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Obituary 

On August 21, 1998, Prof. Dr. Gunther Schlag, founder and head of the LBI, unex­
pectedly passed away. After more than two decades of constant physical and spiri­
tual dedication he had become part of the institution himself, so his death affected 
us all the more. 

He was a leader in the true sense of the word. Gifted with so many talents, he 
was able to convey his tireless enthusiasm. He taught us never to rest on short-lived 
success, and always to remain curious. The breadth of his experience in so many 
fields made him a reliable source for solving almost any problem. For most of the 
problems he was confronted with he found a solution or at least a hint in his ency­
clopedic knowledge, which was continuously expanded by his devotion to reading. 

His humor and humanity over the years distinguished him as a special and 
fatherly figure. And he gave us the feeling that it was both a privilege and a chal­
lenge to participate in his great love of medical science. 

He himself was and his memory will remain a strong driving force for us. We 
intend to keep this faith alive in both its scientific and human aspects by continuing 
his work. 

Wolfgang Strohmaier 
Soheyl Bahrami 

Heinz Redl 
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Preface and introduction 

Heinz Red! and Gunther Sch!agt 

Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria 

The word "sepsis" derives from the Greek meaning decay or rottenness. Tradition­
ally this term has been used to describe the process of infection accompanied by the 
host's systemic inflammatory response. Based on that understanding, previous clin­
ical studies have been designed to include only patients with positive blood cultures 
[1, 2]. However, the frequent occurrence of a septic response without the demon­
stration of microorganisms in the circulation has led to a new definition and under­
standing of sepsis, mainly as the systemic response of the host to an often unde­
tectable microbiological or non-microbiological process [3]. 

The general consensus is that cytokines are central to the inflammatory response, 
particularly in sepsis. It is now known that not only Gram-negative but also Gram­
positive, viral, and fungal infections initiate the complex cascades of cytokine 
release. Probably the most important aspect of bacterial action is the release of toxic 
bacterial products. In particular endotoxin from Gram-negative bacteria (see chap­
ter by Schade) and super antigens (see chapter by Neumann and Holzmann), as well 
as pore-forming toxins [4] from Gram-positive bacteria, induce cytokine formation. 
The importance of this cytokine release is evident from both diagnostic and thera­
peutic (mostly experimental) studies, and the action of cytokines may be the key to 
our understanding of the pathophysiology of the sepsis syndrome. 

Therefore we set out to put together 20 chapters to deal with the different 
aspects of cytokine induction, monitoring, cytokine actions and therapeutic oppor­
tunities in this complicated network (Fig. 1). We were most fortunate that world 
experts were willing to contribute to this endeavor despite their normal workload, 
and we would like to take this opportunity to thank all of them. 

Most of the cytokines are not produced, at least not detectably under baseline 
normal conditions, but are induced during infection/gut translocation by bacterial 
bacterial products, as described in the first two chapters by Schade and Holzmann. 
From the recognition/binding of bacterial products there are several intermediate 
steps - the signal transduction cascade - that lead to transcription of the specific 
mRNAs (as described by Rotstein). Both the transcription and many posttran­
scriptional events are dependent on multiple factors such as sex, age and nutrition-
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al status, as well as genetic predisposition in term of polymorphisms. These aspects 
are combined in the section predisposing factors and discussed by Zellweger and 
Chaudry and by Stuber. 

One important aspect in the understanding of the cytokine network in sepsis is 
the ability to detect and measure the cytokines (as discussed by Cavaillon), which is 
a difficult task due to their local production and action, low levels, and short half­
life. The short half-life in plasma is due partly to binding to receptors, including the 
soluble circulating cytokine receptors, which not only neutralize cytokines but are 
diagnostic tools in themselves (as discussed by Buurman). An approach to avoid the 
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difficulties associated with cytokine monitoring is the use of so-called surrogate 
markers for sepsis monitoring, of which the macrophage activation marker 
neopterin [5) and procalcitonin [6) are the best known (see chapter by Strohmaier). 

Cytokines act in an autocrine, paracrine and hormonal fashion, and a few select­
ed actions of cytokines are discussed in the third section. One of the cytokine­
induced events is the production of vasoactive mediators, such as nitric oxide (NO) 
formation from inducible NO synthase (iNOS) [7, 8], which can lead ultimately to 
vasoplegia or the counteracting cytokine-dependent production of endothelin [9) 
(discussed in the chapter by Thiemermann). Many studies of NOS inhibition have 
been performed, with partly contradictory results; the discrepancies are mainly 
related to type, dose, and time of inhibitor application (for recent review see [10)). 
With an appropriate study design, non-selective inhibitors are also beneficial, even 
in non-human primates [11); on the other hand, new interesting approaches with 
so-called selective iNOS inhibitors have been tried [12). The vasoregulatory activi­
ties are endothelial-related, similar to adherence molecule upregulation (see chapter 
by Smith) and many procoagulatory and fibrinolytic events induced by cytokines. 
The important procoagulatory action of cytokines and fibrinolysis are thoroughly 
discussed by Hack. 

A very recent aspect of the action of cytokines is their influence on apoptosis, 
with increasing or suppressing effects depending on the cytokine. This is discussed 
with respect to neutrophils in the chapter by Watson. A completely different action 
of cytokines is the redirection of metabolism, an important long-term aspect, as 
described by Roth. 

Whenever something is supposed to be a key actor in inducing sepsis and organ 
failure, countermeasures are proposed. However, sepsis reactions take place within 
the complicated network of a partly overactivated and partly oversuppressed local 
and systemic inflammatory response [13], so it is often difficult to identify the good 
guys and the bad guys. Despite this lack of knowledge and the limited or even 
nonexistent monitoring possibilities, enormous resources have been put into thera­
peutic studies (see chapters by Opal and Abraham). 

There are several potential levels and time windows for interference in the sepsis 
process (Fig. 1), and chapters were solicited dealing with the different possible lev­
els of interference. The conceptually less difficult therapeutic intervention is scav­
enging the inducers, e.g. endotoxin, as described by Opal, because there is little to 
no interference with the body's immune system. One particularly promising tool is 
bactericidal permeability-increasing protein, with excellent efficacy in gut translo­
cation [14) and in sepsis in non-human primates [15), and meningococcemia 
patients [16). If the inducers cannot be fought as a first line of defense, there is still 
the possibility of attenuating the host's cytokine response while interfering at the 
transcriptional or posttranscriptionallevel of cytokine production, as outlined in the 
chapter by Zabel and Bahrami, with the potential benefit of reducing, but not elim­
inating, cytokine production. The neutralization of potentially (teleologically) use-

xvii 



Preface and introduction 

ful cytokines, an inherent problem of therapeutic strategies with anti-cytokine anti­
bodies, soluble receptor constructs or cytokine receptor blockers, is discussed by 
Abraham. That a blockade to cytokines is not the only useful therapeutic approach 
in sepsis is outlined in the chapter by Chaudry, where different possibilities of 
immunomodulation are described. Finally, there is a chapter on potential future 
applications of gene therapy to modulate the sepsis response, especially with anti­
inflammatory cytokines (Rogy). However, there are several hurdles to be overcome 
before the technique can be used in patients. 

So far there has been only meagre success of clinical trials in sepsis patients (as 
discussed in the final section by Marshall). According to Knaus, approximately 
7500 patients have been enrolled in 22 multicenter phase IIIIII clinical trials of 
immunotherapy [17]. 

Lack of success has been attributed in part to the following: 
• inactive or inadequate drugs (e .g. HA-1A against LPS, sTNF receptor 75 kDa 

against TNF) 
• heterogeneous patient populations (case mix) 
• imprecise inclusion criteria, e.g. SIRS or sepsis criteria [1] 
• using only outcome as a measure of efficacy; this may be insufficient (small sig­

nal to noise ratio), since improved organ function may not always translate into 
improved survival 

• difficult timing of pharmacological intervention (when and for how long?) 
Furthermore, some investigators claim that preclinical trials with inappropriate 
models would lead to suboptimal clinical protocols. Therefore, the two last chap­
ters by Marshall deal with the problems of preclinical models (as also discussed in 
[18]), the clinical set-up and possible improvements in sepsis trials. 

Improvements could include 
• increase in homogeneity of patients enrolled, by conducting medium-sized 

instead of large clinical trials, but only with patients exhibiting similar underly­
ing disease 

• risk classification with scoring systems, e.g. by Pilz [19] or calculated risk strat­
ification [20, 21] 

• selection of only moderately severe cases with a high likelihood of improvement 
upon therapeutic intervention. 

A further crucial issue is monitoring of the inflammatory/immunological status. 
This can be done by measuring circulating mediators, e.g. cytokines (see chapter by 
Cava ilion for possibilities and limitations) or surrogate markers as discussed by 
Strohmaier. Furthermore, the status of circulating cells, e.g. monocytes for levels of 
HLA-DR expression [22], can be used. 

Criteria for inclusion/exclusion of patients could be based on these diagnoses. 
On the other hand, an evaluation based on the microcirculatory assessment of 
patient status (regional perfusion), e.g. tonometry (pHi) [23] and muscle p02 [24], 
should be considered. 
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We sincerely hope that this collection of contributions by outstanding scientists 
will boost the understanding of the role of cytokines in the development and conse­
quences of sepsis and thus help to achieve improvements in diagnosis and treatment. 

Acknowledgments 
We would like to dedicate this book to the partners and families of the contributors 
as some slight compensation for the reduced attention from the authors and editors. 
We also want to thank M. Serres and C. Wilfing for their excellent support in 
putting this book together, as well as M. GroBauer for preparing this article. 

References 

1 Bone RC, Fisher CJ Jr., Clemmer TP, Slotman GJ, Metz CA,Balk RA (1987) A controlled 
clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and sep­

tic shock. N Engl ] Med 317: 653-658 

2 Sprung CL, Caralis PV, Marcial EH, Pierce M, Gelbard MA, Long WM, Duncan RC, 
Rendler MD, Karpf M (1984) The effect of high dose corticosteroids in patients with 

septic shock: a prospective, controlled study. N Engl ] Med 311: 1137-1143 

3 Goris RJ, te Boekhorst TP, Nuytinck JK, Gimbrere JS (1985) Multiple-organ failure. 
Generalized autodestructive inflammation? Arch Surg 120: 1109-1115 

4 Bhakdi S, Tranum-Jensen J (1991) Alpha toxin of Staphylococcus aureus. Microbial Rev 

55: 733-751 

5 Strohmaier W, Redl H, Schlag G, Inthorn D (1987) D-erythro-neopterin plasma levels in 
intensive care patients with and without septic complications. Crit Care Med 15: 757- 760 

6 Assicot M, Gendrel D, Cars in H, Raymond], Guilbaud], Bohuon C (1993) High serum 
procalcitonin concentration in patients with sepsis and infection. Lancet 341: 515-518 

7 Kilbourn RG, Szabo C,Traber DL (1997) Beneficial versus detrimental effects of nitric 
oxide synthase inhibitors in circulatory shock: lessons learned from experimental and 
clinical studies. Shock 7: 235-246 

8 Kilbourn R, Griffith 0 (1992) Overproduction of nitric oxide in cytokine-mediated and 
septic shock. ] Natl Cancer Inst 84: 827-831 

9 Redl H, Schlag G, Bahrami S, Kargl R, Hartter W, Woloszczuk W, Davies J (1994) Big­

endothelin release in baboon bacteria is partially TNF dependent. ] Lab Clin Med 124: 

796-801 

10 Schlag G, Redl H (eds) (1998) Sixth Wiggers Bernard Conference: Shock, Sepsis, and 

Organ Failure - Nitric Oxide Synthase Inhibition. Springer-Verlag, Heidelberg, Berlin 
11 Schlag G, Redl H, Gasser H, Davies J, Rees D, Grover R (1997) Delayed treatment with 

the NO-synthase inhibitor 546C88 in a baboon model of septic shock. Am] Respir Crit 

Care Med 155: A263 

12 Bahrami S, Strohmaier W, Gasser H, Peichl G, Furst W, Fitzal F, Werner ER, Schlag G 

xix 



Preface and introduction 

(1997) 2,4-Diamino-5,6, 7,8-tetrahydro-6-( 1-erythro-1,2-dihydroxypropyl) pteridine (4-

ABH4) reduces nitric oxide formation and improves survival rate in experimental endo­

toxin shock. Shock 8 (Supp!.): 54 

13 Yao YM, Redl H, Bahrami S, Schlag G (1998) The inflammatory basis of trauma/shock­

associated multiple organ failure. Inflamm Res 47: 201-210 
14 Yao YM, Bahrami S, Leichtfried G, Redl H, Schlag G (1995) Pathogenesis of hemor­

rhage-induced bacteria-endotoxin translocation in rats: effects of recombinant bacteri­

cidal-increasing protein (rBPI21). Ann Surg 221: 398-405 

15 Schlag G, Redl H, Davies], Scannon P] (1997) The protective effect of bactericidal per­
meability increasing protein (rBPI21) is more related to its anti-bactericidal than anti­

endotoxin properties in baboon sepsis. Shock 8 (Supp!.): 20 
16 Giroir BP, Quint PA, Barton P, Kirsch EA, Kitchen L, Goldstein B, Nelson B], Wedel NI, 

Carroll SF, Scan non P] (1997) Preliminary evaluation of recombinant amino terminal 

fragment of human bactericidal permeability increasing protein in children with severe 

meningococcal sepsis. Lancet 350: 1439-1443 

17 Knaus WA (1996) Scrutinizing sepsis: cells, cytokines, computer, and clinical sense. Sec­

ond Annual: Sepsis/SIRS: Reducing mortality to patients & suppliers, February 12-13, 
1996. Washington, DC: 1 

18 Redl H, Schlag G, Bahrami S, Yao YM (1996) Animal models as the basis of pharma­

cologic interventions in trauma and sepsis. World] Surg 20: 487-492 
19 Pilz G, Fateh-Moghadam S, Viell B, Bujdoso 0, Doring G, Marget W, Neumann R,Wer­

dan K (1993) Supplemental immunoglobulin therapy in sepsis and septic shock - com­

parison of mortality under treatment with polyvalent i.v. immunoglobulin versus place­
bo: protocol of a multicenter, randomized, prospective, double-blind trial. Theor Surg 8: 
61-83 

20 Knaus WA, Sun X, Hakim RB, Wagner DP (1994) Evaluation of definitions for adult 
respiratory distress syndrome. Am] Respir Crit Care Med 150: 311-317 

21 Fisher C] Jr., Dhainaut ]F, Opal SM, Pribble ]P, Balk RA, Slotman G], Iberti T], Rack­
ow EC, Shapiro M], Greenman RL et al (1994) Recombinant human interleukin 1 
receptor antagonist in the treatment of patients with sepsis syndrome. Results from a 
randomized, double-blind, placebo-controlled trial. Phase III rhIL-1 ra Sepsis Syndrome 

Study Group. ]AMA 271: 1836-1843 
22 Yolk HD, Reinke P, Falck P, Staffa G, Briedigkeit H, vonBaehr R (1989) Diagnostic 

value of an immune monitoring program for the clinical management of immunosup­

pressed patients with septic complications. Clin Transplant 3: 246-252 
23 Gutierrez G, Pahzas F, Doglio G, Wainsztein N, Gallesio A, Pacin], Dubin A, Schiavi E, 

Jorge M, Pusajo Jet al (1992) Gastric intramucosal pH as a therapeutic index of tissue 
oxygenation in critically ill patients. Lancet 339: 195-199 

24 Boekstegers P, WeidenhOfer S, Zell R, Holler E, Kapsner T, Redl H, Schlag G, Kaul M, 
Kempeni ], Werdan K (1994) Changes in skeletal muscle P02 after administration of 
anti-TNF alpha-antibody in patients with severe sepsis: comparison to interleukin-6 
serum levels, APACHE II, and Elebute scores. Shock 1: 246-253 

xx 



Induction 



Endotoxin as an inducer of cytokines 

F Ulrich Schade1, Regina Flach 1, Thomas Hirsch1 and Ralph R. Schumann2 

1Klinische Forschergruppe "Schock und Multiorganversagen" der DFG, Zentrum fOr 

Chirurgie, Universitatsklinikum Essen, Hufelandstr. 55, D-45122 Essen, Germany; 

2Universitatsklinikum Charite, Medizinische Fakultat der Humboldt-Universitat zu Berlin, 

Institut fOr Mikrobiologie und Hygiene, Dorotheenstr. 96-98, D-1 0117 Berlin, Germany 

Endotoxins were suspected of being related to the pathophysiology of Gram-nega­
tive bacterial infections since the time when R. Pfeiffer and E. Centanni indepen­
dently found that different species of these microorganisms contained a heat stable 
pyrogenic material. This was termed endotoxin based on its tight association with 
the microorganisms. Intensive studies, in particular during the last two decades, 
have established the detailed chemical structure of the endotoxins in most of the 
clinically-relevant microbes (reviewed in [1)). The finding that application of highly 
purified endotoxins to experimental animals and humans induces major signs of 
bacteriosis, such as fever, hemodynamic disorders, shock, and many others 
(reviewed in [2)) gave reason to suspect endotoxin as being a major component in 
the pathogenesis of sepsis. Bacterial components, including endotoxins, have been 
administered to patients for almost one hundred years as a treatment for malignan­
cies [3) and as an experimental model for the acute inflammatory response with sim­
ilarities to the initial response of humans to bacterial sepsis. 

Effects of endotoxin on humans 

The intravenous application of 2-4 ng/kg endotoxin to human volunteers causes a 
monophasic rise in core temperature which is accompanied by chills and rigors 
within one hour after endotoxin administration [4). The peak core temperature rises 
to 38.5°-40°C and symptoms of nausea, headache and myalgia reach a maximum 
within 2 h [5). Studies performed in humans have shown that pyrogenic doses of 
endotoxin evoke a hyperdynamic cardiovascular response. Furthermore, it was 
found in healthy volunteers that endotoxin altered pulmonary function with a fall 
in PaOz and PaCOz and widening of the alveolar-arterial oxygen gradient [6). Bron­
choalveolar lavage indicated an increase in the permeability to small molecules, 
while changes in the permeability to larger molecules were minimal [6). 

As a consequence of the application of low doses of endotoxin (2-4 ng/kg), the 
coagulation system and the fibrinolytic system are activated, which is gradually 
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inhibited by increasing levels of plasminogen activator inhibitor 1 within 2-3 h [5, 
7]. The plasma contact system is activated, resulting in the formation of bradykinin 
which causes vasodilatation and increased transcapillary flux [8]. 

Several findings suggest that neutrophils are activated as a consequence of endo­
toxin administration. The content of neutrophil elastase is increased in the circula­
tion 2-3 h after endotoxin [7], cell surface C3-receptors are upregulated by 3 h post 
endotoxin [9] and neutrophils were found to be primed for enhanced superoxide 
production ex vivo [10] as a result of endogenous mediator production caused by 
endotoxin. Alveolar macro phages obtained from normal humans after endotoxin 
were found to exhibit a similar pattern of priming [11]. 

Two cases have been reported in which high doses of endotoxin were applied to 
humans. A 14 year old boy received 100 ml of packed erythrocytes contaminated 
with endotoxin from Pseudomonas fluorescens (40000 EUlml) and developed a life­
threatening septic shock [12]. In a suicide attempt, a laboratory worker injected 
1 mg purified Salmonella minnesota lipopolysaccharide (LPS) i.v. [13]. Both patients 
survived. 

The above data show that small doses of endotoxin induce sepsis-like symp­
toms in humans, leading to the formation of major inflammatory mediators, and 
in higher amounts may cause life-threatening circulatory and multiple-organ fail­
ure. 

Endotoxins in septic shock 

While it has been suggested for a long time that endotoxins playa major role in 
human sepsis shock, quantitative studies of LPS in the plasma of septic patients 
were not possible until the introduction of the Limulus amoebocyte lysate (LAL) 
assay [14]. It was first reported by Levin et al. that the clinical severity of sepsis 
caused by Gram-negative bacteria was correlated with positive Limulus determina­
tions in plasma. This finding was confirmed by others [15, 16]. In particular in sys­
temic meningococcal disease, circulating levels of LPS have been correlated quanti­
tatively to the activation of mediator systems, especially TNFu, involved in the 
pathogenesis of septic shock and revealed a dose-dependent association of plasma 
endotoxin levels with mortality [17]. In these patients levels of endotoxin correlat­
ed with disease severity. Plasma levels of 800ng/1 or higher predicted the develop­
ment of persistent septic shock, impaired renal function, ARDS, and massive coag­
ulopathy. 

Therefore, in systemic meningococcal disease a clear relationship seems to exist 
between endotoxemia, as determined by Limulus assay in the plasma, and Gram­
negative bacteremia. However, in patients of diverse pathogenicity, including Gram­
positive bacteremia, this correlation is much less than clear. Danner et al. examined 
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100 patients with septic shock and found that in 43% of these, plasma specimens 
were positive in a sensitive chromogenic Limulus assay [18]. In patients with posi­
tive blood cultures, endotoxemia was associated with high mortality. Interestingly, 
only 26% of the endotoxemic patients had documented Gram-negative bacteremia, 
on the other hand, 14% of endotoxin-negative patients grew Gram-negative organ­
isms from their blood culture. Further, circulating endotoxin was found in some 
patients with isolated Gram-positive bacteremia or Candida septicemia. Therefore, 
a positive Limulus test did not predict the presence of Gram-negative sepsis or the 
absence of Gram-positive or fungal sepsis. 

Recently a multicenter study was carried out to examine the use of a chro­
mogenic LAL blood assay in a population of 346 patients with sepsis syndrome in 
eight clinical centers in the USA. [19]. No correlation was found between a positive 
LAL result and Gram-negative bacteremia or Gram-negative infection. Further­
more, no association was found between endotoxemia and mortality in patients 
with positive blood cultures, as was reported by Danner et al. [18]. Therefore, the 
predictive value of endotoxin determination in sepsis patients seems to be limited. 
One major reason for this discrepancy may be that "the microbiology of the 'sepsis 
syndrome' population varies widely from center to center and is influenced by treat­
ment modalities and therapies for the sepsis syndrome that change over time", as 
stated in [19]. 

From this data it is suggested that endotoxin is an important mediator of septic 
shock although bacterial products other than endotoxin, and host-related factors, 
may be important contributors to toxicity and mortality in Gram-negative septic 
shock. This supports efforts to develop antiendotoxin therapies for treating patients 
with this disease. Such efforts include the use of crossreacting antibodies against 
endotoxin (reviewed in [68]). Future therapies may evolve from the knowledge of 
the interactions of endotoxins with mammalian cells. 

Endotoxin recognition and host regulation of LPS activity 

LPS in the circulation of the host will be bound to a certain degree by "high densi­
ty lipoprotein" (HDL), which attenuates its effects both [20-22] in vitro and in vivo. 
Apolipoproteins and "low density lipoprotein" (LDL) have also been shown to bind 
LPS, inhibit its cell-stimulatory potential [23, 24], and LDL-receptor knock-out 
mice were protected against endotoxic shock [25]. Several humoral factors have 
been described exhibiting the ability to bind LPS: the cationic proteins (CAP) 18,37, 
and P15NP15B, a 28 kDa mannose binding protein, albumin, transferrin, lactofer­
rin, hemoglobin, and lysozyme (reviewed in [26]). It has, however, not been shown 
as to whether binding of these molecules to endotoxin is specific or modulates the 
activity of LPS. 
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The cellular LPS receptor CD14 and the "missing link" 

There is much evidence that the massive activation of cells by LPS is regulated 
by an LPS receptor complex. Work of several groups indicates that part of an LPS 
receptor is represented by the cell surface molecule CD14 [27-29]. Cellular CD14 
can bind LPS, which initiates cell activation, and blocking of this interaction pre­
vents most of the cellular effects of endotoxin. Since CD14 lacks a transmembrane 
domain, an as yet undefined co-receptor that initiates signaling subsequent to the 
binding of LPS to CD14 has been supposed. 

The CD14 molecule is a 53kDa glycoprotein found on the cell surface of numer­
ous cell types [30]. Furthermore, two soluble forms of the protein exist and can be 
found in high concentrations in human serum [31]. These molecules are also 
involved in LPS-recognition, one apparently being directly secreted, while a second, 
slightly smaller soluble form of CD14, can be found in normal serum most likely due 
to shedding of the surface receptor. Soluble CD14 can mediate the binding of LPS to 
cells that don't express cellular CD14, such as endothelial and other cells [32, 33]. 

Anti-CD14 antibodies exhibited a protective effect in a vertebrate animal model 
of sepsis [34]. Transgenic mice overexpressing CD14 were more sensitive to LPS 
and the CD 14 "knock out" (CD14-i-) mouse exhibited a significantly reduced sus­
ceptibility to experimental sepsis induced by LPS or bacteria [35,36]. On the other 
hand, soluble CD14 (sCD14) was recently shown to protect against LPS effects 
[37]. 

Lipopolysaccharide binding protein (LBP): potential dual function 

As well as sCD14, LPS binding protein (LBP) seems to be essential for recognition 
and binding of LPS. LBP is an acute phase protein of the liver and is synthesized in 
hepatocytes as a glycosylated 58 kDa protein [38]. It is constitutively secreted into 
the blood stream, but synthesis can be greatly enhanced during the acute phase 
response (30-fold in humans) [39]. This rise in LBP level is caused by transcription­
al activation of the LBP gene involving acute phase-typical transcription factors and 
is mediated by IL-1 and IL-6 [40,41]. LBP binds to the Lipid A portion of LPS and 
the binding site has recently been identified by mutagenesis experiments [42]. More 
recently, LBP has been found to also bind to certain phospholipids, thus relating its 
structural homology to other lipid binding proteins, such as phospholipid transfer 
protein (PLTP) [43,44]. By analysis of their genes and genomic organization it was 
found that LBP belongs to a family of lipid binding proteins including bactericidal 
permeability increasing protein (BPI), and cholesterol ester transfer protein (CETP) 
[45-48]. 

LPS-induced TNF production and TNF mRNA expression in rabbit peritoneal 
macrophages are enhanced when LPS is complexed to low-dose LBP, most likely due 
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to monomerization of LPS complexes and presentation to the CD14 receptor [49, 
50]. Macrophages, furthermore, detect and bind LPS faster and easier when it is 
complexed with LBP, so LBP acts as an opsonin for Gram-negative bacteria [51]. In 
initial animal studies, a protective effect of anti-LBP antibodies was observed [52]. 

Acute phase concentrations of LBP, as we have shown recently, can block LPS 
effects in vitro and protect mice from an otherwise lethal infection [53]. In vitro, 
LPS fails to induce cytokine production in the murine macrophage cell line RAW 
264.7 when high concentrations of LBP are present. Low concentrations of LBP, 
corresponding to constitutive mouse LBP levels, enhance TNFa production of RAW 
264.7 cells induced by subthreshhold levels of LPS. In line with this, an i.p. injec­
tion of high concentrations of LBP blocked the in vivo cytokine production induced 
by LPS, prevented liver injury, and significantly reduced the lethality of an LPS or 
bacteria injection in mice. The ex vivo LPS responsiveness of blood from LBP 
"knock out" (LBp-/-) mice for cytokine production was diminished, and these mice 
also survived an otherwise lethal LPS-shock in a D-galactosamine model. LBP-I­
mice, however, were more susceptible to the lethal consequences of infection than 
normal mice [54, 55]. Here, apparently, LBP also exhibits a protective role as the 
lack of LBP in the LBP-I- mouse leads to a more severe outcome. 

The ability of LPS to induce numerous responses in the host including the mas­
sive release of cytokines by defense cells is, therefore, modulated by certain LPS-rec­
ognizing host proteins. The host reaction to the release of small quantities of endo­
toxin clearly depends on serum factors and receptors found on responsive cells 
which may serve two goals: enhancement of cell stimulation for initiation of a broad 
innate immune response; and binding, removal, and thus detoxification of LPS. 
These may be of potential therapeutic use. 

Endotoxin tolerance 

In numerous studies it has been shown that pretreatment with a low amount of 
endotoxin 1-4 days before a challenge with endotoxin will afford substantial pro­
tection to experimental animals and humans (reviewed in [56, 57]). This phenome­
non was termed endotoxin tolerance and its molecular background has so far not 
been completely elucidated (in the following we will refer to it as endotoxin toler­
ance). 

Endotoxin tolerance is a transient state of low responsiveness to LPS which dis­
appears within several days and is independent of antibodies to the applied endo­
toxin [56]. When endotoxin tolerance is induced in experimental animals or humans 
the first treatment with endotoxin provokes synthesis of cytokines. This reaction is 
practically absent upon subsequent treatment with endotoxin [58-60], in particular 
for TNF and IL-l. TNF and IL-1 were shown to induce tolerance to endotoxin and 
vice versa [61, 62]. Therefore, major characteristics of endotoxin tolerance seem to 
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be the absence of cytokine synthesis (TNF, IL-1) upon LPS challenge and a marked­
ly diminished reactivity towards TNF and IL-1 [62,63]. 

The major cellular component for development of endotoxin tolerance is repre­
sented by macrophages which by an unknown mechanism become desensitized and 
fail to produce cytokines upon LPS challenge [49, 64, 65]. 

Based on several recent findings, it should be considered that low responsiveness 
to endotoxin reflects only part of endotoxin tolerance and that other mechanisms 
are in operation during its development. We have recently found that mice made tol­
erant to LPS with a single treatment contained a circulating activity in plasma, after 
challenge with LPS, which inhibited TNF-synthesis in the blood of normal mice 
[66]. This inhibitory activity was not present in the plasma of normal, LPS-chal­
lenged mice and was not identical with TGF~ or IL-10. Macrophages isolated from 
tolerant mice and transferred to normal mice substantially protected the recipients 
against an LDso and, when stimulated with LPS in vitro, synthesized a protein which 
inhibited the synthesis of TNF by normal murine macrophages [67]. These findings 
suggest that macro phages from tolerant hosts do not become unresponsive to LPS, 
but rather alter their spectrum of products and synthesize factors inhibiting the syn­
thesis and possibly the action of proinflammatory mediators such as TNF or IL-l. 
Such factors may represent future tools for interfering with endotoxin-induced reac­
tions leading to the sepsis syndrome. 

Acknowledgment 
Part of the work described here, carried out in our laboratory, was supported by the 
Deutsche Forschungsgemeinschaft (Schm 74/13-1, 13-2, Schu 828/1-5), Fond der 
Chemischen Industrie (FUS) (BMBFKI9475/0; 01KV9S07/S). 

References 

1 Rietschel ETh, Brade H, Holst 0, Brade L, Miiller-Loennis S, Mamat U, Zahringer U, 
Beckmann F, Seydel U, Brandenburg K et al (1996) Bacterial endotoxin: chemical con­
stitution, biological recognition, host response, and immunological detoxification. In: 
ETh Rietschel, H Wagner (eds): Pathology of septic shock, Curr Top Microbial 

Immunol, Vol 216. Springer-Verlag, Berlin, 40-81 
2 Martich GD, Boujoukos A], Suffredini AF (1993) Response of man to endotoxin. 

Immunobiology 187: 403-416 
3 Nauts He (1989) Bacteria and cancer - antagonisms and benefits. Cancer Surveys 8: 

713-723 
4 Suffredini AF, Fromm RE, Parker MM, Brenner M, Kovacs ]A, Wesley RA, Parrillo JE 

(1989) The cardiovascular response of normal humans to the administration of endo­
toxin. The New Engl J Medicine 321: 280-287 

8 



Endotoxin as an inducer of cytokines 

5 van Deventer SjH, Buller HR, ten Cate jW, Aarden LA, Hack CE, Sturk A (1990) Exper­

imental endotoxemia in humans: analysis of cytokine release and coagulation, fibri­
nolytic, and complement pathways. Blood 76: 2520-2526 

6 Suffredini AF, Shelhamer jH, Neumann RD, Brenner M, Baltaro Rj, Parrillo jE (1992) 
Pulmonary and oxygen transport effects of intravenously administered endotoxin in 

normal humans. Am Rev Respir Dis 145: 1398-1403 
7 Suffredini AF, Harpel PC, Parrillo jE (1989) Promotion and subsequent inhibition of 

plasminogen activation after administration of intravenous endotoxin to normal sub­

jects. N Engl J Med 320: 1165-1172 
8 De La Cadena RA, Suffredini AF, Page jD, Pixley RA, Kaufman N, Parrillo JE, Colman 

RW (1993) Activation of the kallikrein-kinin system after endotoxin administration to 
normal human volunteers. Blood 81: 3313-3317 

9 Moore FD, Moss NA, Revhaug A, Wilmore D, Mannick jA, Rodrick ML (1987) A sin­

gle dose of endotoxin activates neutrophils without activating complement. Surgery 
102:200-205 

10 Martich GD, Van Dervort AL, Danner RL, Suffredini AF (1992) Intravenous endotox­
in administration to normal humans primes neutrophils for an enhanced respiratory 

burst. Crit Care Med 20: 100 
11 Smith PD, Suffredini AF, Lamerson CL, Allen jB, McCartney-Frances N, Parvillo jE, 

Wahl SM (1988) Endotoxin administration to normal humans causes increased alveolar 
permeability and priming of alveolar macrophages to produce enhanced superoxide and 
IL-1 production. Clin Res 36: 374A 

12 Foreman NK, Wang WC, Cullen Ej, Stidham GL, Pearson TA, Shenep jL (1991) Endo­
toxin shock after transfusion of contaminated red blood cells in a child with sickle cell 

disease. Pediatr Inf Dis] 10: 624-626 
13 Da Silva AMT, Kaulbach HC, Chuidian FS, Lambert DR, Suffredini AF, Danner RL 

(1993) Brief report: shock and multiple-organ dysfunction after selfadministration of 
salmonella endotoxin. N Engl J Med 328: 1457-1460 

14 Levin j, Poore TE, Neil BA, Zauber NP, Oser RS (1970) Detection of endotoxin in the 
blood of patients with sepsis due to gram-negative bacteria. N EnglJ Med 283: 1313-
1316 

15 van Deventer SjH, Buller HR, ten Cate jW, Sturk A, Pauw W (1988) Endotoxaemia: an 
early predictor of septicaemia in febrile patients. Lancet 605-608 

16 McCartney AC, Banks ]G, Clements GB, Sleigh jD, Tehrani M, Ledingham jM (1983) 

Endotoxemia in septic shock: clinical and post mortem correlations. Intens Care Med 9: 
117-122 

17 Brandtzaeg P, Kierulf P, Gaustad P, Skulberg A, Bruun jN, Halvorsen S, Sorensen E 
(1989) Plasma endotoxin as a predictor of multiple organ failure and death in systemic 

meningococcal disease. ] Infect Dis 159: 195-204 
18 Danner RL, Elin Rj, Hosseini jM, Wesley RA, Reilly JM, Parillo JE (1991) Endotox­

emia in human septic shock. Chest 99: 169-175 

19 Ketchum PA, Parsonnet], Stotts LS, Novitsky Tj, Schlain B, Bates DW (1997) Utiliza-

9 



F. Ulrich Schade et al. 

tion of a chromogenic Limulus amebocyte lysate blood assay in a multi-center study of 
sepsis. ] Endotox Res 4: 9-16 

20 Ulevitch Rj, Johnston AR, Weinstein DB (1979) New function for high density lipopro­

teins: their participation in intravascular reactions of bacterial lipopolysaccharides 
(LPS). ] Clin Invest 64: 1516-1524 

21 Levine DM, Parker TS, Donnelly TM, Walsh A, Rubin AL (1993) In vivo protection 
against endotoxin by plasma high density lipoprotein. Proc Natl Acad Sci USA 90: 

12040-12044 

22 Pajkrt D, Doran JE, Koster F, Lerch PG, Arnet B, Van der Poll T, ten Cate jW, van 
Deventer SJH (1996) Antiinflammatory effects of reconstituted high-density lipoprotein 

during human endotoxemia. ] Exp Med 185: 1601-1608 
23 Flegel WA, Wolpl A, Mannel DN, Northoff H (1989) Inhibition of endotoxin-induced 

activation of human monocytes by human lipoproteins. Infect Immun 57: 2237-2245 

24 Navab M, Hough GP, Van Lenten BJ, Berliner JA, Fogelman AM (1988) Low density 

lipoproteins transfer bacterial lipopolysaccharides across endothelial monolayers in a 
biologically active form. ] Clin Invest 81: 601-605 

25 Netea MG, Demacker PN, Kullberg BJ, Boerman OC, Verschueren I, Stalenhoef AF, Van 

der Meer JW (1997) Low-density lipoprotein receptor-deficient mice are protected 
against lethal endotoxemia and severe gram-negative infections. ] Clin Invest 97: 1366-

1372 
26 Morrison DC (1990) Diversity of mammalian macromolecules which bind to bacterial 

lipopolysaccharide. Excerpta Med Int Cong Ser 923: 183-189 

27 Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor 
for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249: 1431-
1433 

28 Grunwald U, Kruger C, Schutt C (1993) Endotoxin-neutralizing capacity of soluble 
CD14 is a highly conserved specific function. Circ Shock 39: 220-225 

29 Hailman E, Lichtenstein HS, Wurfel MM, Miller DS, Johnson DA, Kelley M, Busse LA, 
Zukowski MM, Wright SD (1994) Lipopolysaccharide (LPS)-binding protein accelerates 
the binding of LPS to CD14. ] Exp Med 179: 269-277 

30 Goyert SM, Ferrero E, Rettig WI, Yenamandra AK, Obata F, LeBeau MM (1988) The 
CD 14 monocyte differentiation antigen maps to a region encoding growth factors and 
receptors. Science 239: 497-500 

31 Durieux J], Vita N, Popescu 0, Guette F, Calzadawack J, Munker R, Schmidt RE, Lup­
ker J, Ferrara P, Ziegler-Heitbrock HWL, et al (1994) The two soluble forms of the 

lipopolysaccharide receptor, CD14: characterization and release by normal human 
monocytes. EurJ Immunol 24: 2006-2012 

32 Frey EA, Miller DS, ]ahr TG, Sundan A, Bazil V, Espevik T, Finlay BB, Wright SD (1992) 
Soluble CD14 participates in the response of cells to lipopolysaccharide. ] Exp Med 176: 

1665-1671 
33 Pugin], Schiirer-Maly CC, Leturcq D, Moriarty A, Ulevitch RJ, Tobias PS (1993) 

Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by 

10 



Endotoxin as an inducer of cytokines 

lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci USA 90: 

2744-2748 

34 Leturcq Dj, Moriarty AM, Talbott G, Winn RK, Martin TR, Ulevitch Rj (1996) Anti­

bodies against CD14 protect primates from endotoxin-induced shock. J Clin Invest 98: 

1533-1538 

35 Ferrero E, jiao D, Tsuberi BZ, Tesio L, Rong GW, Haziot A, Goyert SM (1993) Trans­

genic mice expressing human CD14 are hypersensitive to lipopolysaccharide. Proc Natl 

Acad Sci USA 90: 2380-2384 

36 Haziot A, Ferrero E, Kontgen F, Hijiya N, Yamamoto S, Silver j, Stewart CL, Goyert SM 
(1996) Resistance to endotoxin shock and reduced dissemination of gram negative bac­

teria in CD14 deficient mice. Immunity 4: 407-414 
37 Haziot A, Rong GW, Lin XY, Silver j, Goyert SM (1995) Recombinant soluble CD14 

prevents mortality in mice treated with endotoxin (lipopolysaccharide). J Immuno/154: 

6529-6532 
38 Tobias PS, Soldau K, Ulevitch Rj (1989) Identification of a lipid A binding site in the 

acute phase reactant lipopolysaccharide binding protein. J Bioi Chem 264: 10867-

10871 
39 Schumann RR, Kirschning C, Unbehaun A, Aberle H, Knopf HP, Ulevitch Rj, Her­

rmann F (1996) Lipopolysaccharide binding protein (LBP) is a secretory class 1 acute 

phase protein requiring binding of the transcription factor STAT-3, ClEBPb, and AP-l. 
Mol Cell Bioi 16: 3490-3503 

40 Kirschning C, Unbehaun A, Lamping N, Pfeil D, Herrmann F, Schumann RR (1997) 

Control of transcriptional activation of the lipopolysaccharide binding protein (LBP) 
gene by pro-inflammatory cytokines. Cyt Mol Therapy 3: 59-62 

41 Kirschning q, Hallatschek W, Lamping N, Reuter D, Pfeil D, Schumann RR (1997) 

Transcriptional activation of the acute phase protein lipopolysaccharide binding protein 
(LBP) involves transcription factors (STAT3, C/EBP, and AP-l). In: E Faist (ed): The 
immune consequences of trauma, shock and sepsis. Mechanisms and therapeutic 
approaches. Monduzzi Editore, Bologna, 807-810 

42 Lamping N, Hoess A, Yu B, Park TC, Kirschning q, Pfeil D, Reuter D, Wright SD, Her­
rmann F, Schumann RR (1996) Effects of site directed mutagenesis of basic residues (Arg 
94, Lys 95, Lys 99) of lipopolysaccharide (LPS) binding protein on binding and transfer 
of LPS and subsequent immune cell activation. J Immuno/157: 4648-4656 

43 Hailman E, Albers jj, Wolfbauer G, Tu AY, Wright SD (1996) Neutralization and trans­

fer of lipopolysaccharide by phospholipid transfer protein. J Bioi Chem 271: 12172-
12178 

44 Park CT, Wright SD (1996) Plasma lipopolysaccharide-binding protein is found associ­
ated with a particle containing apolipoprotein A-I, phospholipid, and factor H-related 

proteins. J Bioi Chem 271: 18054-18060 
45 Agellon LB, Quinet EM, Gillette TG, Drayna DT, Brown ML, Tall AR (1990) Organi­

zation of the human cholesteryl ester transfer protein gene. Biochemistry 29: 1372-1376 
46 Day jR, Albers JJ, Lofton-Day CE, Gilbert TL, Ching AFT, Grand Fj, O'Hara Pj, Mar-

11 



F. Ulrich Schade et al. 

covina SM, Adolphson jL (1994) Complete eDNA encoding human phospholipid trans­

fer protein from human endothelial cells. J Bioi Chem 269: 9388-9391 
47 Hubaceck jA, Buchler C, Aslandinis C, Schmitz G (1997) The genomic organization of 

the genes for human lipopolysaccharide binding protein (LBP) and bactericidal perme­
ability increasing protein (BPI) is highly conserved. Biochem Biophys Res Commun 236: 

427-430 

48 Kirschning q, Au-Young j, Lamping N, Reuter D, Pfeil D, Seilhamer j, Schumann RR 
(1997) Similar organization of the lipopolysaccharide binding protein and phospholipid 
transfer protein (PLTP). Genes suggest a common gene family of lipid binding proteins. 

Genomics 46: 416-425 
49 Mathison jC, Tobias PS, Wolfson E, Ulevitch Rj (1992) Plasma lipopolysaccharide 

(LPS) binding protein. A key component in macrophage recognition of gram negative 

LPS. J Immuno/149: 200-206 

50 Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD, Mathison jC, Tobias PS, 
Ulevitch Rj (1990) Structure and function of lipopolysaccharide binding protein. Sci­

ence 249: 1429-1431 
51 Grunwald U, Fan XL, jack RS, Workalemahu G, Kallies A, Stelter F, Schutt C (1996) 

Monocytes can phagocytose gram negative bacteria by a CD 14 dependent mechanism. 
J Immuno/157: 4119-4125 

52 Gallay P, Heumann D, Le RD, Barras C, Glauser MP (1994) Mode of action of anti­

lipopolysaccharide binding protein antibodies for prevention of endotoxemic shock in 
mice. Proc Natl Acad Sci USA 91: 7922-7926 

53 Lamping N, Dettmer R, Schroder NWj, Pfeil D, Hallatschek W, Burger R, Schumann 
RR (1998) LPS-binding protein protects mice from septic shock caused by LPS or gram­
negative bacteria. J Clin Invest 101: 2065-2071 

54 jack RS, Fan X, Bernheiden M, Rune G, Ehlers M, Weber A, Kirsch G, Mente! R, Furll 
B, Freudenberg M et al (1997) Lipopolysaccharide-binding protein is reguired to com­
bat a murine gram-negative bacterial infection. Nature 389: 742-745 

55 Wurfe! MM, Monks BG, Ingalls R, Dedrick R, Delude R, Zhou D, Lamping N, Schu­
mann RR, Thieringer R, Fenton Mj, et al (1997) Targeted delection of the LBP gene 
leads to profound suppression of LPS responses ex vivo while in vivo responses remain 

intact. J Exp Med 186: 2051-2056 
56 Johnston CA, Greisman SE (1985) Mechanism of endotoxin tolerance. In: LB Hinshaw 

(ed): Handbook of endotoxin, Vol 2: Pathophysiology of endotoxin. Elsevier, Amster­

dam, New York, Oxford, 359-391 
57 Schade FU, Flach R, Flohe S, Majetschak M, Kreuzfelder E, Dominguez-Fernandez E, 

Borgermann J, Reuter M, Obertacke U (1998) Endotoxin tolerance. Marcel Dekker Inc; 

in press 
58 Flohe S, Heinrich PC, Schneider J, Wendel A, Flohe L (1991) Time course of IL-6 and 

TNF alpha release during endotoxin-induced endotoxin tolerance in rats. Biochem 
Pharmacol41: 1607-1614 

59 Mathison JC, Wolfson E, Ulevitch RJ (1988) Participation of tumor necrosis factor in 

12 



Endotoxin as an inducer of cytokines 

the mediation of gram negative bacterial lipopolysaccharide-induced injury in rabbits. ] 

Clin Invest 81: 1925-1937 
60 Mackensen A, Galanos C, Wehr U, Engelhardt R (1992) Endotoxin tolerance: regula­

tion of cytokine production and cellular changes in response to endotoxin application 
in cancer patients. Eur Cytokine Netw 3: 571-579 

61 Henricson BE, Neta R, Vogel SN (1991) An interleukin-l receptor antagonist blocks 

lipopolysaccharide-induced colony-stimulating factor production and early endotoxin 

tolerance. Infect Immun 59: 1188-1191 

62 Fraker DL, Stovroff MC, Merino M], Norton ]A (1988) Tolerance to tumor necrosis 
factor in rats and the relationship to endotoxin tolerance and toxicity. ] Exp Med 168: 

95-105 
63 Galanos C, Freudenberg M, Katschinski T, Salomoa R, Mossmann H Kumazawa Y 

(1992) Tumor necrosis factor and host response to endotoxin. In:]L Ryan, DC Morri­

son (eds): Bacterial endotoxic lipopolysaccharides. CRC Press, Boca Raton, 75-104 
64 Mathison ]C, Virca GD, Wolfson E, Tobias PS, Glaser K, Ulevitch RJ (1990) Adapta­

tion to bacterial lipopolysaccharide controls lipopolysaccharide-induced tumor necrosis 
factor production in rabbit macrophages. ] Clin Invest 85: 1108-1118 

65 Freudenberg MA, Galanos C (1988) Induction of tolerance to lipopolysaccharide (LPS)­
D-galactosamine lethality by pretreatment with LPS is mediated by macrophages. Infect 

Immun 56: 1352-1357 

66 Schade FU, Schlegel J, Hofmann K, Brade H, Flach R (1996) Endotoxin-tolerant mice 
produce an inhibitor of tumor necrosis factor-synthesis. ] Endotox Res 3: 455-462 

67 Flach R, Schade FU (1997) Peritoneal macrophages from endotoxin-tolerant mice pro­
duce an inhibitor of tumor necrosis factor a synthesis and protect against endotoxin 

shock. ] Endotox Res 4: 241-250 
68 Zanetti G, Glauser MP, Baumgartner ]D (1993) Anti-endotoxin antibodies and other 

inhibitors of endotoxin. New Horizons 1: 11 0-119 

13 



Acute lung inflammation in septic shock of the cytokine release 
induced by bacterial superantigens 

Brigitte Neumann and Bernhard Holzmann 

Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger 

Str. 22, 0-81675 Munich, Germany 

Superantigens - mechanisms of action 

A group of bacterial and viral proteins termed superantigens share the ability to 
associate with T cell receptor (TCR) and major histocompatibility complex (MHC) 
class II molecules, generating unique multimeric protein complexes that trigger 
polyclonal T cell activation [1-4]. Members of the superantigen family include bac­
terial exotoxins like staphylococcal enterotoxins and toxic shock syndrome toxin-l 
(TSST-l), proteins encoded by viral genomes, and retroviral products from mouse 
mammary tumor viruses [1, 5, 6]. The mechanisms by which superantigens stimu­
late T cells differ from those of conventional antigens, which require endocytosis 
and proteolytic processing for presentation of MHC-bound antigenic peptides to T 
lymphocytes. In contrast, superantigens interact with MHC class II molecules as 
intact proteins at a site distinct from the peptide binding groove without conforma­
tional changes of MHC proteins or superantigens occurring upon complex forma­
tion (Fig. 1) [7-13]. The superantigen binding region of MHC class II proteins 
seems to be conserved among different mammalian haplotypes since superantigens 
bind to murine, rat, and human class II molecules [3, 14]. 

Individual superantigens may differ in their relative affinity to class II molecules 
as was shown for staphylococcal enterotoxin A (SEA) and TSST-l which bind class 
II proteins with higher affinity than does staphylococcal enterotoxin B (SEB) [2, 14, 
15]. The mechanisms of superantigen binding to MHC class II molecules may also 
vary. Thus, SEA contains two distinct MHC class II binding domains with both the 
N-terminal and C-terminal site of the superantigens mediating MHC class II asso­
ciation [16-18]. On SEA, the N-terminal domain is homologous to the single bind­
ing site of SEB mediating low affinity interactions with the class II a-chain, while 
the C-terminal site of SEA contacts the class II ~-chain with high affinity [16, 17]. 
Furthermore, alternative superantigen-binding proteins have been described for 
staphylococcal enterotoxin C (SEC), which in addition binds to vascular cell adhe­
sion molecule-l (VCAM-l) [19,20]. The function of superantigen presentation to 
T cells by non-MHC class II proteins, however, is currently unknown. 
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TCR 

MHCII 

Figure 1 

SAG 

Multiclonal activation of T cells 

Cytokine release syndrome 

~ 
Inflammatory organ injury 

Septic shock 

Model for the indudion of acute hyperinflammation by baderial superantigens (SAG). 

TeR, T cell receptor; APe, antigen-presenting cell 

On T lymphocytes superantigens bind to conserved regions of the TCR ~ sub­
unit, which are encoded by specific V~ gene segments, thereby rendering T cell 
recognition of superantigens independent of the clonal specificity of the TCR [2, 
21-23]. Interestingly, superantigens may also form complexes with TCR V~ seg­
ments in the absence of MHC class II proteins [23). Depending on the V~-specifici-
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ty of a given superantigen and the number of individual V~ segments per genome, 
superantigens may therefore interact with as many as 2 to 5% of peripheral T cells, 
which contrasts with a frequency of 1 x 10-4 to 1 X 10-5 for recognition of foreign 
MHC or peptide antigens, respectively. Thus, the immune reaction to superantigens 
is characterized as a multiclonal, yet TCR V~-selective, T cell response. 

Acute response to superantigen challenge in vivo 

Challenge of the immune system with bacterial superantigens such as SEB results in 
a complex pattern of concomitant and sequential responses of T lymphocytes. Acute 
hyperactivation of CD4+ and CD8+ T cells is followed by early cellular depletion, 
V~-selective clonal expansion, late cellular deletion, and distinct levels of long-last­
ing and ligand-specific anergy [4]. Functional alterations of superantigen-responsive 
T cells have been summarized in a recent review [4]. In addition, a transient dys­
function of antigen-presenting cells (APC) that is mediated by T cell-derived 
cyclosporin A (CsA)-sensitive cytokines has been described 24-48 h after adminis­
tration of SEB to mice [4]. 

The immediate response of peripheral T cells to in vivo administration of super­
antigens, however, is characterized by cellular hyperactivation (Fig. 1). Upon SEB 
exposure, a selective loss of cell surface L-selectin on TCR V~8-expressing T cells 
within 10 to 15 min after injection is followed by initiation ofT helper 1 (Thl)- and 
Th2-type cytokine gene transcription in CD4+ and CD8+ T cells [24, 25]. Systemic 
release of cytokines including TNFa, IL-l, IL-2, IL-4, IL-6, and IFN-y is observed 
in sera of SEB-challenged mice within 1 to 4 h [25-27]. Administration of super­
antigens to mice induces rapid weight loss and death at high doses probably due to 
systemic action of TNF and lymphotoxin [5, 28]. The LDso of superantigens is 
reduced about 100-fold in mice due to sensitization by D-galactosamine, blockage 
of glucocorticoid receptors, inhibition of the inducible nitric oxide synthetase, or 
coinjection of endotoxin [26, 29-32]. 

Lethal shock in sensitized mice challenged with superantigens like SEB is clearly 
dependent on the presence of T cells, because CsA-treated mice and severe combined 
immunodeficiency disease (SCID) mice, but not T cell repopulated scm mice, are 
protected from toxic effects of SEB [26]. Furthermore, MHC class II-deficient mice 
were shown to be resistant to septic shock induced by SEA or SEB [31]. Additional 
studies have demonstrated that lethal SEB shock is dependent on the presence of T 
cell-derived TNFa, the 55 kDa receptor for TNF, and ICAM-l [26, 33-35]. It is 
interesting to note that although primarily activating mononuclear phagocytes, 
administration of endotoxin to mice provokes a similar, but not identical, cascade 
of cytokines with TN Fa and the 55 kDa receptor for TNF acting as principal medi­
ators of systemic inflammation, multiorgan failure, and lethal septic shock in sensi­
tized animals [33, 34, 36-38]. 
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Induction of acute lung inflammation by superantigens 

Analysis of putative pathogenic mechanisms of T cell-dependent septic shock 
revealed that administration of SEB results in acute inflammatory lung injury that is 
characterized by marked leukocyte infiltration, endothelial cell injury, and increased 
vascular permeability [39]. Thus, pathological alterations of lungs following super­
antigen exposure are similar to those observed after administration of endotoxin 
[40]. Independent of the superantigen applied (SEA or SEB), lung infiltrating leuko­
cytes consist of granulocytes, mononuclear phagocytes, and NK cells, with granulo­
cytes representing the major fraction (Fig. 2) [39]. In contrast to superantigen treat­
ment, endotoxin does not induce infiltration of natural killer (NK) cells [39]. Super­
antigen stimulation does not induce recruitment of T cells that are also recognized 
by the NK1.1 Ab as was shown by double-marker flow cytometry and analysis of 
NK1.1 T cell-deficient ~2 microglobulin knockout mice ([39] and our unpublished 
observations). NK1.1 T cells produce large amounts of cytokines and express a 
restricted repertoire of TCRs with more than 50% of them using the SEB-binding 
V~8 segment [39]. In addition, following superantigen challenge the number of 
leukocytes increases in bronchioalveolar lavage fluid (Tab. 1) as well as in liver and 
kidney (our unpublished observations). Independent studies have also shown 
recruitment of neutrophils and mononuclear phagocytes into the peritoneal cavity 
of SEB-treated mice [41, 42]. Concomitant with organ infiltration, leukocytes are 
depleted in large numbers from the blood circulation (Tab. 1). 

Leukocyte lung infiltration induced by superantigens was shown to depend on 
the presence and activation of T cells. Thus, in nude mice challenged with SEA, 
leukocyte recruitment was not detectable (Tab. 2) and pretreament of mice with 
CsA completely blocked SEB-triggered lung leukocyte accumulation (our unpub­
lished observations). Previously, it was shown that CsA markedly enhances the elim­
ination of peripheral SEB-reactive T cells such that up to 90% of the targeted V~ 
subpopulations are deleted [43]. In addition to T lymphocytes, neutrophils also 
respond to CsA exposure. It has been reported that in neutrophils inhibition of cal­
cineurin by CsA leads to increased cell adhesion mediated by integrins [44]. These 
findings may explain the elevated numbers of neutrophils in lungs following CsA­
treatment of mice (our unpublished observations). 

Neutrophils have been implicated as cellular mediators of acute lung injury 
characteristic of adult respiratory distress syndrome (ARDS). Clinical observations 
as well as animal models of ARDS have demonstrated that sequestration of large 
numbers of neutrophils in the lung microvasculature is linked to the development of 
lung capillary leak syndrome [45-51]. Moreover, animal models have shown that 
depletion of neutrophils attenuates lung damage induced by microembolization, 
complement activation, endotoxin, or TNF [47-50]. It therefore appears likely that 
neutrophils also contribute to lung injury following administration of bacterial 
superantigens. 
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Table 1 - Leukocyte numbers in peripheral blood and bronchioalveolar lavage fluid 

Peripheral blood 

Bronchioalveolar lavage 

Control 

6.1 ± 0.4 x 106 

45.3 ± 13.1 x 103 

6 h SEB 

2.6 ± 0.3 x 106 

97.8 ± 11.2 x 103 

C57BLl6 mice were in;eded with 50 J..Ig SEB i.p. and blood or bronchioalveolar lavage was 

colleded 6 h later. Results are presented as mean ± SO of total cell numbers (n = 11 for 

peripheral blood samples and n = 4 for bronchioalveolar lavage). 

Although neutrophils are clearly capable of mediating acute lung injury, clini­
cal observations showing that patients who are severely neutropenic can still 
develop ARDS provide evidence for neutrophil-independent mechanisms of lung 
injury [52, 53]. Animal models have supported this hypothesis and have implicat­
ed macrophages as alternative effector cells, which release toxic oxygen and L­
arginine-derived products [54, 55]. Based on these reports it is conceivable that 
mononuclear phagocytes may act in concert with neutrophils to damage tissue 
and to induce vascular permeability changes. Thus, superantigen-dependent 
recruitment of mononuclear phagocytes to the lung may be of pathogenic signifi­
cance. 

TNF has been identified as a principal mediator of septic shock. Thus, death 
of mice treated with endotoxin and D-galactosamine or injected with lethal doses 
of Gram-negative bacteria is prevented by antibodies against TNF [37, 56] or 
genetic ablation of the 55 kDa TNF-receptor [33, 34]. When injected as a recom­
binant cytokine, TNF is sufficient to induce acute lung inflammation that is 
dependent on the presence of the 55 kDa TNF-receptor [57]. The role of TNF in 
septic lung injury is further emphasized by reports showing that antibodies 
against TNF partially block endotoxin-triggered neutrophil infiltration of lungs 
[58]. However, following administration of the bacterial superantigen SEB the 
lung capillary leak syndrome is not inhibited by neutralizing TNF antibodies 
(Fig. 3). These results may be explained by the release of multiple mediators in 
response to SEB that exhibit redundant functions in the development of inflam­
matory organ injury. In superantigen-dependent septic shock the lack of TNF 
activity may therefore be compensated by alternative inflammatory cytokines 
such as IL-l and IFN-y suggesting that septic lung injury may result from the 
activity of a complex pattern of mediators rather than a single inflammatory 
cytokine. 
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Figure 3 

* 

SEB 

* 

SEB 
.j.lgG 

Increased lung vascular permeability induced by SEB is independent of TNF. 

* 

SEB 
.j.Vlq 

C57BLl6 mice were inieded with 270 jig neutralizing anti-TNF Ab (V1q) [26, 107J or rat IgG 

and 2 h later challenged with 50 jig SEB i.p. (grey bars) or PBS (black bar). Lungs were 

removed 6 h later after extensive perfusion with PBS. Mice were inieded i. v. with Evans blue 

30 min before termination of the experiment. Evans blue binds to serum albumin and its dis­

tribution was used as a marker for the transcapillary flux of macromolecules. Evans blue in 

lung homogenates was quantified by a dual wavelength spedrophotometric method [39]. 

Increased absorbance (E62cY indicates increased vascular permeability. 

*p < 0.005 

In vivo activation of granulocytes following superantigen administration 

Neutrophil activation results in endothelial cell injury in vitro and injection of pre­
activated neutrophils into the lung vasculature directly induces lung capillary leak 
in vivo by elastase-dependent mechanisms [59, 60]. The pathogenic role of elastase 
in acute lung injury was also demonstrated in endotoxin-treated mice [61]. More-
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Figure 4 

C57BL/6 
control 

C57BL}6 
SEB 

TR55-/­
control 

TR55-/­
SEB 

Increased serine protease activity in C57BLl6 and 55 kOa TNF receptor-deficient mice is 

induced by SEB. 

Cellular serine protease activity was analysed in peripheral blood leukocytes of C57BLl6 

(grey bars) and 55 kOa TNF receptor deficient mice (TR55-/-) (black bars) 6 h after SEB chal­

lenge. Leukocytes were lysed by sonication and cellular content of serine proteases was mea­

sured photometrically after incubation of cell Iysates with FTC-casein overnight at 3rc. 
Increased 00492 indicates increased protease activity. 

*p<O.01 

over, clinical observations as well as animal models of ARDS have documented 
accumulation of neutrophil proteases in bronchioalveolar lavage fluid and serum 
[45,46,62-67]. The tissue-destroying capacity of neutrophil proteases such as elas­
tase may be further enhanced by reactive oxygen metabolites that were shown to 
inactivate tissue proteinase inhibitors by oxidation of critical methionine residues 
[68-70]. Consistently, previous findings have demonstrated an important role of 
reactive oxygen metabolites in lung damage induced by immune complexes [55, 71]. 
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Acute lung inflammation in septic shock of the cytokine release induced by bacterial superantigens 

Following superantigen exposure, increased serine protease activity was demon­
strated in circulating leukocytes (Fig. 4). Elevated elastase mRNA levels and 
increased cellular protease activity were also reported for endotoxin-treated neu­
trophils [72). In addition, we have demonstrated that SEB challenge of mice aug­
ments production of reactive oxygen metabolites by circulating granulocytes stimu­
lated with formyl-methionine-leucine-phenylalanine (FMLP) (Fig. 5) [39). Interest­
ingly, TNFa enhanced oxidant production of granulocytes from SEB-treated, but 
not from control mice suggesting that the systemic response to SEB increases gran­
ulocyte sensitivity to TNF-mediated signals [39). This conculsion was supported by 
our finding that granulocytes of SEB-treated TNF receptor p55 knockout mice 
failed to respond with an increased production of reactive oxygen metabolites upon 
secondary in vitro stimulation (Fig. 5). However, induction of cellular protease 
activity by administration of SEB was not affected by TNF receptor p55 deficiency 
(Fig. 4). Consistent with these results, previous studies have indicated that TNF may 
increase the oxidative burst reaction of neutrophils primed by various stimuli 
[73-76). Together, these findings indicate a distinct function for the 55 kDa TNF 
receptor in enhancing granulocyte production of reactive oxygen metabolites, but 
not of serine proteases. 

Additional evidence for in vivo activation of granulocytes after SEB challenge 
was provided by elevated expression of Mac-Ion circulating cells, whereas cell sur­
face levels of L-selectin were downregulated [39). Interestingly, in trauma patients 
developing ARDS, neutrophils circulating in the pulmonary artery also showed 
increased oxygen radical production and elevated Mac-l expression [77). Putative 
in vivo mediators for the inverse regulation of Mac-1 and L-selectin on granulocytes 
include inflammatory cytokines like TNF or IL-l [78-80). However, induction of 
Mac-1 and downregulation of L-selectin in TNF receptor p55-deficient mice was 
not altered as compared to wild type mice suggesting the existence of additional 
mediators that may regulate distinct aspects of neutrophil activation in septic shock 
(our unpublished observations). Together, the systemic response of granulocytes to 
hyperinflammation induced by bacterial superantigens is consistent with the model 
that the recruitment of pre-activated / primed neutrophils to the lung and possibly 
other tissues may be critical for the development of organ injury in septic shock. 

Mechanisms of leukocyte recruitment in septic organ injury 

In different experimental models development of inflammatory organ mJury 
requires cellular interactions mediated by leukocyte and endothelial adhesion mole­
cules. Central to the processes of inflammation is a dramatic increase in endothelial 
cell surface expression of adhesion molecules such as P- and E-selectin, VCAM-l, 
and ICAM-l [81). Blockage of E-selectin, P-selectin, or L-selectin as well as inhibi­
tion of the integrins VLA -4 and LFA -1, and the adhesion molecule I CAM -1 were 
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shown to protect against lung injury induced by deposition of immune complexes 
or complement activation [82-87]. In SEB-treated mice, the immunglobulin-related 
adhesion molecules VCAM-l and ICAM-l were shown to be upregulated both at 
the protein and mRNA level ([39] and our unpublished observations). Administra­
tion of SEB also resulted in a strong induction of P-selectin mRNA in the majority 
of lung vessels, whereas elevated expression of E-selectin transcripts was only 
detectable in a few scattered endothelial cells [39]. 

Chemokines are involved in a variety of immune and inflammatory responses 
acting primarily as chemoattractants and activators of specific leukocyte subsets. 
In patients, development of ARDS and ARDS-related mortality correlate with high 
pulmonary levels of the C-X-C chemokine IL-8 [88-90]. Neutralization of IL-8 
prevents neutrophil recruitment to the lung in rabbit endotoxin models [91, 92]. 
In the mouse, macrophage inflammatory protein-2 (MIP-2) and cytokine-induced 
neutrophil chemoattractant (KC) potently activate neutrophils via the murine IL-
8 receptor homologue [93, 94]. KC increases Mac-l expression and respiratory 
burst activity on neutrophils and stimulates neutrophil influx into lungs when 
administered intratracheally [93, 95]. Neutralizing antibodies against KC or MIP-
2 markedly inhibit neutrophil accumulation in lungs and reduce vascular leakage 
following intratracheal instillation of endotoxin [95-97]. Upon challenge of mice 
with SEB, mRNA levels of KC and MIP-2 are upregulated (Fig. 6) suggesting a 
role of these C-X-C chemokines in superantigen-induced lung inflammation and 
vascular injury. 

Studies in animal models have also indicated a potential role of C-C chemokines 
in lung pathology and sepsis. Following administration of SEB, mRNA levels of 
macrophage chemotactic protein-l (MCP-l) were induced about 80-fold, while 
MIP-la was only weakly upregulated (Fig. 6). In contrast, the C-C chemokine reg­
ulated upon activation, normally T cell expressed and secreted (RANTES) that is 
chemotactic for monocytes, CD4+ T lymphocytes, eosinophils, and basophils [98], 
was not induced after SEB challenge (Fig. 6). Administration of superantigens and 
endotoxin therefore appears to result in distinct patterns of chemokine induction 
since RANTES expression was elevated in endotoxic shock and antibody neutral­
ization of RANTES reduced the infiltration of mononuclear phagocytes after endo­
toxin injection [99]. In murine endotoxemia, MIP-la also appears to be involved in 
acute lung injury [100]. Pretreatment with neutralizing MIP-1a antibodies prevents 
capillary leakage as well as neutrophil and macrophage influx in lungs after endo­
toxin challenge [100]. Clinical observations revealed that Gram-negative and Gram­
positive infections resulting in sepsis are associated with elevated serum levels of 
MCP-1 [101]. During lethal or sublethal bacteremia in baboons, MCP-1 was 
released and the increase of plasma levels correlated with those of IL-8 [102]. In 
mice, neutralization of MCP-1 significantly increased endotoxin-induced mortality 
as well as serum TNF and IL-12 levels, while administration of recombinant MCP-
1 protein resulted in elevated IL-10 serum levels and protected mice from lethal 
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Con trol SEB 
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Figure 6 

Rapid indudion of lung chemokine expression following SEB administration. 

Total RNA was isolated from lungs of C57BLl6 control mice or 6 h after SEB challenge and 

reverse transcribed. Serial cDNA dilutions (1:3) were used as template for PCR amplifications 

deteding expression of the chemokines KC, MfP-2, MCP-1, MfP-1a, and RANTES. PCR 

readions for glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were included in each 

case as an internal standard and to control for contamination with genomic DNA. 
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endotoxemia [103]. In a rat IgA immune complex model of alveolitis, which is char­
acterized by mononuclear phagocyte-dependent lung injury, however, infusion of 
neutralizing MCP-l antibodies reduced both accumulation of mononuclear phago­
cytes and vascular damage in lung [104]. Consistent with a role of MCP-1 in the 
pathogenesis of monocyte-dependent inflammatory lung injury, MCP-1 was shown 
to function as a chemoattractant for monocytes, but not neutrophils, and to induce 
a respiratory burst reaction in monocytes [105, 106]. In summary, these results pro­
vide evidence for an in vivo crosstalk between cytokines and chemokines such as 
MCP-l which, dependent on the inflammatory stimulus, may either promote or 
attenuate organ injury. 

