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PREFACE 

According to Sir David Cox, the randomised controlled clinical trial 
is perhaps the outstanding contribution of statistics to 20th century 
medical research. Nowadays about 8000 such trials are undertaken 
annually in all areas of medicine from the treatment of acne to the 
prevention of cancer. Although the vast majority of these trials take 
place away from the glare of public interest, some deal with issues 
that are controversial enough to make even the popular press; an 
obvious example is the use of AZT for the treatment of AIDS. 

There are many excellent books available which give comprehen- 
sive accounts of how clinical trials should be carried out and organ- 
ised. Our aim is somewhat different; we attempt to give relatively 
concise descriptions of the more statistical aspects of the design and 
analysis of clinical trials, particularly those methods developed over 
the last decade or so. Topics discussed in this text include randomi- 
sation, interim analyses, sample size determination, the analysis of 
longitudinal data, Bayesian methods, survival analysis and meta- 
analysis. Many examples are included alongside some of the neces- 
sary technical material, the more difficult parts of which are confined 
to tables. An Appendix gives details of relevant software. We hope 
that our book will be useful to medical statisticians and others faced 
with the often difficult problems of designing and analysing clinical 
trials. 

Our thanks are due to Dr Sophia Rabe-Hesketh and Dr Sabine 
Landau for reading the text and making many helpful suggestions, 
to Professor Elizabeth Kuipers for allowing us to use the economic 
data from her CBT trial in Chapter 4 and to Mrs Harriet Meteyard 
for help in compiling the references. 

Brian S. Everitt and Andrew Pickles 
London, 1999 
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CHAPTER 1 

An Introduction to  
Clinical Trials 

1.1. INTRODUCTION 

Avicenna, an Arabian physician and philospher (98&1037), in his 
encyclopedic Canon of Medicine, set down seven rules to  evaluate 
the effect of drugs on diseases. He suggested that a remedy should 
be used in its natural state, with uncomplicated disease, and should 
be observed in two ‘contrary types of disease.’ His Canon also sug- 
gested that the time of action and reproducibility of the treatment 
effect should be studied (Crombie, 1952; Meinert, 1986). 

But for several centuries Avicenna’s advice appears to have been 
largely ignored, with most ideas affecting choice of treatment depend- 
ing largely on serendipity rather then planned experiments. Only in 
recent years (although see next section) has it become widely recog- 
nised that properly conducted clinical trials, which follow the prin- 
ciple of scientific experimentation provide the only reliable basis for 
evaluating the efficacy and safety of new treatments. 

And just what constitutes a clinical trial? There are several pos- 
sible definitions, but for our purposes the term will be used for any 
form of planned experiment designed to assess the most appropri- 
ate treatment of future patients with a particular medical condition, 
where the outcome in a group of patients treated with the test treat- 
ment are compared with those observed in a similar group of pa- 
tients receiving a control treatment, and patients in both groups are 

1 



2 Design and Analysis of Clinical Trials 

enrolled, treated and followed over the same time period. The groups 
may be established through randomisation or some other method of 
assignment. The outcome measure may be the result of a laboratory 
test, a quality of life assessment, a rating of some characteristic or, 
in some cases, the death of a patient. 

As a consequence of this somewhat restricted definition, compar- 
ative studies involving animals, or studies that are carried out in vitro 
using biological substances from man do not qualify as clinical trials. 
The definition also rules out detailed consideration of investigations 
involving historical controls. 

1.2. A BRIEF HISTORY OF CLINICAL 
TRIALS 

It is almost de rigeur in books on clinical trials to include a section 
tracing their history. Our book is no exception! Table 1.1 (taken 
from Meinert, 1986) lists some important dates in the development 
of such trials, the first of which relates to the often described exper- 
iment of James Lind carried out in 1747 while at sea on board the 
Salisbury. Bradford Hill (1962) gives the following quotation from 
Lind’s account. 

On the 20th May 1747, I took twelve patients in the scurvy, on board 
the Salisbury at sea. Their cases were as similar as I could have them. They 
all in general had putrid gums, the spots and lassitude, with weakness of 
their knees. They lay together in one place, being a proper apartment for 
the sick in the fore-hold; and had one diet in common to all, viz. water- 
gruel sweetened with sugar in the morning; fresh mutton broth often times 
for dinner; at other times puddings, boiled biscuit with sugar etc. And for 
supper, barley and raisins, rice and currants, sago and wine, or the like. 
Two of these were ordered each a quart of cider a day. Two others took 
twenty-five gutts of elixir vitriol three times a day, upon an empty stomach; 
using a gargle strongly acidulated with it for their mouths. Two others took 
two spoonfuls of vinegar three times a day, upon an empty stomach: having 
their gruels and their other food well acidulated with it, as also the gargle 
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Table 1.1. Historical Events in the Development of Clinical Trials. 

3 

Date Author Event 

1747 
1799 
1800 
1863 
1923 

1931 

1931 

1937 

1944 

1946 

1962 
1962 

1966 

1967 

1979 

1980 

Lind 
Haygarth 
Waterhouse 
Gull 
Fisher 

- 

Amberson 

- 

~ 

- 

Hill 
Kefauver 
and Harris 
- 

Chalmers 

- 

- 

Experiment with untreated control group (Lind, 1753) 
Use of sham procedure (Haygarth, 1800) 
U.S.-based smallpox trial (Waterhouse, 1800, 1802) 
Use of placebo treatment (Sutton, 1865) 
Application of randomisation to experimentation 
(Fisher and MacKenzie. 1923) 
Special committee on clinical trial created by the 
Medical Research Council of Great Britain 
(Medical Research Council, 1931) 
Random allocation of treatment to groups of 
patients (Amberson et al., 1931) 
Start of NIH grant support with creation of the 
National Cancer Institute (National Institutes of 
Health. 1981b) 
Publication of multicenter trial on treatment for 
common cold (Patulin Clinical Trials Committee, 1944) 
Promulgation of Nurernberg Code for Human 
Experimentation (Curran and Shapiro, 1970) 
Publication of book on clinical trials (Hill, 1962) 
Amendments to the Food, Drug and Cosmetic Act 
of 1938 (United States Congress, 1962) 
Publication of U.S. Public Health Service 
regulations leading to creation of Institutional 
Review Boards for research involving humans 
(Levine, 1981) 
Structure for separating the treatment monitoring 
and treatment administration process 
(Coronary Drug Project Research Group, 1973a) 
Establishment of Society for Clinical Trials 
(Society for Clinical Trials, Inc., 1980) 
First issue of Controlled Clinical Trials 

(Taken with permission from Meinert, 1986.) 
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for their mouths. Two of the worst patients, with the tendons in the ham 
rigid (a symptom none of the rest had) were put under a course of sea-water. 
Of this they drank half a pint every day, and sometimes more or less as 
it operated, by way of a gentle physic. Two others had each two oranges 
and one lemon given them every day. These they eat with greediness, 
at different times, upon an empty stomach. They continued but six days 
under this course, having consumed the quantity that could be spared. The 
two remaining patients, took the bigness of a nutmeg three times a day of 
an electuary recommended by a hospital-surgeon, made of garlic, mustard- 
feed, rad. raphan. balsam of Peru, and gum myrr; using for common drink 
barley water well acidulated with tamarinds; by a decoction of which, with 
the addition of cremor tartar, they were greatly purged three or four times 
during the course. The consequence was, that the most sudden and visible 
good effects were perceived from the use of the oranges and lemons; one of 
those who had taken them, being at the end of six days fit for duty. The 
spots mere not indeed at that time quite off his body, nor his gums sound; 
but without any other medicine, than a gargle of elixir vitriol, he became 
quite healthy before we came into Plymouth. which was OR the 16th June. 
The other was the best recovered of any in his condition; and being now 
deemed pretty well, was appointed nurse to the rest of the sick. 

In spite of the relative clear-cut nature of his findings, Lind still 
advised that the best treatment for scurvy involved placing stricken 
patients in ‘pure dry air.’ No doubt the reluctance t o  accept oranges 
and lemons as treatment for the disease had something t o  do  with 
their expense compared t o  the ‘dry air’ treatment. In fact it was a 
further 40 years before the British Navy supported lemon juice for 
the crews of its ships at sea; once again the question of cost quickly 
became a n  issue with lemons being substituted by limes, condemming 
the British sailor t o  be referred to for the next two hundred years as 
‘limeys’. 

Most of the early experiments involved arbitrary, nonsystematic 
schemes for assigning patients to treatments, such as that described 
by Lind. The concept of randomisation a s  a method for treatment 
assignment was first introduced by Fisher and the first trial with 
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a properly randomised control group was for streptomycin in the 
treatment of pulmonary tuberculosis (see Medical Research Council, 
1948, and Armitage, 1983). But not all clinicians were convinced 
of the need for such trials - the following is taken from a letter 
published in a medical journal of the day, attacking a proposed trial 
for the treatment of depression: 

There is no psychiatric illness in which bedside knowledge and long 
clincal experience pays better dividends; and we are never going to learn 
about how to treat depressions properly from double blind sampling in an 
MRC statistician’s office. 

Since World War 11, the clinical triaI has evolved into a standard 
procedure in the evaluation of new drugs. Its features include the use 
of a control group of patients that do not receive the experimental 
treatment, the random allocation of patients to the experimental or 
control group, and the use of blind or masked assessment so that 
neither the researchers nor the patients know which patients are in 
either group at the time the study is conducted. The clinical trial 
nicely illustrates the desire of modern democratic society to justify its 
medical choices on the basis of the objectivity inherent in statistical 
and quantitative data. 

1.3. TYPES OF CLINICAL TRIAL 

Clinical trials can take a variety of different forms. All however 
are prospective with observations being made over a period of time 
after treatment allocation. Perhaps the most common design for 
a clinica.1 trial is the fixed sample size parallel groups design with 
random allocation of patients to treatment, rather than some larger 
randomisation unit such as famiIy, hospital, ward, community, etc. 
One problem with such a design occurs when patients vary so much 
in their initial disease state and in their response t.0 therapy that 
large numbers of patients may be needed to estimate reliably t.he 
magnitude of any treatment difference. A more precise treatment 
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comparison might be achieved by using a crowover design in which 
each patient receives more than one treatment. A simple example is 
the 2x2 cross-over design in which one group of patients receive 
two treatments, A and B, in the order AB, another group in the 
order BA, with patients being randomly allocated to  the two groups. 
Clearly such a design is only suitable for chronic conditions in which 
there is the limited objective of studying the patient’s response to 
relatively short periods of therapy. The design and analysis of cross- 
over trials is more than adequately dealt with in Jones and Kenward 
(1989) and Senn (1993), and so will not be considered in any detail in 
this text. 

The majority of randomised, placebo-controlled clinical trials 
have focussed on one drug at a time although this does not match 
up with clinical practice where it is rarely sufficient to consider only 
a single treatment for a condition. Questions about the effects of 
combinations of treatments can never be resolved by the simple par- 
allel groups design in which an active treatment is compared with 
a placebo; consequently, some investigators have proposed factorial 
designs in which several treatments are considered simultaneously. 
Lubsen and Pocock (1994), for example, describe a trial in which 
patients were simultaneously randomised to each of three active 
treatments or their respective controls in a 2 x 2 x 2 factorial arrange- 
ment. The claim made for the trial is that it provides three answers 
for the price of one (see Collins, 1993). As Lubsen and Pocock point 
out, this claim is only justified if it can safely be assumed that there 
is no evidence of any interaction between the three treatments. Lack 
of interaction implies that the effect of the treatments are additive on 
some particular scale expressing the effects of each treatment. Lub- 
sen and Pocock are sceptical about whether interactions can often be 
dismissed a priori; if they cannot, then factorial designs will require 
larger sample sizes to achieve the same power as a parallel groups 
design. Their conclusion is that such designs are most appropriate 
for assessing therapeutic combinations when possible interactions are 
actually of primary interest. Some consideration of such studies is 
given in Holtzmann (1987) and Berry (1990). 
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The pharmaceutical industry uses a well-established taxonomy 
of clinical trials involving drug therapy, in which the categories can, 
according to Pocock (1983), be described as follows: 

Phase I Trials: Clinical Pharmacoloy and Toxicity 

These first experiments in man are primarily concerned with drug 
safety, not efficacy, and hence are usually performed on healthy, hu- 
man volunteers, often pharmaceutical company employees. The first 
objective is to determine an acceptable single drug dosage (i.e. how 
much drug can be given without causing serious side-effects). Such 
information is often obtained from dose-escalation experiments, 
whereby a volunteer is subjected to increasing doses of the drug ac- 
cording to a predetermined schedule. Phase I will also include studies 
of drug metabolism and bioavailability a.nd later, studies of multiple 
doses will be undertaken to determine appropriate dose schedules for 
use in phase 11. After studies in normal volunteers, the initial trials in 
patients will also be of phase I type. Typically, phase I studies might 
require a total of around 20-80 subjects or patients. The general aim 
of such studies is to provide a relatively clear picture of a drug, but 
one that will require refinement. during phases I1 and 111. 

Phase 11 Trials: Initial Clinical Investigation for Treatment Effect 

These are fairly small-scale investigations into the effectiveness 
and safety of a drug, and require close monitoring of each patient. 
Phase I1 trials can sometimes be set up as a screening process to 
select out those relatively few drugs of genuine potential from the 
larger number of drugs which are inactive or over-toxic: so that the 
chosen drugs may proceed to  phase I11 trials. Seldom will phase I1 
go beyond 100-200 patients on a drug. The primary goals of phase I1 
trials are: 

to identify accurately the patient population that can benefit 
from the drug, 
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0 to verify and estimate the effectiveness of the dosing regimen 
determined in phase I. 

Phase III Trials: Full-scale Evaluation of Treatment 

After a drug is shown t.o be reasonably effective, it is essential 
to compare it with the current standard treatment(s) for the same 
condition in a large trial involving a substantial number of patients. 
To some people t,he term ‘clinical trial’ is synonymous with such a 
full-scale phase 111 trial, which is the most rigorous and extensive 
type of scientific clinical investigation of a new treatment. 

Phase IV Trials: Postmarketing Surveil lance 

After the research programme leading to a drug being approved 
for marketing, there remain substantial enquiries still to be under- 
taken as regards monitoring for adverse effects and additional large- 
scale, long-term studies of morbidity and mortality. 

This book will be largely concerned with phase I11 trials. In or- 
der to accumulate enough patients in a time short enough to make a 
trial viable. many such trials will involve recruiting patients at  more 
than a single centre (for example, a clinic, a hospital, etc.); they 
will be multicentre trials. The principal advantage of carrying out 
a multicentre trial is that patient accrual is much quicker so that 
the trial can be made larger and the planned number of patients can 
be achieved more quickly. The end-result should be that a multicen- 
tre trial reaches more reliable conclusions at a faster rate, so that 
overall progress in the treatment of a given disease is enhanced. 

Recommendations over the appropriate number of centres varies; 
on the one hand, rate of patient acquisition may be completely inade- 
quate when dealing with a smalI number of centres, but with a large 
number (20 or more) potential practical problems (see Table 1.2) 
may quickly outweigh benefits. There also be other problems involv- 
ing the analysas of multi-centre trials. It is likely, for example, that 
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Table 1.2. Potential Problems with Multicentre Trials. 

The planning and administration of any multicentre trial is consid- 
erably more complex than in a single centre, 
Multicentre trials are very expensive to run, 
Ensuring that all centres follow the study protocol may be difficult, 
Consistency of measurements across centres needs very careful 
at tent ion, 
Motivating all participants in a large multicentre trial may be 
difficult, 
Lack of clear leadership may lead to a degeneration in the quality 
of a multicentre trial. 

the true treatment effect will not be identical at each centre. Conse- 
quently there may be some degree of treatment-by-centre interaction 
and various methods have been suggested for dealing with this possi- 
bility. Details are available in Jones et al. (1998), Gould (1998) and 
Senn (1998). 

1.4. ETHICS OF CLINICAL TRIALS 

Since the time of Hippocrates, Western physicians have taken an  
oath in which they swear to  protect their patients ‘from whatever 
is deleterious and mischievous.’ Unfortunately such an oath has not 
managed t o  stop many damaging therapies being given or to  lessen 
the persistence of barbarous practices such as copious blood-letting. 
Even the most powerful members of society were vulnerable t o  the 
ill-informed, if well-intentioned physician, as the following account of 
the treatment of the dying Charles I1 demonstrates: 

At eight o’clock on Monday morning of February 2, 1685, King Charles 
I1 of England was being shaved in his bedroom. With a sudden cry he fell 
backward and had a violent convulsion. He became unconscious, rallied 
once or twice, and after a few days, died. Doctor Scarburgh, one of the 
twelve or fourteen physicians called to treat the stricken king, recorded the 
efforts made to cure the patient. As the first step in treatment the king was 
bled to the extent of a pint from a vein in his right arm. Next his shoulder 
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was cut into and the incised area was ‘cupped’ to  suck out an additional 
eight ounces of blood. After this, the drugging began. An emetic and 
purgative were administered, and soon after a second purgative. This was 
followed by an enema containing antimony, sacred bitters, rock salt, mallow 
leaves, violets, beetroot, camomile flowers, fennel seed, linseed, cinnamon, 
cardamom seed, saphron, cochineal, and aloes. The enema was repeated in 
two hours and a purgative given. The king’s head was shaved and a blister 
raised on his scalp. A sneezing powder of hellebore root was administered 
and also a powder of cowslip flowers ‘to strengthen his brain.’ The cathar- 
tics were repeated at frequent intervals and interspersed with a soothing 
drink composed of barley water, liquorice, and sweet almond. Likewise 
white wine, absinthe, and anise were given, as also were extracts of thistle 
leaves, mint, rue, and angelica. For external treatment a plaster of Bur- 
gundy pitch and pigeon dung was applied to the king’s feet. The bleeding 
and purging continued, and to the medicaments were added melon seeds, 
manna, slippery elm, black cherry water, an extract of flowers of lime, lily 
of the valley, peony, lavender, and dissolved pearls. Later came gentian 
root, nutmeg, quinine and cloves. The king’s condition did not improve, 
indeed it grew worse, and in the emergency forty drops of extract of human 
skull were administered to allay convulsions. A rallying dose of Raleigh’s 
antidote was forced down the king’s throat; this antidote contained an enor- 
mous number of herbs and animal extracts. Finally bezoar stone was given. 
“Then”, said Scarburgh, “Alas! after an ill-fated night his serene majesty’s 
strength seemed exhausted to such a degree that the whole assembly of 
physicians lost all hope and became despondent; still so as not to appear to 
fail in doing their duty in any detail, they brought into play the most active 
cordial.’’ As a sort of grand summary to this pharmaceutical debauch, a 
mixture of Raleigh’s antidote, pearl julep, and ammonia was forced down 
the throat of the dying king. 

Ethical issues in medicine in general and  clinical trials in particu- 
lar are  clearly of great importance and present a potential minefield 
especially for two statisticians more involved and perhaps more inter- 
ested in the pragmatic problems of the  analysis of the data generated 
in such trials. Nonetheless, along with all staff involved in trials, the  
statistician must share in the general responsibility for the ethical 



An Introduction to Clinical Trials 11 

conduct of a trial. And there are in addition some areas of trial con- 
duct where the statistician needs to take particular responsibility for 
ensuring that both the proposed and actual conduct of the trial are 
appropriate. 

A central ethical issue often identified with clinical trials is t,hat 
of randomisation. Randomised controlled trials are now widely used 
in medical research. Two recent examples from the many trials un- 
dertaken each year include: 

0 A multicentre study of a low-protein diet on the progression 

0 A study of immunotherapy for asthma in allergic children (Ad- 
of chronic renal failure in children (Wingen et aZ; 1997), 

kinson Jr. et d., 1997). 

Random allocation gives all subjects the same chance of receiving 
each possible treatment (although see Chapter 2). Randomisation 
serves several purposes; it provides an important method of allocat- 
ing patients to treatments free from personal biases and it ensures a 
firm basis for the application of significance tests and most of the 
rest of the statistical methodology likely to  be used in assessing 
the results of the trial. Most importantly, randomisation distributes 
the effects of concomitant variables, both measured and unobserved 
(and possibly unknown)! in a chance, and therefore, impartial fashion 
amongst the groups to  be compared. In this way, random allocation 
ensures a lack of bias, making the interpretation of an observed group 
difference largely unambiguous - its cause is very likely to be the 
different treatments received by the different groups. 

Unfortunately, however, the idea that patients should be ran- 
domly assigned to treatments is often not appealing to many clini- 
cians nor to  many of the individuals who are prospective participants 
in a trial. The reasons for their concern are not difficult to identify. 
The clinician faced with the responsibility of restoring the patient 
to health and suspecting that any new treatment is likely to have 
advantages over the old, may be unhappy that many patients will 
be receiving, in her view, the less valuable treatment. The patient 
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being recruited for a trial, having been made aware of the randomi- 
sation component, might be troubled by the possibility of receiving 
an ‘inferior’ treatment. 

Few clinicians would argue against, the need for the voluntary 
consent of subjects being asked to take part in a trial, but the amount 
of information given in obtaining such consent might be a matter for 
less agreement. Most clinicians would accept that the subject must 
be allowed to know about the randomisation aspect of the trial, but 
how many would want to go as far as Berry (1993) in advising the 
subject along the following lines? 

I would like you to yart,icipate in a randomised trial. We will in effect 
Rip a coin and give you therapy A if the coin comes up heads and therapy 
B if it comes up tails. Neither you or I will know what therapy you receive 
unless problems develop. [After presenting information about the therapies 
and their possible side-effects:] KO one really knows what therapy is better 
and that is why we’re conducting this trial. However, we have had some 
experience with both therapies, including experience in the current trial. 
The available data suggest that you will live an average of five months 
longer on A than on B. But there is substantial variability in the data, and 
many people who have received B have lived longer than some patients on 
A. If I were you I would prefer A. My probability h a t  you live longer on 
A is 25 per cent. 

Your participation in this trial will help us treat other patients with this 
disease. so I ask you in their name. But if you choose not to participate, 
you will receive whichever therapy you choose, including A or B. 

Berry’s suggestion as to how to inform subjects considering taking 
part in a clinical trial highlights the main ethical problem in such a 
study, namely the possible conflict between trying to ensure that 
each individual patient receives the treatment most beneficial for 
his/her condition, and evaluating competing therapies as efficiently 
as possible so that all future patients might benefit from the superior 
treatment. The great dilemma of clinical trials is that if each patient 
is treated as well as possible, patients as a whole are not. Lellouch 
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and Schwartz (1971) refer to the problem as competition between 
ind iv idual  and collective ethics. Pocock (1983) suggests that each 
clinical trial requires a balance between the two. The prime motiva- 
tion for conducting a trial involves future patients, but individuals 
involved in the trial have to be given as much attention as possible 
without the trial’s validity being destroyed. Naturally the clinician’s 
responsibility to patients during the course of a trial are clear; if the 
patient’s condition deteriorates, the ethical obligation must always 
and entirely outweigh any experimental requirements. This obliga- 
tion means that whenever a physician thinks that the interest of a 
patient are at stake, she must be allowed to treat the patient as she 
sees fit. This is an absolutely essential requirement for an ethically 
conducted trial, no matter what complications it may introduce into 
the final analysis of the resulting data. 

Clearly the ethical issues will be of greater concern in trials where 
the condition being treated is extremeIy serious, possibly even life 
threatening, than when it is more mild. The problems that can 
arise in the former situation are well illustrated by the history of 
the trials of AZT a s  a therapy for AIDS. When such trials were first 
announced there was a large, vocal lobby against testing the drug 
in a controlled clinical trial where necessarily some patients would 
receive an ‘inferior treatment’. Later, however, when the severity of 
some side effects was identified and the long term effectiveness of the 
drug in doubt, an equally vocal lobby called for AZT treatment to 
be abandoned. Expanding networks of ‘support groups’ makes these 
problems increasingly likely. 

If randomisation is the first priority in an acceptable clinical trial, 
blinding comes a close second. The fundamental idea of blinding is 
that the trial patients, the people involved with their management 
and those collecting clinical data from studies, should not be influ- 
enced by knowledge of the assigned treatment. Blinding is needed to  
prevent the possibility of bias arising from the patient, the physician 
and in evaluation. There are a number of levels of blinding of which 
the two most important are: 
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0 SzngEe-blind: Usually used for the situation in which the pa- 
tient is unaware of which treatment he or she is receiving. 

0 Double-blind: Here both the patient and the investigator are 
kept blind to the patient’s treatment. For many trials this is 
the arrangement of choice. 

In drug trials blinding is usually relatively easy to  arrange but 
the blinding of physical treatments, for example, surgical procedures, 
is often more difficult. 

The randomised double-blind controlled trial is the ‘gold- 
standard’ against which to judge the quality of clinical trials in gen- 
eral. But such trials are still misunderstood by many clinicians and 
questions about whether or not they are ethical persist. One of the 
problems identified by Bracken (1987), is that doctors are frequently 
reluctant to accept their uncertainty about much of what they prac- 
tice. Bracken concludes that when doctors are able to  admit to them- 
selves and their patients uncertainty about the best action, then no 
conflict exists between the roles of the doctor and the statistician. In 
such circumstances it cannot be less ethical to choose a. treatment by 
random allocation within a controlled trial than to choose by what 
happens to be readily available, hunch, or what a drug company 
recommends. The most effective argument in favour of randomised 
clinical trials is that the alternative, practising in complacent un- 
certainty, is worse. All those points are nicely summarised in the 
following quotation from Sir George Pickering, made when President 
of the Royal Society of Medicine in 1949, in response to the charge 
that the clinical trial constituted experimentation on patients: 

All therapy is experimentation. Because what in fact we are doing is to 
alter one of the conditions, or perhaps more than one, under which our pa- 
tient lives. This is the very nature of an experiment., because an experiment 
is a controlled observation in which one alters one or more variables a t  a 
time to try to see what, happens. The difference between haphazard therapy 
and a controlled clinical trial is that in haphazard therapy we carry out our 
experiments without, design on our patients and therefore our experiments 
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are bad experiments from which it is impossible to learn. The controlled 
clinical trial merely means introducing the ordinary accepted criteria of a 
good scientific experiment. 

Further convincing empirical arguments in favour of the double- 
blind controlled clinical trial are provided by the work of Chalmers 
et al. (1977) and Sacks et al. (1983) who provide evidence that 
nonrandomised studies yield larger estimates of treatment effects 
than studies using random allocation (see Table 1.3), estimates that 
are very likely biased; and Schulz et al. (1995), who demonstrate 
that trials in which concealment of treatment allocation was either 

Table 1.3. Results from Randomised and Historical Control 
Trials in Six Areas. 

Randomised Trials Historical Control Trials 
New treat. New treat. New treat. New treat. 

Therapy effective ineffective effective ineffective 

Coronary artery 1 7 16 5 

Anticoagulants for 1 9 5 1 
surgery. 

acute myocardial 
infarction. 
Surgery for 0 8 4 1 

Flurouracil (5-FU) 0 5 2 0 
oesophaeal varices. 

for colon cancer. 
BCG 2 2 4 0 
immunot her apy 
for melanoma. 
Diethylstilbesterol 0 3 5 0 
for habitual 
abortion. 

(Taken from Sacks et  al., 1983.) 
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inadequate or unclear (i.e., were not double-blind), also yielded larger 
(biased) estimates of treatment effects. 

There are a number of other ethical issues in clinical trials which 
relate directly to one or the other of the statistical aspects of design 
and analysis; an exampIe is determining the appropriate sample size 
by means of a power analysis - using too small or too large a sample 
would be unethical, a point that will be taken up in more detail in 
the next chapter. 

1.5. CLINICAL TRIAL PROTOCOLS 

All clinical trials begin wit,h a protocol which serves as a guide for 
the conduct of the trial. The protocol must describe in a clear and 
unambiguous manner how the trial is to be performed so that all the 
investigators are familiar with the procedures to be used. The proto- 
col must summarise published work on the study topic and use the 
results from such work to justify the need for the trial. If drugs are 
involved, then pertinent pharmacological and toxicity data should 
be included. The purpose of the trial and its current importance 
need to be described in clear and concise terms; hypotheses that the 
trial is designed to test need to be clearly specified and the population 
of patients to be entered into the trial fully described. The proto- 
col must. specify the treatments to be used; in particular, for drug 
studies, the dose to be administered, the dosing regimen, and the 
duration of dosing all need to be listed. Details of the randomisation 
scheme to be adopted must be made explicit in the protocol along 
with other aspects of design such as control groups, blinding, sample 
size determination and the number of interim analyses planned (if 
any). Although it is important that investigators adhere to the pro- 
tocol, mechanisms need to be in place for making changes if the need 
arises. If changes are made, then they must be well documented. 

1.6. SUMMARY 

The controlled clinical trial has become one of the most important 
tools in medical research and investigators planning to undertake 
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such a trial have no shortage of excellent books to which to turn for 
advice and information. But unlike the many other books dealing 
with clinical trials, this text is primarily concerned with the statisti- 
cal issues of certain aspects of their design (Chapters 2 and 3) and, 
in particular, their analysis (Chapters 4 to lo),  rather than their 
day-to-day organisation. This restriction will enable us to give fuller 
accounts of some recently developed methods that may be particu- 
larly useful for the type of data often generated from clinical trials. 
Some details of the software available that implements the methods 
described will be given in the Appendix. 



CHAPTER 2 

Treatment Allocation, 
the Size of Trials 
and Reporting Results 

2.1. INTRODUCTION 

The design and organisation of a clinical trial generally involves a 
considerable number of issues. These range from whether it is ap- 
propriate to mount the trial at all, to selection of an appropriate 
outcome measure. Some of these issues will be of more concern to 
statisticians than others. Three of these: 1) allocating subjects to 
treatment groups; 2) deciding the size of the trial, i.e., how many 
subjects should be recruited; and 3) how results should be reported, 
will be discussed in this chapter. 

2.2. TREATMENT ASSIGNMENT 
METHODS 

One of the most important aspects of the design of a clinical trial 
is the question of how patients should be allocated to the various 
treatments under investigation. As Silverman (1985) put it: 

How is the impossible decision made to choose between the accepted 
standard treatment and the proposed improved approach when a fellow 
human being must be assigned to one of the two (or more) treatments 

18 
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under test? Despite the most extensive pre-clinical studies, the first human 
allocation of a powerful treatment is largely a blind gamble and it is perhaps 
not surprising that so much has been written on the most appropriate 
fashion to allocate treatments in a trial. 

Most of the early clinical experiments involved arbitary, nonsys- 
tematic schemes for assigning patients to  treatments (see, for ex- 
ample, the description of Lind’s experiment in Chapter 1). The 
concept of randomisation as a device for treatment assignment was 
introduced by Fisher in the 1920s (all-be-it in the context of agri- 
cultural experimentation). Randomised trials have been in existence 
since the 1940s but only in the last 10 or 20 years have they gained 
widespread acceptance. Possible ethical objections to  randomisation 
were mentioned in Chapter 1, and many alternative methods of al- 
location have been suggested, the defficiencies of most of which are 
well documented in, for example, Pocock (1983). The main com- 
petitor t o  randomisation is the use of historical controls; all suitable 
patients receive the new treatment and their outcomes are compared 
with those from the records of patients previously given the standard 
treatment. Although there are considerable problems with the use of 
such controls (see Table 2.1), i t  has now become more widely recog- 
nised that they do have a role to play (see, for example, Simon, 1982), 

Table 2.1. Problems with Historical Control Trials. 
~~ ~~~~~ ~~~~ ~ 

0 Past observations are unlikely to relate to a precisely similar group 
of patients 

0 The quality of information extracted from the historical controls is 
likely to be different (probably inferior), since such patients were not 
intially intended to be part of the trial 

0 Patients given a new, and as yet, unproven treatment, are likely to 
be far more closely monitored and receive more intensive ancillary 
care than historical controls receiving the orthodox treatment in a 
routine manner 

0 For the reasons listed, studies with historical controls are likely to 
exaggerate the value of a new treatment (see Table 1.3). 
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particularly in providing the data on innovative treatments which 
might support further investigation in a randomised trial. Some 
advantages of historical control studies, particularly in cancer trials, 
listed by Gehan (1984) are: 

0 historical control studies can cost less than half as much as 
randomised studies with comparable sample sizes, 

0 there may be many more control patients available historically 
than concurrently, 

0 a clinician who believes (however weakly) that the experimen- 
tal therapy is better than the control faces no ethical dilemma 
in admitting patients for treatment, 

0 patients are more apt to enlist for a study in which treatment 
assignment is not randomised. 

But in this text our major concern is with properly randomised 
trials. The qualifier is needed here, since the acceptance of the prin- 
ciple of randomisation remains only a starting point in the execu- 
tion of a trial. If the randomisation is not performed correctly in 
practice, then there is every danger that the trial could suffer from 
the same biases that are generally suspected in a trial not involving 
randomisat ion. 

Randomisation in a two-group study might appear to be simply 
a matter of repeatedly tossing a coin in order to decide which of 
the two treatments each patient should receive, and indeed, in some 
circumstances this may be all that is needed. There are, however, 
other more complex randomisation schemes designed to achieve var- 
ious objectives. We begin, though, with a few comments about the 
simple ‘coin tossing’ type of randomisation process. (Although we 
shall concentrate largely on trials in which the unit of randomisation 
is the individual patient, it is important to note that there are tri- 
als in which, for example, complete families are randomised to the 
various treatments to  be compared. Such trials may need special 
methods of analysis as we shall mention later.) 
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2.2.1. Simple Randomisation 

For a randomised trial with two treatments, A and B, the basic con- 
cept of tossing a coin over and over again and allocating a patient to 
A if a head appears and B if the coin shows tails, is quite reasonable, 
but is rarely if ever used in practice. Instead, a randomisation list is 
constructed using a published table of random numbers or, more usu- 
ally, a computer-based recognised pseudo-random number generator. 
The entries in this list can then be used one at a time as patients 
are recruited to the trial. (In a multicentre trial, each centre should 
have its own randomisation schedule so as to avoid treatment-centre 
confounding.) 

The advantage of such a simple method is that each treatment as- 
signment is completely unpredictable and in the long run the number 
of patients allocated to each treatment is unlikely to differ greatly. 
In the long run, however, implies a greater number of patients than 
are recruited to many clinical trials and it is of some interest to 

Table 2.2. Possible Imbalance in Simple Randomisat ion 
with Two Treatments. 

Shows the difference in treatment numbers (or more 
extreme) liable to occur with probability at least 0.05 or 
at least 0.01 for various trial size. 

Total Number Difference in Numbers 
of Patients Probability 2 0.05 Probability 2 0.01 

10 

20 
50 

100 
200 
500 

1000 

2:8 1 :9 

6:14 4:16 
18:32 16:34 
40:60 37:63 
86:114 82:118 

228:272 221:279 
469:531 459:541 

(Taken with permission from Pocock, 1983.) 
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consider the chance of possible imbalance of patient numbers in the 
two groups. Table 2.2 (taken from Pocock, 1983), illustrates the 
differences in treatment numbers that may occur with probability 
greater than 0.05 and 0.01. For a trial with 20 patients, for ex- 
ample, the chance of four being allocated to one treatment and 16 
to the other is greater than 0.01. Although this chance might be 
regarded as fairly small, the resulting imbalance would be of grave 
concern to most investigators, typically resulting in a study of much 
lower power than that expected from an even allocation of subjects 
(although see Section 2.2.5). Consequently, it is often desirable to 
restrict randomisation to ensure similar treatment numbers through- 
out the trial. (Although see later for situations when unequal group 
sizes may be a sensible feature of the design.) Several methods are 
available for achieving balanced group sizes of which the most com- 
monly used is blocked randomisation. 

2.2.2. Blocked Randomisation 

This method introduced by Hill (1951), and also known as permuted 
block randomisation, guarantees that at no time during randomisa- 
tion will the imbalance be large and that at certain points the number 
of subjects in each group will be equal. The essential feature of this 
approach is that blocks of a particular number of patients are con- 
sidered and a different random ordering of treatments assigned in 
each block; the process is repeated for consecutive blocks of patients 
until all have been randomised. For example, with two treatments 
(A and B), the investigator may want to  ensure that after every sixth 
randomised subject, the number of subjects in each treatment group 
is equal. Then a block of size 6 would be used and the process would 
randomise the order in which three As and three Bs are assigned 
for every consecutive group of six subjects entering the trial. There 
are 20 possible sequences of 3As and 3Bs, and one of these is cho- 
sen at random, and the six subjects are assigned accordingly. The 
process is repeated as many times as possible. When six patients are 
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enrolled, the numerical balance between treatment A and treatment 
B is equal and the equality is maintained with the enrollment of the 
12th, 18th, etc., patient. 

Freidman, Furberg and DeMets (1985) suggest an alternative 
method of blocked randomisation in which random numbers between 
0 and 1 are generated for each of the assignments within a block, and 
the assignment order then determined by the ranking of these num- 
bers. For example, with a block of size six in the two treatment 
situation, we might have: 

Assignment Random Number 

A 
A 
A 
B 
B 
B 

0.112 
0.675 
0.321 
0.018 
0.991 
0.423 

This leads to the assignment order BAABAB. 
In trials that are not double-blind, one potential problem with 

blocked randomisation is that at the end of each block an investigator 
who keeps track of the previous assignments could predict what the 
next treatment would be. This could permit a bias to be introduced. 
The smaller the block size, the greater is the risk of the randomisa- 
tion becoming predictable. For this reason, repeated blocks of size 
two should not be used. A required means of reducing the prob- 
lem is by varying the size of consecutive sets. A random order of 
block size makes it very difficult to determine the next assignment in 
a series. 

The great advantage of blocking is that balance between the 
number of subjects is guaranteed during the course of the randomi- 
sation. The number in each group will never differ by more than 
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b / 2 ,  where b is the size of the block. This can be important for two 
reasons. First if enrollment in a trial takes place slowly over a period 
of months or even years, the type of patient recruited for the study 
may change during the entry period (t,emporal changes in severity of 
illness. for example, are not uncommon), and blocking will produce 
more comparable groups. A second advantage of blocking is that 
if the trial should be terminated before enrollment is completed be- 
cause of the results of some form of interim analysis (see Chapter 3), 
balance will exist in terms of the number of subjects randomised to  
each group. 

2.2.3. Stratified Randomisat ion 

One of the objectives in randomising patients to treament groups 
is to achieve between group comparability on certain relevant pa- 
tient characteristics usually known as prognostic factors. Measured 
prior to randomisation, these are factors which it is thought likely 
will correlate with subsequent patient response or outcome. As rnen- 
tioned in Chapter 1, randomisation tends to produce groups which 
are, on average, similar in their entry characteristics, both known 
and unknown. The larger a trial is, the less chance there will be 
of any serious non-comparability of treatments groups, but for a 
small study there is no guarantee that all baseline characteristics 
will be similar in the two groups. If prognostic factors are not evenly 
distributed between treatment groups, it may give the investigator 
cause for concern. although methods of statistical analysis such as 
analysis of covariance exist which allow for such lack of comparablity 
(see later chapters). Stratified randomzsation is a procedure which 
helps to achieve comparability between the study groups for a chosen 
set of prognostic factors. According to Pocock (1983), the method 
is rather like an insurance policy in that its primary aim is to guard 
against the unlikely event of the treatment groups ending up with 
some major difference in patient characteristics. 
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The first issue to be considered when stratified randomisation 
is contemplated, is which prognostic factors should be considered. 
Experience of earlier trials may be useful here. For example, Stan- 
ley (1980) carried out an extensive study of prognostic factors for 
survival in patients with inoperable lung cancer based on 50 such 
factors recorded for over 5000 patients in seven trials. He showed 
that performance status, a simple assessment of the patient’s ability 
to get around, was the best indicator of survival. Weight loss in the 
last six months and extent of disease also affected survival. These 
three factors would, consequently, be those to account for in any 
future trial. 

When several prognostic factors are to be considered, a stratum 
for randomisation is formed by selecting one subgroup from each of 
them (continuous variables such as age are divided into groups of 
some convenient range). Since the total number of strata is, there- 
fore, the product of the number of subgroups in each factor, the 
number of strata increases rapidly as factors are added and the lev- 
els within factors are refined. Consequently, only the most important 
variables should be chosen and the number kept to a minimum. 

Within each stratum, the randomisation process itself could be 
simple randomisation, but in practice most clinical trials will use 
some blocked randomisation approach. As an example, suppose that 
an investigator wishes to stratify on age and sex, and to use a block 
size of 4. First, age is divided into a number of categories, say 40- 
49, 50-59 and 60-69. The design thus has 3 x 2 strata, and the 
randomisation might be: 

Strata Age Sex Group Assignment 

1 40-49 Male ABBA BABA . . . 
2 40-49 Female 
3 50-59 Male 
4 50-59 Female 
5 60-69 Male 
6 60-69 Female 
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Patients between 40-49 years-old and male, would be assigned 
to treatment groups A and B in the sequences ABBA BABA . . . . 
Similarly random sequences would appear in the other strata. 

Although the main argument for stratified randomisation is that 
of making the treatment groups comparable with respect to spe- 
cific prognostic factors, it may also lead to increased power (see Sec- 
tion 2.3) if the stratification is taken into account in the analysis, by 
reducing variability in group comparisons. Such reduction allows a 
study of a given size to detect smaller group differences in outcome 
measures, or to detect a specified difference with fewer subjects. 

Stratified randomisation is of most relevance in small trials, but 
even here it may not be profitable if there is uncertainty over the 
importance or reliability of prognostic factors, or if the trial has a 
limited organisation that might not cope well with complex randomi- 
sation procedures. In many cases it may be more useful to employ a 
stratified analysis or analysis of covariance, to adjust for prognostic 
factors when treament differences are assessed (see later chapters). 

2.2.4. Minimisation Method 

A further approach to achieving balance between treatment groups 
on selected prognostic factors is to use an adaptive randomisation 
procedure in which the chance of allocating a new patient to a par- 
ticular treatment is adjusted according to any existing imbalances 
in the baseline characteristics of the groups. For example, if sex is 
a prognostic factor and one treatment group has more women than 
men, the allocation scheme is such that the next few male patients 
are more likely to be randomised into the group that currently has 
fewer men. This method is often referred to as minimisat ion,  because 
imbalances in the distribution of prognostic factors are minimised 
according to some criterion. 

In general, the method is applied in situations involving several 
prognostic factors and patient allocation is then based on the aim of 
balancing the marginal treatment totals for each level of each factor. 
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Table 2.3. Treatment Assignments by Four Prognostic 
Factors for 80 Patients in a Breast Cancer Trial. 

~ ~~ 

Factor Level A B  
Performance status Ambulatory 30 31 

Age < 50 18 17 
2 50 22 23 

Disease-free interval < 2 years 31 32 
2 2 years 9 8 

Dominant metastatic lesion Visceral 19 21 
Osseous 8 7 
Soft tissue 13 12 

Non-ambulatory 10 9 

(Taken with permission from Pocock, 1983.) 

The following example, taken from Pocock (1983), illustrates the 
procedure: 

Table 2.3 shows the number of patients on each of two treatments, 
A and €3, according to each of four prognostic factors. Suppose the 
next patient is ambulatory, age < 50, has disease-free interval 2 2 
years and visceral metastasis. Then for each treatment, the number 
of patients in the corresponding four rows of the table are added: 

sum for A = 30 + 18 + 9 + 19 = 76 

sum for B = 31 + 17 + 8 + 21 = 77 

Minimisation requires the patient be given the breatment with t h e  
smallest marginal total, in this case treatment A. If the sums for A 
and B were equal, then simple randomisation would be used to assign 
the treatment. 

2.2.5. Unequal Randomisation 

Equal-sized treatment groups provide the most efficient means of 
treatment comparison for any type of outcome measure, and the 
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methods of randomisation described in the previous sections are 
aimed at achieving what is, in most circumstances, this desirable 
feature of a trial. (In addition, ideally, each centre in a multi- 
centre trial should contribute the same number of patients.) But 
despite the obvious statistical advantages of groups of equal size, 
there may be other considerations which might require more patients 
in one group than another. If, for example, the trial is comparing 
a new treatment against a standard, the investigator might be far 
more interested in obtaining information about the general charac- 
teristics of the new treatment, for example, variation in response with 
dose, than for the old, where such characteristics are likely to be well 
known. (This is often the situation in early Phase I1 trials, for which 
there exist historical data on the standard treatment.) Such infor- 
mation might be best gained by use of an unbalanced des ign  which 
involves allocating a larger number of patients to the new treatment 

1.0, 

Percentage of patients on the ow treatment 

Fig. 2.1. Reduction in power of a trial as the proportion on the new treat- 
ment is increased (taken with permission from Pocock, 1983). 
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than to the old. Pocock (1996) gives an example of this approach in 
a trial for the treatment of advanced breast cancer. 

The loss of statistical efficiency in unequal randomisation is con- 
sidered by Pocock (1983), who shows that if the overall size of a trial 
is kept constant., its power decreases relatively slowly in the move 
away from equalsized groups. Figure 2.1 (taken from Pocock, 1983) 
demonstrates, for example, that power decreases from only 0.95 to  
0.925 if 67% of patients are allocated to the new treatment. 

The more complex the design, the more difficult it becomes to 
maintain the integrity of the randomisation process; it becomes 
vulnerable to  both accidental and deliberate misallocation. Con- 
sequently, there is much to be said for removing the randomisation 
decision away from the point of clinical contact, for example, through 
the use of specialised 24-hour telephone randomisation schemes. 

2.3. THE SIZE OF A CLINICAL TRIAL 

According to Simon (1991) 

An effective clinical trial must ask an important question and provide 
a reliable answer. A major determinant, of the reliability of the answer is 
t,he sample size of the trial. Trials of inadequate size may cause contradic- 
tory and erroneous results and thereby lead to an inappropriate treatment 
of patients. They also divert limited resources from useful applications 
and cheat the patients who participated in what bhey thought was impor- 
tant dinical research. Sample size planning is, therefore, a key component 
of clinical trial methodology. 

But, in the recent past at least, such advice has often not been 
heeded and the literature is dotted with accounts of inconsequential 
trials. Freiman et  al. (1978), for example, reviewed 71 ‘negative’ 
randomised clinical trials, i.e., trials in which the observed differences 
between the proposed and control treatments were not large enough 
to satisfy a specified ‘significance’ level (the risk of a type I error), and 
the results were declared to be ‘not statistically significant’. Analysis 
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of these clinical studies indicated that the investigators often worked 
with numbers of enrolled patients too small to offer a reasonable 
chance of avoiding the opposing mistake, a type I1 error. Fifty of 
the trials had a greater than 10% risk of missing a substantial dif- 
ference (true treatment difference of 50%) in the treatment outcome. 
The reviewers warned that many treatments labelled as ‘no differ- 
ent from control’ had not received a cribical test, because the trials 
had insufficient power to  do the job int.ended. Such trials are, in a 
very real sense, unethical in that they require patients to accept the 
risks of treatment, however small, without any chance of benefit to 
them or future patients. Small-scale preliminary investigations may 
be justified when part of a larger plan, but not as an end in their 
own right (although see later comments). 

A specific example of this problem is given by Andersen (1990), 
who reports a study from the New England Journal of Medicine, 
in which 52 patients with severe cirrhosis and variceal haemorrhage 
requiring six or more pints of blood were randomly assigned either 
to sclerotherapy or potocaval shunt. There was no difference in short 
term survival, with 13 patients in the sclerotherapy group discharged 
alive, as compared with ten patients in the shunt group. The authors 
commented as €oHows: 

We failed to demonstrate any significant difference in long-term survival 
. . . endoscopic sclerotherapy is at  least as good as, and may well be better 
than, definitive early surgical shunting. 

The absence of any significant difference made the investigator 
conclude that one treatment is at least as effective as the other. 
They failed, however, to consider the possibility of an error of the 
second kind. A trial with only 26 patients in each group has only a 
50-50 chance of a significant result if the true survival rate on one 
treatment is 25% and on the other twice as much. Even though 
more patients were discharged alive after sclerothera.py than after 
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portocaval shunt in this study, there remains the distinct possibility 
that the operation might eventually turn out to be superior. 

The deficiency in patient numbers in many clinical trials is, ac- 
cording to Pocock (1996) ‘a general phenomena whose full implica- 
tions for restricting therapeutic progress are not widely appreciated’. 
In the same article Pocock continues: 

The fact is that trials with truly modest treatment effects will achieve 
statistical significance only if random variation conveniently exaggerated 
these effects. The chances of publication and reader interest are much 
greater if the results of the trial are statistically significant. Hence the cur- 
rent obsession with significance testing combined with the inadequate size 
of many trials means that publications on clinical trials for many treat- 
ments are likely to be biased towards as exaggeration of therapeutic effect, 
even if the trials are unbiased in all other respects. 

The combination of high type I1 error rate, publication bias and 
the fact that most true treatment advantages are likely to be mod- 
est or nonexistent, almost certainly results in a high proportion of 
false positives in the medical literature, a point also made in Peto 
et al. (1976) and Zelen (1983). Certainly the case against trials with 
inadequate numbers of subjects appears strong but perhaps with the 
growing use of meta-analysis, a topic to be discussed in Chapter 10, 
not as strong as is implied by the previous comments. 

So how, in designing a trial, is its size arrived at? Although prac- 
tical and ethical issues need to be considered, most determinations of 
sample size for a clinical trial are performed, intially at least, in the 
more statistical context of the hypothesis testing framework of Ney- 
man and Pearson. A null hypothesis is tested at significance level Q 

and the sample size is determined to provide power 1 - /3 for reject- 
ing the null when a specified alternative hypothesis is true, where 
,f3 is the risk of a type I1 error, i.e., accepting the null hypothesis 
when it is false. In simple situations the power is a function of three 
factors: 
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0 the significance level adopted, 
0 the reliability and variability of the sample data, 
0 the size of the treatment effect. 

The required sample size will be larger the higher the level of 
significance chosen, the lower the reliability and the smaller the treat- 
ment difference hypothesised under the alternative hypothesis. In 
many trials, the power calculation will also need to include consid- 
eration of other factors such as the follow-up time versus number of 
cases and the number of measurement points. 

In this paradigm, the general approach is for the investigator to 
specify the size of the treatment difference considered clinically rel- 
evant (i.e., important to detect) and with what degree of certainty, 
i.e., with what power, it should be detected. Given such information, 
the calculation of the corresponding sample size is often relatively 
straightforward, although the details will depend on the type of re- 
sponse variable and the type of test involved. The last decade has 
produced a large volume of methodology useful in planning the size of 
randomised clinical trials with a variety of different types of outcome 
measures - some examples are to  be found in Lee (1983), McHugh 
and Lee (1984), Schoenfield (1983), Sieh (1987), Wittes and Wallen- 
stein (1987) and Spiegelhalter et al. (1994). In many cases, tables 
are available which enable the required sample size to  be simply read 
off. Increasingly, these are being replaced by computer software for 
determining sample size for many standard and non-standard designs 
and outcome measures (see the Appendix). 

An obvious danger with such a procedure is that investigators 
(and, in some cases, their statisticians) may occasionally be led to 
specify an alternative hypothesis that is unrealistically extreme so 
that the required sample size looks feasible in terms of possible press- 
ing temporal and financial constraints. Such a possibility may be 
what led Senn (1997) to describe power calculations as ‘a guess mas- 
querading as mathematics’ and Pocock (1996) to comment that they 
are ‘a game that can produce any number you wish with manipu- 
lative juggling of the parameter values’. Statisticians advising on 
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clinical trials need to be active in estimating the degree of difference 
that can be realistically expected for a clinical trial based on previous 
studies of a particular disease or, when such information is lacking, 
perhaps based on subjective opinions of investigators and physicians 
not involved in the proposed trial. 

2.4. REPORTING RESULTS 

The first part of a trial report should be descriptive and summarise 
the patient pool, the study protocol and the characteristics of those 
entered. Appropriate graphical material should be included here. 
Following this will be the results of the various statistical analyses 
performed. In many cases the analyses will involve the application 
of one or other significance test and what is often tabulated is the p 
value associated with the test. Unfortunately and despite the many 
caveats in the literature, the accept/reject philosophy of significance 
testing remains dominant in the minds of many non-statisticians, 
who appear determined to continue to experience joy on finding a 
pvalue of 0.049 and despair on finding one of only 0.051. A decade 
ago, Gardner and Altman (1986) made the point that the excessive 
use of hypothesis testing at the expense of other ways of assessing re- 
sults had reached such a degree that levels of significance were often 
quoted alone in the main text and abstracts of papers, with no men- 
tion of actual concentrations, proportions, etc., or their differences. 
The implications of hypothesis testing - that there can always be a 
simple ‘yes’ or ‘no’ answer as the fundamental result from a medical 
study - is clearly false, and used in this way hypothesis testing is 
of limited value. 

