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Foreword

Characterising spatial and temporal variation in environmental properties,
generating maps from sparse samples, and quantifying uncertainties in the maps, are
key concerns across the environmental sciences. The body of tools known as geo-
statistics offers a powerful means of addressing these and related questions. This
volume presents recent research in methodological developments in geostatistics
and in a variety of specific environmental application areas including soil science,
climatology, pollution, health, wildlife mapping, fisheries and remote sensing,
amongst others.

This book contains selected contributions from geoENV VII, the 7th Inter-
national Conference on Geostatistics for Environmental Applications, held in
Southampton, UK, in September 2008. Like previous conferences in the series,
the meeting attracted a diversity of researchers from across Europe and further
afield. A total of 82 abstracts were submitted to the conference and from these the
organisation committee selected 46 papers for oral presentation and 30 for poster
presentation.

The chapters contained in the book represent the state-of-the-art in geostatistics
for the environmental sciences. The book includes 35 chapters arranged according
to their main focus, whether methodological, or in a particular application. All of
the chapters included were accepted after review by members of the scientific com-
mittee and each chapter was also subject to checks by the editors.

The editors wish to acknowledge the reviewers and the authors of the chap-
ters that make up this book; it would not have existed without their efforts. The
editors would also like to thank the sponsors of the conference, who included
Cambridge University Press, Wiley, Taylor and Francis, the Ordnance Survey, the
GeoData Institute, University of Southampton, School of Geography, University of
Southampton and the Remote Sensing and Photogrammetry Society.

Southampton, May 2009 Peter Atkinson
Belfast Christopher Lloyd
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Xavier Sánchez-Vila, Universidad Politécnica de Catalunya, Spain
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and Eduardo Ferreira da Silva

Simulation of Continuous Variables at Meander Structures:
Application to Contaminated Sediments of a Lagoon . . . . . . . . . . . . . . . . . . . . . . . . . .161
Ana Horta, Maria Helena Caeiro, Ruben Nunes,
and Amı́lcar Soares

Joint Space–Time Geostatistical Model for Air Quality
Surveillance/Monitoring System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173
Ana Russo, Amı́lcar Soares, Maria João Pereira,
and Ricardo M. Trigo



Contents ix

Geostatistical Methods for Polluted Sites Characterization . . . . . . . . . . . . . . . . . . .187
Amı́lcar Soares

Geostatistical Mapping of Outfall Plume Dispersion Data
Gathered with an Autonomous Underwater Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . .199
Maurici Monego, Patrı́cia Ramos, and Mário V. Neves

Part VI Soils and Agriculture

Change of the A Priori Stochastic Structure in the Conditional
Simulation of Transmissivity Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211
Carlos Llopis-Albert and José Esteban Capilla Romá
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An Examination of Transformation Techniques to Investigate
and Interpret Multivariate Geochemical Data Analysis: Tellus
Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231
Jennifer McKinley and Oy Leuangthong

Shelling in the First World War Increased the Soil Heavy
Metal Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243
Meklit Tariku, Marc Van Meirvenne, and Filip Tack

A Geostatistical Analysis of Rubber Tree Growth
Characteristics and Soil Physical Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255
Sidney Rosa Vieira, Luiza Honora Pierre, Célia Regina Grego,
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Detection of Optimal Models in Parameter Space with Support
Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345
Vasily Demyanov, Alexei Pozdnoukhov, Mike Christie,
and Mikhail Kanevski

Robust Automatic Mapping Algorithms in a Network
Monitoring Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359
Ben Ingram, Dan Cornford, and Lehel Csató
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via Mangiagalli 34, 20133 I-Milano, Italy, diana.dellarciprete@unimi.it

Vasily Demyanov Institute of Petroleum Engineering, Heriot-Watt University,
Edinburgh, UK, vasily.demyanov@pet.hw.ac.uk

Ainslie Denham School of Engineering, Edith Cowan University, Perth,
Western Australia, a.denham@ecu.edu.au

Peter J. Diggle Department of Medicine, Lancaster University, Lancaster LA1
4YF, UK, p.diggle@lancaster.ac.uk
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Geostatistical Modelling of Wildlife Populations:
A Non-stationary Hierarchical Model
for Count Data

Edwige Bellier, Pascal Monestiez, and Christophe Guinet

Abstract We propose a hierarchical model coupled to geostatistics to deal with
a non-gaussian data distribution and take explicitly into account complex spatial
structures (i.e. trends, patchiness and random fluctuations). A common characteris-
tic of animal count data is a distribution that is both zero-inflated and heavy tailed.
In such cases, empirical variograms are no more robust and most structural anal-
yses result in poor and noisy estimated spatial variogram structures. Thus kriged
maps feature a broad variance of prediction. Moreover, due to the heterogeneity of
wildlife population habitats, a nonstationary model is often required. To avoid these
difficulties, we propose a hierarchical model that assumes that the count data follow
a Poisson distribution given a theoretical sighting density which is a latent variable
to be estimate. This density is modelled as the product of a positive long range trend
by a positive stationary random field, characterized by a unit mean and a variogram
function. A first estimate of the drift is used to obtain an estimate of the variogram
of residuals including a correction term for variance coming from the Poisson distri-
bution and weights due to the non-constant spatial mean. Then a kriging procedure
similar to a modified universal kriging is implemented to directly map the latent
density from raw count data. An application on fin whale data illustrates the effec-
tiveness of the method in mapping animal density in a context that is presumably
non-stationary.
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1 Introduction

Current wildlife research relies heavily on population monitoring, sometimes
performed over large areas (Pollock et al., 2002). Counts provided by field sur-
veys can be used to estimate population sizes (Kingsley and Reeves, 1998; Grigg
et al., 1999) or to characterize spatial structures in populations (Isaak and Russel,
2006). The latter has received much recent interest because animals respond to
spatial heterogeneity at different spatial scales (Kotliar and Wiens, 1990; Levin,
1992). Therefore, ecological data often include several spatial patterns, which can
be regarded as trends at broad scales, patchiness at intermediate and local scale,
and random fluctuations or noise at fine scales (Fortin and Dale, 2005). Further-
more, an additional common characteristic of ecological count data is that they
are positively skewed and contain much more zeros than would be expected in
classical data distribution (Clarke and Green, 1998; Flechter et al., 2005). The form
of the distribution is usually due to the patchy nature of the environment and/or
the inherent heterogeneity of the species distribution and to sampling coupled to
observations processes (Martin et al., 2005). However, standard spatial statistical
tools cannot easily deal with count data. When the data are non-Gaussian, hierar-
chical modelling may be a useful alternative for modelling the spatial distribution
of count data (Latimer et al., 2006; Thogmartin et al., 2004). Indeed, ecological ap-
proaches and sampling situations should naturally lead to a hierarchical construction
(Royle et al., 2005). Although most recent publications solve hierarchical models
within a Bayesian framework, hierarchical modelling is not necessarily restricted to
Bayesian statistics (Ver Hoef and Frost, 2003; Thogmartin et al., 2004; Cunningham
and Lindenmayer, 2005). In a frequentist context, Monestiez et al. (2006) proposed
a corrected variogram estimator that takes into account the variability added by the
Poisson observation process in order to produce maps of relative abundance.

This paper presents a generalization of Poisson kriging introduced in Monestiez
et al. (2006) based on a spatial hierarchical model. The model we propose has two
levels: the first level deals with the variability resulting from the heterogeneity of
the observation effort and ecological process (i.e. the variability resulting from the
sighting process and ecological process themselves), which can naturally be mod-
eled by a Poisson distribution (Monestiez et al., 2006). In the second level we take
account of the non-stationarity of the species distribution (i.e. in most situations,
populations show a trend in their spatial distribution [Fortin and Agrawal 2005]) by
decomposing the spatially non-constant mean, by multiplication of a spatial trend
by a stationary field.

Our method can be help to characterize spatial distribution and to address
wildlife population spatial distributions through mapping which could be of great
interest for management or conservation purposes. Our approach typically applies
to animal count data and especially to field transect surveys, a popular method to
count animals – including marine mammals (e.g. dugong (Pollock et al., 2006);
small cetaceans (Hammond et al., 2002); manatees (Wright et al., 2002)), seabirds
(Tasker et al., 1984; Briggs et al., 1985) and terrestrial mammals (e.g. kangaroos
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[Caughley and Grigg 1981], impala [Peel and Bothma 1995]) in which individuals
or groups of individuals (i.e. “sightings”) are recorded at discrete locations.

We provide a case study, with an application based on the spatial distribution of
fin whales in a context that is presumably non-stationary.

2 Model

2.1 Hierarchical Model for Animals Sightings

We define a spatial hierarchical model with two levels. The first one models the num-
ber of sightings Z into an 1 km-long strip by a Poisson distribution whose parameter
Y is a non stationary random field. The second level models Y as the product of a
regional drift m and a latent variable X .

For all sites s, we model the number of observed sightings Z knowing Y the
latent variable which represents the theoretical sighting density, by independent
Poisson random variables: �

Zs jYs � P�Ys

�
Ys D msXs

(1)

where Ys is the product of a deterministic drift ms by a positive stationary ran-
dom field X with unit mean, variance �2

X , and covariance function CX .s � s0/ D
CovŒXs ; Xs0 �, noted Css0 to simplify notation.

The covariance function CX .s � s0/ may be replaced by the variogram function
�X .s � s0/ D 1

2
E
��

Xs � Xs0

�2 �
.

There is no distributional hypothesis on X but the inequality X � 0.

2.2 Expectation and Variance of Zs

From Equation (1), it follows directly that:

EŒZs jXs� D Ys D ms Xs

VarŒZs jXs� D Ys D ms Xs

E
�
.Zs/2

ˇ̌
Xs

� D Ys C Y 2
s D ms Xs C m2

s X2
s

(2)

and when deconditioning:

EŒZs � D ms

VarŒZs � D m2
s �2

X C ms

(3)
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For the covariance expression, the conditional independence of observations at
different sites leads to:

E
h
Zs Zs0

ˇ̌
X
i

D Cov
�
Zs ; Zs0 jX�C EŒZs jXs� EŒZs0 jXs0�

D ıss0 msXs C ms ms0 XsXs0

(4)

where ıss0 is the Kronecker delta which is 1 if s D s0 and 0 otherwise.

2.3 Variogram Expressions

In order to characterize the relationship between the variograms of Z and X , we
develop the expressions of the two first moments of .Zs � Zs0/.

E
�
Zs � Zs0

ˇ̌
X
� D EŒZs jXs� � EŒZs0 jXs0 � D ms Xs � ms0 Xs0

E
�
Zs � Zs0

� D E
�
X
� �

ms � ms0

� D ms � ms0

(5)

The second order moment can be derived from Equations (2) and (4).

E
h�

Zs � Zs0

�2 ˇ̌
X
i

D E
h
.Zs/2

ˇ̌
Xs

i
C E

h
.Zs0/2

ˇ̌
Xs0

i
�2 E

h
Zs Zs0

ˇ̌
X
i

D �
Ys C Ys0 � 2ıss0 Ys

�C �
Ys � Ys0

�2
E
h�

Zs � Zs0

�2 i D
�
ms C ms0 � 2 ıss0 ms/

�
C E

h�
ms Xs � ms0 Xs0

�2i

When ms is assumed to be known and different everywhere (i.e. ms D ms0), we
have to develop the two first moments of

�
Zs

ms
� Zs0

ms0

�
:

E
	

Zs

ms

� Zs0

ms0

ˇ̌̌
ˇX



D 1

ms

EŒZs jXs� � 1

ms0

EŒZs0 jXs0 � D Xs � Xs0

E
	

Zs

ms

� Zs0

ms0



D 0

(6)

The expression of the non-conditional order-2 moment is derived from Equations
(2) and (4).

E

"�
Zs

ms

� Zs0

ms0

�2 ˇ̌ˇ̌X
#

D 1

m2
s

E
h
.Zs/

2
ˇ̌
Xs

i
C 1

m2
s0

E
h
.Zs0 /2

ˇ̌
Xs0

i
� 2 E

�
Zs Zs0

ˇ̌
X
�

ms ms0

D Xs

ms

C Xs0

ms0

� 2ıss0

Xs

ms

C �
Xs � Xs0

�2
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1

2
E

"�
Zs

ms

� Zs0

ms0

�2
#

D 1

2

�
ms C ms0

ms ms0

�
� ıss0

1

ms

C �X .s � s0/ (7)

Let �Z=m.s � s0/ denote the non-stationary theoretical variogram corresponding
to the random field

�
Zs=ms

�
, we get for s ¤ s0 the relationship:

�X .s � s0/ D �Z=m.s � s0/ � 1

2

�
ms C ms0

ms ms0

�
(8)

We can check for s D s0 that Equation (7) reduces to �X .0/ D �Z.0/ D 0

For s ¤ s0, we also have:

Var
	

Zs

ms

� Zs0

ms0

ˇ̌̌
ˇX



D E
"�

Zs

ms

� Zs0

ms0

�2 ˇ̌̌
ˇX
#

� E2
"

Zs

ms

� Zs0

ms0

ˇ̌̌
ˇX
#

D Xs

ms

C Xs0

ms0

C �
Xs � Xs0

�2 � �
Xs � Xs0

�2

D Xs

ms

C Xs0

ms0

E
"

Var
	

Zs

ms

� Zs0

ms0

ˇ̌̌
ˇX

#

D E
	

Xs

ms

C Xs0

ms0



D
�

ms C ms0

ms ms0

�
(9)

2.4 Estimation of �X.h/

Let Z˛ , ˛ D 1; : : : ; n be the n measurements of Z.s˛/. Because of the non-constant
mean m.s/, it is not meaningful to directly compute experimental variogram on
Z˛’s, even on the corrected values Z˛=m˛. So we propose a modified experimental
variogram for X :

��
X .h/ D 1

2 N.h/

X
˛;ˇ

 
m˛ mˇ

m˛ C mˇ

�
Z˛

m˛

� Zˇ

mˇ

�2

� 1

!
1Id˛ˇ�h (10)

where 1Id˛ˇ�h is the indicator function of pairs .s˛ ; sˇ / whose distance is close
to h, where N.h/ D P

˛;ˇ
m˛ mˇ

m˛Cmˇ
1Id˛ˇ�h is a normalizing constant. The weight

system directly derives from Equation (9) and the minus-one bias-correction term
from Equation (8).

Such estimates can show great sensitivity to rare positive data that neighbour ar-
eas with extremely low local mean. It may be necessary to increase the robustness of
such estimate by limiting minimum values of ms (positive and not too close to zero).
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A simpler estimates of �X can be proposed on subareas where the mean ms can
be assumed constant or when the empirical variogram estimate ��

Z.h/ is restricted
to pairs of sampled sites with the same mean ms:

��
X .h/ D 1

m2

h
��

Z.h/ � m
i

(11)

where m is the locally constant value of ms.

2.5 Mapping Y by Multiplicative Poisson Kriging

The spatial interpolation of Y is implemented through a Poisson Kriging (PK) at
any site so 2 D. This kriging is a linear predictor of Yo combining the observed data
Z˛ weighted by the drift terms m.s˛/ and m.so/ respectively noted m˛ and mo.

Y �
o D

nX
˛D1

�˛

mo Z˛

m˛

(12)

The unbiasedness of Y �
o leads to the usual condition on �˛’s.

nX
˛D1

�˛ D 1 (13)

The expression of the Mean Square Error of Prediction (MSEP) can also be de-
rived from the kriging estimate expression.

E
�
.Y �

o � Yo/2
� D m2

o

0
@�2

X C
nX

˛D1

�2
˛

m˛

C
nX

˛D1

nX
ˇD1

�˛�ˇ C˛ˇ � 2

nX
˛D1

�˛C˛o

1
A
(14)

By minimizing this expression (14) on �i ’s subject to the unbiasedness con-
straint, we obtain the following kriging system of (n C 1) equations where � is
the Lagrange multiplier.

8̂
ˆ̂̂<
ˆ̂̂̂
:

nX
ˇD1

�ˇ C˛ˇ C �˛

m˛

C � D C˛o for ˛ D 1; : : : ; n

nX
˛D1

�˛ D 1

(15)

The kriging system expressed with covariance is preferably used for computation
when both variogram and covariance exist. The kriging system may be expressed
from the variogram using the usual relation Css0 D �2

X � �X .s � s0/.
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The expression of the prediction variance resulting from this kriging system re-
duces after calculation to:

Var.Y �
o � Yo/ D m2

o

�
�2

X �
nX

˛D1

�˛C˛o � �
�

(16)

It can be easily shown that the kriging of Xo defined as X�
o D Pn

˛D1 �˛
Z˛

m˛
gives

the same solutions in �’s and �, so krigings of Y �
o or X�

o becomes equivalent using
the relationship Y �

o D mo X�
o .

3 Fin Whale Abundance in Pelagos Sanctuary

In the Mediterranean Sea, the fin whale (Balenoptera physalus) is the largest marine
predator commonly observed. Several hundred to several thousand individuals were
estimated to be present in the western Mediterranean Sea during summer (Forcada
et al., 1996).

The sighting database used in this study as an illustrative example merges data
from different sources, and is fully described in Monestiez et al. (2006). The fin
whale surveys mainly focused on the northwestern Mediterranean Sea. Count data
were aggregated on cells of 0.1ı of longitude by 0.1ı of latitude (approximately
90 km2) in a regular grid. For each year from 1993 to 2001, July and August data
were assembled and we computed in each cell the total number of fin whale sight-
ings and the corresponding total searching effort defined as the time (in hours) spent
searching inside the cell. So the number of sightings per unit effort or, with some
assumptions, the relative abundance can be computed.

In this study, we focused particulary on the Pelagos sanctuary (International
Cetacean Sanctuary of the Mediterranean), which was established on November
25th, 1999 by the governments of Italy, France and Monaco. The sanctuary limits
are shown in Fig. 1, with the map of searching efforts.

The objective is to map the spatial distribution of fin whales inside the Pelagos
sanctuary during the summer of 2001. Due to limitation of the available data subset,
we have to assume values for some parameters: mean boat speed is fixed to six nau-
tical knots (11.1 km/h), effective distance of detection to 750 m and mean school
size to 1.6 in order to transform hours of searching in surveyed areas and to com-
pute relative abundance estimates from raw sightings of whale schools. For sampled
cells, the searching effort was not always exactly the same, so we had to introduce
this effort as a factor to the multiplicative drift m˛ in order to normalise sighting
counts for unit effort. Except this change on m terms, previous estimate expressions
and the kriging system remains globally the same.
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Fig. 1 Map of searching efforts for year 2001 (left, the largest square symbols are for 3 h of efforts
in a pixel of 0:1ı by 0:1ı) and map of fin whale sightings in 2001 (right, number of schools ranging
for 1 to 3) that will be used in the multiplicative kriging of the relative abundance. Dashed lines
give Pelagos sanctuary limits

4 Results

We mapped the spatial distribution of whales by using multiplicative kriging in order
to take into account the spatial trend of the fin whales distribution in the northwest-
ern Mediterranean sea.

We first estimate the spatial drift by extracting a smooth long-range spatial
component by filter kriging (Wackernagel, 2003) from the 1993–2000 pooled data
(excluding the 2001 ones). The resulting map is displayed on Fig. 2 and seems rep-
resentative of the permanence of the fin whale spatial distribution over years. This
long-range component reveals the non-stationarity in fin-whale spatial distribution
and could be considered as the potential habitat of fin whales in the northwestern
Mediterranean Sea. It is modelled as a deterministic drift. Then the experimental
variogram is fitted by a spherical model (Fig. 2) and multiplicative Poisson kriging
is applied to fin whale count data.

The two maps of kriged expectations of whale sightings obtained from multi-
plicative kriging (i.e. taking account for non-stationarity) and from Poisson kriging
show some difference (Fig. 3), especially in the western area outside of the Pelagos
sanctuary and on the eastern part of the sanctuary which was not surveyed. This
observed difference seems be due to the considerations of the deterministic drift in
the multiplicative model, since this pattern shows some similarities with the map
of the potential habitat. In other respect, the two methods differ in extrapolating
context due to the deterministic drift but gives quite close result where the sighting
effort is dense enough.

Maps of standard error differ a lot more. It is clear for multiplicative kriging that
the drift had a real influence, leading to smaller errors in region of lower whale
density and potentially very large errors when extrapolating on high density areas
(western region outside Pelagos). The standard error map of Poisson ordinary krig-
ing reflects more conventionally the spatial distribution of sighting efforts with poor
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Fig. 2 Map of the drift term (left, number of whale schools per square kilometer) and the modified
experimental variogram calculated from Equation (10)

Fig. 3 Maps of kriged expectation of whale school sighting (left column, mean number of school
per square km) and associated maps of standard error (right column, same unit) obtained from
multiplicative kriging (top row) and from Poisson ordinary kriging (bottom row). Map legends are
specific to the variables (expectation or standard error) but are identical for both methods
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performance on the eastern part of the Golf of Genova. If we focus specifically on
the Pelagos sanctuary, the multiplicative approach seems a lot more efficient due to
drift information.

5 Discussion

In this study we showed that it is possible to use geostatistics in a non-stationary
context of count data and zero inflated distributions since it is specified in a hierar-
chical spatial model.

It seems also essential to take into account the non-stationarity in the proposed
multiplicative kriging because it is a reality for many animal spatial distribution.
This non-stationarity can be generally modeled from previous surveys or from
habitat proxies when available. When nothing is known, stationarity can be first
supposed and a potential drift modeled as the long range variations.

When a good knowledge of potential habitats results from previous sequential
surveys, the sampling scheme can be improved using the drift modelling. In this
study, we show that taking account of the non-stationarity had a real impact on the
map of animal spatial distribution since it reduces substantially the error on low
density areas and larger standard error values in high density area; on the contrary
the standard error map of Poisson kriging reflects more the spatial distribution of
sightings efforts.

Moreover, the advantage of developing a hierarchical model for modelling
species distribution in a frequentist context rather than in a Bayesian one is that it
avoids specifying the Y distribution unlike Diggle et al. (1998) who had to hypothe-
size a log-normal distribution for Y ; indeed, a frequentist approach does not require
any prior distribution. In addition, a diagnostic of the spatial structure of animals
can be inferred from the shape of the experimental variogram (Fig. 2), thus allowing
the choice of a suitable variogram model which is not the case with model-based
geostatistics.
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Incorporating Survey Data to Improve
Space–Time Geostatistical Analysis
of King Prawn Catch Rate

Ainslie Denham and Ute Mueller

Abstract Commercial fishing logbook data from the Shark Bay managed prawn
fishery in Western Australia provide king prawn catch rate data densely informed
and irregularly spaced in both the spatial and temporal domains. Space–time geo-
statistical analysis for the data from the 2001 to 2004 fishing seasons has shown that
short term catch rate prediction is possible with the use of the product-sum covari-
ance model and the subsequent kriging estimation process. However the operation
of closure lines within the fishery makes it difficult to capture the high catch rate be-
haviour in areas as they first open to trawling. One of these regions is the Extended
Nursery Area which usually opens in the first week of May. Analysis of the survey
trawls from seasons 2001 to 2003 in this region in March and April shows there is
a moderate positive correlation between the actual catch rate and the survey catch
rate. By using the survey catch rate data as additional data in space–time geostatisti-
cal estimation of the catch rates for May 2004, the space–time behaviour of the king
prawn catch rate data is more successfully captured.

1 Introduction

We consider king prawn logbook catch rate data from the Shark Bay Prawn
Managed Fishery in Western Australia and incorporate catch rate data from sur-
vey trawls in the preceding months to more accurately reproduce the space–time
behaviour of the prawn catch rate in the fishing region. The king prawn catch rate
data are densely informed in both the spatial and temporal domains and involve
varying locations at successive time instants. Space–time geostatistical analysis for
king prawn catch rate data from the 2001 to 2004 fishing seasons, incorporating
traditional time series modelling of annual king prawn catch rate trends, has shown
that short term catch rate prediction is possible with the use of the product-sum co-
variance model and subsequent kriging. However, time-limited closure lines operate
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Fig. 1 Shark Bay North fishing region (light grey) and permanent and temporary closure lines for
the fishery

in the fishery and the timing of the closures is dependent on the lunar phase and
survey results. It is therefore difficult to capture successfully the high king prawn
catch rate behaviour in areas as they first open to trawling.

Of particular importance is the opening of the extended nursery area (ENA)
(Fig. 1) at the start of the last quarter in May producing high catch rates in the
newly opened region. Using the catch rate logbook and survey data from the 2001
to 2003 seasons along with the logbook and survey catch rate data from the lunar
months of March and April 2004, we investigate to what extent their use improves
the reproduction of the catch rate data for the (lunar) month of May of season 2004.
The ENA is surveyed in March and April of each season and analysis of data from
seasons 2001 to 2004 shows that there is a moderate positive correlation between
the actual catch rate and the survey catch rate from preceding months.

Space–time geostatistical estimation of king prawn catch rate for May 2004 is
performed using the survey catch rate data as additional information. Multiplicative
trend models are employed involving a polynomial trend model and (lunar) weekly
seasonal indices obtained from classical decomposition. Spatio-temporal semivar-
iograms of the combined detrended and deseasonalised data for 2001 to 2003 are
computed and modelled using product-sum covariance models (De Iaco et al., 2001;



Space–Time Geostatistical Analysis of King Prawn Catch Rate 15

De Cesare et al., 2002). Cross-validation (Mueller et al., 2008) has shown that these
semivariogram models capture the properties of the sample data and supports their
use for estimation and smoothing of the king prawn catch rate data. We compare the
estimates with those previously obtained using no survey data and with the actual
catch data for 2004 and show that the space–time behaviour of the king prawn catch
rate data is captured accurately with the use of the additional survey catch rate data
in an area which has just opened to trawling.

2 Data Description

The data in this study are king prawn catch rate logbook and survey data from 2001
to 2004 from the Shark Bay North fishing region of the Shark Bay prawn fishery.
For our analysis the catch locations were converted to nautical miles and a local
coordinate system with origin at 24ı southern latitude and 113ı eastern longitude.
Records without coordinates were eliminated from the data sets and the remaining
records were aggregated to a single centroidal location for each vessel per night.
This resulted in 90% of the data being used. The survey data consist of 17 locations
across the study region sampled around the third moon phase in the months of March
and April of each season. Spatial maps of the fishing locations for seasons 2001 to
2003, including the permanent closure lines for the fishery are shown in Fig. 2 along
with the survey locations.

The means and medians of the daily king prawn catch rate are similar in 2001
and 2003 with 2002 showing a slightly larger mean and median (Table 1). The vari-
ance of the 2001 data set is considerably smaller than that of 2002 and 2003. The
2001 season also has a smaller range than the 2002 and 2003 seasons. The catch rate
data for all three seasons have a moderate positive skew. The catch rate data were
averaged over each lunar week to obtain a time series for each season to be used
to model the temporal trend. These annual time series show similar means, medi-
ans and positive skewness to the corresponding daily data sets they were computed
from (Table 1). Their variances, as expected by the averaging process, are smaller.
Similarly, the minima/maxima of the averaged weekly data are larger/smaller than
the corresponding daily data. Of the fishing weeks evident in each of the fishing
seasons, there are a number of weeks for which there are no fishing data because of
a closure period around the full moon of each month and also, in some weeks the
fleet concentrates on the Denham Sound region.

3 Temporal Trend Modelling

Previous analysis (Harman, 2001; Mueller et al., 2008) has demonstrated that multi-
plicative classical decomposition models are appropriate for modeling the temporal
trend in the king prawn catch rate data using the 4 week lunar cycle as the seasonal
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Fig. 2 Fishing locations in Shark Bay North for seasons 2001 to 2003, and survey locations

factors. Classical decomposition was performed on the weekly averaged king prawn
catch rate data for seasons 2001 to 2003. A four point centred moving average was
used to remove the annual effects of the 4 week lunar cycle and to identify underly-
ing trends in the data (Fig. 3). As a function of the number of weeks the catch rate
trend first increases until a maximum is reached, and then is a decreasing function
of time. This pattern was also evident in the research on previous king prawn catch
rate data in Harman (2001). This trend is modelled later by fitting a polynomial to
the deseasonalised data, for which we must first calculate the seasonal factors.

The weekly average data were divided by the centred moving average to obtain
the seasonal index component which was used to determine the seasonal factors for
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Table 1 Summary statistics of daily and average weekly King Prawn catch
rate for seasons 2001 to 2003

Daily data Average weekly data

Season 2001 2002 2003 2001 2002 2003
Mean 28.03 34.25 29.43 24.69 28.24 23.48
Median 23.68 26.65 22.62 22.87 24.25 19.04
Variance 304.59 661.30 581.50 119.88 231.24 246.99
Skewness 1.78 3.13 2.92 1.28 1.65 2.75
Minimum 1.07 0.92 1.08 11.50 12.00 9.68
Maximum 146.07 440.32 266.63 56.99 72.13 83.86
Count 3,346 3,276 2,892 30(31) 29(31) 27(31)

Fig. 3 Average weekly king prawn catch rate for seasons (white circles), centred moving average
(solid grey line) and fitted deseasonalised trend (solid black line) for seasons 2001–2003

each of the four lunar phases. The Classical Decomposition seasonal factors for the
king prawn catch rate for each season (Fig. 4) are similar between years. For all
years the factor for the last quarter moon week is largest whilst the lowest annual
factors are for the full moon period when the fishery is closed for 3 to 7 days due
to the expected low catch rate (Sporer et al., 2007). The last quarter moon and new
moon week factors are greater than one for all seasons whilst the full moon and first
quarter moon week factors are below one for all seasons. Due to the similarity of
factors across the three seasons we also compute average factors obtained by aver-
aging across the three seasons (Fig. 4) for use in an average classical decomposition
model for all three seasons.

The deseasonalised data for seasons 2001 to 2003 were calculated by dividing
the catch rate data by the seasonal factors obtained for the individual seasons, and
then modeled using polynomial trend lines (Fig. 3). The equations and accuracy
measures are shown in Table 2. For all years a cubic function was appropriate for
modelling the trend. The model for 2001 has the largest R2 value of 0.717 indicating
a large correlation with the deseasonalised data. It also shows the smallest mean
error, mean percentage error and mean absolute deviation across the three seasons.
The models for seasons 2002 and 2003 have slightly smaller R2 values, still showing
moderate correlation with the deseasonalised data. As the shapes and equations of
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Fig. 4 Seasonal factors for seasons 2001 to 2003 based on moon phase

Table 2 Equations of fitted third order polynomial deseasonalised trend models, 2001–2003 and
average model and accuracy measures

Equation Mean error Mean % error Mean abs. deviation R2

2001 0:005t3 � 0:251t2 C
2:476t C 26:071

0.002 �0:508 3.214 0.717

2002 0:007t3 � 0:365t2 C
3:923t C 27:437

�0:002 �1:114 5.530 0.612

2003 0:009t3 � 0:425t2 C
4:879t C 15:687

0.071 �2:598 5.200 0.566

Average 0:007t3 � 0:347t2 C
3:760t C 23:065

– – – –

the trends were similar for the three seasons, an average model was computed by
averaging the polynomial coefficients across the three seasons.

Multiplicative classical decomposition models for seasons 2001 to 2003 were
obtained by multiplying the deseasonalised trend by the relevant (lunar) seasonal
factor. Individual classical decomposition models were calculated for each season
along with an average model using the average polynomial trend and average sea-
sonal factors (Fig. 5). These models replicate the catch rate time series well. The
noticeable differences exist for peaks evident in the data in weeks 5 and 9, which
correspond to the opening times of two closure lines near the nursery areas. The
Carnarvon-Peron line opened in week 5 in season 2001 and 2003 and in week 6 in
season 2002 whilst the ENA opened in week 9 for all three seasons.

Accuracy measures for the classical decomposition models (Table 3) show the
errors of the average models are greater in magnitude than their corresponding indi-
vidual model, with the exception of the mean percentage error for season 2001. The
large mean percentage error of the 2003 average model is due to the contribution
of the first 3 weeks where the model is significantly higher than actual values. The
R2 values of the average models are only slightly smaller than their corresponding
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Fig. 5 Individual season classical decomposition model (solid grey line), average classical de-
composition model (solid black line) and weekly king prawn catch rate (circles) for seasons 2001
to 2003

Table 3 Accuracy of classical decomposition models (individual and average), 2001–2003

2001 2002 2003
Individual Average Individual Average Individual Average

Mean error �0:065 �0:281 �0:256 �3:480 �0:353 3:147

Mean % error 2:969 0:663 4:671 �7:177 5:704 25:790

Mean abs deviation 3:474 3:797 5:850 6:418 5:976 6:969

R-squared 0:813 0:794 0:696 0:675 0:610 0:567

individual model. Therefore, the average model was chosen to remove the temporal
trend from the king prawn catch rate data to obtain the adjusted king prawn catch
rate data.

4 Variography

Space–time semivariograms were computed for the adjusted king prawn catch rate
data for the individual seasons 2001 to 2003. Although there was slight evidence of
anisotropy in the spatial direction, it was regarded as an artifact of the shape of the
fishing region and so disregarded in the modelling. For all three seasons the structure
in both the temporal and spatial directions is similar and so a model was computed
for the combined 2001 to 2003 seasons. The marginal spatial and temporal exper-
imental semivariograms along with their fitted models are shown in Fig. 6. The
spatiotemporal experimental semivariogram and its fitted semivariogram model are
shown in Fig. 7. A generalized product-sum model was used (De Iaco et al., 2001)
and the semivariogram model parameters are shown in Table 4. The marginal spatial
semivariograms consist of a nugget effect and a long range spherical structure. The
marginal temporal semivariogram consists of a nugget effect, a short range spherical
structure and a long range spherical structure. The global sill of the spatiotemporal
semivariogram is fitted to the data variance.
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Fig. 6 Experimental marginal spatial semivariogram (left, black circles) and marginal temporal
semivariogram (right, black circles) with fitted models (solid black line) and data variance (grey
dashed line) for adjusted king prawn catch rate data of combined seasons 2001 to 2003

Fig. 7 Space–time semivariogram for seasons 2001 to 2003, experimental (left) and fitted model
(right)

Table 4 Semivariogram model parameters for adjusted king prawn catch rate,
seasons 2001–2003

First spherical
structure

Second spherical
structure

Season Semivariogram Nugget Range Sill Range Sill

2001 Spatial 0.05 35.0 0.15 – –
Temporal 0.05 1.5 0.04 30.0 0.11

2002 Spatial 0.07 35.0 0.28 – –
Temporal 0.07 1.5 0.04 30.0 0.24

2003 Spatial 0.07 35.0 0.29 – –
Temporal 0.07 1.5 0.04 30.0 0.25

2001–2003 Spatial 0.07 35.0 0.26 – –
Temporal 0.07 4.0 0.11 30.0 0.15

5 Opening of Extended Nursery Area

There are a number of closure lines implemented in the fishery. The ENA closure
is one such closure line that opens just before the last quarter moon phase in May
in all three seasons. This corresponds to the peak seen in May (Week 9) in previous



Space–Time Geostatistical Analysis of King Prawn Catch Rate 21

Fig. 8 Logbook catch rates for week of last quarter moon phase in seasons 2001–2003, ENA
shown by dotted line

Fig. 9 Average survey catch rates (white squares), logbook catch rates at survey locations (black
circles) and classical decomposition model fit (solid line) for week of last quarter moon phase in
season 2001–2003

plots. Spatial maps of the catch rate data for this week in seasons 2001 and 2003
are shown in Fig. 8. The catch rates in the ENA are relatively high compared to
those further away from the ENA and they are significantly higher than the estimate
of the classical decomposition model (Fig. 9). The March and April survey data for
seasons 2001 to 2003 showed similarities with the actual catch rates within the ENA
in the first week it is open. It was decided that the average of the 2 months was the
most reasonable indicator of the catch rate values in the ENA (Fig. 9) and the use of
the average survey data in the estimation process would help to reproduce the high
catch rate behaviour in the ENA.
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6 Estimation

Short term catch rate prediction is possible with the use of the product-sum
covariance model and the subsequent kriging estimation process. We predict the
king prawn catch rate data for the (lunar) month of May 2004 by space–time geo-
statistical estimation using the March and April logbook catch rate data and the
spatiotemporal semivariogram model obtained from the 2001 to 2003 fishing sea-
sons. Grid catch rate estimates for the fishing region and jacknife estimates for the
actual logbook catch rate data locations are shown in Fig. 10 for the week of the
last quarter moon phase of May as the ENA is opened to trawling. It is evident that
this method does not adequately capture the relatively high catch rates in the ENA.

As the average of the March and April survey data give a good indication of
the catch rate levels seen in the ENA, we re-estimated the catch rates in May 2004
including the average survey data in the kriging process as additional data along
with the March and April logbook catch rate data. The survey data were detrended
and deseasonalised using the trend and seasonal index for the last quarter moon
phase of May, but were allocated a date from the preceding week to enable its use
in the estimation process which was directly affected by the short temporal range of
the semivariogram model. Estimates over the fishing region and jacknife estimates
for the actual logbook catch rate data locations in Fig. 11 demonstrate the ability to
better capture the high catch rates in the ENA.

While inclusion of the survey data improved the estimation for the last quarter,
this was not the case for the weeks of the new moon and first quarter moon phase
of May 2004. The relatively high catch rates are much fewer in these weeks and the
estimates involving the survey data are much higher than those evident in the actual
catch rates (Fig. 12). The estimates involving no survey data are more representa-
tive of the actual catch rates. Accuracy measures for the jacknife estimates (Table 5)
support the use of the survey data to estimate for the last quarter moon week. Esti-
mation using the survey data decreases the magnitude of the errors for the week of

Fig. 10 Logbook catch rates (left), grid estimates (centre) and jacknife estimates (right) of the
king prawn catch rate for the week of last quarter moon phase of May 2004
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Fig. 11 Logbook catch rates (left), grid estimates (centre) and jacknife estimates (right) of the king
prawn catch rate using average survey data for the week of last quarter moon phase of May 2004

Fig. 12 Logbook catch rates (left), grid estimates (centre) and jacknife estimates (right) of the
king prawn catch rate using average survey data for the week of new moon (top) and first quarter
moon phase (bottom) of May 2004

the last quarter moon phase but increases the magnitude of the errors for the weeks
of the new moon and first quarter moon phase. The R2 value of the estimates using
survey data increases for the last quarter moon phase week but decreases for the
weeks of the new moon and first quarter moon phase.
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Table 5 Accuracy measures for jacknife estimates, with and without survey data, May 2004

Jacknife estimates Jacknife estimates (average survey)

MayL MayN MayQ MayL MayN MayQ

Mean error �21:65 �4:48 �11:13 11.22 34.27 4.61
Mean % error �17:77 0.70 �23:00 15.45 100.41 36.68
Mean abs deviation 27.72 10.90 12.60 23.47 36.23 18.00
R2 0.22 0.13 0.66 0.30 0.002 0.09

7 Discussion

We have shown that it is possible to predict the king prawn catch rates for May 2004
using a spatiotemporal geostatistical model obtained using the data of seasons 2001
to 2003, along with the logbook catch rate data of March and April 2004. However,
this method does not adequately capture the relatively high catch rates in the first
week of May as the ENA opens to trawling. The accuracy of the estimates can be
increased by using the April survey catch rate data, which are a good indicator of the
catch rate values in the ENA. However, including the survey data does not improve
the estimates for the subsequent weeks in May. The estimates computed using no
survey data are more indicative of the actual catch rate behaviour in these weeks.

The use of the survey data compensates for the absence of data in the ENA and
more specifically for the absence of significantly high catch rates in the preceding
week for use in estimation. Thus, they provide a more realistic estimate than just
using the ordinary kriging mean. An alternative to using the survey data might be to
use a multiplicative factor in the temporal trend model for the week where the ENA
opens. This multiplicative factor could be isolated to the ENA region so as not to
affect estimates throughout the entire fishing region. The peak associated with the
opening of the Carnarvon-Peron Line may also be addressed in this manner.
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Multivariate Interpolation of Monthly
Precipitation Amount in the United Kingdom

Christopher D. Lloyd

Abstract Many different interpolation procedures have been used to generate maps
of precipitation amount from point data. Several case analyses have shown that
making use of covariates such as elevation may increase the accuracy of pre-
dictions. Kriging-based approaches, as often employed for mapping precipitation
amount, are usually based on a global variogram model and the assumption is
made that spatial variation is the same at all locations. This chapter assesses the
impact on prediction accuracy of using (i) local variogram models as against a
global variogram model and (ii) multivariate approaches as against univariate ap-
proaches. Various kriging-based interpolation procedures are applied along with
inverse distance weighting and regularised splines with tension. The results suggest
that multivariate approaches such as kriging with an external drift may provide more
accurate predictions than standard univariate approaches such as ordinary kriging.
In addition, kriging based on local variogram models, rather than a global variogram
model, is shown to provide smaller prediction errors.

1 Introduction

Maps of precipitation amount have been generated from sparse samples using a
variety of univariate and multivariate interpolation procedures. The relationship be-
tween altitude and precipitation amount, which has been observed in many case
studies, has been exploited and digital elevation models (DEMs) have been used
to inform the prediction procedure. In such cases, increases in prediction accuracy
over methods that do not make use of secondary data such as elevation have been
observed (Goovaerts, 2000; Lloyd, 2005). Methods like simple kriging with locally
varying means (SKlm), kriging with an external drift (KED) and cokriging (CK)
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allow for the integration of elevation data into the mapping of precipitation amount
from sparse samples. Comparison of results using univariate and multivariate meth-
ods is one objective of this chapter.

With kriging-based approaches, the variogram is usually estimated from all of
the available data and it is assumed that the spatial structure of the variable (here,
precipitation amount) is the same for all areas. Where this is not the case some pro-
cedure is required for estimating the nonstationary variogram. This study assesses
the use of locally estimated and modelled variograms for mapping monthly precip-
itation in the United Kingdom. Ordinary kriging (OK), and SKlm are utilised with
kriging weights obtained using both global and local variogram models (the latter
fitted automatically by maximum likelihood) while KED is employed using local
variogram models only. Variations in spatial structure, as observed using the local
variogram models, are explored and discussed and some problems with automated
model fitting highlighted. Univariate and multivariate regularised splines with ten-
sion (RST) are also used for comparative purposes, as there is no need to estimate
the variogram in those cases. The prediction accuracy of the methods is compared
through cross-validation and the spatial distribution of prediction errors is assessed.

This paper builds on research presented by Lloyd (2002, 2005, 2009) and ex-
pands on the range of methods applied and the exploration of spatial variation in
prediction errors. The basis of this chapter is a comparison of selected univari-
ate and multivariate interpolation procedures including inverse distance weighting
(IDW), OK, CK, SKlm, KED, global regression (GR), moving window regression
(MWR), geographically weighted regression (GWR) (with elevation as the inde-
pendent variable and precipitation amount as the dependent variable) and RST. In
addition, locally estimated and modelled variograms are used for OK and SKlm
and the results compared with predictions made using the global variogram model.
Data for July 2006 provide the basis of the analysis. Goovaerts (2000) used a vari-
ety of geostatistical methods to make predictions of precipitation amount. RST has
been used before to map precipitation amount with elevation as a covariate (Hofierka
et al., 2002). Brunsdon et al. (2001) applied GWR for the exploration of spatial vari-
ations in the relationship between altitude and precipitation amount. Lloyd (2005)
provides a review of these and other related applications.

Some pros and cons of the alternative procedures are identified following a va-
riety of criteria. Finally, some ideas for future research, including the extension of
the methods to prediction of precipitation amounts for shorter time periods (e.g., a
day), are outlined briefly.

2 Study Area and Data

The analysis is based on precipitation amount measurements, for July 2006, made
across the UK and The Isle of Man under the auspices of the UK Meteorological
Office. The data were obtained from the British Atmospheric Data Centre (BADC)
web site (http://www.badc.rl.ac.uk). The data are referenced using the Ordnance
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Fig. 1 Locations of precipitation measurements for July 2006

Survey British grid system. The data for Northern Ireland are referenced using the
Irish Grid co-ordinate system and these were converted to British Grid co-ordinates
using ArcGISTM. The locations of all of the measurements are shown in Fig. 1,
while summary statistics are given in Table 1. A map of July 2006 precipitation
amounts generated with IDW is given in Fig. 2 (note the ‘clumping’ of values around
observation locations, characteristic of IDW). For July 2006, precipitation amounts
are most consistently large in the west of Scotland, part of the north west of England,
part of the south west of England, in addition to a few other small areas including
the south east of Northern Ireland.
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Table 1 July precipitation
amount summary statistics Number

Minimum
(mm)

Maximum
(mm)

Mean
(mm)

Standard
deviation (mm)

2,924 2.000 224.000 45.238 29.329

0 100 200 Kilometres

Precipitation (mm)

High : 221.312

Low : 2.008

Fig. 2 Precipitation amounts for July 2006: IDW with 16 nearest neighbours

3 Methods

The analysis makes use of a variety of widely-used interpolation procedures. These
include IDW, RST, OK, CK, SKlm and KED. Two variants of RST were used –
standard univariate RST (referred to as RST2D) and three-dimensional RST which
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accounts for elevation in the precipitation prediction process (termed RST3D). In
addition, GR, MWR and GWR were used with elevation as the independent variable
and precipitation amount as the dependent variable. IDW is well known and an
introductory account is provided by Burrough and McDonnell (1998). A summary
of some key variants of thin plate splines, including RST2D, is provided by Lloyd
(2006) (where RST is referred to as the completely regularised spline). Hofierka
et al. (2002) describe RST3D and present an application. Introductions to OK, CK,
SKlm and KED are provided by Goovaerts (1997), Wackernagel (2003) and Lloyd
(2006). MWR is simply regression conducted using the n paired observations in a
moving window. GWR is described by Fotheringham et al. (2002) and in the present
analysis an adaptive bi-square kernel was used such that the size of the kernel varies
according to the density of observations locally.

IDW and MWR were conducted with purpose-written Fortran 77 code, GWR
was conducted using the GWR software detailed by Fotheringham et al. (2002).
Gstat (Pebesma et al., 1998), was used for global variogram estimation (for CK,
autovariograms and cross-variograms) and for fitting models using weighted least
squares (WLS). The GSLIB (Deutsch and Journel, 1998) routine kt3d was used for
OK, SKlm and KED. OK and SKlm were implemented using global variograms
and variograms estimated locally and modelled automatically using the MLREML
maximum likelihood routine written by Pardo-Igúzquiza (1997), while KED was
conducted using the latter approach only since the KED prediction neighbourhood
should ideally correspond to the neighbourhood over which the trend-free variogram
is estimated (Hengl, 2007). A Fortran 77 program was written to visit each ob-
servation in the precipitation dataset and extract the n nearest neighbours to each
observation location, after which the MLREML routine was called to estimate the
variogram and fit a model. The simplex method for function minimisation (Pardo-
Igúzquiza, 1997) was applied to fit variogram models in this analysis. A nugget
effect and a spherical model were fitted using this procedure. A modified version
of the GSLIB routine kt3d was used for LVOK, LVSKlm and LVKED (where LV
indicates local variogram). The GRASS GIS RST routines s.surf.rst and s.vol.rst
were used for RST2D and RST3D respectively. Routines with the same functional-
ity (but for GRASS site files rather than vector point files as used in this analysis)
are described by Neteler and Mitasova (2004). With RST, selection of a tension pa-
rameter, a smoothing parameter (for a smoothing parameter of zero, RST is an exact
predictor) and a z factor is necessary, as described by Hofierka et al. (2002).

4 Analysis

The present section focuses first on the analysis of local spatial variation in (i) the
relationship between elevation and precipitation amount and (ii) the spatial structure
of precipitation amount. Given that the relationship between altitude and precipita-
tion is utilised for prediction purposes, a DEM for the UK is given in Fig. 3 (GTOPO
30 DEM: http://edc.usgs.gov/products/ elevation/gtopo30/gtopo30.html). Figure 4
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0 100 200 Kilometres

Elevation (m)

High : 1326

Low : 0

Fig. 3 DEM for the UK. Data available from U.S. Geological Survey/EROS, Sioux Falls, SD

gives the GWR coefficient of determination (using the bi-square kernel with 150
nearest neighbours). There are large r2 values in the west of Scotland, the east of
Northern Ireland, south west England and parts of the English midlands. With the
exception of the latter, these are areas with high elevations. Figure 5 gives the ranges
of variogram models, with a spherical structured component, fitted to variograms es-
timated from 128 nearest observations. Figure 5 shows that the local range varies
markedly across the UK. As an example, in Scotland, there are three distinct regions
– with predominantly medium range variation in the north, short range variation in



Multivariate Interpolation of Monthly Precipitation Amount in the UK 33

0 100 200 Kilometres

r squared

0.019 - 0.296

0.297 - 0.485

0.486 - 0.733

Fig. 4 GWR coefficient of determination

the east and south and long range variation in the west of the region. The models
from which the ranges in Fig. 5 are derived were used for for LVOK. For LVSKlm
and LVKED, local variogram models, comprising a nugget effect and a spherical
component, were derived using ML with GLS regression being used to model the
elevation–precipitation relationship.

The remainder of the section focuses on the assessment of spatial interpola-
tion procedures using cross-validation. With IDW an exponent of two was used
and the number of nearest neighbours increased from eight to 16, 32, 64 and 128.
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0 100 200 Kilometres

a
13450.627 - 50032.070
50032.071 - 82993.016
82993.017 - 164927.938

Fig. 5 Ranges of models fitted to variograms estimated from 128 nearest observations (spherical
model)

The cross-validation RMSE was smallest for eight nearest neighbours and the cor-
responding errors are summarised in Table 2. For the kriging variants, a similar
procedure was followed. The variogram model for OK was fitted using the WLS
functionality of Gstat. In the case of CK, the precipitation autovariogram model
was the same as for OK and, following the linear model of coregionalisation
(Goovaerts, 1997), the same number and type of structures and range parameters
were fitted to the elevation autovariogram and the cross-variogram. For SKlm, only
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Table 2 July precipitation amount cross-validation prediction summary statistics

Method NNN
Maximum
negative (mm)

Maximum
positive (mm) Mean (mm) RMSE (mm)

IDW 8 �86:665 116.976 0.640 13.700
GR All �161:286 61.620 �0:004 27.519
MWR 8 �93:528 80.869 0.224 14.626
GWR 150 �112:217 52.932 �0:109 17.158
RST2D 32a �83:872 92.871 0.239 13.139
RST3D 512a �90:782 80.395 0.077 12.967
OK 16 �86:216 96.314 0.161 13.207
LVOK 128 �87:274 86.433 0.153 13.002
CK 8 �87:649 89.716 0.128 13.228
SKlm 128 �86:771 90.278 0.042 13.148
LVSKlm 128 �85:298 89.306 0.112 12.971
LVKED 128 �79:923 87.571 0.074 12.524
a For RST, NNN has a different definition – it is the minimum number of points used
for prediction

64 and 128 nearest neighbours were utilised for prediction. For SKlm, the variogram
was estimated from residuals of an OLS regression of elevation and precipitation.
The resulting model coefficients were used to derive new ˇ coefficients using GLS
in Gstat (a similar process is described by Hengl (2007)). The SKlm local means
were the GLS regression predictions. Lloyd (2009) used several methods for deriv-
ing the local mean, but only one is presented in this study (in addition to that given
the local variogram procedure, outlined above). With RST2D and RST3D a vari-
ety of different tension and smoothing parameters were applied and assessed along
with varying the z factor for RST3D. For RST2D, a tension parameter of 70 and a
smoothing parameter value of 0.7 provided the smallest cross-validation RMSE. For
RST3D, a tension parameter of 35 and a smoothing parameter value of 0.1 with a z
multiplier of 20 provided the smallest cross-validation RMSE. Table 2 summarises
the cross-validation errors for each approach with the figures only given for the com-
bination of the number of nearest neighbours and model parameters that resulted in
the smallest RMSE. Selection of methods was systematic, but clearly other combi-
nations of parameters may result in more accurate cross-validation predictions.

In terms of RMSE values, the most accurate cross-validation predictions are for
LVKED, with RST3D and LVSKlm next in line. The mean error closest to zero is for
GR, with SKlm having the second smallest (absolute) value. The smallest maximum
absolute error is for LVOK. It is notable that the RMSE for CK is larger than that for
OK. This is probably due, at least in part, to the weak global relationship between
elevation and precipitation amount.

The absolute differences between OK 16 and LVKED 128 cross-validation er-
rors were computed and interpolated using IDW based on four nearest neighbours
(this was done purely for visualisation purposes). The resulting map is shown in
Fig. 6. Obviously, positive values in Fig. 6 indicate instances where LVKED pre-
dictions were more accurate than OK predictions, while negative values show the
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XV errors: OK-LVKED
High : 25.282

Low : -38.638

0 100 200 Kilometers

Fig. 6 OK 16 XV absolute errors – LVKED 128 absolute errors (generated using IDW 4)

reverse. In most areas there are only small differences between the predicted values.
The most obvious differences are in the west of Britain and the east of Northern
Ireland. Variations in elevations and the effect of this on precipitation amounts
(i.e., the relationship between altitude and precipitation amount) in some areas is
one explanation for these differences. The range or spatial frequency of variation
in precipitation amounts varies at a local scale more markedly in some places than
others (see Fig. 5) and this will impact on the degree to which local variograms may
offer benefits in providing more appropriate weights for kriging.
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5 Discussion

Adjustment of the parameters for each technique would undoubtedly result in a dif-
ferent ranking of methods in terms of the RMSE, mean and maximum absolute error
(see Davis [1987] for a discussion about the use of cross-validation for assessing
prediction accuracy). However, the results do at least indicate approaches that seem
likely to provide predictions with a similar level of accuracy. The results demon-
strate potential benefits in making use of elevation data as a part of the precipitation
interpolation procedure. There are also suggestions that kriging based on locally
estimated and modelled variograms may potentially provide accurate predictions
than kriging based on global variogram models. However, automated modelling of
variograms is computationally demanding. In this study, only a nugget effect and a
single spherical component were fitted to the local variograms. In cases where the
spatial variation is complex, two or more structured components may be desirable.
In some areas a model other than the spherical model may have been preferable.
RST requires interaction in terms of selection of tension and smoothing parame-
ters, but this is more straightforward than the variogram estimation and modelling
procedure required for kriging. In addition, use of a secondary variable is possible
using RST3D and cross-validation errors are comparable with those obtained using
kriging.

With the most obvious exception of GR, most of the approaches provide broadly
comparable results in many respects and criteria other than simply cross-validation
RMSEs are important considerations. If there is a desire to avoid common prob-
lems like clumping around observation locations when using IDW, then prediction
accuracy (judged by cross-validation or otherwise) may not be the greatest con-
cern. The most appropriate prediction approach is likely to vary between seasons
as demonstrated by Lloyd (2005, 2009). This is due, in part, to seasonal differences
in precipitation intensity. There is little evidence of spatial structure (i.e., positive
spatial autocorrelation) in the cross-validation errors. However, some general trends
are observable. For example, errors in the low-lying south and east of Britain tend
are consistently smaller than those in the generally more highly-elevated areas in the
north and west of Britain (where precipitation amounts tend to be greater). There is
an element of circularity in the assessment of SKlm using cross-validation in that the
local means are derived using all available data (i.e., the observation at the predic-
tion location is used also). The local variograms for LVOK, LVSKlm and LVKED
are also derived using all available observations. Testing suggested that these factors
had little impact on results.

6 Conclusions

This chapter indicates that more complicated multivariate approaches may be likely
to offer benefits over simpler univariate approaches for mapping monthly precip-
itation amount. In terms of kriging-based approaches, there is a suggestion that
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local variogram estimation and modelling may offer benefits. The results show that,
judging by cross-validation errors, RST provides results comparable to kriging. Ex-
panding the analysis to include other months or to analyse data for shorter time
periods (e.g., weeks or days, where the altitude–elevation relationship is likely to
less strong than for months) would be sensible foci for future research. An alter-
native means of comparing approaches to spatial interpolation is to divide the data
set into two, and predict at one set of locations using the second set of data (this
is termed jackknifing). This approach is being used along with cross-validation in
ongoing research.
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Extreme Precipitation Modelling Using
Geostatistics and Machine Learning Algorithms

Loris Foresti, Alexei Pozdnoukhov, Devis Tuia, and Mikhail Kanevski

Abstract The paper presents an approach for mapping of precipitation data. The
main goal is to perform spatial predictions and simulations of precipitation fields
using geostatistical methods (ordinary kriging, kriging with external drift) as well
as machine learning algorithms (neural networks). More practically, the objective is
to reproduce simultaneously both the spatial patterns and the extreme values. This
objective is best reached by models integrating geostatistics and machine learn-
ing algorithms. To demonstrate how such models work, two case studies have
been considered: first, a 2-day accumulation of heavy precipitation and second, a
6-day accumulation of extreme orographic precipitation. The first example is used
to compare the performance of two optimization algorithms (conjugate gradients
and Levenberg-Marquardt) of a neural network for the reproduction of extreme val-
ues. Hybrid models, which combine geostatistical and machine learning algorithms,
are also treated in this context. The second dataset is used to analyze the contribu-
tion of radar Doppler imagery when used as external drift or as input in the models
(kriging with external drift and neural networks). Model assessment is carried out
by comparing independent validation errors as well as analyzing data patterns.

1 Introduction

Spatial interpolation of precipitation is one of the most challenging fields of research
for geostatisticians, meteorologists, climatologists and natural hazards practitioners.
Usually, the prediction of precipitation is performed with physical models, mainly
because of the high spatial variability and nonlinearity of the problem. The lim-
its of physical models (mainly computational) are encountered when prediction
is performed at scales that are smaller than 2–3 km. Geostatistics offers different
methods to deal with this problem and provides interesting results by several authors
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(Attore et al., 2007; Daly et al., 1997; Dobesch et al., 2007; Dubois et al., 2003;
Goovaerts, 2000; Jeffrey et al., 2001; Lloyd, 2007). Nevertheless, the high spatial
variability and noise in the precipitation data have led to an increasing use of
machine learning (ML) methods (Antonic et al., 2001; Bryan and Adams, 2002;
Demyanov et al., 1998; Parkin and Kanevski, 2008). The motivation of applying
these methods is also given by an increasing volume and availability of data. The
objective of the paper is to show how machine learning algorithms can be used to
perform spatial prediction of precipitation and how geostatistics can be applied in a
complementary way with them.

Section 2 is an introduction to the theory of Multi Layer Perceptron, the neu-
ral network used in this study. A short overview of optimization methods is also
necessary to understand the first case study. A complete introduction to neural
networks and related optimization methods can be found in Bishop (1995) and
Haykin (1998). Theory of geostatistics such as ordinary kriging, kriging with exter-
nal drift (KED) and sequential Gaussian simulations (SGS) can be found in Deutsch
and Journel (1997), Hengl et al. (2003), Isaaks and Srivastava (1989), Kanevski
(2004), and Wackernagel (2003), Section 3 presents briefly the case studies and the
applied methodology. Section 4 illustrates the results. Conclusions are presented in
Section 5.

2 Multi Layer Perceptron

Multi Layer Perceptron (MLP) is a neural network belonging to the family of
machine learning algorithms and it has been applied in a variety of fields such
as computer science, speech recognition, finance, environmental sciences, remote
sensing, data mining, etc. Learning about statistical relationships between variables,
MLP aims at the prediction of continuous or discrete data, respectively for non-
linear regression and classification tasks. In this paper, only regression is considered.

MLP architecture is composed of an input, one or more hidden and output layers.
Predictors for regression are contained in the input layer and the target variable in the
output layer. The hidden layer connects the input layer to the output layer by means
of weights. Moreover, each neuron of the hidden layer has an activation function that
is responsible for the non-linearity of the network. The latter transforms a weighted
linear summation of the inputs (the predictors) with a nonlinear function (often a
logistic or hyperbolic transformation). The aim of using MLP is to find an optimal
configuration of weights that can reproduce the functional relationship between the
inputs and the output variables. MLP typical architecture is shown in Fig. 1.

The output part of MLP is defined as follows:

yout
i D gout

2
4X

j

w.2/
ij � g

 X
k

w.1/
jk � x

.0/

k

!3
5 (1)



Extreme Precipitation Modelling Using Geostatistics and MLA 43

Fig. 1 MLP is composed of
an input layer, one or more
hidden layers and an output
layer that are connected by
weights

X1

Xk

wjk wij

yi
out

X2

Input layer
(0)

Hidden layer
(1)

Output layer
(2)

Target

ti
out

g(h)

Xj

where wij is the weight between the jth neuron and the ith neuron, xk is the kth
input neuron and the activation function g applies a non-linear transformation of the
weighted linear summation �:

g.�/ D 1

1 C e��
or g.�/ D e� � e��

e� C e��
(2)

The weighted sum of inputs is therefore transformed in the hidden layer via the
activation function (brackets in Equation (1)). A weighted linear summation of
the hidden neurons is also carried out in the output layer (square brackets in
Equation (1)). gout can be either a linear or a non-linear function.

The main time consuming phase of MLP is the training procedure where the op-
timal values of weights in the network are sought. First, the weights are initialized
randomly (or by using the annealing algorithm as it is proposed in Kanevski [2004])
between some specified limits and the inputs have to be scaled between some spec-
ified boundaries depending on the choice of the activation function (usually 0–1).
Then, the feed-forward part is computed by introducing the input vector x in the neu-
ral network. The dimension of the input vector is equal to the number k of predictors
kept for the analysis. The procedure is then iterated for every training sample. Then,
a measure of dissimilarity between the prediction and the target values is calculated
and minimized during training. For the regression problems, the mean squared error
cost function is used:
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where tout
is is the ith target value for training sample s, yout

is is ith output for training
sample s. In this paper only one-output MLP is considered (i is equal to 1). It is
evident that the minimization of the cost function is the aim of the training phase
of MLP. Finally, let us recall that MLP is a universal approximator (Bishop, 1995;
Haykin, 1998).
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2.1 Optimization Algorithms

The cost function of Equation (3) has to be minimized by optimizing the values of
weights. The cost function is not convex, has many local minima and therefore the
solution is not unique. To solve this problem several optimization algorithms can
be applied in order to approach the true minimum of the cost function. The back-
propagation of the error defines how weights are changed after each iteration. An
in-depth description of the optimization algorithms can be found in LeCun et al.
(1998). Here, only the conjugate gradient and the Levenberg-Marquardt optimiza-
tion are briefly described.

2.1.1 Conjugate Gradient Algorithm

Conjugate gradient (CG) is a first order optimization algorithm that computes con-
jugate directions by a combination of consecutive directions and exploits the line
search method as it is explained in LeCun et al. (1998). At the first iteration the
gradient of the cost function is computed. A first minimum of the cost function can
be found in the direction which is contrary to the gradient. Several numerical evalu-
ations of the cost function along this direction allow identification of this minimum
(line search). At the second iteration, the new direction is computed by a combina-
tion between the previous and the current direction:

dtC1 D �rE.wtC1/ C ˇtC1dt (4)

where rE(wtC1) is the gradient of the cost function evaluated at iteration t+1,
ˇ defines the type of combination between two consecutive directions LeCun et al.
(1998) and d is the direction. Line search is now applied along this conjugate direc-
tion and the minimum along it yields the new weight vector.

CG is widely used to train MLP because of its ability to find solutions with
weights that are centered around the origin of the cost function. In fact, the algorithm
does not find solutions with large and biased weights that can lead to overfitting of
training data.

2.1.2 Levenberg-Marquardt Algorithm

Levenberg-Marquardt (LM) is a second order optimization algorithm that is used in
the attempt to speed up the training phase by taking into account the information
about the curvature of the error function (second derivatives). A local quadratic
approximation of the error function is carried out in order to find its minimum in
only one iteration. The method is a combination of the steepest descent (simple
gradient descent with a momentum term) and the local quadratic optimization. The
update rule for the weights is

wtC1 D wt � .H C � � diag.H//�1rE.wt / (5)
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where H is an approximation of the Hessian matrix. The parameter œ defines a
tradeoff between the steepest descent and the quadratic approximation. In other
words, the optimization is similar to the steepest descent in the regions where
the error increases and similar to the quadratic optimization nearby the minimum.
A complete description of this algorithm can be found in Roweis (2000).

It is often noted that after the training LM algorithm tends to find lower mini-
mums of the cost function than the CG algorithm even with the same number of hid-
den neurons. Hence, LM can fit better to training data than CG and exploits more the
flexibility of MLP by finding solutions with larger and more biased weights. The ef-
fect is an increasing risk of overfitting training data and the resulting loss of patterns.

3 Case Studies and Methodology

3.1 Case Study: Precipitation of 2nd and 3rd October 2006

This case study was an extreme event provoked by a cold front that affected
Switzerland during 2 days. It generated a very anisotropic narrow line of heavy
precipitation on the southern part of the Alps because of particular orographic
conditions. The phenomenon was monitored by 413 rain gauges whose summary
statistics are presented in Table 1. For modeling purposes and for checking general-
ization abilities on new data, they were divided into 360 used for training and 53 for
validation.

This particular situation under study is used to compare the performance of two
optimization algorithms (CG and LM). Training of the neural network is carried out
by applying an early stopping criterion: the training procedure ends when training
error equalizes the quantity of noise present in the data. This procedure of model
selection avoids the need to take a testing subset from training data. Noise was
estimated by modelling the raw variogram and it is simply the square root of the
nugget. A two-inputs MLP (X,Y coordinates), with 15 hidden neurons is trained
using the cited algorithms. With less than 15 hidden neurons, both LM and CG were
not able to reduce the training error below the noise level. Independent validation
errors, patterns and the ability of reproducing extreme values are compared and the
peculiarities of the two optimization methods are pointed out.

Finally, hybrid models (combining geostatistics and machine learning) are con-
sidered. Neural Networks are known to be very useful for modelling of patterns in
data. However, they risk to overfit the data when trying to reproduce extreme values.
Geostatistical techniques can partially solve this problem by means of predictions
and simulations. Therefore, MLP can be applied in order to solve problems of spa-
tial non-stationarity by modelling trends. The obtained stationary residuals can then
be interpolated/simulated using the family of kriging methods.

Table 1 Summary statistics
of 2nd and 3rd of October
2006, mm of water

Mean Variance Skewness Kurtosis Min Max

22.3 577.8 4.22 22.61 0 218.4
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3.2 Case Study: Precipitation from the 18th to the 23rd
of August 2005

The second case study considers an important orographic precipitation event on the
northern side of the Alps. This situation was recorded by 439 rain gauges (302 were
used for training and 137 for validation) and by three atmospheric Doppler radars,
giving an image at 1 km resolution (see Fig. 2). A Radar image was provided and
pre-processed by the Federal Office of Meteorology and Climatology (MeteoSwiss).
Details on pre-processing of radar image are explained in Germann et al. (2006)
and Joss et al. (1997). In the context of this study radar data is used as auxiliary
information. Table 2 shows summary statistics. It can be noticed that there are some
differences between rain gauge and radar statistics mainly because of their spatial
resolutions. Radar is more likely to be able to detect local patterns of precipitation.
On the contrary, the rain gauge network topology is not dense enough to measure
such phenomena and it misses spatial extremes.

Radar is an important source of information for improving spatial prediction of
precipitation and it can therefore be integrated as an external drift or an input in the
neural models. This study is an attempt to compare two different model approaches:
geostatistics by using kriging with external drift and machine learning by means of
artificial neural networks (ANN) with an external drift as in Parkin and Kanevski
(2008) (ANNEX, inputs are X,Y and radar image). The main goal is to study the
effect of the drift in different models. Mapping of the differences between the drift
and the prediction, which highlights radar and rain gauges biases, is a interesting
way to do the analysis.
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Fig. 2 One kilometer grid radar image of 6 days of precipitation in Switzerland (mm of water)

Table 2 Summary statistics
from 18th to 23rd of August
2005, mm of water

Mean Variance Skewness Kurtosis Min Max

Rain gauge 98.99 3,931 1.08 0.57 14.3 324.3
Radar 107.73 4,581 1.36 1.81 18.5 524.5
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4 Results and Discussions

For the applications presented, model assessment is carried out using a randomly
selected validation set. Model selection is performed by cross-validation techniques
or by using an early stopping criterion, which helped to avoid a typical split into
three datasets (training, testing and validation), which would have led to a loss of
predictive power because of the lack of data.

4.1 Precipitation of 2nd and 3rd October 2006

As stated in the previous section, the first case study aims to compare different
optimization algorithms for modeling an extreme precipitation event using MLP.
The analysis was carried out with a two-inputs MLP only taking into account ge-
ographic coordinates (X,Y). Using the LM algorithm, the MLP can easily model
extreme values with the same number of hidden neurons as CG without overfitting
data as shown in Fig. 3 (MLP predictions cover whole of Switzerland but for the
visualization purposes only a selected interesting area is shown).

Table 3 shows RMSE calculated over the validation dataset. LM training er-
ror is equal to noise level in the data from the early stopping criterion. Ordinary
kriging provides more accurate results than MLP-CG but less accurate results than
MLP-LM. The large validation errors of the neural net trained with CG are simply
the consequence of undertraining. In fact, according to Figs. 3 and 4, the CG algo-
rithm is more adapted to model global trends and it leaves some spatial structure.
On the other hand, the LM algorithm is able to model the spatial structure without
overfitting data (dark tones in Fig. 3). In fact, the map of LM presents higher values
than the one with CG in the zone of heavy precipitation causing a decrease of the
validation error. However, if the number of hidden units is strongly increased, for
example 40 hidden neurons organized in two hidden layers, CG can find more or
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Fig. 3 2-15-1 MLP output trained with CG (on the left) and 2-15-1 MLP output trained with LM
(on the right), mm of water
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Table 3 Training and
validation RMSE of the
different methods

Method OK MLP-CG MLP-LM NNRK

Training RMSE 0 10.54 6.10 0
Validation RMSE 8.12 11.76 7.23 5.62

Variogram of training data
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Fig. 4 Variogram for training data (on the left) and for training residuals (on the right) of MLP-CG

less the same solution as the LM algorithm but it needs more computational time.
For the task at hand, LM is preferable because it needs less complex models (less
hidden units) and less computational time compared to CG.

The MLP solutions could be improved by the application of a hybrid model, tak-
ing advantage of the best characteristics of both the geostatistical methods and the
machine learning algorithms (Kanevski, 2004). MLP is well adapted to handle the
problem of modeling non-linear trends. A hybrid model can be applied: in a first
phase, a non-linear trend is modeled using an MLP architecture which underfits the
data (like the one trained with CG). The variogram of the training residuals cal-
culated from the trend shows a short scale range and a stabilization at the a-priori
variance of the residuals. Raw and detrended variograms are shown in Fig. 4.

These conditions are optimal for applying kriging to interpolate training resid-
uals. Finally, the map of the residuals is added to the map of the trend. This
methodology was called by Kanevski et al. (1996). Neural Network Residual
Kriging (NNRK). The importance of using this approach in meteorology is eas-
ily demonstrated by the fact that extremes are not smoothed out and the original
patterns are preserved. From Table 3 it is easy to notice that NNRK shows the low-
est validation error. Thus, the combination of machine learning and geostatistics
allowed the reproduction of the spatial extremes without losing the general patterns.

A similar approach can be implemented by performing the sequential Gaussian
simulation of the residuals leading to the Neural Network Residual Simulations
(NNRS). The aim is to reproduce the histogram and the variogram of training data.
The NNRS simulation map shows more spatial variability and it is more realistic
compared to the smooth solution given by NNRK. Computing many realizations
permits calculation of probabilities of exceeding some predefined thresholds of pre-
cipitation, which is important, for example, for risk assessments. The NNRK mean
value and one realization of NNRS are shown in Fig. 5.
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Fig. 5 NNRK mean value (on the left) and one realization of NNRS (on the right)

4.2 Precipitation of 18th to 23rd of August 2005

Let us compare artificial neural network with an external drift and kriging with an
external drift, where the drift is given by the radar. The aim was not to validate
the two models and to choose the best one but to analyze the contribution of the
radar image to the prediction. The latter depends on the choice of the interpola-
tion algorithm. Since a radar image is more likely to contain uncertainties, the rain
gauge measurements are used as the target function. KED parameters were opti-
mized using onefold cross-validation. For MLP it was more difficult to apply the
methodology shown in Section 4.1 because it was harder to estimate the noise in
data. Therefore, a different early stopping criterion was chosen. For the task, a test-
ing subset was selected from the training base. At the end of the training process,
the network weight configuration which minimized the testing error was used for
predictions. Validation RMSE values for both methods are not very different, i.e.
21.61 mm for KED and 25.28 mm for MLP.

Outputs of these models are shown in Fig. 6. However, if the drift is substracted
from the final prediction, several discrepancies can be seen as shown in Fig. 7. The
resulting map is called the map of the differences. Differences close to 0 mean that
radar contributed the most information to the prediction. Positive or negative differ-
ences highlight radar biases or rain gauge measurement errors that, unfortunately,
exist. The variance of the differences is equal to 432.2 for KED and 242.4 for MLP.
The higher variance of KED differences is explained by the fact that the predicted
function must pass through the training points creating hot spots from the drift. On
the contrary, MLP yields smooth solutions reducing the variance of differences.

Another analysis deals with the comparison of summary statistics between model
outputs and training data. Table 4 shows summary statistics of MLP and KED pre-
dictions. A comparison between Table 4 and Table 2 illustrates that MLP results
are more smooth than KED predictions (smaller skewness and maximum value
mainly). Overall, MLP statistics are closer to those for the rain gauges and KED
statistics are closer to those for the radar data. However, if data preprocessing is
applied to raw data, for instance a logarithmic transformation, we can significantly
improve the results of MLP (see Table 4).
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Fig. 6 KED (on the left) and MLP (on the right) prediction maps; MLP smooths out radar
extremes
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Fig. 7 KED differences (on the left) and MLP differences (on the right) from the drift; the models
overestimate radar measurements in white regions and underestimate them in black regions

Table 4 Summary statistics
of KED and MLP
outputs, mm

Mean Variance Skewness Min Max

KED 104.4 4,171 1.10 13.0 462.0
MLP 103.6 3,731 1.06 25.5 415.6
MLP-LOG 102.2 4,028 1.27 18.4 483.9

Finally, MLP finds the smooth functional relationship between the target (rain
gauges) and its inputs (X, Y, radar). KED is an exact interpolator which passes
through training samples and which is close to the drift far from the measurements
(where kriging variance is high). If rain gauges or radar data contained outliers and
measurement errors, MLP would be preferable because of its robustness. The analy-
sis is helpful for guiding meteorologists in the choice of the interpolation algorithm.

5 Conclusions

Machine learning methods and geostatistics have been successfully applied for mod-
elling precipitation fields. The choice of the interpolation algorithm depends on the
goal of the study: modeling the patterns or the extreme values. Modeling extremes
with a two-inputs neural network, Levenberg-Marquardt algorithm is preferable to
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conjugate gradient which performs better for modeling the patterns. Hybrid models
gave also practical solutions to the reproduction of extremes without the risk of
losing patterns. Regarding the introduction of drifts in the models, it was shown
that the quality of data, the summary statistics and the analysis of the drift con-
tribution are important for making a choice of model. Future perspectives of the
research will consider the modeling of multiscale meteorological phenomena that
present global trends and short scale variability due to the influence of topography
such as orographic precipitation and temperature inversions. The question of data
pre-processing and of the choice of the relevant predictors (geo-features computed
from a DEM) is also a future direction for research.
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On Geostatistical Analysis of Rainfall
Using Data from Boundary Sites

José Manuel Mirás Avalos, Patricia Sande Fouz, and Eva Vidal Vázquez

Abstract This study examines the effect of considering data from rain gauges
nearby the boundaries of Galicia (NW Spain) in order to minimize the border ef-
fect. Two datasets were considered: the first one comprised 232 climatic stations
within Galicia and the second one consisted of 322 rain gauges including the for-
mer 232 from Galicia and adding 90 stations from boundary provinces (42 from
Asturias, 31 from León and 17 from Zamora). Total monthly rainfall data from 2006
was analyzed and descriptive statistics demonstrated slight differences between both
datasets. Theoretical structures were described for all the studied monthly datasets.
Spatial dependence analysis showed that the best-fitting semivariogram model struc-
ture was the same for both datasets in most of the cases, even though the model
parameters showed great differences. Similarly, cross-validation parameter values
were clearly distinct among datasets; mostly, the ones corresponding to the 322 sta-
tions dataset were closer to the ideal values. Ordinary kriging was performed for
both datasets and resulting variance maps showed improvements when the informa-
tion from boundary regions was taken into account. These improvements can reach
up to 25% of the maximum variance value and they were observed in wet months
such as January whereas, in dry months such as July, no improvement was observed.
Minimum error values were usually lower when extra information was used in the
interpolations. In conclusion, a better mapping of the rainfall within a region can be
achieved using data from boundary areas, reducing the variance of the estimates.

1 Introduction

Rainfall is a spatio-temporal intermittent phenomenon displaying large spatial and
temporal variability whereas rain gauge networks only collect point estimates. In
addition, the characterization of rainfall spatial variability is of great interest to
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water resources planners, regulators, and decision makers (Ali et al., 2000). It is
thus necessary to estimate point rainfall at unrecorded locations from values at sur-
rounding sites (Goovaerts, 2000).

This interpolation problem has been largely studied and several authors proved
the convenience of performing geostatistical analyses in order to map rainfall at dif-
ferent geographical locations (Abtew et al., 1993; Goovaerts, 2000; Militino et al.,
2001; Watkins et al., 2005; Mirás Avalos et al., 2007). However, the use of a com-
plex technique is no warranty of a better performance in a given region (Gómez
Hernández et al., 2001).

Enhancing these approaches using secondary information, i.e. altitude from digi-
tal elevation models, was assessed by a number of authors (Goovaerts, 2000; Gómez
Hernández et al., 2001; Mirás Avalos and Paz González, 2008). An important fact
to consider in this kind of multivariate interpolation is the correlation between rain-
fall and secondary variables such as altitude since the introduction of a secondary
attribute in estimation seems worthy only for correlations above 0.4 (Asli and Mar-
cotte, 1995). Furthermore, the use of rainfall data registered at sites neighbouring
the studied region in order to improve the estimations has not been properly studied.

Following these lines of research, this work focuses on the study of rainfall vari-
ability in Galicia (NW Spain). The main objective of this exercise was to compare
the estimations obtained from rainfall datasets within this region and those obtained
from an increased dataset with registers from gauges located out of the studied area
but at neighbouring sites.

