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Preface 

Minerals, organic matter and microorganisms are the major solid components 
in soil systems. These three constituents do not function independently but 
rather interact with each other constantly at all times and everywhere in the 
soil ecosystem. The interactions profoundly affect a series of physical, 
chemical and biological processes of soils including the behavior, 
transformation and fate of various nutrients and pollutants. The research on 
these interactions should, thus, be an important issue for Soil and 
Environmental Scientists. Therefore, the International Society of Soil 
Science established the Working Group MO in 1990, which was promoted 
to a new Commission 2.5 Soil Physical/Chemical/Biological Interfacial 
Interactions of the International Union of Soil Sciences (IUSS) in 2004. To 
date, the Working Group has sponsored four international symposia and 
these conferences were held in Edmonton (Canada, 1992), Nancy (France, 
1996), Naples (Italy, 2000) and Wuhan (China, 2004), respectively. 

The 4th International Symposium on Interactions of Soil Minerals with 
Organic Components and Microorganisms (ISMOM2004) was the first 
Inter-Congress Symposium of IUSS Commission 2.5. The conference was 
cosponsored by the International Union of Pure and Applied Chemistry 
(IUPAC). Doctors P.M. Huang (Canada), A. Violante (Italy), J. -M. Bollag 
(USA), J. Berthelin (France), J. Zhou (China) and Q. Huang (China) served 
in the Symposium Organizing Committee. The meeting attracted 135 
delegates from 22 countries and regions in the world including Canada, 
Chile, China, France, Germany, Hong Kong SAR, India, Indonesia, Iran, 
Italy, Japan, Kenya, Korea, Malaysia, New Zealand, Russia, South Africa, 
Thailand, The Netherlands, USA, Venezuela and Zimbabwe. The theme of 
ISMOM2004 was “Environmental Significance of Mineral-Organic 

conference program was divided into the following six sessions: 
(1) Transformation and Dynamics of Pollutants in Soil Environments, 
(2) Chemical, Biological and Biochemical Processes in the Rhizosphere, 
(3) Bioavailability of Metals, Nonmetals and Xenobiotics Immobilized on 
Soil Components, (4) Distribution and Activity of Biomolecules in 
Terrestrial Systems, (5) Interactions between Soil Microbial Biomass and 
Organic Matter/Nutrient Transformations, and (6) Impact of Interactions 
among Soil Mineral Colloids, Organic Matter and Biota on Risk Assessment 
and Restoration of Terrestrial Ecosystems. There were 2 plenary lectures, 
9 invited speakers, 36 oral presentations and 45 posters. Dr. N. Senesi from 
University of Bari, Italy, presented an IUPAC lecture entitled Metal-Humic 

Component-Microorganism Interactions in Terrestrial Systems”. The 
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Substance Complexes in Soil. Dr. P. M. Huang from University of 
Saskatchewan, Canada, who was the founder of Working Group MO and the 
founding Chair of Commission 2.5 of IUSS, gave a plenary lecture on 
Physical-Chemical-Biological Interfacial Interactions in Soil Environments. 

The 13 chapters in this book are mainly the papers from the plenary and 
invited speakers of ISMOM2004. They address the state-of-the-art on the 
theories and applications of the interactions of minerals with organic 
components and microorganisms in soil environments. The book presents a 
variety of issues on the fundamental interactions among soil minerals, 
organic components and microorganisms and their impacts on soil 
ecosystems. Part I (Chaps. 1–7) addresses the fundamentals of physical- 
chemical-biological interfacial reactions, the binding and transformation 
mechanisms of metals, metalloids, biomolecules and organic pollutants as 
affected by soil organic, inorganic and microbial components. Part II (Chaps. 
8–13) deals with the impacts of the interactions of soil components on the 
dynamics of soil carbon and biomass, the bioavailability of chemicals, and 
on soil and environmental quality. These chapters present a variety of topics 
that address issues of the cutting edges of science of the subject matter. We 
believe that the publication of this ISMOM2004 special book would 
promote in-depth studies in this field for years to come. The book should be 
useful for research scientists, professors, graduate students, and consultants 
working in soil, microbial ecology and environmental sciences. 

We wish to extend our gratitude to the many sponsors including the 
National Natural Science Foundation of China (NSFC) and Organization for 
the Prohibition of Chemical Weapons (OPCW). We also acknowledge the 
contributions from many of the Chinese Institutions such as Huazhong 
Agricultural University, Institute of Soil Science of the Chinese Academy of 
Sciences, State Key Laboratory of Agricultural Microbiology, and the Key 
Laboratory of Subtropical Agricultural Resources and Environment. 

In addition to this book, volunteered papers presented at ISMOM2004 
and accepted after rigorous external review was published as a special issue 
by the international journal Biology and Fertility of Soils. This special issue 
serves a companion volume of this IUSS- and IUPAC-sponsored book 
published by Springer-Verlag. 
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1 Introduction 
 
Soil is the central organizer of the terrestrial ecosystem and its physical, 
chemical, and biological processes have enormous impacts on ecosystem 
productivity, services, integrity, and human welfare. On April 21, 2000, 
the Council of the International Union of Soil Sciences (IUSS) approved 
the organization of the IUSS scientific structure: D1. Soil in Space and 
Time, D2. Soil Properties and Processes, D3. Soil Use and Management, 

1 Soil Physical-Chemical-Biological Interfacial 
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and D4. The Role of Soils in Sustaining Society and the Environment. 
There are four commissions in Division D2: C2.1 Soil Physics, C2.2 Soil 
Chemistry, C2.3 Soil Biology, and C2.4 Soil Mineralogy. However, physi-
cal, chemical, and biological processes are not independent processes but 
interactive within the soil environment. Soils can be defined as complex 
interactive biogeochemical reactors, reservoirs of organisms, and a major 
compartment of the terrestrial ecosystem under the influence of anthropo-
genic activities.  

To improve our scientific knowledge of soil resources and its 
application to remediation and long-term management, it is of major im-
portance and interest to study soil organization and function, not only 
through the traditional subdisciplines of soil science but also through inter-
active approaches. The study of soil physical, chemical, and biological 
interfacial interactions has to be considered at different scales, namely, 
from molecular level to field/landscape systems and this approach is essen-
tial to stimulating further research to uncover the dynamics and mecha-
nisms of soil processes. Therefore, a new Commission C2.5 Soil Physical/ 
Chemical/Biological Interfacial Reactions was established in Division D2 
Soil Properties and Processes within the IUSS structure. Major research 
thrusts of this new commission include: (1) mineral and biological cataly-
sis and enzyme-mineral interactions leading to humus and organo-mineral 
complex formation; (2) surface reactions of micro- and macro-biota and 
biomolecules with soil particles; (3) the effect of soil abiotic and biotic in-
teractive processes on the structure, dynamics, and activities of microbial 
communities; and (4) ecological impacts of soil abiotic and biotic inter-
active processes. This last research thrust contains two major topics: 
(a) porosity formation by structure or organization development; and 
(b) biogeochemical transformation and transport of chemical and biologi-
cal components at different temporal and spatial scales.  

This paper presents an overview on soil physical-chemical-biological 
interfacial interactions and the impacts on the terrestrial ecosystem.  

2 Role of Organic Substances in the Transformation 
of Metal Oxides  

Metal oxides have a significant role in influencing physical, chemical, and 
biological properties of soils. They may exist as crystalline minerals, as 
short-range ordered (SRO) mineral colloids, or as surface coatings on clay 
minerals and organic matter. Organic compounds influence the formation, 
transformation, and surface properties of these metal oxides. The SRO Al 



and Fe oxides are among the most reactive mineral colloids in acidic and 
neutral soils (Huang et al. 2002; Bigham et al. 2002).  

The hydrolysis and polymerization of Al and the subsequent trans-
formation into crystalline phases are strongly influenced by the nature and 
concentration of natural organics (Huang and Violante 1986; Huang 1988; 
Krishnamurti et al. 1999, 2004). The influence of organic acids on Al 
transformation has been studied extensively, with most of the focus on the 
particular solid phases that form as a result of the perturbation of organic 
acids (Huang et al. 2002). The influence of a particular organic acid is 
generally related to the stability constant of the complex that forms with Al 
(Table 1). Therefore, p-hydroxybenzoic acid, which forms the least stable 
complex with Al, does not inhibit the crystallization of Al hydroxides. On 
the other hand, aspartic, tannic, malic, and citric acids increasingly retard 
crystallization (Fig. 1). In addition to the stability constant of the complex, 
the concentration of the organic acid is important. At certain low concen-
trations, which vary with the kinds of organic acids, the presence of some 
organic acids actually promotes the crystallization of particular Al(OH)3
polymorphs, but above the critical concentration, it disrupts crystallization 
(Huang and Violante 1986). This is because organic acids replace water 
molecules that would otherwise coordinate with the Al3+ ion. The extent to 
which this occurs depends on the chemical affinity of the organic acid for 
the Al, i.e., the stability constant, and its concentration relative to Al. Hu-
mic substances also influence the transformation of Al by promoting the 
formation of microcrystalline boehmite and hampering the formation of 
more crystalline phases (Kodama and Schnitzer 1980; Singer and Huang 
1990). Fulvic acids (FA) and humic acid (HA) resemble aliphatic acids, 
such as citric and malic acids, in that they contain COOH and aliphatic OH 
groups. They also resemble tannic acid and quercetin, because they contain 
phenolic hydroxyl and ketonic C=O groups. Through these functional 
groups, FA and HA form stable complexes with Al and inhibit the crystal-
lization of Al hydroxides. Through perturbation of crystallization, organic 
substances have a significant impact on the surface properties of Al trans-
formation products. The presence of organic acids during aging of Al hy-
droxide gels increases the specific surface of the products up to 30-fold 
over that of the control, and higher organic acid concentrations result in 
higher specific surface (Kwong and Huang 1978, 1981). The surface 
charge characteristics of the products also dramatically change. These in-
termediate transformation products are the most reactive Al species in influ-
encing physical, chemical, and biological processes of soils and associated 
environments (Huang et al. 2002).  

1 Soil Physical-Chemical-Biological Interfacial Interactions      5 
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Table 1. Stability constants of the complexes formed between Al and five organic 
acids at 25°C (Kwong and Huang 1979a)  

Organic acids  Stability constants of the complexes 
 log K1  log K2
p-hydroxybenzoic acid  1.66  – 
Aspartic acid  2.60  –
Tannic acid  3.78  – 
Malic acid  5.14  8.52 
Citric acid  7.37  13.90 

Fig. 1. The x-ray diffraction patterns of hydrolytic precipitation products of Al, 
showing how four different organic acids influence the transformation to more 
crystalline phases. The initial Al concentration was 1.1  × 10–3M at an OH/Al mo-
lar ratio of 3 and the solution was aged for 40 d at room temperature in the pres-
ence of 10–4M organic acid (Kwong and Huang 1979b). 

Organic substances also play a very important role in the forma-
tion and transformation of Fe oxides in soils (Fig. 2). In soil environments 
where the amount of organic matter is low, the Fe supplied will form goe-
thite and hematite depending on environmental factors (Schwertmann 
1985). As the organic matter content increases, more of the Fe will be 
complexed with organics resulting in the decrease in Fe activity. The activ-
ity of Fe(III) ions is so low that only the solubility product of goethite  
(10–41–10–42), but not the solubility product of ferrihydrite (10–37–10–39),
is exceeded. Consequently, goethite but not the ferrihydrite may form. 



  

Therefore, no hematite will form in an environment where the organic 
matter is high, since ferrihydrite is deemed a necessary precursor for 
hematite. This trend is observed generally in soils in the temperate and 
cool regions as well as in wet depression and surface soils of the subtropi-
cal and tropical regions. At a higher content of organic matter, the rate of 
Fe supply is high and ferrihydrite will form and may survive for pedogenic 
times. If the content of organic matter is even higher, such as occurs in 
O horizons or in peaty environments, all of the Fe may be in the form of 
Fe-organic complexes. The interaction of organic matter with Fe, thus, 
plays a vital role in influencing the crystallization and speciation of 
Fe oxides in soil environments (Schwertmann et al. 1986; Cornell and 
Schwertmann 1996). Furthermore, the fine scale morphology, mean sur-
face roughness, fractal dimension, specific surface, and microporosity of 
the Fe oxides depend on the concentration of low-molecular-weight or-
ganic acids, e.g., citric acid in the solution in which the Fe oxides are 
formed (Liu and Huang 1999). Surface properties of Fe oxides formed un-
der the influence of organic substances deserve close attention in advanc-
ing our understanding of their surface chemistry pertaining to dynamics 
and transformations of chemical and biological components in soil and re-
lated environments (Huang 2004).  

3 Influences of Mineral Colloids on Soil Organic Matter 
Stabilization and Turnover  

Soil minerals play a stabilizing role in organic matter. The Al and Fe that 
complex and stabilize organic matter against microbial decomposition are 
released from soil minerals during soil formation. The supply rates appar-
ently control the content of soil organic matter to a great extent. This is 
demonstrated by the relationship between pyrophosphate-extractable C and 
pyrophosphate-extractable Al plus Fe (Wada 1995).  
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Fig. 2. Tentative schematic representation of the effect of organic matter content 
and rate of soluble Fe supply on the formation of various Fe forms in soils 
(Schwertmann et al. 1986). 

Torn et al. (1997) investigated interactions between mineralogy 
and organic C along two natural gradients – of age and of climate – in vol-
canic soil environments. The total stock of organic C in soil increased with 
substrate age up to 150 kyr when it was 60 kg m–2, and then decreased to 
31 kg m–2 over the next four million years (Fig. 3a). Most of the decrease 
in soil organic C stored in older substrates is attributed to an increase in the 
turnover of soil organic C, rather than to a decrease in plant productivity. 
The Δ14C (‰), which is the turnover time of soil organic matter (i.e., the 
reciprocal of the decomposition rate), shows that the surface horizons are 
dominated by fast-cycling organic matter (Fig. 3b). The Δ14C (‰) values 
also confirm what is stated above. During the first 150 kyr of soil devel-
opment, the volcanic parent material weathers to metastable noncrystalline 
minerals. The amount of noncrystalline minerals increases up to 150 kyr 
and then declines with greater age (Fig. 3c). In contrast, the amount of 
more stable crystalline minerals remains low until 150 kyr, then increases 
steeply (Fig. 3d). Soil organic carbon content follows a similar trend, ac-
cumulation to a maximum after 150 kyr, and then decreasing by 50% over 
the next four millions years (Fig. 3a). The abundance of noncrystalline  



Fig. 3. Soil inventory of carbon in soil organic matter (SOM) (a), Δ14C of SOM 
(b), noncrystalline minerals (c), and crystalline minerals (d) versus age of soil 
substrate. Filled circles, total profiles; filled triangle, surface (O and A) horizons 
(Torn et al. 1997).  

minerals accounts for >40% of the variation in organic C content across all 
the mineral horizons, substrate age, and soil orders. Noncrystalline miner-
als also strongly influence turnover of soil organic matter. Organic matter 
Δ14C is highly and negatively correlated with abundance of noncrystalline 
minerals (R2=0.62) except in the oldest site, which has <10% noncrystal-
line minerals. In contrast, there is no discernible correlation between the 
abundance of crystalline minerals and C content or turnover time across 
sites. A positive relationship between noncrystalline minerals and organic 

1 Soil Physical-Chemical-Biological Interfacial Interactions      9 



10      P.M. Huang 

 

C also exists in soils through the climate gradient. Rasmussen et al. (2005) 
recently reported significant correlations between Al-humus complexes, 
and SRO Al mineral species and soil C content, suggesting a chemical pro-
tection of organic materials, in addition to the observed physical protection 
of plant-like material within aggregates. Their results suggest aggregate 
protection and soil mineral assemblage (namely SRO Al-OH mineral con-
tent and Al-humus complex content) significantly control soil C dynamics 
in the conifer ecosystems. Therefore, soil mineral-organic matter interac-
tions are important in determining the quantity of organic matter stored in 
soil, its turnover time, and atmosphere-ecosystem carbon fluxes during 
long-term soil formation.  

4 Soil Mineral Catalysis and the Formation of Humic 
Substances  

Humic substances can be synthesized through biotic and abiotic processes. 
A variety of organic components, such as phenolic compounds, carbohy-
drates, aldehydes, and nitrogenous substances can participate as starting 
materials. Soil minerals have the ability to catalyze the abiotic polymeriza-
tion of phenolic compounds and the polycondensation of phenolic com-
pounds and amino acids and the subsequent formation of humic substances. 
Kumada and Kato (1970), Wang and Li (1977), and Filip et al. (1977) are 
among the pioneers in the study of the catalysis of layer silicates on abiotic 
formation of humic substances through oxidative polymerization of pheno-
lic compounds. Since the early 1980s, Huang and co-workers have studied 
the sequence of catalytic power of layer silicates and the reaction sites in 
the polymerization of phenolic compounds and the subsequent formation 
of humic substances (Shindo and Huang 1985a; Wang and Huang 1986, 
1988). Among metal oxides, hydroxides, and oxyhydroxides, Mn oxides 
are the most powerful catalysts in the transformation of phenolic com-
pounds (Shindo and Huang 1982, 1984). Manganese oxides, which are 
common in soils, act as Lewis acids that accept electrons from phenolic 
compounds, leading to their formation of semiquinone and their oxidative 
polymerization and formation of humic substances. Poorly crystalline alumi-
nosilicates, such as allophane, are common in soils. Allophane has the ability 
to catalyze the polymerization of polyphenols (Kyuma and Kawaguchi 1964). 
Even primary minerals have the ability to catalyze the abiotic polymeriza-
tion of hydroquinone which is a phenolic compound. The sequence of the 
catalytic power of primary minerals is tephroite > actinolite > hornblende > 
fayalite > augite > biotite > muscovite  albite  orthoclase  microcline  
quartz (Shindo and Huang 1985b).  



  

The Maillard reaction (Maillard 1913) is perceived to be a major 
pathway in humification because of significant similarities between humic 
substances and melanoidins (often synthesised de novo in microbial cell 
walls) formed through this pathway involving sugar-amino acid condensa-
tions (Ikan et al. 1996). Evershed et al. (1997) reported the presence of 
characteristic products of the Maillard reaction (alkyl pyrazines) in ar-
chaeological plant remains up to 1500 years from Egypt. In spite of the 
significance of the Maillard reaction, the rates and mechanisms of poly-
condensation of sugars and amino compounds in nature remains obscure 
(Ikan et al. 1996). Jokic et al. (2001) reported that birnessite (δ-MnO2) sig-
nificantly increases the extent of humification of the glucose-glycine sys-
tem over the pH range of 6–8 (Fig. 4). The chemical shifts of FA formed in 
the Maillard reaction systems (Jokic et al. 2001) resemble those of natural 
humic substances such as soil and stream FAs (Malcolm 1989; Schnitzer 
2000). In nature, it is most likely that the polyphenol and Maillard reaction 
pathways do not occur separately but rather interact with each other. Jokic 
et al. (2004a) reported that δ-MnO2, a ubiquitous soil mineral, significantly 
accelerates humification processes in a system containing glucose, glycine, 
and catechol at temperatures and pH typical of natural environments. Their 
data indicate the signicance of linking the polyphenol and Maillard reac-
tions, as promoted by mineral colloids such as δ-MnO2, into an integrated 
humification pathway.  

5 Interactions of Enzymes with Soil Mineral and Humic 
Colloids and Impacts on Enzymatic Activity  

Extracellular enzymes are rapidly sorbed at mineral and humic colloids in 
soils and sediments. Mineral colloids have a high affinity for enzymes al-
though that is not always synonymous with the retention of their catalytic abil-
ity. On the other hand, humic substances have the ability to sorb and sequester 
enzymes in such a way as to retain their catalytic activity; they could also 
strongly inactivate enzyme activity depending on interaction mechanisms.  

Mineral colloid-enzyme interactions have been documented (e.g., 
Theng 1979; Burns 1986; Naidja et al. 2000; Burns and Dick 2002). Be-
sides cation-exchange reactions, adsorption of enzymes by mineral col-
loids may proceed through ionic, covalent, hydrophobic, hydrogen bond-
ing, and van der Waals forces. When enzymes are adsorbed on mineral 
colloids, changes in the tertiary structures (i.e., the folding of the helix or  
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Fig. 4. Absorbance versus wavelength plots in the Maillard reaction between glu-
cose and glycine as influenced by birnessite catalysis. (a), (b), and (c): 30 d reac-
tion period. (d), (e), and (f): 15 d reaction period (Jokic et al. 2001). 

coil into a compact, globular molecule stabilized by interfold hydrogen 
bonding, van der Waals, and hydrophobic interactions) of the enzymes and 
their active sites decrease the activity of the enzyme or eliminate it alto-
gether (Burns 1986). However, there are notable exceptions to the adsorp-
tion-decline in activity rule. Various supports differ in their ability to im-
mobilize enzymes (Table 2). The residual specific activities of laccase and 
peroxidase immobilized on and/or within all supports including glass 
beads, montmorillonite, kaolinite, and soil are high. Furthermore, laccase 
immobilized on montmorillonite shows specific activities that are higher 
than those of the free enzyme (Table 2). This may be attributed to steric 
modification of the immobilized enzymes such that the active site becomes 
more exposed to substrates. Although mineral sorption often stabilizes en-
zymes against degradation (Tietjen and Wetzel 2003; Kelleher et al. 2004), 
mineral-bound compounds are unable to diffuse, thereby reducing the en-
counter rates between enzymes and substrates. Even if some substrates do 
diffuse to bound enzymes, the active sites may be partially blocked so that 
enzymatic catalysis is reduced, as evidenced by reductions in the activity 
of some mineral-sorbed enzymes (Gianfreda et al. 1992). Conversely, 
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mineral-bound C substrates may be physically prevented from entering the 
active sites of mobile enzymes (Sollins et al. 1996). In addition to the large 
surface areas of mineral colloids that facilitate sorption, many mineral col-
loids also contain micropores (Yu et al. 2006) or mesopores or physical 
structures that can help trap small organic compounds and exclude degra-

more, in extreme cases, substrates, enzymes, and microbes may all be pre-
sent in soils but so strongly bound to mineral surfaces and physically 
protected that substrate degradation is minimal and enzymatic products are 
unlikely to reach microbes (Allison 2006a). This scenario may help to ex-
plain why the C associated with reactive mineral colloids can be tens of 
thousands of years old (Torn et al. 1997). The performance of enzymes in 
the terrestrial ecosystem is, thus, substantially influenced by mineral col-
loids. The role of SRO oxides, hydroxides, and oxyhydroxides of Al, Fe, 
and Mn (as well as non soil supports) in influencing enzymatic activity 
pertaining to the transformation of natural and anthropogenic organics 
merits increasing attention (Huang 1990, 2004; Naidja et al. 2000; 
Violante and Gianfreda 2000).  

Table 2. Immobilization of a laccase (from Trametes versicolor) and a peroxidase 
(from horseradish) on different supports (Gianfreda and Bollag 1994)  

Enzymatic activity Enzyme and 
support Protein adsorbeda 

(mg/%) 
Units 

 adsorbedb 
Specific 
activityc 

Residual specific 
activityd 

Laccase  
Glass beads  0.452/56  28.8  63.7  236  
Montmorillonite  0.622/71  19.8  31.8  118  
Kaolinite  0.566/64  13.1  23.1  85.5  
Soil  0.644/73  15.7  24.4  90.4  

Peroxidase  
Glass beads  0.092/17  8.4  91.6  93.8  
Montmorillonite  0.224/43  23  102.8  105.2  
Kaolinite  0.120/23  9.5  78.9  80.7  
Soil  0.162/31  15  92.6  94.8  

a Difference between proteins initially added to 200 mg of support (0.88 mg laccase and 
0.52 mg of peroxidase) and those recovered in the supernatant and washings.  
b Expressed as μmol O2 consumed min–1 for laccase and mol guaiacol transformed min –1 
for peroxidase.  
c Units adsorbed/protein adsorbed  
d Calculated as percentage of the specific activity (sa) of the free enzyme (laccase, sa = 27 

mol min–1
 
mg–1; peroxidase, sa = 97.7 mol min–1

 
mg–1).  

dative enzymes (Mayer et al. 2004; Zimmerman et al. 2004a,b). Further-
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It has been reported that soil organic matter can inhibit enzymes 
(Vuorinen and Saharinen 1996) and enzyme activity may be reduced by 
adsorption on humic polymers (Gianfreda et al. 1998). Enzyme inhibition 
by humic substances has been well demonstrated for an oxidoreductase 
(Pflug 1980; Sarkar and Bollag 1987), a protease (Ladd and Butler 1969), 
an invertase and a phosphatase (Malcolm and Vaughan 1979). On the 
other hand, Kang et al. (2002) and Park et al. (2000) reported that, al-
though high concentrations of humic-like polymers tend to inhibit laccase-
mediated transformation of xenobiotics (including catechol), low concen-
trations of humic acid might enhance the enzymatic transformation of phe-
nolic compounds. Furthermore, it has been reported that enzymes can be 
stabilized against all sorts of impacts (e.g. temperature, solvents, pH, pro-
teases) by soil organic matter (Conrad 1942; Burns 1986; Nannipieri and 
Gianfreda 1999). Mechanisms proposed to account for the stability of en-
zymes by soil organic matter include ion exchange, H-bonding, covalent 
bonding, lipophylic reactions, and entrapment within three-dimensional 
micelles during organic matter genesis. Enzyme-humic complexes can also 
be bound to mineral colloids and this may further enhance enzyme stability.  

Recent research data of Allison (2006b) suggest that enzyme activ-
ity measured in the laboratory represents the sum of active and stabilized 
enzyme pools. Common soil minerals such as allophane and ferrihydrite, 
partially determine the size of the stabilized pool. In contrast, humic acid, 
which is among the most abundant organic components in soil, strongly 
inactivate enzyme activity, although enzymes incorporated into humics 
during humic polymer synthesis may be more stable. The functional im-
portance of stabilized enzymes still remains uncertain, and evidence from 
the literature suggests that the active enzyme pool is more strongly associ-
ated with biogeochemical process (Allison 2006b). Future research should 
address the relative contributions of different enzyme pools to ecosystem 
function (e.g., Stemmer et al. 1999). Studies measuring bulk enzyme ac-
tivities in soil should recognize that a large pool of stabilized enzymes 
could make changes in the active pool more difficult to detect. Compared 
with bulk soil enzymes, active enzymes probably correlate more closely 
with soil quality mineralization rates, or disturbance. Therefore, ecosystem 
models should incorporate multiple pools of enzymes to improve predic-
tions of organic matter decomposition, especially if stabilized enzymes 
have reduced catalytic efficiency.  
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6 Influence of Mineral Colloids on the Structure, 
Dynamics, and Activities of Microbial Communities  

Soil is a habitat for myriads of microbes. The microbial biomass 
constitutes only a very small proportion (<3% of the total organic C in 
soil). However, it is the most active and dynamic fraction of the living 
organic pool. Mineral colloids are the most reactive fraction of inorganic 
components of soils because of their large specific surface areas and high 
charge density characteristics. Being enriched in ions, water, and organic 
matter relative to the bulk soil, the surface of mineral colloids serves as a 
preferred habitat for soil microbes (Theng and Orchard 1995).  

The surface of bacterial cells and crystalline clay minerals are both 
negatively charged. However, bacteria have the propensity for producing 
extracellular polysaccharides (EPS) which bind simultaneously to cell and 
clay surfaces through cation bridging involving polyvalent cations (Fig. 5). 
EPS production aids the retention of bacterial cells within comparatively 
active biofilm communities at clay (or root) surfaces (Lunsdorf et al. 2000). 
The predominantly negatively charged mineral colloids in soils are largely 
coated with hydroxy Al (or Fe) polymers. As a consequence, these coated 
minerals behave as a positively charged species or display amphoteric 
characteristics. Therefore, mineral colloids can strongly interact with nega-
tively charged microbial cells in soils. This type of chemical bonding, 
which is much stronger than cation bridging, is also expected to occur with 
Al and Fe oxides over the pH range of soils. Microbial cell wall charge 
characteristics are indeed pH dependent according to the dissociation con-
stants of their exposed cell wall functional groups. The attachment of mi-
crobes to SRO mineral colloids and the crystal edges of layer silicates 
through electrostatic interactions would also be predicted to occur when 
the soil pH falls below 6 because the net charge of all of these mineral sur-
faces would then be positive and the surface of all bacteria and fungi 
would be virtually negatively charged (Theng and Orchard 1995).  

In the majority of cases, minerals in topsoils are partially covered 
with organic materials, especially humic substances, which are to a large 
extent microbially resistant. The most common mode of mineral colloid-
organic material-microorganism interactions may be depicted as follows 
(Theng and Orchard 1995):  

[Mineral colloid ⎯HS] 
– 
… M

n+ 
… [EPS-B] 

where HS is humic substances, M is divalent/polyvalent metal cation, EPS 
extracellular polysaccarides, and B microbes and/or biofilm.  
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Fig. 5. Diagram illustrating the interaction of bacteria and fungi with mineral par-
ticles in a soil aggregate (Theng and Orchard 1995). Bacterial cells with a coat of 
extracellular polysaccharides (EPS) are enveloped by clay particles. The pore 
space where clays and bacteria interact, bounded by silt- and sand-size particles, is 
relatively enriched in organic matter including EPS residues. Fungal hyphae are 
attached to the outside surface of an aggregate. Inset shows an enlarged view of a 
bacterial cell with its complement of EPS. At normal soil pH conditions, the cell 
has a net negative surface charge. Most clay particles adhere to the cell surface by 
bridging through polyvalent cations, represented by Mn+ (a) although some may be 
attached directly by electrostatic interactions, either in face-to-face (b), or edge-to-
face (c) association. 

In humic-rich calcareous Mollisols, Ca would be the predominant 
bridging cation. In Andisols, Oxisols, Ultisols and the B horizon of Spo-
dosols, HS largely occur as complexes with Al and Fe, or their respective 
SRO oxides (Theng et al. 1989; Oades et al. 1989). In soils with little or-
ganic matter and in subsoils, mineral colloid-microorganism interactions 
are largely influenced by the mineralogical composition and pH of the soil. 
Besides the existing literature (Stotzky 1986, 2002; Theng and Orchard 
1995; Huang and Bollag 1999; Huang 2004; Huang et al. 2005) much 
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more research is needed to further understand the mechanisms of surface 
interactions of mineral colloids with microorganisms.  

Mineral colloids can directly or indirectly influence the activity of 
microorganisms in their immediate vicinity (Stotzky and Burns 1982; 
Stotzky 1986). The effect of mineral colloids may be positive, negative, or 
sometimes so small as to escape detection. Mineral colloids have a stimu-
lating effect on the activity of adhering bacteria by keeping the pH of mi-
crohabitats within the optimum physiological range for growth. The con-
tent and type of mineral colloids are influential in determining the balance 
between microbial populations in soil. A well-known example is the fail-
ure of some fungi to thrive and spread in certain soils (Stotzky 1986). This 
is largely attributed to the presence of montmorillonite in the suppressive 
soils. Montmorillonite can serve as a proton sink and is thus able to pro-
mote the growth of acid-sensitive bacteria in these soils. This gives bacte-
ria a selective advantage over fungi in competing for available nutrients. 
Fungal growth and proliferation are, thus, effectively suppressed.  

Microbial activity can also be stimulated by mineral colloids 
through their ability to sorb metabolites that would otherwise have an ad-
verse effect on microbial growth (Filip et al. 1972; Filip and Hattori 1984) 
This may be due to the toxicity of metabolites, and their feed back repres-
sion and, encouraging competitors. Predictably, montmorillonite (CEC 
~100 cmol kg–1 and specific surface of ~800 m g–1) is more effective than 
kaolinite and finely ground quarts. Other substances, such as antibiotics 
and pesticides that are toxic to some microorganisms, can also be adsorbed 
by the surfaces of mineral colloids (Theng and Orchard 1995; Dec et al. 
2002).  

Furthermore, adhering microorganisms may benefit from being 
close to nutrients adsorbed on the surface of mineral colloids (including 
those concentrated in a cloud in the diffuse double layer). However, the 
potential substrates may not be readily available or physically accessible 
(Fletcher 1991) especially if intercalated. Moreover, the addition of min-
eral colloids to the system beyond a certain concentration may result in a 
reduction in microbial activity due to restricted diffusion of oxygen and 
nutrients to microbial cells (Marshall 1971). This is attributable to the pro-
gressive enveloping of microbial cells by minerals colloids. Timmis and 
his co-workers reported a novel interaction between bacteria and clay min-
erals (Lunsdorf et al. 2000). The biofilms that developed consist of a dense 
lawn of clay aggregates, each one of which contains one or more bacteria, 
phyllosilicates, and grains of iron oxides, all held together by bacterial EPS. 
The clay leaflets are arranged in the form of ‘houses of cards’ and give the 
aggregates the appearance of ‘hutches’ housing the bacteria. The ‘clay 
hutches’ may represent a ‘soil microhabit’, a ‘mineral nutrition sphere’, 
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and an ‘effective survival unit’ for autochthonous bacteria. The formation 
of composite biofilms and clay hutches through interactions of bacteria 
and mineral colloids merit investigation, particularly regarding microbio-
geological processes (Lunsdorf et al. 2000, 2001).  

Mineral colloids, by forming an envelope around bacterial cells, 
may provide protection from extreme fluctuations in physicochemical en-
vironments and thus, enhance bacterial survival (Stotzky 1986; Theng and 
Orchard 1995). The protective effect of mineral colloids, especially mont-
morillonite, is manifested in the ability of soil microbes to withstand expo-
sure to hypertonic osmotic pressure, desiccation, and ultraviolet radiation. 
Besides serving as a substratum for bacteria to adhere to and as a protec-
tive envelope of bacterial cells, mineral colloids can act as a cementing 
agent of soil particles to influence aggregation. The addition of clay to 
soils, especially those of light texture would, thus, modify the spatial ar-
rangement of particles and the pore-size distribution within aggregates. 
Such a modification of aggregate structure often benefits the bacterial 
population by increasing the proportion of pores of a certain size range 
(< 6 m) from which bacteria could freely enter to colonize pores but bac-
terial predators notably protozoa are effectively barred from entering such 
pores due to steric hindrance. More recently, it has been reported that mi-
crobial activity is influenced by mechanical limits (Rebata-Landa and 
Santamarina 2006). Pore and pore-throat sizes may restrict habitable pore 
space and traversable interconnected porosity. Soil- or sediment-cell inter-
actions may cause puncture or tensile failure of the cell membrane. Soil 
structure largely determines energy flows and the distribution and compo-
sition of soil microhabitats (Mummey and Stahl 2004).  

Chemical weathering of minerals during pedogenesis can be enhanced by 
microbial activity by a factor as high as 106 (Kurek 2002). Microorganisms 
can dissolve minerals by direct and indirect actions under aerobic and 
anaerobic conditions (Robert and Berthelin 1986; Ehrlich 2002; Kurek 
2002). In some cases of attack, the microorganisms may be dispersed in 
the soil solution; in others, they may grow in biofilms on the surface of 
susceptible minerals.  

 Oxidation by chemolithotropic microorganisms of the sulfur enti-
ties of metal sulfides to obtain energy is an example of direct dissolving 
action under aerobic condition (Kurek 2002). Compounds of many other 

7  Microbial Mediation of Weathering Transformation  
of Soil Minerals and Metal Dynamics  
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oxidized metals and metalloids such as Fe(III), Mn(IV), and As(V) can act 
as electron acceptors in anaerobic environments. Under such conditions, 
anaerobic respiration becomes an example of direct dissolving action of 
oxidized metal and metalloid compounds.  

Fungi can adsorb K from solution and thus shift K equilibrium in 
suspension of trioctahedral and dioctahedral micas and transfer them to 
vermiculites (Weed et al. 1969). Similar processes can also occur for many 
major and trace elements (Robert and Berthelin 1986). Because of their 
small size, microorganisms provide a large contact area that interact with 
metals in the environment. Microbial metal accumulation has recently re-
ceived much attention particularly due to the potential use of microorgan-
isms for cleaning metal-polluted water. (Sag 2001; Fomina and Gadd 2003; 
Arica and Bayramolgu 2005; Bishnoi and Garima 2005; Kahraman et al. 
2005; Pal et al. 2006). The different accumulation processes that microor-
ganisms perform have been analyzed and their potential significance in 
soil systems has been addressed (Ledin 2000). Different mechanisms can 
be involved in the accumulation of metals by microorganisms, e.g., ad-
sorption, precipitation, complexation, and active transport into the cell. 
Physicochemical parameters such as pH, ionic strength, ionic composition 
as well as biochemical and biological factors are of importance in influenc-
ing the magnitude of accumulation. Several recent studies have applied 
surface complexation theory to model metal adsorption behavior onto mi-
croorganisms (e.g. Burnett et al. 2006). Surface complexation models (in-
cooperating the Dorman electrostatic model) have been developed to de-
termine stability constants corresponding to specific adsorption reactions. 
Adsorption reactions and stoichiometries have been constrained using 
spectroscopies such as attenuated total reflectance FTIR (ATRFTIR), x-ray 
absorption near edge structure (XANES) and extended x-ray absorption 
fine structure (EXAFS). Molecular simulations of metal adsorption to mi-
crobial surfaces have recently been reported; force field-based simulation 
techniques can adequately describe the interactions of Cd with the cell wall, 
defining both metal ion coordinations and binding distances (Johnson et al. 
2006). These research findings further indicate that microorganisms should 
also accumulate metals in soils and the amounts accumulated may be con-
siderable. Therefore much work remains to be done, with focus on mecha-
nisms of microbial accumulation of metals in soils. Considerable less at-
tention has been paid to the role of microorganisms in metal mobility. It is, 
thus, important to determine the overall influence of soil microorganisms 
on metal accumulation and mobility and to quantify these processes.  

Mineral diagenesis, which is the transformation of one mineral 
into another by some microorganisms, can be an indirect effect of aerobic 
and anaerobic microbial metabolism (Ehrlich 2002; Kurek 2002). The 
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formation of a new mineral can be resulted from a chemical reaction be-
tween products of microbial dissolution of a mineral in the environment.  

The physical and chemical characteristics of bacteria, such as their 
large surface area-to-volume ratio, serve to increase the metal-binding 
capacity of their charged surfaces leading to precipitation and formation of 
mineral phases on their cell walls or other surface polymers (McLean et al. 
2002). Therefore, geochemical modeling of metal speciation and transport 
is beginning to include bacteria as geochemically active surfaces (Huang 
and Bollag 1999; Burnett et al. 2006). The mechanisms by which bacteria 
initiate the formation of minerals in bulk solution vary widely between 
species. There may be a combination of biochemical and surface-mediated 
reactions during the process.  

The formation of Mn oxides is an example of microbially medi-
ated fine-grained mineral development. Microbial oxidation of Mn(II) is a 
major process that can produce Mn oxide coatings on soil particles 105 
times faster than abiotic oxidation (Tebo et al. 1997). This microbially me-
diated formation is illustrated in Fig. 6. Manganese oxides are highly reac-
tive minerals and help restrict the mobility of metals in soils and sediments 
through adsorption on their surfaces. Biogenic Mn oxides formed by 
Leptothrix discophora SS-1 have significantly larger specific surface and 
higher Pb adsorption capacity than abiotically precipitated Mn oxides 
(Nelson et al. 1999). Bioformation of minerals should, thus, have a signifi-
cant bearing on restoration of metal-contaminated soils.  

8 Mineral Colloid-Organic Substance-Microorganism 
Interactions in Relation to Soil Structural Stability  

Root exudation and microbial action produce organic compounds with a 
range of composition and molecular weights. These compounds interact 
with the mineral particles, which also vary in size, shape, crystallinity, and 
electric charge (Emerson et al. 1986). Interactions between soil mineral 
particles, organic matter and microbes can occur at many different size 
scales, because these materials have a large size range in soils (Fig. 7).  
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Fig. 6. Thin section of Leptothrix sp. which is precipitating manganese oxide on 
its outermost structure called a sheath (McLean et al. 2002). The arrows point to 
the manganese mineral phase identified by EDS. Scale bar = 150 nm. 

Organic molecules such as microbially derived polysaccharides 
and other unaltered and altered biomolecules can be adsorbed on mineral 
surfaces, resulting in enhancing the stability of individual clay microstruc-
tures. Adsorption is essential in binding together clay microstructures and 
silt particles into small microaggregates with 2–50 m diameters and den-
sities > 2.0 Mg m–3 (Baldock 2002). Many microaggregates exist as pieces 
of fungal hyphae, bacteria or bacterial colonies coated with EPS and clay 
minerals (Oades and Waters 1991). Particulate organic matter (POM) are 
essential stabilizing agents at larger size scales, i.e., large microaggregates 
and small macroaggregates (Jastrow and Miller 1998). Soil structure can 
be stabilized by POM through two mechanisms related to its physical 
properties and its susceptibility to biological decomposition (Baldock 
2002). POM can bridge the failure zones that exist between adjacent stable 
aggregates; it can also enhance the stability of soil structure by providing a 
substrate for microorganisms to enhance the production of fungal hyphae 
and microbial metabolites such as polysaccharides. While POM continues 
to provide a substrate for microorganisms, the production of biochemical 
aggregating agents continues, and the structural stability is maintained. 
Glomalin is a recently discovered glycoproteinaceous substance produced 
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by arbuscular mycorrhizal fungi (AMF). Wright and colleagues showed 
the relationship between the concentration of glomalin in soil and the sta-
bility of aggregates under different crops or cropping systems (Wright et al. 
1999; Wright and Anderson 2000; Franzluebbers et al. 2000). The concen-
trations of glomalin-related soil protein (GRSP) are positively correlated 
with aggregate water stability and GRSP has a relatively slow turnover in 
soil (Rillig 2004; Driver et al. 2005). The discovery of a strong affinity of 
glomalin for mineral particle suggests that the role of AMF hyphal systems 
in the formation of microaggregates needs further investigation (Goss and 
Kay 2005). The influence of mycorrhizas on key ecosystem process of soil 
aggregation warrants in-depth study (Rillig and Mummney 2006).  

Since organic matter responsible for the stabilization of soil 
structure is not inert and thus subject to decomposition, aggregation is a dy-
namic process in soils (Baldock 2002). Biological activity has the potential 
not only to stabilize soil structure through the production of organic sub-
stances capable of binding soil particles, but also to destabilize soil 
structure by decomposing organic binding agents. The balance between 
these two processes dictates the level of soil structural stability. Therefore, 
a continuous input of organic materials, mainly from plant production is 
essential to sustain or enhance soil structural stability.  

9 Biogeochemical Transformation and Transport  
of Nutrients and Pollutants  

In general, more than 95% of the N and S and between 20 and 90% of the 
P in surface soils are present in soil organic matter (Guggenberger and 
Haider 2002). The close relationship between the organic forms of C, N, P, 
and S is well established. The turnover of organic C is closely associated 
with the dynamics of N, P, and S in soils. Soil mineral colloids have a pro-
found influence on the stabilization and degradation of soil organic matter 
and its associated nutrients. Chemical and physical interactions of minerals 
with soil organic matter result predominantly in the stabilization of the or-
ganic matter. Recently, it has been shown that the promoting action of 
Mn(IV) oxide on the Maillard reaction (sugar-amino acid condensation) 
under ambient conditions results in the abiotic formation of heterocyclic N 
compounds, which are often referred to as unknown N and of amides 
which are apparently the dominant N moieties in nature (Fig. 8).  
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Fig. 7. Size scale associated with soil mineral particles, organic components, pores 
and aggregations of mineral and organic components (Baldock 2002). The defini-
tions of pore size have used those developed by IUPAC (micropores < 2 nm, 
mesopores 2–50 nm and macropores > 50 nm). Alternatively, the pore sizes corre-
sponding to the lower (ψm = – 1500 kPa) and upper (ψm = – 100 kPa) limits of wa-
ter availability to plants may be used to define the boundaries between the differ-
ent classes of pore size. ψm is soil water metric potential. 
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Organic matter may weather soil minerals (Robert and Berthelin 
1986) and impede crystallization of secondary minerals (Schwertmann  
et al. 1986; Huang et al. 2002). Noncrystalline minerals have the ability to 
stabilize soil organic matter and reduce the turnover of C, N, P, and S 
(Torn et al. 1997; Guggenberger and Haider 2002). Organic matter also 
acts as a binding agent to promote aggregation, which, in turn, reduces the 
turnover of these nutrients through occlusion by minerals. There are dis-
tinct interactive mechanisms between soil minerals and organic matter, 
which have direct effects on the turnover and cycling of C, N, P, and S.  

Fig. 8. N Is XANES spectra of (a) fulvic acid isolated from a glucose-glycine-δ-
MnO2 system and (b) the lyophilized solid phase (Jokic et al. 2004b). The peaks 
are assigned to pyridinic (398.6 eV), pyridone (400.7 eV), amide (401.3 eV) and 
pyrrolic (402.0 eV) moieties. 

Both enzymes and mineral colloids are involved in catalytic trans-
formations of organic pollutants in soils. Although microbial inhibitors can 
be used to quench biotic processes, their side effects on the surface reactiv-
ity of mineral colloids remain uncertain. Therefore, it is generally difficult 
to determine whether an organic pollutant is transformed abiotically or 
biotically (Huang 1990) but both may take place simultaneously (Huang 
and Bollag 1999). The degradation of organic pollutants by extracellular 
enzymes is well documented (Dec et al. 2002). Enzymes commonly occurring 
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in soil, such as esterases, amidases, phosphatases, and proteases catalyze 
the hydrolysis of the respective chemical bonds in xenobiotic molecules. 
On the other hand, extracellular phenoloxidases have the ability to catalyze 
the transformation of phenolic or anilinic compounds to their polymerized 
products (Bollag 1992) thereby reducing their bioavailability. They are 
implicated in binding of xenobiotics to soil by catalysis of the oxidation of 
organic pollutants to free radicals, followed by chemical coupling of oxi-
dation products to humic substances. Enzymes are present either free in 
solution or bound onto mineral colloids, humic substances, and mineral 
colloid-humic complexes (Burns 1986). This immobilization is the major 
factor that determines their survival and performance in soil environments. 
Therefore, immobilization of enzymes may have a considerable impact on 
the rate of xenobiotic degradation (Dec et al. 2002) and have significant 
applications in bioremediation (Bollag et al. 2005). After immobilization, 
enzymes show generally increased stability toward physical, chemical, and 
biological denaturation (Ruggiero et al. 1996; Naidja et al. 2000). However, 
immobilization may have a considerable effect on the activity and kinetic 
behavior of enzymes in the transformation of organic pollutants due to 
steric and diffusional restrictions, direct involvement of the active sites in 
binding to the support, and modified conformation of the immobilized en-
zymes (Matinek and Mozhaev 1985; Quiquampoix 1987; Quiquampoix  
et al. 1995, 2002; Naidja et al. 2000, 2002). Conformational alteration of 
enzyme molecules may result in the decrease in accessibility of the active 
sites to the substrate, causing a setback in substrate transformation. How-
ever, there are notable exceptions to this trend (Burns 1986; Gianfreda and 
Bollag 1994; Naidja et al. 2000). To date, the knowledge on detailed sur-
face structures of the enzyme-mineral colloid and enzyme-humus com-
plexes at the molecular level still needs to be advanced. More research is 
needed to uncover new enzymes and new mineral composite supports to be 
used for catalytic degradation of a wide range of industrial and agricultural 
pollutants in soil and related environments.  

Most of the organic chemicals, including xenobiotics, exhibit a 
strong affinity to humic substances. However, the transformation of xeno-
biotics in terrestrial systems is greatly influenced by mineral components 
of soil (Huang 1995). Mineral colloids, which are present in high concen-
tration in soil and have large specific surface and relatively high charge 
density, contribute to the overall xenobiotic transformation at least as 
much as does the organic matter. Organic matter can induce surface-
catalyzed reactions of adsorbed pesticides, but it could hinder the degrada-
tion of some pesticides by decreasing both their availability to microbial 
attack and their concentration in the soil solution (Huang and Bollag 
1999). The significance of soil mineral-catalyzed abiotic transformation of 
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xenobiotics in the environment has also become widely recognized. The 
processes of adsorption and abiotic degradation of xenobiotics through the 
action of the surfaces of soil minerals vary with the structural and surface 
properties of the minerals, saturating cations and hydration status, molecu-
lar structures of xenobiotics, and associated environmental factors.  

The degradation of organic pollutants may be considerably re-
duced when they are retained by soil colloids. The major reason for re-
duced biodegradation rates is the diminished bioavailability of chemicals 
involved in binding processes (Alexander 1995). The availability of sorbed 
xenobiotics to microorganisms varies with the chemical properties of pol-
lutants, the nature of the sorbent, the mechanisms of sorption, and the 
properties of the degradative organisms (Guerin and Boyd 1992; Dec et al. 
2002; Ehlers and Loibner 2006). The mechanism of sorption also may 
change with residence time of xenobiotics present in soil leading to 
changes in their bioavailability (Alexander 1995). As soil-pollutant contact 
time increases, pollutant bioavailability and extractability decreases (Reid 
et al. 2000; Alexander 2000). This phenomenon has been termed “aging”. 
Decreased chemical extractability with increased soil-chemical contact 
time is evident where both “hash” techniques (e.g. dichloromethane 
Soxhlet extraction) and “non-exhaustive” techniques (e.g. butanol shake 
extraction) have been used. Similarly, decreases in bioavailability with in-
creased soil-pollutant contact time have been described in bacterial, earth-
worm, and other organism studies. Furthermore, the fraction of pollutant 
determined to be bioavailable can vary between organisms. Thus, there is 
an immediate definition problem, what is bioavailability? If bioavailability 
is to be assessed by a chemical means, which organisms should (or can) be 
mimicked by the extraction? Bioavailability is an important consideration 
in risk assessment of soil contaminants and in the selection of appropriate 
remediation techniques for polluted sites (Braida et al. 2004; Stokes et al. 
2005; Ehlers and Loibner 2006). Future work should emphasize the bio-
logical significance of bound residues and their release (Barraclough et al. 
2005).  

Microorganisms are closely associated with solid surfaces in sur-
face soils. Sorption of microorganisms may be extremely extensive, espe-
cially in soils with high contents of clay and organic matter. Microorgan-
isms may use many different mechanisms to achieve and maintain 
attachment (Dec et al. 2002). The effect of adsorption of microorganisms 
on soil colloids on their ability to degrade organic compounds is difficult 
to predict. The microbial degradation may be enhanced or decreased, or 
may remain unchanged as the cells undergo the adsorption to solid sur-
faces. This is apparently dependent on the nature and properties of solid 
surfaces and substrates, and the kinds of microorganisms. However, the 
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utilization of sorbed organic pollutants by microorganisms that adhere to 
the same surfaces is a common phenomenon (Alexander 1999). The im-
pact of structural configuration and surface properties of soil mineral and 
organic components on the activity of microorganisms and their ability to 
degrade organic pollutants with different structure and functionality merits 
close attention.  

The transformation of metals in the environment is influenced by 
interactions of physicochemical, biochemical, and biological processes 
(Huang 2008). The impacts of these interactive processes on metal trans-
formation are especially important in the rhizosphere where the kinds and 
concentrations of substrates are different from those of the bulk soils be-
cause of root exudation (McLaughlin et al. 1998; Huang and Germida 
2002; Huang and Gobran 2005). This leads to colonization by different 
populations of bacteria, fungi, protozoa, and nematodes. Plant-microbe in-
teractions result in intense biological processes in the rhizosphere. These in-
teractions, in turn, affect physicochemical reactions in the rhizosphere. The 
total rhizosphere environment is governed by an interacting trinity of the 

Therefore, reactions and processes in the soil rhizosphere, which is the bot-
tleneck of metal contamination of the terrestrial food chain, can be under-
stood satisfactorily through interdisciplinary team research. Much of the 
research on physicochemical reactions of metal transformation in soil has 
used well-defined model systems which do not involve physicochemical-
biological interactions. The reactions and processes which influence metal 
transformations include redox reactions, complexation reactions, adsorp-
tion-desorption reactions, precipitation-dissolution reactions, uptake by 
microorganisms, biomineralization, microbial excretions, and mycorrhizal 
infection (Huang and Germida 2002). The impacts of these physicochemi-
cal, biochemical, and biological interactions in soils on metal transforma-
tion and bioavailability, food chain contamination, and ecosystem health 
deserve increasing attention.  

10 Summary and Conclusions  

Soil is the central organizer of the terrestrial ecosystem. Soil constituents, 
be they minerals, organic matter, or microorganisms, are of prime 
importance in governing interactive physical, chemical, and biological 
processes in soil environments. 

These physical-chemical-biological interfacial interactions govern 
weathering transformations of minerals, storage and turnover of organic 

soil, the plant, and the organism associated with the root (Lynch 1990a,b). 
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matter, enzymatic activities, the structure, dynamics, and activities of mi-
croorganisms, porosity formation and structural stability of aggregates, and 
biogeochemical transformations and transport of chemical and biological 
components at different temporal and spatial scales. Fundamental under-
standing of these interfacial interactions at the molecular level is essential 
to understanding dynamics and mechanisms of environmental processes 
and the impacts on ecosystem restoration.  

Scientific progress is based ultimately on unification rather than 
fragmentation of knowledge. The important sub-disciplines of a scientific 
discipline have been altogether too loosely coupled to the frontier in the 
first place, and this has compromised their ability to take the next step 
forward. The time is upon us to recognize that the new frontier is the 
interface, wherever it remains unexplored (Kafatos and Eisner 2004).  

In my view, the interfaces are the most underdeveloped areas of 
the sciences including Soil Sciences. Fundamental understanding of soil 
physical-chemical-biological interfacial interactions is a major step for-
ward in advancing our understanding of in-situ interactive soil reactions 
and processes and their impacts on human welfare.  
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1 Introduction 
 
Arsenic is an element ubiquitous in the Earth’s crust and is extremely toxic 
for humans, animals and plants. Its occurrence in natural environments 
may be due to natural processes (weathering reactions, biological activities 
and volcanic emissions) as well as anthropogenic activities (Matera and Le 
Hécho 2001; Frankenberger 2002; Mandal and Suzuky 2002; Smedley and 
Kinniburgh 2002). The mean content of arsenic in soils is of the order of 
5–10 mg kg–1. Arsenopyrite (FeAsS) is the most abundant arsenic-
containing mineral and other minerals include realgar (AsS), orpiment 
(As2S3), olivenite (Cu2OHAsO4). Arsenic-bearing herbicides and pesticides 
have been widely used in agricultural practice until the mid-1900. In 
particular, lead arsenates and especially schultenite (PbHAsO4), were used 
estensively as insecticides in orchard soils (Cancés et al. 2005). As a result 
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of application of arsenical pesticides to fruit crops in orchard soils 
concentrations of arsenic in the range 366–732 mg kg–1 have been quoted 
(Ure and Berrow 1982).  

Natural contamination of ground waters by arsenic has become a 
crucial water quality problem in many parts of the world (Berg et al. 2001; 
Chakrabarti et al. 2002; Smedley and Kinniburgh 2002, and references 
there in). Arsenic in drinking water is much more bioavailable than arsenic 
in soil, because water-soluble arsenic is rapidly sorbed by humans (Yang 
et al. 2003). Recently, the European Union and the USA with National 
Priorities List (NPL) have fixed a limit of 10 μg As L–1 in drinking water. 
In Bangladesh, over 75% of water used for irrigation came from 
groundwater. A huge amount of arsenic is thus transferred from the 
contaminated aquifer to the surface soil-plant system (Smedley and 
Kinniburgh 2002; Martin et al. 2007a).  

In soils, surface and ground waters arsenic is found in –3, 0, +3 and +5 
oxidation states, but its prevalent forms are the inorganic species, arsenate 
[As(V)] and arsenite [As(III)]. Relative to other oxyanion-forming ele-
ments, arsenic is among the most problematic in the environment because 
of its relative mobility over a wide range of redox conditions. Arsenic is 
relatively mobile under reduced conditions (Smedley and Kinniburgh 2002). 
It may occur as methylated forms in environmental systems, but these or-
ganic species are usually rare in soils and surface waters. The methylated 
monomeric arsenic species are: monomethylarsonic acid (H2AsO3(CH3),
MMAsv), methylarsinous acid (H2AsO2-CH3,MMAsIII), dimethylarsinic 
acid (HAsO2-(CH3)2, DMAsv), dimethylarsinous acid (HAsO-(CH3)2,
DMAsIII), trimethylarsine oxide (AsO-(CH3)3, TMAsOv), and trimethylar-
sine (As-(CH3)3, TMAsIII). Methylation can be carried out by a variety of 
organisms ranging from bacteria to fungi to mammals and is believed to be 
part of a detoxification mechanism in living organisms. The arsenic 
compounds present in natural enviroments have recently been 
comprehensively reviewed by Francesconi and Kuehnelt (2002). 

The mobility of arsenic compounds in soils is affected by sorp-
tion/desorption on/from soil components or co-precipitation with metal 
ions. The importance of oxides (mainly Fe-oxides) in controlling the mo-
bility and concentration of arsenic in natural environments has been stud-
ied for a long time (Livesey and Huang 1981; Frankenberger 2002 and ref-
erences there in; Smedley and Kinniburgh 2002). Because the elements 
which correlate best with arsenic in soils and sediments are iron, aluminum 
and manganese, the use of Fe salts (as well as Al and Mn salts) is a com-
mon practice in water treatment for the removal of arsenic. The coprecipi-
tation of arsenic with ferric or aluminum hydroxide has been a practical 
and effective technique to remove this toxic element from polluted waters 



 

(Scott et al. 1995; Rancourt et al. 2001; Thirunavukkarasu et al. 2003). 
Iron-arsenic coprecipitates have been found in natural environments 
(Pichler et al. 1999; Frankenberger 2002).  

