weight percentage is 6.5.

d. Would you feel comfortable using the least
squares line to predict the compressive strength
when the fiber weight percentage is 25? Explain.
Now predict the value of y when x = 25 and in-
terpret the result.

24. By their nature, deserts are typically exposed to

large amounts of solar radiation. Thus, such re-
gions seem to be prime locations for harvesting so-
lar energy through the installation of photovoltaic
modules. These modules rely on an optical system
to collect sunlight, often through some lens, so an
important factor to consider would be the effect
of desert sandstorms on lens performance. The
authors of “Sandblasting Durability of Acrylic and
Glass Fresnel Lenses for Concentrator Photovol-
taic Modules” (Solar Energy, 2012: 3021-3025)
compared the performance of sandblasted acrylic
and glass Fresnel lenses used in concentrator pho-
tovoltaic modules. In the experiment, the transmit-
tance after sandblasting of acrylic polymethylmeth-
acrylate (PMMA) and glass Fresnel lenses were
measured. The experimental data, kindly provided
by the authors, compares y = reduction rate of
transmittance (%) and x = sandblast momen-
tum (g-m/s) for 14 PMMA and 8 glass substrate
samples:

Xpgm: 10.56 20.80  15.84 31.20 48.00

Yewn:  8.56 18.93  19.35 23.65 33.05
Xoma: 21.12 41.60 64.00 16.80 33.20
Vown: 18.53 29.21  40.39 17.21 27.21

Xpma: 51.20 13.92 27.84 42.72

Yewn: 34.74 17.40 25.89 32.82
Xg1aeei 35.20 52.80 105.60 52.80 70.40
Yelsss: 5.62  8.10 31.21 13.76 15.37
Xg1aes: 56.00 48.00 139.20
Velass: 14.76 16.55  37.08

a. In one graph, overlay the scatterplots for the
PMMA and the glass data sets and comment on
any interesting features. Be sure to use different
symbols for each data set.

25.

3.3 Exercises 131

b. Determine the equations for the least squares
line for the PMMA and glass data sets. Interpret
the slope for each equation.

c. For the PMMA lens, predict the reduction rate
of transmittance when sandblast momentum is
at 50 g-m/s. Do the same for the glass lens type.

d. Based on your results, which lens type per-
formed better in this experiment?

Two important properties of a soil are its initial
void ratio (e, a measure of soil porosity) and its
compression index (C,, an indicator of soil com-
pressibility). The article “Consolidation and
Hydraulic Conductivity of Zeolite-Amended
Soil-Bentonite Backfills” (]. Geotech. Geoenvi-
ron. Engr., 2012: 15-25) reported the following
data (read from a graph) for the C_ and ¢ vari-
ables for sand-bentonite backfills with varying
amounts and types of zeolites.

e 0988 1.018 1.058 1.070 1.085 1.145
C:. 019 020 020 022 023 0.24

c

a. Using C, as the response and e, as the ex-
planatory variable, create the corresponding
scatterplot. Do the values of C, appear to
be perfectly linearly related to the e, values?
Explain.

b. Determine the equation of the least squares
line.

c. What proportion of the observed variation in the
compression index can be attributed to the ap-
proximate linear relationship between the two
variables?

d. Predict the value of the compression index
when the initial void ratio is 1.10. Would you
feel comfortable using the least squares line to
predict the compression index when the initial
void ratio is .80? Explain.

. In biofiltration of wastewater, air discharged from

a treatment facility is passed through a damp po-
rous membrane that causes contaminants to dis-
solve in water and be transformed into harmless
products. The accompanying data on x = inlet
temperature (°C) and y = removal efficiency (%)
was the basis for a scatterplot that appeared in the

article “Ireatment of Mixed Hydrogen Sulfide
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and Organic Vapors in a Rock Medium Biofilter”
(Water Environment Research, 2001: 426-435):

e. Personal communication with the authors of the
article revealed that there was one additional