2 Material and Methods

The data sets used in this exercise corresponded to total monthly rainfall (in mm)
during the period from January till December 2006 and are referred (i) to 232 rain
gauges which are irregularly distributed in Galicia and (ii) to 322 climatic stations
including the former 232 from Galicia and adding 90 gauges from neighbouring
provinces (42 from Asturias, 31 from León and 17 from Zamora). Figure 1 shows
the geographical location of the studied region and the neighbouring provinces
within Spain.

The data sets were characterized statistically; this description included the cal-
culation of mean, median, mode, minimum, maximum, coefficient of variation,
standard deviation, skewness and kurtosis. Data number varied from 159 to 190
measurements for the first dataset and from 243 to 275 registered values for the
second one, depending on the month.

Once the data sets were statistically characterized, the absence of outliers was
verified. Then, stationarity was analyzed and, when observed, any drift was filtered.
Moreover, an analysis of correlation between rainfall and altitude was carried out in
order to incorporate this information as an ancillary variable in the interpolations.

In order to conduct spatial interpolation using geostatistical techniques, a com-
prehensive analysis of the spatial structure of the data sets was performed using
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Fig. 1 Location of the studied region and neighbouring sites on Spain

GSTAT software (Pebesma, 2000) which is integrated in a GIS called PCRaster
(Van Deursen and Wesseling, 1992).

The basis for interpolations by both geostatistical and deterministic procedures
was a digital elevation model of Galicia (Thonon and Paz González, 2004) which
consists of regular cells of 500 by 500 m covering an area of 29; 750 km2.

Spatial variability was primarily evaluated through semivariogram estimation,
graphing, model fitting and comparison for each variable (Burgess and Webster,
1980). Classic criteria for calculating semivariograms were taken into account
(Samper Calvete and Carrera Ramı́rez, 1996; Goovaerts, 1997). The dependence
relation has been computed according to Cambardella et al. (1994). The cross-
validation technique (Chilés and Delfiner, 1999) was used to check the model
performance. Non-dimensional Mean Square Error (NMSE) parameter was the
main criterion for deciding which fitted model was the best one for each monthly
data set. Other parameters, such as determination coefficient .r2/ and Mean Square
Error (MSE) were also taken into account.

Inverse distance weighting (IDW) method was used as a reference for map-
ping monthly rainfall data: rainfall is estimated as a linear combination of several
surrounding observations, with the weights being inversely proportional to the
square distance between observations and the point to be estimated (Burrough and
McDonnell, 1998). IDW was used in order to get a rapid mapping of rainfall in
this region since previous studies (Mirás Avalos et al., 2007; Mirás Avalos and
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Paz González, 2008) showed that spatial structures cannot always be described for
monthly rainfall in Galicia. In fact, these authors reported a spatial dependence in
69% of their datasets which corresponded to several years. However, this technique
has the important lack of not providing a measure of estimation errors, thus, kriging
interpolations are preferred.

Interpolation by ordinary kriging (OK) was the geostatistical method applied
to these rainfall data. OK is by far the most common type of kriging in prac-
tice (Webster and Oliver, 2001). Kriging interpolation methods provide each cell
with a local, optimal prediction and an estimation of the error that depends on the
variogram and on the spatial configuration of the data (Burrough and McDonnell,
1998). Kriging is a generalized technique that allows one to account for the spatial
dependence between observations, as revealed by the semivariogram, into spatial
predictions (Goovaerts, 2000). The OK weights are determined such as to minimize
the estimation variance (Goovaerts, 2000). Comprehensive theoretical review and
mathematical formulation of kriging are beyond the scope of this work and can be
found in Goovaerts (1997) and Chilés and Delfiner (1999). In case that data series
showed any trend, an interpolation by simple kriging instead of OK was carried out.

To test the goodness of fit of the estimations, the mean squared-error (MSEP)
and root mean squared-error (RMSE, the square root of MSEP) were calculated
according to Stacey et al. (2006):

MSEP D 1

n

nX
iD1

Œz .xi / � Oz .xi /�
2

Where n is the number of data, z.xi / is the measured value and Oz.xi / is the estimated
value. The smaller the values of these statistics, the closer the estimation is to the
measurement.

3 Results and Discussion

Mean monthly rainfall during the study period varied from 16.71 mm in July to
326.54 mm in October for the Galicia dataset (Table 1). These values were different
from those observed on the dataset containing information from boundary sites,
July being the driest month with an average of 24 mm and October the wettest with
292.8 mm (Table 2).

Monthly rainfall coefficients of variation, which ranged from 0.34 to 0.8, showed
the spatial heterogeneity of the precipitation in both datasets; this variability was
higher in the dry season, from June to August (Tables 1 and 2).

Skewness and kurtosis coefficients showed values which were close to those of
a standard Gaussian distribution. From this test, it was assumed that monthly rain-
fall data followed a Gaussian distribution (Tables 1 and 2). However, mean values
were usually higher than the median values which indicates a slight deviation from
the standard Gaussian distribution. However, no data transformation was performed
before the structural analysis.
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Table 1 Statistical summary of the 2006 monthly rainfall for the Galicia dataset (SD D standard
deviation; CV D coefficient of variation; Min. D minimum; Max. D maximum; Skew. D skewness
coefficient, Kurt. D kurtosis coefficient)

Mean Median SD Min. Max. Mode
Month N (mm) (mm) (mm) CV (mm) (mm) (mm) Skew. Kurt.

January 173 56:54 56:30 25:42 0:45 10:4 160:0 83:2 0:71 0:84

February 176 139:49 135:85 53:00 0:38 19:3 281:9 216:0 0:36 �0:10

March 170 223:01 198:95 108:63 0:49 55:4 485:2 216:5 0:54 �0:62

April 174 82:48 79:05 27:68 0:34 19:5 240:3 70:0 1:59 6:30

May 168 31:29 28:10 16:93 0:54 1:8 105:7 17:8 1:10 2:02

June 177 28:73 25:90 19:15 0:67 1:3 94:4 9:0 1:11 1:10

July 165 16:71 12:90 13:35 0:80 1:1 61:0 8:0 1:40 1:62

August 174 44:26 40:70 23:64 0:53 2:0 124:4 24:0 0:92 0:82

September 190 92:46 83:80 40:94 0:44 0:0 225:9 81:0 0:44 �0:18

October 159 326:54 323:00 111:24 0:34 87:0 601:7 320:8 0:07 �0:48

November 174 254:22 233:00 108:76 0:43 11:8 569:8 138:6 0:44 �0:41

December 182 193:48 188:85 87:31 0:45 24:0 432:0 134:0 0:46 �0:19

Table 2 Statistical summary of the 2006 monthly rainfall for the dataset containing information
from boundary sites (SD D standard deviation; CV D coefficient of variation; Min. D minimum;
Max. D maximum; Skew. D skewness coefficient, Kurt. D kurtosis coefficient)

Mean Median SD Min. Max. Mode
Month N (mm) (mm) (mm) CV (mm) (mm) (mm) Skew. Kurt.

January 257 52:99 51:00 26:32 0:50 3:0 160:0 83:2 0:68 0:55

February 259 136:96 134:80 59:54 0:43 19:3 288:3 65:0 0:33 �0:49

March 255 189:78 155:70 109:65 0:58 18:0 569:4 216:5 0:91 0:16

April 261 75:55 73:00 27:61 0:36 0:4 240:3 83:0 1:41 5:38

May 256 33:40 31:30 17:38 0:52 0:4 105:7 36:1 0:77 0:92

June 265 34:02 31:20 20:80 0:61 0:1 102:4 36:8 0:84 0:54

July 253 24:00 17:20 19:15 0:80 0:0 105:3 14:0 1:12 0:98

August 259 39:67 34:00 22:68 0:57 0:0 137:5 24:0 1:31 2:31

September 275 85:60 77:40 39:34 0:46 0:0 225:9 81:0 0:71 0:23

October 243 292:80 284:00 118:86 0:41 34:9 601:7 320:8 0:34 �0:60

November 260 222:59 201:20 110:05 0:49 11:8 569:8 258:0 0:71 �0:19

December 270 167:22 152:50 90:60 0:54 10:4 546:2 134:0 0:82 0:82

Correlation between rainfall and elevation, as assessed by linear regression anal-
ysis, ranged from 0.04 to 0.47, weak for most of the months (data not shown).
According to other authors (Asli and Marcotte, 1995; Goovaerts, 2000), the benefit
of multivariate techniques can become marginal if correlation between rainfall and
elevation (or other environmental descriptors) is too small, as in this study. Thus,
interpolations by kriging with external drift or by cokriging were withdrawn.

Inverse distance weighting results proved that this method was suitable for a
rapid estimation of rainfall at the studied level. Output maps showed, in general,
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Fig. 2 Resulting maps from inverse distance weighting interpolation for January 2006

a discontinuous appearance. In general, resulting maps were almost identical for
both datasets. Generated maps corresponding to January 2006 are shown in Fig. 2,
exemplifying this situation.

Different theoretical functions (spherical, exponential and Gaussian) with vari-
able nugget effects depending on the month were fitted to experimental semivari-
ograms.

From an analysis of the semivariograms and their fitted parameters, regarding
both datasets, we observe that monthly rainfall showed a variable nugget effect rang-
ing from 0% to 87.3% of the sill value, which is a dependence ratio (Cambardella
et al., 1994), and a rather short range of spatial dependence varying from 10.68 to
60.61 km (Tables 3 and 4). Generally, range values increased when boundary infor-
mation was taken into account; however, the opposite fact was observed in January,
June and August (Tables 3 and 4).

Specifically, nugget effects for the Galicia dataset ranged from 0% to 70.6% of
the sill value and ranges varied from 11.8 to 55.9 km (Table 3). According to the
criteria outlined by Cambardella et al. (1994), 8 months showed strong spatial cor-
relation and the rest presented moderate correlation.

In the case of the Galicia and boundary sites dataset, nugget effects ranged from
0% to 87.3% of the sill value, showing a higher variability than those fitted to data
only from Galicia. Nevertheless, range values for this dataset varied from 10.68 to
60.61 km, larger than those observed for the Galicia dataset (Table 4). Regarding
the values of the dependence relation (DR), 7 months presented strong spatial cor-
relation, 4 months showed moderate spatial correlation and 1 month showed weak
correlation.

In addition, theoretical structures were the same for both datasets in most of
the occasions. The exceptions were September, November and December; in the
case of September, an exponential model was fitted when the Galicia dataset was
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Table 3 Theoretical model parameters fitted to experimental variograms from the Galicia dataset
(C0 D Nugget effect; DR D dependence relation, MSE D mean square error, NMSE D non-
dimensional mean square error)

Range Cross-validation

Month Trend Model C0 Sill (km) DR r2 MSE NMSE

January Quadratic Spherical 110:6 248:1 55.85 30:8 0:29 0:009 1.21
February Linear Exponential 200:0 2;200:0 20.00 8:3 0:23 �0:001 1.22
March Linear Exponential 0:0 8;919:7 11.82 0:0 0:69 �0:003 1.12
April – Exponential 600:0 250:0 20.00 70:6 0:36 0:000 0.98
May – Exponential 50:0 240:0 20.00 17:2 0:57 �0:017 1.12
June – Spherical 172:7 165:9 48.56 51:0 0:52 �0:001 1.04
July – Exponential 50:0 90:0 20.00 35:7 0:70 0:014 1.01
August – Exponential 100:0 600:0 20.00 14:3 0:57 0:006 1.10
September – Exponential 300:0 900:0 20.00 25:0 0:70 0:009 1.15
October – Exponential 2;000:0 8;000:0 30.00 20:0 0:75 0:002 1.10
November – Spherical 1;098:3 7;468:6 47.82 12:8 0:80 0:047 1.16
December – Spherical 423:0 6;521:4 32.57 6:1 0:66 0:014 1.31

Table 4 Theoretical model parameters fitted to experimental variograms from the Galicia and
boundary sites dataset (C0 D Nugget effect; DR D dependence relation, MSE D mean square
error, NMSE D non-dimensional mean square error)

Range Cross-validation

Month Trend Model C0 Sill (km) DR r2 MSE NMSE

January Quadratic Spherical 160:3 190:1 51.65 45:8 �0:02 0:014 1.10
February Linear Exponential 200:0 2;200:0 20.00 8:3 0:31 �0:004 1.16
March – Exponential 1;000:0 11;000:0 40.00 8:3 0:89 �0:007 0.90
April – Exponential 502:8 295:4 46.36 63:0 0:53 0:000 0.95
May – Exponential 459:2 255:1 18.45 64:3 0:63 �0:007 1.03
June – Exponential 100:0 300:0 30.00 25:0 0:59 �0:004 1.19
July Linear Exponential 969:8 141:6 38.43 87:3 0:41 �0:003 0.99
August – Exponential 0:0 514:9 10.68 0:0 0:76 0:015 0.83
September – Gaussian 415:0 650:0 20.00 39:0 0:71 0:001 1.10
October – Exponential 2;761:2 12;809:1 60.61 17:7 0:78 0:000 1.01
November – Exponential 1;000:0 11;000:0 50.00 8:3 0:85 �0:001 1.08
December – Exponential 1;000:0 8;000:0 60.00 11:1 0:77 0:002 1.18

taken into account but a Gaussian model was fitted when the boundary sites were
accounted for. The variograms for November and December showed a spherical
behaviour when the Galicia dataset was analysed and an exponential structure when
neighbouring information was used (Tables 3 and 4). Usually, a theoretical model
representing a more spatially continuous behaviour was fitted to the data set with
information from boundary sites.

Selected cross-validation parameters (r2, MSE and NMSE) of the fitted semi-
variograms are shown in Tables 3 and 4 as well. In general, values for the
NMSE parameter were close to the considered ideal value of 1 for both datasets.
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In addition, an increase in the accuracy of the estimations was observed when
boundary information was used, according to the magnitudes of the cross-validation
parameters (Tables 3 and 4), the exception was January.

Maps obtained by ordinary kriging were too smooth for reproducing measured
maximum and minimum data; moreover, error maps tended to show a high and
uniform uncertainty pattern. Kriging errors were high in most of the study area
except in those areas located nearby the rain gauges. An example for November
2006 is depicted on Fig. 3. No differences were observed between maps obtained
by OK and those resulting from simple kriging for both datasets which presented
any trend (data not shown).

Estimates for Galicia Estimates for Galicia and boundary sites

Errors for Galicia and boundary sites
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Fig. 3 Example of estimate and kriging error maps generated by ordinary kriging for Novem-
ber 2006
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Table 5 Goodness of fit results for the interpolations performed
(MSEP D mean squared-error of prediction, RMSE D root mean
squared-error)

IDW Galicia
dataset

OK Galicia
dataset

IDW Galicia C
boundary

OK Galicia C
boundary

MSEP 4.72 4.51 11.87 4.53
RMSE 2.17 2.12 3.45 2.13

Differences in performance for both datasets were minimal regarding map
estimations but an increase in confidence was observed in those areas located at the
borders, as demonstrated by the kriging error maps (Fig. 3). Moreover, the range of
rainfall values was lower in the case that boundary information had been taken into
account than when the Galicia dataset had been solely considered.

In order to quantify these differences in performances, MSEP and RMSE were
calculated for both, inverse distance weighting (IDW) and ordinary kriging (OK)
approaches (Table 5).

Results from this analysis showed values of RMSE of 2.17 and 2.12 for inverse
distance weighting and OK, respectively when only the Galicia dataset was taken
into account. In the case of the increased dataset, those values were 3.45 for inverse
distance weighting and 2.13 for OK. Therefore, no important differences were found
between the two OK approaches but a slight difference was observed in the case of
inverse distance weighting likely due to the mathematical theory behind this method
(Table 5).

MSEP values were similar between the estimation approaches for the Galicia
dataset; however, a big difference in the values for these statistics was found in the
case of the increased dataset (Table 5). Comparing the OK for both datasets, MSEP
values were practically identical.

4 Conclusions

Structural analysis of the studied datasets showed slight differences in their param-
eters when they were fitted to registers from Galicia or to those increased with
information from boundary sites. Usually, models fitted to semivariograms from
the increased dataset represented a more spatially continuous behaviour of the
phenomenon.

Inverse distance weighting maps showed a high degree of similarity for both
datasets. Ordinary kriging outputs were slightly improved when neighbouring sites
were taken into account as proved by the estimation error maps. However, the quan-
titative performance of this technique was similar for both datasets.

A better mapping of monthly rainfall in Galicia may be achieved by using data
registered at boundary locations, reducing the variance of the estimations and the
border effect.
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Geostatistics Applied to the City of Porto
Urban Climatology

Joaquim Góis, Henrique Garcia Pereira, and Ana Rita Salgueiro

Abstract The Porto (Portugal) urban climatology was characterized by using of a
set of data obtained daily during a 2 year temperature mobile monitoring campaign,
performed by a measuring/recording appliance installed in a bus that maneuvered
through a given path (established a priori in such a way that spatial variability within
the city could be accounted for). In order to model such data by geostatistical tech-
niques, a two step approach was adopted. The first step aims to obtain temperature
probability density function (PDF) parameters for each sampled point in time. Us-
ing a flexible Weibull analytical model to interpolate the empirical histograms that
represent the time PDF at each spatial station, two parameters (k – regarding form,
and c – regarding scale) were obtained. In a second step, these parameters, viewed
as regionalized variables, were used to obtain the corresponding kriged maps at any
location in space. Based on these maps of the Weibull parameters, the time PDF is
estimated at any unsampled point located in the nodes of a dense mesh that covers
the city, allowing the calculation of the probability of exceeding certain thresholds
(or the probability of maintaining temperature within a given range). The output
of the methodology, which consists of temperature quantile or probability maps,
was validated by expert knowledge on the particular climatology of the city, both in
space and in time.

1 Introduction

Modern urban planning relies largely on the interaction between artificial systems
that are to be built (or submitted to conservation procedures) in certain zones
of a city and the environmental context prevailing in such zones. One of the
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relevant factors that affect quality of life in the above mentioned artificial systems
is temperature. In order to develop construction schemes and devices that minimize
energy waste for thermic control, a baseline model providing the temperature dis-
tribution in space and time is required. Such baseline consists of maps displaying
expected values and corresponding variability of temperature across space and time,
including the probability of extreme value occurrence.

To create a reliable baseline for urban planning in the Porto city in what temper-
ature is concerned, a geostatistical methodology, based on measurements provided
by a mobile monitoring apparatus that records the variable at selected stations, is
presented and discussed. Such measurements are repeated in time, for 1 day slices
spread over 2 years. The well known “urban heat island” phenomenon (Oke, 1982,
1987) was characterized in detail in this study, regarding spatial and temporal vari-
ability of temperature within the city, when compared with corresponding values in
the surrounding rural areas.

2 State of the Art

In order to address the problem of estimating a Regionalized Variable whose struc-
ture depends jointly on two dimensions (space and time), the most common geosta-
tistical technique is Space–Time Kriging (STK), as developed by Goovaerts (1977),
and put into practice (using a particular Fortran software) by De Cesare et al. (2002).

This technique requires the extension of the usual 1D spatial autocovariance to a
surface (a 2D function) that is intended to reflect, equally, spatial and temporal lags,
as sketched in Fig. 1.

Fig. 1 Example of space time covariance surface (modified after Hjorth, 1999)



Geostatistics Applied to the City of Porto Urban Climatology 67

Obviously, the kriging system must be modified accordingly, taking into account
the shortage of tractable covariance 2-D functions in space–time (Hjorth 1999).

Hence, STK applications are not straightforward (cf., for instance, Gething et al.,
2006, referring to a health management system focused on malaria), since the two
dimensions are difficult to model in what their joint development is concerned (apart
from the fact that these dimensions, being essentially different in nature, are, conse-
quently, hard to model under a common approach).

In addition, some applications lead to case studies where one of the dimensions
is privileged over the other. In fact, for instance in the issue of plant disease prop-
agation (where the spatial component prevails), the results obtained by STK are
analogous to a visual comparison of successive maps deployed in time, each one
of which is obtained by ordinary kriging in space (Alves et al., 2006). On the other
hand, when a spatially sparse (but temporally rich) network of meteorological sta-
tions is available, the temporal component prevails, and satellite sensor imagery
provides only some ancillary information on the spatial autocovariance structure
(Spadavecchia and Wiliams, 2006).

Another view, which is out of the scope of ‘pure’ geostatistics, is given by Hoskin
and Wallis (1997) for hydrological applications (stream flow vs. precipitation data,
for instance). Under this view, the point is to fit a single frequency distribution in
time, within a ‘homogeneous’ region in space. This method, based on L-moments
(linear combinations of probability weighted moments of random variables), allows
for quantile estimation at sites where no measurements are available. However, there
are serious drawbacks in the practical treatment of urban climatology data using this
kind of ‘regional frequency analysis’, since the criteria for defining ‘homogeneous’
regions in the context of a city are cumbersome, and spatial autocovariances are not
accounted for.

3 Proposed Methodology

The geostatistical approach proposed here to handle space–time data referring to
temperatures in Porto city relies on the review given in Kyriakidis and Journel
(1999), specifically when the authors state their preference for a two step method: in
the first step, time series at each point of space are modelled by ‘conventional’ tech-
niques (such as ARMA or ARIMA); in the second step, parameters of such model
are kriged in space, providing realizations of the underlying stochastic process, at
unsampled locations.

In this paper, a new framework was developed along the above lines, detach-
ing clearly the two dimensions of the problem (space and time). Since what is
required for urban planning is not a set of time series, but a PDF generator for
temperature at any point in space, the parameters of such PDFs were obtained by
fitting Weibull theoretical distributions to the experimental histograms that refer to
sampled locations. Then, in order to use kriging as the spatial estimation technique
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par excellence, variograms were computed for those parameters, viewed as Region-
alized Variables that summarize temporal variability at each station. Finally, the
PDF at any point of space was obtained by applying to the theoretical Weibull equa-
tion the kriged values of the above mentioned parameters, available all over the
entire field.

4 Data Acquisition

The city of Porto (1 million inhabitants living in a 40 km2 area) is located in the
Northern region of Portugal, as displayed in Fig. 2.

A temperature monitoring plan was designed for the city, consistent with the
guidelines given in Geiger et al. (1995). A path with a total length of 60 km was
established, where 244 measuring stations were set up, according to the scheme
shown in Fig. 3. During the period 1998/1999, the itinerary was replicated 57 times,
covering the entire range of meteorological conditions that are considered by experts
as significant for the region (Monteiro, 1994). Thus, a matrix of 244 lines in space
by 57 columns in time is the data model for this study (Fig. 4).

The main point to be stressed in the sampling plan that gave rise to experimental
data depicted symbolically in Fig. 3 is that it is representative both of spatial and
temporal variability of temperature within the city. This condition was assured by
expert knowledge on local climatology (Monteiro, 1994).

Fig. 2 Location of the study region
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Fig. 3 Temperature monitoring itinerary for the Porto city

Fig. 4 Data model of recorded temperatures

5 Geostatistical Study

According to the above outlined proposed methodology, the first step is to take each
line of Fig. 4 matrix, and construct 244 histograms of measures at each sample
location. Such histograms were fitted by a two parameter Weibull probability density
function (PDF), given by:

f .x; k; c/ D k

ck
xk�1e�. x

c /
k

(1)

where k and c are the “form” and “scale” Weibull parameters, respectively.
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Temperature Values Associated Probability (Weibull fitt k=4.44, c=19.38)
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Fig. 5 Example of Kolmogorov–Smirnov model fitting

Table 1 Comparison of experimental and theoretical relative cumulative frequencies
for Station n.o 1 – Praça da Liberdade

Absolute
freq.

Relative
freq.

Relative
cum. Freq.

Theoretical
Weibull Cum.

Expected vs.
theoretical Difference

1 0.0175 0.0175 0.0161 0.0014
1 0.0175 0.0351 0.0723 0.0372
9 0.1579 0.1930 0.2102 0.0172
12 0.2105 0.4035 0.4455 0.0420
22 0.3860 0.7895 0.7179 0.0911
5 0.0877 0.8772 0.9125 0.0353
7 0.1228 1.0000 0.9867 0.0133
57 1 –

An example of this fitting is given for a selected station. The cumulative his-
togram and the corresponding theoretical model are shown in Fig. 5 and Table 1.
In Table 1, the maximum expected versus theoretical difference is 0.0911, which
is lower than the allowed limit of the Kolmogorov–Smirnov test (K-S) for the 0.05
significance level (0.6342). Hence the Weibull distribution for parameters given in
Fig. 5 is not rejected. By the same procedure, a set of 244 pairs of parameters are
obtained. It is worth noting that the well known flexibility of the Weibull distri-
bution gives rise to a minimum ¦2 statistic for all sets of data per station, when
compared with other distributions laws that are equally not rejected by the K-S test
(for instance, Normal, Lognormal, Erlang and Gamma).
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Now, the two parameters (k and c) obtained by the above described procedure
may be viewed as ‘new’ Regionalized Variables that summarize the local temporal
variability. The spatial variograms for these new variables are given in Fig. 6. These
variograms were built according to the usual Euclidean distance, since results are
similar to those obtained by applying other city metrics (like the Manhattan distance,
which is not suited to the irregular fabric of Porto’s streets).

Hence, conditions are met to estimate by ordinary kriging these two parameters
at every point of space located in the nodes of a dense mesh, providing the maps
given in Figs. 7 and 8.
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Fig. 7 Kriged map of k parameter
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Based on values of k and c provided by the model underlying the maps given in
Figs. 7 and 8, PDFs at any unsampled point are calculated by Eq. (1). Once obtained
the PDFs at the nodes of the same mesh corresponding to parameters k and c, values
for any quantile may be computed. For instance, medians of the temperature within
the city are depicted in the map of Fig. 9, providing the ‘general picture’ of the most
likely value of the variable to be controlled.

In addition to Fig. 9, such a control requires the identification of areas within the
city where temperature drops below 10ı, and others where it exceeds 25ı (according
to a consensus reached by climatologists and urban planners). These areas are given
in Figs. 10 and 11, under a probabilistic form derived from the corresponding PDFs.
On the grounds of maps of Figs. 10 and 11, whose reliability was assured by expert
knowledge (Monteiro, 1994), regions of extreme temperatures can be spotted. To
these regions, composed of sets of houses or other equipment, temperature control
devices or specific construction systems are foreseen by urban planning, in order to
reach prescribed comfort levels, based on minimum thermal stress.
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Fig. 8 Kriged map of c parameter

Fig. 9 Map showing the median temperatures in Porto city
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Fig. 10 Probability map of occurrence of temperatures below 10ı

Fig. 11 Probability map of occurrence of temperatures above 25ı

6 Discussion and Conclusions

The proposed approach addresses the space time geostatistical models in a simple
manner, by separating the two dimensions that are ontologically different. Assum-
ing that replications are representative of the temperature variability in time, and that
ancillary variables like elevation are not relevant for characterizing the climatology
of the city, advantage can be taken from the availability of a specific PDF for each
point of space, obtained by substitution in Eq. (1) of the local values of k and c pa-
rameters (as displayed in Figs. 7 and 8). Hence, all results that can be acquired when
an empirical PDF is at hand can be derived, in particular, the probability of exceed-
ing a given threshold (without calling for the indicator formalism, which entails
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a raw data transformation, referring to pre-defined limits). In this case, maps dis-
playing median temperature were complemented by plots, at the same scale, where
zones of extreme temperatures (as defined by climatology experts) can be spotted,
in terms of their probability of occurrence. In fact, a joint analysis of Figs. 9, 10
and 11 permits the accurate location of different zones of the city, with respect to the
space–time distribution of temperatures: the West region displays a time-persistent
temperate climate, due to oceanic influence; the Central region, corresponding to
the old ‘downtown’, exhibits the expected “urban heat island”; finally, the East re-
gion is the coolest all the year round, as a consequence of its geomorphological
configuration (a valley linking the city with semi-rural suburbs). This output may
be used as a reliable basis for designing specific climate regulating systems, such as
air-conditioners, and to developing construction or maintenance strategies aiming at
maximizing thermal comfort. Moreover, if some form of block kriging is required
(to estimate probabilities of extreme temperatures in a given spatial domain, for
instance, a zone in the city, a borough, or a given quarter), there is no need to in-
tegrate point values, since the approach is valid for any support by modifying the
second member of the ordinary kriging system, in order to account for point-block
covariances (Isaaks and Srivastava, 1989, p. 325). It is worth noting, according to
the same authors, that block kriging leads to smaller estimation errors than point
kriging averages.
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Integrating Meteorological Dynamic Data
and Historical Data into a Stochastic Model
for Predicting Forest Fires Risk Maps

Rita Durão and Amı́lcar Soares

Abstract This paper couples a dynamic model of meteorological risk of forest
fires with historical fire data in a stochastic model in order to predict forest fire
risk maps. Daily Severity Rating (DSR), a meteorological risk of forest fire index,
from the Canadian Forest Fire Weather Index System (CFFWIS), results from the
transformation of daily weather observations into relatively simple indices that can
be used to predict fire occurrence, behaviour and impact.

CFFWIS uses the daily weather observations or forecasts to calculate moisture
of several fuel types and size classes, and combines them into indices of fire danger
related to fire potential rate of spread, heat release, and fireline intensity.

The DSR index depends only on daily measurements of air temperature .ıC/,
relative humidity (%), 10 m open wind speed (km/h) and 24 h accumulated precip-
itation (mm). DSR is extremely important for forest fire risk assessment but it is
restricted to climatic factors.

DSR itself is an incomplete measure of seasonal fire activity because the latter is
also dependent on the ignition pattern and the available control resources.

Durão proposed one Bayesian approach to calculate the local conditional proba-
bilities of a forest fire occurring at any location x, given the class R.x/ of predicted
DSR for same location x. Suppose an indicator variable I.x/ that takes the value 1
if a fire occurred in x, otherwise I.x/ D 0. Let us call R.x/ as the classes of DSR
predicted for control points and inferred by simulation for any location x. In this
paper, we calculate the probability of a forest fire occurring in x, given R.x/ and
the historical data of fires occurrence in x, D.x/:

Prob fI.x/j R.x/; D.x/g

Both conditional probabilities Prob fI.x/jR.x/g and Prob fI.x/jD.:/g can be
inferred at any location x. Hence conditional probability can be calculated with the
method of Journel called tau model. Risk maps of forest fires can be driven from
these conditional probabilities.
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A study was conducted for the period 2000–2005, but in this case study only the
results for the 2 year period 2003–2004 of the Portuguese fire seasons are presented
and discussed.

1 Introduction

Fire danger rating systems like the Canadian Forest Fire Weather Index System
(CFFWIS) transform daily weather observations into relatively simple indices that
can be used to predict fire occurrence, behaviour and impact (Stocks et al., 1989).

The CFFWIS uses the daily weather observations or forecasts to calculate mois-
ture of several fuel types and size classes, and combines them into indices of fire
danger related to fire potential rate of spread, heat release, and fireline intensity. CF-
FWIS’s indices depend only on daily measurements of air temperature .ıC/, relative
humidity (%), 10 m open wind speed (km/h) and 24 h accumulated precipitation
(mm).

The Daily Severity Rating index (DSR) is an overall measure of the fire danger
and can be understood as a numeric rating of the difficulty of controlling fire and
is preferred for averaging meteorological risk of fire through time and across sites;
therefore, it is very useful for regional scale studies.

The DSR is based on the Fire Weather Index (FWI), resulting from a determinis-
tic model proposed firstly by Williams (1959) and modified later by Wagner (1970).
It has the following expression:

DSR D 0:0272 .FWI/1:77 (1)

However, the DSR itself is an incomplete measure of the fire’s risk because it only
accounts for meteorological factors while fire risk is also dependent on other fac-
tors, like the ignition pattern, fuel load type, topography, social factors and available
control resources. DSR values are highly variable in space and time, conforming
to different regional patterns. Consequently, for the same level of meteorological
risk of fire, different regions over Portugal present different ranges of DSR values.
For instance, in the northern part of Portugal, there are much lower DSR values
than in the southern part, so the meteorological risk of fire is more severe in South-
ern Portugal; nevertheless, there are many more fire occurrences and burnt areas in
the North than in the South. This means that this index has a great sensitivity to
regional meteorological patterns, but depends also of the non-meteorological fac-
tors and characteristics of each Portuguese region, namely vegetation cover and
human occupation which show dissimilar patterns in the south and north parts of
the country. The DSR threshold can be interpreted as an indirect measure of the
non-meteorological factors (anthropogenic, fuel load type, topography) that can
contribute to fire risk. That is, the higher is the threshold the greater is the influ-
ence of other non-meteorological factors on the risk of fire.
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The main idea of this present study is to use the DSR values and historical data
of large forest fires to calculate and predict the risk of fire.

Conditional probability of a forest fire occurrence at a given location, given the
meteorological risk predicted for the same location and the historical record of large
fires of the region, is evaluated with the tau model proposed by Journel (2002). For
assessing the spatial distribution of the fire risk conditional probabilities a geosta-
tistical stochastic simulation, namely Direct Sequential Simulation (Soares, 2001),
was used for the entire country in order to obtain several maps of forest fire risk
driven from these conditional probabilities.

A study was conducted for the period 2000–2005, but here we present only and
discuss the results for the 2003–2004 Fire Seasons and one prediction for a fore-
casted day, the 10th July 2006.

2 Materials and Methods

2.1 Meteorological and Forest Fire Data

The present analysis was applied to the so-called fire season in Portugal, defined
here as starting on May 1st and ending on September 30th, for the 2 year period
2003–2004.

Meteorological data to calculate DSR values were obtained from 15 meteorologi-
cal monitoring stations spatially distributed over Portugal where the fire occurrences
were recorded (see Fig. 1).

The fire data used in this study were provided by the provided by the National
Forestry Authority Detailed statistics for forest fires in Portugal are available since
1980 (http://www.afn.min-agricultura.pt/portal/dudf).The dataset includes informa-
tion on fire location organized by district, municipality (LAU I) and civil parish
(LAU II) levels, date and time of ignition and extinction, and burnt land cover type
(forests, scrublands and agricultural crops).

2.2 Method for Forest Fire Risk Assessment

Durão (2006) proposed a method to obtain the Portuguese Fire Risk through Bayes
Formalism.

Let us consider an indicator variable I.x/ that takes the value I.x/ D 1 if a fire
occurs at a location x in a given day with a measurable value of burnt area greater
than 1 ha; I.x/ D 0, otherwise.

The fire risk could be expressed as the conditional distribution P ŒI.x/jR.x/�,
where R.x/ is a given class of the meteorological risk (DSR) at a municipal-
ity x which is usually divided in classes of severity, i.e. R.x/ is the DSR’s class
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Fig. 1 Localization of the
meteorological monitoring
stations over Portugal

predicted for any municipality x. The marginal probability of fire P ŒI.x/� at a given
municipality was computed with the historical data (Durão et al., 2008) and the
objective was to calculate the risk of fire, given the predicted meteorological risk
DSR for a given time period. This a priori probability P ŒI.x/� was obtained by
averaging the output values of the function I.x/.

The proposed model (Durão, 2006) used DSR and fire data to up-date the a priori
probability P ŒI.x/� into a posteriori P ŒI.x/jR.x/�, through the Bayes formalism:

P ŒI.x/jR.x/� D P .R.x/jI.x// : P.I.x//

P.R.x//
(2)

The DSR values had been summarized in just two classes: High Risk (HR) and Low
risk (LR) classes. The DSR’s regional critical value that splits HR and LR must lead
to high/moderate a posteriori risk of fire, such that:

P ŒI.x/jR.x/� >D 0:65: (3)

and these regional thresholds can also be used to evaluate the dynamic evolution of
local regions regarding the non-meteorological factors (Durão et al., 2008).
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In this present work, the main goal is to calculate the probability of a forest fire
occurrence in a municipality x, given R.x/ and the historical data of fire occurrence,
D.x/:

Prob fI.x/jR.x/; D.x/g (4)

D.x/ is the relative number of times that a given location x has burnt in a past
period. The conditional probability of expression (4) will be obtained through the
tau model formalism.

2.3 Tau Model

Both conditional probabilities ProbfI.x/jR.x/g and ProbfI.x/jD.x/g can be in-
ferred at any municipality x. Hence the conditional probability (3) can be calculated
using the tau model (Journel, 2002; Caers and Hoffman, 2006),

Prob .AjB; C/ D 1

.1 C X/
(5)

with
x

a
D
�

b

a

��1 � c

a

��2

, and where,

b D .1 � Prob .A j B//=Prob .A j B/; c D .1 � Prob .A j C/=Prob .A j C/;

a D .1 � Prob .A//=Prob .A/:

Setting �1 D �2, Journel (2002) had shown that Eq. (5) is equivalent to the hypoth-
esis of conditional independence:

Prob .A j B; C/ D .Prob .B j C; A/ P.A//=.Prob .B j C/

� ..Prob .B j A/ .Prob .C j A/ Prob .A//=P.B; C//

The �-values in Eq. (5) allow modelling explicitly the dependency between the B
and C data. These �-values can be interpreted as “weights” given to each data type
(Journel, 2002). Assuming conditional independence �1 D �2 D 1 results in a very
particular dependency model, that must always be validated for each case study. In
this present work we had considered conditional independence of meteorological
factors R.x/ and the historical data of fires D.x/.

Hence the expression (5) becomes:

Prob .I.x/ j R.x/; D.x// D 1=.1 C x/ (6)

where, x=I.x/ D .R.x/=I.x//.D.x/=I.x//.
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2.4 Spatial Pattern Assessment

The conditional probabilities – ProbfI.x/jD.x/g; Prob ŒI.x/jR.x/� and Prob
fI.x/jR.x/; D.x/g – were computed for each Fire Season. Then, the spatial
correlation between meteorological monitoring stations was generalized in a
correlation function of distance between any two points, the semivariogram, which
summarizes the main spatial continuity patterns of all the obtained conditional
probabilities. Afterwards, a stochastic simulation (direct sequential simulation) is
used to evaluate the mean spatial pattern and the local variability of the conditional
probabilities. The chosen geostatistical methodology follows two steps:

– In a first step DSR values and the conditional probabilities of the risk of fire were
computed for each station and then space–time correlations (semivariograms)
were obtained.

– In the second one, a stochastic simulation (direct sequential simulation) is used
to evaluate the mean spatial pattern and the local variability of the DSR and of
the conditional probabilities.

The direct sequential simulation approach (Soares, 2001) is used also to illustrate
the results of the spatial patterns of those conditional probabilities. The spatial dis-
tributions of the fire’s risk probabilities are visualised with maps generated by the
simulation algorithm on a 1;000 � 1;000 m grid, using the spatial semivariogram
models previously fitted for each fire season. The simulation algorithm generates
a set of realisations of the spatial phenomena that roughly reproduces the a priori
probability and the spatial covariances (variograms) of the computed a posteriori
probabilities. In this case, for each fire season, 100 equiprobable simulated images
were computed and, means and variances were calculated for each pixel generating
new maps. Average maps (images) give a mean image of the conditional probabili-
ties, per fire season, while the local variability maps enable quantification of spatial
variability/homogeneity of each variable per fire season too.

3 Results and Discussion

The data for this study consisted on the series of maps from the historic fire oc-
currence events of the Portuguese fire database and the meteorological factor R(x)
calculated for each monitoring station.

For illustration purposes the following outputs for the 2003–2004 Fire Seasons
and one prediction for a forecasted day, the 10th July 2006, are presented:

� Marginal probability of a forest fire occurrence given the historical data of fire
occurrence, ProbfI.x/jD.x/g

� Conditional probability values, ProbfI.x/jR.x/g- probability of having a fire oc-
currence in x given a priori a High Risk class, calculated with Bayes’s law (Durão
et al., 2008)
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Fig. 2 Probability maps for 2003’s fire season: (a) fire occurrence historical data, ProbfI(x)jD(x)g;
(b) conditional probability, ProbfI(x)jR(x)g; (c) tau model’s probability, Prob fI(x)jR(x), D(x)g;
(d) difference between ProbfI(x)jR(x)g and Prob fI(x)jR(x), D(x)g

� Conditional probability values, Prob fI.x/jR.x/; D.x/g- probability of a forest
fire occurrence in x, given R(x) and the historical data of fire occurrence, D(x),
calculated with the tau model’s formula

� Difference between the conditional probability ProbfI.x/jR.x/g and Prob
fI.x/jR.x/; D.x/g

The first output, Fig. 2, presents the Probability Maps of the Fire Season in 2003.
The spatial distribution of the probability of a forest fire occurrence given the his-
torical data (Fig. 2a) shows greater probability of fire occurrence in the Northern
Portugal, where the majority of the forests and scrublands are located.

The second map, (Fig. 2b), shows the probability of fire occurrence given
the predicted DSR High Risk class for all Portuguese municipalities, with
ProbfI.x/jR.x/g >D 0:65 (Durão et al., 2008) and this spatial pattern shows
the regions with higher probability of fire located mainly in the Northwest, in the
centre of the country, having the main conditional probability of fire occurrence in
the northern part of Portugal. The great majority of fires and burnt area took place
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Table 1 Probabilities per each Portuguese municipality, 2003 fire season – fire occurrence
historical data, ProbfI(x)jD(x)g; conditional probability, ProbfI(x)jR(x)g; tau model’s proba-
bility, Prob fI(x)jR(x), D(x)g; difference between ProbfI(x)jR(x)g and Prob fI(x)jR(x), D(x)g,
“Delta Tau Bayes”

Municipalities P(I(x)jD(x)) P(I(x)jR(x)) P(I(x)jR(x),D(x)) Delta Tau Bayes

V. Castelo 0.39 0.75 0.82 0.07
Porto PR 0.27 1 1 0
Coimbra 0.36 0.71 0.78 0.06
Faro 0.06 0.1 0.02 �0:08

Evora 0.08 0.27 0.08 �0:19

Viseu 0.65 1 1 0
Beja 0.04 0.13 0.02 �0:12

V. Real 0.34 0.76 0.81 0.04
C. Branco 0.33 1 1 0
Portalegre 0.06 0.23 0.04 �0:18

Bragança 0.26 0.62 0.59 �0:03

Guarda 0.42 0.83 0.9 0.07
Leiria 0.34 1 1 0
Santarém 0.44 1 1 0
Setúbal 0.24 0.5 0.44 �0:06

in Northern Portugal in 2003 and the model result fits quite well with results offi-
cially published for 2003, accordingly with the National Forestry Authority reports
(http://www.afn.min-agricultura.pt/portal/dudf).

The tau model’s probability map (Fig. 2c) presents a similar spatial pattern as the
previous map with higher conditional probabilities of fire, ProbfI.x/jR.x/; D.x/g,
located in the Northwest and the Central part of the country. In order to assess and
compare the results between the conditional probability ProbfI.x/jR.x/g and tau-
model’s probabilities differences between both maps were computed (Fig. 2d) and
it shows that the tau model weights more the historical data than the conditional
probability ProbfI.x/jR.x/g (see Table 1).

Identical conclusions can be made with the 2004 fire season example (Fig. 3).
The spatial distribution of the probability of a forest fire occurrence given the

historical data (Fig. 3a) shows greater probability of fire occurrence in Northern
Portugal, where the majority of the forests and scrublands are located. The second
map, (Fig. 3b), shows the probability of fire occurrence given the predicted DSR
High Risk class for all Portuguese municipalities, and its pattern shows the regions
with higher probability of fire located in the Northeast, Northwest, in the centre and
South coast of the country, with the main conditional probability of fire occurrence
in the northern part of Portugal.

The great majority of fires and burnt area took place North of the Tejo River
and in Algarve (Southern Coast) in 2004 and besides having data for only 15
municipalities, the model result fits quite well with what happened and was offi-
cially published for 2004, accordingly with the National Forestry Authority reports
(http://www.afn.min-agricultura.pt/portal/dudf).
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Fig. 3 Probability maps for
2004’s fire season: (a) fire
occurrence historical data,
ProbfI(x)jD(x)g; (b)
conditional probability,
ProbfI(x)jR(x)g; (c) tau
model’s probability, Prob
fI(x)jR(x), D(x)g; (d)
difference between
ProbfI(x)jR(x)g and Prob
fI(x)jR(x), D(x)g

The tau model probability map (Fig. 3c) presents a similar spatial pattern
as the previous map (Fig. 2b) with higher conditional probabilities of fire,
Prob fI.x/jR.x/; D.x/g, located in the Northeast, Northwest, Centre and South
coast of the country. In order to compare the results between the conditional prob-
abilities ProbfI.x/jR.x/g and fI.x/jR.x/; D.x/g a difference map was computed
(Fig. 3d).

The tau model combination results shows the influence of combining this
additional information (historical data) into the a posteriori conditional proba-
bility ProbfI.x/jR.x/g (see Table 2). If ProbfI.x/jR.x/g is high (say 0.75), but
the probability conditioned to historical data ProbfI.x/jD.x/g is low (say 0.05)
the tau model tends to give a low final result (0.31); otherwise if the probability
conditioned, to historical data ProbfI.x/jD.x/g is relatively high (say 0.41) the tau
model tends to give a higher final result (0.74) than ProbfI.x/jR.x/g (0.56). Hence
the obtained results of the tau model show a very promising path for the assessment
of risk of fires by providing a means to combine multiple sources of information.

Analogous risk maps are also presented for a forecasted day, the 10th July
2006 (Fig. 4, Table 3). For the forecasted day in 2006 historical data of 2003 and
2004 were used (Fig. 4a). The map of meteorological fire risk Prob ŒI.x/jR.x/�

(Fig. 4b) shows a quite similar pattern of the tau model’s probability map (Fig. 4c),
with higher conditional probabilities of fire, ProbfI.x/jR.x/; D.x/g, around 100%
(Fire forecast), located also in the northern coast of the country and in the Castelo
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Table 2 Probabilities per each Portuguese municipality, 2004 fire season – fire occurrence
historical data, ProbfI(x)jD(x)g; conditional probability, ProbfI(x)jR(x)g; tau model’s proba-
bility, Prob fI(x)jR(x), D(x)g; difference between ProbfI(x)jR(x)g and Prob fI(x)jR(x), D(x)g,
“Delta Tau Bayes”

Municipalities P(I(x)jD(x)) P(I(x)jR(x)) P(I(x)jR(x),D(x)) Delta Tau Bayes

V. Castelo 0.42 0.82 0.91 0.1
Porto PR 0.24 0.47 0.47 0
Coimbra 0.05 0.71 0.33 �0:38

Faro 0.11 1 1 0
Evora 0.05 0.75 0.31 �0:44

Viseu 0.38 1 1 0
Beja 0.05 0.48 0.12 0.36
V. Real 0.46 1 1 0
C. Branco 0.41 0.56 0.74 0.18
Portalegre 0.05 0.27 0.05 �0:22

Bragança 0.25 1 1 0
Guarda 0.29 0.45 0.51 0.06
Leiria 0.29 0.48 0.54 0.06
Santarém 0.33 1 1 0
Setúbal 0.24 1 1 0

Fig. 4 Probability maps for
the forecasted day, 10th July
2006: (a) fire occurrence
historical data,
ProbfI(x)jD(x)g; (b)
conditional probability,
ProbfI(x)jR(x)g; (c) tau
model’s probability, Prob
fI(x)jR(x), D(x)g; (d)
difference between
ProbfI(x)jR(x)g and Prob
fI(x)jR(x), D(x)g
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Table 3 Probabilities per each Portuguese municipality for the forecasted day, 10th July
2006 – fire occurrence historical data, ProbfI(x)jD(x)g; conditional probability, ProbfI(x)jR(x)g;
tau model’s probability, Prob fI(x)jR(x), D(x)g; difference between ProbfI(x)jR(x)g and Prob
fI(x)jR(x), D(x)g, “Delta Tau Bayes”

Municipalities P(I(x)jD(x)) P(I(x)jR(x)) P(I(x)jR(x), D(x)) Delta Tau Bayes

V. Castelo 0.42 0.76 0.88 0.1
Porto PR 0.24 1 1 0
Coimbra 0.05 1 1 �0:38

Faro 0.11 0.52 0.3 0
Evora 0.05 0.36 0.08 �0:44

Viseu 0.38 0.47 0.63 0
Beja 0.05 0.68 0.24 0.36
V. Real 0.46 0.28 0.51 0
C. Branco 0.41 0.25 0.43 0.18
Portalegre 0.05 0.10 0.02 �0:22

Bragança 0.25 0.43 0.44 0
Guarda 0.29 1 1 0.06
Leiria 0.29 0.47 0.54 0.06
Santarém 0.33 0.52 0.63 0
Setúbal 0.24 0.44 0.44 0

Branco’s region and in the remaining areas of the country, the probabilities were
again much lower, near 0% (No Fire forecast) in the same regions and also in the
southern part of the country. The spatial distribution of the differences between the
forecasted conditional probability Prob ŒI.x/jR.x/� and tau model’s probabilities
shows again that tau model weights more the historical data than meteorological
risk given by the conditional probability Prob ŒI.x/jR.x/� (Fig. 4d).

4 Conclusions

In the present work, we propose an approach forest fire risk assessment in Portugal
by using the tau model formalism.

Firstly Bayes’ law (Durão et al., 2008) was applied to get the risk of fire given by
the conditional probabilities at each municipality x, and then the tau model combina-
tion (Journel, 2002) is applied to calculate the probability of a forest fire occurrence
in x, given R.x/ and the historical data of fire occurrence, D(x).

The tau model combination results had showed the influence of combining ad-
ditional information, the historical data in this case study, into the a posteriori
probability ProbfI.x/jR.x/g. The obtained results show a very promising path for
assessment of the risk of fires by providing a means to combine multiple sources
of information using this formalism. Therefore, the proposed model shows an
improvement regarding the simple use of local conditional probabilities to meteoro-
logical risk of fire, DSR and regardless of having data from only 15 municipalities
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it reproduces reasonably what was officially published for 2003 and 2004 fire
seasons, according to the National Forestry Authority report (http://www.afn.min-
agricultura.pt/portal/dudf).

We intend to apply this methodology to all the municipalities of the 18 districts of
Continental Portugal, in order to obtain more realistic and helpful risk maps which
could be updated on a daily basis.
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Using Geostatistical Methods in the Analysis
of Public Health Data: The Final Frontier?

Linda J. Young and Carol A. Gotway

Abstract Geostatistical methods have been demonstrated to be very powerful
analytical tools in a variety of disciplines, most notably in mining, agriculture, me-
teorology, hydrology, geology and environmental science. Unfortunately, their use
in public health, medical geography, and spatial epidemiology has languished in
favor of Bayesian methods or the analytical methods developed in geography and
promoted via geographic information systems. In this presentation, we provide our
views concerning the use of geostatistical methods for analyzing spatial public health
data. We revisit the geostatistical paradigm in light of traditional analytical examples
from public health. We discuss the challenges that need to be faced in applying geo-
statistical methods to the analysis of public health data as well as the opportunities
for increasing the use of geostatistical methods in public health applications.

1 Introduction

Analysis of spatial data has come to be important for many studies in public health,
medical geography and spatial epidemiology. Whereas geostatistical methods have
been used extensively in a variety of disciplines, including mining, agriculture, me-
teorology, hydrology, geology and environmental science, they have found only
limited application in health studies where Bayesian methods and analytical meth-
ods developed in geography and implemented in geographic information systems
have dominated. Here, we consider some of the challenges encountered in our ef-
forts to use geostatistical methods for analyzing spatial public health data and some
of the solutions that have been proposed. This is not meant to be a comprehensive
list, but one that reflects our experiences and identifies needs for additional research.
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2 Motivating Study

Our work with Florida’s Environmental Public Health Tracking (EPHT) effort pro-
vides the motivating study (Young et al., 2008). Part of Florida’s efforts to move
toward implementation of EPHT is to develop models of the spatial and temporal
association between myocardial infarctions (MIs) and the changing levels of ozone
in outdoor air for Florida. To accomplish this, as with the majority of studies re-
lating environmental changes to public health, especially those that are national or
regional in scope, the analysis is based on pre-existing data. Florida’s Department of
Environmental Protection (FDEP) provided ozone measurements, recorded from a
network of 48 air monitors placed throughout the state. Florida’s Agency for Health
Care Administration (AHCA), consistent with a data sharing agreement, provided
all admissions to Florida’s public and private hospitals where either the primary
or secondary cause of admission was MI (International Classification of Diseases,
10th Revision (ICD-10) codes 410.0–414.0 [World Health Organization]). ACHA
also provided both the zip code and county of residence for each patient’s record
and selected patient demographic information, including sex, age, and race/eth-
nicity. Selected sociodemographic data (age, race/ethnicity, sex, education) were
obtained from the U.S. Census Bureau. Additional sociodemographic data were
obtained from CDC’s Behavioral Risk Factor Surveillance System (BRFSS). For
March, 2001, the number of MI admissions per 10,000 population and the 48 ozone
monitors functioning that month, are displayed in Fig. 1 (see Young et al., 2008 for
full details).

3 Challenges for Public Health

3.1 Spatial Support

As illustrated in our Florida study, increasingly interest extends beyond the simple
reporting of incidence or risk and turns to relating these responses to potential ex-
planatory variables. As is also common, the variables used in each of these studies
were collected from disparate sources and must be linked on a common set of spa-
tial units for analysis. Moving from one set of spatial units to another can result
in several challenging change of support problems (see Gotway and Young 2002
for a review). Most of the early geostatistical work on change of support problems
was motivated by mining applications in which the inferential unit of interest was a
block of ore. The rectangular shape of blocks made it possible to use a regular grid
to discretize the blocks into points and approximate the integrals needed for block
kriging using just a relatively few number of points. However, applications in the
public health field call for a reassessment and extension to this and other geostati-
stical approaches.

First, the “blocks” are seldom rectangular in shape or consistent in size. As an
example, note that the Florida counties (Fig. 1) vary considerably in size and are
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Fig. 1 The number of MI cases per 10,000 population recorded for each Florida county during
March 2001 and the location of the ozone monitors functioning during that month

irregular in shape. This is typical of the postal codes, political boundaries, and cen-
sus administration units often used in public health studies. Here we wanted to use
the 48 ozone monitors functioning during March, 2001, to obtain an average max-
imum ozone value for each county. A regular grid was placed across all of Florida,
and three counties did not have any grid points or monitors falling within them. One
option was to make the grid very fine. This would have slowed computations tremen-
dously and is inefficient because the larger counties would be over-characterized.
Alternatively, we augmented the grid with a finer sub-grid for those three counties.
Is this the best approach?

A second challenge results from the different change of support problems en-
countered in public health, often arising from data confidentiality concerns. Typi-
cally, the change of support problem is not one of upscaling (or aggregation). As an
example, the incidence of low birth weight babies is available at the county level,
but interest lies in incidence of low birth weight babies at the census tract level
(Gotway and Young, 2007). This downscaling (or disaggregation) should ideally
preserve the pycnophylactic property (Tobler, 1979) that the number of low birth
weight babies from the census tracts within a county should equal the county total.
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As another example, health outcomes are generally reported on the zip code level,
but demographic data are provided on the census tract level. Here the spatial units
from the two sources overlap and “side-scaling” is needed to properly assign demo-
graphic data to zip code units. Gotway and Young (2007) generalized geostatistical
methods, which have historically focused on upscaling, for use in general change-
of-support problems, including upscaling, down scaling, side-scaling, and intensity
estimation.

We should acknowledge that, in many studies, the change-of-support problem is
ignored, primarily due to the complexity of the solution proposed and the lack of
software. For example, when working with the March ozone data, one suggested
approach was to identify proxy monitors that would represent the ozone values for
any county without a monitor, an approach that does not address support, but greatly
simplifies the computational issues. Similarly, the non-geostatistical methods that
have been proposed for change-of-support often do not consider the support of the
data (e.g., proportional allocation, centroid smoothing). Further, instead of explic-
itly accounting for support in a geostatistical approach, Diggle and Robeiro (2007)
suggest that an alternative approach is to partition the spatial region into n discrete
spatial units, each with a response variable yi ; i D 1; : : : ; n, and then model the
multivariate distribution for the random variable Yi . Undoubtedly, accounting for
support in spatial analysis is challenging, both theoretically and computationally.
However, in mining, accounting for support was found to be critically important
and predicting a spatial average is very different from simply predicting an average
at a point. The lesson likely holds for public health as well, and we should learn
from the mining experience where accurate block-grade predictions and inferences
are critical to the profits of the industry.

3.2 Discrete Distributions

Geostatisticians working in public health and other application areas have responded
to the need for new methods for discrete distributions, especially the Poisson and bi-
nomial distributions. Unlike the Gaussian distribution, the variance of any discrete
probability distribution depends on the mean. For the Poisson, the mean and vari-
ance are equal; for the binomial, the variance is equal to the mean multiplied by a
constant that is less than one. The Box-Cox family of transformations includes trans-
formations which stabilize variance, and using the appropriate transformation from
this family in a trans-Gaussian kriging (Schabenberger and Gotway, 2005, pp. 270–
277) formulation may work well. However, models that explicitly account for the
variance–mean relationships inherent in many discrete distributions are warranted
for applications to other disciplines such as public health.

Poisson kriging was developed by Monestiez et al. (2005, 2006) for mapping the
spatial distribution of fin whales and used to predict cancer mortality rates in a public
health setting by Goovaerts (2005). In the public health context, we have Z.Bi /, the
count or total number of disease cases over the i th region with population n.Bi /
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at risk. Thus, R.Bi / D Z.Bi /=n.Bi / is the incidence proportion for region Bi ,
Assume that

˚
�.s/js 2 D � <2


is an unobserved intensity process, with œ.s/ � 0

for all s in D. Assume this process has mean �� and covariance function C��.si; sj/.
Further assume that, conditional on this process, the observed frequencies (counts),
Z.Bi /, associated with an areal region Bi are independent Poisson random variables
with means and variances both equal to �.s/n.Bi /. If we assume a linear prediction
function for �.s/, then the predictor of the intensity process at location s0 is

O�.s0/ D
NX

iD1

wi R.Bi /;

where N is the number of regions and optimal weights, wi , can be obtained by
solving

NP
kD1

wk

h
CRR.Bi ; Bk/ C ıik

��

n.Bi /

i
C m D C�R.s0; Bi /; i D 1; : : : ; n

NP
kD1

wk D 1:

Here ıik D 1 if Bi D Bk and 0 otherwise, �� is an estimate of the mean of R.:/, and
m is a Lagrange multiplier. A key to the estimation process is estimation of the point-
support covariance function from which the cross-covariance function between the
intensity process and the observed frequencies is determined. In an effort to ad-
just for heterogeneous variances, Monestiez et al. (2005, 2006) proposed weighting
the difference pair by the corresponding population sizes. Extending the ideas of
Mockus (1998), Goovaerts (2008) proposes an iterative deconvolution method. Here
too is a change of support problem: �.si/ is assumed to be of point-support, but
R.Bi/ is aggregated over areal regions. Binomial kriging (McNeill, 1991) has a
similar derivation and leads to comparable challenges.

Gotway and Stroup (1997) developed models for generalized linear models, of
which the Poisson and binomial are special cases. In an approach similar to that of
trans-Gaussian kriging, they used Taylor series to linearize the problem so that the
usual kriging predictor is optimal, but with variance-mean relationships built into
models for spatial dependence. Gotway and Wolfinger (2003) compare these models
to those conditioned on a latent process as in Poisson kriging, binomial kriging, and
model-based geostatistics. Their results indicate that while conditionally-specified
models can be used to build complicated, non-stationary models, they tended to
under-predict both counts and rates and may severely over-estimate prediction un-
certainty for data sets with moderate-to-large marginal spatial autocorrelation. The
marginal models allow us to move away from any Gaussian assumptions and em-
ploy methods similar in form to least squares estimation. However, the estimation
algorithm was not as stable for these models, and the predictions tended to vary
more than those from the conditional model. Ordinary or universal kriging, with a
semivariogram weighted inversely proportional to the assumed variance of the data
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(in this case, inversely proportional to n.Bi// worked surprisingly well, demonstrat-
ing what most geostatistical practitioners have observed time and again: ordinary
kriging is relatively robust to a variety of violations in assumptions. Although pre-
dictions may not be theoretically optimal, they are not grossly inaccurate either.
Nevertheless, models that better describe the nature of the problem and the proper-
ties of the data are intuitively more appealing.

With both Poisson and binomial kriging, and marginal generalized linear models,
two issues have yet to be fully addressed. One important issue is that, in geostatis-
tical modelling, we are working with multivariate data and we need an underlying
joint multivariate distribution for valid inference. Although this may appear to be a
simple theoretical nuisance, the lack of such a multivariate distribution can cause
difficulties, such as “covariance” matrices that are not positive definite, numeri-
cal instability, and order-relations problems, in some practical applications. Herein
lies the problem with the non-parametric indicator approaches and Poisson, bi-
nomial, and generalized linear model approaches. A classic example is indicator
kriging which predicts probabilities, which, theoretically, should by contained in
[0,1]. However, any user of indicator methods has obtained predicted probabilities
outside this range.

A number of the challenges arise in constructing non-Gaussian, multivariate
distributions with specified correlation structure, marginal distributions, and con-
ditional distributions (see Schabenberger and Gotway, 2004, pp. 192–195, for a full
discussion). Constraints on the correlation exist for many multivariate distributions
that are not constructed from an underlying multivariate Gaussian distribution. As
an example, the multivariate binomial permits only negative correlations (Mardia
1970). For other models, no such multivariate distribution exists. For example, no
multivariate distribution exists having both marginal and conditional distributions
of Poisson form (Mardia, 1970).

Generating multivariate distributions sequentially from specified conditions
overcomes some of these difficulties. In Bayesian hierarchical modeling, this se-
quential conditioning approach is used to generate fairly complex multivariate
distributions, but the properties of the resulting distribution may not always be
clear. As an example, suppose Z1.s/ is a second-order stationary process with
EŒZ1.s/� D 1 and CovŒZ1.u/; Z1.u C h/� D ¢2	1.h/. A simplified version of
a common model used for modeling and inference with count data is obtained by
conditioning Z2.s/, a white noise process with mean and variance given by

EŒZ2.s/jZ1.s/� D expfx.s/0ˇgZ1.s/ � �.s/; VarŒZ2.s/jZ1.s/� D �.s/

on Z1.s/. The marginal mean EŒZ2.s/ D exp fx.s/0“g, depends only on the un-
known parameter “, and the marginal variance, VarŒZ2.s/� D 
.s/ C ¢2
.s/2,
allows overdispersion in the data Z2.s/, making the model attractive. Now, consider
the marginal correlation of Z2.s/

CorrŒZ2.s/; Z2.s+h/� D 	1.h/h�
1 C 1

�2�.s/

� �
1 C 1

�2�.s+h/

�i1=2
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If �2; �.s/, and �.s C h/ are small, CorrŒZ2.s/; Z2.s C h/� << 	1.h/. Thus,
while the conditioning induces both overdispersion and autocorrelation in the Z2

process, the marginal correlation has a definite upper bound and so may not be a
good model for highly correlated data. Most Bayesian models have a similar con-
straint built in, although it is often difficult to test either theoretically or empirically.

The second fundamental issue is that the marginal variance and the covariance
function depends on n.Bi / (e.g., Goovaerts, 2005; Monestiez et al., 2005, 2006).
Thus, neither Poisson nor binomial kriging are based on an intrinsically stationary
process. Weighting the empirical semivariogram by factors that are inversely propor-
tional to the standard deviation of the data (Goovaerts, 2005; Monestiez et al., 2005,
2006) ameliorates the problem. However, the semivariogram of the data process is
only estimable (and arguably only defined) for intrinsically stationary processes.
This problem of non-stationarity affects the validity of all the geostatistical tools
such as measures of autocorrelation, spatial prediction, and geostatistical simula-
tion methods. Moreover, covariates may not be spatially continuous and are often
categorical. Thus, non-stationarity arises in two ways: differing populations and the
need to adjust for covariates. Although most geostatistical tools are robust to depar-
tures from the assumption of stationarity, the lack of a more general paradigm may
prevent their wide-spread adoption in public health.

More sophisticated models for prediction with discrete distribution have also
been developed, including disjunctive kriging methods and isofactorial models (e.g.,
Rivoirard, 1994) and Bayesian methods (Diggle et al., 1998). Unfortunately, none
of these approaches is ready for routine use, and the general Bayesian methods have
yet to be extended to complex change of support problems.

Given the above discussion, the reasons for the popularity of the multivariate
Gaussian distribution are evident. It has a closed form expression, permits pairwise
correlations in .�1; 1/, each .Zi ; Zj / has a bivariate Gaussian distribution, all
marginal distributions are Gaussian, and all conditional distributions are Gaussian.
Moreover, tractable multivariate distributions, such as the multivariate lognormal
and the multivariate t-distribution can be derived from the multivariate Gaussian.
The Gaussian distribution has truly earned its unique place in geostatistical theory.
Thus, for our motivating study, instead of using methods developed for discrete
distributions, the incidence of MI at the county level was indirectly standardized
by age, sex, and education to the Florida population and the standardized event
ratio (MI SER) computed. The MI SER was log-transformed (denoted by ln(SER)
because the natural logarithm was taken) so that the assumptions of linear regression
(normality and constant variance) would be more nearly met.

3.3 Spatial Regression

The traditional analytical approach, referred to here as global regression, is to
conduct a multivariate linear regression analysis relating the health outcome to po-
tential predictors with adjustments for sociodemographic variables (e.g., education,
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income, and percentage of smokers). For our study, a weighted regression was con-
ducted with the weight being equal to the expected MI SER, and the coefficient on
ozone was exponentiated to obtain the relative MI SER from the regression.

Just as ozone levels and the number of MI cases can vary over the state, the
relative MI SER could also vary over the state. Hastie and Tibshirani (1993) intro-
duced varying coefficient models, a class of regression and generalized regression
functions in which the coefficients are allowed to vary as smooth functions of other
variables. Müller (1998) adapted this idea to the spatial case and referred to the ap-
proach as local regression. Independently, Brunsdon et al. (1996) adapted the idea
of varying coefficient models to the spatial case and called their method geographi-
cally weighted regression. More generally, when regression coefficients are assumed
to vary smoothly over space, the models are referred to as spatially varying coeffi-
cient models (Gelfand et al., 2003).

To fit a local regression model, ideas from local smoothing and kernel regres-
sion are used to define spatial neighborhoods. The regression is performed by using
only data in the spatial neighborhoods. As a consequence, the error terms are not
necessarily constant for all locations. Further, because the spatial neighborhoods as-
sociated with different points in space overlap, the same data are used more than
once to estimate all the spatial regression parameters. Local regression models are
appealing because we expect risk to change over space as well as with time, and
this can be an important outcome for public health studies. Yet this method has
open questions. Because the same data are used more than once to estimate all the
spatial regression parameters .ˇs/, a correlation structure is induced among the ˇs.
One consequence of this correlation might be overly smoothed predictions. In our
motivating study, the estimated relative MI SERs are much smoother than either
the MI SERs or the predicted ozone values. This phenomenon can be observed for
other, similar local regression models for both frequentist (as presented here, see
also Nakaya et al., 2005) and Bayesian analyses (e.g., Waller et al., 2007). As is
often the case with Bayesian analyses, the local regression models are overparam-
eterized, and assumptions (e.g., the form of the prior distributions) allow one to
proceed with the analyses. In local regression, as in other analyses using overpa-
rameterized models, the impact of the assumptions is not fully evident.

Health outcomes are likely to depend on more than one environmental factor
(e.g., the ozone levels considered here). This leads us to include other explanatory
variables (e.g., PM2.5) in the models. Wheeler and Tiefelsdorf (2005) concluded
that, for local regression, multicollinearity among the coefficients at a single loca-
tion and the overall correlation between coefficients associated with two different
explanatory variables (e.g., ozone and PM2.5) can make interpretation of the model
coefficients problematic. Their results indicate that the collinearity among local re-
gression coefficients might be present even if the process generating the explanatory
variables leads them to be uncorrelated. This collinearity is likely caused by implicit
conditions that are placed on the parameters during the estimation process. This is an
open question worthy of further research, as is the more general concern of valid in-
ference from all local regression models, because they were designed as exploratory
smoothing methods and not inferential statistical tools.
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4 Conclusions

Throughout this work, we have been critical of the existing methods as they related
to public health studies. Our goal has been to emphasize the vast opportunities for
research on important geostatistical issues. Here we want to take time to applaud
the authors whose work we have critiqued. Although we have pointed out areas that
need further development, we are encouraged that efforts are being made to address
complex issues that arise.

Discrete and, more generally, non-Gaussian data are common in public health
studies. Satisfactory multivariate non-Gaussian models have severe limitations. Ei-
ther we do not get the marginal or conditional distributions that are desired or the
choice of covariance structures is severely limited. Is the best solution to transform
the data so that it is at least approximately normal and to then rely on the robustness
of the standard geostatistical methods? Or, even with the disadvantages outlined
here, is it better to use methods such as Poisson kriging? Is there a better approach?
These are examples of the basic guidance that those working in public health need
if geostatistical methods are to find broader application.
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Second-Order Analysis of the Spatio-temporal
Distribution of Human Campylobacteriosis
in Preston, Lancashire

Edith Gabriel and Peter J. Diggle

Abstract We propose a method for analysing inhomogeneous spatio-temporal
point process data by extending Baddeley’s et al. (2000) inhomogeneous K-function
to the spatio-temporal setting. We develop a non-parametric estimator of the space–
time inhomogeneous K-function. We then apply the estimator to data on the spatio-
temporal distribution of human campylobacteriosis cases in an area of north-west
England and investigate evidence for spatio-temporal clustering and spatio-temporal
interaction using tests based on this estimator.

1 Introduction

Campylobacter is the most commonly identified cause of bacterial gastro-enteritis
in the developed world. Amongst the campylobacter species pathogenic to humans,
90% of disease is caused by campylobacter jejuni and most of the rest by campy-
lobacter coli. Incidence of campylobacteriosis is typically sporadic, with a strong
seasonal variation which rises sharply in spring and peaks in summer. In this paper,
we shall analyse a data-set consisting of the locations and dates of notification of all
cases of campylobacteriosis notified to the Preston Microbiology Services Labora-
tory in the Preston postcode district (Lancashire, England) between January 1st 2000
and December 31st 2002. These data can be considered as a single realisation of
a spatio-temporal point process displaying a highly aggregated spatial distribution.
As is common in epidemiological studies, the observed point pattern is spatially and
temporally inhomogeneous, as the pattern of incidence of the disease reflects both
the spatial distribution of the population at risk and systematic temporal variation

E. Gabriel (�)
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in risk. When analysing such spatio-temporal point patterns, a natural starting point
is to investigate the nature of any stochastic interactions amongst the points of the
process after adjusting for spatial and temporal inhomogeneity.

We shall use a method for analysing the second-order properties of inhomoge-
neous spatio-temporal point process data, based on the spatio-temporal inhomoge-
neous K-function (STIK-function) under the assumption of second-order intensity
re-weighted stationarity. This extends to the spatio-temporal setting the inhomoge-
neous K-function proposed by Baddeley et al. (2000). We propose a non-parametric
estimator for the STIK-function. Our pragmatic working assumption is that first-
order effects are separable, meaning that the intensity can be factorised as the
product of spatial and temporal intensities. We use Monte Carlo methods to assess
the data for evidence of spatio-temporal clustering or spatio-temporal interaction. To
test for clustering, the null hypothesis is that the underlying process is an inhomo-
geneous Poisson process. To test for spatio-temporal interaction, the null hypothesis
is that the spatial and temporal component processes are stochastically independent.
We then apply this methodology to our campylobacter jejuni data, from which we
conclude that campylobacter jejuni cases exhibit both spatio-temporal clustering
and spatio-temporal interaction.

2 The Space–Time Inhomogeneous K -Function

2.1 Definition

We consider an orderly point process, whose events define a countable set xi D
.si ; ti / W i D 1; 2; ::: in which si 2 R

2 is the spatial location of the i th event and
ti 2 R its time of occurrence. Our data are a realisation of this process in A D S �T ,
where S � R

2 and T � R. We denote by Y.A/ the number of events xi 2 A.
The first-order properties of a point process are represented by the (first-order)

intensity function,

�.s; t/ D lim
jd s�dt j!0

E ŒY.d s � dt/�

jd s � dt j ;

where d s � dt defines a small region around the point .s; t/ and jd s � dt j is its
volume. Informally, �.s; t/ measures the mean number of events of the process per
unit area per unit time in a neighbourhood of the point .s; t/. Similarly, second-order
properties can be represented by the second-order intensity function,

�2..s; t/; .s0; t 0// D lim
jd s�dt j;jd s0�dt0j!0

E ŒY.d s � dt/Y.d s0 � dt 0/�
jds � dtjjd s0 � dt0j ;

or by a scaled version, the pair correlation function

g..s; t/; .s0; t 0// D �2..s; t/; .s0; t 0//
�.s; t/�.s0; t 0/

:



Second-Order Analysis of Human Campylobacteriosis 101

First-order and second-order properties defined in this way can be considered as
the point process analogues of the mean and covariance properties of a real-valued
process. In particular, for any spatio-temporal Poisson process, �2..s; t/; .s0; t 0// D
�.s; t/�.s0; t 0/, hence g..s; t/; .s0; t 0// D 1. For this reason, the term “pair cor-
relation” is perhaps confusing, since a value of 1 corresponds to the absence of
second-order dependence. To add to the confusion, the function

�..s; t/; .s0; t 0// D �2..s; t/; .s0; t 0// � �.s; t/�.s0; t 0/;

which is identically zero for a Poisson process, is sometimes called the covariance
density.

Second-order stationarity of a point process holds when its first-order and
second-order properties are invariant under translation, meaning that the intensity
is constant and the second-order intensity only depends on the spatio-temporal
difference vector. A point process is isotropic when its first-order and second-order
properties are invariant under rotation. Hence, for a stationary, isotropic point pro-
cess, we have �.s; t/ D � and �2..s; t/; .s0; t 0// D �2.u; v/, where u D ks � s0k
and v D jt � t 0j. Second-order stationarity is too restrictive an assumption for most
epidemiological applications. We therefore consider a weaker assumption, defined
by Baddeley et al. (2000) and called second-order intensity-reweighted stationarity.
This allows a non-constant intensity, but assumes that the pair correlation function
depends only on the difference vector.

For a second-order, intensity reweighted stationary, isotropic spatio-temporal
point process, we define the space–time inhomogeneous K-function (STIK-
function) by

K�
ST.u; v/ D 2�

Z v

�v

Z u

0

g.u0; v0/u0 du0 dv0; (1)

where g.u; v/ D �2.u; v/= .�.s; t/�.s0; t 0//, u D ks � s0k and v D jt � t 0j. This
definition extends Baddeley et al.’s definition of a second-order reweighted station-
ary isotropic spatial point processes to the spatio-temporal setting. Here, we restrict
attention to future events only and define

KST.u; v/ D 2�

Z v

0

Z u

0

g.u0; v0/u0 du0 dv0: (2)

Note that definitions (1) and (2) only differ non-trivially because of the treatment of
edge-effects when estimating these functions from data observed in a finite region
A. In what follows, we focus on KST.u; v/.

The STIK function can be used as a measure of the spatio-temporal aggrega-
tion or regularity of clustering. Indeed, for any inhomogeneous spatio-temporal
Poisson process with intensity bounded away from zero, KST.u; v/ D �u2v. Val-
ues of KST .u; v/ greater than �u2v indicate aggregation at spatial and temporal
separations less than u and v, whilst KST.u; v/ < �u2v indicates regularity.
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2.2 Non-parametric Estimation

For data xi W i D 1; :::; n in a spatio-temporal region A D S � T , where S is any
polygonal region in R

2 and T D ŒT0; T1�, we propose the following approximately
unbiased estimator (see Gabriel and Diggle, 2009) of the STIK-function:

bKST.u; v/ D 1

jS � T j
n

nv

nvX
iD1

nvX
j D1Ij >i

1

wij

1

�.xi /�.xj /
1fuij�ug1ftj �ti �vg; (3)

where nv is the number of ti 	 T1�v, �.xi / is the intensity at xi D .si ; ti /, the xi are
ordered so that ti < tiC1 and wij is Ripley’s (1976, 1977) spatial edge-correction, in
which wij is the proportion of the circle centered on si and passing through sj , i.e.
of radius uij D ksi � sj k, that lies inside S .

In practice the intensity is unknown and must be estimated. In general, this is an
insoluble problem without additional assumptions; for example, a single realisation
of a stationary Cox process with stochastic intensity �.s; t/ is indistinguishable
from a realisation of an inhomogeneous Poisson process whose first-order intensity
function coincides with the unobserved realisation of �.s; t/. In the current context,
we resolve this ambiguity by making the pragmatic working assumption that first-
order effects are separable, meaning that �.s; t/ can be factorised as

�.s; t/ D m.s/�.t/; for all .s; t/ 2 S � T: (4)

Under this assumption, any non-separable effects are interpreted as second-order,
rather than first-order. Suitable estimates of the spatial intensity m.s/ and of the
temporal intensity �.t/ in Equation (3) will depend on the characteristics of each
application.

Assuming separability of the intensity (4) allows us to estimate both systematic
(first-order) and stochastic (second-order) properties of the underlying point pro-
cess, and hence to test for the existence of spatio-temporal clustering or interaction
using the estimated STIK function. In particular, for a spatio-temporal Poisson pro-
cess, representing the absence of spatio-temporal clustering, KST .u; v/ D �u2v;
whereas a process with no spatio-temporal interaction corresponds to the weaker
assumption that KST.u; v/ D KS.u/KT .v/, where KS .�/ and KT .�/ are spatial and
temporal K-functions, respectively (Diggle et al., 1995).

3 Application

We apply our methodology to data on the locations (unit post-code) and notification
dates of cases of human campylobacter jejuni infections reported from residential
addresses in the Preston post-code sector, Lancashire, UK (Fig. 1a) over the 3 years
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Fig. 1 (a) Preston post-code sector in Lancashire. (b) Population density in 2001 (number of
people per hectare). (c) Locations of the 619 cases of campylobacter jejuni infections within the
urban sub-region

2000 to 2002 inclusive. Figure 1b gives population density in this area in 2001.
We restrict attention to the urban area, within which 619 cases have been recorded;
Fig. 1c gives their locations.

