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Preface 

Paul Bons, Mark Jessell and Daniel Koehn 

From the first observations of microstructures, geologists have tried to 

model and simulate their formation. Modelling and simulation are closely 

related terms, often used as synonyms. However, there is a difference. Ac-

cording to the Apple-Macintosh electronic dictionary, a model is “a sim-

plified description, especially a mathematical one, of a system or process, 

to assist calculations and predictions”. The same dictionary defines simu-

lation as the “imitation of the appearance or character of [something]”. 

As a special case it also lists “product of a computer model”. A model is 

therefore a theoretical abstraction, whereas the simulation is the actual ap-

plication of the model to a specific case. For example, a rigid ellipsoid in a 

deforming homogeneous viscous matrix (Fig. 1b) can be a model for a 

porphyroblast or porphyroclast in a deforming rock (Fig. 1a) (Ghosh and 

Ramberg 1976). Applying and running the model for a specific case would 

be a simulation (Fig. 1c) (e.g. Bons et al. 1997, see also Ch. 4.7). We used 

the term simulation in the title of this book, because we are mainly con-

cerned with the numerical implementation of models as a means to explor-

ing their validity, not so much with the models themselves, which are am-

ply dealt with in such works as Passchier and Trouw (2005). 

 

 

 

Fig. 1. (a) δ-shaped hornblende porphyroclast in a sinistral shear zone from Hid-

den Valley, South Australia. Width of view about 5 mm. (b) The model for the 
development of porphyroclast structures, such as the δ-clast, is that the porphyro-

clast rotates as a rigid object in a deforming ductile matrix. (c) To study the behav-

iour of porphyroclasts, the model can be implemented into, for example, a finite 

element program to run simulations 
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The purpose of this book is to provide an overview of the possibilities of 

using numerical techniques to study microstructures in rocks. Although 

wide-ranging, we cannot cover every technique that was ever applied to a 

microstructural problem. However we hope at least to demonstrate what is 

currently possible, and inspire users to investigate the field further if their 

particular interest is not currently met. In addition most of the numerical 

experiments we present may be repeated using the accompanying CD-

ROM, so that the book can be used as a companion to an undergraduate or 

graduate level course on microstructures.  

Chapter 1 gives a brief overview of the historical development of nu-

merical simulation techniques as applied to grain scale phenomena in 

rocks, and discusses the principal constraints on applying numerical simu-

lations to microstructural issues 

There is no single way to simulate microstructural evolution. Some 

processes are best simulated using one method (e.g. Finite Elements), 

while other processes require other simulation methods, and many proc-

esses can in fact be adequately simulated by a whole range of techniques. 

Chapter 2 therefore gives an overview of the main numerical methods that 

are or can be used. This chapter is intended for those readers with no pre-

vious knowledge of numerical simulation methods, or only a subset of 

them.  

A range of microstructural processes is presented in Chap. 3, which is 

process oriented. The theory of how each process may potentially affect a 

microstructure is briefly described followed by an overview of the way in 

which the process has been simulated numerically. 

Based on Chap. 3, Chap. 4 gives some examples of the application of 

numerical simulation to particular problems. This chapter emphasises the 

need to combine different concurrent processes to simulate what happens 

in nature. Many highly sophisticated programs have been written to simu-

late single processes. However, these processes rarely operate in isolation 

in nature, and one therefore needs to be able to also simulate the interac-

tion between different processes.  

Many programs have been developed to simulate microdynamic proc-

esses. However, few of these are publicly available as these programs are 

usually developed for specific research purposes and remain with the 

reface



Preface      VII 

authors. There is currently only one general package, called Elle1 that bun-

dles a variety of simulation software for microdynamic modelling in earth 

sciences.  

Elle is open source software that is developed by an informal consor-

tium of earth scientists, many of whom have contributed to this book. The 

main advantage of Elle is that it is actually a growing collection of codes 

for individual processes, which allows the user to combine multiple proc-

esses in a single simulation. Where possible, Elle software is used for the 

examples presented in this book. “  EXPERIMENT” at the end of a fig-

ure legend indicates that the figure can be replicated by running one of the 

example scripts on the CD-ROM (Appendix B). Thus, with the attached 

CD-ROM, the reader can run the examples exactly as they are shown in 

the book. As a next step, the reader can start to modify input parameters or 

data files to learn both how the simulation works and how particular proc-

esses act on a microstructure. The Appendices provide all the information 

needed to run Elle. 