observation that was not included in their scat-

Removal Removal . .
Obs Temp 7 Obs  Temp 7 te.r.plot. (6.53, 96..55). What impact dO(?s this ad-
ditional observation have on the equation of the
1 7.68 98.09 17 8.55 98.27 least squares line and the values of s, and ?
2 651 98.25 18 7.57 98.00 ¢ )
3 6.43 97.82 19 6.94 98.09 27. Consider the following four (x, y) data sets; the first
4 5.48 97.82 20 832 98.25 three have the same x values, so these values are
z 18;; Z;gi 2 ig;g Zgg listed only once (from “Graphs in Statistical Analy-
7 15.69 98.38 23 17.83 98.71 sis,” Amer. Statistician, 1973: 17-21).
8 16:77 98:89 24 17:03 98:79 For each of these four data sets, the values of
9 17.13 98.96 25 1618 98.87 the summary quantities, >x;, >y, and so on, are al-
10 17.63 98.90 26 16.26 98.76 most identical, so the equation of the least squares
11 16.72 98.68 27 1444 98.58 line(§ = 3 + .5x), SSResid, SSTo, r, and s, will be
12 1545 98.69 28 1278 98.73 virtually the same for all four. Based on a scatterplot
13- 12.06 98.51 29 1225 98.45 and a residual plot for each data set, comment on
%;} }é;}; ggg? 2(1) ng ZS;Z the appropriateness of fitting a straight line; include
’ ‘ : ’ any specific suggestions for how a “straight-line
16 9.64 98.36 321097 98.45

analysis” might be modified or qualified.
Calculated summary quantities are > x; = 384.26,

Sy, = 314904, Txi= 50992412, Yy = Pt sef: 13 ; 5 ; ! ;

37,850.7762, and X y; = 309,892.6548.

a. Does a scatterplot of the data suggest ap- 100 804 914 74 80 658
propriateness of the simple linear regression 80 695 814 677 80 5.76
model? 13.0 758 874 1274 80 771

b. Determine the equation of the least square line, 90 881 877 711 80 884
obtain a point prediction of removal efficiency 1.0 833 926 781 8.0 847
when temperature = 10.50, and calculate the 140 996 810 88 80 7.04
value of the corresponding residual. 6.0 724 613 6.08 80 525

c. Roughly what is the size of a typical deviation of 40 426 310 539 19.0 1250
points in the scatterplot from the least squares line? 120 1084 913 8.15 8.0 556

d. What proportion of observed variation in re- 70 482 726 642 80 791
moval efficiency can be attributed to the ap- 50 568 474 573 80 689

proximate linear relationship?

3.4 NONLINEAR RELATIONSHIPS

A scatterplot of bivariate data frequently shows curvature rather than a linear pattern. In
this section, we discuss several different ways to fit a curve to such data.

Power Transformations

Suppose that the general pattern in a scatterplot is curved and monotonic —either strictly
increasing or strictly decreasing. In this case, it is often possible to find a power trans-
formation for x or y so that there is a linear pattern in a scatterplot of the transformed
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data. By a power transformation, we mean the use of exponents p and ¢ such that the
transformed values are x' = x” and/or y' = y7; the relevant scatterplot is of the (x',y’)
pairs. Figure 3.16 displays a “ladder” of the most frequently used transformations and
a guide for choosing an appropriate transformation, depending on the pattern in the
original scatterplot.

y y
4 o 00 %% ® Alee e 1
P XN
Power transformation ladder: il c e,
Transformed value = (original value)"®"™® \-‘:' }.’
Power  Transformed value Name i e
o .
3 (Original value)® Cube 2 L
2 (Original value)? Square ,:. '-..
- o xhyt -
1 Original value No transformation |3 -
x x
5 \/Original value ~ Square root y y
L Y Orio: Cube root
3 Original value
" . : 1
0 Log(original value) ~ Logarithm K .
-1 1/(original value) Reciprocal < &>
< [ 4
~. .o
% e
‘.. KN
Voo Y
3 LY e LS ‘ 2
.." . . .‘.. L
= x x