3.1 Test for Spatio-temporal Clustering

To assess the data for evidence of spatio-temporal clustering, we follow com-
mon practice in constructing Monte Carlo tolerance envelopes around the estimator
OKST.u; v/. The null hypothesis is that the underlying process is an inhomogeneous

Poisson process with intensity O�.s; t/ D Om.s/ O�.t/, and the tolerance envelopes are
therefore constructed from simulations of a Poisson process with an intensity of this
form. We estimate the spatial intensity m.s/ using a Gaussian kernel with band-
width chosen to minimize the estimated mean-square error of Om.s/, as suggested in
Berman and Diggle (1989). To estimate �.t/ we use a Poisson log-linear regression
model incorporating a time-trend, seasonal variation and day-of-the-week effects,
hence

log �.t/ D ıd.t/ C
3X

kD1

f˛k cos.k!t/ C ˇt sin.k!t/g C � t;

where ! D 2�=365 and d.t/ identifies the day of the week for day t D 1; :::; 1;096.
Figure 2 shows the estimated spatial and temporal intensities.

3.2 Distribution of Cases Versus Population at Risk

Figure 1a and b show, unsurprisingly, that cases tend to be concentrated in areas
of high population density. However, a test for spatial clustering (Diggle et al.,
1995) showed that the spatial distribution of cases is more clustered than that of
the population at risk.
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Fig. 2 (a) Kernel estimate of the spatial intensity; (b) weekly numbers (dots) of notified cases
compared with fitted regression curve

To compare the spatio-temporal distribution of cases with the population at risk,
we proceed as in Section 3.1, considering as null hypothesis that the process of
campylobacter jejuni cases is an inhomogeneous Poisson process with intensity
O�0.s; t/ D Om0.s/ O�0.t/ proportional to the spatio-temporal intensity of the pop-
ulation at risk. The spatial intensity m0.s/ is estimated as previously, whilst the
temporal intensity �0.t/ is assumed to depend only on day-of-the-week. To test for
spatio-temporal clustering, we use a Monte Carlo approach based on the test statistic

Z D
Z v0

0

Z u0

0

nbKST .u; v/ � E.u; v/
o.

V.u; v/1=2 dv du;

where E.u; v/ and V.u; v/ are the mean and variance of bKST .u; v/ computed from
1,000 Poisson processes with intensity O�0.s; t/.

3.3 Test for Spatio-temporal Interaction

Separability of the STIK function into purely spatial and temporal components,
KST .u; v/ D KS .u/KT .v/, indicates absence of spatio-temporal interaction
(Diggle et al., 1995). We use a Monte Carlo procedure to test for spatio-temporal
interaction, where the null hypothesis is that the spatial and temporal component
processes are independent, and construct tolerance envelopes by randomly permut-
ing the observed spatial locations, si , holding times ti fixed.
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3.4 Results

Figure 3a shows OKST.u; v/ � �u2v for the campylobacter data. The diagonal black
hatching on Fig. 3b identifies those values of .u; v/ for which the data-based estimate
of OKST.u; v/��u2v lies above the 95th percentile of estimated calculated from 1,000
simulations of an inhomogeneous Poisson process with intensity O�.s; t/. Similarly,
the grey shading identifies those values of .u; v/ for which OKST.u; v/� OKS .u/ OKT .v/

lies above the 95th percentile envelopes calculated from 1,000 random permutations
of the si holding the ti fixed. The results suggest spatio-temporal clustering up to
a distance of 300 m and a time-lag of 10 days, and spatio-temporal interaction at
distances up to 400 m and time-lags up to 3 days. These findings are consistent
with the infectious nature of the disease, leading to multiple cases from a common
source that are relatively close both in space and in time. They also suggest the
existence of stochastic structure that cannot be explained by Om.s/ O�.t/. Note that the
relatively large negative values of OKST.u; v/��u2v at large values of u and v are not
significantly different from zero, because the sampling variance of OK.u; v/ increases
with u and v. A test comparing the distribution of cases with that of the population
at risk gives a significant p value, indicating that the distribution of cases is more
spatio-temporally clustered than that of the population risk. Comparing OKST.u; v/ �
E.u; v/ with the 95th percentile envelopes calculated from 1,000 simulations of
an inhomogeneous Poisson process with intensity O�0.s; t/ shows spatio-temporal
clustering at distances up to 300 m and a time-lag of 10 days.
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Fig. 3 (a) OKST.u; v/ � �u2v (�106). (b) Comparison between OKST.u; v/ � �u2v and tolerance
envelopes indicating spatio-temporal clustering (diagonal black hatching) and comparison be-
tween OKST.u; v/ � OKS .u/ OKT .v/ and tolerance envelopes indicating spatio-temporal interaction
(grey shading)
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4 Conclusion

Our data show both spatial and temporal aggregation, which in general can arise
through heterogeneity, clustering or a combination of the two. For example, in the
current application we know that the spatial distribution of the population at risk
is non-uniform, and that the risk of infection peaks each year in late spring. Our
proposed methodology enables a pragmatic distinction between heterogeneity and
clustering by identifying heterogeneity with separable first-order structure and clus-
tering with residual second-order structure. We have proposed Monte Carlo tests for
spatio-temporal clustering and for spatio-temporal interaction, based on the space–
time inhomogeneous K function. Application of these tests to the campylobacter
jejuni data suggests a combination of spatially and temporally localised variations
in risk, and small-scale spatio-temporal clusters of cases. These empirical findings
are consistent with there being both unmeasured socio-economic or environmental
risk factors for the disease, and food-borne infections leading to multiple cases that
are close in both space and time.
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Application of Geostatistics in Cancer Studies

Pierre Goovaerts

Abstract This paper presents an overview of geostatistical methods available for
the analysis of both areal and individual-level health data. The application of Pois-
son kriging and p-field simulation to lung cancer mortality rates recorded for white
males in 688 US counties of the Southeast (1970–1994) allowed: (1) the creation of
noise-filtered mortality maps at the county-level and over a fine grid (isopleth maps),
(2) the detection of clusters of low or high mortality counties that are significantly
correlated in space, and (3) the identification of areas where the local correlation
of mortality rates is stronger for white males than for white females, revealing
gender-specific factors such as occupational exposure. Then, indicator kriging is
introduced as a way to map the risk for late stage breast cancer diagnosis using
patient residences across Michigan.

1 Introduction

Cancer is a major public health problem in the United States and is currently the
second leading cause of death. For cancer control activities and resource allocation,
it is important to be able to compare incidence and survival rates, risk behaviors,
screening patterns, diagnosis stage, and treatment methods across geographical and
political boundaries and at as fine a spatial scale as possible. Although individual
humans represent the basic unit of spatial analysis, the majority of cancer maps de-
pict data in discrete or areal form. The so-called ‘choropleth maps’ are seen by many
as an inferior representation of the basic data and their interpretation and analysis
typically faces three major hurdles: (1) the presence of extreme unreliable rates that
occur for sparsely populated areas and/or rare cancers, (2) the visual bias caused by
the aggregation of health data within administrative units of widely different sizes
and shapes, and (3) the mismatch of spatial supports for cancer rates and explanatory
variables that prevents their direct use in correlation analysis (Goovaerts, 2009).
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Complex statistical techniques, usually involving Bayesian models, have recently
been developed to increase the reliability of cancer risk maps. Yet, the estimation of
model parameters requires iterative procedures, such as Markov Chain Monte Carlo
methods, that are computer intensive and require fine-tuning, which makes their
application and interpretation challenging for non-statisticians (Woodward, 2005).
Furthermore, Bayesian algorithms are overwhelmingly used with the conditional
auto-regressive (CAR) model for defining the random effect associated with spa-
tial autocorrelation. The arbitrary neighborhood relationship underlying the CAR
model is computationally convenient but is not well-suited to situations where geo-
graphical entities have different sizes and shapes and are not arranged in a regular
pattern (Kelsall and Wakefield, 2002). Simulation studies have also demonstrated
the strong smoothing effect of Bayesian disease-mapping models, in particular the
BYM model (Besag et al., 1991), which limits their ability to detect localized in-
creases in risk (Richardson et al., 2004).

Geostatistics provides a less cumbersome, powerful, yet still little known, model-
based approach to disease mapping. Although it was introduced in the same year
as the BYM model, the first initiative to tailor geostatistical tools to the analysis
of disease rates (Lajaunie, 1991) went largely unnoticed. Rare applications of the
method, known as binomial cokriging, include the study of the risk of childhood
cancer in the West Midlands of England (Webster et al., 1994) and the mapping
of lung cancer mortality in Long Island (Goovaerts, 2005a). A similar approach,
named Poisson kriging, was developed more recently in the field of marine ecol-
ogy (Monestiez et al., 2006) and generalized to the analysis of cancer mortality and
cholera incidence data (Goovaerts, 2005b; Ali et al., 2006). Unlike the CAR model,
the geometry of administrative units and the spatial repartition of the population at
risk are accounted for in the geostatistical models (Goovaerts, 2006b), leading to
more precise and accurate risk estimates than the Bayesian BYM model (Goovaerts
and Gebreab, 2008). The BYM model also generates smoother risk surfaces, yield-
ing much more false negatives than the geostatistical model in particular as the risk
threshold raises. Last, area-to-point (ATP) Poisson kriging enables the creation of
isopleth maps of mortality risk, which attenuates the visual bias associated with the
interpretation of choropleth maps.

A limitation of all rate smoothers, including Poisson kriging, is that local de-
tails of the spatial variation of the risk are deleted from the maps. This smoothing
has serious implications for local cluster analysis (LCA), since intuitively it should
enlarge the size of clusters of low or high cancer risk while most spatial outliers
would be filtered out. Static maps of estimated risk and kriging variance also fail to
depict the spatial uncertainty attached to risk values and does not allow its propa-
gation through multiple-point statistics such as local Moran’s I in LCA. Goovaerts
(2006a) proposed to combine Poisson kriging with a geostatistical simulation algo-
rithm (p-field simulation) to generate multiple realizations of the spatial distribution
of risk values. A set of simulated maps enables the quantification of how the spatial
uncertainty about rates translates into uncertainty about the location of disease clus-
ters (Goovaerts, 2006a), the presence of significant boundaries (Goovaerts, 2008a),
or the relationship between health outcomes and putative risk factors (Goovaerts,
2009).
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Another important contribution of geostatistical simulation is the generation of
more realistic null hypotheses for statistical tests that are routinely performed by
health scientists (e.g. to detect areas where mortality is significantly higher or lower
than in adjacent geographical units). Most tests for spatial pattern are still based on
the null hypothesis of spatial independence (SI) of observed rates and, provided the
population sizes of areal units are fairly homogeneous, the assumption of constant
or spatially uniform risk. The concept of “neutral model” (Goovaerts and Jacquez,
2004) allows the testing of more interesting hypotheses by accounting for spatial
patterns and a priori information on the underlying risk in the formulation of null
hypotheses. Geostatistical neutral models have been demonstrated to be useful for
many types of applications, such as (1) the detection of significant clusters/out-
liers of breast cancer rates above and beyond a risk inferred from environmental
covariates on Long Island, New York (Goovaerts, 2005a), (2) the identification of
significant spatio-temporal changes in cervix cancer mortality rates above and be-
yond past spatial patterns (Goovaerts and Jacquez, 2005), (3) the assessment of
significant clustering of residential histories in a case-control study of bladder can-
cer in Michigan (Jacquez et al., 2006), (4) the detection of significant differences in
pancreatic cancer mortality between-county (boundary analysis, Goovaerts, 2008a),
and (5) the study of the impact of demographic and economic factors on cervix
cancer mortality in the Western US (Goovaerts, 2009).

This paper gives an overview of geostatistical methods for the analysis of both
areal and individual-level health data, with applications to cancer studies.

2 Analysis of Areal Data

The analysis of areal data is illustrated for lung cancer which has been the leading
cause of cancer deaths in the US for several decades. Figure 1a shows mortality
rates for white males recorded over the period 1970–1994 for 688 counties of the
Southeastern US. The population-weighted averaged mortality rate is 82.7 deaths
per 100,000 person-years. The objectives of the study are threefold:

1. Create a reliable map of the spatial distribution of cancer mortality that accounts
for small population sizes and the counties geography.

2. Identify groups of adjacent counties (i.e. local clusters) with significantly corre-
lated low or high mortality rates.

3. Identify local clusters of mortality for males that exist above and beyond what
should be expected based on female mortality rates that share similar environ-
mental and socio-economic covariates.

2.1 Cancer Risk Mapping

The interpretation of cancer mortality maps is frequently biased by the large varia-
tion in the spatial support (e.g. county area) and level of confidence (small number
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Fig. 1 (a) Lung cancer mortality rates recorded for white males (1970–1994) and (b) the pop-
ulation at risk assigned to 100 km2 cells. (c) Scatterplot illustrates the larger variability of rates
computed from sparsely populated counties. (d) Experimental semivariogram of the risk estimated
from county-level rate, and the results of its deconvolution (top curve). The regularization of the
point support model yields a curve (short dashed line) that is very close to the experimental one.
The point-support model is then used to estimate lung cancer mortality risk (deaths/100,000 habi-
tants) and associated prediction variance at the county level (ATA kriging) or at the nodes of a
10 km spacing grid (ATP kriging). Thick white lines delineate state boundaries
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problem illustrated in Fig. 1c) of observation across the study area. For example,
the areas and population sizes for counties in Fig. 1a vary by one and two orders
of magnitude, respectively. Area-to-Area (ATA) and Area-to-Point (ATP) Poisson
kriging allows the filtering of the spatially-varying noise while accounting for the
heterogeneity in the shape, size and population repartition (Fig. 1b) among counties.
The method, described in Goovaerts (2006b), proceeds as follows:

1. Compute the semivariogram of the risk from observed mortality rates (areal
data), z.v˛/, using the population-weighted estimator:

O�R.h/ D 1

2
N.h/P
˛;ˇ

n.v˛/n.vˇ/

n.v˛/Cn.vˇ/

N.h/X
˛;ˇ

�
n.v˛/n.vˇ /

n.v˛/ C n.vˇ /

�
z.v˛/ � z.vˇ /

�2 �m�
�

(1)

where N(h) is the number of pairs of areas .v˛; vˇ / whose population-weighted
centroids are separated by h, and n.v’/ is the size of the population at risk.

2. Derive a point-support semivariogram model using an iterative deconvolution
procedure (Goovaerts, 2008b) that seeks the point-support model that, once reg-
ularized, is the closest to the model fitted to areal data (Eq. (1)).

3. Estimate the noise-filtered mortality rate (mortality risk) and the associated krig-
ing variance for the unit X using K neighboring rate data:

OrPK.X/ D
KX

iD1

�i z.vi / �2
PK.X/ D CR.0/ �

KX
iD1

�iC R.vi ; X/ � �.X/

where the unit X represents either an area v˛ (ATA kriging) or a point us within
that area (ATP kriging). The kriging weights and the Lagrange parameter 
.X/

are computed by solving the “Poisson kriging” system:

KX
j D1

�j

	
C R.vi ; vj / C ıij

m�

n.vi /



C �.X/ D C R.vi ; X/ i D 1; : : : ;K

KX
j D1

�j D 1: (2)

where ıij D 1 if i D j and 0 otherwise, and m� is the population-weighted mean
of the N rates. The “error variance” term, m�=n.vi/, leads to smaller weights
for less reliable data (i.e. rates measured over smaller populations). The area-
to-area covariances C R.vi ; vj / and area-to-point covariances C R.vi ; X D us/

are approximated as the average of the point support covariance C (h) computed
between any two locations discretizing the areas vi and vj, or vi and us.

Figure 1d shows the areal and point-support models inferred from 688 rate data.
As expected, the point-support model (light gray curve) has a higher sill and its
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regularization (short dashed line) yields a semivariogram model that is close to the
one fitted to experimental values, which validates the consistency of the deconvo-
lution. This model was used to estimate mortality risk at the county level (ATA
kriging) and to map the spatial distribution of risk within counties (ATP kriging).
Both maps (Figs. 1e, f ) are smoother than the map of raw rates since the noise due to
small population sizes is filtered. High mortality is observed along the Mississippi
valley (MS), the southern Atlantic (GA, SC) and across the Gulf Coast. Smoking
patterns largely account for the regional variation in lung cancer mortality; for exam-
ple, smoking habits, including the greater use of hand-rolled cigarettes, were found
to contribute to the high rates in southern Louisiana (LA), especially in the Cajun
population. In the 1970s and early 1980s, studies in coastal Georgia (GA), northeast
Florida, and southern Louisiana (LA) also revealed an excess risk of lung cancer
associated with work in shipyards, primarily during World War II (Devesa et al.,
1999). North Carolina (NC) displays a clear East-West trend, with lower mortality
in the more rural Western counties. By construction, aggregating the ATP kriging
estimates within each county using the population density map (Fig. 1b) yields the
ATA kriging map. The maps of kriging variance essentially reflect the lower con-
fidence in risk estimated for sparsely populated counties and over smaller spatial
support (i.e. ATP kriging).

2.2 Detection of Local Clusters of High and Low Mortality

A major goal of spatial analysis in public health is to detect local clusters (regions
where adjacent areas have similar values) of high or low cancer mortality. Similar-
ity between the rate measured within area v˛ and those recorded in J.v˛/ adjacent
areas vˇ (e.g. units sharing a common border or vertex with the kernel v˛) is often
quantified by the local Moran’s I statistic (Anselin, 1995) defined as:

I.v˛/ D
	

z.v˛/ � m

s



�
0
@J.v˛/X

j D1

1

J.v˛/
�
	

z.vj / � m

s


1A (3)

where m and s are the mean and standard deviation of the set of N rates. This Lo-
cal Indicator of Spatial Association (LISA) is simply the product of the kernel rate
by the average of neighboring rates and can detect both positive and negative auto-
correlations. It exceeds zero if the kernel and neighborhood averaged rates jointly
exceed the global mean m (High-High, HH cluster) or are jointly below m (Low-
Low, LL cluster). The uncertainty attached to mortality rates is propagated through
the computation of the LISA statistic by replacing in Eq. (3) the rates z.v˛/ by spa-
tially correlated values computed as: r .l/.v˛/ D OrPK.v˛/C�PK.v˛/w.l/.v˛/, leading
to a set of L simulated LISA values fI .l/.v’/; l D 1; : : : Lg. The L sets of random
deviates, fw.l/.v’/; ’ D 1; : : : N g, are generated using non-conditional sequential
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Gaussian simulation and the semivariogram of the risk, �R.h/, rescaled to a unit sill;
see Goovaerts (2006a) for a detailed description of the p-field simulation algorithm.

To test whether any test statistic, I .l/.v’/, is significantly greater than 0 (i.e.
presence of spatial autocorrelation), one needs to know its probability distribution
under the null hypothesis of spatial independence (SI). The common way to gener-
ate such reference distribution is to shuffle randomly the set of simulated rates, then
use the shuffled values to compute the neighbourhood average in statistic (3) while
the kernel rate remains the same. In other words, the value of the LISA statistic
is computed for the scenario where the rates in adjacent areas are randomly dis-
tributed. This operation is repeated K times, i.e. K D 999 in this paper. Comparing
the observed statistic (3) to the probability distribution enables the computation of
the probability of not rejecting the null hypothesis of SI (p-value). The main draw-
back of this randomization procedure is that both the underlying mortality risk and
population size are assumed uniform across the study area. To account for the pop-
ulation size, the random shuffling is replaced by the random sampling of a Poisson
distribution Po.n.vj / � m/, where n.vj / is the size of the population at risk and m

is the population-weighted average of rates.
The last step in the testing procedure is to compare the p-value to the significance

level (e.g. 0.05 or 0.01) representing the risk of false positive (i.e. risk of rejecting
the null hypothesis when it is true) that the user can tolerate. However, the repeated
use of statistical tests (e.g. one for each county) increases the likelihood of false pos-
itives. For example, the independent testing of ten counties under a significance level
of 0.05 will lead to a 0.4 probability that at least one test is significant even if none
of the ten counties actually exhibits spatial autocorrelation with adjacent counties.
In this paper, the multiple testing correction was conducted using the false discov-
ery rate (FDR) approach that aims to control the expected proportion of true null
hypotheses rejected out of the total number of rejections (Castro and Singer, 2006).

One hundred realizations (a number deemed reasonable for this application)
of the spatial distribution of lung cancer mortality risk were generated by p-field
simulation and underwent a local cluster analysis using a 0.01 significance level.
Figure 2 shows the probability for each county to belong to a LL or HH clus-
ter, which corresponds to the proportion of realizations for which the county falls
within that category. Accounting for the population size in the randomization (Null
hypothesis II) reduces the spread of the reference distribution resulting in smaller
p-value, hence more significant tests in particular for heavily populated counties
along the coast. For example, the analysis reveals clusters of high mortality around
New Orleans, in coastal counties of North and South Carolina, and at the border of
Tennessee (TN) and Georgia (GA) in Chattanooga that once held the unwelcome
title of having the dirtiest air in the United States, a label provided by the federal
government in 1969. Similarly, several LL clusters appear on the Null Hypothesis
II maps; for example Benton County in the Northwest corner of Arkansas (AR)
which has the second highest population and the lowest poverty rate of any county
in the state.
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Fig. 2 Likelihood that a county belongs to a cluster of low or high cancer mortality computed
from the local cluster analysis of 100 simulated risk maps. Three null hypotheses of increasing
complexity are considered: uniform risk and population size (model I), uniform risk and heteroge-
neous population sizes (model II), heterogeneous risk (i.e. based on white female mortality) and
population sizes (model III). Thick dashed lines delineate state boundaries

2.3 Tests of Hypothesis Using Spatial Neutral Models

Both null hypotheses I and II share the same assumption of uniform risk for lung
cancer mortality. Yet, this risk clearly varies regionally as a result of changes in en-
vironmental exposure or other demographic, social, and economic factors (Devesa
et al., 1999). The term “Neutral Model” captures the notion of a plausible system



Application of Geostatistics in Cancer Studies 115

Lung cancer

Lung cancer

a b ATA kriged risk (Females)

Risk ratio (Male/Female)
dc

Deconvoluted model

X mean: 20.9

Y mean: 83.5

correlation: 0.49

 rank correlation: 0.50

Y std. dev.: 8.82

X std. dev.: 3.83

40

30

20

Distance (km)

M
or

ta
lit

y 
ra

te
s 

(W
hi

te
 m

al
es

)

Mortality rates (White females)

10

0

110

100

90

80

70

60

50

�

0

10 20 30 40

100 200 300 400 500 600 700

Theoretically regularized model

Experimental (areal data)

26.2 to 35.1

12.5 to 16.4
16.4 to 17.7
17.7 to 18.6
18.6 to 19.4
19.4 to 20.4
20.4 to 21.5
21.5 to 22.4
22.4 to 23.8
23.8 to 26.2

4.9 to 6.6
4.4 to 4.9

2.2 to 3.3
3.3 to 3.5
3.5 to 3.7
3.7 to 3.9
3.9 to 4
4 to 4.2
4.2 to 4.3
4.3 to 4.4

Fig. 3 (a, b) Cancer mortality risk estimated for white females using Poisson kriging and the
deconvoluted semivariogram of the risk. (c, d) Scatterplot of risk estimates for males and females,
and county-level map of their ratio

state that can be used as a reasonable null hypothesis. The problem then is to identify
spatial patterns above and beyond that incorporated into the neutral model, enabling,
for example, the identification of “hot spots” beyond background variation in a pol-
lutant. Although lung cancer mortality is on average four times larger for males than
females, the same environmental and socio-economic factors come into play, as ex-
emplified by the 0.5 correlation computed between male and female risk estimates
(Fig. 3c). Discrepancies between risk maps can be interpreted as signs of the local
impact of gender-specific factors, such as occupational exposure to coal tar fumes
in coal gasification and coke production, or asbestos in marine construction and re-
pair, steel and iron mills, power generating stations, pulp and paper mills, and oil
refineries.

Information on the spatial pattern of mortality risks for white females was in-
corporated into the generation of neutral models for the local cluster analysis.
Specifically, the reference probability distribution of the local Moran’s I statistic
was inferred from K D 999 realizations of the spatial distribution of white female
mortality risks, fy.k/.v’/; ’ D 1; : : : N g, generated by p-field simulation. The test
statistic (3) is thus compared to the following set of simulated values:
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where mY and sY are the mean and standard deviation of the set of N simulated
female rates. The new null hypothesis, referred to as Hypothesis III, is that the pos-
itive correlation between the male risk within area v˛ and those recorded in J.v˛/

adjacent areas vj does not exceed the correlation found with the J.v˛/ adjacent
female risks. Rejecting the null hypothesis should thus highlight local clusters of
male cancer mortality risks that are more similar than their female counterparts,
potentially revealing gender-specific factors causing aggregates of lower or higher
mortality. Figure 3b shows the map of female mortality risk estimated using ATA
Poisson kriging and the deconvoluted model in Fig. 3a. This information was used
to generate neutral models corresponding to Hypothesis III, leading to the probabil-
ity maps displayed at the bottom of Fig. 2. Clusters of lower mortality are enhanced
in the mountains of the Ouachita-Ozark Highlands (Western Arkansas) where rural
conditions lead to smaller ratio of male versus female risk estimates (Fig. 3d). Ad-
justing for white female mortality leads to the disappearance of most clusters of high
mortality in the coastal areas of Louisiana, South and North Carolina since females
also worked in the shipbuilding industry. A large cluster of high mortality is still
found in southwest Georgia where low income and poor access to health care likely
enhance the negative impact of smoking that is more prevalent among men than
women. A new HH cluster appears in central Mississippi, centered on Jefferson
Davis County where the mortality risk for males is 6.44 times larger than for fe-
males (Fig. 3d). Another County with high male/female risk ratio (5.34) is Sampson
County in North Carolina, which is adjacent to the two largest hog-producing coun-
ties in the United States.

3 Analysis of Individual-Level Data

Despite methodological advancements in the treatment of areal data, the degree of
details in the isopleth risk maps will always be limited by the initial resolution of
the choropleth map. Whenever possible, it is thus beneficial to avoid the tedious, ar-
bitrary and inherently information-wasteful aggregation step and to process directly
the point-based data. In addition to the greater accuracy in the location of health out-
comes, the analysis of geocoded data can often capitalize on detailed information
on residential history and a large number of potential risk factors.

Estimation and mapping of the spatial risk function requires the computation of
the ratio of the case density to the population density. Using ‘kernel density esti-
mation methods’, the number of cases and the total number of individuals at risk
are simply summed within sliding windows and their ratio defines the rate assigned
to the center (i.e. grid node) of that window (James et al., 2004). The operation
is repeated for each grid node to create isopleth maps of, for example, late-stage
cancer rates (ratio of number of late-stage cancer cases to total number of cancer
patients). Unlike kernel density estimation, geostatistics takes into account the spa-
tial support of the data and the pattern of spatial dependence (e.g. anisotropy, range
of autocorrelation) in the computation of the weights assigned to neighboring data.
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Fig. 4 Maps of late-stage breast cancer risk estimate, and the attached standard error, for white
females in one Michigan County (1985–2002). The estimation was conducted at the nodes of a
200 m grid by indicator kriging of geocoded data

Each observation represents the probability (0 or 1) that the individual is a case
(e.g. late stage cancer, birth defect), hence the analysis should be conducted us-
ing indicator kriging of categorical data. Since kriging is a non-convex interpolator,
estimated probabilities can fall outside the range [0,1] and the faulty probabilities
should be reset to the nearest bound, 0 or 1. This situation was not encountered in
the present study.

Figure 4 illustrates the application of indicator geostatistics to the spatial distri-
bution of late stage diagnosis of breast cancer within one Michigan County. The
first step was to code each cancer case .N D 1;317/ as 1 for late stage diagnosis
and 0 otherwise (data not shown for confidentiality reasons). The indicator semivar-
iogram (Fig. 4, left column) indicates that late detection cases do not occur randomly
in space, yet individual-level factors such as age or family history generate a large
variability over very short distances (first range D 40 m). The long-range structure
(600 m) reflects the impact of contextual (i.e. neighborhood) factors, such as poverty
and proximity to screening facilities. Capitalizing on this autocorrelation, indicator
kriging (IK) was used to map the late-stage cancer risk and the standard error. These
maps clearly illustrate a NW-SE increasing trend in the risk of late diagnosis, which
should help selecting areas to be preferentially targeted for cancer screening and
prevention activities.

4 Conclusions

The major difficulty in the analysis of health outcomes is that the patterns observed
reflect the influence of a complex constellation of demographic, social, economic,
cultural and environmental factors that likely change through time and space, and
interact with the different types and scales of places where people live. It is thus pri-
mordial to incorporate the scale and spatial support of the data in their processing,
as well as to account for the impact of population sizes on the reliability of rate
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estimates. Geostatistics provides a methodology to model the spatial correlation
among rates measured over irregular geographic supports and to compute noise-
free risk estimates over the same units or at much finer scales. It also enables the
propagation of rate uncertainty through the delineation of areas with significantly
higher/lower mortality or incidence rates, as well as the simulation of more realistic
null hypotheses. In the future, the approach should be generalized to the multivari-
ate case to analyze spatial relationships among diseases, which should facilitate the
identification of common stressors, such as poverty level, lack of access to health
care or environmental pollution.
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Blocking Markov Chain Monte Carlo Schemes
for Inverse Stochastic Hydrogeological Modeling

J. Jaime Gómez-Hernández and Jianlin Fu

Abstract Uncertainty characterization generally calls for a Monte Carlo analysis
of many equally likely realizations that honor both direct information (e.g., conduc-
tivity data) and information about the state of the system (e.g., piezometric head or
concentration data). The problem faced is how to generate multiple realizations con-
ditioned (to parameter data) and inverse-conditioned (to dependent state data) over a
large domain with high resolution. Traditional McMC methods face a big challenge
in inverse-conditioning because of its slow convergence. In this study, we com-
ment on several block updating schemes to improve the convergence performance
of McMC.

1 Introduction

In the last decade, the problem of inverse conditional modeling has been recognized
to be of paramount importance, especially in the hydrogeology and petroleum en-
gineering fields, and a number of additional approaches have been developed for
this purpose. Worth mentioning are the gradual deformation method (Hu, 2000),
Markov chain Monte Carlo (Oliver et al., 1997), and the ensemble Kalman filter
(Naevdal et al., 2003). The McMC methods do not see their wide application in en-
gineering communities mainly because of their inefficiency in convergence velocity.
In this paper, we follow the pioneering work of Oliver et al. (1997) in hydrogeol-
ogy and propose several blocking Markov chain Monte Carlo (BMcMC) schemes to
overcome the shortcomings of traditional McMC, e.g., to improve the convergence
velocity and enhance the mixing speed.
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2 Bayesian Formulation

Consider a random function (RF) discretized at n grid nodes. Assume that there are
k nonlinear state data, where the term “nonlinear” means that the dependent state
data are a non-linear function of the model parameters (this non-linear function is
implicitly given by the flow and transport partial differential equations). Specifically,
let x D .x0; x1; : : : ; xn�1/T denote the RF, and y D yobs D .y0; y1; : : : ; yk�1/T

denote the k dependent state data. The joint prior probability density function (pdf)
assuming a multi-Gaussian random field x is,

�.x/ / exp

�
�1

2
.x � �x/T C �1

x .x � �x/

�
(1)

where �x is the prior mean and Cx is the prior covariance. Assuming a multi-
Gaussian error for the discrepancy between the observed state y and the state
predictions resulting from the approximate solution of the state equations, the joint
pdf of y conditional on a realization of the parameters x is given by,

�.yjx/ / exp

�
�1

2
.y � g.x//T C �1

y .y � g.x//

�
(2)

where g.x/ represents the state function (forward simulator) and Cy is the measure-
ment error covariance, generally a diagonal matrix.

Following traditional McMC implementations (see, for instance, Oliver et al.,
1997), after defining a transition distribution q.x�jx/, a Markov chain can be built
by drawing realizations from this transition distribution and retaining those that pass
a Bernouilli trial with the following acceptance probability,

˛ D min

�
1;

�.x�/�.yjx�/q.xjx�/

�.x/�.yjx/q.x�jx/

�
(3)

The chain will converge to a series of realizations that is inverse conditional to the
state data.

3 Blocking Markov Chain Monte Carlo

In this section, we will present several McMC schemes to improve the convergence
velocity and mixing speed, which are critical for inverse stochastic hydrogeological
modeling since the forward simulator g.x/ is usually very computationally demand-
ing. What makes our method different from Oliver et al. (1997) is that the proposed
member x� is built from the previous member x by modifying a large block of
grid nodes, instead of building the Markov chain modifying a node at a time. The
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first three schemes are essentially block updating McMC methods but have distinct
convergence performance, while the other two are coupled McMC schemes that aim
at combining together the best performances of the first three schemes.

The modification of the updating block is done by simulating the conductivity
values within the block conditional to the values in the remainder of the previous
realization. (For practical purposes, only the values in the skin next to the updating
block, plus the prior conditioning data inside the block are retained.)

3.1 Scheme #1

If a field is small enough such that the inverse of the simple kriging covariance
matrix Cx can be LU-decomposed, Cx D LU, in which case the acceptance rate
in Eq. (3) can be easily computed using the method described by Davis (1987)
and Alabert (1987) for the fast generation of conditional realizations via the LU
decomposition, because this approach not only provides the values of the updating
block but also the conditional covariance needed.

3.2 Scheme #2

If the field is too large such that the inverse of the simple kriging covariance matrix
cannot be performed, we propose an approximation for the entire field by reducing
the extent of the field to a smaller area centered in the block being updated, then the
LU decomposition of the covariance matrix for this block can be performed.

3.3 Scheme #3

Finally, if the field is very large and the block being updated is also very large, we
take the decision to use an independent proposal kernel in which the updating block
is not made conditional on the previous realization but only on the prior conditioning
data x1.

3.4 Scheme #4

From our experience, it seems that a large updating block improves the convergence
velocity of the Markov chain. It is also apparent that for the same blocking size,
scheme #3 is the faster to converge. On the other hand, once the chain has converged,
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scheme #2 and a smaller updating block gives a better mixing of the chain. Thus,
we propose a mixed scheme in which a large updating block and scheme #3 are
used to drive the chain into the region of convergence, then, after a “burn-in” period
after convergence, the proposal scheme is switched to a smaller updating block and
scheme #2 to compute the acceptance rate.

3.5 Scheme #5

The scheme #4 can be modified to further improve mixing. Consider two sepa-
rate chains that evolve in parallel: one is constructed by a large updating block and
scheme #3, and the other with a small updating block and scheme #2. At each stage
for a given number of iterations, the two chains exchange accepted members to
form coupled Markov chains, which, in the end, should benefit from the strengths
of each chain.

This coupled Markov chain concept leads us to propose a BMcMC similar to
scheme #4 in which we switch back and forth between the two contributing chains.
First, we run scheme #3, then we switch to scheme #2 but after generating a number
of realizations, we switch back to scheme #3 to locate a new mode of the posterior
distribution, and then switch to scheme #2 to generate realizations around this new
mode, and so on, and so forth. This combination should produce a better and faster
mixing.

4 A Numerical Experiment

A 2-D aquifer discretized on 32 by 32 cells with zero logconductivity mean and unit
variance, and following an exponential covariance with practical range of 16 cells,
was generated. In this aquifer a transient flow problem was modeled with piezomet-
ric heads measured at nine locations. The objective was to generate realizations of
logconductivity with the same statistics and conditional to the nine transient piezo-
metric head data.

Figure 1 shows the mismatch between predicted heads and measured heads as
the chain progresses for different blocking schemes. Depending on the blocking
schemes, the number of “runs” necessary to get a series of realizations that repro-
duce (to within measurement error) the piezometric head data, goes from 1,000 to
100,000. After this, which is termed the burn-in period in the McMC literature, re-
alizations are properly conditioned. Although not presented here, scheme #2 almost
has the same convergence velocity as scheme #1, indicating that using a subset to
approximate the entire field is proper and efficient in computing the prior density
by Eq. (1). Scheme #3 has a much better convergence velocity than scheme #1 and
#2. Scheme #4 or #5 obviously has the same convergence velocity as scheme #3 but
with a mixing speed enhanced. Figure 2 demonstrates such improvement in terms
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Fig. 2 A comparison on the mixing speed of several blocking schemes

of the mixing speed. The metric of mixing speed uses the so-called hairiness index
that was originally developed by Brooks (1998) based on a method proposed by Yu
and Mykland (1998). An ideal convergence sequence will have a hairiness index
around 0.5.
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5 Conclusions

Several blocking McMC schemes are presented to improve the convergence velocity
of a Markov chain in generating inverse conditional realizations. A synthetic numer-
ical experiment shows that the block updating schemes can efficiently improve the
convergence performance.
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Politécnica de Valencia for a fellowship that supported him through his doctoral studies. The work
on this manuscript also benefited from financial support from the Spanish Ministry of Education
and Science through project CGL02004–2008, and from the European Commission through inte-
grated project FI6W-516514.

References

Alabert F (1987) The practice of fast conditional simulations through the LU decomposition of the
covariance matrix. Math Geol 19(5):369–386

Brooks SP (1998) Quantitative convergence assessment for Markov chain Monte Carlo via cusums.
Stat Comput 8(3):267–274

Davis MW (1987) Production of conditional simulations via the LU triangular decomposition of
the covariance matrix. Math Geol 19(2):91–98

Hu LY (2000) Gradual deformation and iterative calibration of gaussian-related stochastic models.
Math Geol 32(1):87–108

Naevdal G, Johnsen M, Aanonsen SI, Vefring E (2003) Reservoir monitoring and continuous
model updating using the ensemble Kalman filter, SPE Annual Technical Conference and Ex-
hibition, SPE 84372

Oliver DS, Cunha LB, Reynolds AC (1997) Markov chain Monte Carlo methods for conditioning
a log-permeability field to pressure data. Math Geol 29(1):61–91

Yu B, Mykland P (1998) Looking at Markov samplers through cusum path plots: a simple
diagnostic idea. Stat Comput 8(3):275–286



Simulation of Fine-Scale Heterogeneity
of Meandering River Aquifer Analogues:
Comparing Different Approaches

Diana dell’Arciprete, Fabrizio Felletti, and Riccardo Bersezio

Abstract We compare different approaches to fine scale simulation of aquifer
heterogeneity of meandering river depositional elements, based on the study of
a 3-D quarry exposure of historical point bar-channel sediments of the Lambro
River (Po plain, Northern Italy). The starting point is a sedimentological and hy-
drostratigraphic hierarchic model obtained after mapping of five quarry faces with
centimeter-scale detail. The vertical facies maps show the shape and size of two su-
perimposed composite bars, of their component unit bars and channel fills and the
distribution of the individual facies within them. Textural and poro-perm analyses
allowed the definition of the properties of four basic hydrofacies (Open Framework
Gravels, Gravelly Sands and Sandy Gravels, Clean Sands, Sandy Silts and Clays),
with permeability contrasts by at least one order of magnitude .10�9 < K < 10�1/.
The correlation of hydrofacies has been quantified after discretization of the maps
with square cells (side 0.05 m), by both transition-probability geostatistics and vari-
ographic analysis, to support 3-D pixel-oriented simulation of the volume. We found
a high level of correspondence between the semivariogram ranges and the experi-
mental transition probabilities computed on the entire dataset. Several realizations
of 3-D conditioned simulations, that honour the vertical facies maps, were computed
using Sequential Indicator Simulation (SIS) and T-Progs (transition-probability geo-
statistics software). Both methods yield more realistic results if the highest rank
depositional elements are simulated separately than if the sedimentary volume is
simulated on the whole. Image analyses on random sections through selected real-
izations shows that, in this specific case, SIS yields the most realistic simulations.
However, both techniques are not capable of accounting for trends of depositional
features that determine a non-stationary behaviour at the facies scale.
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1 Introduction

The hydrogeological properties of fluvial sediments are determined by textural
variations within the hierarchic arrangement of depositional units, from individ-
ual strata to depositional systems, and by the geometry of these units, at different
scales (Jordan and Prior, 1992; Lunt et al., 2004; Bridge and Lunt, 2006; Rubin
et al., 2006). This complex heterogeneity, which is characterized by multiple scale
lengths, affects groundwater flow and contaminant transport. Correlation models of
this spatial variability are obtained from various geostatistical tools, such as indica-
tor variograms and transition probabilities. The variogram describes the degree of
correlation between two points over a range of separation distances. The form of the
experimental semivariogram yields information about the correlation length scales
(Johnson and Dreiss 1989, Rubin and Journel, 1991; Johnson, 1995; Ritzi et al.,
2004; Dai et al., 2004). Transition probabilities (Carle and Fogg, 1996) describe
the spatial correlation structure of a sediment volume in a similar way, computing
the probability that a transition from one class to another (e.g., from a facies to an-
other) occurs over a range of separation distances. These tools have been applied
extensively to describe braided river aquifers (Rubin et al., 2006 with references).
Relatively few examples of statistical description, simulation and modelling of me-
andering river aquifers have been presented so far (Bierkens and Weerts, 1994;
Kostic and Aigner, 2007).

In this work we compare the results yielded by two different techniques of
geostatistical description and simulation (SIS, see for example Goovaerts [1997]
with references, and T-Progs, Carle and Fogg, 1996) applied to an outcrop aquifer
analogue exposing composite point bar and channel systems of a monocursal me-
andering river. The main goal is evaluating to what extent pixel-oriented techniques
can reproduce complexity, at the fine scale, in the extremely heterogeneous case of
meandering river sediments.

2 Case History and Methods

Excavation of gravel and sand in the Po alluvial plain (northern Italy, Fig. 1a) offers
several ephemeral exposures of different types of fluvial aquifer analogues. For this
study we had the opportunity to investigate the historical sediments of the Lambro
River at a quarry site just south of Milan (Fig. 1a). In this sector the Lambro River is
a monocursal, meandering river, flowing since the post-glacial age within a narrow
valley encased into the Upper Pleistocene sandur of the Lecco glacial amphitheatre.
The quarry site (Fig. 1b) exposes two superimposed depositional units, formed by
sands and gravels, that could be attributed to an historical age after discovery of
Roman to Middle Age and Renaissance Age artifacts (bricks, tiles, ceramics), im-
bricated within dunes and bars (Bersezio et al., 2007). The two units correspond to
the exposed parts of two composite point bars with minor channel fills on top. We
named them respectively unit A (the lower, with Roman-Middle Age artefacts) and
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unit B (the upper, with Renaissance Age artefacts). Unit A shows a composite point
bar to main channel fill lateral transition, unit B is mostly represented by a compos-
ite point bar, with chute channel scour and fills on top. The erosion surface between
them, tapered by lag deposits, is the ’ surface of Fig. 1c. A later channel (unit C,
bounded by erosion surface “) removed part of unit B, and will not be considered
here, because of the very poor observation available. Together with units A and B,
it is cut by the modern and present-day courses of the Lambro river. Units A and
B are formed by a hierarchic arrangement of depositional units, from the second
order of bedsets to the fifth order of the bar/channel systems, that determines the
architectural heterogeneity of the aquifer analogue.

To obtain geostatistical simulations comparable with the available observation
of the real sediment volume, we developed the following procedure: (i) plan-view
and vertical mapping of morphology and sedimentary facies, taking care to faith-
fully reproduce geometry and size of the different hierarchic elements; (ii) vertical
logging with cm-scale resolution, textural and petrophysical analysis of facies. The
products of these steps consist of the hierarchic classification and interpretation of
the sediments, definition of the four operative hydrofacies reported in Table 1, and
representation of five vertical facies maps that include the shape and hierarchy of
the depositional units, the distribution of facies and of the four operative hydrofa-
cies (Fig. 1d); (iii) GPR exploration, to assist kriging of the ’ boundary between
A and B units; (iv) discretization of the facies maps and logs with square cells
.0:05�0:05 m/; (v) variographic and transition probability description of correlation
of hydrofacies within the vertical maps; (vi) definition of the domains for simulation
(units A and B, ’ and “ surfaces); (vii) conditional simulation by SIS and T-Progs;
(viii) comparisons between the different realizations and the geological model, as-
sisted by image analysis of selected sections through the simulated volumes; (ix)
conclusive considerations. One final product includes also the selection of the most
realistic realization that will be used for flow and transport numerical experiments.

3 Geostatistical Simulations

Many geostatistical grid-based approaches are available for distributing hetero-
geneities in 3D space; for a discussion about their applicability in practical situations
see de Marsily et al. (2005) and Falivene et al. (2007). Lithofacies distribution was
simulated using SIS: see, for example, Goovaerts (1997) with references; Deutsch
and Journel (1992) and T-Progs (Transition-probability geostatistics: Carle and
Fogg, 1996; Ritzi, 2000) which simulates the different facies in the form of coded
indicator-type variables, where each value corresponds to a given facies.

SIS has been applied at different scales in a variety of depositional settings
such as fluvial (Journel et al., 1998; Seifert and Jensen, 1999; Zappa et al., 2006;
Felletti et al., 2006; Falivene et al., 2007), deltaic (Cabello et al., 2007), aeolian
(Sweet et al., 1996), and turbidite settings (Journel and Gómez-Hernández, 1993;
Falivene et al., 2007). Transition-probability geostatistics (T-Progs) has been used
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Table 1 Facies classification adopted in this study, correlative hydrofacies and permeability values
used for simulation

Facies
Class Facies Interpretation

Adopted K
values (m/s)

Operative
hydrofacies

F Fm, Clay plug, mud balls 1 � 10�9 F/fS
Fl Clay drapes 	

S Sh Low-relief bedwaves, upper flow
regime

1 � 10�4

Sm Channel fills, lower flow regime
St 3D sand dunes
Sp 2D sand dunes 5 � 10�4 S
Sl Sand drape
Sr Ripples

SG SGm Avalanching (scroll bars and
channel fills)

5 � 10�3 SG-GS

SGt 3D gravelly sand dunes
SGp 2D gravelly sand dunes
SGh Traction carpet, upper flow regime
SGl Bedload sheets

GS GSm Avalanching (scroll bars and
channel fills)

GSt 3D gravelly sand dunes
GSp 2D gravelly sand dunes
GSh Traction carpets, upper flow

regime
GSl Bedload sheets

G Gm Avalanching (scroll bars and
channel fills)

5 � 10�2 G

Gt Migration of 3D gravel dunes
Gp Migration of 2D gravel dunes
Gh Bedload sheets, upper flow regime

to model facies distribution in braided river (Felletti et al., 2006) and in alluvial fans
(Fogg et al., 1998; Carle et al., 1998; Weissmann et al., 1999; Weissmann and Fogg,
1999).

In this study, four operative hydrofacies (F, S, SG and G; Table 1) have been uti-
lized. In Fig. 2 there is an example of the computed semivariograms and transition
probabilities graphs. The full 3D facies simulation was run on a volume of approxi-
mately 47�75�8:6 m, including the five vertical facies maps used for conditioning.

We have reconstructed the entire volume in different ways: first we simulated
the entire volume of units A and B; successively we simulated separately the same
units, followed by merging the simulations through the kriged ’ boundary between
A and B (Fig. 1c).

Semivariogram computation and SIS were performed with the geostatistical li-
brary Isatis v.3 (Bleines et al., 2000). Markov chains and transition-probability
geostatistics were computed with T-Progs (Carle, 1999).
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Fig. 2 Example of transitional probabilities and semivariograms computed in different directions
for the hydrofacies G (gravel)

4 Discussion of Results

We studied one simulation among several equiprobable realizations (Fig. 3). The
comparison between the geological model and the simulations was made by vi-
sual inspection and image analysis on the vertical facies maps and on sections cut
through the simulated volume (Fig. 4 and Table 2). For this analysis we have con-
sidered the following criteria: (i) statistical parameters such as facies proportions,
variogram ranges and anisotropy axes, (ii) existing facies trends and (iii) geometry
of architectural elements. The following results can be highlighted:

1. Concerning the statistical analysis of correlation of the four hydrofacies we found
a high degree of correspondence between the semivariogram ranges and the ex-
perimental transition probabilities computed on the entire dataset. Moreover, no
significant difference on proportions, orientation of the anisotropy axes, geom-
etry and pattern of facies distribution was observed comparing semivariograms
and transition probability curves. This correspondence occurs because the points
on the variograms are obtained from several thousand observations, with sam-
pling continuously along the vertical and horizontal directions in our indicator
database, which consists of the five vertical lithofacies maps and 31 logs. This
dataset does not include the multiple sources of error typical of the databases
consisting only of borehole logs (bias in estimates of facies proportion and spu-
rious lateral indicator correlation, respectively due to clustering and sparse and
non-random distribution of logs).

2. Concerning simulations, we preliminarily observe that, as expected, both SIS and
T-Progs yielded unrealistic results for the undivided volume of units A and B.
The realizations obtained by separate simulation of the two units were by far
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Fig. 3 Fence diagram of the simulated volume. (a) Simulation obtained with T-Progs and (b)
simulation obtain with SIS. AA0 is the trace of the cross-section presented in Fig. 4b and c

A A’

A A’

a

b

c

major axis
minor axis

dip of the major axis

GSG/GSSF/fS2m

2m

Fig. 4 (a) Discretized facies map of the Face 1 (location in Fig. 1b). (b and c) Sections cut into
T-Progs and SIS simulations 5 m south of face 1 (location in Fig. 3). (b) Illustrates also the
parameters considered for the image analysis
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Table 2 Example of results of image analysis (hydrofacies G). Location of conditioning Face 1 is
in Fig. 1b. Labels SIS 1 to 10 m and T-Progs 1 to 10 m refers to sections cut trough the simulated
volumes parallel to Face 1, with increasing separation to north to south. See Face 1, SIS 5 m and
T-Progs 5 m in Fig. 4 where the parameters here considered are shown

Image analysis – Operative hydrofacies G

nı objects
Area of
objects .m2/ Anisotropy

Major
axis (m)

Major axis
dip .ı/

Conditioning Face 1 59 0.33 19.77 2.16 94.70
SIS 1 m 77 0.41 4.15 0.92 91.57
SIS 3 m 64 0.53 4.51 1.02 92.05
SIS 5 m 109 0.20 4.58 0.69 92.36
SIS 10 m 63 0.32 4.57 0.86 93.31
T-Progs 1 m 268 0.08 4.38 0.46 90.81
T-Progs 3 m 235 0.06 4.14 0.42 90.60
T-Progs 5 m 232 0.05 4.28 0.40 91.23
T-Progs 10 m 246 0.05 4.23 0.38 89.89

more realistic than the outcomes of the previous attempt. In this second case, the
analysis of simulations shows that both techniques underestimate continuity and
size of the low-rank geological elements (facies and bed-sets). The critical distri-
bution of facies G (open framework gravels along the lower part of the inclined
bed-sets of the composite bars; Figs. 1d and 4a) and F (m-sized lenses of very
fine sand and mud at the top of minor channel elements and dm-size mud clasts
at their base; Figs. 1d and 4a) is not reproduced by T-Progs simulations, that
yield a scattered pattern of small clusters, sparse in a “matrix” of facies S (the
most abundant one; Figs. 3 and 4). Simulations by SIS reproduced more effec-
tively than T-Progs the size, shape, distribution and orientation (sloping features
of lateral and frontal accreted elements) of these low-hierarchy elements.

3. The geological model shows a polarity of transition from GS and G facies as-
sociation to S and less abundant F facies towards the western and southern part
of the volume (Figs. 1d and 4a), where the bar to channel-fill transitions occur.
This trend is only partially reproduced by simulations. Visual inspection of the
simulated volumes reveals periodic repetitions of the most permeable facies G,
at a separation distance that is multiple of the variogram range in the case of the
SIS (Fig. 4c), and of the minimum of transition probability in the case of T-Progs
(Fig. 4b). Neither simulation method accounts for the non-stationary architecture
of composite bars and channels, thus losing their real spatial trends.

4. SIS and T-Progs do not reproduce the elements of the architectural complexity,
like minor channels, erosion bases, etc. This problem affects many pixel-oriented
methods of simulation and, in our case, it arises from the fact that the semi-
variogram and correlation matrix are a bivariate isotropic measure (two-point
autocorrelation), and therefore any non-linear correlation structure (e.g., curved
surfaces) cannot be reproduced. In principle, these difficulties could be over-
come by pixel-oriented methods based on higher-order correlations (Liu et al.
2002), which are nevertheless rarely used because of their practical complexity.
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Moreover, vertical tendencies at the scale of the bed-sets and bed-set groups
(2–4 m), which are evident in the cross-variogram and in the off-diagonal vertical
transition-probability plots of the facies maps, are partially lost in the 3D simula-
tion. The representation of such non-stationary periodicities is still an open issue
and cannot be resolved using “classical stationary” semivariogram or Markov
chain models.

5. To perform 2-D image analysis at the hydrofacies scale, we considered five pa-
rameters: (a) number of objects (clusters of connected pixels belonging to the
same hydrofacies), (b) average area of objects, (c) average major axis of objects,
(d) average anisotropy ratio between maximum and minimum axis of objects,
computed as shown in Fig. 4b and e dip of the major axis (Fig. 4b). These
parameters were computed for A and B units separately and together over the
conditioning faces 1 and NS (Fig. 1b) and on four sections cut into the SIS- and
T-Progs- simulated volumes, parallel to the conditioning faces at increasing sep-
aration distances. As an example in Table 2 we present the parameters computed
for hydrofacies G referred to the E-W sections.

Visual inspection and image analysis show major differences between the con-
ditioning faces and the simulated sections when studying units A and B together
and separately.

In general, the number of objects is overestimated by both simulation tech-
niques and consequently their length, area and continuity are underestimated (see
Table 2, hydrofacies G). However, SIS yields a more realistic number of objects,
with comparable average area with respect to the conditioning faces, than T-Progs
(Table 2). The same observations hold also for the estimated major axis of the
individual objects.

The best simulation obtained with SIS shows firstly increasing (1–5 m) then
decreasing (5–10 m) fragmentation of objects. This behaviour is linked to the cor-
relation length of semivariograms (10 m in a direction perpendicular to Face 1).

Concerning the anisotropy, we observed that only SIS yields reasonably sat-
isfactory estimates of the average anisotropy angle (Table 2). On the contrary
both techniques underestimate seriously the anisotropy ratio. This fact is a di-
rect consequence of the averaging effect of the variogram and of the transition
probabilities with respect to the variable orientation of the objects through space.

6. At last, visual inspection of the simulated sections shows that the elements of the
architecture with the rank of bed-sets (hydrofacies associations) have been repro-
duced most well by SIS, with shapes, sizes, spatial orientation and arrangement
comparable to the geological model.

5 Conclusions

1. Simulations of the undivided volume, obtained by both SIS and T-Progs, are
unrealistic because units A and B are characterized by very different statis-
tical properties (frequency and correlation of hydrofacies). In order to realize
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realistic simulations, in fact, it is necessary that statistical properties do not vary
significantly throughout the studied domain (Falivene et al., 2007).

2. Pixel-oriented simulation of fine-scale heterogeneity of aquifer analogues char-
acterized by high textural and structural complexity is possible, but realistic
results are far too difficult to obtain at present. Our attempts yielded realizations
that show many similarities with the geological model. SIS results suggested a
greater capacity to reproduce size, continuity and shape of the low-rank elements
of the sedimentary architecture (bed-sets) than was the case for T-Progs.

3. Both the studied composite bar and channel systems are characterized by facies
trends that introduce non-stationarity. Both SIS and T-Progs reproduce non-
stationary features only in an indirect way, accounting for facies proportions of
the conditioning faces. How to account for depositional trends that are associated
with periodicities at different scales, as is the case of point-bar complexes, looks
to be an open problem, specifically due to the huge computational loads that arise
with the existing mathematical solutions (Liu et al., 2002).

4. The finest scale heterogeneities can be simulated accounting for number and size
of the individual facies units, particularly by SIS. On the contrary, it was impossi-
ble to reproduce adequately their anisotropy. Non-stationary anisotropic features,
derived from quantification of the geological model, should be introduced in the
simulation as a conditioning parameter.
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Application of Multiple-Point Geostatistics
on Modelling Groundwater Flow
and Transport in a Cross-Bedded Aquifer

Marijke Huysmans and Alain Dassargues

Abstract In this work, the problem of modelling groundwater flow and transport
in a heterogeneous environment with complex geological structures using multiple-
point geostatistics is addressed. This study demonstrates how a training image can
be constructed based on geological and hydrogeological field data and how multiple-
point geostatistics can be applied to determine the impact of complex geological
heterogeneity on groundwater flow and transport in a real aquifer. Application of the
proposed approach of a hypothetical contaminant case in Brussels Sands (Belgium)
shows that the type of heterogeneity encountered in the Brussels Sands may have
a significant effect on contaminant transport and should be taken into account in
groundwater contamination studies.

1 Introduction

Sedimentological and erosional processes often result in a complex three-
dimensional subsurface architecture of sedimentary structures and facies types.
Such complex sedimentological heterogeneity may induce a highly heterogeneous
spatial distribution of hydrogeological parameter values in porous media at different
scales (Klingbeil et al., 1999) and may consequently greatly influence subsurface
fluid flow and solute migration (Koltermann and Gorelick, 1996). Because of the
limited access to the relevant hydraulic properties, deterministic models often fall
short in characterizing the subsurface heterogeneity and its inherent uncertainty.
In recent decades, numerous stochastic approaches have been developed to over-
come this problem. Most of these methods employ a variogram to characterize
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the heterogeneity of the hydraulic parameters. Variograms are calculated based
on two-point correlations only and therefore have some important limitations.
Variograms are not able to describe realistic heterogeneity in complex geologi-
cal environments. Complex geological patterns including sedimentary structures,
multi-facies deposits, structures with large connectivity, curvi-linear structures, etc.
cannot be characterized using only two-point statistics (Koltermann and Gorelick,
1996; Fogg et al., 1998). Moreover, variograms, as a limited and parsimonious
mathematical tool, cannot take full advantage of the possibly rich amount of
geological information from outcrops (Caers and Zhang, 2004). Multiple-point
geostatistics (Strebelle, 2000, 2002; Caers and Zhang 2004; Feyen and Caers 2006)
aims to overcome the limitations of the variogram. The premise of multiple-point
geostatistics is to move beyond two-point correlations between variables and to
obtain (cross) correlation moments at multiple locations at a time (Strebelle and
Journel, 2001). Because of the limited direct information from the subsurface, such
statistical information cannot directly be obtained from samples. Instead, “training
images” are used to characterize the patterns of geological heterogeneity. A training
image is a conceptual explicit representation of the expected spatial distribution of
hydraulic properties or facies types. The main idea is to borrow geological patterns
from these training images and anchor them to the subsurface data domain. This
study demonstrates how multiple-point geostatistics can be applied to determine the
impact of complex geological heterogeneity on groundwater flow and transport in
a real aquifer. More precisely, multiple-point geostatistics is used in this study to
investigate the effect of complex small-scale sedimentary heterogeneity on the short
term migration of a contaminant plume and its uncertainty. This paper also shows
how a training image can be constructed based on geological and hydrogeological
field data.

2 Materials and Method

2.1 Geological Setting

The aquifer of interest is the Brussels Sands formation in Belgium. Approximately
29;000;000 m3 of groundwater per year is pumped from this aquifer. The Brussels
Sands display a complex geological heterogeneity and anisotropy that complicates
pumping test interpretation, groundwater modeling and prediction of pollutant trans-
port. The Brussels Sands formation is an early Middle-Eocene shallow marine sand
deposit in Central Belgium (Fig. 1). The depositional environment of the Brussels
Sands is studied in detail by Houthuys (1990) based on field studies and descriptions
of approximately 90 outcrops and hundreds of boreholes. The Brussels Sands are a
tidal sandbar deposit, deposited at the beginning of an important transgression at the
southern border of the Eocene North Sea. The Brussels Sands display several fea-
tures and sedimentary structures typical for tidal deposits, such as important grain
size variations, cross-bedding, bottomsets, foresets, mud drapes and unidirectional
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Fig. 1 Map of Belgium showing Brussels Sands outcrop and subcrop area (shaded part) and the
location of the Bierbeek quarry (modified after Houthuys, 1990)

reactivation surfaces. Bottomset beds are approximately horizontal beds consisting
of finer grained sediment and form the base of most cross-bedded beds. Mud drapes
are thin layers of mud within the cross-bedded beds.

2.2 Field Measurements

An extensive field campaign is carried out consisting of field observations of the
sedimentary structures and 2,750 small-scale in situ measurements of air perme-
ability in the Brussels Sands. The results and conclusions of this field campaign are
summarized in this section. More details about this field campaign can be found in
Huysmans et al. (2008). A representative Brussels Sands outcrop (Bierbeek quarry
near Leuven, Belgium) is mapped in detail with regard to the spatial distribution of
sedimentary structures and lithologies. Geological sketches and digital photographs
from all faces of the quarry are made. A visual distinction between sand-rich and
clay-rich zones, hereafter called the sand facies and the silt facies respectively,
is made in situ based on sediment characteristics. Figure 2 shows an interpreted
photomosaic of one of the outcrops of the vertical quarry walls, corrected for per-
spective distortion. Thickness and dip measurements of several sedimentary features
are made at various locations in the quarry and analyzed statistically. Histograms
of bottomset thicknesses, set thicknesses and lamination dipping angles measured
during this measurement campaign and from Houthuys (1990) are calculated.
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Fig. 2 Interpreted photomosaic of quarry wall showing the silt facies consisting of clay-rich bot-
tomsets and distinct mud drapes in black. Height of quarry wall is approximately 4–5 m (Huysmans
et al., submitted)

Additionally, a total of 2,750 air permeability measurements at centimeter-scale are
carried out in situ. Permeability histograms and variograms of the sand and silt fa-
cies are calculated. Analysis of the spatial distribution of sedimentary structures and
permeability shows that silt facies consisting of clay-rich sedimentary features such
as bottomsets and distinct mud drapes exhibit a different statistical and geostatisti-
cal permeability distribution compared to the sand facies. Variogram map analysis
of the air permeability data shows that permeability anisotropy in the cross-bedded
lithofacies is dominated by the foreset lamination orientation. The results show that
small-scale sedimentary heterogeneity has a dominant control on the spatial dis-
tribution of the hydraulic properties and induces permeability heterogeneity and
anisotropy.

2.3 Training Image Construction

To demonstrate the need for “training images” in multiple-point geostatistics, this
section first briefly recalls the mathematical basis behind multiple-point geostatis-
tics. The remainder of this section describes the training image construction process
for this study. Consider an attribute S , taking J possible states fsj ; j D 1 : : : J g. S

can be a categorical property, e.g. facies, or a continuous value such as permeability,
with its interval of variability discretized into J classes. A data event dn of size n

centered at location u is constituted by (1) the data geometry defined by the n vec-
tors fh˛; ˛ D 1 : : : ng and (2) the n data values fs.u C h˛/; ˛ D 1 : : : ng. A data
template �n comprises only the previous data geometry. The categorical transform
of the variable S at location u is defined as:

I .uI j / D
�

0 if S .u/ D sj

1 if S .u/ ¤ sj

The multiple-point statistics are probabilities of occurrence of the data events dn D
fS.u˛/ D sj;˛; ˛ D 1 : : : ng, i.e. probabilities that the n values s.u1/ : : : s.uj / are
jointly in the respective states sj;1 : : : sj;n. For any data event dn, that probability is
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also the expected value of the product of the n corresponding indicator data:

Prob fdng D Prob
˚
S.u˛/ D sj;˛ I ˛ D 1 : : : n

 D E

	
n

…
˛D1

I
�

u˛; j˛

�


Such multiple-point statistics or probabilities cannot be inferred from sparse field
data. Their inference requires a training image depicting the expected patterns of
geological heterogeneities. Training images can be obtained from observations of
outcrops, geological reconstructions and geophysical data (Strebelle and Journel,
2001). In this study, training images are constructed based on observations of
outcrops. 2D vertical training images of clay and sand occurrence in different orien-
tations are constructed based on field photographs and observations of the geometry
and dimensions of the sedimentary structures. The 2D training images are compos-
ite sketches composed of smaller scale photographs and field sketches conditioned
by the histograms of set thicknesses, bottomset thicknesses and lamination angles.
The training image size is 30 by 30 m. To capture the thin clay drapes, a small grid
cell size of 0.05 by 0.05 m is adopted so that the training image consists of 360,000
grid nodes. Figure 3 shows the 2D training images in the N40ıE direction and the
approximately perpendicular N45ıW direction. These training images show that the
facies distribution in the N40ıE direction is rather complex while almost horizontal
layering is observed in the perpendicular direction. Since the facies changes in the
N45ıW direction are so limited compared to the other direction, 2D analyses are
carried out in the remainder of this paper only considering the training image shown
in Fig. 3a.

a b

X (m) Y (m)

Z
 (

m
)

Z
 (

m
)

0
00 15 30 15 30

15

30

0

15

30

Fig. 3 Vertical 2D training image of 30 � 30 m in (a) N40 ıE direction and (b) N45 ıW direction
(white D sand facies, black D silt facies)
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2.4 Multiple-Point Geostatistical Facies Realizations

Multiple-point statistics are borrowed from the training image to simulate multiple
realizations of silt and sand facies occurrence using the single normal equation sim-
ulation (SNESIM) algorithm (Strebelle, 2002). Snesim is a pixel-based sequential
simulation algorithm that obtains multiple-point statistics from the training image,
exports it to the geostatistical numerical model and anchors it to the actual subsur-
face hard and soft data. For each location along a random path the data event dn

consisting of the set of local data values and their spatial configuration is recorded.
The training image is scanned for replicates that match this event to determine the
local conditional probability that the unknown attribute S(u) takes any of the J pos-
sible states given the data event dn, as

Prob
˚
S.u/ D sj jdn

 D Prob
˚
S.u/ D sj and S.u˛/ D sj;˛I ˛ D 1 : : : n


Prob

˚
S.u"/ D sj;˛ I ˛ D 1 : : : n



The denominator can be inferred by counting the number of replicates of the con-
ditioning data event found in the training image. The numerator can be obtained
by counting the number of those replicates associated to a central value S (u) equal
to sk . A maximum data search template is defined to limit the geometric extent of
those data events. SNESIM makes reasonable CPU demands by scanning the train-
ing image prior to simulation and storing the conditional probabilities in a dynamic
data structure, called the search tree. The theory and algorithm behind SNESIM
are described in Strebelle (2002). Descriptions of SNESIM parameters are in Liu
(2006), Strebelle and Remy (2005) and Strebelle (2003). The computation time and
pattern reproduction quality of SNESIM realizations are strongly dependent on the
input parameters selection (Liu, 2006). In this particular case, the input parameters
selection is complicated by the nature of the heterogeneity. The combination of thin
clay drapes and relatively large structures results in a large training image size with
a small grid cell size. This requires a large template size and thus a large CPU and
RAM demand. To optimally choose the input parameter values, a sensitivity analy-
sis of the input parameters to pattern reproduction and computation time is carried
out. The simulation grid is 10 by 10 m and consists of 40,000 grid cells of 0.05 by
0.05 m. Template shape, template dimension and multi-grid number prove to be the
most influential parameters. An optimal compromise between pattern reproduction
and computation time for this case is found for simulations using an elliptical tem-
plate of 21 by 3 nodes, 6 multi-grids, 48 previously simulated nodes in the sub-grid
approach, a re-simulation threshold of 50 and 6 re-simulations iterations. A total
of 150 SNESIM realizations of 10 by 10 m are simulated using the optimal input
parameter selection. Figure 4a shows three example SNESIM facies realizations.
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2.5 Intrafacies Permeability Simulation

Intrafacies permeability variability within the sand and silt facies is simulated using
conventional variogram-based geostatistical methods based on histograms and var-
iograms obtained from the in situ air permeability measurements. The simulation
algorithm used in this study is direct sequential simulation with histogram reproduc-
tion (Oz et al., 2003). The input statistics and variogram parameters of permeability
for both facies are presented in Table 1. Air permeability realizations are converted
into hydraulic conductivity realizations to serve as input to a local groundwater flow
model. In this way, intrafacies hydraulic conductivity of the 150 facies realizations
is simulated. Figure 4b shows the hydraulic conductivity realizations of the facies
realizations of Fig. 4a. The silt facies are visible in the hydraulic conductivity real-
izations as areas with lower hydraulic conductivity. The low conductivity zones are,
however, not continuous flow barriers, since the sand and silt permeability distribu-
tions are overlapping.

Fig. 4 (a) Three example 2D vertical SNESIM facies realizations (white D sand facies, black D
silt facies); (b) Corresponding hydraulic conductivity (m/d) realizations



146 M. Huysmans and A. Dassargues

Table 1 Statistical and variogram parameters of permeability in mD
(milliDarcy) for the sand and silt facies (values from Huysmans et al., 2008)

Sand facies Silt facies

Mean k (mD) 58,700 42,200
Variance k .mD/2 3:6 � 108 2:55 � 108

Variogram type k Spherical Spherical
Nugget .mD/2 2:09 � 108 1:03 � 108

Sill .mD/2 1:51 � 108 1:52 � 108

Dip angle of major axis of anisotropy 26ı 0ı (horizontal)
Lamina parallel range (m) 0.6 1.9
Lamina perpendicular range (m) 0.3 0.4

2.6 Groundwater Flow and Transport Model

The simulated hydraulic conductivity realizations are used as input to a groundwater
flow and transport model to investigate the effect of the small-scale sedimentary
heterogeneity on early contaminant plume migration. The contaminant source is
a hypothetical source. The location of this hypothetical source in the real world,
and hence the location of the model, is not specified and could be anywhere in the
Brussels Sands where the type of structures displayed in the training image occur.
The model is a small-scale and short-term (3-day) 2D vertical model of 10 by 10 m,
discretized into very small grid cells of 5 by 5 cm in order to represent the thin clay
drapes present in the Brussels Sands. Constant head boundary conditions are applied
to all boundaries so that the average horizontal gradient is 10 m/km and the aver-
age vertical hydraulic gradient is 5 m/km corresponding to observed gradients in the
Brussels Sands. Porosity of the sand and silt facies are both assumed to be 30% since
no facies specific porosity information is available. A hypothetical source of an inert
contaminant is assumed at the surface at x D 2 with an arbitrarily chosen flow rate
of 1,000 l/day and an arbitrarily chosen source concentration of 1,000 mg/l. Corre-
sponding to the very small grid cell dimension, a very low longitudinal dispersivity
value of 0.01 m is chosen based on extrapolation of the relationships between disper-
sivity and the scale of observation from Gelhar et al. (1992). Transverse dispersivity
is taken to be one order of magnitude smaller than longitudinal dispersivity (Zheng
and Bennett, 1995). Dispersivity values are assumed equal in both facies since no
facies specific dispersivity information is available. The differential equations de-
scribing groundwater flow are solved by MODFLOW (McDonald and Harbaugh,
1988), a block-centered finite-difference method based software package. Transport
by advection and dispersion is simulated with MT3DMS (Zheng and Wang, 1999),
using the high-order finite-volume TVD solver. The Courant number used for deter-
mination of the time step size for transport calculations is 0.75. This groundwater
flow and transport model is run 150 times for the 150 simulated hydraulic conduc-
tivity realizations. The distributions and uncertainty of the following three relevant
output parameters are calculated and studied: (1) the maximum solute concentration
after 3 days, (2) the maximum depth where a concentration of 1 mg/l is reached after
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3 days and (3) the maximum horizontal distance to the source where a concentration
of 1 mg/l is reached after 3 days. The convergence of the output parameter statistics
in terms of the number of simulations is also studied in order to assess whether 150
simulations are sufficient.

3 Results and Discussion

Figure 5 focuses on the calculated contaminant plume for the three hydraulic con-
ductivity realizations of Fig. 4 and shows simulated hydraulic head contours and
contaminant concentrations for t D 3 days. These figures show a different plume
shape and extent and different maximum concentrations for the different hydraulic
conductivity realizations. Figure 6 shows histograms of the three relevant output
parameters defined in the previous section. The maximum simulated solute concen-
tration for t D 3 days varies between 6.3 and 22.0 mg/l and shows a slightly skewed
distribution with a mean of 10.7 mg/l and a standard deviation of 2.7 mg/l. The max-
imum depth with a concentration of 1 mg/l for t D 3 days varies between 1.3 and
1.9 m and shows a symmetric distribution with a mean of 1.6 m and a standard devi-
ation of 0.1 m. The maximum horizontal distance to the source with a concentration
of 1 mg/l for t D 3 days varies between 4.3 and 5.6 m and shows a slightly skewed
distribution with a mean of 5.2 m and a standard deviation of 0.2 m. The contami-
nant plumes of different realizations thus have significantly different characteristics.
The largest maximum simulated solute concentration is more than three times larger
than the smallest maximum simulated solute concentration. The largest maximum
depth with c D 1 mg=l is almost 50% larger than the smallest maximum depth
with c D 1 mg=l and the largest maximum horizontal distance with c D 1 mg=l
is 30% larger than the smallest maximum horizontal distance with c D 1 mg=l.
These results show that the uncertainty on the spatial facies distribution and intrafa-
cies hydraulic conductivity distribution results in a significant uncertainty on the
calculated concentration distribution. In particular, the maximum simulated con-
centration value can vary strongly among the different input hydraulic conductivity
realizations.

4 Conclusions

This study applies multiple-point geostatistics in the field of hydrogeology on a real
aquifer. This study demonstrates how a training image can be constructed based on
geological and hydrogeological field data and how multiple-point geostatistics can
be applied to determine the impact of complex geological heterogeneity on ground-
water flow and transport in a real aquifer. Application of the proposed approach
to a hypothetical contaminant case in Brussels Sands shows that the uncertainty
on the spatial facies distribution and intrafacies hydraulic conductivity distribution
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Fig. 5 Simulated hydraulic head contours and contaminant concentrations for t D 3 days for the
three realizations of Fig. 4
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Fig. 6 Histograms of (a) maximum solute concentration after 3 days, (b) maximum depth where a
concentration of 1 mg/l is reached after 3 days and (c) maximum horizontal distance to the source
where a concentration of 1 mg/l is reached after 3 days

results in a significant uncertainty on the calculated concentration distribution. The
small-scale sedimentary heterogeneity in the Brussels Sands has a significant ef-
fect on the calculated concentration distribution and using a homogeneous model
instead of a heterogeneous model could lead to significant error in the prediction
of contaminant plume migration and concentrations. This shows that the type of
heterogeneity encountered in the Brussels Sands may have a significant effect on
contaminant transport and should be taken into account in groundwater contamina-
tion studies.
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Assessment of the Impact of Pollution
by Arsenic in the Vicinity of Panasqueira Mine
(Portugal)

Ana Rita Salgueiro, Paula Helena Ávila, Henrique Garcia Pereira,
and Eduardo Ferreira da Silva

Abstract The mining and beneficiation processes at Panasqueira mine have given
rise, during a long production period, to a large amount of sulphide-rich waste, con-
tained in several tailing ponds, two of them located near a small village. Among
the pollutant elements that occur in the surrounding area, arsenic (AS) was selected
to illustrate a geostatistics based methodology aiming at combining land use with
the spatial distribution of the contaminant concentration in soils, by taking the for-
mer as an external drift to estimate the latter. Since land use is an ordinal variable,
its combination, via the external drift algorithm, with As concentration requires its
prior transformation into a real number. The proposed transformation relies on the
Correspondence Analysis (CA) of the contingency table crossing classes of As con-
centration with classes of land use. The co-ordinates of samples projection onto the
CA first axis turned out to be a reliable proxy of the interaction between As concen-
tration and land use, providing the required real variable to be used as external drift.
Hence, ‘raw’ As concentration maps were ‘corrected’ through the external drift al-
gorithm, leading to an increase where land use is more ‘valuable’ (populated areas)
and to a decrease where land use is less ‘valuable’ (barren soil). Obviously, the ‘cor-
rected’ maps are a more realistic basis for reclamation planning than the ‘raw’ ones.
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1 Introduction

A major environmental issue associated with mining and beneficiation wastes is the
release of heavy metals and arsenic into the environment. Since sulphur is often
present in the tailings where such wastes are dumped, exposure to the atmosphere
in the presence of water leads to the production of acid mine drainage, a common
type of pollution in mining areas that results from the oxidation of sulphide minerals
leading to generation of free acidity and soluble metal species. The consequences
of the contamination of the surrounding topsoil may become particularly worrisome
when mining and ore treatment operations occur in populated areas.

The Panasqueira wolframite ore deposit is the biggest of Western Europe, which
has been in operation from 1896 to the present date (with periods of higher and
lower extraction rate, according to W prices in the international market). This long
exploitation history gave rise to, among others, a huge tailing (7;000;000 m3) and
two mud dams (see Fig. 1), which are the source of pollution in the vicinity of the
mining area.

Arsenic (As) was chosen as the target of this case study due, mainly, to the fol-
lowing reasons:

– Arsenopyrite is the most common sulphide that is present in Panasqueira complex
paragenesis (Breiter, 2001; Correa and Naique, 1998; Noronha et al., 1992).

– The effect of mining and arsenic release from acid mine waters to groundwater
and the related arsenic accumulation in soils (Ávila et al., 2008).

– Soils at S. Francisco de Assis village, downstream Barroca Grande tailing, are
a major repository for arsenic released by the Panasqueira mining activities (see
Fig. 1).

– Plants absorb arsenic rather easily, so that high-ranking concentrations may be
present in food whenever As rich soil is used for agriculture purposes (Walsh
et al. 1977).

Arsenic is considered as a “priority pollutant element” (Glanzman and Closs, 1993),
harmful both for humans and for ecosystems above certain thresholds (678 and
40 mg/kg, respectively, as given by Swartjes [1999]). In particular, epidemiological
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data analysis has shown a link between environmental As exposure and an increased
risk of cancer in human populations (ATSDR, 1993).

In order to assess the As pollution derived from the contamination source dis-
played in Fig. 1 (as Oc1), aiming at making available the guidelines for an eventual
remediation procedure that avoids the above mentioned harmful effects, a soil
sampling campaign was performed (see also Fig. 1 for location of the set of 76
samples in their land use environment). The samples were oven dried before dry
sieving at 40ıC, mixed, homogenized and sieved through a <200 mesh screen for
chemical analysis. For trace metal analysis, a 0.5 g split was leached in hot (95ıC)
aqua regia (HCl � HNO3 � H2O) for 1 h. After dilution to 10 ml with deionized
water, the solutions were analyzed for As and other 11 elements.

It is worth noting that concentrations of As as high as 29,000 mg/kg were found
(the sampling average is 497.7 mg/kg and the 95% percentile is 429 mg/kg, which
compares with the corresponding values of the background of 13.6 and 28.3 mg/kg,
respectively).