Arsenite is 25–60 times more toxic than arsenate, which mainly arise 
from its state as H3AsO3 at pH < 9.0 as compared to the charged arsenate 
species which predominate in a wide pH range (H2AsO4

- between 2.5 and 
7, HAsO4

2- between pH 7 and 12) (Frankenberger 2002; Smedley and 
Kinniburgh 2002). Bioavailability of arsenic in soil may be affected by in-
organic (mainly phosphate added as fertilizer) or naturally occurring or-
ganic molecules, which may affect the sorption/desorption processes of 
this metalloid onto/from soil components (Violante et al. 2005a,b). From 
the toxicological point of view ingestion of inorganic arsenic can result in 
both cancer (skin, lung and urinary bladder) and non cancer effects (skin 
lesions). Recent data suggests that some methyl arsenic species (MMAsIII 
and DMAsIII) can be as toxic or more toxic than inorganic species (arsena-
te and arsenite) (Francesconi and Kuehnelt 2002; Le 2002). 

The aim of this Chapter is to provide the current state of knowledge 
on the factors (pH, surface coverage, residence time, presence of organic 
and inorganic ligands) which influence the sorption/desorption processes 
of arsenic by soil minerals and soils integrating the existing literature on 
this subject with our recent findings.  

2 Sorption onto Soil Components 

Arsenate and arsenite are sorbed primarily by chemisorption at reactive 
sites of variable charge minerals, such as metal oxides and short-range or-
dered aluminosilicates (allophane, imogolite) and at the edges of phyl-
losilicates (Manceau 1995; Raven et al. 1998; Frankenberger 2002; 
Violante and Pigna 2002; Ona-Nguema et al. 2005). The carbonates also 
play an important role in the arsenate sorption of calcareous soils in the pH 
range 9–12 (Goldberg and Glaubig 1988).  

Usually, elements in anionic form are not easily sorbed on soil organic 
matter, but arsenate and arsenite were found to be bound to natural organic 
matter probably held to organic groups through a bridging hydrolytic spe-
cies of Al and Fe (Thanabalasingan and Pickering 1986; McBride 2000). 
Binding mechanisms of arsenite and arsenate to dissolved humic acids 
have been proposed (Buschmann et al. 2006). At all pH values, arsenate 
was more strongly bound than arsenite maximum binding being around pH 
7.0 (Buschmann et al. 2006; Ritter et al. 2006). 
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Sorption of arsenic onto minerals and soils varies with pH. Frost and 
Griffin (1977) reported that arsenate sorption by kaolinite and montmoril-
lonite exhibited a maximum at pH 4.0–6.0, whereas arsenite was sorbed 
steadily from pH 4.0 to 9.0 on kaolinite and peaked at pH 7.0 on mont-
morillonite. Later, Manning and Goldberg (1996a) found that distinct arse-
nate adsorption maxima occurred at approximately pH 5.0 for kaolinite, 6.0 
for montmorillonite and 6.5 for illite. Sorption of arsenite onto phyllosili-
cate clay minerals has also been studied (Manning and Goldberg 1997a). 

Arsenate and arsenite have different trend in sorption on variable charge 
minerals (Inskeep et al. 2002). Many studies have demonstrated that arsenite 
is sorbed on Al-oxides, phyllosilicates and calcite in a lesser extent than ar-
senate, whereas the opposite is true for iron oxides (Frankenberger 2002; 
Martin et al. 2007a). The sorption of arsenate onto Fe- and Al-oxides usu-
ally increases by decreasing pH, but rapidly decreases above pH 7.0, 
probably because at pH > 7.0 the surfaces of these oxides are negatively 
charged, their point of zero charge (pzc) being approximately 6.5–7.5 (Hsu 
1989; Cornell and Schwertmann 1996; Kampf et al. 2000). The sorption of 
arsenite onto Fe oxides is highly pH dependent with the envelope centered 
at about pH 9.0. Raven et al. (1998) showed that arsenite has a greater 
sorption capacity on ferrihydrite and goethite than arsenate except at very 
low solution concentrations. Furthermore, Martin et al. (2007b) ascertained 
that iron oxides can sorb more arsenite than arsenate, although the K of 
Langmuir isotherms which is a constant related to the binding energy is 
always lower for arsenite than for arsenate. 

Chemical behavior of arsenate is similar to that of phosphate and may 
form different surface complexes (inner-sphere complexes) on inorganic soil 
components: monodentate, bidentate-binuclear and bidentate-mononuclear
complex in different proportions depending on pH and surface coverage 
(Hsia et al. 1994; Sun and Doner 1996; Fendorf et al. 1997; O’Reilly et al. 
2001). Arsenite and arsenate seem to form similar surface complexes with 
metal oxides with arsenate more strongly held on these soil components. 
Surface complexes of arsenate and arsenite on iron oxides have been stud-
ied using infrared (Sun and Doner 1996) and extended x-ray absorption 
fine structure (EXAFS) spectroscopy (Manceau 1995; Waychunas et al. 
1996; Fendorf et al. 1997; Farquhar et al. 2002; Ona-Nguema et al. 2005). 
The general consensus is that both arsenate and arsenite form mainly bi-
dentate binuclear complexes with two adjacent iron octahedral corner sites 
with a slight longer d(As-Fe) for arsenite. However, arsenite seems to form 
both inner- and outer-sphere complexes onto Fe-oxides and outer-sphere 
complexes on Al oxides (Goldberg and Johnston 2001; Arai et al. 2001). 
Recently EXAFS study (Ona-Nguema et al. 2005) indicates that at high 
surface coverage arsenite forms bidentate mononuclear edge-sharing and 
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bidentate binuclear corner-sharing onto ferrihydrite and hematite, but 
dominantly bidentate binuclear corner-sharing sorption complexes onto 
goethite and lepidocrocite (with minor amount of monodentate mononu-
clear edge). Unfortunately, no information is available on the possible 
complexes of methylated forms of arsenic onto soil components. 

Goldberg (2002) found that arsenate and arsenite sorption on amor-
phous Fe-oxide and Al-oxide as a function of solution pH showed negligi-
ble ionic strength dependence in the range 0.02 to 0.1 mol L–1. However, 
arsenite showed decreasing sorption with increasing ionic strength in the 
range 0.1 to 1.0 mol L–1, indicative of outer-sphere sorption mechanism. 
Arsenate and arsenite sorption lowers the pzc of Fe-oxides, but some au-
thors showed that the pzc of Al-oxides shifts to lower pH values with in-
creasing arsenate concentration, but does not shift to lower pH in the pres-
ence of arsenite (Jain et al. 1999; Goldberg and Johnston 2001; Martin  
et al. 2007b). 

Sorption of arsenite on the surfaces of Mn-oxide facilitate the oxida-
tion of arsenite to arsenate (Oscarson et al. 1981). In some environments 
contaminated with arsenite, the presence of Mn oxides decreases the po-
tential toxicity of arsenite by converting arsenite to the less toxic arsenate 
and the subsequent sorption of this species (Smith et al. 1998). More re-
cently, Tournassat et al. (2002) studied the oxidation of arsenate in 0.011 
mol L–1 arsenite suspension of well crystallized hexagonal birnessite and 
found that the surficial reaction sites are likely located on the edges of H-
birnessite layers rather than on the basal planes. A protonated manganese 
precipitate (probably krautite) formed after 74 hrs of reaction whose long 
fibers were aggregated at the surfaces of birnessite. This study demon-
strated that the oxidation reaction As(III)-MnO2 transforms the toxic ar-
senite to a less toxic aqueous arsenate species, which subsequently precipi-
tates with Mn2+ as a mixed As-Mn solid characterized by a low solubility 
product. Partial oxidation of arsenite on the surfaces of goethite has been 
demonstrated by Sun and Doner (1998) who found that after 20 days, more 
than 20% of arsenite, sorbed on the surfaces of goethite, was oxidized to 
arsenate. Manning and Goldberg (1997a) demonstrated that oxidation of 
arsenite to arsenate was enhanced in the presence of phyllosilicates by het-
erogenous reactions with components on the surfaces of clay minerals. The 
relationship between soil properties and sorption of arsenite and arsenate 
has also been studied (Manning and Goldberg 1997b). 

Sorption of methyl arsenic onto metal oxides has received scant atten-
tion. Lafferty and Loeppert (2005) found that MMAs(III) and DMAs(III) 
were not appreciably sorbed onto goethite or ferrihydrite within the pH 
range of 3 to 11, while arsenite was strongly sorbed to both the oxides. In 
contrast, MMAs(V) and arsenate were sorbed from pH 3 to 10 in great 
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amounts on the iron oxides, whereas DMAs(V) was sorbed only at pH be-
low 7 on goethite and below 8 on ferrihydrite. These authors demonstrated 
that DMAs(V) is specifically sorbed by iron oxides only at pH values 
lower than the pzc, with no sorption at pH values above pzc. The retention 
behaviour of arsenate and MMAs(V) were similar, but with a weaker bond 
between MMAs(V) and iron-oxide surfaces than between arsenate and iron 
oxides (especially at high pH values). According to these authors the dif-
ference in apparent bonding strength of MMAs(V) and arsenate might be 
due to the electron donating characteristics of the methyl group of 
MMAs(V). 

3 Influence of Competing Anion 

The presence of inorganic and organic ligands affects the sorption of arse-
nic onto soil minerals and soils by competing for available binding sites 
and/or reducing the surface charge of the sorbents (Barrow 1992; Manning 
and Goldberg 1996a,b; Frankenberger 2002; Violante and Pigna 2002; 

sorption is affected by the affinity of the competing anions for the surfaces 
of the sorbents, the nature and surface properties of the minerals and soils, 
the surface coverage and the reaction time. 

Goldberg (2002) found no evidence of any competition in sorption of 
arsenate and arsenite on Al or Fe-oxides and montmorillonite, but only a 
small and apparent competitive effect of equimolar arsenate on arsenite 
sorption on kaolinite and illite. The minor competitive effect in this study 
was due to the small concentrations of arsenic which is very low for satu-
ration site. Competition for sorption sites is evident by increasing the sur-
face coverage of the sorbents. Arsenate prevents arsenite sorption on metal 
oxides when the surfaces of the sorbents are saturated by the anions (Jain 
and Loeppert 2000; Violante and Pigna 2002).  

The effect of phosphate on the sorption/desorption of arsenic in soil 
environments has received great attention, since application of phosphate 
fertilizers is a management practice that can have a direct effect on the 
concentration of arsenic in soil solution and may enhance arsenic’s mobil-
ity (Manning and Goldberg 1996b; Smith et al. 1998; Jain and Loeppert 
2000; Hongshao and Stanforth 2001; Frankenberger 2002 and references 
there in; Violante and Pigna 2002). Violante and Pigna (2002) studied the 
competition in sorption between phosphate and arsenate on selected phyl-
losilicates, metal oxides, and soil samples. They found that Mn, Fe and Ti 
oxides and phyllosilicates particularly rich in Fe (nontronite, ferruginous 

Violante et al. 2005a,b; 2008, and references there in). The competition in 
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smectites) were more effective in sorbing arsenate than phosphate after 24 
hrs of reaction, but more phosphate than arsenate was sorbed on noncrys-
talline Al precipitation products, gibbsite, boehmite, allophane, and kaolin-
ite. These authors found that competitiveness between the anions also 
changed at different pH values. In particular phosphate inhibited arsenate 
sorption more in neutral and alkaline systems than in acidic systems.  

Smith et al. (2002) studied the effect of phosphate on the sorption of 
arsenate and arsenite by an Oxisol, a Vertisol and two Alfisols. The pres-
ence of phosphate (0.16 mmol L–1) greatly decreased arsenate sorption by 
soil containing low amounts of Fe oxides (< 100 mmol kg–1: Alfisols. 
Fig. 1A), indicating competitive sorption between phosphate and arsenate 
for sorption sites. In contrast, the presence of a similar amount of phos-
phate had relatively little effect on the amount of arsenate sorbed by soils 
(Oxisol) with high iron content (> 800 mmol kg–1: Fig. 1B). A similar ef-
fect of phosphate on arsenite sorption was observed in low sorbing Alfisols 
(Fig. 2A) and high affinity Oxisol (Fig. 2B). However, the amount of ar-
senite sorbed by the Oxisol was much greater than the Alfisol. 

Because the final surface coverage of competitive ligands onto the 
surfaces of the sorbents seems to have a great effect on their sorption, it 
appeared interesting to carry out experiments on the competitive sorption 
of phosphate and arsenate at pH 5.0 onto ferrihydrite or a noncrystalline 
Al-oxide [Al(OH)x] at a surface coverage of each ligand of 50 or 100% 
and after 5–720 hrs of reaction (Del Gaudio, 2005). The surface area of 
ferrihydrite and Al(OH)x, determinated by the method of Quirk (1955), 
was respectively of 230 and 135 m2 g–1. The initial arsenate added/ 
phosphate added molar ratio (ri) was 1, but some experiments were carried 
out at ri of 0.5. The anions were added to the sorbents as a mixture 
(AsO4+PO4 [ri = 1] and AsO4+2PO4 [ri = 0.5]) or by adding arsenate 24 
hrs before phosphate (AsO4 before PO4) or adding phosphate 24 hrs before 
arsenate (PO4 before AsO4).
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Fig. 1. Arsenate sorption (mmol kg–1) on Alfisol (A) and on Oxisol (B) in the 
presence of sodium nitrate or sodium nitrate + phosphate (PO4). Redrawn from 
Smith et al. (2002). 
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Fig. 2. Arsenite sorption (mmol kg–1) on Alfisol (A) and on Oxisol (B) in the 
presence of sodium nitrate or sodium nitrate + phosphate (PO4). Redrawn from 
Smith et al. (2002). 
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Figures 3 and 4 show the amounts of arsenate sorbed onto ferrihydrite 
and Al(OH)x after 24 hrs of reaction with a surface coverage of arsenate 
and phosphate respectively of 50 or 100%. The numbers in parenthesis in-
dicate the efficiency (in percentage) of phosphate in preventing sorption of 
arsenate calculated according to the expression of Deb and Datta (1967). 

Efficiency of P (%) = {1–[As sorbed in the presence of P/As sorbed
when applied alone]}×100. 

It appears evident that phosphate prevented arsenate sorption more 
onto Al(OH)x than ferrihydrite and more when the surface coverage of 
both the ligands onto the sorbents was near 100% in comparison to that at 
50%. In fact, in the AsO4+PO4 systems the efficiency of phosphate in in-
hibiting arsenate sorption onto Al(OH)x was of 49% and 79% respectively 
at 50% and 100% of surface coverage, whereas on ferrihydrite it was much 
lower viz., 8% and 41%, respectively. The sequence of anion addition 
strongly influenced arsenate sorption. Lower amounts of arsenate were 
sorbed in PO4 before AsO4 system and greater quantities of arsenate were 
sorbed in AsO4 before PO4 system as referred to AsO4+PO4 system (Figs. 
3 and 4).  

The effect of other inorganic anions (sulfate, molybdate, silicate), low 
molecular mass organic ligands (LMMOLs, such as oxalate, malate, citrate, 
tartrate and succinate), and fulvic or humic acid on the sorption of arsenate 
and arsenite onto variable charge minerals and soils has been studied (Roy 
et al. 1986; Grafe et al. 2001; Liu et al. 2001; Violante et al. 2005a,b).

Sulfate poorly prevents arsenate sorption onto metal oxides and soils 
(Wu et al. 2001; Inskeep et al. 2002; Violante et al. 2005b). Violante et al. 
(2005b) found that high concentrations of sulfate (sulfate/arsenate molar 
ratio (rf) 4–10) retarded but not prevented arsenate sorption onto ferrihy-
drite (see their Fig. 15.10) or other metal oxides. Roy et al. (1986) showed 
that the sorption of arsenate by two soils (an Ultisol and a Typic 
Apludults) was reduced in the presence of molybdate.  
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Fig. 3. Sorption of arsenate (AsO4) onto ferrihydrite or Al(OH)x in the presence of 
phosphate (PO4) or phosphate and malate (Mal) at 50% surface coverage of arse-
nate and at initial AsO4/PO4 molar ratio of 1.0 or 0.5. Arsenate and phosphate 
were added as a mixture (AsO4+PO4: AsO4+2PO4) or phosphate was added 24 hrs 
before arsenate (PO4 before AsO4) or arsenate was added 24 hrs before phosphate 
(AsO4 before PO4). Arsenate, phosphate and malate were added as a mixture 
(AsO4+ PO4/Mal molar ratio of 1). The numbers in parenthesis indicate the effec-
tiveness of phosphate in preventing arsenate sorption. From Del Gaudio (2005). 
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Fig. 4. Sorption of arsenate (AsO4) onto ferrihydrite or Al(OH)x in the presence of 
phosphate (PO4) or phosphate and malate (Mal) at 100% surface coverage of arse-
nate and at initial AsO4/PO4 molar ratio of 1.0 or 0.5. Arsenate and phosphate 
were added as a mixture (AsO4+PO4: AsO4+2PO4) or phosphate was added 24 hrs 
before arsenate (PO4 before AsO4) or arsenate was added 24 hrs before phosphate 
(AsO4 before PO4). The numbers in parenthesis indicate the effectiveness of phos-
phate in preventing arsenate sorption. From Del Gaudio (2005). 
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The kinetics of sorption of arsenite and arsenate in the presence of 
sorbed silicic acid have been only recently examined (Waltham and Eick 
2002). These authors demonstrated that the sorption of silicic acid (added 
60 h before arsenic) decreased the rate and the total amount of arsenic 
sorbed. The amount of arsenite sorbed decreased as the surface concentra-
tion of silicic acid increased. Furthermore, the inhibition of arsenite sorbed 
ranged from about 4% at a pH of 6 and 0.1 mM silicic acid up to 40% at a 
pH of 8 and 1 mol L–1 silicic acid. In contrast, silicic acid reduced the rate 
of arsenate sorption which decreased by increasing pH and silicic acid 
concentration, but the total quantity of arsenate sorbed remained nearly 
constant, indicating that arsenate was able to replace silicate.  

Grafe et al. (2001) found that arsenate sorption onto goethite was re-
duced by humic and fulvic acid, but not by citric acid, whereas arsenite 
sorption was decreased by all three organic acids between pH 3.0 and 8.0 
in the order of citric acid > fulvic acid > humic acid. Del Gaudio (2005) 
showed that the inhibition of malate (Mal) on arsenate sorption was negli-
gible onto ferrihydrite (100% Arsenate surface coverage) even when 
malate was added before arsenate but not onto Al(OH)x. At an initial 
Mal/As molar ratio of 1, the sorption of arsenate onto Al(OH)x after 24 hrs 
of reaction was reduced by 40% (Fig. 5).  

4 Sorption in Ternary Systems 

Sorption of arsenate or arsenite in ternary systems has received scant atten-
tion. Some experiments on the sorption of arsenate onto ferrihydrite or 
Al(OH)x in the presence of phosphate and malate (50% surface coverage 
of arsenate initial PO4/AsO4 molar ratio of 1 and Mal/PO4+AsO4 of 1; 
AsO4+PO4+2Mal systems) were carried out by Del Gaudio (2005). In 
AsO4+PO4+2Mal systems arsenate sorption was reduced much more on 
Al(OH)x (66%) than on ferrihydrite (14%) (Fig. 3). Furthermore, it was 
found that the rf values were greater in AsO4+PO4 system than in 
AsO4+PO4+2Mal system (0.5 vs 0.4), whereas, for ferrihydrite as the sor-
bent, the opposite was true (1.10 vs 1.05; data not shown). These findings 
demonstrate that malate competed with arsenate more for the surface sites 
of Al(OH)x, than for those of ferrihydrite, whereas the opposite was true 
for phosphate. The sorption of three or more ligands onto soil components 
deserves attention. 
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Fig. 5. Influence of increasing concentrations of malate (Mal) on the sorption of 
arsenate (AsO4; 100% surface coverage) onto ferrihydrite or Al(OH)x at pH 5.0. 
Malate was added 24 hrs before arsenate (Mal before AsO4). From Del Gaudio 
(2005). 

5 Kinetics Sorption of Arsenate 

The amounts of arsenate and arsenite sorbed onto soil components are af-
fected by the time of reaction and presence of foreign ligands (Raven et al. 
1998; Grafe et al. 2001; Frankenberger 2002; Violante and Pigna 2002; 
Pigna et al. 2006). We have carried out experiments on the kinetics of 
sorption of arsenate onto ferrihydrite and Al(OH)x in the absence or pres-
ence of phosphate and both phosphate and malate. Table 1 shows the 
amounts of arsenate and phosphate sorbed onto Al(OH)x at pH 5.0 after 
0.03–168 hrs when these anions were added alone or as a mixture at 50% 
or 100% of surface coverage, whereas Fig. 6 shows the sorption of arse-
nate onto ferrihydrite and Al(OH)x (50% surface coverage) in the absence 
or presence of phosphate (AsO4+PO4) or phosphate and malate 
(AsO4+PO4+2Mal) during the first 24 hrs of reaction (Del Gaudio 2005; 
Violante and Pigna 2007 unpublished data). It appears evident that each 
ligand inhibited the sorption of the other; in fact, at 50% of surface coverage 
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(Table 1) arsenate and phosphate were completely sorbed onto Al(OH)x
within 3–5 hrs of reaction when added alone, but only after more than 168 
hrs when added as a mixture. When the oxyanions were added together the 
arsenate sorbed/phosphate sorbed molar ratio (rf) continuously increased 
with time from 0.21 after 0.03 hrs to 0.94 after 168 hrs. The rf values were 
initially < 1, since the sorption of phosphate was faster than that of arse-
nate. The rf reached the value of 1 only after 720 hrs (data not shown), in-
dicating that all the ligands added were fixed on the surfaces of the oxide. 
On ferrihydrite at 50% surface coverage the rf values were initially greater 
than 1 and then decreased with time up to 1 (data not shown). Similar re-
sults were obtained by using hematites of different morphology and sur-
face properties (Pigna et al. 2003). Clearly, an initial faster sorption of an 
anion onto the surface of a given sorbent affected the sorption of the other. 
A reduction in surface charge because of the initial sorption of phosphate 
or arsenate may also differently reduce the rate of anions sorption, which 
may be responsible for the observed residence time effect. 

When the surface coverage of each ligand was 100%, the rf values in-
creased more slowly from 0.19 to 0.41, as the time increased from 0.03 hrs 
to 168 hrs (Table 1). In fact, rf values increased 4.4 times from 0.03 to 48 
hrs when the surface coverage was 50% and 2 times when the surface cov-
erage was 100%. These findings indicate that when the surface coverage 
was high, being the sites not available for all the ligands added, there was a 
strong competition for sorption sites between arsenate and phosphate ani-
ons. Even after a reaction time of 700 to 1000 hrs the rf values were < 0.6 
(data not shown). In the presence of both phosphate and malate 
(AsO4+PO4+2Mal) arsenate sorption was strongly prevented; after 360 hrs 
of reaction 71% and 24% of arsenate was sorbed onto ferrihydrite and 
Al(OH)x respectively (data not shown). From the results described before 
(Table 1; Fig. 6) it can be concluded that both competition for sorption 
sites and change in the surface charge of the sorbents occur simultaneously 
to explain the competition in adsorption between ions. 

The kinetics sorption data of arsenate onto ferrihydrite and Al(OX)x 
were tested by different models (first order, parabolic diffusion, and 
Elovich). The fit for the sorption data was obtained best using Elovich 
model (Fig. 7). Similar results were obtained by Pigna et al. (2006). At 
50% surface coverage, the kinetics of sorption of arsenate on ferrihydrite 
could be explained best by assuming two processes, the first one (fast sorp-
tion) operating during the first 0.167 hrs of reaction when arsenate was 
added alone or during the first 24 hrs in the presence of phosphate 
(AsO4+PO4 system) or phosphate and malate (AsO4+PO4+2Mal system) 
(Fig. 7A). A similar trend was not obtained using Al(OH)x as sorbent 
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(Fig. 7B). This behaviour may be attributed to the higher affinity of arse-
nate for the iron than for aluminium oxides.  

Table 1. Kinetics of reaction of arsenate (AsO4) and phosphate (PO4) onto 
Al(OH)x when added alone or as a mixture (AsO4+ or PO4+) (initial AsO4/PO4 
molar ratio of 1) at 50% or 100% surface coverage. rf indicates the AsO4 
sorbed/PO4

Time 
(hrs) 

AsO4 sorbed 
(mmol Kg–1) 

PO4 sorbed 
(mmol Kg–1)

AsO4+ 
sorbed 

(mmol Kg–1) 

PO4+ sorbed
(mmol Kg–1)

rf 
AsO4/PO4 

50% Surface coverage* 

143 162 32 154 0.21 

166 196 60 157 0.38 

186 219 81 198 0.41 

234 236 111 225 0.49 

250 245 198 244 0.81 

250 249 224 241 0.92 

250 233 232 247 0.94 

100% Surface coverage** 

155 193 27 139 0.19 

167 263 21 176 0.12 

216 299 49 193 0.25 

260 345 57 252 0.22 

407 491 95 382 0.25 

486 495 189 466 0.40 

498 496 197 476 0.41 

*Two hundred fifty mmol AsO4 added per kg of sorbent. 
**Five hundred mmol added AsO4 per kg of sorbent. 
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Fig. 6. Kinetics of arsenate (AsO4) sorption onto ferrihydrite (A) or Al(OH)x (B) at 
pH 5.0 in the absence or presence of phosphate (PO4) or phosphate and malate 
(Mal). Initial PO4/AsO4 molar ratio of 1 (AsO4 + PO4) and AsO4 + PO4/Mal molar 
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ratio of 1 (AsO4+PO4 +2Mal). Arsenate was added at 50% of surface coverage 
(authors’ unpublished data, 2007).  
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Fig. 7. Kinetics of arsenate (AsO4) sorption onto ferrihydrite (A) or Al(OH)x (B) at 
pH 5.0 in the absence or presence of phosphate (PO4) or phosphate and malate 
(Mal). Initial PO4/AsO4 molar ratio of 1 (AsO4 + PO4) and AsO4 + PO4/Mal molar 
ratio of 1 (AsO4+PO4 +2Mal). Arsenate was added at 50% of surface coverage. 
The fit for the sorption data was obtained best using Elovich model (authors’ un-
published data, 2007). 
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6 Desorption of Arsenate 

Desorption of arsenic by foreign ligands (mainly phosphate) has received 
attention particularly in the last years. Goh and Lym (2005) evaluated the 
extractability of arsenate from the fine fraction of an acidic soil deliber-
ately contaminated with arsenate and aged for more than 220 days by vari-
ous salts such as Na3PO4, Na2CO3, Na2SO4 and NaCl. The results of arse-
nic extraction as a function of reaction time in the presence of phosphate, 
sulfate, carbonate and chloride (0.005 M) are reported in Fig. 8. Both chlo-
ride and sulfate solutions extracted less than 20% of arsenic from the soil. 
The percentages of arsenate extracted by carbonate were slightly higher 
than those mobilized by chloride or sulfate. Phosphate demonstrated the 
highest arsenic extraction efficiency among the anions used. The percent-
age of arsenic extracted by phosphate increased rather rapidly within short 
reaction times, and they continued to increase gradually toward equilibra-
tion (Fig. 8). Therefore, the effectiveness of the anions in mobilizing arse-
nic from the soil followed the order: PO4 >> CO3 > SO4  Cl.  

O’Reilly et al. (2001) studied the effect of sorption residence time on 
arsenate desorption by phosphate (phosphate/arsenate molar ratio of 3) 
from goethite at different pH values. Initially, desorption was very fast 
(35% arsenate desorbed at pH 6.0 within 24 hrs) and then slowed down. 
Total desorption increased with time reaching about 65% total desorption 
after 5 months. These authors found no measurable effect of aging on de-
sorption of arsenate in the presence of phosphate. Furthermore, desorption 
results at pH 4.0 were similar to the desorption behaviour at pH 6.0. On the 
contrary, Arai and Sparks (2002) demonstrated that the longer the resi-
dence time (3 days–1 year), the greater was the decrease in arsenate de-
sorption by phosphate from a bayerite. 
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Fig. 8. Arsenic extraction from a reddish brown tropical soil deliberately contami-
nated with arsenate as a function of reaction time by 0.005M chloride, sulphate, 
carbonate and phosphate. Redrawn from Goh and Lym (2005). 

The desorption of arsenate previously sorbed onto Fe- or Al-oxides or 
onto an Andisol containing 42% of allophanic materials (Vacca et al. 
2002) by phosphate has been demonstrated to be affected by time of reac-
tion, residence time of arsenate onto the surfaces and the pH of the system 
(Pigna et al. 2006; Pigna et al. 2007, unpublished data). Figure 9 shows the 
desorption of arsenate at pH 6.0 (phosphate/arsenate molar ratio of 4) 
when phosphate was added onto the soil (Andisol) sample 1, 5 or 15 days 
after arsenate (surface coverage of arsenate about 60%). After 60 days of 
reaction, 55% of arsenate was desorbed by phosphate when the residence 
time of arsenate onto the surfaces of the Andisol was 1 day, but 35 and 
20% of arsenate was desorbed by phosphate with increase in the residence 
time up to 5 and 15 days. Further, it was also observed that by keeping the 
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surface coverage and residence time constant the desorption of arsenate by 
phosphate increased by increasing the pH of the system. The arsenate de-
sorbed after 24 hrs of reaction ranged from 41% at pH 4.0 to 73% at pH 
8.0 (data not shown). Pigna et al. (2006) have reported that the desorption 
of arsenate by phosphate from iron and aluminum oxides was affected by 
the crystallinity of the sorbents. 

Fig. 9. Desorption of arsenate (AsO4) from Andisol at pH 6.0 (phosphate/arsenate 
molar ratio of 4) when phosphate (PO4) was added 1, 5 or 15 days after arsenate. 

 

Desorption of arsenate, MMAs(V) and DMAs(V) from goethite and 
ferrihydrite by phosphate and sulfate was studied by Lafferty and Loeppert 
(2005). These arsenic compounds were desorbed more efficiently by 
phosphate than sulfate. In desorption envelopes, the amount of arsenate 
desorbed generally increased as the number of methyl groups increased 
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Surface coverage of arsenate was about 60% (authors’ unpublished data, 2007). 
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[arsenate < MMAs(V) < DMAs(V)]. Desorption of MMAs(V) by phos-
phate from ferrihydrite increased with increasing pH, as did desorption of 
arsenate, but MMAs(V) was desorbed in greater quantities than arsenate at 
any given pH. DMAs(V) was almost completely desorbed from ferrihy-
drite by phosphate. Desorption trends for arsenate, MMAs(V) and 
DMAs(V) from goethite were different from those observed for ferrihy-
drite, but no explanation were given for this phenomenon. 

7 Effect of Phosphate on the Removal of Arsenic 
Coprecipitated with or Sorbed on Metal Oxides 

Whereas studies have been carried out on the factors (surface coverage, 
residence time, pH) which influence the desorption of arsenate previously 
sorbed onto oxides, phyllosilicates and soils (O’Reilly et al. 2001; Liu  
et al. 2001; Arai and Sparks 2002; Violante and Pigna 2002; Pigna et al. 
2006), scant information are available on the possible desorption of arse-
nate coprecipitated with iron or aluminum. In natural environments arsenic 
may form precipitates or coprecipitates with Al, Fe, Mn and Ca. Copre-
cipitation of arsenic with iron and aluminum are practical and effective 
treatment processes for removing arsenic from drinking waters and might 
be as important as sorption to preformed solids.  

Recently, studies on the sorption of phosphate on and the removal of 
arsenate from aluminum-arsenate or iron-arsenate coprecipitates formed at 
arsenate/aluminum (or iron) molar ratio (R) of 0.1 and pH 4.0, 7.0 or 10.0 

sorption of phosphate on and the desorption of arsenate from two samples 
formed at pH 7.0 and R = 0.1, obtained by coprecipitating aluminum and 
arsenate (7R0.1) or by adding arsenate immediately after the precipitation 
of aluminum (7AR0.1). These samples, aged 30d at 50°C, showed similar 
surface area (about 135 m2 g–1), and mineralogy (presence of poorly crys-
talline boehmite) but different reactivity. In fact the sorption of phosphate 
onto 7AR0.1 was more than two times lower that on 7R0.1 (Fig. 10A), 
whereas greater amounts of arsenate were released from 7AR0.1 than 
7R0.1 (Fig. 10B). Evidently, in the 7AR0.1 sample arsenate anions, added 
to a preformed aluminum precipitate, were sorbed on the external surfaces 
and occupied many sorption sites and, consequently, prevented the fixation 
of phosphate more efficiently than 7R0.1 where arsenate anions, being 
mainly enmeshed in the precipitate, were not easily accessible and not eas-
ily desorbed by phosphate. A similar behaviour was ascertained by using 

have been carried out (Violante et al. 2006, 2007). Figure 10 shows the 

iron-arsenate coprecipitates (Violante et al. 2007). 
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Fig. 10. Sorption of phosphate (PO4) (A) and desorption of arsenate (AsO4) (B) 
from two samples formed at pH 7.0 and R = 0.1, obtained coprecipitating alumi-
num and arsenate (7R0.1) or by adding arsenate (7AR0.1) immediately after the 
precipitation of aluminum. Reaction time was 24 hours. Redrawn from Violante  
et al. (2006). 
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8 Arsenic Sequential Extraction from Polluted Soils  

Although sequential fractionation procedures generally do not allow as-
sessing the precise association of elements with each soil mineralogical 
phase, they can provide operationally defined phase associations and may 
be a powerful tool for the identification of some of the main binding sites, 
allowing to assess the potential for remobilisation and bioavailability of ar-
senic in polluted soils (Wenzel et al. 2001; Martin et al. 2007a). 

The fractionation of the arsenic may be carried out according to the 
method of Wenzel et al. (2001). Briefly, arsenic is sequentially extracted 
with: (1) 0.05M K2SO4 at 20°C for 4 h; (2) 0.05M KH2PO4 at 20°C for 16 
h; (3) 0.2M NH4

+-oxalate buffer in the dark, at pH 3.25 and 20°C for 4 h; 
(4) 0.2M NH4

+-oxalate buffer + ascorbic acid at pH 3.25 and at 96°C for 
0.5 h and finally (5) HNO3/H2O2 or HCl/HNO3 hot digestion. The obtained 
As fractions are defined by these authors as associated to: (1) non-
specifically sorbed; (2) specifically-sorbed; (3) bound to amorphous and 
poorly-crystalline hydrous oxides of Fe and Al; (4) bound to well-
crystallized hydrous oxides of Fe and Al; and (5) residual phases. These 
authors demonstrated that partitioning of arsenic among these fractions in 
20 soils was (%, medians and ranges): (1) 0.24 (0.02–3.8); (2) 9.5 (2.6–25); 
(3) 42.3 (12–73); (4) 29.2 (13–39); and (5) 17.5 (1.1–38).  

The arsenic extraction from two polluted Italian soils from Scarlino 
(Tuscany, Italy) containing high amounts of arsenic (104 mg kg–1, Vet-
ricella soil and 190 mg kg–1, La Botte soil) was studied (Branco 2007). Ar-
senic was in the most part recovered in the crystalline oxides (about  
60–63%; Figs. 11A and B). Another abundant fraction (19–20%) of arse-
nic was obtained by NH4-oxalate, which is effective for targeting amor-
phous Fe and Al oxides (Wenzel et al. 2001). The arsenic fraction ex-
tracted with KH2PO4 was about 7% for each soils. The fraction not 
specifically sorbed (easily exchangeable) that form outer-sphere com-
plexes onto the mineral surfaces was very low (< 1%). The scarce residual 
arsenic fraction (11–13%) suggested a low presence of primary minerals 
rich in this metalloid (Fig. 11). About 90% of arsenic present in these 
soils was not available for plants.  

Martin et al. (2007a) investigated the accumulation and potential re-
lease of arsenic in a paddy field in Bangladesh irrigated with arsenic con-
taminated groundwater. The oxalate-extractable fraction related to amor-
phous hydrous oxide-bound arsenic represented the dominant arsenic form 
in the surface layer (47%). A high percentage of arsenic was removed by 
phosphate (22%). 
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 Fig. 11. Arsenate fractionation from two Italian polluted soils. (A) La Botte soil 
containing 190 mmol As kg–1; (B) Vetricella soil containing 104 mmol As kg–1. 
From Branco (2007). 
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9 Conclusion 

Sorption and desorption of arsenic in terrestrial environment is affected by 
many factors as oxidation state of this element, pH, nature of sorbents, 
presence of organic and inorganic ligands, surface coverage, time of reac-
tion and residence time of arsenic on the surfaces of the sorbents. Many 
studies have been carried out on competition in sorption between arsenic 
(mainly arsenate) in the presence of inorganic and organic anions onto soil 
components and soils in binary system, but scant experiments have been 
conducted on the sorption of arsenic in the presence of three or more 
ligands. Furthermore more information are available on the factors which 
affect the sorption of arsenic, than the desorption of arsenic. Unfortunately, 
the effect of organic ligands, both nutrients and LMMOLs (root exudates 
or microbial metabolites) on the mobility of arsenite are tremendously 
poor. The mobility of arsenic present in coprecipitates with Al, Fe, Ca or 
Mn still needs to be observed. To predict the mobility and potential toxic-
ity of arsenic in natural environments more studies are necessary on the 
concomitant effects the clay minerals, organic and inorganic ligands, time 
of reaction and surface coverage have on the sorption/desorption processes 
of arsenate and (mainly) arsenite. 
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1 Introduction 

Bioremediation of sites that are contaminated with toxic metals is an im-
portant issue in environmental restoration. Bacteria have long been known 
for their ability to Itake up metals from their immediate environment 
(Borrok and Fein 2004). The efficiency of bacterial cells in concentrating 
metals is related to their large surface area-to-volume ratio and high sur-
face density of charge. The cell surfaces of all bacteria are negatively 

3 Role of Bacteria and Bacteria-Soil Composites 
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charged owing to the presence of various anionic structures. Bacillus 
subtilis, for example, has an isoelectric point at pH 2.4, and an average 
surface charge excess of 1.6 μmol/mg dry biomass over the pH range of 

affinity for metal cations. Intact bacterial cells, live or dead, and their 
products are also highly efficient in accumulating both soluble and particu-
late forms of metals. Bacteria therefore play an important role in the speci-
ation, fate and transport of metals, metalloids and radionuclides in soil and 
associated environments.  

The number of bacteria in soil may reach ~109 per gram. Since bacte-
rial communities in soil are composed of many different cells in a matrix 
of variable-charge exopolysaccharides, their metal binding capacity ex-
ceeds that of planktonic cells (Mclean et al. 2002). Furthermore, bacteria 
in soil live in an ecosystem that is dominated by solid particles. Indeed, 
80–90% of the microorganisms in soil are associated with solid surfaces 
(Nannipieri et al. 2003) through electrostatic interactions, physical adhe-
sion, and covalent bonding (Theng and Orchard 1995). By forming a coat 
over mineral surfaces bacteria and their extracellular polysaccharides rep-
resent a significant fraction of the total surface area of soil that is exposed 
to the aqueous phase (Daughney et al. 2001). 

Bacterial remediation of metal-polluted environments, and the 
mechanisms underlying metal immobilization, have been the subject of 
several recent reviews (Stephen and Macnaughton 1999; Gadd 2000; 
Barkay and Schaefer 2001; Valls and de Lorenzo 2002). There is general 
agreement that biosorption is an emerging technology capable of removing 
very low levels of toxic metals. Here we focus on the sorption of toxic 
metals by bacteria with special reference to surface binding and complexa-
tion. The bioaccumulation characteristics of bacteria-soil composites will 
also be discussed. 

2 Mechanisms of Metal Sorption by Bacteria  

ion exchange, chelation, adsorption, and diffusion through cell walls and 
membranes all of which are dependent on the species used, the biomass 
origin and, and solution chemistry (Gavrilescu 2004). Biosorption is a fast 
and reversible process for removing toxic metal ions from solution. 
 
 

As shown in Fig. 1 biosorption comprises a variety of processes including 

2.4 to 9 (Yee et al. 2004b). Accordingly, bacterial cell walls have a strong 



 

 
Fig. 1. Schematic diagram of the different processes involved in the metal-
microbe interaction (from Tabak et al. 2005). 

McEldowney (2000) reported that 65% of Cd2+ was associated with 
the cell walls of Pseudomonas fluorescens, while 33% was present in the 
cytoplasm, and 2% was bound to extracellular polymeric substances (EPS) 
excreted by the bacteria. EPS include polyssacharides, proteins and 
siderophores. Organic matter, derived from dead microbes, can also form 
extracellular complexes with metals. 

The large propensity of gram-positive bacteria for sorbing metal 
cations is due to the high concentration in their cell walls of peptidoglycan 
and teichoic acid polymers that contain numerous negatively charged func-
tional groups. The cell walls of gram-negative bacteria, on the other hand, 
are low in these polymeric compounds, and hence show a limited capacity 
for metal sorption (Beveridge 1989). In general, bacterial cell walls behave 
like polyelectrolytes and interact with ions in solution so as to maintain 
electroneutrality. Thus, the principal mechanism by which metal ions in-
teract with bacterial cell surfaces is through electrostatic attraction, sup-
plemented by van der Waals forces, covalent bonding, redox interactions, 
and extracellular precipitation.  
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An electron microscopy study by Mullen et al. (1989) showed that 
Cd2+, Cu2+ and La3+ accumulated on the cell surface of Bacillus cereus, 
B. subtilis, E. coli and Pseudomonas aeruginosa as needle-like, crystalline 
precipitates, while Ag+ precipitated as discrete colloidal aggregates at the 
cell surface and occasionally in the cytoplasm. The needle-like and hex-
agonal precipitates were also found for the biosorption of Ni2+ on the cell 
surface of P. fluorescens 4F39 at pH 9 and it was suggested as a micropre-
cipitation process that followed on ion exchange (Lopez et al. 2000). 

2.1 Functional Groups 

Bacterial cell walls contain different types of negatively charged (proton-
active) functional groups, such as carboxyl, hydroxyl and phosphoryl that 
can adsorb metal cations, and retain them by mineral nucleation. Reversed 
titration studies on live, inactive Shewanella putrefaciens indicate that the 
pH-buffering properties of these bacteria arise from the equilibrium ioniza-
tion of three discrete populations of carboxyl (pKa = 5.16 ± 0.04), phos-
phoryl (pKa = 7.22 ± 0.15), and amine (pKa = 10.04 ± 0.67) groups (Haas 
et al. 2001). These functional groups control the sorption and binding of 
toxic metals on bacterial cell surfaces. 

Despite differences in cell wall structure and composition, B. subtilis 
and E. coli show a remarkably similar behavior with respect to the sorption 
of Cd2+ and Pb2+. This observation is explained in terms of the specific 
chemical reactivity of acidic functional groups (e.g., carboxyl, phosphoryl) 
on the cell wall of both bacteria (Kulczycki et al. 2002). UO2

2+ was re-
ported to exclusively bound to phosphoryl functional groups of B. subtilis 
at pH 1.67. The average distance between the U and P atoms was 3.64 ± 
0.01 Å. This value indicated formation of an inner-sphere complex with an 
oxygen atom shared between UO2

2+ and a phosphoryl ligand. With in-
creasing pH (3.22 and 4.80), UO2

2+ was increasingly bound to carboxyl 
functional groups giving an average distance of 2.89 ± 0.02 Å between the 
U and the C atoms. This U-C distance was also indicative of an inner-
sphere complex with two oxygen atoms shared between UO2

2+ and a car-
boxyl ligand (Kelly et al. 2002). Likewise, Nikovskaya et al. (2002) con-
firmed the binding of U to carboxyl groups on the cell surface of Bacillus 
cereus. The study by Boyanov et al. (2003) showed that Cd on the cell 
wall of gram-positive B. subtilis was predominantly bound to phosphoryl 
ligands below pH 4.4, while at higher pH binding to carboxyl groups be-
came increasingly important. At pH 7.8, the activation of an additional 
binding site was ascribed to a phosphoryl group although the Cd-P dis-
tance was smaller than that found at low pH. The molecular speciation of 



      75 

Zn within the biofilm of Pseudomonas putida examined with Zn K-edge 
extended X-ray absorption fine structure (EXAFS) spectroscopy confirmed 
the importance of phosphoryl functional groups in Zn sorption at neutral 
pH (6.9). Zinc sorption to the biofilm was attributed to predominantly Zn-
phosphoryl (85±10 mol %) complexes, with a smaller contribution to sorp-
tion from carboxyl-type complexes (23±10 mol %) (Toner et al. 2005). By 
using synchrotron radiation Fourier transform infrared spectroscopy along 
with potentiometric titration and metal sorption experiments, Yee et al. 
(2004a) proposed that, on the cyanobacterial cell wall, the carboxyl groups 
are the dominant sink for metals such as Cu2+, Cd2+, and Pb2+ at near 
neutral pH. Based on thermodynamic modeling, Gorman-Lewis, et al. 
(2005) reported that uranyl hydroxide, uranyl-carbonate, and calcium-
uranylcarbonate species each can form stable surface complexes on the 
cell wall of B. subtilis from pH 1.5 to 9. The binding of metal ions with 
bacterial functional groups may be influenced by the cell/metal ratios. At 
high bacteria-to-Cd ratios, Cd adsorption occurs by formation of a 1:1 
complex with deprotonated cell wall carboxyl functional groups for a 
thermophile bacertium Anoxybacillus flavithermus. At lower bacteria-to-
Cd ratios, a second adsorption mechanism occurs at pH > 7, which may 
correspond to the formation of a Cd–phosphoryl, CdOH–carboxyl, or 
CdOH–phosphoryl surface complex (Burnett et al. 2006). 

2.2 Environmental Factors Affecting Metal Biosorption 

Many environmental factors influence the chemical reactivity of the bind-
ing sites on bacterial cell surfaces and the subsequent biosorption of metals. 
These factors include pH, ionic strength, temperature, and the presence of 
other metals and organic compounds. The binding of metals by bacteria is 
also affected by nutrient and oxygen levels. The capacity of indigenous 
anaerobic sulphate-reducing bacteria for accumulating radioactive ele-
ments, for example, can be enhanced by adjusting the levels of such essen-
tial factors as water, oxygen, and nutrients in the soil (Groudev et al. 2001). 
Limited biosorption of Cd was observed observed when the bacteria were 
incubated with a “poor” soil extract medium, while biosorption was rela-
tively high in a “rich” incubating medium (Lebeau et al. 2002). 

2.2.1 Growth Phase 

The ability of bacteria to accumulate toxic metals also varies with cell age. 
Shuttleworth and Unz (1993) reported that one-day-old cells of Thiothrix 
strain A1 accumulated considerably less Ni or Zn than its 2–5 day old 
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counterparts. However, the biosorptive capacity of dead cells may be 
greater, equivalent to, or less than that of living cells (Kurek et al. 1982; 
Ledin 2000; Huang et al. unpublished data). For example, biosorption of 
Cr by the dead cells of Bacillus circulans and Bacillus megaterium was 
higher than by living cells (Srinath et al. 2002).  

Using suspensions of B. subtilis cultured to the exponential, stationary, 
and sporulated phase, Daughney et al. (2001) measured the effect of 
growth phase on surface site concentrations, deprotonation constants, and 
metal-binding constants by acid-base titration and Cd batch sorption. The 
concentrations and pKa values of deprotonated sites decreased as the cells 
moved from an exponential to a stationary phase, but remained constant 
during transition from a stationary to a sporulated phase. Due to variations 
in site concentrations and deprotonation constants, Cd binding constants 
were largest for stationary-phase cells and smallest for sporulated cells, 
even though the former sorbed 5–10% less metal than the exponential-
phase cells, and 10–20% more metal than sporulated cells. These results 
suggest that any attempt at predicting proton or metal sorption by bacteria 
must consider the growth phase of the population. In a recent study,  
Yilmaz and Ensari (2005) showed that the maximum uptake of Cd by  
B. Circulans EB1 occurred during the mid-logarithmic phase of growth. 
The sorption capacity of resting cells was markedly higher than that of grow-
ing cells. Nevertheless, Borrok et al. (2004b) found that the mass-normalized 
extent of Co sorption by both P. fluorescens and Shewanella oneidensis 
MR-1 was independent of growth conditions although bacterial cell size 
changed markedly in response to nutrient and oxygen concentrations. 

2.2.2 pH 

Accumulation of metals by bacteria may be influenced by pH. Simine et al. 
(1998) reported that the biosorptive capacity of Pb by Brevibacterium sp 
was sensitive to pH. Competitive cation sorption experiments by Fowle 
and Fein (1999), using both single and double bacteria systems with two 
Bacillus strains, showed little uptake at pH < 4. However, the extent of Cu, 
Pb and Cd sorption increased due to the enhanced deprotonation of surface 
functional groups at pH > 4. A pH-dependent accumulation of heavy met-
als by P. fluorescens 4F39 was also observed by Lopez et al. (2000). Simi-
larly, the sorption of Cd2+ and Pb2+ by B. subtilis and E. coli was strongly 
dependent on pH from 4.2 to 5.6 (Kulczycki et al. 2002). A number of 
studies on U revealed that specific pH ranges favor the biosorption. Haas 
et al. (2001) reported that U(VI) could form a surface complex with the 
cells of S. putrefaciens in the pH 2–8 interval, with maximum adsorption 
occurring at pH ~5. The sorption of UO2

2+ by B. subtilis at pH < 3.0 was 
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independent of pH and this was ascribed to the interaction between uranyl 
cations and neutrally charged phosphoryl groups on the cell wall (Kelly 
et al., 2002). The sorption of U(VI) by negatively charged B. cereus was 
maximal at pH 4.2–4.5, when U(VI) was present in the form of positively 
charged hydroxocomplexes. However, there was minimal interaction be-
tween U(VI) and B. cereus cells at pH 8 when U(VI) formed negatively 
charged water-soluble hydroxocarbonate complexes. The sorption of U(VI) 
in a weakly acidic medium was not affected by the presence of Co, Sr, Cu, 
Ca, Mg, and Zn ions. These ions, however, inhibited sorption under neutral 
pH conditions (Nikovskaya et al. 2002). 

The pH-dependence of metal sorption by bacteria can vary signifi-
cantly with metal concentration. For example, the sorption of Pb by 
Pseudomonas atlantica at the highest metal concentration (5×10–6 M) was 
almost independent of pH, whereas sorption markedly increased with pH 
when the metal concentration was low (Ledin 2000). On the other hand, 
the accumulation of Cd by Pseudomonas cepacia showed an increased pH 
dependence with increasing metal concentration (Savvaidis et al. 1992). 
The pH dependence may also be influenced by ionic strength. 

2.2.3 Ionic Strength 

The sorption of metals by bacteria is often influenced by the presence of 
various cations. Small et al. (2001), for example, reported that the sorption 
of Sr2+ to Shewanella alga was strongly dependent on ionic strength. With 
increasing ionic strength the apparent surface complex formation constant 
for S. alga increased from 100–0.51 to 10–0.26, suggesting that only high af-
finity sites remained to bind Sr2+ at high ionic strength. Since the sorption 
of Sr(II) and Ba(II) by B. subtilis showed a strong ionic strength depend-

bacterial cell wall as an outer-sphere complex. 
The sorption of U (VI) by S. putrefaciens was somewhat sensitive to 

ionic strength (NaCl) in the range 0.02–0.10 M. The ionic strength de-
pendence was similar to that measured for metal-oxide surfaces and Gram-
positive bacteria, and appeared to be similarly controlled by competitive 
speciation constraints (Haas et al. 2001).The sorption of thorium by bacte-
ria, in terms of amount and time course, was almost unaffected by co-
existing uranium. However, the process was accelerated when it occurred 
after the adsorption of uranium. The rate of thorium adsorption was also 
enhanced when uranium was added after thorium was adsorbed (Tsuruta 
2004). Alterations in the structural and chemical properties of bacterial cell 
surfaces resulting from exposure to acidic solutions may affect cation 
binding. Borrok et al. (2004b), for example, observed that bacteria such as 
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P. mendocina, P. aeruginosa, B. subtilis, and B. cereus adsorbed more Cd, 
Co, and Pb after exposure to acidic solutions than the corresponding unex-
posed cells. The increase in sorption following acid treatment was attributed 
to the irreversible displacement of structurally bound Mg and Ca by protons. 
The protonated sites can participate in reversible metal sorption reactions. 

2.2.4 Metal Type 

2.2.5 Organic Ligands 

Organic ligands may affect the adsorption and binding of metals on bacte-
ria by forming chelates. Fein and Delea (1999) reported that aqueous 
EDTA competed strongly with the bacterial surface for Cd ions, markedly 
reducing Cd sorption by B. subtilis. Similarly, the presence of humic acid 
(HA) diminished Cd sorption by the surface of B. subtilis (Wightman and 
Fein 2001). This was attributed to formation of an aqueous Cd-humate 
complex under moderate to high pH conditions. However, the solubility of 
HA was apparently unaffected by the presence of aqueous Cd. 

The removal of Pb by Brevibacterium sp strain PBZ was markedly 
enhanced by the presence of glucose (Simine et al. 1998). Desorption of 
the metal by EDTA restored the binding capacity of the cells. U(VI) could 
be desorped from the cell surface of B. cereus by citric acid or sodium bi-
carbonate with the formation of water-soluble complexes although U(VI) 
was strongly bound on the cell surface of the bacteria. However, uranyl in 

Mullen et al. (1989) found that the affinity of B. cereus, B. subtilis, E. Coli 
and P. aeruginosa for metal cations decreased in the order Ag > La > Cu > 
Cd, while Lopez et al. (2000) reported the following order: Ni >> Hg > U >> 
As > Cu > Cd > Co > Cr > Pb. According to their sorption behavior, metal 
cations may be grouped into two types. The accumulation of Type I metal 
cations (Ni, Cu, Pb, Cd, Co) increases as pH increases, reaching a maximum 
at the pH before precipitation, occurs, while the maximum accumulation of 
Type II metal cations (Cr, As, U, Hg) is not associated with precipitation. 
Lead could compete with Cd for attachment to bacterial surface sites when 
a solution containing both metals was added (Simine et al. 1998). Lead 
removal occurred by a combination of fast physico-chemical adsorption 
and slow accumulation mediated by cell metabolism. Savvaidis et al. (2003) 
found that the biosorption of Cu by P. cepacia was dependent on the con-
centration of added Cu. Copper uptake by the cells was rapid over the range 
of copper concentrations tested and complete within the first 10 min of incu-
bation time. Copper uptake by P. cepacia cells apparently involved surface 
binding and not intracellular accumulation by active transport. 
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the form of organic complexes with citric, humic, and fulvic acids was not 
sorbed by biocolloids (Nikovskaya et al. 2002). A study with metabolic in-
hibitors on biosorption revealed that the sorption of copper by P. cepacia 
was not affected by cyanide and azide (Savvaidis et al. 2003). 

3 Metal Tolerance and Sorption Capacity of Bacteria 

A large variety of bacterial strains have been isolated from toxic metal-
contaminated environments. These strains may be useful for the investi-
gation and understanding of the tolerant and adsorptive mechanisms of 
bacteria for toxic metals. Yilmaz (2003) screened a heavy metal-resistant 
Bacillus sp. strain EB1 from a contaminated soil in southeast Turkey. This 
strain exhibited high minimal inhibitory concentration (MIC) values for 
metals and was capable of removing 90% of Mn, 68% of Zn, 65% of Cu, 
45% of Ni and 40% of Co during its active growth cycle with a specific 
biosorption capacity of 25, 22, 20, 13 and 12 mg L–1, respectively. Since 
the cells could grow in the presence of significant concentrations of metals 
and have a high metal biosorption capacity under aerobic conditions, this 
Bacillus sp is potentially useful for the in-situ bioremediation of heavy 
metal-contaminated aqueous systems. Subsequently, Yilmaz and Ensari 
(2005) were able to show that B. circulans EB1 had a high tolerance to Cd 
as well as a high sorption capacity for this metal. When grown in the pres-
ence of 28.1 mg Cd L–1 this bacterium could sorb 5.8 mg Cd g–1 dry wt 
biomass during the first 8 h. After preconditioning with low concentrations 
of Cd, the sorption capacity of the cells increased to 6.7 mg Cd g–1. Since 
both the resting and growing cells had a high sorption capacity for Cd,  
B. circulans EB1 could serve as an excellent biosorbent for Cd in natural 
environments. 

Mullen et al. (1989) reported that Bacillus cereus, B. subtilis, E. coli 
and P. aeruginosa were able to sorb an average of 89% of the total Ag+ and 
12–27% of the total Cd2+, Cu2+ and La3+ from a 1mM solution. Using 
polyacrylamide-entrapped cells of Brevibacterium sp strain PBZ, Simine  
et al. (1998) measured a sorption capacity of ~40 mg g–1 and ~13 mg g–1 
dry biomass for Pb and Cd, respectively. Hall et al. (2001) isolated two 
bacterial strains of P. syringae that were tolerant to 1000 mg L–1 Cu. Simi-
larly, Amoroso et al. (2001) were able to obtain Streptomyces spp. strains 
R22 and R25 with a high tolerance to Cr from sediments of the Salí River, 
Argentina. The cells of R22 and R25 could accumulate 10.0 and 5.6 mg Cr g–1 
dry weight, respectively, from a concentration of 50 mg Cr mL–1. Cell 
fractionation studies with strain R22 showed that most of the chromium 
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was associated with the cell walls. Srinath et al. (2002) isolated two species 
of bacteria (B. circulans and Bacillus megaterium) from a treated tannery 
effluent. The cells could accumulate 32–35 mg Cr(VI) g–1 dry weight from 
an initial concentration of 50 mg Cr(VI) L–1, decreasing the residual con-
centration of Cr(VI) to the permissible limit within 24 h. The sorption ca-
pacity of B. subtilis for Cd2+ and Pb2+ was 0.36 mmol g–1 and 0.27 mmol g–1, 
respectively, while the corresponding values for E. coli were 0.10 mmol g–1 
and 0.21 mmol g–1 (Kulczycki et al. 2002). 