So should statisticians be encouraging the abandonment of the 
pvalue altogether? Many statisticians might be tempted to answer 
‘yes’, but a more sensible response is perhaps a resounding ‘maybe’. 
Such values should rarely be used in a purely confirmatory way, but 
in an exploratory fashion they can give some informal guidance on 
the possible existence of an interesting effect, even when the required 
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assumptions of whatever test is being used are known to be only 
partially valid. It is often possible to assess whether a p-value is 
likely to be an under- or overestimate, and whether the result is 
clear one way or the other. 

Fortunately, the use of significance testing appears to have be- 
come less obsessive and dogmatic during the last few years, with 
greater emphasis on statistical estimation and confidence intervals. 
The latter, which can be considered to be the set of true but unknown 
differences that are statistically compatible with the observed differ- 
ence, can be found relatively simply for many quantities of interest 
(see Gardner and Altman, 1986), and although the underlying logic 
of interval estimates is essentially similar to that of significance tests, 
they do not carry with them the pseudo scientific decision making 
language of such tests. Instead they give a plausible range of values 
for the unknown parameter, with, for example, inadequate sample 
size being signalled by the sheer width of the interval. As Oakes 
(1986) rightly comments: 

The significance test relates to what a population parameter is not: the 
confidence interval gives a plausible range for what the parameter is. 

Since clinical trials are generally designed to provide global 
treatment comparisons, which may not be suited to the needs of in- 
dividual patients, a question which frequently arises when reporting 
results, whether as p-values or confidence intervals, is how to iden- 
tify particular subgroups of patients who responded well (or badly) 
to a new treatment? Answering such a question is relatively easy - 
such subgroup analysis can be carried out using standard statistical 
techniques such as analysis of variance or the like. If, for example, 
subgroups were formed on the basis of sex (male, female) and age 
(young, old), then with a two treatment trial, a 2 x 2 x 2 ANOVA on 
the response variable of interest could be performed and all possible 
interactions and main effects assessed in the usual way. But many 
statisticians would recommend that such analyses are better avoided 
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altogether, or if undertaken, interpreted extremely cautiously in the 
spirit of ‘exploration’ rather than anything more formal. Their rea- 
sons are not difficult to identify: 

0 trials can rarely provide sufficient power to detect such sub- 
group effects, 

0 there are often many possible prognostic factors from which 
to form subgroups, so that the analysis may degenerate into 
‘data dredging’, 

0 the temptation to over interpret an apparent subgroup finding 
is likely to be difficult to resist (Yusuf et al., 1991). 

Chapter 10 (Fig. 10.2 and Table 10.1) provides a checklist for 
what is currently expected that studies should report. 

2.5. SUMMARY 

In this chapter three aspects of the design of clinical trials has been 
considered: the allocation of patients to treatments, the size of the 
trial, and how to report results. The well documented chaos that can 
result from non-randomised trials has led to a general acceptance of 
randomisation as an essential component of the vast majority of tri- 
als. Several methods of randomisation have been considered in this 
chapter, but there are others that have not been mentioned, in partic- 
ular cluster randomisation in which natural groupings of individuals, 
for example, general practices, become the units of randomisation, 
and play the winner rules, in which the randomisation is biased to 
allow a higher proportion of future allocations to the treatment with 
(currently) better observed outcome. The former are described in 
Donner and Klar (1994) and are increasingly important in, for ex- 
ample, country intervention trials. The latter presumably arise from 
the desire amongst some clinicians for more ‘ethically acceptable’ 
allocation procedures, but there have been very few clinical trials 
that have actually used such data-dependent procedures. Pocock 
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(1996) points to  both the impracticality of implementation (early re- 
sults usually arrive too late) and the suspicions of bias in allocations 
(the result, for example, of secular trends in the type of patient 
recruited) as reasons that such approaches continue to be largely re- 
garded as ‘statistical curiosities’ rather than serious contenders for 
clinical applications. 

Statisticians have been very effective in developing methodology 
for determining sample size in randomised clinical trials. Neverthe- 
less, there is continuing evidence that many reported trials are too 
small, leading to a high type I1 error rate as well as a low proportion 
of true positive to false positive findings. Meta-analysis (see Chap- 
ter 10) may help with this problem, but it is unlikely to provide a 
completely satisfactory answer in all cases. 

Ten years ago the results of most clinical trials were given in 
terms of p-values. The situation has now changed for the better, 
with many medical journals rightly demanding confidence intervals. 
The problem with significance testing would not be so bad if only 
a single test (or a very small number) was carried out per trial. 
Most trials, however, generate large amounts of data and dozens of 
significance tests from the results of using such procedures as i n t e r i m  
analyses and employing multiple endpoints,  topics to be discussed in 
the next two chapters. 



CHAPTER 3 

Monitoring Trial 
Progress: Outcome 
Measures, Compliance, 
Dropouts and 
Interim Analyses 

3.1. INTRODUCTION 

The basic elements of the plan for any trial will be set long before the 
first patient is enrolled, and will, eventually, be translated into the 
study protocol. Here the primary objectives of the trial will be de- 
tailed in terms of type of patients to be studied, class of treatments 
to be evaluat,ed and primary outcome measures. In addition. the 
document will specify the number of patients to be recruited (usu- 
ally from the results of a sample size calculation), required length 
of patient follow-up, pat.ient entry and exclusion crit.eria, method 
of randomisation, details of pre-randomisation procedures and other 
general organisational structures. 

Putting the study plan into execution begins with patient recruit- 
ment, a period which is crucial in the life of a trial, although the 
details need not delay us here, since the various possible problems 
and pitfalls are well documented in, for example, Meinert (1986). 

37 
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Once a trial has started, various aspects of a patient’s progress need 
to be assessed. Investigators are, for example, under a strict obliga- 
tion to report unexpected adverse events as they occur since these 
may necessitate withdrawing of a patient from the trial. 

The problem of patient compliance must also be addressed. The 
optimal study from a compliance point of view is one in which the 
investigator has total control over the patient, the administration 
of the intervention regimen and follow-up. But in practice, there is 
very likely to be less than 100% compliance with the intervention 
and clearly the results of a trial can be affected by noncompliance; it 
can, for example, lead to an underreporting of possible therapeutic 
as well as toxic effects. This has the potential to undermine even 
a properly designed trial and consequently, monitoring compliance 
is generally critical in a clinical trial, a point taken up in detail in 
Section 3.3. 

A patient’s performance during a clinical trial is characterised 
by measurements on one or more outcome variables. These measure- 
ments need to be made in as objective, accurate and consistent a 
manner as possible and in a way that should be precisely defined in 
the study protocol, issues that are discussed more fully in Section 3.2. 

In most clinical trials, patients are entered one at a time so that 
their responses to treatment are also observed sequentially. The ac- 
cumulating data in a trial needs to be monitored for a variety of 
reasons. In addition to checking for compliance and noting possi- 
ble adverse side effects, monitoring is also needed to assess whether 
early termination of the trial might be necessary. Early termination 
might be called for if there was an indication that the intervention 
was harmful to patients. Alternatively, if the data indicate a clear 
benefit from the intervention, the trial may need to be stopped early 
because to continue to use the control treatment would be unethi- 
cal. The handling of treatment comparisons while a trial is still in 
progress poses some difficult statistical problems which are taken up 
in Section 3.4. 
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3.2. OUTCOME MEASURES 

The outcome measure(s) used for treatment comparisons may be a 
clinical event, for example, death or recurrence of a disease, or a 
measurement of some other characteristics of interest, for example, 
blood pressure, serum lipid level or breathing difficulties. Such ob- 
servations and measurements are the raw material of the trial and 
they clearly need to be objective, precise and reproducible for reasons 
nicely summarised by the following quotation from Fleiss (1986): 

The most elegant design of a clinical study will not overcome the dam- 
age caused by unreliable or imprecise measurement. The requirement that 
one’s data be of high quality is at least as important a component of a 
proper study design as the requirement for randomisation, double blinding, 
controlling where necessary for prognostic factors and so on. Larger sample 
sizes than otherwise necessary, biased estimates, and even biased samples 
are some of the untoward consequences of unreliable measurements that 
can be demonstrated. 

So no trial is better than the quality of its data and quality 
control begins with clear definitions of response variables. The de- 
cision about which, when and how measurements are to be made 
needs to be taken before the trial commences. The alternative is 
potential chaos. Attention clearly needs to be given to training clin- 
icians and others on the measuring instruments to be used; this is 
particularly important in multi-centre trials. Results from studies 
based on poorly standardised procedures that use ambiguous defini- 
tions or conducted by insufficiently trained staff, can lead to both 
loss of power and bias in the estimate of treatment effect. Most 
properly conducted trials will, in fact, have well developed systems 
in place for data quality control and auditing. The purpose of such 
a system is to provide reasonable assurance to the organisers of the 
trial as well as to the ‘consumers’ of the results that the data on 
which the conclusions are based are reliable. Some practical issues 
in assuring such quality control of the data generated in clinical trials 
are discussed in Knatterud et al. (1998). 
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The measurements made in many trials will involve rating 
scales of one type or another, for example, quality-of-life assessments. 
When there has been little experience of using such scales or where 
they have only been recently developed, it may be important to in- 
vestigate their reliability, i.e. , the extent to which measurements of 
the same subject made by different observers agree. In most trials, 
particularly multi-centre trials, the problem of observer variation will 
need to be confronted. A formal assessment of the reliability of the 
instrument to be used may even be necessary. Readers are referred 
to the comprehensive accounts of assessing reliability in both Fleiss 
(1986) and Dunn (1989) for details. 

In some trials the outcome measure of substantive interest may 
not be measured for practical and/or ethical reasons. Instead a sur- 
rogate variable is selected on which to investigate treatment differ- 
ences. If, for example, we measure blood pressure rather than say 
the potential problems of high blood pressure, we are using a surro- 
gate measure. Other examples include bone mineral density in the 
treatment of osteoporosis rather than the rate of bone fracture, and 
CD4 counts rather than deaths in the treatment of AIDS. 

The aim in using such surrogate measures is to assess the treat- 
ment effect with less trouble and perhaps greater efficiency than by 
using the preferred endpoint. But the dangers of not using the true 
endpoint cannot be dismissed lightly. Senn (1997) points out that 
the demonstration of a high correlation between the proposed surro- 
gate measure and the measure of substantive interest does not ensure 
that using the former will be adequate. He uses the treatment of 
oestoporosis measured by bone mineral density (BMD) as an exam- 
ple. Loss of BMD leads to a weakening of bones and an increased 
risk of fracture. If, however, a treatment increases density but at 
the expense of adversely affecting the construction of the bones it 
may actually have a harmful effect on the fracture rate. The im- 
plication is that the adequacy of a surrogate measure may depend 
on the treatment, a possibility recognised by the USA drugs regula- 
tory body, the Food and Drug Administration (FDA) guidelines for 
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oesteoporosis studies, these requiring the measure of fractures for 
bisphophonates but accepting BMD for hormone replacement. 

3.3. COMPLIANCE, DROPOUTS AND 
INTENTION-TO-TREAT 

There could be no worse experimental animals on earth than human beings; 
they complain, they go on vacations, they take things they are not supposed 
to take, they lead incredibly complicated lives, and, sometimes, they do 
not take their medicine. (Efron, 1998.) 

Compliance means following both the intervention regimen and 
trial procedures (for example, clinic visits, laboratory procedures and 
filling out forms). A non-complier is a patient who fails to meet the 
standards of compliance as established by the investigator. A high 
degree of patient compliance is an important aspect of a well-run 
trial. 

But treatment compliance is rarely an all-or-none phenomena. 
The level of compliance achieved may range from low to high, de- 
pending on both the patient and the staff. Perfect compliance is 
probably impossible to achieve, particularly in drug trials where 
the patient maybe required to take the assigned medication at the 
same time of day over long periods of time. Lack of compliance can 
take a number of forms; the patient can drop out of the trial, take 
none of the medication (whilst perhaps pretending to do so), forget 
to take the treatment from time to time, or take it at the wrong 
time, etc. 

Level of compliance will depend on a number of factors, including: 

0 The amount of time and inconvenience involved in making 

0 The perceived importance of the procedures performed at each 

0 The potential health benefits associated with treatment versus 

follow-up visits to the clinic, 

visit from a health maintenance point of view, 

potential risks, 
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0 The amount of discomfort produced by the study treatments 

0 The amount of effort required of the patient to maintain the 

0 The number and type of side effects associated with treatment. 

or procedures performed, 

treatment regime, 

In recent times the problems of noncompliance in a clinical trial 
have been well illustrated in trials involving HIV/AIDS patients, 
where an atmosphere of rapidly alternating hopes and disappoint- 
ments has added to the difficulties of keeping patients on a fixed 
long-term treatment schedule. 

So what can be done to ensure maximal patient compliance? As- 
pects of the study design may help; the shorter the trial, for example, 
the more likely subjects are to comply with the intevention regimen. 
So a study started and completed in one day would have great advan- 
tages over longer trials. And studies in which the subjects are under 
close supervision, such as in-patient hospital-based trials, tend to 
have fewer problems of noncompliance. 

Simplicity of intervention may also affect compliance, with single 
dose drug regimens usually being preferable to those requiring multi- 
ple doses. The interval between scheduled visits to hospital or clinic 
is also a factor to consider. Too long an interval between visits may 
lead to a steady fall in patient compliance due to lack of encourage- 
ment, while too short an interval may prove a nuisance and reduce 
cooperation. 

Perhaps the most important factor in maintaining good subject 
compliance once a trial has begun is the attitude of the staff running 
the trial. Experienced investigators stay in close contact with the 
patients early after randomisation to get patients involved and, later, 
to keep them interested when their initial enthusiasm may have worn 
off. On the other hand, uninterested or discourteous staff will lead 
to an uninterested patient population. Meinert (1986) lists a number 
of simple factors likely to enhance patient participation and interest; 
this list is reproduced here in Table 3.1. 
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Table 3.1. Factors and Approaches that Enhance Patient 
Interest and Participation. 

Clinic staff who treat patients with courtesy and dignity and who 
take an interest in meeting their needs, 
Clinic located in pleasant physical surroundings and in a secure en- 
vironment, 
Convenient access to parking for patients who drive, and to  other 
modes of transportation for those who do not, 
Payment of parking and travel fees incurred by study patients, 
Payment of clinic registration fees and costs for procedures required 
in the trial, 
Special clinics in which patients are able to avoid the confusion and 
turmoil of a regular out-patient clinic, 
Scheduled appointments designed to minimise waiting time, 
Clinic hours designed for patient convenience, 
Written or telephone contacts between clinic visits, 
Remembering patients on special occasions, such as Christmas, 
birthday anniversaries, etc., 
Establishment of identity with the study through proper indoctri- 
nation and explanantion of study procedures during the enrollment 
process; through procedures such as the use of special ID cards to 
identify the patient as a participant in the study, and by awarding 
certificates to recognise their contributions to the trial. 

(Taken with permission from Meinert, 1986.) 

Monitoring compliance is a crucial par t  of many clinical trials, 
since according t o  Freidman, Furberg and DeMets (1985): 

. . . the interpretation of study results will be influenced by knowledge 
of compliance with the intervention. To the extent that the control group 
is not truly a control group and the intervention group is not being treated 
as intended, group differences may be diluted, leading possibly to an under- 
estimate of the therapeutic effect and an underreporting of adverse effects. 

Feinstein (1974) points out  that differential compliance to two 
equally effective regimens can also lead t o  possibly erroneous conclu- 
sions about the effect of the intervention. 
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In some studies measuring compliance is relatively easy. For ex- 
ample, trials in which one group receives surgery and the other group 
does not. Most of the time, however, assessment of compliance is not 
so simple and can rarely be established perfectly. In drug trials one 
of the most commonly used methods of evaluating subject compli- 
ance is pill or capsule count. But the method is far from foolproof. 
Even when a subject returns the appropriate number of leftover pills 
at a scheduled visit, the question of whether the remaining pills were 
used according to the protocol remains largely unanswered. Good 
rapport with the subjects will encourage cooperation and lead to a 
more accurate pill count, although there is considerable evidence that 
shows that the method can be unreliable and potentially misleading 
(see, for example, Cramer et al., 1988, and Waterhouse et al., 1993). 

Laboratory determinations can also sometimes be used to moni- 
tor compliance to medications. Tests done on either blood or urine 
can detect the presence of active drugs or metabolites. For exam- 
ple, Hjalmarson et al. (1981) checked compliance with metroprobol 
therapy after myocardial infarction by using assays of metroprobol 
in urine. Several other approaches to monitoring compliance are de- 
scribed in Freidman, Furberg and Demets (1985), and Senn (1997) 
mentions two recent technical developments which may be useful, 
namely: 

0 Electronic monitoring ~ pill dispensers with a built-in micro- 

0 Low-dose, slow turnover chemical markers which can be added 
chip which will log when the dispenser was opened, 

to treatment and then detected via blood-sampling. 

The claim is often made that in published drug trials more than 
90% of patients have been satisfactorily compliant with the protocol- 
specified dosing regimen. But Urquhart and DeKlerk (1998) sugest 
that these claims, based as they usually are, on count of returned 
dosing forms, which patients can easily manipulate, are exaggerated, 
and that data from the more reliable methods for measuring compli- 
ance mentioned above, contadict them. 
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Noncompliance may lead to the investigator transferring a patient 
to the alternative therapy or withdrawing the patient from the study 
altogether; often such decisions are taken out of the investigators 
hands by the patient simply refusing to participate in the trial any 
further and thus becoming a trial dropout. When noncompliance 
manifests as dropout from a study, the connection with missing data 
is direct (see Section 3.3.2). In other circumstances manifestation 
of noncompliance is more complex and some response is observed, 
but a question remains about what would have been observed had 
compliance been achieved. 

Noncompliance, leading either to receiving treatment other than 
that provided for by the results of randomisation, or to dropping out 
of the trial altogether, has serious implications for the analysis of the 
data collected in a clinical trial, implications which will be discussed 
briefly here and taken up again in later chapters. 

3.3.1. Intent ion-t +Treat 

As indicated above, in most randomised clinical trials not all patients 
adhere to the therapy to which they were randomly assigned. Instead 
they may receive the therapy assigned to another treatment group, or 
even a therapy different from any prescribed in the protocol. When 
such non-adherence occurs, problems arise with the analysis compar- 
ing the treatments under study. There are a number of possibilities 
of which the following are the most common: 

Intention-to-treat or analysis-as-randomised in which analysis 
is based on original treatment assignment rather than treat- 
ment actually received, 
Adherers-only method, i.e. , analysing only those patients who 
adhered to the original treatment assignment, 
Treatment-received method, i.e., analysing patients according 
to the treatment ultimately received. 

The intention-to-treat (ITT) approach requires that any com- 
parison of the treatments is based upon comparison of the outcome 
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results of all patients in the treatment groups to which they were 
randomly assigned. This approach is recommended since it main- 
tains the benefits of randomisation, whereas the second and third 
of the methods above compare groups that have not been randomised 
to their respective treatments; consequently, the analyses maybe sub- 
ject to unknown biases and for this reason most statisticians and drug 
regulatory agencies prefer intention-to-treat. But although it is clear 
that analyses based on compliance are inherently biased because non- 
compliance does not occur randomly, many clinicians (and even some 
statisticians) have criticised analysis that does not reflect the treat- 
ment actually received, especially when many patients do not remain 
on the initially assigned therapy (see, for example, Feinstein, 1991). 
In the face of substantial non-compliance, it is not difficult to under- 
stand the intuitive appeal of comparing only those patients in the 
original trial that actually complied with the prescribed treatment. 
However, in addition to the difficulty of defining compliance in an 
objective manner, subjects who comply tend to fare differently and 
in a somewhat unpredictable way from those who do not comply. 
Thus any observed difference among treatment groups constructed 
in this way may be due not to treatment but to factors associated 
with compliance. 

Dissatisfaction with analysis by original treatment assignment 
arises because of its apparent failure to evaluate the ‘true’ effect of the 
treatment. According to Dixon and Albert (1995), an intention-to- 
treat analysis determines treatment effectiveness where this involves 
both compliance on treatment, as well as its biological effect, whereas 
an as-treated analysis assesses treatment efficacy. This, however, 
appears to simply be ignoring the potential problem of bias in the 
latter. 

Peduzzi et al. (1993) compare the various methods of analysis 
on data from a randomised trial of coronary artery bypass surgery 
designed to compare the survival times of patients assigned opti- 
mal medical therapy with those assigned coronary bypass surgery. 
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Amongst the 354 patients assigned to medical therapy, the cumula- 
tive 14-year crossover rate from medical to surgical therapy was 55%. 
In contrast, only 20 of the 332 patients assigned to surgical therapy 
refused surgery. Analysis by the as-randomised approach indicated 
that the treatment groups were statistically indistinguishable. In 
contrast the analyses by adherers-only and by treatment received 
indicated an apparent consistent survival advantage with surgical 
therapy throughout the entire 14-year follow-up period, although the 
advantage begins to diminish with extended follow-up. The authors 
demonstrate that the apparent survival advantage arises from the 
striking difference in survival between the crossovers to surgery and 
the medical adherers. 

In the same paper, some simulated data are used to empha- 
sise the problems with other than an as-randomised analysis. One 
example presented involves simulated data for a hypothetical co- 
hort of 350 medical and 350 surgical patients having exponentially 
distributed survival times and assuming a 10-year survival rate of 
50% in each group. In addition, they generated an independent ex- 
ponential time to ‘crossover’ for each of the 350 medical patients as- 
suming half the patients crossed over by 10 years. Medical crossovers 
were then defined as those patients with time to crossover less than 
survival time. Figure 3.1 displays 10-year survival rates by the as- 
randomised, adherers-only, and treatment-received methods. The 
latter two methods demonstrate a consistent survival advantage in 
favour of surgical therapy, when by definition here, there is actually 
no difference in survival between the two treatment groups. 

According to Efron (1998), ‘Statistics deals with the analysis of 
complicated noisy phenomena, never more so than in its applications 
to biomedical research, and in this noisy world the intent-to-treat 
analysis of a randomised double-blinded clinical trial stands as a 
flagpole of certainty amongst the chaos.’ Indeed, according to Goet- 
ghebeur and Shapiro (1993), intention-to-treat analysis has achieved 
the status of a ‘Buick’ - ‘Best Unbiased Inference with regard to 
Causal Knowledge’. Many statisticians would endorse these views 
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Fig. 3.1. Compliance dose-response curves for decrease in cholesterol level 
in active treatment and control groups in a trial of cholestyramine (taken 
with permission from Peduzzi et al., 1993). 

and also find themselves largely in agreement with Peduzzi et al. 
( 1993) : 

We conclude that the method of analysis should be consistent with the 
experimental design of a study. For randomised trials, such consistency 
requires the preservation of the random treatment assignment. Because 
methods that violate the principles of randomisation are susceptible to bias, 
we are against their use. 

But despite widespread agreement amongst statisticians that 
intention-to-treat analysis remains the most appropriate way to deal 
with noncompliance, there is growing interest in how to take com- 
pliance information into account without fatally compromising the 
conclusions of a randomised clinical trial, particularly now that mea- 
surement of compliance can be made more reliable. (Dunn, 1999, 
considers the problem of measurement error in assessing compliance.) 
There have been several attempts to incorporate compliance data 
into the analysis of clinical trials and to devise analytic methods 
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Fig. 3.2. Ten-year survival rates by the as-randomised, adherers-only and 
treatment-received approaches for a set of simulated data (taken with per- 
mission from Efron and Feldman, 1991). 

that adjust for noncompliance. Examples include Efron and Feld- 
man (1991), Pocock and Abdalla (1998), and Robins (1998). Efron 
and Feldman, for example, discuss a trial concerned with the effec- 
tiveness of the drug cholestyramine for lowering cholesterol levels, 
in which each patient’s compliance was assessed by the proportion 
of the intended dose actually taken. Figure 3.2 shows the relation- 
ship between compliance and the decrease in cholesterol level for 
both treatment and control groups. A ‘dose-response’ relation is ev- 
ident for both groups; better compliance leads to a greater decrease 
in cholesterol level, as indicated by the quadratic regression curves. 
But the curves shown are compliance dose-response curves; they may 
not give an accurate picture of the true dose-response curve because 
compliance (and hence dose) has not been assigned in a randomised 
fashion by the investigators. Compliance is an uncontrolled covari- 
ate, and it may be that better compliers are better patients to be- 
gin with. This seems very likely given the nature of the observed 
curve in the control group. Efron and Feldman describe how the 
true dose-response curve can be recovered from the treatment and 
control compliance-response curves. 



50 Design and Analysis of Clinical Trials 

Pocock and Abdalla (1998), whilst accepting that analysis by 
intention-to-treat remains the statistical approach for presenting the 
comparative results of different treatment policies within a random- 
ised controlled trial, comment on the growing interest in exploring 
more complex statistical approaches which incorporate measures of 
individual patient compliance with the intended treatment regimens 
into supplementary comparative analyses. They offer an example 
from their own analysis of a three-arm study of cardiology patients, 
testing a beta-blocker and a diuretic versus placebo. As expected, the 
diuretic group showed a tendency to increased serum cholesterol lev- 
els, but unexpectedly the same effect showed up in the beta-blocker 
group. It was discovered, however, that 30% of the beta-blocker 
group was also taking diuretics, and the beta-blocker cholesterol ef- 
fect disappeared when this fact was incorporated in the analysis. 

In the past the inclusion of compliance measurements in the anal- 
ysis of clinical trials has been fiercely resisted by many statisticians, 
and if not resisted, largely ignored. But in Efron’s view (Efron, 
1998), this will change and at some time in the not too distant fu- 
ture, it will seem as wrong to run a clinical trial without compliance 
measurement as without randomisation. The statistical challenge, 
according to Sir David Cox (Cox, 1998), will be to develop methods 
of analysis that take account of the complex character of compliance 
without analyses becoming too complicated conceptually. He warns 
of the dangers of treating compliance as a simple binary, yes, no, 
concept and also of ignoring the nature and the essential reason for 
noncompliance since this may vary greatly between individuals. 

The most extreme form of noncompliance occurs when patients 
dropout of a trial prematurely. Dealing with dropouts can present 
challenging problems in analysing the results from the trial. The next 
section presents a taxonomy of dropouts which will be of importance 
in later analysis chapters. 

3.3.2. A Taxonomy of Dropouts 

The design of most clinical trials specifies that all patients are to have 
the measurement of the outcome variable(s) made at a common set 
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Fig. 3.3. Monotone data pattern caused by patients dropping out of trial. 

of time points leading to what might be termed a balanced data 
set. But although balanced longitudinal data is generally the aim, 
unbalanced data is often what the investigator is faced with be- 
cause of the occurrence of missing values in the sense that intended 
measurements are not taken, are lost, or are otherwise unavailable. 
Staff, for example, may fail to make a scheduled observation, or pa- 
tients may miss an appointment. This type of missing value usually 
occurs intermittently. In contrast, dropping out of a clinical trial im- 
plies that once an observation at a particular time point is missing 
so are all subsequent planned observations, giving rise to a monotone 
data pattern (see Fig. 3.3). 

Assumptions about the probability model for missing data can 
influence both the analysis and interpretation of the longitudinal 
data collected in clinical trials. In the statistical literature three 
types of dropout have been distinguished: 
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0 Missing completely random (MCAR), 
0 Missing at random (MAR), 
0 Non-ignorable (sometimes referred to as informative). 

To explain the distinction between these three types it is neces- 
sary to introduce a little nomenclature: 

0 For each patient it is planned to make a sequence of T obser- 
vations, Yl, Y2, . . . , YT. In addition for each patient, there may 
be a set of fixed covariates, X ,  assumed fully observed. 

0 Missing values arise from individuals dropping out, so that if 
Yk is missing, then so also are Yk+1,. . . , YT. 

0 Define a dropout indicator D for each patient, where D = k if 
the patient drops out between the (k-1)th and kth observation 
time, and D = T + 1 if the patient does not drop out. 

Completely random dropout (MCAR) occurs when patients 
dropout of the study in a process which is independent of both the 
observed measurements and those that would have been available 
had they not been missing, so that 

P ( D  = klX,Y,, Yz,. . . ,YT) = P ( D  = k) 

Here the observed (nonmissing) values effectively constitue a simple 
random sample of the values for all study subjects. Examples of 
MCAR dropout might be data missing due to accidental death or 
because a patient has moved to another district. Intermittent missing 
values in a longitudinal data set might also be assumed to be MCAR, 
though supporting evidence would usually be required. Completely 
random dropout causes least problems for data analyses. 

Additionally, data may be missing due to design, but still be in- 
dependent of the outcome values. An example would be a study de- 
signed to have less frequent assessments in a group having a standard 
treatment. Little (1995), distinguishes completely random drop-out 
from covariate-dependent dropout, for which 

Pr(D = k l X ,  Yl, . . . , YT) = Pr(D = k l X )  
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and the probability of dropping out depends on the values of the 
fixed covariates X ,  but given X ,  it is conditionally independent of 
an individual’s outcome values, Y1,. . . , YT. Such a definition allows 
dependence of drop-out on both between-subject and within-subject 
covariates that can be treated as fixed in the model. In particular, 
if X includes treatment-group indicators, this definition allows the 
dropout rates to vary over treatment groups and seasonal dropout 
effects could be modelled by including season indicators as within- 
subject covariates in the model. 

Random dropout (MAR) occurs when the dropout process de- 
pends on the outcome measures that have been observed in the past, 
but given this information is conditionally independent of all the fu- 
ture (unrecorded) values of the outcome variable following dropout, 
so that 

P ( D  = /qX,Yl , .  . . ’YT) = P ( D  = /qX,Yl , .  . . ,Y&1) 

Here ‘missingness’ depends only on the observed data with the dis- 
tribution of future values for a subject who drops out at time t being 
the same as the distribution of the future values of a subject who re- 
mains in at time t ,  if they have the same covariates and the same past 
history of outcome up to and including time t .  An example of a set of 
data in which the dropouts violate the MCAR assumption but may 
be MAR is shown in Fig. 3.4, taken from Curran et al. (1998). The 
diagram shows mean physical functioning scores by time of dropout; 
higher scores represent a higher level of functioning. We can see that 
patients with a lower physical functioning tended to dropout of the 
study earlier than patients with a higher physical functioning score. 
Consequently, the probability of dropout depended on the previous 
functioning score and hence the dropout was not MCAR. 

Finally, in the case of non-ignorable or informative dropout, the 
dropout process, P ( D  = k l X ,  Y1,. . . , YT) depends on the unobserved 
values of the outcome variable. That is, dropout is said to be non- 
ignorable when the probability of dropout depends on the unrecorded 
values of the outcome variable that would have been observed had 
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Fig. 3.4. Physical functioning score by time of dropout (taken with permis- 
sion from Curran et al., 1998). 

the patient remained in the study. An example given by Cnaan, Laird 
and Slasor (1997) involves trials of patients undergoing chemotherapy 
treatment for cancer, in which quality-of-life assessments are required 
on a quarterly basis. Most quality-of-life forms are self-report and 
may require substantial effort on the part of the patient. Patients 
who are experiencing poor quality-of-life are likely to be far less able 
to complete the self-report required for response. In this case obtain- 
ing valid estimates of population parameters is likely to be far more 
complicated since we are in a situation of having to make assump- 
tions about the distribution of missing values which cannot be fully 
tested by the data. 

The full implications of this taxonomy of dropouts for the analysis 
of longitudinal data from clinical trials will be made explicit in later 
chapters. 

3.4. INTERIM ANALYSES IN CLINICAL 
TRIALS 

The Tuskegee Syphillis Study was initiated in the USA in 1932 and 
continued into the early 1970s. The study involved enrollment and 
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follow-up of 400 untreated latent syphilitic black males (and 200 un- 
infected controls) in order to trace the course of the disease. In 
recent years, the trial has come under severe criticism because of 
the fact that the syphilitics remained untreated even when penicillin, 
an accepted form of treatment for the disease, became available. Ma- 
jor ethical questions arise if investigators elect to continue a medical 
experiment beyond the point at which the evidence in favour of an 
effective treatment is unequivocal. 

Clearly then, it is ethically desirable to terminate a clinical trial 
earlier than originally planned if one therapy is clearly shown to be 
superior than the alternatives under test. (This may apply even 
if it is a different concurrent study which reports such a result.) 
But as mentioned in the Introduction to this chapter, in most clin- 
ical trials patients are entered one at a time and their responses 
to treatment observed sequentially. Assessing these accumulating 
data for evidence of a treatment difference large and convincing 
enough to terminate the trial is rarely straightforward. Indeed the 
decision to stop accrual to a clinical trial early is often difficult and 
multifaceted. The procedure most widely adopted is a planned series 
of interim analyses to be done at a limited number of pre-specified 
points during the course of the trial. Because the data are examined 
after groups of observations rather than after each observation, the 
name group sequential is often used. A number of such methods have 
been proposed, some of which will be discussed in more detail later 
in this section. The aim of all the different approaches, however, is to 
overcome the potential problems that can arise from repeated tests 
of significance or multiple testing. 

The problem of taking ‘multiple looks’ at the accumulating data 
in a clinical trial has been addressed by many authors including 
Anscombe (1954), Armit age et al. (1969), McPherson (1982), Pocock 
(1982) and O’Brien and Fleming (1979). The problem is that, if on 
each ‘look’ the investigator follows conventional rules for interpreting 
the resulting p-value, then inappropriate rejection of the null hypoth- 
esis of no treatment difference will occur too often. In other words, 
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Table 3.2. Repeated Significance Tests on Accu- 
mulating Data. 

Number of Repeated Tests Overall Significance 
at the 5% Level Level 

1 
2 
3 
4 
5 

10 
20 
50 

100 
1000 

03 

0.05 
0.08 
0.11 
0.13 
0.14 
0.19 
0.25 
0.32 
0.37 
0.53 
1 .o 

(Taken with permission from Pocock, 1983.) 

repeatedly testing interim data can inflate false positive rates if not 
handled appropriately. Armitage et al. (1969) give the actual signif- 
icance levels corresponding to various numbers of interim analyses 
for a normally distributed test statistic; these values are shown in 
Table 3.2. So, for example, if five interim analyses are performed, 
the chance of at least one showing a treatment difference at the 5% 
level, when the null hypothesis is true, is 0.14. As Cornfield (1976) 
comments: 

Just as the Sphinx winks if you look a t  it too long, so, if you perform 
enough significance tests, you are sure to find significance even when none 
exists. 

An example of this problem described by Freidman, Furberg and 
DeMets (1985) involved a trial comparing mortality in clofibrate and 
placebo treated patients in the Coronary Drug Project (1981). In the 
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Fig. 3.5. Results from a trial comparing mortality in clofibrate and placebo 
treated patients (taken with permission from Freidman, Furberg and 
DeMets, 1985). 

early months of the study, clofibrate appeared to be beneficial, with 
the significance level exceeding 5% on three occasions (see Fig. 3.5). 
However, because of the repeated testing issue, the decision was made 
to continue the study and closely monitor the results. The early 
difference was not maintained, and at the end of the trial the drug 
showed no benefit over placebo. Such a difference might arise for a 
variety of reasons, including: 

0 early patients in a trial are not always representative of the 
later patients, 
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0 number of events are small, 
0 randomisation may not yet have achieved balance. 

The basic strategy involved in the group sequential approach is to 
define a critical value at each interim analysis (Z,(k), k = 1, . . . , K )  
such that the overall type I error rate will be maintained at a prespec- 
ified level. At each interim analysis, the accumulating standardised 
test statistic ( Z ( l c ) , k  = 1 , .  . . , K )  is compared to the critical value 
where K is the maximum number of interim analyses planned for. 
The trial is continued if the magnitude of the test statistic is less 
than the critical value, for that interim analysis. Various sequences 
of critical values have been proposed. Pocock (1977), for example, 
suggested that the critical value should be constant for all analyses. 
But O’Brien and Fleming (1979) proposed changing critical values 
over the K interim analyses. Pet0 et al. (1976) suggested that a large 
critical value be used for each interim analysis and then for the last 
analysis, the usual critical value should be utilised. Example of the 
Pocock, O’Brien and Fleming, and Pet0 et al. boundaries for K = 5 
and a = 0.05 (two-sided) are shown in Fig. 3.6. (A brief account of 
the type of calculation behind these boundaries is given later.) 

For each of the approaches mentioned above the number of in- 
terim analyses, K ,  has to be specified in advance, but Lan and 
DeMets (1983) consider a more general method (the alpha spending  
procedure) to implement group sequential boundaries that control 
the type I error rate while allowing flexibility in how many interim 
analyses are to be conducted and at what times. 

Pampallona and Tsiatis (1994) introduce a class of boundaries 
for group sequential clinical trials that allow for early stopping when 
small treatment differences are observed. The boundaries can be 
derived exactly for any choice of type I and type I1 error probabilities, 
and can be easily applied to both one- and twwsided hypothesis 
testing. A brief account of how these boundaries are derived is given 
in Table 3.3, while Table 3.4 (adapted from Pampallona and Tsiatis, 
1994) gives values of the boundaries for various combinations of the 
design parameters. In general, however, the boundaries required for 
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interim analyses (taken with permission from Lan and DeMets, 1983). 

Pocock, O'Brien and Fleming and Pet0 et al. boundaries for 

most proposed group sequential procedures are most easily obtained 
using the specialised software described in the Appendix. As an 
illustration, we will consider an example from the East manual (see 
the Appendix) which involves a trial comparing a new compound 
with a standard treatment for the control of systolic blood pressure. 
The expectation is that systolic blood pressure should decrease to 
about 95 mmHg with the new drug, against the current 105 mmHg 
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Table 3.3. Obtaining Boundaries for Group Sequential Analysis. 

The problem is one of comparing the effectiveness of two treatments, A 
and B say. 
Let the response be normally distributed with expected values p~ and 
p~ respectively, and common variance cr2. 
It is required to test the null hypothesis of treatment equivalence, namely 
Ho : p~ = p~ = b = 0, against the alternative hypothesis, H1 : S # 0. 
Patients will enter the randomised trial in a staggered fashion over time 
and the accumulating responses are analysed each time an additional 
group of n observations become available on each treatment arm, with 
the goal of interrupting accrual into the trial whenever a large treatment 
difference is observed. 
Let the maximum number of planned analyses be K ,  so that the maxi- 
mum sample size should the trial be required to continue until the last 
analysis, is N = 2Kn patients. 
The testing strategy consists of stopping the study, and either accepting 
Ho or H I ,  the first time the test statistic takes a value outside a suitably 
defined continuation region. 
The test statistic at the j t h  analysis is defined as: 

where XilA and X i l B  denote the responses of the lth patient in the ith 
group on treatment A and B, respectively. 
The statistic S, is a partial sum of normal random variables, y Z ,  of the 
form: 

The group sequential approach entails the specification of a set of critical 
values that define appropriate continuation and stopping regions and 
that guarantee the desired type I and type I1 error probabilities under 
repeated significance testing. 
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Table 3.3 (Continued) 

The critical values for early stopping in favour of H I  will be of the form 
b; = C1 (a ,  p, K ,  A)jA,  while critical values for early stopping in favour 
of Ho will be of the form bj” = jb’ - C2(a, 0, K ,  A)jA, where C1 and C2 
are positive constants and by 5 bj’. 
C1 and C2 depend on the required significance level a ,  the size of the 
type I1 error p, the maximum number of looks, K ,  and an additional 
parameter A that affects the shape of the continuation region. If A = 0, 
the O’Brien-Fleming boundary is obtained. If A = 0.5, the Pocock 
boundary results. More generally, Wang and Tsiatis (1987) explore the 
family of boundaries to find the value of A that minimises the expected 
sample size for various design specifications. 
The following stategy can be adopted for a one-sided test 

continue the trial if Sj E (by, b:) 

At any analysis, values of Sj 2 bj’ will be considered supportive of the 
alternative, while values of Sj 5 bj” will be considered as supportive of 
the null, and in either case, the trial will terminate. 
The value of n can be shown to be 

2 ( C 1  + C2)2K2(A-1) 
62 

n = 2  

The values of C1 and C2 that satisfy the required operating characteristics 
are found using the recursive integration formula described in Armitage 
et al. (1969). 

(This account summarises that given in Pampallona and Tsiatis, 1993.) 

obtained with the standard. From previous experience, the standard 
deviation of blood pressure measurements among target patients is 
of the order of 15 mmHg. The trial is required to have a power of 
90% in order to detect the difference of interest when two-sided sig- 
nificance testing is performed at the 5% level. The O’Brien-Fleming 
boundary, when the number of looks is set at five, is shown in Fig. 3.7. 
This approach requires a maximum of 102 patients; a fixed sample 
size design requires 95 patients, but without the possibility of early 
stopping. 
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Table 3.4. Values of C1, C2 and n for various combinations of P,K 
and A when S / u  = 1 (part of table in Pampallona and Tsiatis, 
1994). 

1 - ,L3 = 0.80 

K A  c1 c2 

One sided test, Q = 0.05 
4 0.0 3.3118 1.9987 

0.1 2.9227 1.7954 
0.2 2.6000 1.6225 
0.3 2.3395 1.4748 
0.4 2.1340 1.3479 
0.5 1.9756 1.2383 

1 - ,L3 =z 0.80 

n c1 c2 

3.52 3.3722 2.7506 
3.67 2.9760 2.4440 
3.88 2.6454 2.1881 
4.18 2.3766 1.9771 
4.59 2.1635 1.8043 
5.16 1.9981 1.6639 

n 

4.69 
4.85 
5.08 
5.44 
5.97 
6.71 

5 0.0 3.7217 2.2693 2.87 3.7928 3.1052 3.81 
0.1 3.2162 1.9973 3.00 3.2775 2.7012 3.95 
0.2 2.8023 1.7718 3.19 2.8537 2.3698 4.16 
0.3 2.4730 1.5845 3.46 2.5141 2.1021 4.48 
0.4 2.2185 1.4279 3.85 2.2502 1.8883 4.97 
0.5 2.0268 1.2962 4.42 2.0504 1.7189 5.68 

It is, of course, possible that use of some suggested procedures for 
interim analyses will lead to inconsistencies. Falissard and Lellouch 
(1991), for example, consider a trial planned with four interim analy- 
ses and a final one, each analysis occurring after a constant number of 
patients in each group. A a test for assessing the difference in treat- 
ment means is scheduled for each of the five planned analyses, the 
overall type I error required being 5%. Pocock’s method rejects the 
null hypothesis if for at least one value of i ,  i = 1,. . . , 5 ,  jail 2 2.41. 
Now suppose that the results are Izi( < 2.41 for i = 1, ... 4 and 
a5 = 2.20. An investigator using no interim analyses will reject the 
null hypothesis, while one using Pocock’s procedure will accept it. 
Thus, the two investigators will reach different conclusions with ex- 
actly the same data. Falissard and Lellouch (1991) propose a new 
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approach which eliminates some of these inconsistencies. This re- 
quires, for rejecting the null hypothesis, that a succession of T tests 
are significant at the current a level. The value of T is chosen so that 
the global type I error is also near to a. 

If interim analyses are to be part of a clinical trial, the inves- 
tigator planning the trial needs to consider both how many such 
analyses there should be and how many patients need to  be evalu- 
ated between successive analyses. These questions are considered in 
detail by F‘ocock (1983) and McPherson (1982). These authors also 
provide tables showing power and expected sample sizes for trials 
with various numbers of planned interim analyses. For large values 
of the treatment difference, the expected sample size is considerably 
reduced by many interim analyses. In most trials, however: such 
large differences are unlikely, and in these circumstances, Pocock 
(1983) suggests that there is little statistical advantage in having a 
large number of repeated significance tests. As a general rule, Pocock 
recommends a maximum of five interim analyses. 

Interim analyses are designed to avoid continuing a trial beyond 
the point when the accumulated evidence indicates a clear treatment 
difference. As commented above, this is clearly ethically desirable. 
But Pocock (1992) suggests that there is a real possibility that in- 
terim analyses claiming significant treatment differences will tend to 
exaggerate the true magnitude of the treatment effect and that often, 
subsequent analyses (where performed) are likely to show a reduc- 
tion in both the significance and magnitude of these differences. His 
explanation of these phenomena is that interim analyses are often 
timed (either deliberately or unwittingly) to reflect a ‘random high’ 
in the treatment comparison. Simon (1994) also makes the point that 
estimates of treatment effects will be biased in clinical trials which 
stop early. 

Even though group sequential methods can be used to help de- 
cide when a trial should be stopped, the subsequent estimation of the 
treatment effect and its associated p-value still needs careful corisid- 
eration. It is not difficult to find examples of trials in which some 
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type of interim analysis was used to stop the trial early, but where the 
reported treatment effect estimate and its p-value were not adjusted 
for the sequential design but instead calculated as if the trial had been 
of fixed size (see, for example, Moertel et al., 1990). Souhami (1994) 
suggests that stopping early because an effect is undoubtedly present 
may result in a serious loss of precision in estimation, and lead to 
imprecise claims of benefit or detriment. Methods that attempt to 
overcome such problems are described in Whitehead (1986), Rosner 
and Tsiatis (1989), Jennison and Turnbull (1989) and Pinheiro and 
DeMets (1997). 

It was the Greenburg Report, finalised in 1967 but not published 
until 1988, that established the rationale for interim analyses of ac- 
cumulating data. In addition, however, it emphasised the need for 
independent data monitoring committees to review interim data and 
take into consideration the multiple factors that are usually involved 
before early termination of a clinical trial can be justified. Such fac- 
tors include baseline comparability, treatment compliance, outcome 
ascertainment, benefit to risk ratio, and public impact. This type 
of committee is now regarded as an almost essential component of 
a properly conducted clinical trial and helps to ensure that interim 
analyses, by whatever method, do not become overly prescriptive. 

3.4.1. Group Sequential Procedures - A 
Bayesian Perspective 

Any discussion of group sequential procedures would be incomplete 
without acknowledging that some statisticians consider the whole 
approach almost fatally flawed. Freedman et al. (1994), for example, 
find reason for concern in three areas: 

0 philosophical awkwardness, 
0 how to draw inferences if the stopping rule is not followed, 
0 how to estimate treatment effects at the end of a group se- 

quential trial. 
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Freedman et al. (1994) illustrate their philosophical difficulties 
with the usual frequentist approaches to interim analyses with the 
following (hypothetical) situation: 

Suppose that a clinician Dr. C comes to statistician Dr. S for some ad- 
vice. Dr. C has conducted a clinical trial of a new treatment for AIDS. He 
has treated and assessed 200 patients, and analysis of the results suggests 
a benefit from the new treatment that is statistically significant (p = 0.02). 
Dr. S, who is also a frequentist, asks how many times Dr. C plans to 
analyse the results as the trial progresses. We now consider two possible 
responses. 

(1) Dr. C may respond that this is the first and only analysis that has 
and will be done. He has waited until the data are complete before 
analysing them. Dr. S is then prepared to endorse t.he analysis and 
p-value. 

(2) Dr. C may, instead, respond that he intends to include 1000 patients 
in this trial, and that this is the first of five analyses that are planned. 
Moreover, the statistician who helped to design the trial had advocated 
an O’Brien and Fleming boundary. Dr. S then advises Dr. C that. the 
results are not yet statistically significant and that the p-value of 0.02 
should not be taken at face value, being one of a series of tests that are 
planned. 

Freedman et al. (1994) complain that it seems unreasonable that 
different inferences should be made by Dr. S depending upon the 
plan for further analysis. They then suggest an alternative Bayesian 
approach involving the following steps: 

0 A prior distribution, representing one’s pre-trial belief about 
the treatment difference is specified. (In fact two priors are 
recommended, the first to  represent a reasonable sceptic, the 
second to represent a reasonable enthusiast .) 

0 Data are then gathered during the trial leading to an estimate 
of the treatment difference with a confidence interval. 

0 Bayes’ theorem is then applied to calculate a posterior distri- 
bution that represents one’s current belief about the treatment 
difference. 
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0 Recommendations regarding the continuation of the trial are 
based upon the posterior distribution. The treatment differ- 
ence scale is divided into three ranges: 

(1) differences that would lead to a choice of the standard 
treatment, 

(2) differences that would lead to a choice of t,he new treat- 
ment, 

(3) an intermediate range in which benefits from the new treat- 
ment are balanced by increased toxicity, inconvenience or 
cost. 

The posterior probabilitites of the treatment effect lying within 
each of these three regions may be used to make decisions about the 
future of the trial. Freedman et al. (1994) provide an example of such 
an approach in a clinical trial investigating the effect of drug combi- 
nation of 5-flurouracil and levamisole upon the length of survival of 
patients with colorectal cancer. 

Although the properties of the Bayesian approach are attractive 
in providing an integrated view of all aspects of stopping, it has, 
so far, failed to make a major impact on monitoring clinical trials. 
Machin (1994) suggests that this may be partly due to clinicians 
scepticism over the way that different priors purporting to represent 
belief, can influence the interpretation of results. He suggests that if 
the Bayesian approach is to evolve into a more than interesting but 
unused tool, there is a need for ‘case’ studies to illustrate what it 
gives above and beyond current methods. More detailed discussion 
of Bayesian methods is taken up in Chapter 9. 

3.5. SUMMARY 

Once a trial begins, a patient’s progress needs to monitored closely. 
Much effort needs to be put into determining whether or not the pa- 
tient is complying with the intended treatment and trying, wherever, 
possible to ensure that the patient is observed on all the occasions 
specified in the trial protocol. The analysis of longitudinal data from 
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a clinical trial which has a substantial proportion of missing values, 
whilst possible with particular statistical techniques, does present 
considerably more problems than when the data is complete. The 
proportion of missing values in a set of data can often legitimately 
be taken as an indicator of the quality of the study. 

The standard way of dealing with non-compliance is intention-to- 
treat analysis. Only analysis by intention-to-treat can be relied on to 
provide an unbiased comparison of the treatment policies as imple- 
mented. All other analyses deviate from the principle of randomised 
comparison, need to make assumptions that cannot be fully validated 
and hence carry a risk of introducing bias. Schwartz and Lellouch 
(1967) characterise trials intended for comparing the efficacy of treat- 
ment regimens, ‘pragmatic’, and for such trials intention-to-treat is 
the only correct analysis. 

But in many cases, interest may be more in comparing the drugs 
involved in the regimens, what Schwartz and Lellouch label ‘explana- 
tory trials’. In this situation, supplementary analyses using com- 
pliance information recorded for each patient become acceptable. 
Indeed Efron (1998) suggests that taking into account the variable 
compliance in a randomised clinical trial may offer advantages such 
as the derivation of a dose-response curve for the drugs efficacy, even 
though the original experiment was only intended as a single dose. 

The basis of the analyses which are eventually applied to the trial 
data are the measurements of the outcome variable(s) specified in the 
trial protocol. Clearly, the quality of the trial can only be as good 
as the quality of the data collected and issues of the reliability of the 
chosen outcome measure may need to be addressed. 

Continuing a clinical trial beyond the time when there is strong 
evidence of a substantial treatment difference is ethically undesirable 
and interim analyses which may allow the trial to  be terminated early 
are usually written into the protocol of the trial. The statistical- 
based boundaries that result are often quite helpful but should not 
be viewed as absolute decision rules. In addition, such analyses need 
to be used with caution since they can lead to over optimistic claims 
about the effectiveness of treatments in some situations. 



CHAPTER 4 

Basic Analyses of Clinical 
Trials, the Generalised 
Linear Model and the 
Economic Evaluation 
of Trials 

4.1. INTRODUCTION 

Senn (1997) makes the point that in its simplest form a clinical trial 
consists of a head to  head comparison of a single treatment and a 
control in order to answer a single well defined question. The analy- 
sis of such a trial might then consist of applying a single significance 
test or constructing a single confidence interval for the treatment 
difference. In practice, of course, matters tend to be a little more 
complex and most clinical trials generate a large amount of data; 
for example, apart from the observations of the chosen outcome 
variable(s) at different points in time, details of side effects, mea- 
surements of laboratory safety variables, demographic and clinical 
covariates will often also be collected. As a consequence, the anal- 
yses needed may rapidly increase in complexity. In this chapter we 
shall restrict attention to methods suitable for trials in which one 
or more outcome variables are recorded on a single occasion, usually 
the end of the trial. Later analysis chapters will deal with the more 
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involved techniques needed to analyse data from trials in which out- 
come measures are observed on several occasions post-randomisation 
and possibly also pre-randomisation. 