Based on the As analytical results given by the sample campaign, a geostatistical
methodology combining pollutant concentration with land use was applied. Obvi-
ously, it is less risky to handle high As concentrations in a barren land than in an
urban area; conversely, the later land use magnifies low As concentrations.

2 Methodology

The proposed methodology to evaluate As distribution in the study area (accounting,
jointly, for concentration thresholds and land use categories, arranged in ascending
order from Oc2 to Oc5) addresses the problem of balancing the intensity of contam-
ination with the socio-economic importance of the zones where such contamination
occurs.

In particular, a single gradation combining the real variable (As concentration)
with the ordinal one (land use) is to be obtained, ranging from the less harmful
extreme (low As in forest zones) to the more damaging one (high As in urban zones).
The external drift technique (Maréchal, 1984) allows the production of an output
depicting such a gradation, provided that land use vulnerability can be put under a
quantitative form.

In order to apply the proposed methodology, the following steps were considered:

1. Disregarding for eventual remediation purposes the areas given by indicator
kriging where As concentration is lower than 40 mg/kg(limit for ecosystems vul-
nerability)

2. Estimation of As concentration in a regular mesh by ordinary kriging
3. Submission to Correspondence Analysis (CA) the cross-tabulation of As classes

by land use categories, in order to obtain a quantitative variable referring to each
sample and accounting for As vs. land use interaction

4. Application of the variable provided by 3. as an external drift to produce a kriged
map where ‘raw’ As concentration is balanced with its harmfulness for each land
use class
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The proposed methodology was developed as an extension of the usual geostatistical
techniques for pollution evaluation in soils, based on kriging or stochastic simulation
(Goovaerts, 1999). These techniques provide, as a final output, a map of contaminant
concentrations, which is not a very helpful tool when remediation planning is the
aim of the study, since high pollution spots are not linked with the social-economical
context where they occur. On the other hand, when ancillary information is avail-
able (as nominal soil characteristics, in Jeannée and Fouquet, 2003, or remote
sensing data, in Choe et al., 2008), this information is used to improve the esti-
mation of pollution levels by increasing its precision. To the best of our knowledge,
the ultimate product of such studies remains a (more or less precise) contaminant
concentration map.

3 Results

To accomplish the first step of the proposed methodology, an indicator variable was
established, taking the value 1 if the As concentration is higher than 40 mg/kg and
0, otherwise. The omnidirectional variogram of such a variable is given in Fig. 2a,
together with the fitted spherical model parameters.

Based on the variogram model of Fig. 2a, the indicator variable was estimated in
a 10 � 10 m regular mesh, providing the map exhibited in Fig. 2b when an average
based cut-off is applied to the kriged indicator values. The white zone of Fig. 2b is
to be disregarded, since concentrations in that area are likely to be lower than the
lowest limit for ecosystem vulnerability in what As is concerned.

The second step of the methodology requires, as a prolegomenon, the construc-
tion of the histogram of Fig. 3a, since the examination of the entire set of raw data
shows a high skewed distribution containing some outliers, as described in the Intro-
duction section. In fact such a distribution is suited to a logarithmic transformation,
as shown in Fig. 3b.

The variogram of log As concentrations is given in Fig. 4a (together with fitted
model parameters), and the kriged map for the same 10�10 m regular mesh is given
in Fig. 4b.

Fig. 2 (a) Variogram of the indicator variable (threshold in As concentration of 40 mg/kg) and (b)
Map with the limits of the zone where As concentration <40 mg=kg
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Fig. 3 Histograms of (a) As concentrations and (b) log As concentrations

Fig. 4 (a) Variogram of log As concentrations and (b) estimated map by lognormal kriging

The third step of the methodology consists of applying the Correspondence
Analysis algorithm to the data model of Fig. 5, where samples are defined by
one category of land use (excluding Oc1, which refers to the unsampled pollution
source), and by one class of As concentration. These classes were established on the
grounds of the ‘natural’ splitting of the histogram of Fig. 3a, taking into account the
thresholds provided in the Introduction section.
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Fig. 5 Data model for correspondence analysis

1.2

0.8

0.4

F
2 

(1
7.

04
%

)

F1 (18.43%)

−0.0

−0.4

−0.8

As4

As1

As2

As3

As5

Oc2

Oc3

Oc4

Oc5

−1.2

−1.6

−2.0
−1.2 −0.8 −0.4 0.4 0.8 1.2 1.6 2.0 2.4−0.0

Fig. 6 First factorial plane of correspondence analysis showing modalities projections

Results of CA are given in Fig. 6, showing the projections of variable modalities
onto the first factorial plane. It is worth noting, in the graph of Fig. 6, the “horse-
shoe effect” (Greenacre, 1984) referring to the sequence of categories of the ordinal
land use variable, whose projections grow along F1. Hence, given the “barycentric
property” (Greenacre, 1984), which allows the ‘correspondence’ of variables and
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Fig. 7 Bi-plot of As concentrations versus projection of samples onto the first CA axis (excluding
As4 class)

samples in the same graph, sample co-ordinates in F1 may be viewed as the quanti-
tative variable that ‘substitutes’ the ordinal land use attribute, in what its interaction
with As concentration is concerned.

An inspection of Fig. 6 in regard to As classes sequence reveals that As4 class
is not linked to axis 1 (its contribution to axis 2 is higher). On the other hand, the
histogram of Fig. 3a shows a very scattered (and heterogeneous) allocation of fre-
quencies within As4 class. Hence, it was decided to disregard values belonging to
such a class, generating the bi-plot of Fig. 7 (that exhibits a reasonable correlation
between F1 – to be used as the drift – and log As).

Finally, the real variable ‘projection of sample onto F1’ was used as a surrogate of
land using classes for the application of the external drift technique, which produces
the map of Fig. 8.

4 Discussion and Conclusions

Since it is not available any quantification of land use (in monetary units) and the
harmfulness to humans can not be put in the same scale as to ecosystems, a reme-
diation cost–benefit analysis is not feasible, at this stage. However, a quantitative
scenario for As concentration interdependence with land use is provided by the



158 A.R. Salgueiro et al.

Fig. 8 Estimated map of As concentrations by kriging with external drift

proposed methodology, whose crucial point is the application of a proxy of land
use, transforming the corresponding ordinal variable into a real number though Cor-
respondence Analysis. For creating such a quantitative scenario, the external drift
technique was adopted, rather than the soft cokriging method for categorical in-
formation (Goovaerts, 1997), because advantage may be taken by introducing the
ordinal character of the land use attribute.

The practical results of the study allow to select areas where an eventual reme-
diation procedure may be foreseen; in such areas, the ‘raw’ As concentrations were
‘blended’ with land use, producing a more realistic map which flattens the innocu-
ous zones and highlights the dangerous ones, according to As concentration versus
land use interaction.
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Simulation of Continuous Variables
at Meander Structures: Application
to Contaminated Sediments of a Lagoon

Ana Horta, Maria Helena Caeiro, Ruben Nunes, and Amı́lcar Soares

Abstract Simulation of continuous variables conditioned to meander structures is
an important tool in the context of soil contamination assessment, namely, when the
contamination is related with depositional sediments in water channels. Hence, this
paper proposes using bi-point statistics stochastic simulation with local anisotropy
trends to simulate continuous variables inside predefined channels. To accomplish
this objective, the Direct Sequential Simulation (DSS) algorithm was modified to
account for local anisotropy when searching for the simulation node. This method-
ological approach was applied to the spatial characterization of polluted sediments
in a coastal lagoon located in the North of Portugal (Barrinha de Esmoriz).

1 Using Geostatistics for the Characterization
of Meander Structures

Modelling curvilinear or meander structures can help to differentiate between differ-
ent geological media and/or to condition the estimation/simulation of data to those
structures. For petroleum applications, to recognize the shape of the structures can
be a first step whilst for hydrological or environmental applications, meander forms
can be visual and numerically recognized. In this situation, the issue will be to assess
spatial distribution limited to those shapes.

One of the first attempts to model the morphology of geological curvilinear struc-
tures using geostatistics was made by Soares (1990), who proposed the use of local
anisotropy directions to estimate (using morphological kriging) folded geological
strata. This result was particularly important for petroleum applications, since it pro-
vided the possibility to identify different structures for the numerical modelling of
reservoirs. This idea was used by Luis and Almeida (1997) and Xu (1997) to con-
dition sequential simulation procedures for the characterization of sand channels
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geometry in a fluvial reservoir. Their work presented a pixel-based approach to
simulate the geometry of sand channels taking into account morphological infor-
mation and local continuity directions. When compared to object-based algorithms,
which are an alternative way to reproduce curvilinear shapes, these pixel-based
algorithms accounting for directional information were better suited to reservoir
characterization due to the possibility to incorporate local field data. A first appli-
cation of this concept to an environmental problem was presented by Caetano et al.
(2004) who used wind directions as local anisotropy information to condition the
estimation (kriging) of atmospheric pollutant distribution. Another example is the
work presented by Stroet and Snepvangers (2005) that uses local anisotropy kriging
to interpolate bathymetric data. These applications are based on two point statis-
tics by using a kriging algorithm. Recently, multiple-point statistics (MPS) has been
proposed for the characterization of meander structures and further variable simu-
lation (see Strebelle, 2002). In the context of petroleum applications, simulation of
meander structures with MPS consists of extracting patterns from training images
and then reproducing those patterns conditioned to local field data (Strebelle, 2007).
Also relying on a pixel-based sequential approach, MPS can be used for the sim-
ulation of categorical and continuous variables. However, modelling of continuous
properties implies a discretization into a small number of classes to process simula-
tion and a discrete-to-continuous transformation afterwards (Strebelle, 2007).

Thus, considering the present state-of-the-art, this paper aims to provide a solu-
tion for the simulation of continuous variables conditioned to meander structures.
To achieve this goal, a pixel-based sequential algorithm (Direct Sequential Simula-
tion; Soares, 2001) was used to reproduce bi-point statistics plus local anisotropy
information (local directions and ratios).

2 Objectives

The aim of this paper is to present an application of Direct Sequential Simulation
(DSS) to the characterization of a continuous variable with a spatial distribution
conditioned to a meander structure, i.e., the algorithm had to be modified to account
for local anisotropy information (direction of maximum continuity and anisotropy
ratio). The problem of conditioning simulation to a specific curvilinear form was
raised in the context of an environmental application related to the assessment of
sediment contamination in a coastal lagoon, with a permanent water/sediment flow
due to effluent water channels and the sea. A rationale was established to better
approach the problem:

(i) Pollutant contamination patterns in sediments usually follow preferential main
flow paths. Hence, it is not advisable to simulate a pollutant concentration ig-
noring a preferential transport/accumulation path.

(ii) Knowing the water flow regime enables us to determine a main flow direction
(and thus the main direction of continuity for the dispersion contaminant path)
and flow velocity can be related to the degree of anisotropy of such patterns.
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Hence, once the main flow trends in the meanders have been defined, local
anisotropy parameters can be estimated. For the presented case study, a satellite
image was used to define main water flow paths and compute local directions
and ratios.

3 Simulation of Continuous Variables Conditioned
to Meander Structures

To determine the spatial distribution of a certain attribute conditioned to a curvi-
linear (or meander) structure, the use of stochastic simulation is a reliable option.
Simulation algorithms not only allow for spatial assessment of an attribute but also
provide information about the spatial uncertainty involved on that evaluation. DSS
had been used for the spatial characterization of continuous variables related with
several environmental problems such as air pollution (Soares and Pereira, 2007;
Russo et al., 2008) or soil quality assessment (Franco et al., 2006; Horta et al., 2008).
In these examples, the spatial correlation is evaluated across a Euclidean space,
without differentiating sample locations (for example, samples exposed to different
wind conditions or samples collected in different soil types). Thus, DSS was per-
formed with global variogram parameters (direction, range and ratio of anisotropy),
assumed to be representative for the entire the study area. Therefore, when it comes
to conditioning the simulation to a meander structure – typical non-stationary sit-
uation – DSS is not able to reproduce the curvilinear shapes. One solution is to
introduce local spatial trends representing local anisotropy variations that will re-
produce the meander aspect of the structure where the variable is to be simulated.

3.1 Introducing Local Anisotropy in the DSS Algorithm

Let us consider the continuous variable Z.x/Z.x/ with a global cumulative distribu-
tion function (cdf) Fz.z/ D Prob fZ.x/ 	 zg. The main sequence of methodological
steps of DSS can be summarized as follows:

(i) Define a random path over the entire grid of nodes xu.u D 1; : : :, N ) to be
simulated.

(ii) Estimate the local mean and variance of z(x), identified, respectively, with the
simple kriging estimate z�SK.x/ and variance ¢2SK.x/, conditioned to the
original data z(x) and the previous simulated values zl (x).

(iii) Define the interval Fz(z) to be sampled (defined by the local mean and variance
of z(x)).

(iv) Draw a value zl (x) from the cdf Fz(z).
(v) Loop until all N nodes have been visited and simulated.

To solve the simple kriging system (step ii), experimental samples are selected with
an elliptical search radius which is defined using global variogram parameters, as
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Fig. 1 Representation of search radius definition for standard DSS and DSS with local anisotropy

illustrated in Fig. 1. In practical terms, accounting for local anisotropy parameters,
namely, direction of maximum continuity (given by azimuth ™) and anisotropy ra-
tio .r/, means changing the search radius from node to node to be simulated, as
illustrated in Fig. 1. Thus, in step (ii), the matrix of data-to-data covariances and the
vector of data-to-unknown covariances are calculated with corrected local covari-
ances C�;r.h/ by the local values of .x/ and r.x/. The simple kriging estimate of
local mean becomes a function of .x/ and r.x/. Note that to estimate a local cdf at
given location xu only the local angle of xu is retained.

The practical application of this idea raised other issues such as choosing the
range of maximum continuity (search ellipse major axis a� /. For this paper pur-
pose, it was assumed that a� remained constant and equal to the range of the global
variogram. Only the minor range of the search ellipse was conditioned to the width
of the meander structure in each simulated node. Thus, changes in anisotropy pa-
rameters determine that the variogram model is non-stationary.

4 Application

4.1 Study Area

The methodology presented in this paper was developed within a project framework
which aims to characterize soil/sediment contamination using state-of-the-art geo-
statistical models to assess spatial uncertainty. The study area is a coastal lagoon,
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Fig. 2 Study area (Barrinha de Esmoriz) and Sampling point distribution

located in the Portuguese Northern Region, named Barrinha de Esmoriz (Fig. 2). In
terms of its ecological value, the Barrinha de Esmoriz was included in the list of
the natural sites to be integrated in the Natura Network 2000. The lagoon is about
1,500 length and 700 m width, surrounded by dense vegetation (reeds and scrubs)
and bordered by the dune. The sea is about 400 m distance and it connects with the
lagoon through a 50 m width channel. Also, two water ditches flow into the lagoon,
coming from the North and from the South, using the lagoon as a discharge point
from the water basin.

A sedimentation process has been taking place in the last few decades, reducing
lagoon’s area and water depth. Also, there have been reports of serious pollution
discharges from the Northern ditch, mainly industrial water discharges coming from
the industrial sites located in the Northern part of the water basin. Evidence of this
pollution has already been reported in a previous soil contamination assessment.

4.2 Soil Contamination Data

A previous soil contamination report (DHVFBO, 2001), developed to evaluate the
degree and the extent of contamination in the lagoon’s sediments, contained in-
formation about heavy metal concentrations at 25 sampling points, distributed as
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Fig. 3 Zn spatial distribution, histogram, and mean variogram (spherical model, angular tolerance
of 20ı)

shown in Fig. 2. The samples were collected in the first 1, 2 and 3 m, depending
on field conditions. For simulation purposes, 64 data values were used, obtained
for Arsenic (As), Copper (Cu), Cromium (Cr), Niquel (Ni) and Zinc (Zn). From
this set, 39 values correspond to concentrations in the upper sediment layer. As an
example, Zn concentration distribution in the three sampled layers is presented in
Fig. 3. Also, Fig. 3 shows the sample locations at different layers, and the global
histogram and mean variogram.
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4.3 Model Implementation and Results

For the assessment of sediment contamination with Zn, the following methodologi-
cal steps were performed:

1. Flow Direction Assessment: using a Quickbird satellite image (2006) the main
trends of water flow channels were visually recognized and used to define flow
direction vectors.

2. Computing of Local Anisotropy: estimation of direction of maximum continuity
./ and anisotropy ratio .r/, using a kriging algorithm (Fig. 4).

3. Contamination Assessment: simulation using DSS with correction for local
anisotropies and uncertainty evaluation based on the variance of simulated im-
ages (Figs. 5 and 6).

Regarding the practical implementation of DSS with local anisotropy to this case
study, besides the modification introduced to account for local direction and ratio,
also a connected sequential simulation path was imposed to improve the calculation
of contaminant concentration. Instead of choosing one point xu in the random path
to be simulated, a set of connected points

�
xu; x1; ::xnp

�
was chosen to be simulated

in a row (Yao, 2007). Each point xu is in the direction if xu C 1 defined by the
angle .xu/: arctg .xu � xu C 1/ D .xi /. The number np of connected points to be
simulated is randomly defined at each sequential step.

Fig. 4 Local Anisotropy, from left to right: (a) Flow main directions (b) Anisotropy ratio
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Fig. 5 One realization of Zn contamination, for the three sampled layers (using DSS with local
anisotropies and connectivity flow path)

To check the quality of simulation performance, histogram and variogram re-
production in the simulated images were verified and produce generally the results
in Fig. 7.

However, when comparing the sample variogram and the one obtained for the
simulated images, some differences where detected (Fig. 8), mainly in what con-
cerns the computed range. This result was expected since the variogram model
imposed to the simulation resulted from the sample variogram computed in the Eu-
clidean reference space while the simulated values result from the different water
flow channels i.e. different local anisotropy relations and main directions. Hence
the resulting variogram ranges computed after the simulation with local anisotropies
tend to be smaller than the imposed model.
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Fig. 6 Uncertainty
evaluation for the first layer

Fig. 7 Comparison between sample histogram and simulated images histogram
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5 Discussion and Conclusion

The presented method refers to the application of Direct Sequential Simulation to
the characterization of a continuous variable with a spatial distribution conditioned
to a meander structure. With this purpose, the DSS algorithm had to be modified
to account for local anisotropy information (direction of maximum continuity and
anisotropy ratio).The proposed methodology has shown quite promising results for
the Barrinha de Esmoriz case study. It was possible to obtain a set of probable im-
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ages for contamination dispersion along the lagoon channels thus identifying hot
spots. However, uncertainty evaluation as presented in Fig. 6 shows high values for
variance for the concentrations calculated along some parts of the channels (es-
pecially in the Northern part of the lagoon). This may be due to the lack of hard
contaminant data along the channel paths. This information will be used to define
an improved sampling campaign for the Barrinha de Esmoriz project.

Regarding further developments in the application of DSS using local anisotropy,
this method can be generalized to the application to other fields, namely, the charac-
terization of internal properties of reservoirs inside channel boundaries previously
simulated by MP statistics.

Finally, a crucial point of this methodology is the determination of local direc-
tions and ratios of anisotropy. For the presented case study, as the main channel
trends were visible in aerial photos, those parameters were directly inferred by the
shape of meander structures. The main vectors defining main flow directions were
first identified in the channels and, afterwards, they were populated for a regular grid
of points covering the entire set of channels, using a kriging algorithm. Note that,
instead of kriging, these main flow directions parameters could also be simulated
(Luis and Almeida, 1997; Xu, 1997), principally when there is a high uncertainty
about the meander’s shape and location.
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Joint Space–Time Geostatistical Model for Air
Quality Surveillance/Monitoring System

Ana Russo, Amı́lcar Soares, Maria João Pereira, and Ricardo M. Trigo

Abstract Air quality is usually driven by a complex combination of factors where
meteorology, physical obstacles and interaction between pollutants play significant
roles. The use of models that are able to characterize space–time dispersion of pol-
lutants at fine scales in urban areas (e.g. stochastic and neural networks models)
is becoming a common practice. The main objective of this work is to produce an
integrated air quality model designed to monitor Lisbon’s metropolitan area. This
model, which allows forecasting critical concentration episodes of a certain pollu-
tant by means of a hybrid approach, is based on the combined use of neural network
models and stochastic simulations. A stochastic simulation of the spatial compo-
nent with a space–time trend model is proposed to characterize critical situations at
a given present period or for a very near future period, taking into account data from
the past and a space–time trend from the recent past. To identify critical episodes
in the near future period t C 1, predicted values from neural networks are used
at each monitoring station. The neural network model was developed taking into
account historical data of pollutants’ concentrations and meteorological conditions
measured and also predicted for each monitoring station. First, a joint space–time
model is used to build the trend model based on historical data (period 	 t). After-
wards, stochastic simulation is performed to predict the period t C 1 at any location
x, allowing for the local conditional distribution functions characterization and spa-
tial uncertainty assessment. As this approach is performed sequentially in the time
domain, the space–time trend is sequentially updated for every new period t C i ,
i D 1: : :; N . This spatial-temporal model has been developed and applied to the
urban area of Lisbon. An application to the prediction of mean daily NO2 concen-
tration is presented in this paper.
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1 Introduction

The industrial and urban development that took place in the last few centuries led
to a generalized increase of atmospheric pollutant emissions. As a result, atmo-
spheric pollution is nowadays considered to be a problem, especially in major cities.
Given that it is a problem that threatens peoples’ health (Seinfeld, 1986; Cobourn
et al., 2000; Kolehmainen et al., 2000), it is mandatory to develop tools that are
able to identify and predict harmful situations, in order to take measures destined
to its prevention, mitigation and risk assessment. Providentially, during the last few
decades there has been a marked increase in research activity focusing on mod-
elling and simulating air quality. This growing interest was also motivated by the
large amount of data from monitoring activities and by the necessity of answering
important environmental problems such as the ones mentioned above.

Air quality, as for most natural phenomena, can be seen as a space–time pro-
cess. However, the simultaneous integration of space and time is not an easy task
to achieve (Nunes and Soares, 2005). The difficulty of a simultaneous integration
results from the fact that space and time relationships have usually quite different
characteristics and levels of uncertainty (Nunes and Soares, 2005). Usually, the se-
lection of a model is based on several issues, such as, data availability, purpose of
the study or computational cost. However, another well-known characteristic com-
mon to most air quality monitoring networks can present itself as a problem: high
density of sample values in time collected at just a few spatial locations. This can
be a serious limitation if one wishes to evaluate impact costs or carry out an envi-
ronmental risk analysis of the emissions for public health, the different land uses,
eco-systems and natural resources of a region (Russo et al., 2005). Spatial-temporal
geostatistical models can constitute an alternative to other types of modelling tech-
niques (Kyriakidis and Journel, 1999; Nunes and Soares, 2005) because they allow
the characterization of uncertainty, supplying images of a probable reality that re-
produces patterns of spatial continuity quantified by the observations available. In
Portugal the major impacts of air pollution tend to be registered generally in areas
with large urban concentration and/or in the presence of large industrial units.

The main objective of this work is to produce an integrated air quality surveil-
lance/monitoring system, which allows forecasting critical concentration episodes
of a certain pollutant by means of a hybrid approach, based on neural network mod-
els and stochastic simulations. Nowcast and forecast spatial-temporal air quality
models are developed, including information regarding different time and spatial
scales. A space–time model system, taking into account meteorological conditions
for the characterization of the spatial and temporal distribution of the pollutants is
proposed. After the completion of the main objective of this work it will be possi-
ble to foresee critical air quality situations. Real time forecasts provide air quality
alerts, allowing sustainable management of environmental risks for public health,
thus, supporting the decision of the responsible entities for environmental and health
management.
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2 Methodology

The proposed surveillance/monitoring methodology is based on a space–time
stochastic simulation model. This methodology includes short term predictions by
means of a neural network model fitted for each monitoring station, and also the
past space–time trend obtained from historical data.

2.1 Prediction Model Formulation – Neural Network Modelling

Presently, neural network (NN) models constitute the best technique that is able
to identify complex non-linear relations between variables – inputs and outputs –
without previous integral understanding of the phenomenon’s nature (Haykin, 1994;
Beale and Demuth, 1998). A number of other methods (e.g. Box-Jenkins time
series models) have been applied to time-series for air pollutants (Simpson and
Layton, 1983; Ziomas et al., 1995; Shi and Harrison, 1997), including comparisons
with neural network methods (Yi and Prybutok, 1996; Comrie, 1997; Gardner and
Dorling, 1999; Cobourn et al., 2000; Kolehmainen et al., 2000). Most of the compar-
ative studies concluded that ANN generally provides as accurate as or more accurate
results than linear methods. The NN model used was trained and tested using air
quality and meteorological data and was processed by a multiple layers neural net-
work with feed-forward propagation (feed-forward multi-layer perceptron) trained
by a back-propagation algorithm. The prediction of the daily average pollutant’s
concentration at the monitoring station ˛ for day t C 1, Z�.x˛ ; t C 1/, is achieved
based on air quality data and meteorological data of the previous day t and from the
early hours of day t C 1, by running the NN model fitted.

2.2 Space–Time Model

For this study, a stochastic simulation of spatial component with a space–time trend
model, taking into account the predicted data of “next day” and a space–time trend
from the recent past, is proposed. This model was conceived in order to deal with
spatial non-stationary situations. Consider an attribute Z.x; t/ defined at a spatial
location x, x 2 D at day t 2 T . In this model, the attribute value z is decomposed
into a trend M.x; t/ and a residual R.x; t/:

Z.x; t/ D M.x; t/ C R.x; t/ (1)

The proposed approach can be summarized in three basic iterative steps:

(i) Characterization of the space–time trend for day t (the present time) M.x; t/

based on data from previous days, Z.x˛ ; t C 1 � i/, i D 1; : : : ; Nd
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(ii) Simulation of residuals, taking into account the predictions Z�.x˛ ; t C 1/ for
future day t C 1 at monitoring station ˛ (c.f. Section 2.1) and the space–time
trend M.x; t/

(iii) Update the space–time trend by adding data of Z.x˛ ; t C 1/ to the condition
data set and return to step i

2.2.1 Characterization of a Space–Time Trend with Joint
Space–Time Models

For the first image of the space–time trend M.x; t/, the objective is to weight the
different periods or spatial location of experimental data according the proximity
to the location .x; t/. Host et al. (1995) decomposed the trend in spatial and time
components interpreted as spatial and temporal random fields. In another applica-
tion (ecological resources) Santos et al. (2000) used a different approach to weight
uneven dispersed monitoring stations with the estimation (kriging) variance.

In this study, we propose to characterize the first image of a space–time trend
M.x; t/ with a space–time simulation – direct sequential simulation of Z.:/

(Soares, 2002) – based on observed data at the monitoring stations on previous
time periods t 0 < t . A stationary space–time covariance model is adopted for this
first trend image (Soares, 2002; Kyriakidis et al., 1999). At the location .x; t/, the
trend M.x; t/ is calculated by averaging N simulated realizations zi .x; t/:

M .x; t/ D
NX

iD1

zi .x; t / (2)

2.2.2 Simulation of Z.x; t C 1/ Based on NN Predictions

For the day t C1, one has the predicted values Z�.x˛; t C1/ (obtained by NN mod-
elling). The corresponding residuals R.x˛; t C 1/ are first calculated at the location
.x˛ ; t C 1/:

R.x˛ ; t C 1/ D Z�.x˛; t C 1/ � M.x˛; t/ (3)

and simulated at any spatial location x, r i .x; t C 1/. The simulated values of pol-
lutant zi .x; t C 1/ are obtained by adding the simulated residuals to the space–time
trend:

zi .x; t C 1/ D M.x; t/ C r i .x; t C 1/ (4)

This is equivalent to performing the simulation (Direct Sequential Simulation –
DSS) of Z.x; t/ with local means given by the space–time trend.
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2.2.3 Update of the Space–Time Trend for the Next Day t C 1

The space time trend is updated by the inclusion of the new measured data z.x˛;;

t C1/ in the next day t C1 in the conditioning data set. Simulated values (DSS with
local means) are obtained as predicted data in the previous step. At the location
.x; t C1/, the trend M.x; t C1/ is calculated by averaging N simulated realizations
zi .x; t C 1/:

M.x; t C 1/ D
NX

iD1

zi .x; t C 1/ (5)

Then, step 2.2.2 is repeated, where M.x˛; t/ refers to the updated M.x; t C 1/.

2.3 Spatial and Temporal Uncertainty Assessment:
Critical Areas and Time Periods Characterization

For any day t C 1 and spatial location x, one can assess the local conditional dis-
tribution functions of Z.x; t/ with the N simulated realizations zi .x; t/. Spatial and
temporal uncertainty can be evaluated and, consequently, critical situations can be
identified by the joint probability of a set of points .xj ; ti / to be greater than a given
threshold. Note that at this stage the evaluated uncertainty does not account for the
prediction errors of the neural network. In other words, temporal uncertainty of the
neural network prediction is not included in those uncertainty maps calculated with
simulated images.

To account for the uncertainty of temporal prediction of neural networks, one
suggest the use of historical bivariate probability distribution F.Z.:/; Z�.:// between
the predicted values Z�.x; t/ and observed values Z.x; t/ at the same space–time
location .x; t/. For each predicted value Z�.x0; t0/ at time t0 at a specific spatial
location x0, one can calculate the conditional distribution F.Z.x; t/ jZ�.x; t// D
z�.x0; t0// from the historical bi-distribution. Measures of uncertainty (variance,
inter-quartiles) can be calculated from these conditional distributions for each mon-
itoring station.

3 Case Study

The proposed methodology intends to characterize critical concentration episodes
of NO2. In order to test the proposed methodology a case study is presented: the
city of Lisbon and its surroundings (Fig. 1). A long NO2 spatial-temporal data sam-
ple was collected at 22 air quality monitoring stations (Fig. 1) on an hourly basis
for a period of 11 years (from 1/1/1995 to 31/12/2005). Afterwards, the original
hourly air quality data series was converted to daily averages. Meteorological data –
temperature and radiance on an hourly basis – were also collected.
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Fig. 1 Location of the monitoring stations at the metropolitan area of Lisbon

4 Results and Discussion

4.1 Exploratory NO2 Data Analysis

The monitors are located in a mix of urban, suburban and rural sites in the vicinity
of Lisbon. The hourly average NO2 concentrations were obtained from the web-
site of the Portuguese Environmental Agency (www.qualar.org) and meteorological
data were obtained from the Instituto de Geofı́sica do Infante D. Luiz at the Univer-
sity of Lisbon .38ı430 N; 09ı090 W; 77 m). The basic statistics of mean daily NO2

concentrations at each monitoring station are shown on Table 1. The mean daily
NO2 concentrations exhibit a positive asymmetric distribution (Fig. 2a) and cycli-
cal behavior over time dependent on the season of the year (Fig. 2b). As expected,
mean hourly NO2 concentrations (Fig. 3a) are higher during peak traffic emissions
(8–9 a.m. and 7–8 p.m.), as it is the case of most cities, such as London and Hong-
Kong (Chit-Ming et al., 2002). Figure 3b illustrates the number of exceeded values
registered by the 22 monitoring stations for each hour of the day. The majority of
hourly NO2 concentrations exceeding the legal limit occur also during peak traffic
emissions.

Spatial and temporal NO2 variograms (Fig. 4) were determined for the NO2 daily
averages calculated from the original 22 monitoring station data sets. As the 22 mon-
itoring stations are the only available spatial data, it is assumed that the variogram
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Table 1 Basic statistics of daily mean NO2 concentrations (
 g=m3)

Std. Coef.
Mean Minimum Maximum dev. variation Skewness

Entrecampos (E) 44.1 0.0 150.4 22.6 0.51 0.7
Olivais (O) 31.7 0.0 180.8 20.8 0.66 1.7
Chelas (C) 36.0 4.3 152.9 20.7 0.58 1.0
Beato (B) 24.6 1.1 110.5 14.5 0.59 1.3
Av. Liberdade (AL) 64.7 5.2 259.4 32.1 0.50 1.1
Benfica (BF) 50.8 3.0 191.1 25.8 0.51 0.9
R. Prata (RP) 57.9 9.2 154.8 22.4 0.39 0.6
Av. Casal Ribeiro (ACR) 56.9 0.4 250.8 34.9 0.61 1.5
Hospital Velho (HV) 27.1 0.0 194.0 14.2 0.52 1.3
Lavradio (L) 39.7 3.4 175.6 24.1 0.61 1.7
Paio Pires (PP) 21.8 0.0 114.8 14.0 0.64 1.2
C. Municipal (CM) 26.4 2.2 108.6 15.4 0.58 0.9
Escavadeira (ESC) 24.7 0.0 100.6 14.3 0.58 1.4
Reboleira (R) 24.2 0.4 114.0 17.4 0.72 1.3
Laranjeiro (LAR) 28.5 3.8 104.2 15.2 0.53 1.0
Loures (LRS) 20.4 0.1 96.4 14.0 0.69 1.2
Alfragide-Amadora (AA) 40.5 1.7 255.8 26.8 0.66 1.8
Restelo (RST) 21.7 1.4 104.4 14.3 0.66 1.3
Cascais (CC) 37.6 7.3 113.9 14.1 0.38 1.4
Q. Marques (QM) 18.7 0.0 81.1 13.8 0.74 1.2
Mem-Martins (MM) 15.5 0.8 72.2 12.0 0.77 1.4
Odivelas (OD) 28.0 1.8 98.3 16.3 0.58 1.1
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Fig. 2 Mean daily NO2 concentration at Entrecampos monitoring station: (a) histogram; (b) time
series
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Fig. 3 Hourly NO2 concentrations: (a) mean hourly concentrations for 22 monitoring stations
for the period between 1995 and 2005; (b) number of mean hourly NO2 concentration values
exceeding the legal limit

Fig. 4 NO2 spatial (a) and temporal (b) variograms

calculated with these data reflects the spatial pattern of the average behaviour for
the complete period. The following space–time model was adopted:

C.h; t/ D C.jhj/ (6)

where the generalized distance jhj D p
x2 C y2 C t2 is based on a simple met-

ric of two spatial dimensions plus the time component (Kyriakidis et al., 1999;
Dimitrakopoulos and Luo, 1993; Soares, 2002).

The space–time variogram model is an anisotropic exponential model with a spa-
tial range of 5,300 m and time range of 4.5 h.

4.2 Predictive Neural Network Model

First, the neural network (NN) model described previously was properly calibrated
and validated for a 5 year period (2001–2005). Considering that the available data
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Table 2 NN inputs and
respective lags

Input Lag (day)

NO2 t, t C 1 at 5 a.m.
Maximum temperature t, t C 1

Sin .2 t=365/ and Cos .2 t=365/ t C 1

Sin .2 t=7/ and Cos .2 t=7/ t C 1

CO t
Radiance t
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Fig. 5 NN results versus actual observed NO2 values at the Laranjeiro monitoring station for part
of the calibration/validation period (a) and for 24/4/2006 – 3/5/2006 (b)

sets correspond to a long data set of daily averages, cross-validation was used. The
weights were randomly initialised and the NN had only one hidden layer. The best
set of inputs used in order to reach the target (NO2 for the next day) is represented
in Table 2.

Afterwards, the model was used to produce daily NO2 forecasts for the monitor-
ing stations, for a period of 100 days. The dataset used was an independent NO2

sample, not used previously for calibration and validation. The results attained by
the NN model were then compared with the actual observed NO2 values at the mon-
itoring stations (Figs. 5 and 6).

The results obtained by the NN model are reasonable (mean correlation coeffi-
cient of 82% and mean skill against persistence of 52%) and indicate that a useful
spatial-temporal model can be developed in forecast mode.

4.3 Stochastic Simulation Model

The sequential methodology previously described was applied to perform a joint
space–time modelling procedure in order to obtain the first trend model through
the use of DSS. The first trend refers to the period (23rd April 2006) (Fig. 7a).
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Fig. 6 Bi-plot of 100 daily NO2 predictions by NN versus actual observed NO2 for all the
monitoring stations
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Fig. 7 (a) NO2 observed spatial dispersion simulated with DSS for 23rd April; (b) Predicted
values for 24th April

Figure 7b shows the mean of the 20 realization of NO2 for the 24th April. As
this approach is performed sequentially in the time domain, the space–time trend
is sequentially updated everyday. Subsequently, this procedure was repeated for the
NO2 daily measured data for the next day (24th April). An average image, shown in
Fig. 8a), will be used in the next iteration as the trend for 24th April. The difference
between the average maps based on real observations (Fig. 8a) and predicted values
(Fig. 7b) is shown on Fig. 8b.

The spatial uncertainty can be achieved by the set of simulated images of NO2 –
variance of NO2 (Fig. 9).
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Fig. 8 (a) NO2 observed spatial dispersion simulated with DSS for 24th April; (b) Difference
between Figs. 8b and 9a

Fig. 9 NO2 variance for April, 24th

5 Conclusions

The proposed methodology aims at the development of an AQ model which al-
lows forecasting critical concentration episodes of a certain pollutant by means of
a hybrid approach, combining iteratively the use of two efficient space–time mod-
elling techniques: neural network models and geostatistical stochastic simulations.
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This hybrid approach shows to be a very promising alternative for urban AQ
characterization. These results will allow further developments in order to produce
an integrated air quality and health surveillance/monitoring system in the area of
Lisbon.
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Geostatistical Methods for Polluted Sites
Characterization

Amı́lcar Soares

Abstract In the last 2 decades, Geostatistics had a quite significant increase in
methodological developments and applications in the environment field, in par-
ticular related with natural resources management and anthropogenic pollution
characterization. Contaminated sites, air pollution and polluted water characteriza-
tion are among the most serious environmental problems for which characterization
and management, geostatistical methods play an important role. However, geosta-
tistical methods are still far from the main stream of industrial applications; in
particular the industry of contaminated site remediation and air pollution control
and management. In most cases, compliance with legislation is the only environ-
mental requirement for industries. Hence, less attention is paid to the development
of better assessment tools. But as for the lack of water resources, the migration and
concentration of world population in large urban areas, soil degradation and en-
vironmental health become of main concern in developed countries, this scenario
will probably change as air, water and soil will turn into more valuable resources
and geostatistics continues to provide robust and accurate answers to the solution
of monitoring and characterization of these resources. This paper intends to present
some methods as potential paths for geostatistical models to approach the pollution
problem of environmental systems in this new framework:

– Direct sequential simulation with joint distributions for environmental impact and
risk assessment in polluted soil sites

– The use of hybrid models coupling deterministic fluid dispersion models with
stochastic simulation with locally varying anisotropy for contaminated river water
and sediment characterization

– Space–time modelling of air quality in urban areas
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Universidade Técnica de Lisboa, Lisbon, Portugal
e-mail: asoares@ist.utl.pt

P.M. Atkinson and C.D. Lloyd (eds.), geoENV VII – Geostatistics for Environmental
Applications, Quantitative Geology and Geostatistics 16,
DOI 10.1007/978-90-481-2322-3 17, c� Springer Science+Business Media B.V. 2010

187

asoares@ist.utl.pt


188 A. Soares

1 Introduction

Since the 1980s, environmental problems have led the geostatistical community to
approach problems of air quality, soil contamination, hydrology, natural resources
management, with identical methods that had been, until then, mainly focused on
mining studies. The Tahoe conference (Geostatistics for Natural Resources Char-
acterization [1983]) marks the beginning of environmental applications. But still
the main innovations in geostatistical methods and algorithms were driven by
petroleum and mining, the fields with significant investments in research. By then
environmental studies were mostly dominated by qualitative judgments with a clear
predominance of ecological concerns.

With the increase of global social concerns about environmental problems –
ozone hole, greenhouse effect, global warming, desertification, droughts, floods
– geostatistics began to be viewed as a potential tool for the quantification of
those problems, mainly in observation, characterization and management of physi-
cal phenomena of natural resources and polluted areas. Hence, one can consider the
decade of 1990s as the mature phase of the discipline. The conferences Geostatistics
Troia’92, in Troia (Soares, 1993), Geostatistics for Environmental and Geotechnical
Applications in Phoenix (Rouhani et al., 1996), and geoENV series of confer-
ences in Lisbon (Soares et al., 1997), Valencia (Gómez-Hernandez et al., 1999),
Avignon (Monestiez et al., 2001), Barcelona, (geoEN IV, 2003), Neuchatel (Renard
et al., 2006) and in Rhodes (Soares et al., 2008) are reference milestones of the
geostatistical applications in the environmental field (Sanchez-Villa et al., 2004).

Among the diversity of environmental applications those related with anthro-
pogenic pollution have particular characteristics – complexity and space–time het-
erogeneity of natural phenomena (air, soil, water) and the dynamic of different
contaminations – that put them in a specific position to be approached by innovative
geostatistical tools. This note will only focus on soil and air quality. In contaminated
sites, mapping of pollutants concentration have been treated by classical estima-
tors of kriging (Goovaerts and Van Meirveinne, 2001; Atkinson and Lloyd, 2001),
stochastic simulation (Goovaerts, 1997) Markov random fields (Cressie et al., 1999)
and co-simulation of several contaminants (Franco et al., 2004). Integration of
secondary information to characterize a main pollutant have been approached by
several authors with the use of secondary information such as geophysical data
(Garcia and Froidevaux, 1997) and soil type (Pereira et al., 2001). Air quality char-
acterization introduced the time component to the usual framework of geostatistics
(Kyriakidis and Journel, 1999; De Iacco et al., 2001; Nunes et al., 2004) or in BME
framework (Serre et al., 2003).

With this paper I intend to present some methodological trends of geostatis-
tics for the applications of air pollution and soil contamination characterization:
polluted soil sites characterization with direct sequential simulation with joint dis-
tributions; the use of hybrid models coupling deterministic fluid dispersion models
with stochastic simulation with local varying anisotropy for contaminated river wa-
ter and sediments characterization; real time monitoring and modeling of air quality
in urban areas. These are illustrated with examples of real case studies.



Geostatistical Methods for Polluted Sites Characterization 189

2 Direct Sequential Simulation with Joint Distributions
for Contaminated Site Characterization

Among the sequential algorithms of stochastic simulation, one advantage of direct
sequential simulation and co-simulation (Soares, 2001) is precisely the use of orig-
inal variables instead of the transformed Gaussian (sequential Gaussian simulation)
or indicator (sequential indicator simulation). Direct sequential simulation and co-
simulation have been applied in several soil and air quality characterization studies,
with promising results.

The use of original (non-transformed) variables and the method of generating a
simulated value by re-sampling the global probability distribution function (pdf),
opened the door to new ways of this resampling approach: Carvalho et al. (2006)
proposed to resample local distributions taken from a secondary image (instead of
the global pdf), in an application of data fusion of satellite images; Horta et al.
(2008a) proposed the resampling of joint distributions for co-simulation of a set of
variables, for soil quality evaluation. This new algorithm of DSS with joint distribu-
tions can be summarized in the following sequel.

Consider the direct sequential co-simulation (Soares, 2001) of just two variables,
Z1 and Z2, with the following implementation:

(i) Direct sequential simulation of Z1.x/ that reproduces the marginal distribution
FZ1.Z/ and variogram �Z1.h/.

(ii) Co-simulation of Z2.x/ with Z2.x˛/ data and previously simulated Z1
l.x/ as

secondary variable, by using co-located co-kriging to estimate local means and
variances. Marginal distributions of Z2, FZ2.Z/, variogram �Z2.h/ and the
joint spatial pattern characterized by the co-variograms �Z1;Z2.h/ are repro-
duced at the final results.

This is usually sufficient to characterize both spatial random functions Z1 and Z2

for the most in environment and Earth sciences applications. However, in some
situations one wishes that the bi-distributions would be reproduced or, at least,
the final results do not violate the experimental bi-histogram boundaries. For ex-
ample, suppose that one intends to jointly simulate two pollutant concentrations,
relatively highly correlated, in a contaminated site. For a particular class of values of
Z1.x/ D Z1; one would like to impose limits to the prob fZ2.x/ < ZjZ1.x/ D Z1g.
In other words, one would wish that the simulated values Z2

l.x/ must not exceed the
limits found in the experimental conditional histogram of Z2.x/ given Z1.x/ D Z1.
As this is not imposed, in any sequential co-simulation algorithms (sGs or co-DSS),
it is not reproduced in the final results. In fact, after the conditional mean and
variance are estimated, Z1.x/ and Z2.x/ are drawn from the global marginal dis-
tributions (DSS) or from its local Gaussian transform (sGs). Although the marginal
histograms are reproduced, at the very beginning of the sequential simulation pro-
cess, high conditional variances can drive simulated values out of the boundaries
of conditional histograms. This can lead to erroneous conclusions when non-linear
cost functions are applied to the pairs of co-simulated values.
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In short, sequential co-simulation procedure does not guarantee that the
conditional distributions F ŒZ2.x/jZ1.x/� are reproduced.

Hence the new approach of direct sequential co simulation (Horta et al., 2008b)
is based on the very simple idea of resampling Z2.x/ from the joint distribution
FZ1;Z2.z1, z2/ which can be summarized very shortly in the following sequence:

(i) Estimate the global bi-distributions from experimental data. Smooth algorithm
(Deutsch and Journel, 1998) can eventually be used when there is a lack of
experimental data.

(ii) First covariate Z1.x/ is simulated using Direct Sequential Simulation. Realiza-
tions of Z1

l.x/ reproduce the variogram �Z1.h/ and marginal pdf FZ.Z1.x//.
(iii) Co-simulation of Z2.x/: at each location x0, estimate local mean and variance,

identified with estimated simple collocated co-kriging and corresponding esti-
mation variance: ŒZ2.x0/�sck and ¢2

sck.x0/.
(iv) Based on previously simulated Z1

l.x0), conditional pdf FZ ŒZ2.x/jZ1.x/ D
Z1

l.x0/� are calculated from the bi distribution FZ1;Z2ŒZ1.x/, Z2.x/�.
(v) Simulated value Zs

2.x0/ is re-sampled from the conditional pdf FZŒZ2.x/j
Z1.x/ D Z1

l.x0/� (as in the usual direct sequential procedure with marginal
pdfs [Soares, 2001]).

This new approach of direct sequential co-simulation with joint distributions was
applied to a contaminated site, the Guadiamar River, South of Spain, after a spill
of a mining dam. Figure 1a presents the experimental bi-histogram of two soil
contaminants (Arsenic [As] and Copper [Cu]) and Fig. 1b refers to the resulting co-
simulated values (Franco et al., 2004) using classical DSS (Soares, 2001). Although

Fig. 1 Experimental bi-histogram of two soil contaminants (Arsenium [As] and Copper [Cu])
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the marginal histograms, variograms and correlation coefficient are very well repro-
duced, the conditional histograms are not. Looking to the values of As for the class
of Cu < 500 ppm in the bi-plot of Fig. 1a, a clear bias occurs in this conditional his-
togram: there are 15% of values with As > 500 ppm and Cu < 500 ppm that do not
exist in the experimental data. This can lead to a misevaluated risk and cost functions
calculation based on the joint probability of exceedences (Franco et al., 2004).

For comparison purposes, Fig. 2 shows the bi-histogram of simulated covariates
with the new approach of DSS with joint distributions. The marginal histograms
and the correlation coefficient are fairly well reproduced as in the traditional co-
DSS (Fig. 1a). But, the bi-histograms of simulated covariates with both methods
have some differences which are reflected in the simulated images of As (Fig. 3).
The bias previously reported in the class of As > 500 ppm and Cu < 500 ppm is not
found in the bi-plot of Fig. 2 using co-DSS with joint distributions.

This simple example shows the clear advantage of using co-DSS with joint dis-
tributions when one wishes to impose conditional distributions to the final covariate
realizations. Another example, but in a different application (air pollution) of this
new approach is presented in a following section (Section 3.2).

3 Hybrid Models for Air Quality and Soil Contamination
Characterization

When pollution is a result of spatial and temporal dispersion of a contaminant driven
by physical phenomenon with high dynamic behavior like, for example, air pollution
dispersion or percolation of a pollutant through different types of soil, geostatisti-
cal models can be enriched by integration of those dynamic characteristics through
another deterministic or stochastic model. These hybrid models have been quite
widely used in hydrogeology or petroleum applications, by coupling the dynamic
simulation models with geostatistical models to integrate dynamic responses known
at the wells (Hendricks-Franssen et al., 1999; Meier et al., 1999).

When the dynamic behavior is so complex that hardly can be modeled by physi-
cal laws that govern deterministic dispersion models like, for example, air pollution
in urban areas, non-linear classifiers (neural networks) can be used to integrate the
temporal dynamics.

Two examples of hybrid models are presented to illustrate the paths of geostatis-
tical modelling in this field.

3.1 Contaminated Sediment Characterization by a Hybrid Model

Let us consider a situation where contaminants are being accumulated in a sed-
iment bed naturally created by the river flow. Characterization of such pollutant
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Fig. 2 Bi-histogram of co-simulated (with joint distributions) soil contaminants (As and Cu)

concentration by a geostatistical model must account of preferential sediment depo-
sition along different channel morphology. Taking this into account, Horta et al.
(2008a) proposed a simulation of continuous variables conditioned to meander
structures. Basically, a bi-point statistics stochastic simulation with local anisotropy
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Fig. 3 Mean of 30 simulated
maps of Zinc

trends is used to characterize continuous variables inside pre-defined channels. To
accomplish this, a new version of the DSS algorithm is proposed to account for local
anisotropy directions and ratios.

Let us assume .x/ and r.x/, the local angle of anisotropy and the ratio of
anisotropy, are known at spatial location x. The main sequence of methodological
steps of this version of DSS can be summarized in the following:

(i) Choose a given location x0 in a random path of a regular grid to be simulated.
(ii) Local means and variances of z.x0/ are estimated – simple kriging – with cor-

rected local covariances C�;r.h; / by the local values of .x/ and r.x/. Hence
the simple kriging estimate of local mean becomes a function of .x/ and r.x/.

(iii) Draw a simulated value at x0 by re-sampling the global histogram and return
to (i) until all nodes of the regular grid have been simulated.

This method was applied to the assessment of sediment contamination in a coastal
lagoon where serious pollution discharges have been reported coming from the in-
dustrial sites located in the North part of the water basin (Horta et al., 2008a). After
a sediment monitoring campaign, the previous method of DSS with local directions
and ratios of anisotropy was applied to characterize the spatial dispersion of differ-
ent pollutants. In Fig. 3, the final mean of 30 simulated maps of Zinc is presented,
where the influence of meanders structures is quite visible.

An important and crucial point of this methodology is precisely the determina-
tion of local directions and ratios of anisotropy. As the channels were visible in
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Fig. 4 Satellite sensor image (Quickbird, 3 m spatial resolution)

a satellite image (Quickbird, 3 m spatial resolution), Horta et al. 2008a) inferred
those parameters by the shape of meanders structures delineated from the image
(Fig. 4). However, as directions and ratios of anisotropy are related with the fluid
flow characteristics, those can be automatically inferred with a dynamic dispersion
model response. In Fig. 5a one can see only the main meander bathymetry, and the
response of the dynamic dispersion model MOHID (www.mohid.com; Fig. 5b). Lo-
cal anisotropy angles and ratios can be inferred (linearly related) by the velocity
vectors of the fluid.

3.2 Real Time Monitoring and Modelling of Air Quality
in Urban Areas

An example of a hybrid model for characterization of air pollution in industrial areas
by integrating dynamic deterministic modelling (Gaussian plume) with stochastic
simulation has been proposed by Pereira et al. (1997). In most of the industrial areas,
contamination plume sources are identified, which makes use of such physical mod-
els easy to implement. However, in urban areas the dynamic of the pollutants depend
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on a complex set of factors related with meteorological conditions, and buildings
structure, but mostly on the diffuse source of the contamination. This extremely
complex behavior makes the implementation of deterministic dispersion models
very simplistic and most of the time useless. For these situations a hybrid model
by coupling the use of neural networks for short-term prediction in monitoring
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stations and stochastic simulations for space–time modelling the pollutant
dispersion, is proposed by Russo et al. (2008). The authors apply direct stochastic
simulation with local pdfs taken from the bi-distribution between predicted (neural
networks) and observed values at the monitoring stations.

In this example, a stochastic simulation of the spatial component with a space–
time trend model is proposed to characterize critical situations at a given present
period, or in the very near future period, taking into account data from the past
and a space–time trend from the recent past. First, a joint space-time model is used
for the first trend model. Afterwards a simulation of residuals is performed for the
period t , allowing for characterization of the local conditional distribution functions
and spatial uncertainty assessment. As this approach is performed sequentially in
the time domain, the space–time trend is sequentially updated for every period t .

In order to predict the main pollutants for near future periods, at the monitor-
ing stations, a neural network was developed taking into account the pollutants
concentration at past periods and the meteorological conditions measured and also
predicted for each monitoring station.

As a result a series of predicted and observed values of recent past gave rise
to bi-distributions at the monitoring stations location. Hence conditional distri-
butions of real values Z.x’jti / at the monitoring station x’ and period ti, given
the corresponding predicted value (neural networks) Z.x’jti /� are calculated: F

(Z.xati /jZ.xati /�/.
DSS with joint distributions and with re-sampling local pdfs (Horta et al., 2008a)

was applied to simulate the next day period concentration Z.x˛jti /. Russo et al.
(2008) applied this methodology to Lisbon city. Figure 5 is represented an example
of the mean of a set of simulated realizations for NO2.

4 Final Remarks

In the last 2 decades, in spite of the increased performance of geostatistical modeling
for the monitoring and characterization of polluted sites, its use is still far from the
main stream of industrial applications (contaminated sites remediation, air quality
control). However, it is expected that external factors of main concern to developed
countries, such as the lack of water resources, desertification and environmental
health, will change this scenario.

In this context, deterministic models of air pollution dispersion in urban areas
(where most of the population is concentrated) just give qualitative (decorative) in-
dicators and are almost useless for short-term prediction purposes. On the other
hand, there is a health cost issue directly associated with risk assessment concern-
ing either poor air quality or contaminated soil sites. Geostatistical modelling for
polluted sites characterization will tend to play a more important role in this new
framework of environmental problems.
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This paper presented some methods which are potentially innovative and efficient
tools for approaching problems of pollution within the geostatistical framework:

– The use of direct sequential simulation and co-simulation with joint distributions
for simulation of covariates in contaminated soil sites or in space–time air quality
short-term prediction

– The use of hybrid models coupling deterministic and stochastic simulation to
integrate the dynamic component of complex phenomena.
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Geostatistical Mapping of Outfall Plume
Dispersion Data Gathered with an Autonomous
Underwater Vehicle

Maurici Monego, Patrı́cia Ramos, and Mário V. Neves

Abstract The main purpose of this study was to examine the applicability of
geostatistical modeling to obtain valuable information for assessing the environ-
mental impact of sewage outfall discharges. The data set used was obtained in a
monitoring campaign to S. Jacinto outfall, located off the Portuguese west coast
near Aveiro region, using an AUV. The Matheron’s classical estimator was used the
compute the experimental semivariogram, which was fitted to three theoretical mod-
els: spherical, exponential and Gaussian. The cross-validation procedure suggested
the best semivariogram model and ordinary kriging was used to obtain the predic-
tions of salinity at unknown locations. The generated map shows clearly the plume
dispersion in the studied area, indicating that the effluent does not reach the nearby
beaches. Our study suggests that an optimal design for the AUV sampling trajectory
from a geostatistical prediction point of view, can help to compute more precise pre-
dictions and hence to quantify more accurately dilution. Moreover, since accurate
measurements of plume’s dilution are rare, these studies might be very helpful in
the future for validation of dispersion models.

1 Introduction

Outfalls are designed to promote the natural assimilative capacity of the oceans
to dispose of wastewaters with minimal environmental impact. This is accom-
plished through the vigorous initial mixing that is followed by oceanic dispersion
within spatially and temporally varying currents. Usually, those mixing processes,
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in conjunction to bacterial mortality, result in rapid reductions in the concentrations
of contaminants and organisms present in the wastewater to near background lev-
els. However, coastal physical, chemical and biological processes, very dynamic
and complex, and intimately coupled to the concentration and content of wastewa-
ter, are in most instances, poorly understood. Consequently, how sewage disperses
and how effluent modifies and is modified by coastal environments remain in many
aspects unknown and unpredictable. The impacts of discharged wastewaters on hu-
man beings may include direct contact (e.g., by swimmers, surfers, beachgoers)
with chemical contaminants or pathogens, and indirect effects through the con-
sumption of contaminated food suppliers (e.g., fish, shellfish). Much effort has been
devoted recently to improve the means to monitor and characterize effluent plumes
under a variety of oceanographic conditions, on relevant temporal and spatial scales.
However, effluent plume dispersion is still a difficult problem to study in situ. The
difficulties in conducting field studies arise from the rapid spatial and temporal vari-
ations in physical, chemical and biological processes and oceanographic conditions
that can occur in coastal waters. Additional logistical difficulties that include vari-
ability of discharge flowrate, high costs, and large area extent to be monitored, make
reliable field measurements of coastal outfall plumes rare.

Autonomous Underwater Vehicles (AUVs) have already been demonstrated to
be appropriate for high-resolution surveys of small features such as outfall plumes
(Ramos, 2005). Some of the advantages of these platforms include: easier field lo-
gistics, low cost per deployment, good spatial coverage, sampling over repeated
sections, and capability of feature-based or adaptive sampling. Demands for more
reliable model predictions, and predictions of quantities that have received little
attention in the past are now increasing. These are driven by increasing environmen-
tal awareness, more stringent environmental standards, and application of diffusion
theory in new areas. While the gross properties of the plume can be reasonably
predicted by the most commonly used marine discharge models, there remain many
aspects which cannot be, particularly the patchy nature of the wastefield. This patch-
iness, which has been observed in field studies, is not incorporated into any of those
models. They implicitly assume properties to vary smoothly in space, an assump-
tion that is true only for time-averaged plumes. If we want to calibrate these models
with real data we have to be able to quantify spatial correlations and other related
characteristics.

In this paper, we use geostatistics in the spatial analysis of environmental data
gathered with an autonomous underwater vehicle (AUV) in a monitoring campaign
targeted to a sea outfall, aiming: (i) to distinguish the effluent plume from the re-
ceiving water; (ii) to estimate the salinity value at unknown locations and map its
distribution by kriging interpolation, motivated by environmental impact assessment
for decision-making and (iii) to validate predictions of plume dispersion models.

Geostatistical modeling has been used to analyze and characterize the spatial
variability of soil properties (Saby et al., 2006; Wei et al., 2007), to obtain informa-
tion for assessing water and wind resources (Shoji, 2006; Shoji and Kitaura, 2006),
to design sampling strategies for estuarine sediment collection (Caeiro et al., 2003),
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to study the thickness of effluent-affected sediment in the vicinity of wastewater
discharges (Murray et al., 2002), and to obtain information about the spatial
distribution of sewage pollution in coastal sediments (Poon et al., 2000), among
many others.

Although very chaotic, due to turbulent diffusion, plume’s dispersion process
tends to a natural variability mode when the plume stops rising and the intensity
of turbulent fluctuations approaches to zero (Roberts, 1996). This region is called
the end of “near field” or “initial mixing region”. After the end of the near field the
established wastefield spreads laterally, drifting with the ocean current diffused by
oceanic turbulence. In the near field the dilution increases rapidly with downstream
distance, due to the turbulent kinetic energy generated by the buoyancy and momen-
tum of the discharge. However, after the end of the near field the rate of increase of
dilution is much lower. Dilution is then usually evaluated, for risk assessment pur-
poses, at the end of the near field. It is likely that after the end of the near field
pollutant concentrations are spatially correlated. In this sense, geostatistics appears
to be an appropriate technique to estimate dilution and map the plume dispersion.

In this work we conduct a geostatistical study of salinity measurements, obtained
in the vicinity of an outfall discharge, using ordinary kriging interpolation. In a first
step the spatial structure of the observations was inspected thought a descriptive sta-
tistical analysis. Then, the degree of spatial correlation among data in the study area
as function of the distance and direction was expressed in terms of the semivari-
ogram. Finally, ordinary kriging was used to estimate salinity at unknown locations,
and a map of this parameter distribution in the field was generated. Cross-validation
indicators and additional model parameters helped to choose the most appropriate
model.

2 Geostatistical Analysis

The data set used in this analysis was obtained in a monitoring campaign of S. Jac-
into outfall, located off the Portuguese west coast near Aveiro region, using the
AUV of the Underwater Systems and Technology Laboratory of University of Porto.
A rectangular area of 200�100 m2 starting 20 m downstream from the middle point
of the outfall diffuser was covered. As planned, the vehicle performed six horizontal
trajectories at 2, 4, 6, 8, 10 and 12 m depth. In each horizontal section the vehicle de-
scribed six parallel transects, perpendicular to the current direction, of 200 m length
and spaced at 20 m. While navigating at a constant velocity of approximately 1 m/s,
CTD (conductivity, temperature, depth) data were collected and recorded at a rate
of 2.4 Hz. Consecutive measurements at horizontal sections were then distanced at
about 0.4 m.

In this study, we analyse salinity data (computed from conductivity, temperature
and depth) from the horizontal section at 2 m depth, where the effluent plume was
found established and dispersing horizontally. The trajectory of the AUV at this
section is shown in Fig. 1.



202 M. Monego et al.

a

0

−20
20m

40m

60m

80m

100m

120m

−40

−60

−80

−100

−120

−80 −60 −40 −20
West - East (m)

0 20 40 60 80 100

N
or

th
 -

 S
ou

th
 (

m
)

b

Fig. 1 (a) AUV sampling trajectory at 2 m depth. (b) Study area off the Portuguese west coast
near Aveiro region

2.1 Exploratory Analysis

Table 1 gives the summary statistics of the salinity data set (2,470 measurements).
The salinity ranged from 35.152 to 35.607 psu. The mean value of the data set was
35.451 psu, being close to the median value that was 35.463 psu. As in conventional
statistics, a normal distribution for the variable under study is desirable in linear
geostatistics (Wackernagel, 2003).

It can be seen from Table 1 that both skewness and kurtosis values are low indi-
cating an approximated normal distribution of the raw data.

Figure 2 shows the frequency distribution of the salinity data set. The left tail of
the histogram shows a lightly negatively skewed distribution, which is in accordance
with the negative value of the skewness parameter in Table 1. This can be justified by
the sampling strategy adopted. Since transects were all perpendicular to the current
direction (and not parallel to the outfall diffuser), the ones closer to the diffuser still
caught the plume ascending giving much lower values of salinity.

2.2 Semivariogram

Geostatistical methodology uses the semivariogram to quantify the spatial variation
of the variable in study (Cressie, 1993; Isaaks and Srivastava, 1989). The semivari-
ogram measures the mean variability between two data points as a function of their
distance. Matheron’s classical estimator of the semivariogram was used in this study,
whose computing equation is (Matheron, 1965):

�.h/ D 1

2N.h/

N.h/X
iD1

ŒZ.xi / � Z.xi C h/�2 (1)
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Table 1 Summary statistics
of the salinity data set

Summary statistics of the salinity data set

Number of data 2,470
Minimum 35.152 psu
Mean 35.451 psu
Median 35.463 psu
Maximum 35.607 psu
Variance 0.004
Standard deviation 0.067
Skewness �0:52

Kurtosis 0.006

Fig. 2 Frequency distribution of the salinity data set

where �.h/ is the semivariogram, Z.xi / is the salinity value measured at location
xi , h is the lag distance and N.h/ is the number of pairs of measurements which
are h distance apart. The experimental semivariogram is calculated for several lag
distances. Once the experimental semivariogram is computed, the next step is to
fit it into a theoretical model. This model gives information about the structure of
the spatial variation being also used for the spatial prediction by kriging. The most
commonly used theoretical models are circular, spherical, exponential and Gaussian
(Kitanidis, 1997).

Figure 3 shows the omnidirectional experimental semivariogram of the salinity
data set and the models spherical, exponential and Gaussian fitted.

Estimation of semivariances was carried out using a lag distance of 10 m.
Anisotropy was investigated by calculation of semivariogram for several directions.
However, no effect of anisotropy could be shown. The nugget, sill, and range pa-
rameters of the three fitted models are shown in Table 2.
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Fig. 3 Omnidirectional experimental semivariogram and fitted models

Table 2 Parameters of the
semivariogram models

Models Nugget Sill Range Nugget/Sill (%)

Spherical 0.00021 0.00555 109.772 3.9
Exponential 0 0.00492 109.772 0
Gaussian 0.00093 0.00608 109.772 15.3

The degree of spatial dependence of the variable in study can be evaluated
through the nugget/sill ratio. According to Wei et al. (2007), nugget/sill ratios less
than 25% suggest that the variable has a strong spatial dependence; nugget/sill ratios
between 25% and 75% suggest that the variable has a moderate spatial dependence;
and nugget/sill ratios above 75% suggest that the variable has low spatial depen-
dence. As can be observed in Table 2, the nugget/sill ratios of salinity for all the
semivariogram models are low and less then 25%, suggesting that the variable has
a strong spatial dependence and that probably local variations could be captured, as
expected.

2.3 Cross-Validation

Cross-validation was used to compare the prediction performances of the three
semivariogram models. In this procedure, each sample is eliminated in turn and
the remaining samples are used by kriging to predict the eliminated observation.
The differences between the observations and the predictions are then evaluated us-
ing the mean error (ME), the root mean squared error (RMSE), and the root mean
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Table 3 Cross-validation
parameters for the
semivariogram models

Models ME RMSE RMSSE

Spherical �3:8 � 10�5 0.01476 0.8077
Exponential 0:29 � 10�5 0.01409 1.6310
Gaussian �29:9 � 10�5 0.02495 0.7461

squared standardized error (RMSSE), computed respectively according to the fol-
lowing equations:

ME D 1

N

NX
iD1

h OZ.xi / � Z.xi /
i

(2)

RMSE D
vuut 1

N

NX
iD1

h OZ.xi / � Z.xi /
i2

(3)

RMSSE D
vuut 1

N

NX
iD1

" OZ.xi / � Z.xi /

�2.xi /

#2

(4)

where OZ.xi / is the predicted value at cross-validation point xi , Z.xi / is the actual
(measured) value at point xi , N is the number of measurements of the data set,
and �2.xi / is the kriging variance at cross-validation point xi . Table 3 shows these
indicators for the spherical, exponential and Gaussian models that helped to choose
the best semivariogram model among these candidates.

For a model that provides accurate predictions the ME should be close to zero,
indicating that the predictions are unbiased. The RMSE should be as small as pos-
sible, indicating that the predictions are close to the measured values. If the kriging
variances are accurate, then the RMSSE should be close to 1 (Wackernagel, 2003).
If it is higher, the kriging predictions are too optimistic about the variability of the
estimates. The results given by Table 2 and Table 3 suggest that the spherical model
should be used to estimate salinity over the studied area.

2.4 Ordinary Kriging

After selecting a variogram model, kriging was applied to estimate the value of
the variable at unsampled locations, using data from surrounding sampled points.
The estimation is also based on the semivariogram model, and therefore, takes into
account the spatial variability of the variable in study.

The kriging method belongs to the best linear unbiased estimators (BLUE) fam-
ily. It is said to be linear because the estimated value is a linear combination of the
measurements, being written in the form of:

OZ.x0/ D
MX

iD1

˛i Z.xi / (5)
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where OZ.x0/ is the estimated value for location x0, M is the number of observations
in the neighborhood of x0 used in the estimative, and ˛i are the correspondent
weights.

Ordinary kriging is used when the mean value of the variable in study is un-
known. For this estimator to be unbiased, for any value of the mean, it is required
that

PM
iD1 ˛i D 1. The estimated value is obtained by minimizing the kriging vari-

ance with the help of the Lagrange multipliers, in order to impose the unbiased
condition (Cressie, 1993; Kitanidis, 1997).

3 Results

The kriged maps of salinity of the horizontal section at 2 m depth using the spher-
ical, exponential and Gaussian models are shown in Fig. 4. All maps show clearly
the spatial variation of salinity in the studied area. From these maps it is possible to
identify unambiguously the effluent plume and its dispersion downstream in the cur-
rent direction. It appears as a region of lower salinity compared to the surrounding
ocean waters at the same depth. It is also possible to observe the plume edges since
the wastefield width is shorter than the survey width. We may say that the results
obtained with the three semivariogram models are quite similar. However, in the
prediction using the Gaussian model some small local variations were not captured.
Figure 5 shows the prediction error map when using the spherical model. It can be
seen, as expected, that the prediction error is smaller the closer the prediction to the
trajectory of the vehicle.

Salinity differences compared to the surrounding waters at 2 m depth started to
be about 0.455 psu in the first two transects (20 and 40 m), decreasing to about
0.293 psu in the third transect (60 m), to about 0.215 psu in the forth transect (80 m),
to about 0.176 psu in the fifth transect (100 m), ending almost equally to back-
ground waters at 120 m distance, with a difference of about 0.071 psu. Washburn
et al. (1992) observed salinity differences compared with the surrounding waters of
the order of 0.1 psu, while Petrenko et al. (1998) found differences of the order of
0.2 psu.

A sharp difference in salinity at the effluent plume lateral edges is clearly visible,
being the wastefield spreading almost centered in the survey area. This indicates that
the sampling strategy designed was successful, even for a surfacing plume which
can be considered as the most complicated case in terms of natural tracer tracking.

The plume exhibits a considerably more complex structure than the compact
shape of the classical picture of the buoyant plume, but not so patchy as in pre-
vious studies, maybe due to the increase in horizontal resolution and also possibly
due to the kriging results.
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Fig. 4 Prediction maps of salinity distribution using the: (a) spherical model. (b) Exponential
model. (c) Gaussian model
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Fig. 5 Prediction error map using the spherical model

4 Conclusions

Geostatistical analysis of salinity, obtained with an AUV in a monitoring campaign
to an ocean outfall, was able to produce a kriged map of the sewage dispersion
in the field. The spatial variability of the sampled data was analysed previously
calculating the classic statistical indicators. The results indicated an approximated
normal distribution of the data samples, which is desirable. Then, Matheron’s clas-
sical estimator was used to compute the experimental semivariogram for several
directions. No effect of anisotropy could be shown. The semivariogram was fitted to
three theoretical models: spherical, exponential and Gaussian. The cross-validation
indicators for the three models suggested the best semivariogram model among the
candidates. Finally, the predictions of salinity at unknown locations were obtained
by ordinary kriging. The generated map shows clearly the spatial variation of salin-
ity in the studied area, indicating that the effluent does not reach the nearby beaches
distanced about 3 km.

Our study demonstrates that geostatistical analysis can provide estimates of ef-
fluents dispersion, valuable for environmental impact assessment and management
of sea outfalls. Moreover, since accurate measurements of plume’s dilution are rare,
these studies might be helpful in the future for validation of dispersion models.
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Change of the A Priori Stochastic Structure
in the Conditional Simulation of Transmissivity
Fields

Carlos Llopis-Albert and José Esteban Capilla Romá

Abstract The development of methods for the stochastic simulation of
transmissivity (T) fields has progressed, allowing simulations that are conditional
not only to T measurements but to piezometric head and solute concentration data.
Some methods are even able to honour secondary data and travel time information.
However, most of these methods require an a priori definition of the stochastic
structure of T fields that is inferred only from T measurements. Thus, the addi-
tional conditioning data, that implicitly integrate information not captured by T
data, might lead to changes in the a priori model. Different simulation methods
will allow different degrees of structure adaptation to the whole set of data. This
paper illustrates the application of a new stochastic simulation method, the Gradual
Conditioning (GC) method, to two different sets of data, both non-multiGaussian,
one based on a 2D synthetic aquifer and another on a 3D real case (MADE site).
We have studied how additional data change the a priori model. Results show how
the GC method honours the a priori model in the synthetic case, showing fluctu-
ations around it for the different simulated fields. However, in the 3D real case
study, it is shown how the a priori structure is slightly modified not following just
fluctuations but possibly the effect of the additional information on T, implicit in
piezometric and concentration data. Thus, we consider that implementing inversion
methods able to yield a posteriori structures that incorporate more data might be of
great importance in real cases.

1 The GC Method

The GC method (Llopis-Albert, 2008; Capilla and Llopis-Albert, 2009; Llopis-
Albert and Capilla, 2009) presents a new stochastic inverse modeling technique for
the simulation of transmissivity (T) fields which has been developed to overcome
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Instituto de Ingenierı́a del Agua y Medio Ambiente, Universidad Politécnica de Valencia,
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several of the limitations found in the already existing techniques. It uses an iterative
optimization procedure to simulate T fields honoring T measurements, secondary
information obtained from expert judgment or geophysical surveys, transient piezo-
metric head (h) data and concentration (c) measurements. Travel time data can also
be considered by means of a backward-in-time probabilistic model (Neupauer and
Wilson, 1999), which extends the applications of the method to the characterization
of sources of groundwater contamination. The formulation of the method does not
require assuming the classical multiGaussian hypothesis allowing the reproduction
of strings of extreme values of T that often take place in nature, these being forma-
tion features crucial in order to obtain realistic and safe estimations of mass transport
predictions. The method has been developed using a modified version of the gradual
deformation technique (Hu, 2000), and applying a Lagrangian approach to solve the
mass transport equation. This allows avoiding numerical dispersion usually found
in Eulerian approaches. The new algorithm has been implemented for 3D transient
flow problems under variable density flow conditions, considering the dispersion
as a tensorial magnitude, and a first-order mass transfer approach. Performing a
Bernoulli trial on the appropriate phase transition probabilities, the particle distribu-
tion between the mobile domain and the immobile domain can be determined (see
Salamon et al., 2006).

1.1 Iterative Optimization Process

The iterative optimization process for constraining stochastic simulations to data is
carried out by doing non-linear combinations of seed conditional realizations. These
seed conductivity .K/ fields are already conditional to K and secondary data, and
are generated by sequential indicator simulation. The a priori stochastic structure
of these K seed fields is defined by means of the local cumulative density functions
(ccdf’s) and the indicator variograms, thus allowing the GC method to adopt any
Random Function (RF) model. As a first step, the GC method builds linear sequen-
tial combinations of multiGaussian K fields that honour K data:

Km D ˛1Km�1 C ˛2K2m C ˛3K2mC1 with K0 D K1 (1)

where subscripts stand for seed fields and superscripts for conditional fields result-
ing from a previous linear combination That is, at m iteration, the field Km�1, from
the previous iteration, is combined with two new independent realizations K2m and
K2mC1. The procedure requires combining at least three conditional realizations
at a time to ensure the preservation of mean, variance, variogram and K data in
the linearly combined field. The coefficients have also to fulfill the constraints in
Equation (2): �

˛1 C ˛2 C ˛3 D 1

.˛1/2 C .˛2/2 C .˛3/2 D 1
(2)
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being the parameterization of˛i given by Equation (3):

8<
:

˛1 D 1
3

C 2
3

cos 

˛2 D 1
3

C 2
3

sin.� �
6

C / with  2 Œ��; ��

˛3 D 1
3

C 2
3

sin.� �
6

� /

(3)

The ˛i coefficients are different in every iteration m, and correspond to a unique
parameter  ; note the one to one correspondence between the parameter and the
combined realization Km.

Because the linear combination of independent non-Gaussian random functions
does not preserve the non-Gaussian distribution, although the variogram is pre-
served, a transformation between Gaussian to the non-Gaussian fields (and vice
versa) is required. This transformation is performed through the probability fields
(see Capilla and Llopis-Albert, 2009 for more details). Finally, at each iteration m
of the method the parameter  is determined by minimizing an objective function
that penalizes deviations among computed and measured data. This way of operat-
ing has been successfully applied in both synthetic and real cases (see Llopis-Albert
and Capilla, 2007, 2009).

2 Application to a 2D Synthetic Data Set

The flow domain has a size of 226:4 � 246:4 m and is discretized in 37 � 34 square
blocks of size 6.6 m with prescribed head boundary conditions and transient flow
conditions with three stress periods of length 31.7, 761 and 2,378.27 years, respec-
tively. A pumping well with a rate of 1.8 l/s is activated during the second stress
period. Other parameter values are defined as: porosity of 0.35, longitudinal disper-
sion of 0.3 m, transversal dispersion of 0.03 m, specific storage of 2:5�10�4 1=m and
a number of 4,900 particles are used to solve the transport equation. T seed fields
(only conditioned to T data) have been generated by sequential indicator simulation,
code ISIM3D (Gómez-Hernández and Srivastava, 1990). A mosaic variography has
been chosen, which is spherical, with equal ranges in all directions of 40 m, 0.04 of
nugget effect, and sill of 0.22. The a priori conditional cumulative density function
(ccdf) displays a highly asymmetrical distribution with a long lower tail. Figure 1
shows additional information about well and initial particle locations as well as the
T reference field (selected between the generated seed fields). Figure 2 shows the
spatial location for the following sets of conditioning data: sixteen regularly spaced
T measurements, 16 regularly spaced piezometric head measurements at the end
of the three time steps considered and 40 solute concentration measurements dis-
tributed in time and space to capture the shape and extension of the plume (three
snapshots at time 412.22, 792.74 and 1,902.58 years).

Ensemble variograms, presented in Fig. 3, illustrate that the method tends to pre-
serve the a priori spatial structure for every threshold, at time that reduces the
uncertainty when conditioning to all available information. Moreover, this is true



214 C. Llopis-Albert and J.E.C. Romá

Fig. 1 Geometry, boundary conditions, and initial particles and well position (left). Log T (m/s)
of the reference filed (right)

Fig. 2 Piezometric head fields at the end of the three stress periods and spatial location for T data,
c data at three snapshots and h data at three periods (from left to right)
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(below)
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regardless of the iteration number of the optimization process or the conditioning
information used. Results show the normal ergodic fluctuations for different sim-
ulated fields, which disappear at ensemble variograms. However, the method can
slightly modify the variogram in a certain way to better reproduce the conditioning
information and get closer to the unknown reality. This can also be seen in the local
cumulative density functions (ccdfs), which display a great similarity for all deciles,
leading to a random function model preservation, while the non-multiGaussian
feature is also retained. Again, probability maps show that the method is able to
produce interconnected zones (reflected in the modified local ccdfs) that were not
captured by the data used in the a priori stochastic structure, at time that avoids a
homogenization of the T field, since the inverse model is able to increase or reduce
the T values where necessary.