Figure 3.16 Transformation ladder and guide

For example, suppose the pattern has the shape of segment 2 in Figure 3.16. Then
to straighten the plot, we should use a transformation on x that is up the ladder from
the no-transformation row, for example, x" = x* or x°, or a transformation on y that is
down the ladder, such as y' = 1/y or In(y) (log,, would produce equivalent results). A
residual plot should be used to check that curvature has in fact been removed. Once a
straightening transformation has been identified, a straight line can be fit to the (x', y')
points using least squares. If it was not necessary to transform y, then the line provides
a direct way of predicting y values: calculate x" and substitute into the equation. When
y has been transformed, the line gives predictions of y" values. The transformation can
then be reversed to obtain predictions of y. For example, if x' = 1/x and y' = V/y, the
least squares line gives

Vy=a+ b/x

from which

y=(a+ b/x)*

Unless otherwise noted, all content on this page is © Cengage Learning.
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Example 3.12 No tortilla chip aficionado likes soggy chips, so itis important to find characteristics of
the production process that produce chips with an appealing texture. The following
data on x = frying time (sec) and y = moisture content (%) appeared in the article
“Thermal and Physical Properties of Tortilla Chips as a Function of Frying Time”
(J. of Food Processing and Preservation, 1995: 175-189):

X: 5 10 15 20 25 30 45 60
y: 163 97 81 42 34 29 19 13

The scatterplot in Figure 3.17(a), opposite, has the pattern of segment 3 in
Figure 3.16, so we must go down the ladder for x or y. A scatterplot of the (In(x),
In(y)) pairs in Figure 3.17(b) is quite straight. A regression of In(y) on In(x) gives
a = 4.6384, b = —1.04920, and r* = .976. The residual plot of Figure 3.17(c)

shows no evidence of curvature, though there is one rather large residual.

Moisture content

Figure 3.17 Plots of the data from Example 3.12: (a) scatterplot of
the original data; (b) scatterplot of the (In(x), In(y)) pairs
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Figure 3.17 Plots of the data from Example 3.12:(c) plot of the
residuals from the transformed regression

Thus In(y) = 4.6384 — 1.04920[In(x)]. Since In(20) = 2.996, a prediction of
In(y) is

In(y) = 4.6384— (1.04920)(2.996) = 1.495

Taking the antilog of 1.495 gives a prediction of y itself: ¢'*”* = 4.46%. In fact, taking
the antilog of both sides of the linear equation gives an explicit nonlinear relation-
ship between x and y:

y=e 4.6384 —1.04920[In(x)] _ (64.6384><e*]04920 ln(x)) — 103-379)(*1.04920

This is often called a power function relationship between x and y.

In(y) e

Fitting a Polynomial Function

Sometimes the general pattern of curvature in a scatterplot is not monotonic. Instead, it
may be the case that as x increases, there is a tendency for y first to increase and then to
decrease (like a bowl turned upside down) or for y first to decrease and then to increase.
In such instances, it is reasonable to fit a quadratic function a + byx + bx*, whose
graph is a parabola, to the data. If the quadratic coethicient b, is positive, the parabola
turns upward, whereas it turns downward if b, is negative. Just as in fitting a straight line,
the principle of least squares can be employed to find the best-fit quadratic. The least
squares coefficients a, b,, and b, are the values of @, bl, and b that minimize

g(d, EI’ Bz) = Z [)’i —(E + Elxi + sziz)]z

which is the sum of squared vertical deviations from the points in the scatterplot to the parab-
ola determined by the quadratic with coefficients @, b, and b,. Taking the partial derivative
of the g function first with respect to @, then with respect to b 1> and finally with respect to b "
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136 CHAPTER 3 Bivariate and Multivariate Data and Distributions

and equating these three expressions to zero gives three equations in three unknowns. These
normal equations are again linear in the unknowns, but because there are three rather than
just two, there is no explicit elementary expression for their solution. Instead, matrix algebra
must be used to solve the system numerically for each different data set. Fortunately, solution
procedures have been programmed into the most popular statistical computer packages, so
it is necessary only to make the appropriate request and then sit back and wait for output.