4.2. A BRIEF REVIEW OF BASIC 
STATISTICS 

The basic statistical principles required in the analysis and interpre- 
tation of data from many clinical trials are well described in Pocock 
(1983) and elsewhere; consequently, we shall give only a very brief 
review of these methods in this section. 

Analysis of a single continuous outcome variable observed once at 
the end of a trial usually begins with some simple plots and diagrams, 
e.g. histograms, and box plots. Figures 4.1, and 4.2 illustrate each 

Histog:am for placebo ~ o M t ~ ~ a ~ h  

-- 
_I 

Histograms for placebo and active treatment groups in double- 
blind trial of an oral mouthwash. 
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Fig. 4.2. Boxplots for placebo and active treatment groups in double-blind 
trial of an oral mouthwash. 

type of plot for the data shown in Table 4.1; these data arise from 
a double blind trial in which an oral mouthwash was compared with 
a placebo mouthwash. Fifteen subjects were randomly allocated to 
each mouthwash and at the end of 15 weeks an average plaque score 
was obtained for each subject. This was calculated by allocating a 
score of O! 1, 2 or 3 to each tooth and averaging over all teeth present 
in the mouth. The scores of 0, 1, 2 and 3 for each tooth corresponded, 
respectively to: 

0 0 - no plaque, 
0 1 - a film of plaque visible only by disclosing, 
0 2 - a moderate accumulation of deposit visible to the naked 

eye! 
0 3 - an abundance of soft matter. 

The histogram and boxplot for the placebo group show clear evi- 
dence of an outlier, and the corresponding plots for the active group 
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Table 4.1. Data from Mouthwash Trial. 

Subject Plaque Score I Subject Plaque Score 

Placebo 1 
2 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

0.709 
0.339 
0.596 
0.333 
0.550 
0.800 
0.596 
0.589 
0.458 
1.339 
0.143 
0.661 
0.275 
0.226 
0.435 

Active 16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

0.000 
0.000 

0.344 
0.059 
0.937 
0.024 
0.033 
0.000 
0.019 
0.687 
0.000 
0.136 
0.000 
0.395 
0.917 

indicate the skewness of the distribution. Despite these contraindi- 
cations, the data will first be analysed using a two-sample t-test; the 
results, shown in Table 4.2, suggest that the active mouthwash has 
been successful in lowering the plaque score. 

The indication of non-normality for the mouthwash trial data 
given by Figs. 4.1 and 4.2, may suggest to some investigators the 
need to transform the data in some way before applying the t-test; 
alternatively, a nonparametric test of the treatment difference might 
be considered appropriate. The question of transformations will be 
taken up later, but applying the Wilcoxon rank-sum test gives a 
p-value of 0.001, again clearly demonstrating a non-zero treatment 
difference (in terms of the two medians). Section 4.5.4 illustrates 
another approach for dealing with non-normality that uses bootstrap 
estimation. 

In many clinical trials, the outcome variable will be binary. An 
example is shown in Table 4.3. This arises from a study testing 
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Table 4.2. Results from Applying 
Two-sample t-test to Mouthwash 
Data in Table 4.1. 

Placebo Active 

Mean 0.5348 0.2367 
SD 0.2907 0.3432 
n 15 15 

t = 2.567, d.f. = 28, p-value = 0.0159, 
95% confidence interval for treatment 
difference (0.060, 0.536). 

Table 4.3. Aspirin and Cardiovascular Disease. 

Myocardial Infarction 
Group Yes No Total 

Placebo 189 10,845 11,034 
Aspirin 104 10,933 11,037 

73 

whether regular intake of aspirin reduces mortality from cardiovas- 
cular disease. Every other day, physicians participating in the study 
took either one aspirin tablet or a placebo. The participants were 
blind to which type of pill they were taking. 

Such data will often be analysed based on a confidence interval for 
the difference in the population proportions of myocardial infarctions 
in the aspirin and placebo groups. Details are given in Table 4.4. 
The derived confidence interval does not contain the value zero and 
suggests that aspirin diminishes the risk of myocardial infarction. 

A further measure of the treatment difference often used for bi- 
nary outcomes is the odds ratio; its calculation for the aspirin data 
is outlined in Table 4.5. The associated confidence interval does not 
contain the value one, again indicating the positive effect of aspirin 
in preventing myocardial infarction. As we shall see later, the odds 
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Table 4.4. Constructing a Confidence Interval for the Dif- 
ference in Proportions of Myocardial Infarctions amongst 
Patients given Aspirin and Placebo. 

Of the 11 034 physicians taking placebo, 189 suffered from my- 
ocardial infarction over the course of the study, a proportion 
pi = 189/11034 = 0.0171. 
Of the 11 037 physicians taking aspirin, 104 suffered from my- 
ocardial infarction over the course of the study, a proportion 
p2 = 104/11037 = 0.00094 
The sample difference of proportions is 0.0171 - 0.0094 = 0.0077. 
This difference has an estimated standard error of 

= 0.0015 
(0.017)(0.9829) (0.0094)(0.9906) 

11034 +- 11037 

A 95% confidence interval for the true difference is 0.0077 & 
1.96(0.0015), i.e., (0.005, 0.011). 

Table 4.5. Odds Ratio for Aspirin Study. 

For the physicians taking placebo, the estimated odds of myocardial 
infarction equal 189/10845 = 0.0174. 
For the physicians taking aspirin, the estimated odds of myocardial 
infarction equal 104/10933 = 0.0095. 
The sample odds ratio 8 = 0.0174/0.0095 = 1.832. The estimated 
odds of myocardial infarction for physicians taking placebo equal 
1.832 times the estimated odds for physicians taking aspirin. The 
estimated odds are 83% higher in the placebo group. 
The asymptotic standard error of log(8) is calculated as 

1 1 1 
SE[log(8)] = - +-+- +-  J '  189 10933 10845 104 

= 0.123 

Consequently a 95% confidence interval for log8 is log(1.832) * 
1.96 (0.123), i.e., (0.365, 0.846). The corresponding confidence 
interval for 8 is [exp (0.365), exp (0.846)] = (1.44, 2.33). 
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Method 1 
Patient ID Age Pain Score 
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Method 2 
Patient ID Age Pain Score 

Table 4.6. Pain Scores after Wisdom Tooth Extraction. 

1 27 36 
2 32 45 
3 23 56 
4 28 34 
5 30 30 
6 35 40 
7 22 57 
8 27 38 
9 25 45 

10 24 49 

11 44 20 
12 26 35 
13 20 47 
14 27 30 
15 48 29 
16 21 45 
17 32 31 
18 22 49 
19 22 25 
20 20 39 

ratio is a fundamental parameter in particular types of models for 
binary response variables. 

Even in these clinical trials in which comparing two groups with 
respect to a single outcome variable is of prime interest, we may still 
wish to take one or more other variables into consideration in the 
analysis. In particular, if there is a variable known in advance to 
be strongly related to the chosen outcome measure, taking it into 
account using analysis of covariance can often increase the precision 
with which the treatment effect can be estimated. To illustrate a 
simple application of analysis of covariance, the data in Table 4.6 
will be used. These arise from a randomised trial of two different 
methods of wisdom tooth extraction, in which the outcome variable 
was a measure of pain on discharge derived from a visual analogue 
scale with anchor points, 0 = no pain and 50 = unbearable pain. 
The age of each patient was also recorded as it was thought that age 
would be related to a patient’s perception of their pain. A plot of 
the data is shown in Fig. 4.3. 

Details of the analysis of covariance are given in Table 4.7. A 
simple regression model is assumed in which, conditional on treat- 
ment and age, the pain outcome variable is normally distributed with 
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Fig. 4.3. Scatterplot of age of patient vs. pain score after wisdom tooth 
extraction with patients labelled by treatment group. 

constant variance. The results of the analysis indicate that pain is 
indeed related to age and that the mean pain scores after adjusting 
for age differ significantly. 

(Particularly commonly used covariates in clinical trials are base- 
line, pretreatment values of the main response variable; discussion 
of such covariates is taken up in detail in the next chapter.) 

Covariates such as age, etc., may also often be of interest when 
the outcome variable is binary. But using the linear model given in 
Table 4.7 for say, the probability of a zero response ( P ) ,  immedi- 
ately runs into difficulties. The most obvious is that it could lead to 
parameter estimates which give fitted probability values outside the 
range (0, l ) .  A further problem is that the assumed normal distribu- 
tion would now clearly not be realistic. Because of these problems, 
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Table 4.7. Analysis of Covariance of Pain Data in Table 4.6. 

The analysis of covariance model assumes that pain on discharge and age 
are linearly related and that the slope of the regression line is the same for 
each extraction method. Specifically the model has the form: 

E(pain) = PO + PI group + PZ age 

where group is a dummy variable taking the value 0 for method 1 and the 
value 1 for method 2. The estimated parameter values and their standard 
errors are: 

variable parameter standard error of estimate/SE 
age -0.74 0.23 3.16 

group -7.33 3.45 2.13 

some suitable transformation of the probability is modelled as a lin- 
ear function of the covariates rather than the probability itself. The 
most commonly used transformation is the logistic, i.e., X = In -, 
leading to logistic regression. In addition a more suitable distribu- 
tional assumption is made. 

The linear model used in the analysis of covariance of a normally 
distributed response and the logistic regression model for binary 
outcomes are unified along with models for other types of response 
variables under the generalised linear model to which we now turn 
our attention. 

P 

4.3. GENERALISED LINEAR MODELS 

The binary response variable is an extreme example of departure 
from normality for which the linear model described in Table 4.7 is 
clearly unsuitable. But in the case of more moderate departures from 
this condition, the model has often been applied to some transformed 
value assumed to comply with the requirements of approximate con- 
ditional normality, linearity and constant variance. Many outcome 
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measures in common use are, however, resistant to successful trans- 
formation. In other cases, the original scale may be a natural one 
and effect estimates and inference are more easily understood on this 
scale. Measures such as counts of events or symptoms, for example, 
typically possess highly skewed distributions where the modal value 
is zero or close to it, and do not transform satisfactorily. (Lind- 
sey, 1993, draws a distinction between frequency data, obtained by a 
classification of sample units typically considered to be independent, 
and count data obtained as a response from each sample unit and 
typically representing a number of events over a period or features 
on a surface.) Such measures can, however, often be readily anal- 
ysed by a model in which the log of the expected count is related to 
treatment and covariates with observed counts being assumed Pois- 
son distributed (or Poisson-like - see later) around this expected 
value, a model known as Poisson regression. 

Both logistic regression and Poisson regression are special cases 
of a wider class of generalised linear models or GLMs. The models 
are described in detail in McCullagh and Nelder (1989) and more 
concisely in Table 4.8. The essential features are the link and variance 
functions; these are detailed for a variety of GLMs in Table 4.9. 
Maximum likelihood estimation of the parameters in such models is 
fully described in McCullagh and Nelder (1989) but typically consists 
of an iterative weighted least squares solution to the score equations, 
i.e., the derivatives of the log-likelihood with respect to  the regression 
parameters. These equations can be written thus: 

n 

U(P)  = c ( $)ru; l{K - pz(p)) = 0 
i=l 

where vT1 are weights derived from the variance function vi = 
Var(yZ). The large sample covariance matrix of the parameter es- 
timates is given by the inverse of the Hessian matrix, H(P), given 
by 

n 
H(p) = ( %)'ql (%) 

i=l 
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Table 4.8. Components of GLMs. 

0 The observed data y1, . . . , y, are assumed to  be a realisation of random 

0 The analysis of covariance model described in Table 4.7 is a simple 
example of the general linear regression model with p covariates which 
can be written as: 

variables Y1, . . . , Y,. 

where PI , .  . . , P P  are parameters that have to be estimated from the 
data. 

0 For a sample of n observations, the model can be conveniently written 
as : 

E ( Y )  = xp 
where Y’ = [Yl,. . . , Y,], 0’ = [PI,. . . , P P ]  and X is the model ma- 
trix containing covariate values (usually including a constant to  allow 
estimation of an intercept) for the n observations in the sample. 

0 Letting p = E ( Y ) ,  the model and its distributional assumptions can 
be written concisely as: 

E ( Y ) = p  where p = X p  

and the response variables are normal with constant variance g2. 

pis to be a linear function of the covariates, i.e., 
0 The model is generalised by first allowing some transformation of the 

where 77% = g(pz)  with g(.) being known as the link function. Link 
functions are monotone increasing, and hence invertible; the inverse 
link f = 9-l is an equivalent and often a more convenient function for 
relating p to the covariates. 

0 So for a binary variable, g would be the logit function with vi = 

log(*) leading to logistic regression. The inverse link is pi = &. 
This guarantees that pa is in the interval [0,1], which is appropriate 
since pa is an expected proportion or probability in this case. 
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Table 4.8. (Continued) 
0 The second generalisation of the usual Gaussian regression model is an 

extended distributional assumption in which the response variables are 
assumed to have a distribution in the exponential family, having the 
form: 

f(?l; 0 , 4 )  = e x p w  - b ( @ ) / a ( 4 )  + C ( Y ,  4 ) )  
for some specific functions a ( . ) ,  b(.) and c(.).  

0 For the normal distribution, for example, 0 = p,  q5 = u2 and 

0 One aspect of the choice of distribution for a GLM that is fundamental 
to estimation and inference is the variance function, V ( p ) ,  that captures 
how the variance of the response variable Y depends upon the mean, 
Var(Y) = q5V(p) where 4 is a constant. For the normal distribution, for 
example, the variance does not depend on the mean and V ( p )  = 1, q5 = 
u2. For the Poisson distribution the variance is equal to the mean and 
VbL) = I-1. 

Table 4.9. Parameterisations of Mean and Variance Functions of 
Various GLMs. 

Normal Poisson Binomial Gamma Inverse Gaussian 

Notation N ( p ,  0’) P ( p )  B(m, ~ ) / m  G(p, u )  IG(PL, U Z )  

Link 

Variance 

function 1 P 4 1  - P )  P2 P3 

The validity of the covariance matrix in Eq. (4.2) depends on the 
specification of the variance function being correct. An alternative 
estimator for the covariance matrix that provides a consistent esti- 
mate even when the variance function is specified incorrectly is the 
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so-called ‘sandwich estimator’, H-’ (p)H-’ (P )  where 

Commonly referred to as a ‘robust’ or ‘heteroscedastic consistent’ pa- 
rameter covariance matrix, the use of standard errors derived from 
this matrix and the related confidence intervals and p-values can 
provide some protection against inadvertent misspecification of the 
error component of a model. Such protection is, however, reliant 
on asymptotic theory. In small samples and when the model is not 
misspecified, this estimator of the parameter covariance matrix can 
perform worse than the standard estimator (Breslow, 1990). The re -  
bust estimator also plays an important role in some of the techniques 
to be described in the next chapter. 

GLMs can be fitted routinely using widely available software - 
see the Appendix, and considerably enrich the range of models that 
might be applied to the data from clinical trials, in particular mak- 
ing it possible to consider appropriate models for outcome measures 
with specific properties. Binary variables, for example, are most 
often modelled using logistic regression; this estimates effects, and 
combines the effects of covariates, on the log-odds scale. Among 
other properties, the log-odds scale is symmetric, ensuring equiva- 
lent inference regardless of the coding of the binary response. But 
when the binary response that is recorded is in fact a truncated count 
or an interval censored failure event, with 0 representing absence of 
some clinical feature or event, and 1 representing the presence or 
occurrence of at least one such feature or event, symmetry may no 
be longer appropriate. In such cases, the log-log scale is often more 
suitable. This scale is not symmetric but the parameter estimates 
relate naturally to  the log-response rate and thus this model has 
strong links with methods for survival analysis which are discussed 
in Chapter 8. 
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When binary and count data are presented in grouped form as 
y positive responses in a total of m responses, a binomial distribu- 
tion might be expected, provided that the m observations are un- 
correlated. In some circumstances, however, this assumption may 
be suspect. Examples include where the observations are repeated 
measures on the same individual (a situation to be considered in 
detail in Chapters 5 and 7), or correspond to sets of patients with 
each set drawn from, say, one of a number of clinics. In each case 
the observations are likely to be correlated. Under such circum- 
stances, the variance of the response data is likely to be larger than 
that expected from the binomial distribution. There are a number 
of ways that such extra-binomial variation or overdispersion can be 
accounted for. One is a further generalisation of GLMs in which a 
scale parameter 4 is introduced (see Table 4.8), and the resulting 
model estimated by a procedure suggested by Wedderburn (1974) 
called maximum quasilikelihood. Wedderburn pointed out that the 
GLM score equation (4.1) could be solved for any choice of link and 
variance fuct ion even when their integral (the quasilikelihood) did 
not actually correspond to a member of the exponential family nor 
even to a known parametric distribution. McCullagh (1983) showed 
that the regression estimates obtained from solving the correspond- 
ing quasi-score functions were approximately normal, with mean p 
and variance still given by Eq. (4.2). McCullagh and Nelder (1989) 
propose a simple moment estimator for the scale parameter 4 (see 
bottom of Table 4.8) based on the Pearson residuals. (Other possible 
approaches to overdispersion are described in Collett, 1991.) 

Count data that might usually be modelled by Poisson regression 
can also show overdispersion since rates can vary amongst individu- 
als. Counts of features, such as metastases or events such as seizures 
occurring in individuals, for example, often show extra-Poisson varia- 
tion, and consequently are rarely successfully dealt with using simple 
Poisson regression. Again, a quasilikelihood approach can be used 
to take account of the overdispersion. Alternatively, a more general 
parametric model such as the negative binomial can be used. 
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To clarify the general comments made above and to illustrate 
the way in which different choices of model can influence the results, 
we now describe a detailed application of GLMs to a set of clinical 
trial data. 

4.3.1. Models for Counts: the Treatment of 
Familial Adenomat ous Polyposis (FAP) 
with a Non-Steroidal 
Anti-Inflammatory Drug 

The example data shown in Table 4.10 come from Giardiello et al. 
(1993) and are also reported in Piantadosi (1997). The data relate 
to a placebo controlled trial of a non-steroidal anti-inflammatory 
drug in the treatment of FAP. The trial was halted after a planned 
interim analysis had suggested compelling evidence in favour of the 
treatment. Here the longitudinal aspects of the trial will be ignored 
(they will be considered in a later chapter) and we shall concentrate 
on analysing the count of the number of colonic polyps at 12 months. 

A ‘spikeplot’ of the count data shown in Fig. 4.4 shows consider- 
able skewness and an extreme value. For this outcome, we will com- 
pare the results obtained from an approach using ordinary regression 
applied to the log-count, a transformation that substantially removes 
the skew, with results from a variety of GLMs, that all use a log-link 
but make different assumptions as to how the mean and variance are 
related. 

A t-test (with group variances assumed equal) for the treatment 
difference in log-count gives the value -3.34; the point estimate of 
the treatment difference is -1.58 and the associated 95% confidence 
interval is (-2.58, -0.58). (This is equivalent to the application of a 
Gaussian regression model with treatment group as the only covari- 
ate.) Introducing log-baseline count as a covariate again using the 
ordinary Gaussian analysis of covariance regression model described 
in Table 4.7, gives the estimate and confidence interval shown in the 
first row of Table 4.11. These show the expected increase in precision 
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distribution of 12 month polyp count 

Fig. 4.4. 
inflammatory drug in the treatment of FAP. 

Spikeplot of count data from a trial of non-steroidal anti- 

obtainable from baseline covariate adjustment. The point estimates 
in the other three rows of Table 4.11 are roughly comparable, since 
they are all estimated on the same log scale. They differ, however, in 
terms of the variance functions assumed (see Table 4.9) and this will 
be reflected in the standardised residuals, (yi - f i i ) / d m ,  ob- 
tainable after fitting each model. Probability plots of these residuals 
may help in identifying the most appropriate (and least appropriate) 
models for these data. Such plots are given in Fig. 4.5. This figure 
shows the plots corresponding to the four models fitted in Table 4.11 
and, in addition, residuals from a Gaussian regression model for the 
raw counts and a standard Poisson regression. 

The residuals from the ordinary regression of the raw counts 
show the failure of this approach to account for the skewness in 
the data, while those from the standard Poisson regression show a 
much greater variation than that expected under the assumption that 
the polyps represented ‘independent’ events. Uncorrected use of this 
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Table 4.10. Data from Polyposis CTE Clinical Trial (taken with per- 
mission from Piantadosi, 1998). 

Number of Polyps Size of Polyp 
Visit Visit 

I D 1  2 3 4 5 1 2  3 4 5 Surg Age Treat 

1 0  7 6 
2 0 77 67 
3 1  7 4 
4 0  5 5 
5 1 23 16 
6 0 35 31 
7 0  11 6 
8 1 12 20 
9 1  7 7 

10 1 318 347 

11 1 160 142 
1 2 0  8 1 
13 1 20 16 
14 1 11 20 
15 1 24 26 
16 1 34 27 
17 0 54 45 
18 1 16 10 
21 1 30 30 
22 0 10 6 
23 0 20 5 
24 1 12 8 

71 
4 

16 
8 

65 
1 
7 

11 
405 

41 
2 

37 
13 
55 
29 
22 

40 
3 
1 

3 

63 
2 

28 
17 
61 
1 
7 

15 
448 

25 
3 

28 
10 
40 
33 
46 

50 
3 
1 

4 

4 
26 
16 
40 
14 
16 
11 

434 

26 
7 

45 
32 
80 
34 
38 

57 
7 
1 
8 

3.6 3.4 . . . 1 
3.8 2.8 3.0 2.8 . 1 
5.0 2.6 1.2 0.8 1.0 1 

3.4 3.6 4.0 2.8 2.1 1 
3.0 1.9 1.0 1.0 1.2 1 
4.2 3.1 5.6 4.6 4.1 1 
2.2 . 0.4 0.2 3.3 1 
2.0 2.6 2.2 2.2 3.0 1 
4.2 5.0 5.0 3.7 2.5 1 
4.8 3.9 5.6 4.4 4.4 1 

5.5 4.5 2.0 1.3 3.5 1 
1.7 0.4 0.6 0.2 0.8 1 
2.5 2.3 2.7 3.2 3.0 1 
2.3 2.8 3.7 4.3 2.7 1 
2.4 2.2 2.5 2.7 2.7 1 
3.0 2.3 2.9 2.5 4.2 1 
4.0 4.5 4.2 3.6 2.9 1 

1 1.8 1.0 ' 

3.2 2.7 3.6 4.4 3.7 0 
3.0 3.0 0.6 1.1 1.1 0 
4.0 1.1 0.6 0.4 0.4 0 
2.8 1.1 0.1 0.4 1.0 0 

. .  

17 
20 
16 
18 
22 
13 
23 
34 
50 
19 

17 
23 
22 
30 
27 
23 
22 
13 
34 
23 
22 
42 

1 

0 
1 
0 
1 
0 
1 
0 
0 
0 

1 
1 
0 
0 
0 
1 
0 
1 

0 
1 
1 
1 

Missing values are indicated by a period. 

latter model would have led to grossly exaggerated levels of precision 
and significance for the parameter estimates. The residual plot from 
the gamma model looks to be the best of the remaining four plots. 

More can be learnt about the fit of these four models by con- 
sidering a further diagnostic, namely the delta-beta (Ap) measure of 
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Table 4.11. Results of Fitting GLMs to Polyposis Data. 

Model Treatment r-test 95% CI 
including baseline Effect 

Regression of log-count - 1.42 -4.02 (-2.16, -0.69) 
Overdispersed Poisson -1.43 -4.69 (-2.03, -0.83) 
Gamma -1.25 -5.11 (-1.74, -0.77) 
Inverse Gaussian -1.26 -4.54 (-1.81, -0.72) 

influence proposed by Pregibon (1981) and Williams (1987). This is 
an example of a single case deletion diagnostic that measures the im- 
pact of a particular observation on a specific parameter in the model. 
In general, it is the standardised difference between the parameter 
estimates with and without a particular observation included. Here 
our interest will centre on the Aps associated with the estimated 
effect of treatment on the log-count of polyps. (The diagnostic is 
calculated simply by repeated model estimation with each case in 
turn excluded.) 

Index plots of the Aps for the four models fitted to the polyposis 
data are shown in Fig. 4.6. The first row of numbers at  the top of this 
plot gives the baseline polyp count used as one of the covariates in the 
analysis and the second row gives the observed count at the end of 12 
months. It is clearly the observation with very low outcome count, 
namely observation 23 with an outcome of 1, that is most influential 
in the approach using ordinary regression on the log-counts. Such 
a finding is not uncommon and cautions against the unquestioning 
use of the log( l+count) transformation frequently used when zero 
counts are encountered. For the log-link models, however, this data- 
point is relatively less influential. Among the log-link models, which 
points are influential can be understood by a consideration of the 
mean-variance relationships implied by the choice of error distribu- 
tion. As can be seen from Table 4.9, the Poisson model assumes the 
variance to increase in proportion to the mean; for the gamma it 
increases with the mean squared, while for the inverse-Gaussian it 
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increases with the mean cubed. For these data the gamma model, 
with variance increasing with the mean squared, would seem most 
appropriate with all the observations having similar and low influ- 
ence. For the Poisson model, the expected variance of the points 
with the highest mean (those with the highest baselines) is too small, 
with these points being attributed greater influence. For the inverse- 
Gaussian model, the expected variance of those with the lowest 
means (the lowest baselines) is too small, and correspondingly these 
points are found to have greater influence. 

An alternative way of tackling the problem of non-normal condi- 
tional errors using bootstrap is considered in Section 4.5. 

4.3.2. Ordinal Response Models: A Clinical 
Trial in Lymphoma 

The data shown in Table 4.12 arise from a clinical trial of cytoxan+ 
prednisone (CP) and BCNU+prednisone (BP) in lymphocytic lym- 
phoma. The outcome variable is the response of the tumour in each 
patient, measured on a qualitative scale from ‘complete response’ 
(best) to ‘progression’ (worst). It is plausible that this scale repre- 
sents a unidimensional ordinal scale. A variety of models will now 
be considered for these data. 

Table 4.12. A Clinical Trial in Lymphoma. 

BP CP Total 

Complete response 26 31 57 
Partial response 51 59 110 

Progression 40 34 74 
No change 21 11 32 

Total 138 135 273 

4.3.2.1. Models with parallel linear predictors 

Two natural extensions of the binary logistic regression model that 
might be considered for these data are the proportional-odds model 
and the continuation-ratio model. 
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The proportional-odds model can be considered as an extension 
of the binary logistic model in which, instead of a single threshold 
partitioning scores on a continuous dimension into two categories, 
multiple thresholds result in multiple partitions. The log-odds of the 
probability of falling in any category to the right (1 - & < k p i j )  and 
left ( c j < k p i j )  of the binary partition, formed by considering each 
threshold k in turn, is assumed to conform to a model with parallel 
linear predictors, such that for individual i: 

This construction of model fits naturally in circumstances in which 
pooling of adjacent categories could be plausibly considered. This 
model is one of many that are based on categories defined by the po- 
tentially arbitrary partitioning of a cumulative distribution function. 
Conceptually, very similar models using the complementary-log-log 
and probit links are possible. 

The continuation ratio model is an alternative model that ex- 
tends the ordinary logistic model by considering the categories its 

occurring sequentially, with each advancement to the next category 
conforming to binary logistic models with parallel linear predictors, 
but where advancement to the next category is conditional upon 
having advanced through all previous categories. For this model: 

Again, complementary log-log or probit link functions could be used 
instead of logistic. 

4.3.2.2. Non-parallel models 

In the preceeding models, only the intercept a varied with the cat- 
egory; the regression coefficients were assumed common. Allowing 
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the regression coefficient to vary with k allows for non-parallel regres- 
sions, with effects that apply at some levels but not others. In many 
applications, the question as to whether parallel linear predictors can 
be assumed may be an open one. For example, the biochemical action 
of some drug treatment might be thought likely to interrupt disease 
progression at one stage transition (threshold) rather than another. 
The ability to test for heterogeneity in regression coefficients across 
thresholds may therefore be important. Models with such flexibility 
are sometimes referred to as partial-proportional models (Peterson 
and Harrell, 1990). 

4.3.2.3. Model estimation 

The models described above can be estimated by direct maximum- 
likelihood using purpose written programs. However, both parallel 
and non-parallel models can be estimated by forming multiple records 
for each subject, each record representing the response on each of the 
notional component binary response models described above. In the 
case of the proportional odds models and similar models based on 
the other possible link/cumulative distribution functions, the records 
from the same individual cannot be considered as independent (Snell, 
1964; Clayton, 1974)) but instead form a single multivariate set. 
There are a number of more and less efficient ways in which this 
correlation can be accounted for, some of which are considered later. 
The advantage of this overall approach is that tests of the signifi- 
cance of regression terms involving the interaction between dummy 
variables for record and predictor variables can be used to test for 
non-parallel linear predictors. 

Figure 4.7 shows the cumulative distribution functions over the 
ordered response categories for the two treatments for lymphocytic 
lymphoma. This simple plot suggests there to be rather little dif- 
ference in the two treatment groups. Fitting an ordinal logistic re- 
gression model to these data using maximum likelihood, gave an 
estimated log-odds ratio of 0.322 in favour of the CP treatment but 
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Fig. 4.7. Cumulative distribution functions over the ordered response cat- 
egories for the two treatments of lymphotic lymphoma. 

with a 95% confidence interval from -0.112 to 0.756. The estimate 
obtained from fitting the same model but specified as a set of three 
binary logistic regressions (with responses complete versus the rest, 
complete or partial versus the rest, and the rest versus progression) 
with different intercepts but common slope, and under the assump- 
tion of independence, gave an estimate of 0.314. Of course, the 
standard errors from such a model will be incorrect, since the three 
responses will be correlated. 

One approach for dealing with this correlation turns out to be 
remarkably straightforward and will be one that we turn to repeat- 
edly throughout this book. We have already introduced the het- 
eroscedastic consistent/sandwich/robust variance estimator earlier 
in this chapter. This gave consistent estimates of standard errors 
even when the chosen model error was inappropriate. The central 
part of the sandwich defined in Eq. (4.3) assumes independent ob- 
servations. In our correlated multivariate response context, this can 
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be achieved simply by summing the score contributions within each 
cluster to form ‘super-observations’ that are independent. The stan- 
dard formula can then be applied (Binder, 1983; Rogers, 1993). 

Using this robust covariance matrix approach for testing corre- 
lated multivariate responses allowed a test for non-parallel linear pre- 
dictors (non-proportionality in this case), corresponding to whether 
treatment effects were uniform across all levels of disease severity. 
The Wald chi-square of 0.10 (p = 0.9) obtained for this 2-degree-of- 
freedom interaction between treatment and the three severity thresh- 
olds, provided no evidence for non-parallel effects. There was little 
evidence for the treatment effect varying with severity. 

A further example of the application of a generalized linear model 
will be given in Chapter 5. 

4.4. MULTIPLE ENDPOINTS 

While a small minority of large simple trials may focus on a single 
outcome measure, for example, mortality, in most circumstances this 
would be an oversimplification of the diversity of patient response. 
In many disease conditions, response to treatment can have many 
different aspects; consequently, clinical trials frequently lack a sin- 
gle definitive outcome measure that completely describes treatment 
efficacy. When a treatment is thought to affect a disease in a mul- 
titude of ways, several outcome variables may be necessary to fully 
describe its effect on patients. Berkey et al. (1996) give an exam- 
ple involving the efficacy of second-line drugs in rheumatoid arthritis 
(i.e., drugs used after the initial standard therapies are unsuccess- 
ful). Efficacy is evaluated on a variety of measures, often including 
tender joint count, erythrocyte sedimentation rate and grip strength. 
In general, the multiple outcomes might include clinical events, symp- 
toms, physiological measurements, blood tests, side effects and qual- 
ity of life. 

Pocock (1996) suggests that one possible approach would be the 
pre-specification of priorities amongst the outcome measures. This 
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would have the result of providing a clear framework for emphasis 
(and de-emphasis) of results in eventual publication. Such prioriti- 
sation is at its simplest when a single outcome measure is selected 
in advance. As Pocock points out, however, when results actually 
arrive, it can be difficult to adhere to  such principles. 

Comparing treatment groups on each of the outcome measures 
at some chosen significance level a will, as we have seen earlier in 
this chapter, inflate the type I error. In the unlikely event that the 
measures are independent, the probability of declaring that at least 
one is significant when there are in fact no treatment differences is: 

P = 1 - (1 - 

where m is the number of outcome measures. For cy = 0.05 this leads 
to: 

m P 

1 0.05 
2 0.0975 
3 0.14625 
4 0.18549 
5 0.22622 

10 0.40126 
20 0.64151 
50 0.92306 

Various procedures have been proposed for keeping the proba- 
bility that we reject one or more of the true null hypotheses in a 
set of comparisons (the fumilywise error, FWE) below or equal to a 
specified level a. The most familar of these is the Bonferroni pro- 
cedure which controls the FWE rate by conducting each test on an 
outcome measure at level a/m. This is simple to apply but suf- 
fers from considerable drawbacks. The first is that it is excessively 
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conservative, particularly if m is large. Consequently, the rather un- 
satisfactory situation can arise where many tests are significant at 
level a but none at level a/m. In addition, the Bonferroni correc- 
tion ignores the degree to which the chosen outcome measures may 
be correlated, which again leads to conservatism when such correla- 
tions are substantial (see Blair et  al., 1996). There are alternative 
approaches which, partially at least, overcome the first problem - 
see, for example, Holm (1979) and Hochberg (1988). Unfortunately, 
these alternatives do nothing to address the second problem of cor- 
relations between measures. More recently, Blair e t  al. (1996) have 
described permutational methods which appear to overcome the con- 
servatism problem even in situations with many outcomes which have 
large correlations. 

Even if some appropriate adjustment of p-values could be found 
there remains the risk of data dredging and distortive reporting by 
a post hoc emphasis on the most statistically impressive findings. 

An alternative to testing each outcome measure separately at a 
significance level calculated to control the FWE rate, is to use a 
procedure which simultaneously tests for treatment differences on all 
variables. Such tests take into consideration the empirical correla- 
tion structure of the outcome measures, thus overcoming one of the 
criticisms of methods such as the Bonferroni correction. The most 
commonly used of these global tests is Hotelling’s T2, which is the 
multivariate analogue of the two-sample t-test. To test the equality 
of two mean vectors against the alternative that they differ in some 
respect, the T2 statistic is: 

where n1 and n2 are the number of observations in the two groups and 
n = n1 +n2; 21 and 2 2  are the sample mean vectors in each group and 
S is the estimate of the assumed common covariance matrix given 
bv: 

where S1 and S2 are the sample covariance matrices in each group. 
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Under the equality hypothesis and assuming that the outcome 
measures have a multivariate normal distribution with the same co- 
variance matrix in each of the two treatment groups, then: 

F = (n - m - 1)T2/(n - 2)m (4.8) 

has an F distribution with m and n - m - 1 degrees of freedom. 
As an example of the use of Hotelling’s test, it will be applied to 

the size and log-count outcomes at 12 months in the polyposis data 
given in Table 4.10. The results are detailed in Table 4.13. The test 
indicates a significant treatment difference on the bivariate mean of 
the two variables. 

Table 4.13. Hotelling’s Test for Log-count and Size Variables 
at 12 Months in Polyposis Data. 

0 The variance-covariance matrices of the two treatment groups are; 

1.001 0.4903 

0.4903 0.5321 

1.1298 1.1956 

1.1956 1.9975 

s1 = ( 
sz = ( 

0 The combined estimate of the assumed common covariance matrix 
is 

1.0162 0.8222 

0.8222 1.2217 
s =  ( 

0 The sample mean vectors are 

Xi = [3.7526,3.1100] 

XL = [2.1726,1.1833] 

0 These lead to T2 = 11.1612 and F = 5.2523. The associated p-value 
is 0.018. 
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Although Hotelling’s T2 test accounts for the correlations be- 
tween the outcome measures, it is not without its own problems. 
First simultaneous testing of all the outcome variables may not an- 
swer a practically relevant problem; it is only really useful when the 
different variables measure different aspects of the same underlying 
concept. Second the ‘directionless’ alternative hypothesis associated 
with the test may mean that it lacks power. Some alternatives which 
are more powerful if treatment improves all outcomes are described 
in Follman (1995). 

4.5. ECONOMIC EVALUATION OF 
TRIALS 

Of increasing importance to health service providers are questions 
that go beyond determining whether new treatments are more effec- 
tive than the current standard treatment. Among these are questions 
relating to treatment costs. For example, at its simplest, where a new 
treatment is quite obviously cheaper than the current standard, then 
a trial that shows that a new treatment is equivalent in effectiveness 
to the standard may be sufficient reason to argue for the adoption of 
the new treatment over the old. 

The appeal of economic evaluations of trials is at least two-fold. 
First, policy makers and accountants immediately find the results of 
research more interesting and relevant, and thus may be persuaded 
by them. Secondly, the approach seems to take a disparate set of 
input and outcome measures and sum them up on a single ‘objec- 
tive’ scale, one measured in monetary units. Considerable caution 
is required on both counts to ensure that real clinical and patient 
benefits are not overlooked and that the unit costs used a s  weights 
in this economic weighted sum are indeed appropriate. 

4.5.1. Measuring Costs 

In practice routine audit systems rarely give adequate data for a 
proper evaluation of costs. Thus in practice trials may need to 
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include extended measurement protocols that can provide full treat- 
ment costs at the individual patient level. A variety of issues need 
to be borne in mind when considering these measures: 

(1) Defining a cost is surprisingly complex. Are costs borne by pa- 
tients rather than treatment providers to be included? Time off 
work might not be, but what about the costs of travel to receive 
treatment, or costs that are passed on directly from treatment 
provider to patient? 

(2) Some costs are transfer costs and should not be included. Differ- 
ent treatments may involve a transfer in the billing of the same 
cost from one department to another, with no net change in cost. 

(3) Costs should not be included for services that would not have 
been used elsewhere. For example, consider a new treatment 
that makes use of some currently rarely used but nonetheless 
necessary piece of equipment. Provided the use made of this 
equipment by the new treatment does not conflict with its cur- 
rent use, then much less than the full cost of this equipment 
should be attributed to the new treatment. The calculation of 
the appropriate amount, the sc-called marginal opportunity cost, 
is often far from straightforward. 

(4) Costs should not be counted twice. Thus drug costs charged to 
patients should not be included in both hospital costs and patient 
costs. 

(5) In the same way that clinical outcomes are monitored and com- 
pared for a specified period of time, so too it is the case for costs. 
Longer term treatment benefits might include lower use, or some- 
times greater use, of quite a range of health service facilities for 
complaints not obviously directly related to that treated. For 
example, patients with successfully treated heart conditions may 
experience longer term psychiatric problems that are costly to 
treat. Are these costs to be included? A further complication 
is that in most branches of economics it is usual to apply a dis- 
count rate to future costs, a reflection of the fact that where costs 
are deferred interest can be earned on the corresponding funds. 
What, if any, discount rate should be applied? 
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As a consequence of issues such as these, costs are easier to define 
within a small closed economic unit than within a community as a 
whole and can be substantially different. The cost of a treatment as 
viewed from the perspective of a single private health care provider 
can be very different from that viewed from the perspective of a 
national health service. 

The uncertainties as to the inclusion criteria and amounts to as- 
sign makes this area of measurement one that should be subject 
to the same rigours as the rest of the trial protocol. This should 
include the need to define the range of eligible costs prior to randomi- 
sation; the need for blindness in the collection of the economic data; 
and, particularly where the determination of unit costs are part of 
the analysis stage (i.e., are not known and agreed prior to the study), 
the importance of blindness and probably also ‘independence’ at the 
dat a-analysis st age. 

4.5.2. Analysis of Cost Data 

When it comes to analysis, further considerations need to be borne 
in mind that relate to how the costs come about. 

(1) The first relates to the characteristics of the treatment. In many 
cases, although treatments are routine, and thus might be con- 
sidered to have a roughly standard fixed cost, they are routine 
only for a proportion of patients. For the remainder, a variety of 
complications and side effects result in the need for repeated, dif- 
ferent or additional treatment. As a consequence, the distribution 
of costs by patient is typically highly skewed, often with a small 
number of patients accounting for a disproportionate amount of 
the costs. 

(2) Economic costs are a measure where the scale of measurement is 
fixed and known. As a consequence, analyses that attempt to deal 
with the non-normality of the cost outcome by transformation are 
not appropriate. This is because the estimated difference in log- 
costs (or any other nonlinear transformation) of two treatments is 
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not the same as the log of the estimated cost difference. The anal- 
ysis of transformed costs simply does not answer the question of 
interest. Instead, an approach that analyses the untransformed 
cost using some appropriate GLM should be used, for example, 
using a model with gamma or inverse-gaussian distributed errors 
and log-link function. In such a model, the use of the log-link 
function means that treatment and other effects are estimated in 
terms of a multiplicative effect, implying an ability to report find- 
ings in terms of a percentage reduction or increase in mean costs. 
Although slightly less familiar to accountants than reporting an 
absolute cost difference (which can anyway still be  derived), the 
structure of the model recognizes that costs cannot fall below 
zero. An alternative approach is to persist in the use of OLS 
linear model methods that give consistent estimates regardless 
of the distribution of costs, but to recognize their non-normality 
by the use of a method such as bootstrap resampling to estimate 
the standard errors. A third approach that may be more helpful 
when the cost distribution shows signs of bimodality, is to fo- 
cus attention more directly on the factors, including treatment, 
that distinguish the high cost from the standard cost individuals, 
using logistic regression on a binary split of the cost data. 

(3) Almost always patient costs are derived by the application of unit 
costs to data on the number of units- used by each patient. The 
units might include days and nights on an in-patient ward, num- 
ber of outpatient assessments, units of blood products infused 
and so on. At least two potentially important consequences fol- 
low. Firstly, if there is variation in the costs of the same units 
between patients it is unlikely that. this variation occurs at the 
patient level, but more often at the level of the medical centre, 
supplier or some such. Thus, from the point of view of costs, 
patients may fall within a much more complex sampling design, 
perhaps with nesting within centre. or within a crossed design 
of suppliers of different products or services. A failure to recog- 
nize such clustering may give a misleading impression as to the 
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precision in the estimates of costs and cost differences. Secondly, 
and perhaps more importantly, there is typically considerable 
uncertainty in the costs of many of the units measured, and since 
the same unit costs are commonly applied across many or even 
all of the patients, a different choice of unit cost can substantially 
alter the overall results of a study. A common response to this 
problem is to narrow the focus of the analysis merely to those 
costs that can be well measured. Sometimes such costs represent 
a trivial proportion of the total costs and to narrow the focus in 
this way then makes very little sense. An alternative response 
is to consider a range of values for each unit cost, presenting 
the results in the form of a sensitivity analysis. This typically 
provides results of little value, since it is frequently the case that 
few differences prove to be robust under the whole of the plausible 
unit cost space. One sensible way to approach this issue would 
be to formulate sensible distributions for unit costs and then 
to use these within a simulation-based estimation method (see 
Chapter 9). 

4.5.3. Cost-Benefit Analysis 

The previous section makes clear that in the presence of uncertainty, 
the analysis of cost data from a trial may be far from straightfor- 
ward. In practice, the economic evaluation of benefits are still more 
complicated and uncertain than those of costs. Benefits may accrue 
not only to patients but to patient carers, their partners and families, 
and to the wider society. Deciding where to draw the line, the placing 
of monetary values on benefits that may be of such very disparate 
kinds, and the social equity issues in deciding whose valuations they 
should be, has persuaded most not to attempt such a project. 

4.5.4. An Example: Cognitive Behavioral 
Therapy 

The RCT of cognitive-behavioral therapy for psychosis by Kuipers 
et al., (1998) is a good example of recent attempts to incorporate 
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an economic perspective into trial evaluation. A subset of the raw 
data is presented in Table 4.14. In view of the likely novelty of such 
measures to statisticians, we describe this study in some detail. As 
mentioned above as a currently common occurrence, the economic 
evaluation of this trial was not part of the original protocol. Costs 
during the primary nine-month treatment phase of the study were ob- 
tained by applying estimated unit costs to in-patient hospital service 
utilisation records. This necessarily represented a restricted range 
of items within the wider cost space that might have been exam- 
ined, essentially focussing on the direct service costs of the CBT 
treatment itself over standard treatment. The 9-18 month follow-up 
phase was more systematically evaluated using a Client Service Re- 
ceipt Inventory (CSRI; Beecham and Knapp, 1992). This considered 
a wider range of costs, including some accomodation costs, but did 
not include informal care-giver support nor potentially illness-related 
unemployment. Again, cost figures were commonly derived by the 
application of unit costs, often based on adjustment of national esti- 
mates of long-run marginal costs (Netten and Dennett, 1996) rather 
than actual costs (the latter may have been neither known nor nec- 
essarily appropriate). 

In common with most community-based trials of severe psychi- 
atric disorder, loss to follow-up represented a considerable problem, 
made worse by additional non-response to the CSRI, the economic 
evaluation instrument. The figures of Table 4.15 relate to the 31 out 
of 60 subjects for whom full cost data could be calculated. Figure 4.8 
presents box-plots of the total cost for each treatment group, showing 
the distributions to have the expected heavier upper tails. Various 
methods for calculating the cost differential and its confidence inter- 
val are shown below. Among these is bootstrap estimation (Efron, 
1979) in which the precision of estimators is examined by using their 
empirical distribution when repeated on many resamplings from the 
sample actually observed. The new samples are of the same size, but 
the sampling is done with replacement, and consequently the sample 
members change from sample to sample. Confidence intervals for 
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Table 4.14. Estimated Patient Costs from the CBT Trial. 
(Kuipers et al. 1998 and pers. comm.) 

Estimated Costs 
Group Accomod’n Followup Treatment Total 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 

cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 
cbt 

control 

4953 

5589 
6084 
3120 

4680 

5499 
6084 
6162 
7917 

8814 

6162 
7917 
7137 

3120 
4953 
7683 

8814 

630 

12372 
2177 
2387 

1044 

21599 
1517 

11460 
352 

270 

438 
1067 

15329 

381 1 
109 

1670 

3212 

208 

5583 

18261 
8261 
5507 

5724 

27098 
7601 

17622 
8269 

9084 

6600 
8984 

22466 

6931 
5062 
9353 

9022 

11166 

36522 
16522 
11014 

11448 

54196 
15202 
35244 
16538 

18168 

13200 
17968 
44932 

13862 
10124 
18706 

18044 



104 Design and Analysis of Clinical Trials 

Table 4.14 (Continued) 

Estimated Costs 

Group Accomod’n Followup Treatment Total 

31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 
43. 
44. 
45. 
46. 
47. 
48. 
49. 
50. 
51. 
52. 
53. 
54. 
55. 
56. 
57. 
58. 
59. 
60. 

control 
control 
control 
control 
control 
control 
control 
control 
control 
control 
control 
control 
control 
control 
control 
control 
control 
control 
control 
control 
control 
control 
control 
control 
control 
control 
control 
control 
control 
control 

6162 
6084 

6786 
11349 

5889 
3120 
6786 
4953 

5889 

6786 

6162 
7917 
7059 

6084 

7137 

6645 
852 

6015 
4047 

2016 
1742 
4734 
1026 

12323 

1600 

738 
2334 

25383 

21364 

440 

12807 
6936 

12801 
15396 

7905 
4862 

11520 
5979 

18212 

8386 

6900 
10251 
32442 

27448 

7577 

25614 
13872 

25602 
30792 

15810 
9724 

23040 
11958 

36424 

16772 

13800 
20502 
64884 

54896 

15154 
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- 

9724 - 

Table 4.15 Economic Evaluation Of Cognitive Therapy Trial. 

Cost Difference 

UK-pounds 95% CI 
(CBT-control) CI 

Simple t-test (equal variances) -3912 (-14407,6583) 

Simple t-test (unequal variances) -3912 (-14588, 6765) 

Robust GLM (overdispersed gamma) -3912 (-13782, 5959) 
Bootstrap linear regression -3912 

(1000 samples) 

normal approximation method (-13917, 6094) 

empirical percentile method (-14002, 5307) 

bias-corrected percentile (-14710, 4962) 

8 Total cost - CBT 

1 64884 

0 

0 

0 
0 

8 Total cost - control 
0 

- 

1 
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a parameter estimate can be based on a normal approximation using 
an estimate of the standard deviation of the empirical distribution, 
or can be based on the quantiles of the empirical distribution (re- 
quiring more samples but not assuming normality). These can also 
be adjusted to yield so-called bias corrected intervals (Efron and 
Tibshirani, 1986). Both the GLM and bootstrap percentile meth- 
ods generate asymmetric intervals reflecting the skew in the cost 
distributions. 

As in many studies some unit costs were easier to measure than 
others and some represented a substantial proportion of the total 
cost. In this study, the number of days of inpatient care was relatively 
easily obtained, sometimes even when patients were non-responders 
at follow-up. The simple correlation between this variable and total 
cost was 0.93. Thus this variable by itself might be considered as 
a useful surrogate for overall cost, with the advantage that it was 
available for 53 patients rather than just the 32 with total cost data. 
Analysis of this variable on the larger sample supported the lack 
of treatment difference in costs, the bootstrap percentile interval for 
the difference in in-patients days being -32.0 to 7.10. An alternative 
use for this variable would be to use it to reweight the sample with 
complete cost data in an attempt to correct for selective loss. This 
issue is taken up in later chapters. 

4.6. SUMMARY 

The primary data for analysis in many clinical trials will consist of 
the observations of one or more outcome variables taken at the end of 
the trial. In many cases the analysis might consist of the construction 
of a simple confidence interval appropriate for the type of variable at 
hand. When covariates other than treatment group are of interest, 
then it will usually be necessary to consider some form of model for 
the data. Many investigators often use Gaussian-based regression for 
all but binary variables, where simple logistic regression is usually 
applied. But it will frequently be advantageous to consider more 
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carefully the nature of the outcome variable and try to find a more 
suitable GLM. 

One important element in this choice of model is the scale upon 
which it is desired to estimate effects. For economic data, the scale 
is clear and one for which a transformation of the response variable 
would not be helpful. Appropriate choice of GLM or the use of meth- 
ods such as bootstrap that are based on the empirical distribution 
were shown to be more suitable. Unlike most clinical measures, the 
construction of economic measures draws on a considerable amount 
of information external to the trial. Trial protocols should where 
possible bring the construction of these measures within their scope. 
The common practice of using unit costs may also generate complex 
patterns of correlated measurement error not easily dealt with at the 
analysis stage. 

When multiple endpoints are available a variety of methods might 
be applied. If the number of outcomes is small, say less than five, then 
adjusting significance levels using the Bonferroni correction or some 
less conservative adjustment may suffice. Alternatively, simultane- 
ous inference using Hotelling’s test may be required. With a large 
number of outcome measures the problems become more difficult. 
In many cases having many outcome measures may be indicative of 
a poorly thought out study. Pocock (1996) points out the merit in 
drawing up pre-defined strategies for statistical analysis and report- 
ing of trials with appropriate predeclaration of priorities, since there 
is a clear need to safeguard against manipulative post hoc emphases 
and distortions in conclusions. On the other hand, a protocol that 
is too prescriptive may lead to inflexibility and a supression of both 
clinical and statistical ‘insight’. 



CHAPTER 5 

Simple Approaches 
to the Analysis of 
Longitudinal Data 
from Clinical Trials 

5.1. INTRODUCTION 

Medical treatments rarely result in a one time final result for a pa- 
tient; generally, they require clinicians to follow the evolution of a 
patient’s health over a period of time. Consequently, in the ma- 
jority of clinical trials the primary outcome variables are observed 
on several occasions post randomisation and often also prior to ran- 
domisation. Such longitudinal data can be analysed in a variety of 
ways. In the last decade, many powerful new methods have been 
developed which allow a variety of potentially useful models to be 
applied, many of which can be employed when the data are unbal- 
anced for whatever reasons. (As we shall see in the next two chapters, 
however, fitting such models to unbalanced data requires consider- 
able care if misleading inferences are to be avoided.) Some of the 
newly developed techniques are also able to deal with non-normal 
outcome variables, e.g., binary variables indicating the presence or 
absence of some characteristic. This methodology will be considered 
in detail in Chapters 6 and 7. 