Summary 

Superantigens stimulate T lymphocytes at high frequency by interacting with spe­
cific TCR V~ segments. Challenge of mice with bacterial superantigens such as 
staphylococcal enterotoxin B (SEB) induces the systemic release of cytokines result­
ing in septic shock and death of sensitized animals. Analysis of the putative patho­
genic mechanisms of T cell-dependent septic shock revealed that administration of 
SEB results in acute inflammatory lung injury characterized by a marked increase in 
vascular permeability. SEB-induced lung capillary leakage was independent of TNF. 
Injury was associated with the recruitment of leukocytes, induction of cell adhesion 
molecules including VCAM-l, ICAM-l, and P-selectin, and increased production of 
C-X-C and C-C chemokines such as KC and MCP-l in the lung. Infiltrating leuko­
cytes consisted of granulocytes, mononuclear phagocytes and NK cells with granu­
locytes representing the major fraction. Consistent with a role of neutrophils as cel­
lular mediators of inflammatory organ injury, activation of circulating granulocytes 
in SEB-treated mice was demonstrated by elevated levels of cell surface Mac-I, 
downregulation of L-selectin, and increased production of toxic oxygen metabolites 
and serine proteases. Interestingly, in vivo granulocyte priming for enhanced pro­
duction of oxidants upon secondary in vitro stimulation was dependent on the 55 
kDa TNF receptor. Together, these results suggest that acute inflammatory lung 
injury may contribute to the pathogenesis of T cell-dependent lethal shock in mice 
challenged with bacterial superantigens and indicate both common and distinct 
pathogenic mechanisms of lung injury induced by a large number of distinct inflam­
matory stimuli. 
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Introduction 

The development of the "systemic inflammatory response syndrome" (SIRS) is asso­
ciated with significant morbidity and causes over 175,000 deaths annually in the 
United States [1,2]. Up to 50% of these cases are due to a generalized activation of 
the immune syndrome related to Gram-negative bacterial infection. The glycolipid 
surface component of Gram-negative bacteria called lipopolysaccharide (LPS) is 
central to the development of SIRS and MODS (multiple organ dysfunction syn­
drome) [3]. While not intrinsically toxic to tissue, LPS acts by inducing myeloid 
and/or non-myeloid cells to express a variety of pro-inflammatory genes whose 
products result in the initiation and propagation of SIRS [4]. The elucidation of the 
signaling mechanisms underlying the activation of cells by LPS has not only 
improved our understanding of the pathogenesis of SIRS and MODS, but has also 
provided insight into the development of novel therapeutic modalities. 

This chapter will focus on the biology of endotoxin signaling, with a view to 
understanding the cellular basis for the inflammatory response and the extension of 
these findings to clinical practice. 

Cellular mechanisms of lipopolysaccharide signaling 

Structure of lipopolysaccharide 

LPS is a complex glycolipid expressed in the outer membrane of all Gram-negative 
bacteria [4]. It is composed of two chemically distinct regions. The first consists of 
a hydrophilic segment of repeating polysaccharides and O-antigen structures, while 
the second consists of a hydrophobic domain known as lipid-A. Structural diversity 
among the various lipopolysaccharide molecules of different Gram-negative bacte­
ria is due to variations in the O-antigen polysaccharides. The hydrophobic core is 
considerably more conserved. For example, a single core structure exists for the Sal-
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monella serotypes and only six core structures have been identified for over one 
hundred different serotypes of Escherichia coli [5]. It has been well documented that 
the biological activity of lipopolysaccharide is dependent upon the lipid core [6]. 
Takada and colleagues, for instance, showed that synthetic lipid A had full endo­
toxic activity [7]. Hence, recognition of the lipid A component by cells most likely 
represents the initial step in LPS-induced cellular responses. The receptors mediat­
ing this recognition, and the ensuing signaling events, are central in the pathogene­
sis of the septic response. 

LPS binding protein 

The recognition of LPS binding protein (LBP) as the protein cofactor contributing 
to LPS signaling represented a significant development in determining how LPS 
stimulates cells. LBP was identified by showing that the binding of LPS to high-den­
sity lipoproteins was markedly reduced in acute phase compared to normal serum, 
due to the formation of a stable complex between LPS and acute phase proteins [8]. 
Fractionation of serum revealed the presence of a 60kDa glycoprotein that was 
responsible for complexing the LPS; this molecule was subsequently named LBP. 
The complete primary structure of human LBP was subsequently deduced by Ule­
vitch and others from cDNA cloning [9]. 

LBP is synthesized predominantly in hepatocytes as a single polypeptide, and 
released into the blood as a 60 kDa glycoprotein [10]. Its synthesis is under the con­
trol of cytokines and steroid hormones [10], and it behaves as an acute phase pro­
tein. In vitro studies have shown that LBP binds to LPS via the lipid A portion of 
the molecule [11] and is unaffected by the O-antigen polysaccharide segments of the 
protein. Similar studies have also indicated that the Kd for LPS-LBP binding is in the 
nanomolar range and that the stoichiometry is 1:1 [11]. 

The functional properties of LBP on lipopolysaccharide-induced cell activation 
were convincingly demonstrated by Mathison and colleagues [12]. Measurements of 
LPS-induced tumor necrosis factor (TNF) production showed that the presence of 
LBP markedly lowered the threshold stimulatory concentration of LPS, and signifi­
cantly enhanced the rate of TNF production over a range of LPS concentrations 
[12]. Other investigators have shown that LBP enhances the effects of LPS on the 
induction of other cytokines [13], as well as on nitric oxide production [14]. LBP 
also enhances LPS-induced upregulation of integrin function and arachidonic acid 
metabolism in neutrophils [15]. Convincing evidence for the role of LBP in mediat­
ing the effects of endotoxin was provided by Schumann and colleagues [9]. This 
group demonstrated that immunodepletion of LBP from plasma significantly red­
uced LPS-induced cell activation [9]. 

LBP shares amino acid sequence homology with another LPS/lipid A binding 
protein, namely bactericidaVpermeability increasing protein BPI [16]. BPI is a 
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50 kDa protein localized in neutrophil granules which binds to LPS via lipid A [17]. 
Despite similarities in primary structure and ability to bind LPS, the biological activ­
ities of LBP and BPI differ markedly [16]. For instance, rather than being stimula­
tory, BPI neutralizes the ability of isolated LPS to activate cells. In addition, BPI is 
directly bactericidal when it binds LPS on bacteria whereas LBP functions as an 
opsonm. 

Receptors for lipopolysaccharide 

A variety of cell surface molecules have been demonstrated to bind LPS and there­
fore have been implicated in the signaling cascade. These molecules include mem­
brane-bound CD14, a 70-80 kDa membrane protein, integrins (CD11a/CD18, 
CDllb/CD18, CD11c1CD18) and the scavenger receptor. Current studies have 
demonstrated that membrane-bound CD14 is the most physiologically significant 
receptor regarding LPS signaling. 

CD14 
CD14 is a 55 kDa glycoprotein which is present in two forms: In cells of myeloid 
lineage, it is expressed as a glycosylphosphatidyl inositol (GPI) linked protein 
anchored to the plasma membrane. In serum, CD14 is present as a soluble glyco­
protein lacking the GPI anchor [18]. The human CD14 gene is located on chromo­
some five in a region containing genes for several growth factors or growth factor 
receptors. While this suggested that CD14 might also function as a receptor, defin­
itive evidence was provided by the studies of Wright and colleagues [19]. This group 
showed that the binding of LPS-LBP- coated erythrocytes to the surface of human 
monocytes was markedly reduced in the presence of anti-CD14 monoclonal anti­
bodies but not with antibodies to other surface proteins [19]. Moreover, addition of 
anti-CD14 antibodies to whole blood completely prevented LPS-induced cytokine 
release under physiologically relevant LPS concentrations [19]. 

Although CD14 mediates attachment of LPS-bearing opsonized with LBP to the 
cell surface it does not appear to result in phagocytosis of the particle [20]. Howev­
er, Gallay et al. [21] demonstrated that CD14 mediates uptake of isolated LPS into 
human monocytes. Kitchens et al. [22] showed that CD 14-dependent uptake of LPS 
by THP-1 cells occurred independently of the ability of CD14 to signal cell activa­
tion. This functional independence of LPS uptake and LPS-mediated activation sug­
gested the concept that CD14 might function with additional proteins to form a 
functional LPS receptor. 

It appears that the major function of CD14 as a LPS/LBP receptor is to facilitate 
macrophage activation at very low levels of LPS [23]. For example, macrophages 
from patients with paroxysmal nocturnal hemoglobinuria, which lack CD 14, 
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require as much as 10,000-fold greater LPS concentrations for activation than do 
CD14-positive cells [24]. The level of CD14 on the plasmalemma is regulated. It 
increases during monocyte differentiation and is responsive to cytokines such as 
interferon gamma [25]. In addition, circulating LPS can alter the expression of 
CD14 on monocytes: freshly isolated cells undergo upregulation of surface CD14 in 
response to LPS [26] while tissue macro phages display a loss of CD14 [27]. Part of 
the regulation of surface CD14 may be mediated by shedding of the receptor from 
the cell surface. Monocytes spontaneously shed a soluble form of CD14 into culture 
supernatants. This molecule is approximately 48 kDa and lacks the GPI anchor, sug­
gesting that it was proteolytically cleaved from the membrane. 

How can CD14, which does not directly communicate with the cytoplasm, stim­
ulate cells in response to LPSILBP binding? Studies by Lee, Ulevitch and co-workers 
examined 70Z/3 cells, a murine pre-B cell line that is LPS responsive but does not 
express CD14 [28,29]. They determined that after transfecting 70Z/3 cells with GPI­
linked human CD14, the amount of LPS required to stimulate these cells was 1000-
fold less than that for the parental lines [28], and that the maximum increase in sen­
sitivity to LPS required LBP. Further, transfection of 70Z/3 cells with a hybrid recep­
tor consisting of CD14 with the transmembrane domain and intracellular tail of 
tissue factor resulted in similar levels of LPS-induced activation compared with the 
GPI-linked form [29]. Taken together, these findings indicate that CD14, while not 
directly responsible for the initiation of signaling, might be part of a membrane-asso­
ciated receptor complex. Extracellular interactions between the LPS-CD14 complex 
and other transmembrnae proteins might then initiate transmembrane signaling. 

The 70-80 kDa LPS receptor 
The identification of additional LPS binding receptors has been facilitated by the use 
of radioiodinated derivatives of LPS which cross-link with other proteins upon UV 
irradiation [30]. Lee, Morrison, and colleagues identified a membrane protein of 
70-80 kDa which interacted with the lipid A moiety of LPS [31,32]. This protein 
is expressed on the surface of lymphoid cells, and contributes to cell activation upon 
binding to LPS (see [33] for a recent review). Interestingly, this protein was also 
shown to bind other molecules, including surface peptidoglycan of Gram-positive 
bacteria, bacterial lipoteichoic acid, and heparin, indicating that it possesses func­
tions in addition to LPS binding. Recently, Dziarski demonstrated that this protein 
is cell-bound albumin, although the molecular mechanisms by which albumin inter­
acts with the cell surface remain to be elucidated. 

The integrins 
Integrins are adhesion molecules which play important roles in phagocyte adherence 
and migration. They are heterodimeric proteins consisting of non-covalently associ-
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ated ex. and p subunits generally of 150 and 100 kDa respectively. Both ex. and p sub­
units are transmembrane glycoproteins. Interaction of integrins with ligand depends 
on the divalent cations Ca2+ or Mg2+ [34], which bind to the extracellular domains 
of the ex. subunits. Interestingly, studies by Wright and Jong showed that antibodies 
to the alpha or beta subunits of the CDIl1CD18 integrin inhibited binding of LPS­
coated erythrocytes to monocytes [35]. This indicated a role for integrins in binding 
endotoxin. Recent studies have suggested that these receptors may participate in 
LPS-mediated cell activation. Chateau et al. demonstrated that antibodies against 
CDllb inhibited the oxidative response developed by differentiated U937 cells in 
response to the O-antigen component of endotoxin [36]. Studies by Ingalls et al. 
have provided insight into the molecular basis of LPS signaling through the CD111 
CD18 receptor [37]. They determined that CHO cells, which were transfected with 
a mutation of the integrin lacking the cytoplasmic tail, exhibited normal LPS­
induced signaling, yet were unable to mediate integrin dependent phagocytosis [37]. 
This suggested that while full length CDIl1CD18 is required for phagocytosis, LPS 
activation does not require the cytoplasmic domains, suggesting that it may activate 
cells by presenting endotoxin to other downstream signaling molecules. Activation 
of surface integrins in myeloid cells by LPS may have significant proinflammatory 
effects, including induction of inducible nitric oxide synthase (iNOS) protein and 
nitric oxide production [38]. A potential basis for integrin-mediated LPS signaling 
may be through direct interaction of the integrin with CDI4, as was recently 
demonstrated using resonance energy transfer techniques [39]. A definitive role for 
CD II/CD 18 in LPS signaling remains controversial, as macrophages from 
CDIl1CD18-deficient patients demonstrated normal amounts of IL-l and TNF in 
response to LPS when compared to control patients [27]. It is notworthy that other 
adhesion molecules may conribute to the activation response. Malhotra et al. recent­
ly showed that interaction of LPS with cell surface L-selectin results in activation of 
human neutrophils as demonstrated by superoxide production [40]. 

The scavenger receptor 
The scavenger receptor (ScR) is a surface molecule capable of binding to acetyl-low 
density lipoproteins. It is expressed on the surface of a variety of cells including 
hepatocytes and macrophages, where it participates in clearance and detoxification 
of circulating lipids [35]. Cross linking studies demonstrated that the ScR could bind 
to the lipid A core of endotoxin, suggesting that it may participate in LPS signaling. 
This hypothesis was initially refuted by evidence from Hampton et al. [41], who 
showed that blockade of these receptors with lipoproteins had no effect on TNF 
release by RAW macrophages after exposure to LPS [41]. More recent studies how­
ever have indicated that ScR's may participate in endotoxin signaling. Shynra et al. 
[421 showed that endotoxin binds specifically to the ScR of Kupffer cells, and that 
this binding was independent of cations, susceptible to proteases, and was com pet-
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itive with acetylated low density lipoprotein [42]. Levels of ScR are under the influ­
ence of the inflammatory microenvironment. Roselaar et al. [43] showed that LPS­
induced TNF production produced a significant, reversible, reduction in ScR mRNA 
in Swiss Webster mice [43]. What role might ScR have in the cellular response to 
endotoxin? To address this, Haworth et al. [44] recently studied LPS signaling in 
macrophages obtained from ScR knockout mice. They showed that mice lacking the 
receptor where more susceptible to endotoxic shock and produced more TNF and 
IL-6 in response to LPS compared to wild-type controls. The authors therefore 
hypothesized that ScR plays a protective role in host defense by scavenging LPS and 
reducing the release of pro inflammatory cytokines [44]. 

Transmembrane signaling induced by lipopolysaccharide 

After interacting with surface receptor, lipopolysaccharide induces a profound cel­
lular activation characterized by the induction of proinflammatory genes and the 
release of cytokines. The precise mechanisms by which LPS-induced cell activation 
occurs remain incompletely understood, although significant progress has been 
achieved in this area over the past several years. Specifically, the interaction of mol­
ecular constituents of signaling cascades known to be present in myeloid cells have 
been shown to mediate the signaling response. These will be reviewed below. 

Protein tyrosine kinases 
Biochemical and functional considerations 
Weinstein and colleagues first showed that LPS treatment of macrophages increased 
protein tyrosine phosphorylation (PTK), and identified mitogen-activated protein 
kinase (MAPK) isoforms as targets (see below) [45,46]. This effect was rapid and 
could be inhibited by various protein tyrosine kinase inhibitors, including her­
bimycin A [46] and tyrphostin-25 [47]. Cellular activation is likely dependent upon 
the induction of tyrosine phosphorylation by MAPK. For instance, Beaty et al. 
showed that LPS treatment of monocytes resulted in a concentration dependent 
increase in tyrosine phosphorylation which preceded a rise in TNF and IL-6 mRNA 
and protein synthesis. Further, tyrosine phosphorylation may directly regulate 
cytokine production, since inhibitors of PTKs inhibited expression of TNF, IL-l and 
IL-6 [48-50]. There is compelling evidence that these studies may have in vivo sig­
nificance. Since TNF is known to be a central mediator of endotoxemia, Novogrod­
sky et al. investigated the effect of inhibitors of the tyrphostin AG126 on outcome 
in mice injected with LPS [48]. Pre-treatment with tyrphostin significantly reduced 
the 5-day mortality in LPS-treated mice compared with control mice exposed to LPS 
alone. This beneficial effect correlated with reduced TNF production by macro­
phages derived from treated mice. 
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A role for Src family kinases? 
How might CD14 activation initiate tyrosine kinase activity? One possible mecha­
nism involves the Src family of non-receptor tyrosine kinases. These proteins inter­
act with a variety of cell surface receptors, and playa central role in propagating 
signals from binding by immunoglobulin receptors and integrins. Five out of nine 
members of the Src gene family kinases have been identified in phagocytic cells: Src, 
Fyn, Fgr, Hck, and Lyn [51]. Importantly, immunoprecipitation of the CD14 recep­
tor from CDl4-stimulated cells coprecipitated several Src family members, includ­
ing lyn, hck and (gr [52]. Subsequent investigation revealed that only lyn was direct­
ly coupled to CDI4, while all three tyrosine kinases were activated following expo­
sure of cells to LPS. Convincing evidence that Src family members participate in the 
signaling cascade is found in studies in which inhibition of hck expression by the use 
of anti-sense oligonucleotides [531 resulted in decreased TNF and IL-l production 
[53,54]. The exact mechanism whereby CDI4, which lacks a cytoplasmic tail, asso­
ciates with these molecules remains unclear. It is likely that the LPS-CDI4 complex 
must interact with another membrane component which might serve to transduce 
the signal across the plasma membrane. In support of this concept, Vasselon et al. 
recently showed that responsiveness of human monocytes to LPS was abolished by 
trypsin, which was shown to digest a cell surface protein distinct from CD14 [55]. 
Recent studies have examined the role of Src family members, which could interact 
with such surface proteins, in more detail. To directly determine whether hck, (gr, 
and lyn are required, Meng and colleagues generated null mutations of all three 
kinases in a single mouse strain [56]. They found that macrophages cultured from 
these mice express normal levels of CD14 and no other Src-family kinases were 
detected. Interestingly, although the total protein phosphorylation level was greatly 
reduced in macrophages derived from the mutant mice, functional analysis indicat­
ed that both peritoneal and bone marrow macrophages had no defects in LPS­
induced cytokine production. Moreover, the activation of MAP kinases was also 
normal. This evidence strongly argues against a direct role for Src family kinases in 
LPS initiated signal transduction [56]. It is likely, therefore, that a variety of paral­
lel pathways participate in the signaling response and the requirement for Src kinas­
es may not be complete for all of them. 

A role for MAPK family members 
The underlying processes by which tyrosine phosphorylation might signal cellular 
activation has been extensively examined in a variety of systems over the past sev­
eral years. The mitogen-activated protein kinase family are ser/thr kinases which 
play key roles in the regulation of pathways governing many cellular processes, cell 
proliferation, and cell differentiation. Most protein kinases are in an inactive state 
until phosphorylation induces kinase activity. MAPKs require dual and mixed phos­
phorylation for their activation, i.e. threonine and tyrosine residues must be phos-
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phorylated to achieve enzymatic activity. These phosphorylations are catalyzed by 
dual specificity protein kinases called MAP kinase kinases (MAPKK or MEK) [57]. 
The primary amino acid sequences around the threonine/tyrosine phosphorylation 
sites of MAPKs are highly conserved [58]. 

A specific role of LPS on activation of these signaling intermediates has recently 
been established. Using stably-transfected 70Z/3 cells expressing human CD14, Han 
et al. showed that LPS-CD14 binding resulted in activation of the MAPK isoform 
p38 [59]. p38 is distinct from the 44 or 40 kDa isoforms of MAPK, and is closely 
related to the product of the HOG1 gene in yeast [60]. p38 may also be relevant in 
non-transfected cells, as several authors have shown that LPS-stimulation of neu­
trophils results in a marked activation of the kinase [61, 62] in a concentration 
dependent manner. The functional importance of p38 in LPS-induced signaling has 
been elucidated using the specific inhibitor SB 203580 [4-4(fluorophenyl)-2-(4-
methylsulfinylphenyl)-5-(4-pyridyl)imidazole]. This compound was demonstrated 
to be a potent inhibitor of LPS-induced cytokine production in vivo in a variety of 
studies [63,64], confirming the functional relevance of p38 activation to endotoxin 
signaling. Various authors have also shown that LPS stimulation increases tyrosine 
phosphorylation and augments the activity of other MAP kinase isoforms, includ­
ing p42/p44 (ERK 112) in murine monocyte cell lines, murine peritoneal macro­
phages, and human peripheral monocytes [45, 60, 65-67]. Worth noting is that acti­
vation of these proteins may not be an absolute requirement for cytokine produc­
tion. In support of this, Swantek et al. recently showed that although LPS induces 
the activation of MEKs 1-4 and their downstream targets ERK1I2, MEK activation 
was not required for LPS-induced cytokine release [68]. 

Other kinases 
In addition to the molecules described above, additional signaling molecules have 
been shown to mediate LPS-induced cell activation. Emerging evidence points to a 
role for the lipid molecule phosphatidylinositol (PtdIns) and its phosphorylated 
derivatives, collectively referred to as phosphoinositides (PIs), in the signaling events 
which occur downstream of CD14. The inositol ring which forms the head group 
of the PtdIns is a highly versatile structure that can be modified at several sites. 
Phosphorylation at one or a combination of positions (3',4' or 5') generates a set 
of five unique stereoisomers that appear to function as intracellular signaling mole­
cules. An important mediator of these reactions is PI 3-kinase, which has been impli­
cated in LPS mediated signaling. In human peripheral blood monocytes exposed to 
LPS, PI 3-kinase activity underwent an immediate elevation which correlated with 
increased levels of the enzymatic product PtdIns 3,4,5-triphosphate [69]. Activation 
of PI 3-kinase involved signaling through CD14 as antibodies to CD14 abrogated 
the increase in PtdIns production [69]. The degree to which the signaling process 
depends on these molecules remains to be established. 
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Recently, homologues of the p42 and p44 isoforms of the MAP kinases have 
been described, namely the stress activated protein kinases (SAPKs) or alternatively 
the c-jun N-terminal kinases (JNKs). These molecules are essential components of 
signaling cascades in response to a number of cellular stresses including inflamma­
tory cytokines, heat and chemical shock, ultraviolet irradiation, osmotic stress and 
ischemia [70]. Emerging evidence has indicated that these molecules also become 
activated upon endotoxin stimulation [68, 71]. A major thrust of current research 
is the identification and function of the major intermediates of the SAPK cascades 
and their physiological function. 

Tyrosine phosphorylation and cytokine expression 
How does activation of this signaling cascade by LPS result in production of inflam­
matory cytokines? The transcription factor NF-lCB is known to be translocated to the 
nucleus in LPS-stimulated macrophages, where it plays an important role in the gen­
eration of proinflammatory mediators. A specific link between the LPS-induced 
ra(IMEKIMAPK cascade and NF-lCB activity was demonstrated by Li et al. This group 
showed that raf activation resulted in phosphorylation of the inhibitory chaperone 
IlCB, leading to release and nuclear translocation of NF-lCB [72]. It is noteworthy that 
other transcription factors become activated and translocate to the nucleus upon LPS 
stimulation. Han et al. recently showed that LPS-induced p38 activation resulted in 
transactivation of the myocyte-enhancer factor 2 (MEF2) group of transcription fac­
tors [73], which regulate the transcription of a variety of proinflammatory genes. 

The phospholipase CICalciumlProtein kinase C (PKC) axis 
The role of phospholipase C 
One of the most important signal transduction cascades in many cell types involves 
activation of phospholipase C (PLC) and the hydrolysis of its substrate phos­
phatidylinositol tris-phosphate. Not surprisingly, the role of this cascade in LPS­
mediated signal transduction has generated significant interest, often with conflict­
ing results. Two main types of PLC have been detected in leukocytes: PLC~ and 
PLCy. These isoforms have similar catalytic activity, but differ in their mode of 
action. Both types of PLC cleave phosphatidylinositol tris-phosphate, releasing dia­
cylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). In the case of PLC~, the 
quiescent enzyme is activated by guanine nucleotide binding proteins (G-proteins). 
By contrast, PLCy activation occurs independent of G proteins and is activated by 
receptors that are themselves tyrosine kinases or are associated with such kinases. 
Phosphorylation of PLCy on tyrosine residues results in its activation, a process that 
is terminated by phosphotyrosine phosphatases. In LPS-stimulated cells, there is evi­
dence that one or both of these types of PLC might contribute to cellular activation. 
For instance, studies reporting an inhibitory effect of pertussis toxin have implicat-
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ed a role for G proteins in mediating LPS-stimulated cell activation [74, 75], while 
the accumulation of tyrosine phosphorylated proteins is known to occur following 
LPS stimulation (see above). 

Recent studies have provided evidence suggesting that PLC lies downstream of 
the CD14 receptor. For instance, NF-KB activation in CD14 transfected CHO cells 
occurred during incubation with DAG analogues or phospholipase C, even without 
LPS stimulation [76]. Moreover, pharmacological inhibition of phospholipase C 
markedly reduced the LPS-dependent production of DAG as well as LPS-induced 
NF-lCB activation [76]. These results indicated that the production of DAG by PLC 
was upstream of NF-KB activation in response to a CD14-mediated LPS stimulus. It 
is noteworthy that other authors have failed to detect PLC activation following LPS 
stimulation [77]. 

The role of PKC 
Independent of the type of specific PLC activated, stimulation results in a similar 
cascade of events. The most relevent consequence of the release of diacylglycerol is 
the activation of PKC, a family of calcium and phospholipid-dependent serinelthre­
onine kinases. Multiple isoforms of PKC have been described, which differ in the 
extent of their dependence on calcium and lipid, as well as their tissue and subcel­
lular distribution. PKC exerts pleiotropic effects on many aspects of cell activation, 
implying that it could participate in LPS-mediated signaling. Several substrates of 
PKC have been shown to undergo increased protein phosphorylation and plasma 
membrane translocation in response to LPS: 68 kDa [78],66 kDa [79] and 140 kDa 
[80] proteins in murine peritoneal macrophages and a 79 kDa protein in human 
peripheral monocytes [81]. Recent reports have demonstrated that LPS stimulation 
increases the activity of many PKC isoforms, with particular isoforms having spe­
cific functional significance. For instance, PKC-E was recently shown to be the pre­
dominant isoform activated upon LPS stimulation, and inhibition of PKC-E was suf­
ficient to reduce the entire PKC response [82]. PKC-~ was shown to become specif­
ically activated upon LPS stimulation of a variety of myeloid cells, including human 
peripheral blood monocytes and the cell lines U937 and THP-l [83]. Interestingly, 
preincubation of monocytes with the inhibitor wortmannin, or transfection with 
dominant negative PI 3-kinase, abrogated LPS-induced activation of PKC-~, imply­
ing that the activity of this isoform lies downstream of PI 3-kinase [83]. Adding to 
this controversy are recent reports showing that pharmacological inhibition of PKC 
markedly attenuates LPS-induced cytokine release [84]. 

The role of IP 3 

The other product of phosphoinositide hydrolysis, IP3, acts primarily as a messen­
ger in the pathway leading to an increased cytosolic calcium concentration ([Ca2+]J 
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IP3 enters the endoplasmic reticulum or a specialized subcompartment thereof, 
called the calciosome. Binding of IP3 promotes the release of calcium from within 
these endomembrane stores, which signals the opening of plasmalemmal calcium 
channels which leads to a sustained rise in [Ca2+]i' A number of reports describe 
increases in [Ca2+L in response to LPS [85, 86], while others find minimal or no 
changes [87]. 

Other signaling cascades 
Phospholipase A2 
Following exposure to LPS, activation of phospholipase A2 (PLA2) has been shown 
to occur both in vitro and in vivo. PLA2 is a family of enzymes that catalyze the 
hydrolysis of phosphatidylcholine and/or phosphatidlyethanolamine. Typically, 
they cleave position sn-2 of the phospholipid, where arachidonate is most fre­
quently located. The free arachidonate generated can then be used by the lipooxy­
genase and cyclooxygenase pathways to generate other second messengers. Three 
general types of PLA2 have been described which can be separated into calcium­
dependent and calcium-independent. The calcium-dependent molecules can be sub­
divided into two groups: cytosolic (cPLA2) and secretory (sPLA2, present in secre­
tory granules). There is convincing evidence that LPS activates cPLA2 and also 
induces the secretion of sPLA2 in leukocytes. In human neutrophils, PLA2 is acti­
vated many-fold within minutes of addition of LPS (C4-57) and cPLA2 becomes 
phosphorylated in the process [88]. Recent evidence has suggested that PLA2 par­
ticipates in endotoxin-mediated signaling. For instance, experiments performed in 
mice deficient in the PLA2 receptor showed a decreased LPS-induced TNF and IL­
l production after LPS injection [89]. Importantly, this was associated with longer 
survival after endotoxin challenge in mutant mice compared to wild-type controls 
[89]. 

Phospholipase D 
In addition to PLA2 and PLC, stimulation of leukocytes is also associated with acti­
vation of phospholipase D (PLD). PLD catalyses the hydrolysis of phosphatidyl­
choline to choline and phosphatidic acid (PA), the latter of which functions as a sec­
ond messenger in a variety of cellular processes. Since PA is a major source of dia­
cylglycerol, PLD can indirectly support continued stimulation of PKC. PA can also 
exert direct effects. These include activation of the NADPH oxidase responsible for 
the respiratory burst [90], and modulation of GTPase activity [91]. PLD may con­
tribute to the transduction of signals generated by LPS, as inhibition of PA was 
shown to be protective against endotoxic shock in vivo [92]. These observations 
suggest that PLD can be stimulated by LPS and may participate in the biological 
effects of endotoxin. 
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Therapeutic modulation of LPS signaling 

The signaling pathways described above provide insight into potential sites where­
by the host immune response may be manipulated by therapeutic agents in an 
attempt to treat SIRS. In general terms, such sites may be viewed as those which 
alter the interaction of macrophages with LPS/LBP, those which impair normal 
intracellular signaling, and those that alter the activity of the liberated cytokines. 
Progress in each of these areas will be described below. 

Strategies which attempted to prevent the interaction of LPS with macro phages 
have involved neutralizing or binding LPS with specific antibodies. Clinical trials 
using anti-LPS antibodies directed against the conserved lipid A portion of LPS have 
yielded disappointing results. This is in part related to the fact that only approxi­
mately 40% of patients with clinical SIRS actually have Gram-negative infection as 
an underlying cause [93]. However, of the patients with documented Gram-negative 
bacteremia who were followed to hospital discharge or death, there was a statisti­
cally significant improved likelihood of being discharged alive in antibody treated 
patients compared to placebo treated controls [93]. As an alternative strategy, CD14 
has been shown to inhibit TNF production in monocytes/macrophages by binding 
LPS [94]. However, the utility of this approach in preventing the septic response is 
unclear, as soluble CD14 facilitates the response to LPS in cells which lack a CD14 
receptor, such as endothelial cells [95]. 

Other strategies have attempted to protect the patient form endotoxemia by dis­
rupting the intracellular signaling cascade. As described above, agents which impair 
tyrosine kinases or preclude normal PLA2 activity have been shown to improve out­
come in experimental models of sepsis [96], suggesting the potential for clinical effi­
cacy. Recently, Bernard and colleagues reported the use of the cyclooxygenase 
inhibitor ibuprofen in the treatment of sepsis [97]. They determined that ibuprofen­
treated patients had significant reductions in circulating levels of prostacyclin and 
thromboxane as well as decreased fever, tachycardia, oxygen consumption and lac­
tic acidosis. However, there was no improvement in the development of shock or the 
acute respiratory distress syndrome, nor in survival. 

The third approach attempts to prevent the activity of the cytokines, either by 
neutralizing them or interfering with their receptors. Significant effort was exerted 
to neutralize the effects of TNF, initially by using anti-TNF antibodies [98]. While 
initial results were somewhat encouraging, longterm antibody usage has inherent 
risks of antigenicity. For this reason, chimeric TNF inhibitor proteins, consisting of 
the extracellular domain of a TNF receptor spliced to a portion of an IgG heavy 
chain have been developed for TNF neutralization [99]. When expressed at high lev­
els in vivo, experimental animals become blind to TNF, and are thus LPS resistant. 
However, clinical use of this reagent in patients with septic shock was extremely dis­
appointing, as treatment with the chimeric protein did not reduce mortality [100]. 
Moreover, higher doses appeared to be associated with increased mortality. 
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Summary 

This discussion has attempted to overview the cellular processes whereby LPS inter­
acts with cells, induces their activation, and generates molecules which participate 
in the inflammatory response. While understanding these pathways has led to the 
development of innovative strategies, the complexity of the patient population stud­
ied and the redundancy of much of the signaling pathways during inflammation has 
precluded successful intervention to this point. Clearly, however, careful considera­
tion of the strategies as part of multi-modal therapy may someday prove fruitful. 
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General introduction 

Research from numerous laboratories throughout the world now indicates that 
many, if not all, of the physiological, metabolic, and immunological responses to 
trauma, sepsis and cancer are not mediated directly by bacteria or their toxins, or 
by tumor cells, but rather by groups of host-derived polypeptide molecules which 
are produced in response to these stimuli and have collectively been called cytokines 
[1-41. These molecules work together with classic stress hormones and with other 
humoral mediators to orchestrate and coordinate the cellular response to critical ill­
nesses, The central role occupied by these polypeptide signals has challenged past 
teachings and prompted a rethinking of traditional approaches for treating the host 
with severe infections. New knowledge delineating how these key polypeptide mol­
ecules control the catabolic response to stress states has been generated at a stag­
gering pace. From an evolutionary standpoint, these biological responses are the 
result of a process that favors survival of the fittest in the struggle to survive and 
preserve the species. Ironically, these polypeptide mediators, which clearly orches­
trate many of the appropriate and beneficial responses to these catabolic diseases 
(i.e, fever, tachycardia, and acute-phase protein synthesis), can also initiate detri­
mental physiological responses, such as hypotension, organ failure, cachexia, and 
death [5-7]. 

In the case of tumor necrosis factor (TNF), it has been suggested that excessive 
production of this particular cytokine during severe sepsis may serve as an endoge­
nous "self-destruct mechanism" with the purpose of eliminating wounded members 
of the herd or the host with lethal sepsis or advanced incurable cancer to ensure sur­
vival of the fittest. In selected patients with infections, the TNF concentration in the 
bloodstream is a predictor of survival [8-11]. 

One school of thought is that cytokines are produced locally within tissues and 
are designed to control cellular metabolism in a paracrine or autocrine fashion [4, 
12]. Only when excess production occurs, leading to spillover into the systemic cir­
culation, are their effects harmful [131. It remains unclear why, under certain cir-
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cumstances, tighter control of cytokine signals does not exist and why under those 
conditions they may be responsible for the death of the host after overwhelming 
microbial invasion. 

Cytokines bind to specific membrane receptors that are expressed on the surface 
of virtually all cells. Binding to the receptor affects a variety of intracellular respons­
es that result from complex signal transduction pathways activated by specific 
cytokine receptors [3, 14]. Different portions of the signal transduction pathways 
appear to be represented in different cells. Accordingly, different tissues respond to 
cytokines in different ways. Therefore a particular interleukin may stimulate amino 
acid transport in vitro in one cell type but not in another [14-16]. Further under­
standing of these intracellular signaling pathways may lead to the development of 
therapies designed to block specific cytokine effects. 

A growing interest in cytokine biology has led to productive collaborations 
between clinicians, basic scientists, and industry. Clinical trials designed to deter­
mine whether a role exists for cytokine blockade with monoclonal antibodies or 
receptor antagonists in critically ill patients are in progress, the overall benefits of 
which should be measured in terms of a reduction in major complications and 
improved survival. However, as the clinical and scientific collaborations have 
evolved, by bringing forth new therapies for patients with severe trauma, shock or 
sepsis, it has become apparent, due to the failure of a number of the early clinical 
trials [17-28], that much more needs to be understood about the pathobiology of 
these states. In this regard, the predisposition of the animal or patient population 
with respect to gender, nutritional status or age, has, until recently, not been a com­
mon component actively addressed either in experimental animal studies examining 
the immune response following shock or sepsis, nor in clinical trials. To a degree, 
our lack of understanding of how these variables affect the immune response fol­
lowing trauma, shock and sepsis may explain, at least in part, why some of these 
initial exciting new therapeutic approaches were not efficacious clinically. This 
chapter is, therefore, aimed at briefly reviewing the current information on these 
predisposing states and what the findings have been as to their contributions to the 
altered immune status encountered following shock, traumatic injury or the onset 
of sepsis. We do not, however, intend this as a review of immune process or their 
mediators (i.e. cytokine, prostanoids, NO, °2, etc.), as these are covered extensive­
ly in other parts of this book. 

Influence of sex on the immune system 

Sex differences in the susceptibility to and morbidity from sepsis have been observed 
in several clinical and epidemiological studies [29-31]. The alterations in endocrine 
and immune functions have been investigated primarily using male laboratory ani­
mals. Immune function in normal males and females has been reported to be influ-
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enced by sex-steroids [32-33]. In this regard, it appears that better maintained 
immune functions in females are not only due to physiologic levels of female sex­
steroids, but also at least in part due to the lower levels of immunosuppressive 
androgenic hormones [34-35]. A number of clinical and experimental studies have 
shown the suppressive effects of androgens on immunity [34-38]. Recent immuno­
logical studies suggest beneficial effects of prior testosterone depletion by castration 
on splenocyte immune function after soft-tissue trauma and hemorrhagic shock 
[39-40]. The suppressive effects of androgens on immunity have been observed on 
normal immune functions as well as in autoimmune diseases [35-37,41]. Studies 
also indicate a predominance of diverse autoimmune diseases such as systemic lupus 
erythematosus, Hashimoto's thyroiditis, rheumatoid arthritis and primary biliary 
cirrhosis in females [42-43]. Cell-mediated immune responses also appear to exhib­
it sexual dimorphism [44]. Thymocytes and lymphocytes from normal female mice 
respond more vigorously to exogenous and allogeneic antigens than do cells from 
male mice [45]. 

Since 1898, when Calzolari [46] demonstrated that castration of adult male rab­
bits resulted in an increase in thymic mass, it has been known that sexual hormones 
can affect the immune system. In recent years, it has become apparent from a large 
number of experimental studies that sex-linked hormonal factors may influence 
immune response and modify the expression of autoimmunity in animals as well as 
in humans [47]. Studies have shown that both the humoral and cell-mediated 
immune responses are more prominent in females than in males [44, 48, 49]. In 
both human and animal models [50-51], circulating concentrations of the major 
immunoglobulin classes (IgG, IgM, IgA) in females far exceeded those concentra­
tions found in males of the same species, age, and physiological conditions when 
challenged with antigens such as polio, bovine serum albumin or hemagglutinin. 
This difference was reflected not only as higher titers of antibody, but also as a more 
sustained primary and secondary response in females than in males [52]. Increased 
plasma concentrations of prolactin in females are associated with increased T helper 
and T cytotoxic lymphocyte activity [53]. The increased T helper and T cytotoxic 
lymphocyte activity results in an increased cell-mediated immune response, accom­
panied by an increase in humoral immunity (i.e. T helper cell-mediated B cell pro­
duction of immunoglobulin). Prolactin has been demonstrated to have stimulatory 
effects on the immune system, and may be a key hormone contributing to the 
dichotomy seen in the immune response between females and males [54-56]. 
Recent work suggests a significant depression of cytokine release from macrophages 
of male mice harvested from either the peritoneal cavity or the spleen of septic mice 
at 24 h after the onset of sepsis [57-58]. Development of such an immune depres­
sion during late sepsis may translate into decreased ability to ward off microbial 
pathogens which, in turn, contributes to increased morbidity and mortality under 
these conditions. Treatment of septic animals with either prolactin or metoclo­
pramide (which is known to elevate prolactin levels [59]) immediately after the 
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onset of sepsis resulted in significantly increased innate and inducible IL-l p, IL-6 
and TNFa gene expression in both splenic and peritoneal macrophage populations 
[60]. Moreover, prolactin administration following hemorrhagic shock improved 
macrophage cytokine release capacity and decreased mortality from subsequent 
sepsis [61]. The physiological release of prolactin from the pituitary fluctuates in a 
pulsatide circadian fashion, as do glucocorticoids, and is further modulated by 
behavioral and environmental stimuli, the reproductive cycle, steroid hormones, 
neurotransmitters, immunoregulatory cytokines, and various drugs. Further studies 
[54, 55, 62-65] support the view that hormones of the endocrine system (i.e. pro­
lactin, progesterone, the adrenal glucocorticoids, growth hormones, and endoge­
nous opioids) are intimately involved in immunological sexual dimorphism [54, 55, 
62-65]. 

Gram-negative bacterial sepsis and the ensuing multiple organ failure remain 
the leading cause of morbidity and mortality following trauma [66-68]. 
McGowan et al. [31] found in their pioneering study of bacteremia more males 
suffering from sepsis than females. Barrow and Herndon [69] compared the fre­
quency of mortality in boys and girls between the ages of one and 15 years after 
severe thermal injury (:2: 30% body surface area) and noted a significantly higher 
mortality rate in males. Bone [29] analyzed four severe sepsis studies and found 
that 60% to 65% of the patients were males. Experimental studies have demon­
strated that the link between cell and organ dysfunction associated with multiple 
organ failure lies in the initial presentation of sepsis [70-71]. The early (1-4 h) 
systemic inflammatory response results from the activation of macrophages to 
produce a number of pro-inflammatory cytokines, including IL-lP, IL-6 and 
TNFa [72-74]. These activated macrophages have been implicated as exocrine 
mediators involved in initiating and developing cell and organ dysfunction during 
sepsis [5, 75, 76]. The development of macrophage dysfunction or hyporespon­
siveness in late sepsis, may profoundly reduce the animals ability to ward off the 
lethal effects of sepsis. 

Nutritional status and immune functions 

It is well known that the patient's nutritional status and nutrient intake can alter 
cytokine production. Cytokines initiate the acute-phase response, induce changes in 
substrate flow and use, and cause weight loss and fever. Cytokines control the 
altered substrate metabolism that develops in trauma, sepsis, and cancer. It is 
becoming increasingly clear that the derangements in nutrient metabolism that 
develop in each of these disease states are strikingly similar and are at least partly 
mediated by cytokines. 

Nutrition is a critical determinant of immunocompetence and risk of illness. 
Young children with protein-energy malnutrition exhibit increased mortality and 
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morbidity, due largely to infectious disease. Recent work has demonstrated that 
undernourished individuals have impaired immune responses. The most consistent 
abnormalities are seen in cell-mediated immunity, complement system, phagocytes, 
mucosal secretory antibody response, and antibody affinity. Malnutrition is associ­
ated with a number of acute and chronic sequelae. One of the most frequent com­
plications is infection. Due to its widespread occurrence, nutritional deficiency is 
the commonest cause of immunodeficiency worldwide. Although much of the ini­
tial work on nutrition and immunity was done on young children in developing 
countries, the general principle that nutrition is a critical determinant of immuno­
competence is applicable universally. For instance, in patients with a variety of dis­
eases, such as cancer and Crohn's inflammatory bowel disease, nutritional defi­
ciencies further complicate the picture and increase the risk of infectious complica­
tions. 

Epidemiological studies have documented the adverse effect of protein-energy 
malnutrition (PEM) on morbidity and mortality [77-80]. Chandra et al. [77,79,81, 
82] have performed several studies in undernourished children and found that 
pathological examination of tissues from children dying of PEM showed the fre­
quent presence of several opportunistic microorganisms including Pneumocystis 
carinii. Lymphoid tissues show a significant atrophy; the size of the thymus is 
reduced. Histologically, there is a loss of thymic corticomedullary differentiation, 
there are fewer lymphoid cell, and the Hassal bodies are enlarged, degenerated, and 
occasionally, calcified. In the spleen, there is a loss of lymphoid cells around small 
blood vessels. In the lymph node, the thymus-dependent areas show depletion of 
lymphoid cells. Several aspects of cell-mediated immunity are significantly altered 
by PEM. Delayed cutaneous hypersensitivity responses both to recall and new anti­
gens are markedly depressed. One plausible reason for reduced cell-mediated immu­
nity in PEM is the reduction in the number of fully mature differentiated T-lym­
phocytes. The use of monoclonal antibodies and of flow cytometric methods 
showed that the number of CD4+ T-helper cells was decreased markedly, often to 
values less than 50% of controls. The change in the number of suppressor T cells 
(CD8+) is less marked. Thus, the helper/suppressor ratio is significantly decreased. 
Lymphocyte proliferation and synthesis of DNA are reduced. Antibody responses 
were among the first set of immune indices examined in PEM and showed that anti­
body affinity is decreased along with decreased secretory IgA antibody levels after 
immunization with viral antigens. This may have several clinical implications, 
including an increased frequency of septicemia in undernourished children. The 
process of phagocytosis is also affected in PEM. Although the ingestion of particles 
by phagocytes is intact, subsequent metabolic activation and destruction of bacteria 
is reduced. The levels of complement, an essential opsonin, and activity of most 
complement components are decreased by PEM. Moreover, recent work in man and 
animal has demonstrated that the production of interleukin-l is decreased in PEM 
[81]. 
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Micronutrients 

Observations in laboratory animals deprived of various dietary elements and find­
ings in patients with a given nutrient deficiency have confirmed the crucial role of 
several vitamins and trace elements in immunocompetence [83]. Deficiencies of 
pyridoxine, folic acid, vitamin A, vitamin C and vitamin E result in impaired cell­
mediated immunity and reduced antibody responses. Vitamin B6 deficiency results 
in a decreased lymphocyte stimulation response to mitogens such as phytohemag­
glutinin. A moderate increase in vitamin A or beta-carotene intake enhances 
immune response and affords partial protection against the development of certain 
tumors in animals. Zinc deficiency, both acquired and inherited, is associated with 
lymphoid atrophy, decreased cutaneous delayed hypersensitivity responses and 
homograft rejection, and lower thymic hormone activity. Moreover, there are a 
reduced number of antibody-forming cells in the spleen and impaired T-killer cell 
activity. In addition, wound healing is impaired. Excess zinc also depresses neu­
trophil function and lymphocyte responses [84]. Deficiency of iron is the common­
est nutritional problem worldwide, even in industrialized countries. Studies have 
shown that free iron is necessary for bacterial growth since removal of iron with the 
help of lactoferrin or other chelating agents reduced bacterial multiplication, par­
ticularly in the presence of specific antibody [81]. Iron is, however, needed by neu­
trophils and lymphocytes for optimal function. Response to tetanus toxoid and her­
pes simplex antigens was low in iron-deficiency subjects and iron therapy resulted 
in a significant improvement in their response [81]. There are many molecular 
explanations for impaired lymphocyte and neutrophil function in iron deficiency, 
including the deficiency of myeloperoxidase and ribonucleotidyl reductase. T-Iym­
phocytes constitute approximately 80% of the circulating pool of lymphocytes. In 
PEM, there is a sharp reduction in the proportion and absolute number of these cells 
and there is a correlation with weight deficit [81]. 

In certain segments of the population, such as the elderly and smokers, activity 
of the immune indexes can be increased through dietary supplementation with 
micronutrients, and there may be a rationale to increase selected recommended 
dietary allowances for the general population. 

Dietary fat 

The activity of the immune system may also be enhanced with decreases in total fat 
intake or lessened with increases in total fat intake, particularly of the n-3 type. In 
the past decade, several studies have been conducted to examine the effects of 
amount and type of dietary fat on the human immune response. In two separate 
studies conducted in a metabolic suite, the proliferation of peripheral blood lym­
phocytes increased significantly in men and women in response to mitogens specif-
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ic for T and B cells when the fat content of the diets was reduced from 30% or 40% 
of energy to 25% of energy [85, 86). An increase in lymphocyte proliferation and 
the secretion of interleukin 1 (IL-l) was also observed in a group of elderly subjects 
when fat intake was reduced from 36% to 27% of energy [87). The lowering of fat 
intake from 32 % to 22 % of energy increased natural killer cell activity in a group 
of healthy men [88). This increase in natural killer activity was prevented by the 
daily additional intake of 15 g safflower oil but not coconut oil. 

Whether n-6 polyunsaturated fatty acids (PUFA's) are more inhibitory than sat­
urated fatty acids, as seen in animal studies, is not clear from the limited studies 
conducted in humans. The available data suggest that a moderate increase in the 
intake on n-6 PUFAs in a diet containing> 30% of energy from total fat and with 
adequate amounts of antioxidant nutrients should not have any adverse effects on 
immune response. However, such an increase may suppress immune response in 
individuals with low antioxidant-nutrient status who are consuming high-fat diets 
[89). Because of the recommendations made by some groups that the intake of n-3 
PUFAs should be increased to improve cardiovascular health, several studies have 
been conducted in the past few years to examine the effects of these fatty acids on 
immune response. Adding 18 g fish oil, equivalent to 5 g eicosapentaenoic acid plus 
docosahexaenoic acid, to the diets of nine healthy subjects for six weeks inhibited 
several indexes of immune response including neutrophil chemotaxis and secretion 
of IL-l, IL-2, and tumor necrosis factor [90, 91). Further preliminary clinical stud­
ies showed that fish-oil (i.e. n-3 PUFA) supplementation had a restorative effect on 
the depressed cellular immunity of patients in intensive-care units [92) and of 
patients after major surgery [93, 94). A recent prospective clinical study in burn 
patients has shown that the use of a diet containing fish oil significantly reduced 
wound infection, shortened hospital stay and lowered mortality rates compared 
with other standard enteral formulations [951. Similar results have recently been 
reported by Daly et al. [96), who found that patients placed on enteral diets con­
taining fish-oil after major elective surgery demonstrated not only improved in vitro 
lymphocyte mitogenic responses but also fewer infection/wound complications and 
decreased length of hospital stay. Barton et al. [97) reported that Kupffer cells taken 
from septic animals prefed for five days and then postfed for seven days with a Men­
haden-oil (n-3 PUFA) diet produced lower levels of PGEz, which correlated posi­
tively with increased survival after a septic challenge. These studies support the 
notion that the n-3 PUFA diet alters eicosanoid biosynthesis, and that this is one of 
the mechanisms responsible for the immunoprotective effects reported above. 

Other studies indicate that many indexes of immune response are inhibited by 
supplementation with fish oils, and the time taken for the inhibition to occur as well 
as for it to be overcome after discontinuation of fish oil supplementation varies with 
the different indexes of immune response [90, 91). Inhibition of lymphocyte prolif­
eration caused by fish oil supplementation could be overcome with increased intake 
of vitamin E [98). 
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The net effect of dietary fat on immune response is an outcome of the interac­
tion and balance between several factors including total fat, type of fat, the ratios 
between different fatty acids, chain length, degree of unsaturation, duration of feed­
ing, and antioxidant-nutrient status. Because several other micronutrients can affect 
immune status, indexes of immune response cannot be used to detect essential fatty 
acid nutritional status except under rare deficiency conditions. However, the 
amount of total fat in the diet and the ratios between different fatty acid classes can 
be used to modulate human immune response. The existing immunological data 
support the current recommendations by the American Heart Association to 
decrease fat intake to 30% of energy with 10% of energy each from saturated, 
monounsaturated, and polyunsaturated fatty acids. On the lower end, ~ 20% of 
energy from fat is needed for health maintenance and work efficiency in healthy 
adult populations [99]. 

Vitamins 

Recent, well-controlled human intervention studies found that clinically important 
immune responses were improved when amounts of vitamin C, vitamin E, or ~­
carotene higher than the recommended dietary allowance (ROA) were consumed in 
healthy populations [100]. For example, in a placebo-controlled, double-blind inter­
vention study conducted in a metabolic ward, responses on delayed-type hypersen­
sitivity (OTH) skin tests, an important index of overall immune function, were sig­
nificantly reduced in a group of healthy men when their vitamin C intake was 
reduced from 250 to 5, 10 or 20 mg/day for 60 days. In another placebo-controlled, 
double-blind study, incidence of post-race infections in marathon runners was twice 
as high as in those not taking vitamin C supplements compared with runners who 
took", 1 g vitamin C/day [101]. Data from a large national survey found that forced 
expiratory lung volume, a clinically important index of lung function, was signifi­
cantly greater in individuals consuming '" 178 mg vitamin C/day compared with 
those consuming the ROA for vitamin C [102]. 

Diet and lifestyle 

Lifestyle and environmental factors can adversely affect both the status of essential 
nutrients and immune responses. For example, tissue concentrations of vitamin C, 
vitamin E, ~-carotene, vitamin B-6, and folate are lower in smokers than the corre­
sponding values in nonsmokers. Smokers have elevated neutrophil-oxidation activ­
ity, which may reduce antioxidant-nutrient status. In one trial, the activity of neu­
trophils from smokers was restored to normal with ~-carotene supplementation 
(40 mg/day) [103]. In another study, supplementation of ~-carotene (30 mg/day) 
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reduced the number of precancerous oral leukoplakia lesions, and at the same time, 
natural killer cell functions were significantly enhanced [104]. 

Diet and aging 

The elderly are another group at risk for decreased immune responses. In fact, DHT 
responses at the time of hospitalization of elderly persons can be used to predict 
death. The incidence of death was 30 times higher in those with negative responses 
to all seven recall antigens compared with those who had at least one positive 
response [105]. DTH responses were significantly enhanced in a separate placebo­
controlled study in which healthy elderly subjects took a multivitamin and mineral 
tablet for one year [106]. Chandra [107] showed a significant decrease in number 
of sick days and in use of antibiotics, as well as an increase in antibody response to 
the flu vaccine, in a group of healthy elderly subjects who supplemented their diets 
with a multivitamin that contained 100% of the RDA of most vitamins and mod­
erately higher amounts of vitamin C (80 mg/day), vitamin E (44 mg/day), and ~­
carotene (16 mg/day). Thus, it appears that to maintain their immune responses at 
an optimum, healthy elderly persons may need higher amounts of certain essential 
micronutrients than their usual dietary intake and the current RDA recommenda­
tions. Furthermore, these amounts for the elderly are higher than the amounts need­
ed by younger adults. 

The many observations on the interactions between nutrition and immunity have 
led to several practical applications. For example, the outcome of surgical patients 
can be predicted on the basis of preoperative assessment of nutritional status and of 
immunocompetence. Practicing surgeons should become knowledgeable about the 
potential strategies involving the use of cytokine antagonists and specialized nutri­
tional regimens as potential new treatment options because these therapies may 
become an integral part of the care of critically ill surgical patients in the next 
decade. 

Research to date suggests that several dietary components, both essential and 
non-essential, can affect human immune response. The intake of these nutrients 
can be modulated to regulate the activity of the immune system. Scrimshaw et al 
[108] in 1959 reviewed the literature linking malnutrition and immune response 
and reported, "Many of the important infections of human populations are ren­
dered more serious in their consequences by the presence of malnutrition." Beisel 
[109] coined the acronym NAIDS to depict nutritionally acquired immune defi­
ciency syndrome and reported that a combination of infection and malnutrition in 
children with NAIDS accounted for> 40 000 deaths/day in underdeveloped coun­
tries, plus countless other deaths of adults with NAIDS in modern hospitals. Sev­
eral other chronic diseases including cardiovascular disease, cancer, and arthritis 
also have their roots in disorders of the immune system. Nonetheless, several nutri-
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ents, including vitamins, minerals, and ammo acids, influence the activity of 
immune cells to infections. 

The immune system during aging (endocrine effects) 

Changes in body composition are known to occur with aging. Specifically a decrease 
in lean body mass and an increase in fat mass are both characteristic of the aging 
process. Alterations in hormonal status and immune modulators of metabolism (i.e. 
cytokines), and thus in body composition, may occur among the elderly and con­
tribute to the loss of lean body mass. In males, peak lean body mass (LBM) occurs 
during the mid-thirties, after which there is a continued, gradual decline [110]. 
Women maintain their peak LBM until the early fifties, after which they also begin 
to lose LBM, but at a slower rate than men [111]. Loss of LBM is reflected by a pro­
portionalloss of diaphragm muscle mass and muscle strength. The clinical implica­
tion of decreased LBM is increased susceptibility to respiratory complications 
among the elderly, as expiratory muscle weakness renders coughing ineffective 
[112]. 

Host derived mediators which may contribute to various states of 
predisposition to immune suppression 

Thus far we have attempted to provide a general overview of three of the most com­
mon categories of predisposition encountered in the traumatized, shock and/or sep­
tic patient/animal population. However, while a number of mediators have been 
mentioned, as stated in the introduction, one of the main hypotheses as to why the 
shock, injured and/or septic patient/animal develops multiple organ failure is con­
sidered to be due to the altered host-mediated response to the initial traumatic 
and/or infectious insult and not due to a direct action of the microbes or their tox­
ins. In view of this, it is worthwhile to briefly discuss some of the mediators which 
may be contributing in these different states of predisposition in somewhat more 
detail. 

Several major components of the immune system (immunoglobulins, cytokines), 
as well as other factors that may influence immune function (i.e. many hormones), 
are all proteins. Normal functioning of the immune system requires rapid division 
and proliferation of the immune cells. Therefore, a decreased efficiency of protein 
metabolism, such as that which occurs during aging, could decrease the production 
of substances essential for normal functioning of the immune system. Conversely, 
activation of the immune system by illness may increase protein turnover in the 
elderly and place a higher demand on an already reduced LBM. Some of the prima­
ry hormones implicated in these changes associated with aging include growth hor-
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mone, prolactin, the androgens, insulin, cortisol, and the thyroid hormones. In this 
respect, some of the above mentioned hormones have an anabolic role while others 
are catabolic, which may account for some of the impact on the immune response 
of the aged, as well as normal, animal or patient. 

Growth hormone (GH) is a potent anabolic agent that stimulates protein syn­
thesis and cell growth and improves nitrogen balance while reducing stored and cir­
culating lipids [113]. Interestingly, increasing evidence suggests that lymphocytes 
also synthesize de novo and secrete an immunoreactive GH that is similar, if not 
identical, in terms of bioactivity, antigenicity, and molecular weight, to that pro­
duced by cells of the anterior pituitary [114]. The production of GH can be altered 
under various physiological conditions. Exercise, for example, acts as a powerful 
stimulus to increase serum GH concentrations. There is also abundant evidence that 
GH secretion declines with advancing age after reaching maximal secretion at 
puberty [115-119]. After age 40, GH secretion by the anterior pituitary gland tends 
to decline [115, 117, 119]. It has been estimated that as many as 50% of individu­
als over 65 are partially or totally deficient in GH [115]. 

Prolactin, which is secreted by the anterior pituitary gland, can be classified as 
one of the GH-related hormones, since its major effects are promotion of growth 
and differentiation of target tissues (primarily breast and ovary). Studies in rats have 
indicated that plasma levels of prolactin seem to increase during aging; this finding 
is also consistent with the observed increase in body fat, perhaps related to increased 
prolactin levels among the elderly [120]. 

Testosterone is quantitatively the primary androgen. The difference in plasma 
testosterone levels between males and females (0.6 vs. 0.03 mg/dl, respectively) 
seems to account for the fact that the female begins her adult life with a LBM only 
two-thirds that of a male [121]. Male testosterone secretion peaks at approximate­
ly age 22 and declines steadily thereafter, consistent with the decrease in muscle 
mass that occurs with advancing age [110]. 

Insulin. The net effect of insulin is to increase both muscle mass and fat mass 
during times of fuel excess. It has recently been reported that the well-recognized 
insulin resistance observed in the elderly is due to a small decrease in pancreatic 
insulin output as well as to a small decline in peripheral tissue response to insulin 
[122]. Given the known physiological effects that insulin produces, a decrease in 
insulin effect during aging would be consistent with the decrease in LBM and mus­
cle activity observed in the elderly. 

Glucocorticoids (cortisone and cortisol) inhibit protein synthesis and stimulate 
protein degradation in skeletal muscle, resulting in net protein catabolism and 
decreased muscle mass. Circulating plasma glucocorticoid levels have been reported 
either to increase (in rats) [123] or remain unchanged (in humans) [124] during 
agmg. 

Thyroid hormones. The thyroid hormones themselves act to increase both pro­
tein synthesis and degradation, however, T 3 is also required for GH synthesis by the 
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pitUitary. Serum T4 levels probably do not change with age, and it is unknown 
whether there is an age-related change in reverse T3• 

Cytokines. In addition to the influence of the classic neuroendocrine hormones 
on body composition, there is also considerable evidence supporting the notion that 
endogenous products of the immune system, the cytokines, also mediate LBM 
changes resulting from injury, inflammation and perhaps aging. In recent years, 
increased attention has been paid to the effects of aging on the production of 
cytokines. It has been suggested that dysregulation of cytokines may be partly 
responsible for the increased morbidity and mortality rates and the subtle presenta­
tion of infection in the elderly. Peterson et al. [125], however, found no differences 
in TNFo:, IL-6, IL-10 and TGF~ serum levels from elderly (mean age of 80 years) as 
compared to the levels of these cytokines in younger controls (mean age of 30 
years). Levels of IL-10 in serum were found to be higher in young females than in 
young males or elderly females [98]. Mooradian et al. [126] found that levels of IL­
l and TNFo: were elevated in the serum of elderly patients with underlying medical 
conditions but not in the serum of healthy elderly controls. Gon et al. [127] demon­
strated lower concentrations of G-CSF, GM-CSF, TNFo:, IL-8 and MIP-1o: in sera 
from elderly patients with bacterial pneumonia in the acute phase of disease, and an 
impaired ability of monocytes from normal healthy elderly subjects to produce the 
above mediators. These results may suggest, at least in part, the characteristic fea­
tures of host defense mechanisms of the elderly with bacterial infections. The dif­
ference in cytokine levels in healthy elderly patients in the studies carried out by 
Peterson et al. [125] and Gon et al. [126] are unclear, however, they could partly be 
explained due to different methodologies used for the measurement of cytokines . 
For instance, Peterson et al. [125] determined cytokine levels by bioassay whereas 
Gon et al. [126] used quantitative enzyme immunoassays. The hypothesis that "suc­
cessful aging" is associated with normal production of TNFo:, IL-6, IL-10, and 
TGF~ is not entirely proven and needs further investigation. Studies are currently 
underway to explore the relationships between hormonal and cytokine changes dur­
ing exercise and their potential benefit in terms of body composition among the 
elderly. Given that the elderly comprise an increasingly larger segment of the world 
population, it would be highly desirable to demonstrate, through a physiological 
intervention such as exercise, that body composition, and ultimately functional 
capacity, can be improved and maintained as people age. 

Summary and conclusions 

Numerous predisposing factors such as the sex, age, preexisting diseases, and nutri­
tional status, as well as the socioeconomic background of the host, can influence the 
susceptibility to sepsis following trauma and shock. Sex differences in the suscepti­
bility to and morbidity from sepsis have been observed in several clinical and epi-
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demiological studies as well as in experimental studies. It appears that estrogen 
and/or low testosterone is responsible for better immunity in young females follow­
ing trauma and sepsis whereas testosterone and/or low estradiol appear to be 
responsible for the immunosuppression which is observed in males of similar age 
under those conditions. Evidence is also available which indicates that if the host is 
protein-energy malnourished, he/she is more susceptible to sepsis and the ensuing 
septic complications. Moreover, micronutrient deficiency and the type of fat in the 
diet can also adversely affect the immune responses. Vitamin supplementation par­
ticularly during aging appear to be helpful for decreasing the morbidity following 
trauma and sepsis. The changes in growth hormone, prolactin, testosterone, gluco­
corticoids, insulin and sex hormones with aging can all influence cytokine produc­
tion and consequently immune responses. In view of this, experimental studies deal­
ing with the effects of shock or sepsis should consider not only the age of the ani­
mal but also the sex (particularly the different state of the estrous cycle in females) 
on immunity. Thus, there are several predisposing factors which can influence the 
host response to trauma and sepsis. Appropriate recognition and identification of 
those factors should be helpful for the care and better management of the trauma­
tized host. 
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Introduction 

New anti-mediator strategies and their application in clinical trials of severe sepsis 
and septic shock [1, 3] have not changed the fact that severe systemic inflammation 
remains a major cause of death even in modern intensive care units. Cytokines play 
an important role as endogenous mediators of infectious, as well as non-infectious, 
causes of multiple organ dysfunction which represents an end stage of systemic 
inflammatory disease. The recent failure of immunomodulatory approaches in sep­
sis therapy may question the concept of anti-mediator strategies. Even more impor­
tant, it uncovers the diagnostic dilemma physicians face when an immunomodula­
tory drug is to be given to the right patient at the right point in time. We simply do 
not know when to antagonize tumor necrosis factor (TNF), a major proinflamma­
tory cytokine, or, on the other hand, when to increase performance of the 
macrophage system by ,,(-interferon. The first may inactivate a potent agent against 
invading pathogens, whereas the latter may induce an over-abundant release of sys­
temic proinflammatory cytokines. 

The immune response to infectious and non-infectious challenges involves a 
complex pattern of primary, secondary and tertiary humoral and cellular responses. 
In this view, the role of the genetic background in cytokine responses is influenced 
by genetic variabilities of cytokines which constitute the pathways of systemic 
inflammation. 

Primary responses to infectious challenges are mediated by proinflammatory 
cytokines such as tumor necrosis factor (TNF) and interleukin-l (IL-l) [4]. Sec­
ondary proinflammatory mediators like interleukin-6 (IL-6) and interleukin-8 (IL-
8) are induced by TNF and IL-l [4]. Tertiary mediators comprise factors of differ­
ent, even non-cytokine origin such as proteases, coagulation factors, kinins, 
eicosanoids, nitric oxide and others which take effect in the distal part of mediator 
cascades [5]. 

Recent evidence suggests that not only proinflammatory mechanisms contribute 
to organ failure and death induced by severe systemic inflammation but that anti-
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inflammatory mediators have important effects on the host's immune system as well 
[6]. Anti-inflammatory mediators induce a state of immunosuppression in sepsis 
which has been named "immunoparalysis" [7]. This state of decreased immunore­
activity is accompanied by high levels of anti-inflammatory cytokines such as inter­
leukin-10 (IL-10) and interleukin-1 receptor antagonist (IL-lra) [8]. Symptoms of 
immunosuppression comprise a decreased number of circulating monocytes express­
ing surface HLA class II molecules and impaired ex vivo responses of macrophages 
and lymphocytes to lipopolysaccharide (LPS) [9]. 

Pro- and anti-inflammatory responses at the same time contribute to the out­
come of severe sepsis and septic shock. Therefore, all genes encoding proteins 
involved in inflammatory responses are candidate genes for determining the human 
genetic background which is responsible for inter-individual differences in the extent 
and sequelae of systemic inflammation. 

The genetically-determined capacity of cytokine production and release and 
expression of other genes involved in inflammation may contribute to a wide range 
of clinical manifestations in inflammatory disease states. A patient with peritonitis, 
e.g. may present without symptoms of sepsis and recover within days or may suffer 
from fulminant septic shock resulting in death within hours. 

As well as the basic scientific interest concerning the role and interaction of 
mediators, there are several very practical and clinical considerations: Which group 
of patients carries the greatest risk of developing severe sepsis and multiple organ 
dysfunction caused by systemic inflammation? Is it possible to identify a high risk 
group for non-survival? Will certain patients benefit more than others from anti­
mediator strategies because of their genetic determination enabling high cytokine 
release in systemic inflammation? 

One task in determining the role of genetic factors influencing incidence 
and/or outcome of severe sepsis and septic shock is to identify genomic markers 
suitable for clinical use and risk stratification of patients. Another goal is to 
understand the influence of genomic variations on gene regulation and protein 
expressIOn. 

Genomic polymorphisms of proinflammatory cytokines 

Primary proinflammatory cytokines such as TNF and IL-1 induce secondary pro­
and anti-inflammatory mediators like IL-6 and IL-IO. They have been shown to 
contribute substantially to the host's primary inflammatory response. Both TNF 
and IL-1 are capable of inducing the same symptoms and the same severity of sep­
tic shock and organ dysfunction as an endotoxin challenge in experimental set­
tings and in humans [10]. Genetic variations in the TNF and IL-1 genes are of 
major interest concerning genetically-determined differences in the response to 
endotoxin. 
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Tumor necrosis factor 

TNF is considered as one of the most important mediators of endotoxin-induced 
effects. Inter-individual differences of TNF release have been described [11, 12]. 

The TNF locus consists of three functional genes. TNF is positioned between 
lymphotoxin a (LTa) in the upstream direction and lymphotoxin P (LTP) in the 
downstream direction (Fig. 1). Genomic polymorphisms within the TNF locus have 
been under intense investigation. Genetic variation within the TNF locus, particu­
larly the coding region, is rare as the TNF gene is well conserved throughout evolu­
tion [13]. 

The main interest has been focused on the genomic variations of the TNF locus 
depicted in Figure 1. Two allele polymorphisms defined by restriction enzymes 
(Ncol, AspHI) or single base changes (-308, -238) as well as multiallelic microsatel­
lites (TNFa-e) have been investigated in experimental studies and also in various dis­
eases in which TNF has a pathogenetic role. Functional importance in the regula­
tion of the TNF gene has been suggested for two polymorphisms within the TNF 
promoter region. Single base changes have been detected at position -308 and posi­
tion -238 [14, 15]. 