3 Application to a 3D Real Case (MADE Site)

The GC method was successfully applied in a highly heterogeneous aquifer
.�2

lnK

 0:5/ at the Macrodispersion Experiment (MADE-2) site on Columbus

Air Force Base in Mississippi (Llopis-Albert and Capilla, 2007), since a good
agreement between data and simulated mass distribution at t D 328 days, including
the non-Gaussian plume behaviour, was reached. Furthermore, MonteCarlo sim-
ulations, using seed fields, showed the existence of a high uncertainty when not
using all available information and the need to condition to as much information as
possible. For the sake of conciseness, the reader may be referred to Llopis-Albert
and Capilla (2007) for details concerning the modeling approach. The a priori
random function modelling is based on a similar indicator geostatistical analysis
as presented, for the MADE site, by Salamon et al. (2007), although they used
a flowmeter measurement support scale. We assume that depositional structures
in the aquifer are approximately horizontal, as argued by various authors (e.g.,
Salamon et al., 2006). Hence, spatial continuity is only analyzed in the completely
horizontal and vertical direction. No significantly higher spatial continuity in the
extreme thresholds was detected in the horizontal plane, in spite of the fact that
preferential flow pathways have a significant effect on the anomalous tracer plume
spreading at the MADE site (e.g., Llopis-Albert and Capilla, 2007). In addition,
modeller decisions are needed to complete the indicators variography definition
due to the fact that there are not enough K data within each threshold. We have
adopted a higher spatial continuity definition for the extreme thresholds, thus allow-
ing the reproduction of existing preferential flow pathways (consistent with results
obtained from indicator variography). The iterative optimization process is carried
out by combining alternately seed T fields generated with this variography with
others without this higher spatial continuity definition. Once again, it is clear from
Fig. 4 that the a priori structure is slightly modified according with the additional
conditioning information.
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Fig. 4 Standardized indicator variograms (decile 1 and 5 of layer 10) and horizontal slices (layer
10) of ln conductivity fields (cm/s) for a seed field (above) and a field conditioned to K, h and c
data (below)

4 Conclusions

As shown, the method tends to preserve the a priori spatial structure of the stochas-
tic process during the iterative optimization procedure of non-linear combinations
of T fields, although some modifications can take place to better reproduce the con-
ditioning information and become closer to the unknown reality, at least in terms
of honoring other available information. This can be seen in the 2D synthetic case,
in which the GC method honours the a priori model (which is shared by all seed
fields), although showing the normal ergodic fluctuations for the different simulated
fields. Besides, additional conditioning data, that implicitly integrate information
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not captured by T data, lead to changes in the a priori stochastic model, as shown
for example when reproducing interconnected zones, which might provide safer es-
timations of mass transport predictions. However, in the 3D real case study, results
show how the a priori structure is modified not obeying just fluctuations but pos-
sibly also the effect of the additional information on T, implicit in h and c data.
Finally, both 2D and 3D cases retain the non-Gaussian feature in the conditioned
fields, since the variogram is kept for all deciles.
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Geostatistical Interpolation of Soil Properties
in Boom Clay in Flanders

Annelies Govaerts and André Vervoort

Abstract This contribution examines the applicability of ordinary kriging to
interpolate the results of cone penetration tests or CPTs. The advantages of geo-
statistics are studied for two datasets of CPTs measured in a typical soil encountered
in Flanders, Belgium: the Boom clay. Firstly the unit pile base resistance of a
pile with a diameter of 0.4 m is studied, for a specific depth separately. Secondly
the characteristic resistance of an axially loaded pile is considered. In that part of
the study the whole profile is estimated at once, instead of estimating the value at a
specific depth. From the study one can conclude that it is possible to estimate the
bearing capacity accurately in a point if sufficient measurements are carried out in
the immediacy of that point and that ordinary kriging can be a good method to make
an estimation of the characteristic resistance of an axially loaded pile.

1 Introduction

A detailed soil investigation program is an important step that cannot be omit-
ted in the planning phase of many environmental and geotechnical projects like
e.g. site remediation, waste management operations, and civil engineering projects.
Soils are naturally formed in different depositional environments; therefore their
physical properties vary from point to point (in a horizontal as well as vertical
plane). This variation can even exist in an apparently homogeneous soil unit (Jones
et al., 2003). In most cases the relevant soil parameters are spatially correlated and,
hence a geostatistical approach is advisable. This is also the case when one inves-
tigates the bearing capacity of the soil, using the in-situ cone penetration test, or
CPT (Govaerts, 2006). This test gives information as a function of the depth at
only one particular position. Hence, interpolation techniques are necessary to eval-
uate the properties between the CPTs. Poorly guided inter- and extrapolation of
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the data gathered can be the cause of large problems (financially and others). This
contribution examines the applicability of geostatistical techniques (ordinary krig-
ing) to interpolate the results of CPTs.

2 Data

2.1 The Cone Penetration Test

The CPT is a fast and cheap test to explore the soil. It is one of the most widely used
methods for soil investigation worldwide. The test is performed using a cylindrical
penetrometer with a conical tip (cone) penetrating the soil at a constant rate. During
the penetration, measurements are made of the resistance to penetration of the cone.
The total force acting on the cone, divided by the protected area of the cone, pro-
duces the cone resistance qc. A cone resistance profile consists of qc-values at certain
depth intervals, e.g. every 0.2 m (see Fig. 1 as an example). The CPT has three
main applications in the site investigation process: (1) to determine the sub-surface
stratigraphy and identify materials present, (2) to estimate geotechnical parameters
and (3) to provide results for direct geotechnical design (Lunne et al., 1997). The
geotechnical parameters that can be deduced are for example shear strength, density,
elastic modulus and rate of consolidation (Brouwer, 2007). In practice one could be
interested in an estimation of the whole cone resistance profile, but also in the value
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Fig. 1 An example of a cone resistance profile and the deduced unit pile base resistance profile
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of one of these parameters at a certain depth. The depth one is interested in could
for example be the depth one wants to design a foundation for. This depth is chosen
based on the measured, and possibly the estimated, profiles.

2.2 Two Datasets

In this study, firstly, the unit pile base resistance of a pile with a diameter of 0.4 m
is studied. This unit pile base resistance is deduced from the qc-profile, based on the
method of De Beer (1971). These profiles do not have the high frequent fluctuations
of the qc-profiles (Fig. 1). In fact these fluctuations do not hold much information
for practical foundation calculation and are not spatially correlated. To estimate the
unit pile base resistance at a certain depth in a certain point, most of the time one
cannot interpolate from CPT-values above this point of interest (e.g. from a CPT-
test which is stopped above the horizon of interest). Hence, one has to estimate the
pile base resistance in an unsampled point from neighbouring CPTs. If the site is
not too outstretched the resistance-values at the same depth, relatively to the top or
bottom of the soil layer, are the most correlated. Therefore it is decided to execute
the estimations in a horizontal plane parallel to the top of the studied soil layer.

In this study, secondly, the characteristic resistance of an axially loaded pile is
considered. In this part the entire profile is estimated instead of estimating the resis-
tance at individual depth values.

The advantages of geostatistics are studied for CPT-datasets measured in a typical
soil encountered in Flanders, Belgium: the Tertiary overconsolidated Boom clay.
This clay is a marine deposit of Middle Oligocene age (35 million years) (Schittekat,
2001). The total thickness of the original clay formation could have been well above
100 m. Later erosion has removed part of the clay to leave a thickness of 70 m
in, for example, Antwerp and surroundings. Furthermore there is evidence that it
was covered by thicker deposits than those left today. The removed overburden in
the Antwerp area is estimated to be 90 m. Consequently, the Boom clay may be
considered as an overconsolidated clay (Schittekat, 2001). Afterwards these clay
sediments are covered by quaternary formations.

In this study two different datasets are used (Fig. 2). Both datasets consist of a
set of electric CPTs and are measured in the region of Antwerp, Belgium. The first
test site, with an area of 2;000 � 5;500 m, is located at Kruibeke. There are 73 CPTs
conducted at this site. The 25 CPTs of the second dataset are situated in the river
Schelde near the ‘Sint-Anna-strand’ on a smaller area, 100 � 450 m. At both sites
the subsoil consists of a couple of meters of Quaternary layers followed by the Boom
clay. Only that part of the profiles that is describing the upper 7 m of the Boom clay
is studied. The part through the Quaternary layers is omitted.
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Fig. 2 Relative position of the 73 CPT’s at the site near Kruibeke (left) and of the 25 CPT’s at the
site at Sint-Anna (right)

3 Unit Pile Base Resistance at a Specific Depth

3.1 Semivariogram

Firstly the unit pile base resistance at a specific depth1 is studied in the horizontal
plane. One can determine a semivariogram at every depth for both sites. In Fig. 3
the semivariograms at respectively 5 m below the top of the Boom clay at the site in
Kruibeke and at 3.4 m below the top at the site in Sint-Anna are shown. In Table 1 the
parameters of the spherical semivariograms at several depths are given for both sites.
In Kruibeke the ranges are situated between 250 and 500 m. The smaller ranges are
found at the larger depths. The nugget effect varies from 0% to 35% of the total sill
value. The smallest nugget effects are also found at the larger depths. At the second
site some of the semivariograms are modelled as a pure nugget effect. For the other
depths the range and nugget effect vary between respectively 50 and 120 m, and 0%
and 22% of the total sill value. Most of the semivariogram models do not include a
nugget effect.

1 Depth D distance below the top of the Boom clay.
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Fig. 3 Semivariogram of the unit pile base resistance value at a depth of 5 m in Kruibeke (left)
and at a depth of 3.4 m in Sint-Anna (right)

Table 1 Parameters describing the spherical semivariogram models of the unit pile base resistance
value at different depths in Kruibeke and Sint-Anna

Kruibeke Sint-Anna

Depth
(m)

Range
(m)

Nugget
(MPa2)

Sill
(MPa2)

Nugget
effect (%)

Range
(m)

Nugget
(MPa2)

Sill
(MPa2)

Nugget
effect (%)

0.0 450 0.03 0.12 26 p.n.a p.n.a 0.16 100

0.6 480 0.03 0.11 28 50 0.00 0.11 100

1.0 500 0.02 0.10 21 60 0.01 0.12 8

1.4 500 0.02 0.09 22 80 0.03 0.13 22

1.8 500 0.02 0.09 23 p.n.a p.n.a 0.13 100

2.2 500 0.02 0.08 24 p.n.a p.n.a 0.12 100

2.6 500 0.02 0.10 21 70 0.00 0.12 0

3.0 400 0.04 0.11 35 80 0.00 0.14 0

3.4 400 0.04 0.12 33 100 0.00 0.18 0

3.8 400 0.03 0.14 22 120 0.00 0.22 0

4.2 400 0.04 0.13 33 120 0.00 0.28 0

4.6 350 0.04 0.12 18 90 0.00 0.39 0

5.0 350 0.02 0.11 10 80 0.00 0.40 0

5.4 300 0.01 0.10 14 60 0.00 0.41 0

5.8 300 0.01 0.11 5 60 0.00 0.42 0

6.2 250 0.01 0.10 0 70 0.00 0.41 0

6.6 250 0.00 0.09 6 80 0.00 0.39 0

7.0 250 0.01 0.09 26 70 0.00 0.37 0
a p.n. D pure nugget model.

Although the two datasets are recorded in the same Boom clay one can clearly see
a difference between the parameters at both sites. This can be because of the scale
differences: the overall area (Dextent) of the site at Kruibeke is larger and also the



224 A. Govaerts and A. Vervoort

spacing between the datapoints is larger at this site. On average the distance between
one point and its closest neighbour is 66 m in Kruibeke and 31 m at Sint-Anna.
These scale differences influence the semivariogram parameters. For the ideal case
of very small spacings and very large extents the estimated range and the estimated
variance are close to their true values. However, as the spacing increase or the extent
decreases these estimated parameters differ more from the true values. Western and
Blöschl (1999) showed that the apparent range increases for larger spacing or extent,
and that the apparent variance increases for larger extent, but does not change with
spacing. This explains the larger ranges at the site in Kruibeke. But it cannot explain
the larger sill values, thus larger variances, at the smaller site of Sint-Anna (between
0.08 and 0.14 MPa2 in Kruibeke and between 0.11 and 0.42 MPa2 in Sint-Anna).
The last can be a result of a small scale process that did act at this site but did not act
at the site in Kruibeke (possibly due to the influence of the Schelde river). But the
mean values of the unit pile bearing resistance at every depth are also larger for the
dataset at Sint-Anna (between 1.0 and 2.3 MPa in Kruibeke and between 3.4 and
3.9 MPa in Sint-Anna). When the dimensionless coefficient of variation is studied,
both datasets show similar values (between 0.13 and 0.32 in Kruibeke and between
0.10 and 0.17 in Sint-Anna). Probably there is also an effect of anisotropy. One of
the causes is likely the river Schelde. At the site in Kruibeke it flows approximately
south-north, east of the datapoints. At Sint-Anna it runs from east to west and the
datapoints are situated in the river. But in Kruibeke all data points are approximately
situated in the same direction. Therefore the calculated semivariogram is a unidirec-
tional one and it is impossible to determine the semivariogram in other directions to
detect the anisotropy. This is not the case for the site in Sint-Anna, but at this site
there are not enough data points to determine the directional semivariograms. Based
on this study, one can conclude that a semivariogram based on data of one site in
the Boom clay cannot easily be extrapolated to another site with data recorded in
the same Boom clay.

3.2 Estimation

To evaluate the estimation techniques cross-validation is used. This means that val-
ues are kriged at each sampled location, assuming that the corresponding sample is
missing. The semivariograms are used to estimate the unit pile base resistance at a
specific depth at all measured locations, based on the values in the five nearest data
points. A different semivariogram is used for each depth (Table 1). Several indices
are suitable to evaluate the performance of an estimation technique. These indices
are all a measure of the estimation error, which is the difference between the es-
timated value and the true value. The true value is in this case the unit pile base
resistance calculated based on the CPT-measurement in a certain location. The esti-
mated value is the unit pile base resistance that was estimated based on the unit pile
bearing resistance in the five nearest locations. The more similar both values are, the
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Table 2 Minimum, maximum and mean of the estimation error, absolute value of the estimation
error and slope of the linear fit through the estimated unit pile base resistance versus calculated
(De Beer) pile base resistance plot for both datasets: comparison of the kriging results and the
arithmetic mean

Kruibeke Sint-Anna

Kriging Mean Kriging Mean

Min Max Mean Min Max Mean Min Max Mean Min Max Mean

Error �0:96 1.05 0.01 �0:84 1.04 0.00 �1:85 1.37 �0:06 �2:04 1.51 �0:06

(MPa)
error 0.00 1.05 0.21 0.00 1.04 0.21 0.00 1.85 0.38 0.00 2.04 0.40
(MPa)
Slope 0.32 0.55 0.42 0.21 0.47 0.35 �0:07 0.38 0.08 �0:12 0.12 �0:02

better the estimation technique is. In this study the estimation error and the absolute
value of the estimation error are used. These indices can be calculated at all mea-
suring points for all depths.2 Table 2 presents the minimum, maximum and mean
of these estimation error-values for the ordinary kriging approach and for the clas-
sical statistical approach where the estimate equals the arithmetic mean of the five
nearest points. As expected, for an unbiased estimation technique, the average es-
timation error is for both sites and for both techniques around zero. For the site at
Kruibeke the minimum, maximum and mean value of the absolute value of the es-
timation error are almost equal for both interpolation techniques. At Sint-Anna all
three are smaller for ordinary kriging, which shows that the geostatistical approach
is beneficial. A scatterplot of estimated versus true values provides additional ev-
idence on how well an estimation method has performed (Isaaks and Srivastava,
1989). In Fig. 4 one can see such graphs for a specific depth at both sites. The best
possible estimates would always match the true values and would therefore plot on
the 45ı line on the scatterplot. In actual practice there are always errors in the es-
timates, and scatterplots of estimated versus true values always appear as a cloud
of points (Isaaks and Srivastava, 1989). Therefore the linear fit through the data is
constructed. The closer this line to the 45ı line the better the estimation technique.
Table 2 gives the minimum, maximum and mean values of those slope values at
both sites. All of them are closer to 1 (which is the slope value for the 45ı line) for
ordinary kriging in comparison to the arithmetic mean. Therefore one can conclude
that ordinary kriging is better. The differences between both approaches are more
pronounced for the site at Sint-Anna. This is probably, partially, due to the geom-
etry of the dataset. In Kruibeke all the points lay approximately on one line. For
geostatistics it is better that the point to be estimated is fully surrounded by known
data points. Therefore the geometry of the data is better for the site at Sint-Anna.

2 The term ‘all’ depths means the various depths from the top of the Boom clay till 7 m below the
top with lags of 0.2 m.
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Fig. 4 Estimated unit pile base resistance versus calculated (De Beer) pile base resistance based
on the cone resistance at a depth of respectively 5.0 and 4.2 m at Kruibeke (left) and Sint-Anna
(right): comparison of the arithmetic mean and the kriging results

4 Characteristic Resistance of an Axially Loaded Pile

4.1 Design Procedure According to Eurocode 7

In Eurocode 7 (2004), which contains some rules for geotechnical design, the in-
terpolation problem is explicitly mentioned. In Eurocode 7 one can find a design
procedure to calculate the characteristic bearing capacity of an axially loaded pile
based on cone penetration tests. In this paper the resistance values are calculated
for a simple round precast concrete pile with a diameter of 0.4 m and without an
enlarged base. According to Eurocode 7 the characteristic value should be derived
such that the calculated probability of a less accurate value governing the occurrence
of the limit state under consideration is not greater than 5%. In this case it means that
the probability of the real resistance being smaller than the calculated characteristic
value has to be at maximum 5%. The characteristic value should consider the vari-
ability of the compressive resistance of the piles over the site, the number of tests
and the stiffness of the structure and its ability to transfer loads from weak to strong
spots. In Eurocode 7 the characteristic value of the pile compressive resistance Rc,k

is obtained according to the following equation:

Rc;k D min

�
.Rc;cal/mean

�3

;
.Rc;cal/min

�4

�
(1)



Geostatistical Interpolation of Soil Properties in Boom Clay in Flanders 227

where �3 en �4 are correlation factors that depend on the number of tested profiles
N and Rc,cal is the calibrated resistance that is calculated based on the CPT mea-
surements. The correlation factors are determined for an ‘average’ subsoil. Some
additional information about the design procedure and the determination of all the
factors can be found in Bauduin (2001, 2002).

4.2 Characteristic Value Based on Geostatistics

In this part of the study the characteristic values determined based on Equation (1)
are compared to the characteristic values calculated by geostatistical techniques. The
profile of characteristic values on a specific location is considered to be unknown.
For both approaches the characteristic profile is calculated based on the five nearest
calibrated profiles. In the geostatistical procedure these characteristic values are de-
termined in such a way that the confidence corresponds to 95%. This is possible by
means of the kriging variance that is calculated for every geostatistical estimate.

The geostatistical estimates could be done in the same way as the unit pile base
resistances are estimated in the previous paragraph. But when looking at Fig. 5,
which shows all the calibrated profiles at Kruibeke and Sint-Anna, one can see that
all of them have a similar outline. For this reason it is decided to apply a different
procedure to determine the characteristic values. Instead of determining a semi-
variogram at every depth and making the estimates for all these depths separately,
the entire profiles are estimated at once. This is done by an empirical eigenfunc-
tion analysis as proposed by Coerts (1996). Based on all the profiles at the site
one can determine eigenfunctions. Every profile can be approximated as a linear
combination of these eigenfunctions. Because of the fact that the profiles are very

Fig. 5 All profiles of Rc,cal from top of the Boom clay to 7 m below at Kruibeke (left) and at
Sint-Anna (right)
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much alike, only the first two eigenfunctions are used in this study (Coerts, 1996;
Govaerts, 2004).

q0
j D

tX
iD1

sjieef i (2)

where q’j D jth profile after the eigenfunction analyses, eefi D ith eigenfunction.
As a result of this eigenfunction analysis, two s-factors are known for every pro-

file or position. A geostatistical study of these s-factors is done. All semivariograms
are modeled with a spherical model. In Kruibeke the range, nugget and sill of s1 and
s2 are respectively 350 m, 0.3 MPa2, 2.90 MPa2 and 650 m, 0.3 MPa2, 0.53 MPa2.
As expected the nugget effect of the s-factor belonging to the first eigenfunction is
lower (10%) than the nugget effect of the second s-factor (55%). In Sint-Anna the
range of both s-factors is 70 m and there is no nugget effect. Again the ranges at
Sint-Anna are smaller than those in Kruibeke and at both sites the ranges are sim-
ilar to the ranges in the previous part. Those semivariograms are used to krige the
s-factors. Based on these estimates and the eigenfunctions the whole profile can be
calculated, using Equation (2). To determine the characteristic values the estimated
s-factor is reduced (or increased for a negative s-factor) by 1.65 times the square
root of the kriging variance. This last is only allowed if the estimation errors are
approximately normally distributed around zero. This is checked for both s-factors
at both sites. It seems that the errors are symmetrically distributed with slightly
larger tails than a normal distribution with the same mean and variance. According
to Journel and Huijbregts (1978) this is true for most mining applications. For all
four s-factors the interval ŒmE � 1:65�E ; C1� does indeed contain approximately
95% of the observed errors (respectively 96% and 96% in Kruibeke and 92% and
96% in Sint-Anna). In Fig. 6 the histograms of the difference between the charac-
teristic values, obtained by the geostatistical procedure, and the calibrated values,
obtained by the CPT-measurements, are given. For both sites some of the charac-
teristic values are larger than the calibrated values. But this is only true for less

Fig. 6 Difference between the characteristic values, obtained by the geostatistical procedure, and
the calibrated values at Kruibeke (left) and at Sint-Anna (right) for all depths and all measuring
points
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than 5% of all points (4% in Kruibeke and 3% in Sint-Anna). Thus, as expected,
the geostatistically determined characteristic values satisfy the definition described
in Eurocode 7. These characteristic values can be compared to the characteristic
values which are calculated based on Equation (1). In Kruibeke the geostatisti-
cal Rc,k-values are for 55% of all the values (i.e. 73 locations at various depths)
larger than the Rc,k-values calculated by Equation (1). In Sint-Anna this is so for
99% of the values. The differences between both methods of approach are partially
due to the fact that the correlation factors in Eurocode 7 are determined based on
the idea that the coefficient of variation of the calibrated values is around 12%. In
Kruibeke this variation coefficient is in the first meter below the top of the Boom
clay at average 20%. But deeper it decreases to 10% at a depth of 7 m below the top.
Therefore the coefficient of variation is smaller than 12% from 2 to 7 m below the
top. In Sint-Anna the coefficient of variation decreases from 10% at the top to 5% at
7 m below the top of the Boom clay. Thus in Sint-Anna the coefficient of variation is
even lower than in Kruibeke and certainly lower than 12%. Therefore the differences
between the two approaches are also more pronounced at this site.

Thus in this case geostatistics is a good alternative method to make a cautious,
but not too conservative, estimation of the characteristic resistance of an axially
loaded pile.

5 Conclusions

From the study one can conclude that it is indeed possible to estimate the bearing
capacity accurately in a point if sufficient measurements are carried out in the imme-
diacy of that point. By taking into account the spatial variation the estimation error
is, on average, smaller using ordinary kriging instead of taking the arithmetic mean.
Geostatistics also results in information about the estimation error. This information
can be used in a probabilistic design.

Geostatistics can also be a good method to make an estimation of the characteris-
tic resistance of an axially loaded pile. In this way the spatial variability is explicitly
taken into account and cautious, not too conservative, characteristic values can be
determined.

In future research the effect of the geometry of the dataset has to be studied in
more detail. In this study both datasets do have a total different geometry (a line at
Kruibeke and an irregular grid at Sint-Anna). A similar analysis can also be done for
other values of the numbers of data points used in the estimation. Other soils such
as the Quaternary and Tertiary sands will be analyzed too. These probably have
a different spatial structure. This is going to result in a different relation between
the geostatistical calculated characteristic resistances and those calculated using the
correlation factors, based on a coefficient of variation of 12%.

Geostatistics takes implicitly into account (a) the locations of the cone pene-
tration tests, (b) the position of the point to be estimated in relation to the data
points and (c) the spatial variation of the data. This study shows that this has indeed
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advantages for practical applications. The final question to be answered is if it is
indeed possible to determine other (i.e. better) correlation factors to determine the
characteristic resistance of an axially loaded pile (possibly depending on the subsoil
and the geometry of the dataset) or if it will remain necessary to conduct the whole,
time-consuming, geostatistical analysis.
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An Examination of Transformation Techniques
to Investigate and Interpret Multivariate
Geochemical Data Analysis: Tellus Case Study

Jennifer McKinley and Oy Leuangthong

Abstract This research aims to use the multivariate geochemical dataset, generated
by the Tellus project, to investigate the appropriate use of transformation methods
to maintain the integrity of geochemical data and inherent constrained behaviour
in multivariate relationships. The widely used normal score transform is compared
with the use of a stepwise conditional transform technique. The Tellus Project, man-
aged by GSNI and funded by the Department of Enterprise Trade and Development
and the EU’s Building Sustainable Prosperity Fund, involves the most comprehen-
sive geological mapping project ever undertaken in Northern Ireland. Previous study
has demonstrated spatial variability in the Tellus data but geostatistical analysis and
interpretation of the datasets requires use of an appropriate methodology that repro-
duces the inherently complex multivariate relations. Previous investigation of the
Tellus geochemical data has included use of Gaussian-based techniques. However,
earth science variables are rarely Gaussian, hence transformation of data is inte-
gral to the approach. The multivariate geochemical dataset generated by the Tellus
project provides an opportunity to investigate the appropriate use of transformation
methods, as required for Gaussian-based geostatistical analysis. In particular, the
stepwise conditional transform is investigated and developed for the geochemical
datasets obtained as part of the Tellus project. The transform is applied to four vari-
ables in a bivariate nested fashion due to the limited availability of data. Simulation
of these transformed variables is then carried out, along with a corresponding back
transformation to original units. Results show that the stepwise transform is suc-
cessful in reproducing both univariate statistics and the complex bivariate relations
exhibited by the data. Greater fidelity to multivariate relationships will improve un-
certainty models, which are required for consequent geological, environmental and
economic inferences.
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1 Introduction

The Tellus Project, managed by the Geological Survey of Northern Ireland (GSNI)
and funded by the Department of Enterprise Trade and Development and the EU’s
Building Sustainable Prosperity Fund, involves the most comprehensive geologi-
cal mapping project ever undertaken in Northern Ireland. The project comprised
the collection of both multi-source airborne geophysics and a ground based geo-
chemical survey of soil and streams. The Tellus geochemical survey involved the
collection of soil, stream-sediment and stream water samples in rural and urban
areas. Rural soil samples were collected at approximately 2 km2 intervals. Each
soil sample comprises a composite of five augers collected from a depth interval of
5–20 cm. The sampling strategy involved the collection of auger samples from each
corner of a square with 20 m sides as well as at the centre. Site location is recorded
at the central auger hole (Fig. 1).
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Fig. 1 Location map, counties of Northern Ireland and sample locations for Tellus geochemical
survey sampling scheme
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1.1 Geological Background

Northern Ireland, despite occupying a limited proportion of the land area represents
an almost unparalleled diversity of geology (Mitchell, 2004). The range of rocks
presented includes examples of all geological systems up to and including the
Palaeogene (comprising basalt lavas and lacustrine sedimentary rocks formed be-
tween c. 55 and 62 million years ago). The last 100,000 years of the Northern
Ireland’s history involves the advance of ice sheets and their meltwaters resulting in
a cover of alluvium and peat deposits over at least 80% of bedrock. The economic
significance of the Tellus project and the opportunity the multivariate geochemical
data offers to decipher and investigate the geological underlay relates to the history
of hydrocarbon exploration and mineral prospecting in Northern Ireland. However if
geological, environmental and economic inferences are to be made then the integrity
of the geochemical data is paramount and manipulation of the soil geochemistry data
must honour any inherent geochemical constraints. This study uses the geochemi-
cal data to examine the use of transformation methods to maintain the integrity of
the data and inherent constrained behaviour in the multivariate relationships. The
aim of the research is to enable greater accuracy in the interpretation of the nature
of the geochemical variability and consequently any geological, environmental and
economic inferences.

2 Previous Research

Previous work (Rawlins et al., 2007; McKinley et al., 2006, 2009 in prep) in-
volved the use of Tellus geochemical data to investigate methods of integrating
the geochemical data with the airborne geophysical data to maximise information
collected from the ground geochemical survey. The aim of the research was to
enable greater interpretation of geological, environmental and economic aspects
of Northern Ireland. A Gaussian-based Bayesian updating approach was used by
McKinley et al. (2006, 2009 in prep) as a means to improve the resolution of the
widely sampled soil geochemistry data by integrating the more closely sampled air-
borne geophysical data. The advantage of the approach is that multiple variables of
different types and different sources (in this case radiometric and soil geochemistry)
can be simultaneously integrated and applied to mapping the geochemical variables
of economic interest.

2.1 Rationale for the Present Study

The Bayesian updating approach (Deutsch and Zanon, 2004; Ren et al., 2005)
used by McKinley et al. (2009 in prep) to improve the resolution of the soil
geochemistry data, is a Gaussian-based technique. Hence transformation of data
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is an integral stage of the approach (normal score transformation was used in
this case). Geological data rarely conform to Gaussian behaviour (Leuangthong
and Deutsch, 2003), likewise multivariate distributions rarely exhibit Gaussian
characteristics such as homoscedasticity and linearity. Common non-Gaussian be-
haviour for geochemical data is heteroscedasticity, non-linearity and mineralogical
constraint. However, Gaussian techniques are often used to represent models of con-
tinuous variables. Common practice in geostatistical analysis of multiple-related
variables is to transform each variable to a univariate Gaussian distribution one
at a time. This ensures each variable is univariate but the multivariate distribu-
tions (involving two or more variables at a time) are not explicitly transformed to
be multivariate Gaussian and hence does not address the case when the multivari-
ate Gaussian assumption is violated. An alternative transformation technique must
be considered.

2.2 The Tellus Geochemical Data

The multivariate geochemical dataset collected by the Tellus project comprise mul-
tiple variables that are dependent on each other. This provides an opportunity to
investigate the appropriate use of transformation methods such as normal score
transform and the stepwise conditional transform (Leuangthong, 2003; Leuangth-
ong and Deutsch, 2003). The transforms need to be implemented with the central
aim to maintain the integrity of the geochemical data and honour the inherently
constrained behaviour between multiple variables. These relationships often show
complex features such as nonlinear relations and/or stoichiometric constraints. This
is especially relevant for geochemical data collected as part of the Tellus project
and any subsequent geological, environmental and economic inferences. With this
in mind, the Clogher Valley area comprising Co. Fermanagh and the southern part
of Co. Tyrone, was taken due to the inferred relationship between basement faulting
and base metals and renewed interest in mineral prospecting in the area. The Clogher
Valley dataset comprised 589 points for seven variables of interest; Cu ppm, Ni ppm,
Zn ppm, K2O%, Pb ppm, Co ppm and Cr ppm.

3 Stepwise Conditional Transform (SCT) of Tellus Data

Before any multivariate conditional simulation with dependent variables, we need to
understand the univariate distribution of each variable, and any second and higher
order relations between the variables. Figure 2 shows the matrix of crossplots il-
lustrating the bivariate relations between the seven variables. Figure 3 shows the
same relations as Fig. 2, with the exception that the variables are now normal score
transformed. Following a univariate normal score transform, the complex features
(e.g. heteroscedasticity, constraints, non-linearity) that are apparent in the original
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Fig. 2 Crossplot matrix of original variables: Cu, Ni, Zn, K2O, Pb, Co and Cr

Fig. 3 Crossplot matrix of Normal Score transformed values for Cu, Ni, Zn, K2O, Pb, Co and Cr
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variable crossplots are visibly transferred into Gaussian units; the presence of these
relations after Gaussian transform indicates that they may be challenging to repro-
duce in a conventional Gaussian simulation framework. Normal score transform
can usually be effective in mitigating heteroscedastic features but in several of the
cross plots it is observed that this clearly not the case. The bivariate distributions are
clearly not bivariate Gaussian. This is most evident for crossplots involving K20%,
Cr, Cu and Ni. For this reason, an alternative transform is considered for these four
variables.

For complex multivariate relations, a number of transformation approaches can
be considered. Principal components or factor analysis could be used to generate un-
correlated variables; however, a lack of correlation does not ensure independence.
A log ratio transform (Aitchison, 1981, 1999) is another alternative, but is primar-
ily aimed at accounting for compositional data that exhibit constrained behavior.
Minimum/maximum autocorrelation factors (Switzer and Green, 1984; Vargas-
Guzmán and Dimitrakopoulos, 2003) is yet another technique that is available and
is an extension of PCA to a lag h ¤ 0 scatterplot. There are many other multivariate
transformation approaches available for different purposes; however, in most cases
and for those identified here, a transformation to Gaussianity is still required and
there is no assurance that even bivariate Gaussianity can be achieved.

The stepwise conditional transform (SCT) was introduced by Rosenblatt (1952)
and is described in detail by Leuangthong and Deutsch (2003). The technique
applies a quantile transformation technique of observed univariate conditional distri-
butions to standard Gaussian distributions. For the univariate case the SCT technique
is identical to the normal score transform. In a bivariate situation, the first variable
(Z1) is transformed using normal scores to yield (Y1). The normal score transfor-
mation of the second variable (Z2) is conditional to the probability class of the
first or primary variable (Y1). In essence, Z2 is partitioned into classes conditional
to Y1. A normal score transform is then undertaken for each class of Z2. For the
k-variate case the kth variable is conditionally transformed based on the (k-1) first
variables. All multivariate distributions are Gaussian in shape at distance lag h D 0.
The covariance at h > 0 may not be zero.

3.1 Implementation of SCT in a Nested Fashion for Tellus Data

With less than 600 samples available in the entire dataset for the Clogher Valley
area (589 data points), stepwise transformation of four variables will yield poor re-
sults for the third and fourth transformed variable due to paucity of information to
infer the conditional distributions. Since the transform requires successive condi-
tioning as we increase the number of variables, this effectively means that we are
sub setting the data into finer and finer classes, leaving fewer data within each class.
For example, in the case of two variables, if we had 100 Cu data points and estab-
lished that we would subdivide into ten classes, this would mean we had ten Cu
data within each class. To define a conditional distribution based on ten data is at
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Table 1 Summary of SCT
transform orders and
corresponding bivariate
statistics

SCT order Primary Secondary ¡os ¡ns ¡sct

1 K2O Cr 0.652 0.543 0.003
2 K2O Cu 0.223 0.357 0.000
3 Cr Ni 0.858 0.879 0.050
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Fig. 4 SCT order 1 (left), 2 (middle) and 3 (right) using ten classes

the very limit of what would be considered reliable. As a result, a nested transform
order (Leuangthong et al., 2006) up to two variables is considered (see Table 1).
Figure 4 shows the crossplots corresponding to each transform order. Modelling is
focussed on the three transformed variables. Note that for the first variable K20%,
SCT K2O is the same as the normal score (NS) K2O.

The choice of the primary variable and the ordering of transformation are based
on correlation coefficients (Table 1).

For the forward transformation, SCT is run three times with the order shown in
Table 1. Following transformation, the variograms corresponding to the four trans-
formed variables are calculated and modelled (see Fig. 5).

The variograms of K2O and Cr are calculated from the first order transforms, the
variogram for Cu from the second order transform and for Ni based on the third
order transform. The cross variograms are also calculated to verify that correlation
at h > 0 remains relatively small to allow independent modelling to be carried out.
Using the SCT values and variograms (based on the orders described in the previous
step and Table 1), sequential Gaussian simulation (SGS) is then performed for each
of the four SCT variables. Similar to the forward transform, the back transform must
also be performed in a stepwise conditional manner.

Using the order outlined in Table 1, the following steps are followed: (a) K2O
and Cr are back transformed first using transform table from order 1; (b) Cu is
back transformed based on back transform values of K20 values given from (a) and
the transform table from order 2; and finally Ni is back transformed based on the
back transformed values of Cr (from (a)) and transform table from order 3. This way,
we avoid multiple values of K20 (although they would have been the same given
the order established) and multiple values of Cr, which would be a more critical
issue. In total, 100 realizations were generated. For the purposes of comparison, the
E-type estimate of the simulations and an arbitrarily chosen realization are plotted
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Fig. 5 Variograms corresponding to four SCT variables. A slight trend is apparent in Ni but this
was not explicitly modelled in the results shown

in Fig. 6. As expected, the E-type estimate yields a smooth map that is similar to
a kriged result while the simulated realization is clearly more variable. Regions of
high and low concentrations are easily identifiable in both cases. Moreover the re-
lationship between zones of higher elemental concentration and fault orientation is
evident. Following back transformation each model was checked for data reproduc-
tion, histogram reproduction, variogram reproduction and multivariate distribution
reproduction. Figure 7 shows the reproduction of the bivariate relations (as seen in
Fig. 2) following simulation using SCT.

3.2 Data Related Issues with SCT

There are three important issues that need to be addressed with the use of the SCT
technique: (1) cross variance for h > 0, (2) the effect of ordering on covariance
models, and (3) inference of multivariate distributions with sparse data. (1) There is
no guarantee that there is independence beyond h D 0 (i.e. at h > 0). The cross var-
iogram of the transformed variables is checked to ensure that if there is correlation
beyond h D 0, that this correlation is relatively negligible (i.e. ¡.h > 0/ <D 0:2/.
If this is not the case then some form of cosimulation may have to be considered.
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Fig. 6 Comparison between E-type estimate (left) and simulated SGS realization (right)

However, experience with many data sets (e.g. Leuangthong, 2003; Leuangthong
and Deutsch, 2003, 2004; Leuangthong et al., 2006) has shown that this has gen-
erally not been required. (2) Leuangthong and Deutsch (2003) found that the effect
of transformation ordering was observable in the departure of the variogram of
the transformed variable from the original variable. The mismatch can be mini-
mized by choice of the most continuous variable as the primary for the SCT. In
the Tellus Clogher Valley data, K20% forms the most continuous variable and is
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Fig. 7 Reproduction of crossplot features following simulation using SCT

used as the first variable for the SCT technique. (3) Sparse data leads to erratic
and non-representative conditional distributions. A general rule is that 10N to 20N

number of data is acceptable where N is the number of variables (Leuangthong and
Deutsch, 2003). A limited data set can be supplemented by the use of smoothing
algorithms such as kernel densities to ‘fill-in’ the gaps; this was not required in this
study.

SCT was implemented in a nested fashion for the Tellus Clogher Valley data. In
this case a data set totalling less than 600 samples would have yielded poor results
for the third and fourth transformed variable due to limited information to infer the
conditional distributions. There is an implicit assumption in the implementation of
SCT that all data variables are available at all data locations. Therefore the greatest
limitation to SCT is non-isotropic sampling. One solution is to transform and sim-
ulate the first variable at all locations (Leuangthong and Deutsch, 2003). However,
there remains no unique transformed value for the secondary data at all locations of
non-isotopic sampling. This was not an issue in the current research.
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4 Conclusions

Geostatistical analysis and interpretation of the Tellus geochemical datasets requires
use of an appropriate methodology that reproduces the complex multivariate re-
lations that are inherent to the data. SCT is investigated and developed for the
geochemical datasets. The transform is shown to reproduce the heteroscedastic,
non-linearity and constrained behaviours evident in the data. A nested transform
order is considered given the relatively few samples that are available for a multi-
variate study. These findings are of interest in particular because of the previously
recorded relationship between base metals and basin faulting in the Clogher Valley
area (Mitchell, 2004; McKinley et al., 2006). The value of the research is reduced
uncertainty in modelling of soil geochemistry data, and honouring of inherent geo-
chemical constraints. This will enable more meaningful interpretation of the nature
of the geochemical variability in data and consequent geological, environmental and
economic inferences. Future work will involve comparison with other transforma-
tion methods such the use of the log ratio transform to deal with a greater number
of multiple variable and consideration of the constant sum constraint given the geo-
chemical nature of the data.
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Shelling in the First World War Increased
the Soil Heavy Metal Concentration

Meklit Tariku, Marc Van Meirvenne, and Filip Tack

Abstract A geostatistical analysis of metal concentration data of 2,786 topsoil
(0–0.5 m) samples in West-Flanders, Belgium (area approx. 3;100 km2) revealed a
significant increase in the copper (Cu) content over an area of approx. 25 by 25 km
around the city of Ypres. On average, the increase in the topsoil within of this area
was 6 mg Cu/kg soil which represents several thousand of tons of Cu. Conventional
sources of heavy metals, such as metallurgical industry or agricultural could be ex-
cluded. The area of Cu enrichment corresponded to the war zone around Ypres of
the First World War. Between 1914 and 1918, millions of Cu and lead (Pb) contain-
ing shells were fired during several intense battles. Different correlations between
several heavy metals were found inside the front zone compared to the rest of the
province. Therefore it was concluded that World War I activities were most likely
responsible for the overall increased concentrations of Cu, and other heavy metals
like Pb, in the topsoil around Ypres. This study illustrates a generally overlooked
source of environmental enrichment of heavy metals: historical warfare.

1 Introduction

One of the aims of geochemical surveys is to characterize geochemical background
values and to identify areas where concentrations are elevated (Meklit et al., 2008).
Therefore, the Flemish Government published official threshold values for back-
ground concentrations of a number of heavy metals in soils (Vlaamse Gemeenschap,
1996). Because Flanders, occupying roughly the northern half of Belgium, is
mainly covered by quaternary sediments deposited by wind or water, the use of
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one reference threshold seemed justified. Although natural causes for increased
concentrations can occur in soils weathered in situ, in Flanders concentrations above
the official threshold are considered to be man-induced contamination. Industrial ac-
tivities are the most documented source of elevated concentrations of heavy metals
in soils, especially over larger areas (Van Meirvenne and Goovaerts, 2001; Papritz
et al., 2005). Other human activities like the application of sludge (Alloway and
Jackson, 1991) or animal manure (Payne et al., 1988) can also contribute. However,
one generally overlooked source of potential increase of metal concentrations in the
fine-earth of soils (i.e. with a particle diameter <2 mm) are historical war activities.

2 Material and Methods

2.1 Study Area

Our study area comprised the entire province of West-Flanders (Fig. 1a), covering
an area of 3;144 km2. The largest part of the province is covered by Pleistocene
wind-blown sediments with a sandy-silty texture, besides polders and dunes found
along the coastline.

After the initial attack of the First World War (WW I) in August 1914, the western
front stabilized along a narrow band running from the North Sea coast at Nieuw-
poort into northern France and then eastwards up to the Swiss border in October
1914. This frontline remained largely static during the next 4 years, despite massive
attacks by both opponents. One of the locations of intense conflict was the salient of
Ypres in the south of West-Flanders. Figure 1b shows the boundaries of the war zone
which was delineated by the Belgian Government as “totally destroyed land” after
the war (Belgian Law of 15/11/1919; Dendooven, 2006). The city of Ypres itself
was never taken by the German army, but it was completely destroyed by artillery
fire (see http://www.greatwar.be for an overview of the successive battles). The area
between the coast and approximately halfway to Ypres remained rather narrow be-
cause this region was kept inundated between 1914 and 1918 and no major attacks
were launched in this part during most of the war.

2.2 Data

The data used in the analysis were obtained mainly from the Public Waste Agency
of Flanders (Belgium) (OVAM). According to the standard package of analytical
determinations for the fine-earth fraction (<2 mm) of soil samples (OVAM, 1997)
the total metal analysis is conducted by subjecting 0.5 g of air dry soil to mi-
crowave destruction with 6 ml 37% HCl, 2 ml 65%HNO3 and 2 ml 40% HF
(OVAM, 1992; method CMA/2/II/A.3). Analyses were performed either with ICP-
AES (OVAM, 1992; method CMA/2/I/B.1) or by graphite furnace atomic absorption
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Fig. 1 (a) Belgium with identification of W.-Flanders (circle); (b) W.-Flanders with localization
of available topsoil Cu analyses split according to the background threshold value of 17 mg/kg and
localisation of the WW I front zone

spectrometry (OVAM, 1992; method CMA/2/I/B.2). Additional data were available
from a study conducted in 1998 which aimed at assessing baseline trace element
concentrations in Flanders (Tack et al., 2005). This resulted in a data set of 2,786
Cu determinations in topsoil samples (0–0.5 m) taken inside W.-Flanders (Fig. 1b).
In those situations where subsamples were provided, a weighted pooled value was
calculated to ensure a uniform data support over the 0 to 0.5 m soil depth. Due to
missing data, only in a subset of 2,375 locations data were available on several heavy
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metals (including copper (Cu), lead (Pb) and nickel (Ni)). For Cu the background
threshold value is 17 mg/kg for a standard soil (defined as containing 10% of clay
and 2% of organic matter).

2.3 Geostatistical Analysis

The variogram �.h/ represents the degree of auto-similarity of a variable Z, ob-
served at a number of point locations z.x˛/.˛ D 1; : : : n/, in respect to a separation
vector h:

�.h/ D 1

2N.h/

N.h/X
’D1

fz.x’ Ch/ � z.x’/g2 (1)

with N.h/ the number of pairs h apart. The nugget to sill ratio (NSR) reflects the
proportion of random errors plus variability at scales less than the shortest sampling
distance compared to the overall variance. Because �.h/ is sensitive to outliers, it
is common to transform strongly skewed data logarithmically, y.x/ D ln.z.x//, to
stabilize the variogram.

Geostatistical interpolation at any unvisited location x0 is based on solving the
kriging system to find the interpolation weights �’ attributed to the observations
within the neighbourhood of x0:

z�.x0/ D
n.x0/X
’D1

�’z.x’/ (2)

with z�.x0/ being the estimation of Z at x0. The variogram is required to solve
the kriging system. Since different variogram structures were identified in differ-
ent parts of the study area, ordinary kriging with variogram stratification was used
(Boucneau et al., 1998) to account for the changes in the structure of the spatial vari-
ance. In this method points were interpolated using the variogram of the stratum in
which the interpolated point x0 is located. To avoid abrupt unrealistic discontinuities
at the border of the strata the observation points were not stratified.

The observations were logarithmically transformed. So, the estimations y�.x0/

had to be back-transformed to original units. Webster and Oliver (2001, p. 180)
proposed:

z�.x0/ D expfy�.x0/ C s2
OKY

.x0/=2 � §g (3)

with s2
OKY

.x0/ the ordinary kriging variance of y�.x0/ and § a Lagrange param-
eter which is required to include the condition that the sum of the weights equals
one into the kriging system. Since Eq. (3) depends on the magnitude of the kriging
variance, artificial patterns could be introduced in areas where this parameter varies
strongly. Moreover, when data are strongly skewed, the expected value, represent-
ing the mean of a distribution, might be less appropriate as a measure of central
tendency. Therefore we used a more robust parameter, the median meZ.x0/ which
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was obtained by the simple anti-log operation, on the condition that the distribution
was lognormal (Pebesma and Kwaadsteniet, 1997):

meZ.x0/ D expfy�.x0/g: (4)

The linear correlation between different variables was evaluated by the Pearson cor-
relation coefficient r . But since this parameter is sensitive to outliers the data were
first logarithmically transformed. As an alternative the non-parametric rank correla-
tion coefficient rR was also calculated (Goovaerts, 1997, p. 21).

The spatial correlation between variables was also investigated by an analysis
of the coregionalization. This method has been used to detect multivariate spatial
correlations between different heavy metals to determine their common sources (Xu
and Tao, 2004). In the case of two variables Zu and Zv, the method involved fitting
a linear model of coregionalization, LMC, to the two autovariograms, �u .h/ and
�v .h/, and their cross-variogram �uv .h/. The cross-variogram was computed as:

�uv .h/ D 1

2N.h/

N .h/X
’D1

fzu .x’/ � zu .x’ C h/g fzv .x’/ � zv .x’ C h/g (5)

with zu .x’/ and zu .x’ C h/ the measured values of Zu, and zv .x’/ and zv .x’ C h/

for Zv at x’ and x’ C h, respectively.

3 Results

3.1 Exploratory Data Analysis

Since we had to rely on samples taken in the frame of soil pollution investigations, a
bias to over-sample polluted areas could be expected. A cell-declustering algorithm
(Goovaerts, 1997) was used to remove the effects of a preferential sampling in ar-
eas with elevated Cu concentrations. The declustering was conducted using cells of
2,400 m, reducing the mean copper concentration from 37.5 to 24.8 mg/kg. Figure 2
shows the histogram of the declustered 2,786 Cu data. The values ranged between
0.2 to 3,600 mg/kg with a median of 12.6 mg/kg, which is about half the mean
value. Obviously the distribution is strongly positively skewed with 32.6% of the
data exceeding the background threshold of 17 mg/kg and only 1.2% exceeding the
Flemish sanitation threshold for agricultural land, which is 200 mg/kg.

Although about one third of the observed Cu data exceeded the background
threshold, regional differences occurred, as can be observed on Fig. 1b. To in-
vestigate this in more depth, the Cu data were split according to the background
threshold. Most samples with Cu > 17 mg=kg were located in the eastern half of
the province, especially around larger cities with industrial activities. At some of
these locations extremely high Cu contents were measured, but they were typically
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Fig. 2 Histogram and some descriptive statistics of the Cu data in topsoil of W.-Flanders, using
declustering weights (last bar groups data exceeding 200 mg/kg)

surrounded by measurement points with Cu concentrations below 17 mg/kg. On the
contrary, west of the axis Ypres-Nieuwpoort only a few locations with Cu concen-
trations exceeded the background threshold. In the area around Ypres, the pattern
is different: almost all samples exceeded 17 mg/kg. Therefore we decided to split
the province in two zones: one representing the war zone around Ypres, excluding
the narrow band towards the sea since in this band war activities were much more
limited, and the second being the remaining part of the province. The selected area
within the war zone contained 199 data with a median of 18.0 mg Cu/kg, whereas
the remaining 2,587 samples had a (declustered) median value of 12.0 mg/kg.

3.2 Mapping the Cu Content

The experimental variograms of the logarithmically transformed Cu observations in-
side and outside the war zone were obtained through Eq. (1). A spherical model was
fitted to them (Fig. 3) which showed clear differences between both zones. There-
fore, ordinary lognormal kriging with variogram stratification was used to produce
estimations at 500 m intervals. These were back-transformed to estimate the median
Cu content according to Eq. (4). Figure 4 shows the result (a similar map produced
with block kriging was presented by Van Meirvenne et al., 2008).

The estimates of the median Cu contents were generally below the threshold
of 17 mg/kg over most of the province. Locally relatively small patches, usually
occurring around a few pixels with strongly increased values reaching occasion-
ally >60 mg Cu/kg, could be observed. Mostly, these patches could be associated
with industrial activities around bigger cities or near the harbours. Careful checking
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Fig. 3 (a) Experimental (points) and theoretical (curves) variograms of the ln(Cu) data located
inside or outside the war zone around Ypres; (b) estimations of the median topsoil Cu content
obtained with lognormal ordinary kriging with variogram stratification

Fig. 4 (a) Experimental cross-variograms of lnCu-lnPb and (b) lnCu-lnNi for outside and inside
the war-zone

confirmed that the patches south of Ypres were indeed related to isolated industrial
activities. However, over almost the entire delineated war zone elevated meC u.x0/

values were predicted, mainly situated in the range 17–25 mg/kg. Generally this area
coincides more or less with the boundaries of the war zone, except in the west where
the elevated Cu concentrations extended beyond its limits. This extension could be
related to the German Spring Offensive in 1918 during which large parts to the south
and southwest of Ypres were captured.
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3.3 Relationship Between Cu and Other Heavy Metals

In geochemical studies related to the concentrations of heavy metals in soils,
it is commonly observed that strong correlations exist between several elements
(Rawlins et al., 2003). Also when the source of heavy metals could be related to in-
dustrial activities, several metals show elevated concentrations jointly (e.g. Rawlins
et al., 2006). Therefore, the correlation between the heavy metals Cu, Pb and Ni (af-
ter logarithmic transformation) was investigated inside and outside the war zone by
calculating r; rR and modelling their coregionalization. Table 1 gives the results, us-
ing only the samples on which all metals were determined. Both inside and outside
the war zone Cu displayed a strong correlation with Pb. For both zones, r is around
0.74, but rR is somewhat larger inside than outside the war zone. The relationship
between Cu or Pb and Ni is much weaker, especially inside the war zone. These
results indicate that: (i) the correlation between Cu and Pb is strong both inside and
outside the war zone, but slightly stronger inside; (ii) in both zones the link between
Cu or Pb and Ni is weaker than between Cu and Pb; (iii) the relationship between
Cu or Pb and Ni is stronger outside the war zone.

The LMC was fitted automatically with the LCMFIT2 computer program (Pardo-
Iguzquiza and Dowd, 2002) using a spherical model. The results for Cu-Pb and
Cu-Ni are presented in Fig. 4 and Table 2 lists the coefficients for the auto- and the
cross-variograms.

The coregionalization analysis showed that Cu, Pb and their cross-variograms
displayed a strong structured variability inside the war-zone as confirmed by the
lower nugget-to-sill ratio (NSR). Although slightly weaker, outside the war-zone
also the correlation between Cu and Pb is spatially structured. Similar results were
obtained for the auto-variogram of Zn and its cross-variogram with Cu. With Ni
however, although the auto-variogram displayed comparable structures inside as
well as outside the war-zone, a structured spatial correlation with Cu was found
only outside the war-zone. Inside the war-zone the cross-variogram displayed a pure
nugget effect indicating the absence of any spatial similarity in the spatial distribu-
tion between Cu and Ni.

Table 1 Pearson .r/ and Spearman (rR – in italic) corre-
lation coefficients between the logarithms of three heavy
metals; below diagonal: inside the war zone around
Ypres (n D 160 – not all metals were determined on
all Cu samples), above diagonal: outside the war zone
(n D 2; 215)

ln Cu ln Pb ln Ni

ln Cu 0.742 0.585
(0.746) (0.512)

ln Pb 0.741 0.518
(0.791) (0.416)

ln Ni 0.419 0.383
(0.424) (0.413)
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Table 2 Coefficients of the auto- variograms of Cu, Pb and Ni and the cross-
variograms of Cu � Pb and Cu � Ni both for the inside and outside the war-zone,
NSR D nugget-to-sill ratio

lnCu lnPb lnNi lnCu � lnPb lnCu � lnNi

Nugget 0.67 0.82 0.40 0.61 0.38
Outside war-zone Sill 0.93 1.40 0.51 0.90 0.47

NSR (%) 73 59 78 68 80
Nugget 0.25 0.44 0.22 0.23 0.165

Inside war-zone Sill 0.43 0.82 0.29 0.46 0.165
NSR (%) 58 36 76 50 100

In general the result of both the correlation and the coregionalization analysis
suggested that there could be a difference in the processes causing the enrichment
of Cu and Pb inside the war zone compared to the area outside.

4 Discussion

It is unlikely that industrial activities caused a more or less homogenous increase of
about 6 mg Cu/kg soil over such a large area. Rawlins et al. (2006) estimated the Pb
deposited around a smelter which operated for 53 years to be 2,500 t, which is of the
same order as the Cu content found in the topsoil inside the war zone around Ypres.
No industrial activities that could have produced a deposition of this magnitude has
existed inside or nearby the war zone. An alternative source of Cu could be the
application of animal manure (mainly pig slurry) by farmers, as Cu is used as an
amendment to pig fodder. De Smet et al. (1996) mapped the phosphate saturation of
the soils of this province, and Van Meirvenne et al. (1996) analysed the increase in
soil organic carbon content over a time span of some 40 years. Both investigations
found strong links between phosphates or organic matter in the soil and the intensive
pig breeding due to the use of pig slurry. However, the pattern was not similar to the
Cu increase around Ypres. Moreover, pig manure could not explain the correlation
between Cu and Pb inside the study area. As textural differences are limited within
the war zone, natural pedo-geochemical processes seem to be unlikely as well to
have caused such variations in heavy metals.

The possibility that WW I activities could cause soil pollution over a large area
seems to have largely missed attention in the environmental literature. Only a few
research reports dealt with soil pollution due to WW I activities. Bausinger and
Preuss (2005) investigated one site near Ypres which had been used to destroy
left-over ammunition after the war and found, besides elevated concentrations of
Cu and Pb, also increased amounts of arsenic (As) which was used in chemical
warfare to produce nerve gasses. Pirc and Budkovič (1996) reported that Cu and
Pb, among other elements, were more or less anomalously high in soils along the
Italian-Slovenian WW I front in western Slovenia. Although these studies confirmed
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the conclusion that war activities could result in elevated concentrations of heavy
metals in soil they focussed on only a few locations. No spatial analysis was con-
ducted to evaluate the extent of the environmental impact.

It is estimated that during WW I over 1.45 billion shells were fired by the com-
bined German, French and UK armies. Attacks were usually initiated by massive
artillery firing. For example, at the start of the Third Battle of Ypres the British
forces fired over four million shells during the 15 days preceding the first infantry
attack on July 31, 1917 (Keegan, 2000, p. 361). Every shell contained considerable
amounts of Cu, and to a lesser extend Pb and Zn. The body of the shell was made
out of iron or steel, but the top fuse, the rotating band and some internal parts were
made out of brass, an alloy of about 70% Cu and 30% Zn. The rotating band had to
be softer and therefore it was made out of almost pure Cu (containing about 10%
Zn) (http://www.madehow.com/Volume-7/Shrapnel-Shell.html on 22/6/2007). In a
typical shell the fuse and the rotating band represented about 1 kg (pers. comm.
Lt. A. Loncke), so it contained about 0.75 kg of Cu. Upon explosion all parts were
deformed or fragmented and spread out although it was a common observation that
the brass parts of shells fragmented only partly during explosion. After the war, peo-
ple searched for these deformed brass pieces since these could be sold. Also, a large
scale cleaning up and an overall reconstruction of the area took place.

To evaluate the possibility of a military source of Cu in the soils around Ypres,
a simplified mass balance calculation was conducted. It was assumed that Cu was
largely immobile and immune to corrosion as soils of this area are not very acid. The
increase of the average median Cu concentration inside the war zone around Ypres
compared to the rest of the province was 6 mg/kg. With the war zone covering
approximately an area of 25 by 25 km, and assuming a soil depth of 0.5 m and an
average soil density of 1.5 g/cm then this increase corresponds to 2,813 t of Cu. This
2,813 t of Cu corresponds to 3,750,600 shells if it is assumed that on average a shell
contained 0.75 kg Cu. In reality the number of fired shells must have been much
larger for the following reasons:

1. A considerable proportion of shells did not explode. Some are still found today.
Karg (2005) estimated this proportion to be 10–15%.

2. The Cu concentrations discussed in this paper only refers to the fine-earth frac-
tion of the soil. Particles >2 mm, like pieces of brass, were not included.

3. Only the top 50 cm of the soil profile was considered. As mentioned before, after
the war important earth mixing activities took place including deep-soiling.

The exact number of shells fired in the war zone around Ypres during WW I is
unknown, but it must have been at least several 10 millions. It will be clear that this
order of shells is able to produce a significant increase on a regional scale of the
topsoil concentration of Cu and related elements.
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5 Conclusions

The geostatistical analysis of the concentrations of heavy metals in the fine-earth
fraction of the topsoil of W.-Flanders provided clear indications of a relatively small
but significant regional enrichment inside the war zone around Ypres. This enrich-
ment was in the order of 6 mg Cu/kg soil, amounting to approximately 2,800 t of
Cu. It could only have been produced by the millions of shells fired during WW I.
Other sources, like agricultural amendments or metallurgical industrial activities,
were identified as unlikely.

Therefore, we conclude that the WW I activities were most probably responsible
for the overall increased concentration of Cu and Pb in the topsoil around Ypres.

Acknowledgment OVAM is gratefully acknowledged for providing the heavy metal dataset of
Flanders which was partly used in this study. We also thank Prof. E. Van Ranst for allowing the
use of additional metal concentration data in this study. Major B. Vanclooster and Lt A. Loncke
are thanked for the details about ammunition used in the first World War.

References

Alloway BJ, Jackson AP (1991) The behaviour of heavy metals in sewage sludge-amended soils.
Sci Total Environ 100:151–176

Bausinger T, Preuss J (2005) Environmental remnants of the First World War: soil contamination
of a burning ground for arsenical ammunition. Bull Environ Contam Toxicol 74:1045–1052

Boucneau G, Van Meirvenne M, Thas O, Hofman G (1998) Integrating properties of soil map
delineations into ordinary kriging. Eur J Soil Sci 49:213–229

Dendooven D (2006) De wederopbouw. In: Chielens P, et al. (eds) De Laatste Getuige. Lannoo,
Tielt (in Dutch), pp 97–110

De Smet J, Hofman G, Vanderdeelen J, Van Meirvenne M, Baert L (1996) Phosphate enrichment
in the sandy loam soils of West-Flanders, Belgium. Fertilizer Res 43:209–215

Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New
York

Karg F (2005) Consideration of toxic metabolites from explosives & chemical warfare agents on
polluted military and armament sites for heath risk assessments. In: Uhlmann O, Annokkée G
and Arendt F (eds) Consoil 2005 Proceedings, pp. 710–720. Forschungszentrum Karlsruhe

Keegan J (2000) The First World War. Vintage, New York
Meklit T, Van Meirvenne M, Tack F, Verstraete S, Gommeren E, Sevens E (2008) Zinc baseline

level and its relationship with soil texture in Flanders, Belgium. In: Soares A, Pereira MJ,
Dimitrakopoulos R (eds) geoENV VI – geostatistics for environmental applications. Springer,
pp 373–383

OVAM (1992) Compendium voor Monsterneming en Analyse ter uitvoering van het Afvalstoffend-
ecreet en het bodemsaneringsdecreet, Openbare Afvalstoffenmaatschappij voor het Vlaamse
Gewest, Mechelen (in Dutch)
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A Geostatistical Analysis of Rubber Tree Growth
Characteristics and Soil Physical Attributes

Sidney Rosa Vieira, Luiza Honora Pierre, Célia Regina Grego,
Glécio Machado Siqueira, and Jorge Dafonte Dafonte

Abstract The cultivation of rubber trees [Hevea brasiliensis (Willd. ex Adr. To
Juss.) Müell. Arg.] plays an important role in Brazilian forestry production. How-
ever, the relationship between tree production and soil physical attributes is poorly
understood. Geostatistical tools such as spatial variability modeling assist the study
of the relationships between plant and soil attributes. The objective of this paper
is to determine the spatial variability of rubber tree growth characteristics and its
relationship to soil–water physical properties (soil mechanical resistance to pen-
etration and field saturated hydraulic conductivity of soil). The experiment was
located at Campinas, State of Sao Paulo, Brazil, at a experimental station of the
Instituto Agronômico, in a 10 ha area with rubber trees planted in 1992. Samples
were taken at 232 points in a 20 � 20 m grid. Average diameter at 1.30 m height
and tree height were calculated from average measurements of four trees. The soil
physical attributes studied were soil resistance to penetration at 0.40 m depth and
field saturated soil conductivity at two depths (0–0.10 m and 0.10–0.20 m). All tree
and soil parameters showed moderate to weak spatial dependence among samples.
The linear correlation between the attributes of rubber trees and soil was weak.
The cross-semivariograms used to evaluate cross-spatial correlations revealed that
most of the studied properties did not follow a similar cross-spatial pattern. Spatial
variability maps show that areas with higher field saturated hydraulic conductiv-
ity of soil have lower soil mechanical resistance to penetration. The field saturated
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hydraulic conductivity of soil in the 0–10 cm layer showed strong linear and spatial
correlation with the diameter of rubber trees, as confirmed by the spatial variability
maps of both attributes.

1 Introduction

Rubber trees [Hevea brasiliensis (Willd. ex Adr. To Juss.) Müell. Arg.] are native
of the Amazon region of Brazil and are currently the main source of natural rubber
in the world. Besides the extraction of latex, a number of aspects are contributing
to boosting rubber tree production in Brazil, these include factors related to refor-
estation for soil and water protection (Santos and Mothé, 2007), or to the carbon
fixation process, which reduces greenhouse gases (SBS, 2006).

As reported by Vetorazzi and Ferraz (2000), the use of precision forestry im-
proves geospatial data collection and analysis, allowing interventions in forests with
sufficient accuracy and precision.

A number of authors (Warrick and Nielsen, 1980; Vieira et al., 1981, 1983;
McBratney and Webster, 1986; Rehfeldt et al., 1992; Cambardella et al., 1994;
Vetorazzi and Ferraz, 2000; Vieira, 2000; Carvalho et al., 2002; Souza et al., 2004;
Siqueira et al., 2008) have shown that the variability of soil properties is spatially
dependent, i.e. the difference between the values of a particular property within a
certain area can be expressed as a function of the spacing between the sampled
points. According to Vieira et al. (1981), the analysis of samples that do not con-
sider the variances calculated and the spacing between samples does not provide a
complete description of the variability of a property.

Geostatistics provides information about the spatial structure of the variables and
predicts the unknown values and the values of correlated variables. Consequently,
geostatistics should be used to determine the spatial dependence of soil properties
and the attributes related to the growth and crop production. Thus, data that would be
difficult to analyze statistically because of the soil spatial variability can be analyzed
more easily using geostatistical tools.

The objective of this study is to evaluate the spatial variability and correlations
between tree growth characteristics of Hevea brasiliensis and soil physical attributes
(soil penetration resistance and field saturated hydraulic conductivity).

2 Materials and Methods

The experimental field was located in a 10 ha area at the Centro Experimental Cen-
tral experiment station, belonging to the Instituto Agronômico (IAC), Campinas,
São Paulo, Brazil, at 22ı530S latitude, 47ı040W longitude, with an average eleva-
tion of 600 m and a slope of 6.5%.
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Fig. 1 Grid sampling of tree growth characteristics and soil physical attributes

The soil of the area was classified as a Rhodic Eutrudox (USDA, 1996) and the
climate type was Cwa climate according to the Köppen climate classification.

In 1992, 928 trees of Hevea brasiliensis were planted using the following clones:
IAC 35, PR 261, GT 1, PS 235, RRIM 70, IAN 835, PR 255, RRIM 600 and CR
330. Spacing between trees was 3 � 7 m.

As shown in Fig. 1, 232 sampling points were located in a 20 � 20 m grid. Each
section contained four trees, named A, B, C and D, which were arranged around
the sampling point. The tree growth characteristics evaluated were tree diameter
(Diameter, cm) and tree height (Height, m). Diameter at breast height was measured
at 1.3 m height. Tree height was determined using a hipsometer. The physical at-
tributes measured were soil mechanical resistance to penetration (RP, MPa) and field
saturated hydraulic conductivity of soil (Cond, m/day). Soil resistance to penetration
was measured at 0.40 m depth using the STOLF-PLANALSULCAR penetrometer
of impact (Stolf et al., 1983), and then calculated for every 0.10 m depth interval
(RP0�10, RP10�20, RP20�30 and RP30�40). The field saturated hydraulic conduc-
tivity of soil was measured using an IAC constant head well permeameter model
(Vieira, 1998), while a two constant head well permeameter (3 and 5 cm) was used
at two depth intervals: 0.0–0.1 m (Cond0�10) and 0.1–0.2 m (Cond10�20).
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The descriptive statistical parameters (mean, variance, standard deviation,
coefficient of variation, minimum value, maximum value, skewness and kurto-
sis) were obtained in order to verify existence of a central tendency and dispersion
of the data using the Stat program (Vieira et al., 1983). Pearson’s correlation was
used because it often reveals correlations between pairs of variables and helps in
the selection of variables for the cokriging estimation (Vieira, 2000).

Spatial variability was analyzed using semivariograms obtained from the Avario
software as described in Vieira et al. (1983), and through this the parameters of the
models fitted to individual semivariograms and cross-semivariograms were obtained
(Vieira, 2000). The semivariogram, �.h/, of n spatial observations z.xi /; i D 1; n,
can be calculated from Eq. (1):

� (h) D 1

2N.h/

N.h/X
iD1

ŒZ.xi / � Z.xi C h/�2 (1)

where N.h/ is the number of pairs of measured values Z.xi /, Z.xi C h/, separated
by a vector h, which is the distance determined from Z.xi / and Z.xi C h/ coor-
dinates. Calculation of Eq. (1) generates �.h/ values corresponding to h distances
for the construction of the semivariogram. According to Vieira (2000), it is expected
that measurements located near each other are more similar than measurements sep-
arated by great distances, i.e., where �.h/ increases with h until a maximum value is
reached at which �.h/ stabilizes, at a level that corresponds to the limit distance of
spatial dependence, which is the range. Measurements located at distances greater
than the range show a random distribution and are therefore independent of each
other; beyond such distance, classical statistics can be applied.

Cross-semivariogram analysis was used to determine the spatial cross-correlation
between tree growth characteristics of Hevea brasiliensis and physical soil attributes
(soil penetration resistance and field saturated hydraulic conductivity) (Eq. 2).

�.h/ D 1

2N.h/

N.h/X
iD1

ŒZ1.x1i C h/ � Z1.x1i/�ŒZ2.x2j C h/ � Z2.x2j/� (2)

where N.h/ is the number of pairs of measured values Z1 and Z2, separated by a
vector h.

The spherical model was chosen for fitting to the experimental semivariograms,
which allowed for the visualization of the nature of the spatial variation of the vari-
able. The criteria and procedures for fitting the semivariogram models were made
according to Vieira et al. (1983). Based on the model used to fit the data, the fol-
lowing semivariogram parameters were defined: (a) nugget effect (C0), which is the
� value when h D 0; (b) range of the spatial dependence (a), which is the distance
beyond which �.h/ remains approximately constant, after increasing as h increases;
(c) threshold (C0 C C1), which is the �.h/ value beyond the range approaching the
data variance, if it exists.
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where N.h/ is the number of pairs of observations separated by a distance h.
Spatial dependence ratio (SDR) was calculated using Eq. (3).

SDR D
�

C0

C0 C C1

�
� 100 (3)

According to Cambardella et al. (1994), SDR represents spatial randomness and can
be used to classify spatial dependence as strong if SDR < 25%, moderate if SDR is
between 26% and 75% and weak is SDR > 75%.

For the tree growth characteristics and physical properties measured, the semi-
variance was shown to be dependent on distance. The variables were interpolated
without bias and with minimum variance using the ordinary kriging method with
Krige software as described in Vieira et al. (1983) in order to properly build contour
maps using Surfer software (Golden Software, 1999).

3 Results and Discussion

Table 1 shows the descriptive statistics for the tree growth characteristics and phys-
ical parameters measured. The tree growth characteristics of Hevea brasiliensis
show low values of the coefficient of variation (CV), while physical attributes show
higher CV values, particularly field saturated hydraulic conductivity data, which is
in agreement with the classification by Warrick and Nielsen (1980). The CV values
for field saturated hydraulic conductivity and soil mechanical resistance to pene-
tration coincide with the values reported by Vieira (1998) and Souza et al. (2004),
respectively. The values of the coefficients of skewness and kurtosis suggest that
all data show a lognormal frequency distribution, insofar as these parameters are
distanced from 0 to 3, according to Carvalho et al. (2002).

The values obtained for Pearson’s correlation (Table 2) between Hevea brasilien-
sis tree growth characteristics (Diameter and Height) and field saturated hydraulic

Table 1 Statistical parameters, tree growth characteristics and soil physical attributes
(SD D standard deviation; CV D coefficient of variation; Min D minimum; Max D
maximum; Skew D skewness coefficient; Kurt D kurtosis coefficient)

Attributes Mean SD CV Min Max Skew Kurt

Diameter (cm) 19:79 2:39 12.12 9:01 26:52 �0:40 1:80

Height (m) 10:92 1:92 17.61 6:40 16:3 0:46 �0:13

Cond0�10 (m/dia) 97:66 68:32 69.96 7:52 330:8 0:97 0:55

Cond10�20 (m/dia) 101:7 79:20 77.86 3:75 390:9 1:29 1:39

RP0�10 (MPa) 1:183 0:37 31.71 0:59 2:84 1:262 2:08

RP10�20 (MPa) 1:988 0:97 49.10 0:89 6:27 1:762 4:00

RP20�30 (MPa) 3:764 2:14 57.05 1:11 11:55 1:488 2:12

RP30�40 (MPa) 4:933 2:10 42.74 1:46 12:92 1:123 1:783
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Table 2 Correlation coefficients for the parameters measured

Diameter Height Cond0�10 Cond10�20 RP0�10 RP10�20 RP20�30 RP30�40

Diameter 1
Height 0.528 1
Cond0�10 0.420 0.480 1
Cond10�20 0.413 0.506 0.974 1
RP0�10 0.157 0.049 0.028 0.032 1
RP10�20 0.206 0.082 0.061 0.014 0.493 1
RP20�30 0.178 0.285 0.196 0.187 0.320 0.667 1
RP30�40 0.132 0.155 0.026 0.033 0.130 0.401 0.613 1

conductivity are intermediate at both depths studied (Cond0�10 and Cond10�20).
Moreover, the values of correlation between rubber tree growth characteristics and
soil resistance to penetration at different depths (RP0�10, RP10�20, RP20�30 and
RP30�40) are very weak. Likewise, the correlation coefficient among soil physical
attributes is very weak. It must be emphasized that the intermediate values obtained
for the correlation between the parameters of rubber tree and field saturated hy-
draulic conductivity may represent a greater production of natural rubber insofar as
higher field saturated hydraulic conductivity in the upper layers of soil results in
higher soil water content at deeper layers, which increases rubber tree productivity.
Santos (1982) suggested that the highest production of rubber is obtained in trees
with large diameters. Thus, the presence of areas with high values of field satu-
rated hydraulic conductivity in the study area supports the further development and
increased productivity of rubber trees.

The spherical model was fitted to the semivariogram for all attributes; this con-
firms that this model is the most suitable for soil and plant data, as reported by
McBratney and Webster (1986), Cambardella et al. (1994), Souza et al. (2004) and
Siqueira et al. (2008) (Table 3 and Fig. 2). However, Cond10�20 and RP0�10 showed
a pure nugget effect, or perhaps the spacing used was not sufficient to detect the spa-
tial variability of these attributes.

Field saturated hydraulic conductivity at 10 cm depth (Cond0�10/ showed the
highest nugget effect value (C0/. According to Vieira (2000), the nugget effect ac-
counts for the discontinuity between samples or the variability not detected during
sampling. This fact is mainly due to the great variability of the data, as shown by the
standard deviation (68.32) and coefficient of variation (69.96%). The other attributes
showed low nugget effect values.

The values obtained for tree growth parameters (diameter and height) were the
lowest values of range of the spatial dependence (a), with 56.74 and 91.78 m respec-
tively. The physical attributes pertaining to soil water showed larger range values,
between 150 and 234.71 m. Cambardella et al. (1994) described the spatial depen-
dence ratio (SDR) for the attributes involved in this study as moderate to low.

Vieira (2000) suggested that when two variables are correlated spatially, their
cross-semivariogram must reach its sill near the value of covariance. Accordingly,
it appears that the height and diameter of rubber trees are close to its present value
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Table 3 Fitted semivariogram models for the parameters measured

Attributes Model C0 C1 a SDR

Diameter (cm) Spherical 4.25 1.50 56.74 26.11
Height (m) Spherical 1.07 2.38 91.98 69.02
Cond0�10 (m/dia) Spherical 4,300 1,700 150.00 28.33
Cond10�20 (m/dia) Pure nugget effect
RP0�10 (MPa) Pure nugget effect
RP10�20 (MPa) Spherical 0.73 0.33 230.47 31.08
RP20�30 (MPa) Spherical 2.81 2.56 234.71 47.70
RP30�40 (MPa) Spherical 2.60 2.00 150.00 43.48

C0: nugget effect; C1: structural variance; a: range; SDR: spatial dependence ratio.
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Fig. 2 Experimental and fitted model semivariograms of the studied variables

of covariance (Fig. 3). The cross-semivariogram between rubber tree growth pa-
rameters (diameter and height) and field saturated hydraulic conductivity of soil
for the 0–10 cm layer shows drift. The cross-semivariogram between Diameter and
Cond0�10 shows inverse spatial correlation, while the cross-semivariogram between
tree diameter and soil resistance to penetration (RP10�20, RP20�30 and RP30�40)
shows spatial cross-correlation.

The maps of tree diameter and height (Fig. 4) are not similar, and show different
spatial patterns. The distribution of contour lines for the field saturated hydraulic
conductivity of soil at the 0–10 cm layer shows wide variation. Vieira et al. (1981)
and Rehfeldt et al. (1992) found high spatial variability of the saturated hydraulic
conductivity of soil for a floodplain, and attributed such variability to soil hetero-
geneity factors.

The maps of soil mechanical resistance to penetration confirm the increase in
average values with depth, as shown in Table 1. The maps of soil penetration re-
sistance look similar. Likewise, the cross-semivariogram (Fig. 3) reveals a similar
spatial pattern for soil mechanical resistance to penetration in the different layers.
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Fig. 3 Cross-semivariograms for the studied variables

The cross-semivariogram of the soil physical attributes reveals a clear cross-spatial
structure for Cond0�10 �RP10�20 and Cond0�10 �RP30�40 (Fig. 3). However, there
is a strong inverse cross-spatial correlation between the Cond0�10 � RP20�30.

According to Abrams et al. (1992) and Mesquita et al. (2006), the plant water
status stands out among the many factors that influence the production of natural
rubber. The plant water status results from the interaction of other factors (evapora-
tive demand of the atmosphere, soil water content, density of planting, cultivation
system and physiological processes). In this respect, Devakumar et al. (1988) sug-
gested that the dry periods induce physiological changes in rubber trees, which
results in lower productivity. Thus, areas with higher field saturated hydraulic con-
ductivity and lower soil resistance to penetration favor the development of plants
with greater heights and diameters, which increases production of natural rubber, as
reported by Santos (1982).
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Fig. 4 Maps of the estimated values obtained using ordinary kriging

4 Conclusions

The soil-water parameters studied showed higher CV values than the tree growth
parameters of Hevea brasiliensis. The spatial dependence ratio was weak to mod-
erate for all the studied properties. There was a cross-spatial pattern between tree
diameter and field saturated hydraulic conductivity. According to this pattern, the
areas with high field saturated hydraulic conductivity show the highest values of
diameter and height, such that this soil physical property (field saturated hydraulic
conductivity) can be used as an indicator of rubber tree production.
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Investigating the Potential of Area-to-Area
and Area-to-Point Kriging for Defining
Management Zones for Precision Farming
of Cranberries

Ruth Kerry, Daniel Giménez, Peter Oudemans, and Pierre Goovaerts

Abstract Cranberries are harvested by flooding the field and agitating vines so
the fruit, which float can be skimmed from the surface and loaded into barrels.
This harvesting method makes application of standard precision farming practices
difficult. This paper investigates the potential of combining Area-to-Area (AtoA)
and Area-to-Point (AtoP) kriging of yield totals from individual fields with remotely
sensed data for defining within-field management zones.