The open source Elle software is constantly being developed by re-

searchers from all over the world. The software on the CD-ROM is repre-

sents the state of the code at the time of printing of this book. The latest 

version of Elle can be found on http://www.microstructure.info/elle. This 

web site also provides answers to frequently asked questions, fixes to the 

inevitable bugs and other information material.  

                                                        
1  The Elle project started in the Department of Earth and Planetary Sciences of 

Monash University (Melbourne, Australia) during a series of weekly coffee-

with-cakes meetings in the early nineties. The (over) ambitious idea was to de-

velop a “super model” that would be able to model everything (metamorphism, 

deformation, the lot!). The “super model” was quickly baptised “Elle” after a 

then famous Australian super model by the name of “Elle”. We are indebted to 

Marlina Elburg to have come up with such a superb, easy to remember, but 

otherwise meaningless name for the project and software. 
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1 Introduction 

The complete arrangement of µm-mm scale structures or elements in a 
rock is alternatively called microstructure, fabric, or texture. These 
structures involve grain sizes, grain shapes, grain boundary shapes, the 
subgrain structure, distribution of mineral phases, lattice orientations, 
etc. (Fig. 1.1). There is, unfortunately, no consensus of what term to 
use for the whole arrangement of all these elements. For example, some 
use texture to only denote the lattice orientation distribution, ignoring 
the other elements of the arrangement. Others use texture in a wider 
sense, as the term foam texture indicates: a microstructure where the 
grains look like the bubbles in a foam. Most geologists mean roughly 
the same when they use the term microstructure: this is what you see in 
a thin section with an optical microscope. This is also how the term is 
mostly used in this book. However, materials scientists usually think of 
a much smaller scale when they use microstructure. Microstructures in 
rocks are important to geologists for two reasons: firstly, to find out the 
history of a particular rock, and secondly, to understand processes in 
rocks and to predict rock properties.  

 
 

 
Fig. 1.1. Some microstructural features of a crenulated quartz-biotite schist, such as 
mean grain size and grain shape, grain size distribution and distribution and align-
ment of grains and mineral phases in foliations. Other possibly relevant features 
could be lattice-preferred orientation of quartz, chemical zonation patterns in the bi-
otite, etc. (field of view circa 10 mm, PPL) 

 
Geology started out as a mostly forensic science. For centuries, ge-

ologists have gone into the field to study outcrops and collected sam-
ples to look at them in more detail. For more than a century geologists 
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have used petrographic microscopes to study the microstructure in thin 
sections. This microstructure is part of the “memory” of the rock, and it 
is our aim to read and decipher this memory in order to find out what 
happened to the rock millions or even billions of years ago. The 
trained geologist will use many indicators of past events, such as min-
eral parageneses to estimate metamorphic grade, overgrowth and inter-
section relationships to unravel sequences and order of events, and 
sense-of-shear indicators that reveal the kinetics of deformation in a de-
formed rock (Passchier and Trouw 2005). The method used is essen-
tially an investigative or deductive one: “if one sees microstructure X it 
implies process or event Y happened”.  

The study of microstructures is also used in a predictive or inductive 
way. For example, microstructures in quartz indicate the operation of 
dislocation creep as the dominant deformation mechanism at amphibo-
lite-facies metamorphic conditions. This can then be used to predict the 
rheological behaviour of the middle crust, which is input needed in 
large-scale geophysical simulations. Again we need to know the link 
between microstructure X and process or property Y. 

In order to determine the link between X and Y, geologists rely on a 
body of knowledge and experience that has built up over the years. 
Because geological processes usually occur outside the scope of direct 
investigation, we often have to determine the link in an indirect ex-
perimental way, by analogy from other materials (e.g. metals and ce-
ramics), and of course from theory. Increasingly, numerical simula-
tions are used to investigate how microstructures form, and hence, to 
gain insight in what they mean. 

The four key elements needed to explain how the earth deforms are 
(Fig 1.2): 
1. The spatial (e.g. microstructures) and temporal (e.g. earthquake sta-

tistics) patterns seen in natural systems.  
2. The boundary conditions acting on a system (e.g. temperature, stress, 

pressure, etc.) 
3. Knowledge of the processes that occur in rocks and the mechanical 

response to the boundary conditions.  
4. An understanding of how the three elements above couple.  