A G to A transition at position -308 has been associated with susceptibility to 
cerebral malaria [16]. The rare allele TNF2 (A at position -308) was supposed to be 
linked to high TNF promoter activity [16]. Autoimmune diseases like diabetes mel­
litus or lupus erythematosus did not, however, show differences in allele frequencies 
or genotype distribution between patients and controls [17, 18]. In addition, 
patients with severe sepsis and a high proportion of Gram-negative bacteria also did 
not display altered allele frequencies concerning the biallelic promoter polymor­
phism (position -308) [19]. Analysis of the TNF promoter by means of reporter gene 
constructs revealed contradictory results. The first report found that there was a 
functional importance of the -308 G to A transition [16]. Two investigations could 
not confirm differences in the TNF promoter activity in relation to the -308 poly­
morphism [19,20]. A recent study reports on a possible influence on TNF promot­
er activity by the -308 G to A transition in a B cell line [21]. Genotyping of this poly­
morphism in patients with severe sepsis does not contribute to risk assessment. The 
-308 polymorphism is neither a marker for susceptibility to, nor for outcome of 
severe sepsis caused by a Gram-negative infection [19]. 

In contrast to genomic variations located in the promoter region, intronic poly­
morphisms are more difficult to associate with a possible functional relevance. Two 
biallelic polymorphisms located within intron two of LTa have been studied in 
autoimmune disease [22, 23]. One polymorphism is characterized by the absence or 
presence of a Ncol restriction site. First reports demonstrated genomic blots reveal­
ing characteristic 5.5 or 10.5 kbp bands, after genomic Ncol digest, which hybridize 
to TNF-specific probes [24]. These bands correspond to the presence and absence, 
respectively, of a Ncol restriction site within intron one of LTa. 
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Figure 1 

Genomic polymorph isms located within the tumor necrosis fador (TNF) locus on the short 

arm of chromosome six. 

The allele TNFB2 of this Ncol polymorphism (10.5 kbp band) is associated with 
high TNFa release ex vivo [25]. One study showed no differences between geno­
types in ex vivo TNF induction [12], while another study suggests an increased LTa 
response in TNFB2 homozygotes [25]. The question as to which genotype is clear­
ly associated with a high proinflammatory response in the clinical situation of severe 
sepsis and septic shock cannot yet be answered by ex vivo studies. Our own results 
show increased TNF mRNA levels induced by LPS ex vivo in whole blood drawn 
from healthy volunteers typed TNFB2 homozygous (Fig. 2), while TNFB2 homozy­
gous patients with severe sepsis display high initial TNF values [26]. 

Different conditions of cell culture and cytokine induction contribute to differ­
ing results. In addition, the genomic Ncol polymorphism within intron one of the 
LTa gene may represent a genomic marker without evidence for functional impor­
tance in gene regulation. This genomic marker may coincide with as yet undetected 
genomic variations which are responsible for genetic determination of a high proin­
flammatory response to infection. 

Several studies in chronic inflammatory autoimmune diseases suggest an associ­
ation between TNFB2 and incidence or severity and outcome of the disease [22,23, 
27]. Studies in acute inflammatory diseases like severe sepsis in patients on surgical 
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Figure 2 

Mortality of patients with severe sepsis (n = 105). Patients are grouped according to three 

genotypes of the TNFf3 Ncol polymorphism. 

intensive care units showed a correlation between TNFB2 homozygosity and mor­
tality (Fig. 2). TNFB2 homo zygotes display a relative risk of death from severe sep­
sis of 2.9 when compared to corresponding genotypes. 

Interleukin-1 

IL-l is a proinflammatory cytokine released by macrophages in response to endo­
toxin. This potent cytokine is capable of inducing the symptoms of septic shock and 
organ failure in animal models and is regarded as a primary mediator of the sys­
temic inflammatory response. Antagonizing IL-l in endotoxin-challenged animals 
including primates abrogates the lethal effects of endotoxin [28]. IL-l~, the secret­
ed cytokine, is regarded as being more important than the membrane bound protein 
IL-la. A biallelic TaqI polymorphism has been described within the coding region 
(exon 5) of IL-l~ [29, 30]. Despite the finding that a homozygous TaqI genotype 
correlates with high IL-l ~ secretion [29], genotyping of patients with severe sepsis 
did not reveal any association with incidence or outcome of the disease (data not 
shown). 
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Interleukin-6 

IL-6 is a secondary mediator with important immunological functions such as 
enhancement of B lymphocyte proliferation. It is released by macro phages and 
endothelial cells. Although direct toxic effects mediated by IL-6 in severe sepsis and 
septic shock have not been demonstrated yet, the proinflammatory activity is obvi­
ous. The signaling of IL-6 through the IL-6 receptor also exerts some anti-inflam­
matory effects mediated by the gp130 protein. 

IL-6 gains importance as a new clinical parameter for monitoring the inflamma­
tory activity in the course of acute inflammatory diseases. A study testing the anti­
TNF monoclonal antibody approach in the treatment of severe sepsis used IL-6 lev­
els as a criterion of hyperinflammation. Only patients with IL-6 plasma levels of 
more than 1 ng/ml at study entry were enrolled [31]. 

Genomic polymorphisms of the IL-6 gene have been described in the 3' flanking 
region [32]. In addition, two single base changes have been reported for a MspI and 
a BcgII restriction site [33, 34]. Functional studies of these genomic variations con­
cerning influences on gene transcription or mRNA stability do not exist. Another 
study of allele frequencies and genotype distributions of the BcgII biallelic poly­
morphism in patients with rheumatoid arthritis did not reveal differences when 
compared to normal controls [27]. As for the second biallelic polymorphism char­
acterized by the presence or absence of the MspI site, the functional relevance of this 
polymorphism is unknown. 

Currently, there are no data available in the field of acute systemic inflammato­
ry disease. Neither ex vivo data concerning the relationship between genomic vari­
ations and the quantity of IL-6 release exist, nor have associations of the IL-6 poly­
morphisms with incidence or outcome of severe sepsis been studied. Therefore, the 
contribution of IL-6 gene polymorphisms to the genetic background of systemic 
inflammation remains obscure. 

Interleukin 8 

IL-8 is, like IL-6, another secondary pro inflammatory cytokine with important 
chemotactic properties in systemic inflammation [35]. IL-8 has been associated 
with inflammatory processes in lung dysfunction. This cytokine is present in bron­
choalveolar lavage fluids of patients with acute respiratory distress syndrome 
(ARDS) as part of the multiple organ dysfunction syndrome, where it acts as a 
chemoattractant for neutrophils [36]. Serum levels of IL-8 correlated with the 
course of severe sepsis, especially with lactacidemia [37]. Antibodies to IL-8 
increase survival in rabbits challenged by endotoxin [38]. Only one genomic poly­
morphism of the IL-8 gene has been described so far [39]. A biallelic Hind III poly­
morphism is detectable by a IL-8 eDNA probe on the long arm of chromosome 
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four. Up to date, no data are available on the functional impact of this polymor­
phism on IL-8 expression. In addition, no data exist with regard to allele frequen­
cies or genotype distributions in patients with severe sepsis or septic shock. 

Genomic polymorphisms of anti-inflammatory cytokines 

Interleukin-1 receptor antagonist 

Proinflammatory mediators comprise the hyperinflammatory side of systemic 
inflammation. At the same time, anti-inflammatory mediators are induced by pro in­
flammatory cytokines and function to counterbalance the overshoot of inflamma­
tory activity. This physiological process of limiting the extent of inflammation by 
release of anti-inflammatory proteins may escape physiological boundaries of local 
and systemic concentrations of these mediators . Proteins like IL-4, IL-lO, IL-ll or 
IL-13 or IL-lra contribute to a very powerful downregulation of soluble and cellu­
lar proinflammatory activities. This downregulation results in decreased expression 
of class II molecules in antigen presenting cells as well as reduced ex vivo responses 
of immunocompetent cells to inflammatory stimuli. This state of imunosuppression 
has also been termed "immunoparalysis" [7]. It results in a state of deactivation and 
diminished capacity to eliminate microbial pathogens. A new term for this anti­
inflammatory state has recently been created: the compensatory anti-inflammatory 
response syndrome (CARS) [40]. The outcome of patients with severe sepsis is not 
only influenced by hyperinflammation with progressive organ dysfunction but may 
also be affected by immunosuppression and lack of restoration of immune function. 
In this view, innate interindividual differences in the release of anti-inflammatory 
mediators contribute to the human inflammatory response. 

A genomic polymorphism of the anti-inflammatory cytokine IL-lra is located 
within intron two and consists of variable numbers of a tandem repeat (VNTR) of a 
86 bp motif (Fig. 3). This 86 base pair motif contains at least three known binding 
sites for DNA binding proteins [41]. Ex vivo experiments suggest higher IL-Ira 
responses combined with alleles containing low numbers of the 86 bp repeat. Ex vivo 
studies also demonstrate a higher level of IL-Ira protein expression and protein 
release of A2 homozygous individuals compared to heterozygotes following stimula­
tion with lipopolysaccharide [42]. In LPS-stimulated whole blood cultures, A2 homo­
zygotes also express higher levels of IL-Ira mRNA and protein (data not shown). 

The allele A2 has been associated with an increased incidence of autoimmune 
diseases like lupus erythematosus and insulin dependent diabetes mellitus [43,44]. 
In acute systemic inflammation, there is no difference between surviving or non-sur­
viving patients with severe sepsis. This finding is in contrast to the results concern­
ing the biallelic Ncol polymorphism within intron one of LTa: Homozygotes for the 
TNFB2 genotype revealed a high mortality when compared to heterozygotes and 
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chromosome 2 (2q 13-14) 

exon 1 exon 2 exon 3 

allele frequency 

Al 0,7 

A2 0,24 

A3 0,036 

A4 0,017 

A5 0,007 

Figure 3 

A genomic polymorphism of a variable number of tandem repeats (VNTR) is located within 

the second intron of the Interleukin-1 receptor antagonist (lL-1ra) gene. 

TNFBl homozygotes. The overall group of patients with severe sepsis did not show 
an increase in the TNFB2 allele frequency. For the IL-lra polymorphism, however, 
an increase of the allele A2 in the patients with severe sepsis was detected (Fig. 4). 
Patients carrying the TNFB2 homozygous and A2 homozygous haplotype did not 
survive in this study. 

Interleukin-4 

IL-4 is a cytokine, predominantly released by TH2 lymphocytes, with anti-inflamma­
tory properties which contributes to the anti-inflammatory response evoked by sys­
temic inflammation [45]. An overwhelming release of IL-4 may contribute to states of 
immunosuppression or the compensatory anti-inflammatory response syndrome [40]. 
Genomic polymorphisms of the IL-4 gene consist of repeat polymorphisms [46] as 
well as polymorphisms in the promoter region which regulates transcription [47]. 
Studies of IL-4 polymorphisms have been conducted in asthma patients [47] and 
patients with multiple sclerosis [48]. Data on severe sepsis/septic shock or IL-4 expres­
sion with regard to genomic polymorphisms have not been published. 
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healthy blood donors 
(n=261 ) 
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patients with severe sepsis 
(n=10s) 

Frequency of the allele A2 of the IL -1 ra VNTR polymorphism is significantly higher in 

patients with severe sepsis compared to healthy controls (p < 0.05, x2test). 

Interleukin-10 

Recent work suggests that the ant-inflammatory cytokine Interieukin-lO (IL-lO) 
contributes significantly to the counterregulation of the proinflammatory response 
evoked by LPS in human sepsis [7]. In a murine model of peritonitis, therapeutic 
intervention using IL-lO attenuated the rise in proinflammatory serum cytokines 
[49]. The genomic structure of the IL-tO gene reveals nucleotide variations in the 
regulatory promoter region of the IL-lO gene. Biallelic polymorph isms (RsaI and 
MaeIlI restriction sites) as well as dinucleotide repeats with sixteen different alleles 
have been described [50, 51]. Associations between IL-I0 genotype and the indi­
vidual's capacity for IL-lO secretion have been demonstrated. Innate, low IL-lO 
secretion was correlated to a high rejection rate in organ transplant recipients [52]. 
Another study reported a correlation between certain IL-lO microsatellite alleles 
and autoantibody production in lupus erythematosus [53]. Data linking the capac­
ity of IL-lO secretion to genomic variations of the IL-lO gene are rare. Also, no data 
are available on allele frequencies and genotype distribution in sepsis. The impor­
tance of the IL-lO molecule in regulating inflammation warrants further investiga­
tion of the genetic background of IL-lO expression. 
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Conclusion 

Understanding the contribution of genomic variations in cytokine genes to the indi­
vidual systemic inflammatory response which contains the risk of evoking severe 
sepsis, septic shock, and finally death, is a major task. Currently, there is a lack of 
understanding in the regulation of systemic inflammatory responses, a lack of diag­
nostic tools identifying individuals at risk of developing or dying from severe sepsis, 
and a lack of knowledge about which patients to treat with immunomodulatory 
agents. Evaluation of this genetic background has just started. Genomic markers 
will need to be studied in the context of extended haplotypes which will character­
ize an individual patient's genetic background of cytokine responses in systemic 
inflammation. 
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Possibilities and problems of cytokine measurements 
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Sepsis is associated with an exacerbated production of cytokines 

The appearance of detectable pro- as well as anti-inflammatory cytokines in the 
blood-stream during sepsis is indicative of their exacerbated production. The inter­
action of micro-organisms and their derived products with host cells rapidly leads 
to the production of many inflammatory mediators including cytokines. Two 
major features characterize the production of these factors: cascade and regulato­
ry loops. This means that, once produced, a given cytokine can induce the pro­
duction of others which can further induce cytokine release or, on the contrary, 
down-regulate the upstream synthesis. Usually absent from the plasma at home­
ostasis, many cytokines are produced in such large amounts during sepsis that they 
can be detected in the circulation of the patients. Due to limitation of space, this 
review will attempt to focus on human sepsis, while mentioning animal models 
when necessary. 

Interleukin-1 (lL-1) 

The cascade of inflammatory events is orchestrated by two cytokines, namely inter­
leukin-l (IL-l) and tumor necrosis factor (TNF). IL-l~ has been regularly report­
ed in the plasma of sepsis patients whereas IL-la has never been observed when 
investigated [1, 2J. However, measurements of plasma IL-l~ led to technical diffi­
culties: in the early time, circulating IL-l~ was found in healthy controls [1, 3] 
while it was not detected in sepsis [4]! Indeed, IL-l ~ is probably the most delicate 
cytokine to measure in plasma [5]. While plasma chloroform extraction was rec­
ommended [1] and performed in some studies [2, 6], it is not used anymore. Fur­
thermore, the use of either radioimmunoassays (RIA), bioassays, or enzyme-linked 
immunoassays (ELISA) contributed to the great heterogeneity in the various 
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reports. While most authors now agree that there is no detectable circulating IL-l ~ 
at homeostasis, this cytokine was demonstrated in 0 to 90% of septic patients 
depending on the studies, the nature of the sepsis, and most probably on the nature 
of the technique used to assess its presence. The highest frequency of detectable lev­
els of IL-l~ was observed among patients with meningococcal sepsis [7, 8] and high 
levels of IL-l ~ correlate with the severity of meningococcemia, the presence of 
shock, high acute physiology and chronic health evaluation (APACHE II) scores 
and rapid fatal outcome [7-10]. Such correlations were not observed in other sep­
sis patients [2, 11]. In a few studies, IL-l ~ was monitored over a period of time and 
either high levels at admission, followed by a decrease, or sustained levels were 
reported [2, 8, 12]. 

Tumor necrosis factor (TNF) 

In 1986, tumor necrosis factor was the first cytokine to be described in the serum 
of patients with septicemia [13], and later in patients with meningococcal sepsis [9, 
14]. Like IL-l~, TNF was investigated using either a bioassay, RIA or ELISA. 
Accordingly, the frequency of positive samples was influenced by the technique 
used and the low numbers of positive samples (17-23%) were reported by authors 
employing bioassays [11, 13], whereas other techniques allowed a frequency as 
high as over 80% [2, 8, 9, 12, 15, 16]. It is worth noting that the levels of TNF 
usually never exceed a few hundred picograms per mL. However, higher amounts 
can be reached as illustrated by the 14, 630 pg/mL value observed in a patient, 3.6 
h following self-administration of 3750 times the amount of lipopolysaccharide 
(LPS) administered to human volunteers [17]. There is disagreement as to whether 
a correlation exists between high levels of measured circulating TNF and fatal out­
come. While this seems to be the case in meningococcal sepsis [9, 14], in other sep­
sis some authors did observe such a correlation [12, 18], and others did not [2, 11, 
15]. Different authors have followed up the kinetics of plasma TNF and observed 
either an increase, a decrease or sustained levels [2,4, 12, 18, 19]. Indeed, as first 
shown by Baud et al. [15], and confirmed by Pinsky et al. [20], it seems that it is 
the persistence of detectable TNF rather than its peak level which is associated 
with the fatal outcome. When addressed, the TNF levels correlate with the severi­
ty of illness and APACHE II scores [1, 8, 15], with IL-6 levels [7, 11,21] and with 
nitrate [22]. It is worth noting that in intraperitoneal sepsis, on the contrary, high 
levels of circulating TNF are associated with a good prognosis while low levels are 
correlated with fatal outcome [23,24]. Some authors reported that the TNF levels 
were higher in Gram-negative than in Gram-positive sepsis [16, 25] although this 
was not observed in all studies [2,26]. In meningococcal sepsis levels of TNF are 
higher in cerebrospinal fluids than in plasma [27] and not detected in CSF of non­
bacterial meningitis [28]. Injection of LPS in human volunteers and in animal mod-
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els leads to a plasma peak of TNF at 90 min, and its levels may be up-regulated by 
administration of ibuprofen [29] or granulocyte CSF (G-CSF) [30], and down-reg­
ulated by epinephrine [31]. 

Lymphotoxin-a (Lta) 

Lymphotoxin-a is a rare cytokine which is produced by a limited number of cells, 
essentially activated T-lymphocytes. It shares with TNFa the same receptors and 
thus most of its activities. Lta should be essentially expected in Gram-positive sep­
sis since Gram-positive bacteria release various T cell activators known as super­
antigens. While the use of neutralizing antibodies could suggest that Pseudomonas 
aeruginosa infusion led to the appearance of TNFa and Lta in the circulation of 
pigs [32], Lta has never been reported so far in human Gram-negative sepsis [10]. 
On the contrary, in patients with streptococcal toxic shock syndrome, circulating 
Lta was found to parallel the levels of circulating superantigen [33]. 

Interleukin-2 (lL-2) 

IL-2 is another cytokine which reflects T cell activation. While rarely reported in 
humans [10, 20], IL-2 was found in the circulation within two hours following 
injection of bacterial superantigens in mice [34] and baboons [35]. 

Interleukin-6 (lL-6) 

Although IL-6 is often considered as an inflammatory cytokine, most of its activi­
ties are probably associated with a negative control of inflammation thanks to its 
potent capacity to induce the production of acute phase proteins by the liver as well 
as the release of IL-1 receptor antagonist (IL-1ra) and soluble TNF receptors 
(sTNFR) [36]. Its presence in plasma of sepsis patients was first reported in 1989 
[10, 37, 38]. Until 1992, plasma IL-6 was evaluated by bioassays using the growth 
of a hybridoma B cell line (B9 or 7TD1) or the protein synthesis by a hepatoma cell 
line (Hep3B). Since then, RIA and mainly ELISA have confirmed the first observa­
tions. Plasma IL-6 has been observed in 64% to 100% of the studied patients. Most 
investigators have demonstrated that levels of circulating IL-6 correlate with sever­
ity of sepsis and may predict outcome [2, 10, 11, 21, 37] as illustrated by the cor­
relation between IL-6 levels and APACHE II scores [4, 8, 11]. Numerous correla­
tions between IL-6 levels and other markers have been reported including C3a, lac­
tate [37], circulating endotoxin [7], C-reactive protein (CRP) [4], and TNF [7, 10, 
11, 21]. IL-6 levels are similar in Gram-positive or Gram-negative sepsis [2, 16]. 
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Injection of endotoxin in human volunteers revealed that the peak levels were 
reached 2 h after injection [39]-

Leukemia inhibitory factor (LlF), oncostatin M (OSM), ciliary neurotrophic 
factor (CNTF) and interleukin-11 (IL-11) 

LIF, OSM, CNTF and IL-ll belong to the IL-6 superfamily, sharing the gp130 chain 
of the receptor. However, while IL-6 and IL-ll possess certain anti-inflammatory 
properties and may protect against sepsis [40, 41], LIF [42] and OSM [43] are 
involved in the pathogenesis of inflammation. First reported in 1992, detectable lev­
els of LIF were occasionally found in the plasma of 9 to 40% of septic patients [16, 
44-46]. Levels of circulating LIF correlate with shock, temperature, creatinine and 
IL-6 [45]. The correlation of LIF with IL-6 has been confirmed in a baboon model 
of sepsis [47]. Levels of plasma CNTF and OSM are elevated in 60% and 100% of 
septic patients, respectively [46]. Divergent reports concern IL-ll, which was 
detected in 67% of patients with disseminated intravascular coagulation complicat­
ed by sepsis [48], but not in patients suffering from septic shock [46]. 

Interleukin-8 (lL-8) and chemokines 

Sepsis is often associated with organ dysfunction. It reflects the inflammatory 
process occurring in the tissues. One of the major features of this phenomenon is the 
recruitment of inflammatory leukocytes, following their adherence to the endothe­
lium and their response to the locally-produced chemokines. These chemokines con­
tribute to the inflammatory cell infiltrate favoring the damage of tissue integrity. For 
example, it was reported that neutralization of IL-8 profoundly inhibited neutrophil 
recruitment in an endotoxin-induced rabbit model of pleurisy, indicating that IL-8 
is a major chemotactic factor in this model of acute inflammation [49]. However, 
this first encounter of neutrophils with IL-8 may lead to their desensitization to fur­
ther signals delivered locally by IL-8 and some cross-reacting chemokines. So, the 
presence of IL-8 in the intravascular space may well be a mechanism to suppress 
neutrophil accumulation at extracellular sites as illustrated by the defect in neu­
trophil migration during sepsis or endotoxemia [50,51]. Similarly, while monocyte­
chemoattractant protein-l (MCP-l) contributes to the recruitment of inflammatory 
macro phages within the tissues, neutralization of MCP-l by specific antibodies 
before LPS administration resulted in a striking increase in mortality, and injection 
of MCP-l was protective [52]. As first reported in 1992, a great amount of IL-8 is 
detectable within the blood compartment during sepsis [53, 54], in bronchoalveolar 
lavages (BAL), and edema fluids of acute respiratory distress syndrome (ARDS)­
associated to sepsis [55]. In the later study, patients with high levels of BAL IL-8 had 
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a high mortality rate. Similarly, high levels of plasma IL-8 correlate with poor out­
come in many studies [53, 54, 56]. No difference in IL-8 plasma levels were found 
between Gram-negative and Gram-positive infection [54] while in bacteremic pneu­
monia the type of pathogen influenced the measurable levels of IL-8 [16]. Further­
more, IL-8 levels in septic shock were higher than in septic patients without shock 
[57] and higher in patients with septic multiple organ failure (MOF) than in non­
septic MOF [56]. In this later comparison, IL-6 could not discriminate between both 
types of MOE IL-8 levels also correlate with various markers including IL-6 [7, 11, 
54,56], C3a, a1-anti-trypsin, lactate [54], IL-10, IL-1ra and soluble TNF receptors 
(sTNF R) [7]. Correlation with plasma TNF led to controversial results [7, 11]. 
More interestingly, local levels of IL-8 often correlate with the number of recruited 
neutrophils [55] and plasma levels are associated with granulocyte activation as evi­
denced by massive release of elastase, detectable in the circulation of bacteremic 
baboons [58], and by correlation between elastase and IL-8 in human sepsis [57]. 

While chemokines represent a family of more than 40 members, very little is 
known about the contribution and the presence of other molecules in sepsis, except 
for MCP-l and MCP-2 which have been found in plasma of sepsis patients [59]. 
MCP-l levels were higher in patients with the more severe forms of sepsis (i.e. those 
with shock or a lethal outcome). 

Interferon-y (IFNy) 

Gamma-interferon is an efficient amplificatory cytokine produced by T-lymphocytes 
in response either to IL-12, produced by monocytes/macrophages activated by 
microbial products, or directly to superantigens or viruses. Its synergy with the 
detrimental activities of LPS has been clearly established: IFNy enhanced LPS­
induced circulating TN Fa as well as LPS- and TNF-induced mortality [60, 61], and 
anti-IFNy antibodies protected against LPS- and E. coli-induced mortality [60, 62]. 
As a consequence, a clinically silent viral infection may induce hypersensitivity to 
Gram-negative bacterial endotoxin through T cell activation and subsequent IFNy 
production, leading to a hyperproduction of TNFa [63]. On the other hand, IFNy 
may be considered as a useful cytokine for restoring immune responsiveness which 
is often suppressed during sepsis [64]. The study of circulating IFNy in human sep­
sis led to contradictory results. While in sepsis and purpura fulminans IFNy was 
found in patients with the most severe disease [9], no correlation was reported with 
outcome in other studies on sepsis and septic shock [12,20], and no detectable IFNy 
was reported in meningococcal septic shock [10] or in human volunteers receiving 
systemic endotoxin [65]. In a baboon septic shock model, the IFNy level was three­
fold higher in lethally-challenged animals than in those receiving sublethal doses 
[66]. These data suggest that in human studies the IFNy level may often be below 
the detection limits of measurement. 
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Interleukin-12 (IL-12) 

IL-12 is a heterodimeric cytokine consisting of p40 and p70 subunits_ The mea­
surement of p70 is correlated with IL-12 bioactivity_ As mentioned previously, IL-
12 is a potent inducer of IFNy. In a bacille Calmette Guerin (BCG)-primed model 
of LPS-induced shock and lethality in mice, anti-IL-12 antibodies were associated 
with decreased IFNyand protection [67]. An intravenous bolus of Escherichia coli 
LPS in human volunteers did not lead to changes in the plasma levels of IL-12 [65] 
whereas unexpected results were obtained in baboons: higher levels of IL-12 were 
detectable in the plasma of animals injected with sublethal doses of E. coli than in 
animals challenged with lethal doses [66]. 

Colony stimulating factors (CSF) 

Among hematopoietic factors, macrophage-CSF (M-CSF) and G-CSF are two 
cytokines mainly involved in helping the immune system to fight the infectious 
process. This is also true for IL-3 and GM-CSF which, in addition, favor IL-l and 
TNFa production and thus behave as pro-inflammatory cytokines. This is illustrat­
ed by GM-CSF-deficient mice in which LPS-induced hypothermia and loss in body 
weight were markedly attenuated when compared to normal mice; levels of circu­
lating IFNy, IL-la, and IL-6 were lower and survival of a LD100 of LPS was 42% 
[68]_ In humans, M-CSF is present at homeostasis in the circulation and its level is 
increased in patients with sepsis and higher in patients with hemophagocytosis asso­
ciated with sepsis [69]. G-CSF is also increased in sepsis and reaches higher levels 
during severe sepsis when compared to sepsis or bacteremia [16, 70]. Enhanced lev­
els of circulating G-CSF have been particularly associated with infection and sepsis 
in neonates [71, 72]. In meningococcemia, plasma GM-CSF concentrations were 
briefly present in subjects with life-threatening septic shock and were strongly asso­
ciated with fulminant disease [70]. 

Macrophage migration inhibitory factor (MIF) 

MIF was first discovered in 1966 as a T cell product released during delayed-type 
hypersensitivity and rediscovered in 1993 as a pituitary-derived cytokine that poten­
tiates lethal endotoxemia [73] as well as a macrophage product induced by the 
action of glucocorticoids [74]. Bernhagen et al. [73] reported that injection of MIF 
together with one LD40 of LPS greatly potentiated lethality and that anti-MIF anti­
bodies fully protected against a LD50 of LPS. Interestingly, it was recently shown 
that MIF is expressed constitutively in many tissues including lung, liver, kidney, 
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spleen, adrenal gland, and skin. MIF exists as a preformed cytokine which is rapid­
ly released following LPS injection [75). 

IL-10 and anti-inflammatory cytokines 

Sepsis is not associated with a deficient anti-inflammatory response. On the con­
trary, specific cytokine inhibitors such as the soluble TNF receptors (sTNFRI & 
sTNFRIl) [76, 77), soluble IL-l receptors (sIL-lRI & sIL-lRIl) [78), cytokine recep­
tor antagonists (IL-lra) [8], and anti-inflammatory cytokines, particularly IL-IO 
[79,80), are detected in great amounts in the circulation of septic patients. Most fre­
quently the highest plasma levels of these regulatory molecules are detected in the 
most severe cases, leading to the concept of "compensatory anti-inflammatory 
response syndrome" (CARS) [81). However, local production may lead to different 
patterns. In this context, it is interesting to recall the observation by Donnelly et al. 
[82) showing that a poor prognosis in patients with adult respiratory distress syn­
drome was significantly associated with the lowest levels of IL-IO and IL-lra. 

In addition to IL-lO, TGFp, IL-4, IL-13 and interferon-a also possess strong 
anti-inflammatory activities and a potent capacity for inhibiting the synthesis of the 
pro-inflammatory cytokines. Each individual anti-inflammatory cytokine has been 
demonstrated to be capable of reducing mortality in various endotoxic or septic 
shock models. Circulating ILA, IL-13, or interferon-a have been rarely studied in 
sepsis, and absence of detectable levels [65), no modified levels [9), or rare positive 
cases [83) have been reported. Results concerning TGFp are controversial, most 
probably because of the difficulty in measuring it and the fact that a latent and an 
active form already exist at homeostasis. Furthermore, since platelets are an impor­
tant source of TGFp, measurements in plasma, platelet-poor plasma, or sera may 
explain the discrepancy in the literature. Karres et al. [84) and Astiz et al. [85) 
reported a reduced level in sera from septic patients. The mean levels of serum 
TGFpl in healthy controls were in the range of ng/mL in one study and pglmL in 
the other, illustrating the difficulty linked to the measurements. On the other hand, 
we found enhanced levels in plasma and platelet-poor plasma in patients with sep­
sis [86). In a baboon septic model, Junger et al. [87) reported that active TGFpl lev­
els increased while total TGFpl decreased. 

Interleukin-l receptor antagonist (IL-lra), a natural IL-l inhibitor, is also present 
in plasma at homeostasis. Enhanced levels of IL-lra have been regularly reported in 
critically ill patients, septic adult, and new born patients [8, 88). It may correlate 
with the APACHE II score [8). As an antagonist, its concentration has to be at least 
100 fold higher than that of IL-l to efficiently block the effects of IL-l. Indeed 2,000 
fold higher concentration have been noted in patients with septic shock [8). In two 
patients who died within 3 h to 8 h after admission with a Streptococcus group A 
or Neisseria meningitidis septicemia we found a 3,400 and 61,000 fold higher con-
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centration of IL-lra than IL-1~, respectively [89, 90]. These observations suggest 
that the balance between pro- and anti-inflammatory cytokines seems adequate in 
limiting the effects of pro-inflammatory cytokines. 

Where to measure cytokines? 

Biological fluids 

Since sepsis is a systemic inflammatory response syndrome, plasma levels of 
cytokines have been particularly investigated (see above). However, other biological 
fluids can reflect either a local production or exchange with plasma proteins fol­
lowing an enhanced vascular permeability. The local production is illustrated with 
the measurements performed in cerebrospinal fluid (CSF) during meningitis. During 
this severe infection, levels of TNF in CSF correlate with outcome [27]. In the CSF, 
cytokine levels are more frequently detected and in higher concentrations than in 
serum [91]. Local production and exchange between plasma and other milieu are 
also illustrated by the measurement performed in the peritoneal exudate [92] or in 
pleural effusion [93]. In the latter study we did not observe any differences between 
septic and non-septic patients suggesting that, in some instances, inflammatory 
stress can lead to similar cytokine patterns as infectious insult. Other biological flu­
ids may not be relevant to sepsis (e.g. gingival fluid, synovial fluid, tears, saliva, spu­
tum) but have been widely investigated in the study of locally-associated inflamma­
tory diseases. Except in the case of urinary infections, urine has been poorly studied 
even though it might provide some interesting information [94]. 

Lavages 

When fluids are absent, lavages can be performed to further analyze cytokines as in 
the case of bronchoalveolar lavages (BAL). While divergent results were reported on 
using the levels of plasma TNF to predict at risk-patients for developing acute adult 
respiratory distress syndrome (ARDS) [26, 95], measurement of TNF within BAL 
showed high levels in early severe ARDS when compared with early mild ARDS and 
late ARDS [96]. Other BAL cytokines like IL-8 may correlate with severity [55]. 

Cell-associated cytokines 

Circulating cytokines represent the tip of the iceberg [97] (Fig. 1). Once produced, 
cytokines are present in a cellular environment and consequently can be trapped by 
surrounding cells which possess specific receptors. If one considers the blood com-
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(A) The detection of a given cytokine in a biological fluid is possible once, following acti­

vation of producing cells, the released cytokine which can be efficiently trapped by the envi­

ronmental cells has been produced in sufficient excess to allow its presence as a free mole­

cule [97]. 

(B) Thus, the earlier levels of detection are the environmental cells. Cell-associated cytokine 

can represent the neosynthetized form, if the cell is the producing one, and can been found 

bound to the receptor or following its internalization by the target cell. 

partment, it is obviously not possible to analyze endothelial cells, but circulating 
cells may be considered as useful tools. Indeed, we showed that IL-1a, IL-1~ and 
TNF could be found associated with monocytes. Surprisingly, while IL-1 is a 
cytokine which can be found accumulated within the monocytes following in vitro 
activation, TNF was the most frequently found [2] (Tab. 1). Interestingly, at the end 
of the follow up of the patients, while most survivors did not have any more 
detectable circulating TNF, a majority had still detectable cell-associated TNF. More 
recently we investigated cell-associated IL-S. While Darbonne et al. [9S] had coined 
the phrase that "red cells were a sink for IL-S", this statement referred to experi­
ments performed in the absence of leukocytes. Indeed, while red cells can trap IL-S 
via their Duffy antigen, we showed that their contribution remains lower than that 
of both polymorphonuclear cells and peripheral blood mononuclear cells [99]. In 
septic patients a tremendous amount of cell-associated IL-S has been detected. Such 
measurements may offer more precise information in terms of follow-up and possi­
ble association with infection [100]. The presence of cell-associated cytokine should 
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Table 1a - Monocyte-associated cytokines in septic patients 

IL-1a 

IL-1 ~ 

TNFa 

Measurements performed at 

admission in leu 

% positive 

patients 

6% 

25% 

81% 

range or mean :t SEM 

(pg/106 monocytes) 

< 15 - 25 

< 70 - 190 

275 ± 58 

Maximum levels during the 

follow-up of the patients 

% positive 

patients 

25% 

50% 

88% 

range or mean :t SEM 

(pg/106 monocytes) 

<15-90 

153 ± 60 

410 ± 65 
--------------------------------------------------------------

Table 1 b - Mean values of circulating TNFa and monocyte-associated TNFa at the end of the longitu­

dinal study among septic patients 

Day of the last measurement ± SEM 

Plasma TNFa % positive patients 

(range or mean ± SEM; pg/ml) 

Monocyte-associated TNFa 

% positive patients 

(mean ± SEM; pg/106 monocytes) 

adapted from [2] 

surviving 

14 ± 2 

17% 

« 70 -150) 

67% 

(233 ± 67) 

non surviving 

10 ± 3 

67% 

(125 ± 53) 

100% 
(372 ± 90) 

not be always interpreted as an indication of the cellular source of a given cytokine 
since internalization of receptor-bound environmental cytokine could also take place. 
In addition to circulating leukocytes, cells recovered from various fluids or broncho­
alveolar lavages can also be analyzed and may provide useful information. We have 
particularly analyzed celllysates and measured cytokines by ELISA but flow cytom­
etry is another useful tool for performing such analyses. Indeed, flow cytometric val­
ues for IL-1~ and TNF were shown to correlate with the immunoreactive cytokine 
[101). Using for the first time such a technique in leU patients, Yentis et al. [102) 
described the presence of IL-1 ~ positive cells among circulating leukocytes. Analysis 
of T-Iymphocyte-associated cytokines has been particularly studied by flow cytome­
try and the usefulness and limitations of various currently available cytokine prod­
ucts have been recently reported [103). However, flow cytometry may not be appro­
priate for studying all cells and all cytokines. For example, we showed that the per­
meabilization technique required for such an analysis led to the linking of all 
intracellular IL-8 measured in neutrophils by ELISA (c. Marie, unpublished obser-
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vation). Immunocytochemistry has also been employed to detect cell-associated 
cytokine and concomitant analysis of many different cytokines can be performed as 
demonstrated with human tonsil tissues [104) and computerized assessment has been 
now rendered possible [105). In human sepsis and sepsis-related pathologies, few 
investigations have employed immunocytochemistry analysis. In ARDS patients the 
presence of numerous IL-8 positive alveolar macrophages has confirmed the putative 
detrimental role of IL-8 in the development of that syndrome [106). In animal mod­
els of sepsis or endotoxic shock, immunocytochemical analysis of tissues may be eas­
ier. For example, immunostaining of IL-1a in rat glomeruli [107), IL-1P in rat pitu­
itary [108), and TNF in rat liver [109), mouse bone marrow cells [110) and 
diaphragm muscle [111) has been demonstrated after endotoxin administration. 

What and how to measure? 

Sampling 

Blood sampling and storage may be sources of artifactual results. These may be the 
consequence of either in vitro activation which may lead to false positive results or 
cytokine degradation or trapping by environmental leukocytes which lead to under­
estimated values. While endotoxin-free heparin-containing tubes are now available 
[112), this has not always been the case and endotoxin-contaminated heparin has led 
to in vitro activation of leukocytes and false positive results [113). As a consequence 
ethylene diamine tetra acetate (EDTA), which prevents cytokine production, has been 
recommended as an anticoagulant for cytokine measurements by immuno-assays. Of 
course, EDTA is not appropriate for bioassays and for in vitro cell-culture and the use 
of citrate has been suggested [114]. Storage of blood may be another source of arti­
facts. Proteolysis has been postulated to occur but the use of protease inhibitors such 
as aprotinin is no longer recommended [115]. At room temperature, cytokines in 
plasma can be taken up by environmental leukocytes and storage at 4° C would limit 
the decrease in plasma value noticed, for example, when studying TNF [116]. How­
ever, such low temperature storage will limit the reactivity of leukocytes if analyzed 
later on for their capacity to release cytokines upon in vitro activation [117). Once 
collected, plasma should be aliquoted to avoid freezing-thawing of the samples. 
Indeed, some cytokines such as TNF and IL-10 are extremely sensitive to repeated 
freezing -tha wings. 

Bio-activity 

To assess the presence of cytokines, bioassays have been used particularly during 
the early time of cytokine measurements. They usually require a cell line the growth 
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of which is cytokine-dependent (e.g. CTLL-2 for IL-2, B9 or 7TDI for IL-6) or 
which is killed by a given cytokine (e.g. L929 or WEHI-164 for TNF; MuLvl for 
TGF~). Since these measurements depend on the interaction of the cytokine with 
its high affinity receptor, they are usually highly sensitive (detection limit in the 
range of 1 to 5 pg/mL), and allow the detection of a bioactive cytokine. They are 
rather cheap although perpetuating the cell line may require recombinant 
cytokines. However, they are not totally specific and the use of antibodies is often 
necessary in assessing the real contribution of the analyzed cytokine (e.g. CTLL-2 
also proliferates in the presence of IL-4, IL-15 and TGF~). Furthermore, they are 
influenced by cytokine ligands such as soluble receptors which may amplify (e.g. 
sIL-6R) or inhibit (e.g. sTNFR) the bioactivity. For example, we have shown that 
in pleural effusions from septic or non-septic patients containing similar levels of 
IL-6 as judged by ELISA, the IL-6 bioactivity was significantly affected by the dif­
ferent levels of soluble IL-6 receptors [93]. However, the presence of soluble gp130 
in these biological fluids may play an inhibiting role. To be detected by bioassays, 
TNF levels must be higher than those of its inhibitors. This is probably rarely the 
case for TNF in septic patients since circulating soluble TNF receptors, already pre­
sent at homeostasis, are found in great amounts during sepsis. This may explain 
why the frequency of sepsis patients with detectable TNF was low when the 
cytokine was analyzed by bioassays [11, 14]. As a consequence, measurement of 
circulating soluble receptors is another important parameter to monitor. However, 
one should avoid overinterpretating the meaning of the ratio [cytokine] : [soluble 
cytokine receptor]. As previously mentioned, the measurements of free cytokines 
represent only a part of the total level of all released. On the other hand, the levels 
of soluble receptor are a true reflection of the vast majority of this product once 
released or shed by the cells. 

Immunoreactive cytokines 

Initially with radio-immunoassays and now with ELISA, cytokines are easily mea­
sured in any fluid. While many other techniques can assess the presence of 
cytokines, ELISA is the most frequently employed technique although its use is 
associated with various difficulties and problems. In the early 90's, it became evi­
dent that the use of various available commercial kits were in part responsible for 
the discrepancies observed from one study to another [95, 118]. For example, the 
influence of soluble TNFR was noticed with the first marketed ELISAs for TNF 
[119]. In 1993, Dinarello and Cannon wrote in an editorial: "The clinical study 
is in disarray because of the proliferation of commercial assay kits that are poor­
ly characterized by the manufacturers and are used indiscriminately by 
researchers" [120]. To further compare commercial ELISA kits, we attempted to 
obtain more uniform measurements using international cytokine standards [121]. 
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Despite our efforts, none of the kits gave similar values for individual plasma 
samples from septic patients. Most probably, numerous events mayor may not 
interfere with the measurement as a reflection of the different monoclonal anti­
bodies used in the various ELISA kits: (i) denaturation of the recognized epitope 
within the natural cytokine, (ii) fragmentation of the cytokine following enzy­
matic cleavage, (iii) depolymerization or polymerization, (iv) variable glycosyla­
tion of the natural cytokines, (v) recognition of precursor forms, (vi) binding of 
cytokines to undefined ligands. However, for the latter hypothesis, we showed 
that neither soluble cytokine receptors nor a2-macroglobulin interfered with the 
kits studied. 

mRNA 

Cytokines can remain below detection in the fluid under study while they are still 
being produced and may be trapped by environmental cells. The presence of their 
specific mRNA may reflect their local production, although the transcription of 
mRNA may not be associated with an effective translation. Analysis of mRNA may 
help to identify the source of the cytokine. This is obviously not easy in humans 
where most studied cells are leukocytes isolated from biological fluids. In sepsis, 
leukocytes may not be the major sources of the circulating cytokines as assessed by 
the presence of high levels of cytokines in plasma of neutropenic patients in the same 
range as that of non-neutropenic septic patients [122, 123]. TNF mRNA expression 
has been reported by in situ hybridization in cerebrospinal fluid cells from patients 
with bacterial meningitis [124] and in alveolar macrophages from bronchoalveolar 
lavages performed in ARDS patients [125]. Reverse transcriptase polymerase chain 
reaction (RT-PCR) revealed the presence of mRNA-positive blood and CSF cells for 
TNF, lymphotoxin-a, IL-1, IL-6, IFNy and TGF~ in multiple sclerosis patients with 
acute bacterial meningitis [126]. However, a study using in situ hybridization sug­
gests that IL-4, IL-6, IL-10, IFNy, and TGF~ may be occasionally found in periph­
eral mononuclear cells from healthy individuals [127]. Altogether these data suggest 
that caution should be taken when analyzing cytokine mRNA and more studies are 
necessary in this area. Animal models of endotoxemia or sepsis can address the 
cytokine mRNA expression in tissues. In 1992, Giroir et al. [128] published a 
provocative observation: using the chloramphenicol acetyltransferase reporter gene, 
they demonstrated that tissues such as kidney, heart, islet of Langerhans, lungs, 
uterus, and fallopian tubes could transcribe the TNF gene following LPS injection. 
Since this study, many other tissues have been shown to contribute to cytokine 
mRNA production. Spleen makes TNF, lymphotoxin-a, IL-2, and IFNy in response 
to bacterial superantigens [34] and IL-1a, IL-1~, and IL-1ra in response to LPS as 
do liver and bowel [129], which also synthetize IL-6 mRNA [1301 and TNF mRNA 
[131]. 
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Cell culture 

The analysis of circulating cells of sepsis patients as to their ability to further produce 
cytokine upon ex vivo stimulation led to the discovery that these cells are hypore­
sponsive compared to leukocytes from healthy patients. All T cell, monocyte and neu­
trophil-derived cytokines studied so far are produced in lower amounts than those 
obtained with leukocytes from healthy controls, except IL-lra in whole blood assay 
(Tab. 2). This hyporesponsiveness is not specific to sepsis patients and such observa­
tions have also been reported in numerous stressful situations. It is worth noting that 
this peripheral hyporesponsiveness mayor may not be observed in tissues. 

Table 2 - Decreased ex vivo cytokine production in human sepsis 

Monocytes 

Cytokines Assays Activators 

IL-1 Monocytes Silica 

P.B.M.C. LPS 

IL-1a, IL-~ LPS 

IL-6, TNFa Monocytes Streptococcus 

SEB 

TNFa Alveolar M0 LPS 

IL-1~, IL-6 

TNFa Whole blood LPS 

but not IL-1ra 

IL-10 Whole blood LPS 

PMBC HLA DR+ low 

IL-12 Whole blood LPS & SAC ± IFNy 

Peripheral blood mononuclear cells 

Cytokines Activators 

IL-2 PHA 

IFNy 

IL-2, IL-5 

IL-10 

Neutrophils 

IL-1 ~ 

IL-8 

LPS + IL-12 

ConA but neither PHA 

nor anti-CD3 

LPS but not staphylococcus 

LPS and streptococcus 
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Are cytokine measurements useful at bedside? 

This question often occurs and the answer may vary depending on whether you are 
in charge of the hospital budget or of sales in a company that makes measurement 
kits! May we expect from cytokine measurements to have a prognostic, a diagnos­
tic or a predictive value? As a prognostic factor, we have mentioned above many 
reports dealing with various cytokines where correlations with severity or outcome 
were described. However, a follow-up of circulating cytokines may be necessary and 
more appropriate for establishing a good correlation than a unique measurement. 
Furthermore, many other biological markers and clinical scores lead to the same 
correlations. Thus, one may question the usefulness of such expensive measure­
ments on a routine basis as long as no specific treatments may be initiated depend­
ing on the amounts of a given detectable cytokine. So far, cytokine measurements 
have not helped the physician to diagnose a given pathology or to orient his thera­
peutic approach. As a predictive factor, cytokine measurements could be interesting 
in patients who may develop sepsis. For example, IL-6 is a very early marker which 
appears before CRP and may therefore be useful in the monitoring of patients with 
a high risk of developing infection. Indeed, there is good evidence that IL-6 analysis 
obtained within twelve hours after birth appears to be ideal for detecting early-onset 
neonatal infection with a high degree of sensitivity and specificity [132]. In neu­
tropenic patients, IL-8 plasma levels, in contrast to IL-6, IL-l, TNF, and IL-lra, 
were significantly higher in patients who subsequently developed major infection 
[133]. One may speculate that T cell derived cytokines could be indicators of Gram­
positive infection. Rapid detection would be then recommended. Some are already 
available like the chemiluminescent immunoassays. The measurement of cell-associ­
ated cytokines could be an alternative and useful indicator. As long as we do not 
have an alternative therapy to offer that depends on a defined inflammatory profile, 
routine measurement will be of little benefit whereas cytokine analysis will remain 
essential to further understanding the interplay of cytokines during sepsis. 
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TNF as a principal mediator of sepsis 

Over the last decade, numerous basic biological as well as experimental and clinical 
studies have firmly established the significance of tumor necrosis factor (TNF) as a 
principal proximal mediator of sepsis. Originally identified as a tumoricidal agent, 
TNF is now recognized as a major inflammatory cytokine with pleiotropic activities 
on many cell types and organs, which is involved in the local physiological host 
immune response to invading micro-organisms as well as in the pathophysiology of 
systemic inflammatory conditions, such as sepsis [1-4]. Highly elevated systemic 
levels of TNF, as observed during sepsis and septic shock, induce a wide range of 
immunological and metabolic sequelae, that result in tissue injury, eventually cul­
minating in multiple organ dysfunction with high mortality. The accumulated evi­
dence for the central involvement of TNF in the pathogenesis of septic shock has led 
many researchers, molecular biologists and clinicians alike, to investigate the com­
plex mechanisms that regulate the production and release of TNF, and that deter­
mine its biological effects. The goals of such research efforts are to gain more insight 
into the pathophysiology of critical illnesses, to develop sensitive and rapid diag­
nostic tests, and ultimately to provide new therapeutic strategies from which the 
critically-ill may benefit. 

One of the major insights that has emerged during recent years has been that 
under physiological circumstances, TNF activity is tightly controlled and locally 
restricted. In this respect, the soluble TNF receptors (sTNFR) have been recognized 
as exerting an important regulatory control on the biological actions of TNF, not 
only in the normal host defense against infection, but also in systemic inflammato­
ry disorders that are related to infectious as well as non-infectious etiologies. 

In this chapter we will review the mediators that are involved in the systemic 
release of sTNFR during sepsis, as well as the potential roles of sTNFR in the reg­
ulation of the biological activity of TNF during systemic inflammatory responses. 
Moreover, we will discuss the diagnostic and prognostic significance of enhanced 
sTNFR levels during critical illnesses, including severe sepsis and septic shock. 
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TNF receptors 

TNF interacts with at least two distinct transmembrane cellular receptors, with mol­
ecular masses of 55 kDa (TNFR-P55) and 75 kDa (TNFR-P75), which display sim­
ilar binding affinities for TNF (reviewed in [5]). Both receptors are present on vir­
tually every cell type, excluding erythrocytes and unstimulated T-lymphocytes. 
Whereas the TNFR-P55 is constitutively expressed at low levels, predominantly in 
the vascular system and in almost all organs, the TNFR-P75 is strongly induced dur­
ing the course of an inflammatory response and mainly expressed by activated lym­
phocytes and monocytes. Both receptors display a four-fold cysteine-rich repeat in 
their extracellular domain which defines them as members of a larger family of 
receptor proteins, the so-called TNF receptor family, which also comprises CD27, 
OX 40 and the Fas antigen. In contrast, their transmembrane and intracytoplas­
matic domains do not share sequence homology [6] and are therefore presumed to 
mediate cellular signalling via different signal transduction pathways. Although the 
inflammatory, cytotoxic activity of TNF seems to be transduced primarily by the 
P55 receptor, and the immunostimulatory, proliferative responses to TNF are sup­
posed to be mediated by the TNFR-P75, the single involvement of either receptor in 
these TNF-induced responses remains controversial. The concept proposed by 
Tartaglia and Goeddel [7] that both receptors signal distinct TNF activities and that, 
at low TNF concentrations, TNFR-P75 functions as a catcher of TNF and delivers 
it to the TNFR-P55, may largely reconcile the controversies. In favor of this "pass­
ing-on" model, Leeuwenberg et al. [8] recently provided further experimental evi­
dence by demonstrating the exclusive role of the TNFR-P55 in signaling TNF­
induced endothelial cell activation, and a facilitating effect thereon of the TNFR­
P75. Similarly, Barbara et al. [9] have supported the capacity of TNFR-P75 to 
potentiate the effect of TNFR-P55 in experiments using TNF mutants, selectively 
reactive with either TNFR-P55 or TNFR-P75 . The non-signaling functions of 
TNFR-P75 have recently been reviewed by Van Tits et al. [10] . 

Soluble TNF receptors 

Shedding of TNFR 

Both membrane TNF receptors also exist in corresponding soluble forms, which are 
produced by proteolytic cleavage of the extracellular domains of the membrane 
receptors, and are shed into the circulation. Whereas sTNFR are detectable at the 
low ng/ml range in serum and urine of normal healthy individuals, with sTNFR-P75 
being more abundant than sTNFR-P55, their concentrations increase significantly 
in acute or chronic infectious and inflammatory conditions [11], as well as in non­
inflammatory diseases such as cancer [12]. Although the exact mechanisms that 
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control the systemic release of sTNFR under these conditions are largely unclear, a 
variety of stimuli that induce shedding of TNFR from the cell surface have been 
identified, several of which are involved in the pathogenesis of the sepsis syndrome. 

First, TNF itself is a principal modulator of systemic sTNFR release. In vitro 
stimulation of neutrophils and monocytes with TNF causes shedding of sTNFR 
from these cells [13-15], while infusion of TNF in humans results in highly 
increased sTNFR serum levels [16, 17]. Moreover, enhanced TNF levels during 
experimental endotoxemia and clinical sepsis correlate well with elevated sTNFR 
concentrations [11, 18-20]. However, although TNF is considered to be a principal 
trigger for sTNFR release, it is not essential for sTNFR shedding. Vossen et a1. [21] 
have recently provided evidence that murine T cell activation by an anti-CD3 mon­
oclonal antibody (mAb) induces shedding of both sTNFR relatively independent of 
the presence of TNF. In a similar murine study, Bemelmans et a1. [22] found that 
anti-CD3 mAb-induced sTNFR release could only be partly reduced by neutralizing 
TNF using an anti-TNF mAb. Also, shedding of sTNFR by anti-CD3 mAb-activat­
ed human peripheral blood mononuclear cells in vitro is not affected by TNF [23]. 

Lipopolysaccharide (LPS), is a second important inducer of sTNFR shedding. In 
vitro stimulation of human monocytes with LPS from Escherichia Coli or Neisseria 
Meningitidis selectively induces the release of the TNFR-P75, but not of the TNFR­
P55, together with an upregulation of membrane expression of both receptors after 
24-48 h [24, 25]. In contrast, exposure of human endothelial cells to Neisseria 
Meningitidis LPS results in a dose-dependent shedding of TNFR-P55, but not 
TNFR-P75, from these cells [24]. The importance of LPS in the induction of sTNFR 
release in vivo has been clearly demonstrated in a large number of animal as well as 
human experimental endotoxemia and sepsis models, where administration of 
endotoxin or E. Coli resulted in significantly enhanced circulating sTNFR levels [11, 
18, 20, 26-29]. While in most of these endotoxemia models endogenous TNF 
would be a likely mediator of LPS-induced release of sTNFR, Bemelmans et a1. [27] 
demonstrated that LPS-induced sTNFR release in mice could not be inhibited by 
neutralizing TNF, suggesting a direct action of LPS on shedding of sTNFR without 
TNF as intermediate. Consistent with the latter is the observation that administra­
tion of LPS to C3H/He] mice, which do not produce TNF in response to LPS [30], 
directly induces shedding of STNFR in these animals [31]. 

Interleukin-l (IL-1) is another important endogenous pro-inflammatory media­
tor involved in the pathogenesis of septic shock that has been shown to induce 
release of sTNFR. As reported by Van der Poll et a1. [32], infusion of IL-la into 
baboons induces rapid increases in levels of both sTNFR. In the same study inhibi­
tion of endogenous IL-l attenuated sTNFR-P55 release in baboons during experi­
mental E. Coli sepsis and in patients with clinically defined sepsis, suggesting the 
intermediate involvement of endogenous IL-1 in sTNFR release in response to endo­
toxin. In addition, IL-l also partly mediates anti-CD3 mAb-induced shedding of 
sTNFR from monocytes in vitro [23]. 
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In addition to endotoxin, TNF, and IL-1, which are all considered to be proxi­
mal mediators of the sepsis syndrome, a variety of other inflammatory stimuli have 
also been recognized as inducers of sTNFR shedding. Stimulation of human neu­
trophils in vitro with various physiological polypeptides such as fMLP, C5a, GM­
CSF, and elastase was found to result in a rapid decrease of cell surface expressed 
TNFR with an accompanying release of sTNFR [33-35]. Moreover, several 
cytokines, including IL-2, IL-6, IL-10 and Leukemia Inhibiting Factor, have been 
found to be involved in enhanced release of sTNFR in vitro or in vivo [13, 23, 27, 
36, 37]. Adhesion of neutrophils, a crucial event during inflammatory responses, 
induces shedding of sTNFR [38]. Recently, Scannell et al. [39] demonstrated that 
hypoxia, a condition that is intimately associated with shock states, triggers the 
release of sTNFR by a human macrophage cell line in vitro, a finding which may 
have its clinical correlate in severely traumatized patients, in whom highly elevated 
levels of both sTNFR have been detected [40, 41]. 

In conclusion, it is apparent that the regulation of sTNFR release is the result of 
a complex interplay between the various inflammatory mediators and a variety of 
immunocompetent cell types that are involved in the pathogenesis of the sepsis syn­
drome. The complexity of this regulatory system is underscored by the observations 
that a given mediator may have opposing effects on shedding of TNFR by different 
cell types [24], and that blocking of individual mediators does not seem to be suffi­
cient to completely inhibit the release of sTNFR [27]. 

Kinetics of sTNFR release during sepsis 

From a large number of animal and human studies it has become evident that endo­
toxemia or clinical sepsis gives rise to an early systemic increase in TNF which sub­
sequently subsides within hours. In most of the experimental studies, a stereotypi­
cal monophasic transient appearance of TNF is observed, with peak levels occurring 
within 90 to 120 minutes after endotoxin administration. This is followed by a 
rapid systemic clearance resulting in undetectable levels after four to six hours [3, 
18, 20, 27, 42, 43]. Moreover, a contemporaneous release of both sTNFR is 
observed in these studies which displays, however, a different pattern of kinetics for 
both receptors. In the mouse, the TNFR-P55 peaks early after 30 minutes and grad­
ually declines to normal levels therafter, whereas the TNFR-P75 reaches maximal 
levels after four to eight hours and subsequently diminishes over a relatively long 
period of approximately 24 hours [27]. A largely similar pattern is observed in 
human conditions of endotoxemia and sepsis, where both sTNFR persist in the cir­
culation for an extended period of time, particularly in relationship to the more 
abbreviated systemic presence of TNF [43]. As postulated by Carpenter et al. [31], 
endotoxin may cause shedding of STNFR in vivo in two separate ways. A first, 
immediate response involves shedding of sTNFR by neutrophils, whereas in a sec-

124 



Soluble TNF receptors 

ond, late response mononuclear cells are the main source of sTNFR. Consistent with 
the latter is the observation of Leeuwenberg et a1. [23], who found the release of 
sTNFR by monocytes to be a relatively late and ongoing event. Moreover, they 
reported that after initial shedding of sTNFR, LPS-activated mononuclear cells 
strongly re-expressed both receptors on their cell surface, which was accompanied 
by the release of sTNFR-P75, but not sTNFR-P55 [25]. As stipulated by Carpenter 
and coworkers [31], the pattern of sTNFR release in response to endotoxin may be 
composed of two overlapping processes, i.e. an early peak derived from rapid shed­
ding by neutrophils which is replaced by more protracted release of sTNFR by 
mononuclear cells. Together, these findings may begin to explain the kinetics of 
sTNFR release as observed during septic conditions in vivo. 

Biological functions of sTNFR 

With regard to the possible role of sTNFR as modulators of TNF function in vivo, 
several concepts have emerged. First, sTNFR compete with cell-associated receptors 
for TNF binding, thus reducing TNF bioactivity [5]. Alternatively, binding of 
sTNFR with free circulating TNF results in direct inhibition of TNF bioactivity [20, 
44,45]. Consequently, the highly increased levels of circulating sTNFR, as observed 
during septic conditions, are thought to protect the host from the unwanted toxici­
ty of excessive TNF present under these circumstances [11, 20]. By binding and 
inactivating TNF in the systemic circulation, sTNFR might confine TNF to its local 
source of production and restrict TNF activity locally. Moreover, it has been sug­
gested that by releasing the extracellular part of the TNFR, cells may be temporar­
ily less sensitive or unresponsive to the deleterious effects of TNF [25]. In addition, 
internalization of membrane-bound TNFR in response to LPS, as described by Ding 
et al. [46], may also lead to a TNF-refractory state. Therefore, down-modulation of 
cellular TNFR expression, either by shedding or by internalization, could represent 
another physiological mechanism to limit the bio-effects of TNF. Furthermore, 
sTNFR play an important role in the clearance of TNF from the systemic circula­
tion. The kidney has been identified as the major clearance organ for TNF/sTNFR 
complexes [47], although the liver, at least in mice, also seems to playa role in clear­
ance of TNF complexed to sTNFR [48]. Consistent with the central role of the kid­
ney in sTNFR clearance are the observations of enhanced sTNFR levels positively 
correlating with plasma creatinine levels in patients with acute or chronic renal fail­
ure [44,49], as well as in patients with the sepsis syndrome [50]. 

Whereas it has been teleologically reasoned that the highly increased induction 
of sTNFR release by a variety of inflammatory mediators, e.g. in the setting of sepis, 
may function to protect the host from the deleterious actions of excessive TNF and 
to prevent a vicious cycle of TNF self-propagation, the presence of lesser quantities 
of sTNFR may, in contrast, act to prolong the biological effects of TNF. Aderka et 
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al. [45] have postulated that low amounts of sTNFR stabilize the trimeric structure 
of TNF by slowing down its decomposition to biologically inactive monomeric 
structures, thus serving as a slow release reservoir of bio-active TNF, which prolongs 
TNF activity. It seems therefore, that the biological role of sTNFR in inflammation 
is dose-dependent [51, 52]. 

In conclusion, circulating sTNFR are considered to have a buffering function, 
acting either as inhibitors or as carrier proteins for TNF, depending on their con­
centration. During sepsis, the increased presence of sTNFR in a large molar excess 
over TNF may function mainly as an endogenous inhibitory and clearance mecha­
nism of TNF bioactivity, which in severe cases may still be insufficient to prevent the 
lethal consequences of high systemic TNF concentrations [11]. 

Diagnostic and prognostic significance of sTNFR 

As it has become evident that the sTNFR play an important role as modulators of 
TNF bioactivity in an agonist/antagonist pattern, determination of sTNFR in plas­
ma or serum has become a new tool to gain information about various pathologi­
cal conditions that are characterized by TNF-mediated immune activation [53]. 
However, the diagnostic significance of elevated sTNFR, in as much as they reflect 
the activation state of the TNFITNFR system, may be of limited value due to its 
non-specific character, and has led critics to place it in one class with measurements 
of blood sedimentation rate [54]. Nevertheless, sTNFR levels may provide valuable 
information about disease severity and inflammatory activity in a variety of clinical 
entities. For example, Rogy et al. [42] have demonstrated a good correlation 
between circulating sTNFR-P55 and initial APACHE II scores in septic, critically-ill 
patients in the intensive care unit. After trauma, sustained systemic elevation of 
sTNFR mirrors the clinical patient status, with higher levels in the most critically ill 
patients gradually declining as the clinical condition improves [41]. Recently, De 
Beaux et al. [55] and Kaufmann et al. [56] have reported that elevated sTNFR-P55 
levels, particularly in combination with C-reactive protein levels, accurately reflect 
the clinical severity of acute pancreatitis. Thus, determination of sTNFR may be 
useful for monitoring inflammatory responses and the severity of tissue injury. 

There is a growing number of well-documented experimental and clinical stud­
ies to demonstrate that systemic sTNFR levels have accurate prognostic significance 
in critical illnesses. Markedly increased concentrations of sTNFR have been deter­
mined in patients with severe meningococcaemia, and were demonstrated to corre­
late with TNF levels and the outcome of disease in terms of mortality [19,57]. Like­
wise, sTNFR-P55 levels were found to be signifcantly higher in non-survivors com­
pared with survivors in critically-ill patients with sepsis [42]. Froon et al. [50] also 
detected higher plasma sTNFR-P55 peak concentrations in non-survivors of the sep­
sis syndrome, but emphasized the influence of impaired renal function on sTNFR 

126 



Soluble TNF receptors 

levels in these patients. In severely injured patients serum concentrations of sTNFR 
early after trauma correlate with patient outcome, with higher receptor levels in 
non-survivors than in survivors [41). Elevated sTNFR-P55 levels have been shown 
to correlate positively with the development of multiple organ failure and with mor­
tality in patients with clinically severe acute pancreatitis [55, 56). Similarly, Bemel­
mans et al. [58) identified both sTNFR, rather than TNF, as good prognostic fac­
tors for mortality after surgery in mice with biliary obstruction. Recently, it has been 
suggested that early postoperative serum concentrations of sTNFR-P55 are good 
predictors for mortality in postcardiac surgical patients at high risk for sepsis and 
may prove useful, in combination with APACHE II scores, for early sepsis severity 
and mortality risk stratification, thereby allowing for a more specific initiation of 
supplemental sepsis therapy [59). In addition, it was established very recently that 
preoperative sTNFR levels in patients undergoing coronary artery bypass grafting 
represent a strong independent risk factor for postoperative complications (E.]. 
Fransen et al., unpublished observations). 

Although in the aforementioned studies elevated systemic sTNFR levels were 
found to correlate well with initial serum TNF concentrations, the determination of 
sTNFR may have certain advantages over TNF measurement in monitoring inflam­
matory states and predicting clinical outcome. Compared to circulating TNF, which 
is only shortly present and can therefore be easily missed, sTNFR are detectable for 
a more prolonged period of time. In addition, sTNFR are very stable, and their 
determination seems to be less prone to artefacts than that of TNF [60). Also, the 
presence of sTNFR may have a masking effect on measurement of TNF, depending 
on the specific TNF-assay used [61], which can easily lead to misinterpretation of 
results and may severely hamper cross-laboratory comparison of data concerning 
TNF levels. However, with regard to the interpretation of enhanced sTNFR levels 
there is also one important caveat to be remembered. As sTNFR are mainly cleared 
by the kidney, renal impairment may considerably influence systemic sTNFR con­
centrations [47, 50). The presence of renal failure may result in an unproportional 
elevation of circulating sTNFR, that does not directly reflect the inflammatory state, 
but rather the degree of renal failure. 
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It was in 1927 that W.K. Heisenberg made the discovery for which he is best known 
- that of the Uncertainty Principle [1]. This states that it is impossible to specify pre­
cisely both the position and the simultaneous momentum (= mass multiplied by 
velocity) of a particle. There is always a degree of uncertainty in either, and as one 
is determined with greater precision, the other can only be found less exactly. 
Heisenberg's Uncertainty Principle negates cause and effect; it maintains that the 
result of an action can be expressed only in terms of the probability that a certain 
effect will occur. 

Seventy years later this principle is still valid, and can easily be transferred to a 
focus of interest which has emerged in the recent years. Critical care medicine has 
developed into a highly specialized and sophisticated field of research and thereby 
attracted scientists far beyond physicians. Biochemistry, biology and molecular biol­
ogy have produced an avalanche of sometimes controversial new insights into phys­
iological and pathophysiological mechanisms together with the tools to measure 
and quantify almost every item of interest. The increasing amount of data available, 
in combination with subtle statistical evaluation, has enabled the creation of scor­
ing systems [2] which were needed for several purposes, e.g. comparison of patients. 
The description of the status of a patient beyond his hemodynamic or respiratory 
situation was thought essential for successful intensive care medicine. Strong moti­
vation for these extensive efforts may have come from the insight that the diseases 
of the decade, systemic inflammatory response syndrome (SIRS), multiple organ 
dysfunction syndrome (MODS) and multiple organ failure (MOF) are actually a 
consequence of successful resuscitation of critically ill and severely traumatized 
patients with state-of-the-art intensive care. We face the situation that every effort 
and immediate accomplishment may only postpone the problem and possibly shift 
it to a higher level of complexity. The situation is aggravated by the fact that criti­
cal care medicine at the Intensive Care Unit (ICU) has remained almost entirely sup­
portive, although substantial progress has been made, e.g. in ventilation techniques 
or "kinetic therapy". However, mortality associated with MOF, especially septic 
MOF, is unchanged. This has led to further attempts to better understand what is 

Cytokines in Severe Sepsis and Septic Shock, edited by H. Redl and G. Schlag' 
© 1999 Birkhauser Verlag Basel/Switzerland 133 



Wolfgang Strohmaier and Franz Tatzber 

really going on in the early phase after a traumatic event. Extensive measurement of 
more parameters at shorter intervals together with careful retrospective evaluation 
was expected to lead from diagnosis via monitoring to prognosis. This probably is 
the point when Heisenberg appears on the scene: If "position" means present con­
dition and "momentum" translates to progredience (e.g. age connected to condition 
at admission), then the principle reads as follows: It is probably impossible to diag­
nose the stage of disease at a given point in time with ultimate precision (unless 
resources are unlimited) simultaneously with short-term changes. In other words, 
the more parameters are more frequently measured, and the more compartments are 
included in diagnosis, the more uncertainties arise. This is accompanied by increas­
ing problems with overall validity, since the meaningfulness of a single parameter or 
a even a sophisticated score is always inversely proportional to the heterogeneity of 
the patient cohort. Due to the variety of events which may lead to SIRS, sepsis and 
MOF via the activation of a large number of cellular and humoral cascades and 
mediator networks, a multitude of parameters comprising key players of the afore­
mentioned systems as well as several metabolites have recently been discussed in 
terms of their diagnostic and prognostic power [3]. In a review by Cavaillon et al. 
[4] circulating cytokines were called the "tip of the iceberg". The authors wanted to 
express their opinion that the presence or the absence of circulating cytokines can­
not be considered to resemble a bioactive or a resting organism, respectively. 