108 
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In this chapter, however, we concentrate on an account of a num- 
ber of relatively simple approaches to the analysis of longitudinal 
data. For many studies these methods may provide a perfectly ade- 
quate analysis, for whilst simple, they are not necessarily simplistic 
and are often extremely useful when applied sensibly. Even when 
they fail to provide the complete answer to the analysis of a set of 
longitudinal data, they may frequently prove to be useful adjuncts 
to the more complex modelling procedures to be described later. As 
with most data analysis situations, graphical displays of the data are 
an essential preliminary step and this is where we begin. 

5.2. GRAPHICAL METHODS FOR 
DISPLAYING LONGITUDINAL DATA 

Graphical displays of data are often useful for exposing patterns 
in the data, particularly when these are unexpected; this might be 
of great help in suggesting which class of models might be most 
sensibly applied in the later more formal analysis. According to 
Diggle et al. (1994), there is no single prescription for making effec- 
tive graphical displays of longitudinal data, although they do offer 
the following simple guidelines: 

0 show as much of the relevant raw data as possible rather than 

0 highlight aggregate patterns of potential scientific interest; 
0 identify both cross-sectional and longitudinal patterns; 
0 make easy the identification of unusual individuals or unusual 

only data summaries; 

observations. 

A number of graphical displays which can be useful in the pre- 
liminary assessment of longitudinal data from clinical trials will now 
be illustrated using the data shown in Table 5.1. These data arise 
from a double-blind, placebo controlled trial involving 61 women with 
major depression, that had begun within 3 months of childbirth and 
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Table 5.1. Data from Trial of Oestrogen Patch for Treating 
Post-natal Depression. 

Group BL1 BL2 V1 V2 V3 V4 V5 V6 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 

18.00 
25.11 
19.00 
24.00 
19.08 
22.00 
28.00 
24.00 
27.00 
18.00 
23.00 
21.00 
23.00 
21.00 
22.00 
23.00 
26.00 
20.00 
20.00 
15.00 
22.00 
24.00 
-9.00 
24.00 
24.00 
22.00 
16.00 
21.00 
27.00 
24.00 
28.00 

18.00 
27.00 
16.00 
17.00 
15.00 
20.00 
16.00 
28.00 
28.00 
25.00 
24.00 
16.00 
26.00 
21.00 
21.00 
22.00 
26.00 
19.00 
22.00 
16.00 
21.00 
20.00 
17.00 
22.00 
19.00 
21.00 
18.00 
21.00 
27.00 
15.00 
24.00 

17.00 
26.00 
17.00 
14.00 
12.00 
19.00 
13.00 
26.00 
26.00 

9.00 
14.00 
19.00 
13.00 
7.00 

18.00 
18.00 
19.00 
19.00 
20.00 

7.00 
19.00 
16.00 
15.00 
20.00 
16.00 
7.00 

19.00 
13.00 
8.00 
8.00 

14.00 

18.00 
23.00 
14.00 
23.00 
10.00 
11.54 
13.00 
27.00 
24.00 
12.00 

-9.00 
13.00 
22.00 
13.00 
-9.00 
-9.00 
13.00 
7.00 

15.00 
8.00 

18.00 
21.00 
-9.00 
21.00 
19.00 
4.00 

-9.00 
12.00 
17.00 
12.27 
14.00 

15.00 
18.00 

-9.00 
17.00 
8.00 
9.00 
9.00 

-9.00 
19.00 
15.00 

-9.00 
14.00 

-9.00 
-9.00 
-9.00 
-9.00 
22.00 
8.00 

20.00 
12.00 
16.00 
17.00 

-9.00 
17.00 
-9.00 

4.19 
-9.00 

9.00 
15.00 
10.00 
13.00 

17.00 
17.00 

-9.00 
13.00 
4.00 
8.00 
7.00 

-9.00 
13.94 
12.00 

-9.00 
23.00 
-9.00 
-9.00 
-9.00 
-9.00 
12.00 
2.00 

17.00 
10.00 
13.00 
21.00 
-9.00 
14.00 

-9.00 
4.73 

-9.00 
9.00 
7.00 

10.00 
12.00 

14.00 
12.00 

-9.00 
12.00 
5.00 
6.82 
8.00 

-9.00 
11 .oo 
13.00 

-9.00 
15.00 

-9.00 
-9.00 
-9.00 
-9.00 
18.00 
5.00 

15.00 
10.00 
16.00 
16.00 

-9.00 
14.00 
-9.00 

3.03 
-9.00 
13.00 
5.00 
6.00 

18.00 

15.00 
10.00 

-9.00 
12.00 
5.00 
5.05 
7.00 

-9.00 
9.00 

20.00 
-9.00 
11.00 

-9.00 
-9.00 
-9.00 
-9.00 
13.00 
6.00 

13.73 
12.00 
15.00 
18.00 

-9.00 
10.00 
-9.00 

3.45 
-9.00 

6.00 
7.00 
5.96 

15.00 
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Table 5.1 (Continued) 
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Group BL1 BL2 V1 V2 V3 V4 V5 V6 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

19.00 
17.00 
21.00 
18.00 
24.00 
21.00 
19.00 
28.00 
23.00 
21.00 
18.00 
22.61 
24.24 
23.00 
24.84 
25.00 
15.00 
26.00 
22.00 
24.00 
22.00 
27.00 
22.00 
20.00 
22.00 
20.00 
21.00 
17.00 
18.00 
23.00 

15.00 
17.00 
20.00 
18.00 
28.00 
21.00 
18.00 
27.46 
19.00 
20.00 
16.00 
21.00 
23.00 
23.00 
24.00 
25.00 
22.00 
20.00 
20.00 
25.00 
18.00 
26.00 
20.00 
17.00 
22.00 
22.00 
23.00 
17.00 
22.00 
26.00 

15.00 
9.00 
7.00 
8.00 

11 .oo 
7.00 
8.00 

22.00 
14.00 
13.00 
17.00 
19.00 
11.00 
16.00 
16.00 
20.00 
15.00 
7.00 

12.13 
15.00 
17.00 
1.00 

27.00 
20.00 
12.00 
15.38 
11 .oo 
15.00 
7.00 

24.00 

16.00 
5.00 
7.00 
1.00 
7.00 
8.00 
6.00 

27.00 
12.00 
10.00 
26.00 
9.00 
7.00 

13.00 
15.00 
18.00 
17.57 
2.00 
8.00 

24.00 
6.00 

18.00 
13.00 
10.00 

-9.00 
2.00 
9.00 

-9.00 
12.00 

-9.00 

11.00 
3.00 
7.00 
1.00 
3.00 
6.00 
4.00 

24.00 
15.00 
7.00 

-9.00 
9.00 
5.00 

-9.00 
11.00 
16.00 
12.00 
1.00 
6.00 

18.00 
2.00 

10.00 
9.00 
8.89 

-9.00 
4.00 

10.00 
-9.00 
15.00 

-9.00 

14.00 
6.00 

12.00 
2.00 
2.00 
6.50 

11 .oo 
22.00 
12.00 
9.00 

-9.00 
12.00 
8.00 

-9.00 
11.00 
9.00 
9.00 
0.00 
3.00 

15.19 
2.00 

13.00 
8.00 
8.49 

-9.00 
6.00 
8.00 

-9.00 
-9.00 
-9.00 

12.00 
0.00 
9.00 
0.00 
2.00 
4.64 
7.00 

24.00 
9.00 

11 .oo 
-9.00 

5.00 
2.00 

-9.00 
11.00 
10.00 
8.00 
0.00 
2.00 

13.00 
0.00 

12.00 
4.00 
7.02 

-9.00 
3.00 
7.00 

-9.00 
-9.00 
-9.00 

8.00 
2.00 
6.00 
1.00 
2.00 
4.97 
6.00 

23.00 
6.00 

11.00 
-9.00 

7.00 
3.00 

-9.00 
11.00 
6.00 
6.50 
2.00 
3.00 

12.32 
1 .oo 

10.00 
5.00 
6.79 

-9.00 
3.00 
4.00 

-9.00 
-9.00 
-9.00 

~~ ~~ ~ ~ 

0 = placebo, 1 = active, -9.00 indicates a missing values. 
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persisted for up to 18 months post-natally. Thirty-four of the women 
were randomly allocated to the active treatment: 3 months of trans- 
dermal 170-oestradiol 200 pg daily alone, followed by 3 months with 
added cyclical dydrogeterone 10 mg daily for 12 days each month. 
The remaining 27 women received placebo patches and tablets ac- 
cording to the same regimen. The main outcome variable was a 
composite measure of depression recorded on two occasions before 
randomisation, and on six two monthly visits after randomisation. 
Not all of the 61 women had the depression variable recorded on all 
eight scheduled visits. 

In Fig. 5.1, the data of all the 61 women are shown, separated 
into treatment groups. Lines connect the repeated observations for 
each woman. This simple graph makes a number of features of the 
data readily apparent. First, almost all the women are becoming 
less depressed. Second, the women who are most depressed at the 
beginning of the study tend to be most depressed throughout. This 
phenomenon is generally referred to as trucking. Third, there are 
substantial individual differences and variability appears to increase 
over the course of the trial. 

The tracking phenomenon can be seen rather more clearly in a 
plot of the standardised values of each observation, i.e., the values 
obtained by subtracting the relevant visit mean from the original 
observation and then dividing by the corresponding visit standard 
deviation. The resulting graph appears in Fig. 5.2. 

With large numbers of observations, graphical displays of individ- 
ual response profiles are of little use and investigators then commonly 
produce graphs showing the average profiles for each treatment group 
along with some indication of the variation of the observations at 
each time point. Fig. 5.3 shows such a plot for the oestrogen patch 
trial example. The general decline in depression values over time in 
both the active and placebo groups is apparent as is the lower level 
of depression scores in the former group. An alternative to  this type 
of plot is to graph side-by-side box plots of the observations at each 
time point - see Fig. 5.4. 
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Oestrogen patch trial individual profiles 
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Fig. 5.1. Individual response profiles by treatment group for the oestrogen 
patch data. 

An important aspect of the longitudinal data collected in many 
clinical trials is the degree of association of the repeated measure- 
ments. Finding a parsimonious model which describes the pattern 
of associations accurately is often a crucial part of fitting the models 
to be described in Chapters 6 and 7. It is frequently useful to have 
some graphical display to guide the search for a realistic model; one 
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Oestrogen patch data , ~ i s t a n d a r d i z e d  values 
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Fig. 5.2.  Individual response profiles for oestrogen patch data after stan- 
dardisat ion. 

display which can be helpful is the scatterplot matrix in which scat- 
terplots of pairs of repeated measurements are placed together in a 
grid. Such a plot for the data from the trial of oestrogen patches 
is shown in Fig. 5.5. We see that the degree of correlation between 
the pairs of observations generally decreases as the time between 
them increases. 

As an illustration of what can be achieved with graphical displays 
on even very large sets of data, we will use an example reported by 
Zeger and Katz (1998) involving an investigation of the effects of 
vitamin A supplementation on Nepali pre-school children’s morbidity 
and mortality. Figure 5.6 shows growth data collected in the study 
from children receiving placebos. Each child was measured on up to 
5 visits at four monthly intervals and the data in Fig. 5.6 consists 
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Fig. 5.3. 
oestrogen patch trial. 

Mean response profiles for active and placebo groups in the 

of 11 290 observations on 2 237 children. Since here connecting the 
repeated measurements for all children would produce a completly 
useless graphic, the measurements of a subset of 100 children have 
been joined to communicate the degree of consistency across time in 
a child’s weight as well as variation in weight among children. Half 
of these children were selected at random and the remaining 50 were 
children having average weights extreme for their age. The following 
characteristics of the data are apparent from Fig. 5.6. 

0 The average weight of the Nepali children increases by about 
one kilogram per month for the first six months, and then the 
growth rate slows dramatically to less than a quarter of the 
original rate. 

0 There is much greater variability in weight across children than 
across time for a given child, i.e., there is strong tracking of 
children’s weight so that repeated observations on the same 
child will be highly correlated. 
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Fig. 5.4. Box-plots for data from the oestrogen patch data. 

0 There is some indication that the rate of growth is greater for 
larger children as evidenced by more positive slopes above the 
average curve than below. 
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Fig. 5.5 .  Scatterplot matrix for the data from the oestrogen patch trial. 
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Fig. 5.6. Scatterplot of 11 290 weights on 2 337 Nepali children. Bold dots 
indicate a smoothing spline with 22 equivalent degrees of freedom as an 
estimate of the mean weigh at each age. The repeated observations for 100 
children are connected - 50 chosen at random and 50 with extreme mean 
weights for their age (taken with permission from Zeger and Katz, 1998). 

5.3. TIME-BY-TIME ANALYSIS OF 
LONGITUDINAL DATA 

A time-by-time analysis of the longitudinal data consists of T sep- 
arate analyses, one for each sub-set of data corresponding to each 
observation time. If only two treatment groups are being compared, 
each analysis consists of a t-test (or if thought necessary, its nonpara- 
metric equivalent) to assess the difference in the means (medians) of 
the two groups at each time point. If more than two groups are 
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Table 5.2. Time-by-Time Analysis of Data from Oestrogen Patch 
Trial. 
Group v1 v2 v3 v4 v5 V6 

Placebo Mean 16.48 
SD 5.28 
n 27 

Active Mean 13.37 
SD 5.56 
n 34 

95% CI (0.31, 
5.91) 

15.89 14.13 
6.12 4.97 
22 17 

11.74 9.13 
6.57 5.47 
31 29 

(0.59, (1.77, 
7.71) 8.23) 

12.27 
5.85 
17 

8.83 
4.67 
28 

(0.28, 
6.60) 

11.40 
4.44 
17 

7.31 
5.74 
28 

(0.83, 
7.34) 

10.89 
4.68 
17 

6.59 
4.73 
28 

(1.40, 
7.20) 

involved, an analysis of variance is applied to the data at each ob- 
servation time (or again perhaps some suitable nonparametric alter- 
native). Relevant covariate information might be incorporated into 
each analysis. 

As an illustration of this approach, Table 5.2 shows the results of 
applying t-tests and calculating confidence intervals for the available 
data at each of the six post-randomisation visits in the oestrogen 
patch trial. At each visit, there is a significant difference in the 
mean depression scores of the active and placebo groups. 

Although Finney (1990) suggests that the time-by-time approach 
to the analysis of the longitudinal data might be quite useful if the 
occasions are few and the intervals between them are large, it has, 
in general, several serious drawbacks. One problem is that the struc- 
ture of the data is ignored; at no stage does this type of analysis use 
the information that indicates which observations are from the same 
individual. Consequently, the standard errors are based on between- 
subject variation only, and this is unlikely to lead to an analysis 
that is fully efficient. A further problem is that inferences made 
within each of the T separate analyses are not independent, nor is it 
clear how they should be combined. Simply assuming that the tests 
give independent information about group differences is clearly not 
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sensible, as is demonstrated by considering what would happen if the 
repeated measurements were made more frequently. The number of 
significance tests performed would rise accordingly, but the increase 
in information about the difference between treatments is likely to 
be small. 

Repeated testing also implicitly assumes that each time point is of 
interest in its own right; this is unlikely to be so in most applications, 
where the real interest will be in something more global. It is highly 
questionable whether the hypotheses being tested by the time-by- 
time approach, namely the equality of the group means at each time 
point, are of interest. Such an analysis does not give an overall 
answer to whether or not there is a treatment difference and provides 
no single estimate of the treatment effect. 

A time-by-time analysis is not, in general, appropriate for analy- 
sing data collected over time in a clinical trial, since it simply ignores 
the longitudinal nature of the observations. There may, however, 
be some instances where the method can lead to useful results if it 
concentrates on exactly the right feature of the data, as shown in a 
non clinical trial context by Kenward (1987). Trying to find some 
feature of the data that characterises concisely their structure is also 
central to another simple, but in this case often very useful, method 
for the analysis of longitudinal data from clinical trials, namely the 
response feature or summary measures approach. 

5.4. RESPONSE FEATURE ANALYSIS OF 
LONGITUDINAL DATA 

The use of summary measures is one of the most important and 
straightforward approaches to the analysis of longitudinal data (at 
least when there are few missing values, and when the repeated mea- 
surements on each subject are made at the same time points). If 
the measurements made on the ith individual in the study are writ- 
ten as the vector x!, = [zil, .  . . , z~T], then a scalar-valued function f 
is chosen so that si = f(xi) captures some essential feature of the 



Simple Approaches to the Analysis of.. . 121 

response over time (see Section 5.3.1 for more details). In this way, 
the essentially multivariate nature of the repeated observations is re- 
duced to a univariate one. This approach has been in use for many 
years, and is described in Oldham (1962), Yates (1982) and Matthews 
et  al. (1990). Various aspects of response feature analysis will be con- 
sidered in this section including how to incorporate covariates, how 
to deal with unbalanced data, and the implication for the method of 
having missing values. We begin, however, with perhaps the most 
important consideration, namely the choice of summary measure. 

5.4.1. Choosing Summary Measures 

To begin with, we shall assume that the response variable observed 
over time is continuous (or quasi-continuous) but not necessarily 
normally distributed. The key step to a successful response fea- 
ture analysis is the choice of a relevant summary measure f. In most 
cases, the decision over what is a suitable measure should to be made 
before the data are collected. The chosen summary measure needs to 
be relevant to the particular questions of interest in the study and in 
the broader scientific context in which the study takes place. In some 
longitudinal studies, more than a single summary measure might be 
deemed relevant or necessary, in which case the problem of combined 
inference may need to  be addressed. More often in practice, however, 
it is likely that the different measures will deal with substantially 
different questions so that each will have a natural interpretation in 
its own right. 

A wide range of possible summary measures have been proposed. 
Those given in Table 5.3, for example, were suggested by Matthews 
et  al. (1990). Frison and Pocock (1992) argue that the average re- 
sponse to treatment over time is often likely to be the most relevant 
summary statistic in treatment trials. In some cases the response 
on a particular visit may be chosen as the summary statistic of most 
interest, but this must be distinguished from the generally flawed ap- 
proach which separately analyses the observations at each and every 
time point. 
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Table 5.3. Possible Summary Measures (from Matthews et al., 
1990). 

Type of Data Questions of Interest Summary Measure 

Peaked 

Peaked 

Peaked 

Growth 

Growth 

Growth 

Is overall value of outcome 
variable the same in 
different groups? 

Is maximum (minimum) 
response different 
between groups? 

Is time to maximum 
(minimum) response 
different between groups? 
Is rate of change of outcome 
different between groups? 
Is eventual value of outcome 
different between groups? 

Is response in one group 
delayed relative to the 
other? 

Overall mean (equal 
time intervals) or area 
under curve (unequal 
intervals) 
Maximum (minimum) 
value 

Time to maximum 
(minimum) response 

Regression coefficient 

Final value of outcome 
or difference between 
last and first values 
or percentage change 
between first and 
last values 
Time to reach a 
particular value (e.g. 
a fixed percentage of 
baseline) 

As our first example of the application of the summary measure 
technique, we will use the data shown in Table 5.4. These data arise 
from an investigation of the use of lecithin, a precursor of choline, 
in the treatment of Alzheimer’s disease. Traditionally, it has been 
assumed that this condition involves a n  inevitable and progressive 
deterioration in all aspects of intellect, self-care, and personality. 
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Table 5.4. Data from Trial of Lecithin for the Treat- 
ment of Alzheimer’s Disease. 

Group v 1  v 2  v3 v4 v 5  

1 20 
1 14 
1 7 
1 6 
1 9 
1 9 
1 7 
1 18 
1 6 
1 10 
1 5 
1 11 
1 10 
1 17 
1 16 
1 7 
1 5 
1 16 
1 5 
1 2 
1 7 
1 9 
1 2 
1 7 
1 19 
1 7 
2 9 
2 6 
2 13 
2 9 
2 6 

19 
15 
5 
10 

7 
10 
3 

20 
10 
15 
9 

11 
2 

12 
15 
10 
0 
7 
6 
1 

11 
16 
5 
3 

13 
5 

11 
7 

18 
10 
7 

20 
16 
8 
9 
9 
9 
7 

20 
10 
15 
7 
8 
9 

14 
13 
4 
5 
7 
9 
1 
7 

17 
6 
5 

19 
8 

14 
9 

14 
9 
4 

20 
9 
8 

10 
5 
11 
6 

23 
13 
15 
3 

10 
3 

15 
7 

10 
0 
6 
5 
2 
5 

10 
7 
5 

17 
8 

11 
12 
20 
8 
5 

18 
6 
5 

10 
6 

11 
3 

21 
14 
14 
12 
9 
2 

13 
9 
5 
0 

10 
6 
2 

11 
6 
6 
5 

17 
6 

14 
16 
14 
7 
4 
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Table 5.4 (Continued) 

Group V1 v2 v3 v4 v5 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

11 
7 
8 
3 
4 

11 
1 
6 
0 

18 
15 
14 
6 

10 
4 
4 

14 

11 
10 
18 
3 

10 
10 
3 
7 
3 

19 
15 
11 
6 

10 
6 

13 
7 

5 
11 
19 
3 
9 
5 
2 
7 
2 

15 
15 
8 
5 
6 
6 
9 
8 

10 
8 

15 
1 

17 
15 

2 
6 
0 

17 
14 
10 
5 

10 
4 
8 

10 

12 
5 

14 
3 

10 
16 
5 
7 
0 

20 
12 
8 
8 
9 
2 
7 
6 

1 = placebo, 2 = lecithin 

Recent work suggests that the disease involves pathological changes 
in the central cholinergic system, which it might be possible to  rem- 
edy by long-term dietary enrichment with lecithin. In particular, 
the treatment might slow down or perhaps even halt the memory 
impairment usually associated with the condition. Patients suffering 
from Alzheimer’s disease were randomly allocated to receive either 
lecithin or placebo for a six-month period. A cognitive test score 
giving the number of words recalled from a previously studied list 
was recorded at the start, at one month, at two months, at four 
months and at six months. As a summary measure for these data, 
we shall use the maximum number of words recalled on any of the five 
occasions of testing. (The ‘maximum’ was chosen on clinical advice, 
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Table 5.5. Results from Response Feature 
Approach on Data from Lecithin Dial Using 
Maximum Number of Words Over the Five 
Visits as Summary Measure. 

Placebo Active 

Mean 11.9 
SD 5.0 
n 26 

11.8 
5.2 
22 

95% confidence interval for difference - (-2.9,3.1) 

although it may have less desirable statistical properties, for example, 
its variance will be greater, than the mean.) The results of applying a 
t-test to the summary measures of each patient in the two treatment 
groups is given in Table 5.5. There is no evidence of any treatment 
effect. 

As a further illustration of the response feature approach, we 
shall again use the data from the oestrogen patch trial given in 
Table 5.1. The chosen summary measure here is the mean of the 
post-randomisation measures. This immediately gives rise to a com- 
plication since not all the women in the trial have observations on 
all six occasions. The summary measure approach is often suffi- 
ciently flexible to accomodate missing values relatively simply; here, 
for example, we could take the mean of the available observations 
for each patient. One alternative would be to use only the women 
with observations on all six post-randomisation occasions and an- 
other possibility would be to use the last recorded value for a woman 
for all the missing values, the so-called last obsermation carried for- 
ward (LOCF) approach. (Missing values might also be imputed by, 
for example, substituting relevant mean values of using some more 
complex procedure.) The results obtained from using each approach 
are shown in Table 5.6. In this case, the three confidence intervals 
for the treatment difference are very similar. In most cases when 
using the response feature approach, however, particularly when 
the proportion of missing observations is small, using the available 
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Table 5.6. Results of Using Summary Mea- 
sure Procedure with Mean Depression Score 
as Summary Measure in Oestrogen Patch Data 
with Various Approaches to Dealing with the 
Missing Values. 

(1) Mean of usable values 

Placebo Active 

mean 
sd 
n 

14.76 
4.56 
27 

10.55 
5.36 
34 

95% confidence interval for difference - (1.61,6.79) 

(2) Complete cases 

Placebo Active 

mean 
sd 
n 

13.38 
4.28 
17 

9.30 
4.57 
28 

95% confidence interval for difference - (1.33,6.82) 

(3) Last observation carried forward 

Placebo Active 

mean 14.95 
sd 4.66 
n 27 

10.66 
5.56 
34 

95% confidence interval for difference - (1.62,6.96) 

observations to calculate the summary measure is recommended al- 
though with accompanying caveats about two potential problems: 

0 If the summary measure si are based on observations xi made 
at considerably different sets of time points (either by design 
or because of the occurrence of missing values), then the stan- 
dard t-test or analysis of variance assumption of a common 
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variance for all observations can no longer be true. Means 
based on different numbers of observations, regression slopes 
based on differently located observations, and maxima within 
sets of observations of different sizes, will not share common 
distributions. The likely importance and impact of this prob- 
lem will need to  be judged in each particular application. 
(Matthews, 1993, describes a refinement of the response fea- 
ture approach which goes some way to dealing with the prob- 
lem of observations at irregular time points. The central idea 
of Matthew’s proposal is to introduce some form of weighting 
into the estimation of the treatment difference.) 

0 The type of missing value (see Chapter 2) has implications for 
the suitability of the summary measure approach. When the 
observations are missing completely at random, calculating 
the chosen summary measure from the available observations 
is a valid and acceptable procedure as is using only complete 
cases, although the latter will be less efficient particularly if 
there, is a considerable proportion of intended observations 
that are missing. But if the missing values are thought to be 
other than MCAR, response feature analysis may be seriously 
misleading. If, for example, interest focuses on the maximum 
depression score over time, and some adverse effect of severe 
depression stops them from being observed (the patient cannot 
attend the clinic perhaps), then simply using the maximum 
of the observations that were obtained would clearly not be 
accept able. 

Imputing missing values before calculating summary measures is 
also not without its problems. Using the last observation carried 
forward (LOCF) method in which each missing value is substituted 
by the subject’s last available assessment of the same type is often 
used, particularly in the pharmaceutical industry. But the method 
appears to have little in its favour except that it records what has 
been achievable with a particular patient. The procedure involves, 
however, highly unlikely assumptions, for example, that the expected 
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value of the (unobserved) post dropout responses remain at their last 
recorded value. 

Imputation methods need to be carefully chosen to avoid biased 
estimates from filled-in data. Also, imputation invents data, and 
analysing filled-in data as if they were complete leads to overstate- 
ment of precision, i.e., standard errors are underestimated, stated 
p-values of tests are too small, and confidence intervals do not cover 
the true parameter at the stated rate. More will be said about im- 
putation in other contexts in Chapters 6 and 7. 

Although the simple summary measures listed in Table 5.3 are 
the ones most likely to be commonly used, Gornbein et al. (1992) 
and Diggle et al. (1994) urge a more imaginative use of the summary 
measure approach, with the fitting of scientifically interpretable non- 
linear models to the observations collected on each individual and the 
use of derived parameter stimates as the summary measures for anal- 
ysis. An example given by Gornbein et al. (1992) involves a study to 
compare the relationship between parathyroid hormone (PTH) and 
serum ionized calcium (ICa) in normal teenagers versus teenagers 
undergoing dialysis for end stage renal disease. As ICa levels are 
artificially lowered or raised in the serum, the parathyroid gland 
senses the change and responds by altering the production of PTH. 
Increased levels of PTH cause more calcium to be released from the 
bones. Decreased levels result in more calcium absorption by the 
bones. In this way, the body attempts to restore the serum ICa to 
a ‘setpoint’ level. Based on this biological model, the investigators 
expected to see a sigmoid relationship between ICa and PTH. 

The data were incomplete for some subjects as the PTH sam- 
ples taken at a given ICa level were sometimes contaminated, lost 
or spoiled. In addition, the same ICa levels were not used for all 
subjects. The following normal sigmoid model was fitted to each 
partcipant’s repeated observations: 

Y = PO + pl/[1 + ( z / P ~ ) ~ ~ P ( P ~ ) ]  + €, - N ( O ,  0 2 )  (5.1) 
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Fig. 5.7. Observations and fitted curve for one subject’s data in study of 
parathyroid hormone (taken with permission from Gornbein et al., 1992). 

(The observation and fitted curve for one subject are shown in 
Fig. 5.7.) 

Each subject’s original data are now summarised by the four pa- 
rameters po,/31,pz and ps. Normal volunteers can be compared to 
diseased subjects by comparing these four parameters, rather than 
by comparing mean profiles. (Since there are four parameters, a 
multivariate test such as Hotelling’s T2 might be needed.) As these 
parameters have a physical meaning, this sort of comparison is gen- 
erally easier to interpret than one involving mean profiles. 

5.4.2. Incorporating Pre-Randomisat ion, 
Baseline Measures into the Response 
Feature Approach 

Baseline measurements of the outcome variable, if available, can be 
used in association with the response feature method in a number 
of ways. Frisson and Pocock (1992), for example, suggest three 
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possibilities when the average response over time is the chosen sum- 
mary measure: 

0 POST - an analysis that ignores the pre-randomisation values 
available and analyses only the mean of each subject’s post- 
randomisat ion responses; 

0 CHANGE - an analysis that uses the differences between 
the means of each subject’s post- and pre-randomisation re- 
sponses; 

0 ANCOVA - here between subject variation in baseline mea- 
surements is taken into account by using the mean of the 
baseline values for each subject as a covariate in a linear model 
for the comparison of post-randomisation means. 

The mathematical details of each approach in the simplest case 
of a single baseline measure and a single post-randomisation measure 
are shown in Table 5.7. It is clear that the estimation of the treatment 
effect in each case differ in how the observed difference at  outcome 
is adjusted for the baseline difference. POST, for example, relies on 
the fact that in a randomised trial, in the absence of a difference 
between treatments, the expected value of the mean difference at 
outcome is zero. Hence, the factor by which the observed outcome 
needs correcting in order to judge the treatment effect, is also zero. 

The CHANGE approach corresponds to the assumption that the 
difference at outcome, in the absence of a treatment effect, is ex- 
pected to be equal to the difference in the means of the baselines. In 
the context of many clinical trials, however, this assumption may be 
false as is well documented by a variety of authors, e.g., Chuang-Stein 
and Tong (1997), Chuang-Stein (1993) and Senn (1994a, 1994b). The 
difficulty primarily involves the regression to the mean, phenomenon. 
This refers to the process that occurs as transient components of an 
initial score are dissipated over time. Selection of high scoring indi- 
viduals for entry into a trial necessarily also selects for individuals 
with high values of any transient component that might contribute 
to that score. Remeasurement during the trial will tend to show 
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Table 5.7. POST, CHANGE and ANCOVA compared. 

* 

We will consider a randomised parallel groups clinical trial for which baseline 
and final values are available for each member of the control and treatment 
groups. 
Measurements on members of the treatment group are represented by X t ,  
(baselines) and Yt, (outcomes), i = 1,. . . ,nt. Similarly, measurements in the 
control group are represented by Xci and Yci, i = 1,. . . ,nc. 
Suppose that the covariance matrix, XX,Y, in the two groups is identical and 
given by: 

When POST is the method of analysis, the effect of treatment is estimated as 
PraW = Yt - Y, with variance var (iraw) = qu? where q = 2- + 1. 
When CHANGE is used, the effect of treatment is estimated as ?-change = (s - Xt) - (pc - X c )  = (c - pc) - ( X t  - X,) with variance var(FCjchange) = 

A more general estimator of the treatment effect is given by Fo = (pt - Yc) - 
P(xt - X, )  which has variance var(+p) = q[(Oux - p u ~ ) ~  + (1 - p2)u$] .  AN- 
COVA corresponds to choosing a suitable value for p, namely /?’ = p a y l u x .  
The raw-outcomes and change-score estimator are special forms of the general 
estimator with 0 = 0 and ,B = 1. 
The three methods POST, CHANGE and ANCOVA can now be seen merely 
as ways of adjusting the observed difference at outcome using the baseline 
difference. 
POST relies on the fact that in a randomised trial, in the absence of a treat- 
ment effect, the expected value of the mean difference at outcome is zero. 
Hence the factor by which the observed outcome needs correcting, in order to 
judge the treatment effect, is also zero. 
CHANGE corresponds to the assumption that the difference at outcome, in 
the absence of a treatment effect, is expected to be the diffference in the 
means of the baselines. This assumption is, in fact, false (see, for example, 
Senn, 1994). 
ANCOVA allows for a more general system of predicting what the outcome 
difference would have been in the absence of any treatment effect as a function 
of the mean difference at baseline 

- -  

nt n, 

q(& + ff; - 2paxay). 

(The above is an abbreviated version of Senn, 1998, from where a more detailed 
account is available.) 
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a declining mean value for such groups. Consequently, groups that 
initially differ through the existence of transient phenomena such as 
some forms of measurement error, will show a tendency to have con- 
verged on remeasurement. Randomisation ensures only that treat- 
ment groups are similar only in terms of expected values and so 
may actually differ not just in transient phenomena but also in more 
permanent components of the observed scores. Thus, while the dis- 
sipation of transient components may bring about regression to the 
mean phenomena such as those previously described, the extent of 
regression and the mean value to which the separate groups are re- 
gressing need not be expected to be the same. Analysis of covariance 
(ANCOVA) allows for such differences. The use of ANCOVA allows 
for some more general system of predicting what the outcome differ- 
ence would have been in the absence of any treatment effect, as a 
function of the mean difference at baseline. 

Frison and Pocock (1992) compare the three approaches when 
different numbers of pre-randomisation measurements are available. 
With a single baseline measure of the outcome variable, they show 
that analysis of covariance is more powerful than both analysis of 
change scores and analysis of post-randomisation means only, except 
when the correlations between the repeated measurements are small. 
Using the mean of several pre-randomisation measures (if available), 
makes the analysis of covariance even more efficient if there are sub- 
stantial correlations between the repeated observations. 

The differences between the three approaches can be illustrated 
by comparing power curves calculated using the results given in Fri- 
son and Pocock (1992). Figures 5.8, 5.9 and 5.10 show some examples 
for the situation with two treatment groups, two pre-randomisation 
values and six post-randomisation observations and varying degrees 
of association between the repeated observations (the correlations 
between pairs of repeated measurements are assumed equal in the 
calculation of these power curves). From these curves, it can be seen 
that the sample size needed to achieve a particular power for detect- 
ing a standardised treatment difference of 0.5 is always lower with 
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Fig. 5.8. Power curves for POST, CHANGE and ANCOVA. 

analysis of covariance, and in some cases, substantially lower. As the 
correlation between the repeated observations increases, CHANGE 
approaches ANCOVA in power, with both being considerably better 
than POST. With a low correlation of 0.2, however, CHANGE does 
less well than simply dealing with post-randomisat ion values only. 
(When the correlation is zero, ANCOVA and POST are essentially 
equivalent. ) 



134 Design and Analysis of Clinical Dials 

Power curves for three methods 
of analysing repeated measure designs 

0 20 40 60 

Sample size 

Fig. 5.9. Power curves for POST, CHANGE and ANCOVA. 

The results of applying each of POST, CHANGE and ANCOVA 
to the oestrogen patch example, using the mean of available post- 
randomisation observation as the response and the mean of avail- 
able pre-randomisation measures as baseline, are shown in Table 5.8. 
Here, all three approaches indicate a substantial treatment effect. 

5.4.3. Response Feature Analysis when the 
Response Variable is Binary 

Table 5.9 shows the data collected in a clinical trial comparing two 
treatments for a respiratory illness (Davis, 1991). In each of the two 
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Fig. 5.10. Power curves for POST, CHANGE and ANCOVA. 

centres, eligible patients were randomly assigned to active treatment 
or placebo. During treatment, the respiratory status (categorised 
as 0 = poor,1 = good) was determined at four visits. There were 
111 patients (54 active, 57 placebo) with no missing data for re- 
sponses or covariates. Some detailed analyses of these data will be 
described in Chapter 7, but here we shall consider how the response 
feature approach could be used. We might, of course, simply ig- 
nore the binary nature of the response variable and compare the 
‘mean’ responses over time in the two treatment groups by a t-test. 
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Table 5.8. Application of POST, CHANGE 
and ANCOVA to Mean Depression Scores 
used as Response and Covariate (means of us- 
able values). 

(1) POST 
95% confidence interval for difference - (1.61,6.79) 
(Details given in Table 5.6). 

(2) CHANGE 

Placebo Active 

mean 
sd 
n 

-6.51 -11.07 
4.38 5.49 
27 34 

95% confidence interval for difference - (1.97,7.16) 

(3) ANCOVA 

Placebo 
Adjusted Mean 

Active 
Adjusted Mean 

14.85 10.47 

Mean square from analysis of covariance is 23.29 
based on 58 degrees of freedom. 
95% confidence interval for difference - (1.89,6.87) 

Since the mean in this case is the proportion ( p )  of visits at which a 
patient’s respiratory status was good, we could consider performing 
the test after taking some appropriate transformation, for example, 
arcsin(p) or arcsin(@). All such tests indicate that there is a sub- 
stantial difference between the two treatments. A linear regression 
of the arcsin transformed proportion of positive responses over the 
four post-baseline measurement occasions might be used to assess 
the effects of the baseline measurement, age, sex and centre. The 
results are shown in Table 5.10 

A more satisfactory analysis can be achieved by using the GLM 
approach described in the previous chapter. A standard logistic 
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Table 5.9. Respiratory Disorder Data. 
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Patient Treat. Sex Age BL V1 V2 V3 V4 

Centre 1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

P 
P 
A 
P 
P 
A 
P 
A 
A 
P 
A 
A 
P 
P 
P 
A 
P 
A 
P 
A 
A 
A 
A 
A 
P 
A 
P 
P 
P 
A 
P 

M 
M 
M 
M 
F 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
F 
F 
M 
M 
M 
M 
M 
F 
M 
M 
F 
M 
M 
M 

46 
28 
23 
44 
13 
34 
43 
28 
31 
37 
30 
14 
23 
30 
20 
22 
25 
47 
31 
20 
26 
46 
32 
48 
35 
26 
23 
36 
19 
28 
37 

0 
0 
1 
1 
1 
0 
0 
0 
1 
1 
1 
0 
1 
0 
1 
0 
0 
0 
0 
1 
0 
1 
1 
0 
0 
0 
1 
0 
0 
0 
0 

0 
0 
1 
1 
1 
0 
1 
0 
1 
0 
1 
1 
1 
0 
1 
0 
0 
0 
0 
1 
1 
1 
1 
1 
0 
0 
1 
1 
1 
0 
0 

0 
0 
1 
1 
1 
0 
0 
0 
1 
1 
1 
1 
0 
0 
1 
0 
0 
1 
0 
0 
0 
1 
1 
0 
0 
0 
0 
1 
1 
0 
0 

0 
0 
1 
1 
1 
0 
1 
0 
1 
1 
1 
1 
0 
0 
1 
0 
0 
1 
0 
1 
1 
1 
1 
0 
0 
0 
1 
0 
0 
0 
0 

0 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
0 
0 
1 
1 
0 
1 
0 
0 
0 
1 
1 
0 
0 
0 
1 
0 
0 
0 
0 
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Table 5.9 (Continued) 

Patient Treat. Sex Age BL V1 V2 V3 V4 

32 A 
33 A 
34 P 
35 A 
36 P 
37 A 
38 A 
39 P 
40 P 
41 P 
42 A 
43 P 
44 P 
45 P 
46 P 
47 P 
48 A 
49 P 
50 A 
51 A 
52 P 
53 A 
54 A 
55 P 
56 A 

Centre 2 
1 P 
2 A 
3 A 
4 P 
5 P 
6 P 

M 
M 
M 
M 
F 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
F 
M 
M 
M 

F 
M 
M 
F 
F 
M 

23 
30 
15 
26 
45 
31 
50 
28 
26 
14 
31 
13 
27 
26 
49 
63 
57 
27 
22 
15 
43 
32 
11 
24 
25 

39 
25 
58 
51 
32 
45 

0 1  1 1 1 
1 1 1 1 0  
0 0 1  1 0  
0 0 0 1 0  
0 0 0 0 0  
0 0 1 0 0  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 1  
0 0 1 0 0  
1 1 1 1 1 
0 0 0 0 0  
0 1 0 1  1 
0 0 0 0 0  
0 0 0 0 0  
1 1 1 1 1 
1 1 1 1 1 
0 0 1  1 1 
0 0 1  1 1 
0 0 0 1 0  
0 0 0 1 0  
1 1 1 1 0  
1 1 1 1 1 
0 1  1 0 1  

0 0 0 0 0  
0 0 1  1 1 
1 1 1 1 1 
1 1 0 1  1 
1 0 0 1  1 
1 1 0 0 0  
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Table 5.9 (Continued) 

Patient Treat. Sex Age BL V1 V2 V3 V4 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

P 
P 
A 
A 
P 
A 
P 
A 
A 
A 
P 
P 
A 
A 
P 
P 
A 
P 
A 
A 
A 
P 
A 
A 
P 
A 
P 
P 
P 
A 
A 
P 

F 
F 
M 
M 
F 
M 
M 
M 
M 
M 
F 
M 
M 
M 
F 
M 
F 
M 
M 
M 
M 
F 
M 
F 
M 
M 
M 
M 
M 
M 
M 
F 

44 
48 
26 
14 
48 
13 
20 
37 
25 
20 
58 
38 
55 
24 
36 
36 
60 
15 
25 
35 
19 
31 
21 
37 
52 
55 
19 
20 
42 
41 
52 
47 

1 
0 
0 
0 
0 
1 
0 
1 
1 
0 
0 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
1 
1 
1 
1 
0 
0 

1 
0 
1 
1 
0 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
1 
0 
1 

1 
0 
1 
1 
0 
1 
1 
0 
1 
0 
0 
0 
1 
1 
0 
1 
1 
0 
1 
1 
0 
1 
1 
1 
1 
1 
0 
1 
0 
1 
0 
1 

1 
0 
1 
1 
0 
1 
1 
0 
1 
0 
0 
0 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
0 
0 

1 
0 
1 
1 
0 
1 
1 
1 
1 
0 
0 
0 
1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
0 
1 
1 
0 
1 
0 
1 
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Table 5.9 (Continued) 

Patient Treat. Sex Age BL V1 V2 V3 V4 

39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 

P M 
P M 
P M 
P M 
A M 
P M 
P M 
P M 
A M 
P F 
A M 
P F 
A M 
A F 
A M 
A F 
A M 

11 
14 
15 
66 
34 
43 
33 
48 
20 
39 
28 
38 
43 
39 
68 
63 
31 

1 1 1 1 1 
0 0 0 1 0  
1 1 1 1 1 
1 1 1 1 1 
0 1  1 0 1  
0 0 0 0 0  
1 1 1 0 0  
1 1 0 0 0  
0 1 1 1 1 
1 0 1 0 0  
0 1 0 0 0  
0 0 0 0 0  
1 1 1 1 0  
0 1  1 1 1 
0 1  1 1 1 
1 1 1 1 1 
1 1 1 1 1 

Treatment: P = placebo, A = active, 
Gender: M = male, F = female, 
Response: 0 = respiratory status poor, 1 = respiratory status good. 

Table 5.10. Results from a Linear Regression of 
the Arcsin Transformed Response of Positive Re- 
sponses over the Four Post-baseline Measurement 
Occasions for the Respiratory Data in Table 5.9. 

Covariate Estimate SE P 

Treatment 0.377 0.101 < 0.001 
Baseline 0.580 0.103 < 0.001 
Age1100 -0.402 0.386 0.3 
Sex 0.039 0.133 0.8 
Centre 0.205 0.107 0.06 
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Table 5.11. Results from a GLM for a Logit Model 
Allowing for Overdispersion for the Respiratory 
Data in Table 5.9. 

Covariate Estimate Odds Ratio SE P 

Treatment 3.544 1.208 < 0.001 
Baseline 6.333 2.197 < 0.001 
Age1100 0.153 0.196 0.1 
Sex 1.147 0.488 0.7 
Centre 1.915 0.661 0.06 

regression model might be applied but since the number of occasions 
on which infection was present out of the 4 visits made by each 
participant is unlikely to be binomially distributed (the observations 
are likely to be correlated rather than independent), we need to allow 
for possible overdispersion. This is relatively straightforward using 
the quasilikelihood procedure of Wedderburn (1974) to fit a GLM 
for overdispersed binomial data with variance function 4p(1 - p) /4,  
where q!~ is estimated as described in the previous chapter. 

Fitting a model with logistic link and with treatment, sex, age 
and baseline respiratory status as the main effects gives the results 
shown in Table 5.11. The estimated value of the scale parameter, 
2.10, is substantially above one confirming the presence of overdis- 
persion. The estimated odds ratio for the effect of treatment is 3.54, 
with a 95% confidence interval of (1.82,6.91). 

The p-values from the linear regression in Table 5.10 and the 
logistic regression in Table 5.11 are comparable, but the estimates 
from the logit model are on a more natural scale. There is no rela- 
tively straightforward interpretation of the estimates from the model 
fitted to the arcsin transformed responses, although calculation of 
an odds-ratio at the mean value of the sample covariates could be 
attempted. 
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5.5. SUMMARY 

The methods described in this chapter provide for the exploration 
and simple analysis of longitudinal data collected in the course of 
a clinical trial. The graphical methods can provide insights into 
both potentially interesting patterns of response over time and the 
structure of any treatment differences. In addition, they can indi- 
cate possible outlying observations that may need special attention. 
The response feature approach to analysis has the distinct advantage 
that it is straightforward, can be tailored to consider aspects of the 
data thought to be particularly relevant, and produces results which 
are relatively simple to understand. The method can accomodate 
data containing missing values without difficulty, although it might 
be misleading if the observations are anything other than missing 
completely at random. 



CHAPTER 6 

Multivariate Normal 
Regression Models for 
Longitudinal Data from 
Clinical Trials 

6.1. INTRODUCTION 

It cannot be overemphasised that statistical analyses of clinical trials 
should be no more complex than necessary. So even when repeated 
measures data have been collected it is not always essential to a p  
ply a formal repeated measures analysis. We have already described 
analyses of individual summary measures such as individual mean 
response scores and proportions that may often not only be statisti- 
cally and scientifically adequate for the testing of simple treatment 
differences, but can also be more persuasive and easier to communi- 
cate than some of the more ambitious analyses that we now turn to. 
Nonetheless, a typical trial does not take place in a scientific vacuum 
in which a simple treatment difference is the only question of inter- 
est. It is more usual that, in addition to being used as the basis of 
formal evidence for efficacy or equivalence, even a phase I11 trial will 
gather data that may be informative as to the mode of action of the 
treatment, dose-response relationship, response heterogeneity, side 
effects and so on. In addition, attrition and variation in compliance 
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may need to be more carefully examined than can be done within, 
for example, a simple summary statistics approach. 

In this chapter, models suitable for analysing longitudinal data 
from clinical trials where the response variable can be assumed to 
have a conditionally normal distribution will be described. Models 
suitable for non normal responses will be the subject of Chapter 7. 

6.2. SOME GENERAL COMMENTS 
ABOUT MODELS FOR 
LONGITUDINAL DATA 

Diggle (1988) lists a number of desirable features for a general 
method to analyse data from studies in which outcome variables are 
measured at several time points. These include the following: 

0 the specification of the mean response profile needs to be 
sufficiently flexible to reflect both time trends within each 
treatment group and differences in these time trends between 
treatments. Examples of the type of mean response profiles 
that may need to be modelled are shown in Fig. 6.1; 

0 the specification of the pattern of correlations or covariances 
of the repeated measurements needs to be flexible, but 
economical; 

0 the method of analysis should accommodate virtually arbi- 
trary patterns of irregularly spaced time sequences within 
individuals. 

Although in many applications the parameters defining the 
covariance structure of the observations will not be of direct in- 
terest (they are often regarded as so-called nuisance parameters) ,  
Diggle (1988) suggests that overparametrisation will lead to ineffi- 
cient estimation and potentially poor assessment of standard errors 
for estimates of the mean response profiles, whereas too restrictive 
a specification may also invalidate inferences about the mean re- 
sponse profiles when the assumed covariance structure does not hold. 
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In many examples, the model for the covariances and variances of 
the repeated measures will need to allow for non-stationarity, with 
changes (most often increases) in variances across time being partic- 
ularly common. The effect of misspecifying the covariance structure 
when analysing longitudinal data is investigated in Rabe-Hesketh 
and Everitt, 1999. 

In this chapter, we shall consider the likelihood methods for 
estimating parameters and their standard errors in very general 
regression-type models for longitudinal data. 

Some of the advantages of using a likelihood approach are as 
follows: 

0 maximum likelihood estimates are principled in that they have 
known statistical properties (consistency, large sample effi- 
ciency) under the assumed model, which can be clearly speci- 
fied and subjected to model criticism; 

0 maximum likelihood estimation does not require a rectangu- 
lar data matrix and hence deals directly with the problem of 
unbalanced data; 

0 estimates are asymptotically efficient under the assumed 
model; 

0 standard errors of parameter estimates based on the observed 
and/or expected information matrix are available and these 
automatically take into account the fact that the data are 
incomplete. 

Two disadvantages of the likelihood approach are: 

0 maximum likelihood estimation requires the specification of a 
full statistical model for the data and results may be vulnera- 
ble to departures from model assumptions (though use of the 
heteroscedastic consistent ‘sandwich’ estimator of the parame- 
ter variances introduced in Chapter 4 provides some scope for 
relaxing assumptions) ; 

0 maximum likelihood inferences are based on large sample the- 
ory and hence may be unsuitable for small data sets. 
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The details of maximum likelihood estimation of the parameters 
in regression models for longitudinal data will be described in Sec- 
tion 6.4. Before this, however, the implications for this approach of 
missing values due to patients dropping-out of the study need to be 
considered. 

6.3. MISSING VALUES AND 
LIKELIHOOD-BASED INFERENCE 
FOR LONGITUDINAL DATA 

In Chapter 3 a taxonomy of missing values occurring in longitudi- 
nal data was introduced. The essential distinctions drawn between 
missing values were: 

MCAR ~ missing completely at random, the drop-out process 

MAR - missing at random the drop-out process is indepen- 

0 Informative - the drop-out process is dependent on the miss- 

is independent of both the observed and missing values; 

dent of the missing values; 

ing values. 

For likelihood-based inference, the critical distinction is between 
MCAR and MAR (often referred to collectively as ignorable) and in- 
formative dropout since in the former case the log-likelihood function 
is separable into two terms, one involving the missing-data mecha- 
nism given the observed values and one only involving the observed 
values. The first of these contains no information about the distribu- 
tion of observed values and can therefore be ignored for the purpose 
of making inferences about these values. (Mathematical details are 
given in Table 6.1.) It is important to make clear, however, that 
it is the missing-data mechanism that is ignorable, not  the individ- 
uals with missing values. This is not a trivial point because one 
of the most common methods of analysing unbalanced longitudinal 
data remains using either analysis of variance or multivariate anal- 
ysis of variance (see comments in Section 6.6) on complete cases. 
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Table 6.1. Separability of Likelihood for Non-informative Missing 
Values. 

Let the complete set of measurements Y* be partioned into Y* = 
[Y("), Y'")], with Y(") representing the observed measurements and 
Y(") the missing measurements. 

Let R represent a set of indicator random variables denoting which ele- 
ments of Y* are observed and which are missing. 

(Y("), Y("),R). 
Let f(y("), y ( m ) ,  r) represent the joint probability density function of 

0 This density function can be written as: 

For a likelihood-based analysis, we need the joint pdf of the observable 
random variables (Y'"), R), which is obtained by integrating the above 
to give: 

f(y(o), r) = / f(y(O), y(m))f(rly(o), y("))dy(") 

If the missing value mechanism is non informative, f(r(y("),y(")) does 
not depend on y(") and the above becomes: 

Taking logs of this expression gives: 

L can be maximised by separate maximisation of the two terms on the 
right hand side. Since the first term contains no information about the 
distribution of Y("),  we can ignore it for the purposes of making inferences 
about Y(").  