Using a multi-compartment system (Partitioning in Geobiochemical 
Systems, PIGS), Ledin et al. (1996) compared the accumulation of metals 
by various soil components (a bacterium, a fungus, peat, a clay and alumi-
num oxide) with or without the presence of fulvic acid. Although making 
up only a minor part of the solid phase, microorganisms made a substantial 
contribution to metal accumulation. Geochemical modeling using the 
Langmuir equation indicated that Shewanella alga and Shewanella pu-
trefaciens sorbed significantly greater quantities of Sr2+ than hydrous ferric 
oxide (Small et al. 1999).  

Groudev et al. (2001) isolated indigenous anaerobic sulphate-
reducing bacteria from agricultural soils in southeastern Bulgaria that have 
been contaminated with U, Ra, Th, Cu, Cd and Pb from mining and min-
eral processing of polymetallic ores. These bactaeria were efficient in im-
mobilizing radioactive elements and heavy metals under field conditions, 
reducing their concentrations in the soil to below their respective permissi-
ble levels within eight months. Cultures of Desulfovibrio desulfuricans, 
Desulfotomaculum gibsoniae, and Desulfomicrobium hypogeia were capa-
ble of removing 99.99% of the soluble Co2+ when CoCl2 was used with no 
chelating agents. The same cultures and Desulfoarcula baarsi removed 
98–99.94% of soluble Co(II) when the metal was complexed with ni-
trilotriacetate (Co-NTA) (Krumholz et al. 2003). 

Tsuruta (2004) reported that strains of the gram-positive bacteria Ar-
throbacter nicotianae IAM12342, B. megaterium IAM1166, B. Subtilis 
IAM1026, Micrococcus luteus IAM1056, Rhodococcus erythropolis 
IAM1399, and Streptomyces levoris HUT6156 had a high capacity for 
sorbing thorium, while S. albus HUT6047, S. levoris HUT6156, and  
A. nicotianae IAM12342 were efficient in sorbing uranium. The most effi-
cient among these microorganisms was S. levoris which could sorb about 
383 μmol thorium and 390 μmol uranium per gram dry weight of cells 
from a thorium or uranium solution at pH 3.5. Huang et al. (2005) isolated 
a bacterial strain, Enterobacter aerogenes NTG-01, from a heavily Cu-
contaminated soil in the mining area near Daye, Hubei province, China. 
This strain was tolerant to 3 mM Cu and 3 mM Cd. It also showed 
great potential for sorbing Cu and Cd ions. 
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Some heavy metal-tolerant bacterial strains and their sorption ca-
pacities for Cu and Cd are listed in Table 1. These bacteria show great 
potential for remediating soils that are contaminated with toxic metals. 
Our pot culture experiments showed that the growth of tobacco plants 
in a Cd-polluted Yellow Brown Soil (Alfisol) was significantly pro-
moted by inoculating the soil with P. Putida in comparison with the 
non-inoculated soil (Fig. 2).  

Table 1. Sorption capacity (mmol kg–1) of some bacterial species for Cu and Cd  

Bacteria  Cu Cd Reference 
Bacillus subtilis   173 — Mayers and Beveridge (1989)
Brevibacterium sp. 540 140 Vecchio et al. (1998)
Bacillus sp. (spores) 829 — He and Tebo (1998)
Pseudonmonas aeruginosa 213~222  — Langley and Beveridge 

Thiobacillus ferrooxidans 1859 — Ruiz-Manríquez et al. 
 

Zooglea ramigera — 13 Scott and Palmer (1988) 
Gram negative bacteria — 120 Gourdon et al. (1990) 
B. Licheniformis — 1274 Zouboulis et al. (2004) 
Enterobacter aerogenes 
NTG-01 

395 171 Huang et al. (2005) 

Pseudomonas putida 206 598 Huang et al.  
(to be published) 

Spirulina platensis 439 1992 2347 Huang et al.  
(to be published) 

4 Chemical Modeling of Metal Biosorption 

The Langmuir and Freundlich equations have often been employed to 
model the sorption of metal ions by bacteria. Mullen et al. (1989) used the 
Freundlich isotherm to describe the sorption of Cd and Cu by B. cereus,  
B. subtilis, E. coli and P. aeruginosa over the concentration range of 
0.001–1mM. The respective values of the Freundlich constant (Kf) indi-
cated that E. coli was most efficient at sorbing Cd2+ and Cu2+. 

Hall et al. (2001) measured the biosorption of copper by P. syringae, 
fitting the experimental data to the Freundlich, Brunauer-Emmett-Teller 
(BET), and Langmuir equations. Meaningful maximum sorption capacities 
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and sorption affinity coefficients were derived from the Langmuir equation. 
The results were explained in terms of sorbate/sorbent interactions involv-
ing a passive mechanism by which copper was largely associated with the 
outer cell wall. Used acid–base titrations, Daughney et al. (1998) deter-
mined the concentrations and deprotonation constants of specific func-
tional groups on the surface of B. licheniformis. The carboxyl, phosphate 
and hydroxyl surface functional groups had pKa values of 5.2, 7.5 and 
10.2, respectively, while the average values for the Cd-, Pb-, Cu- and Al–
carboxyl stability constants (log K) were 3.9, 4.6, 4.9 and 5.8, respectively. 
The results indicate that B. subtilis or B. licheniformis have different rela-
tive and absolute concentrations of surface sites and slightly different de-
protonation and metal adsorption stability constants. Acid–base titration of 
suspensions containing B. subtilis or B. licheniformis in 0.01 and 0.1 M 
NaNO3 indicated that the constant capacitance model provided the best de-
scription of the experimental data (Daughney and Fein 1998). The model 
parameters varied between independently grown bacterial cultures, possi-
bly because of cell wall variations arising from genetic exchange during  
 

 

Fig. 2. Remediation of Cd2+ toxicity by inoculation of P. putida and its effect on 
plant growth. (A) 15 day-old seedlings of tobacco (Nicotiana bentamiana) grown 
for 40 days in soils containing 150 g Cd2+ kg–1; (B) same as A but inoculated 
with 108 cells of P. putida g–1, (C) control soil (not inoculated, but mixed with the 
same medium) (authors’ unpublished data, 2006). 
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reproduction. Sorption of Cd, Pb, and Cu by B. subtilis and B. licheni-
formis showed that the stability constants varied substantially but system-
atically between the two bacterial species at the two different ionic 
strengths. The dependence of sorption on ionic strength, shown by S. alga,
was consistent with the formation of outer-sphere complexes in the diffuse 
double layer (Small et al. 2001). 

Fowle and Fein (1999) measured the sorption of Cd, Cu, and Pb by  
B. subtilis and B. licheniformis using the batch technique with single or 
mixed metals and one or both bacterial species. The sorption parameters 
estimated from the model were in excellent agreement with those meas-
ured experimentally, indicating that chemical equilibrium modeling of 
aqueous metal sorption by bacterial surfaces could accurately predict the 
distribution of metals in complex multicomponent systems. Fein and Delea 
(1999) also tested the applicability of a chemical equilibrium approach to 
describing aqueous and surface complexation reactions in a Cd-EDTA-B.
subtilis system. The experimental values were consistent with those de-
rived from chemical modeling. 

In order to test the reversibility of metal-bacteria interactions, Fowle 
and Fein (2000) compared the extent of desorption estimated from surface 
complexation modeling with that obtained from sorption-desorption ex-
periments. Using B. subtilis these workers found that both sorption and de-
sorption of Cd occurred rapidly, and the desorption kinetics were inde-
pendent of sorption contact time. Steady-state conditions were attained 
within 2 h for all sorption reactions, and within 1 h for all desorption reac-
tions. The extent of sorption or desorption remained constant for at least  
24 h and up to 80 h for Cd. The observed extent of desorption in the ex-
perimental systems was in accordance with the amount estimated from a 
surface complexation model based on independently conducted adsorption 
experiments. 

Fein et al. (2001) used a linear free-energy approach to compare pre-
viously measured stability constants for B. subtilis metal-carboxyl surface 
complexes with aqueous metal-organic acid anion stability constants. The 
organic acids are acetic, oxalic, citric, and tiron. The sorption behavior of 
Co, Nd, Ni, and Sr was well described by considering metal-carboxyl sur-
face complexation only. In the case of Zn, however, complexation with 
both carboxyl and phosphoryl groups was required to attain a suitable fit to 
the data. The best correlation between the stability constants of bacterial 
surface carboxyl complexes and those of aqueous organic acid anion com-
plexes was obtained for metal-acetate aqueous complexes, with a linear 
correlation coefficient of 0.97. This correlation applies only to unhydro-
lyzed aqueous cations complexed to surface carboxyl groups. It does not 
hold for the binding of metals to other functional groups on the bacterial 
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surface. Nevertheless, the observed correlation allows the aqueous metal-
carboxyl site complexation to be estimated for a wide range of metal 
cations for which experimental data are absent. This technique together 
with observations of metal complexation involving a range of bacterial 
species (Yee and Fein 2001), provide insight into the effect of biosorption 
on metal mobility in soil and geologic environments . 

Haas et al. (2001) have investigated the sorption of U(VI) by She-
wanella putrefaciens, a Gram-negative, facultatively anaerobic bacterium, 
using acid-base potentiometric titration. Taking a bacterial specific surface 
area of 55 m2/g the site densities for carboxyl, phosphoryl and amine 
groups on the bacterial surface were estimated at 31.7 μmol sites/g bacteria 
(0.35 ± 0.02 sites nm–2), 8.95 μmol/g (0.11±0.007 sites nm–2), and  
38.0 μmol/g (0.42±0.008 sites nm–2), respectively. The sorption results 
were explained in terms of the formation of two types of surface com-
plexes: COO–UO2

+ and PO4H–UO2(OH)2. The geochemical speciation 
models could be extended to bacteria that are capable of precipitating a 
wide variety of environmentally important metals and metallic species. 

Fowle et al. (2000) have measured the sorption by a soil bacterium (B. 
subtilis) of uranyl in 0.1 M NaClO4 at 25ºC as a function of pH, time, and 
solid: solute ratio, using a batch technique. The stoichiometry and thermo-
dynamic stability of the important uranyl-surface complexes indicated that 
uranyl formed two different surface complexes, one involving neutral 
phosphate functional groups, and another with deprotonated carboxyl func-
tional groups, on the bacterial cell wall:  

R-POH0 + UO2
2+ ⇔ R-POH-UO2

2+ (log K = 11.8 ± 0.2) 
R-COO- + UO2

2+ ⇔ R-COO-UO2
2+ (log K = 5.4 ± 0.2) 

Batch adsorption experiments by Yee and Fein (2002) using aqueous Cd, 
B. subtilis, and quartz as a function of pH showed that the thermodynamic 
stability constants, determined from binary systems, could successfully de-
scribe the distribution of Cd between the aqueous phase and the bacterial 
and mineral surfaces. The constants could also be used to estimate the dis-
tribution of mass in systems, and construct a surface complexation model. 

The sorption data of Cd2+ and Pb2+ by B. subtilis and E. coli were well 
described by a one-site complexation model (r2 > 0.9) with Cd2+ showing 
somewhat lower sorption affinities than Pb2+ (Kulczycki et al. 2002). A 
two-site sorption model yielded an improved fit but only for the E. coli 
data. The stability constants for the high- and low-affinity sorption sites 
differed by several orders of magnitude. The total metal sorption capacity 
of E. coli increased, and moved closer to the value of B. subtilis when the 
presence of low-affinity sorption sites was allowed. Ngwenya et al. (2003) 
used potentiometric titrations to assess the different types of sites present 
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on the cell walls of the genus Enterobacteriaceae. Stability constants for 
the sorption of Pb, Cu and Zn by specific sites were determined from batch 
experiments at different pH values and a constant metal concentration. 
Three distinct acidic surface sites were indicated having pK values of 4.3 ±
0.2, 6.9 ± 0.5, and 8.9 ± 0.5 corresponding to carboxyl, phosphate and hy-
droxyl/amine groups with surface densities of 5.0 ± 0.7 10–4, 2.2 ±
0.6 10–4 and 5.5 ± 2.2 10–4 mol g–1 dry bacteria, respectively. Only the 
carboxyl and phosphoryl groups were involved in metal uptake, yielding 
the following intrinsic stability constants: Log Kcarboxyl = 3.3 ± 0.1 for Zn, 
3.9 ± 0.8 for Pb, and 4.4 ± 0.2 for Cu, while Log K phosphoryl = 5.1 ± 0.1 for 
Zn and 5.0 ± 0.9 for Pb. 

The data of Loukidou et al. (2004) for the equilibrium biosorption of 
chromium (VI) by Aeromonas caviae particles were well described by the 
Langmuir and Freundlich isotherms. Sorption rates estimated from ‘pseudo 
second-order’ kinetics were in satisfactory agreement with experimental 
data. The results of XAFS study on the sorption of Cd by B. subtilis were 
generally in accord with existing surface complexation models (Boyanov 
et al. 2003). Intrinsic metal sorption constants were obtained by correcting 
the apparent sorption constants by the Boltzmann factor. A 1:2 metal-
ligand stoichiometry provides the best fit to the experimental data with log 
K values of 6.0 ± 0.2 for Sr(II) and 6.2 ± 0.2 for Ba(II). 

Electrophoretic mobility measurements of B. subtilis cells with sorbed 
Sr(II) and Ba(II) supported the 1:2 metal-ligand stoichiometry. Thus, the 
electrical potential parameters derived from the Donnan model can be used 
to predict metal binding by bacterial surfaces over a wide range of pH and 

Borrok et al. (2004b) further suggests that the concentration of functional 
groups on bacterial surfaces can increase by as much as five times in re-
sponse to acid washing, assuming that the stability constants for bacterial 
surface complexes remain the same. Based on their 2-site non-electrostatic 
Cd adsorption model, Gorman-Lewis et al. (2006) measured the bulk heats 
of Cd adsorption onto B. subtilis at 25.0°C by titration calorimetry. The 
bulk Cd enthalpy data yielded the following site-specific enthalpies of Cd 
adsorption onto bacterial surface Sites 2 and 3, respectively: 0.2 ± 0.4 and 
+14.4 ± 0.9 kJ mol–1, and the following third law entropies of Cd adsorp-
tion onto Sites 2 and 3, respectively: +57 ± 4 and +128 ± 5 J mol–1 K. The 
calculated enthalpies of Cd adsorption are typical of those associated with 
Cd complexation with anionic oxygen ligands, and the entropies suggest 
the inner sphere complexation by multiple ligands. The new thermody-
namic data enabled quantitative estimates of the temperature dependence 
of Cd adsorption on bacterial surfaces. 

3 Role of Bacteria and Bacteria-Soil

ionic strength conditions (Yee et al. 2004b). Thermodynamic modeling by 
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Borrok et al. (2004a) used potentiometric titration to measure Cd 
sorption by different bacterial consortia, and a surface complexation ap-
proach to determine thermodynamic stability constants. When the data 
were modeled by adopting a single set of stability constants, a similar sorp-
tion behavior was shown by a wide range of bacterial species. Further, cur-
rent models that rely on pure strains of laboratory-cultivated bacterial spe-
cies appear to overestimate the extent of metal biosorption in natural 
systems.  

Borrok and Fein (2004) employed thermodynamic equilibrium con-
stants from the literature to construct an internally consistent model for the 
binding of Cd by dissolved humic substances (HS). The binding constants 
and site density values were directly compared with published data for Cd 
binding by natural consortia of bacteria. These constants were then com-
bined into a unified model that could account for the competition between 
bacterial surfaces and dissolved HS as well as their relative contributions 
to Cd complexation in natural settings. These workers also performed cal-
culations for three representative systems with different concentration ra-
tios of bacteria to HS. The results indicated that the number of available 
binding sites (per gram) in dissolved HS were two orders of magnitude lar-
ger than that associated with bacterial surfaces. HS also had a greater affinity 
than bacterial surfaces for binding Cd at neutral and near-neutral pH. The 
combined model further showed that, depending on their relative concentra-
tions, both Cd-humic and Cd-bacteria complexes controlled Cd-speciation in 
specific natural environments. This modeling approach is useful in that it 
can easily be extended to other metals and binding ligands; however, ap-
propriate thermodynamic data must be gathered to facilitate the modeling 
of more realistic systems.  

Loukidou et al. (2005) fitted the data for the equilibrium sorption of 
Cd from aqueous solutions by Aeromonas caviae to the Langmuir and 
Freundlich isotherms. They also conducted, a detailed analysis of sorption 
rates to validate several kinetic models. A suitable kinetic equation was de-
rived, assuming that biosorption is chemically controlled. The so-called 
‘pseudo second-order’ rate expression could satisfactorily describe the ex-
perimental data. The adsorption data of Zn on soil bacterium Pseudomonas 
putida were fit with the van Bemmelen-Freundlich model (Toner et al. 
2005). 

Molecular simulation methods can be a complement to surface com-
plexation modeling on metal–bacteria adsorption reactions, which provides 
a more detailed and atomistic information of how metal cations interact 
with specific functional groups within bacterial cell wall. Johnson et al., 
(2006) applied molecular dynamics (MD) simulations to analyze equilib-
rium structures, coordination bond distances of metal-ligand complexes. 
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The adsorption of Cd and Pb onto peptidoglycan and teichoic acid compo-
nents of the bacterial cell wall was investigated using classical energy 
force field methods. The different components of the cell wall and their 
relative binding energies and structural configurations were determined 
based on the Cerius2 modeling software, energy minimization, conforma-
tional analysis, and molecular dynamics in the absence and presence of 
metals. Force field-based simulation techniques can adequately describe 
the coordinations and binding distances of Cd ion on the cell wall. How-
ever, the classical force field approach failed to depict the observed  
Pb–cell wall interactions due to possible limitations in the force field pa-
rameters, the tendency for Pb to form hydroxides at circumneutral pH, or 
the major contribution of other adsorption mechanisms. 

5 Immobilization of Metals by Bacteria-Soil Composites 

Bacteria in soil occur as single cells or multicell colonies and are closely 
associated with soil particle (mineral) surfaces, forming bacteria-soil com-
posites. Indeed, bacteria and minerals in soil are so intertwined that one of-
ten cannot exist without the other. Bacteria-soil composites, therefore, play 
an important role in the sorption and binding of toxic metals (Fein et al. 
1997, Langley and Beveridge 1999, Chenu and Stotzky 2002). Microbial 
biofilms are present in soils, sediments, and natural waters. They contain 
bioorganic metal-complexing functional groups and are thought to play an 
important role in metal cycling in natural and contaminated environments 
(Toner et al. 2005). 

Flemming et al. (1990) reported that isolated B. subtilis 168 cell walls, 
E. coli K-12 cell envelopes, and their respective composites with clay min-
erals were capable of binding appreciable quantities of Ag(I), Cu(II), and 
Cr(III). However, the envelope-clay and wall-clay mixtures bound less 
metal than equal amounts of the individual components on a dry-weight 
basis because the adsorption of the wall or envelope to clay masked or 
neutralized chemically reactive sites normally available to metal ions 
(Walker et al. 1989). The retention of heavy metals such as Pb by bacteria-
mineral composites under a wide range of environmental conditions was 
attributed to their large sorption capacity (Templeton et al. 2003a). Heavy 
metal-resistant bacteria could form a biofilm over sand grains after inocu-
lation. The biofilm was able to efficiently remove Cd, Zn, Cu, Pb, Hg, Ni 
or Co from wastewater by sorbing or precipitating these heavy metals Nu-
trients and a carbon source promoted the regrowth of the biofilm on the 
sand grains (Diels et al. 2003). 

3 Role of Bacteria and Bacteria-Soil
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Bacteria, attached to metal oxide surfaces, may interfere with sorption 
by changing the characteristics of the electrical double layer at the 
solid/solution interface, blocking surface sites, or providing a variety of 
new sites for metal binding (Templeton et al. 2001, Huang et al. 2005). 
The sorption and precipitation of Fe3+ at the surface of Shewanella alga 
cells were considered to alter the electrochemical surface properties of its 
composite with iron oxide, buffering the effects of increased ionic strength 
on subsequent Sr2+ sorption (Small et al. 2001). 

Small et al. (1999) compared the sorptive capacity of a bacteria-Fe 
oxide composite with its individual components. S. alga, Shewanella pu-
trefaciens and the S. alga-hydrous ferric oxide (HFO) composite could 
sorb significant amounts of Sr2+ at much lower values of pH (5.5 5.9) 
compared with HFO by itself (pH 7.6). The sorption capacity of S. alga-
HFO composite for Sr2+ (34 μmol g–1) was less than the combined capacity 
of its components (41 μmol g–1), indicating the masking of bacterial sur-
face sites by HFO. Similarly, the experimentally measured sorption capac-
ity for Cd2+ and Pb2+ of the composites of ferrihydrite with B. subtilis and  
E. coli was lower than value predicted from adding the available sites  
(Table 2). The results implied that a masking of reactive bacterial surface 
sites by ferrihydrite had occurred. Electrophoretic mobility measurements 
further indicated that the net surface charge of each composite system re-
flected the surface properties of ferrihydrite rather than those of the bacte-
ria (Kulczycki et al. 2005). 

The mobility of heavy metals can change markedly after their sorp-
tion by organic or inorganic soil components. Similarly, bacterial cells as 
such, or as a biofilm over soil particle surfaces, can sequester metals and 
transform them into less mobile and bioavailable forms. In an attempt to 
understand the impact of biosorption on metal transport through a mineral 
system, Yee and Fein (2002) measured the movement of B. subtilis and 
aqueous Cd through quartz and Fe-coated quartz columns as a function of 
pH. Under some conditions, adsorption of Cd by bacteria and bacterial 
transport facilitated the migration of Cd through the column. Under other 
conditions bacterial transport was inhibited and Cd mobility was retarded 
when the bacteria were sorbed by quartz and/or strained by the sand matrix. 
Thus, the availability of biosorbed heavy metals in soils may be decreased 
when the biomass is associated with inorganic soil constituents. 

Heavy metals bound to bacteria-soil composites may not be as eas-
ily released to the environments as those sorbed by pure bacteria. Flem-
ming et al. (1990) reported that the order of remobilization of heavy met-
als from bacteria-clay composites was Cr << Ag < Cu. Chromium was 
very stable when sorbed by bacterial cell walls, clay, and bacterial wall-clay 
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composites. High Ca concentrations or acidic pH were very effective in 
mobilizing sorbed metals while organic chelating agents (e.g. EDTA) were 
less effective. The particle size of the sorbed metal may account for some 
of the stability changes; those metals that formed large, compact aggre-
gates (Cr and Ag), as seen by transmission electron microscopy, were less 
likely to be remobilized. Therefore, the remobilization of toxic heavy met-
als in soils and sediments was considered as a complex process, and pre-
dictions based on single inorganic or organic component systems are too 
simplistic.  

Table 2. Sorption capacity (mmol g-1) of bacteria-feerihydrite composites for Cd2+ 
and Pb2+: observed vs. calculated (after Kulczycki et al. 2005) 

 
 
The remobilization of metals sorbed by bacteria-mineral composites 

was also influenced by the type of metal and the species of metal ions. 
Templeton et al. (2003b), for example, showed that a large fraction of the 
insoluble Se(0) produced within a B. cepacia biofilm was retained during 
exchange with Se-free solutions. They also found that Se (IV) intermedi-
ates generated during Se(VI) reduction were preferentially bound to the 
alumina surface and could not be fully desorbed. On the other hand, Se (VI) 
was rapidly and extensively remobilized. In a recent study, Huang et al. 
(2005) reported that Cu2+ and Cd2+ ions bound by composites of E. aero-
genes NTG-01 with clay minerals and soil colloids were easily released by 
NH4NO3 and EDTA. 

Lebeau et al. (2002) investigated the sorption of cadmium by viable 
microbial cells that were free or immobilized in alginate beads by incubat-
ing the bacteria in a liquid soil extract medium at pH 5 7 and Cd concen-
trations of 1 to 10 mg L–1. The percentage of Cd biosorbed reached a 
maximum (69%) at low Cd concentrations and neutral pH. Thus, the effec-
tiveness of bacteria, inoculated into metal-contaminated soils, would 
largely depend on the concentration of the metal and its distribution be-
tween the biomass and the medium. 

Conflicting results have been obtained on the ability of free and im-
mobilized bacteria to sorb heavy metals. McEldowney (2000), for example, 

Cd2+ Pb2+  
 
Composite Observed Calculated Observed Calculated 
B. subtilis ferrihydrite 0.29 0.57 0.5 0.805 
E. coli ferrihydrite 0.15 0.44 0.68 0.775 

3 Role of Bacteria and Bacteria-Soil
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found major differences in the ability of P. fluorescens H2 to accumulate 
Cd between the free bacteria (suspended in maleate buffer) and those at-
tached to a glass surface. The time to saturation with Cd2+ was different 
between free and attached cells. Cd2+ accumulation by free cells was de-
pressed in the presence of zinc but remained several orders of magnitude 
higher than that by attached cells. The presence of Zn2+ did not inhibit Cd2+ 
uptake by attached cells; instead, uptake increased as the concentration of 
Cd2+ increased. Cd2+ accumulation by attached cells increased with pH but 
decreased by 40% in the presence of a metabolic inhibitor (carbomyl cya-
nide m-chlorophenyl-hydrazone). These findings suggest that the accumu-
lation of heavy metal by bacterial cells is substantially affected by attach-
ment to solid surfaces. On the other hand, no differences were observed by 
Lebeau et al. (2002) for the sorption of Cd between free and immobilized 
cells in a soil extract medium. 

Kulczycki et al. (2005) investigated the sorption of Cd2+ and Pb2+ by 
ferrihydrite and its composites with B. subtilis and E. coli at pH 3.0 6.5, 
and metal concentrations of 1.0×10 4 and 3.2 ×10 5 M. The log of the ap-
parent surface complex formation constants (log KS

M) and sorption capac-
ity (Smax) values were determined by fitting the experimental data to one-
site Langmuir sorption isotherms. The one-site model effectively described 
the sorption data (r2 > 0.9), where Cd2+ exhibited lower sorption affinities 
(log KS

M = –3 for ferrihydrite, –1.7 for B. subtilis-ferrihydrite, and –1.1 for 
E. coli-ferrihydrite) than Pb2+ (log KS

M = –0.9 for ferrihydrite, –0.2 for B. 
subtilis-ferrihydrite, and –0.1 for E. coli- ferrihydrite). The corresponding 
Smax values for Cd2+ and Pb2+ were 0.78 and 1.34 mmol g–1, respectively, 
on ferrihydrite; 0.29 and 0.5 mmol g–1, respectively, on B. subtilis-
ferrihydrite composites, and. 0.15 and 0.68 mmol g–1, respectively, on  
E. coli-ferrihydrite composites.  

The distribution of heavy metals at the bacteria/mineral interface has 
attracted the attention of several scientists. Templeton et al. (2001) used 
the long-period X-ray standing wave technique to probe the distribution of 
aqueous Pb(II) sorbed at the interface between Burkholderia cepacia 
biofilms and hematite (α-Fe2O3) or corundum (α-Al2O3) surfaces. The 
formation of a monolayer biofilm on the metal oxide surfaces provided 
high-energy sites for the sorption of Pb(II) at submicromolar concentra-
tions with uptake decreasing in the order: α-Fe2O3 (0001) > α-Al2O3 (1102) 
> α-Al2O3 (0001). More recently, Templeton et al. (2003a) measured the 
partitioning of Pb(II) between B. cepacia biofilms and bioflims coated 
with goethite (α-FeOOH) particles by EXAFS. At least 50% of the total 
Pb(II) sorbed at pH < 5.5 was associated with the biofilm, while the total 
uptake (>70% Pb/goethite) at pH > 6 by the composite was dominated by 
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goethite. Sorption of Pb(II) by the biofilm at high pH was dramatically 
decreased due to competition with the goethite surface. On the other hand, 
Pb sorption by goethite was significantly enhanced at low pH compared 
with systems with no complexing ligands. The bonding mode of Pb(II) in 
goethite was dependent on [Pb] concentration. Structural fitting of the 
EXAFS spectra indicated that the Pb-goethite surface complexes, formed 
at low [Pb] and pH 6, were largely composed of inner-sphere bidentate 
(binuclear) complexes bridging two adjacent singly coordinated surface 
oxygens, giving rise to Pb-Fe distances of ~3.9 Å. At high [Pb], however, 
the dominant complexes on the surface of goethite were bidentate edge-
sharing complexes with Pb-Fe distances of ~3.3 Å. 

The distribution of Se at the interface of aerobic B. cepacia biofilms 
and α-Al2O3 was largely dependent on the speciation of the element 
(Templeton et al. 2003b). Changes in the partitioning of Se over time are 
correlated with microbially induced reduction of Se(VI) and Se(IV) to 
Se(0), as observed by X-ray absorption near edge structure (XANES) spec-
troscopy. At low [Se], selenite preferentially binds to the alumina surface, 
while at high [Se] selenite was increasingly partitioned into the biofilm. 
Metabolically active B. cepacia rapidly reduced a fraction of the SeO3

2- to 
elemental Se(0). Selenate was preferentially partitioned into B. cepacia 
biofilms at all [Se] tested because of its low affinity for the alumina sur-
face. Rapid reduction by B. cepacia of SeO4

2- to Se(IV) and then to Se(0) 
gave rise to a vertical segregation of Se species at the B. cepacia/α-Al2O3
interface. Elemental Se(0) and Se(VI) accumulated within the biofilm, 
while Se(IV) intermediates preferentially sorbed to the alumina surface.  
B. cepacia/α-Al2O3 samples incubated with SeO4

2- and SeO3
2- when the 

bacteria were metabolically active caused an appreciable reduction in the 
mobility of Se as compared with X-ray treated biofilms. 

Organic matter is also the essential component of natural soils and its 
association with microorganisms may influence the behavior and fate of 
toxic metals. A variety of batch complexation experiments were performed 
by Borrok et al. (2007) in single, binary and ternary systems for the three 
components: natural organic matter (NOM), bacterium (B. subtilis) and
metals (Pb, Cu, Cd, and Ni) to determine the significance of ternary com-
plexation. They found that the formation of bacteria-metal-NOM complex 
is a rapid, fully-reversible chemical process. The stability of bacteria-
metal-NOM complexes increases with the decrease of pH. All NOM frac-
tions form ternary complexes to similar extents at circumneutral pH, but 
humic acid becomes the dominant NOM fraction in ternary complexes at 
low pH. The abundance of humic acid in ternary form is greatest with Ni 
or Cd systems and less with Pb and Cu systems. Their results suggest that 

3 Role of Bacteria and Bacteria-Soil
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ternary complexes may impact the mobility of aqueous metal cations in 
natural systems by changing dissolved NOM-metal complexes to colloidal 
bacteria-metal-NOM complexes which results in decreased bioavailability 
of the toxic metals. 

The formation of bacteria-soil composites may change the surface 
properties of minerals and their complexes with soil organic matter, and 
hence alter the behavior of toxic metals at soil particle surfaces. Huang et 
al. (2000) have attributed the large capacity of red and kaolinite-rich soils 
for taking up Cd to the abundant presence of rhizobia in these soils. Thus, 
when they inoculated Rhizobium fredii strain HN01 into a Red Soil and a 
Cinnamon Soil that had been treated with three heavy metals, the amount 
of Zn associated with carbonate, manganese oxides, and organic matter 
decreased by 9 26%. Inoculation also depressed the release of Cu to the 
soil solution, while the total amount of Cu associated with the mineral con-
stituents in the Cinnamon Soil increased. The increase in exchangeable Cu 
and Cu associated with carbonate, Mn oxides, and organic matter ranged 
from 20 to 54%. Subsequently, Huang et al. (2004) found that the amount 
of exchangeable Cd and that of Cd bound to organic matter increased by 
22 and 11%, respectively. At the same time, the Cd that was specifically 
adsorbed and bound to Mn oxides decreased by 14 and 29%, respectively. 
Inoculation of the Cu- and Cd-tolerant bacterium, E. aerogenes NTG-01, 
into an Alfisol and an Ultisol increased the surface area of the clay fraction 
in these soils by 3.0–8.8%, and enhanced the sorption of Cd2+ and Cu2+. 
Bacterial inoculation also increased the negative charge, and decreased the 
positive charge, of the clay fraction over the pH range of 4.0 to 6.5 (Huang 
et al. 2005). 

6 Concluding Remarks 

Bacteria and their composites with soil minerals or organic matter are ca-
pable of taking up a wide range and variety of toxic metals in soil envi-
ronments. Research done over the last decade or so has greatly improved 
our understanding of the mechanisms on biosorption of metals and bacte-
ria-metal-soil component interactions. However, more studies from mo-
lecular level are needed in order to enhance the ability of bacteria and their 
association with soil components to remediate toxic metals-contaminated 
soils. The focus of future investigations should be on the mechanisms by 
which metals are sorbed and bound by bacterial cell surfaces and bacteria-
soil/mineral composites. In this connection, X-ray absorption spectroscopy 
(XAS) is a promising technique because it can provide information about 
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the number and type of near-neighbors for the metals of interest together 
with estimates of bond distances. Another research imperative is to isolate 
bacteria from a variety of contaminated soils and associated environments, 
and elucidate the mechanisms of their tolerance to toxic metals. Molecular 
biotechnologies, notably DNA recombinant technology for bacterial sur-
face display can yield highly sorptive bacteria (Valls et al. 2000, Deng et al. 
2003). The impact of these bacteria on the binding and distribution of toxic 
metals at the interface of the bacteria-soil composite/solution interface is 
worth while investigating. Equally important is the association of heavy 
metal-resistant bacteria with hyperaccumulator plants and its potential in 
remediating toxic metal-polluted soils. 
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1 Introduction 

Adsorption of (bio)polymers occurs ubiquitously, and among the 
biopolymers, proteins are most surface active. Wherever and whenever a 
protein-containing (aqueous) solution is exposed to a (solid) surface, it 
results in the spontaneous accumulation of protein molecules at the solid-
water interface, thereby altering the characteristics of the sorbent surface 
and, in most cases, of the protein molecules as well (Malmsten 2003). 
Therefore, the interaction between proteins and interfaces attracts attention 
from a wide variety of disciplines, ranging from environmental sciences to 
food processing and medical sciences.  

4 Adsorption of Biopolymers, with Special 
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 Proteins are biopolymers of some 22 different amino acids. Because of 
the variation in physical-chemical properties, mainly polarity and electrical 
charge, between the constituent amino acids, protein molecules are am-
pholytic (i.e., containing positively and negatively charged groups) and 
more or less amphiphilic (i.e. comprising polar and apolar domains). These 
properties, in turn, lead to the formation of complex three-dimensional 
(3D) structures.
 Soil systems are highly heterogeneous, containing particles of colloidal 
dimensions. Hence, soil represents a relatively large interfacial area per 
unit volume, and a large fraction of the surface-active components, e.g., 
proteins, present in soil are adsorbed at interfaces. This has a number of 
consequences. For instance, by being adsorbed at surfaces, the hydrolysis 
of proteins by proteases (from micro-organisms) may be affected and, 
therefore, their availability as a nutrient. Further, the structure of a protein 
molecule and, hence, its biological activity are influenced by changes in its 
environment (Haynes and Norde 1994; Norde et al. 2005), as occurring 
during adsorption. This would affect the biological functioning of extracel-
lular enzymes. Also, the colloidal stability of soil particles is strongly in-
fluenced by electrosteric effects caused by adsorbed protein molecules. 
Colloidal stability of soil systems is of prime importance in soil structure.  
 Whatever the mechanism of the adsorption process, it occurs spontane-
ously, at constant temperature and pressure, only if the Gibbs energy, G, of 
the system decreases: 

ads ads ads 0Δ = Δ − Δ <G H T S                                                                (1) 

where H, S, and T refer to the enthalpy, entropy, and temperature (in de-
grees Kelvin) and adsΔ  indicates the change resulting from the adsorption 
process.
 The tendency of proteins to adsorb at interfaces is determined by many 
variables, including the pH, the ionic strength, the properties of the protein 
molecules and the interfaces, and the nature of the solvent and other com-
ponents present. The process of protein adsorption is complicated, and de-
spite the great volume of work over the past decades, a unified theory is 
still far ahead. Yet, some principles may be indicated. 
 Discussing principles of protein adsorption may start from general 
trends observed for the adsorption of more simple flexible, highly solvated 
polymers, in particular, polyelectrolytes. 
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2  Flexible Polymers 

Flexible, coily-structured polymers in solution possess a high conforma-
tional entropy resulting from the many rotational possibilities of the single 
bonds in the polymer chain.  
 The expansion of a polymer coil is determined by its interaction with 
the solvent. The more favorable the interaction between the polymer seg-
ments and the solvent molecules (good solvent), the better the polymer 
dissolves and the more the coil expands.  
 Adsorption of the polymer molecule causes a reduction of its conforma-
tional entropy (Norde 2003b). Hence, adsorption takes place only if the 
loss in conformational entropy is compensated by sufficient favorable in-
teractions between polymer segments and the interface. Because the poly-
mer molecule attaches with many segments at the interface, it adsorbs te-
naciously with a very high affinity, even if the interaction of the individual 
segments with the interface is rather weak. The high affinity manifests it-
self by the adsorption being irreversible with respect to variations of the 
polymer concentration in solution. 

 

 

 

 

 

Fig. 1.  Conformations of a flexible polymer molecule adsorbed from a poor sol-
vent (left) and from a good solvent (right). 
 

 Figure 1 illustrates how the segments of an adsorbed flexible polymer 
molecule may be distributed among trains, loops, and tails. Trains refer to 
the attached segments. They are rarely long, and they do not completely 
occupy the surface, leaving about 20–50% of the surface uncovered. As a 
rule, loops account for most of the adsorbed mass, their extension is pri-
marily determined by the solvent quality. A high loop density is tolerated 
only if the solvent quality is poor (relatively unfavorable polymer-solvent 
interaction). Then, the maximum amount of polymer that can be accom-
modated in an adsorbed layer is in the range of, approximately, 2–5 mg m–2. 
For a good solvent, the adsorbed polymer layer is more dilute and less 
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thick, reaching a value of, typically, 0.5–2 mg m–2. For entropic reasons, 
tails usually extend far into the solvent. The high affinity character of 
polymer adsorption is reflected in the shape of the adsorption isotherm, 
where the adsorbed mass, Γ , per unit area of the sorbent surface, is plot-
ted against the polymer concentration, pc , in solution. Typical isotherms 
for polymer adsorption are shown in Fig. 2. The initial part of the iso-
therms practically merges with the Γ -axis, because at low polymer sup-
ply, all of the polymer adsorbs until the surface is saturated and the plateau 
value of the isotherm is reached. 
 

 

Fig. 2. Schematics of adsorption isotherms for polymers, where the adsorbed mass 
Γ  per unit area of the sorbent surface is plotted against the polymer 
concentration pc  in solution. The steep initial slope of the isotherms indicates 
high adsorption affinity, which is typical for polymers. The plateau-value of Γ  is 
strongly determined by the conformation the adsorbed polymer molecules adopt 
(see Fig. 1), which, in turn, is strongly influenced by their solubility in the solvent. 
 
 The same considerations apply to the adsorption behavior of 
polyelectrolytes, i.e., polymers that carry electrically charged groups 
(anionic or cationic) along their chain. Because of the intramolecular 
repulsion between like-charged groups, polyelectrolytes are strongly 
expanded in aqueous solution, and water is a good solvent for flexible 
polyelectrolytes. Consequently, the formation of thick dense loops in the 
adsorbed layer is strongly suppressed, and polyelectrolytes adsorb in 
amounts of less than a few mg m–2. As with uncharged polymers, to adsorb 
flexible polyelectrolytes requires a critical attractive interaction with the 
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sorbent surface to compensate for the loss of conformational entropy. In 
addition to a chemical, nonelectrostatic interaction, polyelectrolytes 
interact electrostatically with the sorbent surface, provided that the surface 
is also electrically charged (which is usually the case in an aqueous 
environment). Depending on the charge signs of the polyelectrolyte and 
the sorbent surface, the electrostatic interaction is attractive or repulsive. It 
may or may not outweigh the nonelectrostatic interaction. For example, the 
electric contribution to adsΔ G  from a monovalent ionic group in an 
electric field is about 1 RT (R being the universal gas constant, and T the 
temperature in degrees Kelvin) for every 25 mV, and the contribution from 
dehydration of a 2CH− −  group is about 1.1 RT (Tanford 1973), both at 
room temperature. Thus, polyelectrolytes with some hydrocarbon groups 
in their chain may readily adsorb under electrostatically unfavorable 
conditions.
 In contrast to uncharged polymers, the adsorption of polyelectrolytes is 
highly sensitive to variations in ionic strength. At elevated ionic strength, 
charge-charge interactions may be effectively screened and the 
polyelectrolyte behavior approaches that of an uncharged polymer. This 
effect is reflected in the shape of the adsorption isotherms, as indicated in 
Fig. 3a and 3b. The pH, which usually controls the charge on the 
polyelectrolyte and, often, on the sorbent surface, influences adsorption in 
a similar way: at a pH where the polyelectrolyte is only weakly charged, it 
adsorbs in a thicker loopy layer with less sensitivity to variation in ionic 
strength.
 Following similar reasoning, the adsorption pattern observed for 
ampholytic polyelectrolytes 0can be explained. As illustrated in Fig. 4, 
polyampholytes show maximum adsorption around their isoelectric point 
(i.e., the pH where the net charge of the polyampholyte is zero).  
 Biopolymers e.g., polysaccharides, polynucleotides, unfolded protein 
molecules, that all attain expanded flexible structures in solution adsorb 
more or less according to the principles discussed above. 
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Fig. 3. Schematics of the influence of electrostatic interactions on adsorption iso-
therms of polyelectrolytes. Effect of charge contrast between the polyelectrolyte 
and the sorbent surface in media of (a) low and (b) high ionic strength. 
 

 

 

 

 

 

Fig. 4. Influence of pH on the plateau-value plΓ  of adsorption isotherms of poly-
ampholytes. At either side of the isoelectric point, i.e.p., the polyampholyte attains 
a net charge causing intra- and intermolecular electrostatic repulsion. As a result, 
the mass of adsorbed polyampholyte, that can be accommodated per unit area of 
the sorbent surface, decreases. Electrostatic interactions are suppressed by increas-
ing ionic strength, yielding plΓ  less sensitive to pH. 

3  Globular Proteins 

The structure and structural stability of globular proteins in aqueous solution 
are the result of various interactions inside the protein molecule, between the 
protein and the water, and among the water molecules (Norde 2003a). The 
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sequence of the amino acids in the polypeptide chain ultimately determines 
the spatial architecture, i.e., the 3D structure that a protein molecule adopts.  
 In contrast to flexible polymers, the 3D structures of globular proteins 
are usually highly organized and contain different well-defined structural 
elements, such as α -helices and β -sheets (Creighton 1993). Thus, globu-
lar proteins represent low-conformational entropy states of the polypeptide 
chain. Because the various types of interactions that are involved in shap-
ing the 3D structure of a protein counteract each other, the resulting (na-
tive) structure is only marginally stable. However, the adsorption of globu-
lar proteins shares some features with that of flexible polymers, but in 
various aspects it is different. Similar to flexible polymers, proteins adsorb 
via multiple contacts, which, more often than not, results in high affinity 
adsorption. Furthermore, the effects of pH (i.e., electric charge of the pro-
tein) and ionic strength follow the general pattern observed for a polyam-
pholyte: the adsorbed mass is often found to be maximal at the isoelectric 
point of the protein, and the pH dependency reduces with increasing ionic 
strength (Haynes and Norde 1994). Despite their internal coherence, ad-
sorbed globular proteins also tend to spread over the surface to optimize its 
interaction with the surface. However, proteins retain more or less their 
compact structure; in other words, the polypeptide chain does not unfold 
into a loop-and-train like structure as observed for flexible polymers.  
 A change in the environment of a protein molecule, e.g. adsorption 
from aqueous solution onto a sorbent surface, may lead to a partial break-
down of its ordered structure, resulting in an increase of conformational 
entropy. This is a fundamental difference between protein adsorption and 
the adsorption of flexible polymers, for which attachment to a surface im-
plies a loss of conformational entropy. 
 The main contributions to adsΔ G  are discussed in Sect. 3.1 

3.1  Types of Interaction Involved in Protein Adsorption 
at a Smooth Surface 

The main contributions to adsΔ G  for a globular protein are from electro-
static, dispersion, and hydrophobic forces and from changes in the struc-
ture of the protein molecule. Although in this section these contributions 
are discussed individually, strict separation of the influence of these forces 
on the overall adsorption process of a protein is not possible. For instance, 
adsorption-induced alteration of the protein structure affects the electro-
static and hydrophobic interaction between the protein and the surface. 
When the sorbent surface is not smooth but is covered with (polymeric) 
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protuberances (‘hairy’ surfaces), additional, mainly steric, interactions 
come into play. Hairy surfaces are often encountered in nature as a result 
of adsorbed or grafted natural polymers, such as polysaccharides, that 
reach out in the surrounding medium with some flexibility. Interaction of 
proteins with such hairy surfaces will be discussed in Sect. 3.3. 

3.1.1  Interaction Between Electrical Double Layers 

As depicted in Fig. 5, both the protein molecule and the sorbent surface are 
electrically charged. In an aqueous environment, they are surrounded by 
counterions, which, together with the surface charge, form the so-called 
electrical double layer. The Gibbs energy of an electrical double layer, 

cdG , may be calculated as the isothermal, isobaric reversible work re-
quired to invoke the charge distribution in the double layer 

0
' '

cd 0 0
0

d
σ

ψ σ=G                                                                                    (2) 

where '
0ψ  and '

0σ  are the variable surface potential and surface charge 
density, respectively, during the charging process. Integration of (2) re-
quires ' '

0 0( )ψ σ , and this functionality can be derived from a model for the 
electrical double layer. To calculate ads cdΔ G , (2) has to be applied three 
times, i.e., cdG  for the bare sorbent surface and for the dissolved protein 
molecule has to be subtracted from ads cdΔ G  for the protein-covered sur-
face. Charge distributions for the system before and after adsorption are 
schematically depicted in Fig. 5. For a bare sorbent surface, the Gouy-
Stern model (Lyklema 1995) for the electrical double layer may be taken. 
For a dissolved protein, a discrete charge model (e.g. Kirkwood’s model 
(Kirkwood 1934)) seems to be more appropriate, and for the protein-
covered surface charge, distribution models have been proposed by Norde 
and Lyklema (1978c) and by Ståhlberg et al. (1995). As mentioned before, 
although usually structurally perturbed, the adsorbed protein molecules re-
tain a compact conformation, and the adsorbed layer usually reaches a 
thickness of a few to a few tens of nm. Under most ambient conditions of 
ionic strength, the distance over which electrostatic forces are effective, 
the Debye length (Lyklema 1991b), is less than the thickness of the ad-
sorbed layer. For instance, in a medium of 0.01 M ionic strength, the De-
bye length is 3 nm and in 0.1 M it is only 1 nm. Therefore, the compact 
protein layer shields the contact region between the protein and the sorbent 
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from electrostatic interaction with the solution. To prevent an excessively 
high electric potential, the charge density in the nonaqueous contact region 
(which has a low dielectric constant) must be regulated to be essentially 
zero. Charge regulation may occur through changes in the ionization of the 
protein and/or the sorbent surface (Norde and Lyklema 1978a; Haynes et 
al. 1994) and also by the incorporation of the ions other than charge-
determining ions (so-called indifferent ions) (Norde and Lyklema 1978b; 
Van Dulm et al. 1981). As a result, ads cdΔ G  is not very sensitive to the 
charge on the protein and the sorbent surface before adsorption, and it usu-
ally does not exceed a few tens of RT per mole of protein (Norde and 

proteinaceous environment is a poorer ‘solvent’ for most ions, and, hence, 
the chemical effect of incorporation of ions in the adsorbed layer opposes 
protein adsorption. This explains why protein adsorption often reaches its 
maximum affinity when the charge densities on the dissolved protein and 
the bare sorbent surface just match each other, so that no additional ions 
have to be incorporated to neutralize the protein-sorbent region. 

 
Fig. 5. Schematic representation of charge distributions before (left) and after 
(right) protein adsorption. The charge on the sorbent surface and the protein mole-
cule are indicated by /+ − . The low molecular weight ions are indicated by ⊕  
and . 

3.1.2  Dispersion Interaction 

Dispersion interaction arises from the synchronization of the motions of 
electrons in electron ‘clouds’ that are in close proximity, thereby inducing 

Lyklema 1979). In addition to contributing to the charge regulation, ion 
transfer between the solution and the adsorbed layer includes a change in 
the chemical environment of the ions. Compared to water, the low-dielectric 
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dipoles. For a sphere 1 (e.g., the protein molecule), separated from a body 2, 
having a planar surface (e.g., the sorbent surface) across a medium 3, the 
contribution from dispersion interaction to the Gibbs energy of adsorption 
may be approximated by (Lyklema 1991a)  

12(3)
ads disp ln

6 2 2
Δ = − + +

+ +

A a a hG
h h a h a

                                     (3) 

where 12(3)A  is the Hamaker constant for the system, a is the radius of the 

sphere, and h is the separation distance between the sphere and the planar 
surface.
 For <<h a  (3) reduces to 

12(3)
ads disp 6

Δ = −
A a

G
h

                                                                           (4) 

The Hamaker constant, 12(3)A , for the system may be derived from those 

of the individual components, according to 

( )( )1/ 2 1/ 2 1/ 2 1/ 2
12(3) 11 33 22 33= − −A A A A A                                                     (5) 

In aqueous media, usually 11 33>A A  and 22 33>A A  and, hence, 

12(3) 0>A , so that ads disp 0<A G , which implies attraction between 1 and 

2. According to (3) and (4), that attraction increases with increasing size of 
the sphere, and it drops off steeply with increasing separation distance. 
Further,

( )1/ 2
12(3) 131 232=A A A                                                                           (6) 

The Hamaker constant for interaction across water is about 216.5 10 J−×

for globular proteins (Nir 1977) and 202 5 10 J−− ×  for such oxides as 
silica and metal oxides (Lyklema 1991c). Based on these values and 
applying (6) and (4) to a spherical protein molecule having a radius of 3 
nm at a distance of 0.1 nm from the surface of a soil particle, ads dispΔ G  at 

20ºC amounts to 10 20− RT per mole of protein. Because of the various 
approximations involved, these values are only semi-quantitative. More 
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accurate estimates of ads dispΔ G  require more detailed knowledge of the 

system’s parameters, i.e., the Hamaker constants and sizes and shapes of 
the protein molecules and the soil particles. 

3.1.3  Changes in the State of Hydration 

Polar groups interact favorably with water molecules, mainly through hy-
drogen bonding. They compete successfully with hydrogen bonds between 
the water molecules, making them readily soluble in water. Apolar groups 
do not offer the possibility of such favorable interactions with water, and 
they are, therefore, expelled from an aqueous environment. The water 
molecules in contact with a surface of apolar material are strongly oriented 
so as to form as many hydrogen bonds as possible to other water mole-
cules, as they can not be formed with the apolar surface. As a result, the 
entropy of the water adjacent to the surface is greatly reduced. This is the 
hydrophobic effect.  
 Protein molecules contain both polar and apolar groups. For proteins 
dissolved in water, these apolar groups tend to be buried in the interior of 
the globular structure, as a result of expulsion by the surrounding water. 
However, other interactions, as well as geometrical constraints, interfere 
with the hydrophobic effect, so that a minor fraction of the water-
accessible surface of the protein molecule may be apolar. Protein mole-
cules that do not spontaneously aggregate in water do not have pronounced 
apolar patches at their surfaces. 
 The surfaces of sorbent materials, e.g., oxide particles in soil, are often 
less complex than the exterior of protein molecules. However, if such par-
ticles are (partly) covered with organic materials, e.g., humic acids and/or 
fulvic acids, their surface chemistry may be very complex as well. Also, 
surfaces of biological structures, such as those of plant roots, may be het-
erogeneous.
 When the surfaces of the protein molecules and the sorbent are 
predominantly polar, it is probable that some hydration water is retained 
between the adsorbed protein layer and the sorbent surface. Then, the 
contribution from changes in the state of hydration to the Gibbs energy of 
protein adsorption, ads hydrΔ G , will be minor. When the surfaces are 

apolar, dehydration is a strong driving force for adsorption. The value of 
ads hydrΔ G  for apolar surfaces may be approached from partitioning model 

compounds between water and a nonaqueous solvent (Némethy and 
Scheraga 1962). It is, thus, estimated that dehydration of an apolar surface 
lowers the Gibbs energy by about 10–20 mJ m–2 (Richards 1977). For a 
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protein of 30,000 Da and an adsorbed mass of 1 mg m–2, it corresponds, at 
ambient temperature, to ads hydrΔ G  ranging between –120 RT and –240 RT
per mole of protein. It demonstrates that the contribution from apolar 
dehydration dominates over those from electrical double layer overlap and 
dispersion interaction. 

3.1.4  Rearrangements in the Protein Structure 

The 3D structure of a native protein (in aqueous solution) is only margin-
ally thermodynamically stable and it is sensitive to changes in its environ-
ment. It is, therefore, not surprising that adsorption is often accompanied 
by rearrangements in the protein’s 3D structure. It is commonly observed 
experimentally that the thickness of an adsorbed protein layer is compara-
ble to the dimensions of the protein molecule in solution. It indicates that 
the adsorbed protein molecules remain compactly structured. 
 After adsorption, one side of the protein molecule is oriented towards 
the sorbent surface and turned away from the aqueous solution. As a 
consequence, apolar parts of the protein that are buried in the interior of 
the dissolved molecule may become exposed to the sorbent surface, where 
they are still shielded from contact with water. Because hydrophobic 
interaction between apolar amino-acid residues in the protein’s interior 
support the formation of such secondary structures as α -helices and β -
sheets (Creighton 1993), a reduction of this interaction destabilizes such 
structures. Breakdown of the α -helices and/or β -sheets content is, indeed, 
expected to occur if peptide units released from these ordered structures 
can form hydrogen bonds with the sorbent surface. This is the case for 
oxides, e.g., silica and metal oxides, which may be abundantly present in 
soil systems, and with sorbents retaining residual water at their surfaces. 
Then, the decrease in ordered secondary structures leads to an increased 
conformational entropy of the protein. This may favor the protein 
adsorption process by tens of RT per mole of protein (Zoungrana et al. 
1997; Norde and Favier 1992; Kondo et al. 1992; Kondo et al. 1991). 
However, if in the nonaqueous protein-sorbent contact region hydrogen 
bonding between peptide units and the sorbent surface is not possible, as is 
the case for apolar surfaces, adsorption may induce extra peptide-peptide 
hydrogen bonds, thereby promoting the formation of α -helices and β -
sheets (Zoungrana et al. 1997; Norde and Favier 1992; Kondo et al. 1992, 
1991; Norde and Giacomelli 1999). Thus, whether adsorption on an 
apolar surface results in an increased or decreased order in protein 
structure depends on the subtle balance between energetically favorable 
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intra- (and inter-) molecular hydrogen bonding and ensuing changes in the 
conformational entropy of the protein molecule.  
 Based on these contributions (a–d), we may arrive at the predictive 
scheme presented in Table 1. Because of the relatively large contribution 
from dehydration, essentially all proteins adsorb from an aqueous envi-
ronment on apolar surfaces, even under electrostatically adverse condi-
tions. With respect to polar surfaces, distinction may be made between 
proteins having a strong internal coherence (‘hard’ proteins) and those 
having a weak internal coherence (‘soft’ proteins). The hard proteins ad-
sorb at polar surfaces only if they are electrically attracted, whereas the 
structural rearrangements (i.e., reductions in ordered structure) in the soft 
proteins lead to a sufficiently large increase in conformational entropy to 
make them adsorb at a polar, electrostatically repelling surface. 

Table 1. Predictive scheme of protein adsorption. The ‘+’ and ‘–’ indicate the 
electrical charge sign on the sorbent surface and the protein molecule. Conditions 
at which adsorption is predicted is marked ‘yes’ and predictions of absence of 
adsorption is marked ‘no’. Further explanation is given in the text 

Sorbent surface 

Hydrophobic Hydrophilic 

 

+ – + – 

+ yes yes no yes  

Hard – yes yes no no 

+ yes yes yes yes Pr
ot

ei
n 

 

Soft – yes yes yes yes 

 

hydrophobic dehydration 

dominates adsorption 

 

structural changes in 

proteins dominate  

adsorption 

3.2  Protein Adsorption in Model Systems 

The model systems, discussed here, contain one type of well-defined pro-
tein and one type of well-characterized solid surface in an aqueous me-
dium containing one type of low molecular-weight electrolyte. Table 2 
summarizes some relevant properties of the proteins. Lysozyme (LSZ) 
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from hen’s egg, ribonuclease (RNase) from bovine pancreas, and α -
lactalbumin ( LAα )  from bovine milk are relatively small proteins, and 
they have nearly the same sizes and shapes. They have different isoelectric 
points, so that for a given pH, these proteins have different net charges. 
The values of the denaturation temperature and of the Gibbs energy of de-
naturation indicate that the stability of the native structure in solution de-
creases in the order LSZ > RNase > LAα . The structural stability of LAα  
further decreases by removing the Ca2+-ion from the protein. Bovine serum 
albumin (BSA) is about five times larger than the other proteins. The 
isoelectric point is at pH 4.6, and its structural stability is comparable to 
that of LAα . 