This paper discusses three parameters that have been shown to contribute to the 
clinical picture of a patient, especially with regard to the diagnosis of infection 
and/or the onset of a septic event. Interestingly, only one of them can be assigned to 
a defined source; however, there is increasing evidence for the usefulness of these 
surrogate markers (SM): 2-amino-4-hydroxy-6-(D-erythro-l' ,2' ,3' -trihydroxy­
propyl)-pteridine, vulgo neopterin (Neo); Procalcitonin (PCT); and auto-antibodies 
against oxidized low- density lipoprotein (oxLDLAb). It is beyond the scope of this 
paper to deal in depth with the principal difficulties of biochemicaUimmunological 
monitoring in the posttraumatic and/or septic course, despite the reasonable 
assumption that these problems in turn have played a part in the introduction and 
evaluation of surrogate markers. At least in our opinion it remains speculative to 
what extent the above parameters can serve as surrogate endpoints according to the 
definition given by Fleming et al. [5]. 

Neopterin 

Neopterin is a member of the ubiquitous family of unconjugated pteridines and was 
originally discovered in the larvae of bees, in worker bees, and in royal jelly [6, 7]. 
All members of this family are derived from guanosinetriphosphate (GTP) [8]. The 
first step is catalyzed by the enzyme GTP-cyclohydrolase I, which cleaves the imi­
dazole ring of the purine. After molecular conversion by Amadori rearrangement, 

134 



Relevance of surrogate tests in intensive care patients". 

the key precursor 7,8-dihydroneopterin triphosphate in the biosynthesis of folate, 
riboflavin, methanopterin, tetrahydropterin and Neo is produced. The molecular 
next of kin to Neo, the biopterins, have gained widespread interest since tetrahy­
drobiopterin is the essential co-factor for aromatic amino acid monoxygenases and 
thus for neurotransmitter synthesis, as well as for nitric oxide synthases (NOS) [9]. 
A possible biological function was recently suggested [10] by those who demon­
strated in vitro induction of inducible (i) NOS expression by Neo in rat vascular 
smooth muscle cells. The same group [11] had previously proposed a redox state­
dependent NF-KB translocation to the nucleus as an explanation for this impact of 
Neo on iNOS expression. 

Increased concentrations of urinary Neo were first reported in patients with an 
extremely rare variant of atypical phenylketonuria [12, 13]; in the same year raised 
Neo levels were found in the urine of patients with malignancy and viral infection 
[14]. Subsequently it was shown that antigenic stimulation of human peripheral 
blood mononuclear cells (PBMC) leads to Neo release into cell culture medium [15, 
16] and finally, that human macrophages produce Neo in vitro upon stimulation by 
IFNy [17]. It is of major importance to mention that IFNy is the most potent stim­
ulus when highly purified macrophage preparations or cell lines (e.g. THP-l) [18] 
are used. In vivo, or in PBMCs in the presence of T-lymphocytes, lipopolysaccha­
ride (LPS) also is a very potent trigger of Neo production via the release of IFNy and 
cytokines by activated T-lymphocytes. However, the ultimate proof for this hypoth­
esis in vivo did not come until Woloszcuk [19] improved the methods for measur­
ing IFNy. He drastically reduced the detection limit and demonstrated that an 
increase in IFNy is invariably followed by an increase in Neo. The same holds true 
for TNF which, though being a potent costimulator, is almost inactive in inducing 
pteridine synthesis in purified macrophages as a single agent. Since that time, urine 
and blood Neo levels have been shown to be elevated in several different categories 
of diseases (for details see [20]). That macrophages might not be the single source 
of Neo was suggested by Andert et a1. [21], who showed release of Neo in cultured 
endothelial cells upon stimulation with IFNy. This may result in a remarkable con­
tribution to the total amount of Neo as there are at least ten times more endothelial 
cells than macrophages. Since Neo is cleared via the kidneys in a creatinine-like 
fashion [22], Neo values are influenced by kidney function, so optional correction 
for creatinine should be kept in mind. 

In 1987 we reported on a strong correlation between Neo levels and the occur­
rence of septic events in intensive care patients [23]. We could clearly discriminate 
between survivors and non-survivors in these 21 patients as early as day one. An 
investigation on 56 patients by Pacher et a1. [24] was in agreement; in that study 
Neo testing (96% sensitivity and 73% specificity for Neo; ::;40 nmollL) yielded an 
overall accuracy of 83%. Neo also precisely predicted the MOF score (if ~5) 
according to Goris when measured one day before the evaluation (r=0.75, 
p::; 0.0001). In this study Neo always differentiated between septic and non-septic 
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survivors and non-survivors as well. Similar findings regarding early increased Neo 
concentrations were reported by Faist et al. [25] who additionally demonstrated that 
freshly isolated monocytes stimulated ex vivo with LPS are exhausted in surgical 
patients. Faist concluded that resident, tissue-bound macrophages are responsible 
for the high serum levels. Further validation of Neo as a prognostic parameter came 
from Nast-Kolb et al. [26]. He reported clear discrimination between survivors and 
non-survivors starting as early as day two post trauma in a 14 day observation peri­
od. One hundred patients with severe poly trauma (mean injury severity score 
(ISS) = 37) were studied. Both Neo and soluble interleukin (IL)-2 receptor were iden­
tified as significant predictors of shock states in Gram-negative sepsis by Delogu et 
al. [27]. Slightly divergent data were presented in a prospective study, in 56 patients, 
evaluating various inflammatory mediators as predictors of MOF after blunt trau­
ma (ISS ~ 33) [28]. Since the authors used the Neo/creatinine ratio in their calcula­
tions the significant changes indicating MOF were found much later in the course. 
One might speculate that in these patients a rise in Neo due to the kidney failure is 
mathematically eliminated by the use of the Neo/creatinine ratio. This approach 
relates the late increase exclusively to overwhelming macrophage activation, an 
assumption in line with Nast-Kolb et al. [26]. However, one important pathophysi­
ological conclusion can be drawn from the work so far: the central involvement of 
monocytes and macro phages in inflammatory processes. This seems even more 
important, if one considers "the macrophages" as an active compartment. 

Evidence for the clinical association of endotoxin, septicemia, and Neo in 
humans came from an experiment performed by Bloom et al. [29]: a bolus of 
4 ng/kg BW endotoxin was administered intravenously into healthy subjects. All 
individuals responded with a two- to three-fold increase in Neo within 24 h. In com­
parison to TNFa, this increase had a delay of at least 6 h, but remained for some 
72 h. This experiment also provided insight into the kinetic characteristics of Neo 
and the mediators presently discussed as diagnostic or prognostic parameters, main­
ly TNFa and IL-6. After a single stimulus the cytokines rapidly increase to their 
respective maxima at 2 to 4 h and decline just as quickly, revealing virtually base­
line (=zero) levels after 6 to 8 h. This has been shown in rats [30] and baboons [31]. 
In further baboon experiments [32] this time course was confirmed. It was also 
shown that significant rises in Neo are restricted to septic animals, while trauma set­
tings induce only minor changes. Unfortunately, Neo data from animal experiments 
are only available for primates and subprimates, since other animal species produce 
only negligible amounts of Neo. 

For well over ten years now, Neo has been assessed routinely in the trauma leu 
at the Lorenz Bohler Trauma Hospital and it is an accepted part of the monitoring. 
Moreover, it has turned out that additional applications are possible. First, selective 
puncture of corresponding veins and arteries allows for comparison of their respec­
tive concentration and this arterio-venous difference contributes information on the 
existence or, sometimes even more important, the absence of septic foci [33]. Second, 
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in 1996 Strohmaier et al. [34] showed that Neo blood levels can provide a reliable 
basis for the decision on whether to use or not to use antibiotics in our ICU. After a 
two-year evaluation period with 536 patients enrolled and the definition of a few 
exceptions (e.g. open head fracture), we ended up with the present procedure: In 
cases of suspected infection, antibiotics are given only if serum Neo levels exceed 40 
nmol/L. This approach is supported by bedside infection screening using Gram­
stained smears [35]. The cut-off value of 40 nmollL serves as a discriminator between 
colonization, which remains untreated, and systemic infection. The main results of 
this strategy are a profound reduction in infectious episodes and isolated micro­
organisms, especially pseudomonads and staphylococci, and in treatment costs. 

Despite the significant progress achieved in transplantation medicine in recent 
years, rejection of transplants remains a major problem. Besides the immunological 
problems of graft rejection due to the recognition of non-self MHC structures, infec­
tion as a consequence of prolonged immunosuppression of the recipient is a critical 
problem. A large body of data has been collected by different research groups dur­
ing recent years showing the behavior and the possible applications of Neo in vari­
ous situations involving allograft transplantation. Independent groups have con­
firmed that measurement of Neo in body fluids of recipients of solid organ as well 
as bone marrow grafts is of clinical relevance and value for the prognosis of 
immunological rejection and infection [20]. A large amount of knowledge was 
accrued from renal transplantation. The first reports on the use of Neo as a mark­
er for the immunological state of recipients came from Fuchs et al. [15] and Mar­
greiter et al. [36]. Almost ten years later Reibnegger et al. [37] evaluated 294 kid­
ney graft recipients. By means of advanced statistical techniques and the introduc­
tion of a logarithmic likelihood ratio function, a flow diagram for the interpretation 
of individual Neo values was developed. With regard to Neo in liver transplantation 
the above findings generally apply [381 for the prediction of impending risk of 
immunological complications such as rejection and/or infection. Moreover, by 
means of multivariate Cox regression, a peak Neo concentration around day seven 
was identified as being a significant predictor for graft survival. 

The determination of Neo and creatinine in combination with ~-2 microglobu­
lin in heart-transplanted patients [39] offers a simple tool to aid differentiation 
between rejection and infection. Neo values alone have been successfully used to 
guide the decision as to whether to perform endomyocardial biopsy [40]. 

Procalcitonin 

Procalcitonin (PCT) is a 116 amino acid polypeptide and represents the pro-hor­
mone of the 32 amino-acid-Iong calcitonin (CT). PCT itself is synthesized as a 
16 kDa, 141 amino acid pre-PCT [41, 42]. Cleavage of the active hormone calci­
tonin takes place in the C-cells of the thyroid gland by specific proteolysis [41,43]. 
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The calcitonin gene family comprises four members, of which CALC-I is the gene of 
interest [44]. According to the suggestions of Nylen et al. [43], and Becker et al. 
[44], cytokines and endotoxin suppress proteolytic cleavage of PCT to CT in the 
Golgi vesicles, which leads to the secretion of unprocessed PCT. The origin of most 
of the circulating PCT has not been identified yet since an infection-associated rise 
in PCT has been shown in a thyroidectomized patient with septicemia [45]. 

An increase in serum PCT was experimentally induced by intravenous injection 
of 4 ng/kg endotoxin [46]. The volunteers responded with consecutive peaks of TNF 
and IL-6 after 1.5 and 3 h respectively. PCT was undetectable until 2 h post injec­
tion, measurable at 4 h, and then rose sharply to a plateau at 6 to 8 h, where it 
remained until at least 24 h. At this time TNF and IL-6 were no longer detectable. 
No elevation of CT levels was measured during the experiment. The same group 
[47] expanded their investigations by giving repeated doses of 4 ng/kg BW endo­
toxin (Salmonella abortus equi) at 0 h, 24 hand 48 h. Interestingly, the initially 
reached plateau was only slightly exceeded and the decrease toward baseline at 72 h 
was not affected. This time course was confirmed by Redl et al. (manuscript in 
preparation) in septic baboons. In another set of experiments, severe head trauma 
also produced a massive, albeit transient, increase in PCT. The rapid appearance of 
such high concentrations suggested a specific role for PCT in host defense. There are 
two short reports [48, 49] showing that both PCT and CT are able to decrease 
prostaglandin and thromboxane B2 substantially in lymphocytes ex vivo. The 
authors speculate that this is achieved by blocking cyclooxygenase. The hypothesis 
of a protective role is fostered by the finding that patients who survive classical heat­
stroke reveal higher peT levels than non-survivors [50]. 

The first report on high serum PCT levels in patients with sepsis or infection 
came from Assicot et al. [45]. They prospectively investigated 79 children (age 
range: newborn to 12 years) with suspected infections. While PCT was undetectable 
(::; 0.1 ng/mL) in children without infection, severe bacterial infection was always 
accompanied by massively increased PCT levels (6 to 60 ng/mL). The study also sug­
gested that PCT levels may respond to successful antibiotic treatment with a sub­
stantial decrease. In this study population, PCT also clearly discriminated between 
systemic and local infection. Again, serum concentrations of the mature hormone 
CT were normal in all subjects, whatever PCT concentrations were found. The use 
of serum PCT as a marker of neonatal sepsis was also previously suggested by Gen­
drel et al. [51]. Moreover, new applications of PCT have been suggested. Reith et al. 
[52] reported on significantly declining plasma PCT concentrations in patients with 
peritonitis after successful focal assanation. When the surgical removal of the septic 
foci failed and the patients died, mean PCT levels remained high. Brunkhorst et al. 
[53] clearly discriminated between an infectious and a non-infectious etiology of 
ARDS. In a series of 17 consecutive patients with very similar Murray scores, PCT 
distinguished between the septic and the non-septic origin of ARDS. TNF and Neo 
yielded equivalent results, while IL-6 and C-reactive protein (CRP) proved insuffi-
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cient. Scoring the patients by means of the APACHE II also clearly discriminated 
septic from non-septic etiology. Another group of patients very vulnerable to infec­
tion are burns victims. Nylen et al. [54] investigated 41 patients and demonstrated 
a preferential release of PCT from the lung; he concluded that serum PCT levels 
might have prognostic power regarding severity of inhalational injury. Circulating 
PCT was measured in 40 burns patients with total body surface area (TBSA) ~ 30% 
by Carsin et al. [55] up to one week after admission and compared to IL-6, TNFa 
and endotoxin. All patients without any proven infection had increased IL-6 and 
PCT levels in combination with undetectable TNF and endotoxin. PCT levels 
proved to possess prognostic value for mortality and to correlate with IL-6 and the 
severity of skin burn injury, but were not associated with inhalation injury. 

After a case report on highly elevated PCT concentrations in a liver transplant 
recipient with disseminated candidiasis [56], Hammer et al. [57] claimed PCT to be 
a new marker for the differential diagnosis of acute rejection and bacterial infection 
in heart-transplanted patients. The main conclusion that rejection alone does not 
lead to increased PCT levels deserves further confirmation. 

Antibodies against oxidized low-density lipoprotein (LDL) 

Lipid peroxidation (LPO) is currently regarded as the initial step to chemical mod­
ification of low density lipoprotein (LDL) and represents the key event in athero­
sclerosis. LPO is not restricted to atherosclerotic processes but occurs in a large vari­
ety of inflammatory disorders, especially cardiovascular ones [58]. The mechanisms 
of LDL oxidation have been extensively reviewed by Jialal and Devaraj [59] and 
Esterbauer and Juergens [60]. LPO products of LDL are detectable in humans and 
animals and give clear evidence that lipoproteins undergo LPO in vivo and yield a 
wide range of oxidation products [61]. Briefly, free radical action depletes lipids of 
their protective antioxidants like tocopherol. This loss of chain-breaking agents 
gives way to lipid hydroperoxides in the LDL particle and probably in other cell 
membranes. The end products of this chain reaction are oxLDL plus highly reactive 
aldehydes, predominantly hexanal, malondialdehyde (MDA) and 4-hydroxynone­
nal (4-HNE). 

Autologous oxLDL is more immunogenic in guinea pigs than the native form 
[62], and even minor modifications render the native LDL more immunogenic [63]. 
In healthy subjects the IgG antibodies against oxLDL are clearly detectable, Poisson 
distributed, and inversely correlated to age. Normal titers measured in plasma are 
assumed to range between 100 and 500 U/mL and include about two thirds of the 
above study population (for review see [64]). 

The physiological significance of antibodies against oxLDL is not fully estab­
lished. LPO occurs in healthy conditions as well as in pathological states, although 
to a much lesser extent. OxLDL has several direct effects on the endothelial cells and 
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causes dysfunction and increased permeability of the vessel wall [65-67]. Moreover, 
oxidized lipoproteins are potent inhibitors of endothelium-dependent vascular 
relaxation [68]. Therefore a scavenger-like role for oxidatively damaged cell mem­
branes and lipoproteins may be postulated. This assumption is supported by the 
experimental in vitro depletion of oxLDLAb from sera by incubation with aged ery­
throcytes [64]. Whole blood incubation with endotoxin or direct oxidation of ery­
throcyte membranes with superoxide also led to the quantitative consumption of 
oxLDLAb. Further evidence for a protective function can be deduced from a com­
parative study performed by Tatzber et al. [69]. With a special modification of the 
genuine test system with protein A it was possible to measure oxLDLAb titers in 
various animal species and to display a close attachment to nutrition: in the sera 
from herbivores like rats and rabbits, animals which are usually well supplied with 
antioxidants and do not develop atherosclerosis, no antibodies were found. Omni­
vores like pigs and baboons showed clearly detectable levels, but healthy carnivo­
rous animals like cats and dogs exhibited the highest titers. Another finding possi­
bly related to the clinical situation was the discovery that accidentally severely 
cachectic dogs were depleted of oxLDLAb but refeeding restored normal values 
within six weeks. 

In how far these effects and actions together with the pathogenic interaction of 
oxLDL- antibody complexes with monocytes/macrophages and the endothelium 
playa role in acute inflammation remains unclear, although the involvement of oxy­
gen and its reactive species in these conditions is generally accepted. Several human 
studies have documented either a dramatic loss of antioxidant capacity [70], the 
occurrence of conjugated dienes [71], and/or highly increased levels of LPO prod­
ucts such as thiobarbituric-acid reactive species (TBARS) [72] and MDA [73]. This 
latter article by Khoschsorur et al. [73] was the first to describe a correlation 
between oxLDLAb and MDA in transplantation patients (r=0.61; p:::;O.OOl) 
together with the finding that septic episodes and/or courses were accompanied by 
persisting low oxLDLAb levels. A significant consumption of Ab was also shown 
[58, 64J, together with increasing concentrations with the onset of recovery. In a 
total of 23 patients (16 with sepsis, seven with SIRS), Ziervogel et al. [74] investi­
gated the prognostic power of oxLDLAb serum titers. Septic survivors produced sig­
nificantly increasing antibody levels together with decreasing PCT concentrations. 
Non-survivors exhibited precisely inverse courses. The findings were identical in the 
SIRS patients, although PCT turned out to be a weaker prognostic marker. Com­
parison to Neo showed results similar to oxLDLAb in both groups. 

Head to head 

A critical valuation of these surrogate markers is not an easy task. At present a 
valid comparison is only possible for PCT and Neo. Both molecules show fast 
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enough stimulation to serve as early onset markers together with a sufficient half­
life time for stable monitoring. Neo measurement in acute inflammation was intro­
duced over ten years earlier than peT and oxLDLAb, and therefore more data have 
been collected and validated. Further studies with precisely defined entry criteria 
are necessary not only to compare all three parameters but particularly to elabo­
rate statistical dependencies among them because there is an evident connection at 
least between Neo, oxLDLAb and macrophages. Additionally, there may exist sub­
populations of patients where the different markers may reveal different prognos­
tic power. For example, there seems to be a slight superiority for peT in terms of 
bacterial infection in severely ill patients prone to develop septicemia, but this 
could be outweighed by oxLDLAb in conditions more involving oxidative stress 
and LPO. 

The radioimmunoassay for Neo is by far the quickest method (1 h), followed by 
peT (2.5 h) and oxLDLAb (3.5 h). The use of Neo in routine laboratories is cer­
tainly limited due to radioactivity; a switch to the existing ELISA technique would 
probably prolong the procedure. The peT luminescence immunoassay requires spe­
cialized equipment. 

Conclusion and prospects 

In one of his last printed statements Roger C. Bone [75] expressed this view: "Our 
concept of the pathogenesis of sepsis is undergoing revision because of the disap­
pointing results of several pharmacologic randomized, placebo-controlled clinical 
trials. These trials were based on the assumption that a single proinflammatory 
mediator can modulate the events that define sepsis in a heterogenous group of 
patients. Drugs, as administered, did not improve outcome in sepsis and SIRS. 
Although the evidence available at that time suggested that such a strategy should 
be successful, hindsight indicates that this was a simplistic approach. Instead, it 
should be emphasized that for patients with sepsis the predominant state, over time, 
may be inflammatory, anti-inflammatory, or both." The close relation between this 
statement and the attempts to fully understand what is happening at any point of 
time in every patient is obvious. Advanced biochemistry, molecular biology and bio­
physics develop and provide tools to measure and quantify almost every item of 
interest. Monitoring of severely ill patients routinely comprises about 50 parame­
ters, and this number is easily doubled in research units. Nonetheless, the situation 
also clearly shows the limits, because - in a very benevolent view - with a few excep­
tions the step from diagnosing an already present clinical condition to its prognosis 
remains unaccomplished. One pathway to the solution of this problem is certainly 
the search for new parameters; another, the ongoing evaluation and perhaps the 
combination of established measurements. These efforts need the support of exten­
sive pathophysiological research, because improved knowledge about the patients' 
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underlying disease may facilitate the finding and/or choice of the appropriate mark­
er or set of markers. 

It remains an unresolved question as to what extent the theoretical approach 
influences the search for markers. Perhaps it was these considerations that helped 
come up with the so-called surrogate markers. In some cases they may prove to be 
of overall importance and display all effects of either progression of the disease or 
action of the therapeutic drug [76]. In other circumstances they reveal independence 
from most common clinical parameters and therefore from underlying individual 
irregularities, thus possibly describing a "meta condition" as yet not precisly 
defined: Just as in the Uncertainty Principle, where often there is "no yet proven link 
between cause and effect and the results can be expressed only in terms of proba­
bility that a certain effect will occur". 

Appendix 

As it should be, research is overtaking authors of reviews. In a very recent report 
peripheral blood mononuclear cells were identified to express peT mRNA and that 
this expression is modulated by bacterial LPS and sepsis related cytokines [77]. 
Additionally, an interesting experiment was performed by Nylen et a1. [78]. When 
septic animals were treated with an antiserum reactive to peT, mortality was 
decreased. These findings suggest that peT is more than a marker of bacterial sep­
sis, it can be seen as an active player in inflammatory processes. 
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Introduction 

The vascular endothelium regulates the tone of the underlying smooth muscle and 
the reactivity of blood platelets and neutrophils by the release of mediators, in par­
ticular nitric oxide (NO), prostacyclin and endothelin-1 (ET-1) . The first two of 
these are potent vasodilators which also inhibit platelet and neutrophil aggregation 
and adhesion, while ET-1 is the most potent mammalian vasoconstrictor peptide yet 
found. Unlike NO (which keeps the vasculature in a constant state of active vasodi­
lation) and ET-1, prostacyclin is less important for the regulation of vascular tone 
under physiological and even pathophysiological conditions. Thus, the discovery of 
two potent vasoactive mediators NO and ET-1 has stimulated an enormous amount 
of research into the regulation of vascular tone in health and disease. 

NO is generated from L-arginine by a family of enzymes collectively called NO 
synthases (NOS), which contain an oxygenase domain (containing the catalytic cen­
ter) and a reductase domain. The synthesis of NO from L-arginine and molecular 
oxygen involves the generation of NG-hydroxy-L-arginine and water (first step) and 
subsequently the oxidation of NG-hydroxy-L-arginine in the presence of molecular 
oxygen to form NO, L-citrulline and water. When generated, NO diffuses to adja­
cent cells where it activates soluble guanylate cyclase, resulting in the formation of 
cGMP, which in turn mediates many (but not all) of the effects of NO. NO is gen­
erated by many mammalian cells by at least three different isoforms of NOS. The 
NOS in endothelial cells (eNOS or NOS III) and neuronal cells (nNOS or NOS I) 
are expressed constitutively, and both enzymes require an increase in intracellular 
calcium for activation. Activation of macrophages and many other cells with pro­
inflammatory cytokines or endotoxin results in the expression of a distinct isoform 
of NOS (inducible NOS; iNOS or NOS 11), the activity of which is functionally inde­
pendent of changes in intracellular calcium [1-5]. Thus, it is not surprising that NO 
has many biological functions in the cardiovascular, nervous and immune systems. 
For instance, activation of eNOS by shear stress results in a continuous release of 
picomolar amounts of NO which helps to regulate blood pressure and organ blood 
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flow by causing vasodilatation and opposing the effects of circulating cate­
cholamines. NO also reduces the adhesion of platelets and polymorphonuclear 
leukocytes (PMNs) to the endothelium [3]. The latter effect of NO is, at least in 
part, due to the prevention by NO of the expression of the adhesion molecules P­
selectin and intercellular adhesion molecule (ICAM-l) on the surface of endothelial 
cells. In addition to preventing the adhesion of platelets to endothelial cells, NO also 
directly attenuates the activation of platelets. These effects of NO are associated 
with and/or due to prevention of the expression of P-selectin (on platelets), secretion 
of platelet granules, intracellular calcium flux, as well as binding of glycoprotein 
lIb/IlIa to fibrinogen [6]. 

Although much research has focused on the release of vasodilator autacoids 
including NO, the endothelium also produces vasoconstrictor substances. One of 
these has been postulated to be angiotensin II, another superoxide anion, and a 
third, a prostaglandin endoperoxide. Despite these suggestions it would, however, 
be fair to say that only one vasoconstrictor factor, ET-l, has been properly identi­
fied. ET-l, a member of the 21-amino acid endothelin family of peptides (ET-l, ET-
2, ET-3 and sarafotoxins), is a potent vasoconstrictor produced by the endothelium 
from its precursor big-endothelin-l by endothelin-converting enzyme-l [8, 9]. Two 
distinct endothelin receptors have been cloned and expressed, namely ETA and ET B. 
The vasoconstrictor effects of ET-l are primarily mediated by activation of the ETA 
receptor, which is present on vascular smooth muscle cells. Activation by ET-1 of 
the ETB receptor located on endothelial cells results in a release of nitric oxide (NO) 
and prostacyclin to cause vasodilatation [9,10]. ETB receptors also exist on vascu­
lar smooth muscle cells of certain blood vessels of a variety of species including rats, 
pigs, dogs and man, where they mediate vasoconstriction. In healthy humans or ani­
mals ET-1 is generally reported to circulate at particularly low concentrations. This 
suggests that ET-1 may only have minor roles within the healthy circulation, even 
bearing in mind its particularly short circulating half-life (3 to 7 min). In marked 
comparison to the healthy animal, substantial elevations in the circulating and/or 
tissue levels of ET-1 have been noted in a variety of cardiovascular disorders includ­
ing septic shock. Taken together these observations suggest that the endothelin sys­
tem is largely dormant in the healthy adult body, and particularly within the healthy 
adult circulation, but that it becomes activated in circulatory shock [11]. This chap­
ter reviews the roles of NO and ET-l in the pathophysiology of circulatory shock in 
animals and man. 

Role of NO in the pathophysiology of septic shock 

Since the discovery in 1990 that an enhanced formation of endogenous NO con­
tributes to (i) the hypotension caused by endotoxin and TNFa [12-14], (ii) the vas­
cular hyporesponsiveness to vasoconstrictor agents (also termed 'vasoplegia') [15, 
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16], and (iii) the protection of liver integrity in rodents with sepsis [17], there has 
been an ever increasing interest in the role of NO in the pathophysiology of animals 
and man with septic shock. The overproduction of NO in animal models of circu­
latory shock is due to an early activation of eNOS (which is transient) and the 
delayed induction of iNOS activity (resulting in the formation of nanomolar 
amounts of NO) in macrophages (host defence), vascular smooth muscle (hypoten­
sion, vascular hyporeactivity, maldistribution of blood flow) and parenchymal cells 
[18]. The finding that inhibitors of NOS activity attenuate the hypotension and 
vasoplegia caused by endotoxin in animals (see above), together with the discovery 
that mice in which the iNOS gene has been inactivated by gene-targeting (iNOS 
knockout mice) exhibit only a minor fall in blood pressure when challenged with 
endotoxin [19, 20], support the hypothesis that an overproduction of NO by iNOS 
contributes to the circulatory failure in septic shock. It is less clear whether 
increased formation of NO also contributes to the organ injury and dysfunction 
caused by endotoxin. The formation of NO by eNOS (and potentially also by 
iNOS) also exerts beneficial effects in shock including vasodilatation, prevention of 
platelet and leukocyte adhesion, maintenance of microcirculatory blood flow and 
augmentation of host defence (Tab. 1). Thus, it is not surprising that basic and clin­
ical scientists have advocated the use of contrasting therapeutic approaches includ­
ing inhibition of NOS activity, enhancement of the availability of NO (NO-donors, 
NO-inhalation) or a combination of both approaches. The following paragraphs 
highlight some of the effects and side effects of inhibitors of NOS activity (Tab. 1) 
in animal models of septic shock. For a more detailed review of (i) the many roles 
of NO in the pathophysiology of septic or other forms of shock, (ii) the mechanisms 
leading to the induction of iNOS (Fig. 1) and (iii) a more detailed account of the 
chemistry and pharmacology (iso-enzyme selectivity) of NOS inhibitors, the inter­
ested reader is referred to recent reviews of these topics [4, 5, 21, 22]. 

Table 1 - The possible effects of administration of NOS inhibitors in septic shock, both ben­

eficial and adverse effects are shown. 

Beneficial 

Increased blood pressure 

Restores responsiveness to pressor agents 

Cardiac output return to baseline values 

Decreased production of peroxynitrite 

Attenuation of inhibition of mitochondrial respiration 

Improved organ function 

Improved survival 

Adverse 

Excessive vasoconstriction 

Pulmonary hypertension 

Fall in cardiac output 

Increased platelet adhesiveness 

Increased neutrophil adhesion 

Worsened organ function 
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Inhibition of NOS activity in animal models of shock: Effects and side effects 

Although there is good evidence that endotoxemia or sepsis in rodents results in the 
induction of iNOS (in various tissues) leading to an increase in the plasma levels of 
nitrite/nitrate (from 20 to up to 600 11M), there is limited information regarding the 
time course of iNOS induction, the degree of iNOS activity (in tissues) or even the 
plasma levels of nitrite/nitrate in large animal models (pig, dog, sheep, baboon) of 
shock or in humans with sepsis and septic shock Clearly, sepsis (or endotoxemia) 
results in an increase in the plasma levels of nitrite/nitrate in these species. Howev­
er, it appears that the rise in the plasma levels of nitrite/nitrate in e.g. humans with 
septic shock is much smaller than in rodents [23]. When evaluating the role of NO 
or elucidating the effects of NOS inhibitors in animal models of shock, one needs to 

remember that (i) many of the models used are non-resuscitated, hypodynamic mod­
els of shock, (ii) the effects (and side effects) of non-selective inhibitors of NOS 
activity (see below) will greatly vary depending upon the degree of iNOS induction 
in the species, and (iii) any observed effects of the respective NOS inhibitor used will 
obviously depend on the chosen dose regimen and timing of the intervention. 

The N-substituted L-arginine analogue, NG-methyl-L-arginine (L-NMMA), was 
the first agent reported to inhibit NOS activity. Following the discovery in 1990 that 
L-NMMA exerted beneficial hemodynamic effects in animal models of endotoxemia 
(Fig. 2) [12-14], many subsequent studies aimed at elucidating the role of NO in 
septic shock have used the NOS inhibitor NG-nitro-L-arginine methyl ester (L­
NAME), rather than L-NMMA, as L-NAME is cheap and readily available. In con­
trast to L-NMMA, L-NAME is a relatively selective inhibitor of eNOS rather than 
iNOS activity [22] and, hence, higher doses of this agent may cause excessive vaso­
constriction (particularly in the pulmonary, renal and myocardial vascular bed) and 
enhance the incidence of both microvascular thrombosis and neutrophil adhesion to 
the endothelium. Thus, L-NAME reduces oxygen delivery and exacerbates organ 
injury in many, but not all, animal models of endotoxic or septic shock (see [21]). 
These results are not necessarily solely due to the use of very large amounts of L­
NAME, but rather a reflection of the fact that L-NAME is a more selective inhibitor 

Figure 1 

Mechanism(s) leading to the overproduction of nitric oxide (NO) in septic shock. The release 

of pro-inflammatory cytokines including tumour necrosis factor a (TNFa), IL-1 and interfer­

on- r (lFNr.J leads to the activation of (receptor-linked) protein tyrosine kinases and of the 

transcription factor NF-1([3, which in turn causes the expression of iNOS protein. An 

enhanced formation of iN OS contributes to the circulatory failure (vasodilatation, vascular 

hyporeactivity), inhibition of certain enzymes, and possibly host defence and organ 

in;ury/dysfunction. LPS, lipopolysaccharide 
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Figure 2 

Comparison of the effects of the non-selective NOS inhibitor NG-methyl-L-arginine (L­

NMMA), the iNOS selective NOS inhibitor 1400W, the non-selective ET receptor antagonist 
58209670 and the ETA receptor antagonist 8Q-485 on the fall in mean arterial blood pres­

sure (MAP) caused by endotoxin in the anesthetised rat. Please note that the inhibition of 

NOS activity with either L-NMMA or 1400W restores blood pressure. In contrast, the non­

selective blockade of ET receptors augments the hypotension caused by endotoxin in this 

rodent model of severe endotoxemia. 

of eNOS than iNOS activity. Although L-NAME may be suitable for inhibiting the 
generation of NO by all three isoforms of NOS, this agent should not be used as a 
therapeutic intervention in diseases such as septic shock, where an overproduction 
of NO by iNOS has been implicated to be the underlying cause of the pathology. 

In contrast to L-NAME, L-NMMA is an endogenous substance present in the 
urine of both animals and man. Although L-NMMA inhibits all isoforms of NOS 
to a variable degree, it is a more potent inhibitor of iNOS than eNOS activity. L­
NMMA is a competitive inhibitor of the binding of L-arginine to NOS and, hence, 
excess of L-arginine reverses the inhibition of NOS activity by L-NMMA. The 
effects of L-NMMA in models of shock vary from "very beneficial" to "moderate­
ly beneficial with some adverse effects" to "detrimental" (often due to marked inhi-
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bition of eNOS activity) [21, 22]. Clearly, the observed result depends on the dose 
of L-NMMA as well as the model of shock used. When given after the onset of 
hypotension, infusions of relatively low doses of L-NMMA (3 to 10 mg/kg/h) have 
been convincingly demonstrated to exert beneficial hemodynamic effects in rodents, 
sheep, dogs and baboon models of endotoxemia and sepsis. For instance, in con­
scious baboons, administration of live E. coli bacteria resulted in a significant 
increase in the serum levels of biopterin, neopterin and nitrate, suggesting induction 
of GTP cyclohydrolase I and iNOS. In this model, infusion of L-NMMA 
(5 mg/kg/h) attenuated the rise in the serum levels of nitrate and creatinine, the 
hypotension and fall in peripheral vascular resistance and the substantial six day 
mortality caused by severe sepsis in this species (D. Rees and H. Redl, personal com­
munication). These findings clearly document that the circulatory failure caused by 
septic shock in baboons is largely mediated by an enhanced formation of NO by 
iNOS and that inhibition of iNOS with L-NMMA improves outcome in this model. 

Selective inhibition of iNOS activity in experimental endotoxemia 

The observed beneficial effects of L-NMMA in animal models of septic shock stim­
ulated the search for selective inhibitors of iNOS activity. In the last years several 
compounds have been tested including aminoguanidine, certain isothiourea-deriva­
tives (e.g. aminoethyl-isothiourea), ami dines (e.g. 1400W) and amino acid ana­
logues (L-NIL). As an extensive review of the chemistry and pharmacology of selec­
tive inhibitors of iNOS activity is not possible within this monograph, the interest­
ed reader is referred to a recent review of this topic [22]. Aminoguanidine was the 
first relatively selective inhibitor of iNOS activity discovered [24]. Although 
aminoguanidine is a more potent inhibitor of iNOS than eNOS activity in vitro and 
in vivo, aminoguanidine is not a very potent inhibitor of iNOS activity. Although a 
variety of studies document beneficial effects of aminoguanidine on the circulatory 
failure and the multiple organ dysfunction caused by endotoxin in animals, the 
interpretation of the mechanism(s) by which aminoguanidine exerts these beneficial 
effects is difficult, as aminoguanidine is not a specific inhibitor of iNOS activity. 
Indeed, aminoguanidine has many other pharmacological properties including inhi­
bition of (i) histamine metabolism, (ii) polyamine catabolism, (iii) the formation of 
advanced glycosylation end products, and of (iv) catalase activity (as well as other 
copper- or iron-containing enzymes). Interestingly, aminoguanidine also prevents 
the expression of iNOS protein by a hitherto unknown mechanism (see [21]). Thus, 
aminoguanidine has to be regarded as an agent which (i) is a relatively selective, but 
not very potent inhibitor of iNOS activity, (ii) reduces the formation of NO by two 
distinct mechanisms, namely prevention of the expression of iNOS protein and inhi­
bition of iNOS activity, and (iii) exerts many other effects, which appear to be unre­
lated to the inhibition of iNOS activity (non-specific effects). 
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S-substituted isothioureas (ITUs) are non-amino acid analogues of L-arginine 
and also potent inhibitors of iNOS activity with variable isoform selectivity [25-27]. 
The most potent isothioureas are those with only short alkyl chains on the sulphur 
atom and no substituents on the nitrogen atoms. In 1994, we demonstrated that S­
methyl-ITU reverses the circulatory failure caused by endotoxin in the rat. This ben­
eficial hemodynamic effect of S-methyl-ITU was associated with an attenuation of 
the liver injury and hepatocellular dysfunction caused by endotoxin in rats as well 
as an increase in the survival rate of mice challenged with a high dose of endotoxin 
[26]. Similarly, aminoethyl-ITU exerts beneficial hemodynamic effects and attenu­
ates the degree of liver injury/dysfunction caused by endotoxin in the rat [28J. In 
pigs with endotoxemia, injection of aminoethyl-ITU restores hepatic arterial blood 
flow (from reduced to normal levels) and increases hepatic oxygen consumption, 
without affecting cardiac output [29]. Having stressed that some of the beneficial 
effects of aminoguanidine in shock may not be due to its ability to inhibit iNOS 
activity (e.g. non-specific effects), it should be noted that S-substituted isothioureas 
are also likely to elicit effects which are unrelated to inhibition of NOS activity. For 
instance, aminoethyl-ITU is a scavenger of peroxynitrite and exerts beneficial effects 
in models of disease/pathology known to be mediated by oxygen-derived free radi­
cals (see [21]). Interestingly, dimethyl-ITU (which does not inhibit iNOS activity) is 
a weak radical scavenger which inhibits the activation of the transcription factor 
NF-KB. In rats challenged with either endotoxin or live Salmonella typhimurium, 
dimethyl-ITU attenuates the formation of TNFa and improves survival [30]. The 
ability of aminoethyl-lTU to scavenge peroxynitrite and to prevent the expression 
of certain proteins (possibly by attenuating the activation of NF-KB) may well con­
tribute to or even account for the beneficial effects of this isothiourea-derivative in 
animal models of shock. 

S-substituted ITUs and guanidines contain the amidine function 
(-CH(=NH)NH2), a feature which they have in common with O-substituted iso­
ureas and amidines themselves. In 1996, we reported that certain amidines inhib­
it NOS activity [31]. Recently, an analogue of acetamidine termed 1400W [N-(3-
(aminomethyl)benzyl)acetamidine] has been reported to be a slow, tight-binding 
inhibitor of human iNOS. The inhibition by 1400W of the activity of human 
iNOS is potent, dependent on the co-factor NADPH, and either irreversible or 
extremely slowly reversible. Most notably, 1400W was approximately 5000-fold 
more potent as an inhibitor of iNOS activity than of eNOS activity (human). In a 
rat model of vascular injury caused by endotoxin, 1400W is 50-fold more potent 
as an inhibitor of iNOS than eNOS activity and attenuates the vascular leak syn­
drome [32]. Interestingly, selective inhibition of iNOS activity with 1400W atten­
uates the circulatory failure (Fig. 2), but not the liver injury/dysfunction (Fig. 3), 
caused by endotoxin in the rat [33]. In addition to 1400W, L-NIL is a highly selec­
tive and potent inhibitor of iN OS activity in the rat [34] and mouse [35]. Like 
1400W, L-NIL attenuates the delayed hypotension, but does not reduce the degree 
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Figure 3 

This figure shows the effects of the seledive iNOS inhibitor 1400W on the rise in the serum 

levels of urea (an indicator of the development of renal dysfunction) and aspartate amino­

transferase (AST, an indicator of hepatocellular iniury) in anaesthetised rats challenged with 

endotoxin (LPS, 6 mg kg-1 i. v.). Animals received iniedions of saline rather than LPS and 

were treated with infusions of either saline (vehicle for 1400W, open columns,n=10) or 

1400W (10 mg kg-1 bolus plus 10 mg kg-1 h-1 (horizontal stripes, n=3). Different groups of 

LPS-rats were treated with (starting 2 h after LPS) (i) vehicle (saline control, black columns, 

n=10) 1400W 3 mg kg-1 bolus +3 mg kg-1 h-1 (diagonal stripes, n=8) (iii) 1400W 10 mg 

kg-1 bolus + 10 mg kg-1 h-1 (checked column, n=5). 'p < 0.01, "p < 0.001 when compared 

by ANOVA to rats which had received vehicle rather than LPS. There were no differences in 

urea or AST between the LPS controls and 1400W treated rats. 
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of renal dysfunction, liver dysfunction or hepatocellular injury caused by endo­
toxin in the rat [33]. These findings support the view that selective inhibition of 
iNOS activity might provide a useful approach in the restoration of blood pres­
sure in patients with shock. Most notably, however, our data are also consistent 
with the notion that - as in the case of iNOS knock out mice challenged with 
endotoxin [19, 20] - enhanced formation of NO by iNOS primarily contributes 
to the circulatory failure, but not to the liver injury or dysfunction caused by endo­
toxin. 

Nitric oxide synthase inhibition in humans with septic shock 

Although our understanding of the role of NO in animal models of circulatory 
shock has improved substantially over the past years, our knowledge regarding the 
biosynthesis and importance of NO in the pathophysiology of patients with septic 
shock is still very limited. Although several studies support the view that septic 
shock in man is associated with an enhanced formation of NO, it should be stressed 
that the increase in the plasma levels of nitrite/nitrate elicited by endotoxin, 
cytokines or bacteria in rodents (lO-fold) is substantially higher than the observed 
increases in the plasma levels of these metabolites of NO in other animal species 
(pig, sheep etc) or humans. Early reports of beneficial hemodynamic effects of L­
NMMA in humans with septic shock ([36], see [23] for review) stimulated a phase 
I, multi-center, open-label, dose-escalation (1, 2.5, 5, 10 or 20 mg/kg/h for up to 
eight h) study using L-NMMA (S46C88) in 32 patients with septic shock. In this 
study, L-NMMA sustained blood pressure and enabled a reduction in vasopressor 
(norepinephrine) support. The cardiac index fell to baseline values (possibly due to 
an increase in peripheral vascular resistance) and left ventricular function was well 
maintained. Moreover, L-NMMA increased oxygen extraction, while pulmonary 
shunt was not worsened [37]. A recent, placebo-controlled multi-center study 
involving 312 patients with septic shock, has evaluated the effects of L-NMMA on 
the resolution of shock at 72 h (primary endpoint). The severity of illness according 
to the SAPS II score was similar between placebo and the L-NMMA group. Infusion 
of L-NMMA enhanced mean arterial blood pressure and systemic vascular resis­
tance index and decreased cardiac output (from elevated towards normal levels). L­
NMMA had no effect on left ventricular systolic work index indicating that the fall 
in cardiac output was not due to an impairment in cardiac contractility. In patients 
treated with L-NMMA, there was a transient increase in mean pulmonary artery 
pressure. Interestingly, L-NMMA did not affect the thrombocytopenia or the renal 
dysfunction caused by sepsis. Most notably, 41 % of patients treated with L­
NMMA, but only 21 % of patients treated with placebo, recovered from shock with­
in 72 h. There was also a strong trend for a reduction in mortality (at day 14) in 
patients treated with L-NMMA. 
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Role of endothelin-1 in circulatory shock 

There is good evidence that endotoxemia or sepsis leads to a substantial increase in 
the plasma levels of ET-1. Pronounced rises in the plasma levels of ET-1 occur in 
experimental endotoxemia or septicemia in rats, dogs, pigs, sheep and baboons 
[38]. More importantly, enhanced ET-1 serum levels have also been documented in 
humans with sepsis and septic shock [39,40]. In man, the serum levels of ET-1 cor­
relate positively with the severity of endotoxemia [39] and are lower in survivors 
than in non-survivors of septic shock [40]. In patients with sepsis, with or without 
adult respiratory distress syndrome (ARDS), plasma levels of ET-1 correlated posi­
tively with organ failure score and oxygen consumption, and negatively with the 
Pa02:Fi02 ratio [41]. There was, however, no correlation between plasma ET-1 and 
plasma creatinine levels suggesting that a reduction in the clearance of ET-1 does 
not account for the elevated plasma levels [41]. Although the elevation in the plas­
ma levels of ET-1 are largely due to an enhanced formation of this peptide, there is 
some evidence that - at least in patients with a substantial impairment of renal func­
tion (anuria) - the plasma levels of ET-1 are significantly higher than in those 
patients without anuria. Thus, a reduction in ET-1 clearance may contribute to the 
high plasma levels of this peptide in patients with a severe impairment of renal func­
tion [38]. 

Regulation of endothelin formation by prO-inflammatory cytokines 

It is often thought that the production of ET-1 is exclusively regulated at the level 
of gene transcription. In agreement with this view the production of ET-1 by cul­
tured endothelial cells is increased by stimulants such as growth factors and vasoac­
tive substances over the course of hours rather than minutes. ET-1 has, therefore, 
not been seen as a mediator of rapid responses within the vasculature. There are, 
however, certain stimuli that will quickly increase the circulating levels of ET-l. One 
of the first reports noting that ET-1 levels in the circulation could increase rapidly 
was from studies in humans in which it was shown that such changes followed rapid 
postural changes [42]. Surgery also appears to cause fairly rapid increases in the cir­
culating levels of ET-l both in humans [43] and in animals [44]. It appears, there­
fore, that in vivo the circulating levels of ET-1 can be regulated over short periods, 
i.e. minutes rather than hours [11]. 

Although the source of ET-l in endotoxemia is not clear, there is evidence that 
the release of ET-1 may be triggered by pro-inflammatory cytokines. For instance, 
intravenous administration of TNFa to rats causes a rapid increase in the circulat­
ing levels of ET-1, that are unaffected by pre-treatment of the animals with phos­
phoramidon [45], suggestive of a release of ET-1 from pre-formed stores. When 
hearts are removed from rats treated 15 min previously with TNFa and perfused at 
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constant flow ex vivo with Krebs' buffer, a profound coronary vasoconstriction is 
revealed [46]. This vasoconstriction is seen functionally as an increase in coronary 
perfusion pressure to more than double that seen in hearts removed from sham­
treated animals. The coronary vasoconstriction can be positively correlated to the 
accompanying increase in the circulating level of ET-l, for it is greatly decreased 
when rats are pre-treated with an endothelin ETA receptor antagonist or with anti­
bodies directed against ET-l. Similarly, treatment of rats with IL-2 causes an 
increase in the plasma levels of TNFa which is associated with an increase in the 
coronary perfusion pressure [46]. More importantly, the coronary vasoconstriction 
seen in these IL-2-treated rats is reduced by antibodies directed against TNFa or by 
endothelin ETA receptor antagonists. There is additional evidence supporting the 
notion that cytokines may increase the production of ET-l over the short to medi­
um term (minutes to hours). Intravenous infusion of live bacteria into young pigs 
causes, within 4 h, increases in the circulating levels of ET-l which are markedly 
reduced if the animals are treated with an antibody directed against TNFa. In the 
baboon, the increase in the circulating concentration of big ET-l caused by bac­
teremia/endotoxemia is also reduced by treatment with an anti-TNFa antibody 
[48]. Furthermore, in humans with sepsis there is a positive correlation between the 
circulating levels of TNFa and ET-l [49]. Thus, cytokines, and in particular TNFa, 
can promote both an increase in the immediate release of ET-l and also an up-reg­
ulation in the expression of ET-l over periods of hours. 

Pro-inflammatory cytokines including TNFa, IL-l and interferon-y can also stim­
ulate the release/biosynthesis of ET-l from a variety of cultured cells (e.g. endothe­
lial cells, epithelial cells, mesangial cells, macrophages, astrocytes etc.) (Tab. 2). For 
instance, treatment of bovine, porcine or human endothelial cells with any of the 
above cytokines (or a combination thereof) leads - within hours - to a significant 
increase in ET-l release by these cells [38]. However, it is not only the endothelium 
within the vascular wall that may respond to cytokines by up-regulating their pro­
duction of ET-l. The vascular smooth muscle, which is not considered to be a source 
of ET-l under normal conditions, can also be induced to release ET-l. Treatment of 
human vascular smooth muscle cells in culture, for instance, with the vasoconstric­
tor hormones angiotensin II or arginine-vasopressin, TGF~, platelet-derived growth 
factor or epidermal-growth stimulates the expression of ET-l [50]. Taken together, 
there is evidence that TNFa, IL-l and interferon-y stimulate the synthesis/release of 
ET-l by a range of endothelial, epithelial and other cell types (Tab. 2). 

Role of ET-1 in the hemodynamic alterations associated with sepsis 

Vascular hyporeactivity to vasoconstrictors 
Sepsis is associated with an impairment in the ability of the vascular smooth muscle 
to contract in response to a great variety of vasoconstrictors including noradrena-
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Table 2 - Enhanced formation of ET-1 by various cells types (in culture) exposed tumour 

necrosis factor a (TNFa), interleukins (fL), interferon-r(fFN~ or to transforming growth fac­

tor f3 (TGFf3). 

Cell type Species Cytokine 

Endothelial porcine IL-1, TGF~, TNFa 

bovine TNFa, INFy, IL-1~ 

HUVEC IL-1 ~ 

rat IL-1a, IL-1~, TNFa 

Amnion human IL-1~, EGF, TN Fa, IL-6 

LLCPK1 (renal epithelium) porcine TGF~, TNFa, IL-1~ 

Airway epithelium human IL-1, TNFa, IL-2 

guinea-pig IL-8, TNFa, TGF~ 

Mesenteric artery rat IL-2 

Vascular smooth muscle human TGF~ 

Mesangial human TGF~ 

rat TNFa 

Breast cancer human IL-6 

line, adrenaline, serotonin and calcium. Interestingly, the contractile responses elicit­
ed by ET-l in aortic rings of rats subjected to endotoxemia for several hours are not 
diminished [5lJ- Similarly, endotoxemia does not cause an impairment of the con­
tractile responses caused by ET-l in the rat mesentery [52]. In pithed rats, the pres­
sor responses caused by injection of ET-l are also not attenuated, while those of a 
variety of other vasoconstrictors are [53]. There is, however, some evidence that the 
contractile responses to ET-l are impaired in the microcirculation of animals with 
sepsis. For instance, in rats made septic by coecal ligation and puncture, the vaso­
constrictor responses elicited by ET-l in the cremaster muscle are significantly 
reduced_ Interestingly, inhibition of NO formation restores the contractile respons­
es to ET-l in this tissue [54]. Thus it is possible that an overproduction of NO by 
iNOS in vascular smooth muscle leads to a reduction in the constrictor/pressor 
responses elicited by ET-l in some vascular beds (microcirculation?), but not in oth­
ers (conductance vessels?). Nevertheless, it is possible that inhibitors of NOS activ­
ity may reduce vascular diameter by reducing the generation of NO and also by 
facilitating the vasoconstrictor responses to ET-l. It should be noted that endotox­
emia (in the rat) also leads to an increase in the binding of ET-l to membranes of 
the kidney. This has been attributed to an increase in receptor density, which in turn 
may amplify the effects of ET-l. Thus, elevated plasma levels of ET-l together with 
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an increase in ET-receptor density may facilitate an ET-l mediated excessive vaso­
constriction (in some vascular beds) (Fig. 4). 

ET-l and alterations in systemic hemodynamics in shock 
There is evidence that the enhanced formation of ET-l in endotoxemia may serve to 

counteract the severe hypotension. For instance, infusion of ET-l reduces the fall in 
both blood pressure and cardiac output caused by endotoxin in dogs (see [38]). 
Moreover, the non-selective ET A/ET B-receptor antagonist SB 209670 aggravates the 
fall in blood pressure caused by endotoxin in the conscious rat [55]. In the anaes­
thetised rat, SB 209670 substantially aggravates the hypotension caused by endo­
toxin (Fig. 2) resulting in a reduction in organ perfusion, an increase In organ 
injury/dysfunction and ultimately in an increase in mortality [56]. 

ET-l and the alterations in regional hemodynamics associated with shock 
Although the rapid release of ET-l in endotoxemia helps to maintain blood pressure 
and organ perfusion (beneficial effects of ET-l), excessive rises in the plasma levels 
of ET-l for longer periods are also associated with excessive vasoconstriction in 
some vascular beds (harmful effects of ET-l). For instance, there is evidence (in pigs 
and sheep) that the increase in pulmonary, splenic, portal and renal vascular resis­
tance correlates positively with an increase in the plasma levels of ET-l [38]. In con­
scious rats, the release of ET-l afforded by endotoxin contributes to the constriction 
of the mesenteric (and other) vascular bed(s) [55]. The delayed rise in pulmonary 
vascular resistance and the associated fall in cardiac output afforded by endotoxin 
in pigs is also due to an overproduction of ET-l, as it is reduced by the non-selec­
tive ET-receptor antagonist bosentan [57, 58]. In pigs with endotoxemia, bosentan 
also restores cardiac index, increases the stroke volume index and improves systemic 

Figure 4 

This figure shows the mechanism(s) leading to the overprodudion of endothelin-1 (ET-1) in 

septic shock. The release of pro-inflammatory cytokines including tumor necrosis fador a 

(TNFa), IL-1 and interferon-y (IFNi? leads to the enhanced formation of ET-1 by causing 

transcription/translation of the preproET-1 gene. Subsequently, preproET-1 is processed by 

endothelin-converting-enzyme (EeE) to form mature ET-1. ET-1 is secreted (in endothelial 

cells) via secretory granules which may serve as storage sites for ET-1 . Please note that 

cytokines and other stimuli can auso cause a rapid (within minutes) release of ET-1, the 

mechanism(s) of which is unknown. Once released, ET-1 may contribute to vasoconstridion, 

vascular hyperreadivity, organ dysfundion, vascular leak syndrome, defed in tissue oxygen 

extradion and cytokine release 
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oxygen delivery and acid base balance. Interestingly, bosentan further augments the 
rise in the plasma levels of ET-1 caused by endotoxin [57]. The ETA-receptor antag­
onist BMS 182874 also attenuates the rise in pulmonary vascular resistance in sheep 
with endotoxemia (see [38]). 

Role of ET-1 in the organ dysfunction associated with endotoxemia or sepsis 

Renal dysfunction 
Within the kidney, ET-1 is generated by vascular endothelial cells (large vessels), 
glomerular endothelial cells, renal epithelial cells and proximal tubule cells [59]. The 
renal vasculature is particularly sensitive to the vasoconstrictor effects of ET-1, with 
a 10-fold greater response than that observed in bronchial, femoral and coronary 
arteries [60]. In the kidney, ET-1 causes a reduction in glomerular filtration rate 
(GFR) and an increase in renovascular resistance. The vasoconstriction is equipotent 
in the afferent and efferent arterioles, such that the glomerular hydrostatic pressure, 
the driving force for glomerular filtration, is unaltered [61]. Thus, it has been pro­
posed that the reduction in GFR caused by ET-1 is due to mesangial cell contraction 
[61]. In a rodent model of endotoxemia, anti-ET antiserum was infused selectively 
into the left kidney via the renal artery, preventing the fall in GFR in the ipsilateral 
kidney, but not affecting the fall in GFR in the contralateral, control kidney [61]. 
Thus, it has been suggested that endogenous ET-1 may contribute to the develop­
ment of the renal dysfunction associated with endotoxemia. There are, however, 
also other studies which suggest that the blockade of ET-receptors does not improve 
renal function in endotoxemia. For instance, the rise in blood urea nitrogen afford­
ed by endotoxin in the rat is not attenuated by pretreatment of the animals with SB 
209670 [62]. Similarly, SB 209670 does not affect the rise in the serum levels of cre­
atinine and urea caused by endotoxin in the anaesthetised rat [56]. Selective block­
ade of ETA receptors with BQ-485 or of ETB receptors with BQ-788 did also not 
reduce the impairment in renal function caused by endotoxin in the rat [63]. 

Liver injury and dysfunction 
In the anaesthetised rat, endotoxaemia for 6 h results in rises in the serum levels of 
glutamate-oxalate-transferase and glutamate-pyruvate-transferase (indicators of 
hepatocellular injury) and bilirubin and y-glutamyl transferase (indicators of liver 
failure). Treatment of LPS-rats with the ET B receptor antagonist BQ-788 attenuat­
ed the degree of liver injury and failure, while the ETA receptor antagonist BQ-485 
was without effect [63]. In this study, BQ-788 also attenuated the delayed hypoten­
sion and the vascular hyporeactivity to noradrenaline caused by endotoxin. The pre­
vention of the hepatocellular dysfunction and injury caused BQ-788 in endotox­
aemia may be due to an improvement in oxygen delivery to the liver secondary to 
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(i) inhibition of pre-sinusoidal constriction, (ii) inhibition of sinusoidal constriction, 
and (iii) improvement in perfusion pressure [63]. 

Concluding remarks 

There is good evidence that sepsis and endotoxemia is associated with an enhanced 
formation of the vasoactive autacoids NO and ET-l. The generation of NO (pre­
sumably by iNOS) contributes to the fall in peripheral vascular resistance and the 
vascular hyporeactivity to vasoconstrictor agents. Inhibition of NOS activity 
restores blood pressure and pressor responses to noradrenaline in animals and man 
with sepsis. The question as to whether NO contributes to the multiple organ injury 
and the mortality associated with sepsis is less clear. Stimulation of the formation of 
ET-l by pro-inflammatory cytokines accounts for the enhanced formation of these 
potent pressor peptides in animals and man with endotoxiclseptic shock. The over­
production of ET-l may help to counteract the fall in peripheral vascular resistance 
associated with septic shock (beneficial effects), but exposure of certain vascular 
beds (mesenteric, liver, lung) to larger amounts of ET-1 (for longer time periods) 
may result in excessive vasoconstriction and reduction in oxygen supply. Inhibition 
of the effects of ET-1 may augment the hypotension associated with endotoxemia 
(in hypodynamic models of sepsis), while inhibition of NOS activity may predispose 
to vasoconstriction by ET-1. Whether blockade of the effects of ET-l or inhibition 
of NOS activity will improve the therapy of patients with septic shock remains to 
be seen. 
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This review will deal with two broad aspects of neutrophil function - the mecha­
nisms of neutrophil aggregation, and the mechanisms of neutrophil mediated tissue 
injury using the liver as a specific example. Much of the work on neutrophil aggre­
gation has been performed in vitro, which allows dissection of the molecular mech­
anisms involved, and much of the work regarding tissue injury reveals tissue specif­
ic features that could not have been predicted by studies of isolated neutrophils in 
vitro. 

Neutrophil aggregation 

Isolated blood neutrophils mixed in suspension will adhere to one another when 
stimulated with soluble chemotactic factors such as complement component C5a, 
formyl peptides, platelet activating factor (PAF), Interleukin-8 (IL-8), or leuko­
triene-B4 (LTB4 ). This process of homotypic aggregation has been used extensively 
as a model of neutrophil adhesion as well as a model of a potentially pathogenic 
process. Neutrophil aggregates have been observed in the blood and microvessels 
under conditions of complement activation and chemokine production in vivo such 
as that occurring during hemodialysis, systemic lupus erythematosus, and myocar­
dial infarction [1-5]. Leukocyte-platelet aggregates have been observed by intravi­
tal microscopy following systemic inflammatory activation induced by cigarette 
smoke, a process linked to the induction of PAF-like oxidized phospholipids [6], and 
in ischemic episodes in cardiac tissue [7]. Accumulation of aggregates in microves­
sels may contribute to tissue-ischemia and injury. Neutrophil adhesion to other neu­
trophils may also provide a mechanism of recruitment at sites of inflammation. 
Recent studies have shown that neutrophils rolling on a substrate in a parallel plate 
flow chamber in vitro may recruit other neutrophils from the free stream, thereby 
providing an alternate means of marginating leukocytes at shear rates typical of 
venular blood flow [8-11). Homotypic adhesion can thus occur under physiologi­
cally relevant shear conditions and, as will be discussed below, occurs efficiently 
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only at venular shear rates (-100-1000 s-l). It has now become clear that the tran­
sition from tethering to cell arrest under hydrodynamic shear proceeds as a sequence 
of adhesive events involving several classes of adhesion molecules. 

Homotypic adhesion and neutrophil emigration 

In the systemic circulation as observed by intravital microscopy in the mesenteric 
or cremasteric vascular beds, leukocytes typically adhere to the endothelium in the 
post capillary venules, where shear rates have been estimated to be from less than 
100 S-l up to 1000 s-l, depending on the blood flow rate and vessel diameter. The 
magnitude of the shear rate as well as interactions with red blood cells in the flow 
stream displace leukocytes from the central position where flow is greatest to the 
margin of the vessel where they can interact with the endothelium and adherent 
leukocytes. The shear rate determines key factors that influence the probability that 
leukocytes will adhere, including viscous forces that drive the cell motion, and the 
frequency and duration of collisions between cells and the vessel wall [12]. In this 
region of the microcirculation, the dominant cellular interaction observed is leuko­
cyte rolling on the endothelial lining of the vessel wall [13, 14]. During acute 
inflammation, the number of rolling leukocytes markedly increases, but the num­
ber that adhere and emigrate into the extravascular tissue is low relative to the 
number of leukocytes passing through the vessel [15, 16]. The rolling behavior of 
leukocytes does not require activation of the leukocytes, but is largely mediated by 
members of the selectin family of adhesion molecules expressed on stimulated 
endothelial cells [17,18]. The precise mechanisms that mediate the transition from 
cell rolling to stable adhesion are largely undefined but include stimulation of 
leukocytes by chemotactic factors presented on the endothelial surface (e.g. PAF 
and IL-8), and ligation of a leukocyte selectin (CD62L) and endothelial selectins 
(CD62P and CD62E). These events signal within seconds activation of a portion of 
the expressed CD18-integrins to adopt an active state characterized by high avidi­
ty binding to ligands (e.g. intercellular adhesion molecule-1 (ICAM-1)) on the 
endothelium [19-21]. The formation of these bonds in sufficient numbers enables 
the transition from rolling to shear-resistant adhesion [22]. 

The concept of a multistep cascade of molecular recognition, cell activation, and 
transition to firm adhesion that characterizes leukocyte adhesion to endothelium in 
systemic venules under conditions of shear also applies to adhesion between neu­
trophils [20]. The primary mechanism of capture is mediated by a selectin on one 
cell binding to sialylated and flucosylated ligands on another [23, 24]. The second 
step in homotypic neutrophil interactions is integrin-mediated shear resistant aggre­
gation. Many of the same stimuli (e.g. PAF and IL-8) activate high avidity integrin 
binding and enable firm adhesion in both homotypic and heterotypic (i.e. to 
endothelium) adhesion [25-27]. 
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Measurement of homotypic aggregation 

Most of the early studies were conducted on an aggregometer with high concentra­
tions of isolated neutrophils (-1 07/ml) that were mixed with a magnetic stir bar in 
a cylindrical glass tube. Aggregation was revealed by the increase in light transmit­
tance through the turbid cell suspension [2,4,28-31]. Protocols designed to obtain 
maximum aggregation used non-physiological stimulus conditions such as cytocha­
lasin-B followed by chemotactic stimulation, or phorbol esters. While these studies 
demonstrated that homotypic neutrophil aggregation could occur, the stimuli pro­
vided poor sensitivity, and distorted normal cell physiology. 

While mixing cell suspensions in conventional aggregometers provides a high 
intercellular encounter frequency, it does so by producing shear fields that are too 
complex to allow precise calculations of shear rate. Recent refinements in method­
ology have enabled studies of the interplay between shear rate and the underlying 
adhesive events. Rotational viscometry has been used to apply precise and uniform 
shear rates to cell suspensions, and the size distribution of aggregates has been 
detected by flow cytometry. This provides a marked increase in sensitivity for detect­
ing aggregate formation, and the process can be mathematically modeled based on 
a theory that describes the interaction of spherical particles mixed in a linear shear 
field [32]. These approaches have enabled analysis of aggregation and disaggrega­
tion in terms of fluid shear rate (G) and shear stress (viscosity x G), and the kinet­
ics of adhesion receptor activation and binding. 

Stimulation of neutrophils (_106 cells/m!) while being sheared in a cone and 
plate viscometer results in a reversible process over several minutes that is charac­
terized by three distinct phases of aggregation (Fig. 1) [33, 34]. The first phase is 
detected within seconds of the addition of an agonist (e.g. formyl peptide). Under 
optimum conditions> 90% of the neutrophils can be recruited into aggregates with­
in 30 seconds. While the rate and extent of aggregation is a function of the shear 
rate, the relationship is complex [34]. The uniform gradient in the velocity stream­
lines of a linear shear field cause the cells closer to the rotating cone surface to move 
faster than the cells near the stationary plate, resulting in cell-cell collisions and the 
formation of aggregates stable enough to be measured (Fig. 1). Aggregation rate 
coefficients can be mathematically derived from a system of differential equations 
that describe the recruitment of singlets into aggregates. The average adhesion effi­
ciency can then be computed from the ratio of the aggregate rate coefficients to the 
total number of cell collisions estimated from the two body collision theory [35]. 
This aggregation efficiency is assumed to reflect the intrinsic biological properties of 
the cell that determine adhesivity and, as modeled, is independent of the experi­
mental parameters such as the initial cell concentration and the shear rate. As shown 
in Figure 2, at shear rates of 400-800 s-I, a peak efficiency of 80% (8 out of 10 col­
lisions resulting in aggregation) occurs over the first phase of aggregation. Howev­
er, at the highest (3000 S-l) and lowest (100 s-l) shear rates applied, the efficiency is 
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Figure 1 

Kinetics of neutrophil aggregation at two shear rates. 

Isolated neutrophils were incubated in 3rC buffer for 3 min, stimulated with 1 J1M fMLP, 

and exposed to a constant shear in a cone plate viscometer. Samples were taken at various 

times and fixed with 2% glutaraldehyde and aggregate sizes were quantitated on a fluores­

cence flow cytometer. Singles and aggregates were calculated as percentage of total neu­

trophils. The distribution of (a) singlets and (b) doublets through sextuplets+, mean ± SEM 

are shown, for shear rates of 800 and 3000 S-1, respedively. 

%0, percent doublets; % T, percent triplets; %Q, percent quadruplets; %P, percent pentu­

plets; %Sx+, percent sextuplets or greater 
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The efficiency of homotypic neutrophil binding to ICAM-1 transfedants over a range of 

shear. 

Neutrophils in the presence or absence of ICAM-1 transfedants were stimulated with 1 pM 
FMLP and exposed to prescribed shear rates. The adhesion efficiency of neutrophil-neu­

trophil and neutrophil £3-/CAM-1 cells was determined from the kinetics of the mean par­

ticle distributions for n = 5 experiments. The decrease in efficiency with shear was also 
observed in neutrophil homotypic aggregation pretreated with anti-L-seledin [35]. 

only 20% [34]. The magnitude of neutrophil adhesion efficiency is remarkable 
when compared to other activation-dependent blood cell aggregation such as 
platelets that reach optimum efficiencies of -25% with adenosine diphosphate 
(ADP) activation [36]. 

The boost in adhesion efficiency following chemotactic stimulation as shear 
increases up to 800 s-1 was not observed in the absence of L-selectin or its counter 
structure P-selectin glycoprotein ligand-1 (PSGL-1). Blocking these receptors with 
Fab fragments to these receptors, or cleaving them with proteases [34], resulted in 
adhesion mediated solely by CD 18 integrins. Integrin-mediated adhesion efficiency 
under these conditions was observed to decrease from a maximum level equal to 

control, untreated neutrophils at 100 s-1, down to approximately zero by 400 S-I. 
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This observation of integrin sufficient adhesion at low shears is also observed for 
neutrophils binding to ICAM-1 expressing cells (Fig. 2) and in vivo during tissue 
ischemia. 