(The account above is taken from Diggle et al, 1994.) 
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At best (when the missing values are MCAR) such an approach is 
inefficient since it leaves out observations which could legitimately 
be used in the analysis; at worst (when the observations are MAR 
or informative) it may lead to erroneous inferences. The likelihood 
method to be described in the next section depends only on the 
weaker assumption that the missing values are MAR. (The difficult 
problems of distinguishing between random and informative missing 
values and of analysing data containing the latter will be dealt with 
in Section 6.7.) 

6.4. MAXIMUM LIKELIHOOD 
ESTIMATION ASSUMING 
NORMALITY 

Following Schluchter (1988), the essence of the likelihood approach 
for longitudinal data possibly containing missing values is as follows: 

Let y,’ denote the hypothetical T x 1 complete-data vector for 
subject i. Let y: = [yil, . . . , yin,] be the ni x 1 vector of measure- 
ments actually present for subject i ,  i = 1 , 2 ,  . . . , n. (We assume that 
measurements for subject i are made at times t i l ,  t i 2 , .  . . , tini, i.e., we 
do not assume a common set of times for all subjects.) The yij are 
assumed to be realisations of random variables y Z j  which follow the 
regression model; 

Yz = xzp + € 2  (6.1) 

for i = 1, . . . , n, where Xi is a ni x p design matrix, p is a p x 1 vector 
of unknown regression coefficients. We assume that the conditional 
distribution of the Yi given the explanatory variables is multivariate 
normal, i.e., that the ni independent residual or ‘error’ terms in ~i 

have a multivariate normal distribution with zero mean vector, and 
covariance matrix Xi. The latter is assumed to be a submatrix of 
a T x T matrix, E, the elements of which are known functions of q 
unknown covariance parameters, 8 ,  i.e., E = E(8). This model will 
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hold if the hypothetical complete-data, Y,’ can be written as: 

where Yi,Xi and ~i are obtained by deleting rows from Yf,Xf and 
€ 5 ,  respectively. 

Columns of each design matrix correspond to terms in the model 
under consideration. The first column of each Xi, for example, is 
a one-vector corresponding to the intercept term; other columns 
may correspond to  dummy variables for grouping (between-subjects, 
usually treatment) factors, and others to fixed and/or time varying 
covariates. 

Maximum likelihood estimates of p and 8 can be found by max- 
imizing the log-likelihood L(8, p) given by: 

. r n  n 

Numerical optimisation techniques are required to maximise L with 
respect to p and 8. The details need not, however, concern us here 
(they are given in Schluchter, 1988). 

The likelihood approach outlined above is implemented in a num- 
ber of software packages, e.g., BMDP5V and SAS PROC MIXED 
(see Appendix), and such software enables the method to be applied 
routinely to unbalanced longitudinal data from clinical trials. 

Likelihood analyses of data that do not suffer from missing val- 
ues are often (but by no means universally) robust to the use of 
an incorrect model for the data. But with incomplete data such 
analyses are likely to be more sensitive to model misspecification 
since implicitly the data model is used to ‘fill-in’ for the missing val- 
ues. So although valid likelihood inferences can be obtained when 
the data contain non-informative missing values, the validity may 
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depend heavily upon using the correct model for the data. Con- 
sequently, examining residuals and other diagnostics for detecting 
model misspecification after fitting the proposed model becomes of 
even greater importance than usual. 

A standard maximum likelihood approach as described above is 
known to produce biased estimators of the covariance parameters. In 
many cases this problem is unlikely to be severe, but where it i s  of 
concern the method of restricted maximum likelihood or REML es- 
timation, introduced originally by Patterson and Thompson (1971) , 
might be used. The details of REML estimation are given in Diggle 
et  al. (1994). Often the two estimation methods will give similar 
results, but where they do differ substantially, those obtained from 
REML are generally preferred. 

6.5. NUMERICAL EXAMPLES 

In this section, the model outlined above will be applied to a number 
of examples, beginning with the trial of oestrogen patches for the 
treatment of post-natal depression described in Chapter 5. 

6.5.1. Oestrogen Patches in the Treatment of 
Post-Natal Depression 

Our first analysis of these data will involve the unrealistic assump- 
tion that the repeated observations are independent. Under this 
assumption, the model described in Section 6.3 is then simply that 
of multiple regression. The graphical displays of these data given in 
Chapter 5 suggest that there is a general decline in depression scores 
over time and a difference in treatment level. Additionally, there is 
some indication that the depression scores are beginning to ‘level-off’ 
by the end of the 12 months of the trial. This suggests considering 
treatment group as a covariate, and including linear and perhaps 
quadratic effects for time. In addition, the strong tracking observed 
in the plots of standardised scores over time suggests that the pre- 
randomisation measures should be incorporated into the model in 
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some way - we shall use the second of the pre-randomisation mea- 
sures of depression as a further covariate. The model to be considered 
can be written as follows: 

where group is a dummy variable coding treatment received, 1 for 
placebo and -1 for active, pre2 is the second pre-randomisation mea- 
sure and time takes the values 1-6 depending on the visit involved. 
The residual terms € i j k  are assumed to normally distributed with 
means zero and variance 8. Consequently the covariance matrix, z1, 
of the repeated observations in each treatment group is assumed to 
be: 

z1 = eI (6.5) 
where I is a 6 x 6 identity matrix. 

The results from fitting this model are shown in Table 6.2. All 
61 cases contribute values to the analysis despite only 45 of the 
women having complete data. The effects of treatment group] the 
pre-randomisation measure and linear time are all highly significant. 

Table 6.2. Results from Likelihood Analysis of Oestrogen Patch 
Data (assuming independence for the repeated observations). 

Parameter Estimate Asymp.se z p-value 

constant 7.087 2.057 3.446 0.0006 
group 2.137 0.301 7.094 < 0.0001 
linear time -2.090 0.823 -2.539 0.011 
quadratic time 0.114 0.117 0.971 0.3315 
baseline 0.477 0.079 6.020 < 0.0001 

Approximate 95% confidence interval for treatment effect is 2 x 2.137 & 
1.96 x 2 x 0.301 = (3.09,5.45) 
The model has a single covariance parameter; the estimated value of this 
parameter is 25.370 and its estimated standard error is 2.089. 
The maximised log-likelihood for the model is -895.536, and Akaike’s in- 
formation criterion takes the value -896.536. 
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The independence assumption made in the analysis reported 
above is clearly far from the truth as Fig. 5.5 in the previous chapter 
demonstrates, and so we now need to consider more realistic models 
that allow for the repeated observations to be correlated. We shall 
begin with a model that allows a particular structure, compound 
symmetry, for the covariance matrix of the repeated measurements. 
With this structure the covariance matrix in each treatment group 
is assumed to be of the form: 

!c= 

i.e., a common covariance equal to 81 and a common variance equal 
to 61 + 82. (As we shall see in Section 6.5, this structure arises from 
assuming a simple mixed effects model for the data and is the basis of 
the usual analysis of variance approach to the analysis of longitudinal 
data.) The covariance matrix satisfying compound symmetry can be 
written more concisely as follows: 

where I is a 6 x 6 identity matrix and 1 is a vector of ones. 
The results from fitting a model with the same expected value 

for the observations as given in Eq. (6.4), but with the compound 
symmetry covariance structure, are shown in Table 6.3. Both the pa- 
rameter estimates and their standard errors have changed from those 
given in Table 6.2 although the conclusions remain largely the same. 
The values of the log-likelihoods and Akaike’s information criterion 
for the independence and compound symmetry models suggest that 
the latter represents a great improvement. 
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Table 6.3. Results from Likelihood Analysis of Oestrogen Patch 
Data (assuming compound symmetry for the covariance structure 
of the repeated observations). 

Parameter Estimate As ymp. se % p-value 

const ant 7.180 3.186 2.253 0.0242 
group 1.995 0.543 3.673 0.0002 
linear time -1.828 0.560 -3.263 0.0011 
quadratic time 0.087 0.079 1.099 0.2719 
baseline 0.460 0.145 3.174 0.0015 

~ 

An approximate 95% confidence interval for the treatment effect is 
(1.86,6.12). 
The estimates and estimated standard errors of the model’s two covariance 
parameters are 6 1  = 11.16 (1.029) and 62 = 14.399 (3.149). 
The maximised log-likelihood is -831.764 and Akaike’s information crite- 
rion is -833.764. 

Allowing a compound symmetry structure for the correlations is 
clearly more satisfactory than assuming that the repeated observa- 
tions are independent of one another, but it remains an unrealis- 
tic assumption for the oestrogen patch data in particular and for 
longitudinal data in general. Both the constant variance and con- 
stant covariance assumptions are unlikely in practice. Observations 
taken close together in time are likely to have greater correlation 
than those taken far apart. Figure 5.5 certainly suggests that this 
is the case for the oestrogen patch data. One way to make certain 
that the proposed model for the covariances is adequate is to fully pa- 
rameterise x in the sense of considering N = T(T+ 1)/2 parameters 
81, 82 ,  . . . , 8 N  corresponding to the unique variances and covariances 
~ ~ 1 1 , 0 2 1 ,  . . . , CTTT. Such a covariance matrix is usually referred to 
as unstructured. Fitting such a model to the oestrogen patch data 
gives the results shown in Table 6.4. Again the parameter estimates 
and their standard errors change although the conclusions remain 
largely the same. Comparing the values of Akaike’s criterion for this 
model with the values corresponding to the two models considered 
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Table 6.4. Results from Likelihood Analysis of Oestrogen Patch 
Data (allowing a fully parameterised covariance structure). 

Parameter Estimate Asymp.se .% p-value 

constant 9.330 2.868 3.253 0.0011 

linear time -1.981 0.533 -3.718 0.0002 
quadratic time 0.109 0.064 1.707 0.0879 
baseline 0.364 0.129 2.820 0.0048 

group 2.047 0.486 4.211 < 0.0001 

An approximate 95% confidence interval for the treatment effect is 
(2.19,6.00). 
The maximised log-likelihood is -781.343 and Akaike's information crite- 
rion is -802.343. 

previously shows that the unstructured covariance structure is to be 
preferred. 

Since a fully parameterised X will aZways provide a perfect de- 
scription of the covariance matrix of the repeated observations, the 
question arises as to why not use it on all occasions'? For the answer 
we can return to the comments of Diggle (1988) already referred to in 
the introduction to this chapter, namely that overparameterisation 
can lead to inefficient estimation and potentially poor assessment of 
standard errors of the parameters that characterise the treatment 
mean profiles, i.e., those parameters that are of most interest in 
the majority of applications. This is a problem which is likely to 
be most critical when the number of observations is small relative to 
the number of times at which observations are made. 

When using the likelihood approach described above, the missing 
values for subject i are imputed as follows: 

y i z  = XlZP + %2T;(ya - XZP) (6.8) 

where y5 and Xg are partioned as follows: 

y,'= ( ' a )  a n d X f =  (zz) 
Yaz 
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with y i 2  representing the missing values for this subject. The terms 
2 1 2 ,  k 2 1  and 2 1 1  are appropriate submatrices of X(6). The esti- 
mated missing values depend on the covariance structure assumed 
for the repeated observations; this is illustrated in Table 6.5 which 
shows the imputed missing values for the oestrogen patch data under 
each of the covariance structures considered above. 

Table 6.5. Imputed Missing Values for the Oestrogen Patch Data 
(under three different models for the covariance structure of the 
repeated observations). 

Subject No. of Group Model 
Missing Values Indep. CS Unstruc. 

3 

8 

11 

13 

14 

4 

4 placebo 

placebo 

placebo 5 

4 

4 

placebo 

placebo 

11.6 
10.3 
9.2 
8.4 

17.3 
16.0 
15.0 
14.1 

16.9 
15.4 
14.1 
13.1 
12.2 

16.4 
15.1 
14.0 
13.2 

14.0 
12.7 
11.6 
10.8 

12.9 12.5 
11.7 11.2 
10.6 10.1 
9.8 9.2 

22.4 22.9 
21.2 20.7 
20.1 19.5 
19.2 17.3 

14.4 14.7 
13.0 13.7 
11.8 12.8 
10.7 12.0 
9.8 11.8 

15.6 18.8 
14.4 17.2 
13.4 16.8 
12.5 16.0 

9.6 11.9 
8.4 11.1 
7.3 10.9 
6.4 11.2 
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Table 6.5 (Continued) 

Subject No. of Group Model 
Missing Values Indep. CS Unstruc. 

16 

23 

25 

27 

42 

4 

5 

4 

15 5 placebo 

5 placebo 

5 placebo 

placebo 

placebo 

active 

45 4 active 

15.5 
14.0 
12.7 
11.6 
10.8 

16.0 
14.4 
13.2 
12.1 
11.3 

13.6 
12.1 
10.8 
9.7 
8.9 

13.0 
11.7 
10.7 
9.8 

14.1 
12.6 
11.3 
10.2 
9.4 

7.37 
6.0 
5.0 
4.1 

10.7 
9.4 

16.0 
14.6 
13.4 
12.4 
11.5 

16.2 
14.8 
13.6 
12.6 
11.7 

13.5 
12.1 
10.9 
9.9 
9.0 

14.7 
13.5 
12.5 
11.6 

16.0 
14.6 
13.4 
12.3 
11.5 

16.1 
14.9 
13.8 
13.0 

12.0 
10.7 

15.9 
14.3 
13.1 
12.0 
11.1 

16.1 
14.6 
13.3 
12.3 
11.5 

13.7 
12.4 
11.2 
10.2 
9.5 

16.2 
14.5 
13.7 
12.5 

15.7 
14.0 
12.6 
11.4 
10.2 

19.5 
16.5 
15.6 
12.7 

11.4 
10.0 
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Table 6.5 (Continued) 

Subject No. of Group Model 
Missing Values Indep. CS Unstruc. 

56 

59 

60 

61 

8.3 9.7 
7.5 8.8 

5 active 11.7 11.1 
10.2 9.7 
8.9 8.5 
7.8 7.4 
7.0 6.6 

5 active 9.3 11.8 
7.8 10.4 
6.5 9.2 
5.4 8.1 
4.6 7.3 

active 8.9 8.8 
7.8 7.8 
7.0 6.9 

active 13.6 18.7 
12.1 17.3 
10.8 16.1 
9.7 15.0 
8.9 14.1 

8.9 
7.8 

11.1 
9.8 
8.7 
7.8 
7.2 

11.4 
9.7 
8.2 
7.0 
5.8 

11.5 
12.4 
11.4 

17.2 
14.8 
13.1 
11.5 
9.6 

It was mentioned earlier that it is particularly important when 
fitting models to data containing missing values to check model as- 
sumptions. As with the usual version of multiple regression the most 
useful diagnostics are the residuals, calculated as the differences be- 
tween observed values and those predicted by the model. Here each 
subject, i, will have a vector of residuals, ri, defined as follows: 

A 

ri = yi - Xip, (6.10) 
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the individual elements of ri corresponding to the subject’s residual 
at each time point. One possible method for displaying these resid- 
uals is to first calculate each subjects Mahalanobis distances defined 
thus: 

0; = (yi - xzfi)’2-1(yz - X,fi) (6.11) 

If the assumptions of the model, i.e., normality and the form of 
covariance matrix, are correct these distances have, approximately, 
a chi-squared distribution with T degrees of freedom (remembering 
that any missing values will have been imputed before the residuals 
are calculated). Consequently, a chi-square probability plot of the 
ordered distances should result in a straight line through the origin. 
Departures from the assumptions will be indicated by depatures from 
linearity in this plot. 

The chi-squared plots for the Mahalanobis distances from the 
three models fitted to the data from the oestrogen patch trial are 
shown in Fig. 6.2. The plot corresponding to the independence model 

Chbscuored plot of Mohalonobis distonces of 
residuals from unstructured model 

I 
0 ”  

0 
0 

oOOo 

0 

0 

I I I 

5 10 15 

Chi-squore quonliler 

Fig. 6.2(a) 
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Chi-  squared plot of Mohalanobis distances of 
residuais from compound symetry model 

0 

0 

0 

0 

8ooo 

I 
I I 

5 t O  15 

Chi-square quonliies 

(b) 

Chi-squored plot of Moholanobis distances of 
residuals from unstructured model 

I o o  
0 

0 

ocloo 

0 

0 

I I I 

3 10 15 

Chi-square quanliles 

Fig. 6.2. Chi-squared probability plots of Mahalanobis distances from fit- 
ting models to the oestrogen patch data. (a) Independence, (b) compound 
symmetry (c) unstructured. 
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clearly departs from the expected y = z regression line but both the 
compound symmetry and unstructured models lead to acceptable 
plots. 

6.5.2. Post-Surgical Recovery in Young 
Children 

In a comparison of the effects of varying doses of an anesthetic on 
post-surgical recovery, 60 young children undergoing surgery were 
randomised to receive one of four doses (15, 20, 25 and 30 mg/kg); 
15 children were assigned to each dose. Recovery scores were assigned 
upon admission to the recovery room and at 5, 15 and 30 minutes 
following admission. The response at each of the four time points 
was recorded on a six-point scale ranging from 0 (least favourable) to 
6 (most favourable). In addition to the doseage, potential covariates 
were age of patient (in months) and duration of surgery (in min- 
utes). The data are shown in Table 6.6. In this case there are no 
missing values. Plots of the individual response profiles by treatment 
group and boxplots of the observations at each time point for each 
treatment group are shown in Figs. 6.3 and 6.4. 

These data will be used to illustrate what is known as a random 
coeficients model in which both the intercept and slope (and possi- 
ble higher order effects) of each individuals response profile can be 
modelled as a random effect. Often, data which require a random 
intercept term can be distinguished from those requiring fixed in- 
tercepts by examining plots of the individual response profile (here 
Fig. 6.3). If individual cases appear a s  parallel lines, this suggests 
a random intercept. In a data set requiring a fixed intercept but 
random slopes, the marginal variance at the end time point will be 
larger than at earlier time points - the lines spread out with in- 
creasing time. A model with both random slope and intercept might 
begin separated and would spread further, provided the association 
between slope and intercept was positive. Although Fig. 6.3 is not 
entirely convincing, here we shall fit a model with both random in- 
tercepts and slopes. 
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Table 6.6. Anaesthesia Recovery Data. 

Time (min after surgery) 

Dose Patient Age Dur. 0 5 15 30 

(mg/kg) (months) (min) 

15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

36 
35 
54 
47 
42 
35 
30 
57 
30 
41 
34 
62 
24 
39 
66 
22 
49 
36 
43 
23 
30 
9 

14 
2 

50 
26 
40 
12 
42 
18 

128 
70 

138 
67 
55 
94 
44 
54 
74 
65 
50 
35 
55 

165 
158 
75 
42 
58 
60 
64 
46 

114 
50 
95 

125 
127 
173 
110 
47 
97 

3 
3 
1 
1 
5 
3 
6 
1 
1 
2 
1 
3 
1 
1 
0 
1 
1 
2 
1 
5 
1 
6 
4 
1 
1 
6 
0 
3 
1 
2 

5 
4 
1 
3 
6 
3 
6 
1 
1 
2 
3 
3 
1 
3 
2 
1 
1 
3 
1 
6 
1 
6 
4 
4 
2 
6 
0 
6 
1 
2 

6 
6 
1 
3 
6 
6 
6 
1 
4 
2 
3 
5 
1 
5 
2 
1 
1 
3 
2 
6 
2 
6 
6 
5 
2 
6 
0 
6 
5 
3 

6 
6 
4 
5 
6 
6 
6 
6 
6 
2 
5 
6 
4 
5 
3 
6 
6 
6 
3 
6 
4 
6 
6 
5 
5 
6 
4 
6 
6 
5 
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Table 6.6 (Continued) 

163 

Dose Patient Age Dur. 

(mg/kg) (months) (min) 

25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

26 
28 
41 
46 
37 
28 
37 
60 
60 
38 
47 
38 
23 
56 
31 
46 
38 
59 
16 
65 
53 
50 
13 
17 
70 
13 
60 
12 
27 
56 

103 
89 
51 
93 
45 
68 
35 
54 
55 
78 

118 
98 
58 

190 
125 
72 
85 
54 

100 
113 
72 
70 
85 
25 
53 
45 
41 
61 
61 

106 

Time (min after surgery) 

0 5 15 30 

1 
3 
2 
1 
2 
6 
3 
2 
1 
0 
0 
1 
1 
1 
0 
4 
2 
4 
1 
2 
3 
0 
0 
0 
1 
0 
1 
1 
3 
0 

1 
6 
3 
1 
3 
6 
5 
3 
1 
2 
0 
1 
2 
1 
3 
6 
4 
5 
1 
3 
4 
5 
0 
0 
1 
0 
1 
1 
5 
1 

0 
6 
4 
5 
6 
6 
6 
3 
1 
6 
0 
1 
6 
1 
5 
6 
6 
5 
1 
3 
4 
5 
0 
0 
1 
4 
4 
4 
5 
1 

3 
6 
4 
6 
6 
6 
6 
6 
3 
6 
0 
4 
6 
1 
6 
6 
6 
6 
1 
5 
6 
5 
4 
0 
4 
6 
6 
6 
6 
3 
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Dose 15rng 

I 1  1 

0 5  15 30 

Tme(mins) 

Dose 25mg 

Dose 20rng 

I ,  1 

0 5  15 30 

Time( rnins) 

Dose 30rng 

N 

0 
I ,  1 I ,  1 

0 5  15 30 0 5  15 30 

Time(mins) Time(rnins) 

w -  

b -  

N -  

0 -  

Fig. 6.3. Individual response profiles for post-surgical recovery data. 
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T T  

w 
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Dose 20mg 

m -  

N -  

7 -  

0 A 

Dose 25rng 

165 

0 I 

Dose 30mg 

m 

Fig. 6.4. Box-plots of surgical-recovery data. 
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We assume that the recovery scores for the kth subject at the j t h  
time point and the ith drug dose, y i j k ,  are given by: 

where a ik  and bik are random intercept and slope for subject k having 
dose i, and ~ i j k  are random error terms. The t j  are the times at which 
the recovery scores are measured. The random intercept and slope 
terms are assumed to have a multivariate normal distribution: 

Likewise, the random error terms are assumed to have the following 
distribution: 

The random error terms are assumed to be independent of the ran- 
dom intercepts and slopes. 

The model can be written more concisely as: 

z = ( ;  1 30 ’.). 

(6.15) 

(6.16) 

Under this model, the expected values of the recovery scores are: 

E ( Y i j k )  = Q i  + pztj (6.17) 

and the covariance matrix of y i k  has the following random effects 
structure: 

z: = ZQZ‘ + a21 (6.18) 
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Table 6.7. Results of Likelihood-based Anal- 
ysis of Recovery Data (assuming random 
coefficients model). 

Term df chi-square p-value 

treatment 3 1.27 0.736 
linear time 1 165.88 < 0.001 
treatment x time 3 0.10 0.992 

The parameter estimates obtained from using BMDP 5V are shown 
in Table 6.7. To assess differences between the drug groups in in- 
tercepts and slopes, Wdd’s  test can be used; this assesses whether 
a particular subset of the parameters, Pm, is zero. The form of this 
test is: 

w = @p1jm (6.19) 

where V is the covariance matrix of the estimates in the subset of 
interest. If all m parameters in the subset are zero, then W has a 
chi-squared distribution with m degrees of freedom. 

The results of this test for intercepts and slopes are also shown 
in Table 6.7. There is no evidence of any difference between the 
different drug dose groups. 

6.6. ANOVA AND MANOVA 
APPROACHES TO THE ANALYSIS OF 
LONGITUDINAL DATA 

One of the most common types of analysis for longitudinal data, par- 
ticularly in psychiatry and psychology, remains either univariate or 
multivariate analysis of variance. The ANOVA approach is usually 
formulated in terms of a mixed-effects model which includes a ran- 
dom subject effect, this allowing the repeated observations to have 
the compound symmetry covariance structure. Such a model for the 
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oestrogen patch data takes the form: 

where yijk denotes the depression score of subject k in treatment 
group i on the j t h  visit, p represents an overall mean effect, cq, i = 
1,2 represent the effect of treatment, pj, j = 1,. . . , 6  represent time 
effects, and yij denotes the groupxtime interaction. The term Tk is 
used for the subject effect specific to subject k, and € i j k  represents the 
usual residual or ‘error’ terms. The terms a , P  and y are considered 
fixed effects and both 7 and E are assumed to be random effects 
having normal distributions with zero means and variances 81 and 
02. Such a model implies that the covariance matrix of the repeated 
observations is as shown in Eq. (6.6). 

The MANOVA route removes the constraints on the covariances 
implied by compound symmetry and allows the covariance matrix 
of the repeated observations to be fully parameterised as described 
in the previous section. The problems with assuming compound 
symmetry and in some situations with allowing an unstructured co- 
variance matrix have been described in Section 6.4. These problems 
make the use of either ANOVA or MANOVA less than ideal in most 
situations, although for longitudinal data containing no missing val- 
ues the latter is unlikely to be seriously misleading. But when the 
data are affected by dropouts, the application of either ANOVA or 
MANOVA to complete cases only (still the most usual approach to 
missing values) should be avoided. If the missing values are MCAR, 
both approaches do not use the available data as efficiently as they 
should; much more serious, however, is that if the data are MAR, 
analysing complete cases only might lead to misleading inferences. 

6.7. INFORMATIVE DROP OUTS 

The analyses carried out on the oestrogen patch data in Section 6.4 
are only strictly valid if the missing observations caused by the 
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women who dropped out are non-informative. Two questions there- 
fore arise: 

0 How do we tell whether or not the missing observations are 

0 How do we analyse the data if the missing values are informa- 
ignorable? 

tive? 

A number of authors have considered these questions including, 
Laird (1988), Diggle and Kenward (1994) and Diggle (1998). (Rid- 
out, 1991, considers the slightly simpler problem of testing for com- 
pletely random dropouts and proposes a method based on logistic 
regression.) Diggle (1998) proposes an informal approach to assess- 
ing whether missing values are likely to be informative or otherwise, 
involving consideration of the mean profiles of cohorts of completers 
and those who drop out at particular visits, ignoring the different 
treatment groups. Figure 6.4 illustrates this proposal on the oestro- 
gen patch example; the completers cohort has steadily decreasing 
depression scores whereas the cohorts of dropouts have increasing 
values. (The number of missing values in this example is small so 
that some of the points plotted in Fig. 6.4 are based on just a few 
subjects; the plot does however serve to illustrate the general point 
being made.) 

A more formal approach is that suggested by Diggle and Ken- 
ward (1994) who propose a modelling framework for longitudinal 
data with informative dropouts, in which random or completely ran- 
dom dropouts are included as explicit models. A brief technical ac- 
count of the model is given in Table 6.8, but the essential feature is 
a logistic model for the probability of dropping out, in which the ex- 
planatory variables can include previous values of the response vari- 
able as in the model described above, but in addition can include the 
unobserved value at dropout as a latent variable. In other words, the 
dropout probability is allowed to depend on both the observed mea- 
surement history and the unobserved value at dropout. The model 
is implemented in the software OSWALD (see Appendix). 
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Table 6.8. Diggle and Kenward Model for Dropouts. 

Let Y* represent the complete vector of intended measurements and 
t = [ t l , t2 , .  . . , t,] the corresponding set of times at which measurements 
are taken. 
Let Y = [Yl, Y2,. . . , Y,] denote the vector of measurements, with missing 
values coded as zero. 
Y* and Y coincide as long as the individual remains in the study, im- 
plying 

Yk = Y { , k = 1 , 2  ,..., D - 1  

= 0 k > D  

where D is a random variable such that 2 5 D 5 n identifies the dropout 
time and D = n + 1 identifies no dropout. 
The distribution of Y* is assumed to be multivariate normal with prob- 
ability density function f *(y; p, e),  where p and e, respectively param- 
eterise the mean and covariance structure of Y*.  
We assume that the dropout process is such that the probability of 
dropout at time t d  depends on the history of measurement up to  and 
including td. 
For each k ,  let HI, = [yl, . . . , yk-11 represent the observed history up to  
time tk-1. The model for the dropout process is then: 

Pr(D = dlhistory) = pd(Hd, y;; 4) 

So the dropout probability depends on both the observed measurement 
history H,j, and the unobserved value yC;. In addition, the probability 
depends on a set of parameters 4. 
The equations that determine the joint distribution of Y ,  and hence the 
likelihood function of the parameters, p, 8 and 4 are: 

Pr(Yk = OIHI,, Yk-1 = 0 )  = 1 
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Table 6.8. (Continued) 

where fl(y1H1,; p, 8) denotes the conditional alternate Gaussian pdf of 
y i  given HI, and fk (y (H~, ;  p , 8 , 4 )  the conditional pdf of YI, given Hk. 

0 A linear logistic model is used for p~,(Hk, y; 4). 
c From there the likelihood function for p, 8 and 4 can be constructed. 

(This account is an abbreviated version of that given in Diggle and Ken- 
ward, 1994, where readers are referred to for more detail.) 

Table 6.9. Results from DiggleKenward Model for Dropouts 
Oestrogen Patch Data (assuming random drop-out based on 
1 previous observation). 

Analysis method: Maximum likelihood (ML) 
Maximised likelihood: 
[l] - 1295.658 
Mean Parameters: 

(Intercept) Group Time Pre2 

PARAMETER -1.218 -1.751 -0.572 0.807 

STD. ERROR 20.58 0.356 0.071 0.094 

Dropout parameters: 

(Intercept) Y.d y.d - 1 

-3.941 0 0.103 

To illustrate the Diggle-Kenward model for dropouts, the method 
will be applied to the oestrogen patch example. Part of the outputs 
from OSWALD corresponding to models for, MAR and informative 
dropouts are shown in Tables 6.9 and 6.10. The likelihood ratio 
test for the additional parameter in the informative dropout model 
indicates that the parameter is not zero. This finding might appear to 
throw into doubt the previously reported likelihood analyses of these 
data in which the dropouts were assumed to be non-informative. 
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Table 6.10. Results from Diggle-Kenward Model for Dropouts 
Oestrogen Patch Data (assuming informative dropout) .  

Maximised likelihood: 
[l] - 1291.848 
Mean Parameters: 

(Intercept) Group Time Pre2 

PARAMETER 10.198 -2.335 -0.670 0.309 
STD. ERROR NA NA NA NA 

Dropout parameters: 

(Intercept) Y.d y.d - 1 
~~ ~ 

-4.797 0.022 0.131 

0 LR test of additional parameter: 7.62 1d.f. 
(The standard errors of the mean parameters for the informative 
dropout model are not available from OSWALD.) 

However, the parameters characterising the mean profiles tell largely 
the same story in both models. Certainly the likelihood analysis as- 
suming only MAR is less likely to suffer from bias than the alternative 
of using only complete cases and implicitly assuming MCAR. 

The Diggle-Kenward model represents a welcome addition to the 
methodology available for analysing longitudinal data in which there 
are dropouts. But as with any new modelling framework, ques- 
tions need to be asked about its adequacy in practical situations. 
Matthews (1994), for example, makes the point that if there are many 
dropouts, the proposed model can be applied, but questions whether 
many statisticians would feel happy to rely on technical virtuosity 
when 60% of the data are absent. Alternatively, if the proportion of 
dropouts is low, then much less can be learnt about the dropout pro- 
cess, leading to low power to discriminate between dropout processes. 
Skinner (1994) suggests that the longitudinal data remaining after 
dropout may, by themselves, contain very little information about the 
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‘informativeness’ of the dropout and concludes that external infor- 
mation about the dropout mechanism be sought and used. A further 
possible problem identified by Troxel et al. (1998) is that bias that 
results from assuming the wrong type of missingness mechanism may 
well be more severe than the bias that results from misspecification 
of a standard full maximum likelihood model. 

Despite these and other reservations made in the discussion of 
Diggle and Kenward’s paper, their proposed model does open up 
the possibility of some almost routine, detailed investigation of the 
dropout process. 

6.8. OTHER METHODS FOR THE 
ANALYSIS OF LONGITUDINAL DATA 

There are a number of methods of analysis that allow for more gen- 
eral covariance matrices to be specified. One, very little used within 
the clinical trials field, is structural equation modelling (SEM). As 
typically presented, SEM typically start by a detailed consideration 
of the appropriate structure for the covariance matrix and only later 
proceeding to consider the structure of the means that is typically 
the main focus for the trial analyst. However, a common limitation of 
SEM software is their limited ability to  deal with missing data, typi- 
cally approached through the fitting of the model to multiple groups, 
one corresponding to each group of subjects with a common pattern 
of missing data (see Dunn, Everitt and Pickles, 1993). Rather more 
practicable are programs such as Mx (Neale, 1995) that perform what 
is described as full-information maximum-likelihood estimation, that 
fit the model at the individual subject level if required. 

A second increasingly important method uses software for mul- 
tilevel modelling (e.g., MLWiN - see Appendix). These, too, are 
capable of fitting models with error covariance matrices with struc- 
tures like those already described. However, in addition, the appro- 
priate use of dummy variables with random coefficients allows for 
heteroscedasticity in variances and covariances between treatment 
groups. 
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A novel approach to the analysis of longitudinal data is sug- 
gested by Tango (1998). Tango postulates that each treatment group 
consists of a mixture of several distinct latent profiles, a situation 
he models using a finite mixture model with normal components 
(see Everitt, 1996). The effect of treatment is characterised by the 
slope of the latent profiles and the mixing proportions of these la- 
tent profiles. An EM algorithm is used for parameter estimation. 

Means for dropouts and completers 

r I I I I I 
v1 v2 v3 v4 v5 V6 

Visit 

Fig. 6.5. Means for completers and cohorts of subjects dropping out a 
particular times for oestrogen patch data. 
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Tango illustrates his proposal on data from a randomised double 
blind trial of two treatments for chronic hepatitis, a new treatment 
A, and the standard treatment B. The response variable used 
was log-transformed serum levels of glutamate pyruvate transami- 
nase (GPT), measured at baseline and at  one week intervals up to 
four weeks. A five-group mixture model was deemed optimal, the 
groups being labelled, ‘greatly improved’, ‘improved’, ‘unchanged’, 
‘worsened’, ‘greatly worsened’. A patient’s group membership was 
determined by the maximum value of their estimated posterior prob- 
abilities of belonging to each group. The profiles of all the 124 pa- 
tients and of the patients in each of the derived groups are shown in 
Fig. 6.5. The composition of the two-treatment groups in terms of 
each type of patient was as follows: 

Treat- Greatly Improved Unchanged Worsened Greatly Total 
ment Improved Worsened 

A 3 20 17 14 8 62 
B 2 13 34 11 2 62 

Compared with the standard treatment B, the treatment A has: 

0 the same proportion of ‘greatly improved’, 
0 higher proportion of ‘improved’, 
0 higher proportion of ‘worsened’, 
0 higher proportion of ‘greatly worsened’, 
0 lower proportion of ‘unchanged’. 

Tango suggests that these characterisations of the efficacy of 
treatments might be medically important especially for finding the 
key baseline factors to discriminate responders from non-responders. 

6.9. SUMMARY 

For longitudinal data where the response variable has a normal distri- 
bution, the regression model described in Section 6.4 can be applied 
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Fig. 6.6. Individual profiles for all patients and 
derived 'types'. 

1 improved 

for mixture modelling- 

routinely] using software such as PROC MIXED in SAS and 
BMDP5V. When the data are unbalanced but the missing values 
can be assumed to be MCAR or MAR, the estimation of the param- 
eters in such models by maximum likelihood provides a completely 
satisfactory method of analysis and one that is much to be preferred 
over the commonly used application of univariate or multivariate 
analysis of variance to complete cases. 

Although the missing-at-random assumption made in the like- 
lihood approach described in this chapter is often sensible, Little 
and Yau (1996) give some examples where it is highly questionable. 
In such cases, the Diggle-Kenward model for informative dropouts 
can be applied using the OSWALD package, although at present 
this should perhaps be regarded as primarily experimental. In addi- 
tion, Little (1995) suggests that the model may be highly sensitive 
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to model misspecification and in Little and Lau (1996) describes an 
alternative approach to the dropout problem. Now values of the out- 
come after dropout are imputed using models for the missing data 
that condition on all relevant observed data, and in particular on 
information about treatments actually administered (as opposed to 
randomised treatment). Following imputation an intention-to-treat 
analysis based on the treatment as randomised is applied to the im- 
puted data. 

Finally, it must be remembered that the proportion of dropouts 
may, for many trials, be regarded as a measure of the quality of 
the data produced by the trial. And Lavori’s seemingly self-evident 
statement, “it is always better to have no dropouts” (Lavori, 1992); 
still has considerable appeal. 



CHAPTER 7 

Models for Non-Normal 
Longitudinal Data 
from Clinical Trials 

7.1. INTRODUCTION 

In Chapter 4 we gave a brief description of generalised linear mod- 
els and showed how they have unified regression analysis for discrete 
and continuous independent response variables. An obvious question 
is how might such models be adapted to  be suitable for correlated 
response variables, in particular the repeated measurements taken 
in a longitudinal study? The multivariate regression model for cor- 
related normally distributed response variables found in Chapter 6 
provides the first part of the answer, and in this chapter the extension 
to non-normal responses, in particular, categorical responses, will 
be considered. 

In the linear model for Gaussian data in Chapter 6 estimation 
of the regression parameters needed to take account of the correla- 
tions in the data, but their interpretation was essentially independent 
of the correlation structure. One potentially troublesome aspect of 
modelling non-normal longitudinal data is that this independence 
of estimation and interpretation no longer always holds. Different 
assumptions about the source of correlations between the observa- 
tions can lead to regression coefficients with distinct interpretations 

178 
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as we shall see later. The three principal approaches to introduc- 
ing correlations are marginal, random eflects and transition models. 
Each type will now be considered relatively briefly; fuller accounts 
are available in Diggle, et  al. (1994). 

7.2. MARGINAL MODELS 

Longitudinal data can be considered as a series of cross-sections, and 
marginal models for such data use the generalised linear model dis- 
cussed in Chapter 4, to fit to each cross-section. In this approach, the 
relationship of the marginal mean and the explanatory variables is 
modelled separately from the within-subject correlation. Specifically, 
a marginal model makes the following assumptions: 

and CY a set of parameters. 

(The nomenclature is that introduced for GLMs in Chapter 4 
and for longitudinal data in Chapter 6, with pij now representing 
the expected value of the observation on subject i at time t j ,  i.e., 

The first two of these assumptions are exactly the same as those 
made in Chapter 4 for generalised linear models, suitable when only 
a single response is observed on each subject. The marginal regres- 
sion coefficients have the same interpretation as coefficients from a 
cross-sectional analysis, and marginal models are natural analogues 
for correlated data of generalised linear models for independent data. 

Before considering how the parameters in such models can be es- 
timated, it might be helpful to look at a simple example. For this we 
shall use the respiratory status data introduced in Chapter 5. These 
data consist of binary observations of whether a patient had good or 
poor respiratory status at baseline and at each of four post-treatment 

Xj.) 
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visits. Two treatment groups were involved and in addition two fur- 
ther covariates, sex and age, were available together with a binary 
indicator for centre. One possible logistic marginal model is given 
by: 

0 Corr(xj,yZk) = 0 

where treatmenti is a dummy variable indicating the treatment group 
of subject i. 

Here the parameter exp(P1) is the odds ratio of good respira- 
tory status in the two treatment groups. Since exp(P1) is a ratio 
of population frequencies, it is referred to  as a population-averaged 
parameter. If all the individuals in the same treatment group have 
the same probability of good respiratory status, the population fre- 
quency is the same as the individual’s probability. When, however, 
there is heterogeneity in the probability in a treatment group, the 
population frequency is the average of the individual values. (This 
point will be discussed further later in this chapter.) 

By setting the correlation between pairs of observations to zero, 
we are simply ignoring the likely lack of independence of observations 
over cross-sections. This is an example of what Davis (1991) refers 
to as the independence working model approach. Although such an 
approach can yield consistent estimates of the regression parameters 
in many circumstances, the standard estimators of the variances and 
covariances of these estimates will not be consistent. This problem 
can be overcome in a variety of ways, but perhaps the simplest is to 
make use of an extension of the robust covariance matrix estimator 
of Huber (1967) and White (1982) (see Chapter 4) that makes it 
suitable for correlated data. 

Fitting the independence working model does not need any spe- 
cialised software since standard GLM or logistic regression packages 
can be used. Response measures are organised one per record with 
each subject contributing as many records as repeated measures. 
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Table 7.1. Parameter Estimates from an Independence 
Working Model: Logistic Regression Fitted to the Respi- 
ratory Status Data. 

Covariate Estm. Regres. Standard Errors 
Coefficient Classical Robust Bootstrap 

Treatment 1.267 0.235 0.349 0.383 

Time -0.078 0.099 0.082 0.083 
Sex 0.137 0.294 0.443 0.482 
Age1100 -0.189 0.883 1.305 1.354 
Baseline 1.849 0.240 0.349 0.395 
Centre 0.651 0.238 0.355 0.372 

The bootstrap SE is based on 500 replicates. 

The operational simplicity of this approach is hard to exaggerate 
and Table 7.1 gives the parameter estimates from fitting the follow- 
ing logistic regression model to the respiratory status data given in 
Table 5.9. 

logit& = 1) = Po + Pi treatmenti + ,& timeij + ,& sexi 

+ P4 agei + /&, centrei + ,& baselinei . (7.1) 

Three forms of standard error are shown together with their associ- 
ated test statistic; the classical standard error that is based on the 
unlikely assumption that the four repeated observations on a sub- 
ject are independent, the ‘robust/sandwich’ standard error, and a 
bootstrap standard error. The bootstrap resampling recognised the 
repeated measures structure by resampling subjects, each with a set 
of responses, rather than using single responses. The bootstrap esti- 
mate is far closer to the robust/sandwich estimate than the classical 
estimate, which, for between subjects effects, are much too small. 
But in the case of the within subjects effects for the time trend over 
assessment visits, it is the robust and bootstrap estimates that are 
smaller. Assuming independence is not always anti-conservative. 
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It is important to keep in mind that what is being estimated by 
the fitted model is the cross-sectional relationship between variables. 
Table 7.2 shows the sample frequencies over the joint distribution 
of the baseline and four trial responses (2 times 16 possible binary 
response sequences), together with the frequencies predicted by the 
independence working model given in Eq. (7.1). The other entries 
in this table will be discussed later. Whilst the time-by-time marginal 
totals are well fitted by this model, the joint distribution reflected 
by these response sequences is very poorly fitted. Typical of such 
data, the sequences with a preponderance of one type of response 
are more common than expected under the assumption of indepen- 
dence, and the sequences with alternating responses considerably 
fewer. This should come as no surprise since the model was not 
fitted to the joint distribution, only to the margins. 

Table 7.2. 
Respiratory Status Data. 

Response Observed Independence Transition Random Effects 

Sample Frequencies and Predicted Frequencies for 

Frequency Working Model Model Model 

Baseline 0 

0000 25 

0001 2 
0010 4 
001 1 0 
0100 2 
0101 0 
0110 2 
0111 4 
1000 3 
1001 0 
1010 1 
1011 2 
1100 2 

13.3 

4.3 
4.6 
2.3 
5.0 
2.5 
2.7 
2.1 
5.4 
2.7 
2.9 
2.2 
3.2 

14.3 

4.1 
4.6 
3.0 
5.6 
2.9 
3.7 
4.1 
4.2 
1.7 
2.0 
1.8 
2.2 

21.9 

3.1 
3.5 
1.4 
4.0 
1.6 
1.8 
1.7 
4.5 
1.8 
2.0 
1.9 
2.2 
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Table 7.2. (Continued) 

Response Observed Independence Transition Random Effects 

Frequency Working Model Model Model 

1101 
1110 
1111 
Baseline 1 
0000 
0001 
0010 
001 1 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

3 
1 

10 

1 
0 
0 
3 
1 
0 
1 
1 
4 
2 
1 
3 
0 
1 
5 

27 

2.4 
2.6 
2.7 

0.3 
0.5 
0.6 
1.2 
0.6 
1.3 
1.4 
4.0 
0.7 
1.4 
1.5 
4.3 
1.6 
4.6 
5.0 

21.0 

1.6 
2.1 
3.2 

0.2 
0.3 
0.3 
0.6 
0.6 
0.9 
0.9 
2.4 
1.1 
1.8 
1.6 
3.9 
3.1 
5.7 
5.5 

21.2 

2.2 
2.5 
5.0 

0.4 
0.4 
0.5 
0.7 
0.6 
0.8 
0.9 
2.6 
0.6 
0.9 
1.0 
3.0 
1.2 
3.4 
3.8 

29.2 

7.2.1. Marginal Modelling using Generalised 
Estimating Equations 

The independence working model used above can be estimated using 
the approach outlined for generalised linear models in Chapter 4. But 
for more complex marginal models in which we wish to take advan- 
tage of the correlation between pairs of observations to obtain more 
efficient estimates of the regression parameters, we need to consider 
a new procedure introduced by Liang and Zeger (1986), and known 
as generalised estimating equations (GEE). This approach may be 
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viewed as a multivariate extension of the generalised linear model 
and the quasi-likelihood method (see Chapter 4). The use of the 
latter leads to consistent inferences about mean responses without 
requiring specific assumptions to be made about second and higher 
order moments. In this way intractable likelihood functions with pos- 
sibly many nuisance parameters, in addition to p and a, are avoided. 
A brief account of GEE is given in Table 7.3. More detailed accounts 
are available in Liang and Zeger (1986) and Zeger, Liang and Pren- 
tice (1988). (Software for fitting GEE models is discussed in the 
Appendix.) 

Table 7.3. Generalised Es t imat ing  Equations. 

0 In the absence of a likelihood function, Liang and Zeger (1986) show 
that the parameters of a generalised linear model for longitudinal data, 
p and a, can be otained from a multivariate analogue of the quasilike- 
lihood mentioned briefly in Chapter 4. 

0 The generalised estimating equation is given by: 

n 

U ( P , a )  = c ( y ) ’ v ; l ( y i  - pi@))  = 0 
i = l  

0 V; is assumed to be of the form: 

where Ai is a diagonal matrix of variances, the elements of which de- 
pend on the elements of pi, and Ri(a) is a working correlation matrix. 

(a) An identity matrix leading to the independence working model in 
which the generalised estimating equation reduces to the univariate 
estimating equation given in Chapter 4, obtained by assuming that 
the elements of yi are independent. 

(b) An exchangeable correlation matrix with a single parameter similar 
to that described in Chapter 6. Here corr(Y,j, Y i k )  = a. 

(c) An AR-1 autoregressive correlation matrix, also with a single pa- 
rameter, but in which corr(Y,j, &) = alk-jl, j # I c .  

0 Some possibilities for Ri(a) are: 
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Table 7. ( Continued ) 
~ ~ ~~ 

(d) An unstructured correlation matrix with T(T - 1)/2 parameters in 
which corr(yZ, , x k )  = L Y , ~ .  

0 In cases of possible overdispersion, the scale parameter 4 can again be 
estimated by the moments estimator mentioned in Chapter 4, using 
observation specific Pearson residuals, i,, . 
One version of GEE also uses moment estimators for the correlation 
parameters. For the exchangeable model, for example, 

The estimation process then consists of an iteration between iterative 
weighted least squares estimation of the regression parameters for a 
given estimate of the correlation parameters, followed by a recalculation 
of the latter based on the residuals from the current estimates of the 
former. 
Other approaches to  GEE estimation are described in Zhao and Prentice 
(1990) and Prentice and Zhao (1991). 
The GEE method produces consistent estimators for p and its 
covariance matrix without requiring: (a) specification of the joint dis- 
tribution of the repeated observations for each individual; (b) correct- 
specification of the correlation structure in U(p, a). 

Table 7.4 presents results from logistic regression models fitted to 
the respiratory status data using GEE under a variety of assumptions 
about the correlational structure. It is sufficient for our purposes t o  
present results only for the treatment effect of main interest, and 
the trend over occasions - the only variable that varies within sub- 
jects. Both classical and robust standard errors are given, although 
we should now expect the differences between these two standard 
error estimators to be smaller since, unlike the independence work- 
ing model used earlier, these models all make at least a plausible 
assumption as to the correlation structure (marked differences might 
have suggested possible model misspecification) . 



186 Design and Analysis of Clinical Trials 

Table 7.4. Results from Fitting Logistic Regression Model to 
Respiratory Status Data under Various Assumptions about Cor- 
relational Structure. 

Covariate Model 

Treatment Exch 
AR-1 

Unstr 
Time Exch 

AR-1 

Unstr 

Estimate 

1.256 

1.205 

1.239 

-0.078 

-0.097 

-0.086 

Classical 
SE ztest 

0.331 3.79 

0.308 3.91 

0.330 3.76 

0.081 -0.97 

0.101 -0.96 

0.085 -1.01 

Robust 
SE atest  

0.348 3.61 

0.349 3.45 

0.347 3.58 

0.082 -0.95 

0.083 -1.18 

0.082 -1.05 

Table 7.5 gives the lower triangle of the estimated correlation 
matrices from each of these models. The estimated correlations from 
the unstructured model look to be closer to those of an exchangeable 
structure than the autoregressive (AR-1) structure. In the latter 
model, the correlation between pairs of observations are expected to 
decline with separation in time much more quickly than they actually 
appear to do, whereas the exchangeable model assumes that this 
correlation remains constant. This greater similarity, in this case, of 
the unstructured and exchangeable models as compared to the AR-1 
model, is also reflected in the estimated regression coefficients and 
standard errors. 

Nonetheless all the models give similar findings, with there being 
little doubt as to the presence of a treatment effect and there being 
little trend over assesment visit. 

Table 7.6 presents some well known data originally presented 
by Thall and Vail (1990) involving a clinical trial of treatment for 
epilepsy in which a total of 59 patients were randomly allocated to 
either a placebo or the active treatment, namely the drug progabide. 
In this trial, the response variable was a count of the number of 
seizures within four successive intervals of two weeks. A baseline 
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Table 7.5. Estimated Correlation Matrices for the 
Respiratory Status Data. 

(a) Exchangeable 

1 .oo 
- 0.33(0.18) 1.00 
R =  [ 

0.33(0.18) 0.33(0.18) 1.00 
0.33(0.18) 0.33(0.18) 0.33(0.18) 1.00 

(b) AR-1 

0.15 0.38 1.00 
0.06 0.15 0.38 1.00 

(c )  Unstructured 

0.32 1.00 
0.20 0.42 1.00 

R =  

\0.29 0.34 0.38 1.00) 

measure of the response was also taken and, in addition, the age of 
each patient was recorded. Figure 7.1 is a plot of the log of the total 
number of seizures (plus one) during the trial against the log of the 
baseline seizure count. Except for subject 58, with an unusually low 
number of seizures during the trial, the relationship looks plausibly 
linear on this log scale. The plot also suggests that subject 49 is 
likely to have high influence. 

The difference in mean log-total for placebo and treatment 
groups (3.21 - s.e. 0.16 and 2.80 - s.e. 0.19) of 0.41 was not 
significantly different from zero using a simple t-test. Of course, 
controlling for baseline differences improves efficiency. However, A 
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Table 7.6. Data from a Clinical Trial of Patients Suffering 
from Epilepsy. 

ID 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

- Y1 Yz 
5 3 

3 5 
2 4 
4 4 
7 18 
5 2 
6 4 

40 20 
5 6 

14 13 
26 12 
12 6 
4 4 
7 9  

16 24 
11 0 
0 0 

37 29 
3 5 
3 0 
3 4 
3 4 
2 3 
8 1 2  

18 24 
2 1 
3 1 

13 15 
11 14 
8 7 

Y3 

3 

3 
0 
1 
9 
8 
0 

23 
6 
6 
6 
8 
6 

12 
10 
0 
3 

28 
2 
6 
3 
3 
3 
2 

76 
2 
4 

13 
9 
9 

Y4 
3 

3 
5 
4 

21 
7 
2 

12 
5 
0 

22 
4 
2 

14 
9 
5 
3 

29 
5 
7 
4 
4 
5 
8 

25 
1 
2 

12 
8 
4 

Treatment Baseline Age 

0 11 31 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

11 
6 
8 

66 
27 
12 
52 
23 
10 
52 
33 
18 
42 
87 

30 
25 
36 
22 
29 
31 
42 
37 
28 
36 
24 
23 
36 
26 

0 50 26 
0 18 28 
0 111 31 
0 18 32 
0 20 21 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 

12 29 
9 21 

17 32 
28 25 
55 30 
9 40 

10 19 
47 22 
76 18 
38 32 
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Table 7.6. Data from a Clinical Trial of Patients Suffering 
from Epilepsy. 