1 Introduction

Cranberry (Vaccinium macrocarpon Ait.) is a high value intensively managed peren-
nial crop that grows on wetlands. Given strict federal guidelines that prohibit the
expansion of cranberry acreage on wetlands, increasing profitability of cranberry
production is most likely to be achieved by precision management (Pozdnyakova
et al., 2002, 2005). Perennial crops like cranberry seem ideal for precision manage-
ment as they often develop patterns of yield variability that are relatively stable in
time in response to spatial variation in disease and soil properties. Over the lifespan
of the cranberry plant, patterns in external factors can result in genotypic hetero-
geneity (Novy et al., 1996). Various approaches have been used to classify fields into
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management zones for combinable crops (Lark and Stafford, 1996; Grenzdörffer
and Gebbers, 2001; Khosla et al., 2008). These usually recognize that the temporal
variability in yield can be greater than the spatial variability, so temporal variability
should not be ignored.

Most precision farming studies begin by characterizing the within-field variation
in yield, then look at potential causes for that variation, such as soil type and preva-
lence of disease (Johnston et al., 1998). Yield mapping for combinable crops using
weight or volume sensors associated with a differential global positioning system
(DGPS) on the combine (Auernhammer et al., 1993; Blackmore and Moore, 1999)
is now quite commonplace. In contrast, the cranberry crop, presents a particular
challenge to within-field yield characterization because it is harvested by flooding
the cranberry bog and agitating the vines to loosen the fruit. The fruit, which float,
are then collected from the surface and packaged into barrels, giving one total yield
value per field.

To characterize within-field variability of cranberry yield, remotely sensed im-
ages have been used (Hughes et al., 1998; Oudemans et al., 2002). In an intensive
study of one field Pozdnyakova et al. (2002) showed that remotely sensed imagery
indicated patterns of within-field variation in cranberry yield, infiltration rate and
vine density. Intense ground surveys are not, however, a practical or economic way
forward for characterizing cranberry yield within fields. Pozdnyakova et al. (2005)
conducted a spatial analysis of cranberry yield at three scales but noted that differ-
ences in sampling support, which were not explicitly taken into account, affected
the yield distribution statistics more than the spatial scale of the measurements.

To address these problems, yield values for cranberry fields that were not sam-
pled in a given year can be estimated using Area-to-Area (AtoA) kriging which
incorporates the size and shape of the fields in variogram deconvolution and kriging.
Area-to-Point kriging (AtoP) (Kyriakidis, 2004) uses irregularly sized and shaped
areal data to make predictions to a point support, creating surfaces that depict
smooth trends in cranberry yield and, thus, inform on within-field variation. Esti-
mates from AtoP kriging are coherent in that the average of yield values from all
points within an areal unit returns the original value for that areal unit (Kyriakidis,
2004). Here, we present a preliminary study of AtoA and AtoP kriged surfaces of
cranberry yield (1991–2004) from about 700 cranberry beds in a region of southern
NJ. Surfaces from years with similar weather were combined with a vegetation in-
dex to classify the region into management zones at a regional and at a field scale.

2 Methods

2.1 Yield Data

Yield data for over 700 cranberry fields in the Chatsworth area of southern NJ were
obtained for a 14 year period. The average field area is 16;830 m2 but size and shape
of fields varies considerably. There is one yield value per field expressed in Mg/ha,
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but several of these values were missing for any given year, particularly in 1991
and 1992. There are several different cultivars of cranberry grown in the area, but
the three main varieties are Ben Lear (BL), Stevens (ST) and Early Black (EB). For
the former two cultivars a yield of about 34 Mg/ha is considered good whereas for
EB, the most common cultivar, 26 Mg/ha is reasonable. With good management,
however, yields can reach as high as 55 Mg/ha (Pozdnyakova et al., 2002).

Information on the crops from individual fields was provided by a growers coop-
erative (Ocean Spray, Lakeville-Middleboro, MA). Yield values for each year were
standardized to zero mean and unit variance so that direct comparisons between
years could be made using a single scale (Figs. 3 and 4).

Within-field yield variations were estimated as part of an intensive survey of
one cranberry bed, the Nadine bed, on an unaligned survey grid with an interval of
20 m. Berries were counted at each location using a 30:5 � 30:5 cm2 frame (two
replications per location) and approximated into Mg/ha for subsequent analysis
(Pozdnyakova et al., 2002).

2.2 Weather Data

Weather information was obtained for the Indian Mills, NJ station which is about
16 km from the main cranberry growing area of Chatsworth, NJ. Monthly 30 year
normals (1971–2000) and actual monthly, minimum, mean and maximum temper-
atures and precipitation totals for the period between 1991 and 2004 were obtained
from http://climate.rutgers.edu/stateclim v1/monthlydata/index.html. Similar statis-
tics were derived for the cranberry growing season that lasts from April to
September.

2.3 Aerial Imagery

Geocorrected colour-infra red images from July 2002 and 2004 with ground pixel
sizes of 7 and 4 m were obtained from the Ikonos (Space Imaging, Inc.) and Quick-
bird (Digital Globe, Inc.) satellites, respectively. The Enhanced Vegetation Index
(EVI) was calculated for each pixel and an average EVI value for all pixels within a
given field was calculated and assigned to the coordinates of the field centroid. The
EVI is useful for detecting differences in the canopy structure including leaf area
index. The EVI was developed to increase the sensitivity of the vegetation signal
over the normalized difference vegetation index (NDVI) in high biomass regions
and reduce atmospheric influences (see Huete et al., 2002 for details of the EVI).
The images were sub-sampled (e.g. every fifth pixel was extracted) and kriged to
a 20 m grid to improve computational manageability and smooth some small scale
variability that was not of interest.
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2.4 Geostatistical Methods

Following exploratory data analysis, variograms of yield (areal) data were calculated
using 25 lags of 100 m. The corresponding point-support variogram models were
then inferred using an iterative deconvolution procedure that seeks the point-support
model that, once regularized, is the closest to the model fitted to the areal data
(Goovaerts, 2008). The model was used to estimate the yield and the associated
kriging variance for the unit X using K neighbouring field data:

Oz.X/ D
KX

iD1

�i z.vi / �2.X/ D C.0/ �
KX

iD1

�i C.vi ; X/ � �.X/ (1)

where the unit X represents either an area (i.e. field) v˛ (AtoA kriging) or a point
us within that area (AtoP kriging). The kriging weights and the Lagrange parameter
�.X/ are computed by solving the following system of equations:

KX
j D1

�j C.vi ; vj / C �.X/ D C .vi ; X/ i D 1; :::;K

KX
j D1

�j D 1: (2)

The area-to-area covariances C .vi ; vj / and area-to-point covariances C .vi ; X D us/

are approximated as the average of the point-support covariance C.h/ computed
between any two locations discretizing the areas vi and vj, or vi and us. By con-
struction, aggregating the AtoP kriging estimates within each area yields the AtoA
kriged map, as long as the same K areal data are used for both types of kriging.

2.5 Statistical Methods

Principal components analysis (PCA) was conducted in GenStat (Payne, 2006)
using the average mean, minimum and maximum growing season temperature,
growing season precipitation total, mean yield and average yield values of the
cultivars Ben Lear, Stevens and Early Black for each year. Groupings of years
were interpreted in relation to weather data for the 14 year period. GenStat was
also used for non-hierarchical classification of the AtoA and AtoP kriged yield
along with aggregated and kriged EVI data, respectively. First, observations are or-
dered and assigned to a user-specified number of groups of equal proportion. An
iterative procedure is then used to transfer observations between-groups until the
between-groups sum of squares can no longer be increased. This criterion amounts
to minimizing the trace of the pooled within-class dispersion matrix (Payne, 2006).
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Non-hierarchical classifications with 1–10 groups were performed and the best
number of groups for classification was determined from marked deviations in the
trend line of plots of the between-groups sum of squares criterion value for different
numbers of classes.

3 Results and Discussion

3.1 Weather Data

The first two PCs accounted for 67% of variation in weather and by cultivar yield
data. Figure 1a shows that precipitation is plotted near to the origin of the princi-
pal component plot suggesting it has little influence on yield. Also the variation in
precipitation totals over the study period (Fig. 2b) does not explain any of the group-
ings of years in Fig. 1b. This result is expected since the cranberry crop is irrigated.
The main factor for the grouping of years identified in Fig. 1b is mean temperature
(Fig. 2a). Three years had temperatures higher than normal (1998, 2002, 2004) and
for 2 years they were lower than normal (1992, 1997). There were two groups of
years with average temperatures. Those with higher yield (2003, 1999, 2001) had
low temperatures in the previous winter (Fig. 1, ii) suggesting that lower tempera-
tures may have restricted the incidence of pests on yield. Those with lower yield

a b

−0.2

0

0.2

0.4

0.6

−0.4 −0.2 0 0.2 0.4 0.6

PC1

P
C

2

P
C

2

−3

−2

−1

0

1

2

3

-3 -2 -1 0 1 2 3 4

PC1

Mean
temp.

Min.
temp.

Max.
temp. Yield-BL

Yield-ST

Yield-EB

Yield-  Mean

Precipitation 1993

2001
1999

2003

2002

2004

1998

1992
19971996

1995

1991
1994

2000

(i)

(iii)

(ii)

(iv)
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and maximum temperatures and (b) precipitation totals for Indian Mills, NJ

(1991, 1993, 1994, 1995, 1996, 2000) had average/warm winter temperatures prior
to the growing season (Fig. 1, iii). Years with growing season temperatures higher
and lower than normal are used in subsequent analysis.

3.2 Yield Data

The standardized AtoA kriged yield data for various years are shown in Fig. 3. The
maps show only the 308 fields at the centre of the growing area in Chatsworth, NJ.
There are more similarities in the patterns of standardized yield between years with
similar weather conditions than years with different weather conditions; however,
there are some areas that are consistently high yielding in all years. These tend to
be beds with a large perimeter:area ratio or those that have drainage ditches that
run through the centre of the field. Pozdnyakova (2001, unpublished) noted that the
perimeter:area ratio of the beds influences yield because each bog is surrounded by
drainage ditches so those with a larger perimeter:area ratio have better control over
drainage. Indeed, Kruskall Wallis H tests for 1991–1993 based on four groups of
perimeter:area showed differences in yield at levels of significance of 0.108, 0.008
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Fig. 3 Maps of AtoA kriged standardized cranberry yield for warmer than average growing sea-
sons (a–c) and colder than average growing seasons (d–e). Classes are expressed as standard
deviations of yield. Map of AtoA kriging variance of 1998 standardized yield (f)

and 0.016, respectively. In contrast Fig. 3f shows that the variance associated with
the predictions for each bed is not related to bed geometry, but rather its location in
relation to other beds. Beds near the centre of the study area have smaller kriging
variances than those near the edges. A brief comparison between AtoA kriged yield
and yield kriged using a centroid based approach which does not take into account
differences in the size and shape of beds showed that the differences in kriged stan-
dardized yield were negligible and of the magnitude of 0.005 for the vast majority
of fields. The long thin beds in the far north east of the study area, however, were
the most prone to larger over- and under-estimations by the centroid-based approach
and this could have an effect on the classification of these fields.

Some groups of fields that are high yielding in warm years switch to being low
yielding in cold years and vice versa. Groups of fields that behave similarly can also
be identified and these could be potentially managed in a uniform manner. The cor-
relation coefficients between yields from the different years in this central growing



272 R. Kerry et al.

Table 1 Correlations between AtoA kriged yield from different years (308
fields)

Yield 1992 Yield 1997 Yield 1998 Yield 2002 Yield 2004

Yield 1992 1.000
Yield 1997 0.128 1.000
Yield 1998 0.108 0.476 1.000
Yield 2002 �0:061 0.153 0.319 1.000
Yield 2004 0.034 0.143 0.172 0.571 1.000
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Fig. 4 Area to Point (AtoP) kriged maps of cranberry yield for warmer than average growing
seasons (a–c) and colder than average growing seasons (d–e). Classes are expressed as standard
deviations of yield. Map of AtoP kriging variance of 1998 standardized yield (f)

area (Table 1) confirm the visual results from Fig. 3: yields recorded in years with
similar weather tend to be more strongly correlated, whilst the correlation for those
with different weather conditions is generally weaker and sometimes negative. The
stronger than expected correlation between 1997 and 1998 yields given the different
weather conditions can probably be attributed to the vegetative growth in 1 year that
contributes to higher yield in the following year.

The standardized AtoP kriged yield data for various years are shown in Fig. 4 for
a small area so that within-field details can be observed. There are more similarities
in the patterns of standardized yield between years with similar weather condi-
tions than years with different weather conditions. Some fields exhibit within-field
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Table 2 Correlations between AtoP kriged yield from different years (20,179
points)

Yield 1992 Yield 1997 Yield 1998 Yield 2002 Yield 2004

Yield 1992 1.000
Yield 1997 0.065 1.000
Yield 1998 �0:083 0.441 1.000
Yield 2002 �0:092 0.061 0.287 1.000
Yield 2004 0.071 0.128 0.185 0.587 1.000

2002a b 2004
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0.4 to 0.45
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0.55 to 0.6
0.5 to 0.55

Fig. 5 Maps of kriged EVI for (a) July 2002 and (b) July 2004

variability, whereas others do not and some patterns of within-field variability are
evident in more than 1 year whereas others are not. The correlation coefficients com-
puted from AtoP kriging results (Table 2) lead to the same conclusions as the results
obtained in Table 1 for AtoA kriging.

As bed centroids were used as the coordinates for each yield value, the kriging
variance (Fig. 4f) within beds tends to be least at the centre and increases towards
the edge. The kriging variances are generally large in bigger beds and where the
beds are long and thin, the kriging variance shows distinct anisotropy.

3.3 Enhanced Vegetation Index (EVI) Data

Figure 5a and b shows maps of kriged EVI for 2002 and 2004. The patterns of
variability for the 2 years have some features in common and there is quite a bit
of variation in EVI within fields. If this is a true reflection of plant health, such
small and disjointed zones might be difficult to manage. The correlations between
aggregated EVI and yield in 2002 (2004) were 0.174 (0.167) and 0.184 (0.255) for
AtoA and AtoP kriging, respectively. These weak correlations probably result from



274 R. Kerry et al.

the large amounts of small scale variation in the EVI data. Correlation between EVI
2002 and 2004 was 0.542 and 0.803 for aggregated and kriged EVI, respectively.
This suggests that there is more correlation in the fine detail than the broad patterns,
and that these within-field variations seem to be consistent in time.

3.4 Classification Analysis

Figure 6 shows the results of non-hierarchical classification using AtoA kriged yield
and aggregated EVI from various years. According to plots of the between-groups
sum of squares criterion, classifications with both two and five classes might be
appropriate in warm years, which suggests the existence of two scales of variation
in yield in such years. Classification identified seven zones when information from
colder than average years was used. This suggests that in colder years the response
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of the crop is far more varied and less predictable. The differences between warm
and cold years could be observed in the similarities of variogram parameters (not
shown) for years with a given type of weather. Both types of year exhibited two
scales of variation, but the range for each structure was smaller for cooler years and
the variance associated with the first structure greater too, whilst in warmer years,
the second structure accounted for more of the variation. Nevertheless, there are
some similarities in the extent of some zones for both cold and warm years which
help identify areas with consistent yields. When information from cold and warm
years was included in classification, three main classes were identified (Fig. 6d), and
these broadly matched the distribution of the three main cultivars (Fig. 6e). Although
there are exceptions to this pattern, it suggests that when weather is ignored, the
main influence on yield at this scale is not location, but cultivar and the main man-
agement differences should be between cultivars. The differences between Fig. 6d
and e could, however, be used to identify fields that tend to be higher or lower yield-
ing than their counterparts with the same cultivar and should therefore be managed
differently.

Figure 7 shows the results of non-hierarchical classification using AtoP kriged
yield and kriged EVI from various years. Due to computational difficulties, these
data had to be aggregated from a 20 m to a 40 m grid. According to the plots of
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the between-groups sum of squares criterion, two different numbers of classes were
optimal for each group of years suggesting that there are two scales of variation
evident in the data that produce two or three classes and four or five classes. Clas-
sification identified two and four, three and five and two and five zones for warm,
cold and both types of year, respectively (Fig. 7). More than one class is identified
for more fields in cold years than warm years and even when four and five classes
are used for warm years and both types of year (Fig. 7d and f), the within-field vari-
ability is confined to certain fields while other fields show no within-field variation.
There are several fields which exhibit no within-field variability in classification
for each year and some fields which consistently exhibit within-field variability. An
example of the latter is the Nadine bed which is circled in Fig. 7d and shows within-
field variation in all maps except Fig. 7b.

Within-field yield information from the Nadine bed based on pre-harvest berry
counts were used as an initial assessment of the AtoP classification. Figure 8a shows
standardized average yield based on berry counts from 1999–2004. The patterns
were similar to this average in most years, but were less well defined in 2003 and
2004. Figure 8b shows average AtoP kriged yield and Fig. 8c shows observed EVI
values from 7 m pixels for the field in 2002. Two non-hierarchical classifications
with two classes were computed, one based on the berry count yield data from
1999–2004 and the other based on AtoP kriged yield from warm and cold years
and EVI 2002 (7 m pixels). There are some similarities in the classifications based
on AtoP kriged yield and EVI and berry count yield 1999–2004 but they are not
identical (Fig. 8d and e). The classifications showed 68% areal agreement compared
with 52% that would be expected if the similarities in the classification were due to
chance. In addition, a value of 0.3342 for the Kappa statistic was obtained with 95%
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confidence intervals of 0.1259 and 0.5425. Landis and Koch (1977) state that a value
of 0.3342 shows fair agreement between the two classifications suggesting that the
AtoP kriged surfaces combined with EVI data can give a reasonable indication of
possible within-field management zones for cranberries.

4 Conclusions

This paper shows the potential for AtoA and AtoP kriging to identify management
zones in cranberry crops at two scales. The first scale involves groups of fields be-
ing treated similarly and the second involves differential management within fields.
Combining AtoP kriged yield data with vegetation indices has advantages over using
remotely sensed data on its own as the broad underlying patterns of yield variation
are brought out without them being masked by management features and small scale
variability that could not be managed. The analysis suggests the existence of groups
of fields that behave similarly in certain types of growing season and others that
have marked within-field variability over a number of years and could benefit from
precision management. The reasons for these field heterogeneities need to be inves-
tigated as well as more detailed validation of the AtoP kriged yield and EVI patterns
with yield variability data based on berry counts for more fields.

This paper compared years with different weather conditions to gain insight into
spatial patterns of yield for different kinds of growing season. Variograms identified
more short range variation in colder than average growing seasons, leading to a
greater number of classes. This suggests that the crop would be more difficult to
manage in such years. Future analysis will involve integrating information from all
years in the 14 year period to discriminate between zones with consistently high
and low yielding and those that have variable yield in time. Mapping within-field
yield to a finer spatial resolution will be investigated using about 100 fields, rather
than all fields in the whole region. This will suppress the need to sub-sample EVI
data to be computationally manageable and AtoP kriging can be conducted for finer
interpolation grids. Unwanted management effects in EVI data will be filtered using
factorial kriging and additional variables, such as the area:perimeter ratio and age
of cranberry bed, will be incorporated as secondary information in the interpolation
procedure.
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Estimating the Local Small Support
Semivariogram for Use in Super-Resolution
Mapping

Peter Michael Atkinson and Chockalingam Jeganathan

Abstract Three methods were introduced for estimating the local semivariogram
for use in procedures such as super-resolution pattern prediction. The first is simply
to use a training image to estimate the global semivariogram required. The second
method employs a deconvolution–convolution procedure to estimate the local semi-
variogram. The estimated semivariogram represents proportions and so a further
step is required to convert the proportions semivariogram to represent a binary field.
The third method is an integration of the first two methods obtained by weighted
linear combination across the lags of the semivariograms. The results are evaluated
using the known target local semivariogram. The integrated method provides some
advantages. The discussion points to problems and potential future improvements
on the method.

1 Introduction

Super-resolution mapping techniques have been proposed for remote sensing clas-
sification (e.g., Tatem et al., 2001a, b; Atkinson, 2005). The basic principle of such
super-resolution techniques is as follows. A land cover proportions image is as-
sumed as input to the algorithm. This proportions image is assumed to have been
produced through some prior area proportions prediction technique applied to a mul-
tispectral or hyperspectral remotely sensed image at a given coarse spatial resolution
V. Area proportions techniques, sometimes referred to as soft classifiers, are com-
mon and include mixture models (Adams et al., 1985), artificial neural networks,
and fuzzy c-means classifiers (Foody, 1996; Atkinson et al., 1997). Super-resolution
mapping algorithms transform the proportions image into a hard land cover classi-
fication at a finer spatial resolution v than that of the original image.

There are many different approaches to achieve the image downscaling operation
implicit in super-resolution mapping. Spatial optimization techniques have included
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approaches based on the Hopfield neural network (HNN) (Tatem et al., 2001a, b,
2002, 2003; Nguyen et al., 2006), genetic algorithms (Mertens et al., 2003) and
those based on simple pixel-swapping techniques (Atkinson, 2005; Thornton et al.,
2006). Alternative techniques have included regression-based approaches such as
the standard feed-forward back-propagation artificial neural network (Mertens et al.,
2004), an extension of linear mixture modelling (Zhan et al., 2002; Verhoeye and De
Wulf, 2002), geostatistics (Boucher and Kyriakidis, 2006) and a Bayesian approach
(Kasetkasem et al., 2005). Some approaches involve spatial optimization where the
objective function is defined based on a target that is required to be known a priori
and, thus, such approaches can be considered to involve some learning or training
(e.g., Tatem et al., 2002; Atkinson, 2004).

Here, two objectives are distinguished: (i) mapping objects that are larger than
the size of the image pixels (the high-resolution or H-resolution case; Woodcock and
Strahler, 1987) and (ii) mapping objects that are smaller than the image pixels (the
low-resolution or L-resolution case). While in the H-resolution case it is possible
to provide solutions that do not require any learning or training, some learning is
more likely to be required in the L-resolution case. This paper is concerned with the
L-resolution case, for which spatial optimization based on training is appropriate.
The question that is addressed is how best to provide the training.

The particular case that provides the context for the research reported here is
the paper by Tatem et al. (2002) in which the HNN was developed as a pattern
prediction technique specifically for the L-resolution case. The method is described
briefly here. The Energy function of the HNN was, in simple terms,

E D k1G C k2C (1)

Where E is the energy, G is the goal and C is a constraint, and k1 and k2 are weights
where k1 D .1 � k2/. In the standard version of the algorithm designed for the
H-resolution case, the goal was to maximise the spatial correlation between neigh-
bouring (sub-)pixels and the constraint was to reduce the error between the predicted
proportions obtained by upscaling the predicted fine spatial resolution binary field
and the original proportions used as input to the algorithm. In the formulation de-
signed for pattern prediction in the L-resolution case the Goal G was replaced by a
semivariogram goal:

E D
n.h/X
iD1

kiVi C kC C (2)

Where the Vi are the semivariogram goals for each distance band i D 1; 2; : : : n.h/,
assuming isotropy and kC is now the weight associated with the same proportions
constraint. In this method, the Vi act as training data. They must be obtained prior to
application of the method. Possible sources of information with which to estimate
the required Vi include (i) prior expert knowledge and (ii) cartographic maps, but
most likely (iii) a training image classified to the required classes and at the desired
spatial resolution for a different area that is deemed representative of the target area.
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There are several problems with the use of training data as follows:

(i) The training area may not be representative of the target area for which down-
scaling is required.

(ii) The global semivariogram model may not be representative of the local
situation.

This paper explores new methods for localising the training image semivariogram
using the available coarse spatial resolution proportions imagery for use in super-
resolution pattern prediction. Although super-resolution mapping provides the con-
text and a potential requirement for a local semivariogram, this paper deals only
with prediction of the local semivariogram.

2 Methods

2.1 Background: The Semivariogram and Regularization

The semivariogram, the central tool of geostatistics, is one of several functions
that may be used to characterise the scales of spatial variation present in remotely
sensed imagery (Journel and Huijbregts, 1978; Curran and Atkinson, 1998). It is
assumed that readers are familiar with the basic concepts. The experimental semi-
variogram, O�.h/, can be estimated from p.h/ paired observations, z.x˛/, z.x˛ C h/,
˛ D 1; 2; : : : p.h/ using:

O�.h/ D 1

2p.h/

p.h/X
˛D1

fz.x˛/ � z.x˛ C h/g2 (3)

To use the semivariogram in most geostatistical procedures it is necessary to fit a
mathematical model to the empirical values.

The semivariogram is dependent on the support at which it is observed (Atkinson,
1993, 1995). It is possible to define a model of the regularizing or convolving effect
of the support on the semivariogram (Clark, 1977; Journel and Huijbregts, 1978;
Jupp et al., 1988, 1989). One model is defined by Journel and Huijbregts (1978) as:

�v.h/ D N�.v; vh/ � N�.v; v/ (4)

where N�.v; vh/ represents the integral punctual semivariance between two pixels of
size v whose centroids are separated by h and N�.v; v/ represents the average punctual
semivariance within a pixel of size v (i.e., the within-block variance). This model
can be implemented in practice through numerical approximation.
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2.2 Methods for Estimating the Local Target Semivariogram

The goal is to obtain a locally conditioned semivariogram that can be used, for
example, in the objective function of super-resolution mapping for pattern predic-
tion. Below, we detail three different approaches for the above task.

� Method 1: It is assumed that a training image and, thereby, training semivari-
ogram is available at the desired fine spatial resolution. The global semivariogram
estimated and modelled for this image is used to represent the desired local target
semivariogram. This is the current practice in super-resolution mapping.

� Method 2: The training image is assumed to be unavailable and instead the local
semivariogram at the fine spatial resolution is estimated through a deconvolution-
convolution procedure based on the available coarse spatial resolution input
image.

� Method 3: A hybrid approach is explored which combines linearly the outputs of
methods 1 and 2.

An assessment of the accuracy of the three methods is presented based on the lo-
cal semivariogram observed for a known target image at the desired fine spatial
resolution.

2.2.1 Method 1

Method 1 is straightforward as it involves nothing more than estimating the experi-
mental semivariogram O�T

vI .h/ of the available training image T of binary (0,1) val-
ues (represented by I ) at fine spatial resolution v as described above in Section 2.1.
The values of semivariance at the defined set of lags j provide the information that
is required in Eq. (2). This procedure was used in Tatem et al. (2002). In this paper,
this objective was modified slightly. The fine spatial resolution binary training image
semivariogram O�T

vI .h/ is replaced by the proportions training image semivariogram
O�T
v .h/ in order to facilitate comparison with method 2 below.

A problem, as outlined in the introduction, is that O�T
vI .h/ (or O�T

v .h// may not be
representative of the target image locally. This method serves as a useful benchmark
for the method proposed below.

2.2.2 Method 2

In method 2, it is assumed that a training image defined at the desired fine spatial
resolution is not available. In the absence of prior information, the only option is
to attempt to estimate the desired local semivariogram from the available coarse
spatial resolution data. The proposed local deconvolution-convolution method is as
follows:

1. Guess a candidate model for the punctual semivariogram globally �
.h; /. In
this research, the global semivariogram O�O

V .h/ of the available coarse spatial
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resolution proportions image OSO
V .x/ was estimated and a model �O

V .h; / fitted,
where  represents the fitted model parameters. The starting value of the punctual
model range was the same as for �O

V .h; /, while the starting punctual model sill
was double that for �O

V .h; /.
2. Use the regularization equation (4) to convolve the punctual semivariogram

�
.h; / to the coarse spatial resolution V , thus, estimating Q�V .h/ where � de-
notes the induced model.

3. Compare Q�V .h/ with the observed local semivariogram O�O
V .h; W.x// and use

the error to adjust the model parameters defining �
.h; / such as to estimate
�
.h; W.x/; /, the local punctual semivariogram.

4. Convolve �
.h; W.x/; / to estimate the local semivariogram O�v.h; W.x// defined
for the desired fine spatial resolution.

The actual required set of semivariograms is not O�v.h; W.x//, but O�vI .h; W.x// (i.e.,
the set of semivariograms defined for a binary, or classified, field). Thus, it is neces-
sary to add to the above sequence a procedure to obtain the binary semivariograms
O�vI .h; W.x//, as follows:

1. For every local window W , use O�v.h; W.x// to simulate a random field OSv.x/ of
large, but arbitrary dimensions with values constrained to lie within the bounds
(0,1).

2. Transform the proportions image to a binary field OSvI .x/ by applying an indicator
transform Ik.�/, where k can be any value, but here is set to 0.5.

3. Estimate the desired target experimental semivariogram O�vI .h; W.x// defined
locally.

Alternative procedures would be:

1. Convert the available proportions image at the coarse spatial resolution to a bi-
nary field by applying an indicator threshold (e.g., 0.5), and applying method 2 as
above. A problem is that this approach involves a loss of information. A further
problem is that the indicator transform to a binary field implies a change to the
punctual scale, complicating the scaling process.

2. Apply method 2 to the available proportions image as above, but then transform
the sill and range according to some empirical or mathematical relation.

In this paper, this second sequence is omitted; it is assumed that this or an equiv-
alent procedure can be followed. Thus, the focus of attention is on estimating the
local semivariogram of proportions O�v.h; W.x// defined on the desired fine spatial
resolution locally. It is for this reason that O�T

v .h/ was estimated in place of O�T
vI .h/

in method 1 above.

2.2.3 Method 3

It was considered that the outputs of method 1 (well estimated global semivariogram
of training image, but potentially not representative of the target area, especially lo-
cally) and method 2 (local semivariogram of the target area, but potentially poorly
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estimated) bring different benefits. It was, therefore, of interest to explore their com-
bination. If the uncertainty associated with each prediction were known, then the
two predictions could be integrated in a Bayesian sense using the inverse of the pre-
diction variances as weights. Without such information on uncertainty, a weighted
linear combination of the semivariance values on a lag-by-lag basis was investigated
for a range of weights as follows:

O�.h/ D �1 O�v.h; W.x// C �2 O�T
v .h/ (5)

Where, �1 varies in (0,1) and �1 C �2 D 1.

3 Data

A fine spatial resolution (nominally 5 m) image of (nominally land cover) propor-
tions of dimension 139 by 94 pixels was simulated. Only two classes were simulated
in this example. This provides the target image OSv.x/ (Fig. 1). The upper left quarter
of this target image was taken to represent the training image OST

v .x/. This represents
the case in remote sensing where the training image is usually available at a finer
spatial resolution, but for a smaller area than, or different area to, the coarse spatial
resolution input image of proportions.

20 77

Fig. 1 Fine spatial resolution (5 m) proportions image OSv.x/
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7523

Fig. 2 Coarse spatial resolution (30 m) proportions image OSv.x/

The fine spatial resolution simulated image OSv.x/ obtained above was degraded
(i.e., convolved with a square wave filter equal to the coarse pixel size, nominally
30 m) to simulate an observed coarse spatial resolution image OSV .x/ of land cover
proportions (Fig. 2).

4 Analysis

The global experimental semivariogram O�V .h/ was estimated for the coarse spatial
resolution (30 m) observed image of proportions OSV .x/ and a spherical model fitted
using weighted least squares (Fig. 3). Although not available for analysis in the
practical case, the global experimental semivariogram O�v.h/ was also estimated
for the fine spatial resolution (5 m) observed image of proportions OSv.x/ and a
spherical model fitted (Fig. 4). This semivariogram provides a reference for future
comparison.

4.1 Method 1

The global experimental semivariogram O�T
v .h/ was estimated for the fine spatial

resolution (5 m) training image of proportions OST
v .x/ and a spherical model fitted

(Fig. 5). This O�T
v .h/ estimates directly the desired local semivariogram of propor-

tions O�v.h; W.x//.
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Fig. 3 Spherical model fitted to semivariogram for coarse spatial resolution (30 m) proportions
image
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Fig. 4 Spherical model fitted to semivariogram for fine spatial resolution (5 m) target proportions
image

Since the local target image OSv.x/ is available it was possible to evaluate the
accuracy of O�T

v .h/ as an estimate of �v.h; W.x//. The residual sum of squares is
shown as a function of lag in Fig. 6.
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Fig. 5 Spherical model fitted to semivariogram for fine spatial resolution (5 m) training propor-
tions image
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Fig. 6 Lag-wise variation in the residual sum of squares for method 1
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4.2 Method 2

Method 2 was followed to estimate the local semivariogram �v.h; W.x// at discrete
lags at the desired fine spatial resolution of 5 m. Local variation in the parameters
of the fitted punctual semivariogram ��.h; W.x/; / are displayed in Figs. 7 and 8.
Figure 7 shows the local variation in the range of the punctual model and Fig. 8
shows the local variation in the sill of the punctual model obtained using Method 2.

The range varies in a spatially structured way, with values between 94 and 373 m.
The largest values of the range correspond to large proportions (hot spots) in Figs. 1
and 2. The sill varies from 78 to 147 semivariance units (in this case, the squared
proportion). Again, the largest estimates of the sill parameter correspond to the hot
spots in Figs. 1 and 2.

Since the local target image OSv.x/ is available it was possible to evaluate the
accuracy of Q�v.h; W.x// as an estimate of �v.h; W.x//. The residual sum of squares
is shown as a function of lag in Fig. 9.

4.3 Method 3

The estimates made using methods 1 and 2 were combined using a linear weighting.
Linear weights ranging between 0 (for method 1) and 1 (for method 2) were tested

373.29 94.29

Fig. 7 Local variation in the range of the punctual model for method 2
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147.34 78.23

Fig. 8 Local variation in the sill of the punctual model for method 2
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Fig. 11 Variation in the residual sum of squares with weight for method 3

for each pixel and an image produced showing the optimal weight (i.e., the one that
minimised the squared error over the range tested) (Fig. 10). Interestingly, method 2
is more accurate on more occasions than method 1.

A plot was also produced showing the sum of squared errors against weight when
a single weight was chosen across all pixels (Fig. 11). This represents the real case
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where the target image of proportions is not available and the investigator must
select a single weight for the method as a whole. The plot shows that on average, a
weight of 0.75 (in favour of the local deconvolution-convolution method) minimises
the sum of squared errors.

Based on Fig. 11, a weight of 0.75 was selected and method 3 applied to the
whole image. A plot of the sum of squared errors against lag was produced for
method 3 as for methods 1 and 2 (Fig. 12). The error is on average smaller for
method 3 than for either method alone.

5 Discussion

The rather simplistic analysis presented above omits some important considerations.
These are discussed here. The simulated image was small in size. The small image
was adequate to develop and demonstrate the methods only. It would make sense to
expand the simulated image extent or proceed to a real remotely sensed image in
future analysis.
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The simulated image OSv.x/ resulted in a semivariogram that was adequately fitted
using a spherical model with a large range. This does not adequately represent the
L-resolution case in remote sensing for which super-resolution pattern prediction
may be desirable. It more adequately represents the H-resolution case. Therefore,
the results of this paper must be seen as demonstrating a potential method only.
Further testing is required on a simulated field or real imagery in which micro-scale
structures are present.

The lack of micro-scale variation is unfortunate because it is such micro-scale
variation that may be captured in the global semivariogram of proportions O�v.h/,
but omitted from the local semivariogram O�V .h; W.x// at the coarse spatial resolu-
tion. Thus, the benefit of a training image will be most apparent where micro-scale
variation exists. The focus of future research should be to concentrate on how the
micro-scale structure revealed in O�v.h/ can be retained and injected into the estimate
of �v.h; W.x// through an equivalent of method 3.

The distribution of proportions values is a concern. Specifically, Collins and
Woodcock (1999) showed that the Beta distribution provides a useful model for
proportions because it handles all cases between a point support (all values are 0
or 1, i.e., a binary field) and a single pixel image (the single value is equal to the
mean). The non-Gaussian distribution of proportions, particularly where the sup-
port is small relative to the size of objects may affect the analysis described in this
paper. In the L-resolution case, where objects are much smaller than the pixel and
super-resolution pattern prediction is appropriate, these effects are likely to be less
relevant.

It is interesting to note that the punctual sill variance can be estimated from the
coarse spatial resolution proportions image OSV .x/. Similarly, the relation between
the range and spatial resolution is known (see Section 4.3.2). Therefore, it is possible
that the deconvolution-convolution procedure can be simplified based on empirical
relations.

The method demonstrated in this paper is one of two basic approaches for com-
bining a training image semivariogram and a local deconvolved-convolved estimate
of the local semivariogram. In method 3, the combination is undertaken at the fine
spatial resolution based on deconvolving and convolving from O�v.h; W.x//. How-
ever, a simpler and potentially preferable alternative is to deconvolve and convolve
the training image semivariogram O�T

v .h/ to the coarse spatial resolution and make
a comparison with O�V .h; W.x// at the coarse spatial resolution. This alternative
method has the benefit that the deconvolution–convolution process needs to be un-
dertaken only once. Once the punctual model has been tuned to take into account
the local information it can be convolved to the fine spatial resolution to estimate
�v.h; W.x//.

The results of this paper are preliminary and the methods need to be evaluated
on a wider range of data, both simulated and real, and tested across a wider range
of parameters. A required next step is also to apply the local semivariogram esti-
mates within a super-resolution mapping pattern prediction algorithm to evaluate
the benefit of the local estimates for super-resolution mapping.
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6 Conclusion

This paper has introduced a new method for combining a global training image
semivariogram O�T

v .h/ that is well estimated but not necessarily representative of the
target, and not representative locally within the target, with an estimate of the local
semivariogram of proportions O�v.h; W.x// that was obtained by a deconvolution-
convolution procedure based on a locally available coarse spatial resolution image
of proportions. The method works sufficiently well to merit further investigation
along the lines suggested in the discussion section above.
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Modeling Spatial Uncertainty for Locally
Uncertain Data

Elena Savelyeva, Sergey Utkin, Sergey Kazakov, and Vasyliy Demyanov

Abstract The work discusses methods dealing with “soft” input data, where local
uncertainty is represented by a variance. Modifications of ordinary kriging and
sequential direct stochastic simulations based on such data are applied to a real
hydrogeological case study and a synthetic environmental contamination study. The
modification performed on direct simulation approach does not require any data
transformation assumptions. The method is compared with Bayesian Maximum
Entropy (BME) based stochastic simulations, which provide an alternative way of
integrating “soft” information.

1 Introduction

Uncertainty manifests at all stages of data handling starting with data acquisition
and propagating through fitting model parameters process and the actual model-
ing. Nowadays results of data analysis (modeling and forecasting) are accompanied
by an estimate of the model uncertainty and assessment of uncertainty is consid-
ered as an important part of the data analysis process. However, many conventional
methods assume input data as exact, which is clearly questionable. Usually, raw
data carry internal uncertainty caused by equipment errors, calibration and/or dif-
ferent kinds of methodological assumptions and expert’s judgment. For example,
dealing with analysis of marine living resources acoustic and trawl surveys’ mea-
surements are calibrated to the actual variables of interest (model input raw data)
using some heuristic constants (for example, trap effective radius) (Sokolov, 2006).
Thus, the stochastic nature represented by additional information is not taken into
account (Barange et al., 1996 etc.). Monitoring measurements are also recalculated
usually averaging over some period or surface, but there are other possible expert
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recalculations. The same situation is expected in other branches dealing with mea-
surements. Thus, all “raw” data are generally what is referred to as “soft” data.
Really exact “hard” data do not exist.

The time has come for development of approaches dealing with real raw
measurements, not cleaned and processed in an ad hoc way, smearing possible
uncertainties. At the current stage we consider uncertain data as data with asso-
ciated local uncertainty (uncertainty for each datum). Such an approach can be
referred as “soft” geostatistics.

Parkin et al. (2005) discuss methods that allow estimation of local probabilistic
features based on “soft” data only (multiple measurements reproduced into local
probability density functions). However, local uncertainty of the model is not al-
ways enough for data description. For instance, levels of uncertainty for fish total
biomass estimate require modeling of spatial uncertainty (Savelieva et al., 2007) –
by means of stochastic simulations approach. Thus, our goal is to reproduce true
spatial variability conditioned to given uncertain “soft” data by means of “soft”
stochastic simulations.

In the present work we consider two types of “soft” stochastic simulation ap-
proaches: the Bayesian Maximum Entropy (BME) based stochastic simulations and
the generalization of sequential direct stochastic simulations to the case of uncertain
data. Bayesian Maximum Entropy (BME) is a general tool rigorously incorporat-
ing the different kinds of available knowledge including “soft” site specific data
(Christakos, 2000; Christakos et al., 2002). The result of BME local estimation is a
posterior probability density function, which allows extension of BME to produce
sequential stochastic simulations. In general, the BME methodology allows con-
sideration of the whole estimation grid (spatial pattern) simultaneously without the
sequential principle which sometimes underestimates the variability when dealing
with local probability distribution functions, but in the current work we use only the
sequential approach.

The other approach we consider originates from classical geostatistics – to make
geostatistical fans rejoice – modified sequential direct stochastic simulations. Krig-
ing technology allows incorporation of measurement errors considering them as
local variances. Kriging with measurement errors is a simple modification of ordi-
nary kriging. Direct simulations is a stochastic kriging based algorithm to describe
spatial uncertainty (Soares, 2001). Unlike other geostatistical simulation algorithms
it does not require any data transformation and assumptions about the distribution.
Direct simulations based on kriging estimates in the original data scale open the
possibility to replace ordinary kriging with the kriging accounting for measurement
errors. This approach is simpler than the BME based method and requires less com-
putational time.

Development of these methods was initially motivated by analysis and mapping
of the commercial marine living resources (Savelieva et al., 2007). In this work they
are applied to hydrogeologic and environmental contamination data to assess the
feasibility of the approach.
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2 Theoretical Background

2.1 Uncertainty Description

Uncertainty of data requires detailed formalization before incorporation into any
kind of analysis. Description of data uncertainty can be crudely divided into the
following main groups: level of confidence, range interval, variance and probabil-
ity density function (pdf). Every type of uncertainty description is associated with
measurement methodology.

Measurement creditability is an expert’s decision on the quality of measurement.
It depends on subjective features, such as, the measurement session procedure, qual-
ity of a sample and others. Creditability is usually given as a categorical value from
a specified range. Level of creditability can be used in model parameter fitting (for
example, in machine learning approaches) – greater attention is paid to more reliable
data. In this work we will not consider such types of uncertainty.

Uncertainty of data also originates from the measurement device error. Usually
devices are calibrated so as to provide a variance .�2/ as a guide to the mea-
surement uncertainty. Such variances depend only on the device and are constant
over the measuring area. Such variances allow estimation of data confidence lev-
els. Under the assumption of local Gaussian distribution the 95% confidence level
is given by a 4� interval. Avoiding any distributional assumption the 95% confi-
dence level increases to 6�(2� as a penalty for unknown distribution). This result,
based on application of Visochansky-Pitunin equation, is discussed in Chiles and
Delfiner (1999). Thus, device error can be considered as a variance or formalized as
interval of possible data values.

Many sampling methodologies use repeated measurements performed in close
proximity (much smaller than the distances between sample locations) – for exam-
ple, in soil sciences. Usually, these repeated measurements are subject to prelim-
inary expert analysis (using a specially prescribed methodology depending on the
science domain) with a unique value as a result. This value is considered as a mea-
surement in the following analysis. Sometimes it is accompanied with a creditability
level as discussed above.

In reality, repeated measurements provide the widest possibility for data un-
certainty description. Considering them as realizations of a random process with
unknown probability distribution function one can treat their uncertainty as an in-
terval (after estimation of most probable value and variance or confidence intervals)
or as a model of the probability density function (non-parametric – a histogram
based on cut-offs or parametric – model with fitted parameters). Examples of such
descriptions (after Parkin et al., 2005 and Savelieva et al., 2005) are presented
in Figs. 1 and 2. The dataset was devoted to 137Cs soil contamination due to the
Chernobyl accident (26/04/1986). Repeated measurements were taken close to each
other and recalculated to the date of the accident. Figure 1 presents local pdfs based
on a small number of values (below 15), allowing estimation of the minimum,
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Fig. 1 Examples of “soft” pdfs based on minimum, maximum and median

maximum and a median considered in this case as the most probable value. Figure 2
presents examples of raw histograms and the fitted models.

2.2 Kriging with Measurement Errors

Ordinary kriging is a well-known geostatistical estimator described in the literature,
e.g. by Goovaerts (1997), Chiles and Delfiner (1999), etc. Below we briefly outline
the modification of ordinary kriging to take into account measurement errors.

Following conventional geostatistics, let us suppose that there is a random field
Z.x/ represented by a set of given values Zi measured at locations xi with measure-
ment errors "i WZ.xi / D Zi ˙ "i . Several assumptions concerning the measurement
errors are made: the errors are uncorrelated .Sij D Ef"i"j g D 0/, the errors are not
correlated with the value .EfZi"ig D 0/ and the error variances .Ef"i"ig D �2

i /

are known. Kriging is a linear estimator, for an unmeasured location x0 .Z�.x0//

given by:

Z�.x0/ D
N.x0/X
iD1

�i .x0/Z.xi /; (1)
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Fig. 2 Examples of raw histograms and fitted models of the pdf (scaled to be compared with the
histogram): (a) extreme distribution; (b) Weibul distribution; (c) Cauchy distribution; (d) uniform
distribution

where N.x0/ is the number of samples from the neighbourhood of x0 taken into
account for the estimation, and �i .x0/ are the kriging weights. The neighbourhood
depends on a user-defined search rule.

As for all members of the kriging family, the set of weights .�i / is determined
by minimizing the estimation variance under the unbiasedness constraint:

min
�

0
@Var .Z � .x0I �/ � Z.x0// � 2�

0
@N.x0/X

iD1

�i .x0/ � 1

1
A
1
A (2)

where � is the Lagrangian multiplier. Let us consider the estimation variance

Var
�
Z�.x0I �/ � Z.x0/

� D E

0
@N.x0/X

iD1

�i .x0/Z.xi / � Z.x0/

1
A

2

D

N.x0/X
iD1

�2
i .x0/

�
�2

i C C00

�C 2

N.x0/X
iD1

N.x0/X
j D1
j ¤i

�i .x0/�j .x0/Cij

�2

N.x0/X
iD1

�i .x0/Ci0 C C00 (3)
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Where C00 D Var.ZZ/8Z.x/, Cij D Var.ZiZj/ D Var.Z.xi/Z.xj// and Ci0 D
Var.Z.xi/Z.x0//.

Thus, the kriging system will be as follows:

8̂
ˆ̂̂<
ˆ̂̂̂
:

�i .x0/.C00 C �2
i / C

N.x0/P
j D1
j ¤i

�j .x0/Cij D Ci0 C �; i D 1 : : : N.x0/

N.x0/P
iD1

�i .x0/ D 1

; (4)

where �2
i are the error variances. The system of linear equations (4) has some differ-

ence from the usual ordinary kriging system. Especially if rewritten to a variogram
form it will not have a zero diagonal (only in the equation N.x0/ C 1/. Most impor-
tantly, the well-known form of the kriging variance does not change, which allows
us to treat it in the same way as conventional ordinary kriging variance:

�K
2 D C00 �

N.x0/X
iD1

�i .x0/Ci0 C �: (5)

2.3 Direct Sequential Simulations with Measurement Errors

The direct sequential simulations (DSS) approach (Soares, 2001) is based on the
sequential principle for constructing spatial uncertainty (global multivariable prob-
ability distribution function) and kriging technology for estimation of the local
cumulative distribution function (cdf). Direct sequential simulations appears to be
well adapted to highly skewed data (Savelieva et al., 2007).

Each realization (pattern) is characterized by two main features: a global cdf of
the random field Z.x/ and its spatial correlation structure. Kriging is responsible
for reproduction of spatial correlation of a pattern. To reproduce a global cdf a set
of specially organized classes are used. Each class is provided by a class-specific
pdf to draw a current value. A selected class depends on the value of the kriging
estimate.

One of the possible ways to construct a system of classes is to use a normal-
ization transformation function � (presented as a table) linking data quintile values
with normal distribution quintile values. The local cdf at location x0 while spatial
pattern modeling uses kriging and a transformation function �. The kriging estimate
transformed to the normal distribution .y.x0/ D �.z�.x0/// indicates the location
moment of the local cdf. The kriging variance .�K

2.x0// depends mostly on the
sill value of the spatial correlation model of the underlying process, and its trans-
formation is a normalization on C00. Thus, the kriging variance .�K

2.x0/=C00/

gives a space moment of the local cdf. In the normalized space, the local cdf
is considered to be Gaussian – N.y.x0/; �K

2.x0/=C00/. A value for the current
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realization is drawn using this local cdf .y0/ and back-transformed to initial data
space z0.x0/ D ��1.y0/.

The main advantage of the direct sequential simulation approach is that no trans-
formation of the data is required. It allows the modification of this approach to take
measurement errors (presented by error variances) into account. Ordinary (or sim-
ple) kriging applied in the original version is replaced by kriging with measurement
errors, as described in Section 1.2. The current realization value along with the krig-
ing variance (treated equivalent to a measurement error variance) is stored in the
database for the following application within the sequential simulation framework.

Other traditional geostatistical sequential stochastic simulation approaches such
as Gaussian or indicator sequential simulations require additional assumptions on
the pdf of measurement errors. In the Gaussian context, measurement errors need to
be considered as normally distributed. The indicator approach does not require any
specific type of distribution, but “soft” indicator transformation requires knowledge
of the local pdf.

2.4 Several Remarks on BME

A detailed description of computational and theoretical aspects of the Bayesian
Maximum Entropy (BME) theory and practical recommendations concerning its
application can be found in Christakos (2000, 2002). Here we briefly outline the
basic features of the BME method that are relevant to the present work.

The spatial distribution of a physical variable is routinely represented by means
of a spatial random field (SRF) X.s/, where the vector s denotes spatial location.
The BME mapping framework integrates various physical knowledge bases, such
as the general knowledge base G (physical laws, empirical relations, statistical mo-
ments of any order, scientific theories etc.) and the site-specific knowledge base
S (real measurements, uncertain observations, secondary information etc.) to con-
struct the posterior pdf of X.s/ at any mapping point sk . It is performed in several
stages: first the structural (or prior) pdf model, fG , of SRF X.s/ at all mapping
points smap D .ssoft; sk/ is derived from the general knowledge G. After that, the
prior pdf is conditioned (by means of an operational Bayesian conditionalization
rule) to the site-specific knowledge S leading to the posterior pdf fK :

fK.�k/ D A�1

Z
d�softfS .�soft/fG.�map/; (6)

where A is a normalization parameter. Clearly this posterior pdf is not limited by any
specific distribution, giving a realistic stochastic description of a physical variable
across space.

In the framework of sequential stochastic simulations the prior pdf fG is derived
once, while the conditioning stage is performed consequently for mapping points
sk , taking them one by one. The posterior pdf, fKsk/, allows the drawing of a
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stochastic value as a realization and characteristics analogous to soft description of
site-specific information to be added to S as new points ssoft.

3 Data Description

The methods described above are applied to synthetic and real data: groundwater
level monitoring in the vicinity of a nuclear waste storage facility and air quality
monitoring around a nuclear power plant (NPP) in a normal situation and in a situ-
ation of an accidental release of radioactivity.

Groundwater levels are measured at 52 spatially distributed monitoring wells
(Nuzhny et al., 2007). The total number of measurements is 26,999, covering the
period from April 1970 to January 2006. The time is not treated as an additional co-
ordinate, so each well is presented by a set of measurements providing uncertainty.
The local difference between maximum and minimum values ranges from 1.7 up to
14.6 m. The mean and variance per well were considered as a measurement value
and a measurement variance. Local variability varies in space.

The synthetic data used in the current analysis were used in the Spatial Interpola-
tion Comparison (SIC) 2004 contest (Dubois and Galmarini, 2005). The participants
were provided with the prior information representing the spatial behavior of the
monitoring data (200 sample locations) in ten different days. These data can be con-
sidered as the repeated measurements, which describe the local uncertainties (for
example, local variances). Two new data sets were distributed during the competi-
tion for interpolation at 808 validation locations by a method tuned on prior data.
One of the data sets described an ordinary monitoring situation around a NPP, the
other one was obtained as a model of an accidental release of radioactivity. In our
study we used these data sets as measurements together with the uncertainty ob-
tained on the basis of the prior data. Presence of the validation data allows us to
check the reliability of the methods’ performance.

4 Results and Discussion

Figures 3 and 4 present comparative results of ordinary kriging and kriging with
measurement errors applied to the groundwater levels. It can be observed that the
estimates of kriging with measurement errors are smoother (Fig. 4). The same con-
clusion can be reached from the comparison of the minimum and the maximum
values. Kriging with measurement errors gives higher minimum (219.4 vs. 217.8 m)
and lower maximum (251.7 vs. 251.94 m), while the median estimates for the both
methods present the same value – 237.47 m. Kriging variances in accordance with
Eq. (5) are very similar to each other but they are not identical due to the difference
in the coefficients obtained through solving different systems of linear equations.
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Fig. 3 Kriging estimate: (a) ordinary kriging; (b) kriging with measurement error
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Fig. 4 Kriging variance: (a) ordinary kriging; (b) kriging with measurement error

Validation of kriging with measurement errors on the SIC’2004 data showed bet-
ter results compared with ordinary kriging. Thus: Pearson correlation coefficient for
the ordinary data set increased to 0.78 from 0.73, and for data with release up to
0.69 from 0.56.

Results of stochastic simulations performed for SIC’2004 data are presented in
Table 1, as a distribution of statistical characteristics over 50 DSS and 20 BME
realizations for each data set. DSS realizations appeared to be more variable, which
is indicated by larger range of values. The simulations were performed on a regular
grid, as statistics of the real values are collected on a more dense validation set.
BME-based simulations present higher variability in statistical features.

Figures 5a–c and 6a–b present examples of stochastic realizations by direct se-
quential simulations (Fig. 5) and BME-based sequential simulations (Fig. 6). DS
realizations look rather strange, but averaging over 50 realizations (Fig. 5d) indi-
cates some correspondence with kriging estimates (Fig. 3).
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Table 1 Distribution in statistical characteristics of SIC data realizations

– Ordinary situation Accident case

– Real BME DSS Real BME DSS

Min 58.2 57–58.2 57–57.2 58.2 57–57.3 57–57.4
1/4Q 82.2 82.2–86.7 82.3–85.8 82.2 82.1–86.12 82.3–85.5
Med 97.5 97.9–101.1 97.5–101 97.6 97.8–109.8 97.5–101.4
3/4Q 109.5 109–112.5 108.5–112.8 110.5 110.2–113.7 109.6–114
Max 153 151–170.3 153–168 1,499 1,300–1,501 1,499–1,500
Mean 96.23 96.42–99.45 95.8–98.6 108.99 104.38–108.2 104.3–107.4

Fig. 5 Examples of direct sequential simulations with measurement error (a–c) and average over
50 realizations (d)

5 Conclusions

The main conclusion of this work is that there are different ways in which pure
“soft” data can be used for analysis and modeling of spatial uncertainty. BME-
base stochastic simulations – a BME extension – has demonstrated advantages over
kriging-based methods with accounting for the measurement error. The presented
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Fig. 6 Examples of BME based stochastic simulations

case studies showed the feasibility of the approach. However, more research is
needed to make more general conclusions about the proposed method. The method
can be used in the case studies where the raw data feature very high local uncertainty.
Further research will be devoted to incorporation in the methodology of different
types of local uncertainty descriptions.
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Spatial Interpolation Using Copula-Based
Geostatistical Models

Hannes Kazianka and Jürgen Pilz

Abstract It is common practice in geostatistics to use the variogram to describe
the spatial dependence structure of the underlying random field. However, the vari-
ogram is sensitive to outlying observations and strongly influenced by the marginal
distribution of the random field. As an alternative to spatial modeling using the var-
iogram we consider describing the spatial correlation by means of copula functions.
We present three methods for performing spatial interpolation using copulas. By
exploiting the relationship between bivariate copulas and indicator covariances, the
first method performs indicator kriging and disjunctive kriging. As a second method
we propose a simple kriging of the rank-transformed data. The third method is a
plug-in Bayes predictor, where the predictive distribution is calculated using the
conditional copula given the observed data and the model parameters. We show
that the latter approach generalizes the frequently applied trans-Gaussian kriging.
Finally, we report on the results obtained for the so-called Joker data set from the
spatial interpolation comparison SIC2004.

1 Introduction

Copulas describe the dependence between random variables independently of their
marginal distributions. They are commonly used in financial and actuarial statistics,
however, they are just beginning to become popular in geostatistics. Spatial depen-
dence is traditionally described using the variogram which is strongly influenced by
the univariate distribution of the random field. Extreme outlying observations ad-
versely affect the empirical and theoretical variogram estimates. Moreover, spatial
modeling often relies on the Gaussian assumption which is hardly fulfilled for envi-
ronmental processes. To circumvent these disadvantages Bardossy (2006) proposed
the use of copulas to describe the spatial variability. In the following we adopt this
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methodology and use it not only for spatial modeling of dependence structures but
also for spatial interpolation. We present three methods for estimating the values
of the random field at unknown locations. The first method we suggest is indicator
and disjunctive kriging. The second method is rank-order kriging, originally pro-
posed by Journel and Deutsch (1996), where we calculate the covariance function
through its relationship to the Spearman rank correlation. The third method is a
plug-in Bayes predictor and can be used if all multivariate distributions of the ran-
dom field are modeled using the copula.

The paper is organized as follows. Section 2 reviews the basic properties of cop-
ulas, while Section 3 briefly describes the spatial copula methodology. In Section 4
the spatial interpolation techniques using copulas are presented and in Section 5
they are used to analyze the Joker data set from the spatial interpolation comparison
SIC2004 (Dubois, 2005). Section 6 is devoted to conclusions.

2 Copulas

The word “copula” was first used by Sklar (1959) to describe distribution functions
on the n-dimensional unit cube, In, that link multivariate distributions to their one-
dimensional margins. To be precise, an n-dimensional copula is an n-dimensional
real function C W In ! I which satisfies the following properties:

1. For every u 2 In

C .u/ D 0 if at least one coordinate of u equals 0;

C .u/ D uk if all coordinates of u are 1 except uk:

2. For every a; b 2 In with a 	 b the n-th order difference of C on Œa; b�

VC .Œa; b�/ D �bn
an

�bn�1
an�1

: : : �b1
a1

C .u/ � 0:

In the above expression a first order difference is defined as �
bk
ak

C .u/ D
C .u1; : : : ; uk�1; bk; ukC1; : : : ; un/ � C .u1; : : : ; uk�1; ak ; ukC1; : : : ; un/.

From this definition it is clear that a copula is a distribution function on the
n-dimensional unit cube with uniformly distributed margins. The most important
theoretical result about copulas was proved by Sklar (1959) and expresses the ability
of copulas to describe the dependence between random variables without informa-
tion about their marginal distributions: If H denotes an n-dimensional distribution
function with margins F1; : : : ; Fn, then there exists an n-dimensional copula C such
that for all x 2 R

n
,

H .x1; : : : ; xn/ D C .F1 .x1/ ; : : : ; Fn .xn// : (1)

If F1; : : : Fn are all continuous, then C is unique. Conversely, if C is an
n-dimensional copula and F1; : : : Fn are distribution functions, then the function
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H is an n-dimensional distribution function with margins F1; : : : Fn. Moreover, if
F �1

1 ; : : : ; F �1
n are the inverse distribution functions of F1; : : : ; Fn, we get

C .u1; : : : ; un/ D H
�
F �1

1 .u1/ ; : : : ; F �1
n .un/

�
: (2)

If C is an absolutely continuous copula, its density can be written as

c .u1; : : : ; un/ D @nC .u1; : : : ; un/

@u1 : : : @un

D h
�
F �1

1 .u1/ ; : : : ; F �1
n .un/

�
Qn

iD1 fi

�
F �1

i .ui /
� ; (3)

where h denotes the density of H and the fi denote the densities of Fi . One of the
advantages of working with copulas is that they are invariant under strictly increas-
ing transformations of the random variables. Therefore, typical data transformation
methods, such as taking the logarithm or performing a Box–Cox transformation,
have no impact on the copula. Bivariate copulas are directly linked to the scale free
measure of association known as Spearman’s rho. The Spearman rank correlation
between two random variables X1 and X2 with copula C can be calculated as

	X1;X2
D 12

Z Z
I2

u1u2dC .u1; u2/ � 3 D 12

Z Z
I2

C .u1; u2/ du1du2 � 3: (4)

For a thorough introduction to copulas the reader is referred to Nelsen (2006).

3 Spatial Modeling Using Copulas

Although copulas are widely used for describing the dependence between random
variables, for example in financial statistics, there are only a few papers about
incorporating copulas into the geostatistical framework so far. In the following as-
sume that we have a second-order stationary random field fZ .x/ j x 2 S g, where
S � R2 is the area of interest.

3.1 Describing the Random Field Using Copulas

Bardossy (2006) presented a method for spatial modeling using copulas that gener-
alizes the concept of the variogram. Let FZ denote the univariate distribution of the
random process which is the same for each location x due to stationarity. All mul-
tivariate distributions of the random field are described using multivariate copulas
with the help of Sklar’s theorem (see Eq. 1). For example, the relation between two
locations separated by the vector h is characterized by the bivariate distribution

P .Z .x/ 	 z1; Z .x C h/ 	 z2/ D Ch .FZ .z1/ ; FZ .z2// ; (5)
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whose dependence structure is described by the copula Ch. The copula becomes
a function of the separating vector h (or the separating distance h WD khk if the
random field is isotropic) and does not depend on the location x. Hence, the spatial
copula describes the dependence over the whole range of quantiles and not only
the mean dependence as the variogram does. Every spatial copula is symmetric by
definition. This means that Ch .u1; : : : ; un/ D Ch

�
u�.1/; : : : ; u�.n/

�
for an arbitrary

permutation � and n � 2. Moreover, we want to add the following two restrictions:
khk ! 1 implies Ch .u/ ! Qn

iD1 ui and khk ! 0 implies Ch .u/ ! mini ui .
These restrictions ensure that far distant observations have almost no dependence
and observations that are very close to each other have a strong dependence.

The special case of a Gaussian random field, where the copula can be written
as C .u1; : : : ; un/ D ˚0;�

�
˚�1 .u1/ ; : : : ; ˚�1 .un/

�
with diag .�/ D .1; : : : ; 1/T

and the marginal distribution is FZ D ˚m;�2 , is included in this model. Here, ˚�;˙

denotes the distribution function of the multivariate Gaussian distribution with mean
vector � and covariance matrix ˙ . The Gaussian copula becomes a function of h

by assuming that its correlation function follows one of the well-known paramet-
ric geostatistical models, e.g. the Matern model. However, the Gaussian copula, as
well as the Student-t copula, does not only express a symmetric but also a radially
symmetric dependence, C .u1; u2/ D u1 C u2 � 1 CC .1 � u1; 1 � u2/. This means
that high and low values of the distribution have equal dependence properties. To
allow for more flexibility Bardossy (2006) introduced a non-Gaussian copula family
which is constructed from a multivariate non-central �2-distribution. Squaring the
entries of a Gaussian random vector Y � N .m; ˙ /, where m D .m; : : : ; m/ and
˙ denote the mean vector and the correlation matrix respectively, leads to a multi-
variate distribution with margins having a non-central �2-distribution with 1 degree
of freedom and non-centrality parameter � D m2. The distribution function D and
density d can be calculated as

D .z1; : : : ; zn/ D
2n�1X
iD0

.�1/
Pn

j D1 ij ˚m;˙ ."i / ;

d .z1; : : : ; zn/ D
P2n�1

iD0 �m;˙ ."i /

2n

qQn
iD1 zi

;

where ij 2 f0; 1g, i D Pn
j D1 ij 2j �1, "i D

�
.�1/i1

p
z1; : : : ; .�1/in p

zn

�
and

��;˙ denotes the Gaussian density function. Using Eqs. 2–3 the copula and its den-
sity can be evaluated.

3.2 Parameter Estimation

In the spatial copula model we have mainly three types of parameters. We have
parameters � defining the correlation structure, copula parameters � and parameters
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� for the family of marginal distributions FZ . Inference for all the parameters can be
based on the maximum likelihood approach. If the copula density can be evaluated
for all n � 2 dimensions, maximization of the likelihood is not difficult. However, as
is the case for the non-central �2-copula, it may occur that calculation of the copula
density is infeasible for higher dimensions. Here we proceed to perform maximum
likelihood estimation only with the bivariate copula densities. Under the assumption
that different pairs of observations are treated as independent we have to maximize

l .	 I Z .x// D
Y

i;j 2f1;:::;ng

i¤j

c�;�

�
F� .Z .xi // ; F�

�
Z
�
xj

��� Y
k2fi;j g

f� .Z .xk// ;

where 	 D .�; �; �/ is the parameter vector, c�;� is the copula density, F� is the
marginal distribution as a function of � and f� denotes its density. The procedure
works well as long as there is no intention to estimate anisotropy.

An advantage of working with copulas that are constructed from elliptical distri-
butions is that the correlation matrix explicitly appears in their analytical expression.
If we parameterize the correlation matrix using a geostatistical covariance model,
we no longer need to estimate a sill since it is equal to 1. The reason for this is that
the overall variance of the random field is a property of the marginal distribution
and the copula describes the dependence structure without information about the
margins.

3.3 Goodness-of-Fit Testing for Spatial Copulas

For selecting a spatial copula model that suits the given data we have to perform
a goodness-of-fit test. We use a blanket test recently presented and validated by
Genest and Remillard (2008) and apply it to the different lag classes h1; : : : ; hr .
Although the test is designed for n-dimensional copulas we recommend working
only with bivariate copulas for simplicity. The test is based on a parametric boot-
strapping procedure and makes use of the Kolmogorov-Smirnov statistic, Tn, or the
Cramer-von Mises statistic, Sn:

Sn D
Z

Œ0;1	2
Cn .u/2 dCn .u/ and Tn D sup

u2Œ0;1	2
jCn .u/j ;

where Cn D p
n .Cn � C�/, Cn is the empirical copula calculated using the n data

points and C� is the estimation under the null hypothesis. The steps of the algorithm
are as follows:

1. For each of the lags h1; : : : ; hr compute the empirical copula C
h1
n ; : : : ; C

hr
n .

2. Estimate the theoretical copula, for example using the maximum likelihood ap-
proach. Denote the estimated parameters by � . For every lag class there is a
corresponding theoretical copula C

h1

� ; : : : ; C
hr

� .
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3. Calculate the Cramer-von Mises or the Kolmogorov-Smirnov statistic for every
lag class, T

h1
n ; : : : ; T

hr
n or S

h1
n ; : : : ; S

hr
n .

4. For a large integer N , repeat the following steps for every k 2 f1; : : : ; N g
(a) Simulate a random field whose copula is exactly the estimated theoretical

copula from Step 2.
(b) Compute the empirical copula for every lag class, C

h1

n;k
; : : : ; C

hr

n;k
.

(c) Estimate the theoretical copula of the simulated field and denote the estimated
parameters by �k . For every lag class there is a corresponding theoretical
copula, C

h1

�k
; : : : ; C

hr

�k
.

(d) Evaluate the test statistics T
h1

n;k
; : : : ; T

hr

n;k
or S

h1

n;k
; : : : ; S

hr

n;k
.

5. An approximate p-value for every lag class h1; : : : ; hr is given by

phj
D 1

N

NX
kD1

I
�
S

hj

n;k
> S

hj
n

�
or phj

D 1

N

NX
kD1

I
�
T

hj

n;k
> T

hj
n

�
;

where I.:/ is an indicator function and j D 1; : : : ; r .

In the case where the spatial copula is constructed from a multivariate distribution,
simulation of a random field with a predefined copula means simply simulating from
the multivariate distribution.

4 Spatial Interpolation Using Copulas

After having modeled the spatial data we are interested in predicting the values of
the random field at unknown locations. In the following we propose three different
methods for performing spatial interpolation using copulas.

4.1 Indicator Kriging and Disjunctive Kriging

Indicator kriging is used to estimate the conditional distribution of the random field
given the data. This is done by cokriging of indicator variables I.Z .xi / 	 zj /,
where i D 1; : : : ; n and the zj are certain thresholds, e.g. quantiles. Simple
calculation shows that bivariate copulas are related to indicator covariances and
cross-covariances via

�zj
.h/ D Ch

�
FZ

�
zj

�
; FZ

�
zj

�� � FZ

�
zj

�2
;

�zj ;zk
.h/ D Ch

�
FZ

�
zj

�
; FZ .zk/

� � FZ

�
zj

�
FZ .zk/ : (6)
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Plugging these relationships in the cokriging procedure, we arrive at an indicator
kriging that is based on the spatial copula model. The fact that only bivariate copulas
are needed makes it possible to use one of the numerous flexible copulas that do not
have multivariate extensions or that have too few parameters for using them in a
multivariate approach. The Gumbel-Hougaard extreme value copulas would be an
example.

Indicators are not only used in indicator kriging but also in non-linear geostatis-
tics. If the random field is discretized and takes only a finite number of values, say
1 to m, every function of Z .x/ can be written as

f .Z .x// D f1I .Z .x/ 	 1/ C � � � C fmI .Z .x/ 	 m/ :

The disjunctive kriging estimator is calculated by cokriging of the indicators

Œf .Z .x//�DK D f1 ŒI .Z .x/ 	 1/�CK C � � � C fm ŒI .Z .x/ 	 m/�CK :

Again, the relationships from Eq. 6 are used in the cokriging system. Rivoirard
(1994) argued that “in the same way that kriging is based on the variogram, so
disjunctive kriging is based on the bivariate distributions”. In our case the bivariate
distribution of the random field is defined in terms of the bivariate copula and so is
disjunctive kriging.

4.2 Rank-Order Kriging

Assume we have an isotropic random field with known univariate distribution FZ

and the bivariate distributions can be described by the copula Ch. Furthermore, we
have a realization fz .xi / j xi 2 S g of the random field and we want to predict the
values at xnC1; : : : ; xnCm. Applying Eq. 4 we can calculate the Spearman rank cor-
relation curve 	 as a function of h which is exactly the correlation function for the
rank-transformed variable V .x/ D FZ .Z .x//. Since V .x/ is a uniform distribu-
tion on Œ0; 1�, 


12
gives the corresponding covariance function. Journel and Deutsch

(1996) proposed to apply a simple kriging of ranks, where the linear predictor at the
unknown locations xj is given by

v� �xj

� D
nX

iD1

�i v .xi / C 1

2

 
1 �

nX
iD1

�i

!
;

where j D n C 1; : : : ; n C m. Since back-transforming v� �xj

�
using F �1

Z would
lead to a biased estimate for Z

�
xj

�
, a bias correction is introduced

z� �xj

� D F �1
Z

�
v� �xj

��C �
�
xj

� �
F �1

Z

�
L
�
v� �xj

��� � F �1
Z

�
v� �xj

���
; (7)
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where L .�/ is the distribution function of all kriged values v� �xj

�
and � .x0/ D�

�2
K.xj /
�2

max

�!

with �2
K being the kriging variance, �2

max being the maximal kriging

variance of all estimations and ! > 0 a correction level parameter.
Although this method reproduces the original distribution of the data and z� is an

unbiased estimate, the covariance structures of V .x/ and Z .x/ are not reproduced.
Another disadvantage of rank-order kriging is that there is no guarantee for the
estimated ranks to be in the interval Œ0; 1�. To ensure that all estimates are between 0
and 1 it is sufficient to force all kriging weights to be non-negative, however, this is
accompanied by a loss in accuracy. Moreover, z� has no minimum kriging variance,
only v� has that property.

To partially overcome these drawbacks a direct sequential simulation of the ranks
at the kriging locations xj , jDn C 1; : : : ; n C m, is proposed. The simulated ranks
are drawn from a uniform distribution with mean equal to the kriging predictor and

variance equal to the kriging variance,
h
v� �xj

� � p
3�K

�
xj

�
; v� �xj

�C p
3�K�

xj

��
. At each step, the kriging system consists of the original data and the previ-

ously sampled data. It may occur that the endpoints of the uniform distribution are
outside the Œ0; 1� interval leading to simulated ranks outside Œ0; 1�. In this case they
have to be set to 0 or 1, depending on whether they are <0 or >1. After simulation
the bias correction described in Eq. 7 is applied to the estimated ranks. For a large
number N the sequential simulation is repeated N times and the resulting predic-
tors are back-transformed using F �1

Z and averaged. This procedure yields estimates
that are exact at known data locations, unbiased, follow the univariate distribution
FZ and reproduce the covariance of the random field. Sequential simulation is a
time-consuming method for large data sets. Hence, we adapt a method proposed by
Saito and Goovaerts (2000) who used it in the case of a normal-score transforma-
tion. Again, the simple kriging predictor, v� �xj

�
, and the simple kriging variance,

�2
K

�
xj

�
, are calculated. The conditional distribution of V

�
xj

�
given the data is

modeled as a uniform distribution with mean equal to v� �xj

�
and variance equal

to �2
K

�
xj

�
. If the endpoints a and b of the uniform distribution are outside the

Œ0; 1� interval, they are reset to 0 and 1, respectively, and the density of the local
distribution changes to

d .x/ D

8̂
<̂
ˆ̂:

min

�
1

2.v�.xj /�a/
; 1

2v�.xj /

�
; if x 2 �max f0; ag ; v� �xj

��
;

max

�
1

2.b�v�.xj //
; 1

2.1�v�.xj //

�
; if x 2 �v� �xj

�
; min fb; 1g� :

The 100 percentiles, vp

�
xj

�
, of this local distribution are calculated, where

p D k
100

� 0:5
100

and k D 1; : : : ; 100. After back-transformation, zp

�
xj

� D
F �1

Z

�
vp

�
xj

��
, the zp

�
xj

�
are unbiased estimators for the quantiles of the local

distribution of Z .x/. Their average is an unbiased estimator for the mean, hence,
the kriging estimate is defined as
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OZ �
xj

� D 1

100

100X
kD1

zp

�
xj

�
with p D k

100
� 0:5

100
:

4.3 Plug-In Bayes Estimation

The copula enters the rank order kriging procedure only through the Spearman rank
correlation. Furthermore, both rank order kriging and disjunctive kriging only use
bivariate copulas. On the one hand these facts may be useful since flexible bivariate
copula families can be applied, but on the other hand these methods do not fully
exploit the spatial copula model presented in Section 3.1. When we go the Bayesian
way, we can take account of the uncertainty of parameter estimation. Moreover,
there is a predictive distribution for every rank-transformed variable V .x0/ at an
unknown location x0,

p .v .x0/ j D/ D
Z

p .v .x0/ j 	;D/ p .	 j D/ d	;

where D D fz .x1/ ; : : : ; z .xn/g denotes the set of all n known data values. When
we (falsely) assume that the maximum likelihood estimates, O	 , of all the parameters

are the true values, we get that p .v .x0/ j D/ D p
�

v .x0/ j O	 ;D
�

. In the spatial

copula model this is exactly the density of the conditional copula of V .x0/ given
the rank-transformed data and the estimated parameters

p
�

v .x0/ j O	 ;D
�

D ch

�
v .x0/ j O	 ;D

�
D

ch

�
v .x0/ ; v .x1/ ; : : : ; v .xn/ j O	

�

ch

�
v .x1/ ; : : : ; v .xn/ j O	

� ;

where v .xi / D FZ .z .xi // and i D 1; : : : ; n. If the copula is constructed from
a multivariate distribution with conditional density d and marginal distribution F

with density f , Eq. 3 tells us that the conditional copula can be written as

ch

�
v .x0/ j O	 ;D

�
D

d
�
F �1 .v .x0// j O	 ;D

�
f .F �1 .v .x0///

:

In the case of a Gaussian copula F D ˚ , f D � and d D ��;�2 is a Gaus-
sian density with mean � D ˙ 12˙ �1

22 a and variance �2 D 1 � ˙ 12˙ �1
22 ˙ 21,

where a D �
˚�1 .v .x1// ; : : : ; ˚�1 .v .xn//

�T
, ˙ 22 is the correlation matrix of

the known locations and ˙ 12 D ˙ T
21 is the vector of correlations between the

known locations and the location where prediction should take place.
Since the predictive density of V .x0/ is defined on the unit interval, we avoid

estimated ranks outside Œ0; 1�. Furthermore, the predictive density of Z .x0/ can be
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calculated by just using a Jacobian transformation. To get back from the ranks to the
original scale the transformation is F �1

Z . The corresponding Jacobian determinant
is exactly the density fZ . Hence,

p
�

z .x0/ j O	 ;D
�

D ch

�
FZ .z .x0// j O	 ;D

�
fZ .z .x0// : (8)

The Bayes estimator for Z .x0/ under the quadratic loss is the mean of the predictive

distribution, OZ .x0/ D E
�
Z .x0/ j O	;D

�
. Of course it can be evaluated using

Eq. 8, but with the help of an integral transformation we can also derive an estimator
similar to the one by Saito and Goovaerts (2000) which we have already used for
rank order kriging:

OZ .x0/ D
Z 1

�1
z .x0/ ch

�
FZ .z .x0// j O	 ;D

�
fZ .z .x0// d z .x0/

D
Z 1

0

F �1
Z .v .x0// ch

�
v .x0/ j O	 ;D

�
dv .x0/ :

Analogously, the prediction variance O�2 .x0/ can be calculated as

O�2 .x0/ D
Z 1

0

�
F �1

Z .v .x0// � OZ .x0/
�2

ch

�
v .x0/ j O	 ;D

�
dv .x0/ :

Similarly to copula kriging the frequently applied trans-Gaussian kriging (Diggle
and Ribeiro, 2007) also works with a marginal transformation of the random field.
The aim of trans-Gaussian kriging is to deal with non-Gaussian random fields by
assuming that the transformed random field, Y .x/ D g .Z .x//, is Gaussian and
g is a suitable transformation that has to be determined. In most applications the
transformation g is chosen from the Box–Cox family of transformations. In the
following we show that there is a direct relationship between the trans-Gaussian
kriging model and the spatial copula model.