The second phase, characterized by aggregate stability, follows the time point of 
maximal aggregation. A steady state plateau phase is observed over a period of 1-2 
minutes (Fig. 1). The stability of these aggregates has been demonstrated by stimu­
lating cells for 30s and then diluting the suspension to reduce the encounter fre­
quency by 2500 fold, thereby drastically limiting new aggregate formation. Follow­
ing dilution, no significant change in aggregate distribution occurs over the period 
from 30 to 120s of stimulation. Formed aggregates are also observed to be resistant 
to shear stress as shown by an experiment in which the shear rate is boosted from 
the optimum level of 400 s-l to 3000 s-l. Stepping up the shear over the plateau 
phase does not cause premature disaggregation. 

The third phase appears to reflect changes that are occuring during the period of 
aggregate stability. A rapid transition to disaggregation is consistently observed at 
100-150 seconds (Fig. 1), and its rate is directly proportional to the magnitude of 
the shear stress applied [35]. The mechanism of disaggregation appears to involve 
both active cell shape change and a decrease in adhesion. The cells adopt a bipolar 
shape by the 2 min time point [35, 37]. This is accompanied by a three-fold reduc­
tion in the area of cell-cell contact, and coincides with the biphasic time course of 
F-actin formation [38]. Following these changes, the strength of intercellular adhe­
sion is exceeded by the hydrodynamic forces, and disaggregation of virtually the 
entire population of aggregates proceeds within seconds. 

Molecular interactions supporting homotypiC neutrophil adhesion 

Early studies on patients deficient in CD 18-integrin (leukocyte adhesion deficien­
cy I) [39], demonstrated the requirement for CDllb/CD18 (Mac-I, Complement 
receptor type 3) in homotypic aggregation [40, 41]. Simon et al. found that anti­
bodies to L-selectin were as effective as those against CD18 in blocking aggregation. 
These studies were performed with isolated neutrophils and in diluted whole blood 
by fluorescence flow cytometry. A critical feature in achieving inhibition with anti­
L-selectin was the use of Fab fragments rather than whole IgG. In fact, preincuba­
tion with whole IgG of anti-L-selectin monoclonal antibodies consistently resulted 
in aggregation in the absence of chemotactic stimulation. This response was medi­
ated in part by Fe receptors since it was reduced by pretreating cells with Fab frag­
ments of antibodies to the Fc receptors on neutrophils. Thus, it appeared that homo­
typic aggregation of neutrophils required both L-selectin and Mac-l. 

Subsequent experiments have provided evidence that L-selectin is essential for 
transient adhesion, while CD18-integrin serves to stabilize adhesive interactions and 
enable aggregation. The dynamics of the molecular binding are illustrated in exper-
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Inhibition of aggregate formation by addition of anti-CD62L or anti-CD18 mAbs after fMLP 

stimulation. 

Neutrophils (106 cel/slml) were stimulated with 1 J1M fMLP and exposed to G = 1200,1. 

After 10 s, suprasaturating concentrations of DREG-200 Fab (50 pglml) to CD62L or 184 
(50 pglml) to CD18 were added. The kinetics of aggreate formation are plotted for control, 

anti-CD62L, and anti-CD18. Samples were taken at indicated time points and fixed with 2 % 

glutaraldehyde. Shown are the fraction of singlets forming aggregates. Kinetics are repre­

sentative of four separate experiments. 

iments where either L-selectin or Mac-l is blocked by addition of monoclonal anti­
body (MAb) over the time course of chemotactic stimulation [34, 42]. There is a 
marked decrease in the extent of aggregation when either receptor is blocked at ten 
seconds following addition of stimulus, a time point when new aggregate formation 
is most rapid (Fig. 3). In contrast, addition of anti-L-selectin MAb at 30 seconds to 
existing aggregates at the beginning of the plateau phase does not alter the kinetics 
of adhesion. Addition of blocking antibody to CD18 at 10 or 30 seconds causes pre­
mature breakup of aggregates. These observations support the concept of a multi-
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step process in which L-selectin is essential for the initial step in the formation of 
aggregates. Additional studies indicate that P-selectin glycoprotein ligand-1 (PSGL-
1) serves as one counter-structure for L-selectin [9, 43]. Activated CD18-integrin 
then stabilizes the otherwise transient cell contacts, a process that is complete with­
in 30 seconds. The high adhesion efficiency immediately after chemotactic stimula­
tion is apparently a function of a fast and efficient rate of bond formation which 
vastly exceeds the rate of bond breakage. Adhesion efficiency decreases gradually 
over the initial 30 seconds after stimulation [35] such that neutrophils stimulated in 
the absence of shear do not aggregate if shear is introduced within 2-3 minutes. 
Although L-selectin contributes to the time-dependent change in efficiency, under 
conditions in which its shedding was blocked with an inhibitor of the metallopro­
tease, adhesivity still decreased to zero [35]. 

While the events just described seem to occur at shear rates where aggregation is 
most efficient (i.e. between 400 and 800 S-I), the contributions of L-selectin appear 
to exhibit a shear threshold [44,45]. Aggregation at low shears (e.g. 100 S-I) is 
independent of L-selectin but requires expression and activation of the CD18-inte­
grin. The role of Mac-I, LFA-1 and ICAM-3 have been studied using blocking 
MAbs [46]. ICAM-3 is expressed on neutrophils and has been shown to be a ligand 
for LFA-l on resting and activated T cells [47]. When neutrophils are preincubated 
with either anti-LFA- 1 or anti-Mac-1 the efficiency of aggregation is inhibited by 
30% over the initial 30 seconds following stimulation. Preincubation with a com­
bination of MAbs to both LFA-1 and Mac-l decreases adhesion efficiency to zero. 
Preincubation of PMN with anti-ICAM-3 also inhibits aggregation by 30%. In a 
series of blocking studies, the paradigm that has emerged is that homotypic aggre­
gation at low shear is supported by LFA-l interacting with ICAM-3, but the ligands 
recognized by Mac-l remain to be discovered. 

At shear rates optimal for homotypic aggregation (400 S-I), the estimated dura­
tion of cell contact in the absence of firm adhesion is estimated to be 6 msec. This 
interval is insufficient for adhesion mediated through binding of Mac-l and LFA-1 
alone either between neutrophils or to ICAM -I-expressing target cells [47 a]. How­
ever, given sufficient bonding time (e.g. at a shear rate 100 s-1 and corresponding 
encounter duration of -25 msec) CD 18-integrin dependent adhesion can form and 
moreover withstand high tensile stress (> 10 dyneslcm2). At shear rates greater than 
400 S-1 the encounter duration should still be well within the molecular association 
rate reported for selectins (_107 S-I). Therefore, a critical function of the L-selectin 
bond, which has been reported to have a lifetime of 150 msec [44], is to enable suf­
ficient Mac-1 and LFA-1 bonds to form stable adhesion. The importance of selectins 
in the transition to integrin-mediated arrest is apparent when one considers hydro­
dynamics alone. A leukocyte colliding with a vessel wall [12] at a venular shear rate 
of 100 S-1 would experience an encounter duration on the order of 1 ms, an inter­
val insufficient for integrin dependent adhesion. A second potentially important 
mechanism for this transition is supported through ligation and clustering of L-
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selectin. This process results in intracellular signaling and rapid activation of CD18-
integrins leading to neutrophil adhesion in shear flow [46,48,49]. 

These studies performed on neutrophils under defined shear rates support a 
model for integrin binding and anchoring that is dependent on contact duration. 
Neutrophil adhesion efficiency is limited at shear rates above 400 s-1 in sheared cell 
suspensions. The implications for neutrophil recruitment in vivo are that hydrody­
namics and collisional geometries influence targeting of cells to sites of inflamma­
tion. This concept has been corroborated by observations in vivo under low flow 
conditions in which a shift towards integrin dependent adhesion is observed [50, 
51]. At physological levels of shear the intrinsic binding kinetics and function of 
selectins and integrins may enable target adhesion as a function of the local shear 
rates and stress. 

Neotrophil-induced hepatocyte necrosis 

Neutrophils contribute to ischemia-reperfusion injury in most major organs, e.g., 
heart [52, 53], liver [54, 55], and intestine [56]. They cause liver injury during endo­
toxemia [57, 58], lung injury after complement activation [59], alcoholic hepatitis 
[60], and immune complex-mediated lung and kidney injury [61, 62]. In many cases 
there appears to be damage to vascular endothelial cells, with plasma protein leak­
age and edema formation. In addition, emigrating neutrophils can adhere to and 
injure parenchymal cells, often leading to parenchymal cell death. Neutrophil­
induced parenchymal cell damage has been documented and extensively studied in 
the liver. 

The mechanisms of liver injury by neutrophils can be divided into at least three 
steps - the initial sequestration of neutrophils in the hepatic vasculature; migration 
out of the sinusoids (if vascular lining cells are intact), and adherence-dependent 
cytotoxicity against hepatocytes. Each of these steps will be discussed separately. 
Other potential contributing factors to inflammatory liver injury, which will not be 
discussed in detail, include the activation of the resident Kupffer cells and newly­
recruited macrophages, accumulation of cytotoxic lymphocytes, platelet aggrega­
tion, microcirculatory disturbances, or perfusion failure resulting in ischemic injury. 

Sequestration of neutrophils in the liver vasculature 

Neutrophils accumulate in sinusoids and in post-sinusoidal venules during ischemia­
reperfusion [63,64] and endotoxemia [57,65] (Fig. 4). A variety of inflammatory 
mediators generated during reperfusion or endotoxemia have been shown to cause 
hepatic neutrophil sequestration. This includes activated complement factors [66], 
tumor necrosis factor a (TNFa) [67, 68], interleukin-1 (IL-1) [68], platelet-activat-
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ing factor (PAF) [69], and chemokines such as cytokine-inducible neutrophil chemo­
tactic factor (CINC) [70-72] and epithelial neutrophil activating protein-78 (ENA-
78) [73, 74]. Because in most pathophysiological situations a combination of these 
mediators is formed, there may be additive effects [75]. The impact of anyone indi­
vidual mediator is often difficult to assess. For example, lack of TNFa in mice com­
pletely prevents hepatic neutrophil accumulation in response to a low dose of endo­
toxin [67, 68]. In contrast, TNFa antibodies do not prevent hepatic neutrophil 
accumulation after high doses of endotoxin in rats [76, 77]. Apparently, low dose 
endotoxin will generate only TNFa as the proximal mediator, whereas the high dose 
will also activate complement [75, 78], which is able to elicit neutrophil responses. 

TNFa and complement factors increase surface expression and function of the 
CD18 integrin Mac-l (CDllb/CD18) on neutrophils [78]. TNFa and IL-l~ are 
responsible for transcriptional activation of intercellular adhesion molecule-l 
(ICAM-l) [68, 79-81], vascular cell adhesion molecule-l (VCAM-l) [82], E­
selectin, and P-selectin [79, 83] in the liver. The increase of ICAM-l mRNA levels 
and protein expression can be detected in all liver cell types including hepatocytes 
[79-81, 84-86], hepatic endothelial cells [79], Kupffer cells [79], stellate cells [87], 
and pit cells [88]. In contrast, VCAM-l and selectins are only expressed on endothe­
lial cells and Kupffer cells [79, 82, 83]. Detailed immunohistochemical analysis indi­
cates that VCAM-l can be induced on the entire hepatic endothelium [82]. P­
Selectin is predominantly expressed on endothelial cells of larger vessels but is not 
found on sinusoidal cells [83]. The distribution of various adhesion molecules in 
experimental models agrees with those in human livers under pathophysiological 
conditions [89-91]. 

The functional importance of these adhesion molecules has been studied in vitro 
under flow conditions and in vivo in systemic vascular beds [92, 93]. In general, as 
described above, selectins and their ligands are responsible for the inital contact of 
neutrophils with the endothelium, and local inflammatory mediators stimulate 
Mac-l and LFA-l to mediate the firm adhesion of the neutrophil to the vessel wall 
[92, 93]. In contrast to these findings which seem to apply primarily to post-capil­
lary venules, neutrophils relevant for liver injury accumulate predominantly in the 
sinusoids and not in post-sinusoidal venules [65]. Moreover, antibodies to the rele­
vant adhesion molecules in the setting of post-capillary venules have no effect on the 
initial sequestration of neutrophils in sinusoids [68, 75, 82-84, 94]. 

Figure 4 

General mechanisms of neutrophil (PMN) accumulation in sinusoids and venules of the liver. 

fC, endothelial cells; PC, parenchymal cells/hepatocytes; TNFa. tumor necrosis fador-a; IL-

1, interleukin-1; IL-8, interleukin-8 and related chemokines; ICAM-1, intercellular adhesion 

molecule-1; VCAM-1, vascular cell adhesion molecule-1; ROS, readive oxygen species; NF­

Ki3, nuclear fador- Ki3; C5A, chemotadic complement fragment from C5. 
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An adherence-independent mechanism seems to be involved. Due to their 
deformability, neutrophils can move rapidly through the narrow sinusoidal network 
of a normal liver, much as they do through the pulmonary capillary network of the 
alveolus [15]. However, during an inflammatory response in the liver, there is sub­
stantial swelling of sinusoidal lining cells [95]. In addition, vasoconstrictors such as 
endothelin-1 are generated [96], and they are not always completely compensated 
by release of vasodilators such as nitric oxide [97]. The resulting narrowing of sinu­
soids may contribute to neutrophil trapping. These microvascular changes in the 
liver are particularly significant in light of the fact that neutrophils develop reduced 
deformability after exposure to inflammatory mediators [98]. In fact, activated neu­
trophils accumulate even in a normal liver [99, 100]. Neutrophils apparently can be 
mechanically trapped in liver sinusoids under pro inflammatory conditions. 

Though sinusoidal neutrophils may appear to be primed [69, 101, 102], there is 
little evidence for reactive oxygen formation in sinusoids. Exposure to two inde­
pendent stimulus conditions (e.g. ischemialreperfusion and endotoxemia) can acti­
vate sinusoidal neutrophils to generate reactive oxygen in the vasculature [103, 
104]. However, even under these circumstances, neutrophils fail to contribute to 
parenchymal cell injury [104]. The injury to endothelial cells [104, 105] and 
parenchymal cells is caused mainly by Kupffer cells [63, 104], which are also acti­
vated by complement factors [66, 103]. One apparent reason for the limited impact 
of sinusoidal phagocytes is the neutralization of cytotoxic mediators by glutathione 
release into the sinusoids [106-108]. Additional experiments have shown that load­
ing the liver with primed neutrophils fails to significantly disturb the hepatic micro­
circulation or cause parenchymal cell injury [99, 100]. Stimulation with the non­
physiological agonist phorbol myristate acetate results in tissue injury [99], though 
distinguishing between the effects of release of cytotoxic mediators and microcircu­
latory failure is problematic [99]. Thus, it appears that neutrophil accumulation in 
the hepatic vasculature is insufficient to cause irreversible parenchymal cell damage. 

Transendothelial migration 

In models where the sinusoidal endothelium is intact, neutrophils must emigrate to 
attack hepatocytes [57, 65, 109]. The pathophysiologically relevant transmigration 
in the liver occurs predominantly in sinusoids [65]. This situation is fundamentally 
different when compared with other organs such as the intestine or heart [53, 92]. 
The transmigration process in the liver is apparently dependent on CD 18 integrins 
and ICAM-1 [68], and ~1 integrinsNCAM-l [82]. Though transcriptional up-reg­
ulation of ICAM-l [68] and VCAM-l [82] on sinsuoidal endothelial cells is neces­
sary, that alone is insufficient for emigration. Comparison of IL-l and TNFa admin­
istration to galactosamine-sensitized animals showed that despite ICAM-l induc­
tion and hepatic neutrophil sequestration in both groups, only TNF/galactosamine 
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treatment resulted in neutrophil transmigration and injury [68]. A potential differ­
ence between the effect of IL-1 and TNFa is that only TNFa was found to up-reg­
ulate the Mac-1 (CD11b/CD18) on neutrophils [68], and Mac-1 has been shown to 
be critical for endotoxin-induced liver injury [57]. Recent evidence suggests that C­
X-C chemokines (e.g. IL-8, CINC, KCIGro, ENA-78) may play an important role 
in neutrophil extravasation. Overexpression of CINC by transfecting its gene into 
liver cells induced neutrophil sequestration and extravasation with significant 
parenchymal cell damage in vivo [70]. Endotoxin treatment of mice causes neu­
trophil sequestration in the hepatic vasculature, however, only animals with an addi­
tional injection of galactosamine showed neutrophil transmigration and injury [65]. 
In this model, parenchymal cell apoptosis proved to be the signal for extravasation 
of neutrophils and their attack on hepatocytes [110]. These observations point to 

the importance of transendothelial migration as a necessary step in the mechanisms 
of neutrophil-induced liver injury, and the generation of C-X-C chemokines is able 
to promote this step under certain conditions in vivo. Of particular interest and 
importance is the fact that hepatocytes can produce C-X-C chemokines in vitro in 
response to various cytokines [111, 112], and hepatocytes have been shown to pro­
duce the bulk of C-X-C chemokines in the liver in vivo [71, 73, 74]. Neutralizing 
antibodies to C-X-C chemokines have proved to be effective against neutrophil­
induced liver injury during ischemia-reperfusion [74] and partial hepatectomy [73]. 
The transmigration step is largely circumvented if the sinusoidal lining cells are 
damaged or even removed, e.g. during severe ischemia-reperfusion injury [113-
115]. Neutrophils can then find direct access to parenchymal cells. 

Neutrophil adherence to hepatocytes 

Neutrophils adherent to hepatocytes during endotoxemia have been observed by 
electron microscopy [109]. Though activated neutrophils can generate a brief oxida­
tive burst in suspension when stimulated with chemotactic factors, adherence to 
cells or extracellular matrix proteins will substantially increase and prolong the 
release of reactive oxygen [116, 117]. The adherence-dependent oxidant burst 
depends on Mac-1 (CD11b/CD18) on neutrophils binding to a relevant counterli­
gand (e.g. ICAM-1 or fibrinogen) [116]. This phenomenon has been observed with 
neutrophils adherent to parenchymal cells in vitro (e.g. cardiac myocytes [118] and 
hepatocytes [119]) Antibodies to Mac-1 and ICAM-1 were shown to reduce the 
adherence of stimulated neutrophils to Listeria monocytogenes-infected hepatocytes 
in vitro, and they attenuated reactive oxygen production [119]. 

This phenomenon may be applicable to interactions of neutrophils with hepato­
cytes in other inflammatory settings. Though hepatocytes do not constitutively 
express ICAM-1 [79-81,84,86], stimulation with cytokines such as TNFa, IL-1a, 
IL-1~, or interferon-y (IFNy) transcriptionally activates the ICAM-1 gene and 
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increases the expression of ICAM-l on rat, mouse, and human hepatocytes in vitro 
[80, 81, 86] and in vivo [68, 79, 84, 89-91, 94, 109]. Cytokine stimulation also 
leads to the release of a soluble form of ICAM-l [85, 86, 120]. A recent, more 
detailed, evaluation of adhesion molecules involved in the adherence of neutrophils 
to hepatocytes in vitro indicated that unstimulated neutrophils adhere to cytokine­
treated hepatocytes via the CD 18- integrin, lymphocyte function-associated antigen 
(LFA-l; CDlla/CD18) and ICAM-l [121]. The more relevant adhesion of activat­
ed neutrophils, i.e. after exposure to chemotactic stimuli such as IL-8 and N-formyl­
I-methionyl-l-leucyl-1-phenylalanine (fMLP), to cytokine-treated hepatocytes re­
vealed two independent adhesion mechanisms. An LFA-IIICAM-l-dependent adhe­
sion and a Mac-I-dependent adhesion that appears to be independent of ICAM-1 
[121]. Because the cytotoxic potential of activated neutrophils depends on the 
adherence to parenchymal cells, these new in vitro data are consistent with in vivo 
results showing a reduced cytotoxicity of hepatic neutrophils in anti-Mac-1 anti­
body-treated animals [122] and significantly reduced parenchymal cell damage [57, 
122, 123]. The beneficial effects of anti-ICAM-l antibodies are more pronounced 
in models with intact sinusoidal lining cells [68] compared with models with direct 
access of the neutrophils to parenchymal cells [84]. This suggests that ICAM-l may 
be more critical for transendothelial migration than for adherence and cytotoxicity 
of activated neutrophils to parenchymal cells. 

Mechanisms of neutrophil-induced parenchymal cell injury 

The molecular mechanism of neutrophil-induced target cell injury is still uncertain. 
Activated neutrophils generate two major cytotoxic mediators, i.e. reactive oxygen 
species and proteases. Although NADPH oxidase-derived superoxide and its dis­
mutation product, hydrogen peroxide, are the primary reactive oxygen species 
formed by activated neutrophils, the concomitant release of myeloperoxidase results 
in formation of hypochlorous acid (HOC!) as the major oxidant. There is extensive 
evidence in vivo for priming and enhanced generation of reactive oxygen species 
[124] and hepatic lipid peroxidation [125-128] during a neutrophil-induced injury 
phase. Furthermore, antioxidants and other interventions directed toward detoxifi­
cation of reactive oxygen species have been shown to attenuate inflammatory liver 
injury [104, 127-129]. In addition, neutrophils store various proteases in granules 
and can release these proteolytic enzymes during activation. Protease inhibitors have 
been shown to attenuate neutrophil-induced liver injury [130]. These data suggest a 
critical role for reactive oxygen species and proteases in the pathophysiology in vivo. 

Experiments in vitro using coculture of neutrophils and hepatocytes have gener­
ally indicated that proteases, not reactive oxygen species, are involved in the injury 
mechanism [131-135]. In general, only neutrophils were stimulated in these in vitro 
experiments using physiologically relevant activators such as opsonized zymosan 
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[131], TNFa [134], and fMLP [135], as well as artificial activators such as phorbol 
myristate acetate [132, 133]. The proteases elastase and cathepsin G released by 
neutrophils are mainly responsible for the injury. This has been demonstrated by the 
hepatotoxic effect of isolated elastase and cathepsin G [131], use of specific 
inhibitors in coculture experiments [131, 133-135], and isolation of cytotoxic frac­
tions of neutrophil supernatant [136]. Induction of an acute phase response in hepa­
tocytes by turpentine, which increases the synthesis of antiproteases, was found to 
reduce the neutrophil-induced hepatocellular injury in vitro [137] and in vivo [67]. 

It appears that in vitro experiments performed thus far mimic only one aspect of 
a more complex pathophysiology. An explanation of the differences between in vivo 
and in vitro experiments may involve the following issues. For neutrophils to effec­
tively kill their target in vivo, antiproteases of the plasma have to be prevented from 
neutralizing the proteases. Because these antiproteases are more susceptible to 
inactivation by oxidants, the neutrophil generates hypochlorous acid to provide an 
area where proteases are not disturbed by plasma antiproteases [138]. Thus, under 
in vivo conditions, reactive oxygen species are critical for a protease-mediated injury 
mechanism. 

In addition to the described supportive role, reactive oxygen may be involved in 
the activation of transcription factors such as nuclear factor-KB (NF-KB) and AP-1, 
which provide the signal for activation of proinflammatory genes [139]. There is 
evidence for activation of NF-KB in all liver cell types including hepatocytes during 
endotoxemia [140] and the inhibitory effect of antioxidants on NF-KB activation, 
cytokine formation, and hepatocellular ICAM-1 up-regulation [141]. 

One controversial issue is the question of whether adhesion to hepatocytes is 
required for neutrophil-mediated injury. The fact that the supernatant of activated 
neutrophils can cause hepatocyte injury appears to argue against the requirement of 
direct neutrophil-hepatocyte contact [131, 135]. However, these experiments only 
demonstrate that maximally stimulated neutrophils release stable cytotoxic media­
tors that are able to cause parenchymal cell injury. In fact, proteases released by 
200-1000 neutrophils per hepatocyte were used [131, 135]. Thus, the amount of 
proteases required to injure hepatocytes without cell-cell contact is much higher 
than the 5-20 neutrophils per hepatocyte used in the coculture systems. This indi­
cates the higher cytotoxic efficiency of an adherent neutrophil that is not only due 
to the closer contact, i.e. higher concentration of cytotoxic mediators, but also due 
to the fact that adherence of neutrophils to a target cell further activates the phago­
cyte [116]. Moreover, the mediators used to activate neutrophils in vitro are known 
to be present in vivo to up-regulate Mac-l on neutrophils [78, 86, 121]. In addition 
to the direct visual evidence for neutrophil adhesion to hepatocytes in vivo [109] 
and in vitro [132], antibodies against Mac-1 reduce adherence as well as the cyto­
toxic effect of neutrophils in vitro [119] and in vivo [57, 122]. These data together 
strongly underline the importance of neutrophil adhesion for the cytotoxicity 
toward hepatic parenchymal cells. 
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Introduction 

Sepsis/septic shock results from the excessive activation and release of a number of 
inflammatory mediators. Cytokines are generally considered to be key factors in this 
respect as these hormone-like proteins are released in excessive amounts during sep­
sis and are able to induce the release and activation of a number of secondary and 
tertiary mediators [1]. The main cytokines involved in the pathogenesis of sepsis are 
tumor necrosis factor-a (TNFa), interleukin-1a, -p (IL-1aJP) and interleukin-1-
receptor antagonist (lL-lra), IL-6, IL-8 and other chemokines, IL-10, IL-12, and 
interferon-gamma. Among the secondary mediators activated by cytokines are plas­
ma cascade systems such as the coagulation, fibrinolytic and contact systems. These 
systems have in common that during activation proenzymes are converted into 
active serine proteinases in a waterfall or "cascade" -like fashion. In this chapter we 
will first discuss some aspects of the biochemistry and biology of these systems. 
Then we will elaborate on the role of cytokines in the activation of clotting and fib­
rinolysis, in particular during sepsis. Finally, we will summarize possible effects of 
clotting or fibrinolytic proteins on the release of cytokines. 

The coagulation system 

Central in the coagulation system is the conversion of fibrinogen into fibrin by the 
serine proteinase thrombin. Thrombin is generated from prothrombin by another 
serine proteinase, activated factor X (FXa), which, for optimal activity, requires the 
presence of a cofactor, activated factor V, and phospholipids (which serve as a sur­
face on which to assemble the various clotting factors) as cofactors, and calcium 
ions. Traditionally, activation of factor X has been considered to occur via an extrin­
sic pathway (one of the components of this pathway, tissue factor, is not present in 
plasma) or an intrinsic pathway (all components are present in plasma). The intrin­
sic pathway consists of factor XII (FXII), prekallikrein (PK), high molecular weight 
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kininogen (HK) and factors XI, IX and VIII, and becomes activated upon contact of 
blood with an artificial surface such as glass. The initial phase of this pathway (also 
known as the contact system) comprises activation of FXII and PK, and will be dis­
cussed below. FXIIa can activate FXI, which in turn activates FIX, which together 
with FVIII then activates FX. The extrinsic pathway consists of FVII and a trans­
membrane protein, tissue factor (TF). Under normal conditions TF is not exposed 
on endothelial cells, but is present on extravascular cells. Activation of this pathway 
occurs when the contino us layer of the endothelium is disrupted and blood is 
exposed to these extravascular cells, or when TF is exposed by endothelial cells, as 
may occur upon stimulation with cytokines (see below). Upon contact with blood, 
TF binds and activates FVII, which then activates factor X. This process is inhibit­
ed by tissue factor pathway inhibitor (TFPI). 

The traditional view of an intrinsic and extrinsic pathway of coagulation may be 
incorrect: in vivo extrinsic pathway activation likely encompasses more than factor 
VII and tissue factor, i.e. factors VIII and IX (which serve to amplify the tissue fac­
tor-factor VII pathway and which are both necessary for the rapid generation of a 
substantial amount of thrombin via the extrinsic pathway), and factor XI (which is 
thought to be activated in vivo by thrombin rather than by factor XII) [2-5]. In this 
view, FXI constitutes a second amplification loop necessary for very rapid genera­
tion of thrombin in particular when the initial activation of the extrinsic pathway is 
driven by limited amounts of tissue factor [6]. Activation of coagulation is counter­
acted by various mechanisms: the presence of inhibitors such as TFPI and 
antithrombin III (inhibits thrombin and various other activated clotting factors); 
and the protein C system. The central protein of the latter system is protein C (PC) 
which is activated by thrombin bound to the transmembrane protein thrombomod­
ulin (TM). Thus, upon binding to TM, which under normal conditions is present on 
endothelial cells and contributes to the anti-coagulant properties of these cells, the 
specificity of thrombin is changed in that it activates protein C and no longer cleaves 
fibrinogen. In the presence of the cofactor protein S, activated PC counteracts coag­
ulation by inactivating FVa and FVIIIa. 

The contact system 

The contact system consists of the proteins FXII (formerly known as Hageman fac­
tor), PK (Fletcher factor) and HK [7]. Via activation of factor XI, which in turn acti­
vates factor IX, contact activation may induce activation of factor X and pro­
thrombin. It is, however, doubtful whether this contact system-dependent activation 
of factor XI is important for physiological hemostasis. Clinical studies reveal that 
only deficiency of factor XI, but not that of one of the other contact system proteins, 
results in a (mild) bleeding disorder. This, together with the lack of evidence that in 
vivo the contact system participates in the hemostatic process makes it doubtful 
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whether factor XI should be considered as a contact system protein (see also above). 
Presumably, the contact system serves in vivo as an auxiliary fibrinolytic system [8, 
9]. In agreement herewith, persons with a deficiency of factor XII are prone to 
develop thromboembolic disease, rather than a bleeding disorder [10]. Moreover, 
infusion of the vasopressin analogue 1-desamino-8-D-arginine-vasopressin 
(DDAVP; used to assess the capacity of the endothelium to release tissue-type plas­
minogen activator in vivo) induces activation of plasminogen [11], which in part is 
dependent on the presence of factor XII [12]. 

Contact activation yields bradykinin (released from HK by kallikrein), which can 
induce vasodilation, hypotension, an increase in vasopermeability and bronchocon­
striction [13]. Bradykinin mediates its effects by binding to specific receptors on 
cells. Some of the biological effects of bradykinin are due to the induction of the for­
mation of nitric oxide [14]. Several activation products of the contact system have 
inflammatory properties: kallikrein and factor XIIa have chemotactic and/or ago­
nistic activity for neutrophils [15, 16], whereas ~-factor XIIa is able to activate the 
complement system [17, 18]. 

The fibrinolytic system 

Central in the fibrinolytic system is the conversion of the plasminogen into the fib­
rin-degrading enzyme plasmin [81. Activation of the fibrinolytic system may occur 
via several pathways, i.e. via tissue-type plasminogen activator (tPA)- or urokinase­
type plasminogen activator (uPA)-dependent pathways [8]. Both plasminogen acti­
vators are inhibited by plasminogen activator inhibitors (PAIs) [19]. In the circula­
tion, PAI-1 is the most important inhibitor of tPA as well as of uPA [19, 20], where­
as the activity of plasmin is rapidly inhibited by its inhibitor a2-antiplasmin (a2AP) 
[21]. In addition to the tPA- and the uPA-dependent pathways, there is evidence for 
a third, factor XII-dependent pathway of plasminogen activation [8], although the 
molecular aspects of this pathway are not exactly known. 

Tumor necrosis factor and interleukin-1 

The cytokines TNF and IL-1 are considered to be major endogenous mediators of 
sepsis [1]. Although they bind to different cellular receptors, TNF-receptors (TNF­
R) or IL-1-receptors (ILl-R), and differ in their three-dimensional structure, both 
cytokines have multiple overlapping and synergistic activities [22,23]. 

Both TNF and IL-1 have many cell-specific effects [22] and only those relevant 
for hemostasis are mentioned here. Interactions of TNF and IL-1 with endothelial 
cells are of major importance for inflammatory reactions, and may induce various 
effects on clotting and fibrinolysis: expression of tissue factor and downregulation 
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of thrombomodulin, which reduces the anticoagulant properties and enhances the 
procoagulant activity of the endothelial surface [24-29]. The effects of TNF on the 
endothelial cells proceed mainly via triggering of TNF-R-p55 [30]. Both cytokines 
also induce the release of uPA as well as the synthesis of PAI-l [31-36]. TNF and 
IL-l also influence the inhibition of fibrinolysis in another way: either cytokine can 
induce the synthesis of a protein called TSG-6, which potentiates plasmin inhibition 
by activating inter-a-trypsin inhibitor [37]. 

Consistent with the procoagulant effects of TNF and IL-l in vitro are histologi­
cal studies in animals showing that local injection of TNF or IL-l induces the acti­
vation of neutrophils and the deposition of fibrin [23, 37-44]. Systemic injection of 
TNF also induces activation of coagulation and fibrinolysis. Typically, coagulation 
proceeds for hours after injection of this cytokine whereas fibrinolysis is only short­
ly (approximately 60 min) activated and then inhibited, resulting in a so-called pro­
coagulant state [45-48]. Such a procoagulant state can also be induced by a low 
dose of IL-1P (3 ng/kg of body weight) [49]. Notably, both TNF and IL-l are able 
to induce the release of tPA into the circulation whereas, in vitro, both cytokines 
decrease the synthesis of tPA by endothelial cells. A possible explanation is that TNF 
and IL-l induce the release of vasopressin [50] which, in turn, causes the release of 
tPA [11]. 

Activation of coagulation and fibrinolysis by TNF has also been studied in non­
human primates. In baboons challenged with 100 )lg of TNF per kg of body weight 
a significant rise in thrombin-antithrombin III complexes was not observed unless a 
monoclonal antibody that blocks PC was co-administered [51]. In this model, TNF­
induced activation of clotting was enhanced by injection of phospholipid microvesi­
des. However, in another study in baboons, a similar dose of TNF did induce the 
generation of thrombin as well as the release of tPA and PAI-l [52], and these effects 
were shown to result from triggering of TNF-R-p55. 

Finally, observations in patients indicate that recombinant TNF is also able to 
activate the contact (as well as the complement) system [53]. 

The intravenous injection of a low dose of endotoxin elicits the release of TNF 
in human volunteers with peak levels at 90 minutes following the challenge [54]. 
Similarly, IL-l increases, reaching peak levels at 2 to 3 h following the endotoxin 
challenge [55]. The coagulation and clotting systems are both activated during 
experimental human endotoxemia [56]. Fibrinolysis is only activated during the first 
two hours after the endotoxin challenge to become inhibited later on by increasing 
levels of PAI-l whereas coagulation proceeds for hours [56, 57] resulting in a pro­
coagulant state as has been found following TNF injection (see above). Attenuating 
the effects of TNF using recombinant dimeric TNF-R in low grade endotoxemia in 
humans resulted in a greatly reduced fibrinolytic response whereas the activation of 
coagulation was unaffected [58], pointing to a central role of TNF in the activation 
of fibrinolysis but not in that of coagulation in this condition. A similar model for 
experimental endotoxemia has been developed in chimpanzees [59]. In this model 
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coagulation has been found to be completely dependent on the expression of tissue 
factor, but independent of TNF or IL-1 [60] (in agreement with observations in the 
human model). Thus, presumably the observed activation of coagulation during low 
grade experimental endotoxemia results from the direct effects of endotoxin on the 
endothelium or monocytes [61]. In contrast, the release of tPA, the formation of 
plasmin, and the increase in circulating PAI-1 in this model is completely inhibited 
by anti-TNF antibodies [60,61], supporting the observations in the human model 
[58]. In agreement herewith, pentoxyfylline, which attenuates the release of TNF 
(and IL-6) during low grade endotoxemia, reduces the activation of fibrinolysis but 
has no effect on coagulation [61]. 

TNF and IL-1~ are also released into the circulation following a (sub)lethal chal­
lenge with endotoxin or (live) bacteria, peak levels of TNF occurring approximate­
ly 1 to 2 h after the challenge whereas those of IL-1 ~ reaching their summit one hour 
later. In these models both the fibrinolytic as well as the clotting system are activat­
ed with again fibrinolysis being inhibited a few hours after the challenge whereas 
coagulation proceeds for a longer period [62]. In contrast to low grade endotox­
emia, in these more severe models for sepsis, inhibition of TNF does reduce activa­
tion of coagulation but has hardly any effect on fibrinolysis [63,64]. Similarly, IL­
Ira attenuates activation of coagulation in these models without affecting plasmin 
formation [65]. Sepsis in baboons by E. coli is also accompanied by a significant 
increase in circulating TM, which reaches peak levels at 8 h after the challenge. This 
increase can be almost prevented by the administration of anti-TNF [66]. 

In clinical sepsis there is, as far as we know, no evidence that TNF is directly 
involved in the clotting abnormalities observed in patients suffering from this dis­
ease. In a subgroup of 26 patients participating in the first large multicenter trial on 
the efficacy of IL-1-ra in clinical sepsis, IL-1-ra treatment was shown to reduce 
thrombin formation but had no effect on plasmin generation [67], findings consis­
tent with the observations in baboons (see above). 

Interleukin-6 

Although there is abundant evidence that IL-6 is released during sepsis, the precise 
role of IL-6 in the pathogenesis of this condition is still not well established. Most 
likely it is the main inducer of the synthesis of acute phase proteins by the liver [68], 
although other related cytokines such as LIF may be involved as well [69]. We are 
not aware of in vitro studies showing a procoagulant effect of IL-6. Yet, in vivo, IL-
6 seems to have a procoagulant effect, as was found in a study evaluating the effects 
of a neutralizing anti-IL-6 in a chimpanzee model for experimental low-grade endo­
toxemia [70]. This is consistent with observations in humans where IL-6 was shown 
to have a small effect on clotting and no effect on fibrinolysis [71]. In agreement 
with an effect of IL-6 on clotting is the observation in baboons that clotting times 
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are prolonged upon administration of recombinant IL-6 subcutaneously at a dose of 
100 Jlg per kg body weight [72). Notably, in this latter study the most pronounced 
effects were seen at the time when levels of acute phase proteins were at their high­
est. Hence the decreased levels of clotting factors or their inhibitors may have been 
due to a decreased synthesis, e.g. because their synthesis is regulated like that of a 
negative phase protein [73, 74). Consistent with this latter interpretation is that cir­
culating levels of thrombin-antithrombin did not increase in the baboons receiving 
IL-6 [72). 

Other cytokines 

In addition to TNF, IL-l and IL-6, various other cytokines are involved in the patho­
genesis of sepsis. However, evidence that these cytokines may modulate activation 
of the coagulation or the fibrinolytic systems in vivo is at present not available. In 
vitro, the anti-inflammatory cytokine IL-I0 can inhibit endotoxin-stimulated tissue 
factor expression and induction of procoagulant activity by monocytes [75, 76) 
whereas IL-4 is unable to do so [77). 

Finally, for one cytokine not supposed to playa role in endotoxin-induced shock 
(though it likely plays a role in that induced by superantigens), IL-2, some data on 
its effects on clotting and fibrinolysis exist. In patients with cancer this cytokine can 
induce the activation of coagulation and fibrinolysis [78, 79) which likely results 
from the release of TNF. 

Effects of clotting factors on cytokines 

Thrombin can stimulate the release of chemokines by endothelial or monocyte cells 
via catalytic activation of the thrombin receptor [80, 81). In addition, thrombin can 
induce monocytes to secrete IL-8 and the chemokine monocyte chemotactic protein 
(MCP)-l indirectly by activating platelets, which in turn stimulate monocytes via P­
selectin and P-selectin glycoprotein ligand-l [82). Also in a whole blood culture sys­
tem thrombin was shown to be able to induce the release of IL-8 but not that of 
other pro-inflammatory cytokines [83). Thrombin is also able to induce the pro­
duction of IL-6 by fibroblasts or epithelial cells [84) whereas fibrin may enhance the 
expression of IL-l~ by mononuclear cells [85). Thus, these in vitro data show that 
activated clotting factors may modulate the production of cytokines by various cell 
populations. 

Whether these effects of thrombin or other clotting factors occur in vivo has yet 
to be established. In low grade endotoxemia in primates, inhibition of factor VII has 
no effect on the release of cytokines [59], indicating that in this model activated clot­
ting factors (at least activated via the extrinsic pathway) do not contribute to the 

204 



Cytokines, coagulation and fibrinolysis 

induction or release of cytokines. On the other hand, administration of TFPl to ani­
mals suffering from lethal E. coli sepsis results in an attenuated lL-6 response with­
out affecting the response of TNF [86, 87], suggesting that some activated clotting 
factors may contribute to the generation of lL-6 in this condition. Elucidating the 
mechanism via which TFPl affects lL-6 in vivo is important since TFPl reduces mor­
tality in this model, even when administered after the challenge. One possibility is 
that the effect of TFPl on cytokines is related to the formation of thrombin since, at 
least in vitro, TFPl can affect thrombin-induced cytokine lL-8 release in whole 
blood cultures [83]. TFPl also greatly reduces the increase in lL-8 in baboons lethal­
ly challenged with E. coli (PM Jansen et aI., submitted). Similar effects are exerted 
by high doses of antithrombin III in this model (CE Hack et ai, unpublished obser­
vations). That activated clotting factors can contribute to the release of cytokines in 
this baboon model for sepsis was also demonstrated by a study whereby a neutral­
izing antibody against factor XII reduced the release of lL-6 [65]. 

Conclusions 

It is clear from in vitro as well as in vivo studies that TNF and lL-1 can both induce 
activation of the clotting and the fibrinolytic systems. Studies with inhibitors of 
either cytokine indicate that in the mild models of sepsis, only the activation of the 
fibrinolytic system seems to be triggered by TNF whereas cytokines have no effect 
on the coagulative response. In the more severe models, both cytokines seems to be 
involved in the activation of the clotting system whereas the effects on the fibri­
nolytic system are only mild. To what extent these interactions between lL-1 and 
TNF with the clotting and the fibrinolytic systems occur in septic patients remains 
to be established. Under some conditions lL-6 may contribute to clotting activation 
as well, although the molecular mechanisms of this interaction are not known. 
Finally, some anti-coagulant agents have anti-inflammatory effects in vivo and are 
able to confer (partial) protection in lethal sepsis models. These protective effects are 
accompanied by reduced levels of circulating cytokines. The mechansims underlying 
these anti-inflammatory effects of some clotting inhibitors are not well understood. 
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Introduction 

Death, along with growth, is a critical part of the life cycle of all living things. The 
loss of leaves during the autumn, as a result of environmental changes during win­
ter, is central to the survival and continued growth of a tree. Harmful levels of uv­
radiation from the sun causes damage and death of keratinocytes and resulting sun­
burn. The death of cells is not always as a result of damage but may occur sponta­
neously to allow for further development and growth. For plants to conduct fluid, 
cells that form the xylem must die giving way to hollow tubes. In humans cell death 
is vital for embryonic development of fingers and toes. Homeostatic control of cell 
numbers is a result of the dynamic balance between cell proliferation and cell death 
and essential to maintain a steady volume [1]. Cancer cells have lost their ability to 
control this balance resulting in an accumulation of cells [2]. Thymocytes that fail 
to mature with functional receptors are induced to die, thereby limiting the release 
of none functional cells into the host and preventing autoimmune targeting of the 
host [3]. During inflammation there is an increased production and accumulation of 
lymphocytes, monocytes and neutrophils to overwhelm the invading foreign 
pathogen [4]. This production of inflammatory cells itself can be detrimental or 
"double edged" to the host due to the overproduction of anti-microbial agents caus­
ing tissue damage [5]. The resolution of an inflammatory response is thus important 
in preventing this host damage. The final step in resolving inflammation is the 
removal of the in fluxed cells from the inflammatory site. These must die in situ as 
they can not migrate from the site [6]. 

Cells die by one of two processes, necrosis or programmed cell death (apoptosis) 
[7-9]. Necrotic death occurs as a result of severe injury to the cell, in a sudden and 
uncontrolled process. It is characterized by the swelling and rupture of the cell due 
to uncontrolled regulation of fluids and ions (sodium and calcium). The release of 
the intracellular contents of the cell into the surrounding environment can worsen 
the injury that initiated the process. Programmed cell death or apoptosis, as the 
name suggests, is a controlled process resulting in the death of a cell and removal by 
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surrounding phagocytes (mainly the macrophage) [10]. In the classical Greek Hip­
pocratic corpus the word "apoptosis", a compound of the words "apo" (apart) and 
"ptosis" (falling), referred to the loss of flower petals, or leaves in the autumn [1]. 
The concept that death is programmed has been well recognized, the transformation 
of a caterpillar via a pupa into a butterfly requires cells to die and reorganize [11]. 
The tail of a tadpole is lost by the process of apoptosis as it develops into a frog. 
Caenorhabditis elegans, a 1 mm nematode, demonstrated changes in cell numbers, 
which has significantly helped in the understanding of apoptosis. This worm loses 
exactly 131 cells during its development [12]. All these processes are programmed 
and result in the process of apoptosis. 

Definitions and characteristics of apoptosis 

Cells undergoing apoptosis all demonstrate more or less the same characteristics, 
however, individual cell types differ in the extent to which they express these 
changes. A number of morphologically identifiable stages have been reported. These 
include nuclear changes, exuberant cell surface protrusion, and breaking-up of the 
nucleus to form multiple fragments and compacted chromatin. These changes are 
accompanied by flipping of phosphatidylserine from the inner plasma membrane to 
the cell surface which can be detected by the phosphatidylserine-binding protein, 
Annexin V. Finally, the cell surface protuberances separate to produce membrane­
enclosed apoptotic bodies of varying size in which the closely packed cytoplasmic 
organelles remain well preserved [7, 8]. The nuclear collapse that is the hallmark of 
apoptosis has as its biochemical correlate the fragmentation of DNA by endonucle­
ases, producing fragments in the range 300 to 50 kbp. The DNA cleavage continues 
with internucleosomal double-stranded cutting to produce the familiar ladder on 
agarose gel electrophoresis [9] (Fig. 1). 

Regulation of apoptosis 

Even though death is programmed in all cells to occur at specific times in the devel­
opment of the organism, apoptosis may occur as the result of various triggers 
including environmental change or genetic alterations. Regulating signals can 
come from a number of sources. Extracellular matrix proteins send signals to 
epithelial cells preventing them from dying, remove these signals and the cell will 
undergo apoptosis [13]. Migration of inflammatory neutrophils through endothe­
lial cells triggers ~2 integrin-mediated delays in spontaneous apoptosis [14]. The 
most well known surface receptors that signal the induction of apoptosis are part 
of the tumor necrosis factor receptor family. TNFRI and Fas initiate death signals 
through "death domains" in their receptors on interaction with the corresponding 
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antigens TNFa and Fas ligand (Fas L), respectively [15-18]. The biological impor­
tance of the Fas/FasL system has been extensively studied in T cells, where it plays 
a critical role in the clonal deletion of autoreactive T cells and activation-induced 
suicide of T cells [18, 19]. Fas L can function in either autocrine or paracrine path­
ways to cell death [20]. A series of murine mutations in Fas (lpr) or in Fas L (gld) 
have provided a powerful means of demonstrating the involvement of this system 
in various apoptosis-activating pathways [21]. The Fas/Fas L system has also been 
implicated in "immune privilege" where several tissues in the body want to pro­
tect themselves from autoimmunity [22]. These include certain cells of the testis 
[23], eye [24] and possibly the brain, which express high levels of Fas L. Interac­
tion of Fas positive inflammatory cells, such as T cells or neutrophils [25, 26], 
induces an apoptotic response and prevents a potentially harmful inflammatory 
response. 

The signaling mechanism by which Fas and TNFR1 induce cell death still 
remains unclear. However, ligation of Fas and TNFRI results in the binding of 
MORTl (or FADD) [27] and TRADD [28] proteins, respectively. These adapter 
proteins have been shown to then bind MACHa [29, 30], a novel ICE/CED-3 pro­
teolytic enzyme, now called caspase [31]. This caspase family of proteases originat­
ed from studies in C. elegans. During normal development, 131 of the total 1,090 
cells of the worm die by apoptosis giving rise to the mature adult. Two genes, ced-
3 and ced-4 are required for this programmed cell death [32]. The mammalian 
equivalent of these genes is interleukin 1 P converting enzyme (caspase 1 )[32] and 
CPP32 (caspase 3)[33]. Overexpression of these genes in transformed mammalian 
cells results in the induction of apoptosis. Likewise, inhibition of caspase activity by 
CrmA viral expression [34] or protease inhibitors block the expression of apoptosis 
[35]. These cysteine proteases are well conserved in animals and nematodes that 
would indicate that they are central to the processes of cell death. To date ten mem­
bers make up the caspase family in human cells [31]. All are cysteine proteases with 
a common penta peptide sequence -QACRG- that constitutes the active site of the 
molecule, and all cleave their target proteins at aspartic acid residues [36]. The cas­
pases carry out their destruction of the cell through the cleavage of a number of sub­
strates essential for cellular function. Interleukin 1P converting enzyme cleaves actin 
(which .gives the cell its structure) resulting in cell shrinkage and blubbing [36]. 
CPP32 is specific for poly(ADP ribose) polymerase cleavage thus preventing the 
repair of the fragmented DNA, an important characteristic of apoptotic cell death 
[35]. 

The other gene identified from these worms was ced-9, which was shown to 
inhibit cell death of these 131 cells [36]. The mammalian equivalent of ced-9 is Bcl-
2, which when overexpressed in mammalian cells results in delayed apoptosis [36]. 
Again, similar to the caspase family, there is now a family of Bcl-2 like proteins 
including Bcl-xL> Bax and Bad [37, 38]. Some of these proteins block apoptosis but 
other members of the family have been shown to induce it. The proportion of block-
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ers to promoters determines if apoptosis can proceed. Transgenic mice with 
increased Bcl-2 expression result in the accumulation of follicular center B cells [39]. 
This effect is a result of decreased cell death rather than an effect on the rate of cell 
proliferation. Again, similar to ced-3 and -4, Bcl-2 is able to function in cells from 
worms, insects, and mammals, blocking the activation of cell death; further impli­
cating these genes as a central mechanism for cell death. 

Reactive oxygen species have been shown to playa role in inducing apoptotic 
signals [40] as H20 2 [41] and radiation [42] both induce apoptosis in different cell 
systems. Antioxidants have also been shown to inhibit apoptosis induced by these 
treatments. Further studies have shown that Bcl-2 expression blocks apoptosis by 
protecting against oxidative stress [43]. Kane et a1. [44] have shown that Bcl-2 
blocks GTl-7 neural cell death brought on by depletion of glutathione. It is how­
ever believed that oxygen radicals are not directly responsible for the DNA degra­
dation or the membrane damage seen during the final common pathway of apop­
tosis. Oxygen radicals may deplete thiols that could activate other enzymes respon­
sible for cell death. The endogenous formation of reactive oxygen species and 
depletion of thiols could be a constitutive factor that tends to drive cells to apop­
tosis even in the absence of exogenous stimuli. Such a model of apoptosis is con­
sistent with the view by Raff et a1. [45] that the default state of cells is to die by 
programmed cell death unless kept alive by specific signals or anti-apoptotic 
agents. 

Apoptosis and the systemic inflammatory response syndrome (SIRS) 

It has been well established that the neutrophil plays an important role in the devel­
opment of a number of inflammatory diseases ranging from rheumatoid arthritis 
[46] and myocardial reperfusion injury [47] to acute respiratory distress syndrome 
(ARDS) [48]. The removal of inflammatory neutrophils from the site of infection is 
an essential step in the resolution of this process. 

Mature human neutrophils have the shortest life span and die rapidly via apop­
tosis in vivo and in vitro, resulting in the demise of the entire population within 
72 h. As neutrophils proceed through apoptosis, functional activity declines. Apop­
to tic neutrophils lose CD16 (FcgRIII) [49] expression and demonstrate a reduced 
ability to degranulate, generate a respiratory burst, or undergo shape changes in 
response to external stimuli such as the chemotactic bacterial peptides [50]. Alter­
ations in functional activity of these inflammatory cells induced by apoptosis may 
serve to render the cell functionally ineffective before removal by scavenger ph ago­
cytes. This state of ineffectiveness may benefit the host where resolution of the 
response is required. Prolonging neutrophil survival and hence causing the delay in 
their removal could potentially exacerbate the disease state and result in additional 
neutrophil-mediated tissue damage [5,51] (Fig. 2). 
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Modulation of neutrophil apoptosis 

Although neutrophils appear to be committed to death via spontaneous apoptosis, 
it is clear that the life span and functional activity of mature neutrophils can be 
extended significantly by the inflammatory microenvironment. Proinflammatory 
cytokines, cell migration, and the neutrophil's state of activation have been shown 
to mediate neutrophil survival. The effect of a given mediator varies with the exper­
imental circumstances and the cell population examined, however, C5a [50], gran­
ulocyte colony-stimulating factor (G-CSF) [52], granulocyte-macrophage colony­
stimulating factor (GM-CSF) [50,52], IFNy [53], IL-6 [54], IL-2 [55], IL-1P [54] 
and bacterial products such as lipopolysaccharides (LPS) and formyl-methionyl­
leucyl-phenylalanine (fMLP) [50], delay apoptosis. Recent studies have also demon­
strated that the process of migration results in delayed apoptosis [56], this being 
mediated through P2 integrins [14]. Physiological activation is not solely responsi­
ble for suppression of neutrophil apoptosis. Anti-inflammatory glucocorticoids also 
exert a protective effect on neutrophil survival by delaying apoptosis [57]. 

Components of the inflammatory response do not, however, only delay the 
apoptotic process. The inflammatory mediators IL-6 [58], IL-10 [59], TNFa [60, 
61] and anti-Fas antibodies [25, 26, 62] result in the induction of neutrophil cell 
death. IL-10 has been shown to prevent stimulated survival of neutrophils and 
results in apoptosis and clearance of an inflammatory response [59, 63]. Oxidative 
metabolites produced upon ingestion of bacteria have also been shown to induce 
apoptosis of both non-stimulated and inflammatory neutrophils [61]. Other oxida­
tive stresses such as the sulfhydryl oxidation of neutrophil thiols also results in this 
effect [64]. This alteration in oxidative state of the cell may act as a signal to the 
neutrophil indicating that it has achieved its primary function of ingesting and 
killing bacteria and now must be removed from the inflammatory site (Tab. 1). 

During inflammation there is evidence demonstrating that cellular susceptibility 
to Fas and TNFRI can be lost [65]. This loss of susceptibility to cell death signals 
has been associated with decreased caspase 1 and caspase 3 protein expression. In 
vitro studies have demonstrated that elevations in intracellular anti-oxidants, GSH 
and NAC, may be involved in this process [26]. 

This regulation of neutrophil apoptosis by different components of the inflam­
matory response may playa critical role in the resolution of inflammation. Delayed 
apoptosis of these short-lived cells by inflammation is central to the fight against 
infection, however, the induction of apoptosis in functionally spent cells is central to 
their recognition by the surrounding local macrophages and removal from the site 
of inflammation (Fig. 2). 

Figure 2 

Requirement for the resolution or persistence of an inflammatory response. 
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Table 1 - Mediators involved in the regulation of neutrophil apoptosis 

Mediators 

Cellular process 

'Conflicting evidence 

Delay 

IL-1 ~ 
IL-2 
11-6* 

G-CSF 
GM-CSF 

IFNy 
TNFu* 

C5a 
LPS 

fMLP 

Glucocorticoids 

~2 integrins 
Elevation in Ca2 

Neutrophil apoptosis in vivo 

Induction 

IL-6* 

11-10 
TNFu* 

Fas ligand 

Phagocytosis of opsonized 
E. coli and associated respiratory burst 
L-Selectin adhesion 

Reduced intracellular thios 

The systemic inflammatory response syndrome (SIRS) denotes the generalized 
expression of a process that is normally localized to the site of an acute challenge 
[66]. Although apoptosis in critically ill patients has not been extensively studied, 
the available data show intriguing abnormalities. 

Neutrophils harvested from burn patients show increased survival secondary to 

retarded neutrophil apoptosis. The apoptotic delay is mediated by a soluble serum 
factor whose activity can be blocked with a blocking antibody to GM-CSF [67], 
even though GM-CSF could not be measured in the serum. This suggests that the 
release of this endogenous mediator also modulates cell survival in the systemic cir­
culation. Studies in a group of patients with SIRS have found that rates of sponta­
neous neutrophil apoptosis in vitro are reduced to approximately one quarter of 
those of control cells and that the altered responsiveness can be attributed to both 
cellular changes in patients' neutrophils, and to soluble factors in the serum. These 
studies are the first to demonstrate that delay in neutrophil apoptosis may account 
for the persistence of an inflammatory response and resulting detrimental tissue 
damage. 
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Apoptosis in multiple organ dysfunction syndrome 

Liver 

Hepatocyte injury can result from a number of mechanisms, including ischemia, 
free radical formation, and cytotoxicity mediated by bacteria or cytokines [68]. 
Apoptosis is a feature of various liver injuries, but its regulationldysregulation 
remains poorly understood. The CD95 receptor system has been implicated in this 
process as hepatocytes are highly sensitive to TNF and Fas-mediated apoptosis [69]. 
TNF plays a pivotal role in sepsis, induced by endotoxin and other inflammatory 
mediators. Endotoxin-induced liver injury is TNF-mediated and apoptosis appears 
to be a decisive event in the prenecrotic phase of liver damage [70]. The cytotoxic 
effects of T and natural killer lymphocytes are mainly mediated through the initia­
tion of apoptosis. The mechanism may involve an increased expression of receptors 
on hepatocytes and increased expression of ligands by T lymphocytes [71]. Neu­
trophils which also express Fas L may also playa role during their infiltration of 
the liver. 

Lung 

Neutrophils playa significant role in lung injury due to the release of a number of 
inflammatory mediators associated with their functional activity. Resolution of 
acute lung injury requires the removal of inflammatory neutrophils from the site via 
the process of apoptosis. These apoptotic bodies are then removed by the sur­
rounding alveolar macrophages. Administration of LPS to the lung results in neu­
trophil infiltration, while high doses cause delayed neutrophil apoptosis and the 
development of acute lung injury [141. Low doses of LPS cause neutrophil migra­
tion but these cells die by apoptosis within 72 h with no lung damage [72]. IL-10 
has been shown to protect against acute lung injury by inducing neutrophil apop­
tosis and resolving the inflammatory response [58]. 

Conclusion 

Controlling cell death is as important to the survival of living organisms as is the 
regulation of growth and development. Derangement of the normal process of 
apoptotic cell death is now recognized as playing a critical role in a variety of dis­
ease processes including autoimmunity, degenerative disorders, and cancer, and this 
recognition has opened the door to novel therapeutic possibilities directed at manip­
ulation of apoptosis. An evolving understanding of the role of inflammatory cell 
apoptosis in the expression and termination of the host response to an acute life-
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threatening stimulus should similarly provide us with new tools to modulate the 
inflammatory response for the ultimate benefit of the critically ill patients. 
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Introduction 

One of the most pronounced metabolic alterations found in the systemic immune 
response syndrome (SIRS) is the induction of catabolic reactions responsible for the 
loss of skeletal and fat tissue [1]. A prolonged catabolic state as found in patients 
with severe sepsis or severe burn injury may even cause death. This process was 
named autocannibalism of the human body [2], a reaction which cannot be stopped 
by nutrition and causes death due to nitrogen depletion. This lethal nitrogen deple­
tion includes a deteriorating function of important body proteins, but also a dimin­
ished lung or heart function because of a reduced potency to maintain adequate 
organ functions. Experiments performed with the infusion of multiple "catabolic" 
hormones such as glucagon, glucocorticoids, and catecholamines revealed that these 
hormones are only partly responsible for the stimulated protein degradation as 
found in the catabolic state [3]. Therefore, the discovery that a so-called cytokine, 
namely cachectin or tumor necrosis factor-a (TNF, which turned out to be the same 
molecule), can stimulate catabolic processes has brought new hope into the field of 
metabolic research in SIRS [4]. In the meantime several experimental studies have 
confessed that TNF and other cytokines stimulate protein catabolism under experi­
mental conditions, however, clinical trials have revealed that blockade of TNF by an 
antibody directed against TNF could neither reduce cachexia in animal models nor 
reduce mortality in septic patients. A recent publication even denies a direct effect 
of TNF on human muscle [5]. 

Recently H. R. Michie published a critical review about the importance of 
cytokines in catabolism, in which the author discussed the problems associated 
with studies involved in the administration of exogenous cytokines [6]. First, inves­
tigations about the mode of action of cytokines in most cases were performed by 
administrating pharmacological doses of cytokines mostly given by continuous 
infusion. According to these experiments, the catabolic or cachectic reaction of 
TNF was found during continuous infusion of pharmacological doses of the 
cytokine. However, we know from several clinical investigations that increased sys-
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temic levels of TNF are only found during a very short period of the disease. This 
is a typical example which shows the discrepancy between experimental settings 
and clinical reality. A continuous infusion causing permanent (and not transient) 
increases in plasma TNF is an artificial situation not found in most of the clinical 
situations with protein catabolism. Moreover, when measuring the potency of 
lipopolysaccharides (LPS) to stimulate TNF levels in whole blood (ex vivo assay) 
of septic patients, we had to learn that TNF stimulation by LPS in severe sepsis is 
markedly reduced [7]. This means that during the late sepsis-phase the cytokine 
reaction is different in comparison to the situation found in early sepsis, in hemor­
rhagic shock, in the immediate postoperative state, or in the phase of 
hypoxia/reperfusion injury. Therefore, the second problem we are faced with, is the 
fact that the severity of the cytokine reaction depends on the progression of the dis­
ease. This is further complicated by the fact that certain cytokines are found only 
in early sepsis, whereas others are elevated throughout the whole disease. Thus, 
there seems to be a kinetic reaction within the cytokine release. This already raises 
the third problem, the cytokine network. In sepsis we are confronted with a 
cytokine network, meaning that the release of a certain cytokine from a certain cell 
type evokes the stimulation of other cytokines. This situation is very hard to imi­
tate in experimental conditions and therefore it is difficult to determine the meta­
bolic effects of single cytokines. Fourth, most of our knowledge about cytokine 
action on human metabolism derives from results obtained by comparing plasma 
levels of cytokines with certain metabolic reactions. However, in contrast to hor­
mones, cytokines act in an autocrine and paracrine manner. Therefore, cell to cell 
interactions are much more related to tissue concentrations and even to concentra­
tions within the appropriate cells than to plasma levels. In this respect, we still have 
a lack of appropriate knowledge about the clinical relevance of altered systemic 
cytokine levels. To enlarge our knowledge in this respect will be an interesting focus 
of future studies. 

The following chapter will concentrate on the impact of cytokines on protein 
catabolism in sepsis. We will correlate sepsis-related cachexia to cancer cachexia, 
since the immunological regulation of catabolism seems to be similar in both clini­
cal situations. Further attention will be given to the effects of nutrients on cytokine 
metabolism and on the interplay of cytokines and hormones in the septic state. 

Cytokines - modulators of protein catabolism, influence on glucose and 
fat metabolism 

The molecular importance of cytokines in regulating body wasting and malnutrition 
was initially extensively investigated in cancer physiology. When the biological 
effect of TNF was published under the headline "Cachectin and tumor necrosis fac­
tor as two sides of the same biological coin" the close link between tumor cachexia 
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and sepsis became obvious. The infusion of high levels of the tumor-derived factor 
TNF causes sepsis-related symptoms such as a hemodynamic shock, severe organ 
damage and the corresponding catabolic reaction. The examination of damaged 
organs revealed a severe interstitial pneumonitis, acute tubular necrosis and a dis­
seminated intravascular coagulopathy with hemorrhagic lesions in the gastrointesti­
nal tract, in the pancreas, and in the adrenals. The metabolic response was domi­
nated by metabolic acidosis and hyperglycemia followed by hypoglycemia due to 
liver failure. Obviously the metabolic reactions observed in these experiments can 
also be explained by the severe organ damage. However, we still had to learn that 
cancer-related cytokines play a role in the induction of a septic shock and the 
hypothesis that cancer cachexia might be seen as a slow variation of the sepsis relat­
ed autocannibalism was born. 

Despite a now well documented role of TNF in catabolic metabolism, the initial 
enthusiasm for the role of TNF as a mediator of cancer cachexia is nowadays lim­
ited because plasma of cancer patients often lacks the activity of TNF. Subsequent 
studies have revealed that other cytokines such as IL-1, IL-6, INFy, and leukemia 
inhibiting factor (LIF), might also contribute to the development of cachexia [9, 10, 
11]. Administration of IL-6 antibody to cancer-bearing mice prevented the occur­
rence of cachexia in an experimental set-up [12]. Interestingly, even the administra­
tion of INFy caused a transient cachexia. Immunization of mice bearing a Lewis 
lung adenocarcinoma with antibodies against INFy reduced tumor growth, spared 
body protein, and improved food intake. However, it was unresolved whether part 
of the improvements in food intake and body weight were simply the result of 
reduced tumor burden [13]. The role of IL-1 in cancer cachexia is slightly uncertain 
because only sublethal administration of IL-1 to healthy animals could reproduce 
the host changes reminiscent of cachexia [14]. 

Recently a new cancer cachectic factor, which holds more promise than the 
above mentioned cytokines, has been detected. This lipid-mobilizing factor (LMF) 
was classified as a proteoglycan released by the tumor and is able to cause protein 
and fat catabolism. So despite initial draw-backs new hope has arisen to find an 
appropriate therapy for cancer cachexia [15]. 

Similar to cancer cachexia, our knowledge about the impact of cytokines on 
catabolism and cachexia in sepsis results from experimental studies. Lowry and 
coworker performed a study administrating an endotoxin bolus (20 U/kg) to healthy 
volunteers and measured the metabolic effects followed by endotoxin infusion [16]. 
The endotoxin infusion caused a cachectin and an IL-6 peak and only transient 
changes in epinephrine and cortisol, but no changes in circulating glucagon and 
insulin. In spite of these rather low alterations of plasma hormone levels, pro­
nounced metabolic alterations were found. The endotoxin bolus produced increased 
energy expenditure, hyperglycemia, hypoaminoacidemia, and an increase in circu­
lating free fatty acids. Organ-specific alterations were defined in the direction of 
increased peripheral output from amino acids, lactate and free fatty acids, along 
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with an increased glucose uptake from skeletal muscle. Coordinately, there were 
increased splanchnic uptakes of lactate, amino acids, and free fatty acids and an 
increased splanchnic glucose output. In this study the influence of endotoxin on 
physiological parameters was also measured. Endotoxin caused a significant 
increase in body temperature (+20 C), heart rate (+60%), minute ventilation 
(+40%), splanchnic blood flow (+60%) and of splanchnic oxygen consumption 
(+ 70%). Therefore, nature reacts in a perfect manner toward an infection with 
invading microorganisms using endotoxin to perform a shift of the metabolism from 
the periphery (skeletal muscle) to central organs. 

Jeejeebhoy and coworkers performed a similar study in an experimental rat 
model [17]. They determined body composition and metabolic rate in rat during a 
continuous infusion of TNF for ten days. Similar to the results described in humans 
by the group of Lowry, TNF-infused rats were hypermetabolic, hyperglycemic and 
had raised blood urea nitrogen. The rats were anorexic and had significant loss of 
muscle mass, especially in muscles with a predominance of type II fibers. However, 
the rats gained liver, heart, and lung mass. The gain in visceral mass was associated 
with an increase in organ DNA and protein content. Histological examinations 
showed that there was cell proliferation in the liver, heart, and kidneys. 

These two studies clearly demonstrate that endotoxin, possibly via TNF, causes 
a shift of metabolic substrates from skeletal muscle to visceral organs which might 
even be necessary for survival of the organism. Therefore, therapeutic strategies in 
SIRS or severe sepsis must be evaluated in relation to endogenous life-saving reac­
tions created already by nature during evolution. In this respect we should consider 
that therapeutic strategies such as antibodies against endotoxin, or cytokines, or the 
administration of growth hormone which prevent this teleological reaction may 
even harm the patient. 

As might be anticipated, cytokine antagonists can interfere with the sepsis­
induced catabolic state. This should be demonstrated here on two examples: the IL­
l receptor antagonist (ra) and IL-6 antibodies. 

Vary and coworkers investigated the impact of infusion of IL-1 receptor antago­
nist (IL-lra) on protein synthesis during an experimentally induced sepsis [18]. IL­
Ira did not significantly alter hepatic protein metabolism in septic or control ani­
mals. In kidney, the protein content and rate of protein synthesis were both 
decreased by sepsis, and significantly ameliorated by the infusion of IL-1ra. Sepsis 
decreased the rate of protein synthesis in the small intestine. IL-lra increased intesti­
nal protein synthesis, however, the effects were localized to the seromuscular layer. 
The preservation of muscle protein by IL-1ra in sepsis did not adversely affect pro­
tein synthesis in any of the visceral tissue examined. The group also investigated the 
mechanism by which IL-lea regulates protein synthesis in skeletal muscle during 
hypermetabolic sepsis [19]. Treatment of septic rats with IL-lra prevented the sep­
sis-induced inhibition of protein synthesis and translational efficiency in gastrocne­
mius by maintaining peptide-chain initiation. The molecular mechanism was based 
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on the fact that IL-1ra infusion maintained the e-subunit of eukaryotic initiation fac­
tor (elF) lB. 