Table 2.  Some properties of proteins relevant for their adsorption behaviour 

Protein LSZ RNase LAα  2LA( Ca )+α − BSA 

Molar mass (Da) 14600 13680 14200 14200 67000 

Isoelectric point (pH units) 11.1 9.4 4.3 4.1 4.6 

Denaturation temperature (ºC) 

(at pH of maximum stability) 

 

76 

 

70 

 

63 

 

41 

 

65 

Gibbs energy of denaturation 

(J g–1) 

     

 heat 4.1 3.2 1.5 – – 

 denaturant 4.0 3.9 1.9 0.7 – 
 

LSZ: lysozyme; RNase: ribonuclease; LAα : α -lactalbumin: 2LA( Ca )+α − : 
2Ca +  depleted LAα ; BSA: bovine serum albumin. 
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Table 3.  Some properties of the sorbent particles 

Electrolyte (0.05 M) 

Phosphate  Acetate  Borate 
buffer 

pH 7.0 pH 5.5 pH 9.5 

 

PS+  PS−  2SiO−  2 3Fe O+α  2 3Fe O−α  

Nature of charged groups += NH − 3OSO−−  O−−  2OH+−  O−−  

Charge density (mC m-2) +27 –23 – – – 

Zeta potential (mV) +32 –69 –39 +20 –47 

Hydrophobicity (contact 
angle with water) 

 
82º 

 
82º 

 
0º 

 
hydrophilic 

Surface area (m2 g–1) 12.4 10.0 100 36.0 36.0 

PS: polystyrene; SiO2: silica; 2 3Fe Oα : hematite. The superscripts ‘+’ and ‘-’ 
indicate the sign of the charge on the sorbent particles. 

 

 The sorbent materials are supplied as finely dispersed colloidal parti-
cles, whose surfaces are smooth. Some of their properties are presented in 
Table 3. The sorbents cover different combinations of hydrophobicity and 
sign of the surface charge. Thus, the model systems presented allow sys-
tematic investigation of the influences of hydrophobicity, electric charge, 
and protein structural stability on protein adsorption. 
 The protein adsorption isotherms (not shown here) for all these systems 

signs. At the hydrophobic surfaces of polystyrene (PS), all proteins adsorb, 
both under electrostatically attractive and repulsive conditions. At the 
hydrophilic surface of hematite ( 2 3Fe Oα ),  where dehydration does not 
favor adsorption, the structurally most stable proteins, LSZ and RNase, 
adsorb only if electrostatically attracted, but the less stable proteins, LAα  
and BSA, adsorb even when electrostatically repelled. Adsorption-induced 
loss of ordered secondary structure in these proteins has been inferred from 
circular dichroism experiments (Norde and Giacomelli 1999). The 
resulting increase in conformational entropy of the polypeptide chain is 

buffer buffer 

show well-developed plateau values, plΓ . Values of plΓ  are given in 
Fig. 6. The charge of the proteins is qualitatively indicated by ‘+’ and ‘ − ’ 
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apparently sufficiently large to cause spontaneous adsorption of these 
proteins at a hydrophilic, electrostatically-repelling surface. A similar 
behavior is observed at the hydrophilic surface of silica ( 2SiO ); here, the 
influence of the structural stability of the protein is further demonstrated 
by the differences between the plΓ -values of LAα  and 2+LA( Ca )α − . 
 The experimental data presented in Fig. 6 are in accordance with the 
predictions given in the scheme of Table 1. 

3.3  Morphology of the Sorbent Surface 

It is assumed in the foregoing that the surface at which the biopolymer ad-
sorbs is smooth. However, in quite a few cases, sorbent surfaces may be 
‘hairy’. For instance, at biological surfaces (e.g., those of biological mem-
branes and microbial cells) natural polymers, such as polysaccharides, are 
often present. Soil particles may also be (partly) covered with polymeric 
substances, e.g., humic and fulvic acids. When these polymers reach out  
with a relatively high degree of flexibility in the surrounding medium  
(cf., Sect. 2), the surface will dynamically respond to incoming globular 
protein molecules. It may offer the possibility of optimizing contact by 
conforming to the shape of the adsorbing protein molecule. However, 
when the density of the extending polymer segments (loops and tails) of 
the flexible polymer at the surface is high, the small separation distance 
between these segments (‘hairs’) may hamper the ability of the protein 
molecule to penetrate the polymer layer. An incoming protein molecule 
then squeezes the polymer hairs, causing a locally higher polymer concen-
tration. This results in an increased osmotic pressure in the polymer layer, 
which gives rise to repulsion of the incoming protein molecule. As a result, 
protein adsorption is suppressed (Halperin 1999; Szleifer 1997). In model 
systems where polyethylene oxide (PEO) is used, polymer layers have 
proven to be successful in controlling protein adsorption (Norde et al. 
2005; Currie et al. 2003). The effect of preadsorbed or end-grafted poly-
mers on protein adsorption depends primarily on two characteristics of the 
polymer layer: 
 (i) the grafting density of the polymer chains (hairs). 
 (ii) the extension of the polymer chains in the surrounding solution. 
 

‘ ’
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Fig. 6. Plateau-values, pl 2/ mg mΓ , of adsorption isotherms of lysozyme (LSZ), 
ribonuclease (RNase), α -lactalbumin ( LAα ), calcium-depleted α -lactalbumin 

( 2LA( Ca )+α − )  and bovine serum albumin (BSA) on hydrophobic polystyrene 
(PS) and hydrophilic hematite ( 2 3Fe Oα − )  and silica ( 2SiO )  surfaces. An indi-
cation of the charge density of the surface is given by the zeta-potential, ζ , and of 
the proteins by ‘+’ and ‘–’ signs. Ionic strength 0.05 M; T = 25ºC. (Derived from 
Currie et al. 2003). 
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Fig. 7.  Conformational states of polymer chains grafted at a surface. Influence of 
grafting density: mushroom (left) and brush (right). 

Despite controversy in the literature, some trends emerge. As expected, 
protein adsorption is reduced with increasing grafting density of the poly-
mer. When the separation distance between the polymer chains becomes 
smaller, the chains have to stretch out into the solution. The polymer layer 
is then said to attain a brush conformation (Fig. 7). The conformation of 
the brush determines the efficacy of protein repulsion. A higher brush den-
sity is required to suppress the adsorption of smaller protein molecules. As 
a rule, protein repellency increases with increasing length of the polymer 
chains, although this effect may be more complex, as illustrated by the re-
sults of Currie et al. (1999) (Fig. 8), which show that at relatively low 
grafting densities, long PEO chains in a brush enhance protein adsorption. 
Similar results were reported by Norde and Gage (2004). It implies that in 
addition to steric and osmotic repulsion forces (weak) attractive interaction 
between the polymer and the protein exists (Efremova et al. 2001; Sheth et 
al. 2000). Furthermore, in the case of short polymer chains forming a brush 
of low thickness, long-range dispersion and/or electrostatic forces may 
cause accumulation of protein molecules at the outer edge of the brush. In 
such a mode of adsorption, an intimate contact of the protein molecules 
and the sorbent surface is prevented. Consequently, the adsorbed protein 
molecules are expected to be less structurally perturbed and, hence, to re-
tain biological activity. An example is given in Sect. 3.4 before. 

3.4  Adsorption-Induced Changes in the Structure  
and Biological Activity of Proteins. A Case Study 

Because of the structure-function relationship for (globular) proteins, 
adsorption-induced changes in the molecular structure are likely to affect 
the biological activity of the protein, e.g., the enzymatic activity. In soils, 
as well as in a wide variety of other systems, the impact on biological 
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functioning is the most relevant aspect of adsorption. Here, the following 
case study is briefly discussed as a typical example.  
 

 

Fig. 8.  Adsorption of BSA on surfaces coated with polyethylene oxide (PEO). In-
fluence of the grafting density of PEO at the surface for different polymer chain 
lengths (              700, . .− − −  445, and − − −  148 ethylene oxide monomers) on the 
plateau-adsorption, pl 2/ mg mΓ  of BSA. (Redrawn from Sheth et al. 2000). 

 Zoungrana et al. (1997) and Norde and Zoungrana (1998) investigated 
the influence of adsorption on the structure, structure stability and biologi-
cal activity of a proteolytic enzyme, α -chymotrypsin. The enzyme was 
adsorbed from 0.01 M phosphate buffer at pH 7.0 and at 22ºC onto solid 
surfaces of different hydrophobicities and morphologies. 
 The sorbents were hydrophobic Teflon, hydrophobic polystyrene (PS), 
and hydrophilic silica. These sorbents were negatively charged colloidal 
particles having smooth surfaces. In adition, PS particles at the surface of 
which oligomers (8-mers) of ethylene oxide ( 8(EO) )  were grafted at a 
density of one 8(EO) -moiety per 2.5 nm2 were used. Because of the water-
solubility of EO, these flexible 8(EO)  oligomers reach out from the sur-
face into the aqueous solution, causing a hairy sorbent surface. For a more 
detailed description of these sorbent materials, see Zoungrana and Norde 
(1997), and Norde and Zoungrana (1998). 
 The molecular shape of α -chymotrypsin is an ellipsoid of 5.1 nm × 4.0 
nm × 4.0 nm. Its molar mass is 25,200 Da and its isoelectric point is 8.1.  
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 Figure 9 shows adsorption isotherms for this protein on the various 
sorbents. As is usually observed for proteins at surfaces, the adsorption 
affinity is higher for the hydrophobic surfaces than for the hydrophilic 
ones. The adsorption plateau-values at silica and PS- 8(EO) , approximately 
2.5 mg m–2, are compatible with a complete monolayer of side-on 
adsorbed molecules of α -chymotrypsin. Adsorption saturation on the PS 
and, even more so, the Teflon surfaces is beyond monolayer coverage, 
suggesting that on these hydrophobic surfaces the protein molecules are so 
severely perturbed as to accommodate more protein mass in the adsorbed 
layers and/or there is adsorption of a second layer of protein molecules 
(possibly triggered by structurally altered molecules in the first layer). 
Modifying the PS-surface with 8(EO)  moieties lowered the adsorption 
affinity. In view of the dimensions of the α -chymotrypsin molecules and 
of the 8(EO)  grafting density, it is inferred that the surface area per 
adsorbed α -chymotrypsin molecule comprises about 8 8(EO) -oligomers. 
This would prevent intimate contact between the adsorbed protein 
molecules and the PS surface. As a result, the structural integrity of the 
protein is expected to be less perturbed.  
 The influence of adsorption on the structure of α -chymotrypsin is 
shown in Fig. 10, where the circular dichroism (CD) spectrum of the pro-
tein in solution is compared with that of the protein adsorbed on Teflon 
and silica. Because of absorbance in the far UV by the aromatic styrene, it 
is impossible to obtain reliable CD spectra of proteins adsorbed on PS and 
PS- 8(EO) . The CD spectrum of a protein reflects its composition of sec-
ondary structural elements ( α -helices, β -sheets). The spectrum of dis-
solved α -chymotrypsin is indicative of a low content of α -helices and a 
high content of β -sheets. After adsorption at the silica surface, the CD 
spectrum is shifted, but the shift is much more pronounced when the pro-
tein was adsorbed at the Teflon surface. The shifts are in opposite direc-
tions for the hydrophobic and hydrophilic surfaces, respectively. The spec-
trum of the protein on the hydrophilic surface of silica indicates a decrease 
in ordered secondary structure, i.e., the polypeptide chain in the protein has 
an increased random structure and, hence, a larger conformational entropy. 
Adsorption on the hydrophobic Teflon surface induces the formation of 
ordered structural elements, notably an increase in the content of α -
helices (cf., the discussion in Sect. 3.1.4). 
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 The enzymatic activities of α -chymotrypsin in solution and adsorbed 
at the different surfaces are presented in Fig. 11, where the specific enzy-
matic activity (defined as activity per unit mass of protein) is plotted as a 
function of temperature. The enzyme loses activity due to adsorption. On 
the hydrophobic Teflon and PS surfaces, the activity is completely gone, 
whereas on the hydrophilic silica surface, α -chymotrypsin has retained 
most of its biological function. These differences are in agreement with the 
adsorption isotherms and the circular dichroism spectra. The influence of 
the hydrophobicity of the sorbent surface on the affinity of the protein for 
the sorbent surface, as judged from the rising parts of the adsorption iso-
therms (Fig. 8), suggests that the proteins are more perturbed and, hence, 
less biologically active when adsorbed at hydrophobic surfaces. Also, the 
CD spectra indicate that adsorption-induced structural perturbations are 
more severe at hydrophobic surfaces. 

Fig. 9. Adsorption isotherms where the adsorbed mass 2/ mg mΓ , of  
α -chymotrypsin on various sorbent surfaces is plotted against the protein 
concentration 3

p / g dmc , in solution. Sorbents: Teflon ( ), polystyrene (x), 

polystyrene 8(EO)−  ( ), silica ( ). Conditions: 0.01 M phosphate buffer pH 7.1; 
22ºC. (Redrawn from Zoungrana and Norde 1997). 
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Fig. 10. Circular dichroism spectra of α -chymotrypsin in solution (             ), ad-
sorbed on Teflon ( . .− − − ), and on silica ( − − − ). Conditions as in Fig. 9.  
(Redrawn from Zoungrana and Norde 1997). 

 The addition of the 8(EO) -oligomers to the PS surface resulted in re-
tention of some of the enzymatic activity of adsorbed α -chymotrypsin, 
whereas this activity was completely lost in the absence of the grafted oli-
gomers. The short 8(EO)  chains trapped between the adsorbed protein 
molecules and the PS surface probably suppressed adsorption-induced 
structural perturbation and enzymatic inactivation. Because the surfaces in 
soil systems are, in most cases, hydrophilic rather than hydrophobic and as 
many of the surfaces may be covered with preadsorbed polymers or oli-
gomers, it is expected that most proteins adsorbed at these surfaces re-
tained, at least partly, their biological activity. 
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Fig. 11. Temperature dependency of the specific activity of α -chymotrypsin in 
solution ( ), adsorbed on silica ( ), Teflon (x), polystyrene ( ) and polysty-
rene 8(EO)−  ( ). Conditions as in Fig. 9. (Redrawn from Zoungrana and Norde 
1997). 

 In this chapter the roles of various physico-chemical parameters in the 
interaction between globular proteins, e.g. enzymes, and soil minerals have 
been discussed semi-quantitatively. Knowledge of the mechanism of that 
interaction provides a basis to manipulate biological activity in soils. 
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1 Introduction 

Soil and sediment organic matter (SOM) comprises the sum total of or-
ganic materials in soil, including litter, microbial biomass, water-soluble 
organics, humic substances, and plant residues in varying stages of decom-
position. Although the SOM content of mineral soils averages only 1–5%, 
SOM has a substantial impact on soil conditions (Stevenson 1994). For 
example, SOM is involved in the formation and stabilization of soil 
aggregates, promoting soil aeration and moisture retention. SOM is also 
the principal sorbent of hydrophobic organic compounds (HOCs), 
affecting their transport and bioavailability in soils and sediments (Xing 
and Pignatello 1998).  

In 1968, researchers discovered that a moderate amount of SOM 
had a pronounced influence on the sorption of organic compounds, unless 
SOM content is very low (Lambert 1968). Due to the high affinity, the 
interaction of SOM with HOCs may be described by the following 
equation:  

5 Relationship of Polarity and Structures 
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log Koc = a + b log Kow,                                                                 (1) 

where Koc is the organic carbon-normalized sorption coefficient (i.e., 
Kd/foc, where foc is the fraction of organic carbon in soil), Kow is the 
octanol-water partition coefficient, and a and b are empirical constants. 
This equation has been widely used in predictive models for the 
movement and risk assessment of HOCs in soils and sediments, on the 
assumption that SOM behaves as a homogeneous partition phase, 
sorption occurs through partitioning, and octanol is an appropriate 
surrogate for SOM.  

In reality, SOM is very heterogeneous in composition and 
structure. During sedimentation and diagenesis, biopolymers are degraded 
and cross-linked, forming humic substances (e.g., humic acids and humin) 
that may be further transformed into kerogen, coal, and graphite under 
metamorphic conditions. Within a single soil profile, the percentage of 
aromatic constituents in humic acids (HAs) increases as humification 
progresses with depth (Table 1). Furthermore, the chemical composition of 
HAs sequentially extracted from a single soil is quite variable (Kang et al. 
2003).  

The compositional and structural diversity of SOM leads to 
different sorptive properties for HOCs (Grathwohl 1990; Weber et al. 
1992). For example, the sorption capacity of organic matter in 
unweathered shale and high-grade coals is more than an order of 
magnitude higher than that of organic matter derived from recent 
deposited soils, geologically immature material. Similar inferences can 
be drawn while comparing with the shale fraction of soils (Garbarini and 
Lion 1985; Grathwohl 1990). Furthermore, the measured Koc values of 
PCBs and fluoranthene were quite different from the Koc values 
calculated from equation (1) (Brannon et al. 1995). A number of 
investigators have reported that Koc of HOCs is predominantly influenced 
by the chemical characteristics of SOM (Gunasekara and Xing 2003; 
Khalaf et al. 2003; Kulikova and Perminova 2002; Salloum et al. 2002; 
Xing 1997).  

Nevertheless, a conclusive, distinct relationship between sorption 
of HOCs and the SOM characteristics has not been established. Here we 
summarize the literature data and our own findings on the correlation 
between HOC sorption and SOM characteristics with particular reference 
to the polarity of SOM. 



 

2 Aromaticity of SOM and Sorption of HOCs 

Solid state 13C NMR spectroscopy has emerged as a very useful tool for 
characterizing SOM (Kinchesh et al. 1995; Preston 1996). Several workers 
have reported that Koc of HOCs was linearly or exponentially related to the 
aromatic carbon contents of HAs or whole soils as determined by 13C 
NMR analysis (Ahmad et al. 2001; Chen et al. 1996; Chin et al. 1997; 
Gauthier et al. 1987; Perminova et al. 1999). The Koc value of humic mate-
rials can vary by as much as an order of magnitude, depending upon their 
origins (Fig. 1).     

 

 

 
 

 

 

 

 

 
Fig. 1. Relationship between the Koc of HOCs and the fraction of aromatic carbon 
in the sorbents as determined by 13C NMR; (a) Koc of pyrene for humic acids from 
three soils and a sediment as sorbents (Gauthier et al. 1987), (b) Koc of naphtha-
lene for five different whole soils as sorbents (Xing 1997). 

Murphy and Zachara (1995) suggested that humic substances have 
heterogeneous sorption sites with those consisting of hydrophobic domains 
being strong and energetic. These domains may either be aromatic or 
aliphatic. Chen et al. (1996) reported strong sorption of -naphthol by 
highly aromatic HAs, while Chin et al. (1997) found a linear relationship 
between the Koc of HOCs and the aromaticity of HAs and non-extracted 
organic substances in whole soils and sediments. Similarly, Xing (2001) 
noted that the Koc values for the sorption of phenanthrene by six HAs 
extracted from different depths within a single soil profile increased with 
the aromaticity of the sorbents (Fig. 2). Furthermore, an old and aromatic-
rich organic matter, in coherence to the organic matter extracted from shale 

N
ap

ht
ha

le
ne

 K
oc

 

400
20 30 40 50 

(b) Whole soil

600

800

1000

1200

1400

1600

60
0

5

10 

15 

20

25 

30 

18 23 28 33 38

sediment 

soil 

(a) Humic acid 

Py
re

ne
 K

oc
 

Fraction (%) of aromatic carbon in humic acids as determined by 13C NMR 

5 Relationship of Polarity and Structures of Organic Matter     127 



128      S. Kang and B. Xing 

or coal, yielded higher Koc values than a young organic matter in surface 
soils (Fig. 1b). These observations indicate that the aromatic moieties in 
SOM, regardless of source, are the main sites for HOC sorption in soils 
and sediments.

Table 1. Structural carbon distribution (%) of the humic acids extracted from soil 
horizons, adopted from Xing (2001). The distribution was calculated from solid 

Horizon Alkyl-C 
(%)

O-alkyl-C
(%)

Aromatic-C 
(%)

Aromaticity 
(%)

Aliphaticity 
(%)

O1
O2
O3
A1
A2
A3

24
26
25
22
13
10

29
29
30
22
16
14

28
24
25
33
47
51

35
30
31
43
62
68

30
33
31
29
17
13

O, organic horizons; A, surface mineral horizons; 1–3, subhorizons. 
Aromaticity = Aromatic C (107–165 ppm)/Sum of aliphatic C and aromatic C 
(0–165 ppm). 
Aliphaticity = Aliphatic C (0–50 ppm)/Sum of aliphatic C and aromatic C (0–165 
ppm). 

The mechanism underlying the interaction of aromatic moieties 
in SOM with HOCs is yet to be clarified. One reason for this 
preferential interaction is the increased polarizability of the substrate in 
aromatic-rich humic substances (Chin et al. 1997; Gauthier et al. 1987). 
An increase in the polarizability of the humic materials may result in an 
increase in van der Waals interactions between the solute and substrate. 
In an aromatic-rich SOM, PCBs would be particularly susceptible to 
these interactions for congeners that possess weak dipole moments. For 
instance, Gauthier et al. (1987) ascribed the sorption enhancing effect 
of aromatic structures in SOM to a high polarizability and a favorable 
van der Waals interaction with polycyclic aromatic hydrocarbons 
(PAHs). The formation of charge-transfer complexes, where PAHs act 
as electron donors, was also discussed, while the aromatic moieties in 
SOM act as electron acceptors (Sander and Pignatello 2005; Zhu and 
Pignatello 2005). Chiou et al. (1998) attributed the enhanced partition 
of PAHs, as compared with other nonpolar solutes, to a better 
compatibility between the cohesive energy densities of PAHs and the 

state 13C Cross-Polarization Magic-Angle-Spinning (CP/MAS) NMR spectra. 
Chemical shift assignment for carbon functional groups: alkyl 0–50 ppm; O-alkyl 
50–117 ppm; aromatic 107–165 ppm. 
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aromatic components in SOM. More recent reports suggest that the 
condensed aromatic structures as found in black carbon or soot carbon 
may also govern the sorption and distribution of HOCs in sediments 
(Accardi-Dey and Gschwend 2002; Bucheli and Gustafsson 2000). We 
will now discuss the importance of the aliphatic components of SOM to 
the sorption of HOCs.  
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Fig. 2. Relationship between log Koc of phenanthrene and the fraction of aromatic 
carbon in the humic acids extracted from soil horizons as determined by 13C 
NMR. O, organic horizons; A, surface mineral horizons; 1–3, subhorizons. Modi-
fied from Xing (2001).  

3 Aliphaticity of SOM and Sorption of HOCs 

The aliphatic components of SOM, derived from various sources, tend to 
persist in soil (Almendros et al. 1998; Lichtfouse et al. 1998a; Lichtfouse 
et al. 1998b; Mosle et al. 1999; Poirier et al. 2000). The principal source 
of aliphatic materials in soil is plant cuticular materials, especially cutin, 
an insoluble polyester of cross-linked hydroxy-fatty acids and 
hydroxyepoxy-fatty acids (Kolattukudy 2001). Some plant cuticles also 
contain an acid and base hydrolysis-resistant biopolymer, comprised of 
aliphatic chains attached to aromatic cores known as cutan (Tegelaar  
et al. 1989; McKinney et al. 1996; Chefetz 2003; Sachleben et al. 2004). 

5 Relationship of Polarity and Structures of Organic Matter
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Hu et al. (2000) were able to detect semicrystalline poly(methylene) 
domains in natural organic matter (NOM) samples from various sources, 
resembling those in synthetic polyethylene. Relatively rigid crystalline 
layers of 3-nm thickness, with melting points around 75°C, were found 
adjacent to amorphous regions having rubber-like segmental mobility. 
Being resistant to microbial attack, the crystalline regions have long 
residence times, while the amorphous regions may play a role in the 
sorption of HOCs in soil. 

Recent investigations have indicated that the aliphatic carbon 
fraction, rather than aromatic fraction, was strongly correlated to HOC 
sorption. For instance, the sorption of phenanthrene was related to 
nonpolar aliphatic carbon fraction, excluding poly(methylene), but was 
very strongly correlated with the content of the amorphous nonpolar 
aliphatic domains including amorphous poly(methylene) (Mao et al. 2002). 
In other words, the rubbery, relatively low-density, and amorphous 
nonpolar aliphatic carbon domains are excellent for phenanthrene 
partitioning (Figs. 3 and 4). 

Fig. 3. Correlation of the modified Freundlich coefficient K’oc with the weight 
fraction of (a) nonpolar aliphatic carbon, excluding poly(methylene) and (b) 
amorphous nonpolar aliphatic carbon in domains, including amorphous 
poly(methylene). Adapted from Mao et al. (2002). 
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Both cutin and cutan are difficult to degrade microbiologically, and could 
be selectively preserved in soils with little or no alteration (Almendros 
et al. 1996; Nierop 1998).  
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Fig. 4. Positive correlation between phenanthrene log Koc values and paraffinic 
carbon content (0–50 ppm) of the natural organic materials calculated from 
CP/MAS 13C NMR. Adopted from Salloum et al. (2002). 

Chefetz et al. (2000) determined that cuticular plant material, 
composed mainly of aliphatic structures, sorbed more pyrene than the 
highly aromatic lignin and lignite. Also aliphatic corn leaf residues have 
high sorption affinity for HOCs (Boyd et al. 1990). Our study indicated 
that phenanthrene sorption was correlated with the aliphaticity of SOM 
(Table 2 and Fig. 5). Similarly, sorbents that contain a large amount of 
amorphous methylene carbon, such as the Pula kerogen sample (see Fig. 
4), exhibited higher Koc values for phenanthrene than the aromatic-rich 
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5 Relationship of Polarity and Structures of Organic Matter

samples (Table 3). On the other hand, the phenanthrene Koc value for 
collagen was remarkably high, although this material does not contain 
polymethylenic carbon. This observation has been attributed to the ability 
of collagen to orient into a triple-helical structure with hydrophobic 
domains (Xing et al. 1994b).  
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Table 2. The aliphaticity and concentration-dependent organic carbon normalized 
sorption coefficient (log Koc) for four humic acids (unpublished data by Kang and 
Xing, 2005)  

F-1, F-4, F-7, and F-9 are the first, fourth, seventh, and nineth extracted humic 
acids , respectively. 
Aliphaticity = Aliphatic C (0–108 ppm)/Sum of aliphatic C and aromatic C 
(0–162 ppm). 
foc : Organic carbon content. 
Koc = (S/Ce)/foc; S is the solid-phase equilibrium concentration and Ce is the 
liquid-phase equilibrium concentration. 

4 Polarity of SOM and Sorption of HOCs 

During diagenesis, catagenesis, and coalification, NOM is subjected to 
chemical alteration, with the final product being possibly graphite - 
crystalline carbon (Allen-King et al. 2002). As a result of these processes, 
the hydrogen/carbon (H/C) atomic ratio, representing the aliphaticity of 
SOM, and the oxygen/carbon (O/C) atomic ratio, representing the polarity 
of SOM, generally decreased. 

Grathwohl (1990) found a relationship between sorption capacity 
and the the atomic H/O ratio of NOM. Similarly, there is a good relation-
ship between log Koc and the polarity index (PI) of SOM, defined as the 
(O+N)/C ratio (DePaolis and Kukkonen 1997; Rutherford et al. 1992; Xing 
1997; Xing et al. 1994a). The effect of SOM polarity on sorption of or-
ganic compounds is consistent with the well-known theory of solvent po-
larity on solute solubility. In studying the influence of SOM composition 

Concentration-dependent log Koc 
Sample Aliphaticity (H+O)/C 

Ce ( g mL–1)  
= 0.005 

Ce ( g mL–1)  
= 0.05 

Ce ( g mL–1)  
= 0.5 

F-1 0.63 0.607 4.17 4.05 4.01 

F-4 0.69 0.570 4.57 4.41 4.25 

F-7 0.70 0.559 4.61 4.42 4.34 

F-9 0.72 0.486 4.72 4.52 4.37 
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(2005) demonstrated that adsorbed HAs onto montmorillonite and kaolin-
ite were more hydrophobic and less polar, which favored phenanthrene 
sorption, resulting in a higher sorption capacity than the source HA. In our 
study (Fig. 6), the humin fractions with relatively low polarity as well as 
the later extracted HAs showed higher sorption capacity than the early 
extracted HAs with higher polarity, which reflects a negative relationship 
between polarity and log Koc. Chen et al. (1996) reported that the Koc of -
Naphthol is negatively related to the polarity of organic substances from 
soils and sediments (Fig. 7). Thus, with the previous results and our pre-
sent data, we conclude that the polarity is one of the most important com-
positional parameters of SOM governing HOC sorption.  

 

 

Fig. 5. Relationship between the log Koc for phenanthrene sorption and the 
aliphaticity of humic acids, sequentially extracted from a soil. F-1, F-4, F-7, and 
F-9 are the first, fourth, seventh, and nineth extracted humic acids, respectively. 
0.005, 0.05, and 0.5 g mL–1 are selected liquid-phase equilbrium concentrations 
of phenanthrene (Kang and Xing 2005). 

The use of solid state 13C NMR spectroscopy along with elemental 
analysis provides useful information on the chemical composition of SOM 
samples. In assessing the influence of SOM composition on the partition of 

0.005 g mL-1

0.05 g mL-1

0.5 g mL-1

F-4
F-7

F-9

F-1 

4.0 

4.5 

5.0 

0.60 0.65 0.70 0.75 
Aliphaticity 

Ph
ea

nt
hr

en
e 

lo
g 
K o
c

 
 
 
 
 
 
 
 
 
 
 

 

 

on the partition of benzene and carbon tetrachloride, Rutherford et al. 
(1992) also demonstrated that Koc values for both chemicals increased with 
decreasing polar content of organic sorbents. Recently, Wang and Xing 
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though the samples did not differ appreciably in their aromatic carbon 
content as determined by solid state 13C NMR (Kile et al. 1999). This 
finding indicated that the polar carbon content (alcoholic carbon plus 
carboxyl and carbonyl carbon) negatively affects sorption of the HOCs to 
organic matter.  

Chiou et al. (1998) attributed the enhanced partitioning of PAHs 
with respect to other HOCs to relatively high compatibility between the 
cohesive energy densities of PAHs and the aromatic components in SOM. 
However, the difference in Koc values between soils and sediments is 
related to the difference in polar group, rather than aromatic carbon, 
contents (Kile et al. 1999). The authors concluded that the content of polar 
groups (O-aryl and carboxyl C) has a large negative influence on Koc 
values, and hence on HOC sorption in soil and sediment. 
 

 

Fig. 6. Relationship between the log Koc for phenanthrene sorption and the polarity 
index of humic acids and humin, sequentially extracted from a soil. F-1, F-4, F-7, 
and F-9 are the first, fourth, seventh, and nineth extracted humic acids, respec-
tively. 0.005, 0.05, and 0.5 g mL–1 are selected liquid-phase equilbrium concen-
tration of phenathrene (Kang and Xing 2005). 
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benzene and carbon tetrachloride, Rutherford et al. (1992) founded that the 
Koc values for both chemicals increased as the polarity of the organic 
sorbents decreased. The average Koc calculated for carbon tetrachloride and 
1,2-dichlorobenzene for sediments was twice as high as that for soils even 
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Fig. 7. Relationship between polarity index, (N+O)/C, and the Koc of -Naphthol 
sorption to peat, black shale, and humic acids (HA) from different horizons of a 
soil. Modified from Chen et al. (1996). 

Table 3. Soil properties and Koc of naphthalene (Xing 1997) 
 

13C NMR spectra using the ratio of peak area of 106–165 ppm to the total area of 
0–230 ppm. 

 
Although aromaticity, aliphaticity, and polarity have a significant 

influence on HOC sorption, it is difficult to determine which of these 
characteristics is predominant. Xing et al. (1994b) found Koc to be highly 
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Aromatic carbon content for the soil materials was calculated from the CP/MAS 
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influenced by both polarity and aromaticity. For a number of soils, the polarity 
and proportion of aromatic carbon were strongly correlated, according to 
 
PI = 0.702 (±0.0166) – 0.00353 (±0.00045) AR (r2 = 0.969; p < 0.015862) 
 

 

Fig. 8. Relationship between polarity index ((O + N)/C) and aromaticity of or-
ganic sorbents from the literature. The aromatic carbon was calculated as the 
product of aromatic carbon content (108–165 ppm) from NMR distribution and 
percentage of carbon contents from elemental analysis. 
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13C NMR. Despite the small sample size, Fig. 8 summarizes the data on 
the relationship between the PI and percentage of aromatic carbon for 
several organic sorbents. The negative correlation suggests that polarity 
and aromaticity are interactive parameters regulating the sorption of 
HOCs. It appears that SOM with a high Koc and aromaticity also have 
low polarity.  

where AR = percent of aromatic carbon present as measured by CP/MAS 
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Whether aromatic or aliphatic groups are dominantly responsible 
for sorption of HOCs is still an open question (Kang and Xing 2005). High 
sorption of HOCs by both aliphatic-rich (Chefetz et al. 2000) and aro-
matic-rich SOM (Gauthier et al. 1987) has been reported. Kang and Xing 
(2005) observed that aliphatic-rich and aromatic-rich SOM with a 
relatively high Koc, often has a low polarity. This type of correlation might 
be due to the dominant role of polar moieties in the samples for HOC 
sorption. 

 

Fig. 9. Relationship between polarity index ((O + N)/C) and percentage of paraf-
finic carbon in organic sorbents from the literature. The percentage of paraffinic 
carbon was calculated as the product of paraffinic carbon content (0–50 ppm) 

A negative correlation was observed between PI and percentage of 
paraffinic carbon in organic sorbents (Fig. 9). This relationship is similar 
to the relationship between PI and aromaticity. Thus, polarity and 
paraffinic carbons, like polarity and aromaticity, could also be interactive 
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from NMR distribution and percentage of carbon, nitrogen, and oxygen contents 
from elemental analysis.  



138      S. Kang and B. Xing 

 

parameters regulating the sorption of organic pollutants. Therefore, 
sorbents with high Koc (and aliphaticity) tend to have low polarity (Fig. 10).
Thus, we believe that polarity of SOM appears to be the most dominant
factor regulating the sorption of HOCs.  

Fig. 10. Relationship between polarity index ((O + N)/C) and sorption capacity of 
HOCs from the literature. 

5 Conclusions 

The information addressed here emphasized that the HOC sorption 
capacity in context relates to the chemical structures of SOM. Aromatic 
structures of SOM were reported to be the domains primarily responsible 
for HOC sorption, supported by positive correlations between aromaticity 
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and Koc. Recently, aliphatic components, particularly paraffinic carbons, of 
SOM are reported to sorb significant amounts of HOCs, similarly 
supported by positive correlations between aliphaticity and Koc values. 
From a series of sorption experiments and literature review, we concluded 
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that both aromatic and aliphatic components can be important indicators 
for the magnitude of Koc. In addition, sorbents with high Koc are often 
associated with low polarity whether their structures are highly aromatic or 
aliphatic. 
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1 Introduction 

Because of their natural abundance and widespread occurrence, clays have 
been used ‘in the service of man’ (Konta 1995) since antiquity, notably as 
the raw materials in pottery and ceramics. Similarly, the use of fuller’s 
earth (a calcium-rich montmorillonite) as a scouring and cleaning agent of 
raw wool dates back to before 2000 BC (Robertson 1986). Clays have also 
long served as medicinal and therapeutic agents, among which Bolus Ar-
menus (a red clay from Cappadocia) and terra sigillata (a kaolinite-rich 
material from the island of Lemnos) are well known for their efficacy in 
curing festering wounds, skin afflictions, and snake bites (Robertson 1986, 
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Carretero et al. 2006, Droy-Lefaix and Tateo 2006). Likwise, Sudanese 
villagers along the Nile have traditionally used a local bentonite clay to rid 
river water of viruses and bacteria (Lund and Nissen 1986, Madsen and 
Schlundt 1989). For a description of the modern-day uses of clays and clay 
materials in various industries the reader is referred to the reviews by 
Murray (2003) and Harvey and Lagaly (2006).  

Clay therapy and many practical applications of clays rely on the 
ability of these minerals to sorb and retain harmful and undesirable sub-
stances from their immediate environment. The sorptive capacity of clays 
is related to their small particle size, extensive surface area, layer structure, 
and charge characteristics. The vast literature on the interactions of clay 
minerals, especially smectites, with small and polymeric organic mole-
cules has periodically been reviewed (Mortland 1970, Theng 1974, 1979, 
Huang and Schnitzer 1986, Yariv and Cross 2002, Lagaly et al. 2006). Al-
though the reactivity of these minerals might be expected to extend to an-
thropogenic and industrial pollutants, the use of smectites for environ-
mental protection is a relatively recent development. Its emergence is 
prompted by a growing awareness that industrial pollutants pose a threat to 
environmental and human health, and the need to find inexpensive and en-
vironmentally friendly materials for pollution control (Kowalska et al. 
1994, Xu et al. 1997, Prost and Yaron 2001). Here we assess the literature 
that has accumulated over the past two decades on the use of smectites and 
their organically modified forms as sorbents of non-ionic organic com-
pounds and pollutants. As far as is possible, we will refer to key papers 
and reviews, rather than cite individual authors. 

2 Smectites and Modified Smectites 

Smectites are 2:1 type phyllosilicates whose particles are made up of 
alumino-silicate layers stacked one on top of the other in a more or less 
regular array. Each layer consists of an alumina octahedral (O) sheet 
sandwiched between two opposing silica tetrahedral (T) sheets, forming a 
T-O-T layer structure. In such a structure there is scope for isomorphous 
substitution, i.e., the replacement of Al3+ in the octahedral sheet and/or Si4+ 
in the tetrahedral sheet by cations of similar size and coordination but of 
lower valency. As a result, the layers acquire a permanent negative charge 
which is balanced by exchangeable inorganic cations (e.g., Na+, Ca2+) 
occupying interlayer sites (Fig. 1, left). The magnitude of the layer charge 
(per formula unit) is reflected by the cation exchange capacity which 
typically ranges from 90 to 130 cmol/kg. Since the charge-balancing 
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cations or ‘counterions’ are normally hydrated, smectites are naturally 
hydrophilic. In the presence of water smectites are therefore not very 
reactive toward non-ionic organic compounds that are essentially 
hydrophobic, and do not compete well with water (Theng 1974). 
 We should mention, however that under certain conditions some 
smectites can sorb appreciable amounts of non-ionic organic compounds 
from aqueous solutions. Laird et al. (1992), for example, observed that 
Ca2+-smectites could take up atrazine from water under mildly acidic pH 
conditions. Since sorption affinity was inversely related to the layer charge 
density of the minerals, they suggested that the neutral form of atrazine 
was sorbed through hydrophobic interactions with “uncharged” regions on 
basal siloxane surfaces. Similarly, smectites exchanged with cations of low 
hydration energy (K+, NH4

+) could sorb a variety of nitroaromatic com-
pounds from water through such mechanisms as electron donor-acceptor 
complex formation (Haderlein et al. 1996, Weissmahr et al. 1997) and 
cation-organic solute interactions (Boyd et al. 2001, Johnston et al. 2001).  

 

 
 
 Fig. 1. Diagram showing the layer structure of 2:1 type clay minerals as in 

smectites. Left: a particle comprising five layers stacked one on top of the other; 
the negative layer charge (arising from isomorphous substitution) is balanced by 
inorganic cations occupying interlayer sites; dL = basal spacing. Right: detail of 
the atomic arrangement in an individual T-O-T layer where T denotes a 
tetrahedral sheet, and O represents an octahedral sheet. After: Lagaly and Köster 
(1993). 
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The surface properties and reactivity of smectites may be modified 
by mechanical, physical, and chemical means. Grinding (manual and per-
cussive) is a long-standing mechanical method of modification (Grim 
1968, i el and Kranz 1981). Thermal treatment (heating) is an oft-used 
physical method of altering the surface area, porosity, swelling, and water 
dispersibility of smectites (Chorom and Rengasamy 1996, Bojemueller 

tahedral sheet followed by the 

Acid activation and ‘pillaring’ are two common chemical methods 
for inducing surface modification. As the name suggests, ‘acid activation’ 
involves treating clays (usually calcium-rich bentonites) with a solution of 
HCl or H2SO4 for a specified period, yielding materials of high surface 
area, mesoporosity, and surface acidity (Christidis et al. 2003, Churchman 
and Volzone 2003, Komadel and Madejová 2006). Acid-activated clays 
and their natural counterparts (‘bleaching earths’) are widely used in de-
colourising edible oils and animal fats (Anderson and Williams 1962, Sid-
diqui 1968, German Society for Fat Science 2001, Christidis et al. 2003). 
These materials can also function as catalysts for organic conversions, and 
carrriers of fungicides and insecticides (Breen et al. 1997, Komadel and 
Madejová 2006). However, acid-activated clays have not widely featured 
as sorbents of non-polar organic compunds. ‘Pillaring’ involves the re-
placement of the inorganic counterions (Na+, Ca2+) with oligomeric 
(hydr)oxy metal cations, followed by heating (  300oC). This converts the 
oligomeric cations into the corresponding metal oxides acting as nano-size 
pillars in the interlayer space. Besides being efficient sorbents of organic 
compounds, micro- and meso-porous ‘pillared interlayered clays’ are use-
ful as catalysts, molecular devices and sensors (Zielke et al. 1989, Mitchell 
1990, Adams and McCabe 2006, Bergaya et al. 2006).  

Perhaps the single, most common method of modifying the surface 
and sorptive properties of smectites is by intercalation of simple and poly-
meric organic cations through an ion-exchange process (Theng 1974, 
1979). The formation of some polycation-exchanged smectites together 
with their relative efficiency in taking up non-ionic organic compounds 
from water have been summarised by Breen (1999) and Churchman and 
Volzone (2003), and will not be further discussed. Rather, the focus here is 
on smectites intercalated with simple organic cations of which two types 
may be distinguished. Type I are formed by replacing the inorganic coun-
terions in smectites with short-chain, compact alkylammonium or quater-
nary ammonium ions, such as tetramethylammonium, tetraethylammo-
nium, and trimethylphenylammonium. Organically modified smectites of 

et al. 2001). At sufficiently high temperatures dehydroxylation occurs, 
causing changes in the structure of the oc
formation of new, high-temperature phases (Heller-Kallai 2006).  
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type II are obtained by intercalation of long-chain alkylammonium 
([H3N]R+) or quaternary ammonium ([CH3]3NR+) ions where R represents 
an alkyl chain. The demarcation between short- and long-chain quaternary 
ammonium ions will be described later. In the literature the first type of 
organically modified smectites are often referred to as ‘adsorptive clays’ 
(e.g., Brixie and Boyd 1994), while the term ‘organoclays’ is used to de-
note the second type. Here we use ‘organoclays’ as a general term for 
smectites that have been exchanged or intercalated with simple, non-
polymeric organic cations. 

3 Organoclays 

3.1 General 

The ability of smectites, especially montmorillonites, to take up positively 
charged organic compounds has been known for nearly a century (Theng 
1974). It was not until the 1950s, however, that the formation, properties, 
and practical applications of organically modified smectites began to be 
systematically investigated (Weiss 1963, Theng 1972, Barrer 1978, Lagaly 
et al. 2006). Although cation exchange is the principal mechanism under-
lying the adsorption of alkylammonium ions by montmorillonite, van der 
Waals interactions between the alkyl chain and the silicate surface can 
contribute appreciably to the overall adsorption energy (Theng et al. 1967, 
Vansant and Uytterhoeven 1972). The extent of this contribution increases 
with the molecular weight (size) of the organic cations.  

Intercalation of short-chain, compact alkylammonium ions gives 
rise to type I complexes with a basal spacing of about 1.5 nm, correspond-
ing to an interlayer distance of ~0.55 nm. As a result, a permanent inter-
layer free space (between the organic cations) is created into which various 
non-ionic organic compounds can be accommodated. The volume of this 
space is controlled by the interlayer distance and (negative) layer charge 
separation of the smectite (Fig. 2). The sorption capacity of type I organo-
clays is also dependent on the size of the intercalated alkylammonium ion 
since the bulkier the organic cation the larger the fraction of interlayer 
space it occupies. 
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Fig. 2. Diagram showing the intercalation of compact quaternary ammonium 
cations, such as trimethylphenylammonium (TMPA) into different smectites, giving 
rise to type I organoclays with a basal spacing of about 1.5 nm. SWa is a high-
charge nontronite (iron-rich smectite) and SAz is a high-charge montmorillonite, 
while SAC is a low-charge montmorillonite. After: Jaynes and Boyd (1991b). 

Type II organoclays, on the other hand, have a very limited 
interlayer free volume since much of the interlayer space is occupied by 
the more or less flat-lying long-chain alkylammonium or quaternary 
ammonium ions. Here the arrangement of the intercalated organic cations 
is strongly dependent on both the alkyl chain length (nc) and the layer 

cation is smaller than the area per exchange site. When area occupied by 
the organic cation exceeds the area per exchange site, a bilayer 
arrangement may be obtained, and the basal spacing increases to 1.77 nm. 
Thus, as the layer charge increases the transition from monolayer to 
bilayer occurs at a smaller nc value (shorter chain length). Indeed, a 
pseudo-trilayer arrangement (basal spacing ~ 2.2 nm) obtains with high-
charge smectites and/or large nc values. With highly charged 2:1 layer 
silicates (e.g., vermiculites), the paraffin-type arrangement is preferred 
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giving rise to large basal spacings (> 2.2 nm) whose value increases 
regularly with nc (Lagaly 1982, Jaynes and Boyd 1991a, Slade and Gates 
2004b, Lagaly et al. 2006). The different interlayer arrangements of long-
chain alkylammonium cations in smectites are illustrated in Fig. 3. 

Because of their thixotropic gelling properties type II organo-
clays have long been applied as thickeners in lubricants, ointments, and 
paints. More recently, these materials have attracted great attention and 
interest for the synthesis of organoclay-polymer nanocomposites, a novel 
class of inorganic-organic hybrid materials with superior mechanical, 
thermal, and gas-barrier properties (LeBaron et al. 1999, Ahmadi et al. 
2004, Ruiz-Hitzky and Van Meerbeek 2006). The present article, how-
ever, is concerned with using organoclays as sorbents of non-ionic or-
ganic compounds many of which are pollutants from agricultural and in-
dustrial sources. 

3.2 Uptake of Non-Ionic Organic Compounds (NOCs) 

Research into the formation, properties, and reactivity of type I organo-
clays was pioneered by Barrer and co-workers in the 1950s (see Barrer 
1978). These materials can take up appreciable amounts of various ali-
phatic and aromatic hydrocarbons as well as small polar molecules (am-
monia, methanol) from the gas phase. The guest molecules are accommo-
dated within the interlayer free space between individual quaternary 
alkylammonium ions (cf. Fig. 2). Since tetramethylammonium (TMA)-
montmorillonite has a larger interlayer porosity than the tetraethylammo-
nium (TEA)-exchanged form, its capacity for taking up a given NOC is 
correspondingly greater. Likewise, less of the NOC is sorbed by a high-
charge smectite, exchanged with TMA ions, than by the corresponding 
complex with a low-charge mineral (Lee et al. 1990). By contrast, sorption 
of gaseous NOCs by a type II organoclay, such as hexadecyltrimethylam-
monium (HDTMA)-smectite, tends to increase with the amount of 
HDTMA intercalated. Furthermore, the sorption isotherm tends to be non-
linear at fractional ‘loadings’ by HDTMA (i.e., less than the CEC of the 
clay mineral) but becomes essentially linear at 100% exchange (Boyd et al. 
1988a, Zhu and Su 2002). This would indicate that NOCs are taken up by 
both solute-surface interactions and solute partitioning into the interlayer 
HDTMA phase. The latter process predominates as the interlayer space 
fills up with HDTMA.  
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 Churchman et al. (2006) have proposed that smectite complexes 
with quaternary ammonium ions (QACs) containing fewer than 9 carbon 
atoms dominantly take up NOCs by (chemical) interaction with the 
interlayer surface. This process is characterised by non-linear isotherms 
and competitive uptake when more than one solute is present. On the other 
hand, uptake of NOCs by complexes with QACs having more than 14 
carbon atoms dominantly occurs by partitioning (Chiou 1989). Here the 
interlayer QACs (cf. Fig. 3) essentially act as a solvent for the NOCs, 
giving rise to linear isotherms and non-competitive solute uptake. 
Although this ‘working hypothesis’ is supported by experiment (e.g., 
Smith et al. 1990, Jaynes and Boyd 1991a), the reality is a little more 
complex than what is outlined above (Jaynes and Vance 1996, 1999, 
Sheng et al. 1996a, Singh et al. 2003).  

Indeed, it is not uncommon to observe ‘double-sigmoid’ isotherms 
for the sorption of NOCs by type II organoclays, especially in the case of 
low-charge smectites and at low solute concentrations (Sheng et al. 
1996b). Combining a sigmoid and a type III isotherm, the double-sigmoid 
isotherm characterises the sorption of a number of aromatic and substituted 
aromatic compounds (e.g., benzene, nitrobenzenes, and chlorobenzenes) 
by HDTMA smectites. In explanation, Sheng et al. (1996b) propose that 
such molecules interact strongly with HDTMA through a variety of 
mechanisms, including solvation of the cationic ammonium centres and 
the alkyl chains of HDTMA, and solute partitioning. As a result, the 
HDTMA chains re-orient from a parallel to a more vertical position with 
respect to the silicate surface, and interlayer swelling occurs. The behav-
iour of aromatic contaminants at organoclay surfaces will be further dis-
cussed later. 
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Fig. 3. Possible arrangements of long-chain quaternary ammonium cations (here 
tetradecyltrimethylammonium) in the interlayer space of expanding 2:1 layer sili-
cates. After: Lagaly (1982) and Jaynes and Boyd (1991a).  
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In terms of pollution control, however, it is the capacity of organo-
clays to take up NOCs from aqueous solutions (rather than the gas phase) 
that has been the focus of attention since the early work by Cowan and 
White (1962) and Street and White (1963). In general, type II organoclays 
can sorb more NOCs from water than their type I counterparts (Mortland 
et al. 1986, Boyd et al. 1988b). On the other hand, type I organoclays can 
show a zeolite-like selectivity for sorption (Sharmasarkar et al. 2000, Shen 
2002). Besides being dependent on the dimension of the intercalated 
QACs, selectivity is also influenced by the size and shape of the NOCs. 
For example, Lee et al. (1989a) found that the herbicide lindane (hexa-
chlorocyclohexane, -isomer or -BHC) was effectively excluded from the 
interlayers of tetramethylammonium-smectite. Selectivity also depends on 
the extent of ‘loading’ by the QAC as well as the presence of water (Kuk-
kadapu and Boyd 1995, Sheng and Boyd 1998). This is because the vol-
ume of the interlayer free space decreases as more and more exchange 
sites become occupied by the QAC, and extent of hydration of the organic 
cation increases.  
 For type II orgamoclays the uptake of NOCs generally increases as 
the organic carbon (QAC) content of the complexes rises (Hassett and 
Banwart 1989, Kowalska et al. 1994, Redding et al. 2002, Slade and Gates 
2004b). This is because uptake essentially occurs by partitioning into the 
interlayer organic (QAC) phase. An earlier example is provided by Jaynes 
and Boyd (1991a) who measured the uptake from water of 8 aromatic 
NOCs by HDTMA complexes with 7 layer silicates, including some smec-
tites. Figure 4 shows the uptake of ethylbenzene by 3 organically modified 
smectites with varied cation exchange capacity (CEC), and where all the 
exchange sites are occupied by HDTMA ions. Sorption increases with the 
CEC (i.e., HDTMA content) of the smectite, while the Mg2+-exchanged 
form (without HDTMA) is inactive. The linear shape of the isotherms is 
strongly indicative of a partitioning process.  
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Fig. 4. Isotherms for the uptake of ethylbenzene from water by different smectites 
intercalated with hexadecyltrimethylammonium (HDTMA) ions. Numbers in 
brackets refer to the cation exchange capacities (CECs) of the smectites. Both SAz 
and SWa are high-charge smectites (cf. Fig. 2). SWy is a relatively low-charge 
montmorillonite, and Mg-SWy represents the corresponding Mg2+-exchanged 
form. After: Jaynes and Boyd (1991a). 

Another feature of the process is that the sorption capacity of type 
II organoclays is inversely related to the aqueous solubility of the NOCs 
(Chiou 1989). For example, the affinity of HDTMA-smectite for various 
phenols increases in the order: phenol < chlorophenol < dichlorophenol < 
trichlorophenol since phenol is the most water-soluble while trichlorophe-
nol is the most hydrophobic (Mortland et al. 1986, Lo et al. 1998). The 

ed in Fig. 5 for a range of 

 

relationship between the distribution (partition) coefficient in a type II 
organoclay and water-solubility is illustrat
nonionic organic pollutants. 
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Fig. 5. Relationship between the distribution (partition) coefficient on dimethyl 
dihydrogenated tallow montmorillonite for a range of non-ionic organic pollutants 
and their corresponding solubility in water. BHC is benzene hexachloride, the -
isomer of which is known as ‘lindane’; aroclor 1232 and aroclor 1252 denote mix-
tures of polychlorinated biphenyls containing about 32 and 52% chlorine, respec-
tively. After: Beall (2003). 

3.3 Uptake of Organic Pollutants 

The uptake of non-ionic organic pollutants by type II organoclays may be 
enhanced by increasing: (i) the amount of intercalated quaternary ammo-
nium cations (QACs) and ion-pairs (the QAC cation plus its inorganic an-
ion); (ii) layer charge density of the smectite; and (iii) the length of the al-
kyl chain (nc) of the QAC (Cowan and White 1962, Boyd et al. 1988b, 
Jaynes and Boyd 1991a, Lee et al. 2004, Slade and Gates 2004b). The 
structure of the QAC can also affect sorption. For example, in examining 
the uptake of ‘BTEX’ (benzene, toluene, ethylbenzene, xylene) pollutants 
from water by different organoclays, Jaynes and Vance (1996) observed 
that uptake was generally proportional to the carbon content of the organo-
clay. However, the smectite intercalated with dodecyltrimethylammonium 
(nc = 15; molecular weight = 228) was much more effective in taking up 
BTEX than the complex with cyclododecyltrimethylammonium (nc = 15; 
molecular weight = 226). They also found that the uptake of a given BTEX 
component from the mixed solution was enhanced relative to that of the 
corresponding pure  compound. This process of ‘co-sorption’ in which 
uptake of a particular pollutant is enhanced by another species often occurs 

‘ ’
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as a result of QAC solvation by one of the co-sorbates. Thus, the enhanced 
sorption by hexadecyltrimethylammonium (HDTMA)-smectite of tri-
chloroethylene, in the presence of nitrobenzene or chlorobenzene, is ap-
parently due to the solvation of interlayer HDTMA by the aromatic com-
pounds. This brings about a re-alignment of HDTMA, creating more 

As already remarked on, the interlayer (siloxane) surface of smec-
tites are actively involved in the adsorption of alkylammonium ions 
(Theng et al. 1967). The work by Jaynes and Boyd (1991b) further indi-
cates that this surface is essentially hydrophobic. Thus, when smectites 
with varied layer charge are exchanged with trimethylphenylammonium 
(TMPA) ions, the resultant organoclays (type I) developed an appreciable 
capacity for taking up hydrocarbons (benzene, alkylbenzenes, naphthalene) 

In this context we might add that the hydration energy of the ex-
changeable cations is a key factor influencing the competition for surface 
sites between water and potentially sorbed non-ionic organic molecules. 
Exchangeable cations of high hydration energy would retain water prefer-
entially, while cations of low hydration energies would prefer organic sol-
utes to water. As already remarked on, K+- and Cs+-exchanged smectites 
(of low to moderate layer charge density) can have a high affinity for cer-
tain non-ionic organic molecules (e.g. nitroaromatics) in the presence of 
water. The current theory proposed (Jaynes and Boyd 1991b, Laird et al. 
1992, Boyd and Jaynes 1994) to explain this behaviour is that cations of 
low hydration energy can effectively compensate for the negative layer 
charge of smectites. As a result, the interlayer siloxane surface between 
isomorphous substitution sites becomes less negatively charged and more 
hydrophobic than would otherwise be the case (Schoonheydt and Johnston 
2006). Some interlayer water, however, is required to initiate crystalline 
swelling, enabling organic molecules to penetrate the interlayer space (e.g. 
Chappell et al. 2005).  

from water. Morevover, the amounts sorbed decrease as the cation 
exchange capacity (i.e., the TMPA content) of the smectites increases 
(Fig. 6). This observation and the curvilinear shape of the isotherms 
strongly suggest that the sorbed hydrocarbon molecules interact with the 
oxygens of the siloxane surface, exposed between individual TMPA ions 
in the interlayer space (cf. Fig. 2). It would therefore appear that the 
hydrophilicity of natural smectites is not an intrinsic surface property but, 
rather, is due to the presence of hydrated inorganic counterions. 

interlayer free space for sorption of trichloroethylene (Sheng et al. 
1996a, b). Such a mechanism has also been shown to occur for the uptake 
of toluene by low-charge HDTMA-vermiculite intercalates (Slade and 
Gates 2004a). 

6 Clays for Pollutant Uptake and Environmental Protection



 

 
Fig. 6. Uptake of benzene from water by various smectites exchanged with 
trimethylphenylammonium (TMPA) ions (cf. Fig. 2). Numbers in brackets refer to 
the cation exchange capacities of the smectites. (cf. Fig. 4). After: Jaynes and 
Boyd (1991b). 