Theorem 1. The trans-Gaussian kriging model using an almost surely strictly
monotone transformation is equivalent to the Gaussian spatial copula model.

Proof. Assume we have a trans-Gaussian random field with an almost surely strictly
monotone transformation g. Hence, Y .x/ D g .Z .x// � N �

�; �2
�
. From the

invariance theorem mentioned in Section 2 we get that the copula corresponding to
the multivariate distributions of Z .x/ must be the Gaussian copula corresponding
to Y .x/. Using Z .x/ D g�1 .Y .x// we obtain the univariate marginal distribution
of Z .x/ as

FZ .z/ D
Z z

�1
��;�2 .g .t//

ˇ̌
g0 .t/

ˇ̌
dt;
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and the Gaussian spatial copula model is fully determined. If we assume that the
random field follows the Gaussian spatial copula model with known FZ , then
g .z/ WD ˚�1 .FZ .z// is a suitable transformation.

Since we can also use any other copula different from the Gaussian copula in our
approach, we observe that the spatial copula model is a generalization of the trans-
Gaussian model. Even if we want to stay within the Gaussian framework, it is more
convenient to use the copula methodology because it is easier to specify the uni-
variate distribution of the random field than to determine a suitable transformation
function. Especially when we work with multimodal or extreme value data this fact
becomes obvious.

For certain copula families not all data values can be used to build the predictive
distribution. For the non-central �2-copula mentioned in Section 3.1 this happens
because one would need to evaluate 2n terms for the calculation of the conditional
copula. In these cases we propose a local prediction.

5 Application: SIC2004 Joker Data

In this section we test our methodology by means of the Joker data set, which was
investigated in detail during the spatial interpolation comparison SIC2004 (Dubois
2005). This extreme value data set simulates an accidental release of radioactivity
using a dispersion process. The 200 training points have a mean of 108:99, a stan-
dard deviation of 121:96 and a skewness of 9:92. Figure 1a displays the training
data as gray dots and the 808 test data as gray circles. The two extreme observations
(1,070.4 and 1,499) are indicated by the black dots.

At first we fit a quadratic trend surface model to the data. The residuals follow
a generalized extreme value distribution. Using the goodness-of-fit test described
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Fig. 1 The locations of the Joker training (dots) and test data (circles) are displayed in (a).
A surface plot of the Joker data is shown in (b)
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Fig. 2 The predicted values of the test set are plotted against the true values in (a). The predictive
density at a hotspot is displayed in (b)

in Section 3.3 we find out that it is sufficient to work with the Gaussian spatial
copula. The correlation matrix of the Gaussian distribution is parameterized (cf.
Section 3.1) by a mixture of a Gaussian and an exponential correlation model.
Geometric anisotropy is considered by a 2 � 2 transformation matrix, where one
entry is fixed to avoid interference with the ranges of the correlation models. All
parameters, including the nugget, two ranges, one mixing parameter, three parame-
ters for the generalized extreme value distribution and three anisotropy parameters,
are estimated using the maximum likelihood approach. Note that there is no need
to estimate a sill. Prediction is performed using the plug-in Bayes approach. The
predicted values are plotted against the true values in Fig. 2a. The predictive den-
sity at a hotspot is visualized in Fig. 2b and it shows that values around 1,500
are still contained in the body of the distribution. The results for the test data are:
RMSE D 65:87, MAE D 16:22, ME D �2:58 and Pearson-r D 0:71. Compared
to the results of more than 30 participants of the SIC2004 this would be the third
smallest RMSE, the second smallest MAE and the third largest Pearson correlation.

6 Conclusion

Copulas can be used to describe spatial dependence and in this way generalize the
concept of the variogram. Moreover, the spatial copula model can be used to per-
form spatial interpolation. It generalizes the trans-Gaussian kriging method and is
therefore a flexible tool for working with non-Gaussian, multimodal and extreme
value data. Specifying the univariate distribution of the random field is easier than
finding a suitable transformation for trans-Gaussian kriging, which makes the spatial
copula model attractive even if the Gaussian copula is used. Another advantage is
that the sill need not to be estimated and, hence, the model contains one parameter
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less. Results on the SIC2004 Joker data demonstrate that the presented approach
could be applied for emergency monitoring and estimating exceedance probabilities
for certain emergency thresholds in environmental monitoring systems.

Acknowledgement This work was partially funded by the European Commission, under the Sixth
Framework Programme, by the Contract N. 033811 with DG INFSO, Action Line IST- 2005-2.5.12
ICT for Environmental Risk Management. The views expressed herein are those of the authors and
are not necessarily those of the European Commission.

References

Bardossy A (2006) Copula-based geostatistical models for groundwater quality parameters. Water
Resour Res 42(W11416). doi:10.1029/2005WR004754

Diggle P, Ribeiro P (2007) Model-based geostatistics. Springer, New York
Dubois G (2005) Automatic mapping algorithms for routine and emergency monitoring data. EC

Joint Research Centre, Belgium
Genest C, Remillard B (2008) Validity of the parametric bootstrap for goodness-of-fit testing in

semiparametric models. Ann I H Poincare B 44:1096–1127
Journel A, Deutsch C (1996) Rank order geostatistics. In: Baafi E, Schofield N (eds) Geostatistics

Wollongong ’96. Kluwer, Dordrecht, pp 174–187
Nelsen R (2006) An introduction to copulas. Springer, New York
Rivoirard J (1994) Introduction to disjunctive kriging and non-linear geostatistics. Oxford

University Press, Oxford
Saito H, Goovaerts P (2000) Geostatistical interpolation of positively skewed and censored data in

a dioxin-contaminated site. Environ Sci Technol 34:4228–4235
Sklar A (1959) Fonctions de repartition a n dimensions et leurs marges. Publ Inst Stat Univ Paris

8:229–231



Exchanging Uncertainty: Interoperable
Geostatistics?

Matthew Williams, Dan Cornford, Lucy Bastin, and Ben Ingram

Abstract This paper discusses a solution to providing interoperable, automatic
geostatistical processing through the use of Web services, developed in the IN-
TAMAP project (INTeroperability and Automated MAPping). The project builds
upon Open Geospatial Consortium standards for describing observations, typically
used within sensor webs, and employs Geography Markup Language (GML) to de-
scribe the spatial aspect of the problem domain. Thus, the interpolation service is
extremely flexible, being able to support a range of observation types, and can cope
with issues such as change of support and differing error characteristics of sensors
(by utilising descriptions of the observation process provided by SensorML).

XML is accepted as the de facto standard for describing Web services, due to
its expressive capabilities which allow automatic discovery and consumption by
‘naı̈ve’ users. Any XML schema employed must, therefore, be capable of describing
every aspect of a service and its processes. However, no schema currently exists that
can define the complex uncertainties and modelling choices that are often present
within geostatistical analysis. We show a solution to this problem, developing a fam-
ily of XML schemata to enable the description of a full range of uncertainty types.
These types will range from simple statistics, such as the kriging mean and vari-
ances, through to a range of probability distributions and non-parametric models,
such as realisations from a conditional simulation. By employing these schemata
within a Web Processing Service (WPS) we show a prototype moving towards a
truly interoperable geostatistical software architecture.

1 Introduction

Uncertainty in geographic information is ubiquitous, be it from measurement error,
observation operator error or modelling error. It is how we process and propagate
this uncertainty that is of importance, especially when high-risk decisions are to be
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made based on such information (Atkinson, 1999; Couclelis, 2003; Heuvelink and
Goodchild, 1998). In the field of geostatistics, uncertainty from multiple sources
is encountered routinely. Consider, for example, a user in the field collecting soil
samples. Inputting the data onto a small footprint machine (e.g. Personal Digital
Assistant) the user is able to store the data for lab processing, or alternatively, to
submit the data for processing to a Web service. A typical process in this scenario
might use the available data to predict where the user should next sample opti-
mally, or to provide an estimate of the soil properties at an unsampled location.
Errors in the original measurements, stemming from systematic sensor effects and
random fluctuations, will combine with errors in the models used to process and
interpolate the data, to produce significant levels of uncertainty (which must be ex-
plicitly estimated and quantified) in the final predictions. Traditionally, the soil data
in this example would be processed from start to finish within a single software
package to produce, for example, an interpolated map of heavy metal concentra-
tion, with estimation uncertainty represented as variance at each predicted location.
The uncertainty in prediction might also be crystallised as exceedance probabilities,
showing the likelihood that a critical threshold is exceeded at any location, or as sets
of realised samples from the predicted distribution. While traditional geostatistical
applications recognise and model the uncertainty at the end of the analysis, a con-
ceptual model for describing and communicating uncertainties is of less importance,
since the data are not usually shared with other applications. Uncertainty at the inter-
mediate stages of analysis is, therefore, rarely explicitly characterised. However, if
different processing steps (e.g. outlier detection, data harmonisation, parameter esti-
mation, interpolation) are delegated to separate Web services, it becomes necessary
for each service to receive an understandable summary of the uncertainty inherent
in the sample data, and introduced by the intervening processing steps. Currently,
there is a trend in software engineering to move away from tightly coupled legacy
systems and towards loosely coupled, interoperable, services (Erl, 2005) based on
XML. A conceptual design which allows the communication of uncertain results is
of foremost importance in the development of such an interoperable geostatistical
application. This paper introduces a conceptual model of uncertainty and examples
of how one might encode uncertainty in XML, motivated by examples arising within
the INTAMAP project.

2 XML, Web Services and SOAs

Interoperability is defined as “the ability of two or more systems or components to
exchange information and to use the information that has been exchanged” (IEE, 18
Jan 1991). This section provides an overview of several technologies and concepts
that provide the foundations of an ‘interoperable’ application.

XML (Yergeau et al., 2006) is a structured language that allows metadata to
be integrated with content, thus, adding a layer of intelligence to information (Erl,
2004). XML is implemented by defining a set of elements and attributes that are
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unique to a particular context, or domain. A collection of such elements and at-
tributes is often referred to as a vocabulary. Vocabularies can be defined formally
using a schema definition language, typically ‘XML Schema’ language (Fallside
and Walmsley, 2004), but is not a requirement of XML. The descriptive nature and
extensibility of XML are two key ingredients that contribute towards it being a suit-
able language for interoperability.

The concept of a ‘service’ in software engineering is not a new term and typically
refers to an independent building block within a larger application environment, or
distributed system (Erl, 2004). A Web service is an implementation of a service that
uses XML to describe the operations available including the data inputs and outputs.
There are other types of Web service (RESTful) which do not rely so heavily on
XML. However, we do not discuss these in this paper and from hereon the term Web
service refers specifically to an XML Web service.

Communication of data to and from a Web service is encoded as XML and
transported via an Internet protocol (this is usually HTTP). Adhering to these re-
quirements provides an interoperable framework that allows software applications,
written in different languages and on different platforms, to communicate seam-
lessly. A collection of these services, ‘loosely coupled’, forms the basis of a design
philosophy called Service Oriented Architecture.

The term Service Oriented Architecture has many definitions, perhaps one or the
more concise is defined in Josuttis (2007) as:

SOA is an architectural paradigm for dealing with business processes distributed over a
large landscape of existing and new heterogeneous systems that are under the control of
different owners.

A SOA is usually realised as a collection of Web services, that may be governed
by different owners, communicating with one another to form a processing chain.
In context, this could be a risk management or decision support chain.

3 The INTAMAP Project

Introducing interoperability into the field of geostatistics, INTAMAP seeks to pro-
vide a fully automated interpolation service implementing a Web Processing Service
interface (Schut, 2007). A WPS is a restriction on a normal Web service, gov-
erned by the Open Geospatial Consortium, that is suited to processing of geospatial
data. Simply, a Web Processing Service can be thought of as a function that can
be called over the Web. Within INTAMAP we are also developing a range of
novel automatic mapping algorithms including Bayesian trans-Gaussian kriging,
fast anisotropy detection, data harmonisation for heterogeneous networks and fast
approximate techniques that can deal with multiple sensor and error characteristics
(Ingram et al., 2008). Key to all the methods we employ is a description of the un-
certainties on the inputs and outputs of the interpolation process. Currently no such
XML vocabulary, or schema, exists to allow the description of uncertainty, hence our
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Fig. 1 Example workflow for an interpolation request in the INTAMAP project. All geostatistical
processes are carried out using R and CCC on a separate server to the WPS. A client may obtain
observations from multiple sensor systems before submitting them to INTAMAP for processing.
Clients may also be services; chaining of services in this way underpins the foundation of Service
Oriented Architectures

development of UncertML. The inputs to the INTAMAP Web service are XML files
describing the observations, with UncertML being used to characterise the obser-
vation errors (see Section 4). The results produced by INTAMAP contain inherent,
and additional, uncertainty introduced by the interpolation process which must be
communicated for the results to be of any subsequent utility. Figure 1 provides an
overview of a typical workflow, integrating the INTAMAP service with existing
client applications. The rest of this paper discusses a solution to the problem, Un-
certML, and investigates the integration into INTAMAP, providing ‘interoperable
geostatistics’.

4 Describing Uncertainty in XML

In this section, we discuss the design of an XML language for describing uncer-
tainty, UncertML, depicted using the Unified Modeling Language (UML). The
UML diagrams used within this paper are static structure diagrams, whose nota-
tion is clearly defined in Section 4.4 of Portele (2007). Examples in XML are given,
where necessary, to illustrate how it may be used.

4.1 Conceptual Model and Examples

The core design of UncertML is split into three distinct sections; summary statistics,
distributions and realisations (Fig. 2). Aggregate types for statistics, distributions
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«Abstract»

«DataType» «DataType»
Statistic Distribution

«DataType»
Realisation

definition: anyURI+

value: double+ parameters: Parameter [0..*]+ value: double+

AbstractUncertainty

Fig. 2 Conceptual overview of UncertML. Three main types extend the abstract uncertainty type;
‘Statistic’, ‘Distribution’ and ‘Realisation’. Other types are also available and discussed in more
detail later

AbstractUncertainty AbstractUncertainty AbstractUncertainty

«DataType» «DataType»

«Union»

«DataType»

«DataType» «DataType» «DataType»
Quantile Discrete Probability Probability AnyStatistic

Statistic StatisticRecord StatisticArray

level: double [0..1]+

value: double+ field: AnyStatistic [0..*]+ elementType: AnyStatistic

Statistic:
Probability:
StatisticArray:
StatisticsRecord:
Quantile:

elementCount: int
encoding: BlockEncoding
values: any [0..*]

+

+
+
+
+
+

+
+
+

category: any+ gt: any [0..1]

eq: any [0..1]
ge: any [0..1]
le: any [0..1]

lt: any [0..1]
+
+
+
+
+

Fig. 3 UncertML model for summary statistics

and realisations also exist where deemed necessary. It is important to note that
UncertML does not provide a framework for describing phenomena or their units of
measure, nor does it provide any geospatial attributes. Removing this level of detail
allows UncertML to be integrated into a diverse range of domains.

Throughout UncertML we follow a weak-typed design pattern that offers im-
proved extensibility at the cost of strict validation. Weak-typing works by providing
generic types with generic properties, in contrast to a strongly-typed design with
concrete types and well-defined properties (Figure 4). Figure 3 introduces the hier-
archy for summary statistics; the base type is a generic ‘Statistic’ that can be used for
most summary statistics such as mean, median, variance or standard deviation. The
value of a statistic is given through the ‘value’ property that holds a single real num-
ber. All types within UncertML extend the ‘AbstractUncertainty’ type and therefore
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<Statistic definition="Mean"> <Mean>
<value>34.5</value> <value>34.5</value>

</Statistic> </Mean>

Fig. 4 Comparison of a weak-typed (left) and strong-typed (right) representation of a mean value.
Weak-typing is more generic and provides greater extensibility, however, strong-typing provides
easier validation

<Statistic definition="Mean">
<value>26.5</value>

</Statistic>

<Probability definition="Probability" gt="23.4" lt="33.4">
<value>0.34</value>

</Probability>

Fig. 5 Two XML instances, the first represents a mean value while the latter shows the probability
that a value falls between 23.4 and 33.4

inherit the ‘definition’ property. Accepting any Uniform Resource Identifier (URI)
as a value, the ‘definition’ property provides a level of semantics to the weak-typed
elements. Typically the URIs resolve to a dictionary entry describing the uncer-
tainty type of interest. However, other methods of description may be used such as
ontologies.

Certain summary statistics require additional information than the generic
‘Statistic’ type provides. A ‘Quantile’ is used for describing quantiles where a
‘level’ property, accepting a value between 0.0 and 1.0, defines the quantile of
interest. Probabilities offered through either the ‘DiscreteProbability’ or ‘Proba-
bility’ types. The former provides a ‘category’ property which may contain any
information, and the latter offers a range of properties including ‘equal to’, ‘greater
than’ and ‘less than’; a combination of which may be used. Figure 5 demonstrates
how these statistics can be encoded in UncertML. It should be noted that probabil-
ities differ from other summary statistics in that their ‘value’ property contains a
probability (0.0–1.0) rather than an actual value (with units of measure etc.).

It is often the case that one would wish to describe a collection of individual
statistics to provide a summary of a particular variable. A ‘StatisticsRecord’ is
used for this exact purpose and groups different statistics into a unified structure
(Figure 6). When dealing with multiple instances of the same statistic it is more
appropriate to use the ‘StatisticArray’ type. The flexibility of UncertML allows any
combination of records and arrays to be created including arrays of records and
records of arrays. All aggregate types within UncertML utilise the Sensor Web En-
ablement (SWE) common encoding schema (Botts and Robin, 2007) to provide an
extensive list of options for encoding the data, including most MIME types.

A ‘Distribution’ type in UncertML follows a similar pattern to a ‘Statistic-
sRecord’ (Fig. 7) due to it containing a collection of parameters. An example
encoding of a distribution is shown in Fig. 8 and consists of a reference to a
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<StatisticRecord>
<field>

<Statistic definition="Mean">
<value>34.5</value>

</Statistic>
</field>
<field>

<Statistic definition="Standard_Deviation>
<value>12.4</value>

</Statistic>
</field>

</StatisticRecord>

Fig. 6 A collection of individual statistics can be grouped into a ‘StatisticRecord’ to provide a
summary of a variable. This example shows a mean and standard deviation

«Union» «FeatureType»

«DateType»

«DateType»

«DateType»

«DateType»
«DateType»

AbstractUncertainty

AbstractUncertainty

AbstractUncertainty«Type»

+parameters

+functions

0..*

0..*

+parameters

0..*

+distributions

0..*

«DataType»

AnyDistribution Function

Distribution

DistributionArray

UnivariateMixtureModel

MultivariateMixtureModel
MultivariateDistribution

Parameter

ParameterArray

Distribution: name: CharacterString
description: CharacterString elementType: AnyDistribution

elementCount: int
encoding: BlockEncoding
values: any [0..*]

weights: double [0..*]
distributions: AnyDistribution [0..*]

mathematicalDescription: MathML [0..1]

parameters: Parameter [0..*]

DistributionArray:
+ +

+
+

+

+
+

+
+

+
+

+

definition: anyURI
value: any

elementType: parameter
elementCount: int
encoding: BlockEncoding
values: any [0..*]

+

+
+
+
+

+

Fig. 7 UncertML model for distributions and other related types. The base ‘Distribution’ type is
similar to the ‘StatisticsRecord’ discussed earlier, however, the addition of ‘functions’ provides a
mechanism for describing a cumulative distribution function

<Distribution definition="Gaussian_Distribution">
<parameters>

<Parameter definition="Mean">
<value>23.4</value>

</Parameter>
<Parameter definition="Variance">

<value>56.7</value>
</Parameter>

</parameters>
</Distribution>

Fig. 8 A typical distribution encoded in UncertML. Reference to a dictionary entry is made
through the ‘definition’ property which provides a complete description of a distribution, including
its cumulative distribution function
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dictionary through the ‘definition’ property as well the distribution parameters and
their values. When a link to such a definition is not available a ‘Distribution’ can
be extended to include a set of functions inline, encoded in MathML (Carlisle
et al., 2003), such as a cumulative distribution function, probability density func-
tion or other arbitrary functions that may be performed on a distribution. Such
flexibility allows users to work with distributions about which they have no prior
knowledge.

There are many instances where a single distribution is not sufficient or where
it is desirable to work with multivariate distributions, interpolation being one such
example. The ’DistributionArray’ type takes the form of an ‘array of records’ men-
tioned earlier and allows multiple instances of a particular distribution to be encoded
efficiently using the SWE encoding schema. The ‘MultivariateDistribution’ type
shown in Fig. 7 is an extension of the base ‘Distribution’ type, differentiated by
the inclusion of a number of ‘ParameterArray’ properties. This is due to the nature
of multivariate distributions having more than a single value for each parameter.
UncertML provides two mixture model types that may be used for encoding a col-
lection of distributions, each of which describe a variable by different amounts.
Conceptually the ‘UnivariateMixtureModel’ is similar to the standard ‘Distribution-
Array’. However, an additional property yields an array of values between 0.0–1.0 to
indicate the relative fraction, or weight, of each distribution, the total of which must
sum to 1. A ‘MultivariateMixtureModel’ is a restriction on the univariate model that
only allows a collection of multivariate distributions.

The final strand of UncertML is concerned with realisations, or samples, seen in
Fig. 9. A single realisation is encoded using the ‘Realisation’ type which is identi-
cal to a ‘Statistic’. However, we feel it necessary to make a conceptual distinction
between the two. Typically one would not wish to work with single realisations, in-
stead preferring to encode large arrays; UncertML provides the ‘RealisationArray’
type as a solution. A ‘RealisationArray’ utilises the SWE encoding block to provide
an efficient means of encoding vast quantities of data. A small example can be seen
in Fig. 10.

AbstractUncertainty AbstractUncertainty

«DataType» «DataType»

Realisation RealisationArray

value: double realisedFrom: anyURI [0..1]
realisationCount: int
encoding: BlockEncoding

values: double [0..*]

+ +
+
+
+

Fig. 9 A single realisation may be encoded using the ‘Realisation’ type, however, a typical user
would wish to encode multiple realisations for which scenario a ‘RealisationArray’ is provided
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<RealisationArray realisedFrom="Gaussian_Distribution">
<realisationCount>5</realisationCount>
<swe:encoding>

<swe:TextBlock tokenSeparator="," tupleSeparator=" "
decimalSeparator="." />

</swe:encoding>
<values>

53.2,58.4,51.3,42.9,60.02
</values>

</RealisationArray>

Fig. 10 Realisations (or samples) can be encoded using the ‘RealisationArray’ type. If the distri-
bution from which these samples were realised is known then the ‘realisedFrom’ property may be
used. A ‘tokenSeparator’ is used to identify individual values within a tuple and a ‘tupleSeparator’
is used to separate tuples

5 Integrating UncertML into the INTAMAP Project

The Observations & Measurements schema (Cox, 2007) provides an extensive
model for describing the act of observing. Accompanying the ‘result’ prop-
erty, this model may include properties for documenting the observation time
(‘samplingTime’), the feature or location (‘featureOfInterest’), the property being
measured (‘observedProperty’) and the procedure or instrument used to generate
the result (‘procedure’). Typically the ‘procedure’ property will contain a sensor
model encoded in SensorML (Botts and Robin, 2007) which can describe the error
characteristics of a sensor (e.g. bias).

Within INTAMAP a request for interpolation is made by sending a collection of
observations, encoded in the O&M schema, to the Web Processing Service inter-
face. UncertML is used within the ‘result’ of an observation (Fig. 11) to describe
the uncertainty inherent in observed values. Utilising both the error characteristics
of a sensor and the observation uncertainty allows use of the arbitrary likelihood
estimation techniques mentioned briefly in Section 3.

Due to UncertML types not encoding phenomena or geospatial attributes it is
envisaged that a three layered architecture, seen in Fig. 12, will be employed, where
each layer adds an extra level of detail. It should be stressed that this chain is not a
part of UncertML, nor is it mandatory that UncertML be implemented in this way,
it is simply an abstract notion of how one may wish to use UncertML when dealing
with geographic data.

Depending on user preferences made in the request, the result of an interpolation
can take several forms. The bulk of the data will be encoded in any one of the
uncertainty types within UncertML and additional information may be added by
separate schemata. A typical result may consist of a regular grid, possibly defined in
GML (Portele, 2007), of some variable defined by a series of Gaussian distributions
encoded in UncertML. Figure 1 in Section 3 displays the lineage of an interpolation
request in INTAMAP.
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«FeatureType»

«Type»

«Abstract»

«DataType»

«FeatureType»

«DataType» «DataType»

+featureOfInterest

1 1

+result

+observedProperty

+uncertainty

«FeatureTy...
AnyFeature

Observation

RandomVariable

Statistic Distribution Realisation

PropertyType

AbstractUncertainty

samplingTime: TM_Object
pararmeter: Any
resultTime: TM_Object [0..1]
resultQuality: DQ_Element [0..1]

value: doubleparameters: Parameter [0..*]

metadata: MD_Metadata [0..1]+
+
+
+
+

+ observedValue: double
+ uom: UnitOfMeasure

+ definition: anyURI

++value: double+

Fig. 11 An observation model within the O&M schema. The result can be of any type, in this
instance it is a ‘RandomVariable’ which uses any uncertainty type from the UncertML schema to
encode the value

«FeatureType» «FeatureType» «Abstract»
GeospaticalRandomVariable RandomVariable AbstractUncertainty

extent: AnyGeometry+ uom: UnitOfMeasure+ definition: anyURI+

Fig. 12 Three layered implementation of UncertML. At it’s simplest, UncertML only encodes
the values of an uncertainty type. A ‘RandomVariable’ type adds a link to a phenomena and its
units of measure and a ‘GeospatialRandomVariable’ adds further detail with an attached geome-
try. These random variable types are not included in UncertML and represent only one possible
implementation

6 Conclusion

Embracing the ongoing evolution in software engineering to adopt a loosely cou-
pled, interoperable, framework will make geostatistical methods available to a larger
array of users. With the development of UncertML, as part of the INTAMAP project,
a large step has been taken towards achieving this goal. The European Radiologi-
cal Data Exchange Platform (EURDEP) provides a case study for the INTAMAP
project and demonstrates a clear need for real-time interpolation across a Service
Oriented Architecture.

However, for truly interoperable geostatistics, several areas require greater atten-
tion. A conceptual model for supporting the use of UncertML within geostatistical
models will see the inclusion of variograms, covariance functions and other ran-
dom functions. Other extensions to the UncertML model will include the addition
of fuzzy memberships.

Currently, we are undergoing discussions with the Open Geospatial Consor-
tium with the view of making the UncertML specification an official, governed,
standard. This may be included as part of the OWS-6 request for quotation.
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A working interpolation service will be available for testing online shortly. More
information and latest developments can be found at the INTAMAP website
(http://www.intamap.org).
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Hierarchical Bayesian Model for Gaussian,
Poisson and Ordinal Random Fields

Pierrette Chagneau, Frédéric Mortier, Nicolas Picard, and Jean-Noël Bacro

Abstract As most georeferenced data sets are multivariate and concern variables
of different kinds, spatial mapping methods must be able to deal with such data. The
main difficulties are the prediction of non Gaussian variables and the modelling of
the dependence between processes. The aim of this paper is to propose a new ap-
proach that permits simultaneous modelling of Gaussian, count and ordinal spatial
processes. We consider a hierarchical model implemented within a Bayesian frame-
work. The method used for Gaussian and count variables is based on the generalized
linear mixed models. Ordinal variable is taken into account through a generalization
of the ordinal probit model. We use a moving average approach to model the spatial
dependence between the processes. The proposed model is applied to pedological
data collected in French Guiana.

1 Introduction

Soil maps are more and more used as input in environmental and ecological stud-
ies. In fact, soil characterization could explain landscapes and vegetation stand. So
modelling spatial distribution of soil properties has been a challenge for ecologists.
In such geological studies, there are few available data as they are expensive to
collect. Moreover, data are often of different nature. Element concentration, granu-
larity and coloration are usually measured for soil characterization. With increased
collection of such multivariate geostatistical data, there arises the need for spatial
mapping methods to handle related data of different nature. This raises two difficul-
ties: the prediction of multivariate discrete random fields and the modelling of the
dependence between continuous and discrete variables.
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In the univariate case, the prediction of continuous spatial processes has been
widely studied (Cressie, 1991; Wackernagel, 2003). On the contrary, few models
were developed for discrete random fields. The most commonly used methods for
binary and ordinal variables is the disjunctive kriging (Journel and Huijbregts, 1978;
Chilès and Delfiner, 1999). The main drawback of this method is that it requires the
determination of bivariate distributions to model the dependence, which can lead to
heavy computational costs. The univariate modeling of discrete random fields has
received increasing attention in years. New models have been defined, particularly
to deal with count variables. Diggle et al. (1998) proposed to embed linear kriging
methodology within the framework of the generalized linear mixed model where
the random effect is modelled by a Gaussian spatial process. Wolpert and Ickstadt
(1998) proposed to model count data with a Poisson distribution with random inten-
sity. They modelled the random intensity using Gamma process. Such models are
now often described in the hierarchical Bayesian framework (Banerjee et al., 2004).
More recently, the BME approach first introduced by Christakos (1990, 1998)
to predict continuous variables has been extended to predict categorical variables
(Bogaert, 2002; D’Or and Bogaert, 2004).

The prediction of multivariate spatial processes has been widely studied in the
last few decades (Cressie, 1991; Wackernagel, 2003). Cokriging methods are the
most popular. They are efficient but they request some restricting assumptions of
normality. Modelling of the dependence between variables in this model are based
on full covariance structure model. The choice of the covariance framework (in-
trinsic covariance model [Wackernagel, 2003], coregionalization model [Grzebyk
and Wackernagel, 1994; Banerjee et al., 2004]) leads to more or less flexible mod-
els. Ver Hoef and Barry (1998) defined a new family of flexible variograms using
moving average functions. In the literature, few methods have been developed for or-
dinal random fields. In general, disjunctive cokriging is used. As for the disjunctive
kriging, the modelling of the dependence between variables needs to know all bi-
variate distributions. In practice, the determination of the bivariate distributions can
be tedious and requests to use isofactorial models. Finally, there are few methods
allowed to deal simultaneously with continuous and discrete variables. Recently, we
proposed an approach which enables simultaneously modelling Gaussian, Poisson
and ordinal spatial processes (Chagneau et al., 2008). Our model is based on a hier-
archical Bayesian framework. The method used for Gaussian and count variables is
the same as Diggle’s one based on the generalized linear mixed model. Unlike his
approach, our model can take into account ordinal random fields through a general-
ization of the multivariate ordinal probit models to the spatial case (Chaubert et al.,
2008). Ver Hoef and Barry (1998)’s approach is used to model the dependence be-
tween the related spatial Gaussian latent processes. These dependent processes are
built by convolving white noise processes with a moving average function.

The aim of this paper is thus to apply this method to predict soil properties from
pedologic data collected in French Guiana. In Section 2, we present the data and we
describe the spatial hierarchical model. Results are given in Section 3. Finally, in
Section 4, we draw some conclusions and give some perspectives for future work.
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2 Materials and Methods

2.1 Data

Data were collected in the Paracou experimental forest in French Guiana (5ı150N,
52ı550W; 0–50 m elevation), 15 km inland from the coast (Gourlet-Fleury et al.,
2004). The climate is the humid tropical type with a mean annual precipitation
of around 2,980 mm. The study site is characterized by a patchwork of hills
(100–300 m in diameter and 20–50 m in height) separated by humid valleys (Epron
et al., 2006). Part of the site is permanently waterlogged.

Soils are mostly acrisol (FAO-ISRIC-ISSS, 1998) developed over a Precambrian
metamorphic formation. The soil is characterized by schists and sandstones and lo-
cally crossed by veins of pegmatite, aplite and quartz. Soil properties were measured
in 12 permanent sample plots of the experimental site. We were only interested in
four permanent plots located at the south of the experimental site. They were lo-
cated at some distance from one another and elevation and slope are known on these
plots. Each plot measured 250 � 250 m. Around 70 points were recorded in each
plot. These points were randomly chosen. A 1.2 m core of soil was extracted in each
location for characterization. Soil texture, soil colour, and the presence of stones or
coloured spots were used to classify the soils. Manual perception of clay content
and silt dryness was used to distinguish soils exhibiting vertical drainage from soils
exhibiting superficial lateral drainage. Six levels of drainage were distinguished to
classify varying degrees of hydromorphism. Further details concerning the drainage
characteristics can be found in Sabatier et al. (1997).

2.2 Spatial Hierarchical Model

2.2.1 Model

The spatial hierarchical model we proposed is specifically designed to take into
account variables of different kinds. The model can be defined for any number L

of response variables but, for sake of simplicity, we restrict ourselves to L D 3

variables of different kinds: a Gaussian variable, a Poisson variable and an ordinal
variable. Clearly the definition we give below for L D 3 can readily be extend to
any number of variables. Before describing the model, let us first introduce some
notations.

Let .s1; : : : ; sN / be the sampled locations. Let Y1.si / (resp. Y2.si /, Y3.si /) be a
Gaussian variable (resp. a Poisson variable, an ordinal variable with J modalities)
at location si . Let Yk.s/ D .Yk.s1/; : : : ; Yk.sN //, k D 1; 2; 3 be the vector of the
variable Yk observed at all locations. Let Y.s/ D .Y1.s/; Y2.s/; Y3.s// be the vector
of all variables observed at all locations.
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The spatial model is based on a hierarchical framework like Wolpert and
Ickstadt’s one (Wolpert and Ickstadt, 1998). This approach accommodates com-
plexity in high-dimension models by decomposing a model into a series of simpler
conditional levels. Each random variable Yk.si / depends on a latent variable ˇk.si /.
Conditionally to ˇk.si / and ˇm.sj /, the variables Yk.si / and Ym.sj / are indepen-
dent. The ˇk.:/ processes are dependent. For Gaussian and Poisson variables, we
follow the generalized linear mixed model proposed by Diggle et al. (1998):

Y1.si /j�1; ˇ1.si /; �1 � N .�1 C ˇ1.si /; �2
1/; (1)

Y2.si /j�2; ˇ2.si / � P.exp.�2 C ˇ2.si ///: (2)

N .m; �2/ denotes the normal distribution with mean m and variance �2 and P.�/

the Poisson distribution with parameter �. �1 and �2 are the trends of Y1.s/ and
Y2.s/ respectively. �2

1 corresponds to the nugget effect of the variogram of the
Gaussian variable Y1, that’s why it is constant in space.

Unlike Diggle’s approach, the present model can take into account ordinal spa-
tial processes through a generalization of the multivariate ordinal probit model to
the spatial case (Ashford and Swoden, 1970; Chib and Greenberg, 1998). The prin-
ciple consists in introducing and truncating an underlying Gaussian random field in
the same way as in the truncated Gaussian simulation technique (Matheron et al.,
1987):

P.Y3.si / D j jZ3.si /; ˛3; ˇ3.si /; �3/ D P.Z3.si / 2�˛3Ij �1; ˛3Ij �jˇ3.si /; �3/;

Z3.si /jˇ3.si /; �3 � N .�3 C ˇ3.si /; 1/: (3)

˛3 D .˛3I0; ˛3I1; : : : ; ˛3IJ / denotes the vector of thresholds related to the
Gaussian variable Z3. By convention, ˛3I0 D �1 and ˛3IJ D C1. �3 corre-
sponds to the trend of the variable Z3. In the same way, we can deal with nominal
variables by generalizing the multinomial probit model (Daganzo, 1979; Natarajan
et al., 2000) to the spatial case. Expressions (1), (2) and (3) make the first level of
the hierarchical model.

The spatial dependence between the processes Yk.:/ is carried by the latent Gaus-
sian processes ˇk.:/, k D 1; 2; 3. The processes are built according to the moving
average construction proposed by Ver Hoef and Barry (1998), that is to say by con-
volving a moving average function with a mixture of white noise processes.

Let fk , k D 1; 2; 3 be a moving average function defined on R
2. �k denotes the

vector of parameters of fk . Let Tk , k D 1; 2; 3 be a linear combination of white
noise processes:

Tk.xj	k; 
k/ D
q

1 � 	2
k
Wk.x/ C 	kW0.x � 
k/

where Wk.:/, k D 0; 1; 2; 3 is a white noise process,	k, k D 1; 2; 3 belongs to
the interval Œ�1; 1� and 
k D .�k;x; �k;y/ 2 R

2. The process W0.:/ induces a
dependence between the Tk processes since
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Cor

	Z
R2

Tk.x C 
k/dx;

Z
R2

Tm.x C 
m/dx



D 	k	m � 	km; k ¤ m:

	km can be seen as the cross correlation between the white noise processes Tk and
Tm. 
k allows a spatial “shift” in the correlation between the two processes Tk and
Tm. If 
k D 
m D .0; 0/ then we have bivariate correlation at each location x with
independence among locations x and t when x ¤ t (Ver Hoef and Barry, 1998). The
variable ˇk.si / is defined by:

ˇk.si / D
Z

R2

fk.x � si j�k/Tk.xj	k; 
k/dx:

So the conditional distribution of ˇ.s/ D .ˇ1.s/; ˇ2.s/; ˇ3.s// is a 3N -
dimensional Gaussian distribution with zero mean and covariance matrix C:

ˇ.s/j�1; �2; �3; �; 
 � N3N .0; C/

where � D .	1; 	2; 	3/ and 
 D .
1; 
2; 
3/. This makes the second level of the
hierarchy. One advantage of this construction is that the expression of the covariance
matrix C is known:

Ckk.h/ D CovŒˇk.s/; ˇk.s C h/� D
Z

R2

fk.x/fk.x � h/dx; (4)

Ckm.h/ D CovŒˇk.s/; ˇm.s C h/� D 	k	m

Z
R2

fk.x/fm.x � h C 
m � 
k/dx:

(5)

� and 
 express the strength and the shift-asymmetry of cross spatial dependence
for cross-covariances.(Ver Hoef et al., 2004). Depending on the choice of the mov-
ing average functions, the calculation of the integral is either explicit or complex.
In the latter case, each element of the matrix can be seen as an autocorrelation in
signal theory and can be calculated with the Fast Fourier Transform (Ver Hoef et al.,
2004).

The third level of the hierarchical model consists in giving the prior distributions
on the parameters. The prior on �1, �2, �3 is an uniform distribution. For �2

1 , we
chose to use an inverse gamma conjugate prior specification �2

1 � IG.a; b/ where a

and b are fixed. We assign an independent uniform prior to each spatial dependence
parameter � i ; i D 1; 2; 3, � D .	1; 	2; 	3/ and 
 D .
1; 
2; 
3/. The prior
distribution of the thresholds ˛3 is the order distribution of J � 2 uniform random
variables.
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2.2.2 Model Implementation

While the classical approach by maximum likelihood is difficult, the use of
conditional independence and the introduction of the latent Gaussian variable Z3 in
the ordinal case allow the evaluation of the posterior distribution of the parameters.
Using the prior distributions, the joint distribution is given by:

�.�1; �2; �3; ˇ.s/; Z3.s/; �1; ˛; �1; �2; �3; �; 
jY.s//

/ exp

�
� 1

2�2
1

T.Y1.s/ � �11 � ˇ1.s//.Y1.s/ � �11 � ˇ1.s//
�

�
NY

iD1

"
Œexp.�2 C ˇ2.si //�

Y2.si / expfexp.�2 C ˇ2.si //g
Y2.si /Š

#

�
NY

iD1

	
exp

�
�1

2
.Z3.si / � �3 � ˇ3.si //

2

�
1l.Z3.si / 2�˛3IY3.si /�1I ˛3IY3.si /�/




� exp

�
�1

2
Tˇ.s/C �1ˇ.s/

�
�.�2

1/

where 1l denotes the indicator function and 1 a vector of length N with all terms
equal to 1.

The marginal posterior distributions for each of these parameters can be obtained
through the implementation of a Markov chain Monte Carlo (MCMC) simulation
scheme. Parameters �1, �3, ˇ1.s/, ˇ3.s/, �1, ˛3 are drawn iteratively from their
full conditional distributions:

�1j : : : � N

 
1

N

NX
iD1

.Y1.si / � ˇ1.si //;
�2

1

N

!
;

�3j : : : � N

 
1

N

NX
iD1

.Z3.si / � ˇ3.si //;
1

N

!
;

�2
1 j : : : � IG

 
a C N

2
; b C

PN
iD1.Y1.si / � �1 � ˇ1.si //

2

N

!
;

˛3Ij j : : : �
U Œmax.max.Z3.si /jY3.si / D j /; ˛3Ij �1/I min.min.Z3.si /jY3.si / D j C 1/;

˛3Ij C1/�;

Z3.si /jY3.si /; ˇ3.si /; �3 � N .�3 C ˇ3.si // truncated on Œ˛3; Y3.si /�1I ˛3; Y3.si /�;
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ˇ1.s/j : : : � NN .m�
1; V�

1/ with

8̂
<̂
ˆ̂:

V�
1 D

�
V�1

1 C 1

�2
1

I
��1

m�
1 D V�

1

�
V�1

1 m1 C 1

�2
1

.Y1.s/ � �11/

�where

m1 and V1 are respectively the conditional expectancy and the covariance matrix of
ˇ1.s/ given ˇ2.s/ and ˇ3.s/,

ˇ3.s/j : : : � NN .m�
3; V�

3/ with

�
V�

3 D .V�1
3 C I/�1

m�
3 D V�

3.V�1
3 m3 C .Z3.s/ � �31//

where

m3 and V3 are respectively the conditional expectancy and the covariance matrix of
ˇ3.s/ given ˇ1.s/ and ˇ2.s/.

The vector ˇ2.s/ is updated by an adaptative version of a Metropolis Langevin
algorithm (Atchade, 2006). Let �.ˇ2.s// be the target distribution. The proposal
distribution is given by:

qh.ˇ�
2.s/jˇ2.s// � NN

�
ˇ2.s/ C h2

2
D.ˇ2.s//; h2I

�

where

D.ˇ2.s// D ı

max.ı; jr ln.�.ˇ2.s///j/r ln.�.ˇ2.s///:

r is the gradient operator, ı > 0 is a fixed constant and h > 0 is a scale parameter.
The proposed value ˇ�

2.s/ is accepted with probability

min

�
1;

�.ˇ�
2.s//qh.ˇ2.s/jˇ�

2.s//
�.ˇ2.s//qh.ˇ�

2.s/jˇ2.s//

�
:

The scale parameter h is updated at each iteration of the algorithm in order to obtain
a acceptance rate of 0.574.

The parameter �2 and the spatial dependence parameters � i ; i D 1; 2; 3, � and

 are sampled from a Metropolis step (Hastings, 1970). Each vector � i , each term
of � and each vector 
k is updated separately. The proposal distribution of each
parameter is a normal distribution centered on the current value of the parameter. If
there are constraints on the parameter, the value is proposed according to a truncated
normal distribution.

In the bivariate case, we can notice that the parameters 	k and 	m are not identifi-
able; only the product 	km D 	k	m can be identify. To ensure that all parameters are
identifiable, the threshold ˛3;1 related to the ordinal variable is fixed to 0 (Cowles,
1996). In the same way, we can let 
1 D .0; 0/. All shifts 
k ; k D 2; 3 are relative
to 
1 and 
 is reduced to .
2; 
3/. Initial values of the parameters for the MCMC
inference are randomly chosen. But it is better to run the algorithm in the univariate
case for each variable and to take the obtained estimations as initial values for the
multivariate procedure.

The predictions of the random field at unknown locations are obtained by follow-
ing the method described by Kern (2000).



340 P. Chagneau et al.

3 Results

The model is applied to pedological data described in Section 2.1. We consider a
random field made of by two variables: a Gaussian variable, the slope (Y1) and an
ordinal variable, the soil drainage (Y2). The last one counts six ordered modali-
ties. Some of these modalities are rarely observed, so we gather the observations in
four modalities in order to have sufficiently observations by modalities. The modal-
ities are ordered from well drained soils to hydromorphic soils. Three hundred and
twenty seven data were available. Two hundred locations were sampled for the es-
timation. The remaining 127 values were used as validation data set. As data were
collected in permanent sample plots, the spatial pattern is aggregated.

The chosen moving average functions had a Gaussian form:

fk.x; y/ D
s

4�k

�'2
k

exp

 
�2.x2 C y2/

'2
k

!
with �k D .�k; 'k/:

No asymmetry-shift was introduced, so 
k D .0; 0/; 8k.
To check model estimation, we use some summary statistics for validation. LetbY1.si / be the predicted value of the Gaussian variable at location si for the ith da-

tum of the validation data set. Let cvar.bY1.si // (resp. bsd.bY1.si //) be the estimated
prediction variance (resp. standard deviation) at location si . Let n be the number of
data in the validation data set. For the Gaussian variable, we compute:

� biais D 1

n

nX
iD1

.bY1.si / � Y1.si //

� RMSPE D
sPn

iD1.bY1.si / � Y1.si //2

n

� RMEV D
sPn

iD1 cvar.bY1.si //

n

� 80%PI D 1

n

nX
iD1

1lŒjbY1.si / � Y1.si /j < 1:28bsd.bY1.si //�

If the estimated prediction variances are corrected, then RMEV should be closed to
RMSPE (Ver Hoef et al., 2004). The prediction interval coverage 80%PI should be
about 80%. For the ordinal variable, we give the percentage of well predicted values
in the validation data set.

Figure 1 gives the sampling from full conditional distributions.
Table 1 summarizes the estimation of the parameters for the bivariate data

set. The estimations are the posterior means of the distribution sampled from the
MCMC scheme. The standard deviation of the distribution is given in brackets.

The speed convergence is high for parameters related to the Gaussian variable.
On the contrary, parameters estimation for the ordinal variable requires more itera-
tions to obtain the convergence of the chains (Fig. 1). In fact, the burn-in duration is
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Fig. 1 Sampling from full conditional distributions

Table 1 Estimation
of parameters from the data
set made up by slope and soil
drainage at Paracou

Parameter Bivariate Estimates

�1 23.70 (4.32)
'1 29.89 (4.90)
�1 2.18 (0.62)
�1 10.89 (0.54)
�2 3.08 (1.20)
'2 87.05 (10.45)
˛2;2 1.35 (0.18)
˛2;3 4.28 (0.39)
�2 2.61 (0.38)
	12 0.28 (0.19)
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Table 2 Cross-validation
criteria for the slope
predictions

Criterion Values

Bias �0:20

RSMPE 4.17
RMEV 4.54
80%PI 0.87

longer due to two levels of latent variables (Z2.s/ and ˇ2.s/). The thresholds related
to the underlying Gaussian variable Z2.s/ are particularly difficult to estimate and
their variance is often high. These results can be explained by the specific spatial
pattern of the data. We have shown through simulations that the accuracy of estima-
tions decreases if the data are aggregated. The estimates related to ordinal variables
could be improved by increasing the size of the calibration data set.

The obtained estimates for the Gaussian variable are consistent with the range,
the sill and the nugget observed on the empirical variogram. �1 is closed to the
mean of Y1.s/. The standard deviation is high for the parameter '2. The variable
Y1.s/ and Y2.s/ are slightly positively correlated.

The cross validation criteria for the Gaussian variable are given in Table 2. The
bias is small. The prediction variance is estimated accurately (RSMPE 
 RMEV).
The percentage of well predicted values for the ordinal variable is 61.4%. Concern-
ing the ordinal variable, it should be noted that most of the inaccurate predictions
concerned locations near the boundaries of plots or sites without close neighbours.
These locations coincide with locations where the prediction variance for the Gaus-
sian variable is high. Moreover, for the ordinal variable, one of the modalities is
under observed. The lack of information about this modalities may explain some
mistakes in the predictions.

It is possible to simulate and estimate parameters for more than two variables.
But the inference procedure becomes computationally intensive and time consuming
because of the size of handled covariance matrix in this case.

The choice of the moving average function can be questioned. The chosen
form fk is particularly pleasant since few parameters are nedeed and integrals in
Equations (4) and (5) are easy to evaluate. More flexible functions could be used
like disk-based kernel (Kern, 2000) or anisotropic function (Ver Hoef et al., 2004)
if the number of parameters is reasonable. They could improve the modelling of the
dependence between variables and consequently improve the predictions.

4 Conclusion

The proposed approach permits modelling a spatial multivariate random field made
of variables of different nature. A unified methodology (generalized linear model)
can be applied for Gaussian, Poisson and ordinal variables through the introduction
of Gaussian latent variable in the discrete case. Although the estimation proce-
dure is time consuming, this approach is an interesting alternative to disjunctive
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cokriging for the prediction of ordinal variables. However, the number of data used
for estimation must be sufficient to obtain accurate estimates. The modelling of the
dependence between the processes by the moving average approach has the advan-
tage to be very flexible. Anisotropic data can be dealt with if a convenient moving
average function is chosen. An extension of the model can be considered for nomi-
nal variable. In the same way we have generalized the ordinal probit model to deal
with ordinal variable, we can generalize the multinomial probit model to take into
account nominal variables.
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Detection of Optimal Models in Parameter
Space with Support Vector Machines

Vasily Demyanov, Alexei Pozdnoukhov, Mike Christie, and Mikhail Kanevski

Abstract The paper proposes an approach aimed at detecting optimal model
parameter combinations to achieve the most representative description of uncer-
tainty in the model performance. A classification problem is posed to find the
regions of good fitting models according to the values of a cost function. Support
Vector Machine (SVM) classification in the parameter space is applied to decide if a
forward model simulation is to be computed for a particular generated model. SVM
is particularly designed to tackle classification problems in high-dimensional space
in a non-parametric and non-linear way. SVM decision boundaries determine the
regions that are subject to the largest uncertainty in the cost function classification,
and, therefore, provide guidelines for further iterative exploration of the model
space. The proposed approach is illustrated by a synthetic example of fluid flow
through porous media, which features highly variable response due to the parameter
values’ combination.

1 Introduction

Mathematical models used for computing predictions of many geo- and envi-
ronmental systems are traditionally of parametric nature. The model parameters,
usually, bear a large degree of uncertainty due to lack of knowledge about the
particular phenomenon. Conventionally, the model parameters can be fitted to the
available observations using various optimisation techniques, which raises the prob-
lem of the confidence of such model fit, e.g. in Demyanov et al., (2006).

Uncertainty of a forecast is based on the probabilistic analysis of prediction
model solutions. A probabilistic approach was applied to quantify uncertainty of
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production forecasts in petroleum reservoirs (Subbey et al., 2002). The prediction
uncertainty is based on the inference from a set of multiple reservoir models that
match well past production observations (historic data). Accuracy of such inferences
largely depends on the number of good fitting models with different combinations
of the parameter values. Multiple good fitting models found in different regions of
the parameter space would provide a more robust uncertainty assessment (Christie
et al., 2006).

The search for good fitting models in a high dimensional parameter space is a
challenging task. The misfit surface, which reflects the goodness of model fit in
the parameter space, usually has a complicated structure with multiple local min-
ima. Conventional gradient optimisation methods can be successfully used to find a
single local minimum. Stochastic optimisation methods (e.g. simulated annealing,
genetic algorithms [GA], particle swarm) are used to find multiple local minima,
which correspond to multiple good fitting models.

Adaptive stochastic sampling algorithms (e.g. GA, Neighbourhood Approxima-
tion [NA] algorithm [Sambridge, 1999], etc.) iteratively refine regions of low misfit
in the parameter space (see Fig. 1) based on previously evaluated models. Thus, the
search for good models is based on some sort of interpolation (or pre-evaluation). In
case of NA it is Voronoi interpolation, which implies a discontinuous constant value
in the polygon neighbourhood.

Fig. 1 Adaptive sampling in the search for good fitting models: blue colour corresponds to low
misfit (each model is displayed by a Voronoi cell following NA sampling)
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Every misfit evaluation entails forward simulation of the reservoir model, which
is a computationally costly process and entails solving finite-difference flow equa-
tions on a fine grid. A guided sampling approach was proposed to increase the
computational efficiency of the adaptive sampling by reducing the number of for-
ward reservoir simulations (Demyanov, 2007). The approach proposed using fast
misfit artificial neural network interpolation models to compute approximate mis-
fit values instead of the exact ones from forward flow simulation. Artificial neural
networks were used as non-linear and non-parametric regression models to evalu-
ate the misfit at chosen locations based on the previously simulated pool of models
(Christie et al., 2006).

The principal question in the search for good fitting models is whether to run a
flow simulation to evaluate the goodness of model fit. This splits all possible mod-
els into two classes – the likely good fitting models for which we need to run the
flow simulation and the models for which no flow simulation run is needed as they
are unlikely to provide a reasonable match. Thus, we can reformulate the adaptive
sampling problem using classification to decide whether to run the flow simulation
at any particular location. The parameter space becomes separated by the classifier
into the areas where the flow simulation is to run and where it is not. Therefore,
instead of solving a misfit interpolation problem we have a classification problem.
The classification problem is focused on detection of the regions where evaluation
of the misfit is needed via flow simulation to find good history match models. Ap-
plication of classification algorithms rather than regression algorithms to the guided
sampling allows more flexibility and it is less influenced by noise and inaccuracy of
the approximate interpolation solution.

There exists a wide selection of statistical and data driven algorithms to solve
the classification problem. Machine learning also includes a number of classi-
fication tools such as Support Vector Machines, probabilistic neural networks,
self-organising maps, k-nearest neighbours, etc. (Haykin, 1999). A comprehensive
review of applications of traditional and recent machine learning algorithms to spa-
tial prediction problems is presented in Kanevski et al., 2009.

The high dimensionality of the parameter space is another problem that com-
plicates the search for good fitting models. Even when large numbers of potential
models are evaluated the space remains fairly empty and poorly explored. Therefore,
the search for multiple low misfit models becomes difficult even for adaptive algo-
rithms; this is true especially in the presence of local minima in the misfit surface.
The exploration of high dimensional space is burdened by the curse of dimension-
ality problem (Hastie et al., 2001). The problem of curse of dimensionality is in
exponential increase in volume with adding an extra dimension to the parameter
space and is illustrated in Fig. 2 (Kanevski et al., 2009). Suppose 1,000 data sam-
ples are drawn uniformly in the unit volume around the origin of the coordinate
system. Then, the distance from the origin to the nearest sample increases drasti-
cally with dimension. In high dimensional space, the notion of nearest neighbour
becomes obsolete – all the samples are equally far or, in other words, are located in
the corners of the high dimensional space.
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Fig. 2 Dependence of the distance from the origin to the nearest sample from the space dimension

Summarising the complications of uncertainty qualification with multiple
generated models we can outline the following:

1. Difficulty in finding good fitting models in high dimensional parameter space
due to complex dependencies of the misfit from the different combinations of
parameter values.

2. The sampling approach requires thousands of generated models, nevertheless the
space remains poorly explored and populated by models.

3. The misfit surface in the parameter space is, usually, not smooth with numer-
ous local variations. Therefore, gradient search methods become trapped in local
minima. Misfit interpolation models may not be accurate enough and suffer from
the curse of dimensionality because the nearest neighbour notion, which most
interpolation algorithms are based on, becomes obsolete in high dimensions.

1.1 Aims

The aim of the paper is to propose a way to improve the search for good fitting
models with a robust classification method, which can overcome the curse of the
dimensionality problem.

Support Vector Machine (SVM) is a data driven classification method which pro-
vides a non-linear and a non-parametric classification in high dimensional input
space and effectively handles the curse of dimensionality. As a machine learning
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algorithm it is able to capture dependencies from the data in the model parameter
space whilst training. Based on the captured dependencies SVM is used to classify
models in parameter space according to their goodness of fit.

The purpose of using SVM classification is to improve the sampling efficiency
by reducing the computational effort spent on forward reservoir simulation for every
generated model. Guided sampling based on the classification results would be able
to find good fitting models faster with fewer forward simulations computed only
for the models from the regions classified as “good fit”. SVM classification would
improve sampling quality because this data-driven algorithm overcomes the curse
of dimensionality problem.

In this paper we propose the methodology of classification for sampling for the
good fitting models and illustrate it with a synthetic feasibility example. However,
the illustrative case study we used is of low dimension – with just three model
parameters. A higher dimensional study, which would tackle the curse of dimen-
sionality problem, will be the subject of future research.

2 Support Vector Machine (SVM) Classification

SVM is a machine learning approach, derived from Statistical Learning Theory,
which aims to deal with data of high dimensionality by approaching the nonlin-
ear problems in a robust and non-parametric way. Interested readers can to refer to
some of the key introductions to the theory of SVMs and related algorithms (Vapnik,
1995; Scholkopf and Smola, 2002). Here we only mention the main principles of
SVMs which will be applied to the sampling of models in a high-dimensional pa-
rameter space.

Suppose we deal with the linearly separable data (x1; y1), . . . (xN ; yN ), where
x are the input features and y 2 fC1; �1g are the binary labels, corresponding, for
example, to the models subject to computer simulation and “not worth” simulating.
By linearly separable we mean data that can be discriminated into two classes by a
hyperplane. The idea of SVM is to separate this dataset by finding the hyperplane
that is, roughly speaking, the farthest apart from the closest training points. The min-
imal distance between the hyperplane and the training points is called the margin,
which is maximized by the SVM algorithm (see Fig. 3).

The maximum margin principle, derived from Statistical Learning Theory, pre-
vents over-fitting in high-dimensional input spaces, and thus leads to good general-
ization abilities. The decision function used to classify the data is a linear one, as
follows:

f .x; w/ D w � x C b; (1)

where the coefficient vector w and the threshold constant b are optimised in or-
der to maximise the margin. This is a quadratic optimization problem with linear
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Fig. 3 Margin maximization
principle: the basic idea
of Support Vector Machine
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constraints which has a unique solution. Moreover, w is a linear combination of the
training samples yi , taken with some weights ˛i:

w D
NX

iD1

yi ˛i xi : (2)

The samples with non-zero weights are the only ones which contribute to this maxi-
mum margin solution. They are the closest samples to the decision boundary and are
called Support Vectors (SVs) (see Fig. 3). SVs are penalized such that 0 < ˛ < C
to allow for misclassification of training data (taking into account the mislabelled
samples or noise).

A so-called kernel trick is used to make this classifier non-linear. A kernel is a
symmetric semi-positive definite function K.x; x0/. According to the Mercer theo-
rem, this implies that it corresponds to a dot product in some space (Reproducing
Kernel Hilbert Space, RKHS). Generally, given a (linear) algorithm, which includes
data samples in the form of dot products only, one can obtain a (non-linear) kernel
version of it by substituting the dot products with kernel functions. This is the case
for linear SVM, where the decision function (1) relies on the dot products between
samples, as clearly seen by substituting (2) into (1). The final classification model
is a kernel expansion:

f .x; ˛/ D
NX

iD1

˛i K.x; xi / C b (3)

The choice of the kernel function is an open research issue. Using some typical ker-
nels like Gaussian RBF, one takes into account some knowledge like distance-based
similarity of the samples. The parameters of the kernel are the hyper-parameters of
SVM and have to be tuned using cross-validation or another similar technique.
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2.1 Probabilistic Post-processing

A probabilistic interpretation of the outputs of an SVM is often desirable for
uncertainty assessment. To introduce a characterization of prediction uncertainty,
the values of the decision function (1) or (3) can be transformed into the smooth
confidence measure, 0 < p.y D 1jx/ < 1. This is done, for example, through
taking a sigmoid transformation of f .x; ˛/ (Platt, 1999):

p.y D 1 jx / D 1

.1 C exp.a � f .x/ C b//
; (4)

where a and b are constants. These constants are tuned using a maximum likeli-
hood (usually, the negative log-likelihood to simplify the optimisation) on the testing
dataset. The value of a is negative, and if b is found to be close to zero, then the de-
fault SVM decision threshold f .x/ D 0 coincides with a confidence threshold level
of 0.5.

2.2 Support Vector Exploration of Potential Sampling Locations

Let us stress the importance of the weights ’i in the prediction (3). The following
cases are possible:

– If ’i D 0, then yif .xi / � 1, the point is well described by the others.
– If C > ’i > 0, then yi f .xi / D 1, meaning that the point is a Support Vector(SV).
– If ’i D C, then yi f .xi / 	 1, meaning that it is either noise, untypical or misla-

belled point.

Note that removing all other points except the SVs from the training data set and
training SVM on the SVs only leads to the same decision boundary. SVs have the
determinant meaning for the given classification task. If one, on the other hand,
would add more data samples from the correctly classified zones and they appear
to be of the correct class, these samples would not change the decision boundary of
SVM. These facts give us an opportunity to use the locations and the corresponding
weights of SVs as the criteria for the search for the sampling locations to improve
the classification model.

The proposed method of sampling optimisation is based on the described proper-
ties of Support Vectors (Pozdnoukhov and Kanevski, 2007). Given a new prospec-
tive sampling location, one iteratively includes it into the current model with first
positive and then negative labels assigned to it. After the re-training of the SVM
the model weights ’C and ’�, have to be analysed. If the new sample obtains zero
weight and does not become a SV, it doesn’t contribute to the prediction model
and is somehow “useless”. On the other hand, a sample that becomes a SV is of a
particular importance to the task since it defines the decision function.
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Fig. 4 The sampling point inside the class region of “good” models can be identified by
considering the predicted probability and ranked following its potential weight as if the sample
would become a Support Vector. Predicted “worse” models can be filtered out. The unexplored
regions can be identified as well

In our search for the prospective good models we are interested in the following
situations illustrated in Fig. 4. A sample lies inside the region of “good” models if it
simultaneously satisfies the following two conditions:

� When labelled positively it obtains zero or some small weight ’C � 0.
� And when labelled negatively its weight is bounded with C.’� � C/.

Such samples are subject to simulation. Although, it is well described by the avail-
able data set and does not provide new information about the parameter space. Those
samples with both ’C > 0 and ’� > 0 are inside the unexplored regions of the pa-
rameter space and can be proposed for consideration.

Another important issue is the ranking by significance of those samples which
were found to be interesting. Since here we are only interested in a relative measure
in order to provide the ranking, the following value will be used:

�.xk/ D
8<
:

0; if ˛C
k

D 0; ˛�
k

D C I or ˛C
k

D C; ˛�
k

D 0;

˛
C

k
C˛�

k

2 C
; otherwise:

(5)

Since it is time-consuming to explore the multi-dimensional parameter space by re-
training an SVM classifier two times for every prospective sampling location, one
may carry out this procedure for the samples with sufficient probabilities p.y D
1jx/ > �. The estimation of the latter involves a simple computation of (3) and (4)
which is reasonably fast.
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3 Classification in Model Parameter Space: IC Fault
Model Example

3.1 SVM Application

SVM classification was applied to detect the areas of good fitting models in a syn-
thetic case study with the IC Fault model. This model has been used extensively
for uncertainty quantification exercises where different adaptive stochastic sampling
models were used to find multiple history matched models (Christie et al., 2006;
Erbaş, 2006). The IC Fault model is really simple with just three free parameters,
however it exhibits a highly complex misfit surface with multiple local minima,
which makes it quite challenging for the uncertainty quantification study.

The goal of the application was to demonstrate SVM capability to classify the
model goodness of fit based on a limited number of data, decide on whether it is
worth running a flow simulation model for a particular parameter combination in a
search good fit and propose new sampling locations for further sampling.

3.2 IC Fault Model

The IC Fault model is an extremely simple three-parameter model set up in Impe-
rial College by J. Carter (Carter et al., 2004) as a test example for automated history
matching. It has proved extremely difficult to history match, and one of the conclu-
sions published in Carter et al. (2004) has been that the best history matched model
(from �160; 000 models) is of limited use as a predictor.

The geological model consists of six layers of alternating high and low per-
meability sands (see Fig. 5). The three high permeability layers have identical
properties, and the three low permeability layers have a different set of identical
properties. The porosities of the high and low permeability layers are 0.30 and 0.15
respectively. The width of the model is 1,000 ft, with a simple fault in the middle.
There is a water injector well at the left-hand edge, and a producer well on the right-
hand edge. The simulation model is 100�12 grid blocks, with each geological layer
divided into two simulation layers with equal thickness (Tavassoli et al., 2004).

The model has three unknown parameters for history matching: high and low
permeability (khigh and klow) and the fault throw (h). Our prior model has uniform
distribution with ranges: khigh 2 Œ100; 200�, klow 2 Œ0; 50� and h 2 Œ0; 60�.

The IC Fault model study specified a point in the parameter space as the true
parameter values: khigh D 131:6, klow D 1:3 and h D 10:4. The misfit was defined
using a standard least squares model using the discrepancy between the simulated
and the observed oil and water production rates for the 3-year history-matching
period.



354 V. Demyanov et al.

−8320
2000

injector producer

400
Distance FEET

600 800 1000

−8330

−8340

−8350

−8360

−8370

−8380

−8390

1.98

D
ep

th
 F

E
E

T

41.53 81.08

PermX (MDARCY)

120.63 160.18

Fig. 5 The IC Fault Model (Tavassoli et al., 2004)

3.3 SVM Classification of Good Fitting Models

A binary SVM classifier was trained with a supervised learning rule, which implies
preparation of a training data set. We used initial random sampling to generate a
limited number of models with the corresponding misfit values computed based on
the forward flow simulations. Adaptive sampling (e.g. NA) was not used to generate
the training set. Although a random set of models has a smaller chance to include
any models with low misfit, it provides a better coverage of the parameter space and
does not concentrate on any particular locality.

Then, the SVM classifier was trained using the 200 initial random samples. The
classification results were then validated using the exhaustive data base of 160,000
models generated with uniform Monte Carlo (Tavassoli et al., 2004). The exhaustive
data base exhibits a good coverage of the parameter space and depicts the regions of
the low misfit models with a high resolution represented by a large number of good
fitting models. Validation analysis was aimed at checking the accuracy of the SVM
classifier.

The location of the initial 200 models used for training is presented in Fig. 6a in a
2D projection of the 3D parameter space. A threshold at misfit D 70 was chosen to
split the data into two classes: those data for which to run the flow simulation and the
others for which the flow simulation run is not computed. There appeared to be just
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a handful of models with a misfit below 70 (see Fig. 6b). However, they are located
in different regions of the parameter space, which is important for maintaining good
generalisation ability of the classifier.

Validation with the exhaustive database of 160,000 models was carried out to
check whether SVM classification is accurate; i.e., do the SVM models, which were
classified to run the flow simulation for, match the production well? All 160,000
model locations were classified by the SVM to determine which misfit class they
belong to – below 70 or above 70. SVM classified 15,000 models out of 160,000 as
the models with the misfit <70, for which the flow simulation is to be computed.
This is just under 10% of the total number of models. Once the actual misfit of the
classified 15,000 models was obtained based on the flow simulation runs, it became
possible to analyse how good were the “classified” modes in terms of the history
match. Figure 7a shows the cumulative histogram of the actual misfit of the 15,000
models classified to have the misfit below 70. It demonstrates that just under 90%
of the models classified for running the simulation have the actual misfit below 70,
which confirms that the SVM classifier is accurate.

The next stage entails checking if the SVM classifier has missed any of the good
models in the database; i.e. how many good fitting models from the data base have
not been classified to run the flow simulation for. Figure 7b shows the lower end
of the misfit histogram for all the models from the data base. The bars in the his-
togram indicate the proportion of the models classified for running the simulation
(according to SVM) in each interval of the misfit values. It can be seen that over
75% of the models with the misfit below 20, which can be considered as reasonably
low, were classified by SVM for running the simulation (see the first four bars in
Fig. 7b). As the model misfit increases the chance of a model to be classified by
SVM for running the flow simulation decreases. This is illustrated by the decrease
of the bar proportion representing the models classified for flow simulations out of
all the models from the database with the misfit above 30 (see Fig. 7b).
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Fig. 8 Good fitting models with the misfit below 30 from the three ensembles of models: exhaus-
tive data set of 160,000 models (a), 500 samples based on SVM classification (b), conventional
NA sampling of 7,000 models (c)

Figure 8 shows the locations of the good fitting models with the misfit below 30
in the 3D parameter space. Good fitting models from the exhaustive database of
160,000 models shows how complicated the surface of the good models is (see
Fig. 8a). The SVM classifier was able to capture some of the basic structure of the
misfit surface with just 500 samples and detect diverse good fitting models in differ-
ent areas (see Fig. 8b), which provided more robust predictions. NA sampling with
1,700 flow simulations concentrated on good fitting models in a particular cluster
away from the truth case model (see Fig. 8c), which resulted in deviation of the
forecasts from the truth case solution (see Fig. 9b) (Erbaş, 2006).

The production profiles computed by flow simulation of the models inferred from
the generated ensembles are shown in Fig. 9, where the models are run into the fore-
casting period past the period where the fitted data were available. Inferred models
from both SVM classification based ensemble (500 flow simulations from Fig. 8b)
demonstrate fair spread of forecasts, which comfortably encompass the truth case



Detection of Optimal Models in Parameter Space with Support Vector Machines 357

0

0 500
Time (days)

1000 1500 0 500
Time (days)

1000 1500 0 500
Time (days)

1000 1500

10
0

20
0

O
il 

pr
od

uc
tio

n

30
0

40
0

50
0

60
0

0
10

0
20

0

O
il 

pr
od

uc
tio

n

30
0

40
0

50
0

60
0

0
10

0
20

0

O
il 

pr
od

uc
tio

n

30
0

40
0

50
0

60
0

a b c

Fig. 9 Good fitting models inferred from the three ensembles of models: ensemble of 500 models
based on SVM classification (a), conventional NA sampling of 1,700 models (b) and long GA
sampling run of 2,000 models (c). Vertical line shows the start of the forecasting period

(see Fig. 9a). The results were compared with conventional sampling methods
– Neighborhood Approximation (NA) and Genetic Algorithms (GA) (Erbaş, 2006).
The conventional NA run with a limited number of generated models (1,700 flow
simulations) demonstrates reduction of the spread in the predictions for the forecast-
ing period (see Fig. 9b). The inferred ensemble of models generated by GA based
on 2,000 flow simulations provide a fair spread in the forecasting period, but some
of the models do not fit the history well (see Fig. 9c). For all approaches the truth
case model solution lies towards the edge of uncertainty envelope. This can be ex-
plained by a peculiar choice of the truth case model, which lies on the edge of the
good fitting model region (see Fig. 8a). This suggests a low posterior probability of
the truth case model.

4 Conclusions

An SVM classification model was used to detect the models for which to run flow
simulations. Thus classification is able to separate the regions in the parameter
space where to search for good fitting models. Classification is more robust than
regression, which aims at accurate estimation of the actual misfit value given by the
interpolation model. The SVM approach is beneficial in high dimensional space rel-
ative to other machine learning algorithms, because it provides the best prediction
in terms of error without compromising the complexity of the classification model.

The SVM classifier applied to a synthetic model demonstrated accurate results,
which captured better the pattern of the low misfit regions in the parameter space
than other data driven interpolation algorithms (e.g. a multi-layer perceptron). Mod-
els found with SVM classification based on just 200 forward simulations are as good
as the ones generated from a traditional adaptive NA sampling, which entailed more
forward flow simulations.

We have to admit that the observed performance of SVMs in terms of predicting
the low misfit models is not better than equivalent NA techniques reported for this
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case study by (Erbaş, 2006). Rather, it is in the possibly wider application of SVMs
to the exploration of the parameter space and uncertainty characterization that we
see considerable potential. This view is justified since SVMs are specifically de-
signed to handle high-dimensional data and extract a sparse set of support vectors
from them. Thus, SVM being a data-driven method is useful to describe the previ-
ously unexplored regions of the parameter space and find hidden dependencies in it.
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Robust Automatic Mapping Algorithms
in a Network Monitoring Scenario

Ben Ingram, Dan Cornford, and Lehel Csató

Abstract Automatically generating maps of a measured variable of interest can be
problematic. In this work we focus on the monitoring network context where obser-
vations are collected and reported by a network of sensors, and are then transformed
into interpolated maps for use in decision making. Using traditional geostatistical
methods, estimating the covariance structure of data collected in an emergency
situation can be difficult. Variogram determination, whether by method-of-moment
estimators or by maximum likelihood, is very sensitive to extreme values. Even
when a monitoring network is in a routine mode of operation, sensors can spo-
radically malfunction and report extreme values. If this extreme data destabilises
the model, causing the covariance structure of the observed data to be incorrectly
estimated, the generated maps will be of little value, and the uncertainty estimates
in particular will be misleading.

Marchant and Lark (2007) propose a REML estimator for the covariance, which
is shown to work on small data sets with a manual selection of the damping parame-
ter in the robust likelihood. We show how this can be extended to allow treatment of
large data sets together with an automated approach to all parameter estimation. The
projected process kriging framework of Ingram et al. (2008) is extended to allow the
use of robust likelihood functions, including the two component Gaussian and the
Huber function. We show how our algorithm is further refined to reduce the com-
putational complexity while at the same time minimising any loss of information.

To show the benefits of this method, we use data collected from radiation
monitoring networks across Europe. We compare our results to those obtained
from traditional kriging methodologies and include comparisons with Box–Cox
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transformations of the data. We discuss the issue of whether to treat or ignore
extreme values, making the distinction between the robust methods which ignore
outliers and transformation methods which treat them as part of the (transformed)
process. Using a case study, based on an extreme radiological events over a large
area, we show how radiation data collected from monitoring networks can be anal-
ysed automatically and then used to generate reliable maps to inform decision
making. We show the limitations of the methods and discuss potential extensions to
remedy these.

1 Introduction

Choosing an appropriate overall model is an important part of interpolating and
analysing observations collected from sensor networks. The model should be based
on assumptions about the underlying process that generated the observations. Prac-
tically speaking, it is almost impossible to exactly specify the correct model which
introduces difficulties when attempting to estimate parameters within the model. In
this paper we consider the concept of robust geostatistics. By applying robust geo-
statistical methods we aim to limit the effects of observations that do not correspond
to our chosen model. Robust models are frequently employed with datasets where
outliers are present, as might often be the case in an automatic monitoring scenario.

The idea of robust geostatistics is not new and has been studied in geostatistics
for many years (Cressie and Hawkins, 1980). In this paper we avoid parameter
estimation techniques using method-of-moments based estimators such as those
described by Genton (1998) and instead focus on likelihood based approaches such
as those proposed by Marchant and Lark (2007). In this paper, we show how a fast
Bayesian projected process kriging framework can be used for robust parameter
estimation to generate accurate maps of an area of interest. Using this framework
allows the efficient utilisation of most commonly used likelihood functions without
having to resort to computationally expensive Markov Chain Monte Carlo (MCMC)
sampling techniques as used in other Bayesian methods (Diggle et al., 1998). As
a result, we can experiment with a number of robust likelihood models, in an near
real-time framework.

In this paper, by applying a variety of non-Gaussian likelihood models that have
heavier tails which help to account for outliers, we compare a number of robust
methods. Specification of an appropriate robust likelihood model could be specific
to the domain to which it is being applied; our results are particularly relevant to
environmental monitoring of radioactivity.

2 Gaussian Process

Model based geostatistics makes the assumption that any finite collection of random
variables is jointly Gaussian. Here we assume that the data takes the form:
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.xi ; yi / W i D 1; : : : ; n; (1)

where we denote spatial location by xi and observations at the location xi are
denoted by yi . Each observation, yi , is assumed to be a realisation of a random
variable Yi which is dependant on the value of an unobserved random process
S.x/ (Diggle et al., 1998).

We assume observations have the following relationship to the underlying
process:

Yi D S.xi / C Zi ; (2)

where Zi is an additive, potentially non-Gaussian, error on the observations that is
assumed to be independent for each observation. Equation (2) defines an arbitrary
likelihood function, p.Yi jS.x//, which we will generally assume has heavy tails to
model the outlying observations.

2.1 Gaussian Process Approximations

We adopt a Bayesian framework for our iterative algorithm. Our aim is to infer the
posterior distribution of the underlying random process S.x/ given the observed
data, Y D fYigiD1::n. This has the standard form:

p.S.x/jY; / D
�Q

i p.Yi jS.x//
�

p.S.x/j/R �Q
i p.Yi jS.x//

�
p.S.x/j/dS.x/

(3)

where the posterior is the product of the likelihood terms and the Gaussian pro-
cess prior, divided by a normalising constant, often called the marginal likelihood,
p.Y j/.

2.2 Parametrisation of Posterior Moments

Since we allow for arbitrary likelihood models, in this case robust likelihood models,
an exact solution would require the application of MCMC sampling from this very
high dimensional posterior distribution, which will be prohibitively computationally
expensive for large datasets in our real-time setting. Our approach is to approximate
the true non-Gaussian posterior by the optimal Gaussian process posterior that min-
imises the Kullback–Leibler (KL) divergence measure between the true posterior
distribution and the approximating posterior distribution. By minimising the KL di-
vergence, we match the first two moments of the two distributions (Csató and Opper,
2002).

To enable the use of the arbitrary likelihoods, Equation (2), we represent the
Gaussian process by a parametrisation of the posterior moments. The posterior mean
is parametrised as:

�posterior.x/ D �prior.x/ C
mX
i

˛i c.x; xi /; (4)
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where c.x; xi / is the (a priori) covariance function between the point x and the
points xi used in the approximation. We write the covariance between two spatial
locations as c.x; xi / D cov.x; xi /. ˛ D f˛igiD1::n is then the vector of the parame-
ters of the posterior mean of the process. The posterior variance is parametrised as:

cposterior.x; x0/ D cprior.x; x0/ C
mX

i;j D1

c.x; xi /C.i;j /c.xj ; x0/ (5)

where C D fCi;j gi;j D1::n is a matrix of parameters for the posterior covariance.
Given the above parametrisation of the posterior moments, we now show how

these parameters ˛ and C can be updated in an iterative algorithm. It was shown
in Csató and Opper (2002) that the parametrisation can be applied recursively to
give an iterative update rule:

�tC1 D �t C qtC1ct .x; xtC1/; (6)

ctC1.x; x0/ D ct .x; x0/ C rtC1ct .x; xtC1/ct .xtC1; x0/ (7)

where t indicates the pseudo-time step in the algorithm or iteration, and xtC1 is the
spatial location of the new observation being included at iteration t C 1. The scalar
coefficients qtC1 and rtC1, which update the model at each iteration can be com-
puted analytically or numerically. The analytic update equations derived in Csató
and Opper (2002) are given by:

qtC1 D @

@ŒS.x/�
loghp.YtC1jS.x//it ; (8)

rtC1 D @2

@ŒS.x/�2
loghp.YtC1jS.x//it ; (9)

where the derivatives are with respect to the mean function at time t C 1 and the
expectations, denoted h�it , are taken with respect to the posterior Gaussian process
at algorithm pseudo-time t . These update equations essentially process the obser-
vations one at a time and update the posterior parametrisation by matching the
moments of the updated parametrised posterior to the true, potentially non-Gaussian
posterior. Further details can be found in Csató and Opper (2002).