Skeletal muscle contains multiple proteolytic systems: (i) a lysosomal pathway, 
which involves the proteases cathepsin B, H; L, and D, (ii) a cytosolic proteolytic 
pathway which involves ubiquitin, and (iii) 11, m, and muscle-specific calpains, 
which are Ca2+ -dependent proteases. Interestingly, the treatment of mice with anti­
mouse IL-6 (mIL-6R) antibody prevented muscle atrophy in IL-6 transgenic mice 
[20]. mIL-6R decreased the enzymatic activities and mRNA levels of cathepsin (B 
and L) and mRNA levels of ubiquitin and increased the mRNA levels of muscle-spe­
cific calpain (calpain 3). 

In summary, our knowledge of the influence of cytokines on protein, glucose and 
fat metabolism arises mostly from experimental studies where either endotoxin or sin­
gle cytokines have been infused in animal models. From these studies we have learned 
that metabolic alterations as described in sepsis - increased protein breakdown, 
decreased glucose utilization, increased fat hydrolysis - are closely associated with 
alterations in the cytokine pattern. However, conclusions to which extent these exper­
imental results are relevant for the clinical situation have to be drawn with caution. 

Modulation of cytokines by nutrients 

In an experimental study it was proven that the route of nutritional supply influ­
ences local and systemic responses to intraperitoneal bacterial challenge. In this 
study it was shown that the survival rate of rats was significantly higher (60% vs 
22 %) when rats received enteral nutrition (EN) instead of parenteral nutrition (PN) 
[21]. The authors of this study investigated the production of cytokines in peritoneal 
fluid, peritoneal exudative cells and bronchoalveolar lavage fluid and its dependence 
on the mode of nutrition. They documented that rats fed with EN had lowered TNF 
levels in the bronchoalveolar lavage fluid and in the peritoneal fluid, but higher 
INFy levels in all measured compartments. In another experimental study the 
expression of intestinal and splenic cytokines on the mRNA levels was measured 
after PN [22]. PN significantly decreased the production of TNF and IL-6 in the 
spleen and increased the IL-6-specific mRNA in the Peyer's patches of the intestine. 

The above mentioned studies clearly demonstrate that the production of 
cytokines is modulated by nutrition. A more specific immunomodulating effect has 
been proven for several nutrients including fatty acids and certain amino acids. 

Fat 

Endres et al. demonstrated that consumption of 15 g per day of eicosapentanaeoic 
acid (EPA), as fish oil, for a six week period, was sufficient to reduce the ability of 
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monocytes from healthy subjects to produce IL-1 and TNF in response to an endo­
toxin stimulus, by more that 30% [23]. The effect persisted for ten weeks after the 
subjects had returned to their normal diet. Opposite effects, however, were pub­
lished in animal models. The administration of fish oils to mice led to a higher pro­
duction of TNF and less PGE2 from macrophages in response to a challenge with 
lipopolysaccharide than macrophages from mice fed with other high-fat diets [24]. 
Supplementation of the diet with fish oil resulted in enhanced levels of TNF-specif­
ic mRNA and protein. Nuclear run-on assays demonstrated an increased transcrip­
tion of TNF-specific mRNA by fish oil. A beneficial effect of fish oil was given in a 
burned animal model [25]. In this experiment mice were fed with diets containing 
15% of energy from fish oil, safflower oil, or a 50:50 mixture. Survival was 84% in 
the fish oil group versus 36% in the safflower oil and only 25% or 20% in the con­
trol groups. The number of viable translocating bacteria was reduced in all tested 
organs in the fish oil group compared to the other groups. The authors concluded 
that diet enriched in fish oil has beneficial effects during gut-derived sepsis. In an in 
vitro study the effects of two lipid emulsions (with and without ro-3 fatty acids) 
upon proliferation of rat and human lymphocytes were investigated [26]. An emul­
sion containing ro-3 polyunsaturated fatty acids improved lymphocyte proliferation 
in comparison to a fat solution without ro-3 fatty acids. There are several other stud­
ies investigating the modulation of inflammation and cytokine production in dietary 
(ro-3) fatty acids (for review see [27]). To summarize this subject, the use of ro-3 fatty 
acids induces moderate clinical improvements in rheumatoid arthritis, psoriasis and 
colitis. Data on critically ill burn or postoperative cancer patients are still inconclu­
sive. The ro-3 fatty acids markedly inhibited sterile inflammation in animal studies 
and improved survival in some experimental infections. Interestingly, ro-3 fatty acids 
decreased the production of pro-inflammatory cytokines in most human studies, but 
increased cytokine production capacity in mice. Differences in cytokine-producing 
cell types in studies may account for these paradoxical responses in humans and 
rodents. 

Proteins 

The influence of protein malnutrition (PM) or protein-calorie malnutrition (peM) 
on immune and cytokine response was frequently investigated in animal models 
triggered with endotoxin. Already in 1982 Keenan et al. provided evidence that mal­
nutrition suppresses the cytokine production [28]. The suppressed ability of PMN 
from malnourished subjects to produce leucocyte endogenous mediator was 
enhanced by feeding protein supplements. PM leads to a profound immunodefi­
ciency, mostly related to decreased cell-mediated immunity, but humoral and non­
specific immunity are also lowered. peM is also associated with altered monocyte 
functions. It was shown in rats that peM induces lower IL-l secretion and conse-
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quently reduces the febrile responses to endotoxin. This may be an explanation for 
the frequent non-febrile infections observed in undernourished elderly subjects. In 
fact, all monocyte functions are reduced in PCM animals and patients, including 
monocyte phagocytosis and cytokine secretions such as IL-1~, TNF, and IL-6. By 
inducing lower monocyte secretion or an inappropriate response to monokine 
release, PCM is responsible for the lower acute-phase reaction and the lower lym­
phocyte stimulation. Consequently, the immune system stimulation is decreased 
during PCM, leading to increased risk of infection. Grimble and coworkers fed 
young rats a diet containing 8% casein, supplemented with isonitrogenous amounts 
of different amino acids such as alanine, glycine, serine, cysteine or taurine, prior to 
injection with TNF and investigated the effect of the diets on hepatic glutathione 
contents and the synthesis of acute-phase proteins [29]. In this paper it was shown 
that the possibility to respond to TNF is dependent on the composition of the diet. 
Cystein improved the response to TNF to maintain a high level of hepatic glu­
tathione. On the other hand, Alexander et al studied the effect of overnutrition in 
guinea pigs exposed to Plasmodium Berghei, and found an increased mortality in 
overfed guinea pigs [30]. They hypothesized that alterations in TNF production may 
be partly responsible for this phenomenon. 

Glutamine 

Glutamine is of particular importance for the immune system. Glutamine is the most 
abundant free amino acid of the human body. In catabolic stress situations such as 
operations, trauma, and sepsis, there results an enhanced transport of glutamine to 
splanchnic organs and blood cells (for review see [31]). This stimulated glutamine 
release from skeletal muscle is accompanied by an intracellular glutamine deficien­
cy, related to the prognosis of the patients [32]. Glutamine is an important meta­
bolic substrate for cells cultivated under in vitro conditions and a precursor for 
purines, pyrimidines and phospholipids. Glutamine influences the expression of sur­
face antigens on lymphocytes and monocytes (Fig. 1) and stimulates the production 
of IFNy, TNF and IL-2 [33]. Glutamine is the most important energy substrate of 
the intestine. Intestinal glutamine extraction decreased in animals treated with IL-1 
[34]. Concomitant with the above mentioned decrease in gut glutamine metabolism 
there was a 25% incidence of positive blood culture for Gram-negative organisms 
in IL-1 treated rats. In contrast to IL-l, TNF had no effects on the parameters of gut 
glutamine examined. These results indicate that IL-l is a potential mediator of the 
alterations in gut glutamine metabolism observed in sepsis and endotoxemia. Recent 
results have indicated that glutamine is a modulator of reactive oxygen intermedi­
ate-mediated cytotoxicity of TNF in L929 fibrosarcoma cells [35]. When cultivating 
these cells by omission of glutamine from the medium, a desensitization of the cells 
to TNF cytotoxicity occurs. The authors explain this enhanced TNF cytotoxicity by 
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glutamine through a mechanism that renders the mitochondria more susceptible to 
TNF-induced mediators, resulting in enhanced production of reactive oxygen inter­
mediates. However, it has to be mentioned that the administration of glutamine to 
cancer patients seems to be double-edged since glutamine is effective in modulating 
tumor cells in the direction of a lower state of differentiation [36]. Therefore, future 
studies in experimental carcinoma models must elucidate whether the immunostim­
ulating properties of glutamine are advantageous in comparison to influencing cell 
modification to a lower degree of differentiation. In catabolic and septic patients the 
administration of glutamine seems to be advantageous and can even decrease mor­
tality in severe sepsis. 

Glycine 

Glycine, a non-essential amino acid, has been shown to be protective against hypox­
ia, ischemia, and various cytotoxic substances in renal tubulus, hepatocytes, and in 
a low-flow liver perfusion model in the rat. Thurman and coworkers have found a 
pathomechanistic explanation for this protective effect of glycine [37]. When feed­
ing endotoxin boostered rats with high doses of glycine, the survival of rats increas­
es significantly. This reduced mortality was accompanied by reduced plasma levels 
of TNF (Fig. 2). Further experiments revealed that glycine blocked Ca2+ uptake of 
monocytes in cultured Kupffer cells, thereby minimizing toxic eicosanoid and 
cytokine production. We could confirm these results in human monocytes where the 
co-cultivation of monocytes with glycine also reduced the production of TNF. In 
later experiments Thurman could show that glycine may also prevent the nephro­
toxicity of cyclosporin A by acting as an oxygen radical scavenger. Therefore, the 
administration of high amounts of glycine may indeed prevent metabolic reactions 

Figure 1 

Influence of glutamine on phagocytosis and antigen-presenting capacity of human mono­

cytes. 

Monocytes were cultured for seven days with the indicated concentrations of glutamine. The 

expression of HLA-OR-antigen (upper graph; mean channel fluorescence, MCF) was deter­

mined by a FACScan analysis. T cell proliferation was measured by a f3 counter and indicates 

the incorporation of 3H-thymidine in proliferating lymphocytes. The expression of 

C011blC018 (lower graph; mean channel fluorescence, MCF) as well as the percentage of 

cells ingesting FITC-Iabelled E. coli were determined by FACScan analysis. Data with mono­

cytes from four to six apparently healthy donors represent the mean ± SO. Statistically sig­

nificant decrease in comparison to 2 mmolll glutamine (GLN), Student's t-test: 'p < 0.05, 

"p<0.01, ·"p<0.001 [55]. 
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Effed of glycine on mortality and serum tumor necrosis factor-a (TNFa) levels after LPS 

iniedion. 

Rats were fed control or glycine-containing diets for three days. Various amounts of LPS 

were inieded via tail vein, and survival rates were monitored for 24 h (upper graph). Data 

represent percentage of dead animals after 24 h (n=10 for each pOint). c, glycine-fed group; 

p, control diet group. *p<0.05 with Fisher's test. Fradions represent survivors/total. To 

deted TNFa produdion, blood samples were colleded before and at four time points after 

an iniedion of LPS (10 mg/kg) for up to 310 min (n = 4; lower graph). TNFa was measured 

by enzyme-linked immunosorbant assay. Data are means ± Sf. *p<0.05 with Mann-Whit­

ney's rank-sum test [37]. 
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created during the ischemia/ reperfusion period, a pathophysiological situation also 
relevant in the septic state. 

Interplay of cytokines and hormones 

One of the main metabolic goals in sepsis is to concentrate the body energy 
resources on the production of acute phase proteins in the liver. This is achieved by 
hormones, cytokines and vasoactive substances. The latter provide the efficient 
blood supply to metabolically important organs such as the liver. Cytokines exert a 
profound direct influence on uptake and metabolism of glucose, amino acids and 
fat. However, the complex immunological and metabolic interaction in sepsis can 
only be understood if both the humoral and the cytokine network, and their inter­
action, are taken into account. 

Despite the discrepancy between experimental models and the clinical situation, 
these models which are based on the application of single cytokines or hormones 
during endotoxemia have given some insight of how cytokines and hormones 
depend on each other. In a time course of endotoxemia it was observed that the peak 
of proinflammatory cytokines precedes the rise in sepsis-related catabolic hormones 
such as glucocorticoids, glucagon and epinephrine [38, 39]. Thus, it seemed likely 
that the acute inflammatory response cytokines contribute to the induction of this 
hormonal response [40, 41]. Sauerwein and coworkers demonstrated that IL-6 
increased norepinephrine by 97%, cortisol by 45%, and glucagon by 15%. Obvi­
ously the induction of cortisol is partly mediated by the pituitary-adrenal axis, since 
IL-6, which can be produced in the pituitary gland in response to endotoxin, can 
induce the adrenocorticotropic hormone [42] . The high induction of norepineph­
rine by IL-6 in the acute inflammatory response serves two tasks. As a vasoactive 
substance it counter-regulates the sepsis-related vasoparalysis evoked by the induc­
tion of the inducible nitric oxide synthase and as a catabolic hormone it mobilizes 
energy resources for the hypermetabolic septic liver. 

Interestingly, cytokines not only induce metabolic hormones but they also 
enhance the effect of some stress-related hormones on the production of acute phase 
proteins [43]. For example, catabolic hormone induces C-reactive protein (CRP) 
production. IL-6 further enhances this induction in a non-additive effect. Insulin on 
the contrary counteracts the IL-6 mediated synthesis of CRP. Dexamethasone alone 
has variable effects on the acute phase protein synthesis. In combination with IL-6 
this hormone induces not only the production of CRP, but also of a-l-antichy­
motrypsin, a-I-acid glycoprotein, and haptoglobin. Despite the fact that not all 
catabolic hormones positively support the synthesis of all acute phase proteins, 
insulin obviously appears to counter-regulate the hepatic response to inflammation. 
This hormone enhances the production of albumin and transferrin and represses 
cytokine and glucocorticoid-stimulated acute phase protein expression [44]. The 
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insulin-mediated suppression of the immediate hepatic response is exerted at the 
transcriptional level. The effect is mediated by at least two separate mechanisms. 
Insulin leads to an increase in the transcription of genes encoding the AP-l com­
ponents of JunA, JunB and c-Fos. On the other hand, it inhibits the transcriptional 
activation of CCAAT/enhancer-binding protein (CIEBP) beta. 

According to the negative effect of insulin on the hepatic acute response reaction, 
the activity of this hormone is suppressed by proinflammatory cytokines. TNF can 
induce an insulin resistance. This was demonstrated in a variety of cell systems 
including adipocytes, muscle cells and hepatocytes. Recently the mechanism was 
elucidated. TNF increased serine phosphorylation of the insulin receptor substrate 
-1 (IRS-i) [45]. By this mechanism IRS-l was converted to an inhibitor of the 
insulin receptor tyrosine kinase inhibitor. Furthermore, TNF induces the downreg­
ulation of the insulin-responsive glucose transporter GLUT-4 [46]. TNF-mediated 
insulin resistance might contribute to the impaired glucose utilization which is 
observed shortly after severe trauma. Furthermore, it might explain the enhanced 
insulin demand of patients in sepsis. 

Interestingly, catabolic hormones, which are induced by proinflammatory cyto­
kines, exert a negative feed-back mechanism in the sense that they downregulate 
those very cytokines. Initially the immunosuppressive effect of glucocorticoids on 
the acute inflammatory response was investigated [47]. However, glucocorticoids 
have been used for years to limit inflammatory responses in a variety of diseases. 
Therefore it was not surprising that these substances could also repress endotoxin­
mediated upregulation of TNF, IL-6 and IL-l beta. It should be noted that a sys­
temic steroid therapy of septic shock patients did not improve the prognosis. Later, 
it became evident that catecholamines had also an immunosuppressive effect on 
these proinflammatory cytokines. The immunosuppressive effect involves LPS-stim­
ulated expression of TNF, IL-6 and IL-l beta, which is mediated at the mRNA level 
[48,49]. The suppression correlates with an intracellular elevation of cAMP. Block­
ade of beta-l receptors abrogated the immunosuppressive effect in vitro. The bio­
logical relevance of this mechanism for sepsis was demonstrated when Abraham and 
coworkers could increase cytokine expression in hemorrhagic shock by the beta­
blocker propanolol in an animal model [50]. In human endotoxinemia the immuno­
suppressive effect could be reproduced [51]. Thus catecholamines, similar to corti­
costeroids, significantly contribute to the negative feed-back loop towards 
proinflammatory cytokines. 

The immunomodulating effect of corticosteroids and catecholamines is further 
enhanced by the induction ofIL-l0 by the hormones [51,52]. This could be demon­
strated in vitro and in vivo in human endotoxinemia. IL-l0 has an immunoenhanc­
ing effect on B-cells but causes a depression of monocyte function. It significantly 
attenuates TNF and IL-l beta production at the transcriptional level. The peak of 
these cytokines in endotoxinemia models is 24 to 48 hours after the onset event. 
This means that IL-l0 production is observed after the induction of catabolic hor-
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mones in sepsis, which makes the induction of IL-IO by catecholamines and corti­
costeroids a likely biologically relevant mechanism. In clinical sepsis IL-IO produc­
tion is observed throughout the whole septic period, which corresponds to con­
stantly elevated levels of catabolic hormones. 

Two other mediators of the immunosuppressive effect of glucocorticoids are the 
IL-l receptor antagonist and the soluble IL-l receptor II. As observed for IL-I0, 
these two substances rise in endotoxinemia models in the later phase of sepsis and 
contribute to the depression of the initially-overstimulated immunosystem [53]. 

In late sepsis these immunological side effects of catabolic hormones can have 
negative consequences for the organism. In this phase of the disease the immune sys­
tem is in a state of immunological anergy or hyporesponsiveness. Further immuno­
logical depression by glucocorticoids or catecholamines might be detrimental in 
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fighting newly-acquired infections. However, we have observed that in late sepsis 
the immunodepressive effect of catecholamines is restricted to IL-l beta, whereas 
LPS-stimulated levels of TNF, IL-6 and IL-l0 are little affected [48] (Fig. 3). It 
should be noted that the glucocorticoid-mediated immunosuppression can be over­
come by interferon gamma [54]. Thus, this cytokine which also appears later in the 
time course of an endotoxinemia model might counterregulate in vivo hormonally­
induced immunosuppression. 

It appears that in septic shock we have to expand the function of metabolic and 
vasoactive hormones. It seems obvious that these hormones have biologically sig­
nificant immunological side effects. In this sense it might be possible that in septic 
shock the recruitment of immunosuppressive hormones serves also the task of lim­
iting the exacerbated immune system. 
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Introduction 

Bacterial endotoxin remains an important therapeutic target for the treatment of 
serious infections from Gram-negative bacterial pathogens. Despite recent failures 
in past clinical trials with novel anti-endotoxin therapies for septic shock [1-6], a 
critical need remains to improve the unacceptably high mortality rate associated 
with systemic infections from Gram-negative organisms. Endotoxin remains a 
viable target for innovative treatment regimens as endotoxin constitutes the most 
important microbially-derived mediator in septic shock. 

Endotoxin, a complex, amphiphilic macromolecule, is an essential component of 
the outer cell wall of pathogenic Gram-negative bacteria [7]. It is released from the 
cell membrane of bacteria during normal growth and during bacteriolysis from 
exposure to complement, antibodies, antibiotics or neutrophils. Endotoxin is a high­
ly toxic molecule in human plasma or tissues. If accidentally or intentionally intro­
duced into the systemic circulation, endotoxin will produce a sudden and dramatic 
pathophysiological state which mimics bacteremic, Gram-negative septic shock [8, 
9]. 

The endotoxin molecule itself is not intrinsically toxic. It can be viewed as an 
alarm signal that alerts the vertebrate host that a pathogenic Gram-negative bac­
terium has breached the integument or mucosal surface barriers of the host. This 
physiological defense mechanism is a highly advantageous response that evolved as 
a survival strategy against microbial invaders. This endotoxin response serves to 
localize, contain, and eradicate invading bacterial pathogens. Unfortunately, the 
same immunological responses that protect the host in the presence of localized 
infections may precipitate a potentially fatal systemic inflammatory process in the 
presence of Gram-negative bacteremia [10, 11]. 

Endotoxin induces septic shock through the systemic activation of a network of 
host-derived inflammatory mediators including: (1) the proinflammatory cytokines 
and chemokines; (2) neutrophil, monocyte, and endothelial cell activation; (3) the 
complement system; (4) the coagulation cascade and the fibrinolytic system; (5) 
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platelet activating factor; (6) bradykinin; (7) the prostaglandins and leukotrienes; 
(8) reactive oxygen intermediates; (9) nitric oxide; and probably other host-derived 
mediators [10-12]. These inflammatory mediators combine to precipitate endotox­
ic shock. Therapeutic interventions which interfere with the recognition of endo­
toxin in the circulation or contribute to its removal may prove beneficial in the pre­
vention and treatment of septic shock. 

Using sensitive assays of endotoxin detection, it is evident that endotoxin is mea­
surable in the majority of patients with septic shock. Our group has measured ele­
vated plasma endotoxin levels in 79% of cases in a study of over 700 patients with 
severe sepsis and/or septic shock [13]. Patients with the highest levels of endotoxin 
were more likely to be in profound shock and were less likely to survive over the 
next 28 days than patients with lesser amounts of circulating endotoxin. Other stud­
ies have also found an association with systemic hypotension and en do toxemia [14, 
15]. A curious yet consistent finding in these studies [13-15] is the frequent presence 
of endotoxin in the plasma of septic patients with Gram-positive bacterial infections 
and fungal infections. This has been attributed to the presence of an unrecognized 
Gram-negative bacterial infection (perhaps related to the presence of inhibitory 
antimicrobial agents) or excess translocation of enteric bacteria and/or endotoxin 
itself as a consequence of increased intestinal permeability. The splanchnic circula­
tion may be inadequate in the presence of systemic hypotension regardless of the pre­
cipitating of shock [16]. This allows uptake of potentially injurious microbial com­
ponents (including endotoxin) from the intestinal lumen during periods of prolonged 
systemic hypotension. This may account for the frequent presence of endotoxemia 
observed in the course of septic shock from Gram-positive organisms. 

A great deal of recent information about the metabolic fate of endotoxin in 
human tissues has rekindled interest in anti-endotoxin therapies in the management 
of septic shock [17-23]. Despite recent disappointments with anti-endotoxin anti­
bodies, it is clear that agents with much greater endotoxin neutralizing capacity 
might be efficacious where less active agents might have failed. A summary of the 
advantages and disadvantages of anti-endotoxin strategies is given in Table 1. 

Numerous anti-endotoxin strategies are in various stages of preclinical and clin­
ical development at the present time. Those agents that function to remove endo­
toxin from the systemic circulation will be the focus of this paper. The basic mech­
anisms by which endotoxin mediates its pathological effects and the potential sites 
of intervention with endotoxin scavengers are outlined in Figure 1. 

Anti-endotoxin treatments have an advantage over most experimental anti­
mediator therapies under investigation for sepsis. LPS is an unwanted microbial 
toxin which can be completely eliminated without potential harm to the patient. 
This may not be the case with treatments directed against host-derived inflammato­
ry mediators [24, 25]. 

Key elements of inflammation, such as TN Fa and IL-1 ~ are physiological com­
ponents of the host defense mechanisms which have evolved to effectively eliminate 
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Table 1 - Endotoxin as a target for new treatment strategies against sepsis 

Advantages 

Principal mediator in Gram-negative sepsis 

Disadvantages 

Endotoxin rapidly cleared from the circulation 

and difficult to measure 

Shares little homology with human structures May not benefit patients with pure 

Inhibitors should not adversely affect the 

host immune response 

Humans are exquisitely susceptible to 

endotoxin 

Prophylactic agents feasible 

Gram-positive sepsis 

Other components of Gram-negative bacte­

ria and toxins contribute to sepsis 

Relative frequency of Gram-negative 

pathogens as a cause of sepsis is decreasing 

microbial pathogens. Inhibitors of these cytokines may place the patient at risk from 
overwhelming infection from the very same invading microorganisms which initial­
ly precipitated the septic event. This has been shown to be potentially deleterious in 
some experimental animal systems [26]. Anti-endotoxin therapies do not jeopardize 
endogenous host defense mechanisms. This should allow their use as preventative 
agents or treatment interventions in the early phases of sepsis where therapeutic 
agents are most likely to be effective. 

Specific anti-endotoxin strategies 

Anti-endotoxin core glycolipid antibodies 

Anti-endotoxin monoclonal antibodies (mAbs) have been studied recently in sever­
allarge clinical trials. Antibodies directed toward the highly conserved, core glycol­
ipid structure of endotoxin (lipid A and a short sequence of core oligosaccharides) 
were expected to provide broad cross-protection against endotoxins from a variety 
of pathogenic Gram-negative organisms [27]. The clinical trials with both E5 [3,4] 
and HA-IA [2] anti-lipid A mAbs were largely unsuccessful. Several potential expla­
nations may account for the failure of these anti-core glycolipid antibodies to pro­
tect patients from the lethal consequences of Gram-negative bacterial sepsis [1, 3, 
28]. 

Unfortunately, other anti-endotoxin compounds with greater intrinsic activity 
may be difficult to develop following the disappointing results with the monoclon­
al antibodies E5 and HA-1A. These antibodies had rather low intrinsic binding 
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Endotoxin scavenger strategies 
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o side chain Core glycolipid 

~~ 
Core II LPS 

antibody 

The pathophysiological sequence of events that result in endotoxin-mediated adivation of 
inflammatory mediators in human sepsis. Highlighted areas where endotoxin scavengers 

may prove to be useful clinically are numbered in the figure. LPS-lipopolysaccharide; BPI­

badericidal/permeability-increasing protein; PMX-polymyxin; HDL-high density lipopro­

tein; LBP-lipopolysaccharide binding protein; TK-tyrosine kinase; MAPK-mitogen adivated 

protein kinase; NF7d3-nuclear fador in kappa B cells. 

affinities to the lipid A component of bacterial endotoxin [28, 29]. HA-1A reacts 
with self antigens found on human B cells and red blood cells [30] and was shown 
to be detrimental in a canine peritonitis model of bacterial sepsis [31]. Despite some 
evidence of activity in meningococcal sepsis and other patient subgroups, clinical 
development of both of these antibodies has now been discontinued. 

Interestingly, recent laboratory and clinical findings tend to substantiate the 
hypothesis that anti-core glycolipid antibodies may provide significant protection to 
patients in a variety of clinical settings. Goldie et al. [32] found that septic patients 
with pre-existing IgM anti-core glycolipid antibodies in the circulation have 
improved outcomes. Patients undergoing major surgery were less likely to succumb 
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to sepsis if they maintained high levels of endogenous anti-core glycolipid antibod­
ies [33]. Post-operative complications after major vascular surgical procedures were 
significantly less likely to occur in those patients with high titer antibodies against 
the core structure of LPS [34]. 

Rietschel and coworkers [11] have carefully studied the physicochemical prop­
erties of LPS and the immunodominant epitopes within the lipid A core structure 
and the oligosaccharide components of the highly conserved elements of bacterial 
endotoxin. They have described the relevant core glycolipid epitopes which are rec­
ognized by the human immune system in the presence of serotype specific O-side 
chains of polysaccharides on the outer part of the LPS molecule (known as complete 
or smooth LPS). This work is of critical importance since most bloodstream isolates 
of Gram-negative bacilli in human sepsis have complete LPS with O-polysaccharide 
side groups attached to the core structure. These side chains may serve to sequester 
core glycolipid epitopes from immune recognition and sterically inhibit antibody 
binding in virulent microbial pathogens. Outer core oligosaccharide epitopes on Rc 
mutants of E. coli have been identified which react with antibodies in the presence 
or absence of O-polysaccharide side chains of LPS. These reactive epitopes may be 
exploitable as a vaccine target in the development of vaccines against bacterial endo­
toxin [35]. 

Antibodies have been isolated and developed which bind with high affinity to 
endotoxin from a variety of Gram-negative bacterial pathogens. A chimeric IgG J 

monoclonal antibody known as SDZ 219-800 [36] has been developed which may 
prove to be an effective therapeutic agent in human endotoxemia. It is not clear if 
this antibody or similar anti-core glycolipid antibodies will ever be tested for effica­
cy in large scale clinical trials. 

Active immunization with vaccines to raise endogenous anti-endotoxin antibod­
ies against the conserved core glycolipid regions of bacterial endotoxin is another 
potential preventative or treatment strategy. Recent chemical formulations have 
yielded a vaccine preparation which appears to be promising. A detoxified LPS vac­
cine (using deacylated LPS from the E. coli J5 galE mutant) combined with an outer 
membrane protein from group B meningococcus has been shown to be highly 
immunogenic and well tolerated in experimental animal systems [37]. Polyclonal 
antibodies produced in vaccine recipients bind to the inner core regions of LPS mol­
ecules (Rc region) from a number of common pathogenic Gram-negative bacilli and 
protect animals from lethal endotoxin challenge and invasive Gram-negative infec­
tions [37]. 

An active immunization strategy has several theoretical advantages. Among 
these are low production costs, avoidance of human blood products and recombi­
nant protein production difficulties, ability to generate high titer endogenous anti­
bodies in recipients, and the opportunity to use the vaccine as a preventative agent 
[7, 10, 37]. Prophylactic anti-endotoxin approaches are favored over delayed treat­
ment strategies as humans respond precipitously to systemic endotoxin release with 
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a complex array of host-derived inflammatory mediators. It is difficult at the bed­
side to detect the early signs of endotoxemia in critically ill patients. Timely inter­
vention with specific anti-endotoxin therapy after sepsis has begun may not be able 
to reverse the injurious systemic inflammatory response. A vaccine would induce the 
formation of anti-endotoxin antibodies before and during an episode of systemic 
endotoxin release and perhaps protect vaccine recipients at the critical phase of early 
Gram-negative sepsis [6, 10, 11]. 

Antibodies to O-specific polysaccharide antigens of LPS 

Another potential anti-endotoxin antibody strategy would be the development of 
polyclonal antibodies directed against O-specific polysaccharide side chain antigens 
of LPS. Despite the fact that hundreds of serotype-specific polysaccharide antigens 
exist in the LPS structures of pathogenic Gram-negative organisms, a limited num­
ber of common Gram-negative bacterial serotypes cause the majority of human 
blood stream infections. Cross et al. [38] have prepared a polyclonal hyperimmune 
human serum treatment against common strains of Klebsiella and Pseudomonas 
species. Clinical trials with this polyvalent antisera have met with limited success in 
selected patients but did not significantly benefit the entire study population. 

Immunization of critically injured patients with a vaccine composed of polysac­
charide antigens from bacterial LPS has been shown to raise significant serotype­
specific antibody titers against O-side chain epitopes [39]. It may be possible to 
immunize acutely ill patients with such vaccines and offer protection against bacte­
rial LPS molecules by active immunization. This approach to bacterial vaccine 
strategies has yet to be tested in a large clinical trial but it offers an opportunity to 
focus preventive efforts for anti-endotoxin vaccines on patient populations at great­
est risk of endotoxin-mediated injury. 

Bactericidal/permeability-increasing protein (BPI) 

BPI is an endogenous human protein found in the azurophilic granules within neu­
trophils. This 456 amino acid cationic protein attaches to the outer membrane of 
Gram-negative bacteria and disrupts the cell wall permeability characteristics of 
bacteria [40]. This antibacterial activity is accompanied by an ability to bind to the 
lipid A component of endotoxin [41, 42]. The high affinity binding results in the 
inactivation of endotoxin's ability to activate CD14-bearing immune effector cells 
(e.g. PMNs, and monocyte/macrophage cell lines). 

BPI bears considerable structural homology with another important endotoxin 
binding protein, LPS binding protein (LBP) [43]. Both proteins bind with high affin­
ity to the lipid portion of LPS. However, these two endotoxin binding proteins dif-
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Three dimensional model of bactericidal/permeability-increasing protein (BPI). Note two 

potential lipid A binding pockets along the under surface of the amino-terminus domain and 

the carboxyl-terminus domain. Figure obtained from the Brookhaven National Laboratory 

(Weblab Viewerlite, Molecular Simulations Inc.) (derived from work published from [46]). 

fer functionally in that BPI inhibits LPS activation of CD14-bearing myeloid cells 
while LBP promotes LPS activity in these immune effector cells. BPI and LBP may 
act as molecular antagonists in biological fluids which compete with each other for 
LPS binding [44]. The net physiological effects of endotoxin release may depend 
upon the relative tissue concentrations of these two endotoxin binding proteins. LBP 
predominates in the systemic circulation as it is a hepatic acute phase protein 
[43-45]. BPI predominates in abscess cavities as neutrophils degranulate and release 
their intracellular contents into a site of inflammation [45]. 

The three dimensional structure of BPI has recently been determined by crystal­
lographic analysis [46] (see Fig. 2). It forms a V-shaped molecule with planar sym­
metry between the amino-terminus domain and the carboxyl-terminus domains. 
Multiple amino acids converge to form a hydrophobic pocket along the inner sur­
face of both the N-terminal and C-terminal domain of BPI. This hydrophobic region 
of the molecule appears to be the site into which the Lipid A portion of the LPS mol­
ecule fits. BPI binds to endotoxin with high affinity and effectively removes endo­
toxin from the circulation. The recombinant 55kDa holoprotein and the 23kDa 
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amino terminal portion of BPI have both proven to be remarkably successful in 
endotoxin challenge experiments in experimental animals [42,47] and human vol­
unteer studies [48]. The protein also has some antibacterial properties as it increas­
es the permeability of Gram-negative bacterial outer membranes which may be 
lethal to many enteric bacteria [40]. This provides the appealing opportunity of 
treatment with an endogenous human peptide that functions as an antibiotic as well 
as an endotoxin-neutralizing molecule. 

The N-terminal domain of human recombinant BPI is now in extensive clinical 
trials in meningococcal sepsis, hemorrhagic states, and in partial hepatectomy. Ini­
tial clinical trials in children with meningococcal infections with septic shock were 
very encouraging in that the mortality rate in treated children was considerably 
lower than what would be predicted for this severely ill population [49]. A practi­
cal problem with recombinant BPI is its short serum half life (about two minutes). 
This necessitates administration of high doses of BPI by a continuous intravenous 
infusion. Recombinant derivatives of BPI with more favorable pharmacokinetic 
properties are available if current BPI products prove to be successful in ongoing 
clinical investigations [47]. 

Endotoxin binding by polymyxin B conjugates or filtration columns 

Polymyxin B was discovered over 50 years ago as an antibiotic which inhibited 
Gram-negative bacilli including Pseudomonas aeruginosa [50]. It has largely been 
relegated to a drug of historical interest only as newer and less toxic antibiotics 
replaced polymyxin as the standard treatment for serious infections by P. aeruginosa 
[51]. However, its remarkable ability to bind to bacterial endotoxin has continued 
to interest investigators as a potential treatment for endotoxemia. 

It is a cyclic and highly cationic peptide antibiotic which shares some structural 
characteristics with BPI and the Limulus endotoxin neutralizing protein [52]. Elec­
trostatic and hydrophobic interactions with the lipid A structure of LPS account for 
its endotoxin neutralizing effects [53]. Polymyxin B has been administered to 
patients with endotoxemia with some evidence of potential benefit [54]. A conju­
gated form of polymyxin linked with dextran has been developed in an effort to 
maintain its endotoxin binding properties yet limit the nephrotoxicity of polymyx­
in itself. This polymyxin B-dextran conjugated material has been effective as an 
endotoxin scavenger in tissue culture systems [55], in a canine model of endotoxic 
shock [56], and in D-galactosamine-treated mice challenged with E. coli and antimi­
crobial agents [57]. 

A strategy which utilizes polymyxin B as a means of removing circulating endo­
toxin from the blood of septic patients has been described by Kodama et al [58,59]. 
These Japanese investigators have used a hemoperfusion column fused with 
polymyxin to adsorb LPS from the systemic circulation. Preliminary experience with 
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this endotoxin removal column has been promising and is under more extensive 
clinical investigation at the present time [58-60]. 

Reconstituted high density lipoprotein 

High density lipoprotein (HDL) and other serum proteins such as low density 
lipoprotein will bind to endotoxin as it is released into the systemic circulation [61]. 
High density lipoprotein has a remarkable capacity for binding bacterial endotoxin 
with high affinity. LPS adsorption onto HDL particles forms a stable complex. This 
effectively removes LPS from the circulation as the HDL particle is cleared by hepat­
ic uptake and excretion mechanisms [62]. HDL may have a physiological role as an 
endogenous LPS clearance system that limits the possible deleterious effects of sys­
temic endotoxin release. LPS can be delivered to HDL carried by LPS binding pro­
tein or by soluble CD14 which can shuttle LPS to HDL. HDL serves as a systemic 
reservoir which takes up and eliminates LPS as it enters the circulation [62, 63]. 

The endotoxin neutralizing activity of HDL may prove to be a therapeutically 
viable treatment for human endotoxemia. Transgenic mice which express increased 
quantities of human apolipoprotein-A1(the principal protein component in HDL) 
are protected from the lethal effects of endotoxin challenge. Conversely, apolipopro­
tein-A1 knockout mice are highly susceptible to the toxic effects of endotoxin chal­
lenge [64]. It should be noted that critically ill patients frequently have diminished 
circulating levels of HDL. This may place such patients at greater risk from the dele­
terious effects of systemic endotoxin release [63]. 

It has been hypothesized that the administration of HDL to septic patients might 
replenish this physiological LPS clearance system and benefit patients with Gram­
negative infections. In a phase I trial with LPS challenge in human volunteers, a 
reconstituted form of HDL from blood donors was effective in blocking the activa­
tion of proinflammatory cytokines and coagulation factors [65]. A Phase II clinical 
trial with reconstituted HDL in patients with peritonitis is planned in the near 
future. 

Conclusions 

Despite early disappointments with anti-endotoxin monoclonal antibodies, treat­
ment strategies directed towards removal of systemic levels of bacterial endotoxin 
in septic patients remains a viable therapeutic approach. Efforts to remove bacteri­
al endotoxin have the advantage of targeting a potentially lethal microbial mediator 
of sepsis. This approach obviates the legitimate concerns over disruption of the host 
defenses by anti-cytokine strategies and other anti-inflammatory treatments. Inves­
tigative efforts continue on a number experimental approaches directed against bac-
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terial endotoxin. This research with endotoxin scavengers promises to lead to 
improvements in the outlook for septic patients in the future. 
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Introduction 

During septic shock the host produces several proinflammatory cytokines which 
have been implicated as playing a critical role in the pathogenesis of the disease. The 
cytokines which contribute to pathological changes in septic shock are not unique to 
infection. Multiple trauma, ischemia-reperfusion injury, acute transplant rejection, 
antigen-specific immune responses, and various acute inflammatory states (pancre­
atitis) initiate the same cytokine cascade and result in both systemic and local inflam­
matory processes. However, septic shock is a special case, since no other disease is 
associated with such high mortality, despite our ability to provide patients with 
appropriate antibiotics and supportive therapy. Gene deletion, neutralizing antibody 
studies, and specific receptor blockade of cytokines have been shown to have a piv­
otal role in the pathogenesis of septic shock, at least in animal studies. Normally, 
cytokine response is regulated by the intricate network of proinflammatory and anti­
inflammatory mediators. The inflammatory response is kept in check by down­
regulating production and counteracting the effects of cytokines already produced. 

The picture that emerges from analysis of data from patients with sepsis is that 
a complex mixture of pro- and anti-inflammatory molecules may be present [1, 2] 
(Tab. 1). These mediators initiate overlapping processes that directly influence 
endothelial, cardiovascular, hemodynamic, and coagulation mechanisms. The dura­
tion of illness may also alter the mix of mediators, leading to a state of metabolic 
disorder in which the body has no control over its own inflammatory response. If 
balance cannot be established and homeostasis is not restored, a massive proin­
flammatory reaction (SIRS) or a compensatory anti-inflammatory reaction (CARS) 
will ensue [3]. The preexisting status of the patient may affect the nature of the pro­
and anti-inflammatory cytokine response. Genetic factors as well as gender play an 
important role in this balance. In infectious diseases the microorganism induces a 
cytokine profile which is distinct from that induced during a response to foreign-tis­
sue antigens. For example, during bacterial infections there is little or no production 
of interferon (IFN)-y or interleukin (IL)-2, whereas these cytokines are prominent 
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Table 1 - Partial list of proinflammatory and antiinflammatory cytokines 

Proinflammatory molecules 

TNF 

IL-1 ~ 
IL-2 

IL-8 

IL-12 

IL-15 

IFNy 

MCPI/II 

Antiinflammatory molecules 

TNF-Rc 1 +11 
IL-1-Ra 

IL-4 

(lL -6) 

IL-10 

IL-13 

TGF~ 

components of the cytokine profile during transplant rejection and immune-medi­
ated diseases. In both situations IL-l and TNF are produced and function primari­
ly as proinflammatory cytokines. 

A distinction is made between the local effects of TNF and IL-l and the conse­
quences of their systemic levels. If the function of the host defense is the elimination 
of the invading organism or destruction of foreign tissue, inflammation is the price 
which is paid for an effective defense. In systemic inflammation, large amounts of 
TNF and IL-l are released into the circulation. Many of the biological effects of 
TNF and IL-l are similar to those observed during a septic event, and recent stud­
ies in humans have confirmed data from animal experiments. Therefore, it is well 
established that TNF and IL-l playa critical role in sepsis. However, TNF has also 
been shown to be necessary in the host defense during experimental peritonitis. A 
comparative animal model study [4] showed clearly that blockade of TNF reduced 
endotoxemia mortality, but not mortality from cecal ligation and puncture (eLP). 
In other words, the TNF molecule exerts beneficial as well as harmful properties 
depending on its local or systemic concentration, "death from too much of a good 
thing" [5]. 

The consequences of IL-l infusion into humans are similar to those observed for 
TNF except that induction of a coagulation cascade and an initial leukopenia [6] 
has not been observed in humans injected with IL-l. Systemic administration of 
intravenous IL-l at doses of 1-10 ng/kg body weight produces fever, sleepiness, 
anorexia, generalized myalgias, arthralgias, and headache. The most dramatic bio­
logical response to IL-l is observed at doses of 100 ng/kg or higher; at these levels 
a rapid fall in blood pressure takes place [7], indicating that also IL-l is able to exert 
harmful effects in humans dose-dependently. The synergism between TNF and IL-l 
is highly consistent and a frequently reported phenomenon also observed in vivo [8]. 
Efforts to understand how TNF and IL-l manifest so many different biological 
properties can be focused on relatively few mechanistic pathways, mostly those 
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involving changes in constitutive and inducible gene expression or numbers of sur­
face receptors for biologically active molecules. For example, inducible phospholi­
pase A2 (PLA2), cyclooxygenase (COX), and inducible nitric oxide (NO) synthase, 
genes controlling increased synthesis of inflammatory leukotrienes (LTs) and 
prostaglandins (PGs), are highly relevant to understanding the multiple effects of 
TNF and IL-l. 

The best correlation of plasma cytokine levels with mortality from septic shock 
- far better than that for TNF - has been found for IL-6 [9]. It is important to 
emphasize that, unlike TNF and IL-l, there is no evidence that IL-6 is itself an 
inflammatory cytokine except that elimination of IL-6 attenuates coagulation acti­
vation in experimental endotoxemia in chimpanzees [10]. In some models the pro­
duction of IL-6 appears to be under the strict control of TNF an~ IL-l, and there­
fore one can conclude that elevated levels of IL-6 in patients with septic shock repre­
sent the net effect of biologically active TNF and IL-l, which are nearly impossible 
to measure because plasma contains large concentrations of natural inhibitors for 
TNF and IL-l. 

In summary, there is strong evidence for a physiopathological role of an over­
whelming production of TNF and IL-l in the early state of septic shock, at least in 
a subgroup of patients which has to be defined. Therefore, it is reasonable to 
attempt to interfere induction by reducing production of TNF and IL-l. 

Reducing production of IL-1 and TNF 

In addition to the interference with induction (see chapter by S. Opal, this volume), 
anti-TNF and anti-IL-l agents can be classified according to the stage of production 
of cytokine activity they inhibit. Synthesis can be inhibited by anti-inflammatory 
cytokines, other endogenous mediators and synthetic drugs. Processing of the 
cytokine pro-protein can be inhibited by specific inhibitors of the metalloprotease. 
Finally, the effects of released cytokines can be antagonized by soluble receptors or 
anti-cytokine antibodies (see chapter by E. Abraham, this volume). Inhibition of 
TNF and IL-l synthesis can be achieved by several means: (i) inhibition of tran­
scription, (ii) decrease of the mRNA half-life, (iii) inhibition of translation, and (iiii) 
inhibition of processing. Although some substances act on more than one level there 
are at least preferential modes of action (see Tab. 2). 

Reduction of transcription 

At the transcriptional level, synthesis can be inhibited by anti-inflammatory 
cytokines, increase of intracellular cAMP, antisense oligonucleotides, cytokine-sup­
pressing anti-inflammatory drugs, or decrease of mRNA stability (Fig. 1). 
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Table 2 - Agents that inhibit tumor necrosis factor a (TNF) 

Inhibition of TNF synthesis 

Cytokines 

Other endogenous mediators 

Synthetic drugs 

Inhibition of TNF processing 

IL-4 

IL-10 

IL-13 

TGF~ 

Corticosteroids 

Prostanoids 

Adenosine 

Histamine 

Nitric oxide 

00-3 fatty acids 

Pentoxifylline 

Cyclosporin A 

Chlorpromazine 

Thalidomide 

Antisense oligonucleotides 

Inhibitors of the TNF metalioprotease 

Cytokine-suppressing antiinflammatory drugs 

Inhibition of TNF effects 

Anti-TNF antibodies 

Soluble TNF receptors 

modified from [33J 

Anti-inflammatory cytokines 
Only recently has the extent and complexity of the anti-inflammatory cytokine net­
work been investigated. The evidence that anti-inflammatory cytokines do in fact 
playa role in down-regulating inflammation comes from (a) experiments in which 
neutralizing antibodies to certain cytokines worsen the inflammation and (b) gene 
deletion studies in mice which reveal a role for a particular cytokine as an anti­
inflammatory agent. For example, antibodies to IL-l-receptor antagonist (IL-l-ra) 
worsen colitis, and mice deficient in IL-IO develop spontaneous inflammatory 
bowel disease [11]. 
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p·adrenergic agonists 

Prostanoids 

Adenylate cyclase 
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Gene 

AlP cAMP -t~ Antiinflammatory 
cytokines, 

5AMP~ 
Phosphodiesterase 

Figure 1 

AS OND. 

mRNA (SAID 

Phosphodiesterase inhibitors 
(Xanthine derivatives) 

Inhibition of cytokine formation at the transcriptional level. AS OND, antisense oligonu­

cleotide; CSAID, cytokine-suppressing antiinflammatory drug 

IL-4, IL-lO, IL-13, and transforming growth factor (TGF)-~ each suppress gene 
expression and synthesis of IL-l, TNF, and other cytokines. In vitro, these cytokines 
can reduce endotoxin-induced gene expression and synthesis of IL-l and TNF by as 
much as 90% and, when given to mice or rats, can reduce lethal endotoxemia. As 
such they might be potentially usefull in some clinical situations. IL-lO appears to 
be particularly useful because, unlike IL-4 and TGF~, it has no clinical side effects. 
A randomized, double-blind, placebo-controlled trial (phase I) in healthy human 
volunteers demonstrated the absence of clinical toxicity and also investigated the 
effect of a single intravenous injection of IL-l 0 on cytokine production [12]. Blood 
was removed before and 3, 6, 24, and 48 h after the injection and incubated in vitro 
with endotoxin, and the amounts of IL-!~, TNF, IL-6, IL-8, IL-l-ra, and soluble 
TNF receptor- (sTNFR) p55 were measured. At doses of 10 and 25 Ilg/kg there was 
a 90% reduction in IL-l~, TNF, and IL-6 production in blood taken 3 and 6 h after 
injection; at 25 Ilg/kg a 50% reduction of IL-l~, TNF, and IL-6 production was pre­
sent after 24 and 48 h. In contrast, there was no suppression of IL-l-ra or sTNFR­
p55. A 40-60% reduction in circulating lymphocytes expressing CD4, CD8, and 
CD3 was observed after infusion of IL-IO [12]. The proliferative response fo the 
mitogen phytohemagglutinin was suppressed in peripheral blood mononuclear cells 
(PBMC) from volunteers given 10 or 25 Ilg/kg IL-IO and was not reversed by using 
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higher concentrations of the mitogen. These human studies confirm the in vitro 
effects of IL-l0 and suggest IL-l0 may be useful in suppressing inflammatory 
cytokine production in selected diseases. 

IL-4 and IL-13 also suppress LPS-induced IL-l and TNF gene expression and 
synthesis. In addition, they increase IL-l-ra production [13]. ILA and IL-13 share 
the same receptor complex on monocytes, and hence similar biological effects for 
both cytokines are often observed. There are, however, few if any receptors for IL-
13 on T-Iymphocytes, and hence the immunological suppressive effects of ILA and 
IL-l0 on lymphocytes are not observed for IL-13. Similarly to IL-4, IL-l0 and IL-
13, TGFp suppress gene expression and synthesis of IL-l and TNF and also increase 
IL-l-ra production [14]. However, TGFp, which has profound immunosuppressive 
effects, is a growth factor for normal and neoplastic cells. 

Increased Intracellular cAMP Levels 
The most studied class of agents that inhibit cytokine formation at the level of gene 
transcription contains those agents that increase the intracellular concentration of 
cyclic adenosine monophosphate (cAMP); among them are phosphodiesterase (PDE) 
inhibitors, adenylate cyclase activator, and p-agonists (Fig. 1). In general, the degree 
of intracellular cAMP closely correlates with the degree of cytokine inhibtion. 

Phosphodiesterase inhibitors 
The effect of PDE inhibitors on gene induction has been extensively studied. Theo­
phylline [15], pentoxifylline (PTX) [15], rolipram [16], and amrinone [17] are 
among the PDE inhibitors shown to inhibit TNF mRNA accumulation. Published 
reports on the effect of PDE inhibitors, however, on synthesis of IL-l P are conflict­
ing [18-22]. At the level of gene expression, cAMP-increasing agents markedly 
reduce TNFa mRNA but not IL-1P mRNA [23]. The PDE inhibitors theophylline, 
PTX, and 3-isobutyl-l-methylxanthine selectively block LPS-induced synthesis of 
TNFa in human mononuclear cells without affecting production of IL-1P [18]. 
Moreover, cAMP increase by enhanced formation via prostaglandin (PG) E2 leads 
to suppression of TNFa production with no effect on IL-1P [18]. Similarly, cAMP 
increase by the PDE inhibitor PTX reduces TNFa but not IL-6 levels [24, 25], sug­
gesting that cyclic nucleotides differentially regulate the synthesis of cytokines. 

PTX and the related xanthines that comprise the PDE inhibitors have been of 
considerable interest due to their recently characterized immunomodulatory prop­
erties. Originally developed for the treatment of vascular diseases, but used in many 
therapeutic applications, the pharmacokinetic and pharmacodynamic properties of 
PTX have been extensively characterized and indicate it to be a safe drug [26]. The 
modulation of several cytokines has been analyzed in vitro and in vivo. Important­
ly, PTX reduces production of the monokine TNF without affecting IL-l, IL-6 or 
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IL-8 [27-29]. Furthermore, IL-12 [4] as well as TH1-derived lymphokines like IFNy 
and IL-2 are dose-dependently inhibited by PTX [30], whereas TH2-derived lym­
phokines like ILA are not influenced [31]. 

Since suppression of TNF and other cytokines by PTX in vitro can be mimicked 
by membrane-penetrating dibutyryl cAMP [29, 32] and is significantly correlated 
with the potential to inhibit phosphodiesterase activity [16], it can be assumed that 
the elevation of intracellular cAMP is the central mechanism for inhibiting cytokine 
formation, as has been previously described for TNF [15]. Increased levels of cAMP 
activate cAMP-dependent protein kinase A, resulting in phosphorylation of target 
proteins such as cAMP-responsive element (CRE)-binding proteins. These tran­
scription factors bind to specific sequences of the promotor region of certain genes. 
Such a CRE-specific sequence has been reported in the 5'-flanking region of the 
TNF gene [33]. Three mechanisms are mostly involved in the PTX-induced increase 
in intracellular cAMP: (i) inhibition of phosphodiesterase activity, (ii) induction of 
PGs (e.g. PGE2 and PGI2) with subsequent stimulation of endogenous adenylate 
cyclase [34], and (iii) interaction with extracellular adenosine receptors [35]. The 
inhibition of phosphodiesterase activity might be the central mechanism in the 
inhibitory activity of PTX in mononuclear cells; however, endogenous PG produc­
tion with activation of adenylate cyclase may contribute to the mode of action of 
PTX, as demonstrated by experiments involving the combination of PTX with 
cyclooxygenase inhibitors [34]. Nevertheless, it remains to be determined to what 
extent each of the above-mentioned mechanisms contributes to the action of PTX 
on different cell types. PTX reduces TNF production by inhibiting TNF-specific 
mRNA formation without affecting translation [15], which is an essential difference 
from the action of corticosteroids [36]. Importantly, this mechanism of action is also 
different from that of thalidomide (see below), which acts by enhancing the degra­
dation of TNF mRNA [37]. 

Various in vivo studies in experimental animals as well as in humans support the 
concept that PTX-mediated immunological effects have profound influences on var­
ious diseases. With regard to septic shock, PTX treatment resulted in an increased 
survival rate in models of endotoxic shock [38] and, most importantly, also in the 
model of cecal ligation and puncture (CLP) [39], an animal model of sepsis in which 
blockade of TNF activity by neutralizing TNF antibodies failed to improve survival 
[4]. It has already been shown in clinical situations that PTX reduces the endotox­
in-induced [24] and anti-CDTantibodies (OKT3)-induced [40] endogenous TNF 
formation as well as TNF-dependent cachexia in patients with advanced AIDS [41] 
and cancer [42]. Additionally, PTX exerts beneficial effects in sarcoidosis, a TH1-
lymphokine-mediated disease [43]. In patients with septic shock PTX is able to 
decrease serum TNF but not IL-6 or IL-8 concentration [44]. In a clinical study 
(prospective, randomized, double-blind, placebo-controlled) in patients with severe 
sepsis, 90% of whom had septic shock, treatment with continuous intravenous 
administration of PTX significantly improved cardiopulmonary dysfunction and 
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tended to improve survival without any adverse effect [45]. In a more recent study, 
supplemental PTX treatment significantly reduced the incidence of multiple organ 
failure in patients at risk of inflammatory respose syndrome after cardiac surgery 
[46]. 

The clinical efficacy of PTX in terms of organ dysfunction, survival, and media­
tor response, however, has to be evaluated in further studies, especially with regard 
to dose-dependency. PTX may have potential in immunotherapy, especially since it 
is superior to other xanthine derivatives with respect to therapeutic implications. 
Theophylline suppresses TNF production only weakly, and other recently developed 
xanthine derivatives have the disadvantage of not being fully characterized with 
regard to their relative toxicities, despite their pharmacological potential in sup­
pressing TNF production [16,47]. 

Although PTX is the most widely studied agent which inhibits PDE and thereby 
increases cAMP, it is rapidly metabolized systemically (liver first-path effect), with 
peak plasma concentrations being reached at 1.05 h by an elimination half-life of 
0.8 h, respectively [26]. The intra- and interindividual variability in the first-path 
effect make it difficult to standardize dosage regimens clinically. Thus, efforts have 
been made to develop more stable xanthine derivatives, such as albifylline (HWA 
138) with similar bioactivities to PTX but improved pharmacokinetics [48]. 

HWA 138 has been reported to attenuate acute lung injury in experimental ani­
mals [49, 50], decrease cytokine formation, ameliorate coagulation disturbances, 
and reduce mortality induced by endotoxin in rats [51]. Similarly, in a model of bac­
teremia in primates HWA 138 significantly inhibited TN Fa formation [52]. Fur­
thermore, HWA 138 was found to prevent lung injury induced by mediators 
released by endotoxin [53]. Compared with other xanthine derivatives, HWA was 
found (a) to be more potent in abrogation of the proinflammatory effects of TNF 
on granulocytes chemotaxis, adhesion, and toxic radical production in vitro [54] 
and (b) to counteract LPS-induced leukopenia more effectively [34]. However, the 
inhibition of cytokine formation ex vivo was similar to that by PTX [55]. HWA 138 
and PTX show similar potency and efficacy in inhibiting LPS-induced TNF forma­
tion both in vitro and in vivo [56]. The similar effect of these two xanthine deriva­
tives on cytokine formation and coagulation disturbances indicates that, at least to 
a substantial degree, other mechanisms may account for the significant protection 
against endotoxin-induced mortality by HWA only [56]. 

Nevertheless, inhibitors of TNF formation have been shown to exert differential 
effects in lethal endotoxemia and in infection with live microorganisms [57]. PTX, 
thalidomide, and chlorpromazine (CPZ) were tested in lethal endotoxemia in sensi­
tized mice. Although both PTX and CPZ significantly reduced endotoxin-induced 
TNFa plasma levels, only CPZ significantly improved survival. Thus, it is clear that 
reduction in plasma TNF levels can not account alone for the protective effect of 
CPZ in lethal endotoxemia. CPZ, in contrast to PTX, significantly reduced posten­
dotoxin IL-l~ levels as well as plasma levels of sTNFR-p75. The anticytokine effect 
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of CPZ may, therefore, be counteracted by decreased concentrations of circulating 
TNF-receptor (sTNFR-p75). No drug, however, improved survival in Klebsiella 
pneumoniae-infected mice, despite significantly reduced circulating TNFa concen­
trations in both PTX- and CPZ-treated animals [57]. Thus, it is important to note 
that there are substantial differences between the efficacy of different drugs in endo­
toxemia and in infection with live organisms. 

Adenylate cyclase activators 
Another approach to increasing intracellular cAMP is to activate the adenylate 
cyclase (Fig. 1). Forskolin, a well-known adenylate cyclase activator, has been 
shown to improve intracellular cAMP. Forskolin exerts beneficial effects against 
LPS-induced endothelial cytotoxicity by increasing intracellular cAMP [32]. Recent­
ly, it has been reported that increasing cAMP by means of forskolin inhibits NO for­
mation and the expression of iNOS induced by endotoxin or cytokines in rat pri­
mary astrocytes and C6 glial cells, while compounds that decrease cAMP stimulate 
the production of NO [58]. 

~-adrenergic agonists 
In general, catecholamines are used to treat the hemodynamic cosequences in 
patients with severe septic shock. p-adrenergic agonists exert many of their effects 
by elevation of intracellular cAMP concentration. In addition to their hemodynamic 
actions, p-adrenergic compounds may also exert beneficial effects by modulation of 
inflammatory response. Isoproterenol pretreatment has been shown to reduce endo­
toxin-induced TNF and NO formation and to increase the production of both 
IL-IO and IL-6 in rats [59]. The ~-agonists procaterol, clenbuterol, fenoterol, and 
terbutaline were found to inhibit the induction of TNF and IL-l~ by elevating intra­
cellular cAMP levels, but with no effect on IL-8 formation [60]. Clinically relevant 
concentrations of inotropes, such as amrinone and dopamine, which increase cAMP, 
inhibited the IL-1 a induced increase in human umbilical vein endothelial cell adhe­
sion molecule concentrations [61]. In human endotoxemia, epinephrine, which also 
increases cAMP levels, not only influences bio-availability of TNF by an effect on 
the production of this proinflammatory cytokine, but also modulates the expression 
of its receptors in monocytes and granulocytes [62]. Further studies are necessary to 

investigate the mechanisms of these effects and to determine the efficacy of 
inotropes as anti-inflammatory agents. 

Prostanoids 
Many changes induced by IL-l and TNF are mediated by PGs, particularly PGE2. 
In fact, the use of cyclooxygenase (COX) inhibitors for a variety of inflammatory 
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conditions is often a therapeutic strategy to reduce IL-l- and TNF-induced PGE2. 
Humans injected with endotoxin, IL-l, or TNF experience fever, headache, myal­
gias, and arthralgias [24], each of which is reduced by coadministration of cyclooxy­
genase inhibitors [63]. One of the more universal activities of IL-l and TNF is the 
induction of gene expression for type 2 PLA2 and COX-2. IL-l and TNF induce 
transcription of COX-2, and neither cytokine increases production of COX-l. 
COX-2 production is elevated for several hours, and large amounts of PGE2 are 
produced. Furthermore, IL-l and TNF preferentially stimulate new transcripts for 
the inducible form of PLA2 [64], which cleaves the fatty acid in the number 2 posi­
tion of cell membrane phospholipids, e.g. arachidonic acid. The release of arachi­
donic acid is the rate-limiting step in the synthesis of PGs and LTs. 

Cyclooxygenase inhibitors 
Despite several studies there is no clear answer as to whether PGs suppress IL-l pro­
duction in cultured PBMC in vitro. This is probably due to the type of stimulant 
used and to the contribution of endogenous IL-l production (IL-l induced IL-l) to 
the total IL-l synthesized [65]. In general, adding cyclooxygenase inhibitors to LPS­
stimulated PBMC can suppress, augment, or have no effect on IL-l production [66]. 
On the other hand, under the same culture conditions, LPS-induced TNF gene 
expression and synthesis is extensively sensitive to suppression by PGE2 and PGI2. 
In humans injected with LPS and pretreated with oral cyclooxygenase inhibitors, the 
circulating levels of TNF and IL-6 are higher than in controls not given cyclooxy­
genase inhibitors [63]. This observation is consistent with the mechanism that 
PGE2/PGI2-induced TNF suppression is via elevation in cAMP [18]. Consequently, 
the prostacyclin analogue iloprost has been shown to inhibit TNF production effec­
tively by augmenting intracellular cAMP via activation of adenylate cyclase [67]. 

In patients with sepsis, the production of arachidonic acid metabolites by 
cyclooxygenase increases, but the physiopathological role of these prostanoids is 
unclear. In animal models, inhibition of cyclooxygenase by prophylactic adminis­
tration of ibuprofen before the onset of sepsis reduces physiological abnormalities 
and improves survival [8, 68]. In pilot studies of patients with sepsis, treatment with 
ibuprofen led to improvements in gas exchange and airway mechanics [69]. In a 
randomized, double-blind, placebo-controlled trial of intravenous ibuprofen in 455 
patients with severe sepsis, however, treatment with ibuprofen did not reduce the 
incidence or duration of shock or the acute respiratory distress syndrome and did 
not improve the rate of survival at 30 days [70]. 

Lipoxygenase inhibitors 
Inhibitors of 13-lipoxygenase [71], but not 5-lipoxygenase [72], reduce TNF and 
II-I ~ transcription. Earlier studies had implicated leukotrien (LT) B4 as the Jipoxy­
genase product triggering IL-l and TNF-synthesis. However, using specific 
inhibitors of 5-lipoxygenase, an important role of LTB4 in the production of 
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cytokines is unlikely. Nevertheless, a role of lipoxygenase products in stimulating 
IL-l and TNF production is supported by several controlled studies in humans con­
suming dietary supplements of eicosa pentaenoic (00-3) fatty acids or a diet rich in 
these fatty acids. When 00-3 fatty acids are incorporated into cell membranes, the 
cyclooxygenase and lipoxygenase products following phospholipase-mediated 
hydrolysis of membrane phospholipids are not PGE2 and LTB4 but rather PGE3 
and LTB5. This change alters the signal transduction pathway induced by exoge­
nous stimulants and results in an attenuation in the synthesis of proinflammatory 
cytokines. Several clinical trials have demonstrated a beneficial effect of dietary 
supplementation, and controlled studies have consistently shown a 50-60% 
decrease in IL-l, IL-6, and TNF production in PBMC of subjects ingesting 00-3 fatty 
acid supplements compared to PBMC taken before this dietary intervention. This 
phenomenon can also be demonstrated by measuring cytokine production in whole 
blood (reviewed in [73]). 

Antisense oligonucleotides 
The regulation of expression of genetic information by complementary pairing of 
sense and antisense nucleic acid strands has been termed "antisense" (AS), a mech­
anism used throughout nature to control gene expression. A selective blockade of a 
specific gene responsible for a certain inflammatory disease is an attractive target for 
intervention. AS oligonucleotides (ONDs) are short (15-20 bases), single-stranded 
DNA fragments, which are directed to a specific mRNA. In addition, these DNA 
fragments can also be targeted against a genomic DNA sequence; this is termed anti­
gene therapy. In general, three mechanisms of action have been reported for ONDs 
(Fig. 2). (1) ONDs can complementarily (antisense) hybridize in a base pair fashion 
to their target (sense) mRNA and thus block translation. (2) They can also bind to 
the genomic DNA in the nucleus, blocking transcription. (3) A non-specific binding 
of the ONDs to a target protein is another mechanism of action, which has been 
referred to as aptamer binding. In order to improve AS efficiency, chemical modifi­
cations have been developed and improvement of OND uptake achieved with dif­
ferent systems of vectorization, including liposomes, nanoparticles, or covalent 
attachment of carrier. 

Therapeutic application of AS has been suggested by inhibition of inflammatory 
cytokines. However, as many of the targeted proteins are ubiquitously expressed, 
the systemic application of AS ONDs might also harm cells which are not the tar­
get of therapeutic intervention. There are also reports that widely used systemic 
applications to improve cellular OND uptake might be toxic or might trigger unde­
sired immune resposes in humans (for mechanism of toxicity see [74]). In general, 
the AS OND approach is applicable to a wide variety of signal-transduction sys­
tems. Therapeutic application of AS ONDs has been suggested for inhibition of 
inflammatory cytokines [75]. The following examples demonstrate the diversity of 
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Figure 2 

Cytokine regulation by antisense oligonucleotide (AS OND): (a) AS OND hybridization to 
mRNA (antisense therapy), (b) AS OND binding to DNA in the nucleus (antigene therapy), 

and (c) AS OND interaction with protein (aptamer binding). 

questions that might be answered by the use of AS OND techniques and results that 
could have clinical relevance. 

Interferons (IFN) are cytokines that play an important and complex role in the 
host response to pathogens. While IFNa and IFN~ are secreted by virus-infected 
cells, IFNy is secreted by thymus-derived (T) cells under certain conditions. Several 
IFNy-regulated genes are themselves components of transcription factors. AS ONDs 
that inhibit the expression of Raf kinase, an important intracellular mediator in T 
cell signaling, have a significant effect on a human Th I-like T cell clone, inhibiting 
antiCD3-induced secretion of IFNy, with no effect on secretion of IL-2 (ThI, Th2 
cells), IL-4 and IL-5 (Th2 cells) [76]. 

An AS OND knockdown strategy for inhibition of iNOS resulted in significant 
reduction of LPS- and IFNy-induced iNOS mRNA and protein expression [77]. It 
also inhibited NO and cGMP production in a dose-dependent manner, indicating 
the efficacy and specifity of AS ONDs in therapeutic approaches. AS ONDs, tar­
geted against specific transforming growth factor ~ (TGF~), a growth-regulatory 
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and immunomodulatory cytokine, have been reported to reduce TGF~ mRNA lev­
els and TGF~ secretion in malignant mesothelioma cell lines [78]. 

The binding of TNFa to TNF receptor type I (TNFRI) is considered the initial 
step for some of the multiple biological functions mediated by TNF. Thus TNFRI 
AS ONDs have been identified which specifically inhibited TNFRI mRNA and sub­
sequently inhibited the functions of TNF mediated by TNFRI in a cellular assay 
[79]. The gene-specific AS inhibition occurred in a dose-dependent manner and cor­
related with the binding affinity of the OND for the target mRNA, reducing levels 
of TNF mRNA [79]. 

Despite the encouraging biological effects seen in numerous reports of apparent 
AS inhibition of gene expression in cells ex vivo as well as in vivo, only in a few 
cases has specific inhibition been rigorously demonstrated [80-84]. Thus there is a 
need for further studies in order to make a critical evaluation of the effectiveness of 
AS ONDs in vivo. Such studies could eventually lead to the developement of 
improved methods in AS therapy for human diseases. 

Cytokine-suppressing anti-inflammatory drugs (CSAIDs) 
Proinflammatory cytokines such as TNFa and IL-l are secreted proteins produced 
by monocytes/macrophages and other cell types in response to many inflammatory 
stimuli by activation of protein kinase cascades that lead to gene expression. The 
signaling pathway in mammalian cells has been shown to be mediated via mitogen­
activated protein kinases (MAP kinases) belonging to different phosphorylation cas­
cades, each responding to different extracellular stimuli. Among them, a novel MAP 
kinase (p38) has been identified that was tyrosine phosphorylated in response to 
LPS [85]. The p38 MAP kinase signal-transduction pathway is activated not only by 
endotoxin, but also by proinflammatory cytokines (e.g. TNF, IL-l), and environ­
mental stress. The detection of p38 MAP kinase in the nucleus of stimulated cells 
suggests that p38 MAP kinase can mediate signaling to the nucleus [86]. The expo­
sure of human neutrophils to, for example, endotoxin results in phosphorylation 
and activation of p38 MAP kinase in a concentration-dependent manner and with 
a maximum at 20-25 min [87]. Activation of the p38 MAP kinase by endotoxin 
occurs via LPS receptor CDl4 and requires the presence of LBP [87]. A transient 
activation of p38 protein kinase by thrombin has been demonstrated (with maximal 
stimulation at 1 min) that might be involved in thrombin-mediated signaling events 
during platelet activation [88]. Similarly, the cytosolic phospholipase A2 activation 
by thrombin has been suggested to be mediated by the same protein kinase [89]. 
Beyaert et al. [64] reported that p38 MAP kinase is involved in TNF-induced gene 
expression and regulates, for example, IL-6 synthesis in response to TNF. 