Example 3.13  The scatterplot of y = glucose concentration versus x = fermentation time shown in
Figure 3.9 (at the end of Section 3.2) has the appearance of an upward-turning qua-
dratic. We supplied the data to Minitab and made the appropriate regression request
to obtain the accompanying output. The fitted quadratic equation appears at the top
of the output, and the values of the least squares coethicients a, b, b, appear in the
Coef column just below the equation. A prediction for glucose concentration when
fermentation time is 4 hours is

5 = 84.482 — 15.875(4) + 1.7679(4)% = 49.27

The regression equation is

glucconc = 84.5 - 15.9 time + 1.77 timesad

Predictor Coef Stdev  t-ratio P
Constant 84.482 4.904 17.23 0.000
time -15.875 2.500 -6.35 0.001
timesaqd 1.7679 0.2712 6.52 0.001

s = 3.515 R-sg = 89.5% R-sq (adj) = 85.3%
Analysis of Variance

SOURCE DF SS MS F P
Regression 2 525.11 262.55 21.25 0.004
Error 5 61.77 12.35

Total 7 586.88

Predicted or fitted values y,, . .., 9, are obtained by substituting the successive x
values xy, . . ., x, into the fitted quadratic equation (e.g., in Example 3.13, 9, = 49.27),
and the residuals are the vertical deviations y, —9,,...,y, —7, from the observed
points to the graph of the fitted quadratic (e.g., y, — y, = 51 —49.27 = 1.73).
Residual or error sum of squares and total sum of squares are defined exactly as they
were previously:

SSResid = > (= §)>  SSTo= > (y, — y)*

i i

The Minitab output of Example 3.13 shows that SSResid = 61.77 and SSTo =
586.88. The coefficient of multiple determination, denoted by R’ is now the
proportion of observed y variation that can be attributed to the approximate qua-
dratic relationship:

SSResid
R =1-
SSTo
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The R* value in Example 3.13 is .895, so about 89.5% of the observed variation in
glucose concentration can be attributed to the approximate quadratic relation between
concentration and fermentation time.

The methodology employed to fit a quadratic is easily extended to fit a higher-order
polynomial. For example, using the principle of least squares to fit a cubic equation
gives a system of normal equations consisting of four equations in four unknowns. The
arithmetic is best left to a statistical computer package. In practice, a cubic equation
is rather rarely fit to data, and it is virtually never appropriate to fit anything of higher
order than this.

Smoothing a Scatterplot

Sometimes the pattern in a scatterplot is too complex for a line or curve of a par-
ticular type (e.g., exponential or parabolic) to give a good fit. Statisticians have
recently developed some more flexible methods that permit a wide variety of pat-
terns to be modeled using the same fitting procedure. One such method is LOW-
ESS (or LOESS), short for locally weighted scatterplot smoother. Let (x*, y*) denote
a particular one of the n (x, y) pairs in the sample. The y value corresponding to
(x*, y*) is obtained by fitting a straight line using only a specified percentage of
the data (e.g., 25%) whose x values are closest to x*. Furthermore, rather than
use “ordinary” least squares, which gives equal weight to all points, those with x
values closer to x* are more heavily weighted than those whose x values are farther
away.! The height of the resulting line above x* is the fitted value $*. This process
is repeated for each of the n points, so n different lines are fit (you surely wouldn’t
want to do all this by hand). Finally, the fitted points are connected to produce a
LOWESS curve.

Example 3.14  Weighing large deceased animals found in wilderness areas is usually not feasible,
so it is desirable to have a method for estimating weight from various characteristics
of an animal that can be easily determined. Minitab has a stored data set consist-
ing of various characteristics for a sample of n = 143 wild bears. Figure 3.18(a),
opposite, displays a scatterplot of y = weight versus x = distance around the chest
(chest girth). At first glance, it looks as though a single line obtained from ordinary
least squares would effectively summarize the pattern. Figure 3.18(b) shows the
LOWESS curve produced by Minitab using a span of 50% (the fit at (x*, y*) is
determined by the closest 50% of the sample). The curve appears to consist of two
straight-line segments joined together above approximately x = 38. The steeper
line is to the right of 38, indicating that weight tends to increase more rapidly as
girth does for girths exceeding 38 in.

!"The weighted least squares criterion involves finding @ and b to minimize, Sw]y, — (d + Exl)}z, where
wy, ..., w, are nonnegative weights. For example, if we take wy = 0, then (x5, y;) is disregarded in obtaining
the fitted line. R will also fit a local quadratic in 