ID y1 yz y3 y4 Treatment Baseline Age 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

0 
3 
2 
4 

22 
5 
2 
3 
4 
2 
0 
5 

11 
10 
19 
1 
6 
2 

102 
4 
8 
1 

18 
6 
3 
1 
2 
0 
1 

4 
6 
6 
3 

17 
4 
4 
7 

18 
1 
2 
4 

14 
5 
7 
1 

10 
1 

65 
3 
6 
3 

11 
3 
5 

23 
3 
0 
4 

3 
1 
7 
1 

19 
7 
0 
7 
2 
1 
4 
0 

25 
3 
6 
2 
8 
0 

72 
2 
5 
1 

28 
4 
4 

19 
0 
0 
3 

0 
3 
4 
3 

16 
4 
4 
7 
5 
0 
0 
3 

15 
8 
7 
3 
8 
0 

63 
4 
7 
5 

13 
0 
3 
8 
1 
0 
2 

1 19 
1 10 
1 19 
1 24 
1 31 
1 14 
1 11 
1 67 
1 41 
1 7 
1 22 
1 13 
1 46 
1 36 
1 38 
1 7 
1 36 
1 11 
1 151 
1 22 
1 41 
1 32 
1 56 
1 24 
1 16 
1 22 
1 25 
1 13 
1 12 

20 
30 
18 
24 
30 
35 
27 
20 
22 
28 
23 
40 
33 
21 
35 
25 
26 
25 
22 
32 
25 
35 
21 
41 
32 
26 
21 
36 
37 
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Fig. 7.1. Plot of log of total number of seizures (plus one) against log of 
the baseline seizure count for epilepsy data in Table 7.6. 

Cook-Heisberg test identified heteroscedasticity in a regression of 
log-total on treatment group, log-baseline and age, suggesting the 
need to use the Huberized/robust/sandwich (heteroscedasticity con- 
sistent) parameter covariance estimator in making inference about 
effects in such a model. This suggested a significant treatment effect 
conditional upon covariates of -0.38 with a 95% confidence interval 

We have already noted in Chapter 4 how regression analyses 
of log transformed data can be distorted by obervations with re- 
sponses at or close to 0. Subject 58 is clearly one such case. Per- 
haps the natural model to analyse count data such as these is some 
form of GLM based on a Poisson error distribution. However, fit- 
ting a GLM with covariates for treatment, age and log-baseline, 

of (-0.71, .-0.05). 
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Table 7.7. GEE Poisson Regression Estimates for the Epilepsy 
Data. 

~~ ~ 

Covariat e Model Estimate SE %test 

Treatment (1) Indep with robust 
(2) Exch 
(3) Exch with overdisp 
(4) Exch with overdisp 

(5) AR-1 with overdisp 
(6) Unstructured with 

Time (1) Indep with robust 

and robust 

overdisp 

(2) Exch 
(3) Exch with overdisp 
(4) Exch with overdisp 

(5) AR-1 with overdisp 
(6) Unstructured with 

and robust 

overdisp 

-0.031 
-0.025 
-0.025 

-0.025 
-0.035 

-0.035 
-0.059 
-0.059 
-0.059 

-0.059 
-0.064 

-0.056 

0.193 -0.163 
0.071 -0.361 
0.155 -0.164 

0.193 -0.133 
0.149 -0.233 

0.154 -0.226 
0.016 -3.76 
0.016 -3.743 
0.035 -1.704 

0.035 -1.670 
0.044 -1.438 

0.039 -1.226 

with a log link function and Poisson errors to the total seizure count 
gave a Pearson model chi-square of 614.79 for 55 degrees of free- 
dom, clearly indicating some form of overdispersion. As we shall see, 
this has implications for the specification of any GEE model that 
we might fit as part of a longitudinal analysis of the four separate 
trial counts. 

Table 7.7 shows the results for treatment effect and for the trend 
over visit from models with a log link, Poisson errors and additional 
covariates for log-baseline and age which, for the sake of clarity, have 
not been reported in the table. For illustrative purposes, the fitted 
model included simple main effects and a common pattern of overdis- 
persion, though Thall and Vail (1990) find some evidence in favour of 
a more complicated structure. We show results from six models: 
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(1) an independence working model with robust standard errors, 
(2) an exchangeable correlation model, 
(3) as in (2) but with the scale parameter estimated by the Pear- 

son chi-square/residual divided by the degrees of freedom in 
order to allow for overdispersion, 

(4) an exchangeable model with robust standard errors, 
(5) a first-order autoregressive model allowing for overdispersion, 
(6) a model with an unstructured correlation matrix allowing for 

overdispersion. 

Unlike the previous example, the results from the basic exchange- 
able model (2) are quite different from those of the independence 
working model with robust standard errors (1). However, this is not 
because the exchangeable correlation matrix is grossly innappropri- 
ate (though it is not especially good). Rather, as the results from 
model (3) show, it is because model (2) has not allowed for overdis- 
persion. It is clear that at least as much thought must be given to 
the possible presence of overdispersion as to the structure of the cor- 
relation matrix. The use of the robust standard errors will cope with 
failures in either, and as we see from model (4), their use with the 
overdispersed exchangeable model does increase the standard error 
for the treatment effect beyond the value of the classical standard 
error from the overdispersed model. The AR-1 Model (5) and the 
unstructured or free correlation Model (6) give quite similar results. 
Inspection of the table of estimated correlations from Model (6), ex- 
plains why. Unlike in the respiratory disease example, the estimated 
pattern is suggestive of an autoregressive rather than an exchange- 
able correlation matrix. 

The results from all these GEE models differ strikingly from the 
results based on applying regression to the log-transformed counts. 
This very much reflects the variation in the relative influence that 
is attached to a small number of datapoints according to the partic- 
ular mean-variance relationship assumed, a circumstance previously 
illustrated using the polyp count data in Chapter 4. The analyses 
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Table 7.8. Estimated Correlation 
Matrix for Epilepsy Data. 

Unstructured 

R=(.:- 1.00 ) 
0.39 0.57 1.00 
0.24 0.30 0.41 1.00 

illustrate that in general, for trials with a comparable subjects by 
time structure, a greater emphasis should probably be placed in the 
use of model comparisons and diagnostics to examine the issues re- 
lating to dispersion in longitudinal GLMs than to those relating to 
the details of the correlation structure. 

7.3. RANDOM EFFECTS MODELS 

The essential feature of a random effects model for longitudinal data 
is that there is natural heterogeneity across individuals in their re- 
gression coefficients and that this heterogeneity can be represented 
by an appropriate probability distribution. Correlation among ob- 
servations from one person arises from them sharing unobservable 
variables. In the respiratory status data, for example, variation in 
the propensity to have poor respiratory status might, in this instance, 
merely reflect variation in severity of illness not captured by the sim- 
ple binary response. For a random effects model, the assumptions of 
the marginal generalised linear model are modified to: 

g(pc.) = X' .p* + d' . ~ i ,  
23 23 23 

0 q = (b'u(p;j) 

where p$ is the expected value of y Z j  conditional on the values of 
unobserved (latent) random variables q, specific to subject i; I$ 
is the corresponding conditional variance. The term dij is a vector 
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of explanatory variables; for example, if dlj = [l,tij], then the ele- 
ments of ~i correspond to the intercept and slope of a subject specific 
time-trend in the mean response. We use p* here rather than p, to 
emphasise that the substantive meaning of the regression parameter 
is different from that of p in a marginal model, unless the response 
variable has a normal distribution. To illustrate this difference, we 
will use the following simple random effects logistic regression model: 

logit(Y,j = 1l.i) = PO* + P;xij  + ~i ( 7 4  

where ~i - N(0,  a2) .  It is convenient for our purposes here to rewrite 
this as: 

logit(Y,j = 1lUi) = @; + PTzij + aUi (7-3) 
where Ui - N(0,l) .  The parameter a is a measure of the degree 
of heterogeneity between subjects because the subject-specific inter- 
cepts are & + aUi, i = 1,. . . ,n, and the Ui have a standard normal 
distribution. In this model, the regression parameter p; must be 
interpreted conditionally on the subject's own value of Ui. Zeger, 
Diggle and Huang (1998) derive the marginal properties of the ran- 
dom effects model in Eq. (7 .3) ,  so that the population-averaged coef- 
ficient of the former can be compared with the subject-specific effect 
of the latter. This requires integrating out the dependence on the 
unobserved Ui; so, for example, the unconditional mean response is: 

Pr(xj = 1) = 1 Pr(Kj = l lu)f(u)du (7.4) 

where f(.) is the standard normal density function. Using an ap- 
proximation for the integral, Zeger et al. (1988) show that: 

logit(Xj = 1) M (c2a2 + I)-'/'((Po* + ~ ; x i j )  

p M (c"2 + 1) - l / a p *  

(7.6) 

(7.7) 

where c = 16&/(157r); consequently, 
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Fig. 7.2. Simulation of the probability of a positive response in a random 
intercept model logit Pr& = 1lUi) = -1.0 + q j  + 1.5Ui where Ui is a 
standard normal variable. The dot.ted line is the average over all 25 subjects 
(taken with permission from Zeger, Diggle and Huang, 1998). 

where c2 M 0.346. Zeger, Diggle and Huang (1998) demonstrate this 
‘shrinkage’ effect by simulation. Figure 7.2 shows their results ob- 
tained by assuming = -1, p; = 1 and o = 1.5. The dashed lines 
show P r ( x j  = 1lUi) as functions of z for each of 25 subjects, whilst 
the solid line shows Pr(Y,, = 1>, calculated as the average of all 25 
subject-specific functions. The solid line, which is in effect what we 
would be estimating in a marginal model, is very well approximated 
by a linear logistic, but with regression parameter 01 substantially 
smaller that p;,  as predicted by Eq. (7.7). 

In practice, there is general agreement that average effects are 
often of interest from a public health point of view, but may not 
be so pertinent where the interest lies in scientific investigation of 
the individual level process or in individual level prediction. 

For a random effects extension of the GLPVI! it is possible to es- 
timate parameters using traditional maximum likelihood methods. 
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The likelihood of the data, expressed as a function of the unknown 
parameters, is given by: 

where a represents the parameters of the random effects distribution. 
The likelihood is the integral over the unobserved random effects of 
the joint distribution of the data and the random effects. Numerical 
integration techniques are generally necessary to evaluate the likeli- 
hood in Eq. (7.8), except in the case of linear models for normally 
distributed responses. 

As an illustration of the use of a random effects model, the follow- 
ing logistic regression model will be fitted to the respiratory status 
data: 

logit(x3 = 117) = Po + /31 treatment, + ,& timezJ + ,& sex, 

+ /34 age, + P5 centrez + P6 baseline, + r, . (7.9) 

Far this model, a likelihood conditional upon T for a subject is of 
the form: 

4 

L(yiIPz, T )  = n [ P r ( y z ,  = lIPz, T ) ~ ~ J  Pr(y,, = O ~ T ) ' - ~ ~ J ]  . (7.10) 

This likelihood can be averaged over some distribution for T and then 
maximised over subjects to obtain the required regression coefficient 
estimates. A variety of distributional forms for 7 might be assumed. 
Table 7.9 shows the results in which the random effect T has been 
assumed to be normally distributed. The integral calculation was 
approximated by the use of %point Gaussian quadrature. 

The significance of the effects as estimated by this random ef- 
fects model and by the GEE models of Tables 7.7 is generally simi- 
lar. However, as expected from the discussion above, the estimated 
coefficients are substantially larger. Thus, while the estimated ef- 
fect of treatment of a randomly sampled individual, given the set 

j=1 
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Table 7.9. Results from Random Effects Logistic Regres- 
sion Model Fitted to Respiratory Status Data. 

Covariate Estimate SE a p-value 

Treatment 2.14 0.572 3.74 < .001 

Visit -0.12 0.125 -0.99 0.3 

Sex 0.32 0.662 0.48 0.6 

Age/ 100 -2.45 2.001 -1.23 0.2 

Baseline 2.90 0.616 4.71 < 0.001 

Centre 0.84 0.573 1.46 0.1 

of observed covariates, was estimated by the marginal models to in- 
crease the log-odds of being disease free by 1.3, the estimate from 
the random effects model is 2.3. These are not inconsistent results 
but reflect the fact that the models are estimating different param- 
eters. The random effects estimator is conditional upon each pa- 
tient’s random effect, a quantity that is rarely known in practice. 
Were we to examine the log-odds of the average predicted probabil- 
ities with and without treatment (averaged over the random effect), 
this would give an estimate comparable to that estimated within the 
marginal model. 

In terms of covariate effects, the parameterisation of this random 
effects model corresponds to the marginal model considered in Sec- 
tion 7.2. The model is, however, now a model of the joint responses, 
and as the tabulated predicted frequencies in Table 7.2 show, the 
introduction of the random effect has captured the pattern of persis- 
tence in response remarkably well. 

7.4. TRANSITION MODELS 

In a transition GLM, correlation amongst the observations is as- 
sumed to arise from the dependence of the present observation on 
one or more past values. Here we model the mean and variance of 
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y i j  conditional on past responses y Z j - ] ~ ,  for k 2 1. The assumptions 
of a cross-sectional GLM would now be replaced by: 

where now pfj  and 
ditional on all x j - k  for k 2 1: 

data is: 

are the expectation and variance of y i j  con- 

An example of a simple transition model for the respiratory status 

logit(Y,j = 1) = Po + p1 treatmenti + aKj-1 j = 1,. . . ,4 (7.11) 

Here the chance of respiratory status being good at a particular time 
point depends on the treatment group and also on whether or not 
a subject's respiratory status was good or not at the previous visit. 
The parameter exp(a) is the odds ratio of good respiratory status 
amongst subjects having good and poor status at the previous visit. 
The parameter exp(P1) is now interpreted a s  the odds ratio for good 
respiratory status in the two treatment groups! for patients with 
the same prior (or lag minus one) respiratory status. This odds ratio 
can therefore be considered as applying to the transition rates among 
states of respiratory disorder. 

Table 7.10 presents a cross-tabulation by treatment group of the 
respiratory status at time t ,  given the immediately prior status. In 
the placebo group, the simple transition rates from poor to good 
and from good to poor are roughly comparable, being 0.21, and 0.27 
respectively. In the active treatment group, however, these two tran- 
sition rates are more divergent, that from poor to good being 0.37 
and that from good to poor 0.15. Thus, while the pattern is con- 
sistent with the hypothesis that the active treatment might benefit 
those with respiratory problems, it also suggests that the treatment 
may be of no benefit to those without problems - the treatment 
may not be preventative. 
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Table 7.10. Cross-Tabulation of Response Patterns 
for Respiratory Disorder Data. 

Placebo 

Yt = 0 100 27 127 
Column % 79.4 26.5 
Yt = 1 26 75 101 
Column % 20.6 73.5 
Total 126 102 228 

Active 

Yt = 0 49 20 69 
Column % 62.8 14.5 
Yt = 1 29 118 147 
Column % 37.2 85.5 
Total 78 138 216 

To investigate this possibility in more detail, we fitted a logistic 
regression model which included the lagged response as an explana- 
tory variable, e.g., 

logit&) = 00 + 01 treatmenti + @ 2 Y , j - l  + ,& treatmenti x xj-1 

(7.12) 

Transition models can be fitted by maximising the conditional likeli- 
hood of y Z 2 , .  . . , Y,t, given Y,l. Such models can be fitted using stan- 
dard GLM software. The estimated ordinary and Huberised standard 
errors are shown in Table 7.11. The latter are 10-20% larger than 
the former; this suggests that the correlation in these observations 
has not been fully accounted for by the inclusion of the immediately 
prior response and that second and higher order terms might be re- 
quired. However, the treatment by prior status interaction term is 
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Table 7.11. Results from Fitting Transition Model 
Logistic Regression to Respiratory Status Data. 

~ ~ 

Covariate Estimate Classical SE Robust SE 
~~ ~ 

Treatment 0.822 0.321 0.380 

yt-1 2.369 0.314 0.384 
Interact ion - 0 .O 10 0.461 0.568 

Table 7.12. Results from Exchangeable Marginal 
Logistic Regression Status with Effects of Lagged 
(Prior) Respiratory Status. 

Covariate Estimate Classical SE ztest 

Treatment 1.003 0.287 3.49 

Visit -0.186 0.091 -2.04 
baseline status 0.973 0.301 3.24 

lagged status 1.831 0.279 6.57 

neither large nor at all significant, whereas the main effect of the 
treatment (and prior history) is both. 

The use of robust standard errors in the previous table could be 
thought of as applying an IWM marginal modelling strategy to a 
transition model. Equally, we could have approached the analysis by 
adding the lagged response to the covariate list of a previous marginal 
model. We did just that to the model of Eq. (7.1), and Table 7.12 
gives the estimates for a subset of the estimated effects. Comparison 
with Table 7.4 shows the estimated effect of treatment to be slightly 
reduced, and the lagged respiratory status as a significant predictor, 
its effect being in addition to that for the baseline response. 

We have tabulated the expected frequencies for this model in 
Table 7.2 for comparison with the corresponding simple marginal 
model without lagged effects and the random effects model. In this 
instance, as a method of modelling the joint response distribution, 
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there is little that has been gained by the addition of the lagged 
response, particularly in comparison with the random effects model. 
This is perhaps not surprising given the evidence from previous anal- 
yses that an exchangeable model fits the data better than an autore- 
gressive one, and that the chosen random effects model corresponds 
to an assumption of an exchangeable correlation, while the transition 
model corresponds rather more to the autoregressive pattern. 

7.5. A COMPAFUSON OF METHODS 

The way in which we have tackled the preceeding example indicates 
that a mixing of the various approaches to the analysis of non-normal 
longitudinal data is perfectly possible. It is, however, something 
that we would suggest be used in practice only with some caution. 
This stems largely from the rather different philopsophical bases of 
the different modelling approaches, since as outlined in Section 7.3, 
the different approaches do not attempt to estimate the same ef- 
fect. Marginal models only rarely correspond to a probability model 
for the process, but nonetheless are straightforward to apply and 
do estimate the effects that are seemingly of immediate interest. 
However, they should not be chosen uncritically, and a number of 
authors have questioned the value of the parameter estimates from 
such models (e.g., Lindsey and Lampert, 1997), particularly where 
lagged response variables are included. 

Transition and random effects models are typically put forward as 
probability models. When specified correctly, their structure is one 
such that they could be used to simulate data with the same prop- 
erties as those of the data under study, and the parameters that are 
estimated potentially (but not always nor necessarily) have a causal 
interpretation. To specify such models correctly, the investigator can 
and should draw upon available clinical and scientific knowledge of 
the disease. However, the difficulties in achieving correct model spec- 
ifications are considerable, particularly where it is wished that a full 
causal interpretation be placed on all the parameter estimates. To 
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illustrate this point, consider a typical random effects model in which 
the lagged response is used as a covariate. The random effect in a 
typical random intercept model is included to account for between- 
subjects variations in response propensity, and as such is clearly cor- 
related with response, both current and past. Thus, although the 
routine method for estimating random effects models assumes that 
the random effect is uncorrelated with all included regressors, in 
general, this is unlikely to be the case where the covariate list in- 
cludes lagged responses. This sort of issue has been explored rather 
more in social and economic applications of random effects mod- 
els than in clinical trial settings (e.g., Chesher and Lancaster, 1983; 
Pickles, 1991). 

Even when pIOpeTly specified, it may be the case that. a pop 
ulation average estimate of treatment effect, rather than a fully 
conditional estimate, may be required to assist in assessing results 
for their implications for public health. However, such population 
average estimates are easy to obtain by averaging the estimated im- 
pact of treatment (on whatever scale is desired) for each subject, over 
the study sample. Of course, this assumes that the study sample is 
representative of the target, population, but this is anyway implicit 
in the interpretation given to the parameters of marginal models as 
being population average estimates. 

Overall therefore, although there is currently a strong preference 
for the use of marginal models, the case for them is not so overwhelm- 
ing that they should be used to the exclusion of others. Indeed, in 
some respects the debate as to the use of these different methods for 
longitudinal analysis within clinical trials has hardly begun. 

7.6. MISSING DATA AND WEIGHTED 
ESTIMATING EQUATIONS 

The generalised estimating-equation approach described in Sec- 
tion 7.2.1 is not a full likelihood method but it is valid when data 
are missing completely at random. The issue of bias of the GEE, 
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when the data are not MCAR, has been discussed by Kenward et 
al. (1994). Robins and Rotnitzky (1995) have modified the GEE 
method, allowing it to be valid under the weaker assumption that 
the data are missing at random. The modification in part involves 
weighting the usual GEE by the inverse of the estimated probabilities 
of ‘missingness’ for each subject. These probabilities can be derived 
from a logistic (or probit) model of response in which observed out- 
comes and/or other observed measures are covariates. 

7.6.1. Missing Data in a Longitudinal Clinical 
Trial with an Ordinal Response 

Table 7.13 presents longitudinal data from a clinical trial in which the 
response was measured on an ordinal scale of severity (0 = good, 3 = 
poor) in relation to recovery from sprain injury. The principal inter- 
est here lies in the impact of treatment on speeding-up the process 
of recovery, i.e., a time by treatment interaction. 

One relatively straightforward method of analysis is to use a pro- 
portional odds model (see Chapter 4) and to tackle the repeated 
measures aspect of the problem using the marginal modelling ap- 
proach, most simply by assuming an independence working model 
(or the essentially equivalent methods of survey research). The only 
terms in the model that we will examine are those for treatment, a 
linear trend for occasion and their interaction. Any correlation over 
time is not being formally modelled. 

However, before considering the results, an inspection of 
Table 7.12 indicates that by the end of the trial, 9 out of the 30 par- 
ticipants had dropped out. We compare three approaches to tack- 
ling this problem of missing data. The first method uses all the 
available observations and requires that we assume that the missing 
observations are missing completely at random. The second method 
uses ‘last observation carried forward’ to ‘fill-in’ missing observations. 
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Table 7.13. Recovery from Sprain Injury. 

Treatment Group Control group 

Patient ID Pain scores Patient ID Pain scores 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

211' 
21'0 
1100 
110' 
2100 
21'' 
210' 
2100 
200' 
2110 
3221 
3221 
3210 
3233 
332' 
3211 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

3000 
11'0 
2220 
1100 
2210 
110' 
2222 
210* 
2100 
3221 
22'0 
222' 
2211 
2211 

* = missing value. 

The third method adopts an inverse probability weighting approach 
in which adjustments are made for selective loss of patients as re- 
flected in differences in any measures made prior to loss. In this 
method, the complete observations at times 1 and 2 receive a weight 
of 1. For occasion 3, weights were obtained as the inverse of the 
predicted probability from a logistic model, in which the presence 
of a measure at time 3 was predicted by the time 2 pain score (lin- 
ear trend term). For time 4, a similar procedure was used to give 
weights that varied with the time 3 pain score. These last could 
only be estimated where such a score was available and thus were 
conditional upon response at time 3. Thus observations eventually 
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included in the analysis were: all time 1, all time 2, all available 
time 3 where each was weighted by a simple weight, and all available 
time 4 observations that also had time 3 observations and where each 
was weighted by the product of simple weights at time 3 and time 
4. In the main analysis account is taken of the fact that these non- 
response weights are not frequency weights by the use of the robust 
covariance estimator. 

Results of the three analyses are compared in Table 7.14. The 
fitted models all indicate a significant and large negative main effect 
for time, reflecting a marked reduction in severity over time in the 
comparison group. The negative estimate for the interaction with 

Table 7.14. Longitudinal Proportional Odds Model for Pain Data 
of Table 7.13. 

Missing Value Log-odds 95% Confidence 
Variable Method Estimate Interval 

Treatment 

AAO 

Weighted 

LOCF 

Time 

AAO 

Weighted 

LOCF 

Treatment by time 

AAO 

Weighted 

LOCF 

0.688 

0.720 

0.562 

-1.197 

-1.164 

-1.156 

-0.242 

-0.264 

-0.181 

(-0.684, 2.060) 

(-0.702, 2.142) 

(-0.806, 1.929) 

(-1.670, -0.723) 
(-1.668, -0.660) 

(-1.608, -0.703) 

(0.849, 0.365) 

(-0.911, 0.382) 

(-0.706, 0.344) 

AAO = All Available Observations, 
Weighted = inverse probability weighting, 
LOCF = Last Observation Carried Forward. 
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treatment is consistent with treatment leading to a slightly quicker 
recovery, but the effect is not significant and the confidence intervals 
are wide. Thus the substantial differences in the point estimates 
arising from the different treatments of missing data do not alter the 
overall pattern of inference (though the unjustified narrowing of the 
confidence intervals using LOCF is apparent - see Chapter 5). 

The analysis undertaken in constructing the weights, in fact, cor- 
responds to a model of non-response. The models examined here 
made use of the immediately prior pain score a s  the only predictor. 
For both time 3 and time 4, the direction of effect was such that those 
with more severe pain were more likely to return for treatment, but 
in neither case was the association significant (p = 0.6 and 0.3: re- 
spectively). The response models could have included treatment or 
any other available variable. Although in many circumstances there 
can be a range of different response models that yield weights that 
give largely comparable results, differences can arise and the scope 
for discretion in the choice of weighting model can be large. Particu- 
lar care needs to be taken where any observations are associated with 
unusually large weights. In t,his example, the final weights for time 4 
observations ranged from 1.26 (observation 14) to 2.21 (observations 
9 and 17). 

7.7. SUMMARY 

This chapter has outlined and illustrated the three main ap- 
proaches to the analysis of non-normal longitudinal data: the 
marginal approach; the random effects or mixed modelling approach; 
and t,he transition model approach. Though less unified than the 
methods available for normal data, these methods provide powerful 
and flexible tools to a.nalyse, what until relatively recently, have been 
seen as a.lmost intractable data. However, as with any such tool, care 
in their use is required. 

The random effects and transition models approaches, being 
based on probability models, can be estimated by maximum likeli- 
hood. This gives them a capability with respect to dealing with data 
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missing at random. Use of the weighting method described in this 
chapter, however, extends the marginal approach to circumstances 
where missing data may not be missing completely at random. 



CHAPTER 8 

Survival Analysis 

8.1. INTRODUCTION 

In many clinical trials, the main response variable is often the time 
to the occurrence of a particular event. In a cancer study, for exam- 
ple, surgery, radiation and chemotherapy might be compared with 
respect to the time from randomisation and the start of therapy until 
death. In this case the event of interest is the death of a patient, but 
in other situations it might be the end of a period spent in remission 
from a disease, relief from symptoms, or the recurrence of a partic- 
ular condition. Such data are generally referred to by the generic 
term survival data even when the endpoint or event being studied 
is not death but something else. Questions of interest for such data 
involve comparisons of survival times for different treatment groups 
and the identification of prognostic factors useful for predicting sur- 
vival times. Since these do not differ from the questions usually 
posed about other response variables used in clinical trials, it might 
be asked why survival times merit any special consideration, in par- 
ticular a separate chapter? There are a number of reasons. The first 
is that survival data are generally not symmetrically distributed - 
they will often be positively skewed, so assuming a normal distri- 
bution will not be reasonable. A more important reason for giving 
survival data special treatment is the frequent occurrence in such 
data of censored observations. These arise because at the comple- 
tion of the study, some patients may not have reached the endpoint 
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of interest (death, relapse, etc.). Consequently, their exact survival 
times are not known. All that is known is that the survival times 
are greater than the amount of time the patient has been in the 
study. This is right-censoring. A further reason for the special at- 
tention paid to survival times is that measuring time is conceptually 
different from measuring other quantities. 

The analysis of survival data from clinical trials will be covered 
relatively concisely in this chapter. Fuller accounts of survival anal- 
ysis are available in Kalbfleisch and Prentice (1980), Cox and Oakes 
(1984), Lee (1992) and Collett (1994). In this chapter, the notation 
that we have used is the traditional one. In Chapter 9 we illustrate 
the counting process notation that is growing in favour. 

8.2. THE SURVIVOR FUNCTION AND 
THE HAZARD FUNCTION 

The analysis of a set of survival data from a clinical trial usually 
begins with a numerical or graphical summary of the survival times 
for individuals in the different treatment groups. Such summaries 
may be of interest in their own right, or as a precursor to a more 
detailed analysis of the data. Two functions describing the distribu- 
tion of survival times which are of central importance in the analysis 
of survival data are the survivor function and the hazard function. 

8.2.1. Survivor Function 

The survivor function, S( t )  is defined as the probability that the 
survival time, T ,  is greater than or equal to t ,  i.e., 

S( t )  = Pr(T > t )  (8.1) 
If the random variable T has a probability 
the survivor function is given by: 

co 
S ( t )  = 4 f(u)du = 1 

where F ( t )  is the cumulative distribution 

density function f ( t ) ,  then 
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Two probability distributions often used to introduce the analy- 
sis of survival data are the exponential distribution and the Weibull 
distribution. The probability density function of the former is: 

and of the latter: 

This is a Weibull distribution with scale parameter X and slope pa- 
rameter y. (The exponential distribution is a special case of the 
Weibull distribution with y = 1.) 

Examples of each density function for a variety of parameter val- 
ues are shown in Fig. 8.1 

The survivor function for the exponential distribution is: 

and for the Weibull distribution 

Graphs of these survivor functions for various parameter values are 
shown in Fig. 8.2. 

Estimation of such parametric models is commonly approached 
using maximum likelihood, where for individual i ,  the likelihood has 
the form 

L ~ (  e) = j ( t i  p)di s(ti p)l-di (8.7) 

where di is an indicator variable for death/failure (1 = death,O = 
censored) and 8 is the parameter vector of the distribution. In the 
case of the simple exponential model, the ML estimate of the single 
parameter X reduces to the observed sample total of failures divided 
by the total follow-up time. 
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Fig. 8.1. Weibull and exponential density functions. 

Where there are no censored observations in the sample of sur- 
vival times, a nonparametric survivor function can be estimated 
simply as: 

number of individuals with survival times 2 t 
number of individuals in the data set S( t )  = (8.8) 
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Fig. 8.2. Survivor functions for exponential and Weibull distributions. 

(This is a nonparametric estimator since no particular distribution 
is assumed.) 

The estimated survivor function is assumed to be constant be- 
tween two adjacent death times, so a plot of S ( t )  against t is a 
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step-function. The function decreases immediately after each ob- 
served survival time. 

The simple method of estimating the survivor function described 
by Eq. (8.8) can only be used if all the individuals are followed up 
until the particular event of interest has happened to each. A number 
of methods are available for estimating the survivor function for sur- 
vival data containing censored observations. That most commonly 
used is the Kaplan-Meier or product limit estimator. This involves 
first ordering the survival times from the smallest to the largest such 
that t ( l )  5 t (2)  5 ... 5 t(n), and then applying the following formula 
to obtain the required estimate: 

3(t) = (1 - 2)  
jlt(,)<t 

(8.9) 

where rj is the number of individuals at risk just before t ( j ) ,  and d j  is 
the number who experience the event of interest at t ( j )  (individuals 
censored at t ( j )  are included in rj) .  The variance of the Kaplan-Meier 
estimator is give by: 

(8.10) 

We shall illustrate the use of the Kaplan-Meier estimator on the data 
shown in Table 8.1. These data arise from a randomised controlled 
clinical trial to compare two treatments for prostate cancer. The 
treatments were a placebo and 1.0 mg of diethylstilbestrol (DES). 
The treatments were administered daily by mouth and the trial was 
double blind. The survival times of the 38 patients are given in 
months. We are interested in determining whether there is any evi- 
dence of a treatment difference in survival. 

The estimated survivor functions of the two groups are shown in 
Fig. 8.3. Since the distribution of survival times tends to be pos- 
itively skewed, the median is usually the chosen measure of loca- 
tion. Once the survivor function has been estimated, it is generally 
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Table 8.1. Survival Times of Prostatic 
Cancer Patients in Clinical Trial to 
Compare Two Treatments. 

ID Treatment Survival Status 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

1 
2 
2 
1 
2 
1 
1 
1 
2 
1 
1 
2 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
1 
2 
2 
1 

1 

65 
61 
60 
58 
51 
51 
14 
43 
16 
52 
59 
55 
68 
51 
2 

67 
66 
66 
28 
50 
69 
67 
65 
24 
45 
64 
61 

26 

0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 

1 



Survival A nalysis 21 5 

Table 8.1. (Continued) 

ID Treatment Survival Status 

29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

1 42 
2 57 
2 70 
2 5 
2 54 
1 36 
2 70 
2 67 
1 23 
1 62 

1 
0 
0 
0 
0 
1 
0 
0 
0 
0 

Treatment: 1 = placebo, 2 = DES. 
Status: 0 = censored, 1 = died. 

straightforward to obtain an estimate of the median survival time. 
This is the time beyond which 50% of the individuals in the popula- 
tion of interest are expected to survive. 

Although examining plots of estimated survivor functions is a 
useful initial procedure for visually comparing the survival experi- 
ence of different treatment groups in a clinical trial, we generally also 
wish to test formally for a difference in survival between the groups. 
In the absence of censored observations, standard nonparametric or 
parametric tests might be used. When the data contain censored 
observations, however, there are a number of modified parametric 
and nonparametric tests that are available. Here we shall consider 
only one, namely the log-rank or Mantel-Haenszel test. Essentially 
this test compares the observed number of deaths occurring at each 
particular time point with the number to be expected if the survival 
experience of the two treatment groups was the same. A small nu- 
merical example of the application of the test to hypothetical data 
is described in Table 8.2. 
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Placebo 
. .. ... ....... 

0 20 40 E€l 

Time in months 

Fig. 8.3. Kaplan-Meier estimated survivor functions for the two treatment 
groups in t.he prostate cancer trial. 

For the prostate trial data we have: 
~ ~~ 

Group 7l Observed Expected (0 - E)2/E 
~~ 

Placebo 18 5 2.475 2.577 
DES 20 1 3.525 1.809 



Survival Analysis 217 

Table 8.2. Calculation of Log-Rank Test for a Hy- 
pothetical Set of Survival Times in Two Groups. 