3 Robust Likelihood Models

Robust likelihood models facilitate the estimation of the variogram parameters in the
case where outlying observations are present in the data. If likelihoods which model
a ‘robust’ error distribution are used within a traditional model based geostatistical
approach then sampling from a potentially high dimensional distribution is required
and can be very time consuming.

The method we presented earlier in this paper allows for the specification of arbi-
trary likelihoods without the large computational overhead that comes with existing
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MCMC based model based geostatistics. We now present and discuss some robust
likelihoods that can be used and compare them to some existing techniques for treat-
ing data with outliers.

3.1 Two Component Gaussian

We could assume that the observations come from separate processes: a routine
process and an extreme process. One approach that seems intuitive is to introduce
two components into the likelihood model, one component to model the routine ob-
servations and another component to model the extreme observations or outliers.
We need not necessarily restrict ourselves to a two component Gaussian likelihood
model, but for the purposes of this paper we employ a mixture of two components.
Assuming that the routine observations follow a Gaussian distribution is a common
hypothesis although this is often an approximation. However assuming that the ex-
treme or outlier observations follow a Gaussian distribution with a large variance
could be debated; empirically we have found it works well, although there is little
theoretical justification.

The two component Gaussian mixture is constructed by summing two weighted
Gaussian distributions to create the mixture likelihood:

p.Yi jS.xi // D ˇNa.Yi jS.xi // C .1 � ˇ/Nb.Yi jS.xi // (10)

where ˇ gives the weight of the mixture, or the fraction of the observations that
belong to the routine process Na.Yi jS.xi //. We set the variance or noise �2

a , of
the routine process to model our assumptions about the error in the observation
process. The extreme process is denoted by Nb.Yi jS.xi // and a much larger noise
�2

b
is defined, which represents our beliefs about the extreme process. Alternative

mixtures of likelihoods could be considered, but in this paper we will only look at
the case where the likelihood models are summed.

3.2 Laplace

A alternative approach which makes yields a cruder robust likelihood model is to
assume that the likelihood function has a Laplace distribution. The Laplace distri-
bution has the probability density function:

Laplace.xj�; b/ D 1

2b
exp

�
�jx � �j

b

�
(11)

where � is the location parameter and b is a scale parameter. The Laplace distribu-
tion is also known as the double sided exponential distribution.
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3.3 Huber Functions

One approach to determining robust likelihood models was presented by Marchant
and Lark (2007). Here the Huber function is used in the likelihood term. The Huber
function is given by:

	 .d/ D
�

1
2
d 2 if jd j 	 c

c jd j � 1
2
c2 otherwise

(12)

where c is a constant determining the robustness of the estimator. In the case c D 1
the model is equivalent to the standard maximum likelihood estimator, with a
Gaussian likelihood model. Rather than optimising the parameter c, here we choose
a number of values for c and see which gives the best results. Future work will
investigate the selection c using alternative methods.

4 Box–Cox Transformations

A standard alternative that is commonly used when a dataset is contaminated with
outliers or at least when the dataset is assumed to be non-Gaussian distributed is that
of the Box–Cox transformation Box and Cox (1964). The data is transformed to be
approximately Gaussian distributed using:

y.�/ D
(

y��1
�

if� ¤ 0

log.y/ if� D 0
(13)

and thus the effect of outliers can be reduced, but not completely removed. In this
paper we try a number of values for � to identify which is the most appropriate for
the given data. We should note that the Box–Cox approach is very different in char-
acter to the preceding approaches, since in the previous methods we have assumed
that the outliers arise because of a local corruption to observations, whereas in the
Box–Cox approach we transform the entire field, albeit in a manner that attempts to
maximise the (marginal) Gaussianity of the observations.

5 Covariance Selection

We follow the methodology of Ingram et al. (2005) for determining the covariance
function used in the experiments. We use a nested covariance model which has a
linear sum of a Gaussian and exponential covariance function components:

cmix.u/ D ��2
gauexp

�
u2

�

�
C .1 � �/�2

expexp

�
u

�

�
: (14)
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We assume that the exponential component models the short range rough process
and that the Gaussian component models the smoother properties of the process
at longer lag separations, which is consistent with a belief that at short ranges the
radioactivity field is dominated by turbulent mixing processes, while at longer range
large scale weather, soil and geological differences dominate.

6 Datasets

To demonstrate the various methods discussed previously, we will use a radia-
tion data collected over the German monitoring network. Radiation data for most
countries in Europe is available from the EURDEP (EUropean Radiological Data
Exchange Platform) website.1 We use a dataset with a simulated release of radia-
tion into the environment prepared by BfS,2 which uses the real EURDEP observed
background radiation with an added deposition generated from a radiation dis-
persion model. The simulated release represents some kind of disaster that could
potentially take place. The event in this case is not a serious disaster, but rather
a small release into the environment over a large area. The release is dispersing
in the E–W direction more rapidly than the N–S direction. Anisotropy in the con-
tamination process will present problems for the models. In total there are 1,900
observations. We divide this into two sets, a set for estimating the model parameters
(1,200 observations) and a prediction set for cross validation (700 observations).

7 Results

Contour maps have been produced to show the mean predictions and estimates for
the kriging variance. These can be seen in Figs. 1–5. The first thing to note is that
each seems to capture the features of the simulated contaminant along the lower
middle section of the area. Looking at the Gaussian range (Table 1) for the de-
fault method shows how this parameter has become extremely large and this effect
can be seen as over smoothing the effect of the contamination. The Huber function
and Box–Cox transformation model also suffer somewhat from over estimating the
Gaussian range parameter in the E–W direction, but to a lesser degree. The Gaus-
sian Mixture and Laplace models further improve, but anisotropy in the estimation
is still marked, which is realistic.

The summary statistics show that the Gaussian Mixture has the lowest error
(both MAE and RMSE) of all the methods investigated. The predictions are also

1 http://eurdep.jrc.it/.
2 German Federal Office for Radiation Protection.

http://eurdep.jrc.it/
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Fig. 1 Contour plot of (left) mean predictions and (right) variance estimates for default (Gaussian
likelihood) model
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Fig. 2 Contour plot of (left) mean predictions and (right) variance estimates for mixture likeli-
hood model
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Fig. 3 Contour plot of (left) mean predictions and (right) variance estimates for Laplace likeli-
hood model



Robust Automatic Mapping Algorithms in a Network Monitoring Scenario 367

0 100 200
0

100

200

km

km

0
0

100 200

100

200

km

km

Fig. 4 Contour plot of (left) mean predictions and (right) variance estimates for Huber likelihood
model
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Fig. 5 Contour plot of (left) mean predictions and (right) variance estimates for Box–Cox trans-
formation based model

Table 1 Covariance parameters for the different methods considered. Sill gives the overall sill,
summing both components

Method Nugget Sill Gaussian range Exp. range MAE RMSE R

Default 0.32 1.35 (530.30, 1.67) (0.23, 0.12) 0.0010 0.0210 0.83
Gaussian mixture 0.11 0.67 (48.36, 7.60) (0.09,0.07) 0.0004 0.0131 0.87
Laplace 0.16 0.75 (58.23, 5.42) (0.13, 0.19) 0.0006 0.0175 0.86
Huber function 0.22 1.01 (148.37,0.09) (0.43, 0.09) 0.0009 0.0192 0.86
Box–Cox 0.19 0.90 (136.89, 0.60) (0.82, 0.77) 0.0007 0.0190 0.86
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more correlated with the observations. The Huber function, Laplace and Box–Cox
transformation methods all improve on the default method where no robust assump-
tions are made, however the improvement is quite small.

The variance plot for the mixture Gaussian likelihood (Fig. 2) indicates that the
parameters estimated are a good model since there are lower kriging variances than
with the other methods, and this is consistent with the observed errors. The mean
plot shows how the contaminant has a distinct pattern which cannot be observed in
the plot using the default model (Fig. 1).

All experiments were carried out on a Pentium 4 2 Ghz PC. Since the main dif-
ference between these methods was in the specification of the likelihood term, the
computational performance was roughly identical across the methods. The com-
putational time, for parameter estimation and prediction was approximately 2 min
per model.

8 Conclusions

In this paper we have presented four methods for treating outliers in datasets. We
have shown that the projected process kriging framework with robust likelihoods
can be used in the presence of outliers, and on quite large datasets. This is based
on using maximum likelihood type II estimates of the parameters in the covariance
functions. The overall computational time is under 2 min. This is using an unop-
timised Matlab implementation and initial work on a CCC library suggests this
can be reduced by an order of magnitude simply by changing the implementation
language. Furthermore in other experiments, not shown here, we have processed
over 10,000 observations in reasonable time. Employing a Bayesian framework,
the Gaussian process prior allows us to make robust inference on the covariance
function parameters despite the complex structure in the observations, with possible
outliers, which would not be possible with standard method of moments estima-
tors. The Bayesian approach taken here should be called an empirical Bayes (or
plug-in) method since maximum a-posteriori estimates of covariance function pa-
rameters are used; it would be interesting to assess the impact of sampling from (and
then marginalising with respect to) the parameters in the covariance function. This
would require far more computationally expensive sampling methods, but would
give a clear indication of the role of parameter uncertainty in (posterior) predictive
uncertainty.

The radiological dataset that we have used shows that all four ‘robust’ methods
offer an improvement over standard kriging results, in terms of some standard met-
rics, however the Gaussian mixture likelihood seems to perform slightly better that
other methods in this example. An explanation might be that the second Gaussian
component of the mixture likelihood seems to better model the contamination pro-
cess, although we have not rigorously shown this. The contamination process is
more than a few outlying observations, but rather a large number ofobservations
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from a second process. The other models may not be able to capture this ‘second
process’ since they are based on heavy tailed distributions which, conceptually at
least, arise as the result of a single process.

There is a difference between the robust likelihood methods and the Box–Cox
transformation. The robust likelihoods all assume an underlying latent Gaussian
process, with observations that are contaminated by heavy tailed, zero mean, sym-
metric, noise models; their aim is essentially to represent the underlying process
filtering the noise appropriately. In the Box–Cox approach the observations are
transformed such that their marginal distribution is approximately Gaussian, by a
range of transformations from the identity to the log transform. Thus the robustness
arises from the squashing affect of the transformation which reduces the impact of
large observations (i.e. deals with the skew of the distribution) – the outliers. The
key question to consider in choosing an appropriate method is probably more re-
lated to assumptions about the form of the noise on the observations together with
assumptions about the distribution of the latent process. Note the Box–Cox trans-
formation can only transform variables such that they are marginally Gaussian, not
jointly so. In practice, to confirm ones beliefs, it seems that it will always be neces-
sary to compare a range of methods using validation or cross validation to select the
empirically best method, even when strong prior information is available.

There are a number of aspects to the modelling process that were only touched
on and require further investigation. The selection of the parameters of the likeli-
hood models, for example, estimating the mixing coefficient and variances for each
component in the Gaussian mixture model, could be performed automatically rather
than being specified a-priori. This would also be possible for the c parameter for the
Huber function. This is not trivial however, as there is a conceptual difficulty in par-
titioning the observation errors without additional knowledge, and would probably
require a Bayesian treatment, with the effort being applied to defining appropriate
priors. So called Trans-Gaussian Kriging (Pilz et al., 2004) incorporates a method to
estimate the Box–Cox transformation parameter, which could be incorporated into
future models. It is interesting to speculate whether other approaches, such as in-
dicator kriging or copula based methods might also be employed in circumstances
where the underlying process has a skewed or otherwise non-Gaussian distribu-
tion, potentially also using robust likelihood models to account for the presence of
outliers caused by a heavy tailed noise distribution. Finally, although we have not
directly tackled this here, in some cases it might be preferable to remove the outlier
prior to processing, for example in cases where the outlier represent failure of the
observing system or some other catastrophic error.
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Parallel Geostatistics for Sparse
and Dense Datasets

Ben Ingram and Dan Cornford

Abstract Very large spatially-referenced datasets, for example, those derived from
satellite-based sensors which sample across the globe or large monitoring networks
of individual sensors, are becoming increasingly common and more widely avail-
able for use in environmental decision making. In large or dense sensor networks,
huge quantities of data can be collected over small time periods. In many applica-
tions the generation of maps, or predictions at specific locations, from the data in
(near) real-time is crucial. Geostatistical operations such as interpolation are vital in
this map-generation process and in emergency situations, the resulting predictions
need to be available almost instantly, so that decision makers can make informed de-
cisions and define risk and evacuation zones. It is also helpful when analysing data
in less time critical applications, for example when interacting directly with the data
for exploratory analysis, that the algorithms are responsive within a reasonable time
frame.

Performing geostatistical analysis on such large spatial datasets can present a
number of problems, particularly in the case where maximum likelihood. Although
the storage requirements only scale linearly with the number of observations in the
dataset, the computational complexity in terms of memory and speed, scale quadrat-
ically and cubically respectively. Most modern commodity hardware has at least two
processor cores if not more. Other mechanisms for allowing parallel computation
such as Grid based systems are also becoming increasingly commonly available.
However, currently there seems to be little interest in exploiting this extra process-
ing power within the context of geostatistics.

In this paper we review the existing parallel approaches for geostatistics. By
recognising that different natural parallelisms exist and can be exploited depend-
ing on whether the dataset is sparsely or densely sampled with respect to the
range of variation, we introduce two contrasting novel implementations of parallel
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algorithms based on approximating the data likelihood extending the methods
of Vecchia (1988) and Tresp (2000). Using parallel maximum likelihood variogram
estimation and parallel prediction algorithms we show that computational time can
be significantly reduced. We demonstrate this with both sparsely sampled data and
densely sampled data on a variety of architectures ranging from the common dual
core processor, found in many modern desktop computers, to large multi-node su-
per computers. To highlight the strengths and weaknesses of the different methods
we employ synthetic data sets and go on to show how the methods allow maximum
likelihood based inference on the exhaustive Walker Lake data set.

1 Introduction

The problem of large datasets was once considered a solved issue (Schabenberger
and Gotway 2005). By using method-of-moments variograms and moving window
kriging, all but the very massive dataset are computationally tractable. In recent
years the popularity of and interest in maximum likelihood based algorithms has
grown. Problems are encountered computationally with likelihood based methods
when more than a few thousand observations are encountered.

Parallel geostatistics is not a new topic and has been considered previously by
Pedelty et al. (2003), Gebhardt (2003) and Kerry and Hawick (1998). The basis
of these existing techniques is to perform moving window kriging by assigning
a prediction area to each processor and predict at the locations for a given area.
The authors neglect to discuss parameter estimation in a parallel context. Prac-
tically, computing the variogram using a method-of-moments estimator provides
few challenges when compared to the computational complexity of prediction since
computing the variogram is a O.n2/ process.

The motivation for this study lies in a shift in computer microprocessor design,
where uniprocessor microprocessors are being replaced by multi-processor or multi-
core architectures. Although this new design does not always result in a speed-up
for many geostatistical algorithms. Software typically needs to be written to utilise
such architectures. If the software is built upon existing libraries such as BLAS,1

LAPACK2 and ATLAS,3 then these libraries can be replaced with parallel equiva-
lents. The current version of LAPACK comes with configuration options to create
multi-threaded versions where the number of threads can be specified. One warn-
ing however is that some users have noted decreased computational speeds due to
synchronisation and communication between different threads.

In this paper we discuss data parallelism approaches for performing geostatis-
tics. In contrast to task parallelism, data parallelism relies on splitting the data
into a number of smaller clusters and performing calculations across a number of
processors.

1 http://www.netlib.org/blas/.
2 http://www.netlib.org/lapack/.
3 http://math-atlas.sourceforge.net/.

http://www.netlib.org/blas/.
http://www.netlib.org/lapack/.
http://math-atlas.sourceforge.net/.
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We utilise the Message Passing Interface (MPI) for intra-node communication
since this is the de facto standard for parallel programming. Implementations of
MPI can be found for most architectures from the largest massively parallel super-
computers to a standard desktop with a dual-core processor. During the development
of this software we used the Matlab compatible application Octave4 and MPITB
(Fernández et al., 2004) which is a MPI implementation compatiable with Matlab
and Octave. Octave does not have the licensing restrictions that Matlab has so is
ideal for using on a multiple processor machine.

2 Methodologies

We discuss and implement two methods in this paper. The first method we consider
is that of Vecchia (1988) which can be used to approximate the likelihood function.
The second method, the Bayesian Committee Machine (BCM) is used for prediction
using all of the data. We compare the results with traditional geostatistics that such
as method-of-moments variograms and moving window kriging.

2.1 Vecchia’s Approximation

Vecchia (1988) approximation is based on the multiplicative theorem which states
for any number of N events: z1; : : : ; zN the following relationship holds:

p .z1 \ z2 \ : : : \ zN / D p .z1/ � p .z2jz1/ � : : : � p .zN jz1; z2; : : : ; zN �1/ (1)

where p .zajzb/ is the conditional probability of za given zb Pardo-Igúzquiza and
Dowd (1997).

In the case of a multivariate probability density function, the following relation-
ship is obtained:

p .Z .x// D
NY

iD1

p .Z .xi / jZ .x1/ ; : : : ; Z .xi�1// (2)

One then assumes that some of the information in the dataset is redundant and
hence instead of conditioning on the whole dataset the observations are conditioned
on smaller subsets of size m < .i � 1/ where i is the current observation of the
dataset. This gives the following relationship:

p .Z .xi / jZ .x1/ ; : : : ; Z .xi�1// Š p .Z .xi / jZ .x1/ ; : : : ; Z .xm// (3)

4 http://www.octave.org.

http://www.octave.org
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where the approximation becomes almost exact as m approaches the number of
observations in the dataset.

Assuming that data is a zero mean multivariate Gaussian, the conditional proba-
bility p

�
Z .xi / jZ �

xj

��
where j D 1; : : : ; m is also Gaussian for any observation

i and any conditioning subset size m and is given by

N �
˙ij˙

�1
jj Z

�
xj

�
; ˙ii � ˙ij˙

�1
jj ˙ji

�
(4)

where ˙ij refers to the covariance between the observation i and the observations in
the conditioning subset j . The following give the mean:

˙i jj D ˙ii � ˙ij˙
�1
jj ˙ji (5)

and covariance:
�i jj D ˙ij˙

�1
jj Z

�
xj

�
(6)

conditioned on a subset of j observations where ˙jj is a j � j covariance matrix
between the points of vector yj , ˙ij is a vector of covariances between the i th
observation and m points of the vector yj and yj are m observations at locations
chosen for each subset.

This leads to the following log likelihood approximation:

L ./ D �N

2
log .2�/ � 1

2

nX
iD1

log
ˇ̌
† .�/i jj

ˇ̌� 1

2

nX
iD1

Z .x/T † .�/�1
i jj Z .x/ (7)

which instead of depending the inverse of a covariance matrix † .�/�1 of size N ,
depends on i covariance matrices of maximum size m. Hence the smaller size m

the more computationally efficient the algorithm is but at the expensive of yielding
a poorer approximation to the true probability density function.

Although Vecchia (1988) notes that the orderings of the data makes a difference
to the approximation, this is not considered a significant issue and it is not dealt
with. A number of years after this approximation method was proposed, Stein et al.
(2004) suggested a number of improvements to the algorithm. Firstly it is suggested
that the approximation gives better results when the observations are ordered so as
to give clustered data. Secondly, by not only conditioning on observations near, but
also on some observations far away, the approximation is further improved.

Since the approximate maximum likelihood approach has reduced the calculation
to a sum of a number of independent calculations, a parallel implementation follows
trivially. A further desirable feature is that all the data need not be sent to each
process in the parallel system. How much data sent to each process depends on
m, the size of the conditioning data. Particularly accurate approximations to the
likelihood can be achieved with large m.

One serial implementation of the approach of Vecchia (1988) was presented by
Pardo-Igúzquiza and Dowd (1997). Since the computation of the conditioning sub-
sets is an embarrassingly parallel problem, it can be easily parallelised. Figure 1
shows a simple pseudo code parallel algorithm.
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1 . Master t o b r o a d c a s t c o v a r i a n c e p a r a m e t e r s t o each p r o c e s s
( MPI Bcast )

2 . Master t o s c a t t e r t r a i n i n g d a t a t o each p r o c e s s
( M P I S c a t t e r )

3 . Each node t o c a l c u l a t e l i k e l i h o o d of each s u p p l i e d
o b s e r v a t i o n s c o n d i t i o n e d on a s u b s e t o f t h e d a t a

4 . Master t o c o l l e c t l og l i k e l i h o o d s and sum ( MPI Reduce )

Fig. 1 Pseudo code for Vecchia approximation

2.2 Bayesian Committee Machine

The Bayesian Committee Machine was proposed by Tresp (2000) as an alternative
method for reducing the computational complexity of prediction and has been fre-
quently applied in the context of machine learning. Using this model, the data is split
up into submodels or committees and weighted by the inverse variance or precision
at the prediction location. The BCM has an equivalence to kriging with a number of
additional assumptions.

One important feature to note about the BCM is that it is a transductive method
rather than an inductive method. The term transductive means that the method
computes a model dependent on a user specified set of prediction locations
(Schwaighofer and Tresp, 2003). In this way, knowledge about the covariance
between the prediction locations is exploited in the approximation.

It has been shown by Schwaighofer and Tresp (2003) that the BCM method is
equivalent to assuming a low-rank covariance matrix where the exact block diagonal
structure of the full covariance is retained. As with many low–rank matrix approx-
imations or their equivalents the concept of knots, pseudo inputs or active points
are used. For example, assuming a dataset of observations, .xi ; yi / W i D 1; : : : ; n,
where a subset of the locations .xj / W j D 1; : : : ; m are selected and termed the ac-
tive set. The low-rank covariance, Ȯ or approximation to the full covariance matrix
˙ is given by:

Ȯ D c.d/C �1c.d/0 (8)

where c.�/ is the approximate covariance function and C is the covariance matrix
between the locations selected for inclusion in the active set.

The BCM assumes that the prediction locations compose the active set which
we will denote as ˙pred. The apparent limitation of having to compute the covari-
ance matrix (and the inverse) of the prediction locations is not too restrictive since
smaller prediction covariance matrices can be created and the BCM equations can
be repeatedly calculated without a growth of the algorithm complexity.

The predictive distribution equations are calculated as:

OZbcm D ˙ bcm

WX
wD1

Q̇ �1
w

OZw (9)
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where †bcm is the predictive covariance is given by:

†�1
bcm D � .W � 1/ †�1

pred

WX
cD1

Q̇ �1
w (10)

where W is the number of committees used and †pred is covariance matrix between
the prediction locations (Tresp, 2001). An interesting observation is that the BCM
predictive mean is constructed from a weighted sum of the individual committee
members predictive means:

OZw D c.d/T
w †�1

w Zw (11)

where the matrix †w is the covariance matrix of the observations assigned to
committee w. The covariance between the prediction locations and the locations
assigned to the committee is denoted by c.d/w. The prediction locations are condi-
tioned on the observed data assigned to a committee w by:

Q̇ D †pred � c.d/T
w †�1

w c.d/w: (12)

Another observation is that the weights are obtained by the inverse predictive co-
variance (or predictive precision) at the prediction location. Effectively the BCM
scales the contribution of each committee based on how confident it is about the
prediction from each committee. Substituting the individual committee members
predictive means and variances gives full expressions for the full predictive mean:

OZbcm D †bcm

WX
wD1

�
†pred � c.d/T

w †�1
w c.d/w

��1

c.d/T
w †�1

w Zw (13)

and predictive variance:

†bcm D
 

� .W � 1/ ˙�1
pred

WX
wD1

�
†pred � c.d/T

w †�1
w c.d/w

��1
!�1

: (14)

Equations (13) and (14) indicate that there are a number of matrix inversions
needed for this calculation. Some of these matrix inversions can be performed in-
dependently of other calculations and hence in parallel. The iterations in the sum
calculation are completely independent of each other. By assigning these itera-
tions to other processors in a parallel system it is proposed that speed-ups can be
achieved since the main bottleneck in this algorithm (and many other geostatistical
algorithms) is the matrix inversion.

For the BCM parallel implementation, the individual committee predictive mean
and predictive variance will be performed on separate processors. The calculations
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1 . Master t o b r o a d c a s t commi t t ee p a r a m e t e r s t o each p r o c e s s
( MPI Bcast )

2 . Master t o b r o a d c a s t t e s t d a t a l o c a t i o n s t o each p r o c e s s
( MPI Bcast )

3 . Master t o s c a t t e r t r a i n i n g d a t a t o each p r o c e s s
( M P I S c a t t e r )

4 . Each node t o c a l c u l a t e t h e c o n t r i b u t i o n o f a s s i g n e d
commi t t ee

5 . Master t o c o l l e c t t h e mean and v a r i a n c e a t t h e t e s t
l o c a t i o n s from each p r o c e s s and sum r e s u l t s ( MPI Reduce )

Fig. 2 Pseudo code for parallel Bayesian Committee Machine

of the predictive mean and predictive variance require the inverse of a matrix of the
same size as the number of observed data assigned to each committee. A further
inversion is needed to calculate the inverse of the predictive variance which is a
matrix of the same size as the number of prediction locations. The basic algorithm
for a parallel BCM is given in Fig. 2.

2.3 Moving Window Kriging

One approach to performing kriging with large datasets was introduced by David
(1976). A specified search radius from the prediction location is used to select a lo-
cal neighbourhood of observations to use in the kriging system. This neighbourhood
moves according to the location which is being predicted. An alternative approach
for selecting the neighbourhood is to select a predetermined number of near obser-
vations for each prediction location. As noted by Davis and Culbane (1984), these
methods produce spurious behaviour in some of the estimates and hence should
be used with caution, this is apparent as observations are added or removed from
the moving window. Ad-hoc methods of subsetting the data were formalised by the
moving-window approach of Haas (1995), although the local covariance functions
fitted within the window may yield incompatible covariances at larger spatial lags.
Cressie (1993) states that for datasets that are large, the general feeling is that krig-
ing is impossible and ad-hoc local kriging neighbourhoods are typically used. Isaaks
and Srivastava (1989) devote a whole chapter to choosing an effective search strat-
egy. Implementations of kriging tend to use this approach for performing kriging
efficiently. Here we use the moving window kriging approach as a means of bench-
marking the BCM.
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3 Experimental Setup

3.1 Datasets

To test these methods we simulate two large spatial datasets, each with 40,000
observations on a grid of 200 � 200 points. To do this we use the Turning Bands
method of simulation (Emery and Lantuéjoul, 2006) since large datasets can be sim-
ulated without prohibitive running times. Figure 3 shows the two simulated fields.
Both datasets were simulated with an exponential covariance function. The first
dataset was simulated with an effective range of 15 m and the second dataset has an
effective range of 150 m. We sample 20,000 observations from each dataset using
simple random sampling. We use this for learning the model parameters and pre-
diction. We use the remaining 20,000 observations for cross-validation to test our
model.

3.2 Software

For the experiments in this paper we used an eight node tightly coupled parallel sys-
tem where we compared the performance using 1, 2, 4 and 8 processors. We choose
LAM/MPI5 implementation of the MPI standard.6 ATLAS was compiled with the

Fig. 3 Plots of simulated datasets with exponential covariance and (left) short range parameter
(right) long range parameter

5 http://www.lam-mpi.org/.
6 http://www-unix.mcs.anl.gov/mpi/.
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thread support disabled. The software was written using the Matlab language and
executed in Octave although we hope to release a standalone implementation soon.

4 Results

The results from the experiments are split into two tables. Table 1 shows the Mean
Average Error (MAE) of using the Vecchia method to estimate the covariance pa-
rameters and then we predict at the cross-validation locations. The first thing to
notice is how the prediction results do not change depending on the number of pro-
cessors used which is to be expected. As the number of observations used in the
conditioning subset, the MAE decreases with both datasets. The effect seems less
pronounced with Dataset 2 however. The timings are taken after ten iterations of
the conjugate gradient minimisation of the approximate likelihood. For the BCM
algorithm we compare this directly to MWK (Moving Window Kriging) in Table 2.
By increasing the size of each committee, it can be seen that the computational
complexity increases. However, increasing the number of processors reduces the
computational burden. As to be expected and as the previous results, the MAE does
not change depending on the number of processors used. In this experiment, by in-
creasing the committee size seems to reduce the MAE for Dataset 2 more markedly
than with Dataset 1.

The results for MWK show that for Dataset 1, where the range parameter is short
with respect to the overall scale of the dataset, that MWK out performs the BCM
in terms of prediction accuracy, although the computational speed is significantly
slower. This can reduced of course by applying MWK to a parallel processor com-
puter. With Dataset 2 where the range parameter is long with respect to the overall
scale of the data, the effect seems less severe. The BCM seems to perform equally

Table 1 Performance of parallel maximum likelihood using Vecchia’s
method

Processors Subset Size Time (s) MAE Dataset 1 MAE Dataset 2

1 50 50.84 34.44 36.23
2 50 30.75 34.44 36.23
4 50 20.74 34.44 36.23
8 50 16.44 34.44 36.23
1 100 240.12 31.71 34.83
2 100 130.47 31.71 34.83
4 100 70.33 31.71 34.83
8 100 40.34 31.71 34.83
1 200 1,290.38 30.43 34.01
2 200 640.69 30.43 34.01
4 200 340.91 30.43 34.01
8 200 180.34 30.43 34.01
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Table 2 Performance of parallel BCM and moving window kriging

Processors Subset Size Time (s) MAE Dataset 1 MAE Dataset 2

1 250 1.84 27.92 22.15
2 250 2.05 27.92 22.15
4 250 1.92 27.92 22.15
8 250 2.14 27.92 22.15
MWK 250 224.23 22.10 22.19
1 500 3.67 27.83 21.62
2 500 3.27 27.83 21.62
4 500 2.84 27.83 21.62
8 500 2.34 27.83 21.62
MWK 500 573.74 21.95 21.22
1 1,000 11.90 27.53 20.76
2 1,000 6.75 27.53 20.76
4 1,000 3.98 27.53 20.76
8 1,000 2.85 27.53 20.76
MWK 1000 1,473.34 22.01 20.90

as well as MWK in terms of prediction accuracy, however in terms of prediction
speed, the BCM is many more times more efficient.

5 Conclusions

In this paper we have considered two methods for applying parallel geostatistics.
Firstly we looked at approximating the likelihood using a well known technique
in geostatistics (Stein et al., 2004). We showed how this was particularly effec-
tive when the range parameter was short when compared with the overall scale of
the area of interest. When applied to Dataset 2, with a long range parameter, the per-
formance was poorer. Increasing the number of processors reduced prediction time.
Using two processors does not exactly half the calculation time due to overheads of
distributing the data to the other processor. In terms of the computational complex-
ity of this algorithm, the distribution of data will cause a short delay (depending on
the architecture of the system).

The second technique we looked as was the BCM. This was shown to be equiva-
lent to a low-rank covariance matrix approximation with the exact diagonal structure
of the true covariance matrix retained. Low-rank methods are particularly useful
when the range parameter of the dataset is long when compared with the over-
all scale of the dataset. Hence it is to be expected that the BCM performs better
on Dataset 2. The BCM provides an effective alternative to moving window krig-
ing when large datasets are encountered. For the BCM experiments the covariance
function parameters were determined a-priori. Another advantage of using the BCM
method is that all the data in the dataset is used for prediction rather than a subset.
We are aware of an unpublished work that provides an approximation to the BCM
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likelihood using a Laplace propagation technique. This will be implemented in fu-
ture versions.

The methods presented here are effective when applied to a specific geostatistical
problems. They enable principled geostatistics to be applied to large datasets.
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Multiple Point Geostatistical Simulation
with Simulated Annealing: Implementation
Using Speculative Parallel Computing

Julián M. Ortiz and Oscar Peredo

Abstract Multiple-point geostatistical simulation aims at generating realizations
that reproduce pattern statistics inferred from some training source, usually a train-
ing image. The most widely used algorithm is based on solving a single normal
equation at each location using the conditional probabilities inferred during the
training process. Simulated annealing offers an alternative implementation that, in
addition, permits to incorporate additional statistics to be matched and imposing
constraints based, for example, on secondary information.

This paper focuses on an innovative implementation of simulated annealing to
simulate categorical variables, reproducing multiple-point statistics. It is based on a
well known paradigm in computer science, namely, speculative computing.

In simulated annealing, categories are initially randomly distributed. Nodes are
visited iteratively and a perturbation is proposed to approach the distribution of the
categories to some target statistics. A decision is made to accept or conditionally
reject the change, depending on an objective function that must approach zero to
match the target statistics. Rejection will occur with a probability that changes
during the simulation process, as defined in the annealing schedule. Speculative
computing consists of using multiple processes in parallel to pre-calculate the next
step in the simulation in both situations: accepting or rejecting the change. While
the decision is made in the first process, a second level of two processes is used to
calculate the two possible cases and subsequent levels can also be initiated. Once
the decision is made, processes that do not conform to this decision are dropped and
speculations about other possible perturbations at the current simulation stage are
initiated.

This implementation of simulated annealing can speed up the process signifi-
cantly, hence making this algorithm a reasonable alternative to current methods.
An example using a geologic data set is provided to demonstrate the improvements
achieved and the potential this method has for larger models. Some future work is
also proposed.
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1 Introduction

Multiple point geostatistical simulation has been a very active research area in recent
years. This is caused by the necessity to better reproduce some key features in the
construction of numerical models of categorical variables such as facies in the oil
industry, rock type distribution in the mining industry or land use allocation in en-
vironmental sciences.

Several researchers have proposed algorithms and improvements to impose mul-
tiple point statistics in geostatistical simulation. A brief overview of these methods
is summarized next.

Object-based modeling: One of the early approaches to capturing structural fea-
tures beyond the variogram is the object-based modeling. The main goal is to impose
structural information into the modeling process, usually by stochastically placing
objects into the domain. These objects must conform to the particular features of the
geological setting. The main limitations of these methods are that (1) each particular
type of object must be parameterized individually, therefore a new implementation
is required for each setting, and (2) conditioning to abundant data may be diffi-
cult. Nonetheless, these remain as valid and applicable techniques (Deutsch and
Wang, 1996; Tjelmeland, 1996).

Conventional simulation with locally varying anisotropies: A more intuitive ap-
proach to reproduce some features of the phenomenon is to incorporate locally
varying anisotropies in conventional pixel-based simulation (Xu, 1996). The con-
trol of structural features can be imposed through angles that change locally and
define the curvilinearity of the objects being simulated, as well as locally varying
proportions to impose trends in the categories distributions (Zanon, 2004).

Single normal equation simulation: Guardiano and Srivastava’s (1993) original
proposal was to compute the conditional expectation at an unsampled location us-
ing the arrangement of conditioning points as a multiple point event. To determine
the probability of the unsampled location to belong to a category, the frequency
with which this category was found with a similar configuration of conditioning
points was computed from a training image. The method is conceptually quite sim-
ple, but its implementation brings several issues. Its implementation in a sequential
simulation fashion requires computing the frequency of multiple point events that
change at every simulation step, the simulated value is added as a new conditioning
value and the training image has to be scanned for constantly changing point con-
figurations. This problem was solved by Strebelle and Journel (2000), making this
approach practical for use with larger simulation grids, through the use of a binary
tree for storing the multiple point events (see also Strebelle, 2002). Since then, this
algorithm has become the most popular methodology for multiple point statistics
simulation and many variations and improvements are being developed.

Neural Networks: Caers proposed the use of neural networks to allow inference
of conditional distributions given multiple point conditioning information. One of
the most interesting features of this approach is the possibility of controlling the
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degree of overfitting of the realizations by means of a cross validation, where an
error function is computed to indicate the quality of the network (Caers et al., 1999;
Caers, 1998; Caers and Ma, 2002).

Simulation with patterns: One of the interesting results of the paradigm of the
single normal equations is the direct simulation of patterns. Arpat developed an
algorithm that allows drawing directly patterns to complete a grid of nodes, using
conditioning information and a similarity measure in order to impose the structural
information, even when the conditioning pattern is not exactly found in the training
information (Arpat and Caers, 2007).

Conventional simulation integrating multiple point statistics: With a slightly
different philosophy, Ortiz and Deutsch (2004) proposed an approach to combine
multiple point statistics with conventional simulation, by modifying the conditional
distributions with multiple point statistics for a set of cutoffs in the case of contin-
uous variables (see also, Ortiz, 2003; Ortiz and Emery, 2005). This approach could
be similarly implemented in the context of categorical variables.

Gibbs sampler multiple point simulation: Another approach that suggests a gen-
eralization of kriging and of the single normal equation algorithm is multiple point
simulation using a Gibbs sampler that can integrate information of any nature to
approximate conditional distributions at every location (Boisvert et al., 2007). The
algorithm may integrate several multiple point events providing a promising frame-
work.

Simulated annealing: Possibly one of the first “practical” implementations of
multiple point geostatistical simulation was proposed by Deutsch in his Ph.D. the-
sis (Deutsch, 1992) and was already mentioned in the first edition of GSLIB User’s
Guide (Deutsch and Journel, 1992). This method is discussed in the next section.

In all the cases, the processing time to construct a proper 3D model may be
significant, particularly in iterative methods. In this context, the potential of using
parallel computing to increase the speed and run more demanding processes is seen
as an interesting avenue. In this paper, we present some results related to the imple-
mentation of a simulated annealing approach to reproduce multiple point statistics,
considering the principles of speculative computing.

2 Simulated Annealing

Simulated annealing is a general optimization algorithm that is capable of incor-
porating as many statistics and constraints as required to the simulation process
(Besag, 1986; Farmer, 1992; Geman and Geman, 1984; Kirkpatrick et al., 1983;
Rothman, 1985). The algorithm can honour all of the statistics if they are consistent
with each other and the optimization parameters are set correctly. The basic idea is
to start with a realization that does not honour the statistics and perturb the nodes un-
til the statistics are close enough to the target. This is done by defining an objective
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function that corresponds to a weighted sum of component objective functions. Each
one of these components corresponds to a measure of mismatch between the target
statistics and the current statistics, which are expressed as a mathematical expres-
sion.

In general, the objective function is written:

O D
NCX
iD1

!i Oi

where NC is the number of components in the objective function, !i are the weights
assigned to each one of the components, and Oi is the mismatch value for compo-
nent i . For example, this function could be composed by the mismatch in histogram
reproduction, defined as the difference in the cumulative frequencies measured at
some quantiles for the model simulated versus the target histogram, a mismatch
in variogram reproduction, composed by differences between the target variogram
model and the variogram calculated from the realization being perturbed, for a num-
ber of lag distances, and a mismatch in the reproduction of multiple point statistics.
In general any constraint can be imposed in the objective function, but convergence
can be achieved only if these constraints are consistent with each other, providing a
possible solution.

Additionally, the reproduction of a variogram map, indicator variograms, a his-
togram of multiple point statistics for some pattern sizes and the requirement
of honouring conditional information can be imposed through elements of the
objective function.

Starting from a random distribution of the variable over the domain, nodes are
visited randomly, a perturbation is proposed, and the change in the objective func-
tion is computed. The rule for accepting or rejecting a change is based on the Gibbs
or Boltzmann probability distribution, which gives the name to the algorithm, since
it was used to model the energy of molecules in the physical process of annealing
(Deutsch, 2002). If the change is favourable, the perturbation is accepted, other-
wise the perturbation may be conditionally accepted as dictated by a probability
distribution defined by an annealing schedule. The fact that some bad changes are
conditionally accepted differentiates SA from other optimization algorithms, where
all bad changes are rejected. The probability of acceptance, given by the Boltzmann
distribution is:

P.accept/ D
(

1 if Onew 	 Oold

e
Oold�Onew

t otherwise

where t is a parameter equivalent to the product of the Boltzmann constant kb and
the temperature T in the application to the physical process. By analogy, t is called
the temperature in SA; Oold and Onew are the values of the objective function before
and after the perturbation, equivalent to the difference in Gibbs free energy �E in
the physical process of annealing. In SA, the temperature must be lowered as the
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algorithm runs, emulating the cooling that occurs during the physical process that
lets the molecules reorganize to a lower energy state.

The computer implementation requires the specification of some parameters, as
described next:

� Initial Realization The algorithm perturbs nodes of an initial realization, which
is usually random with the target histogram.

� Objective Function The components of the objective function dictate the statis-
tics to be reproduced in the simulated models. Convergence can be ensured
subject to the consistency of these components. The objective function is a
weighted sum of mismatch functions, usually squared differences between cur-
rent statistics and target statistics. If matched, it should equal zero.

� Stopping Criteria Several considerations can be used to stop the algorithm.
Firstly, the algorithm should stop if the objective function has reached a value
considered low enough, which means that target statistics have been closely
matched. A second criterion for stopping is CPU time. Also, the algorithm can
be stopped if the objective function does not converge. This may occur because
the components of the objective function are not compatible, hence it is not pos-
sible to find realizations matching all statistics, or because the algorithm has not
attempted a number of perturbations large enough.

� Perturbation Mechanism Perturbations of the initial image can be done by
changing one node at a time (drawing a value from the global histogram) or
swapping nodes randomly selected, which would ensure histogram reproduc-
tion. Other alternatives such as drawing from a conditional distribution built
by indicator kriging of the surrounding nodes in a given template or calibrat-
ing with a secondary variable have also been proposed (Deutsch and Wen, 2001;
Deutsch, 2002).

� Updating of Objective Function The re-calculation of the objective function
can be done by updating the initially calculated value with the changes due to the
modification of the node (or nodes) perturbed. This makes the algorithm more
efficient in terms of CPU time than re-calculating the entire objective function
every time, as illustrated by Deutsch (2002).

� Annealing Schedule The annealing schedule refers to the parameters that spec-
ify how the temperature is reduced. The temperature parameter t must be lowered
to allow convergence. However, convergence is guaranteed only under very re-
stricted conditions. In practice, it depends on how the temperature t is changed
during the simulation. As in the physical process, the temperature should be low-
ered slowly to allow a lower energy state. As the temperature decreases, bad
changes will have a lower probability of being accepted, that is, the realiza-
tion will tend to stay in the same state unless the changes are favourable. In
practice the temperature is lowered with some control parameters: (1) An initial
temperature t0 is set to a high value. Some attempts to optimize this tempera-
ture have been documented (Norrena and Deutsch, 2000); (2) The temperature
is lowered using a reduction factor � 2 .0; 1/. This rate is a multiplicative fac-
tor to reduce the temperature if a maximum number of attempted perturbations
Kmax is reached at the same temperature, or if a maximum number of accepted
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perturbations is reached at that temperature; (3) The simulation will stop if Kmax

is reached S times, that is, if the number of perturbations accepted at a given
temperature has not been reached in the last S attempted temperatures; (4) The
tolerance in the objective function to define convergence �O , which should be
set to a low value.

To implement simulated annealing using multiple point statistics a histogram of fre-
quencies of multiple point events is constructed from a training image for a given
set of pattern configurations. Other statistics such as the connectivity function, re-
production of runs, as well as the implementation considering multiple grids could
be applied.

3 Speculative Parallel Computing

Several approaches exist to implement numerical algorithms into a parallel com-
puting framework. However, we have addressed the problem considering a solution
called the speculative approach. The basic idea consists of using multiple processes
organized in a binary tree to compute in advance the two possible solutions of a
decision. This can be further sped up by considering several levels of the tree. In the
case of simulated annealing, the decision is to accept or reject the perturbation of
a node. Figure 1 shows the decision tree. Process 0 computes the value of the ob-
jective function with and without perturbing a node randomly selected. Meanwhile,
Process 1 computes the value of the objective function with and without perturbing
a subsequent node, subject to having accepted the perturbation computed in Pro-
cess 0. Simultaneously, Process 2 is computing the same solution but subject to
having rejected the perturbation on Process 0. A second level of advanced calcula-
tions is performed in Processes 3 to 6, each one linked to previous decisions and
speculating about the possible decision of the parent node.

Parallel computing can reduce the time of the numerical calculation of SA. The
reduction depends on the number of levels of the tree. In general, 2n � 1 processes

Fig. 1 Tree showing
the processes
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are used to implement a tree of n levels. Theoretically, this means a speed up in the
computations of the order of log2.P C 1/, where P is the number of processes.

Several authors have studied different issues in the implementation of simulated
annealing in parallel computing, addressing issues such as communication over-
head between processes (Nabhan and Zomaya, 1995), quantifying and eliminating
approximations done in the parallel implementation that generate poorer solutions
than the serial implementation (Witte et al., 1991; Chamberlainet al., 1988), and
problem independent implementations (Roussel-Ragot and Dreyfus, 1990). Appli-
cations are generally restricted to the computer and electrical engineering fields.
To the authors’ knowledge, the proposed implementation of parallel computation
accounting for multiple point statistics is the first documented attempt in a spatial
context.

4 Examples

To test the performance of the implementation and the gain obtained by using the
parallel approach, several tests were carried out. A training image of a channel set-
ting over a background is considered (Fig. 2). This is a very simple geological setting
and it is aimed at evaluating the decrease in processing time that can be achieved,
and the capacity of simulated annealing to match multiple point statistics.

For the implementation simple squared patterns are used, and the frequencies
of finding each data event (combination of channel and non channel facies) on the

0 100
0

100

Background

Channel

Fig. 2 Training image for test runs
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training image are computed. Three pattern sizes are used: 2 by 2, 3 by 3 and 4 by
4 pixels. The implementation does not use a multiple grid approach (Tran, 1994),
and does not consider more complex patterns for the objective function. These im-
provements could be implemented in the future. The first approach considers an
objective function that penalizes equally the difference in frequencies of multiple
point events, as shown next:

O D
NMPEX
iD1

.f
target

i � f model
i /2

where f
target

i are the frequencies of the multiple point events from the training im-
age, f model

i are the statistics for the same multiple point events in the current state
of the simulated model, and NMPE is the total number of possible multiple point
events for the pattern size considered. A second implementation is done weighting
the frequencies of multiple point events with small frequencies, in order to increase
their relative importance in the objective function:

O D
NMPEX
iD1

�i .f
target

i � f model
i /2

where �i is a standardized weight inversely proportional to the target frequency of
the multiple point event.

Figure 3 shows a resulting realization. Although the visual similarity with the
training image could be questioned, the reproduction of statistics is deemed satis-
factory (Fig. 4). Notice that the scale is logarithmic in both axes to exaggerate the
dispersion of low frequency configurations.

Time reductions are illustrated in Table 1, where the speed up is presented in
comparison to the implementation through a single process for each pattern size.

Time reductions are significant and close to the expected speed up. This suggests
that the parallel implementation with further levels of processes could achieve high
speeds and make simulated annealing a valid alternative to current multiple point
statistics simulation methods. Furthermore, one of the main difficulties in SA is
setting the appropriate parameters in the annealing schedule. Parallel computing
could be use to perform test runs, tune the parameters of the annealing schedule and
evaluate convergence. Once the parameters are defined, multiple realizations could
be run independently in different processes.

Many implementation decisions were driven by assessing the potential of paral-
lelization for geostatistical methods. This first step has shown that it is possible to
implement iterative methods in parallel processes and particularly, use the specula-
tive paradigm to structure the decision making process and gain in time reduction.

Many possible avenues of research open with these results and should be
explored in the future. Industrial applications of geostatistical simulation could
see the benefit of faster construction of numerical models with advanced tools.
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Fig. 3 Realization obtained by simulated annealing with the parallel computing implementation,
considering a multiple point statistics from a pattern of 3 by 3 nodes
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point frequencies of the realization obtained by simulated annealing, for data events in a 3 by 3
nodes pattern
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Table 1 Speed up of the parallel implementation for the equal
weighting and inversely proportional weighting

Equal weighting
Inversely proportional
weighting

Pattern size Pattern size

Processes 2 � 2 3 � 3 4 � 4 2 � 2 3 � 3 4 � 4

1 1.00 1.00 1.00 1.00 1.00 1.00
3 1.68 1.70 1.89 1.87 2.00 1.88
7 2.63 2.60 2.78 3.42 2.89 2.85

5 Conclusions

Simulated annealing provides a powerful framework for imposing multiple con-
straints into numerical modeling of variables in the Geosciences. New ways to
improve the geological characterization are based on the reproduction of pattern
statistics. Although many methods have been explored to impose these multiple
point statistics, most of them do not offer the flexibility of simulated annealing.
Two important practical difficulties cloud its use: (1) the definition of the annealing
schedule is generally difficult and some tuning of the parameters is required, partic-
ularly regarding the rate to reduce the temperature and its initial value, and (2) the
intensive CPU use due to its iterative nature implies long run times that may make
the method impractical.

Parallel computation provides the tools to speed up processes by configuring
the numerical steps such that some time gain can be achieved. Speculative com-
puting, in particular, uses the fact that a decision that will condition all subsequent
calculations must be made, which can lead to two possible answers. Calculations
conditioned to the possible answers are done prior to knowing the actual decision,
therefore, speeding up the overall construction of the model. These speculations can
be done in several levels, organized as a decision tree in the algorithm, increasing
even more the time gain for the computation of the final model. We have shown
some simple implementations of SA imposing multiple point statistics in regular
square patterns to reproduce features of a training image. Results are consistent
with the speed up expected in theory and SA could reproduce with a reasonable de-
gree of precision, the required statistics. This opens a new avenue of research where
parallel computing is used for the construction of geostatistical models.
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Application of Copulas in Geostatistics

Claus P. Haslauer, Jing Li, and András Bárdossy

Abstract This paper demonstrates how empirical copulas can be used to describe
and model spatial dependence structures of real-world environmental datasets in the
purest form and how such a copula model can be employed as the underlying struc-
ture for interpolation and associated uncertainty estimates.

Using copulas, the dependence of multivariate distributions is modelled by the
joint cumulative distribution of the variables using uniform marginal distribution
functions. The uniform marginal distributions are the effect of transforming the
marginal distributions monotonically by using the ranks of the variables. Due to
the uniform marginal distributions, copulas express the dependence structure of the
variables independent of the variables’ marginal distributions which means that cop-
ulas display interdependence between variables in its purest form. This property also
means that marginal distributions of the original data have no influence on the spa-
tial dependence structure and can not “cover up” parts of the spatial dependence
structure. Additionally, differences in the degree of dependence between different
quantiles of the variables are readily identified by the shape of the contours of an
empirical copula density.

Regarding the quantification of uncertainties, copulas offer a significant advan-
tage: the full distribution function of the interpolated parameter at every interpola-
tion point is available. The magnitude of uncertainty does not depend on the density
of the observation network only, but also on the magnitude of the measurements as
well as on the gradient of the magnitude of the measurements. That means for the
same configuration of the observation network, interpolating two events with very
similar marginal distribution, the confidence intervals look significantly different for
both events.
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1 Introduction

Generally, the workflow of spatial analysis is to first evaluate the spatial dependence
structure of measured data. In a second step, a stochastic model is employed to
mathematically describe the empirical spatial dependence structure. This theoretical
model is subsequently used for interpolation.

Different disadvantages of traditional geostatistical methods have been rec-
ognized in the past, most notably the fact that different percentile values can
have different degrees of dependence which cannot be expressed with traditional
Gaussian two-point geostatistics (Journel and Alabert, 1989). Additionally, several
assumptions have to be made when dealing with spatially distributed data. The most
basic assumption of any geostatistical analysis is that the set of measured parame-
ter values z1; : : : ; zn is a realization of a random function. At every location there
are never enough measurements to determine the characteristics of the distribution
function of the parameter, and hence the treatment of measurements as realizations
of a random function is necessary. This random function is assumed to be identical
at every location.

Furthermore, in traditional geostatistics, second order stationarity is assumed,
implying that the two-point covariance exists and depends only on the separation
vector h of those two points. The assumptions when using copulas for spatial analy-
sis are more restrictive than when using traditional geostatistics, because when using
copulas strong stationarity is assumed, the multivariate distribution function is taken
to be translation invariant.

These more restrictive assumptions require more effort but also offer advantages:

1. The marginal distribution, which might distort the dependence structure is fil-
tered out using copulas. Thus the pure dependence structure of spatially dis-
tributed data can be obtained, and this structure is identical, no matter what the
marginal distributions of the measured data might be. Frequently applied data
transformations (e.g. taking the natural logarithm) do not influence a copula.

2. Different percentile values can have different degrees of dependence. For exam-
ple, high values might exhibit a strong spatial dependence, low values a weak
spatial dependence, and values of a different quantile range yet another degree of
dependence.

3. At each location where interpolation is carried out, the full conditional distri-
bution function of the interpolated value can be estimated. The shape of this
distribution function is not only dependent on the geometry of the measurement
network, but also on the values of the measurements. These factors allow for an
improved uncertainty quantification of the interpolation.

4. When using copulas as the underlying model for simulation, then values of sim-
ilar magnitude are simulated to be neighbors.

5. A full stochastic model is the backbone for geostatistical analysis with copulas.
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2 Methods

This section explains the steps necessary to analyze spatially distributed data us-
ing copulas, for estimating the parameters of a theoretical copula function, and for
interpolation.

2.1 Using Copulas for Spatial Analysis

Any multivariate distribution F.t1; : : : ; tn/ can be represented with a copula (Sklar,
1959):

F.t1; : : : ; tn/ D C
�
Ft1.t1/; : : : ; Ftn.tn/

�
; (1)

where Fti .ti / represents the i -th one-dimensional marginal distribution of the mul-
tivariate distribution.

Assuming that C is continuous, then the copula density c.u1; : : : ; un/ can be
written as

c.u1; : : : ; un/ D @nC.u1; : : : un/

@u1; : : : @un

: (2)

A bivariate copula expresses a symmetrical dependence with respect to the minor
axis u2 D 1 � u1 of the unit square, if

c.u1; u2/ D c.1 � u1; 1 � u2/: (3)

A Gaussian copula is fully symmetrical; a family of non-Gaussian copulas rep-
resenting non-symmetrical dependence was introduced in Bárdossy (2006) and
Bárdossy and Li (2008).

Empirical copulas can be used to describe the spatial variability. For this purpose,
several assumptions are required (Bárdossy and Li, 2008):

1. Similar to the variogram- or covariance functions, the bivariate spatial copula of
the random variable Z.x/ corresponding to two locations separated by the vector
h is assumed to be only dependent on h. The marginal distribution of Z.x/ is
supposed to be the same everywhere.

2. The parameterization of the copula should enable any n-dimensional copula cor-
responding to any selected n points to reflect their spatial configurations.

3. The parameterization of the copula should allow arbitrarily strong dependence.

Gaussian copulas and certain non-Gaussian copulas (as shown by Bárdossy and
Li (2008)) fulfill these conditions. Further details on the theory of copulas can be
found in the books by Joe (1997) and Nelsen (1999). Details on using copulas with
spatially distributed data are given by Bárdossy (2006).
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2.2 Empirical Bivariate Copulas

Empirical bivariate two-dimensional spatial copulas describe the dependence
structure between random variables independent of marginal distributions. Such
empirical copulas can be evaluated for different directions and different angles
between pairs of points, and they give insights into the form and the quality of
the spatial dependence structure of a field of spatially distributed values. Empirical
bivariate spatial copulas can be assessed from measured data z.x1/; : : : ; z.xn/ by
first calculating the empirical distribution function Fn.z/. Using this distribution
function for any given vector h, the set of pairs S.h/, consisting of distribution
function values corresponding to the parameter at locations X separated by the
vector h, can be calculated:

S.h/ D fFn.z.xi //; Fn.z.xj // j .xi � xj 
 h/ or .xj � xi 
 h/g: (4)

S.h/ is thus a set of points in the unit square. Note that S.h/ is by defini-
tion symmetrical regarding the major axis u1 D u2 of the unit square, namely, if
.u1; u2/ 2 S.h/, then .u2; u1/ 2 S.h/.

Empirical bivariate copula densities for pairs of points separated by �h are no
prerequisite to model a theoretical copula based on measurements! They are a possi-
bility to express and visualize spatial dependence structures. On such density plots,
locations associated with low measurements are plotted close to the origin, and
points where the measured value is high are plotted far from the origin. If the empir-
ical copula density for a certain quantile is high, then there are a lot of pairs of points
separated by the given distance which have the corresponding quantile values. On
Fig. 1, an example of a copula density plot, high copula densities are indicated by
dark shading.

As an alternative to dealing with multiple plots of empirical bivariate copula
densities, two scalar measures can be derived from the empirical copula space:

1. The rank correlation function “Rank” representing the degree of the spatial de-
pendence (Equation 5).

2. A measure for the symmetry of the empirical copula density function represent-
ing for which range of quantiles the density is strongest (“Sym”, Equation 6).
High positive symmetry values indicate strong dependence for high quantiles,
high negative symmetry values indicate strong dependence for low quantiles. A
Gaussian type dependence would have zero symmetry.

Each of these measures is calculated for a given magnitude and/or angle of
anisotropy of the separation vector h. The number of pairs of points for each h
is denoted by n.h/.

Rank.h/ D 1

12 n.h/
�
X

xi�xj�h

�
Fn.z.xi // � 1

2

�
�
�

Fn.z.xj // � 1

2

�
(5)
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Sym.h/ D 1

n .h/
�
X

xi�xj�h

�
Fn.z.xi // � 1

2

�2 �
Fn.z.xj // � 1

2

�
C

C
�

Fn.z.xi // � 1

2

��
Fn.z.xj // � 1

2

�2

(6)

2.3 Parameter Estimation

The parameterization of a copula model for the description of spatial dependence
is not a trivial task. As shown in Section 2.2, the calculation of spatial copulas is
not based on independent samples (as observations are accounted for in a number of
pairs). Hence the parameterization of a copula model on empirical copulas is not ap-
propriate, and instead Bárdossy and Li (2008) proposed a more rigorous approach.
In this approach, the observation set is divided into subsets of arbitrary sizes. The
likelihood of the parameter vector  for each subset is estimated by the copula den-
sity of the observations in this subset. The result is a set of optimal parameters as
given by the maximum likelihood of the product of the individual subsets.

2.4 Interpolation Using Copulas

The typical goal of an interpolation method is to estimate a random variable at un-
sampled locations x0. In Section 3.2, results are discussed using two precipitation
events as examples; this section describes the interpolation algorithm:

1. The observation network consists of n locations x1; : : : ; xn. At each location
there are observations available, z1; : : : ; zn, which are transformed to u1; : : : ; un

by F.zi / D ui .
2. In the neighborhood of a x0, m observation points are selected.
3. The copula density value corresponding to those m locations and their observa-

tion values is calculated: cm.u1; : : : ; um/.
4. For the point x0, for a quantile v, the m C 1 dimensional copula density

cmC1.u1; : : : ; um; v/ is calculated.
5. The density function corresponding to x0 conditioned on the n observations in

the vicinity is calculated:

c�.v/ D c.vk ju1; : : : ; un/ D cnC1.u1; : : : ; un; v/

cn.u1; : : : ; un/
(7)

6. The conditional copula C � is calculated from its density c�.
7. The conditional distribution C � at x0 is transformed back into the space of the

measurement values, where
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Fx.z0/ D P.z.x/ 	 z/ D
D P.U.x0/ 	 Fz.z// D
D C �.Fz.z//: (8)

copula based interpolation offers choices for the estimated value: the summed
observations weighted by the conditional densities, the observed value correspond-
ing to the 50% conditional distribution value (comparable to the median), or the
length of the interval between two quantile as a confidence interval of the estimate
(the length of Q80 � Q20 as a 60% confidence interval).

3 Results

3.1 Analyzing Spatial Dependence Using Copulas

Plots of empirical copula densities are shown for the geological parameter hydraulic
conductivity (Fig. 1a), for the geohydrological parameter pH (Fig. 1b), as well as for
the meteorological parameter precipitation for two precipitation events in the Neckar
catchment in 1982 (Fig. 1c) and in 1992 (Fig. 1d). For the precipitation events, a
monitoring network comprising 950 stations in the German part of the Rhine catch-
ment was available for this study. In all three cases, the empirical copula density
plots are not symmetric as defined in Equation (3), and hence the spatial depen-
dence structure does not follow a Gaussian distribution function. It is also shown,
that for the given process, the dependence structure is different for different quantile
values, indicated by the degree of shading in different areas in the unit square.

The shape of the empirical copula density functions is very similar for both
events, whereas traditional variograms are quite different, since the marginal dis-
tributions for the two events are different. This might be an indication that empirical
copulas represent the physical structure of a given process, without the influence of
marginal distribution functions.

3.2 Interpolation and Associated Uncertainty Estimates

In this section, the two precipitation events for which an empirical bivariate copula
was shown on Fig. 1c and d are used to illustrate results of spatial interpolation and
uncertainty estimates using copulas. For each event the same theoretical copula was
fitted using the method described in Section 2.3.

This theoretical copula was subsequently used to interpolate mean precipitation
intensities, shown on Fig. 2a and b. Estimates were interpolated on a equidistantly
spaced grid for a total of 32,000 points. Each interpolation estimate was conditioned
on 12 surrounding measurement values. The advantage of being able to calculate
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Fig. 1 Empirical Copula density plots for: (a) a hydraulic conductivity field along Borden’s cross-
section AA (Sudicky, 1986) for 0.05 m vertical spacing, (b) for the groundwater quality parameter
pH based on the monitoring network in the province of Baden-Württemberg, Germany (Bárdossy,
2006), and (c), (d) two precipitation events in the river Necker catchment, based on 950 stations,
for a separation of 5 km

the full conditional distribution function of the estimate at each interpolation point
is illustrated on Fig. 2c and d which show the length of the 60% confidence interval,
calculated by subtracting the 20% quantile from the 80% quantile.

Generally, in areas where the measured precipitation is high (as indicated by
the shading of the dots representing the measurement locations) the uncertainty is
low, and vice versa. Additionally, the copula method takes the homogeneity of the
interpolated field into account. In areas where the gradient of the measurements
is high, also the uncertainty of the interpolation is high. The circle shaped area of
high uncertainty to the east of the bow of the river Neckar in 1992 corresponds
to a confined area of high precipitation intensities, whereas the other area of high
precipitation intensities in 1992, to the west of the river Neckar is a more continuous,
larger area, and hence the uncertainties of the interpolation are smaller in that area.
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Fig. 2 Maps of precipitation in the Neckar (blue line) catchment (black line). Measurement loca-
tions of precipitation intensity are shown as coloured dots, the colour representing the magnitude
of the precipitation intensity. Precipitation intensities are plotted for an event in 1982 on panel (a),
for an event in 1992 on panel (b). The corresponding 60% confidence intervals are shown on panels
(c) and (d). Panels (e) and (f) show the Ordinary Kriging standard errors (“OK StdEr”)

It is important to stress the fact that the shape of the contours, for the same ob-
servation network at two different events, is different when using copulas. Figure 3e
and 3.1 show Ordinary Kriging prediction standard error maps for the two events.
The shadings of both maps have a very similar geometry due to a nearly identical
semivariogram. However, the shape of the confidence intervals of interpolation us-
ing copulas is significantly different – despite the fact that the same parameters for
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Fig. 2 (continued)

the theoretical copula were used for both events. The “bulls eyes effect” is much
less pronounced when using copulas compared to Kriging, but the effect is still rec-
ognizable: Near a location where a measurement is available the uncertainty of the
interpolated value is small, however it could be that this location happens to be in
an area where the gradient of the measurement values is high, causing large uncer-
tainties, and resulting in an overall medium-range uncertainty.
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4 Conclusion

Copulas offer the possibility to describe and model non-Gaussian dependence
structures. Such non-Gaussian dependence structures become evident when ana-
lyzing real world datasets with empirical bivariate copulas and the associated scalar
measures “Rank” and “Symmetry” presented in this paper. A complete stochastic
model is the backbone of the copula based geostatistical workflow whose use for
interpolation was demonstrated. The same model could be used for simulation pur-
poses. Compared to traditional geostatistical tools, the copula approach takes both
the spatial configuration and the magnitude of the measurements into consideration
when modelling the spatial dependence structure. The full estimation uncertainty
(e.g. confidence intervals) can be obtained, because using copulas provides the
full conditional distribution, which can prove to be beneficial for risk assessment.
The possibility to express heterogeneous uncertainty can be important for value-
dependent observation strategies, for example in observation network design.
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Bárdossy A, Li J (2008) Geostatistical interpolation using copulas. Water Resour Res 44(W07412)
doi:10.1029/2007WR006115

Joe H (1997) Multivariate models and dependence concepts. Number 73 in Monographs on
Statistics and Applied Probability. Chapman & Hall/CRC, London

Journel AG, Alabert F (1989) Non-gaussian data expansion in the earth science. Terra Nova 1
Nelsen RB An introduction to copulas. Lecture notes in statistics volume 139 Springer, New York
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1 Introduction

Today, most geostatistical methods rely on a global variogram model. The variogram
allows to build effective estimation (kriging) and simulation operators by catching
the mean spatial correlation inherent to a data set. These methods commonly assume
stationarity for the underlying random function. This assumption is too constraining
in numerous applications, as soon as the target area becomes large or involves com-
plex structural patterns. Applying stationary approaches in such cases, even locally
with a moving neighbourhood, can lead to unsuitable estimates and non station-
ary approaches are preferable to some extent, provided that one is ready to accept
to loose some control on the underlying structural model. Furthermore, even non
stationary algorithms hardly handle prior knowledge nor reproduce precisely com-
plex structures, such as local anisotropies, spatially varying small-scale structures
or heterogeneity, etc.

The M-GS methodology is suitable for processing data in a wide range of such
non stationary contexts.

2 Conventional Variogram-Based Models

2.1 Global Approach

The majority of geostatistical models that are daily implemented in the industry
are variogram-based models – see Dubrule (2003), for example. They are used for
processing spatially distributed data, especially in natural resources domains such as
mines, petroleum and environment. They are mainly devoted to mapping, filtering
and uncertainty management applications.

Variogram-based models rely generally on the modelling of a statistical function,
the experimental variogram, which depicts the mean spatial correlation between
data samples. When data can be considered as the result of a stationary random
process, the variogram model is fitted directly to the experimental variogram, which
is supposed to be representative of the whole data field or of a well-separated area
of the data field. Based on the variogram model, effective estimation (kriging) and
simulation operators are built and applied to the data set.

In the second-order stationary case, the variogram-based approach is rather
intuitive as some parameters of the model may be related directly to the ob-
servation of the data themselves. Non-stationary models, such as IRF-k models
(Matheron, 1971; Chilès and Delfiner 1999), are more intricate and lead to less
control on the underlying structural model. It justifies the common strategy of trans-
formation for working in a stationary framework as in the universal kriging case,
despite the observed bias of the variogram of the residuals (Pardo-Igúzquiza and
Dowd, 1998).
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2.2 Variogram-Based Model Parameters

2.2.1 Structural Parameters

In the stationary case, variogram modelling is driven through a two-steps phase
called structural analysis. The first step consists of interpreting the experimental
variogram computed from the data. This step is rather likely to involve the user’s
knowledge about their data set. Based on the first step conclusions, the second step
aims at fitting a single or a set of parameterized functions to the experimental vari-
ogram, thus defining the variogram model. Broadly speaking, structural parameters
are the parameters that are related to the variogram model such as range(s), sill(s),
anisotropy coefficient(s), etc.

2.2.2 Computational Parameters

In order to run variogram-based estimation and simulation algorithms, some com-
putational parameters must be tuned. They are mainly tied to the moving neigh-
bourhood used for selecting data points surrounding the target point (the point to be
estimated or simulated). In practice, the computational parameters are often utilized
for managing processing times, specifically when dealing with large data sets, or for
adjusting the neighbourhood according to the samples pattern.

2.3 Limits

Variogram-based estimation and simulation results are sensitive to structural and
computational parameters. Although sensitivity may be highly variable depending
on some data characteristics, such as sampling density or variable continuity for
example, it is usually a factor. This point is often not appreciated while running
variogram-based models.

More specifically, sensitivity to the parameters can be very problematic when
faced with complex structural environment or specific acquisition patterns. In such
cases, global stationary models may correspond to local data characteristics and can
lead to unexpected poor results.
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3 M-GS (Moving-GeoStatistics) Models

3.1 Principle

M-GS methodology is fully dedicated to the local optimization of parameters
involved in variogram-based models. M-GS considers the structural and compu-
tational parameters as a set of dependant parameters to be spatially optimized. The
optimization process, which may be guided by objective or subjective criteria, is car-
ried out during a M-structural analysis phase that leads to a set of spatially variable
structural and computational parameters.

3.2 M-Parameters

M-parameters are locally optimized versions of structural and computational pa-
rameters of variogram-based models. They vary spatially over the data field. In the
past, non-stationarity has been explored for several parameters, such as anisotropy,
especially in the environment domain (see Caetano et al., 2004 for example). When
dealing with these models the major challenge is to get stable variations of the pa-
rameters and as far as possible to automate the parameter determination process.

Several approaches are possible to compute M-parameters. A simple one merely
consists in computing local variogram parameters in adjacent areas of the data field
and then to smooth the obtained parameters in order to make them available at every
target grid node. More sophisticated algorithms currently under development are
based on automatic validation techniques. They simplify the determination of the
M-parameters and lead to promising results on various real cases that have been
tested.

One example of results obtained with an automatic validation approach is pre-
sented in Fig. 1, which displays a 2D seismic data set (Fig. 1a) and one associated
M-parameter map corresponding to the range variations of an isotropic spherical
model (Fig. 1b). An interpolation error criterion has been used for determining the
optimal parameters. The north-eastern part of the data field appears to be less struc-
tured (range smaller) than the rest of the data field. The M-parameters are used to
map the seismic data by ordinary kriging (Fig. 1c).

It should be noted that the M-structural analysis process involves some depen-
dency relationship between several parameters. For example, in the second-order
stationary case, the size of the moving neighbourhood in one direction is related
linearly to the range of the largest scale structure in that direction. More complex
relationships can be introduced into the optimization process.
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Fig. 1 Seismic data mapping by kriging: (a) data set, (b) spatially varying range, (c) M-GS map-
ping (d) conventional mapping by global kriging

3.3 Advantages

M-GS ensures a better correspondence between the geostatistical model and the
data. As a consequence, spatial estimation and simulation results are more precise
than those obtained with conventional variogram-based models. Regarding the pre-
vious seismic data mapping example, the improvement has been quantified through
a cross-validation process. The M-GS map is on average 20% more precise than
the conventional kriging map (Fig. 1d) in the north-eastern part of the field. In other
words the estimation errors have been reduced by 20%.

Moreover, M-GS opens the way to advanced geostatistical mapping (even simu-
lating) practices by allowing the user to introduce his structural a priori knowledge
about the data field directly into the spatial estimation model. In that way geosta-
tistical mapping is no longer a variogram guided process aiming at generating the
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Fig. 2 M-GS guided mapping: (a) M-GS mapping guided by channel interpretation, (b) conven-
tional mapping by global kriging

most probable map, but a human process aiming at generating the most probable
desired map. This last case is illustrated in Fig. 2. Channel information, that could
result from subjective interpretation, is translated in terms of M-parameters and then
introduced into the kriging model for mapping 25 depth data samples leading to a
channel-driven map (Fig. 2a) to be compared with a conventional global approach
map (Fig. 2b). The former presents a greater continuity for the channel (red arrow)
than the conventionally-derived map which displays several individual depressions.

4 M-GS Application to Bathymetric Mapping

4.1 Context

The availability of accurate seafloor estimates is essential for numerous oceano-
graphic projects, including hydrographic, oceanographic and biological models,
sedimentary processes, seismic interpretation of buried channels or canyons, etc.
The seafloor usually presents strong non stationarity and complex structures, such
as small channels with varying orientations, spatially varying measurement errors,
local heterogeneities for coastal areas, or deep canyons within general gentle slope
for continental margins.

Conventional variogram-based models often fail to produce consistent maps
within such complex structural environment. More advanced models, such as M-GS
models, can be applied advantageously.

4.2 Data Set Description

Marenne-Oléron (West of France) is a semi-enclosed Bay, and the first oyster farm-
ing zone in Europe. Shellfish culture activity induces silting on large intertidal mud
and sandy-mud flats. Several channels incise the inlet between the coast line and
Oléron Island. They are mainly controlled by strong tidal currents (up to 1.4 knots
during the spring tides) with a residual ebb delta offshore the SW channel. The data
set used in this work consists in more than 2,000 sample points, organized along
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Fig. 3 Marenne-Oléron data set: (a) data set, (b) target area

lines from West to East (Fig. 3a). Samples are separated by few meters within lines.
The (North-South) gap between two lines is about 100 m. Data were acquired with a
single beam echoes sounder for the monitoring of the evolution of the muddy layer.

A target area (Figs. 3b and 4) is selected for illustrating conventional and M-GS
mapping result differences.

4.3 Conventional Variogram-Based Mapping

For kriging purposes, an experimental variogram is computed within the target area.
An anisotropic spherical model (range 800 m along X direction, 1,200 m along
Y direction) is fitted to the experimental variogram (Fig. 5) and used to map the
depth data.

The resulting bathymetric map is shown in Fig. 6. Major structures have been
well imaged. However when looking into detail, the map contains some artefacts on
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Fig. 4 Target area

Fig. 5 Global variogram modeling

the walls of the channels which are mainly due to the line-oriented organization of
the data within strongly anisotropic areas. Moreover, one micro-channel (red arrow),
which is interpretable on the original data set, has not been reproduced at all.

Therefore, a more refined model is needed to reduce the artefacts and to image
correctly the interpreted micro-channel.
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Fig. 6 Conventional mapping results

4.4 M-GS Mapping

The M-GS methodology enables the determination of locally optimized structural
and computational parameters. For the current application, a specific emphasis is put
on the range, the anisotropy and the related orientation of a generic spherical model.
Firstly parameters are optimized during a M-structural analysis step, leading to sev-
eral M-parameters maps. One resulting M-parameter map is shown in Fig. 7a. This
map illustrates the spatial variations of the shortest axes of the anisotropy ellipsoid.
Afterwards prior knowledge is integrated into the model: additional information re-
garding the interpreted micro-channel is introduced into the M-parameter maps. The
previous M-range map is transformed as shown in Fig. 7b.

Finally the M-parameters are used to estimate the bathymetry. Mapping results
are displayed in Fig. 8. The artefacts identified on the conventional map are no
longer visible and the interpreted micro-channel is imaged. In this case it is evi-
dent that the M-GS map is of better quality than the conventional map.
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Fig. 7 Short range map: (a) short range map without micro-channel interpretation, (b) short range
map with micro-channel interpretation

Fig. 8 M-GS mapping results
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5 Conclusion

The popularity of stationary variogram-based models is mainly explained by the
easy interpretation which is made of the involved parameters. In particular, some
structural parameters can be directly linked to the observation of the structural
properties of the data. Advanced methodologies, which allow management of spa-
tial variations in these parameters, increase the accuracy of variogram-based model
results, especially when processing large data sets and/or areas with complex struc-
tural patterns.

In this direction, the M-GS methodology, which is dedicated to the optimization
of variogram-based models parameters, has proved to be promising when applied
to bathymetric or seismic interpretation data in a complex structural environment.
It could be useful too for mapping aquifers’ bottom architecture, for example. The
adequacy of the M-GS methodology in the framework of bathymetric mapping for
Marenne-Oléron coast (West of France) is obvious. Moreover such a methodology
could be used to input different local structures into a general model with the aim of
a regional synthesis.
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soil, 247, 251

Population-weighted variogram, 109, 111, 113
Precipitation, 27–38, 41–43, 45–47, 49–51, 56,

67, 78, 267–270, 335, 399–402
Precision farming, 205–277
Principal components analysis (PCA), 268
Public health, 89–97, 107, 112

R
Rainfall. See Precipitation
Random function model, 212, 215
Regression

geographically weighted, 28
moving window, 28
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Regularization, 110, 112, 281, 283
Remote sensing, 279, 284, 292
River aquifer, 127–136
Rubber tree, 255–163

S
Second-order analysis, 99–106
Semivariogram. See Variogram
Sewage outfall, 199
Simulated annealing, 346, 383–393
Simulation

conditional, 130, 211–217, 234
direct sequential, 79, 82, 145, 162, 170,

176, 187–190, 197, 300–301, 304,
314

multiple point, 385
p-field, 108, 113, 115
sequential Gaussian, 42, 48, 189, 237
sequential indicator, 189, 212, 213, 301
stochastic, 67, 77–88, 100, 102, 105,

121–126, 139, 154, 161, 163,
174, 175, 181–184, 188, 189, 191,
192, 194, 196, 211–217, 295, 296,
301–305, 346, 353, 384, 396, 404

turning bands, 378
Single normal equation simulation algorithm,

384
Soil science, 297
Space-time analysis, 13–24, 66, 67, 73, 74, 82,

100–101, 173–184, 187, 188, 196,
197

Splines, thin plate, 31
Stepwise conditional transform (SCT),

234–236
Super-resolution mapping, 279, 281,

282, 292
Support, 15, 22, 51, 74, 90–92, 97, 107,

109–112, 116–118, 126, 158, 171,
184, 215, 217, 245, 260, 266,

268, 279–293, 305, 323, 330,
345–358, 379

Support vector machines, 345–358

T
Tau model, 77, 79, 81, 83–87
Training image, 140, 142–144, 146, 147, 162,

280–285, 292, 293, 384, 388–392
Transformation techniques, 231–241
Transition-probability geostatistics, 130
Transmissivity fields, 211–217
Trend, temporal, 15–19, 24. See also Drift

U
Uncertainty, local, 296, 305
Upscaling, 91, 92, 280

V
Variogram

cross, 31, 34, 135, 237, 247, 249–251
experimental, 5, 9, 10, 59, 248, 406, 411
local, 28, 31, 33, 35–38, 408
model, 10, 15, 19, 20, 22, 28, 31–34, 37,

111, 112, 154, 164, 168, 180, 205,
268, 406, 407, 412

point support, 268

W
Weather data, 267–270
Weibull probability density, 69
Wildlife, 1–10

Y
Yield data, 266–277


	geoENV VII – Geostatisticsfor EnvironmentalApplications
	Foreword
	Contents
	Contributors
	Part I Biology
	Part II Climate
	Part III Health
	Part IV Hydrology
	Part V Pollution
	Part VI Soils and Agriculture
	Part VII Theory
	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