CSAIDs, such as pyridynil-imidazole compounds have been shown to inhibit 
TNFa and IL-l production from human monocytes [90] by inhibiting a pair of 
closely related mitogen-activated protein kinase (MAP kinase) homologues, termed 
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CSBPs. Most recently, a specific inhibitor of p38 MAP kinase, SB203580, has been 
demonstrated to completely inhibit synthesis of IL-6 in TNF-stimulated cells with­
out affecting TNF-induced cytotoxicity [64]. This inhibitor also suppressed the 
TNF-induced surface expression of endothelial adhesion molecule (VCAM-l) with­
out affecting the VCAM-l mRNA accumulation [91], indicating that the p38 MAP 
kinase signaling pathway regulates the endothelial expression of VCAM-l at the 
post-transcriptional level. Thus, p38 MAP kinase might provide an interesting tar­
get for selective interference with TNF-induced gene activation. 

Decrease in mRNA stability 
Recent interest in thalidomide stems not from its properties as a sedative or anti­
emetic [92], but from the observation of its efficacy as an immunomodulatory or 
immunosuppressive drug [93). Many recent experiments have confirmed that 
thalidomide is indeed a powerful immunomodulant, and it has been used benefi­
cially in settings such as vasculitis [94], a model of HIV [37], rheumatoid arthritis 
[95), sarcoidosis [96), chronic graft-versus-host disease [97], and prevention of 
rejection in transplantation [98]. Both in vivo and in vitro experiments have shown 
that a major effect of thalidomide is the selective down-regulation of TNF produc­
tion by activated monocytes [99], but similar inhibitory effects have also been noted 
on IL-6 and, to a lesser extent, on IFNy production. T cell proliferative responses 
seem relatively unaffected by thalidomide [100]. 

Only recently have the techniques become available to investigate the molecular 
mechanism(s) of action of thalidomide and its role in differential gene regulation. 
The experimental evidence to date points to thalidomide having selective effects on 
proinflammatory cytokines (mainly TNF) and suggests that its mechamsm of action 
may be related to, or result in, alteration in the half-life of TNF mRNA [37]. There 
is only circumstantial evidence that this control is exerted in a cell-specific manner, 
and it appears likely that all cells capable of expressing TNF mRNA are equally 
affected, although, on a per cell basis, monocytes are the principal source of this 
cytokine. Glucocorticoids such as dexamethasone are known to downregulate 
nuclear factor KB (NFKB), a transcription factor common to many cytokine genes 
[101]. Various transcription factor families, including the NFATs (nuclear factors of 
activated T cells), are common to many T cell cytokines and some monokines [102). 
Specific cytokine gene transcription is initiated by differential activation of various 
combinations of these and other transcription factors. This might explain the dif­
ferences in expression of TNF (and other cytokines) when the effects of thalidomide 
are compared with steroids such as dexamethasone. Recent evidence has indicated 
that TNF is activated by a combination of transcription factors which include the 
ubiquitous NFKB and the more restricted NFATp and AFT-21]UN [103], transcrip­
tion factors not associated with most other cytokines. It therefore seems likely that 
a unique combination of transcription factor binding, part of which is thalidomide-
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sensitive, may account for the independent regulation of TNF mRNA activation and 
explain the steroid-sparing capacity of thalidomide [100]. 

Recently, structural modifications of thalidomide that produce analogues with 
enhanced TNF inhibitory activity have been examined [104, 105]. The researchers 
concerned have systematically examined a series of analogues and derivatives of 
thalidomide and have identified compounds which inhibit TNF production with 
IC50s at sub-molar levels (compared with thalidomide at 194 11M) and which are 
almost 500 times more potent than thalidomide [104]. These results indicate enor­
mous potential for the development of effective TNF inhibitors, which should have 
clearly defined clinical applications, especially in the context of an overwhelming 
TNF production in the early stages of sepsis and septic shock. The highly effective 
TNF inhibitors described also appear to inhibit other cytokines and proliferative 
responses. To date, there are no published data on the toxicity of these compounds, 
and it is possible that they are considerably more cytotoxic than the parent molecule. 

Reduction in translation 

Corticosteroids are important anti-inflammatory endogenous mediators produced 
in response to inflammation, since it is well known that the hypothalamic-pitu­
itary-adrenal axis is influenced by proinflammatory cytokines such as IL-1, IL-6, 
and TNF. Corticosteroids inhibit TNF formation at the translational level [36] and 
affect formation of IL-1 and IL-6 by interfering with the stability of specific mRNA 
[106] and via the glucocorticoid receptor by interference with various transcription 
factors [107]. There is also some indication that steroids reduce the secretion of IL­
l. In human volunteers injected with corticosteroids just prior to an intravenous 
injection of endotoxin there are reduced levels of circulating IL-1~, TNF, and IL-6 
[108, 109]. These reductions in IL-1~, TNF, and IL-6 take place without suppress­
ing IL-1-Ra production [109]. Relevant to these experiments are studies showing 
that IL-6 and TNF induce endogenous corticosteroids [24], and that adrenalec­
tomized mice have profoundly decreased resistance to IL-1- or TNF-mediated 
lethality [110]. Therefore, some studies suggest that IL-1- and TNF-induced 
endogenous corticosteroid production acts as an intrinsic anti-inflammatory nega­
tive feed-back mechanism. 

However, several controlled clinical trials with high-dose corticosteroids in sep­
tic patients have failed to show an improvement in survival. A meta-analysis of these 
studies indicated no beneficial effects of high-dose corticoids in severe sepsis but 
gave evidence for an increased rate of opportunistic infections in patients recieving 
corticosteroids [111]. There is still controversy regarding the use of exogenous cor­
ticosteroids in sepsis and septic shock, since recent data suggest an increased need 
and a relative insufficiency of corticosteroids under septic conditions. Thus, low­
dose hydrocortisone infusion may be beneficial [112]. 
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Reduction in processing 

It has been suggested that membrane-bound cytokines may be implicated in their 
paracrine activities in tissues, while systemic activities of cytokines may be associat­
ed with the secreted form [113].The release (shedding) of extracellular domains of 
many cell-surface proteins is mediated proteolytically and therefore can be altered 
by modification of the cell surface. Several studies suggest that the release of TNFa 
is mediated by serine proteinases [114]. Serine proteinase inhibitors were shown to 
suppress the secretion of TNFa without affecting TNFa mRNA levels [115]. More­
over, D-galactosamine-sensitized mice pretreated with serine proteinase inhibitor a-
1-antitrypsin were not able to secrete TNFa in response to endotoxin, becoming 
fully protected against endotoxin-induced hepatitis [116]. Further reports suggest 
the implication of metalloproteinase in the processing of TNFa [117]. A series of 
hydroxamate inhibitors of matrix metalloproteinases have been shown to inhibit the 
release of TNFa without affecting cell-associated activity and to protect mice chal­
lenged with lethal doses of endotoxin [117-119]. Recently, peptide-hydroxamate 
metalloproteinease inhibitors have been reported to block the proteolytic processing 
(shedding/secretion) of transmembrane domain-containing cytokines and cytokine 
receptors TNFa, macrophage colony-stimulating factor (M-CSF), TGFa, stem cell 
factor (SCF), sTNFR-p55, sTNFR-p75, and IL-6 receptor [120]. Hydroxamate met­
alloproteinease either did not affect or augmented the shedding/secretion of cyto­
kines lacking transmembrane-containing domain precursor (IL-1a, IL-1~, IL-6, IL-
10) [120]. 

Conclusion 

The host response to pathogens consists of a complex network that is still poorly 
understood. Based on the idea that an overproduction of secondary inflammatory 
mediators secreted into the bloodstream is harmful to the host, tremendous efforts 
have been made in the past decade to develop new drugs for the treatment of sep­
sis-related complications. Nonetheless, mortality rates of septic patients have not 
appreciably improved. Although overwhelming cytokine response may be detri­
mental, a complete blockade, e.g. by antibodies in peritonitis, also appears not to be 
beneficial. Thus, modulation of the cytokine response should be the goal. In this 
respect, in addition to the particular mode of functioning, synthetic drugs might be 
much cheaper than recombinant materials. For the development of new and more 
effective therapeutic strategies, however, our current knowledge of the basic patho­
physiology of sepsis, the roles of the many inflammatory mediators, and their inter­
action with each other needs to be improved. 
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Proinflammatory cytokines, including interleukin 1 (IL-1) and tumor necrosis factor 
(TNF), appear to play an important role in contributing to organ system dysfunc­
tion and mortality in septic patients [1]. Clinical trials investigating the endoge­
nously produced anti-IL-1 agent, interleukin 1 receptor antagonist (IL-lra), yielded 
disappointing results [2]. Several large studies have examined anti-TNF therapies in 
patients with sepsis, and the results of these studies, although generally negative, still 
suggest that there may be benefit from anti-TNF therapies in sharply defined groups 
of critically ill patients with overwhelming infections [3]. 

The two major approaches taken to neutralizing TNF have involved either mon­
oclonal anti-TNF antibodies or fusion protein constructs in which the extramem­
brane portion of the p55 (Type I) or p75 (Type II) TNF receptor is joined to the Fc 
fragment of a human IgGl antibody (Fig. 1). There are several differences in TNF 
binding kinetics and efficiency between these two methodologies which may be sig­
nificant in the clinical utility of each approach. 

The monoclonal anti-TNF antibodies used in clinical trials have either been 
entirely murine in origin or humanized. As would be expected, almost all patients 
receiving the murine monoclonal antibodies develop HAMAs (human anti-mouse 
antibodies) [4J. The level of antibody response in patients given humanized anti­
TNF antibodies or TNF receptor fusion protein complexes is minimal, allowing 
repeated administration for chronic diseases, such as rheumatoid arthritis. Howev­
er, in the setting of severe sepsis or septic shock, where a single dose of the anti-TNF 
antibodies is given, the incidence of clinically significant serum sickness in patients 
who received murine monoclonal antibodies is less than 1 % and the clinical signif­
icance of HAMA development appears to be minimal [4]. 

The binding affinity of TNF receptor fusion proteins for TNFa appears to be 
more than 50 times greater than that of monoclonal anti-TNF antibodies, allowing 
significantly lower doses to be administered [5, 6, 7]. Additionally, a single TNF 
receptor fusion protein molecule can bind to two TNFa components of the circu­
lating TN Fa trimer, effectively preventing TNF receptor clustering on the cell sur­
face, and thereby diminishing TNF receptor induced intracellular signaling. In con-
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Structure of the p55 (type I) tumor necrosis fador receptor (TNFR)-lgG1 immunoglobulin Fc 

fusion protein (Ro 45-2081). The extramembrane sequence of two p55 receptors are joined 

to the Fc sequence of an IgG1 immunoglobulin molecule. The p75 (type II) tumor necrosis 

fador receptor fusion protein is similar except that the extramembrane portion of the p75 

TNFR is substituted for the fragment of the p55 TNFR. The resulting fusion protein is able to 

bind to two of the three components of the circulating TNF trimer, thereby preventing TNF 

receptor clustering on the cell surface and resultant intracellular signaling. 

trast, several anti-TNF antibodies must bind to the circulating TNF trimer in order 
to prevent interactions between two or more TNF receptors on the cell surface. 
TNF receptor fusion proteins bind both TNFa and TNF~ whereas the monoclon­
al anti-TNF antibodies only bind TNFa. Although there is some evidence in ani­
mal models that TNF~ may contribute to physiological instability in sepsis [8], the 
role of TNF~ in humans with severe infections remains undetermined at present, 
and the potential utility of blocking TNF~ induced toxicity in septic patients is 
unknown. 
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Anti-TNF antibodies 

Pretreatment of endotoxemic or bacteremic animals with anti-TNFa antibodies 
results in a clear improvement in survival and amelioration of organ system dys­
function [9, 10]. In some models of Gram-negative or Gram-positive bacteremia, 
administration of anti-TNFa antibodies at the time of initiation of the bacteremic 
insult or even shortly thereafter (i.e. within the first hour) is still associated with a 
significant survival benefit [11, 12]. However, the use of such antibodies at later 
timepoints in endotoxemia or bacteremia models does not appear to be associated 
with any clear benefits. 

Because of the substantial differences between preclinical models, where large 
doses of endotoxin or bacteria are used in otherwise normal animals, and the clini­
cal setting, where infection most commonly develops slowly in patients with under­
lying medical problems, it has been difficult to extrapolate the beneficial results 
using anti-TNFa antibodies in endotoxemia or bacteremia models to critically ill 
patients with life-threatening infections. Although there are still several ongoing tri­
als examining anti-TN Fa antibodies, the results with almost 5000 patients already 
included in such studies suggest that the benefit of such therapies, if it exists at all, 
will be limited to relatively small subgroups of patients. 

Although several small studies [13, 14] suggested that anti-TNFa antibody ther­
apy could improve physiological parameters, such as cardiac output in septic 
patients, the initial study which indicated that such therapy could improve survival 
was the NORASEPT I trial, which examined a murine IgGI monoclonal antibody 
in the treatment of severe sepsis and septic shock [4]. Entry criteria for this study in 
patients with the clinical diagnosis of infection included the presence of at least one 
organ system dysfunction (i.e. decreased urine output, hypoxemia, lactic/metabolic 
acidosis, altered mental status, or disseminated intravascular coagulation (DIC)) for 
less than 12 h prior to enrollment. Separate randomization lists were used for 
patients with or without shock at the time of study entry. A total of 994 patients 
were entered in NORASEPT I, of which approximately half were in shock at the 
time of randomization. Overall, there was no statistically significant benefit associ­
ated with anti-TNF therapy. However, in the prospectively defined subgroup of 
patients with septic shock, a statistically significant reduction in mortality was pre­
sent during the first two weeks following therapy with either 7.5 mg/kg or 15 mg/kg 
monoclonal anti-TNFa antibody compared to placebo. At day 28 after anti-TNFa 
therapy, the reduction in mortality among septic shock patients was 17% compared 
to those receiving placebo. In contrast, no benefit was found with anti-TNF- thera­
py in patients who were not in shock at study entry. 

In the NORASEPT I shock patients, the beneficial effect of anti-TN Fa antibod­
ies on survival appeared within the first 24 h after enrollment, with the greatest sep­
aration between the survival curves for placebo and anti-TNF antibody treated 
patients occurring within this time window. Approximately 60% of the placebo 

287 



Edward Abraham 

70 

60 

.~ ~ 
"1J c: 

50 

0 '0 
.s:; ~ 40 3: ., 
tl,§ 
~ c: 

30 ~ .~ 
Cl.~ 

* 10 20 

10 

0 

Figure 2 

0-3 4-7 8-14 

Days post infusion 

15-21 

15 mg/kg 

7.5 mg/kg 

D Placebo 

22- 28 

Percentage of septic shock patients treated with monoclonal anti-tumor necrosis factor-a 

antibodies compared to placebo who died during the indicated postinfusion time points in 

the NORASEPT I trial [4]. Note that almost 60% of the total number of deaths in placebo­

treated patients occurred within the first three days after study enrollment. 

deaths occurred within the first three days of the study (Fig. 2). Treatment with 
7.5 mglkg monoclonal anti-TNFa antibodies was associated with a 49% reduction 
in mortality versus placebo at day three after study enrollment. 

A second study (INTERSEPT) with the same murine monoclonal anti-TNFa 
antibody used in the NORASEPT I study was undertaken in 14 countries, primari­
ly in Europe [15). Although the INTER SEPT study initially enrolled septic patients 
with and without shock, after the results of NORASEPT I were available, only 
shock patients were entered into INTERSEPT. A total of 564 patients, of which 420 
were in septic shock, were enrolled in the INTER SEPT study. Day 28 mortality was 
reduced by 14.5% in patients who received 3 mglkg monoclonal anti-TNFa anti­
body, with no reduction in mortality found in the patients given 15 mglkg. There 
was no evidence in the INTERSEPT trial of early survival benefit (i.e. within the first 
three days after anti-TNF antibody infusion) similar to what had been seen in 
NORASEPT I. Additionally, whereas 60% of the placebo deaths among patients in 
shock occurred within the first three study days in the NORASEPT I trial, less than 
45% of placebo deaths occurred within this period in the INTERSEPT study. 
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A recently completed study (NORASEPT II) enrolled 1900 patients with septic 
shock and examined the potential utility of 7.5 mg/kg of the murine monoclonal 
anti-TNFa antibody [16]. No improvement in survival was found in septic shock 
patients treated with the monoclonal anti-TNFa antibody compared to those who 
received placebo. All-cause mortality at day 28 was 40.3% in monoclonal anti­
TNFa antibody treated patients compared to 42.8% in placebo-treated patients. 
Even though the APACHE II scores, day 28 mortality rates, sex ratio, and percent­
age of patients with one or more organ failures present at baseline were similar in 
NORASEPT I and NORASEPT II, there did appear to be substantial differences in 
patient survival patterns. Whereas more than 60% of the deaths in the placebo arm 
of NORASEPT I occurred in the first three days after study entry, the mean time to 
death in the placebo group of NORASEPT II was more delayed, averaging 6.8 days. 
These differences in survival may reflect improvement between the two studies in 
the supportive care provided to patients with septic shock resulting in better survival 
from the initial hypotensive episode and associated immediate complications, a peri­
od where proinflammatory cytokine release, including that for TNFa, may be great­
est. If advances in management have permitted critically ill septic patients to better 
survive the initial state of accelerated cytokine expression, then this would diminish 
the efficacy of therapies, such as anti-TNFa antibodies, aimed at modulating the 
early pro inflammatory response. 

An additional concern in interpreting the NORASEPT II data revolves around 
the efficacy of the anti-TNF antibody used in inhibiting TNFa. Even though only 
a minority of patients had detectable circulating TNFa at baseline and post-treat­
ment time points, therapy with the monoclonal anti-TNF antibody used in this 
study did not completely eliminate the presence of plasma TNFa levels. Therefore, 
there remains a question as to the ability of the anti-TNF antibody in the doses 
used in NORASEPT I, INTERSEPT, and NORASEPT II to actually block TNF 
activity. 

The utility of the F(ab'}z fragments of a murine IgG3 monoclonal antibody to 
TNFa has been examined in patients with severe sepsis or septic shock [17]. There 
were 122 patients entered in the clinical trial, and no increase in survival from sep­
sis for the patients receiving anti-TNF treatment was present in the overall study 
population. However, a retrospective stratification of patients by interleukin-6 (IL-
6) concentration suggested beneficial effects for the drug in patients (n = 37) with 
baseline circulating IL-6 concentrations greater than 1000 pg/ml, with mortality 
decreasing from 80% in the placebo group to 35% in patients who received the 
highest dose (1 mg/kg) of the anti-TNFa therapy. However, a larger subsequent 
study was unable to substantiate the hypothesis that a beneficial response to anti­
TNFa therapy could be predicted by IL-6 levels at the time of enrollment. There is, 
however, another ongoing study in Canada and the u.s. which is examining the pre­
dictive value of IL-6 levels in defining patients who may respond to anti-TNF ther­
apy. 
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Soluble TNF receptor fusion protein complexes 

In preclinical studies, soluble TNF receptor fusion protein complexes using either 
the human p55 or the p75 TNF receptor joined with the Fe portion of a human 
IgG1 molecule were effective in improving survival when administered before endo­
toxin infusion [6, 18]. In at least one model of Gram-negative bacteremia with E. 
coli, however, minimal improvement in survival was found when the p75 TNF 
receptor fusion protein was used whereas the p55 receptor fusion protein reduced 
mortality [18]. In human volunteers given endotoxin, administration of p75 TNF 
receptor fusion protein blocked plasma TNF bioactivity and decreased circulating 
levels of IL-1 p, IL-8, IL-1 receptor antagonist (IL-lra), and granulocyte-colony stim­
ulating factor (G-CSF) [19]. However, increases in cardiac index, heart rate, and 
decreases in systemic vascular resistance index were not affected by p 75 TNF recep­
tor fusion protein. Interestingly, a high dose of p75 TNF receptor fusion protein 
(60 mg/m2) was less effective than a lower dose (10 mg/m2 ) in decreasing circulat­
ing levels of cytokines, epinephrine, or cortisol. 

Two clinical studies have reported results using soluble TNF receptor constructs 
as anti-TNF agents. In the first of these studies, the molecule used consisted of the 
extramembrane components of the human type II (p75) receptor joined to the Fc 
portion of a human IgG1 antibody molecule [20]. Patients (n= 141) with septic 
shock, with or without associated organ system dysfunction, were entered into the 
study. A statistically significant (p = 0.014) dose dependent increase in mortality was 
found in patients treated with this p75 soluble TNF receptor construct, with mor­
tality rising from 30% in the placebo group to 53% in the patients treated with the 
highest dose (1.5 mg/kg) of the anti-TNF compound. 

A 498 patient study examined the role of a p55 TNF receptor fusion protein con­
struct in which separate randomization lists were used for patients with severe sep­
sis with or without early shock and also for those with refractory septic shock [21]. 
The doses of the p55 TNF receptor complex used in this study (0.008 mg/kg, 
0.042 mg/kg, and 0.08 mg/kg) were substantially lower than those administered in 
the p75 TNF receptor complex clinical trial. In this study, refractory septic shock 
was defined as hypotension that was unresponsive to fluid for at least two hours 
prior to enrollment associated with at least one organ dysfunction (i.e. hypoxemia, 
metabolic acidosis, decreased urine output, or DIC). The severe sepsis group con­
sisted of patients having at least two organ dysfunctions, with or without fluid unre­
sponsive hypotension for less than two hours prior to enrollment. The drug under 
study had to be administered within four hours of patient enrollment, meaning that 
the maximal duration of fluid unresponsive hypotension in severe sepsis patients 
was six hours. 

Therapy with 0.08 mg/kg of the p55 TNF receptor fusion protein complex, but 
not other doses, was associated with a 36% reduction (p = 0.07) in day 28 mortali­
ty in the prospectively defined patient group with severe sepsis with or without early 
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septic shock. In contrast, no apparent beneficial effects were seen with any dose of 
the p55 receptor complex in patients with refractory septic shock. 

There are several possible explanations for the marked differences in the out­
comes of septic patients treated with the p55 or p75 TNF receptor fusion protein 
constructs. Clearly, the most important reason for the improvement in outcome with 
the p55 TNF receptor complex may be the relatively more restrictive entry criteria 
for the study investigating this molecule. In particular, hypotensive patients also had 
to have evidence of sepsis-induced organ system dysfunction, whereas only hypoten­
sion was required in the study examining the p75 TNF receptor fusion protein com­
plex. Additionally, hypotension could not be present for more than six hours in the 
p55 TNF receptor fusion protein study, while patients could still be enrolled in the 
p75 TNF receptor protein study with periods of hypotension as long as 24 hours. 

The enhanced mortality associated with treatment with the p75 TNF receptor 
molecule may be related to the extremely high doses used in the study. Although 
potency estimates are difficult to quantitate, soluble TNF receptor fusion proteins 
appear to inactivate TNFa more than fifty times as well as the monoclonal anti­
bodies [7], so that therapy with a dose of 1.5 mg/kg of the p75 TNF receptor fusion 
protein would be expected to completely neutralize TNFa for a prolonged period, 
especially given the long half life of the compound (> 60 hours). TNFa is an essen­
tial component of normal inflammatory responses, and prolonged neutralization of 
its activity may have potent immunosuppressive effects leading to increased mortal­
ity. 

An additional possible reason for the seemingly opposite effects of the p75 and 
the p55 TNF receptor fusion proteins in septic patients relates to the differing kinet­
ic affinities of the two molecules. Although both molecules rapidly bind TNFa, 
TNFa is released much more quickly from the p75 receptor complex than from the 
p55 fusion protein [18]. These differences in kinetic affinity may have in vivo sig­
nificance. In a series of experiments in mice given intravenous infusions of E. coli, 
therapy with the p75 TNF receptor complex decreased the magnitude of the initial 
rise in circulating TNFa which occurred in untreated mice after the administration 
of E. coli [18]. However, whereas TNFa rapidly disappeared from the circulation in 
untreated mice, administration of the p75 TNF receptor complex was associated 
with prolonged increases in circulating levels of TNFa. In contrast, in bacteremic 
mice treated with the p55 TNF receptor complex molecule, no TN Fa was present 
in the circulation at any time after the E. coli infusion. 

Approximately 5000 patients have been included in studies investigating anti­
TNF therapies. Four of the Phase II studies, compromising over 2000 patients, 
showed survival benefits in patients treated with the anti-TNF agent. However, sub­
sequent Phase III studies have been unable to confirm such a benefit. Taken togeth­
er, the results from the anti-TNF clinical trials do not provide strong support for this 
therapeutic approach in broad groups of critically ill patients with sepsis. However, 
there remains reason to believe that some critically ill patient populations may ben-
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efit from anti-TNF therapies. In particular, the results with the Phase II study inves­
tigating the p55 TNF receptor complex molecule suggest that patients with severe 
sepsis causing the failure of at least two organ systems, with or without the presence 
of shock of less than six hours duration, may benefit from such therapy. This 
hypothesis is presently being investigated in a 1340 patient Phase III study. 
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General introduction 

Despite the introduction of broad-spectrum antibiotics, sepsis is one of the most 
important causes of multiple organ failure (MOF) which accounts for 70,000 deaths 
in the USA each year [1]. Infection is also an important cause of mortality in the 
severely traumatized patient and is responsible for 50-70% of all burn-related 
deaths [2-3]. 

The immune system produces cytokines and other humoral factors to protect the 
host when threatened by inflammatory agents, microbial invasion, or injury. In 
some cases this complex defense network successfully restores normal homeostasis, 
but in other instances the overproduction of immunoregulatory mediators may 
actually prove deleterious to the host. All biological processes require a balance of 
activity that can be hazardous to the host in excess and alternatively imperil the 
patient/animal to opportunistic infectious agents if decreased or eliminated. This 
process of appropriate balance is essential whether it is with respect to blood pres­
sure, heart rate, respiration, gut function, tumor necrosis factor (TNF), interleukin-
1 (IL-l), nitric oxide (NO), prostacyclin, and thromboxane, or the endothelial­
leukocyte adhesion molecules (ELAMs) and their mRNA's [4-7]. There is no doubt 
about the ability of various mediators of inflammation to produce toxic or deleteri­
ous effects when administered in human volunteers or animals. Despite the rapid 
development of antibiotics and vasopressor medications, septic shock remains a 
major cause of mortality in intensive care units [8]. In this regard, studies suggest 
that the majority of the deleterious effects of septic shock are due to the stimulation 
of the host's own immune response by bacterial toxins [8]. 

The exciting research being carried out on receptors, mediators, inhibitors and 
stimulators, blocking agents, and antibodies, has led to speculation about break­
throughs and magic bullets for various human diseases. Many new and established 
pharmaceutical companies have helped develop many agents which could have great 
impact on human diseases. Animal trials so far have been impressive. 
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A large number of agents have been used to improve cell and organ function 
following thermal injury, blunt and penetrating trauma, hemorrhagic shock, peri­
tonitis, severe sepsis and septic shock. These agents include ATP-MgCl2, non-anti­
coagulant heparin, pentoxyfylline, interferon-y, chloroquine, platelet activating 
factor (PAF) antagonists, calcium channel blockers, cyclooxygenasee inhibitors, 
phospholipase A2 inhibitors, antibodies to cytokines, growth hormone and insulin­
like growth factor 1, erythropoeitin, nutritional immunomodulation, NO inhib­
itors, sex hormones and/or antagonists. This chapter will not attempt to describe 
all the immunomodulators which have been used following various adverse circu­
latory conditions, but rather the focus will be limited to describing some of the 
effects of the recently used immunomodulators following hemorrhagic shock, sep­
sis, and septic shock and their potential mechanism of action under those condi­
tions. 

Adenosine triphosphate-magnesium chloride (ATP-MgCI2) 

It is known that decreased high-energy phosphates contribute to organ dysfunction 
following shock and studies by Chaudry et al. [9-10] have shown that ATP-MgCI2 
treatment after hemorrhagic shock improves tissue ATP levels and organ function. 
Hirasawa et al. [11] have given ATP-MgCl2 to anuric MOF patients with some 
beneficial effects. It is important to note that this agent can be used safely in trau­
ma patients, but should be given after fluid resuscitation since it reduces afterload 
[12]. Recently, Meldrum et al. [13] showed that prolonged sepsis in the mouse, pro­
duced by cecal ligation and puncture (CLP), caused a significant decrease in lym­
phocyte ATP levels which were correlated with decreased proliferative capacity in 
response to mitogenic stimulation. Treatment with ATP-MgClz at the onset of sep­
sis significantly increased lymphocyte ATP levels and proliferative response. 
Improved lymphocyte function correlated with a significant increase in overall sur­
vival at day three (20% CLP vs. 70% CLP/ATP-MgClz; P < 0.05). The authors con­
cluded that decreased lymphcyte ATP levels may be the cause of defective lypmho­
cyte proliferative capacity in late sepsis, since adjuvant treatment with ATP-MgCI2 
improved both lymphocyte ATP levels and lymphocyte proliferative capacity [13]. 
Moreover, intraperitoneal ATP-MgClz administration decreased lethality from sep­
sis [13]. 

Although studies have demonstrated that ATP-MgClz produces beneficial effects 
following various adverse circulatory conditions [14], until recently little was 
known as to whether this agent had any salutary effect on the depressed vascular 
endothelial cell function (i.e. the decreased release of endothelium-derived NO) dur­
ing sepsis. To study this, Wang et al. [15] administered ATP-MgCI2 (50 /-!mol/kg 
body wt) or an equivalent volume of normal saline over 90 min intravenously at 1 h 
after CLP in male Sprague Dawley rats. At 5 and 10 h after CLP (i.e. hyperdynam-
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ic stages of polymicrobial sepsis [16]), the thoracic aorta was isolated for measure­
ment of vascular relaxation. Administration of ATP-MgCI2 at 1 h after the onset of 
sepsis maintained acetylcholine-induced vascular relaxation at both time points of 
hyperdynamic sepsis without altering endothelium-independent vascular relaxation 
[15]. Whether the salutary effect of ATP-MgCI2 on endothelial cell function extends 
into the late stage of sepsis or whether delayed administration of ATP-MgCI2 after 
the onset of sepsis also produces salutary effects on endothelial cell function remains 
to be determined. 

Nonanticoagulant heparin 

From previous studies [17, 18] we know that a novel non-anticoagulant heparin (i.e. 
GM 1892) produces various beneficial effects such as improved splenocyte and peri­
toneal macrophage immune functions as well as cardiovascular and hepatocellular 
function after hemorrhage and resuscitation. Furthermore, GM 1892 decreased sus­
ceptibility to sepsis [17] and a recent study by Morrison et al. [19] indicated that the 
novel non-anticoagulant heparin prevented vascular endothelial cell dysfunction 
during hyperdynamic sepsis in rats. 

Calcium channel blockers 

A number of investigators [20-22] have shown that calcium channel blockers have 
beneficial effects on cell and organ function after ischemia or endotoxic shock. The 
beneficial effects of calcium channel blockers has been postulated to be due to inhi­
bition of the massive influx of extracellular calcium into cells after injury or shock 
[20-22]. 

Meldrum et al. [23] examined the effects of diltiazem administration at a dose of 
400 or 800 /-lg/kg body weight following hemorrhage. Their results indicated that 
hemorrhaged-induced depression in lymphocyte IL-2, IL-3, IL-6, as well as interfer­
on-y productive capacity was restored by diltiazem treatment [23]. In additional 
studies, animals were subjected to sepsis three days following hemorrhage and 
resuscitation. The results demonstrated that diltiazem also improved the survival of 
animals following hemorrhage and subsequent sepsis to rates comparable to those 
seen in non-hemorrhage control animals subjected to sepsis [23]. These data suggest 
that there is an association between low-dose diltiazem treatment, restoration of 
lymphokine synthesis, macrophage antigen presentation function and decreased sus­
ceptibility to sepsis following hemorrhage. Thus, the adjuvant use of diltiazem, or 
potentially other calcium channel blockers might offer a new therapeutic modality 
in the treatment of immunosuppression and for decreasing susceptibility to sepsis 
following low-flow conditions. 
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Chloroquine 

Chloroquine is used not only as an antimalarial agent [24], but also for the treat­
ment of rheumatoid arthritis [25]. It has been suggested that chloroquine exerts its 
therapeutic effect in the treatment of arthritis by inhibiting the inflammatory events 
underlying this disease process [25]. In vitro studies have shown that chloroquine 
inhibits tritiated thymidine incorporation into lymphocytes in a dose-dependant 
manner by interfering with the accessory functions of monocytes. Moreover, studies 
by Authi and Tragnor [26] showed that chloroquine inhibited phospolipase A2 
activity leading to decreased production of prostanoids. In vitro studies of Ertel et 
al. [27] showed that chloroquine selectively inhibits TNF and IL-6 release by peri­
toneal macrophages. Furthermore, chloroquine treatment also decreased the mor­
tality of septic mice after hemorrhage to levels comparable to those of sham-oper­
ated mice [28]. Studies by Zhu et al. [29] indicated that chloroquine downregulat­
ed LPS-induced TNFa gene expression. Based on these results, it can be suggested 
that chloroquine's ability to reduce the release of TNF from macrophages is due, at 
least in part, to the disruption of TNF gene transcription. Thus, because of its 
unique ability to selectively inhibit the release of inflammatory cytokines and 
prostaglandins, chloroquine may be a useful adjunct in the clinical setting for the 
treatment of shock-induced immunodepression and for decreasing the susceptibility 
to sepsis following hemorrhage. 

Cyclooxygenase inhibitors 

Several experimental and clinical studies have suggested that after mechanical 
trauma [30] or burn injury [31], prostaglandin E2 (PGE2) may playa detrimental 
role in inducing a defective immune response [32,33]. Ertel et al. [34] determined 
whether the systemic administration of the cyclooxygenase inhibitor ibuprofen 
following hemorrhage and resuscitation had any beneficial effects on the suscep­
tibility to sepsis. For such studies, mice were subjected to CLP three days follow­
ing hemorrhage and resuscitation. The results indicated that all animals in the 
vehicle-treated group died within three days following the onset of sepsis, while 
the mortality rate of the sham-operated animals subjected to sepsis was 50% 
through day six. Ibuprofen treatment after hemorrhage significantly prolonged 
survival time and increased overall survival rate of animals following CLP when 
compared to the vehicle-treated group. Furthermore, there was no significant dif­
ference in survival between ibuprofen-treated hemorrhage animals and the sham 
operated group [34]. Thus, blockade of cyclooxygenase with ibuprofen signifi­
cantly decreased the susceptibility to sepsis following hemorrhage and resuscita­
tion. Moreover, Faist et al. [35] have made considerable progress in immuno­
modulation to decrease the likelihood of infection by blocking the post-traumat-
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IC Illcrease III PGE2 with indomethacin and Immune stimulation with thymo­
pentin. 

Phospholipase A2 

Vadas et a1. [36] found a relation between increased levels of non-pancreatic phos­
pholipase A2 (PLA2) and hypotension in sepsis and adult respiratory distress syn­
drome (ARDS). The gut mucosa contains a high concentration of PLA2 [37, 38], 
which can be excessively activated in the presence of splanchinic hypoperfusion and 
may generate proinflammatory lipid mediators such as lysophospholipids (precur­
sors of PAF) and arachidonic acid (the primary substrate for eicosanoids [39]. Fur­
thermore, PLAz is released during sepsis [36, 40 J and is partly under the control of 
TNF [40]. In view of this, inhibitors of PLAz should also be considered for pre­
venting the release of proinflammatory mediators. 

Platelet activating factor (PAF) 

Bioactive phospholipids, derived from the activation and release of PLA2, may also 
playa role in the host systemic inflammatory response to sepsis. Among these phos­
pholipids, PAF, produced by a variety of cells (endothelial cells, platelets, leucocytes, 
monocytes, and lymphocytes), is an important trigger of cell-to-cell interaction, 
leading to the release of important inflammatory mediators. Platelet-activating fac­
tor is expressed rapidly by endothelial cells during shock in response to various 
stimuli (e.g. thrombin, histamine, leukotrienes) [41] and may be responsible for the 
earliest adherence of polymorphonuclear leukocytes (PMNs) to endothelial cells (in 
addition to P-selectin) via the PAF receptors. Cytokines such as IL-l, IL-6 and TNF 
can synthesize PAF in endothelial cells [42]. Increased PAF release has been report­
ed in septic patients [43,44] and high amounts of platelet-associated PAF have also 
been observed in patients with sepsis [44]. Since increased PAF levels are character­
istic of sepsis and shock, PAF is considered to be an important toxic mediator which 
is partially responsible for producing the increased membrane permeability [41] 
under those conditions. 

A number of specific PAF receptor antagonists, both naturally occurring or 
chemically synthesized, have been identified. PAF-receptor antagonists inhibit the 
specific binding of PAF to platelets, PAF-induced platelet aggregation, PAF-induced 
hypotension, and LPS-induced hypotension. PAF inhibitors also appear to attenuate 
endotoxin-induced pulmonary vascular abnormalities and prevent extravascular 
fluid accumulation in the lungs. Most significantly, PAF inhibitors appear to pro­
long survival in endotoxemic animals [45] Recent studies have shown that PAF 
antagonist (Ro 24-4736, a thienodiazepine) administration after hemorrhage and 
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resuscitation prevented splenocyte immunodepression in mice [46]. In another 
study, Redl et al. [47] evaluated the effect of the PAF antagonist BN 52021 in ovine 
endotoxin shock and showed that the pulmonary vasculature and lung fluid balance 
disruption produced by LPS was markedly reduced by treatment with the PAF 
antagonist. In a clinical trial including 120 patients with Gram-negative sepsis, BN-
52021 administration was associated with a 42 % decrease in mortality compared 
with placebo [48]. 

Inflammatory cytokines 

Characterization of the mechanisms regulating the production and action of inflam­
matory cytokines, especially those of T cell origin, could eventually lead to effective 
prophylaxis or therapy for septic shock. T cell activation is a complex process and 
requires the participation of many proteins, of which the interaction and function 
have yet to be completely clarified. An important understanding from such studies 
is that, without proper costimulation, ligation of the T cell receptor (TCR) alone not 
only leads to an inability to proliferate and to produce cytokines but also results in 
an unresponsiveness to further stimulation, a phenomenon referred to as anergy 
[49]. Ligation of the membrane associated costimulatory molecules and the TCR is 
a prerequisite for optimal immunological function of the T cell. Among many cos­
timulatory molecules identified to date, CD28 is by far the most potent. CD28, a 
member of the Ig superfamily and forms a disulfide-linked homodimer of a 44-kDa 
glycoprotein expressed on the T cell surface. CD28 and CTLA-4, a closely related 
molecule, have been shown to modulate the mitogenic stimulation of T cells [50-53] 
by interacting with B7.1 (BB1; CD80) and B7.2 (CD86) on the surface of antigen 
presenting cells (APCs) [54]. This function of CD28 has been attributed to its abil­
ity to enhance the transcription of cytokine genes, to stabilize their messages, to 
inhibit anergy, and to prevent programmed cell death [55-57]. Wang et al. [58] 
found that both the septic shock syndrome and death could be prevented by admin­
istration of anti-CD28 Abs. The protection induced by anti-CD28 Ab was associat­
ed with a decrease in TNFa levels in the circulation. In addition, serum from anti­
CD28 Ab-treated mice was capable of inhibiting the production of TNFa by bone 
marrow-derived macrophages following treatment with LPS, indicating that anti­
CD28 Ab induced production of soluble factors that subsequently inhibited the pro­
duction of TNFa. Wang et al. [58] confirmed that one of the factors present in the 
serum was IL-10 since anti-CD28 Ab treatment stimulated the expression of IL-10 
both in splenocytes and in T cell lines. Furthermore, injection of anti-IL-IO Abs 
could abolish the protective effect of anti-CD28 Ab in septic shock. Anti-IL-IO Ab 
could also suppress the anti-CD28 Ab-induced inhibition of TNFa production, 
either in vivo or in vitro. They concluded that ligation of CD28 induces expression 
of IL-lO, which in turn suppresses TNFa production and prevents septic shock [58]. 
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Interferon-y (lFNy) 

Studies by Livinston et al. [59] demonstrated that the capacity of rats to ward off 
infection after fixed-pressure hemorrhagic shock (35 mmHg for 1 h duration fol­
lowed by resuscitation) is enhanced by combined IFNy and antibiotic therapy. In 
additional studies, Malangoni et al. r 60] showed that IFNy combined with cefoxitin 
reduced the development of polymicrobial soft-tissue infections. Hershman et al. 
[61] found that IFNy treatment enhanced survival after Klebsiella pneumonia infec­
tion in mice. Thus, it could be suggested that IFNy alone or in combination with 
antibiotics can reduce the spread of infection. Ertel et al. [62] administered 4 x 104 

units/kg body weight recombinant murine IFNy following hemorrhage and resusci­
tation in mice and demonstrated that administration of this agent restored the 
depressed macrophage antigen presentation capacity of peritoneal macrophages, as 
well as Ia expression, on these macrophages. The depressed release of IL-1 and TNF 
was also increased by IFNy treatment and the depressed splenocyte proliferation 
was restored. Furthermore, IFNy decreased the lethality from sepsis following hem­
orrhage [62]. These data therefore indicate that IFNy is a potent agent for the treat­
ment of hemorrhagic shock-induced immunosuppression and for increasing the 
ability of the host to combat bacterial infections following hemorrhage. 

Growth hormone and insulin-like growth factor-1 

Growth hormone (GH) belongs to the somatolactogen family of hormones [63] and 
is an anabolic hormone that improves protein metabolism in critical illness [64,65]. 
Growth hormone is also the major regulator stimulating the synthesis and secretion 
of insulin-like growth factor I (IGF-I) from various tissues. Moreover, the anabolic 
effects of GH on protein metabolism are mediated mainly by IGF-I [66]. Inoue et al. 
[66] recently showed in a murine sepsis model that exogenous GH and IGF-1 
increased peritoneal exudative cell numbers, reduced viable bacterial counts in the 
peritoneal lavage fluid and the liver, and consequently prolonged survival in mice 
with sepsis. Furthermore, these hormones exerted modulatory effects on local and 
systemic cytokine production (TNF, IL-1, IL-6). These authors [66] therefore con­
cluded that administration of GH and IGF-l effectively improves host defense via 
immunomodulation. 

Erythropoietin 

Patients with chronic infections and inflammatory diseases often exhibit low serum 
erythropoietin (Epo) levels in relation to the blood hemoglobin concentration [67]. 
In vitro studies utilizing Epo-producing human hepatoma cells and isolated perfused 
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rat kidneys have shown that proinflammatory cytokines such as IL-l and TNFa 
inhibit Epo gene expression [68-70]. Sepsis is perhaps the most severe example of a 
systemic inflammatory reaction. The clinical characteristics of the sepsis syndrome 
include fever, hypotension, hypoglycemia, disseminated intravascular coagulation 
and increased vascular permeability [5, 71]. IL-1, IL-6 and TNFa play an important 
role in the development of these host responses to infection. Approximately 50% of 
the patients die because of refractory hypotension or progressive failure of multiple 
organ systems [71]. Anemia due to hemorrhage and hemolysis in association with 
suppressed erythropoiesis worsens the clinical course. In contrast to the prognostic 
value of elevated plasma TNFa levels in patients with sepsis, measurements of IL­
IP are thought to be of little significance for monitoring [5, 72]. Very high IL-6 lev­
els were earlier detected by bioassay of plasma from septic patients and studies indi­
cate that the level of immunoreactive IL-6 correlates with mortality rates in patients 
with sepsis [72-75]. However, although associated with the patients' outcome as a 
whole, the plasma concentration of IL-6 alone is not considered to be a clinically 
useful prognostic predictor for the individual patient [75]. TNFa, IL-la and IL-IP 
have been shown to suppress the in vitro synthesis of Epo in human hepatoma cell 
cultures [68-70] and isolated perfused rat kidneys [69]. Therefore, these proinflam­
matory cytokines are thought to play an important role in the defective production 
of Epo in distinct acute and chronic inflammatory renal and nonrenal diseases, 
including nephritis, renal allograft rejection, autoimmune diseases and malignancies 
[67, 76]. There has been one earlier report showing low Epo bioactivity detected in 
vitro in the plasma of infants with sepsis [77]. Studies done by Abel et al. [78] in 
critically ill patients with documented sepsis indicate that Epo production is not gen­
erally lowered in septic patients, despite the increased levels of proinflammatory 
cytokines. However, they propose that increasingly high Epo levels is a negative 
prognostic indicator in septic patients since it increases IL-6 levels and APACHE II 
scores. The mechanisms responsible for the final increase in circulation Epo are still 
unclear. Septic shock is associated with decreased tissue perfusion and hypoxia [71] 
which may induce Epo gene expression. Alternatively, specific cytokines may stim­
ulate Epo production. IL-6, which is produced excessively in septic shock, has been 
shown to stimulate Epo gene expression in the human hepatic cell line Hep3B [69]. 
Since IL-6 has been shown to inhibit Epo production in isolated perfused rat kid­
neys [69, 79], the effects of IL-6 on hepatic Epo synthesis deserve further consider­
ation. 

Dietary manipulation 

Current nutritional formulations contain n-6 polyunsaturated acids (PUFA's) as a 
primary fat source. However, a great deal of attention has recently been focused on 
the potential use of n-3 PUFAs (i.e. <0-3 fatty acids) which are found in high con-
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centration in fish oil. Studies have shown that these 0)-3 fatty acids, which include 
eicosapentaenoic acid and decosahexaenoic acid, are rapidly and preferentially 
incorporated into membrane phospholipids and thus reduce the production of 
arachidonic acid metabolites. It is this effect which is thought to be responsible for 
some of the anti-inflammatory and immunostimulatory effects associated with diets 
high in (0-3 fatty acids. Experimental studies indicate that the severity of arthritis 
[80], systemic lupus erythematosus [81] and amyloidosis [82] are markedly reduced 
if diets high in (0-3 fatty acids are given. Studies in humans have demonstrated that 
the synthesis of the inflammatory cytokines TNF and IL-l could be decreased by 
dietary supplementation with 0)-3 fatty acids [83]. Animal studies showed that diets 
high in 0)-3 fatty acids led to a significant decrease in the synthesis and release of 
PGE2 by endotoxin-stimulated macrophages [84, 85]. In addition, mortality was 
significantly reduced by using diets supplemented with 0)-3 fatty acids in a chronic 
model of sepsis [86]. These results are in line with data of two clinical trials in which 
fish oil was shown to have a restorative effect on the depressed cellular immunity of 
patients in intensive care units [87] and in patients after major surgery [88, 89]. 
However, a significant decrease of infectious complications or mortality in such 
patients could not be demonstrated. Nonetheless, a prospective clinical study in 
burn patients, however, has shown that the use of a diet containing fish oil signifi­
cantly reduced wound infection, shortened hospital stays, and reduced deaths when 
compared to other standard enteral formulations [90]. Collectively, these studies 
would suggest that a diet containing fish oil given to malnourished, immunocom­
promised patients awaiting elective surgery with a high postoperative risk of sepsis 
should be useful in preventing postoperative infectious complications. 

Sex hormones 

Several clinical and epidemiological studies indicate gender differences in the sus­
ceptibility to and morbidity from sepsis [91-95]. Immune functions in normal males 
and females has been reported to be influenced by sex steroids [96, 97]. In this 
regard, it appears that better maintained immune functions in females are not only 
due to physiological levels of female sex-steroids, but also at least in part because of 
the markedly lower level of immunosuppressive androgenic hormones [98]. Studies 
from our laboratory showed that hemorrhage in mice markedly decreased the abil­
ity of peritoneal and splenic macrophages to release IL-l and IL-6 two hours after 
hemorrhaged [99]. This was associated with increased mRNA expression for IL-l 
and IL-6 and increased serum corticosterone levels. Administration of prolactin fol­
lowing hemorrhage attenuates the increased mRNA expression for IL-l~ and IL-6 
in peritoneal macrophage (pM0) and splenic macrophages (sM0) [99]. Further­
more, the cytokine release capacity and blood corticosterone levels were compara­
ble to the values in sham animals [99]. Prolactin also significantly improved the sur-
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vival of animals subjected to sepsis after hemorrhage [99]. Previous studies from our 
laboratory indicate a profound suppression of TNFa, IL-1 ~ and IL-6 release capac­
ity by pM0 and sM0 during late sepsis (24 h after CLP), which is associated with 
severe host immunosuppression [100, 101]. However, prolactin as well as metoclo­
pramide (a dopamine antagonist, which has been reported to increase prolactin 
secretion and circulating plasma levels [102]) treatment after the onset of sepsis 
resulted in significant upregulation of constitutive and inducible cytokine gene 
expression in both M0 polulation, when compared to septic-untreated and sham­
operated mice [103]. Thus, prolactin and metoclopramide enhance the depressed 
M0 gene expression and may be useful in improving cell-mediated immunity dur­
ing sepsis. In line with this is a recent experimental study [94] which determined in 
a prospective and randomized manner whether the cell-mediated immune response 
during sepsis differs in females vs. males, and whether the survival rate in females is 
different than in males after a septic insult. After anesthesia, male and proestrus (a 
stage at which the female sexual hormones are highest) female mice underwent cecal 
ligation and puncture (CLP) to induce sepsis. The mice were killed at 24 h after the 
onset of sepsis. Splenocyte proliferative capacity and splenocyte IL-2 and IL-3 
release were markedly decreased in male, but not in female, septic mice. Further­
more, the survival rate of septic female proestrus mice was significantly higher than 
in comparable male mice. These results support the concept that the immune 
response of females differs from males, and that females in proestrus state are 
immunologically better positioned to meet the challenge of sepsis [94]. Alternative­
ly, to the extent that androgens contribute to the marked immune depression seen 
following hemorrhage, it is worth noting that recent studies indicate that testo­
sterone receptor-blockade in males following hemorrhage restored the depressed 
immune functions and improved survival following hemorrhage and the induction 
of subsequent sepsis [104, 105]. 

Potential limitations in the application of experimental therapeutic agents 
at the bedside 

The success in the use of immunomodulatory agents following hemorrhage and sep­
sis in rodent models appears to be promising in t4e development of new therapeutic 
concepts for the treatment of immunosuppression and for decreasing the mortality 
from sepsis in humans. However, careful evaluation of both the benefits and poten­
tial adverse effects of therapy is needed before widespread clinical use can be envi­
sioned. As discussed in the other chapters in this book, studies in rodent models of 
endotoxemia and bacteremia indicated that neutralization of endotoxin, as well as 
TNFa biological activity, markedly decreased the morbidity and mortality in these 
animals. However, clinical trials in humans following septic shock have thus far not 
yielded remarkable results, which might suggest that factors other than endotoxin or 
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TNFa may be important for producing the pathophysiological problems in patients. 
The reason for the lack of benefits in patients receiving anti-TNFa or anti-endotox­
in antibodies is most likely due to the polymicrobial nature of sepsis which involves 
gram negative bacteria, gram positive bacteria, and fungus. Therefore, animal mod­
els which only involve endotoxin or gram negative bacteria may not accurately 
mimic the clinical condition of sepsis and thus the unremarkable outcome of clinical 
trials with anti-TNFa or anti-endotoxin treatment is not surprising. 

The accurate modeling of human trauma patients in animals is extremely com­
plex and difficult since a number of important differences exist between animal 
models of shock/sepsis and patients in shock/sepsis. Human patients, following 
trauma, receive multiple interventions which include blood transfusions, colloid, 
inotropic agents, anti-inflammatories, antibiotics, analgesics and anesthetics. Some 
of these agents have been shown to have immunosuppressive properties. Further­
more, it is unclear if these agents act in a synergistic manner in suppressing immune 
function. In impending animal studies of trauma, the effect of these agents on 
immune function will need to be evaluated in order to more accurately replicate the 
human patient. Other factors that are clearly important to patient outcome follow­
ing trauma include gender, age, nutritional status, socioeconomic background, and 
preexisting disease or infection which may also profoundly influence the immune 
response. These factors will also need to be accurately examined in future experi­
mental studies. The importance of identifying multiple agents that can restore 
immune function following trauma and sepsis is that these immunomodulators may 
have different degrees of efficacy, or the efficacy may be counteracted by the addi­
tional interventions the patient receives such as epinephrine etc., during intensive 
care stays. 

Summary and conclusion 

Sepsis produces severe immunosuppression and is associated with high morbidity 
and mortality [106, 107]. Treatment strategies for sepsis include the use of antibi­
otics, debridement of infected or necrotic tissues, and intensive life-support proce­
dures such as dialysis, mechanical ventilation, and vasoactive drug administration 
[108 J. However, the incidence of sepsis and the mortality associated with sepsis 
remain high [107]. Therefore, new strategies for the prevention of severe sepsis are 
required. A large number of experimental studies indicate beneficial effects of agents 
such as ATP-MgCI2, pentoxifylline, non-anticoagulant heparin, calcium channel 
blockers, chloroquine, cyclooxygenase inhibitors, PAF antagonists, anti-endotoxin 
Abs, TNF Abs, IL-lra, soluble TNF receptors etc., following trauma and sepsis 
(using primarily models of endotoxemia or bacteremia). 

As mentioned in this and other chapters, a number of agents such as anti endo­
toxin Abs, TNF Abs, IL-lra, soluble TNF receptors or binding proteins etc., have 
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been and are being examined in the clinical arena. However, if the efficacy of these 
agents is to be established and maximized, it will be extremely important to not only 
clearly define the pathobiology of shock/sepsis state but also the patient population 
who will benefit from these new modalities. It should also be noted that indis­
putable modeling of human trauma patients in animals is arduous since a number 
of important differences exist between animal models of shock and sepsis and 
patients in shock or sepsis. An example of this is that human patients, following 
trauma, receive multiple modalities which include blood transfusions, colloid, 
inotropic agents, anti- inflammatory agents, antibiotics, analgesics and anesthetics. 
Some of the above-mentioned agents have been shown to have immonusuppressive 
properties. Moreover, it is unclear if these agents act in a synergistic and/or additive 
manner in suppressing immune function. Experimental animal models, on the other 
hand, have usually been designed to keep the model as "simple" as possible and thus 
they do not undergo the same magnitude/diversity of trauma nor are they subjected 
to multiple interventions including the concurrent use of pressor agents. In future 
animal studies of trauma/sepsis, the effects of inotropic agents, antibiotics, anal­
gesics, etc. on immune function will need to be evaluated in order to more accu­
rately replicate the human patient. Additional factors that follow trauma and sepsis 
such as age, gender, nutritional status, socioeconomic background, and pre-existing 
disease(s) also influence the immune responses and are important components in 
patient outcome following trauma and sepsis. These factors should also be thor­
oughly considered and examined in future experimental studies. Identifying multi­
ple agents that can restore immune function following trauma/sepsis is important 
since some of those immunomodulators may have different degrees of efficacy. 
Moreover, the efficacy of some of these agents may be counteracted by accessory 
interventions such as epinephrine etc., which the patient receives during their stay 
in the intensive care unit. 
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Background 

Over the past ten years, anticytokine therapies for the treatment of septic shock, 
adult respiratory distress syndrome (ARDS) and systemic inflammatory response 
syndrome (SIRS) have progressed from the laboratory to the clinic. It is now gener­
ally accepted that overproduction of several classes of proteins produced by inflam­
matory cells, termed pro-inflammatory cytokines, contribute to the pathological 
consequences of septic shock [1,2]. Neutralizing an exaggerated endogenous tumor 
necrosis factor a (TNFa) response with anti-TNFa antibodies [3,4], soluble TNF 
receptor immunadhesins [5, 6], or downregulating TNFa production with inter­
leukin-l0 (IL-I0) pretreatment [7, 8] confers survival to otherwise lethal endotox­
emia. Presently, clinical trials are underway with monoclonal antibodies and immu­
nadhesins directed against TNFa in patients with sepsis syndrome [9]. Similarly, 
efforts to block an exaggerated interleukin-1 (IL-1) production, primarily with the 
use of IL-1 receptor antagonist (IL-1ra), have shown variable results in preclinical 
studies [10, 11] and early clinical trials [12]. 

However, current therapeutic approaches, although conceptually sound, are 
inherently inefficient. Firstly, these natural antagonists or inhibitors of pro-inflam­
matory cytokines have short biological half-lives, ranging from minutes to hours 
[5, 10, 13]. Secondly, pro-inflammatory cytokine levels are often several times 
higher in the inflamed tissue compartment than they are in the plasma [14, 15] and 
thus, inhibitors that are given parenterally must be done so in large quantities to 
reach and saturate all tissue pools. In fact, some inhibitors are sequestered almost 
entirely in the plasma compartment [16] and may not reach interstitial pools. 
Finally, exaggerated cytokine production may contribute to pathology in one body 
compartment while, simultaneously, production in another compartment may 
actually have beneficial effects. Thus, systemic administration of cytokine 
inhibitors at levels sufficient to neutralize exaggerated cytokine production in one 
organ may also block the presumably beneficial aspects of cytokine production in 
another. 
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To develop an alternative approach for anticytokine therapies in acute inflam­
mation, gene transfer of cytokine inhibitors or the use of catalytic ribozymes direct­
ed against pro-inflammatory cytokine mRNA are being considered as a novel drug 
delivery system. Although gene transfer and transfection studies are being actively 
pursued for patients with somatic gene disorders, and for modulating the genetic 
basis of cancer, diabetes, and other chronic diseases (for reviews see [17-19]), gene 
transfer as an acute therapeutic modality for sepsis, surgical injury, and acute 
inflammation is clinically not being as actively pursued [20]. However, the capa­
bility to deliver cytokine inhibitors or antagonists directly to the local site of 
inflammation, where exaggerated pro-inflammatory cytokine production is occur­
ring, makes non-stable gene transfer a powerful alternative to systemic administra­
tion. 

Efforts to accentuate beneficial components of the acute phase or inflammato­
ry response by targeting such organs as the liver with low dose human TNFa, IL-
6 or IL-1 (a or ~) may present an alternative means to improve outcome to infec­
tion/ injury, particularly in models of immune suppression and organ injury. In this 
manner the utility of gene transfer in clinically relevant models of infection and 
sepsis is explored. In particular, the advantages of gene transfer as a novel drug 
delivery system for the treatment of septic shock, multisystem organ failure 
(MSOF) and inflammatory response syndromes is determined for possible future 
clinical trials. 

Role of pro-inflammatory cytokines in the pathogenesis of 
sepsis! MSOF 

The reported mortality to septic shock varies between 25-50%. Although contro­
versy exists over the frequency and morbidity associated with sepsis and septic 
shock, there is agreement that the incidence of septic shock is increasing and mor­
tality rates are remaining relatively constant despite marked improvements in anti­
microbial therapies and pulmonary and vascular support. Even with constant 
improvements in supportive care, increases in immuno-compromised diseases like 
AIDS, as well as the ageing of the population, have resulted in an increased prepo­
sition to sepsis and septic shock. 

In 1986/87, Beutler et al. demonstrated that overproduction of the pro-inflam­
matory cytokine, TNFa, was antecedent to shock and death [21-24]. Initial studies 
demonstrated that the panoply of host responses seen in lethal endotoxemia or 
Gram-negative bacteremia could be reproduced in healthy animals simply by 
administering recombinant TNFa. In subsequent studies in mice and Papio 
(baboon), the authors demonstrated that an exaggerated endogenous TNFa 
response was inhibitable with polyclonal and monoclonal antibodies, and con­
tributed to the mortality associated with endotoxemia and Gram-negative bac-
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teremia [4]. Since 1987, when the studies were first reported, there have been at 
least 15 studies confirming the central role that TNFa plays in acute Gram-negative 
bacteremia and endotoxemia (for review see [25]). 

Similarly, in 1988, Waage and colleagues [26] and Schreiber et al. [27] each 
reported that TNFa toxicity could be potentiated by coadministration of either IL­
l or lipopolysaccharide. As early as 1989, Fong et al. [28] reported that blocking an 
endogenous TNFa response in Gram-negative septic shock with monoclonal anti­
bodies led to an attenuated IL-l and IL-6 response. In 1991, Ohlssen et al. [11] and 
subsequently Dinarello et al. [29], Norton et al. [30] and Fisher et al. [10] reported 
that blocking an endogenous IL-l response with IL-l receptor antagonist (IL-lra) 
also improved survival and reduced tissue damage associated with lethal Gram-neg­
ative bacteremia. 

Since then a considerable body of knowledge has developed to explain the mech­
anism and pathways by which the pro-inflammatory cytokines initiate and propa­
gate shock, tissue damage, and the sepsis syndrome. Investigators have implicated 
additional pro-inflammatory cytokines in the pathogenesis of overwhelming Gram­
negative infections or endotoxemia, including interferon-y, IL-6, LiFIFactor D and 
IL-l2 [30-32]. Although the role that each of these specific cytokines play in the 
pathogenesis of septic shock is still being resolved, there is general agreement that 
endogenous production of TNFa and IL-l are central to initiating and sustaining 
the pro-inflammatory cytokine cascade. These two mediators, in particular TNFa, 
appear very early in the inflammatory response, and their synthesis and release 
begins within minutes of macrophage activation [33, 34]. The early release to TNFa 
initiates a subsequent cascade of other cytokines and mediators. When TNFa or IL­
l are inhibited with either antibodies or receptor antagonists, the major components 
of the inflammatory response are suppressed [24, 34]. 

It has only been recently recognized that the integrated cytokine response to 
infection and injury is complex and that ultimately the host response to infection 
depends not only upon the absolute concentrations of IL-l and TNFa, but also 
upon the presence of cytokine inhibitors and anti-inflammatory cytokines. It is now 
generally accepted that the catastrophic host responses to overwhelming bacterial 
infections represent an aberrant relationship between pro-inflammatory cytokines, 
TNFa and IL-l, and their naturally occurring inhibitors. In lethal bacteremia and 
endotoxemia the concentrations of TNFa and IL-l p in the plasma are far greater 
than can be neutralized by the corresponding levels of shed TNF receptors (TNFR) 
(p55 & p75) or IL-lra [5, 35]K Similarily, in ongoing inflammatory processes, such 
as those which occur in hospitalized patients with systemic inflammatory response 
syndrome (SIRS) or sepsis syndrome, the mechanisms which ultimately down-regu­
late pro-inflammatory cytokine release are ineffective. This is due in part to the con­
tinued external stimuli which ongoing infectious or inflammatory processes invoke. 
In such cases repeated or persistent pro-inflammatory cytokine synthesis (TNFa, IL­
l) contributes to the hemodynamic instability, coagulopathy, and multi-organ dys-
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function that occurs. In both septic shock and SIRS the beneficial aspects of pro­
inflammatory cytokine production (including stimulation of non-specific host 
immunity, increased antigen specific T cell proliferation, macrophage and NK-cell 
bactericidal capacity) are offset by the adverse consequences of continued exposure 
to elevated TNFa and IL-l concentrations. 

Successful anticytokine approaches to the treatment of septic shock or sepsis 
syndrome associated with bacteremia or endotoxemia have been directed at either 
suppressing the pro-inflammatory cytokine (TNFa or IL-l) response, such as with 
IL-IO or transforming growth factor ~ (TGF~), or blocking TNFa and IL-l activi­
ty with antibodies, or by increasing pharmacologically the levels of cytokine 
inhibitors with recombinant IL-lra and soluble TNF receptors. The preclinical 
rodent and subsequent primate studies which demonstrated efficacy with either 
antibodies (anti-TNFa mAb) or cytokine inhibitors (IL-lra or soluble TNF recep­
tors TNFR) in lethal endotoxemia and Gram-negative bacteremia prompted the 
initiation of clinical trials in patients with sepsis syndrome and shock. The initial 
promising Phase II report of improved outcome in patients with sepsis syndrome 
treated with IL-lra [12] could only be confirmed in the Phase III trials with a sub­
group of critically ill patients with predicted mortalities of greater than 24% by 
APACHE III scores [35]. In fact, clinical trials with IL-lra have been discontinued, 
and IL-lra is no longer under clinical investigation. Beneficial results from the anti­
TNFa monoclonal antibody studies have also been conditional. For example, Fish­
er reported an improvement in outcome only in those patients with detectable plas­
ma TNFa9. 

In light of the observation that these clinical studies can only confirm the utility 
of anticytokine therapies for the treatment of shock and sepsis syndrome in very 
selected patient populations, interest has focused primarily on identifying prospec­
tive patients that may benefit from such therapies. In fact, retrospective analysis of 
Phase II and III clinical trials with TNFa antibodies and IL-l inhibitors revealed that 
only some patient subpopulations benefited from anticytokine therapies, whereas 
there was a trend towards increased mortality in other patient populations [9, 12, 
35]. In particular, anti-IL-l and anti-TNFa therapies appeared to be most helpful in 
patients who had organ failure or were already in shock, whereas they were least 
beneficial (and potentially harzadous) in patients at risk of developing septic shock 
but not as critically ill. 

The inability of these several clinical trials to unequivocally demonstrate effica­
cy of this novel approach does not indicate a failure of the underlying concept, but 
rather a failure in its implementation. Such results are not surprising given the fact 
that cytokines have both concurrent beneficial and pathological roles. In fact, Echt­
enacher and others demonstrated that blocking an endogenous TNFa response 
made a non-lethal peritonitis model lethal [36-38]. Similarly, van der Meer and 
Czyprinski demonstrated that administration of IL-l improved outcome to a vari­
ety of Gram-negative bacterial infections and blocking an endogenous IL-l 
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response inhibited antimicrobial processes [39-45]. Such results suggest that an 
endogenous pro-inflammatory cytokine response can have beneficial effects, and 
efforts to block an endogenous TNFa or IL-l response may have untoward nega­
tive effects. 

We believe that identifying the optimal patient population who can benefit from 
such therapies will only partially address the problems associated with the current 
approaches for delivering anticytokine therapies. A major difficulty with the current 
strategy of infusing systemically either inhibitors of IL-l (IL-lra) or TNFa (mono­
clonal antibodies or soluble receptors), or infusing anti-inflammatory mediators 
(such as glucocorticoids, ILA, TGFp, IL-l a or IL-13) is that systemic administration 
is an imprecise means of directing an anticytokine therapy to individual body com­
partments where exaggerated production is occurring. Similarly, because such ther­
apies are inherently aimed at blocking cytokines prima rely in the vasculature, but 
also in all organs of the body, they can be potentially hazardous to some patient 
populations where an organ-specific cytokine production may have beneficial anti­
microbial functions. 

Systemic administration of cytokine inhibitors may in fact be an inappropriate 
means to block the paracrine actions of a cytokine. Only recently has a greater 
appreciation for the paracrine nature of TNFa and IL-l been recognized. Both IL­
l and TNFa are known to exist in cell-associated forms and retain some biological 
activity [43, 44]. Ginsberg et al. reported in mice suffering adeno-virus induced 
hemorrhagic pneumonia, local, but not systemic, production of TNFa and IL-l 
[14]. TNFa and IL-1 levels in the lung were often in excess of 10 ng/ml whereas 
plasma concentrations were less than 50 pg/ml and could not be detected by either 
immuno-or bioassays. Similarly, in rats expiring from a thermal injury and 
Pseudomonas infection, local, but not systemic, TNFa production was reported [46, 
47]_ Ulich has reported lung TN Fa levels exceeding 10 ng/ml in mice following 
intratracheal instillation of lipopolysaccharide (LPS) whereas levels in the plasma 
were less than 100 pg/ml [48,49]. Similar findings have been seen with patients with 
ARDS [15, 50]. In such patients, TNFa was recovered from the lungs of patients 
with ARDS at levels as high as 15 ng/ml, whereas concentrations in the plasma were 
only 100 pg/ml. Thus, systemic administration of cytokine inhibitors must be given 
at levels sufficient to block the elevated concentrations in the tissues but not in the 
plasma compartment. This is exceedingly problematic since anti-TNFa monoclonal 
antibodies, soluble receptor fusion proteins, and even IL-lra, are primarily sequest­
ered in the plasma compartment [5, 10, 16, 17]. 