In recognising that organoclay liners may usefully control wastes 
containing different proportions of organic solvents, Nzengung et al. 
(1996) have measured the uptake of two NOCs (naphthalene and diuron) 
from mixed methanol-water solutions by types I and II organoclays. The 
presence of methanol is conducive to uptake. This is because methanol 
can swell the organoclays, making their interlayers more organophilic 
and accessible to NOCs than otherwise would be the case (Moraru 2001). 
Being more aromatic than diuron, naphthalene is more strongly attracted 
to TMPA-montmorillonite than to the tetramethylammonium-exchanged 
form. This is because the aromatic ring of naphthalene and diuron can in-
teract with that of TMPA through -  bonding. In addition, steric effects 
come into play in that the relatively small naphthalene molecule can en-
ter into the interlayer space of the organoclay whereas this is not possible 
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for the bulky diuron. Thus, although diuron has a benzene ring, its size 
and/or shape probably prevented the specific favorable interaction be-
tween its ring structure and a sorbent’s benzene ring  (Nzengung et al. 
1996). Similarly, interaction between the phenyl ring of some pesticides 
(e.g. acetochlor, alachlor, metolachlor, norflurazon) and TMPA has been 
proposed to account for the enhanced sorption of these compounds by 
TMPA-montmorillonite in comparison with a type II organoclay (Nir 

scribed later. 
The efficiency of type II organoclays in taking up organic pollut-

ants from water is also apparent from the data in Figs. 7 and 8 showing 
the removal of naphthalene and 17 -estradiol (an endocrine-disrupting 
compound) by octadecyltrimethylammonium-montmorillonite (Yuan 
2004).  
 

 
 
Fig. 7. Isotherm for the uptake of naphthalene (from water) by octadecyl-
trimethylammonium (ODTMA)-montmorillonite. After: Yuan (2004). 

 

 

et al. 2006). The use of organoclays in pesticide formulations will be de-

,

’
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Fig. 8. Depletion of 17 -estradiol from aqueous solution after contact with 
octadecyltrimethylammonium (ODTMA)-montmorillonite. C denotes the 
concentration of the estrogen after a given contact time, while C0 is the initial 
concentration. After: Yuan (2004). 

We should also mention that type II organoclays can incorporate 
large amounts of polycyclic aromatic hydrocarbons (PAHs) from the 
solid phase (Ogawa et al. 1992). For example, Theng et al. (1998) were 
able to intercalate up to  by weight of solid phenanthrene (Ph) into a 
dry bilayer complex of tetradecyltrimethylammonium (TDTMA)-
montmorillonite (cf. Fig. 3) by grinding the two solid components 
together. As a result, the basal spacing nearly doubles from about 1.8 nm 
(for the initial TDTMA complex) to near 3.4 nm. This would indicate a 
conformational change of TDTMA ions from flat-lying to one in which 
the alkyl chains extend away at a high angle from the interlayer surface. 
Solid-state 13C-nuclear magnetic resonance spectroscopy shows that 
intercalation of Ph into TDTMA-montmorillonite causes a displacement 
by nearly 3 ppm of the (CH2)n  signal for TDTMA. This signal and 
that for intercalated Ph are also broadened relative to the corresponding 
pure compounds. Furthermore, the proton spin relaxation time constant, 
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Fig. 9. Growth of phenanthrene-degrading bacteria (Burkholderia sp. RP007) in 
the presence of either phenanthrene in the free form (A), or phenanthrene interca-
lated into tetradecyltrimethylammonium (TDTMA)-montmorillonite (B). After: 
Theng et al. (2001). 

The intercalated phenanthrene is not bioavailable, at least over the 
11-day period of incubation (Fig. 9) because it is intimately and strongly 
associated with TDTMA in the montmorillonite interlayers as well 

(e.g. 
Burkholderia) and their enzymes. By contrast, these bacteria can use free 
(non-intercalated) Ph as a carbon and energy source (Theng et al. 2001). 

T1(H), for intercalated Ph is more than four orders of magnitude shorter 
than that for the pure compound. Equally striking is the close similarity 
of the T1(H) value between TDTMA and Ph in the TDTMA-
montmorillonite-Ph interlayer complex. All these observations strongly 
indicate that the TDTMA chains become relatively disordered and 
closely mixed with Ph in the interlayer space of montmorillonite.  

as being physically inaccessible to PAH-degrading bacteria 
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Biodegradation can only take place if the sorbed pollutants can be rapidly 
released from the organoclay complex as is the case with naphthalene 
(Crocker et al. 1995) and the herbicide fenamiphos (Singh et al. 2003). 

3.4 Uptake of Anions 

Type II organoclays are also useful for sorbing anions from aqueous 
solutions as Bors and co-workers (Bors 1990, Bors and Gorny 1992, 
Bors et al. 2000) have found for iodide and pertechnetate (TcO4

–) whose 
radioactive forms are hazardous components of nuclear waste. Sorption 
efficiency is related to the extent of loading by the organic cation, a 
prime requirement being the development of positive surface charges or 
positvely charged regions on the clay mineral. This requirement is 
usually met when the degree of occupancy by the quaternary ammonium 
cation exceeds the cation exchange capacity of the smectite (Xu and 
Boyd 1995, Churchman 2002). 

Brixie and Boyd (1994) have evaluated the effectiveness of nine 
organoclays in reducing the leachability of pentachlorophenol (PCP) 
from three highly contaminated soils. Although all the organoclays tested 
were effective in decreasing the concentration of PCP (as the anion) in 
the leachate, type II organoclays were greatly superior to their type I 
counterparts. Thus, the addition of 20% dimethyldicocoammonium smec-
tite to the soil reduced leachable PCP levels to below the detection limit 
(0.2 mg L–1). 

3.5 Uptake of Heavy Metal Cations 

Organoclays are generally not very effective in taking up heavy metal 
cations since the interlayer quaternary ammonium cations (QACs) are 
not readily exchangeable. This limitation, however, may be overcome by 
intercalating QACs containing an anionic functional group into the 
smectite the resultant organoclay can serve as an efficient sorbent of both 
NOCs and heavy metals. For example, Sheng et al. (1999) found that a 
carboxydecyltriethylammonium (CDTEA)-montmorillonite had a much 
higher capacity for removing Pb2+ from solution than either the sodium- 
or decyltrimethylammonium (DTMA)-exchanged forms of the clay 
mineral, while its ability to take up chlorobenzene was comparable to 
that shown by DTMA-montmorillonite. They suggested that Pb2+ 

interacted with the carboxyl group of CDTEA, while chlorobenzene was 
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functional group, such as 2-mercaptoethylammonium, was effective in 
taking up Hg2+ and Pb2+ from solution (Celis et al. 2000).  

It seems clear that the uptake by organoclays of NOCs and anthro-
pogenic organic pollutants is influenced by many factors related to the na-
ture, properties, and structures of both sorbate and sorbent as well as the 
composition of the solution phase. As a result, the mechanisms involved in 
the organoclay-NOC interaction are often difficult to deduce with certainty 
although some general principles, as outlined above, are beginning to 
emerge. 

4 Some Practical Applications 

4.1 Water Treatment 

The use of organoclays, especially of type II, for removing oil and grease 
from water, aromatics from oily liquid wastes, and oil from oil-in-water 
emulsions has been well documented (Adebajo et al. 2003). Figure 10 
shows the effectiveness of an organoclay in taking up a range of mineral 
oils from water. Organoclays are especially efficient in removing non-
polar oils. The results for turpentine indicate that organoclays are far supe-
rior to the more expensive activated carbon. An added disadvantage of ac-
tivated carbon is that its pore space is prone to clogging by the organic 
contaminants (Alther 2002).  

Nevertheless, organoclays (in powder form) are often used in con-
junction with activated carbon for the treatment of oily wastewaters, acidic 
oil well fluids, and boiler feed water in order to reduce overall cost of op-
eration, and prolong the useful life-time of the carbon (Beall 2003). Simi-
larly, Alther (2002) has found that an organoclay/carbon column system is 
much more effective in taking up petroleum hydrocarbons (from water) 
than either sorbent alone. Organoclays are also efficient in treating potable 
water since they can remove dissolved natural organic matter that gives 
rise to toxic trihalomethanes when the water is chlorinated. Figure 11 
compares the efficiency of an organoclay in removing humic acid from a 
Florida groundwater with that of activated carbon. Besides being superior 
to activated carbon in its performance, the organoclay column can be re-
generated by backwashing with a solution of 1 M NaOH (Beall 2003). 
 

partitioned into the organic phase. Similarly, montmorillonite exchanged 
with an organic cation containing the thiol (-SH) metal-chelating 

6 Clays for Pollutant Uptake and Environmental Protection



 

 
Fig. 10. Diagram showing the efficiency of an organoclay in removing different 
mineral oils from water, using the ‘jar test’ or single-point isotherm. After: Alther 
(2002). 

Similarly, Gates and Slade (2001) have proposed using organo-
clays for the removal of mycrocystin toxins from blue-green algae that ac-
cumulate in waterways and water storages, while Cioffi et al. (2001a) have 
found a benzyldimethyloctadecylammonium-bentonite to be highly effi-
cient in taking up waste organic materials from industrial processes, such 
as tanning.  

4.2 Organoclay Liners and In-Situ Modification 

Since conventional clay liners are adversely affected by organic fluids, 
the use of organoclays as a secondary containment barrier (e.g., for 
gasoline from underground storage tanks) has attracted much attention. 
In comparing the swelling properties of a bentonite and an organoclay, 
Lo and Yang (2001) have found that bentonite shrinks, while the 
organoclay swells, when immersed in gasoline. More importantly, the 
hydraulic conductivity of the organoclay is two orders of magnitude 
lower than that to water. Indeed, the effectiveness of the organoclay in 
retarding the advective flow of gasoline is comparable to that of a high-
density polyethylene membrane (Yang and Lo 2004). Earlier, Smith and 
Jaffé (1994) simulated the movement of benzene through conventional 
sand-bentonite liners and liners that had been amended with 
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Fig. 11. Diagram showing the efficiency of an organoclay in removing dissolved 
humic acid from a Florida ground water in comparison with activated carbon. The 
total organic carbon concentration was 5.6 ppm. See Fig. 8 for the meaning of 
C/C0. After: Beall (2003). 

hexadecyltrimethylammonium- and benzyltrimethylammonium-bentonite. 
The maximum benzene breakthrough increased from ~4 years for the 
conventional liner to ~275 years for the organobentonite-amended 
material. Using a similar approach, Lo and Mak (1998) found that an 
organoclay liner could significantly retard the transport of phenolic 
compounds as compared with a conventional soil liner (composed of 90% 
silty sand and 10% natural clay mineral).  

The feasibility of forming organoclays in-situ (by replacing the 
inorganic counterions in subsoils or aquifer materials with long-chain 
quaternary ammonium ions) to intercept the flow of organic contaminants 
in subsurface environments, first proposed by Boyd and co-workers in the 
late 1980s (Boyd et al. 1988, Lee et al. 1989), has continued to attract 
much interest (Burris and Antworth 1992, Brown and Burris 1996, 
McBride et al. 1997, Prost and Yaron 2001). An outline of this process is 
shown in Fig. 12. Here the organoclay is formed by injecting a solution of 
hexadecyltrimethylammonium (HDTMA) into a subsoil or aquifer. The 
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Fig. 12. Scenario for the in-situ modification of subsoils or aquifers for pollution 
control. The organoclay formed by injecting a solution of long-chain quaternary 
ammonium cations (e.g. HDTMA) acts as a sorptive zone where organic contami-
nants dissolved in a plume from buried waste can be immobilised and degraded. 
After: Xu et al. (1997). 

4.3 Pesticide Carriers and Formulations 

As might be expected, organoclays are capable of taking up a wide range 
and variety of non-ionic herbicides and pesticides through solute-surface 
interactions and partitioning as described earlier (Rodríguez-Gonzalo et al. 
1993; Cox et al. 2001; Carrizosa et al. 2004). With ionisable pesticides, 
such as dicamba (3,6-dichloro-2-methoxy benzoic acid) solution pH is an 
important factor affecting sorption (Zhao et al. 1996). Since sorption of 
pesticides retards their leaching in water, and reduce their volatility to air, 
organoclays and organoclay formulations can usefully serve as carriers of 
slow-release pesticides (Hermosin et al. 2001, Nir et al. 2006). A novel 

resultant organically modified material, when properly positioned, can take 
up organic contaminants dissolved in plumes from a buried waste. The 
retained (‘immobilised’) contaminants can be degraded in situ by native or 
introduced microbes (Lo et al. 1997, Xu et al. 1997). However, if the 
sorbed pollutants are not bioavailable, recalcitrant, or highly toxic, they 
may be contained by solidification in cements (Montgomery et al. 1988, 
Lo 1996, Cioffi et al. 2001b). 
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approach, proposed by Groisman et al. (2004) is to use a bifunctional or-
ganoclay that can act as both sorbent and detoxifying agent of pesticides. 
In this instance, the organoclay was a Na+-montmorillonite intercalated 
with decyldimethyl-2-aminoethyl ammonium, and the pesticides were 
methyl parathion and tetrachlorvinphos. The aminoethyl (‘second’) func-
tional group of the quaternary ammonium ion catalyses the hydrolysis of 
the sorbed organophosphates, leading to their detoxification.  

5 Concluding Remarks 

Although the theoretical principles behind the interactions of organic 
cations with clay minerals are reasonably well understood, the practical 
synthesis of ‘tailor-made’ organoclays for pollution abatement and 
containment is not always straight-forward because of the many variables 
involved. For example, the development of bifunctional organoclays 
capable of taking up specific pollutants as well as rendering them harmless 
by chemical conversion and degradation is hampered by their high cost 
and specificity as do their environmental applications. Similarly, the ability 
of organoclays in taking up organic contaminants from solution is now 
well documented but our understanding of the underlying mechanisms at 
the molecular level is still incomplete, especially with respect to the 
release and bioavailability of the sorbed contaminants. Nevertheless, this 
brief survey of the literature would indicate that there is considerable scope 
for using organically modified clays in cleaning up oil spills, and removing 
dissolved organic matter and humic substances from water. The stability 
and low cost of organoclays, relative to such materials as activated carbon, 
are an added advantage. Likewise, organoclay liners are capable of 
retarding, and even preventing, the movement of some organic pollutants 
(e.g., petroleum hydrocarbons) in subsurface environments. In this context, 
the possibility of producing organoclays in-situ to intercept and contain 
harmful contaminants from buried waste (landfills) is especially attractive. 
Organoclays are equally useful as carriers of slow-release pesticides by 
reducing their leaching and volatilisation. This application has great 
potential in view of the increased usage of chemicals for pest control and 
agricultural production in Oceania and elsewhere, and the resultant 
contamination of soils and waters (Theng et al. 2000). 
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1  Introduction 

Environmental organic pollutants, mostly released through industrial proc-
esses, application and accidental spills at high quantities, can be parti-
tioned among several physically distinctive compartments of the sediment 
including clay minerals, organic matter and biologically active biomass. 
Among these three, biological processes, including both microbial medi-
ated or non-microbial but organic/enzymatic catalyzed, have been recog-
nized for their roles in transformation and, sometimes completely elimina-
tion of organic pollutants in the environment (Bollag and Liu 1990; Dilly 
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with a wide range of environmental contaminants and in situ cleaning up 
(Atlas 1995; Kuo and Genthner 1996; Jhanson et al. 1999; Whiteley and 
Bailey 2000; Yu and Gu 2006, 2007a–d; Yu et al. 2007a,b). At the same 
time, interactions between organic or inorganic pollutants with organic 
constituents of the sediments have also been actively studied for a better 
understanding of the fate of chemicals and the chemical processes and 
mechanisms involved (Wang et al. 1986; Grossart et al. 2003; Montville 
and Schaffner 2003; Bakker et al. 2004). Among these, an apparent lack of 
information is about the contributions by biological transformation and in-
organic catalyzed process to the overall elimination of pollutants in the en-
vironment (Skipper et al. 1967; Yin et al. 2000; Christensen et al. 2002; 
Gu et al. 2003a,b; Kleinsteuber et al. 2006).  

In addition, a large quantities of the literature still show research 
data on degradation based on comparison between biologically active vs. 
sterilized system by autoclaving to illustrate and support the biotransfor-
mation responsible for elimination of chemicals (Jhanson et al. 1999; 
Kanaly et al. 2002; Obst et al. 2005). This approach may provide initial in-
formation on the fate of chemical pollutants in the simulated environment 
yielding indication of the biodegradability of the chemical concerned, but 
further mechanisms of biochemical transformation and/or the identity of 
the microorganisms involved cannot be revealed from the data obtained. 
The fundamental information about the biological processes involved and 
the microorganism acting on the chemicals can only be achieved by further 
the experimental approach through isolation of the microorganisms and 
then elucidation of the biochemical pathway (Gu and Berry 1991, 1992; 
Gu et al. 2005). In this way, fundamental understanding of the chemistry 
of biotransformation, and both basic microbial physiology and biochemis-
try can be achieved. In the whole process of investigation of the mecha-
nism, abiotic contribution can be minimized or eliminated completely be-
cause the testing system will be depleted with environment constituents 
derived from the sediment used as an inoculum.  

Because of the abiotic process participating in biological transforma-
tion and similarly biological process in non-biological process. Fate of en-
vironmental pollutants should be investigated with the overall view about 
the transformation by abiotic and biological processes so that the informa-
tion obtained can be comprehensive for an in-depth understanding of the 
pollutants in the environment with minimum bias. Because of these, the 
purpose of this chapter is to provide a discussion about biodegradation 
study where abiotic processes also play an important role.  

et al. 2004). Bioremediation by utilization of selective microbial catalyzed 
biochemical processes and plants is a very attractive technology in dealing 
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2 Occurrence of Organics in the Environment 

Natural organic compounds are part of the food chains for microorganisms 
and play an important role in the cycling of nutrients including C, N and S 
(McGill et al. 1981). Natural ecosystem has its own ability in self-
regulating, purifying and maintaining the efficient function of various 
components achieving a balance between various participants. Such coop-
eration between various organisms and physical components of the ecosys-
tem has been able to sustain the ecosystem for millions of years. However, 
such balance is disturbed when large quantities of pollutants are being dis-
charged primarily due to their toxicity to the biota and impair the normal 
function of the selective members of the ecosystem (Mueller and Nielsen 
1996; Yu et al. 2005; Rooney et al. 2006; Yu and Gu 2006; Yu et al. 
2007a,b). Many examples are available on the effect of chemicals, e.g., 
polychlorinated biphenols, dioxin, BETX (benzene, ethylbenzene, toluene 
and xylene), methyl tert-butyl ether (MTBE), etc. One obvious fact is that 
little information is available on the abiotic process contributing to the 
transformation or elimination of chemicals in the environment even though 
information indicated that such process may contribute to 30–40% of the 
parent compound loss when herbicides atrazine, cyanazine and dicamba 
were incubated with sediment from wetland of Virginia, USA (Berry et al. 
1991; Gu et al. 1992), southern, central and northern China (Gu et al. 
2003a) and river sediment of Pearl River in southern China (Gu et al. 
2003b; Lin et al. 2006). Using radiolabelled atrazine in incubation study 
conducted in laboratory, 73% of the initial atrazine was degraded and im-
mobilized in the first 21–28 days and at the same time period only 2.2% of 
the chemical were evolved by microbial respiration (Skipper et al. 1967). 
Hydrolytical reaction was the key one in transforming atrazine to hy-
droxyatrazine. Similar results were also obtained by others using different 
soils (Armstrong et al. 1967). 

Environmental organic pollutants may be degraded depending on 
their toxicity, solubility, distribution constant Kow because physical 
properties of hydrophobic chemicals may affect the solubility and 
therefore the amount of organic carbon available in the aqueous phase for 
microbial assimilation and further metabolism (Schwarzenbach and 
Westall 1981). Chemicals are subject to volatilization and such loss is 
not assessed in most of the study except for physical transformation and 
material balance purposes. Polyaromatic hydrocarbons (PAHs) are 
known to volatilized during incubation even with capping and more then 
40% of the initial chemicals could be found lost (Yin and Gu, 
unpublished data). When proper control was not included and such 
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information was interpreted as degradation, incorrect conclusion can be 
drawn. At the same time, chemicals in such study may be abiotically 
transformed by the presence of clay materials (Miller and Alexander 
1991) and complexed with the organic matter of the sediment (Mortland 
1970). Both the clay materials and organic matter in the sediment can 
contribute to the concentration decrease of a target chemical (McBride 
1987; McBride et al. 1988). Such information is largely not being 
considered by biologists in their investigation. 

3 Photo-Degradation 

Under natural condition, persistent chemicals are also synthesized by the 
normal function of the ecosystem, e.g., fluorinated and chlorinated com-
pounds by marine algae. Chlorinated organic compounds are known being 

Free radicals can be generated by a number of processes, e.g., 
thermolysis, photolysis, ionizing radiolysis, redox reactions, the Fenton 
reaction, chain reactions and mechanical generation. In aqueous systems, 
free radicals are mostly produced by photochemical processes. Highly 
reactive species including 1O2, OH•, H2O2 and organic peroxides in 
oxygenated waters react with a range of organic compounds and the 
surface molecules of microorganisms. For example, in a typical summer, 
surface waters receive about 1 kW m–2 of sunlight, equivalent to about 2 
mol photo m–2 in the region of 300–500 nm (Hoigné 1990). A significant 
portion of the photons is actually absorbed by dissolved organic 
compounds in the surface water and a portion is believed to react with 
nitrate or nitrite and Fe species (Table 1). However, it is not known to 
what extent microorganisms are impacted by the redox reaction and, in 
particular the generated free radical species under natural conditions.  
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produced by marine algae in marine environment (Gschwend et al. 1985), 
but their environmental concentrations never exceed the levels that would 
pose significant inhibition to the members of the natural community except 
for antagonistis purposes. When such chemical are produced for inhibition 
purpose, their effects are associated with the activity and physiology of the 
host organisms. The reason for this is that such chemicals are only pro-
duced at very low concentration to serve their purpose for deterrence or as 
repellent. On the other hand, these chemicals are also transformed possibly 
by organisms and/or abiotic processes at low concentration more effi-
ciently, leaving low residual concentration in the environment. One exam-
ple for such process contributing to the destruction of chemical in the envi-
ronment is by naturally produced free radical.  



 

Equally, little is known about the interactions between such active species 
and the environmental pollutants. Electrochemically generated •OH- 
radicals are highly effective in killing test strain of Escherichia coli and 
cellular morphology was observed to be deformed and lysed (Diao et al. 
2004). Similarly, reactive species of the Fenton reaction also have similar 
effects on bacterial viability and a large collections of chemicals including 
MTBE (Xu and Gu 2004; Xu et al. 2004, 2006), a gasoline oxygenate 
known to be resistant to degradation by microorganisms, can be eliminated. 
Coupling of the oxidation of s-triazine including atrazine, simazine, 
trietazine, prometon and prometryn with particulate TiO2 as photocatalyst 
under simulated solar light achieved degradation of these compounds, but 
mineralization was not achieved (Pelizzetti et al. 1990). The degradation 
intermediate cyanuric acid can persist in the environment and poses 
unexpected impacts on the ecosystem and the components of the living 
system.  

Table 1. Reactants produced by photochemical processes in natural waters 

Products Chemical 
Formula 

Possible generation processes 

Singlet oxygen 1O2 Light absorbing dissolved organic matter 
(humic acids) 

Superoxide anion O2
- Photolysis of Fe3+ complexes; deprotona-

tion of HO2 
Hydroperoxyl HO2 Protonation of O2

- 
Hydrogen peroxide H2O2 Photolysis of Fe3+ complexes, disprotona-

tion of superoxide anion 
Ozone O3 Uptake from atmosphere 
Hydroxyl radical OH Photolysis of hydroxo or other Fe3+ com-

plexes, of NO3
-, NO2

-, photolysis of H2O2 
Organic peroxy  
radicals 

ROO Photolysis of dissolved organic material 

Modified from Stumm and Morgan (1996). 
 
Such reactions have only been investigated on their role in the 

processes of ageing and carcinogenesis to a large extent (Dizdaroglu 
1991), their effects on environmental contaminants and organisms have 
not been fully realized. Because of the short time and difficulties in 
chemical analyses for transitory presence of free radicals, relationship 
between free radical concentrations and effects on pollutants or natural 
microorganisms has not been fully established. It is clear that further 
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investigation on the abiotic catalytic mechanisms for transformation of 
organic pollutants will provide important information on the assessment 
of pollutant fate in the environment.  

4 Hydrolysis 

Many hydrophobic chemicals including polyaromatic hydrocarbons 
(PAHs) are less soluble in water and are initially activated by oxygenase or 
P450 system in which oxygen from O2 can be introduced to the parent 
compounds making them more soluble in the initial phase of transforma-
tion under aerobic conditions (Bollag and Liu 1990). When molecular O2 
is not available, such as under methanogenic and sulfate-reducing condi-
tions, initial attack of the chemical can be initiated through a range of reac-
tions including hydrogenation by phototrophic micoorganims (Berry et al. 
1987), hydroxylation in methanogenic consortia of bacteria acting on in-
dole and 3-methylindole (Gu and Berry 1991, 1992). Further transforma-
tion under anaerobic conditions involves addition of oxygen from H2O 
molecule to the substrate. However, it should also be pointed out that 
abiotic transformation may take place catalyzed by surfaces of clay miner-
als to achieve hydrolysis and such degradation may have a positive effect 
on the overall degradation of the chemical. The reason is that majority of 
the environmental samples we are dealing with contain a significant frac-
tion of sediment materials and therefore their effects on transformation of 
chemicals is apparent. 
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One of the most common abiotic reaction is hydrolysis because certain 
chemical bonds, e.g., ester, are very susceptible to chemical hydrolysis in 
aqueous solution, especially at low pH. High molecular weight chemicals, 
e.g., polymers, need to be hydrolyzed to smaller molecules before they can 
be assimilated into the bacterial cells (Gross et al. 1995; Gu et al. 1993a,b,c; 
1994; Gu and Mitchell 1995). It should also be reminded that esterase is also 
an important group of enzymes commonly detected in a wide range of 
microorganisms including fungi and bacteria for transformation. When cata-
lyzed by microorganisms, the reaction seems to have an unexpected high 
diversity of esterase in the environment as recently observed on de-
esterification of phthalate ester isomers (Wang et al. 2003a; b; Gu et al. 2002, 
2005; Li et al. 2005a,b; Li and Gu 2006; Wang et al. 2006; Li and Gu 2007). 
As shown in these investigations using dimethylphthalate esters, removal of 
the chemically identical two ester bonded methyl groups are carried out fre-
quently by different species of bacteria, suggesting the selectivity of the mi-
croorganims involved for the specific chemical bond catalyzed.  



 

Clay minerals are structure of aluminum- and silicate-oxides. Such 
structures have free bond and vacancies on selective site of the mineral 
structure allowing them to participate in both physical adsorption and 
chemical reactions modifying the available concentration of the chemicals 
in the environment.  

5 Biochemical Processes 

Apart from hydrolysis mentioned above, other specific biochemical reac-
tions can also participate, especially those catalyzed by microorganisms 
under aerobic and anaerobic conditions, in the degradation of a wide range 
of chemicals. One example is the esterase catalyzed reaction in the initial 
hydrolysis of ester compounds as demonstrated using dimethylphtalate es-
ter isomers, including dimethylphthalate, dimethylterephthalate, and di-

Two processes of microbial degradation must be emphasized in our 
understanding the fate of chemicals in the environment, metabolism via 
mineralization or co-metabolism. The former is specifically for process 
carried by bacterial and support the growth of the microorganisms while 
the latter one involves the presence of a second source of carbon and en-
ergy in which the microorganisms actually use these for growth, but also 
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methylisophthalate recently (Gu et al. 2002; Wang et al. 2003a,b, 2004; Gu 
et al. 2004, 2005; Li et al. 2005a,b; Li and Gu 2006; Wang and Gu 2006; 
Wang et al. 2006; Xu et al. 2005a,b). A diverse group of microorganisms 
has been confirmed to be involved in the degradation of this class of 
chemicals from several selective environments including activated sludge, 
mangrove sediment and deep-ocean sediment, and their specific involve-
ment has only being partially substantiated recently using bacteria isolated 
(Wang et al. 2003a, b; Gu et al. 2004, 2005; Li et al. 2005a,b; Wang and 
Gu 2006; Li and Gu 2007). Interestingly, most of the microorganisms are 
commonly found with previously established physiological function in the 
environment (Table 2), but their biochemical capability in degrading this 
class of ester isomers are quite variable, especially on the initial hydrolytic 
reaction. Only a few of these isomers are being mineralized; in most cases 
these esters require the collaboration between two specific microorganisms 
to achieve complete mineraliztion of the isomer involved. The initial ester 
hydrolysis is widely acknowledged, but the diesters in most of the time re-
quire two different microorganisms to carry out this hydrolytic step. Such 
high specificity between a chemical and the microorganism is rare, indict-
ing the stereo-structural effects and chemical reaction carried out by mi-
croorganisms in metabolizing environmental pollutants. 
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transform the pollutants. Because of this, recalcitrant chemicals can also be 
transformed by microorganisms in the environment. However, we recently 
observed that exchange between methyl group on phthalate aromatic moi-
ety and the ethyl group in solution phase as ethanol can facilitate the fur-
ther accelerated degradation of monoethylphthalate, which otherwise 
would be degraded much slowly, as shown below (Fig. 1) (Li and Gu 
2006). This process can be carried out in industrial setting for food proc-
essing at high temperature and pressure only, but our experimental condi-
tions were carried out at ambient conditions. This observation indicated 
that the involved enzyme requires further understanding the biochemical 
reaction mechanism and may have great potential for application.  

5.1 Microbial Transformation 

Microorganisms are predominant in the environment and they may di-
rectly be involved in degradation and transformation of a wide range of 
chemicals (Alexander 1994). The chemicals include agricultural pesti-
cides and herbicides (Gu et al. 2003a,b; Lin et al. 2006), industrial sol-
vents, and other chemicals with specific purposes of applications (Yin et 
al. 2005, 2006). For degradation of specific chemicals, microorganisms 
can be isolated from various sources for capability of degradation under 
selective conditions because microorganisms have their preferred niches 
and biochemical capabilities. In most of these studies, the first step in 
planning an investigation for a chemical is the experimental conditions in 
which the experiment will be set up. The degradation investigations are 
mostly conducted under aerobic conditions for convenience of mainte-
nance and also for the large number of such microorganisms isolated 
from the environment (Gu and Berry 1991, 1992; Gu et al. 1993a,b,c, 
1994; Middeldorp et al. 1997; Adrian et al. 1998; Boonchan et al. 2000; 
Kanaly et al. 2000; Carvalho et al. 2002; Fan et al. 2004). Another hid-
den reason is the complexity of anaerobic experiment and the very slow 
growth of bacteria (Haggblom and Young 1995; Kuo and Genthner 1996; 
Lepine et al. 1996; Ficker et al. 1999; Pancost et al. 2000; Koizumi et al. 
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2002; Arias and Tebo 2003; Callaghan et al. 2006; Cheung and Gu 2007), 
which deters many investigators from using such tedious technical ap-
proaches. Under different environmental.  



Table 2. Microorganisms capable of degrading phthalate esters completely or 
partially 

Substrates Microorganisms Degradation  References 

DMP Pseudomonas fluorescens, 
Pseudomonas aureofaciens 
and Sphingomonas 
paucimobilis 

Complete 

Xanthomonas maltophilia 
and Sphingomonas 
paucimobilis 

Complete  

Pseudomonas fluorenscens 
FS1

Complete  

Micrococcus sp. strain 12B Complete  

Bacillus sp. Complete  

Arthrobacter sp. Partial  

DMTP Aspergillus niger (fungus) Complete  

Sphingomonas paucimobilis Complete 

Sclerotium rolfsii (fungus) Partial  

Comamonas acidovorans 
D-4

Complete 

Pasteurella multocida Sa Complete 

Sphingomonas yanoikuyae 
DOS01

Partial 

Viarovorax paradoxus T4 Complete 

DMIP Klebsiella oxytoca Partial  

Rhodococcus erythropolis 
5D

Complete 

Rhodococcus rubber 1B Complete 

Viarovorax paradoxus T4 Complete 

DIBP Pseudomonas. fluoresences 
FS1

Complete  

Micrococcus sp. strain 12B Complete  
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Wang et al. (2003a) 

Wang et al. (2003b) 

Zeng et al. (2004) 

Keyser et al. (1976) 

Niazi et al. (2001) 

Vega and Bastide (2003) 

Ganji et al. (1995) 

Li et al. (2005a)

Sivamurthy et al. (1991) 

Patel et al. (1998) 

Li et al. (2005b); Li and 
Gu (2006) 

Wang and Gu (2006) 

Wang and Gu (2006) 

Li and Gu (2004) 

Aleshchenkova et al. 
(1997) 

Aleshchenkova et al. 
(1997) 

Wang and Gu (2006) 

Zeng et al. (2004) 

Eaton and Ribbons (1982) 
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DEHP Acinetobacter sp. Complete 

DBP Acinetobacter sp. Complete  

DMP, dimethylphthalate; DMTP, dimethylterephthalate; DMIP, 
dimethylisophthalate; DIBP, dibutylphthalate; DEHP, diethylhexylphthalate; DBP, 
dibutylphthalate 

 
 

 
Fig. 1. Biodegradation of dimethyl terephthalate (DMT) by Pasteurella multocida 
Sa in the presence of ethanol. Ester hydrolysis of DMT involves a trans-
esterification of mono-methyl terephthalate (MMT), and the formation of mono-
ethyl terephthalate (MET). 
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Table 2. (Continued)

Substrates Microorganisms Degradation  References 

Hashizume et al. (2002) 

Hashizume et al. (2002) 



conditions, the organic pollutants for such testing are often used as the sole 
source of electron and carbon for the microorganisms for a large number 
of such study, but proper electron acceptor need to be provided for 
oxygen-limited conditions. Oxygen is the preferred electron acceptor under 
aerobic conditions; NO3

- when oxygen becomes limited, and SO4
2- and 

CO2 when sulfate-reducing or methanogenic conditions are prevalent. 
Simulation of strictly anaerobic conditions is a big challenge due to the 
stringent requirement for elimination of molecular O2 in the experimental 
system, but also for the very slow growth of the microorganisms. However, 
when chemical can be degraded at a reasonable rate, corresponding 
products will be observed to increase over time providing evidence for 
mineralization of chemicals. 

Substantiation of pollutant degradation by microbial process can be 
carried out using enrichment culturing techniques in which the initial mi-
crocosm showing chemical disappearance over time can be used as an in-
noculum for establishment of a new microcosm containing freshly pre-
pared medium and the target chemical (de Souza et al. 1998; Willardson et 
al. 1998; de Souza et al. 2000; El-Fantroussi 2000; Wu et al. 2000; 
Entcheva et al. 2001; Dejonghe et al. 2003; Glaeser and Overmann 2003; 
Sliwinski and Goodman 2004; Kleinsteuber et al. 2006). If further degra-
dation can be observed in the enrichment transfer culture, further more 
transfers can be carried out. If 1 in 100 dilution is used in the process, the 
organic chemical of the sediment or environmental samples can be signifi-
cantly eliminated after 4 such transfers because only 0.00001% of the ini-
tial carbon is present in the 4th enrichment culture and in such system the 
organic pollutant is the sole source of carbon and energy if they are actu-
ally metabolized. Such process has been successfully utilized in enrich mi-
crobial consortium responsible for degradation of herbicide cyanazine (Gu 
et al. 2003a,b) and dicamba (Gu et al. 2003a,b), indole and 3-methylindole 
(Gu and Berry 1991, 1992; Gu et al. 2001). One difficulty in the enrich-
ment process is that not all microorganisms can derive their cellular con-
stituents from the utilization of organic pollutants and some may require 
the supplement of vitamins and growth cofactors, but the information for 
such requirement can only be established on case-by-case basis, which 
may make such investigation much more time and energy consuming. In-
dicative observation of disappearance of chemicals in enrichment cultures 
can be substantiated over time as the number of enrichment increases. This 
practice can effectively eliminate the questionable data observed as envi-
ronmental samples are more likely used in the initial phase of such similar 
investigation.
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Stable enrichment culture provides the fundamental basis for further 
characterization of the microorganisms involved and the biochemical 
pathway of degradation for the target pollutants. In such system, repro-
ducible data can be obtained reliably without much ambiguity. Tradition-
ally, environmental microbiologists believe that at least one microorgan-
ism exists for each pollutants in the environment (Alexander 1994). The 
infallibility theory by Martin Alexander may still occupy the fundamental 
thinking about the environmental degradation of pollutants. However, 
more the more evidences also reveal new information about the metabolic 
network operated by the environmental microorganisms. Though the num-
ber of bacteria that have been in pure cultures and described are high since 
the availability of gene sequencing technique, new biochemical processes 
have not been reported in similar pace (Wackett and Hershberger 2001), 
indicating possibly lack of new biochemical information about the diver-
sity of the biological ecosystem. 

5.2 Elucidation of Mechanisms Through Enrichment 

Biochemical process of degradation is best elucidated with either pure cul-
ture of microorganisms or purified enzymes from the relevant organisms. 
Because of this, it is a constant struggle for environmental microbiologists 
to isolate new bacteria or bacteria capable of utilizing a chemical at higher 
concentration. Conventional approach prefers the enrichment of bacteria 
with increasing concentrations of the target chemical for easy maintenance 
and fast growth. During the process, the cells capable of degradation can 
increase their number through biochemically degrading the chemical while 
those that are not as competitive as the former will be eliminated during 
the dilution enrichment transfer process as described above. Because the 
transfer process involve inoculation of freshly prepared culture medium 
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with a fractions of the active culture previously established (Fig. 2). Assum-
ing a 1% culture taken for inoculation, the first enrichment transfer receive 
1% of the initial culture materials including the environment materials, spe-
cifically sediment and carbon. Further transfers will results in reducing the 
original culture to 1%, 0.01%, 0.0001% after 2, 3, and 4 times of series 
enrichment transfers, respectively. At the same time, the active microor-
ganism will increase in their number and those non-active cells would be 
almost completely eliminated after 5–6 enrichment transfers if there is at 
least one microorganisms capable of degradation. At the same time, this en-
richment process eliminates the residual organic C and sediment materials 
from the sediment, which magnify the signal of biodegradation by micro-
organisms that utilize the chemical as the sole source of C and energy. 



This process has been instrument in the isolation of a number of pollutant-
degrading microbial consortia for industrial chemicals (Wang et al. 
2003a,b; 2004), agricultural ones (Gu et al. 2003a,b; Lin et al. 2006) and 
others including metals (Cheung and Gu 2005; Cheung et al. 2006). 

It should also be noted that not all chemicals can be degraded by one 
single specie of bacteria. One example is the biochemical collaboration be-
tween different species in utilization of one organic compound as recently 
demonstrated on phthalate ester isomers (Wang et al. 2003a,b; Gu et al. 
2004, 2005; Li et al. 2005a,b; Li and Gu 2006, 2007). This specific case il-
lustrates the complexity of microbial community in term of substrate C 
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utilization (Fig. 3). However, such biochemical cooperation also offers ad-
vantage for the existence of a community, in particular for the common 
survival, because initially each microorganism receive only one C from 
hydrolysis of the methyl group of the ester bond and they can compete for 
the remaining C after the hydrolysis of both ester bonds. Because of this 
mechanisms, there is a common opportunity for different members in the 
community to co-exist in the same environment. 

Fig. 2. Scanning electron micrograph showing a natural microbial biofilm devel-
oped on surface of immobilized surface when dimethylphthalate was used as the 
sole source of carbon and energy after dehydration and critical-point dried and 
coating with palladium and gold (unpublished results). 
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Fig. 3. A proposed biochemical pathway for aerobic degradation of dimethyl 
terephthalate (DMT) by Pasteurella multocida Sa isolated from mangrove sedi-

N-heterocyclic aromatic indole can be mineralized by methanogenic 
enrichment culture of bacteria from municipal sewage sludge to methane 
as shown in previous study (Gu and Berry 1991, 1992). Degradation of 
indole was observed to be affect by the presence of montmorillonite at two 
concentrations 2 and 4 mg/ml (Fig. 4) by the stable indole-degrading 
methanogenic consortium capable of minertalizing indole through 
oxindole and isatin as reported earlier (Gu and Berry 1991, 1992). When 
the anaerobic microcosms were prepared with addition of the 2:1 clay 
mineral montmorillonite, an initial delay in degradation was observe as the 
amount of montmorillonite increased, suggesting that surface of clay 
mineral may adsorb the indole in aqueous solution and/or the degradative 
microorganisms so that the activities of microorganisms were affected. 

CO2 + H2O 
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6 Interactions Between Living and Non-Living 
Components of the Ecosystem 

Physical environment play a very important role in preserving biota by the 
surfaces and also supplying the available carbon through desorption and 
other mechanism affecting degradation processes. Sediments are largely 
consisted of minerals and organic matter and living biomass depending on 
the physical and chemical conditions. However, during microbial trans-
formation study, emphasis has been mostly placed on the chemical trans-
formation and the possible involvement of microorganisms by examining 
and comparing the chemical concentrations between biologically active 
and the sterile control. Rarely has attention been given to the interactions 
between the inorganic constituents and the microorganisms, and possible 
effect of the former on the latter. Actually, microorganisms may benefits 
from the surfaces provided by the clay minerals and possibly the catalysis 
by clay minerals in transformation of organic pollutants. 

ment (Li and Gu 2006). 



Because of these, mineralization product methane also showed 
corresponding delay as the amount of montmorillonite increased in the 
culturing microcosms. However, very little information is available in this 
area as to the mechanisms involved and further research in this area will 
allow better understanding and assessment of interactions between 
microorganisms and organic compounds in the environment (Lünsdorf et al. 
2000).

Fig. 4. Effect of montmorillonite on degradation of indole by an indole-degrading 
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methanogenic consortium incubated under strictly anaerobic conditions (unpub-
lished results). 
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7 Ecotoxicological Assessment 

Most ecological risk analyses, using information based on concentrations 
of environmental chemicals analytically detected and also the toxicological 
data of the chemicals on selective model animals in laboratory system, 
make prediction of the long-term exposure by extrapolation by applying 
various mathematical techniques (Yu and Gu 2006 a–d). Such approach 
has a major drawback in that the effective concentration of the chemical in 
laboratory conditions that can be exposed to organisms are not the same as 
those in ecosystem or complex system, e.g., sediment. Knowing the con-
centration by analytical analysis does not imply accurately reflection of the 
effects of physical matrices on chemicals that we are dealing with impos-
ing effect on the actual concentration of the chemical available to organ-
isms. Because of this, a better understanding of the physical environment 
and interactions between physical and biological components will facilitate 
our better understanding of environmental pollutants in the environment. 
Such information will improve our prediction because more realistic in-
formation about toxic chemical concentration can be obtained. 

Bioremediation in situ is much more complicated than the system 
used in the laboratory controlled condition. Microorganisms in natural 
community interact with each other and also with other organisms and 
plants; such interactions are more complicated than the scientific technique 
can delineate simply. Because of this, more systematic approaches are 
needed to reveal the connectivity between these biological factors and non-
biological factors to understand the underlying processes. 

8  Conclusion 

Fate of organic pollutants should be assessed with comprehensive consid-
eration of all factors contributing to the decrease of parent chemical con-
centration extractable from the system. Both abiotic and biological trans-
formation may play significant role in the change of chemical 
concentration. When biological degradation is the ultimate goal of the in-
vestigation, enrichment culture can be used to both magnify the biological 
signal and also obtain the microorganisms for further investigation. With 
the pure culture of bacteria, mechanism of transformation can be further 
substantiated in laboratory study. However, ecological risk assessment re-
quires that a more accurate quantification of pollutants concentration 
should be achieved through better understanding of the physical environments

 J.-D. Gu 



 

and interaction between minerals and organic matter with the target 
pollutants. Without this critical step, our prediction will be very limited.  
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1 Introduction 

Concerns regarding progressive soil degradation and the long-term sus-
tainability of current agricultural practices have lead to the study and as-
sessment of soil quality (Karlen et al. 1997). Soil organic matter is an ex-
tremely important attribute of soil quality since it profoundly influences 
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a source of energy and nutrients for soil biota, a plant nutrient (N, S and P 
via mineralization) source, it contributes to the charge characteristics of 
soils, it has the ability to complex with multivalent ions and organic com-
pounds and it affects aggregate stability, trafficability, water retention and 
hydraulic properties. As a result, soil organic matter content and quality 
are now recognized as key factors in the evaluation of the sustainability of 
soil management practices (Gregorich et al. 1994, 1997a). 

 Soil organic matter is a heterogeneous mixture of materials ranging 
from fresh plant and microbial residues to relatively inert humic com-
pounds. It is often difficult to detect changes in total organic matter in re-
sponse to alterations in soil management because of the generally high 
background levels and also natural soil variability (Haynes and Beare 
1996). This has led to research into identification of labile pools of organic 
matter (which make up a relatively small proportion of the total pool) that 
are more sensitive to changes in soil management or environmental condi-
tions than total soil organic matter content. Examples of such pools include 
C and N held in the microbial biomass and in particulate organic matter 
and in water-soluble, easily-extractable and potentially mineralizable frac-
tions (Haynes 2005). 

 The microbial biomass is the living component of soil organic matter 
and it typically comprises 1–5% of total organic matter content (Sparling 
1997). The microbial biomass plays important roles in the soil since it is 
both a source and sink for C, N, S and P, an agent for decomposition of lit-
ter and formation and degradation of humic material and it has important 
roles in aggregate formation and degradation (Alexander 1977; Haynes 
and Beare 1996; Sparling 1997). Because of its high turnover rate, micro-
bial biomass C content can respond rapidly to changes in soil management 
practice (Gregorich et al. 1997a). Measurement of the size of the microbial 
biomass gives no indication of microbial activity. The most commonly 
used index of microbial activity is the measurement of CO2 evolution from 
soils (soil respiration rate).  

 The purpose of this paper is to review the significance of soil or-
ganic matter fractions, and the size and activity of the soil microbial com-
munity to the function of agricultural soils and investigate how land use 
and soil management affect these parameters. 

the physical, chemical and biological properties and processes of soils. It is 



 

2 Total Soil Organic Matter 

2.1 Nature of the Pool 

Soil organic matter content is generally measured as organic C or total N 
content. Soil organic matter has long been suggested as the single most 
important indicator of soil productivity (Allison 1973; Campbell 1978). 
The main chemical properties affected by soil organic matter are charge 
characteristics, cation exchange capacity, buffering capacity, formation of 
soluble and insoluble complexes with metals and interactions with xenobi-
otics such as pesticides. Key physical properties that are influenced include 
aggregate formation and stabilization, water retention, resistance and resil-
ience to compaction and thermal properties. The most important biological 
properties of organic matter are its role as a reservoir of metabolizable en-
ergy for microbial and faunal activity, its effect in stabilizing enzyme ac-
tivity and its value as a source of plant-available N, S and P via mineraliza-
tion. 

 Soil organic matter is composed of two major pools; a labile and a 
stabilized fraction. This is a convenient division although, in fact, soil or-
ganic matter includes a continuum of materials ranging from highly de-
composable to very recalcitrant. The labile fraction consists mainly of ma-
terial in transition between fresh plant residues and stabilized organic 
matter. Much of it is plant and microbial tissue in various stages of de-
composition. It is generally considered to have a short turnover time (less 
than ten years). Pools of organic matter that have been identified as part of 
the labile fraction include particulate organic matter, soluble C, poten-
tially-mineralizable C, that extractable with various reagents, microbial 
biomass C and enzymes present in soluble and sorbed forms. Each of these 
pools defines an aspect of the labile fraction and their significance is dis-
cussed in the following sections of this review. 

Stabilized organic matter consists of materials that are highly resistant 
to microbial decomposition because of their chemical structure and/or as-
sociation with soil minerals. It consists mainly of humic substances which 
are complex systems of high molecular weight organic molecules made up 
of phenolic polymers produced from the products of biological degradation 
of plant and animal residues and the synthetic activity of microorganisms 
(Stevenson 1994; Baldock and Nelson 2000). Humic substances make up 
70–80% of the soil organic matter content of most mineral soils. Since 
humic substances make up the bulk of soil organic matter content, changes 
in total organic matter (organic C and total N content) reflect principally 
changes in the amounts of humic material present. 
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Based on the physical state, soil organic matter can be divided into 
light and heavy fractionswith a density of < 1.6 g cm–3 and 1.6–2 g cm–3, 
respectively (von Lützow et al. 2007). Light fraction is commonly referred 
to a plant-like and less stable fraction with high C concentration. It ac-
counts for 2–17% of the total SOC in surface soils and represents an in-
termediate pool between undecomposed residues and humified SOM. 
Light fraction is considered to be the driving force in soil respiration. The 
importance of light fraction in the formation and stabilization of soil struc-
ture is widely recognized. Heavy fraction is a more stable and high density 
organo-mineral fraction with lower C concentrations. It contains more 
processed SOM and can be a major sink for C storage in soil because it has 
less mineralizable C (Tan et al. 2007). 

2.2 Effects of Agricultural Activity 

In agricultural soils, changes in soil management practice affect soil or-
ganic matter content by (i) altering the annual input of organic matter from 
above- and below-ground plant litter and (ii) by altering the rate at which 
the decomposer community degrades organic matter and releases organic 
C to the atmosphere as CO2. Under any particular long-term soil manage-
ment practice, soil organic matter content reaches a steady-state level 
where organic matter accumulation is balanced by losses as CO2. 

 Long - term tillage management can significantly change the charac-
teristics of both physical and chemical fractions of SOM (Ding et al. 
2002). Long-term field experiments at two European countries revealed 
that the organic C concentrations were significantly higher in the farmyard 
manure plots compared to the NPK amendments or control (Böhme et al. 
2005). The most obvious effect of agricultural practice occurs when soil 
under native vegetation is converted to arable agriculture. Typically, or-
ganic matter levels decline rapidly in the first 10–20 years and then stabi-
lize at a new equilibrium level after 30–100 years (Haynes and Beare 
1996; Paustian et al. 1997; Fenton et al. 1999). A number of factors con-
tribute to the losses of organic matter including: (i) a much lower alloca-
tion of carbonaceous residues to the soil (due to the relatively wide spacing 
of crop plants, removal of harvested products and burning and removal of 
crop residues, (ii) tillage-induced aggregate disruption and exposure of 
physically protected organic material to microbial action thus hastening 
decomposition rates, (iii) more favourable conditions for decomposition 
(e.g. tillage-induced aeration, irrigation, fertilizer and lime additions) and 
(iv) greater losses of surface soil by wind and water. 
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 Factors that increase organic matter inputs, and thus tend to increase 
soil organic matter content under arable agriculture include: (i) a decreas-
ing proportion of fallow in rotation, (ii) increase in the proportion of cereal 
compared to root crops, (iii) an increasing proportion of perrenial crops 
(forage legumes and grasses) in rotation, (iv) return of crop residues rather 
than burning or removal, (v) fertilizer and irrigation additions which pro-
mote increased yields and thus greater organic matter returns and (vi) addi-
tions of organic manures or other organic wastes (Johnston 1986; Janzen 

2007). For example, in a long-term crop experiment with different crops 
near Linz, Austria, Ros et al. (2006) found that compost treatment in-
creased soil organic carbon at all depths from 11 g kg–1 for control soil 
(without fertilization) to 16.7 g kg–1 for the case of sewage sludge com-
post. A 10-year experiment of legume cover crop incorporation with rain-
fed Alfisols in southern India showed that biomass incorporation improved 
mean soil organic carbon content by 24% over fallow (Venkateswarlu et 
al. 2007). It was suggested by Leifeld and Kögel-Knabner (2005) that the 
most sensitive fraction to land-use was SOM in the fraction >20 μm not re-
leased after sequential wet sieving and ultrasonic dispersion. 

 The most common way of attempting to reduce the rate of organic 
matter decomposition is to create less tillage-induced disturbance to the 
soil by conversion to minimum or zero tillage. This characteristically re-
sults in an accumulation of organic matter in the surface few cm (Blevins 
et al. 1983; Horne et al. 1992) and conservation of organic matter in the 
soil profile where fields have been converted from native vegetation and 
soil organic matter is initially relatively high (Dick 1983; Francis and 
Knight 1993). However, where substantial amounts of organic matter have 
been lost, through repeated conventional tillage, conversion to zero tillage 
usually has little effect on total organic matter in the soil profile (Powlson 
and Jenkinson 1981; Francis and Knight 1993). 

 In Fig. 1, the effects of various long-term land uses on soil organic C 
content are shown. A highly productive, fertilized, irrigated kikuyu pasture 
resulted in a substantial accumulation of organic C compared to undis-
turbed native grassland. Commercial forestry under Eucalyptus (gum) or 
Pinus (pine) forest resulted in similar or greater organic C content than na-
tive grassland. This reflects the large litter inputs that occur to the soil un-
der commercial exotic forests. The arable crops (maize under conventional 

et al. 1997, 1998a,b; Paustian et al. 1997; Fenton et al. 1999; Yang et al. 

tillage and sugarcane) resulted in a loss of soil organic C. Annual ryegrass 
pasture resulted in a similar organic C content to native grassland since the 
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 Because of the relatively large quantity of background organic mat-
ter already present, changes in organic status caused by changes in soil 
management practice are usually difficult to detect in the short-term (i.e. < 
5 yr) and are usually demonstrated in long-term (e. g. > 25 yr) field ex-
periments (Johnston 1986; Campbell et al. 1997). Indeed, the recalcitrant 
humic fraction, that makes up the bulk of soil organic matter and has turn-
over rates measured in thousands of years, is only slowly effected by 
changes in soil management. By contrast, labile fractions of organic matter 
have a much greater turnover time and change much more rapidly in re-
sponse to management-induced changes in organic matter inputs or losses 
(Gregorich et al. 1994; Janzen et al. 1998a). 

3 Labile Organic Matter 

3.1 Nature of Pools 

3.1.1 Particulate Organic Matter (POM) 

Particulate organic matter is transitory pool between fresh plant residues 
and humified organic matter (Gregorich and Janzen 1996). Often the term 
light fraction is used as a synonym for POM (von Lützow et al. 2007). 
While POM and LF are similar, they are not equivalent fraction and have 
different C-, N-, O-alkyl contents (Gregorich et al. 2006).  

Particulate organic matter is comprised primarily of plant debris with 
a recognizable cellular structure but microscopic examination has revealed 
it also contains fungal hyphae, spores, seeds, faunal skeletons and charcoal 
(Spycher et al. 1983; Skjemstad et al. 1990). It contains the portion of soil 
microflora involved in decomposition of residues as well as some humified 
plant material (Ladd et al. 1977; Baldock et al. 1992). It is thought that 
particulate organic matter can exist in two major forms; (a) that which is 
free without significant association with mineral particles (free POM) and 
(b) occluded forms that are buried within soil aggregates and/or strongly 
associated with mineral particles (POM occluded in soil aggregates) 
(Besnard et al. 1996; Gregorich et al. 1997b).  

 

greater dry matter production (and organic matter inputs) are balanced by 
greater organic matter decomposition induced by annual tillage. 

The two forms of POM can be obtained by using density fractionation 
in combination with ultrasonic dispersion. The chemical composition of 
both fractions is quite different, with the occluded POM having lower 
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Fig. 1. Effects of long-term land use on organic C, extractable C, microbial bio-
mass C, microbial quotient, basal respiration and the metabolic quotient of soils 
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amounts of O-alkyl C and higher amounts of aryl C and alkyl C than the 
free POM (Kölbl et al. 2005). With increasing clay content the amount of 
organic carbon stored in the occluded POM fraction increased considera-
bly, whereas the amounts of free POM were not related to the soil clay 
content. Increasing proportions of O-alkyl C and decreasing proportions of 
aryl C were found for both POM fractions with increasing soil clay con-
tents. The occluded POM fraction showed a higher degree of degradation 
as indicated by lower amounts in O-alkyl carbon. A lower degree of POM 
degradation was associated with higher clay contents. Higher soil clay con-
tents promoted the conservation of POM with a low degree of alteration 
(Kölbl and Kögel-Knabner 2004). Drying and wetting strongly affected the 
amounts of POM incorporated into aggregates (intra-aggregate POM, 
iPOM). More coarse iPOM is decomposed into fine iPOM in macroaggre-
gates not exposed to dry-wet cycles due to a slower macroaggregate turn-
over (Denef et al. 2001). 

Particulate organic matter contributes to soil function in a number of 
ways. It is the major pathway through which C and nutrients are returned 
to the soil (as above-ground plant residues and from root turnover). It is 
the major precursor for formation of other forms of organic matter which 
are released and/or synthesized during its decomposition. It is a major 
source of cellular C, energy and nutrients for the heterotrophic soil micro-
flora and indogeic (soil-feeding) soil fauna including many earthworms 
and termites. Studies have also shown that stable soil macroaggregates 
tend to have cores of particulate organic matter and that aggregates form 
around particles of decaying plant residues (Golchin et al. 1994, 1998). 

 Seasonal fluctuations in particulate organic matter have been re-
corded by a number of workers (Conti et al. 1992; Boone 1994; Campbell 
et al. 1999 a,b). These can usually be related to the timing of organic mat-
ter inputs (e.g. return of crop residues) and their seasonal pattern of de-
composition (Campbell et al. 1999 a,b). Boone (1994) concluded that the 
seasonality of organic matter inputs to the soil was the main factor affect-
ing the amounts of particulate organic matter extracted from soils under 
maize. Such seasonal variability needs to be considered when interpreting 
particulate organic matter data and for comparison, soils should be sam-
pled at the same time each year. 