~~ ~ ~~ 

Survival times 
~~~ ~ ~ ~ 

Patient Treatment Survival time Status 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
1 
1 
1 
1 
2 
2 
2 
2 
2 

2.3 
4.8 
6.1 

15.2 
23.8 
1.6 
3.8 

14.3 
18.7 
36.3 

dead 
alive 
dead 
dead 
alive 
dead 
dead 
alive 
dead 
alive 

Calculating log-rank test 

Time 

1.6 T1 T2 Total 

Dead O(0.5) l(0.5) 1 
Alive 5 4 9 
Total 5 5 10 

2.3 T1 T2 Total 

Dead l(0.55) O( 0.45) 1 
Alive 4 4 8 
Total 5 4 9 

3.8 T1 T2 Total 

Dead O(0.5) l(0.5) 1 
Alive 4 3 7 
Total 4 4 8 
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Table 8.2 (Continued) 
~ 

Calculating log-rank test 
Time 

6.1 T1 T2 Total 

Dead l(0.5) O(0.5) 1 
Alive 2 3 5 
Total 3 3 6 

15.2 T1 T2 Total 

Dead l(0.5) O(0.5) 1 
Alive 1 2 3 
Total 2 2 4 

18.7 T1 T2 Total 

Dead O(0.33) l(0.67) 1 
Alive 1 1 2 
Total 1 2 3 

Expected number of deaths are shown in parentheses, 
‘Alive’ means alive and at risk. 
Observed number of deaths for T1 = 3; 
Expected number of deaths for T1 = 0.5 + 0.55 + 0.5 + 
0.5 + 0.5 + 0.33 = 2.89. 
Observed number of deaths for T2 = 3; 
Expected number of deaths for T2 = 0.5 + 0.45 + 0.5 + 
0.5 + 0.5 + 0.67 = 3.11. 

(3 - 2.89)2 
2.89 

(3 - 3.11)2 
= 0.008 

$- 3.11 
x2 = 

This leads to a chi-squared value of 4.4 with a single degree of free- 
dom. The associated p-value is 0.0355 and there is evidence of a 
difference in the survival experience of the two treatment groups. 
Patients given DES appear to survive longer. The simple conceptual 
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construction of this score test has considerable appeal, one that is 
valuable in communicating results to non-expert audiences. 

8.2.2. The Hazard Function 

In the analysis of survival data it is often of some interest to assess 
which periods have the highest and which the lowest chance of death 
(or whatever the event of interest happens to be), amongst those 
people alive at the time. In the very old, for example, there is a high 
risk of dying each year, among those entering that stage of their 
life. The probability of any individual dying in their 100th year is, 
however, small because so few individuals live to be 100 years old. 

A suitable approach to assessing such risks is to use the hazard 
function, h( t ) ,  defined as the probability that an individual experi- 
ences an event (death, relapse etc.) in a small time interval s, given 
that the individual has survived up to the beginning of the interval, 
1.e.. 

Pr(event in t ,  t + s) 
h(t)  = lim 

s-to S 
(8.11) 

The hazard function is also known as the intensity function, instan- 
taneous failure rate and the age specific failure rate. 

The hazard function can also be defined in terms of the cumu- 
lative distribution and probability density function of the survival 
times as: 

f ( t )  f ( t )  h( t )  = - 
1 - F ( t )  S ( t )  

(8.12) 

It then follows that: 

(8.13) 
d 

h( t )  = --{lnS(t)} 
d t  

and so 
S ( t )  = exp{-H(t)} (8.14) 

where H ( t ) ,  the integrated or cumulative hazard function is given by: 

H ( t )  = / h(u) du (8.15) 
t 

0 
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For the exponential distribution, the hazard function is simply A; for 
the Weibull distribution, it is Xyt7-l. The Weibull can accomodate 
increasing, decreasing and constant hazard functions. 

The hazard function can be estimated as the proportion of in- 
dividuals experiencing the event of interest in an interval per unit 
time, given that they have survived to the beginning of the interval, 
i.e., 

number of individuals experiencing an even in the 
interval beginning at time t 
(number of patients surving at t)(interval width) 

&(t)  = 

(8.16) 

The sampling variation in the estimate of the hazard function 
within each interval is usually considerable. Plots of the cumulative 
hazard function, obtained by summing the interval estimates over 
time, are typically smoother and easier to interpret. 

In practice the hazard function may increase, decrease, remain 
constant, or indicate a more complicated process. The hazard func- 
tion for death in human beings, for example, has the 'bath tub' shape 
shown in Figure 8.4. It is relatively high immediately after birth, 
declines rapidly in the early years and then remains approximately 
constant before beginning to rise again during late middle age. 

8.3. REGRESSION MODELS FOR 
SURVIVAL DATA 

The log-rank test described in Section 8.2.1 can be extended to the 
case where there are either more than two patient groups to be com- 
pared or where there are possible confounding factors that may be 
treated as strata. But the test, and other similar tests, are limited 
in their ability to fully describe and model the data. Consequently, 
more complex analyses of survival data are usually performed using 
some type of specialised regression model. 
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1 
0 I 

Fig. 8.4. Bathtub shaped hazard function. 

The regression models that have been developed for survival data 
are essentially of two types. The first models the hazard function 
in patient groups compared to a baseline population by means of 
a multiplicative model, that is to say, additive on the log-hazard 
scale. The multiplicative factor is assumed to be constant over time, 
in which case the model forces the hazards in the different patient 
groups to be proportional, thus yielding a proportional hazards re- 
gression model. Following Pet0 (1976), estimates of the hazard ratio 
in the two sample case (A and B) can be obtained directly from 
the Mantel-Haenzsel log-rank test statistic and its variance (see Sec- 
tion 8.2.1). Alternatively, following Mantel and Haenzsel (1959), it 
may be estimated as: 

(8.17) 

The second type of regression model commonly applied to 
survival data, models the survival times directly, with covariates as- 
sumed to act multiplicatively directly on the time scale, thus ac- 
celerating or decelerating time to failure. The models are generally 
referred to as accelerated failure tame models. 
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Within each of these two types of model, either the baseline 
hazard in the proportional hazards model, or the baseline survivor 
function in the acccelerated failure time model, can be assumed to  
be either fully parametric or modelled nonparametricaily. Tradjtion- 
ally, however, proportional hazard models have been semi-parametric 
with the baseline hazard assumed nonparametric, and accelerated 
failure time models have been formulated as fully parametric. 

8.4. ACCELERATED FAILURE TIME 
MODELS 

The accelerated failure time model is a general model for survival 
data, in which covariates measured on an individual are assumed 
to act multiplicatively on the time-scale, and so can be thought of 
as influencing the rate at which an individual proceeds along the 
time axis. Such models can be interpreted in terms of the speed of 
progression of a disease. Algebraically, such models are of the form: 

Si(t> = So(#zt) (8.18) 

where g5z = exp(P’x) is the acceleration factor for the i th patient 
compared with the baseline patient group. 

The exponential and Weibull have already been introduced as 
possible survival distributions. Another distribution that is fre- 
quently used for survival data is the lognormal with density function: 

(8.19) 

where p is the mean and o2 is the variance. The log-normal distri- 
bution has a relatively heavy right tail, a feature that makes it useful 
for situations in which events occur later in the follow-up period. 

The accelerated failure time model is most easily considered when 
it is expressed in log-linear form. Letting ti denote the survival time 
for the i th  subject, the model is: 

In(t,) = Po + $xi + m i  (8.20) 
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where o is a scale parameter and ~i assumed to have some suitable 
distribution. Gaussian errors and no censoring simply correspond 
to linear regression of log-survival time. More generally the model is 
used with distributions such as the exponential, Weibull, log-logistic, 
and gamma. It can be shown that if the errors are exponential or 
Weibull, then the model is also a proportional hazards model. 

Parameter estimates can be found by maximising the likelihood 
function given by: 

(8.21) 
i=l 

where 8’ = [Po,P,o] and Si = 0 if the event of interest has occurred, 
and Si = 1 if the observation’s survival time is censored. 

We shall illustrate the application of the accelerated failure time 
model on the data from a randomised trial of chemotherapy for lung 
cancer (the data are given in Prentice, 1973, and Kalbfleisch and 
Prentice, 1980). The 137 patients, all but 19 of whom died during 
the trial, had survival times ranging from 1 to 999 days. In ad- 
dition to standard and chemotherapy treatment, covariates included 
months since diagnosis, age, prior therapy, type of cancer (squamous, 
small, adeno and large) and the Karnofsky Performance Index of each 
patient’s functional status that ranged from complete hospitalisation 
to normal self-caring. 

The results under a number of different assumptions about the 
distribution of the survival times are given in Table 8.3. 

The log-likelihoods under the three different distributional as- 
sumptions are very similar, being - 196.75 for the exponential, 
-196.14 for the Weibull, and -195.22 for the log-normal. The ex- 
ponential model has one less parameter than the other two, and 
represents a special case of the Weibull. A likelihood ratio test of 
the exponential against the Weibull gives: ~ ’ ( 1 )  of 2 x (-196.14 - 
196.75) = 1.22, giving little evidence in favour of a systematically in- 
creasing or decreasing failure rate. The estimated Weibull parameter 
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Table 8.3. Results from Fitting Accelerated Failure 
Time Model to Survival Times from the Lung Can- 
cer Trial. 

Exponential 

Covariat e Estimate SE Estimate/SE 

Constant 2.59 0.75 3.45 
Treatment 0.22 0.20 1.11 
Months since DX -0.01 0.01 -0.03 
Karnofsky Performance 
Index/lO -0.31 0.05 6.00 
Prior Treatment -0.00 0.02 -0.21 
Cell type: 
small v squamous 0.38 0.27 1.38 
adeno v squamous -0.44 0.26 -1.70 
large v squamous -0.74 0.29 -2.50 

Log-L -196.75 

Weibull 

Covariate Estimate SE Estimate/SE 

Constant 
Treatment 
Months since DX 
Karnofsky Performance 
Index/lO 
Prior Treatment 
Cell type: 
small v squamous 
adeno v squamous 
large v squamous 
Scale 

Log-L 

2.64 
0.23 

-0.00 

-0.30 
-0.00 

0.40 
-0.43 
-0.74 

0.93 

0.71 
0.19 
0.00 

0.05 
0.02 

0.25 
0.24 
0.27 

3.72 
1.22 

-0.06 

6.23 
-0.20 

1.56 
-1.76 
-2.68 

-196.14 
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Table 8.3 (Continued) 

Log-normal 

Covariate Estimate SE Estimate/SE 

Constant 1.62 0.68 2.40 
Treatment 0.17 0.19 0.89 

Months since DX -0.00 0.01 -0.13 
Karnofsky Performance 
Index/lO -0.37 0.05 7.70 
Prior Treatment -0.01 0.02 -0.47 
Cell type: 
small v squamous -0.12 0.28 -0.42 
adeno v squamous -0.73 0.27 -2.71 
large v squamous -0.77 0.30 -2.59 
Scale 1.06 

Log-L -195.22 

is very close to 1, the value for a constant hazard. The log-normal 
model fits these data very slightly better than the Weibull. 

Since all three models essentially fit the data equally well, it is 
not surprising that they give very similar estimates for the effects 
of covariates. Treatment is estimated as increasing the rate of pro- 
gression along the time scale by exp(0.23) = 1.26 or 26% under the 
Weibull model; and exp(0.17) = 1.19 or 19% under the log-normal 
model, but confidence intervals are wide in both cases. 

8.5. PROPORTIONAL HAZARDS MODEL 

8.5.1. Proportional Hazards 

A proportional hazards model possesses the property that differ- 
ent individuals have hazard functions that are proportional to one 
another, i.e., h(tlxl)/h(tlxa), the ratio of hazard functions for two 
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individuals with covariates xi = [ X I ~ ,  212, . . . , 3clp]  and x; = [QI, 222, 
. . . , zzp]: does not vary with time t. This implies that, given a set of 
covariates x, the hazard function can be written as: 

where g(x) is a function of x and ho(t) can be regarded as a baseline 
hazard function for an individual for whom g(x) = 1. The model 
forces the hazard ratio between two individuals to be constant over 
time since: 

(8.23) 

If the relative risk function g is taken a s  the exponential, additive 
effects on the log-linear scale are obtained. The effects of covariates 
are such that the baseline hazard function, ho(t), is modified mul- 
tiplicatively by covariates (including group indicators), so that the 
hazard function for an individual patient is: 

(8.24) 

8.5.2. The Semi-parametric Proportional 
Hazard or Cox Model 

Although specifying a parametric form for ho ( t )  is straightforward, 
such a modelling approach has been rendered largely obsolete since 
Cox (1972) proposed a model and estimation method that allowed 
the form of the baseline hazard to  be left unspecified. The model 
is semi-parametric in the sense that only the relative risk part is 
modelled parametrically. 

The parameter vector P is estimated by maximising a partial 
likelihood. Brief details are given in Table 8.4. Interest usually cen- 
tres on the estimated regression coefficients rather than the baseline 
hazard. However, an estimate of the baseline hazard function can be 
obtained by a maximum likelihood approach suggested by Kalbfleisch 
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Table 8.4. Parameter Estimation in Cox’s Regression Model. 

8 Assume first that there are no tied survival times and that tl < t 2  < 
. . . < tl, represent the k distinct times to the event of interest among n 
individual times. 

0 The conditional probability that an individual with covariate vector xi 
responds at time t,, given that a single response occurs a t  time ti, and 
given the risk set R, (indices of individuals at risk just prior to ti), is the 
ratio of the hazards: 

exP(P’xi) c exp(P’xJ 
j E R ,  

0 Multiplying these probabilities together for each of the k distinct survival 
times gives the following partial likelihood function (Cox, 1975): 

0 Notice that the partial likelihood is a function of P only - it does not 
depend on the baseline hazard ho (t). 

0 Maximisation of the partial likelihood function yields estimates of the 
regression coefficients with properties similar to those of usual maximum 
likelihood estimators. 

0 When there are ties amongst the survival times, the likelihood function 
used for estimation is usually that proposed by Breslow (1974): 

where mi is the number of events at ti and si is the vector sum of the 
covariates of the mi individuals with survival time ti. 
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and Prentice (1973). In the particular case where there are no tied 
survival times the estimated baseline hazard function at time t ( j )  is 
given by: 

i L O ( t ( 2 , )  = 1 - i z  (8.25) 

(8.26) 

where x ( ~ )  is the vector of explanatory variables for the individual 
who experiences the event of interest at time t(q. (Since the baseline 
hazard function is the hazard function for an individual having zero 
values for all the explanatory variables, it is often helpful to redefine 
variables by subtracting average values over all individuals in the 
sample.) 

The baseline survivor function can now be estimated from: 
k 

So(,)  = n i j  (8.27) 
j=1 

for t ( k )  5 t 5 t ( k + l ) 7  k = 1,2 , .  . . , T  - 1. The estimated value of 
the baseline survivor function is zero for t 2 t(r)  unless there are 
censored survival times greater than T(T), in which case it is undefined 
beyond t ( r ) .  From So(t) ,  the estimated survivor function for the i th 
individual with vector of covariates xi is: 

SZ(t) = [ S o ( t ) ] e x p ( B ’ x , )  (8.28) 

The structure of the model as a regression model becomes easier 
to see if we rewrite the model as specified in Eq. (8.24) as: 

(8.29) 

showing that the proportional hazards model may also be regarded 
as a linear model for the logarithm of the hazard ratio. Consequently, 
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the estimated regression coefficient corresponding to a particular 
covariate gives the change in the logarithm of the hazard function 
produced by a unit change in the variable, conditional on the other 
covariates remaining constant. 

The variance of the regression coefficients derived from maxi- 
mum partial likelihood are typically obtained in the conventional 
way from the inverse of the negative matrix of second derivatives of 
the log-partial-likelihood. But, as in the case of logistic regression, 
an exponential transformation of the coefficients is often preferred, 
giving more interpretable hazard ratios. However, the hazard ratio 
scale typically gives a likelihood function that is not quadratic and 
estimates that are not normally distributed. As a consequence, both 
Wald test p-values and confidence intervals perform poorly if directly 
calculated using a variancecovariance matrix on this scale. Instead, 
these are generally derived from the estimates and covariance matrix 
on the log-linear coefficient scale, confidence intervals being based 
on exponential transformation of the corresponding end-points of 
the log-linear interval. 

We have seen from Chapter 4 that an alternative parameter 
variancecovariance estimator is the sandwich estimator based on 
the score residuals. The use of this estimator has been proposed in 
the survival context by Lin and Wei (1989). For generalised linear 
models (Chapter 4), this estimator is particularly valuable for clus- 
tered data, a feature that is implicit within the Cox model in which 
the same individual can appear repeatedly as a member of a series 
of risk sets (see Table 8.4). This reoccurrence of the same individual 
within the likelihood is emphasised on recognising that the likelihood 
treats equivalently data deriving from one individual who contributes 
to two risk sets, and data in which that individual is replaced in the 
second risk set by another individual with identical covariate values. 

8.5.3. Cox Model Example 

To illustrate the use of Cox’s proportional hazards model, we use the 
data from the lung cancer trial. For simplicity, we consider only two 
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of the explanatory variables. These are treatment and the Karnofsky 
Performance Index, a continuous score that was a powerful predictor 
of survival. We have previously followed others in fitting this index in 
its raw form, but given the exponential inverse link of proportional 
hazards models it might be more natural to fit the model to the 
log-transformed index. Indeed, the model does fit slightly better 
using the log-index rather than the raw index. The log-hazard ratio 
estimates for this model are given in Table 8.5. Again, there is no 
evidence of a treatment effect. 

It is of interest to compare the width of the confidence inter- 
vals from this model with those from a parametric model. Fitting 
the corresponding Weibull model gave a confidence interval for the 
treatment effect of width 0.694 on the log-hazard ratio scale, com- 
pared to a width of 0.714 from the Cox model of Table 8.5. It is clear 
that there is little loss in the precision of the estimates of interest in 
using a non-parametric baseline hazard. 

The estimates of Table 8.5 are for coefficients on the log-linear 
scale rather than the more easily interpreted hazard ratio scale. Fol- 
lowing the previous section, and taking as an example the estimated 
coefficient for treatment conditional upon the Log-Performance In- 
dex given in Table 8.5, the hazard rate for patients treated with 
chemotherapy is exp(0.0637) = 1.066 times the hazard rate for pa- 
tients given the placebo. The corresponding 95% confidence interval 
is (0.75,1.52). The inclusion of the value one within this interval is 
consistent with no evidence of a treatment effect (positive or nega- 
tive). Variation in response to this treatment depending upon the 

Table 8.5. 
Lung Cancer Trial Data. 

Cox Proportional Hazards Model Estimates: 

Log-Haz. Ratio Std. Err. z p-value 

Treatment 0.064 0.182 0.35 0.7 
Log-Performance 
Index - 1.424 0.200 -7.13 < 0.001 
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Table 8.6. Comparison of Standard (S), Robust (R) and Weighted 
(W) Estimates for Lung Cancer Trial Data. 

Haz. Ratio Std. Err. z p-value 95% Conf. 
Interval 

Treatment 
Standard 1.066 .194 0.349 0.73 (0.75, 1.52) 
Robust 1.066 .203 0.334 0.74 (0.73, 1.55) 
Weighted 1.077 .181 0.441 0.66 (0.77, 1.50) 

Log-Performance Index 
Standard 0.241 .048 -7.132 < 0.001 (0.16, 0.36) 
Robust 0.241 .064 -5.358 < 0.001 (0.14, 0.41) 
Weighted .312 .084 -4.304 < 0.001 (0.18, 0.53) 

type of tissue affected would not be surprising. Though not shown, 
it is of interest to note that the inclusion of an interaction between 
treatment and cell-type shows marginal significance, consistent with 
squamous types being more responsive to this chemotherapy treat- 
ment than other types. 

Table 8.6 presents the hazard ratios and 95% confidence inter- 
vals for effects of treatment and Performance Index. In addition, 
it also presents confidence intervals and p-values based on the sand- 
wich estimator of the parameter covariance matrix. These are a little 
larger than the corresponding values using the conventional informa- 
tion matrix approach We defer discussion of the weighted estimator 
shown in the table to Section 8.5.6. 

The estimated baseline survivor function for the lung trial data 
are shown in Table 8.7 for selected failure times. As a result of 
the prior standardisation of the explanatory variables about their 
mean values, this corresponds to the survivor function when all the 
covariates (including treatment group) are at their mean values. We 
can use the values in Table 8.7 to calculate the estimated survivor 
functions for the standard and chemotherapy (68/137 = 0.496 of 
the sample) treatment groups when the other covariates are at their 
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Table 8.7. Estimated Baseline Survivor Function at Selected In- 
tervals for Lung Cancer Trial Data. 

~ ~ ~~ 

Survival time Survival Prob. Survival Prob. 
Standard Treatment Standard and Chemotherapy 

1 1 .oooo 0.9782 
125 0.3532 0.2267 
249 0.1261 0.1017 
373 0.0540 0.0525 
497 0.0094 0.0177 
62 1 0.0095 
745 0.0095 
869 0.0095 
993 0.0027 

1117 

average values as follows: 

survivor function standard treatment = [S~(t)]exP~~1~066~0~0~496~~ 
(8.30) 

survivor function chemotherapy = [s~(t)]exp~~1~066~1~0~496~~ 
(8.31) 

Plots of the estimated survivor functions are shown in Fig. 8.5. 

8.5.4. Checking the Specification of a Cox 
Model 

Cox’s regression model makes two key assumptions: 

0 The effect of covariates is additive and linear on a log-hazard 
scale. 

This linearity assumption is similar to that found in most other 
modelling methods we have considered in previous chapters. 
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Fig. 8.5. Estimated survivor functions for the two treatment groups in the 
lung cancer trial when other covariates are fixed at their mean values. 
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0 The ratio of the hazards of two individuals is the same at all 
times. 

The proportionality assumption applies to all regressors in the 
model and not just the treatment effect, and a lack of proportionality 
can arise for a variety of reasons: 

(1) Non-instantaneous treatment benefit. A treatment may require 
some time to be implemented following the randomisation time 
point or may require several sessions to become effective. Some 
treatments may carry short term risks which it is hoped are com- 
pensated by longer term benefits. Surgical treatments typically 
are of this kind, with complications leading to initial excess mor- 
tality when compared to a nonsurgical treatment. 

(2) The effect ‘wears off’ over time. The treatment might halt dis- 
ease progression but only temporarily or the disease may become 
progressively insenstitive to the treatment as the treatment pe- 
riod is extended. 

(3) A predictor variable may be time varying but the model repre- 
sents its effect as due to a single baseline measure. As time goes 
on, the baseline measure comes to reflect the contemporaneous 
value of the covariate less and less well and thus becomes less 
predictive of subsequent survival. For the treatment variable, 
this can arise through a ‘drift’ away from the treatment proto- 
col, e.g., as a result of increasing non- and poor compliance by 
patients or inadequate monitoring. For covariate effects such as 
measures of disease severity, individual variation in the progres- 
sion of the disease will mean that severity at baseline no longer 
reflects current severity. 

(4) Baseline measures are measured subject to error at the time of 
measurement. 

(5) Effects are not uniform across patients. This might arise where 
the treatment benefit applies only to a subsample of individuals, 
such that over time those for whom treatment has no effect are 
lost from the treated sample. 
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To an extent, the particular tests and checks that one might use 
of the modelling assumptions and the extensions of the model that 
might be considered, will depend upon which of these possible causes 
of nonproportionality are suspected. 

As in the checking of other models, residuals play a key role. 
A number of different residuals have been proposed for the Cox 
model. 

0 Cox-Snell residual; this is defined for the ith individual as: 

rci = exp(j’xi)fio(ti) (8.32) 

where Z?o(ti) is the estimated cumulative baseline hazard func- 
tion at time ti, the observed survival time of the individual. If 
the model is correct, then rci will follow an exponential distri- 
bution with mean one, regardless of the actual distributional 
form of S(ti). 

0 Martingale residual; this is formed by taking the difference 
between the event indicator, Si and the Cox-Snell residual: 

Such residuals can be used to assess whether any particular 
patients are poorly predicted by the model, with large neg- 
ative or positive residuals indicating a lack of fit. They can 
also be used together with continuous covariates for assessing 
the functional form required for the covariate with a random 
scatter about zero, indicating that the variable does not need 
transforming. 

0 Deviance residual; this may be calculated from the martingale 
residual as follows: 

TDi = sign(rMi4-2irn.li + bi ln(Si - rn.li)l) (8.34) 

Such residuals are particularly useful in identifying individuals 
who are poorly predicted by the model, such individuals being 
indicated by large negative or positive values of TDi .  
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0 Schoenfeld or Ef ic ient  Score Residuals 

Schoenfeld (1982) suggested the use of residuals derived directly 
from the score function of the partial likelihood. A set of partial 
scores for each event can be obtained using: 

" j  - c [Xi exp(Pz2)l 

c exp(Px2) 

i E  Rj 

iER3 

?j  = u(p) = (8.35) 

These compare the z vector of the subject who fails with its expected 
value among all those subjects at risk. For each regressor, one (par- 
tial) residual is obtained for each event, a feature as we show below 
that is convenient for checking for homogeneity of effect over the 
course of a trial. 

Using once again the lung cancer trial data, Fig. 8.6 shows the 
martingale residuals from the fitted Cox's regression model plotted 

1"' 

31 
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81 

70 
7s 

78 

U 

-5 
1 I I I I 

-1.5 -1 -.5 0 .5 
log-performance index 

Martingale residuals and log-performance index 

Fig. 8.6. Martingale residuals from the Cox's regression model fitted to 
the survival times from the lung cancer trial potted against the continuous 
covariate. 
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Fig. 8.7. Index plot of deviance residuals from Cox’s regression model fitted 
to the survival times from the lung cancer trial. 

against the continuous covariate log-Performance Index. Figure 8.7 
is an index plot of the deviance residuals. The most obvious feature 
of all the plots is the consistently large value associated with patient 
118 (who had unusually low performance at the start of the trial, 
having an index value of just lo),  and to a lesser extent patient 
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Fig. 8.8. Cumulative hazard functions for strata defined by the Karnofsky 
Performance Index from the lung cancer trial. 

44 (who survived an unusually long time given their relative poor 
performance index value of 40). 

Numerous graphical plots have been proposed for checking the 
proportionality assumption (see Chen and Wang, 1991). Such plots 
should have a clear and simple pattern when the proportionality as- 
sumption holds. Plots of the cumulative hazard by sub-groups, each 
with a particular covariate pattern, are an obvious possibility, but 
this typically requires a course grouping of patients. We grouped 
patients from the lung cancer trial into three categories of the Per- 
formance Index. Figure 8.8 shows the three empirical cumulative 
hazard functions. These should form straight lines from the origin, 
but in this case are not fully convincing. 

Alternatively, a double logarithmic transformation of Eq. (8.23) 
gives: 

(8.36) In[- ln(S(t))] = ,Ox + In[- ln(So(t))] 
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Fig. 8.9. Schoenfeld (1982) or partial score residuals and regression smooth 
plotted against log-Karnofsky Performance Index from the lung cancer trial. 

Thus, plots of the empirical log cumulative hazards for subgroups 
based on shared covariate patterns should, when plotted against t ,  
appear parallel. 

The partial score residuals introduced earlier should form a 
horizontal line when plotted against time or the failure rank. The 
addition of a regression smooth to the plot aids interpretation. The 
slope shown in Fig. 8.9 is suggestive of nonproportionalty. 

In practice, however, it is quite often difficult to assess these plots 
and they can sometimes be misleading (Crowley and Storer, 1983). 
Thus, in addition to graphical checks, some formal specification test- 
ing is also desirable. 

Cox (1972) suggested testing for time-variation in proportionality 
of effects of a variable z by the incorporation of a time-dependent 
variable z* = z . g( t ) .  Common choices for the function g ( t )  are 
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g ( t )  = t ,  g ( t )  = ln(t) and a step function such that g ( t )  = 0 if t < T 
and 1 if t 2 T .  We describe and illustrate how such time-varying 
variables can be included in Section 8.6. A likelihood ratio test can 
be performed of the models with and without the time-varying co- 
variate, or the coefficient for the time-dependent variable can be 
compared with its standard error for a Wald test. O’Quigley and 
Pessione (1989) proposed a score test for departures from nonpro- 
portionality of a similar structure. All these tests potentially involve 
some arbitrary choice of the alternative, and quite often this choice 
has been based on some preliminary inspection of the data, a prac- 
tice which needs to be taken into account when interpreting results 
(notably nominal p-values). 

Gill and Schumacher (1987) suggested a test based on a compar- 
ison between two hazard ratio estimators, that differ in the relative 
weight that they assign to early versus late failures, in particular 
the Mantel-Haenszel (see Section 8.5.1) and Prentice estimators. If 
the hazards are really proportional, changes in weighting should have 
little effect. For groups A and B, a hazard ratio estimator is: 

(8.37) 

n A  . n g .  
3 3 , and 
nj 

For the the MH estimator, the weights w j  are given by 
n -d +1 n A  . n g .  

for the Prentice estimator, by nj ni=, ICnk:l * 

8.5.5. Goodness-of-fit Tests 

As we have seen earlier the log-rank (MH) test is a score test that 
compares the observed number of deaths in groups of patients with 
those expected under a model of equal hazards. The tests of Schoen- 
feld (1980) and Moreau et al. (1986) can be thought of a s  an extension 
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of such an approach in which firstly, the groups to be compared repre- 
sent not just a partitioning of the covariate space (patient groups) but 
also of the time axis, and secondly, the expected deaths are derived 
from the fitted Cox model. Crouchley and Pickles (1993) describe a 
general class of specification test that is easily estimated from residu- 
als, for both focussed hypotheses and for more general omnibus tests. 
Although probably superior to the use of graphical methods, simu- 
lations showed that the simple method for constructing the omnibus 
test tended to reject too often, suggesting specification errors where 
none in fact were present. 

8.5.6. Influence 

In the standard design of trial, the construction of the partial 
likelihood means that as survival time increases, so the risk set be- 
comes smaller. Thus individuals with the longest survival time con- 
tribute not only through their numerous appearances in the risk sets 
prior to their failure/censoring, but also to those risk sets near the 
end of the trial in which few subjects are being compared. As a 
result, individuals with the longest survival are most likely to be 
influential points. 

One simple approach to ensure that estimates are robust to the 
possible presence of such individuals, is to artificially censor all ob- 
servations at some earlier point in the trial. This can be considered 
an extreme form of a weighted partial likelihood in which likelihood 
contributions beyond the artificial censoring time are given a weight 
of 0. More systematically, Sasieni (1993) suggests that the contri- 
bution to the partial likelihood of each risk set be weighted by a 
quantity proportional to the total number of individuals still at risk. 
The Kaplan-Meier survivor function suggests itself as one such pos- 
sible quantity. The inclusion of such weights requires the use of the 
‘robust’ estimator of the parameter covariance matrix. 

We illustrate in Table 8.6 the use of Kaplan-Meier weighting for 
the lung cancer trial data. In this instance, the weights make very 
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little difference to the estimated treatment effect, but the hazard 
ratio effect estimate for the log-Performance Index has moved closer 
to the null value of one. The inclusion of the weights has also in- 
creased the size of the standard error, reducing the corresponding 
z-statistic. The results again cast some doubt on the model specifi- 
cation with respect to this powerful prognostic factor. 

In other respects, the influence of data points and the analysis of 
influence can be approached in a similar fashion to that described in 
Chapter 4 for generalised linear models. Thus subjects with covari- 
ate measurements that are extreme in the space of covariate values 
should be carefully checked. The score residuals described earlier 
are equivalent except for standardisation to the empirical influence 
function (Cain and Lange, 1984; Reid and Crepeau, 1985). Deletion 
diagnostics can be pursued in the usual way (Storer and Crepeau, 
1985). 

8.6. TIME-VARYING COVARIATES 

8.6.1. Modelling with Time-Varying 
Covariates 

Trials often include covariates with values that do not remain fixed 
over time. It is tempting, therefore, to consider making allowance for 
the changes in such variables by taking repeated measures of them 
during the operation of the trial and by fitting a model that uses 
these updated covariate values. In fact, this is simply done, merely 
requiring the survival period of each patient to be divided up into 
a sequence of shorter survival spells, each characterised by an en- 
try time and an exit time, and within which covariate values remain 
fixed. Thus the data for each patient is represented by a number of 
shorter censored spells and possibly one spell ending in failure/death. 
Datasets can be constructed in exactly this form, each record rep- 
resenting one spell and containing, an entry time, an exit time, and 
a censoring indicator together with the then current covariate val- 
ues. With multiple spells per patient, the file thus contains multiple 
records per patient. 
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Time-varying covariates are especially tractable within the Cox 
model. Inspection of Table 8.4 shows how the partial likelihood in- 
volves contributions for the conditional probability of failure. These 
conditional probabilities involve the covariate values that apply at 
the time of each failure only. The values of the covariates between 
failure times do not enter the partial likelihood. All that is required 
is that contemporaneous rather than baseline values of covariates be 
assigned to each risk set, making the Cox model with time-varying 
covariates little more complex than that for time-fixed covariates. 
Indeed for covariates that change rapidly over time the Cox model is 
often simpler to manage than a parametric survival model. 

For illustration we divided the follow-up of the lung-cancer pa- 
tients into two periods, before and after 75 days, that each contained 
approximately 50% of the deaths. Patients with follow-up times 
fewer than 75 days contributed just their original record. The re- 
maining patients contributed one record with a censored survival 
time at day 75, then a second record with their original follow-up 
time and outcome but with entry into the trial given as day 75. A 
dummy variable is constructed to distinguish between the two follow- 
up periods. Fitting a model with an interaction between period and 
treatment or period and covariate provides a test of the constant pro- 
portionality of effect that the Cox model assumes. In this case, fitting 
the interaction between period and log-Performance Index gave a z- 
test with p = 0.035, casting some doubt on the assumption. In the 
first period, the hazard ratio was estimated at 0.20, while for second 
it was 0.69. This is not an uncommon pattern for a baseline measure, 
the prognostic value being rather short-lived. 

8.6.2. The Problem of Internal or 
Endogeneous Covariates 

Although simply incorporated into proportional hazard survival 
models, the use of time-varying covariates in analysis of clinical trials 
data should be approached with some caution. This is because their 
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inclusion runs the risk of biasing the treatment effect as a result of 
their being internal, i.e., they reflect the development of the disease 
process and may themselves be partly influenced by treatment. Bio- 
chemical or physical measures of disease are obvious examples. This 
is well illustrated in the example of Altman and DeStavola (1994). 
High levels of bilirubin and low levels of albumin reflect advanced bil- 
iary cirrhosis and are highly prognostic. A treatment that improves 
cirrhosis will tend to reduce bilirubin levels and increase those of al- 
bumin. Altman and DeStavola showed how much of the significant 
and substantial estimate of treatment effect could be removed by the 
inclusion into the model of updated values of either of these variables. 
From the point of view of treatment effect estimation, updating these 
variables is most unwise, casting unnecesary doubt on treatment dif- 
ferences. From the point of view of a scientific investigation of the 
development of the process and for constructing prognostic indices, 
their inclusion will be of more interest. 

Thus, it is important that internal or endogeneous variables 
should be distinguished from external or exogeneous variables. Ex- 
ternal variables are either predeterminded, e.g., a patients age, or 
vary independently of survival, e.g., the weather. However, for many 
time varying variables their status as internal or external is uncer- 
tain, which explains our caution. It is perhaps most helpful to  think 
of internal variables as being those that are ‘causally downstream’ 
of treatment, but the link between treatment and variable does not 
have to be a direct one. Thus if the poor health of those on the worse 
or placebo treatment results in their choosing to move to a more 
pleasant and health promoting climate, then not even the weather 
is external! 

8.6.3. Treatment Waiting Times 

One circumstance where the use of time-varying covariates may be 
helpful is where the timing of the delivery of one or both treatments 
is not under complete experimental control. Such circumstances 
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frequently arise in organ and tissue transplantation, where at the 
time of randomisation, no suitably well matched donors may be avail- 
able for all patients. Two comparisons then become of interest. The 
first essentially defines the treatment as that given, i.e., a waiting 
time of unknown duration followed by transplantation, and com- 
pares survival over both waiting and post-transplant survival periods 
combined. The second defines the treatment as transplantation for 
which only the post-transplant survival is relevant. These correspond 
to the two rather different clinical circumstances of considering the 
treatment alternatives of a patient for whom a well matched donor 
is already available (the second case) and a patient for whom one is 
yet to be found (the first case). Without a very rigorous protocol, it 
is often unreasonable to assume that the waiting time to find a well- 
matched donor is independent of transplant survival, since matching 
criteria are likely to be relaxed as the waiting time increases and 
transplantation may only be possible if the patient is fit enough to 
survive surgery. 

8.7. STRATIFICATION, MATCHING AND 

8.7.1. Stratification 
CLUSTER SAMPLING 

We have already seen how non-proportionality may be addressed by 
generalising the model by the addition of a function of the suspect 
predictor variable as a time dependent covariate. However, this ap- 
proach requires that the functional form describing the pattern of 
time variation be specified (e.g., a linear trend). Where the variable 
for which the proportionality assumption is in question is a categor- 
ical variable, then a more general approach is possible using strati- 
fication. Dividing the subjects into strata g, we specify a hazard of 
the form: 

Wlx, 9) = h o g W  exp(Px) (8.38) 

in which the effects for the covariate vector x (now shortened by the 
omission of the stratum identifying variable g) remain assumed to 
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be proportional, but the baseline hazard is now quite separately es- 
timated for each stratum. The contribution to the partial likelihood 
from each failure event is modified such that the risk set over which 
the denominator is calculated, is no longer all those at risk at that 
time, but only the subset of those who belong to the same stratum 
as the failing individual. 

In practice, stratification is used to achieve a variety of goals: 

(1) It can be applied to groups who either a przori may have quite 
different survival patterns, e.g., for example men and women, or 
post-hoc to groups defined by a variable that has failed a test of 
proportionality. 

(2) It can be applied so as to obtain distinct estimates of survivor, 
hazard or integrated hazard functions for the groups in ques- 
tion that are adjusted for the remaining covariates but which are 
otherwise unconstrained. Plots of the group specific functions 
can be used to check proportionality. This has particular appeal 
where the grouping variable is treatment as it provides a sim- 
ple graphical illustration of possible variation in treatment effect 
over time. 

(3) The grouping variable need not be a fixed grouping factor but 
may be time varying, e.g., a variable defining the state of the 
disease. Strata can also be defined to distinguish between the 
different durations, e.g., first event, second event and so on in a 
recurrent event process. 

8.7.2. Matching 

Where patients have been matched, the simplest approach to analyse 
the resulting data is to specify each matched group as a separate stra- 
tum. For a simpie two-treatment trial, the resulting partial likelihood 
corresponds to conditional logistic regression with contributions only 
from strata in which the first of the time ranked survival times in a 
pair is a failure time (i.e., pairs in which either the shortest time or 
both times in a pair are censored make no contribution). 
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8.7.3. Cluster Sampling 

An alternative approach is to ignore the clustering in model estima- 
tion but to take account of it in the estimation of the parameter co- 
variance matrix by using a robust estimator. It should be emphasised 
that these two approaches estimate slightly different parameters, the 
first being conditional upon any effects associated with the match- 
ing variables and the second being the effect marginal to/averaging 
over them. 

Segal and Neuhaus (1993) exploit the fact that the survival like- 
lihood can be formulated as a Poisson likelihood and can thus be 
made amenable to the Generalised Estimating Equations approach 
to GLM estimation described in Chapter 4. The likelihood in such a 
formulation for individual i in cluster j is of the form: 

(8.39) 

where h,(t) and H,(t) are the baseline hazard and integrated hazard, 
respectively, and the Poisson rate parameter pij is specified by a log- 
linear model of the form: 

In pij = In H,(t) + p’x . (8.40) 

The term lnH,(t) in this last equation can be an offset, specified as 
ln(t) if the model is exponential or the Breslow estimate of H,(t) 
if the model is a Cox model (requiring iterative updating), or it 
can be estimated, for example, as a set of dummy variables defined 
for segments of the follow-up time to give a piecewise exponential 
model. GEE estimation of the model parameters and of the corre- 
lation among individual survival times of individuals from the same 
cluster j then follows in the usual way as described ‘in Chapter 6. 

Yet another approach to clustered data treats the correlation in 
survival times as deriving from the hazard (or log-hazard) containing 
a shared random effect. This is discussed in Sections 8.10 and 9.5. 
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8.8. CENSORING AND COMPETING 
RISKS 

The discussion so far has given rather little consideration as to how 
censored observations may have come about. Indeed, because they 
seem to pose no practical difficulty for analysis, it is far too easy 
to give them inadequate consideration. Clearly censored observa- 
tions coincident with a data-independent end of a trial pose no spe- 
cial source of concern, but this may not be the case for losses to 
follow-up occurring during the process of the trial. Losses may occur 
through patient noncompliance or inadequacies in the implementa- 
tion of the trial. These raise all the issues and concerns relating to 
missing data, discussed in previous chapters. In other circumstances, 
losses may be disguised as failures, the result of some parallel sur- 
vival process that cannot be suppressed during the period of the trial. 
Death from other causes than the focal cause is the typical example. 
On the assumption that this other process is conditionally indepen- 
dent of the process of interest, then these failures from other causes 
can be treated as providing censored observations from the process 
of interest. 

Table 8.8 compares the Cox model estimates and standard errors 
for the effects of age, surgery and mismatch score on survival follow- 
ing heart-transplant for an all-causes outcome and for an outcome 

Table 8.8. Estimated Effects of Prognostic Indicators - Stanford 
Heart Transplant Data. 

Model/Effect Hazard Ratio z 95% Confidence Interval 
~ 

Death - All Causes 

log(age in years) 14.64 2.28 (1.45, 147.44) 
log(mismatch score) 4.27 1.95 (0.99, 18.36) 

Death - Rejection only 
log(age in years) 422.78 3.24 (10.89, 16333) 
log(mismatch score) 17.71 3.05 (1.79, 112.63) 
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restricted to death from rejection (all other outcomes contributing 
censored observations). The data come from the much analysed Stan- 
ford Heart Transplant programme (Crowley and Hu, 1997). The in- 
creased estimate and significance for the effect of quality of transplant 
match, when nonrejection related failures are excluded, is striking. 

The potential impact of reclassifying outcomes as defined by the 
censoring indicator is thus considerable and the example serves to  
underscore the need for careful prior thought being given to the mea- 
surement protocol and for the importance of maintaining blindness 
through to the end of trial measurement (and perhaps even beyond, 
into the analysis stage). 

8.9. AUXILIARY VARIABLES 

Where a variable is clearly endogeneous, although we might not wish 
to include it as an independent variable within our analysis, we might 
be able to increase the power of our analysis by considering it as 
informative about the end-point of the trial. For example, some en- 
dogeneous biological marker might be used to define an intermediate 
state of disease progression within what would now be a multi-state 
survival model. This would have the effect of reducing the number 
of fully censored observations. Treatment effects on the risk func- 
tions to both the intermediate state and the final end state can then 
be estimated, using the framework of competing risks described in 
the previous section. Hsieh et al. (1983) and Pocock et al. (1987) 
consider the analysis of two time-dependent events. However, as our 
previous discussion of multiple end-points in Chapter 4 made clear, 
the question of how to combine effects requires assigning some mea- 
sure of relative importance to them. This has not always proved 
straightforward. 

An alternative is to assume that the importance of the event is 
reflected in its effect on the final end-point itself. Lagakos (1977) 
described an approach for using auxiliary information for this pur- 
pose within a simple exponential survival framework. Finkelstein and 
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Schoenfeld (1994) present a method that uses the time to the interme- 
diate state as a covariate for subsequent survival. Their simulations 
suggest that although improvements in precision of the estimates of 
main interest are possible, losses of efficiency are also possible where 
the intermediate state is not strongly prognostic. The use of weighted 
estimating equations provides one of a number of other approaches 
to this problem (Robins and Rotnitsky, 1992). 

8.10. FRAILTY MODELS 

One of the ways in which it was suggested that non-proportionality 
might come about was in a context in which individuals varied in 
their risk of death in ways not reflected in the included covariates. 
This lack of homogeneity has been conceptualised as implying the 
presence of a random effect in the hazard function and has been 
termed frailty. The sharing of frailty may also be a useful way of 
considering the correlation in response of patients that have been 
formed into matched groups similar on a set of prognostically relevant 
variables, sampled by a multi-stage process (e.g. individuals within 
families) or the correlations among repeated or multivariate survival 
times that might arise from experimental response time measure- 
ments. A number of authors have investigated the impact of frailty 
on estimated effects (e.g., Chastang et al., 1988; Pickles and Crouch- 
ley, 1995) and this can be large for endogeneous variables. This issue 
also relates to the possible presence of long-term survivors or cured 
individuals (Farewell, 1982). Pickles and Crouchley (1994) also con- 
sidered models in which dose-response was a random effect. Such 
models can now be relatively easily fitted using multilevel modelling 
software (Goldstein, 1991). We illustrate in Chapter 9 the Bayesian 
estimation of a frailty model for the matched pairs data. 

It is very tempting to interpret the hazard function as saying 
something about the development of risk within the individual. A 
decreasing hazard rate is often interpreted as expressing a biological 
phenomenon associated with the individual in which (s)he becomes 
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in some way stronger, more robust or less vulnerable. Unfortunately, 
the hazard rate is not a pure measure of within subject variation. 
High risk or frail individuals will tend to have short survival times, 
resulting in a selection over time for those who were more robust 
from the outset. This selection causes the usual estimated haz- 
ard rate to decline, or to rise less rapidly. The inclusion of frailty 
within the model can be used in an attempt to account for these 
selection effects. 

8.11. INTERIM ANALYSIS FOR SURVIVAL 
TIME DATA 

Interim analysis has been discussed in Chapter 3.  The reasons given 
there for its use apply equally well to trials in which the main re- 
sponse variable is time-to-death, time-to-relapse, etc. Tsiatis (1981) 
demonstrates a number of important results that show the distribu- 
tional structure of the log-rank test, computed over time, is similar 
to that for instantaneous outcome measures, allowing the theory de- 
veloped for such measures to be used in the more complex survival 
analysis setting. For details, readers are referred to the two papers 
mentioned and the East manual (see Appendix). Here, we simply 
give an example. 

8.11.1. An Example of the Application of an 
Interim Analysis Procedure for 
Survival Data 

DeMets and Lan (1994) describe the use of group sequential methods 
in a randomised, double-blind, placebo-controlled trial designed to 
test the effect of propranolol, a beta blocker drug, on total mortality. 
In a multicentre recruitment, 3837 patients were randomised between 
propranolol or placebo. The study used the log-rank test for compar- 
ison of the survival patterns of the two groups and adopted the group 
sequential boundaries suggested by O’Brien and Fleming. Seven 
interim analyses were planned and the relevant O’Brien-Fleming 
boundaries are shown in Fig. 8.10. The results of the log-rank test are 
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Beta-Blocker Heart Attack Trial 
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Fig. 8.10. O’Brien and Fleming boundary for log-rank test in a randomised 
double blind trial. 

also shown as the trial progressed. On the 5th interim analysis, the 
log-rank test approached but did not exceed, the critical value. On 
the 6th interim analysis, the logrank statistic was 2.82 and exceeded 
the critical value of 2.23. This resulted in stopping of the trial almost 
a year earlier than planned. 

8.12. DESCRIBING THE RESULTS OF A 
SURVIVAL ANALYSIS OF A 
CLINICAL TRIAL 

A number of measures of effect for survival and lifetime data have 
been suggested that may help communicate results to different audi- 
ences. The absolute risk reduction (ARR) is given by the difference 
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in survival probabilities for the two treatments, for some suitable 
choice of time t ,  ARR = SA( t )  - SB(t). Using the Kaplan-Meier 
estimates for S( t ) ,  a variance for the ARR can be obtained as 

var(ARR) = [l - sA(t)][sA(t)]2/nA(t) -k L1 - sB(t)][sB(t)]2/nB(t) 

(8.41) 

where n(t)  is the size of the risk set at time t .  The ARR can be 
made more concrete by multiplying by the size of the treatment arm 
of the trial to give a number of deaths avoided (NDA = ARR x n) ,  
with a variance given by n times var(ARR). It is sometimes sug- 
gested that the estimated number of patients in the population who 
might benefit from the treatment be used in this calculation to give 
an estimate of the therapeutic impact. Care is required here, in 
that the size may be rather poorly known and it is in general un- 
likely that the characteristics of this wider group of patients will be 
like those enrolled in the trial. 

An increasingly common measure is the number needed to treat 
(NNT), the inverse of the absolute risk reduction (NNT = l/ARR). 
Like the ARR, this must be reported together with the length of 
follow-up that is being assumed. A confidence interval can be ob- 
tained by inverting the corresponding endpoints of the interval for 
the ARR. 

Epidemiologists find the risk ratio RR a natural scale. Given by 
(1 - s A ( t ) ) / ( l  - S q t ) ) ,  it allows effects to be described in terms of 
a halving (or some other fraction) of the risk. Note that it, too, 
requires specifying the relevant follow-up period. An estimate of its 
variance can be obtained using Fieller’s theorem (see Marubini and 
Valsecchi, 1995). A relative risk reduction or difference, 1 - RR(t), 
is also sometimes used. 

8.13. SUMMARY 

Survival analysis is the study of the distribution of times to some 
terminating event (death, relapse etc.). A distinguishing feature of 
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survival data is the presence of censored observations and this has 
led to the development of a wide range of methodology for analysing 
survival times. Of the available methods, the most widely used 
is Cox’s proportional hazards model which allows the investigation 
of the effects of multiple covariates on the hazard function. The 
model has been almost universally adopted by statisticians and ap- 
plied researchers particularly for survival times arising from a clini- 
cal trial. But other models for survival data are also available and 
one of these, the accelerated failure time model, is also described in 
this chapter. 

Whatever the particular form of survival model chosen, a num- 
ber of common issues arise, principally in the area of model checking. 
Although less well developed than for continuous response measures, 
various methods for model checking are available. These include 
model generalisations, residuals, plots and goodness-of-fit and spec- 
ification tests. However, in a number of instances these methods do 
not work well as a reliable diagnostic for overall correct model spec- 
ification. Instead, testing of survival models works best when the 
statistician has some idea of the likely alternative models. In such 
circumstances, it is understandable why statisticians so frequently 
resort to the use of the Cox survival model, since its nonparamet- 
ric baseline hazard leaves one less aspect of the model to check, and 
little loss of efficiency is incurred when compared to parametric mod- 
els. Nonproportionality can often be addressed by the careful use 
of strata, time-varying variables are readily included, and exten- 
sions to competing risks by redefinition of the censoring indicator 
is straightforward. 



CHAPTER 9 

Bayesian Methods 

9.1. INTRODUCTION 

Until relatively recently, Bayesian statistics were Iittle more than an 
intellectual curiousity; rich in conceptual insight but of little practi- 
cal value when it came to actual data analysis. All this has changed 
in the most dramatic fashion, with Bayesian methods and appli- 
cations now forming an area. of the most intense activity. In many 
cases, Bayesian approaches lead to the same or similar conclusions as 
those using the routine procedures of the frequentist statistician. But 
differences do occur and there are proponents on each side with, for 
example, Berry (1993) presenting the case for greater use of Bayesian 
methods in clinica.1 trials and Whitehead (1993) presenting the case 
for the ongoing dominance of the frequentist approach, at least. in 
the context of definitive phase I11 trials. Most statisticians involved 
in trials are typically rather pragmatic, for the most part using the 
familiar and quick to apply frequentist methods, but nonetheless also 
applying Bayesian methods where these are convenient or have some 
conceptual advantage and are acceptable to the intended consumer. 
Much recent work proposing Bayesian methods in clinical trials has 
been concerned a s  much with establishing acceptability as with de- 
veloping the methods. 

Traditional frequentist analysis essentially treats each trial or 
experiment as if it were entirely novel and each t.rial is usually be- 
ing considered as being individually potentially decisive. Scientific 

255 
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progress may occur outside the narrow focus of this trial, but the 
numerical procedures themselves are not formulated to reflect the 
process of progressive learning nor one in which the process itself in- 
volves costs and potential benefits. By contrast, the focus of Bayesian 
methods is one of progressive refinement of opinion as data from tri- 
als and other sources accumulate. This is illustrated in Fig. 9.1. 
Knowledge prior to a trial is synthesised and formally represented 
as a distribution over the parameter space of the problem. The trial 
is undertaken. The data from the trial is combined with the prior 
distribution to form a posterior distribution over the same parameter 
space, one which is hopefully more concentrated than the prior. 

I -  
p r l o r  Dlstrlbution I A. 

Trer tmant  
D l f tc rence  

[Data1 I T * 
B a y e s '  0 Mean 

Olf terence I T h e o r e m  

P o s t e r i o r  Distribution 

0 I 
(Decisions] 

Fig. 9.1. Conceptual framework for Bayesian analysis. 
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While this may describe well the circumstances of the developers 
of a treatment, who will be building up knowledge about a treatment 
through various phases of the development and trialling process, li- 
censing authorities have typically been comfortable with the frequen- 
tist position, the results from a phase-I11 trial, complete with all its 
formal rigours, being key to their decision making. Nonetheless, even 
in the context of phase111 trials, Bayesian methods can provide valu- 
able additional insights, particularly in relation to considerations of 
sample size requirements and interim analyses. 

As described above, the focus of Bayesian methods is on using 
data to update prior beliefs, as defined by parameter or effect distri- 
butions. If one starts from a position of diffuse and uninformative 
prior distributions, then the focus of the analysis is little different 
from that of other methods. As a result, non-Bayesian’s are in- 
creasingly making use of the recent developments in Bayesian model 
estimation. We therefore start with a brief description of Bayesian 
estimation, before considering other more distinctive aspects of 
Bayesian inference for clinical trials. 

9.2. BAYESIAN ESTIMATION 

From a Bayesian perspective, both observed data and parameters 
are considered as random quantities. Letting D denote the observed 
data and 0 the model parameters, a joint probability distribution 
or full probability model P ( D ,  0)  is considered, which is decomposed 
into a prior distribution for the parameters P ( 0 )  and a likelihood 
P ( D ( 0 )  for which: 

P(D, 0)  = P(DIO)P(O) (9.1) 

Given data from a trial, the posterior distribution of the parameters 
0, that is the distribution of 0 given the data, is obtained by use of 
Bayes’ Theorem, 

P(0ID)  = P(O)P(D[O) /  / P(O)P(D[O)d0  (9.2) 
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Quantities calculated from this posterior distribution of the 
parameters form the basis of inference. Point estimates might be ob- 
tained by calculating the mean, mode or median of a parameter pos- 
terior distribution, while the parameter precision can be estimated 
by the standard deviation or some suitable inter-quantile range, e.g., 
from quantiles at p and 1 - p for a l O O ( 1  - 2p)% credible interval. 
In general such quantities, f(@), will be estimated by their posterior 
expectation given by: 

E[ f (O) lD]  = / f (O)P(O)P(DIO)d@/ / P(O)P(DI@)d@ (9.3) 

As an illustration of the mathematics of Bayesian inference, con- 
sider a sequence of Bernoulli trials. At the outset, we will assume 
that we can characterise any prior knowledge that we have as to the 
likely value of the Bernoulli probability 8 in a prior distribution. I t  
is mathematically convenient to choose a so-called conjugate distri- 
bution as the prior distribution for 8, which in this case is a beta 
distribution with density b(p):  

~ ( 8 )  = r l ( i  - o)@-lr((Y + p)pya)r(p) (9.4) 

This has mean (Y/((Y + p) and variance ap/ ( (a  + ,@'(a + ,!? + 1)). 
Figure 9.2 shows four beta distributions. Symmetrical unimodal dis- 
tributions are obtained for (Y = p > 1, narrowing as their value 
increases, becoming asymmetrical when a does not equal p. Also 
notice that although a = p = 1 is uniform over 8, calculation of 
the variance shows that larger variances are obtained from bimodal 
shapes in which (Y and p tend to zero. 

In a sequence of n trials we observe T successes, giving a like- 
lihood P(n,r(B)  proportional to O'(1 - Q)n-'. Equation 9.2 shows 
that the posterior distribution is obtained by multiplying the prior 
distribution by this likelihood and standardising. The selection of a 
conjugate prior makes this straightforward, giving 

P(8ld, n) 0: Oa+'-l(1 - qP-tn-r-1 (9.5) 
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0 1 
0 

Fig. 9.2. Four beta distributions. 

which is another beta distribution but with parameters a* = a + I- 

and p* = p + n - I-. 

The mean of this posterior distribution is (a + .)/(a + p + n) ,  
with a corresponding expression to that given above for the vari- 
ance. As a consequence as a and p approach zero, corresponding 
to a prior distribution with the greatest possible variance, so the 
posterior mean approaches r / n ,  the value that would be expected 
under maximum likelihood. As T and n increase relative to a and 
p, so the the variance of the distribution approaches the familiar 

Figure 9.2 shows a beta distribution with a = p = 6.5, the 
posterior distribution that would occur following the observation of 
6 successes in 12 trials with the use of the reasonably uninformative 
prior in which a = p = 0.5 (also shown). 

(I-ln) x (1 - (r/n>>/n. 

9.3. MARKOV CHAIN MONTE CARL0 
(MCMC) 

In the hypothetical example of the previous section, the particular 
choice of likelihood and prior allowed the necessary expectations to 
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be calculated by hand. In practice, this is not generally possible. 
Instead Murkov Chain Monte Carlo methods are used; these are 
based on Monte-Carlo integration methods for tackling the numerical 
problems posed by Eq. 9.3. We give here only the briefest sketch of 
MCMC estimation. 

Monte Carlo integration consists of a method for drawing values 
of 0 from the posterior distribution P ( Q ( D ) ,  calculating the corre- 
sponding values f ( @ )  and then using their average to  approximate 
E[ f (OlD)] .  Thus for a ‘sample’ of m such values of 0: 

For many methods of sampling from P(QlD),  this approximation 
can be made as accurate as required simpy by increasing the size of 
the ‘sample’ m. One of these methods is to sample from a suitable 
Markov Chain that has as its stationary distribution P(O)D) ,  giving 
rise to the name of the overall estimation method. 

One of the features of such a procedure is that, regardless of where 
it is started, in the long-run the state occupancy distribution tends 
to converge to  the equilibrium stationary distribution. Thus the 
MCMC method consists of a ‘burn-in’ during which it is intended 
that the stationa.ry distribution should be achieved, followed by a 
period of ‘monitoring’ during which ‘sample’ values of the quantities 
of interest f(Q) are recorded and during which tests of convergence 
are undertaken (Gelman, 1996). Readers are referred elsewhere for 
the theoretical background and for further discussion of available 
sampling algorithms (e.g. Roberts, 1996). 

9.4. ADVANTAGES OF THE MCMC 
APPROACH 

Although the principles behind the MChlC estimation and inference 
are no more complex than those of more traditional methods, it is 
a computational intensive method to put into practice. Therefore, 
it is helpful to have clear what some of the potential advantages are 
before setting out to implement such an analysis. 
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9.4.1. Model Parametrisation and Scientific 
Inference 

The effects reported its the results of any model estimation exer- 
cise, e.g., maximum likelihood, are typically presented in the form 
in which the statistical model has been parametrised for estimation. 
Only sometimes are estimates and confidence intervals translat,ed 
into a more readily understood scale. An example of this is logistic 
regression where considerations as to the multivariate normality of 
the estimators leads to  estimation of effects on the log-odds scale, 
even though for most clinical audiences it is the odds-ratio scale that 
is most readily interpreted. As a result, it is perhaps more often 
the case than most statisticians appreciate that the parameters and 
associated confidence intervals commonly estimated are not those of 
greatest scientific interest or clinical relevance. The parametrisation 
with desirable statistical properties is rarely that with desirable sci- 
entific properties and the effort in translating results from one to the 
other, for example using the delta method, often holds little appeal to 
the statistician. However, in MCMC estimation, the parametrisation 
0 over which the Alarkov Chain is defined, does not constrain the list 
of quantities f ( @ )  for which posterior distributions are monitored. 
Thus 0 can be chosen for its statistical and estimation properties, 
whiIe the f(@> can be chosen for their scientific and clinical interest. 
The additional burden of adding into the MCMC sampling cycle a 
variety of functions of the parameters is rarely great. 

As an example, consider a study involving three drug treatments 
A, B and C and a control treatment; a standard parametrisation 
would be a mean contrast for the effects of each drug relative to the 
common control group. However, we might wish to know what the 
probability is that the pair of drugs that perform best in some small 