Systemic administration of cytokine inhibitors is also problematic since the nat­
ural antagonists or inhibitors of TNFa and IL-1 often have short biological half­
lives, ranging from minutes to hours [5, 10]. For example, Fisher et al. reported that 
in the septic primate, IL-1ra has a biological half-life (beta phase) of approximately 
21 minutes [10]. To sustain therapeutic plasma concentrations of 10-15 ~g/ml, IL­
lra and soluble TNF receptors have to be given at concentrations of 1.5-2 mg/kg 
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BW/hr, or approximately 2.5 glday, for as long as the patient is septic. Such an 
approach may not be cost-effective. To some extent, these problems have been obvi­
ated by the use of antibodies or TNF receptors that are joined to the FC and hinge 
region of human IgG. These 'Chimeric fusion' proteins have a biological half life of 
between 20-60 hours [6,16,17]. 

Finally, exaggerated pro-inflammatory cytokine production may contribute to 
the pathology in one body compartment while, simultaneously, production in 
another compartment may actually have beneficial effects. There has been little 
examination into the differential organ response to a variety of lethal and non­
lethal infections or inflammation. The implications of these findings are consider­
able. Systemic administration of cytokine inhibitors at levels sufficient to exit the 
plasma pool in quantities sufficient to neutralize exaggerated TNFa production in 
one tissue compartment may also block the presumably beneficial aspects of 
cytokine production in other tissue compartments. This latter point may explain 
some of the experimental observations where TNFa inhibition is associated with 
adverse outcome. 

In 1986, Beutler and Cerami characterized TNFa's actions as being two sides of 
the same coin [51]. Even at that time it was understood that the biological actions 
of pro-inflammatory cytokines were in general beneficial to the host. Since then, 
considerable experimental data has arisen to suggest that an endogenous TN Fa or 
IL-l response is critical to a normal, non-specific host response that serves to 
reduce the amount of tissue damage and the likelyhood of a secondary bacterial 
infection. It has been well recognized that endogenous TNFa and IL-l production 
contributes to the antimicrobial responses against several intracellular pathogens, 
such as listeria and pneumocystis [52]. An endogenous TNFa and IL-1 response, 
particularly in the liver and spleen, are essential to the anti-listerial response. In 
addition, there is also increasing appreciation of a beneficial role for TNF and IL­
l in the host response to Gram-negative bacterial infections [38, 53]. Dinarello 
reported that some IL-1 production was critical in newborn rodents [53]. He 
demonstrated that exaggerated IL-1 production could be lethal as well as an inad­
equate IL-1 production in a murine model of Gram-negative infection. In two day 
old rats infected with Klebsiella, mortality normally approached 100% and high 
levels of IL-1 could be documented. When excess quantities of IL-l were inhibited 
with low dose IL-lra, mortality declined to under 20%. However, when rats were 
treated with sufficient IL-lra to completely block all of IL-1 's actions, mortality 
increased to nearly 100%. Thus, the findings confirm that some IL-1 production is 
essential for eliciting an antimicrobial response, but either too much or too little is 
disadvantageous. 

For the reasons described above, we propose that gene transfer of anti-inflam­
matory cytokines or cytokine inhibitors represents a more efficient means to block 
pro-inflammatory cytokine action in tissue compartments than does the systemic 
administration of these same agents. 
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Use of gene transfer to deliver anticytokine therapies directly to organs 
and tissues 

In the past three years, significant progress has been made in the development of 
gene therapy. There have been several excellent reviews of the various technologies 
available for human gene therapy [17-19]. These reviews in general have focused on 
currently available methods to deliver human genes to distant organs. Invariably, the 
emphasis of these studies has been to correct germ line abnormalities, such as those 
associated with the cystic fibrosis transmembrane conductance regulator, ornithine­
transcarbamylase, adenosine desaminase, Duchenne type muscular dystrophy, and 
LDL receptor, among others [18, 19]. Such approaches in general are aimed at either 
supplanting defective genes, or altering immune cell phenotype. We propose to 
employ gene transfer as a novel drug delivery system to transiently mitigate the 
inflammatory response in individual tissues and organs. We believe that coupling 
gene transfer technologies with surgical intervention and manipulation ultimately 
offers a unique means to modify the post-surgical and inflammatory response, by 
either down-regulating inflammatory processes in tissues where exaggerated pro­
duction occurs, or in cases where upregulating the inflammatory response may stim­
ulate antimicrobial processes. Thus, gene transfer technologies will be an integral 
component of the surgeon's armament, aimed at modulating wound healing, tissue 
regeneration, and decreasing inflammatory cell-mediated injury. 

The specific goals of gene therapy for sepsis and acute inflammation therefore 
differ in some important regards from efforts to correct germ-line disorders. Where­
as the treatment of such germ-line disorders as adenosine deaminase (ADA) defi­
ciency-induced severe combined immune deficiency (SCID) or cystic fibrosis seeks a 
stable integration of the foreign gene into the target tissue genome [54-60], the goal 
of gene transfer in sepsis or acute inflammation is a transient, non-stable transfor­
mation that results in maximal gene expression lasting days and at most weeks. In 
the case of downregulating an inflammatory response, stable integration of the gene 
for an anti-inflammatory cytokine or cytokine inhibitor with a viral promotor­
enhancer into the target cell genome could have adverse long lasting effects, includ­
ing immune suppression and oncogenesis. Such stable transfections are therefore not 
desirable. In addition to non-stable transfection, gene therapy approaches in sepsis 
are aimed at targeting several cell populations simultaneously in a single organ or 
tissue, such as pulmonary macrophages, or epithelial and endothelial cells in the 
lung. Under ideal conditions, the target cell population in sepsis is one in which 
excessive production of the pro-inflammatory cytokines IL-l and TNFa occurs. 

We have considered non-viral methods of gene transfer 

Cationic liposomes have often been historically dismissed as an inefficient means of 
gene transfer in vivo [61]. This has been due historically to the relatively low trans-
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fection efficiencies that are observed in vitro when compared to viral transfection 
systems [62]. In addition, due to the lack of quality control in liposome preparation 
and their rapid peroxidation, results have often been unreproducible and, in some 
cases, liposomes have been directly toxic to some cell populations [62]. The in vivo 
use of liposomes for gene transfer, however, began in earnest after the report of FeI­
gner's group at Syntex in 1987 that liposome-mediated DNA transfection can be 
simple, inexpensive, reproducible, and more efficient than other commonly 
employed non-viral techniques [61]. In general, cationic liposome technology has 
progressed markedly since 1987 when Lipofectin Reagent® [N-[1-(2,3,-dioleyloxy) 
propyl]-N,N,N-trimethylammonium chloride] (DOTMA) was first developed [63]. 
Lipofectin® was cytotoxic to some cell lines and expensive to manufacture. Second 
generation liposomes were created using mixtures of the cationic lipid (DOTMA) 
and neutral lipids (usually a variant of dioleyl-L-a-phosphatidyl-ethanolamine 
DOPE) [64]. With these newer formulations, transfection efficiencies increased to 
almost 75%, values approaching those seen with viral transfection schemes [64]. 
Ramila Philip and Robert Debs have also shown that some degree of tissue specific 
transgene expression can be achieved by varying the composition of the cationic 
lipid [66-68]. In general, these cationic lipids spontaneously form multilamellar 
vesicles that can either be used to capture intact DNA, or can be sonicated to form 
small unilamellar vesicles. DNA interacts spontaneously with solutions of both 
these vesicles to form Iipid:DNA complexes. It is presumed that the ionic interac­
tions occur between the positively charged lipid and the negatively charged phos­
phate group of the DNA [64]. 

The positively charged lipid from the liposome interacts not only with the nega­
tively charged DNA but also with negatively charged cell membranes. These lipo­
somes also undergo membrane fusion or transient membrane destabilization with 
the plasmalemma or endosome in order to achieve delivery of DNA into the cyto­
plasm while avoiding degradation in the lysosomal compartment. This process is 
independent of cellular receptors and should be present in most cell types. Once 
inside the cell, the DNA migrates to the nucleus where, depending upon the pres­
ence of cis acting sequence elements such as the long terminal repeats (LTR's) of 
retrovirus, the DNA is either integrated into genomic DNA or is transcribed in an 
episomal fashion [18]. This migration of transgenic material to the nucleus can be 
enhanced by coating the DNA with HMG-1, histones that permit more rapid tran­
sit through nuclear membrane pores [69]. 

Conceptually, it is the same whether entry of the DNA is facilitated by viral 
packaging and binding to specific cellular receptors, as occurs with viral transfec­
tion schemes, or endocytosis and plasma membrane interactions, as occurs with 
liposomes. Once the foreign DNA is incorporated into the cell, transgene expression 
is driven by additional cis-acting regulatory sequences which include transcription­
al promoters and enhancers as well as the host cell's RNA polymerase and tran­
scriptional initiation factors. Mammalian transcriptional promoters are required for 
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transcription of sequences within mammalian cells. The choice of transcriptional 
promoter also determines which RNA polymerase will transcribe the foreign DNA. 

Commonly, in vivo studies with cationic liposomes have utilised mammalian 
expression vectors containing the cytomegalovirus (CMV) immediate-early tran­
scriptional promoter and enhancer [65-69]. The CMV promoter is transcribed by 
RNA polymerase II and has the advantage of directing high levels of expression in 
a variety of tissues, including lung, kidney and vascular endothelium in most mam­
malian species [70]. 

Cationic liposomes and plasm ids containing the CMV early promoter and 
enhancer for transfer of foreign DNA have been reported by Debs, Philip, Felgner 
and others [65-68]. In studies described by Debs and Philip, cationic liposomes and 
CMV promoter vectors, which contained reporter genes such as chloramphenicol 
acetyl transferase (CAT), were administered intravenously, intraperitoneally, and by 
inhalation to healthy animals. Debs has extensively analyzed the tissues transfected 
following intravenous administration of liposomes and CMV promoter and 
enhancer-driven CAT (CMV-CAT) expression vectors. Evidence of CAT expression 
was documented for up to 63 days following intravenous injection, and CAT activ­
ity was present in the lung, spleen, liver, heart, kidney, and lymph nodes, as well as 
in the thymus, uterus, ovary, skeletal muscle, intestine and colon of transfected mice 
[65]. The highest CAT expression was observed in lung and spleen when expressed 
as per mg protein. Immunohistochemistry studies revealed that there were three dif­
ferent cellular patterns of CAT expression following intravenous injection. CAT 
expression was generalized throughout the lung affecting both endothelial and 
epithelial cells. However, in the spleen, liver, lymph nodes and bone marrow, CAT 
expression was limited to extravascular parenchymal cells. Thus, in these tissues, 
circulating liposome:DNA complexes appeared to readily extravasate across the 
vascular endothelium. In the heart and kidney, however, CAT expression was limit­
ed to mostly endothelial cells with little expression by parenchymal cells. Therefore 
liposome-directed gene transfer for sepsis will not be limited by the inability to reach 
target cell populations. In practice, the difficulty will be to direct gene transfer to 
those cell populations that are responsible for exaggerated proinflammatory 
cytokine production. 

Debs and colleagues also examined CAT expression following inhalation of lipo­
some:CMV-CAT DNA [68]. Inhalation of liposomes complexed to CMV-CAT vec­
tors resulted in high levels of CAT expression in the lungs of the animals for peri­
ods up to 21 days. No CAT expression was observed in any other tissue suggesting 
that uptake of the liposome:DNA mixture was limited to the lung. Using a poly­
clonal antisera directed against CAT, immunohistochemical analysis of lung sections 
showed a pattern of diffuse staining for CAT activity that involved both bronchio­
lar and alveolar components. Bronchiolar epithelium had the highest CAT 
immunoactivity, but CAT immunoactivity was also recovered from alveolar lining 
cells. 
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Table 1 - Survival and peak TNFa concentrations in LPS-D-gaIN mice pretreated with lipo­

somes containing pCMVlp55 or pcO-SR-aIIL-10 

Experiment # 

2 

3 
totals 
TNFa, pg/ml 

pCMV/p55 
survived/total 

4/6 
3/6 
3/6 

10/18 
2080 ± 810 

pcD/SR-a/hIL-10 relevant DNAIliposomes 
survived/total survived/total 

6/6 1/6 
4/6 0/6 
6/6 1/6 

16/18 2/18 
190 ± 60 2690± 660 

Table 2 - Lung TNF and myeloperoxidase levels in mice after intratracheal LPS administra­

tion and gene transfer 

TNF/a, pg/g 
MPO, U/g 

pCMV/p55 

500 ± 43 
53.2 ± 1.3 

pcD/SR-a/hIL-1 

146 ± 58 
26.4 ± 5 

liposomes 

382 ± 66 
58.7 ± 6.2 

control 

<100 
1.7 ± 1.7 

Targeting gene transfer to the kidney has also been accomplished. Isaka and col­
leagues infused liposomes and coding sequences for human TGF~ into the renal 
artery of mice with genetic susceptibility to lupus and recovered immune reactive 
human TGF~ from the kidney [71]. TGF~ activity was not recovered from the con­
tralateral kidney or any other tissue suggesting that targeted expression is feasible 
by regional iv. administration. Furthermore, with the increasing understanding of 
the immunological and genetic basis of carcinogenesis, gene transfer is also becom­
ing a valid option for cancer therapy [72]. 

We conducted over the past years several gene therapy studies in murine models 
with septic shock and acute inflammation. To evaluate whether gene therapy aimed 
at inhibiting an endogenous TNF response could improve outcome in a model of 
more direct TNF dependence, gene therapy was employed prior to lethal LPS D­
galactosamine [73]. 48 h after gene transfer, mice were injected intraperitoneally 
with 250 ng LPS and 18 mg D-GaIN. Lethality in this LPS-D-GaIN model has been 
previously shown to be more dependent on an exaggerated TNFa response, since 
treatment of mice with TNF receptor immunoadhesins or the use of TNF receptor 
(p55)-deficient mice results in reduced mortality. Our results from three separate 
experiments demonstrated that gene transfer with either IL-lO or p55 improves sur-
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Figure 1 

TNFa immunoadivity in the serum (pglml) from mice 90 min after challenge with a lethal 

experimental septic shock. 2 days prior to indudion of septic shock, the mice were trans­

feded intraperitoneally with 200 j.lg pcD hIL-4, 200 j.lg plFE14 hIL-13 or 200 j.lg pMP6 com· 

plexed to 100 nmol DDAB:DOPE cationic liposomes. The results represent the average of 

three different experiments with six mice per group in each experiment. Mice pretreated 

with hlL-4 or hIL-13 display a down regulation of TNFa response to a lethal LPS-D-GaIN 

challenge, p < 0.05. 

vival (Tab. 1). In additional studies, intratracheal administration of IL-10 DNA­
liposome complexes 48 h before an intratracheal LPS challenge reduced pulmonary 
TNFa levels by 62% and decreased neutrophil infiltration in the lung by 55% as 
measured by myeloperoxidase activity (both p < 0.05). This effect was not seen with 
the p55 gene transfer (Tab. 2). In retrospect, it is not surprising that gene transfer 
with p55 was less effective than IL-10 after i.p. and intratracheal LPS challenge, 
given the magnitude of TNFa response. In contrast to transfection with the modi­
fied p55, the increased effectiveness of IL-10 gene transfer highlights a therapeutic 
advantage associated with cytokines that directly inhibit pro-inflammatory cytokine 
production rather than competing for ligand binding. 

These results encouraged us to consequently perform another study with other 
anti-inflammatory cytokines, namely IL-4 and IL-13 [74]. Gene transfer with hILA 
reduced the serum TNFa production in response to endotoxin/D-GalN by 80% 
from 113.1 pg/ml in mock-transfected animals to 22.2 pg/ml (p < 0.05), whereas 
human IL-13 gene transfer reduced serum TNFa levels by 90% (113.1 pg/ml to 
11.6 pg/ml; p<0.05) (Fig. 1). Survival was improved from 20% to over 83% in 
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Figure 2 

48 h survival of mice challenged with a lethal experimental septic shock. 2 days prior to 

indudion of septic shock, the mice were transfeded interperitoneally with 200 J.1l5 pcD 

h1L-4, 200 J.1l5 plFE14 h1L-13 or 200 J.1l5 pMP6 complexed to 100 nmol DDAB:DOPE cation­

ic liposomes. The results represent the average of three different experiments with six mice 

per group in each experiment. Mice pretreated with hlL -4 or hlL -13 demonstrated a signifi­
cant improve in survival, p < 0.001. 

both treatment groups (p < 0.001) (Fig. 2). Our data demonstrate a potent in vivo 
anti-inflammatory action of both IL-4 and IL-13. In addition the immune functions 
of peritoneal macrophages are significantly ameliorated in both treatment groups, 
herein IL-13 demonstrates a better macrophage immune modulation than IL-4 
(p < 0.05) (Fig. 3). 

Our results underscore several advantages for the use of gene transfer as a treat­
ment option for septic shock or other acute inflammatory episodes. First, the speci­
ficity of targeting inhibitors to specific organs is greatly increased. Second, the gene 
transfer scheme permits a continued expression of these inhibitors for several days, 
allowing for prolonged delivery of a short lived antagonist. However, since the gene 
transfer is ultimately transient and the plasmid DNA remains episomal, expression 
efficiencies decline after 48 hours [66]. Therefore, the risk of a stable transfection 
and incorporation of a gene for a potentially immunosuppressive agent under a con­
stitutive promoter is remote. Finally, local cytokine inhibitors or antagonists can be 
directed away from organs where the putative beneficial effects of pro-inflammato­
ry cytokines are occurring. 
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Figure 3 

TNFa secretion by primary cultures of peritoneal macrophages from mice 48 h after chal­

lenge with a lethal experimental septic shock. 2 days prior to indudion of septic shock, the 

mice were transfeded intraperitoneally with 200 W5 pcD hIL-4, 200 W5 plFE14 hIL-13 or 
200 W5 pMP6 complexed to 100 nmol DDAB:DOPE cationic liposomes. 48 h after challenge 

with septic shock, peritoneal macrophages were isolated from sunivors. 2 x 106 macrophages 

in 1 ml complete medium were plated into 6 well microtiter plates at 3JO C in 5% CO2. 90 

min later, the cells were washed and adherent cells were cultured further in 1 ml complete 

medium containing 1 W5 LPS. 18 h later the supernatants were aspired and analyzed for 

TNFa immunoadivity by ELISA. Surviving mice pretreated with hlL -4 or hlL -13 respond 

more potent than controls, p < O. 01. 
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Introduction 

Perhaps no clinical problem lacking effective therapy has been as extensively stud­
ied as sepsis. A MEDLINE search under the MESH heading, "sepsis", currently 
yields more than 35,000 references, including in vitro studies, in vivo animal stud­
ies, and human clinical trials. To date, no effective mediator-directed therapy is 
available. Promising compounds, with impressive preclinical efficacy and prelimi­
nary human benefit in phase II studies, have failed to improve outcome in well-con­
ducted phase III randomized, controlled trials. The potential reasons for these dis­
appointing results are many [1-4]. An important factor has been the applicability of 
inferences drawn from pre-clinical studies. 

In sepsis research, as in biomedical research in general, differing experimental 
approaches address different scientific objectives. In vitro models permit the maxi­
mal control over experimental conditions, and therefore are the optimal models for 
defining biological mechanisms. Pre-clinical studies, usually using an animal model, 
can show that a biological process produces a physiological effect in vivo. Finally, 
clinical studies in humans are needed to show that a physiological effect observed in 
an animal model leads to clinical benefit. Although it is relatively easy to design an 
animal study so that an effect is seen, demonstration of activity in a pre-clinical 
model does not reliably predict efficacy in humans. 

Pre-clinical studies of novel approaches to modulating the host response in sep­
sis commonly use animals, although endotoxin has been administered to human vol­
unteers to measure the physiological consequences of mediator manipulation. The 
ideal animal model of sepsis would be one that closely mimics the natural history of 
the septic response in humans. Given the heterogeneity of patients enrolled in 
human sepsis trials, such a model clearly does not exist. A novel therapy, therefore, 
should be subjected to a series of pre-clinical analyses, using different model sys­
tems, before human studies are undertaken. The strengths and limitations of each 
animal model must be considered in extrapolating the experimental results of medi­
ator-directed therapies to human clinical trials. Indeed it can be argued that one of 
the major conceptual challenges facing sepsis research is not so much finding an ani-
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mal model that mirrors human disease, but rather identifying and studying homo­
geneous human diseases that mirror specific animal models. 

This chapter will explore the reasons that efficacy in animal models has not been 
successfully translated into improvements in clinical outcome. Wichterman and col­
leagues published the first review of animal models of sepsis in 1980 [5]; since then, 
a number of excellent reviews have appeared [6, 7]. 

Heterogeneity of outcomes in pre-clinical studies 

While it is relatively easy to establish experimental conditions in a pre-clinical model 
so that an effect - usually a change in mortality - is observed, it is apparent that the 
direction of that effect can vary with the specific model employed. For example, 
murine studies evaluating the role of interleukin 10 (11-10) have generally shown 
that IL-10 exerts beneficial effects in models of endotoxicosis [8, 9], but detrimen­
tal effects when the experimental challenge is a live organism [10-12]. Yet the con­
clusion that IL-1 0 is detrimental in the setting of uncontrolled infection is probably 
simplistic, since administration of IL-10 appears to improve outcome following 
cecal ligation and puncture [13, 14]. Similarly, the most compelling evidence of ben­
efit for neutralization of tumor necrosis factor (TNF) comes from studies in which 
the experimental challenge was systemic endotoxin [15]. When the model involves 
challenge with viable microorganisms in the mouse, blockade of TNF may various­
ly be beneficial [16, 17], detrimental [18, 19], or ineffectual [20]. In a more com­
plex model such as cecal ligation and puncture, blockade of TNF has been shown 
to result in benefit [21], harm [22], or neither [20]. 

Although pre-clinical studies can show striking evidence of in vivo benefit, the 
heterogeneity of responses resulting from the experimental model employed makes 
it difficult to extrapolate the results of animal models to potential benefit in 
humans. Conversely, however, the heterogeneity of patient populations enrolled in 
sepsis trials is reproduced by the heterogeneity of responses seen in animal studies. 
A systematic understanding of the basis for heterogeneity in clinical trials may per­
mit better definition of patient populations likely to benefit from specific therapies. 
Thus an analysis of the limitations of animal models may shed light on approaches 
to make the clinical studies better resemble the pre-clinical models. 

Sources of variability in pre-clinical models 

Species variability in the response to experimental challenge 

Although humans share upwards of 98% of our genetic makeup with other mam­
malian species, the differences between humans and other animals, or even between 

334 



The failure of clinical trials in sepsis: Challenges of pre-clinical models 

rodent species, can exert a profound impact on the response to infectious challenge. 
For example, human dendritic cells are stimulated by lipopolysaccharide (LPS) or 
TNF to express antigens on their surface, and are unable to process antigens 
encountered subsequently. Murine dendritic cells, on the other hand, can continue 
to process subsequently encountered antigens; thus dendritic cell function will be 
significantly different in humans than in mice when antigen is encountered in an 
environment that contains TNF or LPS [23]. Mice have lower numbers of circulat­
ing neutrophils than do humans, and their neutrophils are functionally different. L­
select in on human neutrophils binds to E-selectin, while mouse L-selectin does not 
[24]. Mouse neutrophils lack the endotoxin-neutralizing protein, bactericidal/per­
meability increasing protein (BPI), whereas human neutrophils express it. Mice 
manifest a more marked THl!TH2 polarization than do humans; indeed it remains 
controversial whether this dichotomy is present in human lymphocytes. Finally, 
TNF inhibits IL-IO production in mice, but stimulates it in humans. Thus there are 
multiple, often subtle, differences in immune physiology between mice and humans 
that may have an important bearing on the application of data from murine mod­
els to the treatment of human disease. 

At the level of the whole organism, there are significant interspecies differences 
in sensitivity to endotoxin. Murine species vary considerably in the ability of their 
monocytes to produce TNF in response to endotoxin, and certain strains, notably 
the C3H He] strain, are resistant to large doses of endotoxin [25]. Interestingly, 
C3H He] mice are exquisitively sensitive to lethality induced by infusion of the par­
ent E. coli from which the endotoxin was purified [26]. Endotoxin sensitivity in the 
mouse can be increased through the use of adjuvants such as D-galactosamine [27]. 
However, although D-galactosamine markedly reduces the lethal dose of endotoxin 
in mice, it changes the mode of death, inducing fulminant hepatic necrosis. Other 
adjuvants such as carrageenan, lead acetate, and beryllium phosphate may similar­
ly alter the physiological derangements leading to death. 

Endotoxin sensitivity varies significantly between differing animal species [28]. 
Both rats and dogs are relatively resistant to endotoxin; rabbits, on the other 
hand, are quite sensitive. Pigs are sensitive to endotoxin, and resemble humans in 
their physiological responses to an infectious challenge, but are relatively expen­
sive, and difficult to maintain in a chronically instrumented state. Sheep are 
docile, and exquisitely sensitive to endotoxin, and develop patterns of organ dys­
function that approximate those seen in human sepsis, but are expensive to pur­
chase and maintain. Baboons, although more genetically similar to humans than 
non-primates, manifest a much greater degree of endotoxin resistance. Moreover, 
the pedigree of baboons and other primates is often uncertain, and animals may 
have previously been used in other studies that alter their responsiveness to de 
novo infectious challenge. Rabbits are sensitive to endotoxin, and relatively inex­
pensive, however their gut flora, unlike that of humans, is dominated by Gram­
positive organisms. 
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Genetic variability in the response to challenge 

There is an increasing awareness that the response to infectious challenge in humans 
is strongly influenced by genetic factors [29, 30]. Genetic variability in responsive­
ness similarly has an important effect on responses in experimental animals. The 
Balblc mouse has been a popular strain for experimental purposes, since the animals 
are docile and have large spleens; of 22 reports on the role of IL-10 in experimen­
tal sepsis published through 1997, 14 used Balb/c mice. However Balblc mice devel­
op a predominantly TH2 type of response to immune stimulation. In contrast, the 
more aggressive C57bl!6 strain mounts a TH2 type of response [31]. 

Most commercially available laboratory mice are derived from a limited genetic 
pool, permitting careful control of their responses to challenge, and minimizing 
inter-animal variability. However, this homogeneity may limit the extrapolation of 
findings in one species to animals of different genetic backgrounds. In fact, the avail­
ability of rodent strains with characterized genetic defects has proven invaluable in 
the study of the pathogenesis of a variety of disease processes. The C3H1He] mouse 
differs at a single locus from the C3H1HeN strain, yet this difference in a single gene 
of as yet undetermined function confers endotoxin resistance on the He] animals 
[32]. Evaluation of differential responses between these two congenic strains has 
provided important insights into the role of endotoxin in a variety of physiological 
and pathological processes [33,34]. Mice of the lpr strain lack the cell surface recep­
tor, Fas, whose engagement triggers apoptosis; gld mice lack Fas ligand expression, 
and are susceptible to the development of inflammation at normally privileged sites 
[35]. The SCID mouse can be reconstituted with human bone marrow, and is an 
attractive model for studying human immune function. However, only 10% of bone 
marrow cells engraft in the scm mouse model, and 95% of circulating lymphocytes 
are CD8+ cells, limiting the applicability of the model for studies in which CD4+ cells 
play an important role. 

The development of techniques to delete specific genes in murine embryonic 
stem cells has permitted the generation of knockout mouse strains that lack a sin­
gle gene product [36]. Mice lacking the p55 receptor for TNF, for example, 
demonstrate resistance to endotoxin challenge, but enhanced susceptibility to 
infection with pathogens such as Listeria [37]. While knockout mice provide 
insights into the in vivo function of a particular protein, these observations must 
be interpreted with caution, since deletion of a given gene may result in upregula­
tion of another [38]. Refinements of knockout technology permit the study of the 
role of genes whose deletion during embryological development would otherwise 
be lethal, or whose function might be compensated for by overexpression of other 
genes. For example, mice can be generated that have a tetracycline-dependent pro­
motor region for the target gene. Withdrawal of tetracycline results in cessation of 
expression of the gene of interest. Similarly, tissue-specific gene deletion has 
become possible [39]. 
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The availability of mouse strains with well-characterized abnormalities in the 
function of key components of the immune response has contributed significantly to 
our understanding of the biology of inflammation. On the other hand, the same 
defects limit the generalizability of these observations to the understanding of a 
complex process such as human sepsis. 

Differential responses to differing challenges 

As discussed earlier, the response to mediator manipulation in rodent models is 
highly dependent on the nature of the experimental challenge, and a single inter­
vention may result in either benefit or harm. Overexpression of the IL-lra gene, for 
example, results in protection against endotoxin, but increased susceptibility to Lis­
teria [40]. 

However, the dichotomy in responsiveness is not simply a consequence of differ­
ential responses to live organisms or microbial products. IL-10 improves survival in 
neonatal mice challenged with group B Streptococci [41], but is detrimental in a 
murine model of pneumococcal pneumonia [42]. Similarly, tumor necrosis factor is 
beneficial in a murine model of pneumococcal pneumonia [43], whereas neutraliza­
tion of TNF improves survival following challenge with Microcystis [44]. G-CSF is 
reported to improve survival following Pseudomonas challenge in the mouse [45], 
but to have no effect following lethal challenge with S. aureus in the rabbit [46]. 
Thus, factors such as the state of immune maturation and the locus of infection 
exert a potent influence on the response to mediator modulation. Moreover, circu­
lating levels of key proinflammatory cytokines such as TNF vary, even within a 
given animal species, with the specific strain of bacteria employed, and the rate at 
which the organisms are infused [47]. 

Pre- versus post-treatment 

The vast majority of animal studies have reported the effects of an inflammatory 
challenge in animals that have first been treated with the experimental agent. 
These models evaluate the effects of preventing the activation of a mediator 
response, rather than those of neutralization of a response during its expression. 
Not surprisingly, the beneficial effects of therapy become less pronounced the 
longer therapy is delayed. Moreover, the relationship of the timing of therapy to 
the infectious challenge can alter the response to therapy. IL-10 given 6 h after the 
onset of peritonitis improves outcome in a cecal ligation and puncture model, but 
is without effect when given prior to, or simultaneous with, the induction of peri­
tonitis [48]. 

337 



David (reery and John C. Marshall 

The impact of supportive therapy 

The clinical syndrome of human sepsis is a complex interplay of the effects of the 
infectious challenge, and those of the many interventions employed to support the 
patient in the ICU. In contrast, resuscitation and support in animal models is rudi­
mentary. Standard interventions such as fluid resuscitation, antibiotics, and surgical 
drainage reduce the lethality of animal models [49, 50], and minimize the benefits 
seen with mediator manipulation. Although physiological support is possible in a 
rodent model [51], modelling the ICU setting generally requires the use of large ani­
mal models, and financial considerations generally preclude the use of a mortality 
endpoint. 

Selection of appropriate endpoints 

The syndrome of sepsis in the human is a highly lethal process, with a 28 day mor­
tality of 35 to 40%. For this reason, regulatory agencies such as the American Food 
and Drug Administration have been unyielding in their expectation that a novel 
therapy demonstrate mortality benefit prior to attaining licensure [52]. However 
there is an increasing trend for animal care committees to prohibit the use of exper­
imental designs that require the animal's death as an endpoint, and to request, at a 
minimum, that animals be euthanized if there is evidence of distress. The shortcom­
ings of surrogate endpoints for mortality in human trials are even greater when 
applied to unsupported animal models. Hypotension, lethargy, or profound 
hypothermia, for example, are manifestations of the disorder being treated, rather 
than outcomes, and their use as an endpoint precludes evaluation of therapy. Mor­
tality endpoints for studies involving non-rodent species or subhuman primates pose 
even greater problems from the perspective of animal ethics, and become extraordi­
narily expensive to undertake. 

When mortality is used as an endpoint in animal models, the patterns and tim­
ing of death may differ from those seen in humans. High dose endotoxin or bac­
teremia challenges typically result in death within 24 h, or rapid recovery for sur­
viving animals. In human studies, however, 30 to 60% of deaths occur within the 
first three days, but mortality rates continue to be elevated for as long as 5 years fol­
lowing illness [53]. The cause of death may also differ between models, as well as 
from that of human sepsis. When endotoxin is given to rodents pre-conditioned 
with D-galactosamine, death occurs as a result of fulminant hepatic necrosis, a sit­
uation not typically encountered in human endotoxemia. Similarly, bile acid injec­
tion into the pancreatic duct causes acute pancreatitis with profound hypotension 
and death within the first 24 h; feeding of a choline-deficient diet also induces acute 
pancreatitis, but death occurs at 3 to 7 days and results from hypoxemia and renal 
failure [54]. 
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Finally, it is apparent that the conduct of studies that use animal models has con­
ventionally not been as rigorous as that of human clinical trials with regard to ran­
domization of subjects or blinding of outcome measurement [55]. These inadequa­
cies of study design may introduce bias into reported results. 

In summary, then, animal models can provide important insights into the patho­
genesis of a disease process, although what is studied is not the disease, but a model 
of the disease that, while resembling the clinical condition, mayor may not repro­
duce its actual biological abnormalities. In turn, a deeper understanding of the 
pathogenesis of a disease process permits a more rational approach to therapy, and 
so the insights from pre-clinical studies can inform the design of clinical trials of 
novel agents in human diseases. However, it is inappropriate to conclude that an 
intervention that modulates a biological process in the highly artificial circum­
stances of an animal model will necessarily bring clinical benefit in the infinitely 
more complex setting of human illness. Indeed, sepsis is less a disease than an appro­
priate and adaptive response to an acute threat to life that arises in a host whose 
genetic background and premorbid state of health is highly variable. The next chal­
lenge in the design and interpretation of preclinical studies will be to develop pan­
els or portfolios of models that may be better able to predict when intervention is 
likely to produce benefit, harm, or neither. In other words, rather than developing 
animal models of human sepsis, we will need to better understand the human cor­
relates of animal models. 

A Hierarchy of pre-clinical models 

As a preliminary step towards a systematic understanding of the insights and limi­
tations that derive from information provided by pre-clinical studies, it is instructive 
to consider the spectrum of models available (Tab. 1). The list is by no means com­
prehensive, and within each type of model factors such as the selection of species 
and genetic strain, the use of resuscitative measures, or other co-interventions, and 
the timing of therapy in relation to experimental challenge can all alter the observed 
responses. 

Systemic endotoxemia or bacteremia 

Evaluation of the effects of an intervention on the acute response to an endotoxin 
challenge is a simple and appealing first step in the assessment of a potential thera­
peutic approach. Endotoxin is readily characterized and easily stored, and can be 
administered to each animal in equal doses, minimizing random variability in the 
observed outcome. Doses can be titrated to mortality rates in untreated controls, 
and the investigator can therefore select a dose that will be optimal to his or her 
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Table 1 - Preclinical models of sepsis 

Model 

Intravenous challenge 

Endotoxin 

Live bacteria 

Candida, Listeria 

Focal infection 

Pneumonia 

Peritonitis 

Subcutaneous injection 

Advantages 

Simplicity 

Low cost 

Potential for use of defined 

animal strains 

Model specific infections 

Model can provide 

quantitative bacteriology 

Local 

Diffuse 

CLP 

Uses 

To detect a biologic signal, usually 

mortality 

To evaluate effects of an inter­

vention on local antimicrobial 

defenses 

Complex, sequential, or Reflects circumstances of To evaluate effects of 

combined models infection in compromised, intervention in a clinically 

(2-hit, immune compromise) critically ill patient relevant model 

Trauma (hemorrhage, 

burn) followed by 

infection 

Malnutrition + infection 

Neutropenia + infection 

Large animals 

Pig, dog, sheep, horse, 

baboon 

Human endotoxemia 

340 

Can reproduce both 

immune suppression and 

immunological activation 

Permits resuscitation and To define physiological 

full clinical support and 

monitoring 

consequences of intervention, 

and model potential clinical use 

Measures effects in species To detect a clinically relevant 

of interest signal and to define therapeutic 

markers 

Highly defined challenge 
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needs. Endotoxin can be handled with minimal risk to laboratory personnel, and 
administered to the experimental animal with relative ease. Its effects are rapid, and, 
when mortality is used as an endpoint, definitive. However, endotoxemia is an 
intoxication rather than an infection, and a single bolus injection does not repro­
duce the clinical circumstances of infection where exposure to the infecting agent 
occurs over time. 

Intravenous challenge with a known inoculum of live organisms produces a clin­
ical picture similar to that of endotoxin challenge and does permit evaluation of the 
effects of the intervention on antimicrobial defenses. A variety of organisms may be 
employed including Gram-negative or Gram-positive species, Candida, and Listeria. 
As discussed earlier, the response to therapy of an animal challenged with pathogens 
such as Candida or Listeria is often the opposite of that which occurs in response 
to endotoxemia [37]. The use of several different microbial strains permits a more 
comprehensive assessment of the potential risks and benefits of a given strategy on 
antimicrobial immunity. 

Meningococcemia is probably the closest human correlate of animal models of 
endotoxemia or systemic bacteremia, although cholangitis or pyelonephritis, as 
acute infectious processes associated with the sudden release a large inoculum of 
organisms into the bloodstream, may also show similarities. 

Models of local infection 

Viable microorganisms or endotoxin can be administered intratracheally to mimic 
pneumonia or acute lung injury [10]. As with models of intravenous challenge, it is 
possible to titrate the severity of the model by varying the challenge dose, and to 
evaluate the response to differing bacterial strains. Pulmonary challenge models 
allow the use of alternate endpoints to mortality, for example, quantitative lung bac­
teriology, quantification of neutrophil influx into the lung, or measurement of lung 
permea bility. 

There are a great many models of intraperitoneal microbial challenge that repro­
duce features of bacterial peritonitis [6]. Known concentrations of defined strains of 
bacteria can be injected intraperitoneally, usually in conjunction with an adjuvant 
such as barium or hemoglobin to increase the severity of the model. Focal infection 
can be reproduced by the implantation of bacteria in a gelatin capsule, fibrin clot, 
or sterile feces. 

The cecal ligation and puncture (CLP) model has proven to be a durable model 
that reproduces many features of complex intraperitoneal infection [5]. A laparoto­
my is performed in the anaesthetized animal (usually a rat or mouse, although larg­
er animals such as sheep have been used), The cecum is ligated to create a focus of 
devitalized tissue, and the cecum punctured to permit escape of bacteria; the lethal-
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ity of the model can be controlled by varying the number of punctures and the size 
of the needle used to create the puncture hole. CLP is easy to perform, and mimics 
human peritonitis in inducing a hyperdynamic state with hyperglycemia, followed 
later by hypoglycemia and lactic acidosis. Blood cultures are positive for a polymi­
crobial flora within one hour. Cardiac output is increased 2 h following the proce­
dure, but later drops as the model progresses; systemic vascular resistance is 
reduced. Resuscitation with saline increases survival. Moreover, the necrotic cecum 
can be excised, antibiotics can be administered and, even in the rat, hemodynamic 
monitoring and support can be instituted [51]. Thus the model can reproduce many 
of the features of resuscitated peritonitis in the human. 

Models of immunosuppression or priming 

Patients enrolled in sepsis trials are typically elderly, with premorbid illnesses that 
may alter their response to therapy. In addition, the septic insult commonly arises as 
a consequence of a previous stimulus that may have primed or otherwise changed 
the baseline defenses of the host. Models in which host defenses have been altered 
may permit better evaluation of how an approach may affect a critically ill patient. 

There are numerous methods of inducing immunosuppression or priming in an 
animal model. Some involve deleting specific components of innate host defenses. 
For example, studies of the effect of G-CSF commonly employ animals that have 
been rendered neutropenic by administration of cytotoxic agents. While such a 
model reproduces the alterations seen in neutropenia, it cannot be considered a 
model for a less specific immunological defect, and for studies of agents such a G­
CSF or GM-CSF, administration of the agents simply reverses the underlying char­
acteristics of the model. The role of the liver reticuloendothelial system can be stud­
ied in models in which Kupffer cell function has been ablated with agents such as 
gadolinium chloride [56]. 

A sophisticated model that reproduces some of the more complex abnormalities 
of critical illness has been reported by Cross and Opal. Rats are rendered neu­
tropenic by cyclophosphamide, and colonized enterally with Pseudomonas. The 
model reproduces the clinical phenomenon of infection with a relevant pathogen 
occurring continuously across the gut mucosal barrier. In this model, while inhibi­
tion of TNF or IL-l individually are beneficial, their use in combination is detri­
mental [57]. 

Models of sequential insults (also known a two-hit models) permit assessment of 
the effects of mediator manipulation in a system whose function has been altered by 
a previous insult. Two-hit models include burn injury followed by cecal ligation and 
puncture or hemorrhage followed by intratracheal challenge with endotoxin or live 
bacteria. 
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Large animal models 

A better understanding of the physiological effects of a novel agent generally 
requires the use of large animals that can be instrumented and monitored following 
infectious challenge. Multiple physiologically and clinically relevant endpoints can 
be studied [58], although such studies are both costly and time-consuming. The 
selection of a species whose physiological responses to experimental challenge 
resemble those of the human is particularly important. 

Endotoxin challenge in human volunteers 

The evaluation of the consequences of mediator manipulation in human volunteers 
given an intravenous bolus of endotoxin combines features of pre-clinical and early 
phase clinical studies. The physiological, hemodynamic, and cytokine response in 
this model is well-characterized, and thus the biological effects of a given agent can 
be studied. Responses may vary from those predicted by animal models. For exam­
ple, although pretreatment with G-CSF confers benefit in a variety of animal stud­
ies, in human endotoxemia, G-CSF enhances the release of both pro- and anti­
inflammatory cytokines, augments release of neutrophil elastase, and prevents pul­
monary leukosequestration [59]. 

Human endotoxemia models permit characterization of optimal biological 
markers to monitor the response to therapy; they share many of the shortcomings 
described above for animal models of endotoxemia. 

Conclusions 

Pre-clinical studies performed in a variety of mammalian species have provided us 
with much of our understanding of the pathophysiological changes that occur dur­
ing the expression of a septic response. However, extrapolation of insights derived 
from the highly-controlled circumstances of a specific animal model to the complex 
and highly heterogeneous group of conditions that make up human sepsis is fraught 
with difficulties. The disappointing results of clinical studies undertaken so far attest 
to the fact that a more systematic and critical evaluation of the strengths and limi­
tations of pre-clinical models will be a pre-requisite to designing successful studies 
in the future. 
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Introduction 

More than two dozen well-designed, randomized, controlled phase II or III clinical 
trials, published over the past 15 years, have tested the hypothesis that modulating 
the host inflammatory response can improve clinical outcome for patients with sep­
sis [1, 2]. Four of these have demonstrated a statistically significant effect on sur­
vival- three suggesting clinical benefit [3-5], and one, clinical harm [6]. In excess of 
one billion U.S. dollars have been expended generating these results, but none of the 
agents studied has been licensed for clinical use. 

From the perspective of the speculator or the cynic, the promise of mediator-tar­
geted therapy has been exposed as a scientific pipe-dream, a notion best discarded 
and abandoned. Yet for the clinician treating the critically ill, or the scientist study­
ing the intricacies of the host inflammatory response, such nihilism flies in the face 
of a compelling biological rationale, and an urgent clinical need. Much has been 
written about the reasons that sepsis trials have failed [7-10]; the potential expla­
nations are many (Tab. 1). A critical review of the many possible explanations for 
this failure provides a useful insight into the complexities of the biological process 
and the many pitfalls of clinical research. 

Have sepsis trials failed: What is the measure of success? 

At the outset, it is important to question the very premise of this review - that sep­
sis trials have been a failure. While it is true that no new agents have been licensed 
for use in clinical practice for the treatment of sepsis, it can be argued that published 
data demonstrate consistent, albeit small evidence of clinical benefit. In a meta­
analysis of published studies of mediator-targeted therapy, Zeni and colleagues 
showed an overall survival benefit of 2-3% for patients enrolled in the experimen­
tal arm of sepsis trials [2] . An absolute difference of this magnitude only becomes 
statistically significant when very large trials are performed. Assuming that the 28 
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Table 1 - Explanations for the negative results of clinical trials of mediator-directed therapies 

in sepsis 

True negative results 

The mediator has no pathophysiological role in the human population studied. 

The mediator has a pathophysiological role, but the study agent failed to neutralize it 

because of true biological inactivity, in vivo inactivation, in vivo competition by other 

mediators, or a compensatory increase in a separate mediator with similar biological 

effects 

False negative results 

The agent was administered too early or too late in the course of the disease 

The duration of therapy was too short 

The dose was inadequate 

The study population was overly heterogeneous with respect to: 

the biological expression of the inflammatory response 

the severity of the physiological derangement 

the genetic predisposition of the patient 

premorbid health status 

the site, bacteriology, or presence of infection 

the adequacy of surgical source control 

the adequacy of antimicrobial therapy 

the adequacy of concomitant ICU supportive care 

The agent produced benefit in some patients, but harm in others 

Combination therapy is required to block redundant and overlapping mediator cascades 

day mortality for patients enrolled in the placebo arm of such a study is 40%, we 
would need to study 8400 patients receiving either placebo or study drug to detect 
a 3% mortality reduction to 37%, at conventional levels of statistical significance 
and power. If we wish to detect an absolute difference of 2 %, then we must study 
close to 20, 000 patients. If the placebo mortality is lower, the sample size will be 
correspondingly larger. Expressed differently, a study of 1000 septic patients (a 
moderately large trial by current standards) will only achieve statistical significance 
if mortality is reduced from 40% to 31 %, a relative reduction of 23%. 

Large trials are the rule in disciplines such as cardiology, where mortality reduc­
tions of the same order of magnitude of those actually observed in sepsis trials are 
anticipated [11]. For logistical and cost reasons, such trials are unrealistic in the area 
of sepsis. Therefore, a successful sepsis trial will require either an agent with greater 
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efficacy in the populations conventionally studied, a refinement of study entry cri­
teria to enrich the population with patients most likely to benefit, or demonstration 
of greater benefit using an outcome other than 28 day mortality (and a willingness 
on the part of regulatory agencies to accept such a demonstration for licensing pur­
poses). 

The societal perspective 

What comprises success in a clinical trial? In general, a clinician will adopt a new 
therapy if that therapy can be shown to improve clinical outcome; the health care 
system, on the other hand, needs evidence not only of clinical benefit, but of an 
acceptable ratio of cost to benefit. Conversely, an intervention that brought no mea­
surable benefit (and no harm) to a patient, but reduced the costs of providing care 
would be an attractive therapy from a societal perspective. The more expensive a 
new therapy, the greater its incremental benefit must be to justify the additional 
costs to health care providers. 

Is a 3 % overall reduction in 28 day mortality enough of an effect to justify the 
introduction of a novel mediator-directed therapy? Recombinant proteins are 
expensive to produce and the developmental costs in bringing such agents to mar­
ket is considerable, in excess of $ 100,000,000. If we assume that a course of ther­
apy will cost $ 5000, then, assuming a 3% mortality benefit, 100 patients must be 
treated to save three lives, and the cost per survivor is approximately $ 170,000. 
Further, if we make the assumption that survivors of the septic insult, a patient pop­
ulation with significant comorbidity, will gain an additional 4.3 years of life [121, 
the cost per life year gained is approximately $ 40,000. Based on the assumption, 
almost certainly erroneous, that 500, 000 patients a year might benefit from treat­
ment, the total cost to the health care system of the agent alone is $ 2.5 billion. The 
introduction of an effective sepsis therapeutic agent will have a significant impact 
on health costs. When licensure of the anti-endotoxin monoclonal antibody, HA­
lA, appeared imminent, the Pharmacy and Therapeutics committee of at least one 
large urban hospital was faced with the ethical dilemma of having to contemplate 
withholding therapy from patients who might benefit because the costs of provid­
ing therapy exceeded the money available to purchase the agent [13]. From a soci­
etal perspective, therefore, there are strong pressures to contain expenditures by 
either reducing the cost of the agent or identifying a subpopulation of patients who 
might achieve the greatest benefit. From an industry perspective, it may not be prof­
itable to expend the necessary developmental costs to produce an agent targeted to 
a population that is much smaller than the widely quoted estimate of 500,000 cases 
per year. 

It is not the purpose of this chapter to debate the commercial costs of therapy. 
Rather we will focus on the multiple factors that may serve to reduce the demon-
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strated benefit of novel therapies for sepsis, and use this approach as a framework 
for a discussion of the limitations of studies that have been undertaken to date. 

Biological challenges 

Sepsis has been defined as the host systemic inflammatory response to invasive infec­
tion [14]. By definition, then, it is not a disease but a process that has evolved to 
benefit the host but that can, in certain circumstances, produce harm. It is readily 
apparent from animal studies that modulation of the septic response can have dif­
fering effects on outcome depending on the model studied [15]. It has been shown, 
for example, that administration of interleukin 10 (IL-10) improves the survival of 
mice challenged with endotoxin [16] but increases mortality when the challenge is 
a viable organism such as Listeria [17]. 

Patients meeting the criteria for entry into a sepsis trial represent a highly het­
erogeneous population with respect to the site, or even presence, of infection, and 
the infecting organism. Thus it is likely that while some will benefit from a particu­
lar intervention, others may not, or may even suffer harm. A phase III trial of HA­
lA, a monoclonal antibody against bacterial endotoxin, demonstrated a significant 
mortality benefit for patients with Gram-negative bacteremia, but the reduction in 
mortality for the entire population was not statistically significant [18]. More 
importantly, a followup study with the same agent was terminated when an interim 
analysis showed a trend towards increased mortality in patients with Gram-positive 
infections [19]. 

The redundancy of the inflammatory mediator cascade presents another signifi­
cant biological challenge to sepsis trials. Activation of a macrophage by bacterial 
endotoxin, for example, triggers the synthesis and release of a complex cascade of 
endogenous host mediators that can amplify, modify, or downregulate the expres­
sion of inflammation [20]. Each of these mediators, in turn, can trigger host cells to 
release other pro- and anti-inflammatory molecules, with the result that a single trig­
ger can initiate a self-perpetuating process involving literally hundreds of distinct 
mediators. Targeting a single mediator, even if that mediator is a key component of 
the inflammatory cascade such as TNF or IL-1, may not be sufficient to terminate 
the response once it has been initiated. Animal studies showing dramatic benefits 
from neutralization of TNF [21] or IL-1 [22] involved administration of the agent 
prior to the inflammatory challenge. Thus a mediator may be necessary to initiate 
the response, but may play a relatively minor role once the response has been 
expressed. Termination of an activated response is likely to require either combina­
tion therapy, if the target is a discrete mediator, or downstream blockade of a com­
mon signalling or effector pathway. 

Finally, a novel therapy may fail to show benefit because it lacks biological activ­
ity in vivo. Concern has been expressed, for example, that both HA-IA and E5, 
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monoclonal antibodies against Gram-negative endotoxin, have not been reliably 
shown to neutralize the biological effects of endotoxin, and that the failure of trials 
with these agents may reflect the use of an inactive agent [23]. More recently, a large 
multicentre Phase III study of an antibody to TNF (Bayer), enrolling approximate­
ly 1900 patients, showed a statistically insignificant 2.5% reduction in all cause 
mortality. Data on cytokine levels from that trial showed that the antibody only 
effected a 50% reduction in levels of immunoreactive TNF as measured by ELISA; 
more significantly, when TNF was measured by bioassay, no evidence of neutral­
ization of its activity could be demonstrated (unpublished data). More subtle antag­
onism of the effects of a experimental agent could arise because of in vivo inactiva­
tion, or because of an unmeasured compensatory increase in another mediator with 
a similar biological effect. 

conceptual limitations 

The common hypothesis of studies undertaken so far has been that a particular 
intervention, applied in a heterogeneous population of patients identified as having 
the clinical condition of sepsis on the basis of a non-specific constellation of clini­
cal manifestations, will result in a mortality benefit that is significantly robust that 
it will be evident 28 days after the start of therapy. This assumption is, at best, 
naIve. 

The entry criteria for clinical studies of experimental mediator-directed therapy 
performed to date have been those of sepsis syndrome [24], or systemic inflamma­
tion response syndrome (SIRS) [14]. These criteria are arbitrary, non-specific and 
unvalidated. Sepsis syndrome, for example, was proposed in the early 1980's to 
identify potential study subjects for a randomized trial of high dose methylpred­
nisolone in septic shock [25]. The intent was to identify clinical parameters that 
might define a population at high risk of having infection with an activated inflam­
matory response. Yet neither a retrospective review of the control arm of that study 
[24], nor a subsequent prospective study of patients meeting criteria for sepsis syn­
drome [26], provided support for the hypothesis that these patients shared a com­
mon pathological process. In the latter study, for example, fewer than half of 
patients with a clinical suspicion of infection were shown to be infected, and the key 
proinflammatory cytokines TNF, IL-l, and IL-6 were not consistently present. 
Although 28 day mortality for patients enrolled in the placebo arm of sepsis trials 
has been consistently in the range of 35 to 40% [1], a relatively reproducible risk of 
dying does not imply a common disease. Patients with a ruptured abdominal aortic 
aneurysm or AIDS with a low CD4 count both have a significant risk of mortality, 
but common risk clearly does not equate to a common pathophysiological process. 
Sepsis syndrome criteria can be met by an 86 year old woman with acute congestive 
heart failure and a concomitant urinary tract infection, or by a 24 year old man with 
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a gunshot wound to the colon, yet it is improbable that both patients would bene­
fit equally from a particular mediator-directed therapy. Conversely, a patient with 
septic shock from perforated diverticulitis will fail to meet sepsis syndrome criteria 
if he or she does not have an abnormal temperature. 

The criteria for SIRS are equally unsatisfactory [27]. The concept of SIRS was 
articulated at a consensus conference of the Society of Critical Care Medicine and 
the American College of Chest Physicians, held in 1991 [14]. The intent had been 
to underline the emerging concept that a clinical syndrome of acute inflammation 
could arise in the absence of invasive infection. The specific criteria for SIRS that 
emerged from that meeting were based on expert opinion, not validated data, and 
although as a kind of abbreviated SAPS or APACHE score they define an increasing 
risk of mortality, it remains to be shown that patients with SIRS have a single dis­
ease [28]. Indeed it is almost certain that they do not: the criteria for SIRS can be 
met by patients with severe infection, but are equally common following multiple 
trauma, or even perfectly healthy physiological stresses such as vigourous exercise, 
public speaking, or making love. 

Similarly, the assumption that patients with suspected, or even microbiologically 
documented, infection comprise a homogeneous group with respect to their cytokine 
profiles or response to mediator-targeted therapy has never been formally tested. Is 
the response of a patient with polymicrobial peritonitis biologically similar to that 
of a patient with pneumococcal pneumonia or an intravascular catheter infection 
with coagulase-negative Staphylococci? It is apparent from a number of studies that 
the mortality risk associated with a urinary tract infection is less than that of infec­
tions at other sites. Does this differential mortality risk equate to a differing expec­
tation of clinical benefit when the inflammatory response is manipulated? 

What is the biological objective of therapy? 

Any therapeutic intervention improves survival by altering a biological process. For 
example, thrombolytic agents increase survival by lysing clots in the coronary arter­
ies, thus restoring blood flow to the myocardium. Insulin improves survival in dia­
betes by lowering blood sugar levels, and preventing the end organ complications of 
hyperglycemia. Surgery for a ruptured aneurysm is life-saving because it controls 
hemorrhage and restores blood flow to vital organs. In each case, a mortality bene­
fit is predicted by an expected influence on a process that can, to a greater or lesser 
extent, be measured. Changes in the electrocardiogram reflect restoration of oxy­
genation to the myocardium, a reduction in the blood glucose level reflects the bio­
logical activity of insulin, and cessation of bleeding indicates successful repair of the 
aneurysm. But what is the biologic objective of a novel mediator-targeted therapy? 
Is it reduction in the circulating levels of the target mediator, or a reduction in some 
downstream action of that mediator? Is it reversal of the study entry criteria? Is it a 
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more rapid or complete eradication of infection? With few exceptions, sepsis trials 
have failed to define an acute biological objective of therapy and, as a consequence, 
have failed to provide any evidence that the agent was biologically active while it 
was being administered. 

At the very least, it would seem reasonable to expect that a novel treatment that 
can improve 28 day survival in an acute process such as sepsis will cause a more 
rapid or complete reversal of the study entry criteria. It is implausible, for example, 
that an antiarrhythmic will improve survival if it does not reduce the frequency or 
severity of arrhythmias, although, as discussed later, the converse is not necessarily 
true. Reversal of shock, of sepsis syndrome or SIRS, or of the underlying infection 
has not been explicitly evaluated in many sepsis trials, and where it has, the results 
have often been disappointing 129, 30]. Failure to reverse study entry criteria sug­
gests one of two possibilities: 

• the experimental therapy is biologically inactive 
• the entry criteria do not adequately reflect the potential beneficial action of the 

drug, and therefore the target population is not one that would necessarily be 
expected to benefit from the drug. 

What are appropriate measures of therapeutic benefit? 

Because patients enrolled in sepsis trials have a baseline expected risk of mortality 
of 35 to 40%, it is reasonable to anticipate that the primary benefit of an effective 
new therapy will be a reduction in mortality: demonstration of reduced mortality 
has been required by regulatory agencies before a new agent can be licensed. As dis­
cussed above, a recent meta-analysis pooling the results of published trials (albeit 
combining agents with widely differing modes of action) showed a consistent 
absolute mortality benefit for the experimental agent of 2 to 3% [2]. Although the 
hypothesis that effective mediator-targeted therapy might result in the same dra­
matic survival benefits seen in experimental models is appealing, the degree of mor­
tality benefit in the clinical arena is likely to be much smaller. Despite the fact that 
mortality is both definitive in its ascertainment, and undeniably important clinical­
ly, its shortcomings as a study endpoint are many 131, 32]. 

A mortality benefit will be maximal if the therapy rapidly and effectively alters 
a pathological process that is immediately linked to death. Thrombolytic agents, for 
example, lyse intracoronary clots; acute coronary thrombosis is rapidly lethal by 
virtue of its effects on cardiac function. Therefore, a thromholytic agent can be legit­
imately expected to produce a significant mortality benefit. In sepsis, however, the 
causal link between a specific mediator and death is much less direct. The particu­
lar process or processes responsible for death in clinical sepsis remain largely unde­
fined. It is relatively easy to restore satisfactory hemodynamic homeostasis with flu-
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ids, to support tissue oxygenation with ventilatory support and vasoactive agents, 
to control infection with surgery and antibiotics, and to support other failing organ 
system function with conventional ICU therapy. Despite this, approximately 40% of 
patients die, and characteristically because the attending intensivist decides that 
reversal of organ dysfunction is unlikely and discontinues supportive care. Mortal­
ity is, in effect, a surrogate for the clinical process responsible for withdrawal of 
care- the failure of reversal of organ system dysfunction. Mortality as an endpoint 
is further confounded by the influence of the patient'S premorbid state of health. 
Patients enrolled in sepsis trials are often elderly and medically compromised. Inter­
current illnesses may contribute to death during the study period, or exert a signif­
icant impact on the willingness of the intensivist to continue prolonged supportive 
care. 

Objective measures of organ dysfunction reflecting its severity, course, and 
extent of resolution are attractive alternatives or complements to mortality as end­
points in sepsis trials [33]. When a disorder carries a significant mortality risk, but 
minimal morbidity for survivors (acute coronary artery thrombosis for example), 
mortality is the optimal endpoint for use in clinical trials. Conversely, when a dis­
order produces significant morbidity, but little mortality (rheumatoid arthritis, for 
example), measures of morbidity, generally reflecting quality of life, are appropri­
ate. Sepsis, however, is associated with both mortality and morbidity in the form of 
organ dysfunction and dependence on ICU supportive care. Therefore, clinical tri­
als in sepsis should evaluate the effects of a new therapy on both mortality and mor­
bidity. The formal evaluation of organ dysfunction as an outcome in ICU-based tri­
als is a relatively recent development. Several systems are available, and have been 
incorporated into trials currently in progress [34-37]. However, regulatory agencies 
have yet to accept a reduction in organ dysfunction as a primary endpoint for a sep­
sis trial. 

Limitations of drug administration 

Partly because sensitive, readily obtained measures of the biological effects of exper­
imental therapies are not yet available, experimental agents in sepsis trials are 
administered in an arbitrary manner. Optimal doses for agents are not well-defined. 
Vasoactive drugs used in the ICU are titrated to physiological parameters such as 
blood pressure, cardiac output, or mixed venous oxygen saturation, and adminis­
tered across a wide range of concentrations. Yet agents expected to have efficacy in 
the treatment of septic shock are given in single doses, driven by protocol rather 
than by patient response. Moreover, the duration of therapy is dictated by protocol, 
rather than by clinical parameters and, as a rule, although the primary endpoint, 
mortality, is measured at 28 days, readministration of study drug during this period 
is not permitted. 
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It is also unknown when during the clinical syndrome a given agent should be 
administered. Animal studies, by and large, evaluate outcome when an agent is 
administered prior to the septic challenge [38]. Obviously this is not possible in 
human sepsis and there may be a limited window of opportunity for therapy with a 
given agent. Studies in human volunteers challenged with endotoxin show that a sin­
gle bolus results in the sequential release of host-derived mediators with an early 
peak of TNF and a later, sustained release of IL-6 [39]. Whether such sequential 
activation of the cytokine cascade occurs in clinical sepsis is unknown, however, the 
temporal pattern of mediator expression is likely an important determinant of 
response to a particular therapeutic strategy. Variability in the time course of medi­
ator release, and the intrinsic redundancy of overlapping cytokine cascades may 
mandate the use of combination therapy if clinically relevant benefit is to be 
achieved. Combination therapy, however, presupposes effective therapy with a sin­
gle agent, a result that so far has proven elusive. Moreover, both cost considerations 
and the inherent competitiveness of commercial drug development have precluded 
serious consideration of trials of combination therapies. 

Finally, it is not at all clear that a patient meeting the criteria for sepsis syndrome 
might benefit equally from the spectrum of agents that have been used in trials con­
ducted to date. Is it feasible, for example, that comparable benefit will result from 
administration of G-CSF, antagonism of TNF, antagonism of endotoxin, adminis­
tration of corticosteroids, or antagonism of nitric oxide synthesis? The assumption 
behind the use of similar entry criteria for trials of each of these agent is that they 
will. 

Challenges resulting from the process of care 

Variability in concomitant care can have a striking impact on the results of a multi­
center clinical trial. This is particularly true for sepsis trials. Sprung and colleagues 
showed that deficiencies in the provision of concomitant care were a significant fac­
tor in the inability of a trial of a monoclonal antibody to TNF to demonstrate clin­
ical benefit [40]. Pre-clinical studies strongly suggest that the effects of mediator-tar­
geted therapy may be diametrically opposite if infection has not been satisfactorily 
controlled, however, formal evaluation of surgical source control has not been rou­
tinely incorporated into clinical trial design [41]. 

Similarly it has been observed that both baseline mortality for patients with sep­
sis, and the apparent response to mediator-directed therapy varies considerably 
from one country to the next [23J. Possible explanations for the existence of strong 
centre effects are many and include variability in severity of illness or comorbidity 
in patient populations, variations in patterns of medical or nursing care, and vari­
ability in approaches to concomitant care. Patients enrolled in sepsis trials, by defi­
nition, have a life-threatening disorder, and one that is often a consequence of pre-
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existing illness or advanced age. Variability in decisions regarding the appropriate­
ness of sustained life support measures may have a significant impact on trial con­
duct. A decision was made to forego life-sustaining measures for fully 22 % of the 
543 patients enrolled in the multicentre trial of HA-IA, an antibody to endotoxin, 
and one third of these decisions were made within 72 hours of study entry [42]. 
Unless an experimental therapy has the ability to reverse the physiological abnor­
malities of sepsis immediately and profoundly, such decisions will inevitably hinder 
appropriate evaluation of the agent. 

Conclusions 

The disappointing results of clinical trials of mediator-directed therapy in sepsis 
completed to date provide an eloquent testimonial to the enormous complexities 
involved in attempting to improve clinical outcomes by modifying the host inflam­
matory response. Yet it would be erroneous to conclude that further efforts are 
futile. 

Successful therapy in any medical disorder presupposes that certain conditions 
be met. We must first be able to define a population of patients who have a disease­
a morbid disorder with a single pathological basis. Ideally that pathological 
derangement must be understood sufficiently well that a rational therapeutic strat­
egy can be articulated and tested. Diabetes, coronary artery disease, or small cell 
carcinoma of the lung are diseases; sepsis is not a disease but a syndrome. While it 
can be conceptualized as over expression of an inflammatory response, or even as a 
state of deranged interactions between Pro- and anti-inflammatory states, it cannot 
yet be definitively characterized as a reproducible alteration in any specific media­
tor or process that we can treat. Successful mediator-targeted therapy will require 
the delineation of discrete diseases, and, as has proven so important in oncology, the 
development of objective systems to stage these diseases. 

Secondly, we must employ agents that have appropriate biological activity both 
in vitro and in vivo. Efficacy must be evident not only in a panel of preclinical mod­
els, but also in humans. Studies evaluating the influence of therapeutic intervention 
on the subjective and objective response to intravenous endotoxin challenge in 
human volunteers [43,44] have the potential to provide important insights into the 
biological activity of a compound in vivo. However, Phase II studies employing 
intensive clinical and biological surveillance are necessary to confirm that activity 
occurs in the real life setting of critical illness. Moreover, it is critical that appropri­
ate quality control assays be established to ensure that an agent retains its biologi­
cal activity over time as production methods change. 

We must next ensure that the experimental intervention is administered suffi­
ciently early in the course of the disease that the natural history of the disease 
process can be altered, and at a sufficient dose and for a sufficient duration of time 
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that an optimal effect can be obtained. Finally, we must employ measures of bio­
logical activity and of clinical benefit that are sufficiently specific for the activity of 
the agent, and sufficiently sensitive to clinically meaningful change so that an effect 
will be seen if one is truly present. 

It is a recurring theme of critiques of the failure of sepsis trials that large and 
costly Phase III clinical trials are premature, since not enough is known about the 
preclinical biology of inflammation, or about the epidemiology of human sepsis [7, 
38,45,46]. A number of avenues are available that may foster the development of 
a better understanding of the latter (Tab. 2). The development of collaborative, mul­
tidisciplinary investigative efforts will clearly be a pre-requisite to realizing the pre­
clinical promise of mediator-directed therapies. 

Table 2 - Approaches to an improved understanding of the epidemiology of sepsis 

Approach Advantages and disadvantages 
Multi-institutional registries Comprehensive, with excellent oppportunity for 

investigator input into design and development. 

However, costly, difficult to fund, and potential for 

significant variability in measurement of biological 

parameters. 

Placebo arm of completed studies Comprehensive and accurate data collection, how­

ever, limited by funding, willingness of sponsors to 

provide access to data, and by initial study entry 

criteria. 
Post-hoc analyses of completed trials Permit multivariate analyses to define potential 

reasons for negative results and opportunity to test 

these if there is more than one treatment arm, or 

more than one completed trial. However, there is 

little incentive for a sponsor to expend extra 

resources on the analysis of a 'negative' study, 

Prospective studies in ongoing trials 

Expert consensus meetings 

and analyses are limited by initial trial entry criteria. 

Optimal approach for data collection, however, run 

risk that selected study population will prove not to 

be optimal population for therapy, and thus may 

jeopardize acceptance of trial for licensing. 

Provide optimal opportunity for scientific interaction 

and expert articulation of current state of the art, 

however in the absence of empiric data, cannot 

answer question. 
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Rheumatoid arthritis (RA) is the most common and most 
severe form of inflammatory arthritis. The pathogenesis 
of RA has been the subject of intense research for several 
decades. The prevailing hypotheses have changed over 
the years, and have attempted to incorporate the most 
recent data. Although T cells represent an important com­
ponent of the cells which infiltrate the joint synovium, 
their contribution at a late stage of the disease remains a 
matter of debate. 

The goal of this book is to outline the major arguments 
and data suggesting that T cells may, or may not, be central 
players in the pathogenesis of chronic RA. While each of 
the editors and authors has his/her own bias (as will be 
clear by reading the respective chapters), our hope is that 
the readers will enjoy a complete and balanced view of 
the critical questions and experiments. This is not just an 
intellectual exercise since the direction of future therapeutic 
interventions depends heavily on how one interprets the 
pathogenesis of RA and the contribution ofT cells. 
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The present volume summarizes the state of information 
on chemokines focussing on skin diseases. The first three 
chapters deal with the structure and molecular biology 
of chemokines and their receptors. The following three 
review information on the interaction of chemokines with 
lymphocytes, mast cells and eosinophilic granulocytes. 
One chapter deals with the expression of chemokines in 
several inflammatory skin diseases. The final chapter reports 
on in vitro evidence for a growth-promoting activity of 
chemokines in skin-derived tumor cells. 

The volume is of use for the basic scientist interested in 
practical aspects and for the physician in search for basic 
mechanisms of skin diseases. 
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This volume is a unique assembly of contributions focusing 
on the biochemical, immunological and clinical benefits of 
n-3 fatty acids in inflammation. 

Leading clinical investigators from fields as diverse as 
rheumatology, dermatology, nephrology, gastroenterology 
and neurology have authored chapters. The basic scientific 
underpinnings of their findings are elucidated as well. 

The work is a highly accessible, one-of-a-kind source 
which will well serve lipid researchers, graduate students, 
dieticians and members of the food industry. 
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