3.1.2 Dissolved Organic Matter (DOM) 

Dissolved organic matter can be thought of, for simplicity, as soluble 
organic matter present in soil solution. However, although some workers 
have measured dissolved organic matter in soil leachates or extracted soil 
solutions, many use the extract from a 1:2 w/v soil/water extraction 
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(Burford and Bremner 1975). A number of salt-extractable fractions have 
also been used as measures of dissolved organic matter. Salt extracts are 
used mainly for ease of extraction since they cause flocculation of soil 
colloids present in aqueous extracts. The most common salts used are 0.05 
M K2SO4 (also used for extraction of microbial biomass C) and 2 M KCl 
(also used for extraction of exchangeable NH4

+ and NO3
–). Care needs to 

be exercised when using salt solutions since concentrations of dissolved 
organic C measured may well differ from those measured by water 
extraction which, in turn, could differ from that present in displaced soil 

 Dissolved organic matter originates from leaching from above- and 
below-ground plant litter and/or the synthetic activity of soil microflora 
involved in decomposition of the litter and/or native soil organic matter. 
Organic matter in soil solution is in equilibrium with solid phase organic 
matter including (i) that adsorbed to sesquioxide surfaces, (ii) that 
precipitated due to coagulation in the presence of divalent and trivalent 
cations and (iii) the insoluble organic matter present in the topsoil 
(Reemtsma et al. 1999). It consists of a wide range of organic compounds 
including simple aliphatic organic acids, phenols, phenolic acids, free 
amino acids, sugar acids, carbohydrates and complex humic molecules of 
various molecular weights (Stevenson 1994). Only 10–40% (typically 
about 20%) of dissolved organic matter is readily degradable by soil 
microflora (Jandl and Sollins 1997; Huang et al. 1998; Smolander et al. 
2001) and this fraction is thought to be principally present as 
carbohydrates (Haynes 2005). The bulk of dissolved organic matter is 
present as soil humic material that is relatively recalcitrant (Boyer and 
Groffman 1996; Yano et al. 2000; Wagai and Sollins 2002). Nonetheless, 
the flux of metabolizable C passing through the labile degradable fraction 
is a major determinant of soil microbial activity. 

 Dissolved organic C typically accounts for only 0.05–0.40% of soil 
organic C in agricultural soils (Campbell et al. 1999a,b; Lundquist et al. 
1999) and 0.25–2.0% in forest soils (Boyer and Groffman 1996; 
Smolander et al. 2001). 

 Due to the transient nature of dissolved organic matter, seasonal 
fluctuations in its concentrations are commonly encountered (Sarathchandra 
et al. 1988; Jensen et al. 1997; Campbell et al. 1999a,b; Murphy et al. 
2000). These have been ascribed to seasonal variability in organic inputs 
through rhizodeposition, microbial death and residue inputs and/or 
seasonal variability in soil microbial activity and thus metabolism of the 

8 Soil Organic Matter Quality and Microbial Biomass

solutions. This is principally because dissolved organic matter is in 
equilibrium with that adsorbed to clay colloids and pH of extraction, ionic 
strength and dominant species of anions and cations present all affect 
adsorption/desorption of organic matter (Haynes 2005). 
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dissolved organic matter. Sampling time is therefore an important consid-
eration when interpreting data. 

3.1.3 Extractable Fractions 

Many different chemical extractants have been used in attempts to extract 
a labile portion of organic matter from soils. For example, a large number 
of chemical reagents have been used to estimate potentially mineralizable 
N (Keeney 1982; Goh and Haynes 1986). These can be divided into three 
broad groups: (i) weak (hot water, hot 0.01 CaCl2 or 2 M KCl, 0.01 M 
NaHCO3), (2) intermediate (alkaline permanganate, Na2CrO4 plus H3PO4, 
1 M NaOH) or (3) strong (6N H2SO4, K2Cr2 O7–H2SO4) extractants. Nu-
merous other reagents have also been used including NaOH, Na2CO3, 
Na2P2O7, acetylacetone and chelating agents. In recent times three different 
extractants have been frequently used to evaluate labile organic matter. 
These are the hot water extractable dilute acid-hydrolysable and perman-
ganate-oxidizable fractions. 

 Hot water-extractable C accounts for 1–5% of soil organic C 
(Leinweber et al. 1995; Sparling et al. 1998; Chan and Heenan 1999) and 
about 50% of this is thought to be present as carbohydrate (Haynes 2005). 
Because it is usually extracted from air-dried soils much of the pool 
originates from desiccated microbial cells but it also includes exocellular 
polysaccharides, root exudates, lysates and humic material (Redl et al. 
1990; Leinweber et al. 1995; Sparling et al. 1998). Both hot water 
extractable C (Sparling et al. 1998; Chan and Heenan 1999) and hot water-
extractable carbohydrate (Ball et al. 1996; Haynes and Beare 1997; 
Debrosz et al. 2002) have been used as indices of soil quality. 

have also been used as indicators of soil organic matter status (Angers and 
Mehuys 1989; Chan and Heenan 1999; Shepherd et al. 2001). The acid 
hydrolysable fraction generally accounts for about 20–40% of total organic 
C (Rovira and Vallejo 2002) and 65–85% of the total soil carbohydrate 
pool (Puget et al. 1999).  

 A fraction of organic C oxidizable with 333 mM KMnO4 is another 
measure of labile organic matter (Blair et al. 1995). This fraction encom-
passes all those organic components that can be readily oxidized by 
KMnO4 including labile humic material and polysaccharides (Conteh et al. 
1999). It commonly accounts for 15–20% of total soil organic C (Blair  
et al. 1998; Conteh et al. 1998). 

 Dilute acid (0.5 M– 2.5 M H2SO4) – extractable C or carbohydrate – C 
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3.1.4 Potentially Mineralizable C and N 

Potentially mineralizable C and N are often measured by incubating a 
sample of field-moist soil at a known temperature in a sealed chamber con-
taining an alkali trap. The CO2–C accumulated in the trap is measured by 
acid titration and this represents the quantity of C mineralized. Alterna-
tively, CO2 in the headspace of the incubation chamber can be measured 
using a CO2 analyser. The amount of N mineralized during incubation is 

 Potentially mineralizable C and N are not analogous measurements 
since the CO2 evolved during incubation indicates the total metabolic ac-
tivity of the heterotrophic microflora which are decomposing soil organic 
matter (i.e. gross C mineralization). By contrast, N mineralization and im-
mobilization occur simultaneously so that a portion of N mineralized dur-
ing the incubation can be subsequently assimilated (immobilized) by the 
decomposer microflora. The excess NH4

+ and NO3
– accumulates in the 

soil. Thus, the mineral N accumulated during incubation represents net 
rather than gross N mineralization.  

 It has been suggested that estimation of potentially mineralizable C 
and N is a particularly relevant measurement because it represents a bioas-
say of labile organic matter using the indigenous soil microbial community 
to release labile fractions of C and N from soil organic matter under con-
trolled conditions (Sparling 1997). It can, however, be difficult to compare 
mineralizable C and N values between studies because of differences in 
soil water content, incubation temperature and period of incubation. Thus, 
potentially mineralizable C and N values are usually treated as relative 
rather than absolute values. 

 As with particulate and soluble organic matter, seasonal fluctuations 
in potentially mineralizable C and N can occur in field soils (Boone 1994; 
Bonde and Rosswall 1987; Campbell et al.1999 a,b). These are normally 
related to seasonal inputs of readily mineralizable organic matter through 
rhizodeposition of root material during crop growth and/or inputs of litter 
and crop residues. 

3.2 Effects of Agricultural Activity 

As noted earlier, total soil organic matter content can be considered as a 
coarse indicator of soil quality. However, changes in the content of organic 
C and total N occur only slowly and do not provide an adequate indicator 

calculated as the difference in extractable NH4
+ - and NO3

– –N measured in 
the soil before and after incubation. Mineralizable N can also be measured 
in an open incubation system where the soil is leached periodically and 
NH4

+ - and NO3
– –N in leachates is measured (Stanford 1982). 
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of important changes in soil organic matter quality that may be occurring. 
In order to evaluate such changes, the measurement of labile pools of or-
ganic matter that make up a relatively small proportion of total soil organic 
matter (as described above) is required. These pools can be considered as 
fine indicators of soil quality which influence soil quality in various ways. 

 Particulate organic matter is widely considered as a key indicator of 
soil quality (Gregorich and Janzen 1996). Conversion of undisturbed native 
forest or grassland sites to arable agriculture typically results in a 
disproportionate decrease in particulate organic matter (Dalal and Chan 
2001). This occurs because litter inputs are greatly decreased while their rate 
of decomposition is increased by factors such as tillage, irrigation and 
fertilizer inputs. Indeed, agricultural practices that affect the amount of 
organic residue input and/or the rate of decomposition have much greater 
and earlier effects on particulate organic matter than whole-soil organic 
matter content (Biederbeck et al. 1994; Bremer et al. 1994). The greater 
responsiveness of particulate than total soil organic matter to changes in 
management have included increases due to (i) continuous cropping 
compared to summer fallow, (ii) cropping with grasses, legumes and 
pastures rather than arable row crops, (iii) conversion from conventional to 
zero tillage and (iv) application of fertilizers thus increasing crop growth and 
residue input (Janzen et al. 1992; Gregorich et al. 1997b; Angers et al. 1999; 
Bolinder et al. 1999). The concentrations of particulate organic matter was 
reduced substantially by cultivation, with the microaggregates showing an 
almost complete loss of its particulate organic matter content. The 
destruction of these transient organic cementing agents was assumed to have 
contributed to the collapse of the macroaggregates. This has resulted in 
exposure of particulate organic matter, making it more available to rapid 
oxidation and microbial attack. Particulate organic matter content could be 
used as indicator of soil structure degradation due to exhaustive cultivation 
practices (Bongiovanni and Lobartini 2006). Carbon concentrations of light 
fraction were significantly higher under no-till and forest than under 
conventional tillage. Soil organic matter loss following conversion from 
forest to agriculture is attributed to reduction in C concentration in both light 
and heavy fractions. In contrast, soil organic matter gain upon conversion 
from conventional tillage to no-till is primarily assigned to an increase in C 
concentration in the light fraction (Tan et al. 2007). However, some studies 
disagree with the above results, Leifeld and Kögel-Knabner (2005) found 
that the proportion of free light (wet sieving, density < 1.8 g cm–3) and 
occluded light (ultrasonic dispersion with 22 J ml–1, < 1.8 g cm–3) particulate 
organic matter (POM) showed no clear response to land-use in an 
agricultural system with sandy dystric Cambisols in Bavaria, Germany. 
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They concluded that neither free nor occluded light POM are appropri-
ate early indicators for changes in land-use. Some have questioned the va-
lidity of dissolved organic matter as an indicator of soil quality because of 
its small size and highly labile nature (Baldock and Nelson 2000). That is, 
as explained previously, it is the flux of readily-available substrate through 
the dissolved organic matter pool that is important in relation to the size 
and activity of the microbial biomass and nutrient availability. The size of 
the pool measured at any one time does not necessarily reflect the flux 
through it.  

 Nonetheless, the size of the pool of dissolved organic matter has been 
used successfully as an indicator of changes in soil management. It has 
been shown to increase more markedly than total organic matter content 
due to (i) addition of crop residues, (ii) replacement of wheat-fallow sys-
tems with continuous wheat, (iii) conversion of arable systems to pasture 
and (iv) stock camping of grazing animals (Campbell et al. 1999a,b; 
Haynes 1999, 2000; Haynes and Williams 1999; Graham et al. 2002). For 
example, DOM concentration was reported to decrease in the order: forest 
floor > grassland Ah> arable Ah. Although land use and management prac-
tices may significantly influence the amount and the composition of DOM 
in soil, the processes involved remain largely unknown. Quite a lot of pre-
vious results were obtained from laboratory studies which may help to iso-
late and better define these processes, but the net effect of management 
practices can be poorly predictable under field conditions because various 
soil properties are modified at the same time, resulting in confounding and 
counteracting effects on DOM (Chantigny 2003). 

seven land uses referred to in Sect. 3 is shown in Fig. 1. It is evident that 
annually-tilled ryegrass and maize and sugarcane have the lowest values 
suggesting they had the lowest concentrations of soluble substrate C for 
microbial growth and activity at the time of sampling. 

 The 0.05 M K2SO4 – tractable (soluble) organic C content of the 

 Extractable fractions of organic matter have also been employed to 
guage the effects of soil management on soil organic matter quality. Hot 
water-extractable carbohydrate has been shown to be more responsive to 
inclusion of short-term pasture in arable rotations and to rhizosphere 
versus bulk soil than total carbohydrate or organic C content (Haynes et al. 
1991; Haynes and Francis 1993). Similarly, dilute acid-hydrolysable 
carbohydrate has been shown to be more responsive to changes in 
management than organic C content (Angers and Mehuys 1989; Angers et al. 
1993 a,b). The KMnO4 – oxidizable fraction has been shown to be more 
sensitive than organic C to (i) conversion from grassland to arable 
agriculture and (ii) conversion from burning to crop residue retention 
(Blair et al. 1995, 1998; Conteh et al. 1998; Blair 2000). 
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 The pools of potentially mineralizable C and N show a greater re-
sponsiveness to changes in soil management than do organic C or total N 
(Campbell et al. 1997; Gregorich et al. 1997a). Disproportionately greater 
increases in mineralizable than total organic matter have been noted in re-
sponses to (i) decreases in the amount of fallow in cereal rotations, (ii) 

4 Size and Activity of the Soil Microbial Biomass 

4.1 Nature of the Pools 

4.1.1 Microbial Biomass 

cropping with grasses rather than cereals, (iii) conversion from 
conventional to zero tillage, conversion from burning to retention of crop 
residues and (iv) long-term fertilizer applications (Carter and Rennie 1982; 
Biederbeck et al. 1994; Bremer et al. 1994; Campbell et al., 1997; 
Needelman et al. 1999; Graham et al. 2002). Potentially mineralizable N 
concentrations are often less responsive to soil management than those of 
C because temporary immobilization of N can occur concomitantly with C 
mineralization and release of CO2 (Campbell et al. 1997). 

The soil microbial biomass is the living component of soil organic matter. 
It comprises mainly bacteria and fungi and excludes soil animals and plant 
roots. Although the soil microbial biomass only consists of 1–5% of 
organic C and 1–6% of total N (Sparling 1997; Dalal 1998) it performs 
critical functions in the soil system. It is a labile source of C, N, S and P 
following microbial death and subsequent mineralization, an immediate 
sink of C, N, S and P through immobilization and it is an agent for nutrient 
transformations and pesticide degradation. Indeed, the diverse metabolic 
activities of the soil microbial community regulate energy and nutrient 
cycling that takes place in the soil. In addition, the microbial biomass can 
play an important role in regulating soil structure. Microbial mucigel 
contains polysaccharides and these act as glues thus helping bind 
aggregates together (Tisdall 1996). In addition, fungal hyphae can have an 
enmeshing effect helping bind soil aggregates together (Tisdall 1996).  

 Historically, measurement of the microbial biomass has been a 
tedious, time-consuming occupation involving staining and direct counting 
or use of culture media and enumeration of individual microbial 
communities. However, in the last 20 years, a suite of methods have been 
developed for more rapid assessment of the microbial biomass. These 
include the substrate-induced respiration method (Anderson and Domsch 
1978), the chloroform fumigation-incubation method (Jenkinson and 
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 Seasonal fluctuations in soil microbial biomass can occur due to 
changes in the amount of substrates, and temperature and moisture (Dalal 
1998). Indeed many workers have recorded seasonal fluctuations in micro-

4.1.2 Basal Respiration 

Measuring the size of the microbial biomass gives no indication of its ac-
tivity. This is because the soil microbes can be present in resting, inactive 
forms or in metabolically active forms. The activity of the microbial com-
munity is most commonly estimated by measuring the soil respiration rate 
(usually as CO2 evolution rate). Under field conditions, soil respiration 
rates are characteristically variable and can show wide variation depending 
on such factors as soil water content, temperature and substrate availability 
(Sparling 1997). It is therefore often difficult to interpret field measure-
ments. For that reason, measurement of the respiration rate is commonly 
made under controlled laboratory conditions when soil water content and 
temperature are not limiting. Such values are normally termed “basal respi-
ration” and give an indication of microbial activity. 

4.1.3 Metabolic Quotient 

From the measurements of microbial biomass C and basal respiration the 
metabolic quotient (qCO2) can be calculated. This is a measure of microbial 

Powlson 1976), the chloroform fumigation-extraction method (Vance et al. 
1987), adenosine triphosphate analysis (Jenkinson et al. 1979) and 
phospholipid fatty acid analysis (Zelles 1999). The most common method 
used routinely is the fumigation-extraction method. It involves 
measurement of 0.05 M K2SO4-extractable organic C from unfumigated 
and chloroform-fumigated soil. Chloroform fumigation causes death and 
lysis of soil microbes. The proportions of C (KC) and N (KN) extracted 
from the fumigated soil varies from 0.20 to 0.68. Most frequently used KC 
values range from 0.36–0.45 and KN values are in the range of 0.49–0.62. 

 Measurements other than respiration rate can also be used as 
indicators of soil microbial activity. These include measurements of the 
rate of multienzyme processes such as arginine ammonification rate (Alef 
and Kleiner 1995) fluorescein diacetate (FDA) hydrolysis rate (Alef 1995) 
and measurement of key endocellular enzymes such as dehydrogenase 
(Tabatabai 1994). 

microbial biomass under both pastoral and arable conditions (Sarathchandra 
et al. 1989; Tate et al. 1991; Srivastava 1992; He et al. 1997; Campbell et al. 
1999). Such seasonal variations must be taken into account when microbial 
biomass data is compared. 
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biomass). Calculating the qCO2 gives an indication of what proportion of 
substrate C is respired as CO2 rather than incorporated into cellular C. A 
high qCO2 is thought to indicate that the microbial community is stressed 
and is tending to respire C as CO2 rather than incorporating it into their 
biomass (Anderson and Domsch 1993; Wardle and Ghani 1995). 

 It has been suggested (Insam and Haselwandter 1989; Anderson and 
Domsch 1990) that the metabolic quotient can be used as an index of eco-
system development. As an ecosystem reaches maturity, selection pressure 
towards efficient use of available resources results in a larger microbial 
biomass with a lower metabolic quotient. Nonetheless, Wardle and Ghani 
(1995) concluded that qCO2 can be insensitive to disturbance and ecosys-
tem development, fails to distinguish between effects of disturbance and 
stress and does not decline predictably in response to ecosystem develop-
ment wherever stress increases along successional gradients. 

4.2 Effects of Agricultural Activity 

respiration per unit of microbial biomass (i.e. μg CO2 –C h–1 mg–1 microbial 

The rate of turnover of the microbial biomass is typically 0.2–6 years 
compared to greater than 20 years for the bulk of organic matter 
(Jenkinson 1990). Due to its dynamic nature, the microbial biomass serves 
as a sensitive indicator and early predictor of changes in soil organic 
matter status (Powlson and Jenkinson 1981; Powlson et al. 1987) induced 
by changes in management practices such as crop residue management, 
tillage practice (Carter 1986) and the use of grass leys in rotation (Haynes 
et al. 1991). 

Microbial biomass C has been shown to increase more markedly than 
organic C content in response to (i) addition of crop residues (Ocio et al. 
1991; Venkateswarlu et al. 2007), (ii) conversion of arable systems to pas-
ture (Haynes et al. 1991; Haynes and Francis 1993), (iii) an increasing 
proportion of forages in arable rotations (Dalal 1998; Angers et al. 1999) 
(iv) conversion from conventional to zero tillage (Bolinder et al. 1999; 
Dominy and Haynes 2002) and (v) stock camping by grazing animals 
(Haynes and Williams 1999) and decrease more markedly than organic C 
in response to conversion to arable cropping (Haynes and Tregurtha 1999; 
Dominy and Haynes 2002). For example, Böhme et al. (2005) observed 
increases of microbial biomass C in the farmyard manure-fertilized soils, 
while NPK fertilization significantly decreased soil microbial biomass C. 
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microbial biomass carbon and basal respiration in Austrian soils with long-
term crop rotation. Application of farmyard manure also increased micro-
bial biomass carbon in a calcareous soil in northwest China (Yang et al. 
2007). Cumulative pig slurry addition had a significant stimulating effect 
on microbial biomass carbon content in soils of Santa Olalla, Spain. No 
significant effect of pig slurry amendment on total organic C, water solu-

A 13 years of inorganic fertilizer application in paddy soil showed that mi-
crobial biomass was significantly higher in the treatments fertilized with P 
than those in the treatments without P fertilization. The significant effects 
of P fertilizer were mainly ascribed to the enhanced growth of rice crops 
and accumulation of soil organic carbon through increased root turnover 
and rhizodeposition (Zhong and Cai 2007). Cultivation of soils in the cen-
tral highlands of Mexico with maize reduced microbial biomass C. Con-
verting soil under natural vegetation to arable soil was not only detrimental 
for soil quality, but might be unsustainable as organic matter input is lim-
ited (Reyes-Reyes et al. 2007). 

Results in Fig. 2 show a comparison of organic C and microbial bio-
mass C down the profile to a depth of 30 cm in sugarcane fields that are ei-
ther under preharvest burning or green cane harvesting with retention of a 
mulch of crop residues at the soil surface. Samples were taken either in the 
row (below the plant stools) or in the middle of the fallow inter-row area. 
Results show there is a significant accumulation of organic C in the row, 
compared to the inter-row to a depth of 20 cm under both managements. In 
addition, there was a significant accumulation of organic C under residue 
return to a depth of 10 cm in both areas of the field. These effects were 
much magnified when microbial biomass C was measured. Significant in-
creases were noted to a depth of 30 cm due to both residue return and sam-
pling in the row rather than the inter-row.  

 Because of the greater responsiveness of microbial biomass than or-
ganic C to changes in soil management, the percentage of organic C pre-
sent as microbial biomass (sometimes termed the microbial quotient) can 
be used as a useful indicator (Sparling 1992, 1997). In general, if a soil is 
being used exploitively and it is losing organic matter, the microbial quo-
tient is lowered. By contrast, where soils are rapidly accumulating organic 
matter the microbial quotient will be increased. It is evident from Fig. 1 
that of the 7 land uses discussed previously, the microbial quotient was 
lowest under annually tilled ryegrass and maize and sugarcane. Trends 
were, as expected similar to those for K2SO4 – extractable C. 

ble organic C and basal respiration was detected (Hernández et al. 2007). 

Ros et al. (2006) reported that compost treatments (urban organic 
wastes, green wastes, manure and sewage sludge) resulted in an increase of 
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burning, both to a depth of 30 cm. In addition, values declined with depth 
as soil organic matter content declined and the proportion of organic C 
present in labile form declined. 

 Since the basal respiration is measured as CO2–C evolved during a 
laboratory incubation, it is essentially the same measurement as potentially 
mineralizable C (see above). As noted previously, this measurement shows 
greater responsiveness than total organic C to changes in soil land 
use/management. This is to be expected since labile organic matter frac-
tions are more responsive than organic C content to changes in manage-
ment and microbial activity is greatly influenced by the amount of labile, 
readily metabolizable organic matter present. 

The qCO2 is often used as an indicator of whether the microbial bio-
mass is under stress. In general, factors that decrease the size of the micro-
bial biomass tend to increase qCO2.  That is, factors that cause stress to the 
microbial community tend to reduce its size. Other factors could also con-
tribute to an increased qCO2. For example, bacterial communities are less 

Certainly, calculation of the metabolic quotient can reveal trends very 
different from those of basal respiration. As shown in Fig. 1, for the 7 land 
uses, trends in basal respiration were broadly similar to those for microbial 
biomass C and organic C. However, when the metabolic quotient was cal-
culated, trends with land use were very different. Values were greater un-
der sugarcane, maize and to a lesser extent annual ryegrass, than the other 
treatments. This suggests that the microbial community under these arable 
land uses is under more stress and/or has a different composition to that 
under the others. The most likely microbial stress under these land uses is 
likely to be a shortage of available substrate C. 

 

 Calculation of the microbial quotient can make treatment effects 
much more obvious. For example, in Fig. 2 the microbial quotient was 
greater in the row than inter-row and greater under residue return than 

efficient at converting substrate C into cellular C than fungi (Sakamoto and 
Oba 1994) so a change in the composition of microbial biomass can alter 
qCO2 values. 
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Fig. 2.  Distribution of organic C and microbial biomass C in the soil profile under 
sugarcane annually preharvest burnt or green cane harvested with retention of crop 
residues on the soil surface. Soils were sampled from below the plant row or in the 
centre of the inter-row area. Values for microbial quotient are shown in parenthe-

 
Wardle and Ghani (1995) reviewed data on the effects of manage-

ment practices on qCO2. They concluded that some practices, such as lim-
ing and fertilizer application can either increase or decrease qCO2 values 
depending on whether the disturbance alleviates the stress (reducing qCO2) 
or is more extreme than the stress it alleviates (enhancing qCO2). Although 
tillage represents a severe disturbance, Wardle and Ghani (1995) found 
that qCO2 was not predictably enhanced by this perturbation. In addition, 
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sis. LSD (P<0.05) shown. (From Haynes, unpublished, 2005). 
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when there is an increase in qCO2, the reason is not necessarily clear. For 
example, Nsabimana et al. (2004) found that in comparison with other 
long-term land uses, arable cropping resulted in an increase in qCO2. 

 However, it also resulted in an increase in FDA hydrolytic activity 
and arginine ammonification rate when expressed per unit of microbial 
biomass. They suggested that arable management resulted in a small mi-
crobial community that has a high metabolic activity. By contrast, other 
land uses had a larger microbial biomass but with a larger proportion of the 
community present in resting and other non-metabolically active forms. 
Overall, it does not seem that qCO2 can be used as a universal indicator of 
a stressed microbial community. 

5 Conclusions 

The nature and significance of the various parameters of soil organic mat-
ter quality and microbial activity discussed in this paper are summarized in 
Table 1. The multifunctional role of soil organic matter, as illustrated in 
Table 1, means that a suite of labile fractions is typically required to pro-
vide an overview of major soil functions including structural condition, nu-
trient availability and soil biological activity. In general, agricultural prac-
tices that affect the amount of input of organic matter and/or its rate of 
decomposition, greatly have a much greater and earlier effect on labile 
fractions of organic matter that whole-soil organic matter content. Thus, 
changes in these fractions provide an indication of changes in total soil or-
ganic matter content that may become evident in the long-term. Concentra-
tions of labile soil organic matter in soils can be subject to seasonal vari-
ability so that sampling needs to be carried out at the same time every year. 
Similarly, the size and activity of the microbial biomass can change rap-
idly in response to changes in C status but can also undergo seasonal vari-
ability. 

 Because different fractions of organic matter reflect the key func-
tions of soil organic matter, their measurement is useful in investigating 
how various agricultural management practices influence the biological, 
chemical and physical properties of soils and ultimately the sustainability 
of such practices. Similarly, the size and activity of the microbial commu-
nity impinges on many soil properties and processes. With an understand-
ing of how soil management effects soil properties and processes, new 
strategies can be devised that will improve agricultural sustainability. 
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1 Introduction 

Carbon cycling within the terrestrial ecosystems is predominant as the 
most uncertain component in the global carbon cycles (Houghton et al. 
1998; Steffen et al. 1998), and is therefore critical in global carbon budget-
ing (Trumbore et al. 1996; Rosenzweig and Hillel 2000). A large portion 
of terrestrial carbon resides in soil organic carbon (Malhi et al. 1999; Gar-
ten et al. 2000), and carbon storage in soils can be increased by reforesta-
tion of agricultural land (Binkley and Resh 1999; Scott et al. 1999) and by 
the effective management of existing forests (Johnson and Curtis 2001). It 
is then pressing to decipher soil carbon dynamics for the soils in different 
climate regimes, due to the Kyoto Protocol (UNFCCC 1997). 

Soil contributes to a greater extent to total carbon storage than do 
above-ground vegetation in most forests (Johnson and Curtis 2001). The 
total amount of soil organic carbon (SOC) in the upper meter of soil is 
about 1500 × 1015 g C (Eswaran et al. 1993; Batjes 1996), and the global 
atmospheric pool of CO2 is about 750 × 1015 g C (Harden et al. 1992). The 
CO2 emission from soil into atmosphere is about 68.0–76.5 × 1015 g C per 
year, and this is more than 10 times the CO2 released from fossil fuel com-
bustion (Raich and Potter 1995). Variations in SOC pools and SOM turn-
over rates, therefore, exert substantial impacts on the carbon cycles of ter-
restrial ecosystems in terms of carbon sequestration in soil and CO2 
emission from soil. 

The distribution of SOC with depth is attributed mainly to continuous 
input and decomposition of soil organic matter (SOM), and correlates di-
rectly with soil development and SOM turnover (Chen et al. 2005). Re-
gional, continental or global models are useful to understand SOM dynam-
ics according to land use changes and management practices (Cole et al. 
1996). These models require a thorough knowledge of the distribution of C 
in different soils and under different land uses practices (Paustian et al. 
1997). Quantification of changes in soil carbon dynamics, including SOM 
turnover rate and distribution of SOC with depth, is therefore critical for 
determining carbon storage in soils and for modeling soil carbon cycling. 

The use of natural 13C abundance to determine SOM turnover associ-
ated with land management (Balesdent et al. 1988; Follett et al. 1997; 
Collins et al. 1999) and climate changes (Loiseau and Soussana 1999; 
Hobbie et al. 2002, 2004) is gaining popularity. δ13C analysis has become a 
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valuable measure in the study of SOM dynamics (Bird et al. 1996), espe-
cially in the regions with records of vegetation shifts between C3 and C4 
species (Gregorich et al. 1995; Ineson et al. 1996; Boutton et al. 1998; 
Collins et al. 1999, 2000). The changes in isotopic composition of soil 



 

SOM δ13C values correlate well with SOM sources, SOM composition 
and turnover processes during soil development (Balesdent et al. 1993; 
Chen et al. 2002a; Powers and Schlesinger 2002; Wynn et al. 2005). The 
changes in δ13C of SOM with depth have several possible explanations 
(Balesdent et al. 1990; Wynn et al. 2006). One popular explanation is the 
effect of carbon isotope fractionation due to preferential decomposition of 
SOM components with different isotopic composition (Benner et al. 1987; 
Wedin et al. 1995) and kinetic fractionation of carbon isotopes through mi-
crobial respiration of CO2 during SOM decomposition (Mary et al. 1992; 
Macko and Estep 1984). The spatial and temporal variations of SOM δ13C 
in relation to SOM turnover are then effective proxies for deciphering 
SOM dynamics. 

Soil layers with positive SOM 14C values contain 14C produced by 
nuclear weapon testing (“bomb 14C”) from the 1950s to the 1960s, and the 
maximal depth that “bomb 14C” reaches is called “bomb 14C” penetrating 
depth (Shen et al. 2001). The 14C dating results measured with total soil 
organic carbon are usually prone to be younger, due to addition of new or-
ganic carbon during pedogenesis. This kind of 14C dating result is gener-
ally called to be SOM 14C apparent age (Shen et al. 2000). The SOM 14C 
apparent ages of the upper soil layers with SOM 14C greater than 0, 
which can not be obtained directly from measurement, can now be calcu-
lated based on SOM 14C budget model (Chen et al. 2002b). 

Little is known about the effect of leaching on distribution of SOM 
with depth, which is unfavorable for evaluating the potential capacity of 
soil to sequester carbon. Sporopollen (pollen and spores) are abundant in 
upper soils, and their vertical distributions are controlled substantially by 
leaching (Zheng et al. 2002). The distribution of sporopollen with depth 
may be a useful index of leaching potential. We intended to evaluate the ef-
fect of leaching on SOM vertical distribution, based on variations in SOC 
concentration and SOM 14C apparent age with depth. The distribution of 
sporopollen with depth can serve as a reference for our evaluation. 

Five soil profiles at different elevations with specific vegetation com-
position were selected at the Dinghushan Biosphere Reserve (DHSBR), 
South China, and soil samples were taken using the thin-layered method 
(Becker-Heidmann and Scharpenseel 1986). Our aims were to study the 
spatial and temporal variations of SOM along an altitudinal gradient at the 
DHSBR that may serve as a substitution of different climate zones, based 
on SOC concentrations, SOM 14C dating, SOM δ13C values and sporopollen 
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with known and dated vegetation changes are directly related to SOM dy-
namics (Balesdent 1987, 1990; Martin et al. 1990; Garten et al. 2000). 



 

abundance of the soil samples. Studies on SOM dynamics along an altitud-
inal gradient in a mountainous region may present clues for deciphering 
soil carbon cycling in different climate regimes. 

2 Materials and Methods 

2.1 Study Sites 

The study sites were located at the Dinghushan Biosphere Reserve, South 
China (23°09′21 –23°11′30 N, 112°30′39 –112°33′41 E), with southern 
subtropical monsoonal humid climate. The average annual temperature is 
21ºC, annual precipitation is about 1900 mm, and wet and dry seasons are 
well defined at the DHSBR. The wet season is from April to September, 
and the dry season is from November to January (Deng et al. 1990; Yu and 
Peng 1995). The local vegetation is tropical monsoonal rain forest and sub-
tropical monsoonal evergreen broad-leaved forest, and the DHSBR is rep-
resentative of the southern subtropical forest ecosystem in China (Tu 1984; 
Deng et al. 1990). The DHSBR was selected as a Forest Ecosystem Station, 
joining the UNESCO-MAB Biosphere Reserve Network in 1979 (Tu 
1984). Consequently, the area has had little human disturbance since 1979. 

Jilong Mountain, in the northwest part and with an elevation of 1000 m 
a.s.l., is the highest peak of the DHSBR. Additional site characteristics of 
the DHSBR are reported in Shen et al. (1999). The basic site characteris-
tics of the studied profiles are provided in Table 1. Thin-layered sampling 
(Becker-Heidmann and Scharpenseel 1986) was conducted to collect 1.5–
2.0 kg of soil from each sampling section (Table 2). All soils within the 
sampling intervals were collected to obtain bulk samples. The selection of 
sampling intervals (Table 2) was based on soil characteristics and the need 
to recover the penetrating depth of “bomb 14C” (Shen et al. 1999) and to 
determine the variation of SOM δ13C with depth. All plant debris within a 
plot of 0.4 m × 0.4 m was sampled by hands near the soil profiles, and 
sealed in plastic bags. 
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Table 1. Site characteristics of the selected soil profiles with different elevations at 
the Dinghushan Biosphere Reserve, South China 

Profile Profile 
thickness  
(m) 

Elevation 
(m a.s.l.) 

Slope 
direction 

Slope 
degree 

Vegetation Sampling

JLS 0.7 1000 SE173° 30° Meadow July 
1998 

GC 0.6 905 NE75° 16° Shrub, dominated by 
Rhododendron sinsii Planch. 
and Corydalis pallida Pers., 
with a little herbage 
dominated by Aristida 
chinensis Munro and 
Eriachne pallescens R. Br. 

July 
1998 

SL 1.1 662 NE42.5° 30° Coniferous & broad-leaved 
mixed forest (natural 
forest), consists mainly of 
Engelhardtia chrysolepis 
Hance, Bridelia monoica 
(Lour.) Merr., and 
Machilus velutina Champ. 

July 
1998 

WKS 1.6 315 NE50° 22° Coniferous & broad-leaved 
mixed forest (natural 
forest), consists mainly of 
Schima superba Gardn. et 
Champ., Castanopsis 
chinensis Hance, 
Craibiodendron 
kwangtungense S. Y. Hu, 
and Castanopsis fissa 
(Champ.) R. et W. 

May 
1996 

QYS 1.6 190 NE73° 37° Monsoon evergreen  
broad-leaved forest (natural 
forest), dominated by 
Castanopsis chinensis 
Hance, Schima superba 
Gardn. et Champ., 
Cryptocarya chinensis 
(Hance) Hemsl., 
Cryptocarya concinna 
Hance, and Lindera chunii 
Merr. 

May 
1996 
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Table 2. Soil sampling design of the selected soil profiles at the Dinghushan Bio-
sphere Reserve, South China 

Profile Sampling section 
(m) 

Sampling interval 
(m) 

Number of samples 

JLS 0–0.2 0.02 10 

 0.2–0.45 0.05 5 

 0.5–0.7 0.2 1 

GC 0–0.3 0.02 15 

 0.3–0.4 0.05 2 

 0.4–0.6 0.2 1 

SL 0–0.4 0.02 20 

 0.4–0.6 0.2 1 

 0.6–0.9 0.1 3 

 0.9–1.1 0.2 1 

WKS 0–0.2 0.05 4 

 0.2–0.8 0.1 6 

 0.8–1.6 0.2 4 

QYS 0–0.4 0.05 8 

 0.4–0.8 0.1 4 

 0.8–1.6 0.2 4 
 
The meadow profile (JLS) was located on the peak of Jilong Mountain, 

the slope direction of the excavating site was 173°SE, and slope angle 30°. 
The ground was covered by plants, and a weathering crust was encoun-
tered at the bottom of the 0.7-m deep profile. The 0–0.2 m horizon was 
greyish brown, with abundant plant roots; 0.2–0.3 m was brownish yellow 
transitional layer, with sand concentration increasing with depth; 0.3–0.7 m 
was brownish yellow, intermingled with light grey sandy specks in size of 
0.02–0.03 m. The detailed descriptions for shrub-meadow profile (GC) and 
forest profile (SL) are reported in Chen et al. (2002a), and Wukesong pro-
file (WKS) and Qingyunsi profile (QYS) are reported in Shen et al. (1999, 
2000). Based on the loose topsoil with abundant plant debris and fine grass 
roots, it is believed that there has been little recent erosion of topsoil on the 
steep slopes. The studied soil profiles corresponded to Ferralsols in the 
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FAO classification (FAO 1998). Soil sampling design and the number of 
samples collected from each profile are provided in Table 2. 

2.2 SOM 13C Analyses 

Methods for pretreatment of samples for 13C analysis had been described 
in Chen et al. (2002a). After pretreatment, soil samples and plant debris 
were sent to the State Key Laboratory of Loess and Quaternary Geology, 
Chinese Academy of Sciences (CAS), for 13C analyses. The 13C analyses 
were conducted using a Finnigan MAT-251 mass spectrometer manufac-
tured by Finnigan-Mat Company, with a precision of 0.2‰. Results are re-
ported as δ13C, in parts per thousand of the 13C/12C ratio from that of the 
International Pee Dee belemnite (PDB) standard, where: 

δ13C = [(13C/12C)sample/(13C/12C)standard−1]∗1000. 

2.3 SOM 14C Analyses 

Procedures for pretreatment of soil samples and synthesis of sample ben-
zene for 14C analysis had been described in Chen et al. (2002b). Sample 
benzene was often left for 3–4 weeks to allow any radon with half-life of 
3.82 days that may be present to decay. 14C activity of the C6H6 was then 
determined using a 1220-QUANTULUS ultralow-level liquid scintillation 
spectrometer manufactured by WALLAC Company, Sweden. The 14C 
analyses were conducted at the Guangzhou Institute of Geochemistry, CAS. 
Results are reported as Δ14C, in parts per thousand of the 14C/12C ratio from 
that of the standard (oxalic acid decay corrected to 1950) (Stuiver and Po-
lach 1977), and corrected for “bomb 14C” (Chen et al. 2002b), where: 

Δ14C = [(14C/12C)sample/(14C/12C)standard−1]∗1000. 
SOM turnover rate (m) (year–1) was then calculated based on the meth-

ods in Chen et al. (2002b), and SOM apparent age (T) was obtained as 1/m 
(year). Due to the less magnitude of m values, variations of T values with 
depth are often evaluated to show the variations of SOM turnover rates 
with depth in subsequent analyses. 

2.4 Soil Organic Carbon Concentration 

Soil organic carbon concentration was determined by the sulfuric acid-
potassium dichromate method (Kalembasa and Jenkinson 1973) at the 
Soil Chemistry Laboratory of South China Institute of Botany, CAS. Results 
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are reported as weight percentages, and the measurement error is less 
than 0.04%. 

2.5 Sporopollen Analysis 

Pollen and spore samples were extracted by treatment with acid and alkali 
and floatation with heavy liquid (Faegri and Iverson 1989; Moore et al. 
1991). After the pretreatment with hydrochloric acid (HCl) and sodium 
hydroxide (NaOH), pollen and spore grains were extracted by centrifugal 
separation of the resulting residue with two to three changes of heavy liq-
uid (potassium iodide). The grain samples were placed on specific glass 
slides, and then identified and counted with a light microscope at 400× 
magnification. More than two pieces of slides with pollen and spores were 
identified for each soil sample. All the grains on the slides were identified 
and counted, due to the low abundance of sporopollen in the soils. The 
sporopollen abundance in grains g–1 was calculated based on volume meth-
ods. Sixteen soil samples of SL profile were selected for this analysis. 

3 Results 

3.1 SOM δ13C Values 

SOM δ13C vs depth curves have similar patterns of variation for the soil 
profiles with different elevations at the DHSBR (Fig. 1). SOM δ13C value 
is typically lowest at the surface and becoming richer in 13C with depth, of-
ten reaching a maximal value at 0.1–0.3 m depth. In general, below this 
depth, SOM became gradually depleted in 13C, and SOM δ13C tended to-
wards a stable value (Fig. 1). The depth with the maximal SOM δ13C value 
of JLS, GC, SL, WKS and QYS profiles is 0.15 m, 0.12 m, 0.24 m, 0.18 m 
and 0.38 m, respectively, showing an increasing tendency with decreasing 
of elevation (Fig. 2). SOM δ13C values become enriched in 13C with depth 
rapidly from the surface of the soil profiles, the greatest enriching rates oc-
cur above certain depth, which is 0.08 m, 0.14 m, 0.16 m and 0.22 m for 
GC, SL, WKS and QYS profiles, respectively (Fig. 1). SOM δ13C values 
of JLS profile do not show rapid enrichment in 13C with depth from the 
surface. 
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Fig. 1. SOM δ13C versus depth curves for the soil profiles with different elevations 
at the Dinghushan Biosphere Reserve. 

SOM δ13C of topsoil becomes enriched in 13C with elevation at the 
DHSBR (Fig. 3). SOM δ13C of the topsoil of JLS profile indicates the 
dominant influence of C4 type vegetation (Fig. 1), and is obviously less 
than δ13C of plant debris (Fig. 3). Except for JLS profile, SOM δ13C of 
topsoil is greater than δ13C of plant debris (Fig. 3). The increments in SOM 
δ13C of topsoil relative to δ13C of plant debris do not show regular varia-
tions with elevation at the DHSBR (Fig. 3). There exists clear discrepancy 
between SOM δ13C of topsoil and the maximal SOM δ13C of one soil pro-
file (Table 3). Except for JLS profile, this discrepancy is 3.5‰–7‰ for the 
four profiles with conifer and broad-leaved vegetation, and is not consis-
tent between these soil profiles at the DHSBR (Tables 1, 3). 
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Fig. 2. Depth with the maximum of SOM δ13C value (diamond) and thicknesses 
(square) of the soil profiles with different elevations at the Dinghushan Biosphere 
Reserve. 

3.2 SOC Concentrations 

SOC concentration decreases exponentially with depth from the maximal 
value of the topsoil for the soil profiles at the DHSBR (Fig. 4). The SOC 
concentrations of soil profiles with shrub or herbaceous vegetation, i.e. GC 
profile and JLS profile, are obviously less than those of other three profiles 
with conifer and broad-leaved vegetation (Fig. 4). SOC concentrations de-
crease with depth rapidly from surface of the soil profiles, the greatest de-
creasing rates occur above certain depth that is correspond to the depth in-
dicating the rapid enrichment of SOM δ13C in 13C for GC, SL, WKS and 
QYS profiles (Figs. 1, 4), respectively. 
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Fig. 3. δ13C values of plant debris and SOM in topsoil of the soil profiles with 
different elevations at the Dinghushan Biosphere Reserve. 

3.3 SOM 14C Dating 

SOM 14C apparent ages (Xing et al. 1998; Shen et al. 2000, 2001; Chen et 
al. 2002b) show an increasing tendency with depth for the soil profiles 
along an elevation gradient at the DHSBR (Fig. 5), suggesting that SOM 
compartments with greater turnover rates were predominant in the upper 
soils and compartments with less turnover rates were main SOM compo-
nents in the deep of soil profiles. The calculated SOM 14C apparent ages 
for the upper soil layers with positive SOM 14C values show also increas-
ing trend with depth (Fig. 5). These calculated values were generally less 
than 300 years, suggesting that the upper young soil sections were suscep-
tible to contamination of “bomb 14C”. 
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Fig. 4. SOC concentration versus depth curves for the soil profiles with dif-
ferent elevations at the Dinghushan Biosphere Reserve. 

The “bomb 14C” penetrating depth of JLS, GC, SL, WKS and QYS 
profiles is 0.25 m, 0.14 m, 0.3 m, 0.2 m and 0.1 m, respectively. This depth 
is not consistent with the depth with the maximal SOM δ13C value for the 
studied soil profiles at the DHSBR. 

3.4 Distributions of Pollen and Spores with Depth 

The pollen abundance shows decreasing trend with depth for SL profile, so 
does the total abundance of pollen and spores (Table 4). The greatest abun-
dance of pollen and spores, 7300 grains g , occurs in the upper section  
(0–0.14 m). The total abundance of pollen and spores decreases with depth 
from 0.14 m to 0.4 m (Table 4), and the grain number counted during iden-
tification was still more than 100 grains for each sample. The abundance of 
pollen and spores is less than 80 grains g–1 below 0.4 m, and only several 
grains g–1 in the lower part of SL profile. 

The abundance of pollen decreases rapidly with depth in the upper 0.14 
m of SL profile (Table 4). Pollen was scarce below 0.14 m, with abun-
dance of only 0–6 grains g–1, and no pollen was found below 0.26 m. Only 
modern fern spores were found below 0.26 m, including mainly Dicranop-
teris, Hicriopteris, Microlepia and other monolete and trilete spores, and 
turned to be monotonous with depth (Fig. 6). 
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Table 3. SOM 13C of topsoil ( 13Ctopsoil), the maximum SOM 13C value 
( 13Cmaximum) and SOM 14C apparent ages of the bottom of soil profiles with differ-
ent elevations at the Dinghushan Biosphere Reserve, South China 

Profile Vegetation 
type 

13Ctopsoil 
(‰) 

13Cmaximum 
(‰) 

13Cmaximum–
13Ctopsoil 
(‰) 

SOM 14C 
apparent ages 

of 
the bottom 
(yr B.P.) 

JLS Meadow –18.32 –16.87 1.45 12786 

GC Shrub –23.88 –18.33 5.55 2400 

SL Natural 

forest 

–26.88 –20.0 6.88 6690 

WKS Natural 

forest 

–27.40 –23.87 3.53 5572 

QYS Natural 

forest 

–27.46 –22.20 5.26 8750 
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Fig. 5. Variations of SOM 14C apparent ages with depth for the soil profiles with 
different elevations at the Dinghushan Biosphere Reserve (A: GC Profile, B: SL 
Profile, C: WKS profile, D: QYS profile). 

 

 

 

 

Fig. 6. Variations of genus number of fern spores with depth for SL profile at the 
Dinghushan Biosphere Reserve. 
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4 Discussion 

4.1 Variations in SOM δ13C Value and SOC Concentration  
with Depth 

Rapid turnover of SOM usually occurs within 100 years, and SOM de-
composes with SOC concentration decreasing rapidly with depth from the 
surface (Figs. 4, 5) and SOM δ13C values becoming enriched in 13C rapidly 
due to carbon isotope fractionation (Fig. 1). After 200–300 years, most of 
the labile SOM have decomposed, resulting in the greatest δ13C values 
generally (Figs. 1, 5). SOC concentrations then reduce slightly with depth 
(Fig. 4), and SOM δ13C values become depleted in 13C gradually with 
depth due to the decomposition of SOM compartments with high δ13C val-
ues (Fig. 1). After about 1500–1800 years, SOC concentrations reach their 
lowest levels generally (Figs. 4, 5), and SOM δ13C values become stable 
(Fig. 1), indicating that the SOM is mainly of stable compartment in the 
deep soil. 

There have been many proposed explanations to describe the enrich-
ment of SOM δ13C in 13C with depth in soil profiles (Powers and 
Schlesinger 2002). Based on above analyses, variations of SOM δ13C with 
depth were attributed mainly to isotope fractionation due to SOM decom-
position at the DHSBR. This is consistent with our early study (Chen et al. 
2002a) and other studies in different climatic zones (Balesdent et al. 1993; 
Ågren et al. 1996; Schweizer et al. 1999; Powers and Schlesinger 2002; 
Hobbie et al. 2004). 

SOM δ13C vs depth curves differ between profiles with different eleva-
tions at the DHSBR (Fig. 1), probably due to differences in factors control-
ling soil development, such as, topography and vegetation, at different ele-
vations (Table 1). This phenomenon had also been identified at the 
Xiaoliang Ecological Station, CAS (Chen et al. 2002a), based on compari-
sons of SOM δ13C vs depth curves between soil profiles with different res-
toration histories of above-ground vegetation. SOM δ13C vs depth curve 
may be used as a useful proxy for studying soil carbon dynamics based on 
comparison analyses. 
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Table 4. Sporopollen abundance in the soil samples of SL profile at the 
Dinghushan Biosphere Reserve, South China 

Sample number Depth 
(m) 

Abundance of 
pollen 

(grain g–1) 

Total abundance of 
sporopollen 
(grain g–1) 

SL-03 0.04–0.06 2462 7351 

SL-05 0.08–0.1 610 2892 

SL-07 0.12–0.14 315 3359 

SL-09 0.16–0.18 6 524 

SL-11 0.2–0.22 2 389 

SL-13 0.24–0.26 1 300 

SL-15 0.28–0.3 0 125 

SL-16 0.3–0.35 0 55 

SL-17 0.35–0.4 0 79 

SL-18 0.4–0.45 0 12 

SL-19 0.45–0.5 0 57 

SL-20 0.5–0.55 0 33 

SL-22 0.6–0.7 0 21 

SL-23 0.7–0.8 0 31 

SL-24 0.8–0.9 0 52 

SL-25 0.9–1.1 0 4 

 
The depths with the maximal SOM δ13C value of the studied soil pro-

files show an increasing tendency with the decreasing of elevation (Fig. 2), 
which is related well to the increasing thickness of soil profile with de-
creasing of elevation. Variations of SOM δ13C with depth correspond well 
with those of SOC concentration with depth (Chen et al. 2002a). It is then 
inferred that the depth with the maximal SOM δ13C value is controlled 
mainly by soil development and SOM composition, and is governed indi-
rectly by topography and above-ground vegetation. This is presumably the 
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site-related characteristic for variations of SOM δ13C with depth at the 
DHSBR, as reported for a temperate forest in Balesdent et al. (1993). 

The discrepancy between SOM δ13C of topsoil and the maximal SOM 
δ13C is not consistent between the soil profiles at different elevations 
(Tables 1, 3), suggesting that there existed discrepancies in both SOM 
composition and SOM turnover between the studied soil profiles at the 
DHSBR. The discrepancy of SOM δ13C (Table 3) presumably indicates the 
intensity of carbon isotope fractionation during SOM decomposition. The 
larger discrepancy probably indicates greater intensity of carbon isotope 
fractionation and higher extent of SOM decomposition. 

4.2 δ13C Values of Topsoil SOM and Above-Ground Plant Debris 

SOM δ13C of topsoil become enriched in 13C with elevation at the DHSBR 
(Fig. 3), suggesting that the above-ground vegetations turn gradually with 
elevation from those being dominated by C3 species to those being domi-
nated by C4 species. This is consistent with the vertical distribution pat-
terns of vegetation at the DHSBR (Table 1). SOM δ13C value of topsoil is 
not the minimal for JLS profile (Figs. 1), and is greater than the surface 
values at other sites (Figs. 1, 3). The δ13C value of plant debris is evidently 
greater than that of the SOM in topsoil of JLS profile (Fig. 3), presumably 
because the plant debris samples were mainly of herbaceous (Table 1), and 
moss and weeds attaching on the ground were neglected during sample 
collection. 

SOM δ13C of topsoil is greater than δ13C of plant debris at the DHSBR 
(Fig. 3), indicating that stable isotopes fractionation occurred during for-
mation of SOM from decomposition of organic materials (OM) in plant 
debris. The SOM in topsoil originates mainly from plant debris of the 
above-ground vegetation (Kononova 1966; Van Cleve and Powers 1995). 
Hobbie et al. (2004) reported that δ13C of new A horizon carbon was about 
4‰ enriched in 13C relative to that of foliage. Except for the plant debris 
δ13C of GC profile, both SOM δ13C of topsoil and plant debris δ13C show 
similar pattern in variations with elevation at the DHSBR (Fig. 3), indicat-
ing transformation of OM from plant debris into the SOM in topsoil. 

The increments in SOM δ13C of topsoil relative to δ13C of plant debris 
do not show regular variations with elevation at the DHSBR (Fig. 3), 
which is presumably due to the discrepancy in turnover of plant debris be-
tween different species of vegetation. Different plant species are known to 
produce organic matter compounds that vary in abundance and nature as a 
function of species (Grayston et al. 1996). 
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SOM 14C values are generally positive in the upper soil layers, due to 
entrance of “bomb 14C” into these layers through decomposition of plant de-
bris and fine roots (Shen et al. 1999). The greater value of SOM 14C (>0) of 
topsoil indicates rapid entrance of “bomb 14C” into topsoil from plant debris, 
due to the greater SOM turnover rate of topsoil. Whereas, the less value of 
SOM 14C (>0) of topsoil suggests slow entrance of “bomb 14C” into topsoil 
from plant debris, due to the less SOM turnover rate of topsoil. 

The increment in SOM δ13C of topsoil relative to δ13C of plant debris 
correlates well with SOM 14C of topsoil (Fig. 7). The greater the SOM 
turnover rate of topsoil, the shorter period of time when OM is absorbed 
into SOM through decomposition of plant debris. Stable carbon isotope 
fractionation accomplishes then in a shorter period of time, so the incre-
ment in SOM δ13C of topsoil relative to δ13C of plant debris is greater than 
that when stable carbon isotope fractionation accomplishes in a longer pe-
riod of time due to slow SOM turnover in topsoil. The increment in SOM 
δ13C of topsoil relative to δ13C of plant debris is then controlled mainly by 
SOM turnover. 
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debris) of the soil profiles with different elevations at the Dinghushan Biosphere 
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δ13CPlant debris). 
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4.3 SOM 14C Apparent Ages 

The increasing tendency of SOM 14C apparent ages with depth for the soil 
profiles with different elevations (Fig. 5) suggests that the development of 
the soil profiles at the DHSBR presumably followed the model that deposi-
tion and pedogenesis occurring alternatively. The soil profiles were thick-
ened by deposition, and then the deposited materials experienced pe-
dogenesis and turned to be soils. The former soil layers were buried with 
deposition of new materials, and soil thickened gradually and SOM 14C 
apparent ages then show increasing tendency with depth. 

SOM 14C apparent ages of some soil layers are occasionally older than 
those of the underlying soils (Fig. 5), which is probably due to the impacts 
of biological activities on distribution of SOM with depth. Some insects or 
animals, for example, ant and earthworm, might bring soil with old carbon 
upwards from the deep section. SOM 14C apparent ages of the deep 
boundaries of the studied soil profiles do not show clear correlation with 
elevation (Tables 1, 3). The beginning of soil development was then not 
synchronous for the studied soil profiles at the DHSBR, showing potential 
controls of topography on soil evolution. 

The SOM 14C apparent age of soil section (0–0.05 m) is 80 yr B.P. for 
WKS profile and 140 yr B.P. for QYS profile, suggesting that the upper 
soil layers had been contaminated by some old carbons with negative 14C 
values. Contaminations from old carbon and “bomb 14C” can result in ob-
vious alterations in SOM 14C values. However, SOM δ13C value is rela-
tively less susceptible to such contaminations, because the abundance of 
13C is much greater than that of 14C in nature system. This indicates that 
14C analysis alone is not adequate for studying SOM dynamics. 

The “bomb 14C” penetrating depth relates directly to the impacts of 
modern vegetations and microbes on soil development (Shen et al. 1999), 
and is then the quantitative indicator for the impacts of modern biologic 
activities on soil profile. The magnitude of this depth is also governed by 
the properties of soil profiles (Chen et al. 2002b), showing influence of lo-
cal topography on distribution of SOM 14C with depth. Although the 
“bomb 14C” penetrating depth and the depth with the maximal SOM δ13C 
value differed in magnitude and origin, they both indicate controls of to-
pography and vegetation on distributions of SOM and carbon isotopes with 
depth. 

The regular vertical distribution of SOM compartments with different 
turnover rates (Chen et al. 2002b) and the exponential reduction of SOC 
concentration with depth (Fig. 4) presumably both resulted from regular 
decomposition of different SOM compartments during soil development at 
the DHSBR. SOM turnover can result in temporal variations in SOM 14C 
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and SOM δ13C values, which is the rationale for studies on SOM turnover 
and mechanism of soil development based on carbon isotopic tracing. 

4.4 Vertical Distributions of Pollen and Spores 

Pollen were found only in the sections above 0.26 m (Table 4), indicating 
that pollen were not prone to be leached after deposition. No pollen was 
found in the low part of SL profile, suggesting that pollen had probably 
been destroyed by the intense weathering during pedogenesis. Fern dis-
tributes extensively in the monsoonal area of South China, its development 
(sporophyte and gametophyte) depends mainly on cycling of above-ground 
water, and precipitation exerts great impacts on transportation and penetra-
tion of spores into soil (Zheng et al. 2002). The fern spores occurred below 
0.26 m resulted presumably from transportation of spores downwards with 
penetration of above-ground water. 