trial actually contains the ‘best’ drug. This kind of information is 
extremely valuable in drug development, but is not readily calculated 
from knowledge of the point estimates and covariance matrix of the 
standard parameters. It is, however, an extremely simple task to 
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monitor the ra.nks of the effects of each treatment from each MCMC 
sample, and to obtain an estimate of their distribution, confidence 
intervals and so on. 

A second example, one that we illustrate later in this chapter, is 
the estimation of the Number Needed to Treat (NNT) effect measure 
together with its confidence interval. A variety of other effect scales 
might be contemplated and the discussion in Chapter 5 relating to 
the summary statistic approach is relevant here, both for pointing to 
aspects of the trial that may be of interest, but also in warning of 
the need to have agreed a single decision criterion prior to the study, 
whenever that is appropriate. 

9.4.2. Missing Data 

No new ideas or methods are required to extend MCMC estimation 
to problems with missing data. The missing observations are merely 
added to the parameter list, and like the original parameters, are 
sampled from their conditional distributions. Monitoring of the esti- 
mated missing data values can be helpful in assessing the plausability 
of a model. The approach can be extended to consider ‘hypothetical 
data points’, for example those in the future, allowing an exploration 
of an individual subject’s prognosis (Berzuni, 1996) 

9.4.3. Prior Distributions as a Numerical 
Device 

Although frequentists, in particular, may feel uncomfortable about 
the imposition of informative priors on parameters, there are many 
circumstances where the imposition of such priors merely act to keep 
parameter estimates within feasible bounds. In more standard ML 
estimation, such problems often require the use of a variety of some- 
what ad-hoe ‘fix-ups’ that substantially complicate function rnaxirni- 
sation algorithms and present additional problems where convergence 
is at a boundary solution. Imposing a suitable prior can result in a 
better behaved estimation procedure. 
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9.4.4. Alternative Models and Model Selection 

A Bayesian approach has often also been distinctive in showing a 
willingness to consider a range of alternative models, and, for exam- 
ple, using so-called Bayes factors to choose between them. These 
factors provide a summary of the evidence given by the data D in 
favour of a model M I  relative to another model Mo; they are defined 
as the ratio of the posterior to prior odds, 

(9.7) 

Twice the logarithm of Blo is on the same scale as the deviance and 
the likelihood ratio test statistic. The following scale is often useful 
for interpreting values of Blo: 

21nBlo Evidence for MI 

< O  Negative (supports Mo) 
0-2.2 
2.2-6 Positive 
6-10 Strong 
> 10 Very strong 

Not worth more than a bare mention 

Sometimes ‘robust’ estimates are considered that attempt to 
make a combined inference from a weighted average of the parameter 
estimates from different models. Considering a range of alternative 
models is clearly valuable, but we are less convinced about the value 
of this combining of different estimates. For example, when consider- 
ing models with and without a nuisance parameter (say the effects of 
a possible confounder), it seems unreasonable to consider the prob- 
lem as a bimodal one - a mixture of null and alternative values - 
rather than using prior information on what the value of the nuisance 
parameter is likely to be. 
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9.5. A NUMERICAL EXAMPLE OF USING 
BAYESIAN ESTIMATION 

To illustrate the use of a Bayesian estimation method for an essen- 
tially non-Bayesian analysis, we have turned to the classic data of 
Frierich et al. (1963) on 6MP and placebo treatment of 42 leukemia 
patients. These data are shown in Table 9.1. Though much analysed, 
the paired design of this study has typically been ignored. Spiegel- 
halter et al. (1996) use the program BUGS (Gilks et al. 1994; see 
Appendix) to estimate a Cox regression model (see Chapter 8) that 
includes a random effect for pairing. 

Table 9.1. Pairwise-Matched Trial of Remissions in Acute 
Leukemia (Fkierich et al., 1963). 

Survival Time Death Treatment Pair ID 
(weeks) 

1 1 
1 1 
2 1 
2 1 
3 1 
4 1 
4 1 
5 1 
5 1 
8 1 
8 1 
8 1 
8 1 

11 1 
11 1 
12 1 
12 1 
15 1 

(+0.5 = 6-mercaptopurine) 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
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Table 9.1. ( Continued ) 

Subject ID Death Treatment Pair ID 

17 
22 
23 
6 
6 
6 
6 
7 
9 

10 
10 
11 
13 
16 
17 
19 
20 
22 
23 
25 
32 
32 
34 
35 

1 
1 
1 
1 
1 
1 
0 
1 
0 
1 
0 
0 
1 
1 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 

0.5 
0.5 
0.5 

-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 

19 
20 
21 
19 
18 
8 
1 

20 
6 
2 

10 
3 

14 
4 

11 
7 
9 

12 
16 
17 
5 

13 
15 
21 

Using the counting process notation (Anderson and Gill, 1982), 
we observe the count of the number of failures up to time t ,  Ni(t)  
which has the intensity process: 

I&)& = E[dNz(t)lFt-] (9.8) 
where Ft- represents the data on the process up to time t. This 
expectation corresponds to the probability of subject i failing in the 
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interval [t, t + d t ) .  As dt -+ 0 and assuming a proportional hazards 
model with time constant covariates and time constant random effect 
for each pair, the intensity takes the form: 

where j ( i )  is the pair to which patient i belongs. In line with many 
of the random effects models described in Chapters 6 and 7, the 
distribution of the random effects can be assumed normal, implying 
in this case a log-normally distributed multiplicative effect on the 
intensity itself. 

The parameters of the model, therefore, include the regression 
parameters 0, the baseline intensity A,@), and the precision (l/vari- 
ance) of the random effect distribution. Spiegelhalter et al. choose a 
normal prior with very low precision as an uninformative prior for p. 
For the baseline intensity, it is convenient to  consider the increments 
between failures as having a log-normal prior. For the precision of 
the random effect distribution, a gamma prior is convenient. 

Having specified the prior distributions and starting values for 
the parameters, parameter estimates can be obtained through the 
use of Gibbs sampling. This involves drawing values from the con- 
ditional distributions of each parameter, given the data and current 
values of the other parameters, taking each parameter in turn. This 
process can be shown to converge, such that after a suitable ‘burn-in’ 
period, typically of the order of several and often many hundreds of 
iterations, the distribution of the parameter vector remains the same 
from iteration to iteration. 

At this point, the variation in the values of the parameters from 
iteration to iteration represents the variance (and covariance) in 
their estimates as a result of having a limited amount of data. With 
uninformative priors and a well behaved problem, this typically cor- 
responds closely to the sample variancecovariance matrix of parame- 
ter estimates that might be obtained by direct maximum-likelihood. 
So, after the ‘burn-in’ period, the stream of sample values for the 
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Table 9.2. 
Trial Data. 

Comparison of Cox Model Estimates for Leukemia 

Partial Likelihood MCMC MCMC 
SAS PHREG Without With 

Pairwise Pairwise 
Frailty Frailty 

Treatment effect 1.59 (0.43) 1.55 (0.43) 1.58 (0.43) 
Random effect SD 0.16 (0.03-0.69) 

parameters are monitored and stored, and the empirical mean, 
medians, variances: covariances, confidence-intervals and so on are 
estimated directly from these values. Clearly, the number of Sam- 
ple values upon which these are estimated must be large enough to 
keep the simulation sampling error small. For the calculation of some 
statistics, such as exbreme confidence intervals based on the empirical 
distribution (rather than a variance estimate), the simulation sample 
may need to be large (in excess of IOOO}. 

Table 9.2 presents results of standard maximum-likelihood fitting 
of this Cox model without a frailty effect, and those obtained using 
Gibbs sampling with and without the frailty random effect. The 
variation in the estimates of the fixed treatment effect have rather 
more to do with the assumptions being made within each method 
about the treatment of ties (see Chapter 8) than with the particular 
estimation method, but this variation is anyway small. The estimate 
of the precision of the random effects distribution is consistent with 
a random effect variance of only 0.03, suggesting that the pairings 
were not well matched or were matched on the basis of factors and 
covariates of little prognostic significance. 

As described above, within the iterations of the sampling algo- 
rithm additional functions of the parameters and data can be calcu- 
lated. We added a function to estimate NNT. The posterior mean 
for NNT was estimated as 2.51, with a standard deviation of 0.96 
and 95% credible interval of (1.46,4.87). 
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9.6. INFORMATIVE PRIORS 

In the previous example the priors were essentially uninformative, 
chosen largely to keep parameters within a feasible space, and 
their presence within the analysis had very little influence on the 
eventual results. If, however, informative priors are to be considered, 
the statistician enters what is for many the rather unfamiliar terri- 
tory relating to the characterisation of prior beliefs. It is often con- 
venient, both conceptually and in practice, to consider this process 
as one of translating prior beliefs into a hypothetical dataset. This 
dataset then informs a design in the same way that a meta-analysis 
of previous findings can inform a proposed study (see Chapter 10). 

The choice of information source for a prior depends on the pur- 
pose to which it is to be put. For example, where studies are being 
undertaken within the context of an ongoing research programme, 
it makes sense to analyse and interpret the results of new studies 
as part of an ongoing accumulation of knowledge. However, while 
use of previous trials is appropriate in the assessment of final results, 
Freedman, Spiegelhalter and Parmar (1994) suggest that such data 
should play a more minor role in monitoring a new trial if it is to pro- 
vide independent confirmation. Freedman and Spiegelhalter (1983) 
describe methods which we describe in the next section for elicit- 
ing subjective opinion. Stewart and Parmar (1993) discuss issues in 
relation to using previous studies. 

9.7. PRIORS AND STOPPING RULES FOR 
TRIAL MONITORING 

We have already described in Chapter 3, how for many large trials, 
trial monitoring and the use of interim analyses are now routine 
practice, required both for ethical and financial reasons. It was also 
noted how the Bayesian approach to sequential analysis helped avoid 
a number of the difficulties encountered by the frequentist approach 
to this problem. It therefore makes sense to develop the Bayesian 
argument within such a context. 
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Confidence interval Decision - Stop and recommend standard treatment 

Continue trial P 

Stop and recommend new treatment - 
Use new meatment 

> 5  
Use standsrd meatmeut - - -1 

6 ,  6 ,  
Range 
of 
equivalence 

Fig. 9.3. Ranges of equivalence elicited from clinicians. 

Freedman and Spiegelhalter (1983) proposed a framework for 
considering a new treatment versus a standard treatment. Two as- 
pects of clinical opinion need to be considered: clinical demands and 
clinical beliefs. 

9.7.1. Clinical Demands 

Freedman and Spiegelhalter suggested that two levels of treatment 
improvement should be considered, as illustrated in Fig. 9.3. The 
lower value SL is the treatment effect below which a clinician would 
definitely not use the new treatment. It is referred to as the mini- 
mum clinically worthwhile difference. In this hypothetical case it is 
slightly positive, perhaps the result of the new treatment requiring 
new training, extra costs or patient discomfort. The upper va.lue 6u 
is the level of improvement above which the clinician would wish to 
switch to using the new treatment as routine. The range between 6~ 
and Su is referred to as the range of equivalence. As a study pro- 
ceeds, decisions on continuing the trial are then made by comparing 
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the confidence interval for the treatment effect with this range of 
equivalence. Where the confidence interval falls entirely above SL, 
the study should be stopped and the new treatment adopted as rou- 
tine. Where the interval falls entirely below Su, the study should be 
stopped and the standard treatment continued as routine. If neither 
applies, then the trial should continue. 

The values of SL and Su were obtained by interview with a range 
of clinicians involved in the treatment of the disease in question. 
Clinicians responded to the questions of the sort, “if the real ben- 
efit was x%, would you use the new treatment as your routine?” 
Such questions were asked a number of times, changing the value 
of x up and down the scale, to identify the levels at which the 
clinician would definitely use (Su) and not use (SL) the new treat- 
ment. Such questioning yields results as illustrated in Fig. 9.4, with 
both the location and the width of the range of equivalence varying 
from clinician to clinician. The extent of overlap between the prior 
distribution and the range of equivalence provides the ethical basis 
for randomisation. Freedman and Spiegelhalter found considerable 

Use standard treatment 

I I I I I 

11 

2 5 1  
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variation between clinicians in the elicited ranges of equivalence. This 
raised doubts as to the applicability of the simple decision rules de- 
scribed in the previous paragraph. 

9.7.2. Clinical Beliefs 

In eliciting views on clinical beliefs clinicians were first asked what 
the ‘most likely’ level of improvement would be, then upper and 
lower bounds that were ‘very unlikely to be exceeded’ together with 
a judgement of what odds corresponded to ’very unlikely’, and then 
similar questions for intermediate points. A sketch of this ’prior’ 
was then verified and adjusted through discussion. There are, of 
course, a variety of other ways in which such distributions might be 
elicited. Parmar e t  al. (1994) present an example that makes use of 
analogue scales and the allocation of % beliefs over a set of ordinal 
categories. As in the case of clinical demands, substantial diversity 
of opinion was found, with marked bebween-clinician variation in 
location, dispersion and shape. As we will see: this heterogeneity of 
opinion, together with the fact that clinicians involved in a trial from 
whom priors are most likely to be sought and received, are likely to be 
enthusiasts for the new treatment, has prompted the consideration 
of a different approach to trial monitoring that we describe in a 
later section. 

A summary of prior opinion can be formed from these individual 
assessments by approximating them by a fitted distribution. For 
surviva.1 data, a convenient scale on which to consider this issue is 
the log-hazard ratio, LHR, for which: 

and P,,, and Pstandad are the survival rates (proportions) under 
the new and standard treatments, respectively. Assuming that the 
distribution on the log-hazard ratio is normally distributed, the prior 
can be characterised by a mean po and variance a:. Since for survival 
data (the Cox model) the variance is approximately equa.1 to 4 / n ,  



2 72 Design and Analysis of Clinical Traals 

where n is the number of events (Tsiatis, 198l), the prior can be 
summarised by a mean po and an implicit number of events no. 

9.8. MONITORING 

9.8.1. 

Subsequent real data arising out of the trial with which to update the 
prior are summarised by corresponding values pd and nd. Combining 
the prior and data together using Bayes theorem gives a posterior 
mean p p ,  given by the simple weighted sum (po x no + pa x n,-J/(ng + 
nd) with variance 0; given by 4/(no + n d ) .  Undertaken early in the 
trial with little real data, the combined results will largely reflect 
the prior. Thus only the most extreme data could result in confidence 
intervals that did not include one or the other of the SL and Su, 
with correspondingly little chance of very early stopping of the trial. 
Undertaken late in the trial, t,he weight of data will dominate the 
influence of the prior, generating results that are similar to those 
of a traditional analysis. A typical prior thus acts as a handicap, 
restraining the study in the early phases from premature conclusions. 

Grossman et al. (1994) provide a more structured approach for 
how the handicap can be used for interim analyses within a group se- 
quential design. They consider a trial involving T sequential blocks, 
each of n/T patients, with analyses folIowing the completion of each 
block. In addition, a handicapping prior sample of size f x n, the 
size of f reflecting the extent of handicap desired, is included. Thus 
at the t th analysis, the sample size is fn + nt/T. If each block of 
patients has mean response yt, and the standard deviation of the 
response is 0, then the stopping rule test statistic is 2, = (Yl + Y2 + 
..  .+Y~)-\/(n/t~)/c. Without adjustment, the trial would stop if the 
test statistic exceeded the usual critical value Z,, 1.96 in the case of 
a = 0.05. Grossman et al. (1994) show how the inclusion of the 
handicap sample in a trial with t analyses increases the critical value 
of the test statistic by the factor J ( ( t  + fT ) / t .  Freedman, Spiegel- 
halter and Parmar (1994) compare this 'unified approach' to trial 

The Prior as a Handicap 
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monitoring to the stopping rules of Pocock and of O’Brien and 
Fleming, and suggest the following handicap as fixing the Type I 
error rate at 5% for the specified number of analyses (given in brack- 
ets): 0.00 ( l ) ,  0.16 (a), 0.22 (3), 0.25 (4), 0.27 (5), 0.29 (6), 0.30 (7), 
0.32 (8), 0.33 (9), and 0.33 (10). 

9.8.2. Recognising Heterogeneity in Priors: 
Enthusiasts and Sceptics 

The diversity of clinical opinion identified earlier suggests that 
searching for a decision rule based on the beliefs of some average or 
representative view may not be appropriate. An alternative basis for 
monitoring emphasises how different groups of clinicians interpret the 
results. This approach addresses the question of whether a typical 
sceptical clinician will be persuaded of the positive value of the new 
treatement and the complementary question as to whether a typical 
enthusiast will be persuaded of its inneffectiveness (see Spiegelhalter, 
Freedman and Parmar, 1994). A study should be aiming to do one or 
other of these. The prior of a typical enthusiast can be elicited from 
the participating clinicians using the techniques described above; it 
already being noted that involvement in a trial tends to select for 
clinical enthusiasm for the new treatment. The suggested prior of a 
typical sceptic is based on the experience in most fields that most 
new treatments have been found to be inneffective or at best only 
slightly better than the standard treatment. Such a prior is one cen- 
tred on 0 with only 5% above the point of the alternative hypothesis 
(PO), i.e., a standard deviation 00 equal to the alternative hypothesis 
value divided by 1.645. This alternative value should be ‘realistic’ 
(not that often optimistically large value that is so often used in 
power calculations to justify the small size of a trial!). As with other 
priors, this can be conveniently thought of as a hypothetical dataset 
from a trial, in this case of NO patients, where NO is given by 2a/ao 
with 00 as previously defined and o the standard deviation of the 
response measure. The enthusiasts prior is then centred on S with 
o = oo. 
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Now, the usual sample size formula gives: 

N = 4[z(l - a)  + ~ ( 1  - @ ) I 2  x a2/h2 (9.11) 

where a is the one-sided significance level, 1 - ,B is the power, 6 is 
the alternative hypothesis and CT is the standard deviation of the 
response. But given that CTQ = 6/z(l - y), where y is the prior 
probability of exceeding 6, then: 

002 = 4[z(1 - a)  + z(1 - p)I2 x (Ti/” * z(1 - 7)2] (9.12) 

Combining these equations and substituting 2a/No for (TO, gives: 

No/N = z(1 - ,y)2/[z(1 - a)  + 41 - P>I2 (9.13) 

where No/N is the ‘handicap’ of the previous section. 
To illustrate the use of the enthusiast and sceptical priors, we 

consider a hypothetical trial with failure events as the response end- 
point. A new and a standard treatment are to be compared by 
means of the logarithm of the hazard ratio, with the enthusiasts 
expecting to see a hazard ratio of 2 in favour of the new treat- 
ment. The enthusiasts’ prior is assumed normal and is centred on 
ln(2) = 0.693. The sceptics’ prior is normal and centred on zero 
(corresponding to an expected hazard ratio of 1). With common 
variance equal to (0.693/1.645)2 or 0.176, the sceptics expect an ef- 
fect size as large as the enthusiasts’ mean only 5% of the time. The 
sceptics’ prior can be considered as corresponding to a hypotheti- 
cal dataset in which the hazard ratio is 1 and there have been 22.7 
failures ((nl + n2) = 4/0.176). 

At an interim analysis, there are 30 events under the old treat- 
ment and 10 under the new, with an estimated hazard ratio of 2.9. 
These data can be represented by a normal distribution centred on 
log(2.9) = 1.065, with variance (1/30) + (1/10) = 0.133. 

The enthusiasts are jubilant. Under their prior, the posterior is 
centred on p p  = (0.693 x 22.7 + 1.065 x 40)/(22.7 + 40) = 0.930 with 
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variance 4/(22.7 + 40) = 0.064 (standard deviation 0.252). For the 
enthusiasts, the probability of the hazard ratio being greater than, 
say, 1.5 is 1 - 4((log(1.5) - 0.930)/0.252) = 1 - 0.019 = 0.981. They 
would be happy for the trial to be stopped early. 

However, combing these data with the prior of the sceptics gives a 
posterior distribution, with mean p p  = (0 x 22.7+ 1.065 x 40)/(22.7+ 
40) = 0.679 and variance 4/(22.7 + 40) = 0.064. This posterior 
distribution assigns probability 1 - 4((0.405 - 0.679)/0.252) = 1 - 
0.139 = 0.861 to the hazard ratio, being greater than 1.5. This 
might not be sufficient to persuade the sceptic that the trial should 
be stopped. 

9.9. SAMPLE SIZE ESTIMATION FOR 
EARLY PHASE TRIALS 

The previous section has described Bayesian inferential procedures 
that could be used in the design and analysis of a phase I11 trial. 
However, in the early, more exploratory stages of the development of 
a new therapy, the case for a Bayesian decision theory approach is 
stronger. The application of decision theory requires the specification 
of a gain function. In some circumstances, the gain function may be 
concerned with maximising the relevant information gathered from 
a particular experiment. In others it may express on a common scale 
the various costs of an experiment and the possible patient suffering 
or benefit from the experiment. We briefly consider each of these. 

Whitehead and Brunier (1995) consider the context of a phase-I 
dose-finding experiment. Patients are treated one-at-a-time and the 
response of each patient is observed before the next is treated. They 
consider a model in which the probability that the i th patient given 
a dose di suffers an adverse reaction follows a logit model of the form: 

(9.14) 
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and a generalisation of the simple conjugate beta distribution (see 
Section 9.2) for the prior distribution for 0 is chosen. The objective 
of the experiment is specified as finding the dose D* at which an 
acceptable probability p of adverse reaction is obtained. For example, 
for p = 0.2, then: 

10g(0.2/0.8) = log 81 + 02 log D' (9.15) 

In order to minimise the variance in the estimate of D*, the gain 
function is specified so as to obtain G(8,d) = Var(fi(d)*)-'. The 
design action Ai that will maximise the expected gain, given the 
information available from the first i patients, is given by: 

/ ~ ( 8 7  d>h(olvi>do (9.16) 

where h(8)yi) is the posterior density of 0 given the observed re- 
sponses up to subject i .  In general, numerical methods are required 
to solve for Ai, the optimal next dose. 

Although the choice of dose is data dependent, tending to fall 
if previous responses are adverse or rise if not , maximum-likelihood 
estimation of dose-response models to the resulting data remains 
unnaffec ted. 

Now consider a phase-I1 trial. The decision to undertake a phase 
I1 trial should take into account possible subsequent gain and loss. 
Brunier and Whitehead (1994) consider the possible gains laid out 
in Table 9.3. 

In deciding to continue to the phase 111 trial, they argue that it 
is intuitively reasonable to continue if a critical number c of the n 
phase I1 patients are successfully treated. They then propose a gain 
function parametrised in terms of n and c: 
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Table 9.3. Gain Function for a Phase I1 Trial. 
Gained Successes. 

During During After 
Phase I1 Phase I11 Phase I11 
n ( P  -Po> m ( P  - P o )  W ( P  -Po> 

p = true probability of success of new treatment. 
po = probability of success on standard treatment. 
n = number of patients given new treatment in 

m = number of patients given each treatment in a 

w = number of patients receiving the recommended 

phase I1 trial. 

subsequent phase I11 trial. 

treatment after the phase I11 trial. 

where 

ho(p) = prior for p 

An(p ,  c) = is the probability that the new treatment progresses 

from phase I1 to  phase I11 

B(p)  = the power function of the phase I11 trial 

Other quantities are defined in Table 9.3. 
Summarising the hypothetical results of the phase I11 trial as suc- 

cesses S and failures F and total marginal totals T ,  with subscripts 
N and C for new and control treatments, then B ( p )  is given by: 

(9.18) 



278 

where 
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and k is the critical normal deviate at the chosen significance level 

The analysis may be extended to also consider the costs of trials. 
As a consequence of varying the design parameters, they conclude 

a. 

that the optimal size of the phase I1 trial: 

0 decreases with the precision of the prior ho(p) 
0 increases with the size of the ‘patient horizon’ w 
0 decreases by using a realistic Phase I11 power function B ( p )  
0 decreases with increasing phase I1 trial cost 
0 increases (generally) with increasing phase I11 trial cost. 

The use of a decision analysis approach within the context of 
an equivalence trial is discussed by Lindley (1998), contrasting the 
conclusions with those reached using standard frequentist methods. 

9.10. REPORTING OF RESULTS 

Not surprisingly, the Bayesian perspective suggests that the report- 
ing of trial results could, with advantage, take a rather different 
form to the traditional frequentist one. In conformity with the gen- 
eral trend, Parmar et al. (1994) argue against the focus on p-values. 
They argue that studies should persuade reasonable sceptics and en- 
thusiasts alike. This is particularly important for sequential trials 
that are now very common. The use of the sceptical prior acts to re- 
duce the risk of premature stopping of a trial in which some benefit is 
shown early in the trial. The use of the enthusiastic prior is to reduce 
the risk of premature stopping due to early lack of benefit. In both 
cases, the amount of ‘pull-back’ is much greater in the early stages 



Bayesian Methods 279 

of a trial when there is relatively little data as compared to the in- 
formation content of the prior. Freedman, Spiegelhalter and Parmar 
(1994) suggest that results sections should include the usual tables, 
curves? estimates and standard errors based on the data, and that 
interpretation sections should describe prior distributions and give 
treatment difference estimates (point and interval) using unadjusted 
(uninformative prior), sceptical and enthusiasts prior. For each prior, 
a table with probabilities of treatment difference falling below, within 
and above the range of equivalence should be presented. 

9.11. SUMMARY 

Although still unfamiliar to some statisticians and regulators, the 
use of Bayesian methods in the design and analysis of clinical trials 
is becoming increasingly common. We have done little more than 
sketch some of the key ideas and procedures in Bayesian estimation 
and analysis. With faster computation and improvements in the- 
ory and associated algorithms, virtually all statisticians involved in 
trials are likely to find themselves using Bayesian technology. To do 
so often does not require an acceptance of the use of subjective prob- 
ability. However, progress is being made in formalising procedures 
that do use subjective probability. When combined with explicit gain 
functions into a formal decision framework, the approach is clearly 
well suited to guiding the research strat,egy of a group of investgators 
sharing a common interest. However, we are yet to see whether these 
will gain longer term acceptance in the more public arena of definitive 
trials. Bayesian methods are now also much used for meta-analysis, 
the subject of the final chapter. 



CHAPTER 10 

Meta- Analysis 

10.1. INTRODUCTION 

In the Cambridge Dictionary of Statistics in the Medical Sciences, 
meta-analysis is defined thus: 

A collection of techniques whereby the results of two or more inde- 
pendent studies are statistically combined to yield an overall answer to a 
question of interest. The rationale behind this approach is to provide a test 
with more power than is provided by the separate studies themselves. The 
procedure has become increasingly popular in the last decade or so, but 
is not without its critics, particularly because of the difficulties of know- 
ing which studies should be included and to which population final results 
actually apply. 

In essence, meta-analysis is a more systematic approach to com- 
bining evidence from multiple research projects than the classical 
review article. Chalmers and Lau (1993) make the point that both 
approaches can be biased, but that at least the writer of a meta- 
analytic paper is required by the rudimentary standards of the dis- 
cipline to give the data on which the conclusions are based, and 
to defend the development of these conclusions by giving evidence 
that all available data are included, or to give the reasons for not 
including the data. In contrast, the typical reviewer arrives at con- 
clusions that may be biased and then selects data to back them up. 

280 
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Chalmers and Lau conclude, “It seems obvious that a discipline which 
requires that all available data be revealed and included in an analysis 
has an advantage over one that has traditionally not presented anal- 
yses of all the data on which conclusions are based.” 

So meta-analysis is likely to  have an objectivity that is inevitably 
lacking in literature reviews and can also achieve greater precision 
and generalisability of findings than any single study. Consequently, 
it is not surprising that the technique has become one of the great- 
est growth areas in medical research. Some examples of its use are 
given in Chalmers (1987); Louis: Fienberg and Mosteller (1985), and 
DerSimonian and Laird (1986). There remain, however, sceptics who 
feel that the conclusions drawn from meta-analysis often go beyond 
what the techniques and the data justify. Some of their concerns 
are echoed in the last part of the definition with which this chapter 
began, and in the following quotation from Oakes (1993); 

The term meta-analysis refers to the quantitative combination of data 
from independent trials. Where the result of such combination is a de- 
scriptive summary of the weight of the available evidence, the exercise is 
of undoubted value. Attempts to  apply inferential methods, however, are 
subject to considerable methodological and logical difficulties. The selec- 
tion and quality of the trials included, population bias and the specification 
of the population to which inference may properly be made are problems 
to which no satisfactory solutions have been proposed. 

Despite such concerns, there has been a striking increase in pub- 
lished meta.-analyses of clinical trials. Most stem from the fact that 
so many trials are too small for adequate conclusions to be drawn 
about potentially small advantages of particular therapies. Advo- 
cacy of large trials is a natural response to this situation] but it is 
not always possible to launch very large trials before therapies be- 
come widely accepted or rejected prematurely. In fact, there are 
now several instances of very large trials being started after meta- 
analysis of multiple small ones were strongly positive (see Antman 
et al., 1992). In this way the use of meta-analysis implies that the 
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whole question of power and sample size determination considered 
in Chapter 2 needs to be re-evaluated. In Freiman et al. (1978), 
investigators about to undertake a randomised controlled trial are 
recommended to consult a biostatistician for help in estimating the 
number of patients to obtain a useful answer, and if the answer 
were more patients than might be available, to abandon the trial. 
In a later paper, however, one of the authors confesses to a dramatic 
change of heart and suggests that the second recommendation is one 
which is very poor. (See Chalmers and Lau, 1993.) 

In this chapter, we shall give a number of examples of meta- 
analysis and address some of the issues of most concern when a p  
plying the method. We begin with perhaps the most important 
component of any proposed meta-analysis, namely the selection of 
which studies to include. 

10.2. SELECTION OF STUDIES - WHAT 
TO INCLUDE 

The selection of the studies to be integrated by a meta-analysis will 
clearly have a bearing on the conclusions reached. Selection is a 
matter of inclusion and exclusion and the judgements required are 
often difficult: should only randomised trials be included; should 
poor quality research be excluded (and who should judge quality?); 
should only a single endpoint be analysed? - and so on. A great 
deal of attention has been paid to those issues and there is no con- 
sensus view. Chalmers and Lau (1993), aware of the many op- 
portunities to change the results of a meta-analysis by selecting 
trials the conclusions of which agree with preconceived notions and 
reject those that do not, suggest the rather involved process outlined 
in Fig. 10.1 for minimising bias. Blinding papers by blotting out the 
sources and disguising the results allows ‘quality’ to be scored in an 
unbalanced fashion. 

Pocock (1993) suggests that the process of selection has three 
components: breadth, quality and representativeness. Breadth re- 
lates to the decision as to whether to study a very specific narrow 



Ei Tltles and UI 

Non-RCT 
rejects 

Rejects 

Meta- Analysis 

L 

References 
from completed 

Copy 1 of full paper 
and blinded paper 
in separate folders 
to Reader 1 

’ 
Differentially - 

283 

Copy 2 of lull paper 
and blinded paper 
in separate folders 
to Reader 2 

Master file 
Quality scored with full paper 
using Form 6 for 
blinded methods, 
Form C tor blinded 
results with full 
paper. and Form A 
for blinded data 
extraction 

~ ~ ~ ~ ~ ~ ~ ~ r ~ d f o r  

Form C for blinded 
results with full 
paper, and Form A 
for blmded data 
extraction 

blinded methods, 

Rejected it Data Data 
found not extracted extracted 

Rejected 11 
found not 

to meet 
screening 
requirements 1 Readers have a consensus Conference 

I to meet 
screening 
requirements 



2 84 Design and Analysis of Clinical Trials 

question (e.g., the same drug, disease and setting for studies following 
a common protocol) or a more generic problem (e.g.: a broad class of 
treatments for a range of conditions in a variety of settings). Pocock 
suggests that the broader the meta-analysis, the more difficulty there 
is in interpreting the combined evidence as regards future policy; 
consequently, the broader the meta-analysis the more it needs to be 
interpreted qualitatively rather than quantitatively, 

The reliability of a meta-analysis will depend on the quality of 
the data in the included studies. In meta-analyses of clinical tri- 
als, for example, adherence to recognised criteria of acceptability 
(blinding, randomisation, analysis by intention to treat, etc.) should 
be looked for, and any relaxation of such standards requires careful 
consideration as to whether the consequent precision of more data 
is counter-productive, given the increased potential for loss of cred- 
ibility. Determining quality would be helped if the results from so 
many trials were not so poorly reported. In the future, this may 
be improved by the Consolidation of Standards for Reporting Trials 
(CONSORT) statement ( B e g  et al., 1996). The core contribution of 
the CONSORT statement consists of a flow diagram (see Fig. 10.2) 
and a checklist (see Table 10.1). The flow diagram enables review- 
ers and readers to quickly grasp how many eligible participants were 
randomly assigned to each arm of the t,rial. Such information is fre- 
quently difficult or impossible to  ascert,ain from trial reports as they 
are currently presented. The checklist identifies 21 items that should 
be incorporated in the title, abstract, int.roduction, methods, results 
or conclusion of every randomised clinical trial. 

Ensuring that a meta-analysis is truly representative can be 
problematic. It has long been known that journal articles are not 
a representative sample of work addressed to any particular area of 
research (see, for example, Sterlin, 1959, Greenwald, 1975 and Smith, 
1980). Significant research findings, in particular, are more likely to 
find their way into journals than non-significant results. An infor- 
mal method of assessing the effect of publication bias is the so-called 
funnel plot, in which effect size from a study is plotted against the 
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Fig. 10.2. Flow diagram of CONSORT statement. 

Table 10.1. Checklist for the CONSORT Statement. 

Head. Subhead. Descriptor Was it On what 
reported? page number? 

Title Identify the study as a 
randomised trial. 

Abstract Use a structured format. 

Meth. Protocol Describe 
Planned study population, 
together with inclusion/ 
exclusion criteria. 

Planned interventions and 
their timing. 

Primary and secondary 
outcome measure(s) and 
the minimum important 
difference(s) and indicate 
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Table 10.1. (Continued) 

Head. Subhead. Descriptor Was it On what 
reported? page number? 

indicate how the target 
sample size was projected. 

Rationale and methods 
for statistical analyses, 
detailing main comparative 
analyses and whether they 
were completed on an 
intent ion-to- t reat basis. 

Prospectively defined 
stopping rules (if 
warranted). 

Assignment Describe 
unit of randomisation 
(e.g . , individual, cluster, 
geographic). 

Method used to  generate 
the allocation schedule. 

Method of allocation, 
concealment and timing 
of assignment. 

Method to separate the 
generator from the executor 
of assigment . 

Masking Describe mechanism (e.g., 
(Blinding) capsules, tablets); similarity 

of treatment characteristics 
(e.g., appearance, taste) 
allocation schedule control 
(location of code during 
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Table 10.1 ( Continued ) 

Head. Subhead. Descriptor Was it On what 
reported? page number? 

trial and when broken); 
and evidence for successful 
blinding among participants, 
person doing intervention 
outcome assessors and 
data analysts. 

Results: Provide a trial profile 

Participant summarising participant 
flow and flow, numbers and timing 
follow-up of randomisation assign- 

ment, interventions and 
measurements for each 
randomised group. 

(figure) 

Analysis State estimated effect of 
intervention on primary 
and secondary outcome 
measures, including a 
point estimate and 
measure of precision 
(confidence interval). 

State results in absolute 
numbers where feasible 
(e.g., 10/20, not 50%). 

Present summary data and 
appropriate descriptive and 
inferential statistics in 
sufficient detail to allow 
for alternative analyses 
and replication. 
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Table 10.1 (Continued) 

Head. Subhead. Descriptor Was it On what 
reported? page number? 

Describe prognostic 
variables by treatment 
group and any attempt 
tp  adjust for them. 

Describe protocol deviations 
form the study as planned, 
together with the reasons. 

Comment State specific interpretation 
of study findings, including 
sources of bias and 
imprecision (internal 
validity) and discussion of 
external validity, including 
appropriate quantitative 
measures when possible. 

State general interpretation 
of the data in light of the 
totality of the available 
evidence. 

study’s sample size. Because of the nature of sampling variability, 
this plot should, in the absence of publication bias, have the shape 
of a pyramid with a tapering ‘funnel-like’ peak. Publication bias 
will tend to skew the pyramid by selectively excluding studies with 
small, non-significant effects. Such studies predominate when the 
sample sizes are small, but are likely to be increasingly less common 
as the sample sizes increase. Consequently, their absence removes 
part of the left hand corner of the pyramid. The effect is illustrated 
in Fig. 10.3. 
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Fig. 10.3. Funnel plot. 
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A meta-analysis that relies solely upon published data is liable 
to be biased, and confidence in the overall quality of a meta-analysis 
will be greatly enhanced if explicit efforts are made to  identify all 
studies and not just those that are published. This can often be a 
formidable enterprise possibly taking several years, but there is little 
doubt that such efforts considerably reduce the danger of overesti- 
mating treatment efficacy. 

10.3. THE STATISTICS OF 
META- AN ALY SIS 

A meta-analysis should almost always begin with some form of graph- 
ical display. A single figure displaying point estimates and confidence 
intervals for the individual studies is often sufficient to show, at a 
glance, what the broad conclusions of the analysis are. Figure 10.4, 
for example, shows the results from a series of randomised controlled 
trials of endoscopic treatment of bleeding peptic ulcer (see Sacks 
et al., 1990). The binary outcome variable in each case was whether 
or not there was a reduction in recurrent or continued bleeding. The 
results are presented as confidence intervals for the odds ratios. Al- 
though four of the 25 trials favour the control group, the overall effect 
of endoscopic therapy appears to be highly statistically significant. 

For some meta-analyses, a diagram such as Fig. 10.4 might be 
so clear that more detailed statistical investigation becomes unnec- 
essary. In some circumstances, however, investigators might be in- 
terested in a global test of significance for the overall null hypothesis 
of no effect in all studies, or, more commonly, an overall estimate 
of the magnitude of the effect. Concentrating on the latter, sup- 
pose that there are N studies to  be analysed. There are two dis- 
tinct approaches to providing an estimate of overall effect size in a 
meta-analysis. The first (and most commonly used) is to take the 
N studies as the only ones of interest. The second is to regard 
the N studies as a sample from a larger population of relevant stud- 
ies. The two approaches correspond, respectively, to  the assumptions 
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Fig. 10.4. Confidence intervals for odds ratios from a series of randomised 
trials of endoscopic treatment of bleeding peptic ulcer (from Sacks et al., 
1990). 

of a fixed and random set of studies for the analysis of variance. 
Table 10.2 presents the basis of estimation for each approach for a 
general measure of effect size. 

The fixed effect estimate is reliant on the strong assumption 
that there is no true heterogeneity between studies, i.e., they are all 
estimating the same true effect and only differ because of sampling 
variation. Such an assumption can be tested (see Table l0.2), but the 



292 Design and Analgsis of Clinical Trials 

Table 10.2. The Statistical Basis of Meta-Analysis. 

(a) Fixed enects 

0 Let Y denote the generic measure of t,he effect of an experimental inter- 
vention (the eflect size}. 

0 Let W denote the reciprocal of the variance of effect size. 

0 Under the assumption of a fixed set of studies, an estimator of the as- 
sumed common underlying effect size is: 

N 

i= 1 

The standard error of this estimator is: 

-1/2 

SE.(Y) = [irl I 
0 An approximate l O O ( 1  -a)% confidence interval for the population effect 

size, say $, is: 

IN IN 

(b) Random effects 

0 Under the assumption that the studies are a random sample from a larger 
population of studies, there is a mean population effect size, say 4,  about 
which the study-specific effect sizes vary. Thus, even if each study’s 
results were based on sample sizes so large that the standard errors of the 
Y s  were zero, there would still be study-to-st,udy variation because each 
study would have its own underlying effect size (i.e., its own parameter 
value). 
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Table 10.2. (Continued) 

0 Let D denote the variance of the studies' effect sizes (a quantity yet to 
be determined) and let Q denote the following statistic for measuring 
study-to-study variation in effect size: 

N 

Q = CW,(y, - Y ) 2  

i= 1 

a The estimated component of variance due to  interstudy variation in effect 
size, D ,  is calculated as: 

D = O  i f Q < N - 1  

D = [Q-  ( N  - l ) ] /U if Q > N -  1 

(see Der Simonian and Laird, 1986) where 

u = ( N  - 1) [ w - 34 
with W and S& being the mean and variance of the Ws. 

0 An approximate l O O ( 1  - a)% confidence interval for I$ is: 

IN IN 

where 

i= 1 
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Table 10.2. (Continued) 

The confidence interval for the underlying parameter is wider in the ran- 
dom effects model than in the fixed effects model. A random effects 
analysis suggest more uncertainty in estimating the underlying parame- 
ter than does a fixed effects analysis. 

Test for homogeneity of studies - the test statistic; Q is given by: 

N 

Q = CWz(y, - Y ) Z  
a= 1 

The hypothesis of a common effect size is rejected if Q exceeds at 
the chosen significance level. 

test lacks power. Consequently, when such a test is non-significant 
we cannot assert that the fixed effect method is correct but only 
that major heterogeneity is not present. But in most applications of 
meta-analysis, homogeneity is a priori implausible given the variety 
of study designs. 

The random effects method attempts to incorporate statistical 
heterogeneity into the overall estimate of an average effect. Accord- 
ing to Fleiss (1993) “the random effects model anticipates better than 
the fixed effects model the possibility that some studies not included 
in the analysis are underway, are about to be published, or perhaps 
have even already been published in a obscure journal, and that the 
results in some of the non-included studies are different from the re- 
sults in most of the meta-analysed studies”. Again in a report on 
combining information sponsored by the National Research Council’s 
Committee on Applied and Theoretical Statistics (National Research 
Council, 1992) the conclusion is that “modeling would be improved 
by an increase in the use of random effects models in preference to 
the current default of fixed effects models.” 

But Pocock (1993) suggests that the random effects method has 
both conceptual and practical problems; he dislikes both the as- 
sumptions that the studies are a random sample from a hypothetical 
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population of such studies, and that if heterogeneiby exists, that 
substantially more weight is given to the smaller studies than in the 
fixed effect approach when smaller studies are often those of poorer 
quality. The problem is usually not too serious provided that the 
number of patients in a given trial is not too small - the problem 
becomes less not as the number of trials increases but as the number 
of patients per trial increases. 

Thompson (1993) also raises some doubts about the random 
effects model, arguing that it may mask the true reasons for the un- 
derlying heterogeniety and that possible explanations should be in- 
vestigated. One possibility would be to use generalised linear models 
(see Chapters 4 and 7) allowing for both fixed study level covariates, 
indicating characteristics of the study that. may be related to  effect 
size and thought to explain some of the heterogeneity, together with 
a random component to accomodate unexplained heterogeneity. 

DeMets (1987) and Bailey (1987) discuss the strengths and weak- 
nesses of the two competing models. Bailey, for example, suggests 
that when the research question involves extrapolation into the future 
- Will the treatment have an effect, on the average? - then the 
random effects model for the studies is the appropriate one. This 
research question implicitly assumes that there is a population of 
studies from which those analysed in the meta-analysis were sam- 
pled, and anticipates future studies being conducted or previously 
unknown studies being uncovered. In contrast, when the research 
questions concern whether treatment has produced an effect, on the 
average in the set of studies being analysed, then the fixed effects 
model is the one-tc-use. Meier (1987) and Pet0 (1987) present fur- 
ther arguments in favour of one or other of the models. 

Oakes (1993) also considers the methodological arguments that 
can arise in the application of meta-analysis, but in addition, ad- 
dresses the wider question of whether the statistical combination of 
results from different trials is legitimate at all. He makes the point 
that the principal feature of statistical inference is the argument from 
sample to population. For the argument to have pretensions to strict 
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legitimacy, the sample must be the result of a random process; for 
the argument to make sense, the population must be identifiable. In 
the case of meta-analysis, Oakes argues that there are grounds for 
concern on both counts, and at the heart of the debate as to whether 
and to what extent data from differing studies may legitimately be 
combined - the so-called problem of apples and oranges - is the 
question of “what is the population?” Without a clear conception of 
the population, Oakes suggests that a parameter or its meta-analytic 
estimate is meaningless, and devoid of application. Oakes finally 
summarises his own views about applying the inferential process in 
meta-analysis as follows: 

It is my guess that the controversial inferential aspect of meta-analysis, 
like the positivist philosophy to which it is the witting or unwitting heir, 
will not fall to sceptical critiques such as mine but rather it will collapse 
under its own weight in the conscientious application of its practitioners. 

Researchers will move effortlessly from the insightful collection, stratifi- 
cation and summary of disparate results to  the intelligent interpretation of 
them. The specious pseudo-objective accuracy of the intervening statistical 
inferences will be discreetly dropped. 

Medical science will not suffer. 

Table 10.3. Results from Nine Trials Comparing SMFP and NaF 
Toothpastes in Prevention of Caries Development. 

Study NaF SMFP SMFP-NaF 
n Mean SD n Mean SD 

~~ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

~~ ~ ~ ~~ 

134 5.96 4.24 113 4.72 4.72 
175 4.74 4.64 151 5.07 5.38 
137 2.04 2.59 140 2.51 3.22 
184 2.70 2.32 179 3.20 2.46 
174 6.09 4.86 169 5.81 5.14 
754 4.72 5.33 736 4.76 5.29 
209 101.0 8.10 209 10.90 7.90 

1151 2.82 3.05 1122 3.01 3.32 
679 3.88 4.85 673 4.37 5.37 

+0.86 
+0.33 
+0.47 
+0.50 

0.04 
+OX0 
+0.019 
+0.49 

-0.28 
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Like Thompson a.nd Pocock (1991), it appears tha.t Oakes views 
meta-analysis as largely an objective descriptive technique and plays 
down the value of the quantitative results of such an analysis. But 
the growing use of meta-analysis in a number of speciality areas with 
quantitative results being regarded at least as importantly as those 
that are qualitative, argues that in practice meta-analysis is seen as 
more substantial than a mere descriptive technique. 

10.4. TWO EXAMPLES OF THE 

10.4.1. The Comparison of Sodium 

APPLICATION OF META-ANALYSIS 

Monofluorophosphate (SMFP) and 
Sodium Fluoride (NaF) Toothpastes in 
the Prevention of Caries Development 

Table 10.3 shows the results of nine randomised trials comparing 
SMFP and NaF toot,hpastes for the prevention of caries development. 
The outcome in each trial was the change, from baseline, in the 
decayed, missing (due to caries) and filled surface (DMFS) dental 
index. Calculation of the test for heterogeneity given in Table 10.2 
leads to a value for Q of 5.40. Testing this as a chi-squared with 
8 degrees of freedom provides no evidence of heterogeniety in the 
nine trials; consequently, only the fixed effects model will be used. 
Applying the general methodology described in Table 10.2 to the 
mean differences leads to a pooled estimate of the effect size of 0.283 
with a 95% confidence interval of (0.103,0.464). The trials provide 
convincing evidence of a greater change from baseline in the DMFS 
index when using toothpastes containing ShlFP than when using 
pastes containing NaF. 

10.4.2. The Effectiveness of Aspirin in 
Preventing Death after a Myocardial 
Infarct ion 

Table 10.4 shows the results of seven randomised trials, in chronologi- 
cal order, of the effectiveness of aspirin (versus placebo) in preventing 
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Table 10.4. Results of Seven Trials of Aspirin for Preventing 
Death after a Myocardial Infarction. 

Survived Died Total 

1. Elwood et al. 
(1974) 

2. Coronary drug 
project group (1976) 

3. Elwoodand 
Sweetnam (1979) 

4. Breddin et al. 
(1979) 

5. Persantine-Aspirin 
Study Group (1980) 

6. Aspirin study 
Group (1980) 

7. ISIS-2 Collaborative 
Group (1988) 

Aspirin 
Placebo 
Total 

Aspirin 
Placebo 
Total 

Aspirin 
Placebo 
Total 

Aspirin 
Placebo 
Total 

Aspirin 
Placebo 
Total 

Aspirin 
Placebo 
Total 

Aspirin 
Placebo 
Total 

566 
557 

1123 

714 
707 

1421 

730 
724 

1454 

285 
271 
556 

725 
354 

1079 

2021 
2038 
4059 

7017 
6880 

13897 

49 
67 

116 

44 
64 
108 

102 
126 
228 

32 
38 
70 

85 
52 

137 

346 
219 
465 

1570 
1720 
3290 

615 
624 

1239 

758 
77 

1529 

832 
850 

1682 

317 
309 
626 

810 
406 

1216 

2267 
2257 
4524 

8587 
8600 

17187 

death after a myocardial infarction (the data are taken from Fleiss, 
1993). In this case, a suitable measure of effect size is the logarithm of 
the odds ratio (see Chapter 4). The meta-analysis results are given 
in Table 10.5. The fixed effects model indicates a positive effect 
for aspirin, but using the random effects approach, the confidence 
interval for the overall odds ratio expands to include the value one, 
indicating no effect. 
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Table 10.5. A Meta-analysis of the Data in Table 10.4. 

(a) Fixed effects 

Study Odds Ratio log(odds ratio) W =  l/VAR[log(or)] 

1 1.18 0.17 
1 1.47 0.38 
3 1.25 0.22 
4 1.25 0.22 
5 1.25 0.23 
6 0.88 -0.12 
7 1.12 0.11 

24.09 
24.29 
48.80 
15.44 
27.41 

103.99 
663.92 

Using log(or) as the measure of effect size we have: 

= 0.104 

and a 95% confidence interval for the logarithm of the population odds ratio 
is (0.039,0.169). 

With respect to the odds ratio itself, the point estimate is 1.109 and the 
confidence interval is (1.040,1.184). 

(b) Random effects 

Again using log(or) as the measure of effect size, the various quantities 
defined in Table 10.1 are as follows: 

W = 129.85 

S& = 56363.38 

U = 345.02 

D = 0.008 

Q = 8.76 

Y' = 0.1158 

W; . . .  W,* = 20.19,20.33,35.09,17.74,23.14,56.74,105.11 
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The 95% confidence for the logarithm of the population odds ratio is 

With respect to the odds ratio itself, the point estimate is 1.123 and the 
(-0.0025,0.2341). 

confidence interval is (0.997,1.263). 

10.5. BAYESIAN META-ANALYSIS 

A Bayesian approach to meta-analysis might begin with the following 
random effects model: 

(10.1) 

82 - N ( 6 , T 2 )  2 = 1,. . . , N  (10.2) 

where 13i is the true but unknown effect in the i th study and 4 is 
the unknown population effect; it is the latter quantity which is of 
most interest, since it represents the pooled effect indicated by the 
studies. Finally, g2 is the population variance: or the between-study 
variability, and is also of interest since it is a measure of how variable 
the effect is within a population. In the case where T~ = 0, a fixed 
effect model is obtained. 

In a Bayesian setting, prior distributions would be needed for 
the unknown parameters of the model. A normal prior is typically 
specified for 417. Although a prior for r could be specified, for ex- 
ample specifying the precision, l / ~ ,  as being gamma distributed (see 
Section 9.3 for such a specification for the variance of a random effect 
for frailty), such a specification is not necessary. With a prior for 7, 

n(7>, the posterior distribution for T given the observed effect sizes 
f(71Y) is proportional to: 

where Si = r2 + (o?/ni) 
Assuming a uniform distribution for T ( T ) ,  the posterior dist.ribu- 

tion can then be approximated by a discrete distribution calculated 
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over, say, 100 equally spaced points that straddle its mode and with 
a range sufficient to include all the values in which the density is a t  
least 1% of that at the mode (Hedges, 1998). The simple sum of the 
100-point densities provides the normalising constant. 

With f ( ~ 1 Y )  approximated by this discrete distribution, a. pos- 
terior density for 4 J Y  is easily calculated as a finite mixture of the 
conditional densities g(qIY, T ) .  This conditional density is Normal 
with mean: 

and variance 

a2(r) = c- k j’ 
giving the posterior density for 4 as: 

(10.4) 

(10.5) 

(10.6) 

where it(.) is the standard normal probability density function. 
Monte Carlo methods provide an alternative means of calculating 

g ( $ y ) .  A value of T is first sampled from ~ ( T J Y ) ,  and then a value 
for $ is drawn from f($lY, T). 

A plot of the estimated posterior density g(4IY) provides a useful 
graphical expression for the uncertainty in 4. A mean and variance 
can be calculated as, too, can the probability that the mean effect 
size is positive, or above some other clinically meaningful value. 

In principle, the Bayesian approach has the advantage over the 
methods of the previous section for random effects models, of more 
completely accounting for the uncertainty in the estimation of 
the random effect in the standard errors and confidence intervals 
of the overall effect estimate. In practice, the results calculated 
using Bayesian methods differ little from those using the methods 
of the previous sections unless the number of studies is very small 
or the studies are very variable. It is also under these circumstances 
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that the particular choice of prior for 7 may have a substantial im- 
pact. It is therefore important to examine the sensitivity of findings 
to different choices of prior. 

Kass and Wasserman (1996) provide some useful background for 
the choice of prior distributions. For T = 0, the Bayesian estimates 
of the study specific effects are all equal to the common fixed effect 
estimate. When T is very large in proportion to the within study sam- 
pling variance, then the Bayesian estimates approach their observed 
values. For intermediate values of T, the estimates lie between their 
observed values and the overall common mean - they are ‘shrunken’ 
towards the mean, the studies with the more uncertain effect sizes 
(usually the smaller studies) being more shrunken. Therefore pri- 
ors for T that are more concentrated on zero will generate greater 
shrinkage than more diffuse priors. 

However, Bayesian methods are relatively simply modified to con- 
sider more general random effects specifications, e.g., to examine the 
implications of using study effect size distributions with heavier tails, 
such as Student’s t or gamma distributions (e.g., Smith et al., 1995). 
Analyses with an informative prior for the effect size are also a little 
more complex. 

10.6. META-ANALYSIS IN MORE 
COMPLEX SETTINGS 

The analyses above have assumed that the contributing studies and 
their corresponding effect sizes Y,  are exchangeable. No study-level 
covariates have been considered and are conditional on the 13i and 
the Y,  being independent. Non-independence may arise through a 
clustering of contributing trials by centre, by an overlap of patients 
across trials, or sometimes by the presence of single studies that 
provide more than one estimate of effect. In the more complex cases, 
the question arises as to whether a more effective analysis might be 
achieved by combining data at the level of the individual subject, 
i.e., data pooling, rather than at the level of the trial. Senn (1998) 
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Fig. 10.5. Confidence intervals for odds ratios from a series of randomised 
trials of endoscopic treatment. of bleeding peptic ulcer presented in cumu- 
lative form (form Chalmers and Lau, 1993). 

considers this question in relation to covariate adjustment, favouring 
data pooling. 

10.7. SUMMARY 

Meta-analysis has become one of the greatest growth areas in medical 
research, despite the many tough criticisms that have been levelled 
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at the approach. (An excellent recent account is available is Nor- 
mand, 1999.) Users (and potential users) of meta-analysis need to 
keep in mind the problems that arise at each stage - what studies 
to select for inclusion; should fixed or random effects models be used 
to provide an overall estimate of effect size; to what population can 
results be generalised? And if meta-analysis, despite its wide usage, 
remains controversial, what can be said of the suggestion of Chalmers 
and Lau (1993) that cumulative meta-analysis might be employed to 
establish such strong evidence of a treatment effect to make further 
randomised trials unjustified? Figure 10.5, for example, shows the 
data previously presented in Fig. 10.4 in a cumulative fashion. Note 
that by 1982 the chances that endoscopic therapy was not reducing 
recurrent or continued bleeding, when compared with standard ther- 
apy, was less than one in a thousand. Yet in the 25th published trial, 
patients were randomly assigned to a control group between April 
1989 and June 1991. Chalmers and Lau comment, “If the authors of 
the later publications knew of the previous ones, how much proof did 
they require, or were they tied to the null hypothesis yoke?” They 
conclude, “the advent of cumulative meta-analysis makes one worry 
about the present custom of conducting clinical trials as if no prior 
trials of the same treatment had been done. When is it no longer 
ethical to assign patients at random to a control group in a new 
definitive large trial?” 



APPENDIX 

Soft ware 

Many of the methods described in this book could not be applied 
routinely without the aid of some convenient piece of statistical soft- 
ware. Fortunately, many excellent statistical packages are now widely 
available, although our intention in this appendix is not to attempt 
either a comprehensive review or critique. Instead, we shall give 
details of packages that we feel are most suitable for specific applica- 
tions and analyses. Links to web pages for a wide variety of statistical 
software can be found at: 

http: / /www .st ata.com/support /links/stat software. html 

1. SOFTWARE FOR SAMPLE SIZE 
DETERMINATION 

nQuery Advisor Version 2.0: A package for choosing an appropriate 
sample size for many types of design and analysis including two- 
sample and paired t-tests, analysis of variance, crossover designs, 
nonparametric tests, survival analysis and regression. Very sim- 
ple to use and well described is the user manual written by Janet 
D. Elashoff. 

Available from: 

0 Statistical Solutions Ltd. 8 South Bank, Crosse’s Green, Cork, 
Ireland: Tel +353 21 319629, Fax +353 21 319630: 

http://www.statsol.ie: 

305 
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0 In the USA, Boston, MA, USA 1-800-262-1171: 

ht tp: //www .statsolusa.com: info@statsolusa.com 

MS-DOS 3.1 or higher, Microsoft Windows 3.1, Windows 95 or 

A large number of other software packages for estimating sample 
Windows N T  is required. 

size when designing studies can be found on: 

http://www.interchg.ubc.ca/cacb/power 

2. SOFTWARE FOR MULTIPLE 
IMPUTATION OF MISSING VALUES 

Software is available from Statistical Solutions (address above) and 
from: 

http://www.stat .psu.edu/-jls/misoftwa.html 

3. SOFTWARE FOR INTERIM ANALYSIS 

0 East, Version 2:  Cytel Software Corporation, 675 Massachu- 
setts Ave., Cambridge, MA 98195, USA. 

0 PEST3, Planning and Evaluation of Sequential Trials: MPS 
Research Unit, University of Reading, Earley Gate, Reading 
RG6 6FN, United Kingdom. Both these packages are reviewed 
in Emerson (1996). 

4. SOFTWARE FOR GENERALISED 
LINEAR MODELS 

Generalised linear models can be fitted using most statistical pack- 
ages, including: 

0 SAS - SAS Institute Inc., SAS Campus Drive, Cary, NC 
27513, USA. 
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0 STATA - Stata Corp., 702, University Drive East, College 

0 GENSTAT - Numerical Algorithms Group Ltd., Wilkinson 

0 SPSS - SPSS Inc., 444 N. Michigan Ave., Chicago, IL 60611, 

Station, TX 77840, USA. 

House, Jordon Hill Rd., Oxford OX28DR, UK. 

USA. 

5. SOFTWARE FOR ANALYSING 
LONGITUDINAL DATA 

For the summary measure or response feature approach described in 
Chapter 5, any of the standard packages can be used. For the more 
involved modelling approaches covered in Chapters 6 and 7 there are 
a number of possibilities: 

5.1 Multivariate normal regression model 

Both BMDP5V and SAS PROC MIXED (see, Getting Started with 
PROC MIXED,  SAS Institute Inc.) can be used to fit the types 
of models described in Chapter 6. A variety of structures may be 
specified for the covariance matrix of the repeated measurements, 
including independence, compound symmetry, random effects and 
unstructured. 

4.1 Generalized Linear Mixed Models (GLMM) 

Three general approaches to GLMM estimation are available. 

(1) Maximum likelihood estimation: 

0 Tractable special cases; binomial mixed logistic in EGRET 
(Statistics and Epidemiology Research Corp., 1107 NE 45th 
St., Suite 520, Seattle, WA 98105); negative binomial of 
Stata’s nbreg. 

0 Standard numerical integration; gllamm written for 
STATA. (Computational time can be considerable.) 
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(2) An approximation based on a linearising adaptation to stan- 
dard random effects algorithms. 

0 This is available in SAS (glimmix) - downloadable from: 

‘‘http:/ /www.sas.com/techsup/download/samples/ 
stat -and-iml” 

with documentation by Wolfinger, Reference for glimmix: a 
tutorial on mixed models (SAS Institute Inc.). 

0 Also available in MLW in - the Multilevel Models Project, 
Mathematical Sciences, Institute of Education, University 
of London, 20 Bedford Way, London WClHOAL, UK. 

(3) A Bayesian approach using Monte Carlo Markov Chain 
estimation. Models may be specified and fitted entirely 
within an MCMC framework (e.g., BUGS available from 
http://www.mrcbsu.cam.ac.uk) or MCMC may be used 
as a final stage (e.g., MLWin). 

5.2 Generalised Estimating Equations approach 

This approach is now available in SAS, STATA and S-PLUS - 
Statsci Division, MathSoft Inc, 1700 Westlake Avenue N, #500 Seat- 
tle, Washington 98109-9891, USA. 

5.3 Missing Data 

(1) The Diggle/Kenward model for dropouts is implemented in 
the OSWALD (Object oriented software for the analysis of 
longitudinal data in S) written by David M. Smith, Bill 
Robertson and Peter Diggle. The software runs under S or 
S-Plus on both Unix and DOS systems. OSWALD is avail- 
able from: 

http://www.maths.lancs.ac.uk:2080/~maa036/oswald/ 
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(2) Weighting approaches for the treatment of missing data can be 
implemented in SAS, SUDAAN (Research Triangle Institute, 
P.O. Box 12194, Research Triangle Park, NC 27709, USA), 
and particularly simply in STATA. 

6. SOFTWARE FOR BAYESIAN ANALYSIS 

BUGS provides a model specification language allowing a wide vari- 
ety of models to be estimated via Gibbs sampling. The documenta- 
tion provides an extensive range of examples. 

7. SOFTWARE FOR SURVIVAL ANALYSIS 

(1) The routine methods of analysis, such as Kaplan-Meier, Cox's 
regression, etc., are available in all standard packages such as 
SAS and SPSS. 

(2) A wider range of techniques are implemented in S-Plus and 
STATA. 

(3) A number of other very useful methods are described in 
Extending the Cox Model, Technical Report Number 58, Mayo 
Clinic, Rochester, Minnesota, written by Professor Terry 
Therneau. 
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