The soil was loose and contained abundant spores with more genera 
above 0.4 m (Table 4, Fig. 6), and became denser due to the abrupt increas-
ing in clay concentration below 0.4 m of SL profile (Chen et al. 2002a), 
which restrained the penetration of spores with leaching of soil water. 
Consequently, the quantity of spores decreased with depth (Table 4) and 
the genus became monotonous (Fig. 6). The loose/stiff quality of soil is 
then a critical factor controlling the penetration of spores. 

The regular distributions of pollen and spores with depth of SL profile 
indicate that weathering was intense and leaching due to precipitation was 
evident during soil development. SOM 14C apparent ages increase with 
depth (Fig. 5), suggesting that SOM in the low section had not been con-
taminated heavily by leaching of SOM from the above section. SOM was 
then not prone to be leached as were the spores during soil development. 
Although the effect of eluviation on the vertical distribution of fern spores 
is marked, and eluviation is a main process for the loss of dissolved OM 
from soil, its impact on the vertical distribution of SOM is actually very 
limited. 

5 Conclusions 

The variations in SOC concentration and SOM δ13C value with depth show 
both consistent tendencies for soil profiles with different elevations at the 
DHSBR. This was mainly attributed to the regular decomposition of SOM 
compartments with different turnover rates during soil development. 
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Carbon isotope fractionation due to SOM turnover can result in consider-
able enrichment of SOM δ13C value in 13C. 

Vegetation and topography were main factors controlling the distribu-
tions of SOM and carbon isotopes with depth at the DHSBR. The SOM 
δ13C of topsoil and plant debris δ13C became both enriched in 13C with ele-
vation, showing the regular variations of vegetation with elevation and the 
transformation of OM from plant debris into SOM in topsoil. The SOM 
δ13C of topsoil can be used as a reliable proxy for studying vertical distri-
bution of vegetation in a mountainous region. 

SOM was not prone to be leached as were the spores during soil devel-
opment at the DHSBR. The development of soil at the DHSBR followed 
the model that deposition and pedogenesis occurring alternatively. The dis-
tribution of SOM with depth is governed directly by input and SOM turn-
over during soil evolution, and indirectly by factors controlling soil devel-
opment, such as vegetation and topography. 
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1  Introduction 

Toxic organic chemicals find their way into our environment as a result of 
industrial and agricultural activities. There are at least 75,000 toxic chemi-
cals in common use worldwide (US EPA 2005). In the U.S., about 2.2 billion 
kilograms of chemicals are used as pesticides each year, with agricultural 
usage accounting for 77% (Kiely et al. 2004). Many pesticides and other 
organic chemicals have been found to accumulate in nature because the re-
lease rates exceed the rates of microbial and chemical degradation. Low 
biodegradation rates can be attributed to: (1) limited biochemical potentials, 
i.e., chemicals with structures foreign to nature are less likely to be de-
graded without a long adaptation period; and (2) limited bioavailability of 
contaminants or other substances (e.g. electron acceptors) to microorganisms. 
Our understanding of pesticide bioavailability has important ramifications 
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for environmental fate modeling, risk assessment and remediation. Limited 
bioavailability may lead to unexpected chemical persistence in soils hence 
increasing the likelihood of ground- or surface-water contamination 
(Pignatello et al. 1987). In the remediation of contaminated soils, bioavail-
ability affects the clean-up time, cost, and the end-point of the process. 
Bioavailability of pesticides and other organic contaminants has been iden-
tified as a major limitation to complete bioremediation of contaminated 
soils (US EPA 1999). 

2  General Concept of Bioavailability 

disciplines. Numerous definitions of bioavailability exist. Research on the 
relationship between bioavailability and chemical speciation (forms) origi-
nated in the field of soil fertility in the search for a good predictor for the 
bioavailability of essential plant nutrients (Traina and Laperche 1999). It is 
well accepted that dissolved nutrients are more labile and bioavailable to 
plants than solid-phase forms (including sorbed species). The same has 
been considered to be true for organic contaminants and their availability 
for microbial degradation.  
 Biological availability of environmental pollutants in ecotoxicol-
ogy context was defined at a National Science Foundation workshop on 
ecosystem processes and organic contaminants held in 1975, as “the extent 
to which a toxic contaminant is available for biologically mediated trans-
formations and/or biological actions in an aquatic environment” (Dickson 
et al. 1994). From biodegradation point of view, bioavailability was de-
fined as the accessibility of a chemical for assimilation by microorganisms 
(Alexander 2000). Bosma et al. (1997) defined bioavailability as the ratio 
of the capacity of an organism’s environment to transport the chemical to 
the capacity of the organism to degrade that chemical. There are many 
more versions of definitions for bioavailability. Overall, bioavailability has 
been defined “in either relative or absolute terms and in either chemical or 
biological terms” (Dickson et al. 1994). There is no single universally ac-
cepted definition for all situations.  
 The Committee on Bioavailability of Contaminants in Soils and 
Sediments of National Research Council (NRC) of the National Acad-
emies USA chose to define the bioavailability process instead of bioavail-
ability to avoid the confounding use of the term bioavailability (National 
Research Council 2003). According to the NRC report, bioavailability 
processes are “the individual physical, chemical, and biological interactions 

The term “bioavailability” has different meanings in different contexts and 
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that determine the exposure of organisms to chemicals associated with 
soils and sediments”. A scheme of bioavailability processes is shown in 
Fig. 1. 
 Bioavailability issues have been reviewed previously (Mihelcic 
et al. 1993; Boesten 1993; Baveye and Bladon 1999; Ehlers and Luthy 
2003). In this review, we discuss specifically the bioavailability of soil- or 

3  Assessing Bioavailability of Soil-Sorbed Chemicals 
Experimentally 

Significant amounts of organic contaminants released to the environment 
become sorbed to soil and sediment. Soil clay minerals and organic matter 
are the primary sorptive compartments for these contaminants. Generally, 
soil-sorbed organic contaminants and pesticides have been considered un-
available for biodegradation. Numerous reports provided supporting evi-
dence (Steen et al. 1980; Ogram et al. 1985; Shimp and Young 1988; Smith 
et al. 1992). Most mathematical models for coupled sorption and biodegra-
dation processes have been developed with the assumption that only solu-
tion-phase substrate was subject to biodegradation (Brusseau et al. 1992; 
Sabljic 1989; Scow and Johnson 1997). However, some evidence suggests 
that sorbed contaminants can be degraded by microorganisms, or at least 
that desorption into bulk solution is not a prerequisite for biodegradation. 
For sorbed contaminants to become bioavailable, there are two scenarios. 
As illustrated in Fig. 1, scenario one involves desorption of sorbed con-
taminant into soil solution and subsequent uptake by bacterial cells (indi-
cated by letters A and B). In scenario two, the sorbed compound partitions 
into bacterial cells without prior desorption into the bulk soil solution al-
though the compound may desorb into the microscopic environment be-
tween the cell and the surface of soil particle (indicated by letter C in Fig. 1).  
 
 
 
 
 

sediment-sorbed organic contaminants to pollutant-degrading bacteria. 
Direct uptake of sorbed contaminants is perhaps the most controversial 
and least understood process. The definition of bioavailability given by 
Alexander (2000) will be used in this review. The term “bioaccessibility” 
encompasses what is immediately available plus that which may become 
available, whereas bioavailability refers to what is available immediately. 
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Fig. 1. A schematic of bioavailability processes in soil or sediment (modified after 
National Research Council 2003). Letters A and B indicate desorption of sorbed 
contaminant and subsequent uptake by bacterial cells, respectively. Letter C indi-
cates partition of sorbed contaminant into bacterial cells without prior desorption 
into the bulk soil solution. Reprinted with permission from National Research 
Council (2003). Copyright (2003) the National Academy of Sciences, courtesy of 
the National Academies Press, Washington, D.C. 

To evaluate the bioavailability of soil-sorbed contaminants, Guerin 
and Boyd (1992) designed a kinetic mineralization assay using a batch sys-
tem. A series of soil-free controls and soil slurries containing radioactive 
labeled and nonlabeled chemicals at appropriate concentrations were set up 
in sealed serum bottles. Once the sorption equilibrium was reached, the se-
rum bottles were inoculated with bacteria that are capable of degrading the 
target chemical. At various time intervals, equal volume of aqueous solu-
tion and headspace were sampled to monitor 14CO2 production. According 
to Michaelis-Menten kinetics,  

V = V max• S
Km + S

, 

at substrate concentrations (S) below the Michaelis-Menten constant, Km 
(equal to the substrate concentration at half of the maximum reaction 
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rate, Vmax), the mineralization rates of resting (non-growing) cells are 
linearly proportional to substrate concentrations. First-order mineralization 
rates can be obtained by plotting percent of substrate mineralization (P) as 
a function of incubation time: P = Pmax (1 – e–kt), where k is the first-order 
rate constant (min–1) and Pmax is the maximal percent mineralized. Pmax and 
k were estimated by nonlinear regression analysis and used to calculate the 
initial mineralization rate (IMR): IMR (μg L–1min–1) = k•Pmax•S. The plot 
of IMR vs. equilibrium aqueous phase concentration is linear (Fig. 2). The 
equilibrium aqueous phase concentrations can be determined using sorp-
tion isotherms. If sorbed chemical is unavailable to bacteria, i.e., only 
chemicals in the aqueous phase can be degraded in soil slurries, IMR val-
ues of soil slurries should be equal to the control rate and be coincidental 
with the soil-free line. If the measured IMR in soil slurries are above the 
soil-free control line (Fig. 2), it indicates that bacteria have access to 
sorbed chemical or that desorption is rapid relative to degradation and cells 
experience a higher substrate concentration than that in the solution. 
Guerin and Boyd (1992) used this approach to probe the bioavailability of 
soil-sorbed naphthalene. Bioavailability assays were performed using two 
naphthalene-degrading bacteria, Pseudomonas putida ATCC 17484 and 
Alcaligenes sp. strain NP-Alk, and four surface soils. For strain NP-Alk, 
the IMRs in soil slurries fell very close to the soil-free control line (Fig. 3). 
This suggests the unavailability of the sorbed pool of naphthalene and the 
hypothesis that sorbed substrate is unavailable was valid. For ATCC 17484, 
upward deviations of IMR values from the soil-free control line were ob-
served (Fig. 3), indicating that this organism had direct access to sorbed 
phase napthalene. It seems that whether or not sorbed organic contami-
nants are bioavailable depends on organism-specific properties and 
physiochemical factors. Generalizations regarding the bioavailability of 
sorbed chemicals need reexamination. 
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Fig. 2. A diagram illustrating the presentation and interpretation of data obtained 
from a bioavailability assay developed by Guerin and Boyd (1992). 

To further understand this phenomenon, bioavailability assays 
were conducted using two biphenyl-degrading bacteria, Pseudomonas 
putida strain P106 and Rhodococcus erythropolis strain NY05, and four 
soils of different organic carbon contents (Feng et al. 2000). In these sys-
tems the total mass of biphenyl was constant (equivalent to the 400 μg L–1 
soil-free control) but the concentration in solution varied depending on the 
degree of sorption, which in turn depended on the specific soil. For example, 
with the Colwood soil the aqueous biphenyl concentration was reduced from 
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400 to 20 μg L–1 due to sorption. If only aqueous phase, but not sorbed 
phase, biphenyl was available, then the measured IMR in the soil slurry 
should coincide with the control line (assuming no contribution from bi-
phenyl desorption). As shown in Fig. 4 the rates in soil slurries were much 
greater than expected on the basis of solution phase concentrations. In fact 
the rates in all four soil slurry systems were essentially equivalent to those 
in the soil-free controls with the same total mass of biphenyl. Remarkably, 
reducing the aqueous phase biphenyl concentration as much as 20-fold due 
to sorption did not manifest any diminution in the IMRs. These data 
strongly indicate the ability of strain P106 to access the pool of sorbed bi-
phenyl. Soil-sorbed biphenyl also appeared available to strain NY05, albeit 
to a lesser extent.  

 

  
Fig. 3. Plots of initial mineralization rates (IMR) versus equilibrium aqueous 
phase concentrations for naphthalene-degrading bacteria. Open circles represent 

control data points. Reprinted with permission from Guerin and Boyd (1992). 
Copyright (1992) American Society for Microbiology. 

 
 
 
 

Capac soil, closed circles represent Colwood soil, and squares represent soil-free 
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One limitation of the batch mineralization methodology is that it 
does not provide a quantitative description of the dynamics of contaminant 
sorption/desorption and its subsequent effect on biodegradation. In an at-
tempt to strengthen the interpretation that strain P106 had immediate and 
nearly complete access to the pool of sorbed biphenyl, a coupled desorp-
tion/biodegradation model which accounted for the contribution of desorp-
tion to biodegradation was developed (Feng et al. 2000). Without informa-
tion regarding desorption kinetics, this model only defined the limiting 
cases of instantaneous desorption and no desorption. The measured biphe-
nyl mineralization curves for P106 fell well above the defined case CO2 
production curves where desorption was assumed instantaneous (Fig. 5). 
This provided further evidence for the ability of P106 to access sorbed bi-
phenyl. 
 In subsequent studies, a more sophisticated mathematical model 
coupled with measurements of biodegradation/mineralization and desorp-
tion kinetics was developed to more completely account for the effects of 
sorption/desorption processes on bioavailability. In this study, three 
atrazine-degrading bacteria (Pseudomonas sp. strain ADP, Agrobacterium 

In eleven out of eighteen cases, the mineralization of atrazine was accu-
rately predicted by the Desorption-Biodegradation-Mineralization (DBM) 
model, which accounts for the extents and rates of sorption/desorption 
processes and assumes biodegradation of liquid-phase, but not sorbed 
atrazine. However, for the Houghton muck soil with all three bacteria and 
Pseudomonas sp. strain ADP with Colwood and Hartsells soils, minerali-
zation rates greater than those expected on the basis of aqueous-phase 
atrazine concentration were observed. Even the assumption of instantane-
ous desorption could not account for the elevated rates in the Houghton 
muck soil, which manifested the highest sorbed atrazine concentrations. 
This may be explained by that bacteria access the localized regions where 
atrazine is sorbed and that the concentrations found support higher miner-
alization rates than predicted on the basis of aqueous-phase concentrations. 
Calvillo and Alexander (1996) attempted to quantify the effects of desorp-
tion on mineralization of sorbed chemicals and showed that mineralization 
rates of biphenyl sorbed to polyacrylic beads by a microbial consortium 
were higher than the biphenyl desorption rates. They isolated two pure cul-
tures of bacteria from this consortium and found that individually these 
two isolates mineralized biphenyl in solution but not sorbed substrate. 
However, combination of the two isolates resulted in utilization of sorbed 
biphenyl. The authors suggested that the sorbed chemicals were directly 

radiobacter strain J14a and Ralstonia sp. strain M91-3), five soils, and 
K-montmorillonte were used in the bioavailability assays (Park et al. 2003). 
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available to bacteria without direct dissolution (Calvillo and Alexander 
1996; Tang et al. 1998). 

Fig. 5. Mineralization of biphenyl by Pseudomonas strain P106 in four soil-free 
controls and soil slurries. Soil slurries contained 0.1 μCi 14C-labeled and ~400 μg 
L–1 unlabeled biphenyl initially. Pc is estimated line from the soil-free control data. 
Pd is the predicted mineralization curve assuming instantaneous desorption. Pnd is 
the predicted mineralization curve assuming no desorption. Reprinted with per-
mission from Feng et al. (2000). Copyright (2000) American Chemical Society. 

 
 
Recognizing the limitations of the traditional enrichment system, 

several researchers designed untraditional enrichment techniques to isolate 
bacteria capable of degrading sorbed organic chemicals (Calvillo and 
Alexander 1996; Tang et al. 1998). Calvillo and Alexander (1996) provided 
phenanthrene sorbed to polyacrylic beads (SM-7 Biobeads) instead of dis-
solved substrate in the enrichment cultures. A bacterium obtained by en-
richment on sorbed substrate mineralized phenanthrene sorbed to beads or 
a lake-bottom sediment, whereas a bacterium obtained by enrichment on 
non-sorbed phenanthrene did not. Bastiaens et al. (2000) compared poly-
cyclic aromatic hydrocarbon (PAH)-utilizing bacteria isolated from PAH-
contaminated soil and sludge samples using two different enrichment 

   

268

Incubation  Time  (min)

0 50 100 150
0

10

20

30

40
Capac B

0 50 100 150
0

10

20

30

40
Capac A

0 50 100 150
0

5

10

15

20

25

30
Schoolcraft A

C
O

2   
Pr

od
uc

tio
n   

  (
%

)

0 50 100 150
0

10

20

30

40
Colwood A

Pc
control
slurry
Pd
Pnd



 

procedures, i.e., PAHs supplied as crystals in liquid mineral medium vs 
PAHs supplied in sorbed form on hydrophobic membranes. Both proce-
dures were successful in obtaining PAH-degrading bacteria, but selected 
different bacterial strains. The liquid enrichment mainly selected for 
Sphingomonas sp., whereas the membrane method selected for Mycobac-
terium sp. exclusively. The new Mycobacterium isolates were strongly 
hydrophobic and adhered strongly to different surfaces “which might be 
useful to biodegrade sorbed PAHs in soils and sludge” (Bastiaens et al. 
2000). Grosser et al. (2000) attempted to isolate phenanthrene-degrading 
bacteria using different model sorbents of varying phenanthrene sorptive 
capacities in their enrichment system. These sorbents were Amberlite car-
boxylic acid cation-exchange resin, SM-7 Biobeads (polyacrylic resin), 
and SM-2 Biobeads (divinyl benzene resin). More than 40 phenanthrene-
degrading bacterial isolates were cultivated and individual isolates showed 
significant variation in their ability to mineralize phenanthrene sorbed to 
solid phases. Although an inverse relationship between the phenanthrene 
degradation rates and phenanthrene sorption to model sorbents was ob-
served, the degradation rates in the presence of Amberlite resin and SM-7 
Biobeads were much higher than those predicted from the phenanthrene 
desorption rates. In the accompanying paper, Friedrich et al. (2000) re-
ported that the denaturing gradient gel electrophoresis (DGGE) patterns 
obtained from enrichment cultures containing sand or no sorbents were 
different from those obtained from enrichment cultures containing phenan-
threne sorbed to Amberlite resin and SM-7 Biobeads. SM-7 Biobeads en-
richment selected for mycobacterial phenanthrene mineralizers, whereas 
Amberlite resin selected for a Burkholderia sp. These results suggest that 
different phenanthrene-degrading bacteria adapt to different phenanthrene 
bioavailability. In another study, Vacca et al. (2005) carried out paired en-
richments to compare phenanthrene degraders isolated using a traditional 
technique with non-sorbed phenanthrene to those using an enrichment sys-
tem with phenanthrene sorbed by humic acids. This study showed that 
only isolates obtained from enrichments with humic acid-sorbed phenan-
threne were capable of mineralizing sorbed phenanthrene at levels far 
above those which desorption and initial aqueous phase phenanthrene 
could sustain. Thus, some or all of the humic acid-sorbed phenanthrene 
was available for uptake without requiring desorption. 
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4  Factors Affecting Bioavailability of Soil-Sorbed 
Chemicals 

Bioavailability of soil-sorbed organic chemicals depends on a variety of 
physicochemical factors as well as the characteristics of microorganisms 
involved. Although many studies have provided insight to our understand-
ing of the bioavailability issue, simple correlations have not been found 
between bioavailability and physicochemical properties of sorbed chemi-
cals or sorbents, nor microbial characteristics. 

4.1  Nature of the Chemical 

270

One factor to consider is the nature of the chemical compound. Organic 
contaminants differ in chemical structure, reactivity, and many other 
physical and chemical properties. Some are recalcitrant whereas others are 
subject to biodegradation to different extents. Most research on microbial 
metabolism of organic chemicals concentrates on water-soluble molecules 
or water-soluble fraction of a compound. Polarity or hydrophilicity of a 
biodegradable compound is considered to be an important characteristic in-
fluencing sorption and therefore biodegradation (Barriuso et al. 2004). 
Sorption of many nonpolar pesticides and organic contaminants are strongly 
correlated with soil organic matter contents and the compound’s hydropho-
bicity (e.g. Lambert 1967, 1968; Chiou et al. 1979; Briggs 1981; Chiou et al. 
1983; Chiou 2002). Retention of these contaminants in soils can be predicted 
using organic carbon (OC) normalized sorption coefficients (Koc), which can 
be estimated using the octanol-water partition coefficients (Kow) or inverse 
of water solubility (e.g. Karickhoff 1981). In general, the more polar a com-
pound, the less important is hydrophobic partitioning. Polar and semi-polar 
organic compounds may also interact with mineral surfaces (Laird et al. 
1992; Laird and Fleming 1999; Sheng and Boyd 2000; Boyd et al. 2001). 
Sorption of ionizable organic compounds, however, is more dependent on 
the surrounding solution chemistry than nonpolar compounds. Graber and 
Borisover (2005) indicated that compound solvation interactions in the bulk 
aqueous phase may mask sorbate – SOM interaction for different organic 
compounds when Koc-based approach is used. They used a thermodynamic 
cycle approach by eliminating the contribution from compound hydration in 
the aqueous phase to examine the interaction between natural organic matter 
and organic compounds. They concluded that polar organic compounds in-
teracted much stronger with SOM than aromatic hydrocarbons and their 
halogen-substituted derivatives of the same electronic polarizability. Since 
the nature of a compound influences sorption capacity and the strength of 



 

4.2  Nature of the Sorbent  

Another physicochemical factor to consider is the nature of the sorbent it-
self. Soil organic matter content, mineral composition, and particle size 
distribution all affect sorption/desorption processes and thus contaminant 
bioavailability. Several studies have been conducted to examine how SOM 
contents affect bioavailability of organic contaminants. Guerin and Boyd 
(1993) observed that naphthalene sorbed to high OC soils was less avail-
able to P. putida strain 17484 than that sorbed to low OC soils. It was sug-
gested that a larger portion of naphthalene was present in a nonlabile phase 
in a high OC soil, and therefore naphthalene was less accessible to poten-
tial microbial degraders compared with that in a low OC soil. White et al. 
(1997) examined the sequestration and bioavailability of phenanthrene in 
seven soils with SOM contents ranging from 1.1 to 13%. They did not find 
an apparent relationship between soil organic matter content and minerali-
zation of phenanthrene. Chung and Alexander (1998) also reached the 
same conclusion after investigating bioavailability of atrazine and phenan-
threne in 16 dissimilar soils. However, further analysis by Chung and 
Alexander (2002) using the same data set showed that some but not all 
measures of phenanthrene and atrazine sequestration were correlated with 
OC content, nanoporosity, or CEC. Feng et al. (2000) found that biphenyl 
sorbed to high OC soils was less available to biphenyl-degrading 
R. erythropolis NY05 but not to P. putida P106, than that sorbed to low 
OC soils. In another study, Park et al. (2003) found that atrazine sorbed by 
an organic soil (38% OC) was available to all three atrazine-degrading 
bacteria tested whereas atrazine sorbed by mineral soils was not available 
to these organisms in most cases. At the present time, it is not possible to 
generalize the effect of soil organic matter on bioavailability of organic 
contaminants. 
 In addition to SOM, clay minerals are another important compo-
nent that may influence contaminant-soil interactions. Expandable 2:1 type 
clays are usually more reactive than other clay minerals. Park et al. (2003) 
used a K-saturated montmorillonite as a sorbent to evaluate the availability 
of sorbed atrazine to three atrazine-degrading bacteria. K-saturated mont-
morillonite has a high atrazine sorption capacity with a Freundlich sorption 
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no general trend has been observed between compound polarity and 
bioavailability. Organic compounds that have been evaluated in terms of 
their availability to bacteria include various pesticides (e.g. 2,4-D and 
atrazine) and PAHs (e.g. naphthalene and phenanthrene).  
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coefficient of 43.8 (mg kg–1)/(mg L–1)n. The clay caused inhibition of 
atrazine mineralization for two organisms. This may have resulted from 
clay particles coating the bacterial cells since the fine clay particles were 
substantially smaller than the common dimensions of bacterial cells. Or-
ganoclays synthesized from smectite clay and the quaternary ammonium 
compound hexadecyltrimethylammonium (HDTMA) were also used to ex-
amine pesticide desorption rate and bioavailability. In these sorbents, the 
HDTMA is used to replace inorganic exchangeable cations of smectite 
clay. A sorptive phase is formed by agglomeration of the C-16 alkyl tails 
of HDTMA on the clay surfaces and in the interlayer regions. These sor-
bents are well defined compositionally, and can be produced synthetically 
to generate particles of known sizes. Bioavailability assays were conducted 
with these HDTMA-modified smectite clays of different particles sizes 
(< 0.25 to 1 mm in diameter) using Alcaligenes sp. strain NP-Alk, which 
cannot access soil-sorbed naphthalene directly (Crocker et al. 1995). For 
this organism, naphthalene sorbed to large HDTMA-clay aggregates re-
mained unavailable for mineralization. As the clay aggregate size de-
creased, the rate and extent of desorption and mineralization increased 
progressing from large aggregates to small aggregates to unaggregated 
clay. The availability of sorbed naphthalene to strain NP-Alk was strictly 
dependent on the rate of desorption, which is inversely related to particle 
size (Crocker et al. 1995).  
 Guerin and Boyd (1997) evaluated bioavailability of naphthalene 
associated with various natural and synthetic sorbents. Pseudomonas 
putida strain 17484 had direct and immediate access to a portion of sorbed 
naphthalene by all natural sorbents and facilitated the desorption of addi-
tional naphthalene for degradation. Naphthalene sorbed by forest soils, 
however, was less available than naphthalene sorbed by agricultural soils 
or river sediments. This may be attributed to differences in the quality of 
the soil organic matter. Sorption to granular activated carbon virtually pre-
cluded naphthalene degradation, whereas naphthalene sorbed to XAD-2 
resin, HDTMA-modified smectite, and Tenax was degraded by strain 
17484. These results suggest that sorbent porosities and particle size, as 
well as strength of naphthalene sorption influence bioavailability. 

4.3  Aging 

Another important factor influencing the bioavailability of organic con-
taminants is the contact time between the contaminant and soil/sorbent, of-
ten referred to as aging. Aging often increases the sorption of organic 
chemicals by allowing more time for the chemicals to partition deeper into 
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the polymeric matrix of soil organic matter and to sorb into micro-voids or 
microporous minerals (Luthy et al. 1997). There is evidence that the 
bioavailability of organic chemicals decreases with time. Ethylene dibro-
mide (EDB), a soil fumigant with relatively high water solubility, volatility 
and biodegradability, was reported to persist in field-weathered soils for up 
to 19 years after its last application (Steinberg et al. 1987). When 14C-EDB 
was added to these soils in laboratory experiments, it was rapidly degraded 
by indigenous microbial populations, whereas field-aged EDB contained 

1997; Chung and Alexander 1998). Comparison of sorbent effects in an 
atrazine aging experiment illustrated the importance of soil organic matter. 
Bioavailability experiments using Pseudomonas sp. ADP showed that 
there was no dimunition of either atrazine mineralization rates or extents 
over a one-year aging period for K-saturated montmorillonite clay whereas 
for Colwood soil (7.8% OC) aging decreased the overall mineralization 
rates and extents progressively from two days to one year (Feng and Boyd 
unpublished data). Soil aging of organic contaminants can be viewed as a 
process in which initially surface sorbed chemical is slowly redistributed 

within the same sample was completely resistant to biodegradation. Scribner 
et al. (1992) compared the sorption/desorption behavior and bioavailability 
of field weathered (aged) simazine residues from a 20-year continuous 
cornfield to that of 14C-simazine recently added to the same soil. The ap-
parent sorption coefficients of the aged residues determined from 24 to  
48 hour desorption experiments were 15 times higher than sorption coeffi-
cients of added simazine. Aged simazine residues were also shown to be 
biologically unavailable to sugar beet and to indigenous microbial popula-
tions whereas recently added simazine showed herbicidal damage to sugar 
beet and was substantially biodegraded in soil from the continuous corn 
field (Scribner et al. 1992). Guerin and Boyd (1993) evaluated how aging 
of naphthalene affected the bioavailability of soil-sorbed naphthalene to 
Pseudomonas putida strain ATCC 17484, which can access sorbed naph-
thalene. The results showed that aging of naphthalene in sterile soil slurries 
caused a significant decrease in the ability of strain 17484 to access the 
pool of sorbed naphthalene. The initial mineralization rates began dimin-
ishing with increasing naphthalene-soil contact time, and after one year 
they plateaued almost exactly at the rate predicted if all sorbed substrate 
was unavailable (Guerin and Boyd 1993). Feng et al. (2000) showed that 
the extent of bioavailability of soil-sorbed biphenyl decreased with in-
creased aging. The decrease in availability was most pronounced at the 
early stage (< 80 days) of the aging period. The diminishing bioavailability 
of soil-aged chemicals has also been reported for phenanthrene and 
4-nitrophenol (Hatzinger and Alexander 1995) and atrazine (Kelsey et al. 
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to interior of the soil aggregate or organic matrix where it becomes less ac-
cessible or inaccessible to microorganisms. 

4.4  Characteristics of Bacteria 

Bioavailability is also influenced by certain, albeit poorly understood, 
characteristics of bacteria. To degrade soil-sorbed molecules, bacteria must 
either use sorbed molecule directly or facilitate desorption in some manner. 

 Wu et al. (2003) evaluated bacterial characteristics related to some 
of the above-mentioned mechanisms using two biphenyl-degrading bacte-
ria with different abilities to access soil-sorbed biphenyl. Pseudomonas 
putida strain P106 and Rhodococcus erythropolis strain NY05 had been 
shown to be able to access soil-sorbed biphenyl even when desorption was 
accounted for, and strain P106 had better accessibility to the pool of sorbed 
biphenyl (Feng et al. 2000). Wu et al. (2003) reported that both P106 and 
NY05 showed strong tendencies to attach to soils though NY05 was con-
siderably more hydrophobic than P106. P106 was more motile and had a 
higher chemotactic response to biphenyl than NY05. No biosurfactant was 
detected in either culture. It appears that bacteria (P106 in this case) with 
higher chemotactic response and moderate cell surface hydrophobicity 
may access soil-sorbed biphenyl more efficiently. Park et al. (2003) also 
evaluated several characteristics of three atrazine-degrading bacteria that 
may affect degradation of soil-sorbed atrazine. Production of surfactants 
by three atrazine-degrading bacteria was not indicated by surface tension 
measurements. Access to sorbed atrazine seemed to be favored by chemo-
taxis and cell attachment to soils. 
 Wick et al. (2002) examined the physiological responses of  
anthracene-degrading Mycobacterium sp. LB501T to anthracene in batch 

Mechanisms underlying the apparent availability of sorbed chemicals are 
complex due to the divergent properties of chemicals considered, the resultant 
sorption/desorption mechanisms, the metabolic diversity of microorgan-
isms, and the heterogeneity of soils. Several microbial-based mechanisms 
have been proposed for the access of soil-sorbed organic chemicals: (i) pro-
duction of biosurfactants (Desai and Banat 1997; Alexander 1999); 
(ii) production of extracellular enzymes to degrade target compounds; 
(iii) microorganisms with high substrate affinity, which efficiently reduce 
concentrations of the substrate close to the cell surface (Bastiaens et al. 
2000); (iv) reduction of the distance between cells and substrate by adhe-
sion to sorbents (Alexander 1999; Bastiaens et al. 2000; Grosser et al. 
2000); and (v) reduction of the distance between cells and substrate by 
means of motility and chemotaxis (Guerin and Boyd 1992). 
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cultures when solid anthracene was supplied as a sole carbon source. This 
organism showed a high specific affinity for anthracene and grew as a con-
fluent biofilm on solid anthracene. Cells grown on anthracene were sig-
nificantly more hydrophobic and adhered better to Teflon and anthracene 
surfaces than those grown on glucose. No production of biosurfactants was 
observed. The results indicate that Mycobacterium sp. LB501T adapted to 
low substrate bioavailability by attachment and biofilm formation on the 
solid substrate. 

5  Summary 

Bioavailability of soil-sorbed organic chemical is a complex issue due to 
the simultaneous involvement of several processes including sorp-
tion/desorption, diffusion, and various chemical reactions and microbial 
transformations. The time dependency of bioavailability of chemicals, the 
physiological and metabolic diversity of microorganisms, and the spatial 
distribution of microorganisms capable of degrading target compounds in 
soils add complexity to this issue. Sorption often reduces the rate and ex-
tent of biodegradation and many sorbed substrates are not readily available; 
however, sorption does not necessarily prevent biodegradation from occur-
ring. There is evidence that sorbed contaminants can be degraded by mi-
croorganisms or at least that desorption into bulk solution is not a prereq-
uisite for biodegradation. Contaminant aging in soils generally reduces 
bioavailability of sorbed substrate. Future studies of biodegradation of 
sorbed chemicals should provide better mechanistic understanding and pre-
dictive models of bioavailability processes. Advance, however, is highly de-
pendent on developing new and sensitive tools to measure physiochemical 
and microbiological parameters at microscale. The use of state-of-the-art 
biological tools, especially molecular techniques such as gene expression 
analysis and reporter systems represent perhaps the best opportunity to 
gain new mechanistic understanding of bioavailability. Another experi-
mental challenge needs to be overcome is to obtain these parameters under 
conditions similar to the field soils. Improved understanding of bioavail-
ability processes will guide realistic assessment of human health and eco-
logical risks associated with sorbed pollutants, selection of appropriate 
remediation technologies, and determination of the cleanup goals.  
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1 Introduction 

Several natural and xenobiotic organic compounds, generally defined as 
environmental mutagens, possess the capacity of altering some genetic 
processes, such as mitotic division, which occur in meristematic plant cells 
(Grant 1994). In particular, some mutagens can behave as clastogens for 
their ability to produce breakage of chromosomes. 

The antimutagenic action of a compound can be defined as the ca-
pacity to suppress or reduce mutagenic events, such as breakage and trans-
location of chromosomes and spindle disturbances, caused by a mutagen in 
an organism. The anticlastogenic activity is a particular aspect of the gen-
eral antimutagenic action, and refers specifically to the reduction of chro-
mosome breakages. Several tests are used to assess the (anti)clastogenicity 
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of various compounds in various macro- and microorganisms. These 
include the micronuclei (MN) test, the aberrant anatelophases (AAT) test, 
the comet assay, the Ames test, the C-mitotic effects, and the sister-
chromatid exchange induction (Cozzi et al. 1993; Sujatha and Hegde 1998; 
Cotelle et al. 1999; Kalweit et al. 1999; Mueller et al. 1999; Vijayalaxmi 
and Venu 1999). 

Humic acids (HA) and fulvic acids (FA) are the main components 
of humic substances (HS), which are the most chemically and biochemi-
cally active and widely spread fractions of nonliving natural organic matter 
in all terrestrial and aquatic environments. They comprise a chemically and 
physically heterogeneous group of substances with colloidal, polydis-
persed, polyelectrolyte characteristics and mixed aliphatic and aromatic 
nature (Senesi and Loffredo 1999). 

Besides several other properties, HS are known to exert a number 
of direct and indirect biological effects on plants, including morphological, 
physiological and biochemical effects (Chen and Aviad 1990; Clapp et al. 
2001; Varanini and Pinton 2001; Nardi et al. 2002) and genetic effects 
(Sato et al. 1986; Gichner et al. 1990; De Marco et al. 1995; Ferrara et al. 
2001). In particular, HS of various origin and nature and at various con-
centrations can exert synergistic or antagonistic effects on the growth of 
plants treated with xenobiotic molecules (Senesi et al. 1990; Senesi and 
Loffredo 1994). 

Relatively little information is available on the genetic actions that 
HS can exert in plants exposed to mutagens, although a mutagenic or an 
antimutagenic action has been observed in whole living organisms and 
single cells on dependence on the origin and nature of HS and the organ-
ism examined. In particular, the mutagenic activity of aquatic HAs and 
FAs has been investigated on bacteria and animal cells (Meier et al. 1983; 
Matsuda et al. 1991; Cozzi et al. 1993; Watt et al. 1996), and the an-
timutagenic behavior of HS has been also studied in several organisms 
(Sato et al. 1986, 1987; Gichner et al. 1989, 1990; Cozzi et al. 1993; De 
Marco et al. 1995, 1999; Ferrara et al. 2000, 2001). 

The objective of this paper was to investigate the anticlastogenic 
and antitoxic effects exerted by HS of various origin and nature on several 
monocotyledon and dicotyledon herbaceous plant species treated with dif-
ferent mutagenic and phytotoxic compounds. 
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2 Materials and Methods 

2.1 Humic Substances, Mutagenic Compounds and Plant 
Species Used 

The HS samples used in this work were obtained from the Standard and 
Reference Collection of HAs and FAs of the International Humic Sub-
stances Society (IHSS), with the exception of the HA from an alluvial soil. 
The origin and nature of HS, with the corresponding codes, abbreviations 
and concentrations used, are shown in Table 1.  

The mutagenic compounds used with the corresponding 
abbreviations and concentrations used, are listed in Table 2. 

Eleven plant species (Table 3) were preliminarly tested for their 
response to the Feulgen staining method (described below), which is es-
sential for the efficient microscope observation of genetic anomalies of 
cells. This, in order to select plants to be successively used in the experi-
ments with the mutagenic compounds. 

2.2 Preliminary Experiment 

A defined number of seeds of each plant was germinated in Petri dishes 
kept in a Phytotron growth chamber at 21 ± 1°C in the dark. Root tips 
(~ 2 mm) were collected after 5 or 7 days of germination on dependence 
on the plant species, and subjected to Feulgen staining procedure before 
the preparation of permanent slides for the observation at an Olympus 
CX40 microscope. 

In brief, the Feulgen staining procedure consists in: (a) fixation of 
root tips in Carnoy’s solution I (ethanol and acetic acid, 3:1 v/v); (b) stain-
ing with Schiff’s reagent; and (c) two successive immersions in 95% etha-
nol and histolemon Erba baths. More details on the procedure can be found 
in Ferrara et al. (2001). 

Only four plant species, i.e., Vicia faba, Allium cepa, Pisum sati-
vum and Triticum turgidum, responded adequately to the Feulgen proce-
dure, and were considered for use in the successive experiments. These 
species, together with the corresponding mutagenic compounds used and 
the mutagenicity tests adopted (see below in Sect. 2.4.) are listed in  
Table 4. 
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Table 1. Origin and nature of humic substances used with corresponding codes, 
abbreviations and concentrations 

Origin and nature of  
humic substances 

IHSS Code Abbreviation Concentrations used 
(mg L–1) 

Humic acids    

Elliott soil (Mollisol) 1S102H MHA 20, 50, 200, 500 

Summit hill Soil 1R106H SHHA  20, 200 

Pahokee peat  1R103H PHA 20, 50, 200, 500 

Leonardite 1S104H LHA 20, 50, 200, 500 

Nordic lake 1R105H NHA 50, 500 

Alluvial soil  ASHA  10, 100 

Fulvic acids    

Elliott soil (Mollisol) 1S102F MFA 20, 50, 200, 500 

Pahokee peat 1R103F PFA 20, 50, 200, 500 

Nordic lake  1R105F NFA 50, 500 

Suwannee river 1R101F SRFA 50, 500 
 

Table 2. Mutagenic compounds used with corresponding abbreviations and con-
centrations 

Mutagenic compound Abbreviation Concentration (mg L–1) 

Maleic hydrazide MH 2.5, 5.0, 7.5, 10 

Colchicine COL 1, 10, 100 

Alachlor ALA 1, 10 

2,4-D 2,4-D 0.01, 0.1, 1 

Glyphosate GLY 10, 100, 1000 
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Table 3. Plant species tested 

    a M: monocotyledon; D: dicotyledon 

 

Table 4. Plant species positive to the Feulgen method, mutagenicity coumpounds 
used and mutagenic tests applied 

Plant species  Mutagenic compound Mutagenicity test 

Vicia faba MH MN, AAT 
 COL HC, PC 
 2,4-D MN, AAT 
 GLY MN, AAT 

Allium cepa MH MN, AAT 
 COL HC, PC 
 2,4-D MN, AAT 
 GLY MN, AAT 

Pisum sativum MH MN, AT 

Triticum turgidum MH MN, AT 
 ALA MN, AT 

Common name Plant species Botanical group 
Broad bean  Vicia Faba aD 

Onion Allium cepa aM 

Pea Pisum sativum D 

Durum wheat Triticum turgidum M 

Bean  Phaseolus vulgaris D 

Rape Brassica napus D 

White mustard Sinapsis alba D 

Flax Linum usitatissimum D 

Tomato Lycopersicon escuentum. D 

Melon Cucumis melo D 

Sunflower Heliantus annuus D 
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2.3 Main Experiment 

In the main experiment, germination was achieved by treating six to twenty 
seeds of each of the four selected plant species placed in Petri dishes, in a 
Phytotron growth chamber at 21 ± 1°C in the dark (see above), with 12 mL 
(V. faba) or 8 mL (A. cepa, P. sativum, T. turgidum) of the following test so-
lutions: (a) distilled H2O (positive control); (b) each mutagen alone (negative 
control); (c) each HA or FA alone; and (d) each HA or FA in combination 
with each mutagenic compound. The concentrations of the mutagens and 
HAs and FAs used in the experiments are indicated in Tables 1 and 2. The 
mixtures HA or FA and mutagen were mechanically shaken for 24 h at room 
temperature (20 ± 1°C) before addition to the seeds. The pH value of all so-
lutions used ranged from 6 to 7. All experiments were triplicated. 

As in the preliminary experiment, root tips were collected after  
5–7 days, subjected to the Feulgen staining procedure as described above, 
then prepared adequately as permanent slides, and finally subjected to 
microscope observation. For each treatment, fifteen root tips (5 × 3 repli-
cates) were prepared and 30,000 cells (2,000 cells per root tip) were ex-
amined in the case of MH, and 150 metaphases (5 × 3 replicates) were 
examined in the case of COL. 

2.4 Mutagenicity and Toxicity Tests 

The mutagenicity level was estimated by two different assays on dependence 
on the mutagen tested: (a) counting of frequencies of micronuclei (MN), aber-
rant anatelophases (AAT) and regular anatelophases (RAT) in the case of MH 
(Ferrara et al. 2000, 2001); and (b) counting of polyploid cells (PC) and hy-
perdiploid cells (HC) in the case of COL (Sbrana et al. 1993). In particular, the 
MN and AAT tests consist in identifying and counting the MN and AAT pre-
sent in the treated cells. The MN are portions of extranuclear DNA with a di-
ameter no larger than 1/3 of the main nucleus, and consist of chromosome 
fragments originated from a clastogenic event or complete chromosomes that 
do not replicate or segregate correctly because of spindle anomalies. The AAT 
consist of abnormal cell divisions showing chromosomal bridges, isolated 
DNA fragments and/or lagging and sticking chromosomes. 

Some HS samples were also tested, either alone or in combination 
with some mutagenic compounds, for their possible antitoxic effect on the 
seedlings of some plant species. In particular: (a) the sample ASHA at a con-
centration of 10 or 100 mg L–1, alone or in combination with 1 or 10 mg L–1 
of ALA, was tested on T. turgidum; and (b) samples SHHA, PHA, PFA, 
LHA, SHA and SFA at concentrations of 20 or 200 mg L–1, alone or in 
combination with 10 mg L–1 MH, were tested on V. faba. The antitoxic ef-
fect was evaluated by measuring some biometrical parameters such as 
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length and dry weight of shoots and roots. In the case of V. faba, biometri-
cal parameters were measured on 5-day grown seedlings before cutting 
root tips for the antimutagenic observations. For T. turgidum, the meas-
urements were made on germinated seedlings grown for 14 days in glass 
pots in the presence of the same test solutions used for seed germination. 

2.5 Statistical Analysis of Data 

Experimental data obtained were statistically analyzed by one-way analy-
sis of variance (ANOVA) at both 95% and 99% confidence levels. The 
mean values were separated by using the least significant difference (LSD) 
test in all cases, except in the experiments with MH alone where the aver-
ages were separated by using the Duncan’s test. For both antimutagenic 
and antitoxic evaluations, the mean values measured in the HS-alone 
treatments were statistically compared to those of the positive control 
(H2O), whereas the mean values obtained in the experiments using the 
combinations HS + mutagen were compared to those of the negative con-
trol (MH, COL or ALA). 

3 Results and Discussions 

3.1 Anticlastogenic Action 

Results of preliminary experiments showed that only root tip cells of V. 
faba, A. cepa, P. sativum and T. turgidum responded positively to the 
Feulgen procedure (Table 4), with an evident appearance of MN and ATT 
anomalies (Fig. 1), which were more abundant in V. faba than in P. sati-
vum (Fig. 2). The other plant species examined yielded a poor staining of 
the nuclear material, thus discouraging their use in successive experiments. 

Among the mutagens tested on each plant species (Table 4), those 
that produced evident clastogenic alterations were: (a) MH on V. faba, A. 
cepa, P. sativum, and T. turgidum; (b) COL on V. faba and A. cepa; and (c) 
ALA on T. turgidum. The effects measured for MH and ALA on T. tur-
gidum, and for 2,4-D and GLY on V. faba and A. cepa, were not statistically 
significant, thus the related data will not be considered further in this section. 

In general, with the exception of AAT on P. sativum, treatments of 
any plant species with each HS sample alone did not determine MN and AAT 
frequencies statistically different from the positive control (Table 5 and 
Fig. 3). These results suggested the absence of a significant clastogenic activ-
ity exerted by HS alone (Sato et al. 1986; De Marco et al. 1995, 1999). 
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Fig. 1. Root tip cells of Vicia faba (A), P. sativum (B) and A. cepa (C) treated 
with 10 mg/L of maleic hydrazide (MH) showing the presence of micronuclei 
(MN) and aberrant anatelophases (AAT). Magnification 400x. 
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 Fig. 2. Frequency (%) of MN and AAT in 30,000 root-tip cells of (a) V. faba and 

negative controls, HS treatments and HS + MH treatments. The vertical line on 
each bar indicates the standard error (n = 3). 
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 Fig. 3. Frequency (% on 30,000 cells for each treatment) of MN and AAT in A. 
cepa and V. faba root tip cells. Each treatment results not significantly different 
with respect to the control according to the LSD test. 
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Table 5. Frequency (%) on 30,000 cells for each treatment of micronuclei (MN) 
and aberrant anatelophases (AAT) in Vicia faba and Pisum sativum root tip cells 
treated with HA or FA alone 

   Vicia faba Pisum sativum 
Treatment MN AAT MN AAT 
     
H2O (positive control) 0.86 ± 0.22 0.05 ± 0.03 0.02 ± 0.01 0.03 ± 0.01 

SHHA, 20 mg L–1 2.04 ± 0.30 ns 0.11 ± 0.02 ns 0.05 ± 0.01 ns 0.00 ± 0.00 ** 

SHHA, 200 mg L–1 1.66 ± 0.14 ns 0.08 ± 0.02 ns 0.02 ± 0.01 ns 0.01 ± 0.01 * 

PHA, 20 mg L–1 1.11 ± 0.38 ns 0.04 ± 0.02 ns 0.04 ± 0.02 ns 0.03 ± 0.01 ns 

PHA, 200 mg L–1 0.87 ± 0.19 ns 0.06 ± 0.02 ns 0.06 ± 0.01 ns 0.01 ± 0.01 * 

PFA, 20 mg L–1 0.80 ± 0.14 ns 0.08 ± 0.02 ns 0.07 ± 0.03 ns 0.01 ± 0.01 * 

PFA, 200 mg L–1 0.85 ± 0.27 ns 0.04 ± 0.02 ns 0.04 ± 0.01 ns 0.00 ± 0.00 ** 

   SD (0.05P): 0.02 
SD (0.01P): 0.03 

The symbols **, *, and ns refer, respectively, to a difference significant at 0.01P, a difference 
significant at 0.05P, and a nonsignificant difference, according to the LSD test. 

 
Differently, and in agreement with previous findings (De Marco 

et al. 1995, 1999), both MN and AAT were observed in all treatments with 
MH (Fig. 1), including the positive control (H2O treatment). However, 
with respect to the positive control, the treatment with MH alone at dif-
ferent concentrations produced a significant increase of the clastogenic ef-
fect in V. faba, A. cepa and P. sativum (Ferrara et al. 2004) (Fig. 4). The 
MN and AAT frequencies increased as a function of MH concentration, 
but the differences were significant at the Duncan’s test at P<0.05 only for 
AAT (Fig. 4). With respect to the positive control, the increases of fre-
quencies measured for V. faba, A. cepa and P. sativum were for MN, re-
spectively up to 9.8, 10 and 14 times, and for AAT, respectively up to 7.6, 
2.8 and 1.8 times. 

All the combinations HS + MH reduced extensively the genetic 
anomalies caused by MH, thus indicating that HS exerted an evident anti-
clastogenic activity in the three species, whose extent was a function of HS 
source, nature and concentration. In particular, the effects of the combina-
tions HS + MH on the relative frequencies (%) of MN and AAT in root tip 
cells of V. faba, P. sativum and A. cepa, are shown in Figs. 5, 6 and 7, re-
spectively, as referred to the frequency in the negative control (MH) as-
sumed 100%. In general, the MN test resulted more efficient than the AAT 
test in measuring clastogenic/anticlastogenic effects. Further, V. faba re-
sponded better that the other species to the tests possibly because of larger 
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chromosome size (Kanaya et al. 1994) and/or greater amount of DNA per 
nucleus (26.7 pg in V. faba and 9.8 pg in P. sativum) and/or greater sensi-
tivity to clastogenic tests (Grant and Owens 2001). 

 

 

Fig. 4. Relative frequency of MN and AAT in 30,000 root-tip cells of V. faba 
treated with MH at different concentrations, with respect to the frequency meas-
ured for the treatment with 10 mg L–1 of MH. 

In particular, with respect to the MH-alone treatment, the reduc-
tion of both anomalies in V. faba resulted highly significant for almost all 
the combinations (Fig. 5). The greatest reduction of MN frequency was 
measured for the combinations of NFA at 50 mg L–1 + MH (77.6%) and 
PHA and PFA at 20 mg L–1 + MH (74.5 and 68.5%, respectively), and of 
AAT frequency for the combinations NHA at 500 mg L–1 + MH and NFA 
at 50 mg L–1 + MH (75% for both combinations). 
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Fig. 5. Effect of the combinations of MH with each HS at various concentrations 

referred to the control (MH alone, frequency 100%). The symbols **, *, and ns re-
fer, respectively, to a difference significant at 0.01P, a difference significant at 
0.05P, and no significant difference according to the LSD test. 

In the experiments with P. sativum the greatest reductions of MN, 
and especially AAT, were generally obtained at high HS concentration, 
whereas at low HS concentration the greatest reductions were obtained for 
the combinations PHA + MH and PFA + MH (Fig. 6). In the case of A. 
cepa, the various HS tested at high concentration (500 mg L–1) behaved al-
most similarly in reducing the frequency of either MN or AAT, and were 
more efficient in reducing AAT frequency than MN frequency (Fig. 7). 

As expected, a lower number of RAT, that is, a mitodepressive ef-
fect, is observed in plant species treated with MH alone (data not shown) 
(Ferrara et al. 2001). With respect to the treatment with MH, any combina-
tion HS + MH appeared not to modify the mitotic activity (RAT number) 
of cells in V. faba, whereas it caused a slight reduction of the RAT number 
in P. sativum, and yielded contrasting results in A. cepa (data not shown) 
(Ferrara et al. 2001). 
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on the relative frequency (%) of MN (left) and AAT (right) in V. faba root tip cells 
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Fig. 6. Effect of the combinations of MH with each HS at 20 or 200 mg L–1 on the 
relative frequency (%) of MN (left) and AAT (right) in P. sativum root tip cells re-
ferred to the control (MH alone, frequency 100%). The symbols **, *, and ns re-
fer, respectively, to a difference significant at 0.01P, a difference significant at 
0.05P, and no significant difference according to the LSD test. 

ferred to the control (MH alone, frequency 100%). The symbols ** and ns refer, 
respectively, to a difference significant at 0.01P and no significant difference ac-
cording to the LSD test. 
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Fig. 7. Effect of the combinations of MH with each HS at 50 or 500 mg L–1 on the 
relative frequency (%) of MN (left) and AAT (right) in A. cepa root tip cells re-
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Only A. cepa and V. faba showed the presence of PC and HC in 
COL-treated root tip cells (negative control) (Fig. 8), whereas cells grown 
in the positive control (H2O) did not show any PC (data not shown). With 
respect to the COL-alone treatment, the combinations HS + COL appar-
ently produced anticlastogenic effects less pronounced than those of HS + 
MH combinations described above. In particular, only the combinations of 
COL with LHA, PHA and PFA at lower concentration produced a statisti-
cally significant reduction of PC frequencies in cells of A. cepa (Fig. 9). 
Further, the number of HC in root tip cells of A. cepa and V. faba treated 
with COL (negative control) was much higher than that in the positive 
control, and no significant reduction of HC frequencies was observed for 
any combination HS + COL (data not shown). 

 

 Fig. 8. Root tip cells of A. cepa treated with 100 mg L–1 COL showing the pres-
ence of polyploid cells (PC) at magnification of 400× (A) and 1000× (B). 
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Fig. 9. Effect of the combinations of COL with each HS at 50 or 500 mg L–1 on 
the relative frequency (%) of PC in A. cepa root tip cells referred to the control 
(COL alone, frequency 100%). The symbols **, *, and ns refer, respectively, to a 
difference significant at 0.01P, a difference significant at 0.05P, and nonsignifi-
cant difference, according to LSD test. 

3.2 Antitoxic Action 

In Fig. 10 the effects are shown of samples SHHA, PFA, PHA, LHA, SFA 
and SHA at concentrations of 20 and 200 mg L–1, either alone or in combi-
nation with 10 mg L–1 of MH, on the length and dry weight of the primary 
root of 5-days grown seedlings of V. faba. With respect to the positive con-
trol (C), only samples PFA, PHA and LHA used alone at both concentra-
tions were able to increase significantly the primary-root elongation of V. 
faba seedlings, whereas the effect on primary-root dry weight was gener-
ally much smaller. The maximum increase of root length and dry weight 
(~150% and 100% of the control treatment, respectively) was observed in 
the treatment with PFA at 20 mg L–1. These results confirm previous find-
ings by other authors about stimulation of primary-root growth by HS of 
different origin and nature (Chen and Aviad 1990; Nardi et al. 2002). 
Small, nonsignificant variations of primary-root length and dry weight 
were observed with the other HS samples. 

Besides clastogenic effects, MH also produced phytotoxic effects 
on V. faba seedlings by reducing root length and dry weight, respectively 
to 70 and 62%, with respect to the positive control (H2O) treatment. How-
ever, the combinations of MH with PFA, PHA and LHA at either concen-
tration, not only suppressed the toxic effect of MH, but also stimulated 
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primary-root growth (Fig. 10). The largest effect was measured for the 
combination LHA + MH, with about 140 and 100% increase of, respec-
tively, primary-root length and dry weight, with respect to the MH-alone 
treatment. 

 

-40

-20

0

20

40

60

80

100

120

140

160

C SHHA PFA PHA LHA SFA SHA MH SHHA PFA PHA LHA SFA SHA

20 mg/L 200 mg/L
+ MH

Length
%variation

 
 

-60

-40

-20

0

20

40

60

80

100

120

C SHHA PFA PHA LHA SFA SHA MH SHHA PFA PHA LHA SFA SHA

20 mg/L 200 mg/L
+ MH

Dry weight%variation

 
Fig. 10. Effects of different HS samples at 20 and 200 mg L–1, used either alone or 
in combination with MH at 10 mg L–1, on the length and dry weight of primary 
root of V. faba seedlings. Data of HS and HS + MH treatments are expressed as 
the percentage of the variation observed with respect to the H2O treatment (C) and 
to the MH treatment, respectively. 

In Fig. 11 the effects are shown of ASHA at concentrations of 10 
or 100 mg L–1, alone and in combination with ALA at concentrations of 1 
and 10 mg L–1, on the length and dry weight of primary root and shoot of 
14-days grown seedlings of T. turgidum. The presence in the growth me-
dium of ASHA alone at both concentrations produced a significant in-
crease of primary-root and shoot lengths and shoot dry weight, with re-
spect to the positive control (H2O). The greatest effect, with respect to the 

    E. Loffredo et al. 296



 

control, was exhibited on shoot length, with increases of 70% (at low con-
centration) and 80% (at high concentration), and shoot dry weight. 

The herbicide ALA at both concentrations depressed markedly 
seedling growth of T. turgidum by reducing root and shoot length and 
weight, and produced evident phytotoxic symptoms, such as leaf chlorosis 
and altered root morphology. In particular, with respect to the control 
treatment (H2O), ALA at 1 and 10 mg L–1 reduced root length, respectively 
to 88 and 17%, shoot length to 72 and 40%, root dry weight to 83 and 
18%, and shoot dry weight to 86 and 46%. 
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Fig. 11. Effects of ASHA at 10 or 100 mg L–1, alone and in combination with 1 or 
10 mg L–1 ALA, on the length and dry weigth of primary root and shoot of T. tur-
gidum seedlings. Data of ASHA and ASHA + ALA treatments are expressed as 
the percentage of the variation observed with respect to the control (H2O 
treatment) and to the ALA treatments, respectively. 
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The presence of ASHA in the growth medium, especially at higher 
concentration, apparently attenuated the phytoxicity induced by ALA on T. 
turgidum seedlings (Fig. 11). In particular, with respect to the ALA alone 
treatment, the combination of ALA at 1 mg L–1 with ASHA at 100 mg L–1 
produced a significantly enhanced growth of shoots and a slightly reduced 
or increased primary-root elongation and dry weight, respectively. An op-
posite effect was measured in the treatments ASHA + ALA at 10 mg L–1, in 
which primary-root length and dry weight increased very significantly, 
and shoot length and dry weight only slightly, with respect to the ALA 
alone treatment. The effects were generally more pronounced at high con-
centration of ASHA. In a previous study on tomato seedlings treated with 
ALA and other herbicides, a marked attenuation of the toxic symptoms 
was found when soil HAs were added to the herbicide in the growth me-
dium (Senesi et al. 1990). 

4 Summary and Conclusions 

Several plant species were investigated preliminarly for their response to a 
number of clastogenic and phytotoxic compounds, but only four of them, 
V. faba, A. cepa, P. sativum and T. turgidum, responded positively to the 
study of genetic anomalies and toxicity exerted by the mutagens MH and 
COL, and measured as MN and AAT frequencies. When tested alone, a 
number of HS samples of different origin and nature showed no statisti-
cally different variations of MN and AAT frequencies with respect to those 
of the positive control (H2O), thus HS were assumed not to exert by them-
selves any significant clastogenic activity on the four plants investigated. 

More important, the HS samples studied appeared to exert an anti-
clastogenic action (i.e., a decrease of MN and AAT frequencies with re-
spect to MH or COL alone) in plant seedlings studied, at an extent that var-
ied as a function of their origin, nature and concentration, and the plant 
species and the mutagen used. The highest anticlastogenic effect was ob-
tained for HS of aquatic, peat and leonardite sources in V. faba and A. cepa 
treated with the mutagen MH. In general, HAs and FAs exhibited a similar 
anticlastogenic behavior. 

Besides an anticlastogenic activity, some HS appear to possess 
also an antitoxic activity, i.e., they were able not only to suppress plant 
growth depression caused by MH and ALA, but also stimulate growth. 
Peat, leonardite and alluvial soil HS yielded the best results also for the 
antitoxic activity. 
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Attempts made to possibly relate the extent of anticlastogenic 
and/or antitoxic activities of HS studied to their main compositional, struc-
tural, chemical and physico-chemical properties, including carboxyl and 
phenolic group contents, aromaticity, aliphaticity, organic free radical 
concentration, and others, have been mostly unsuccessful. However, the 
greater bioactivity of PHA and PFA, with respect to other HS, can tentatively 
be attributed to their greater carboxyl group content and aromaticity 
(Ferrara et al. 2004). In conclusion, the mechanism(s) of action of HS as 
anticlastogens and antitoxic is far to be understood in detail, although it 
can be hypothesized that the mutagen molecules can be adsorbed and/or 
somehow inactivated by interaction with some reactive groups of HS, thus 
resulting in a decreased availability for root adsorption.  

Because of these important properties, a future application of HS 
can be expected as protecting agents for the prevention or at least limitation 
of genetic damages that may be caused by genotoxic environmental 
pollutants in plants, and also in microorganisms, animals, and even humans. 
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1 Heavy Metal Pollution 

Heavy metal pollution of soils is one of the most serious problems of pre-
sent day agriculture which negatively affects both crop yields and quality. 
Heavy metal pollution results by the disposal of concentrated metal wastes. 
First observations of the effects of heavy metals on soil microbial proc-
esses were reported by Lipman and Burgess in 1914. But only when the 
large adverse effects of emissions of heavy metals from smelters on sur-
rounding ecosystems were observed in the 1960–70s, then it was realized 
that how severely soil microorganisms and soil microbial processes can 
become disrupted by elevated metal concentrations. Extreme metal con-
tamination in the vicinity of smelters caused clearly visible effects such as 
accumulation of deep layers of organic matter on the soil surface through 
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inhibition of the activity of soil microorganisms and soil fauna (Freedman 
and Hutchinson 1980). When measures to limit the metal loading rates of 
soils due to the use of sewage sludge in agriculture were first introduced in 
many European countries during the 1970s, these limits were focused on 
protecting against negative effects on crop plants, on animals grazing on 
land to which sewage sludge had been applied and to protect man from 
metal exposure through the food chain. It was not until 20 years later that 
the effects of elevated heavy metal concentrations on soil microorganisms 
were taken into consideration in the drafting of legislation to regulate the 
agricultural use of sewage sludge (Witter 1992). EU mandatory limits were 
also established to prevent the build up of metal concentrations in agricul-
tural soils. Several heavy metals are presently emitted in great quantities as 
a result of human activities (Table 1).  

2 Soil Microbial Communities 

Microbial communities in soil are extremely diverse, with estimates of as 

on ecological systems, experimental evidence to demonstrate such a link is 
scarce. Microbial biomass which represents the living component of the 
organic matter of soil usually makes up less than 5% of soil organic matter 
(Dalal 1998), but it carries out many critical functions in the soil ecosys-
tem. Microbial biomass is both a source and sink for nutrients in the soil. It 
participates in the C, N, P and S transformations, and plays an active role 
in the degradation of xenobiotic organic compounds. It also helps in the 
mobilization and immobilization of heavy metals and participates in the 
formation of soil structure, etc. (Nannipieri et al. 2002). As soil microor-
ganisms play a vital role in maintaining soil productivity, thus, any thing 
that disrupts these microorganisms and their functions in soil could be ex-
pected to affect the long term soil productivity and sustainability and even 
the ecosystem stability.  
 
 
 

many as 13,000 species of bacteria present in per gram of soil (Torsvic  
et al. 1994). Although diversity has been assumed to confer greater stability 
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Table 1. Concentration of total (T) and available (A) Cu, Zn and Cd in soils sam-
pled at various distances from the copper and zinc smelter in China (from Li et al. 
2006) 

Sample 
no 

Distance 
(km) 

T-Cu 
(mg kg–1) 

A-Cu 
(mg kg–1) 

T-Zn 
(mg kg–1) 

A-Zn 
(mg kg–1) 

T-Cd 
(mg kg–1) 

A-Cd 
(mg kg–1) 

1 0.01 4895 1340 1133 392 28.8 7.3 

2 0.20 1084 434 1037 186 34.0 7.4 

3 0.60 751 366 881 106 24.5 7.1 

4 0.80 473 261 848 121 22.2 5.8 

5 1.00 464 254 691 107 22.4 4.1 

6 1.20 416 95 717 138 20.4 2.5 

7 5.00 46 6 96 8 6.9 Trace 

3 Mechanisms of Heavy Metal Toxicity 

Heavy metals are toxic because of their ionic properties. They bind to 
many cellular ligands and displace native essential metals from their nor-
mal binding sites (Wittekind et al. 1996). For example, arsenate can replace 
phosphate in the cell. Metals also disrupt protein by binding to sulfhydryl 
groups and nucleic acids by binding to phosphate or hydroxyl groups. As a 
result, protein and DNA conformation are changed and their function is 
disrupted (Bruce et al. 2003). For example, cadmium competes with cellu-
lar zinc and nonspecifically binds to DNA, inducing single-strand breaks 
(Alloway 1995). Metals may also affect oxidative phosphorylation and 
membrane permeability, as seen with vanadate and mercury (Muller et al. 
2001). Microorganisms generally use specific transport pathways to bring 
essential metals across the cell membrane into the cytoplasm. Toxic metals 
can also cross membranes via diffusion or via pathways designed for other 
metals (Konopka et al. 1999). For instance, Cd2+ transport occurs via the 
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activities proceed through enzymatic processes. Heavy metals have also 
adverse effects on enzyme activities (Fig. 1). 

4 Heavy Metal-Microbe Interactions and Microbial 
Response Assessment 

The associated heavy metal can affect the bioavailability of the metal in 
question by additive, synergistic, or antagonistic effects. These interactions 
can be positive, negative, or nonexistent (Table 2). However, the gross mi-
crobial biomass and activity measurements seldom indicated whether the 
observed effects were due to changes in species composition or to reduced 
physiological capacities of the microbial community (Frostegard et al. 
1996; Knight et al. 1997). Studies, using the plate count techniques, have 
demonstrated a shift in the composition of fungal species towards a more 
metal-tolerant community in the metal-contaminated soils (Yamamoto et 
al. 1985; Ueda et al. 1988). Usually a decrease in the commonly isolated 
genera as Penicillium oidiodendron and Mortierella spp. were observed in 
the metal polluted soils by Nordgren et al. (1983). Others, such as Geomy-
ces and Paecilomyces, increased in abundance towards the metal source. 
Penicillium spp. were mostly dominant in soils polluted by copper mine 
drainage (Yamamoto et al. 1985).  

Like fungi, soil bacteria also vary in their sensitivity to the metal 
pollution. There have been reports of effects on the bacterial community 
composition, generally showing an increase in gram-negative bacteria in 
metal contaminated soils (Zelles et al. 1994). An exception to this has been 
reported by Ross et al. (1981), who observed that Gram- negative bacteria 
were slightly more sensitive to Cr than Gram- positive ones. Since bacteria 
were seldom identified up to species level, conclusions on the effects of 
metals on bacterial species are hard to be drawn (Frostegard et al. 1996). 
Generally, the degree of tolerance of microorganisms to metal pollutants 

Mn2+ active transport system in Staphylococcus aureus. These metal-
microbe interactions result in decrease microbial growth, abnormal mor-
phological changes, and inhibition of biochemical processes in individual 
(Akmal et al. 2005a,b). The toxic effects of metals can be seen on a commu-
nity level as well. In response to metal toxicity, overall community num-
bers and diversity decrease. Soil is a living system where all biochemical 
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the dominance of particularly competitive species, whereas moderate 
stresses may decrease the likelihood of competitive exclusion.  

Fewer studies have attempted to examine more subtle effects of 
heavy metal pollution on the structure of microbial communities or on the 
genetic diversity of particular groups of organisms. Most of the studies 
used a physiological approach in which the ability of the bacterial micro-
bial community to utilize a variety of substrates was tested to compare the 
relative activities of different groups of microorganisms and this ability 
has been related to metal tolerance (Reber 1992; Doelman et al. 1994). 
These studies have served to highlight the subtle effects of heavy metals 
on the soil microbial community (Fig. 2). Evidence from the field experi-
ments suggests that under long-term metal stress a change in the genetic 
structure of the soil microbial community is produced (Amann et al. 1996). 
A decrease in the total soil microbial biomass under chronic metal stress 
has been observed in many field experiments, but is likely to be preceded 
by changes in community structure (Kozdroj and van Elsas 2000). A de-
creased size of the microbial biomass could at least partially be explained 
by physiological causes such as a decrease in the microbial substrate utili-
zation efficiency (Fig. 3) and an increased maintenance energy require-

varies in the order: fungi > bacteria > actinomycetes (Frostegard et al. 
1993). A decrease in bacterial number within 24 hour of incubation in a 
Zn-spiked soil was observed by Ohya et al. (1985). In contrast, Frostegard 
et al. (1996) reported an increase in the overall fungal populations in the 
Cr or Zn contaminated soil. Therefore, metal pollution of soils often results 
in an increase in the fungal to bacterial ratio in soils (Hattori 1992). Ge-
netic diversity is always present within species and may be crucial in de-
termining the response of a population to changing conditions (Young 
1994). Highly stable, uniform environments with abundant resources allow 

ment under heavy metal pollution. A decrease in the number of substrates 
which can be utilized and thus a reduction in the efficient exploitation 
of all ecological niches may also explain the decrease in the size of the 
biomass. 
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 Fig. 1. Dynamics of urease, acid phosphatase and dehydrogenase activity in soil 
under Cd pollution (Soil urease activity is expressed as mg NH3-N g 1 dry soil 24 
h 1, Soil phosphatase activity is expressed as the mg phenol produced g 1 dry soil 
24 h 1, Soil dehydrogenase activity is expressed as mg TPF g 1 dry soil 24 h 1, 
from Akmal et al. 2005b). 
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Fig. 2. Effect of Pb (a) and Cd (b) on the dynamics of soil microbial biomass car-
bon (Cmic) (from Akmal et al. 2005a). 
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Fig. 3. Effect of Pb (a) and Cd (b) on substrate utilization efficiency of soil mi-
crobial communities as indicated by average well color development (AWCD) at 
590 nm (from Akmal et al. 2005a). 
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Table 2. Effect of Pb and Cd interaction on soil microbial biomass carbon (mg kg–1) 
(DAA represents days after heavy metal addition; different letters within column 

Pb (mg kg–1) Cd (mg kg–1) 15 DAA 30 DAA 45 DAA 60 DAA 

0 0 275.7 a 270.3 a 260.3 a 250.7 a 

0 20 264.3 abc 253.3 bc 254.0 a 250.3 a 

0 60 236.7 e 218.7 ef 221.0 bc 212.0 b 

0 100 189.0 h 176.7 gh 172.0 ef 154.3 e 

200 0 267.3 ab 258.3 ab 258.7 a 253.7 a 

200 20 261.0 abc 246.7 bc 224.3 b 215.3 b 

200 60 249.3 cde 214.3 f 208.0 c 180.7 c 

200 100 219.3 f 190.7 g 180.7 de 161.3 de 

600 0 255.0 bcd 241.0 cd 235.0 b 224.7 b 

600 20 260.7 abc 231.0 de 220.7 bc 214.3 b 

600 60 264.3 abc 223.0 ef 223.7 b 208.7 b 

600 100 240.7 de 173.7 h 164.3 f 148.0 e 

1000 0 205.3 fg 189.0 g 183.3 de 175.7 cd 

1000 20 236.0 e 188.7 g 191.3 d 181.7 c 

1000 60 194.3 gh 144.0 i 138.0 g 121.7 f 

1000 100 179.7 h 130.7 i 119.7 h 93.0 g 
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5 Methodological Limitations 

Many studies have used soil biochemical properties as indicators of soil 
quality and risk assessment under heavy metal pollution, but there is still 
no consensus as to how they should be used. The major problems posed by 
the use of biochemical properties as soil quality indicators include the lack 
of reference values, the contradictory behavior shown by these properties 
when a soil is degraded, and the regional variations in expression levels. 
Most of these problems are derived from the scarce information available 
on the biochemical properties of soil. For this reason, obtaining soil quality 
indicators by general use of soil biochemical properties required a coordi-
nated effort from the international scientific community to standardize the 
analytical methods and to compile databases of biochemical properties 
from soils under diverse pedo-climatic conditions and with different uses 
and management. Differences in sample collection, storage, pre-treatment, 
protocols for determining enzymatic activities (in which temperature, sub-
strate concentration, incubation time, etc. are crucial) make it practically 
impossible to compare data obtained from different laboratories. More-
over, we should take into account the high degree of variability between 
biochemical properties, both seasonal and edaphic factors, as well as the 
lack of reference values or broad databases for high-quality soils that could 
be used to make comparisons. All this leads to the often contradictory con-
clusions reached by different researchers, when describing the effects of a 
contaminant on the soil quality. These methodological problems, along 
with the inherent complexities of a dynamic soil system mean that with the 
knowledge currently available, no estimation of soil quality, using simple 
indices or ratios, can be considered reliable. As Sojka and Upchurch 
(1999) pointed out, the use of one or two biochemical properties is not suf-
ficient to demonstrate the complexity of the functioning of the soil system. 
Efforts in the use of biochemical properties as indicators of soil quality 
should be focused on the search for complex expressions that are capable 
of describing the complexity of the soil much more accurately. It is obvi-
ous that the scientific community should make greater efforts to under-
stand the behavior of a broad group of soil properties and how they relate 
to each other and their role in the functioning both uncontaminated and 
contaminated soils.  
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6 Future Work 

As many methods are currently used to monitor changes in microbial com-
munities, there has been little work to address how each of these measures 
relates to one another. Unless such work is undertaken, it is unlikely that any 
method will be considered a reliable indicator of microbial community 
status. Confirmation of their applicability requires that each one should give 
comparable results, as a collection of methods that produce different results 
will not engender confidence in their use. Measurements of dehydrogenase 
activity are made as this approach has been shown to be applicable to many 
soil types and can be linked to respiration and biomass (Kelly and Tate 
 

 

 

 

 

 

Fig. 4. DGGE profiles of amplified 16S rDNA fragments from soil with different 
levels of Cd pollution. Lane; 1–2 (control), 3–4 (20 mg kg–1 Cd), 5–6 (40 mg kg–1 
Cd), 7–8 (60 mg kg–1 Cd), 9–10 (80 mg kg–1 Cd), and 11–12 (100 mg kg–1 Cd). 
Increasing denaturant from top (40%) to the bottom (65%) (from Akmal et al. 
2005b). 

40 %

65 % 

1998). Recent advances in molecular fingerprinting methods using signature 
biomarkers such as lipids and environmental nucleic acids provide a quali-
tative and quantitative measure of microbial diversity and community 
composition in undisturbed and polluted soils. The use of PCR-DGGE to 
determine the effect of Cd on species richness is depicted in Fig. 4. Phos-
pholipids fatty acid (PLFA) analysis are also being performed on direct ex-
tracts from a soil detected shifts in microbial community structure depend-
ing on heavy metal concentrations, pH, moisture, organic matter content 
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and soil type (Baath et al. 1998; Pennanen et al. 1998). One of the prob-
lems of detecting metal toxicity to soil microorganisms and microbial 
processes is that the deleterious effects of heavy metal on species which 
perform a particular function could easily be overlooked if one species can 
substitute for the function performed by another. So, these methods should 
be used in combination with one another for comparison of microbial 
communities.  

Most of the research work conducted in the past focused on long-
term detrimental effects of metals added through sewage sludges or saw 
dust (Chander and Brookes 1993). At long-term field sites, soil microbial 
communities have had time to adapt to the stress presented by the elevated 
metal concentrations (Kozdroj and van Elsas 2000). Although comparison 
of metal-affected soil microbial communities and non-metal affected mi-
crobial communities at these sites can provide information on the changes 
that have occurred in the communities as a result of the metal contamina-
tion, however, such studies do not provide information on the time course 
of these changes (Giller et al. 1998; Pennanen 2001). Therefore, the time 
function of microbial communities as influenced by the extent of heavy 
metal contamination should be related to soil properties which are in turn 
resulted from soil formation processes. Interestingly, in a heavy metal 
toxicological study the individual microbial populations may be metal re-
sistant, so how do microbial populations interact with each other when 
metals are present? Are there symbiotic relationships between metal resis-
tant and metal sensitive populations such that the metal sensitive organism 
receives protection from metal toxicity while providing the metal resistant 
organism with some essential nutrient or carbon source? To answer such 
questions, we need future research. Attention should be paid to the 
rhizosphere under different major pedogenic processes. A number of soil 
microbiological properties, notably microbial biomass, basal respiration, 
enzymes activity and physiological profiling have been used as possible 
indicators of soil environmental quality, and employed in the national and 
international monitoring programs. The advances in molecular biological 
techniques are also being applied to soil ecosystem, which enable the re-
searchers to study microbial diversity at the molecular level. But each of 
the above mentioned approaches offers a focus on specific aspects of soil 
microbiological characteristics and can give an independent analysis or 
changes in soil microbial community structures and functions as a result of 
heavy metal pollution. How to correlate and compare these approaches to 
obtain the standard reference value merits close attention for years to come.  
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1  Introduction  

When soil microbes function well, the soil may support plants and other 
lives in the ecosystem (Beare et al. 1995). Soil bacteria, as a part of the soil 
microbial community, may contribute to plant growth by mineral solubili-
zation (Derylo and Skorupska 1992), nitrogen fixation (Albrecht et al. 
1981), producing plant growth hormones (Neitko and Frankenberg 1989) 
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and supressing plant pathogens (Handman et al. 1991). If an ecosystem is 
subjected to a degrading impact, the soil bacterial community may then 
change (Frostegård et al. 1993). Deforestation caused by logging and other 
human activities is a serious environmental issue in the tropics. The land 
deprived of the original tropical forest degrades rapidly under tropical cli-
matic conditions (Eden and Parry 1996). The land degradation results in a 
hard to-rehabilitate soil conditions. In such a degraded soil, the soil bacte-
rial community profile may differ from the original one (Doi and Sakurai 
2003), often accompanied by crippled soil microbial functions (Doi 2004; 
Jha et al. 1992; Pérez-de-Mora et al. 2006). Thus, changes in soil bacterial 
community profile following the elimination of a tropical vegetative type 
warn us of ongoing degradation of the soil ecosystem.  

Methods for soil microbial community profiling have been develop-
ing (Kirk et al. 2004). Changes in soil quality can be detected by observing 
soil microbial aspects: fungal (Cuenca and Meneses 1996) and bacterial 
(Doi and Sakurai 2003) community structures, soil physiological functions 
(Biolog method, Garland and Mills 1991), and the distribution of biotic 
molecules such as respiratory quinines (Fujie et al. 1998), phospholipid 

We can obtain soil bacterial community profiles by testing soil bac-

Doyle and Stotzky 1993; Westover et al. 1997). The insight offered by 
these authors is that we would be able to obtain the soil bacterial commu-
nity profile by counting the number of soil bacterial cells resistant to each 
of multiple antibiotics. Doi (2004) tested this possibility applying the anti-
biotic resistance most probable number (MPN) method to soils sampled at 
a forest and bare ground as a result of deforestation and subsequent human 
activities. Then, the MPN method could discriminate the soils. The dis-
criminatory power was comparable (Doi 2004; Doi et al. 2004) to the 
Biolog method (Garland and Mills 1991). However, the soils profiled in 
their previous work were the extremes in the area, the most fertile forest 
soil and the most degraded bare ground soil (Doi and Sakurai 2004). 
Changes in soil microbial community profile responding any impacts are 

terial isolates’ resistance patterns to single antibiotics (Brönstad et al. 1996; 
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fatty acids (Tunlid and White 1992), and nucleic acids (Yang et al. 2001). 
Profiling soil bacterial community may unveil a unique aspect of differ-
ences among soils, because the soil bacterial community profile may re-
sponds to a particular impact in a uniquely different way from the fungal 
community profile (Wu et al. 2008) or the physico-chemical profile (Doi 
and Sakurai 2003). Soil bacterial community profiles are available with the 
Biolog method (Garland and Mills 1991), amplified ribosomal DNA re-
striction analysis fingerprinting of 16S rDNA fragments (Wu et al. 2008) 
or counting bacterial cells that utilize single carbon sources (Doi and 
Sakurai 2003). 



ofile of Soil Bacterial Community     

 

gradual, not abrupt (Frostegård et al. 1993). We were not sure how much 
the antibiotic resistance MPN method describes such gradual changes in 
soil bacterial community profile.  

Thus, in this research, we tried to describe a land degradation gradi-
ent with principal components derived from data sets on antibiotic resis-
tance profiles of soil bacterial communities over a land degradation gradi-
ent as a result of deforestation in the Sakaerat Environmental Research 
Station, Thailand. The antibiotic MPN method was applied in finding the 
impacts of land degradation on soil bacterial community profile. We tried 
to describe the land degradation based on differences among the antibi-
otic resistance profiles. We also explored relationships between soil 
physico-chemical characteristics and the changes in antibiotic resistance 
profile. The most significant soil environmental changes related to 
changes in the antibiotic resistance profile of soil bacterial community 
were then specified.  

2  Materials and Methods 

2.1 Site Description 

The Sakaerat Environmental Research Station (SERS), Wang Nam Kiao 
district, Nakhon Ratchasima province, Thailand (14°30 N, 101°55 E), was 
established in 1967. At the time of establishment, most of the area had al-
ready been disturbed by human activities (Kaeoniam et al. 1976).  

The soil is categorized as an Orthic Acrisol according to the FAO/UNESCO 
scheme (FAO/UNESCO 1979). The vegetation includes dry evergreen for-
est (DEF), dry deciduous forest (DDF) and plantation plots as the major 
vegetative types (Fig. 1). The climate is classified as Aw (Köppen 1931). 
The annual precipitation is 1,260 mm and the average temperature is 26°C. 

The DEF was primarily dominated by Hopea ferrea and Shorea spp. 
that formed the upper story 20–40 m above ground. A typical DEF fosters 
more than 1,000 trees (trunk diameter at breast height, DBH >5 cm) ha–1, 
and the total basal area at 1.3 m height exceeded 30 m2 ha–1 and the above 
ground biomass was over 200 tons ha–1 (Kanzaki et al. 1995).  

The DDF was more open in comparison with the DEF and had uni-
formly spaced trees. The upper story, 11–35 m above ground, was formed 
by canopies of Shorea obtusa, Pentamo suavis, Dipterocarpus intricatus, 
Gardenia spp. and others. In the DDF, 875 trees (DBH>5 cm) ha–1 were 
enumerated, and the total basal area at 1.3 m height was 15 m2 ha–1 and the 
above ground biomass was 73 tons ha–1 (Sahunalu and Dhanmanonda 

The area is 7,808 hectares and the altitude ranges from 250 to 762 m. 
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1995). An obvious feature of the DDF was that the ground was widely 
covered by Arundinaria pusilla or Imperata cylindrica. Human-induced 
fire occurred in the DDF and burned the grass. Sometimes, the fire was 
strong enough to burn relatively large trees as well.  

The vegetative types were distributed in a mosaic pattern in the 
northeastern part of the site. Bare ground (BG) without vegetation due to 
human activities, also scattered in the mosaic.  

 

Fig. 1. The vegetative types of the Sakaerat Environmental Research Station 
(SERS) and the sampling points. DDF and DEF indicate dry deciduous forest and 
dry evergreen forest, respectively.  

2.2 Soil Sampling 

Soils were sampled from DEF, DDF and BG. The vegetative types were 
randomly distributed, and fire was thought to encourage the continuance of 
the fire-resistant DDF in the area (Sahunalu and Dhanmanonda 1995; 
Sakurai et al. 1998; Stott 1984). Thus, the vegetative mosaic was regarded 
as a completely randomized design (Fig. 1). The replication numbers were 
7, 7 and 6 for DEF, DDF and BG, respectively. In each of the 20 grids, one 
vegetative type was represented (Fig. 1). All the sampling points were on 
slight slopes (less than 10°). 

Soils were sampled on November 4, 2002. At each sampling point, a 
10 m circle in diameter was set, and 6 soil cores were randomly taken from 
0–5.1 cm layer by a core sampler (5 cm in diameter). Each core contained 
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100 mL soil. The 6 soil cores were immediately put into a plastic bag, and 
then mixed and passed through a 2 mm sieve. 

2.3 Physico-Chemical Analyses 

Soil moisture content and bulk density were determined using oven drying 
at 105°C for 48 h. The air-dried soils were reciprocally shaken in water 
(1:5 of soil to water) at room temperature for 1 h at 120 rpm to determine 
pH and electrical conductivity (EC). Soil organic matter (OM) was deter-
mined by the loss of ignition method. Total carbon (TC) and nitrogen (TN) 
were determined using a CN analyzer. Soil particle size distribution was 
determined with a hydrometer. Exchangeable cations (Ca, K, Mg and Na) 
were extracted by 1 M ammonium acetate (pH 7.0) and determined with an 
atomic absorption spectrophotometer. Exchangeable acidity (Al and H) 
was determined with titration. Cation exchange capacity (CEC) was calcu-

Percentage of the four exchangeable cations to CEC was regarded as the 
base saturation rate. Available phosphorus was determined by the Bray II 
method. 

Values of a soil fertility index (SFI, Moran et al. 2000) or a soil 
evaluation factor (SEF, Lu et al. 2002) were calculated to quantify the in-
tensity of the land degradation. SFI showed the applicability to measuring 
soil quality and to predicting succession rate of secondary tropical forest 
(Moran et al. 2000). The following equation was used to calculate SFI val-
ues (Lu et al. 2002). 

 
Possible latent drawbacks of the SFI model were pointed out by Lu 

et al. (2002). SFI may largely depend on pH, but an extremely high pH 
value is not suitable for plant growth. Moreover, pH is not an independent 
variable, but dependent on relative proportions of Ca, Mg and exchange-
able Al in soil. Thus, they developed another index called an SEF that was 
calculated by the following equation. 

lated as sum of the four exchangeable cations and the exchangeable acidity. 

SEF = [exch K (c eq kg–1 dry soil) + exch Ca (c eq kg–1 dry soil) + 
exch Mg (c eq kg–1 dry soil) – Log (1 + exch Al (c eq kg–1 dry soil))] × OM 
(%, dry soil basis) + 5                             (2) 
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SFI = pH + OM (%, dry soil basis) + available P (mg kg–1, dry soil) + 
exch K (c eq kg–1 dry soil) + exch Ca (c eq kg–1 dry soil) + exch Mg  
(c eq kg–1 dry soil) – exch Al (c eq kg–1 dry soil)                        (1) 
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Originally, SFI was developed to measure quality of soils of cacao 
fields (Alvim and Rosand 1974). Moran et al. (2000) extended its use in 
forest soils in the humid tropics, where the climate is classified as Am or 
Af (Köppen 1931). Recently, Doi and Sakurai (2004) found the applicabil-
ity of SFI and SEF to evaluating soil quality in the SERS. 

2.4 Antibiotic Resistance MPN Method  

The most probable number (MPN) method developed by Wren and 
Venosa (1996) was used with a modification (Doi 2004). Each composite 
sample was profiled by this method with 3 replications for each sample. 
The basal medium reported by Doyle and Stotzky (1993) was slightly 
modified to 5.75 mM K2HPO4, 4.95 mM KNO3, 0.82 mM MgSO4•7H2O, 
0.90 mM CaCl2, 1.72 mM NaCl, 12.3 M FeCl3 and 5.56 mM glucose per 
liter. The pH was adjusted to 6.0. Antibacterials (Lorian 1996) were chosen 
to profile the soils based on the MPNs of the soil bacterial communities. Fi-
nal concentrations of the antibiotics were: ampicillin (2.87 mM); chloram-
phenicol (1.56 mM); dapson (2.02 mM); erythromycin (0.68 mM); 
kanamycin sulfate (34.3 M); lasalocid (0.85 mM); nafcillin (2.42 mM); 
nalidixic acid (0.43 mM); neomycin•HCl (22.0 M); novobiocin (1.89 
mM); penicillin G (3.00 mM); spectinomycin•2HCl (0.25 mM); strepto-
mycin sulfate (68.6 M); sulfamethoxazole (0.40 mM); tetracycline 
(0.23 mM); and trimethoprim (1.72 mM). Ampicillin was dissolved in 1 N 
NH3 solution and the pH was adjusted to 6.0. Chloramphenicol, dapson, 
erythromycin, lasalocid, nafcillin, nalidixic acid, novobiocin and sul-
famethoxazole were dissolved in 50% (v/v) ethanol. The other antibiotics 
were dissolved in water. The dissolved antibiotics were filter-sterilized us-
ing a cellulose acetate membrane filter (0.20 m, Toyo Roshi Kaisha, Ltd., 
Japan), then, added to the basal medium previously autoclaved and cooled 
to room temperature. Cycloheximide and 2,3,5-triphenyltetrazolium chlo-
ride (TTC) were filter sterilized and added to the antibiotic media at final 
concentrations of 0.36 and 0.20 mM, respectively. Cycloheximide was 
added as a fungicide. TTC which produces a deep red color in response to 
oxidation of the substrate was added to aid in the detection of physiologi-
cal activity of the inoculated microbial communities in the wells. Tetra-
zolium compounds are reduced by soil bacteria, but not by soil fungi (Pre-
ston-Mafham et al. 2002). Thus, the current method profiles soil bacterial 
communities. The medium including no antibiotics was also prepared as 
the control. The media were added to microtiter plates, which were steril-
ized in 70% (v/v) ethanol for 30 min in advance, at 0.15 mL per well. 
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Ten grams of the soil sample were suspended in 90 mL of sterilized 
water, reciprocally shaken at room temperature for 1 h at 120 rpm. After 
20 seconds, 40 mL of the upper part of the suspension was taken and cen-
trifuged at 1,000 g for 5 min at 25°C. We got the soil particles at this grav-
ity for the following reasons; (1) most soil bacterial cells attach soil parti-
cles firmly, and detaching soil bacteria from the soil particles is quite 
difficult (Böckelmann et al. 2003), and (2) this gravity is expected to pre-
cipitate less unknown materials than a higher gravity, then we would avoid 
complication in the microplate wells. The supernatant was discarded 
and the pellet was resuspended in 10 mL of sterilized water and diluted 
10–107-fold with sterilized water. Fifty μL of each dilution was then added 
to the microtiter plate well for MPN determination, with 5 replicate wells. 
The inoculated plates were incubated at 28°C in the dark for 14 days, then 
TTC reduction was visually observed. During incubation, the plates were 
wrapped in a plastic film to avoid desiccation. A preliminary test using the 
basal medium without antibiotics resulted in no significant increase in the 
MPN after an incubation period longer than 14 days. In the same prelimi-
nary test, the method scored a coefficient of variance (CV) of 0.31 (n=4) 
after incubation for 14 days. The accuracy was comparable to that reported 
by Wren and Venosa (1996) who observed a CV of around 0.3 (n=5) in de-
termination of MPNs on aromatic and aliphatic hydrocarbons. Another 
preliminary test was done using the basal medium containing no antibiot-
ics as the control and the antibiotic media mentioned above. Approxi-
mately 1/100–1/10 of bacterial population from a forest soil was resistant 
to the antibiotics at those concentrations and the condition mentioned 
above. The following equation gave ratio transformed values (ter Braak 
and Šmilauer 1998), and standardized the raw MPNs: 

 
Ratio transformed value for the i-th antibiotic = MPNi/ΣMPN                (3) 

 
where, MPNi is the raw MPN for the i-th antibiotic. The transformed 

values were used for statistical analyses. In this paper, we call the ratio 
transformed value the relative abundance of resistant bacterial cells to the 
antibiotic.   

2.5 Data Analyses 

One-way analysis of variance (ANOVA) to test the significant effect of the 
degrading impact on each soil characteristic was performed using the 
computer software, SPSS 10.0.5J (SPSS Japan Inc., Tokyo). The Dunnett 
T3 test was chosen as the post-hoc test. 
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Principal component analysis (PCA) of the soil physico-chemical or 
the antibiotic resistance data set was performed with the SPSS software. 
Before PCA, the row MPN values were log-ratio transformed (ter Braak 
and Šmilauer 1998): each MPN was log10 -transformed, then, divided by 
sum of the 16 log-transformed values. Simple linear regression analysis 
between scores on PCs based on the antibiotic resistance profiles and the 
soil physico-chemical characteristics was also performed using the SPSS 
software. To find the PCs that significantly explain variation of SFI or SEF 
value, multiple regression analysis between SFI or SEF values and PC 
scores was also performed using the SPSS software. The stepwise method at 
the default criteria (p=0.05 for inclusion and 0.10 for removal) was chosen.  

To find the most significant soil environmental gradients associated 
with changes in antibiotic resistance profile, redundancy analysis (RDA) 
or canonical correspondence analysis (CCA, ter Braak and Šmilauer 1998) 
and summarizing the result as an ordination diagram were performed using 
CANOCO for Windows 4.02 and CanoDraw 3.10 (Microcomputer Power, 
NY), respectively. The RDA and the CCA are multivariate statistical tech-
niques to relate species distribution patterns and environmental gradients 
in decreased dimensionality. Thus, these statistical techniques are catego-
rized as the direct gradient analysis (ter Braak and Šmilauer 1998). The 
RDA detects linear species distribution patterns against a significant envi-
ronmental gradient, while the CCA bell-shaped unimodal patterns (ter 
Braak and Šmilauer 1998). The RDA and the CCA specifies statistically 
more or less significant environmental gradients in relation to species dis-
tribution patterns. The significant environmental gradients are shown as 
vectors from the origin of the ordination diagram. Thus, significant envi-
ronmental gradients and some community variables have linear (RDA) or 
unimodal (CCA) relationships. In the same diagram, the soil samples are 
located according to their scores on the ordination axes. In this research, 
we chose a CANOCO computation method applying the log-ratio trans-
formation (ter Braak and Šmilauer 1998) as the above. The soil physico-
chemical characteristics were used as the environmental factors. To deter-
mine the significance of each soil environmental gradient, a Monte Carlo 
permutation test was performed at 199 random permutations.    
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3  Results 

3.1  Soil Physico-Chemical Characteristics and Soil 
Bacterial Most Probable Number On Glucose  

Physico-chemical characteristics of the soils were summarized in Table 1. 
The values were comparable to that described in the previous reports about 
the SERS (Doi and Sakurai 2003; Doi et al. 2004; Sakurai et al. 1998). The 
one-way ANOVA indicated that most of the soil variables significantly re-
flected the land degradation with high values of bulk density, sand content 
and exchangeable acidity, and low values of moisture content, pH, OM, 
base (K, Ca, Mg) contents, EC, CEC, base saturation rate, TN and TC con-
tents, available phosphorus and MPN on the glucose medium with no anti-
biotics. These results also told that the human activities induced several 
soil environmental gradients.  

SFI and SEF values were summarized in Table 2. The degradation 
represented as the differences in vegetative type was a significant source of 
the variation of SFI value (p=0.000) that decreased as the degradation in-
tensified. The averages for the three vegetative types were significantly 
different at p=0.05 according to the t-test. The SEF value for the DEF soil 
was also significantly decreased by the human-induced land degradation at 
p=0.000. The SEF value for the BG soil was significantly lower than that 
for the other soils, while the values for the DDF and the DEF soils did not 
differ significantly at p=0.05. It was clarified that the BG soil was the most 
intensively degraded soil. The SFI model showed differences between the 
DEF and the DDF soils more sensitively than the SEF mode. This dis-
crimination could be attributed to pH and available phosphorus included in 
the SFI model. The DDF soil was shown to be an intermediate between the 
DEF and the BG soils, considering the variation patterns for the indexes 
and the single physico-chemical characteristics (Table 1).   

PCA of the soil physico-chemical data provided Table 3. According 
to the Kaiser’s criterion (Kaiser 1960), the first to fourth PCs were signifi-
cant, and these four PCs explained 85% of the total variation. The first PC 
explained 59% of the total variation, which is comparable to the value re-
ported in a previous report about the soils in the SERS (Doi and Sakurai 
2004). For most of the characteristics, their values of eigenvectors on the 
first PC exceeded 0.8, but those for BD, sand content, exchangeable Al 
and H were negative values, lower than –0.6. As shown in a previous re-
port (Doi and Sakurai 2004), the first PC axis was thought to indicate the 
general soil fertility in the SERS. The data structure was simple, having 
only 4 significant PCs and the first PC explained more than a half of the 
total variation.          
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 3.2  Antibiotic Resistance MPN Profiles of the Soils 

Antibiotic resistance profiles of the bacterial communities reflected the ef-
fects of deforestation and the land degradation (Fig. 2). The degradation was 
significant (p=0.05) as a source of variation for the numbers of soil bacterial 
cells resistant to lasalocid, penicillin, spectinomycin and trimethoprim, and 
marginally significant (0.50 < p < 1.0) for that to Kanamycin and strepto-
mycin. Significant differences between two average values were observed 
for some antibiotics. When compared with the BG soil bacterial commu-
nity, the DEF soil bacterial community had more bacterial cells resistant to 
dapson, kanamycin, lasalocid, nafcillin, penicillin, spectinomycin, strep-
tomycin and trimethoprim.  

These values could merely relate to the glucose-oxidizer MPN val-
ues for the soils (Table 1). To investigate if the relative abundance of resis-
tant bacterial cells shows differences among the soils, the ratio-
transformation was done (Fig. 2b). The land degradation was a significant 
source of variation of the relative abundance of resistant cells to ampicillin 
and penicillin at p=0.05, and to novobiocin at p=1.0. Significant differ-
ences between the averages were recognized. The BG soil bacterial com-
munity was rich in the relative abundance of bacterial cells resistant to 
ampicillin, erythromycin and novobiocin than the DEF soil bacterial com-
munity. The DEF soil bacterial community scored higher relative abun-
dance of bacterial cells resistant to penicillin and spectinomycin, compared 
with the BG soil. Compared with the BG soil, the DDF soil had lower rela-
tive abundance of resistant bacterial cells to ampicillin and novobiocin, 
while had higher relative abundance of resistant cells to nafcillin and 
spectinomycin. DDF soil scored lower relative abundance of resistant bac-
terial cells to penicillin than DEF soil. These results showed the DEF soil 
bacterial community changed the original antibiotic resistance profile in 
the land degradation.   

3.3  PCA of the Antibiotic Resistance Profiles to Find PCs 
that Explain the Land Degradation  

Table 4 shows that seven PCs were significant according to the Kaiser’s 
criterion (Kaiser 1960). The first PC explained 21% of the total variation, 
and the significant seven PCs did 80%. Several antibiotics tended to score 
relatively large absolute values of eigenvectors on the first PC, while they 
tended to score relatively small ones on the other PCs. Ampicillin, 
chloramphenicol, erythromycin, nalidixic acid and novobiocin scored large 
negative values of eigenvectors on the first axis. These results suggest that 
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the first PC best explained the degradation reflected on the differences in 
antibiotic resistance profile. The data structure was more complicated than 
the physico-chemical one, as shown by the larger number of significant 
PCs.  

Simple linear regression analysis between PC scores for the antibi-
otic resistance data and each soil physico-chemical characteristics showed 
that the first PC had significant linear relationships with most of the phys-
ico-chemical characteristics (Table 5). The first PC had positive relation-
ships with soil moisture, pH, EC, OM, CEC and several nutrients, while 
had negative relationships with BD and exchangeable Al and H. The sixth 

and CEC. From these results, it was expected that the first PC would best 
explain the degradation gradient among the PCs.  

Multiple regression analysis between the SFI or the SEF values and 
the PC scores gave the following formulae that describe the land degrada-
tion gradient based on the antibiotic resistance profiles.  

 
SFI = 4.226 × PC1 score + 15.135 (R = 0.559, p = 0.010)              (4) 
 
SEF = 7.597 × PC1 score + 6.973 × PC 6 score + 21.511 (R = 0.722, 

p = 0.010)                              (5) 
 
These formulae indicated that the first PC axis best explained the 

land degradation, and the sixth PC was a subsidiary. The high significance 
of the regression models shows that the PCs could describe the land degra-
dation gradient. To visualize the degradation gradient based on the above 
formulae, a PC score plot was drawn (Fig. 3). Based on scores on the first 
and sixth PCs, each soil sample groups were located as a clump. The BG 
soil samples had negative scores on the first PC, while the DEF soil sam-
ples positive scores. The DDF soil samples tended to be the intermediate 
having higher relative similarity to the DEF soil than the BG soil.    

The first RDA ordination axis scored an eigenvalue of 0.493, while the 
first CCA axis 0.003. This contrast indicated that the linear model fitted 
well, but the unimodal model fitted poorly. Thus, only the RDA ordination 
diagram was shown in Fig. 4. The diagram visualizes the land degradation 
gradient. Again, the DEF and the GB soils were shown to be the extremes, 
while the DDF soil the intermediate. Relationships between the changes in 

PC had significant positive relationships with TN, exchangeable K and Mg, 

3.4  Significant Soil Environmental Factors Related  
to the Changes in Antibiotic Resistance Profile 

327 ofile of Soil Bacterial Community     13 Changes in Antibiotic Resistance Pr



    R. Doi et al.  

 

antibiotic resistance profile and the soil moisture or the exchangeable H 
gradient were found to be significant.     

4  Discussions 

The antibiotic resistance MPN method showed its applicability in describ-
ing the land degradation gradient. Soil biotic profiling may complement 
for the failure of soil physico-chemical profiling in detecting differences 
among soils (Kourtev et al. 2003). In other cases, soil physico-chemical 
profiling may find differences among soils more successfully than biotic 
profiling (Doi and Sakurai 2003). Therefore, multivariate data sets on soil 
physico-chemical and biotic characteristics do not necessarily correlate, 
indicating the multidimensionality of the variation of soil quality (van 
Straalen 2002). In this research, the most significant part of variation of 
antibiotic resistance profile correlated with the land degradation gradient 
(Formulae 4 and 5) and the soil environmental gradients (Table 5) caused 
by the land degradation. This is attributed to the BG, the DDF and the DEF 
ranked in an increasing or a decreasing order for most of the physico-
chemical characteristics (Table 1) and score on the first PC for the antibi-
otic resistance data (Fig. 3). Both the variations for physico-chemical and 
antibiotic resistance profiles showed that the DDF soil was moderately dis-
turbed (Sakurai et al. 1998), thus showed the land degradation gradient as 
the intermediate between the DEF and BG soils (Doi and Sakurai 2004).  

The first PC derived from multivariate soil profiles does not always 
explain a gradient of interest. For example, the occurrence of soybean cyst 
caused by nematodes or the number of nematode eggs significantly corre-
lated with the secondary and tertiary PCs derived from the soil chemical 
data (Francl 1993). In this research, however, the land degradation was the 
most decisive determinant of the changes in soil physico-chemical and an-
tibiotic resistance profiles (Fig. 3, Table 3). This was thought to result in 
the strong linear correlation between the first PC for the bacterial data and 
the land degradation gradient. When such a decisive determinant does not 
exist, an abiotic environmental data set may have a more complex struc-
ture. Then, the abiotic environmental changes would result in a further 
complicated biotic data structure (Oline and Grant 2002). For example, 
yield class of Sitka spruce was best explained by the fifth PC derived from 
an abiotic environmental data set when MacMillan (1991) surveyed spruce 
stands that differed in various natural conditions.  

The low eigenvalue for the CCA axis indicated few unimodal pat-
terns against the land degradation gradient for the relative abundance of 
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resistant cells to the antibiotics. Rather, the variation patterns of antibiotic 
resistance were linear (Fig. 4). We attribute these linear variation patterns 
to the relatively wide adaptation by soil bacteria to environmental changes 
(Fenchel et al. 1998), in addition to the above decisiveness of the land deg-
radation and the simplicity of the physico-chemical data set that should 
simplify the antibiotic resistance data structure (Oline and Grant 2002). 
The environmental gradients in Table 1 are distinctive, thus formed the 
distinctive land degradation gradient (Tables 2, 3). Over such distinctive 
environmental gradients, many plants (e.g. Wali 1999) and soil animals 
(e.g. Hemerik and Braussaard 2002) are expected to show unimodal distri-
bution patterns. The linearity of the variations of antibiotic resistance pat-
terns should be an important factor that gave the significant linear regres-
sion models (Formulae 4 and 5).  

We can enlist possible factors contributed to the differences among 
the antibiotic resistance profiles. First, changes in soil bacterial community 
structure would be a factor. Doi and Sakurai (2003) profiled the soils under 
the DEF, the DDF and the BG with the sole carbon source MPN method 
(Wren and Venosa 1996). The soils had different bacterial community 
structures revealed by the sole carbon source MPN method. Selective 
forces were suggested to result in the structural changes as suggested by 
the lower number of soil bacterial cells in the BG soil (Table 1). Antibiot-
ics released into soil may increase the relative abundance of resistant cells 
to the antibiotics, thus changes the original antibiotic resistance profile of 
the bacterial community (Schmitt et al. 2005). In such a case, the antibiotic 
is the causative agent that changes the original antibiotic resistance profile. 
Other selective forces, other than antibiotics’ actions, are known to change 
the antibiotic resistance profile of soil bacterial community. Heavy metal 
toxicity is relatively well known to act as such a selective force (Roane and 
Kellogg 1996). Recently, Shrivastava et al. (2004) found that Pseudomo-
nas aeruginosa isolates resistant to multiple antibiotics are rich in water 
treated with chlorine at a sub-optimal concentration. Genetic linkages were 
suggested between heavy metal resistance and antibiotic resistance (Davis 
et al. 2005). Therefore, various selective forces, involving no antibiotics, 
may alter the antibiotic resistance profile of soil bacterial community.  
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Fig. 2. Antibiotic resistance MPN profiles of the soils. The solid, open and gray 
bars indicate BG, DDF and DEF, respectively. The upper figure (a) shows the row 
MPNs and the lower figure (b) shows the ratio-transformed values. The error bar 
indicates the standard deviation (n=6, bare ground; n=7, dry deciduous forest or 
dry evergreen forest). For each antibiotic, the bars indexed with the same letter do 
not differ significantly at p=0.05, according to the Dunnett T3 t-test.   
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Fig. 3. Principal component score plots based on the antibiotic resistance profiles. 
The diamond (♦), the open square ( ) and the triangle ( ) indicate BG, DDF and 
DEF, respectively. The value in the parenthesis indicates the percentage of the 
variability explained by the principal component. 

 
The dryness or the acidity in the degraded soil was probably the se-

lective force that resulted in the changes in antibiotic resistance profile 
(Fig. 4). The decrease in soil moisture as a result of the degradation was 
thought to stress living things (Giuffre et al. 2001; Sakurai et al. 1998). In 
the SERS, soil moisture contents and numbers of viable soil bacterial cells 
were positively correlated (Doi and Sakurai 2003). In the land degradation, 
drought-susceptible soil bacteria are destroyed, while drought-tolerant bac-
teria survive (Kilbertus and Proth 1979). This selective process was sug-
gested to differentiate the forest and BG soil bacterial community struc-
tures (Doi and Sakurai 2003). Then, the structural changes are likely to 
differentiate the antibiotic resistance profiles among the soils (Lorian 
1996). In addition to the dryness, among the BG soil conditions in Table 1, 
acidity (Ramos et al. 1987) and high temperature due to the decreased 
vegetative cover and the lower moisture content (Pillai and Pepper 1991) 
were suggested to alter the antibiotic resistance profile of soil bacterial 
community as selective forces. 
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As the second possible factor, acquisition or loss of antibiotic resis-
tance by bacterial cells could be important. The antibiotic resistance of 
bacterial cell may be genotypically (Pote et al. 2003) or phenotypically 
(McInroy et al. 1996) modified when the cell is subjected to environmental 
changes. Such changes in the bacterial cells were possibly involved in the 
land degradation. Releasing antibiotics into an environment often results in 
the resistance of bacterial cells to the antibiotics, involving genetic changes 
(Smalla et al. 2000). In soils, antibiotic resistance genes transfer among 
bacterial cells, even between different genera (Quentmeier and Friedrich 
1994). Selfish DNA was pointed out to take such a role under some selec-
tive forces (Rensing et al. 2002). Moreover, such gene transfer is possible 
between bacterial cells and higher plants (Kay et al. 2002). Through these 
channels, soil bacteria may get antibiotic resistance genes.  

Table 2. Principal components, the eigenvalues, the ratios of explaining variation 
and the eigenvectors based on the soil physico-chemical characteristics  

Principal components (PCs)  
PC 1 PC 2 PC 3 PC 4 PC 5 

Eigenvalue 11.8 2.58 1.54 1.09 0.92 
Variation explained (%) 58.7 12.9 7.7 5.4 4.6 
Cumulative variation explained (%) 58.7 71.6 79.3 84.7 89.3       
Moisture content 0.91 –0.01 0.13 –0.09 0.14 
Bulk density  –0.87 –0.14 –0.10 0.08 –0.31 
Clay 0.48 –0.75 –0.39 0.05 0.13 
Silt  0.15 0.65 0.54 –0.25 –0.28 
Sand  –0.67 0.59 0.19 0.07 –0.01 
pH 0.86 –0.34 0.17 –0.08 –0.06 
Electrical conductivity 0.86 0.19 –0.16 0.19 0.07 
Organic matter 0.87 0.22 0.15 –0.02 0.34 
Total N  0.90 0.24 –0.08 0.23 0.07 
Total C  0.90 0.09 0.19 0.21 0.19 
C/N 0.26 –0.47 0.74 –0.07 0.24 
Bray II P  0.64 0.56 –0.18 –0.19 0.09 
Exch K  0.90 0.16 –0.06 0.17 –0.09 
Exch Ca  0.93 –0.01 –0.03 0.15 0.05 
Exch Mg  0.82 0.12 –0.11 0.14 –0.42 
Exch Na  0.02 0.40 –0.50 –0.56 0.31 
CEC  0.83 0.27 –0.13 0.35 –0.13 
Base saturation  0.87 –0.23 0.08 –0.30 –0.23 
Exch Al  –0.81 0.18 0.16 0.33 0.31 
Exch H  –0.83 0.23 –0.08 0.34 0.14 
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On the other hand, soil bacterial cells may lose their antibiotic resis-
tance. Such loss may occur depending on soil environmental conditions, 
while independent of genetic changes (Bengtsson et al. 2004). In other 
cases, antibiotic resistance genes are lost from a soil bacterial community 

Some antibiotic resistance genes are maintained only if the cells are con-
tinuously exposed to the antibiotics. In each soil, these mechanisms are 
likely to maintain the antibiotic resistance profile of its bacterial commu-
nity. For example, Pseudomonas fluorescens produces antibiotics in soil 
(Cronin et al. 1997), and inoculating this bacterium into soil changes the 

Once a soil ecosystem is destructed, it takes at least some ten years 
to restore the original condition (Chazdon 2003). Describing the degrada-
tion gradient with the sole carbon source MPN method, Doi and Sakurai 
(2003) found a loss of the original diversity of the DEF soil bacterial 
community. This loss seemed to be responsible for losses of the original 
soil bacterial functions (Doi 2004), seemingly due to loss of the original 
functional redundancy (Lawton 1994) supported by the high structural di-
versity of the DEF soil bacterial community. This structurally and func-
tionally crippled situation can be a challenge to rehabilitation of the de 

Table 3. Soil fertility index (SFI) or soil evaluation factor (SEF) reflecting the land 
degradation  

Indexes Vegetative type SFI  SEF 
Bare ground 6.3c† ±3.6 7.5b ±2.3 
Dry deciduous forest 14.8b ±2.9 20.7a ±9.7 
Dry evergreen forest 23.0a ±3.6 34.4a ±12.5 
   

ANOVA* 0.000 0.000 
† The values in the column followed by the same letter do not differ significantly 
according to the Dunnett T3 t-test (p=0.05).  
* Significance of vegetative type as the source of variation. 

because they reduce the growth rate of the host bacteria (Rahal et al. 1998). 
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soil microbial community structure (Johansen et al. 2005). Each soil eco-
system has antibiotic producers (Gottlieb 1976; Stevenson 1954) that asso-
ciate with the soil’s unique ecological structure (Beare et al. 1995). Table 1 
shows the destruction of the original DEF soil ecosystem in the land deg-
radation. It is likely that the land degradation destructed the original soil 
ecological structure that maintained the antibiotic resistance profile of the 
DEF soil. These possibly involved mechanisms are thought to be ecologi-
cally important.  
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graded soil in the area. In this research, the antibiotic resistance MPN 
method could find the differences among the soils that differ in the degree 
of degradation, though the fundamental causative agent of the land degra-
dation was not any antibiotics. This indicates the possibility that the 
method may find changes in soil quality due to various causes. Thus, it 
would be worth testing this method in describing various soil-related gra-
dients as results of various causes.  

 

 
Fig. 4. Redundancy analysis ordination diagram based on the antibiotic resistance 
MPN data. The diamond (♦), the open square ( ) and the triangle ( ) indicate BG, 
DDF and DEF, respectively. The value in the parentheses indicates eigenvalue for 
the axis. The solid and broken arrows indicate significant environmental gradients 
at p=0.05 and 0.10, respectively. 
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We got the formulae for describing the land degradation gradient in 
the SERS. This empirical approach would contribute to conservation and 
rehabilitation of lands by providing formulae based on profiles of soil bac-
terial communities over gradients. At a site over any gradients, such a for-
mula would predict a result on which we do not have data, if the dependent 
variable is a gradient of interest such as growth of any introduced plant 
species (MacMillan 1991). As Table 5 and formulae 4 and 5 show, a bacte-
rial data set and soil physico-chemical characteristics would tell us the best 
soil condition for a particular goal (e.g. suppression of plant disease, 
Francl 1993). Soil bacterial community profiling is less labor-intensive 
than surveying plant community. The antibiotic resistance MPN method is 
simple and cost-effective. Once we obtain physico-chemical and antibiotic 
resistance data sets over a gradient of interest, depending on availability, 

 
Table 5. Linear regression between principal component scores based on the 

Principal components (PCs) derived from the MPN data Soil physico-chemical 
characteristic PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 
Moisture content ∗∗∗        
Bulk density  ∗∗∗        
Clay       ∗  
Silt          
Sand    ∗∗      
pH ∗∗        
Electrical conductivity ∗∗∗        
Organic matter ∗∗∗        
Total N  ∗∗∗     ∗∗   
Total C  ∗∗∗        
C/N    ∗     
Bray II P          
Exch K  ∗∗     ∗   
Exch Ca  ∗∗        
Exch Mg  ∗∗     ∗   
Exch Na        ∗∗  
CEC  ∗     ∗∗   
Base saturation  ∗∗∗        
Exch Al  ∗∗        
Exch H  ∗∗∗        

∗∗∗, ∗∗ and ∗ indicate the significant linear relationship at p = 0.01, 0.05 and 
indicate negative relationships.  
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antibiotic resistance MPNs and soil physico-chemical characteristics 

0.10, respectively. The underlined asterisks 



 

we can choose measuring either set of physico-chemical characteristics or 
antibiotic resistance MPNs in profiling another soil over the gradient for the 
purpose mentioned above. We can not but depend on an empirical strategy 
to obtain such a mathematical model (Yemefack et al. 2006). Depending on 
compared soils, a multivariate profiling method, take the Biolog method for 
example, works more (Widmer et al. 2001) or less (Waldrop et al. 2000) 
successfully than other profiling methods. Therefore, the antibiotic resis-
tance MPN method must be tested in more comparative surveys before con-
cluding the general applicability. As mentioned above, various soil envi-
ronmental changes are thought to be reflected as changes in the antibiotic 
resistance profile of soil bacterial community. As we mentioned above, the 
change in antibiotic resistance profile of soil bacterial community is a unique 
aspect among aspects of soil quality change. It is thought to be worth con-
sidering the antibiotic resistance MPN method as a tool for monitoring soil 
quality changes aiming at soil conservation and rehabilitation.  
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