It is widely accepted that to develop more complete theoretical models 
of rock deformation, we need to couple these elements more tightly, and 
numerical simulations provide a relatively new method for achieving that 
coupling. The numerical simulation of microstructures in geological ma-
terials has progressed in parallel with techniques developed in the wider 
materials science community (see Raabe 1998 for a comprehensive bibli-
ography). In recent years there has been an upsurge in interest in this 
field due to the easy access to increasingly more powerful computers. 

2    P. D. Bons et al.
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Equally important has been the introduction of new measurement tech-
niques such as Orientation Imaging Microscopy (OIM) and Electron 
Backscatter Diffraction (EBSD) (Lloyd and Freeman 1991; Panozzo-
Heilbronner and Pauli 1993; Pauli et al. 1996; Fueten 1997; Leiss et al. 
2000; Fueten and Goodchild 2001; Bestman and Prior 2003).  
 

 
Fig. 1.2. The fundamental controls on rock deformation 

These techniques allow us to systematically characterize the grain 
boundary topologies and textures of rocks with relative ease and in 
much more detail (Trimby et al. 1998), thus provoking us to rethink 
what microstructural parameters we should use as indicators of specific 
processes. These techniques are in turn leading to the development of 
new in-situ experimental methods that allow us to characterise the sam-
ple microstructure in a variety of ways during the experiment, so that 
the coupling between processes and the mechanical response can be 
followed as a series of time lapse images of the sample (Offerman et al., 
2002; Seward et al., 2004; Piazolo et al. 2004; Schenk and Urai, 2005). 
In this way the all-important temporal behaviour can be integrated into 
the interpretation, and together they provide much stronger constraints 
on our models.  

The paradigm for understanding the mechanical behaviour of mate-
rials was for many years the Deformation Mechanism map (Frost and 
Ashby, 1983), which related the applied stress, the temperature of de-
formation and one or more microstructural parameters (such as average 
grain size) to predictions of the dominant deformation mechanism (in 
terms of accommodating the largest strain rate) for a given set of con-
ditions. Unfortunately there are two fundamental limitations to this ap-
proach for geoscientists, who have to work with very long deformation 
histories: 
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1. these maps provide little insight into the non-equilibrium (non-
steady state) behaviour, such as when the boundary conditions 
change, or when the material localizes strain, and 

2. they effectively ignore the effects of other geological processes such 
as metamorphism, the role of fluids, or recrystallisation that modify 
the microstructure. These processes do not necessarily directly play a 
role in deforming the rock, but nevertheless modify the relative im-
portance of different deformation mechanisms and the resulting me-
chanical response. 

At the hand specimen scale, our understanding of how geological proc-
esses couple remains rudimentary, in no small part because of the 
inherent complexity of the system. If we want to develop flow laws ap-
plicable to a wide range of boundary conditions, we need to under-
stand how grain-scale process couple with grain-scale patterns (i.e. mi-
crostructures) in order to modify mechanical behaviour. As a result of 
this complexity, the geological community understandably lags behind 
the wider materials science community in developing history depend-
ant flow laws, where it is recognised that “Microstructure is the state 
variable of materials properties” (Gottstein pers. comm. 2005). 

1.1 Historical background 

Until recently, the simulation of microstructural development was quite 
limited. Physical simulations, or experiments, were of course carried out 
right from the beginning of investigations into microstructures (see the 
comprehensive review of the state of the art at the beginning of the 
20th century in Paulcke, 1912). However, non-physical simulations 
were severely hampered by the limited calculation power before the 
advent of computers. The advent of computers made it possible to re-
peat the existing non-physical simulations, but more quickly, more ac-
curately, with higher resolution and for larger data sets. This trend is il-
lustrated with three examples of microstructures that have been 
simulated extensively for about a century: the development of crystal-
lographic preferred orientations, constrained crystal growth in veins 
and the rotation of relatively rigid objects (e.g. porphyroclasts and 
porphyroblasts) during deformation. 

   P. D. Bons et al.
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1.1.1 Simulation of lattice-preferred orientations 

The earliest microstructural numerical simulation studies in geology 
were focused on predicting the CPO patterns found in naturally de-
formed rocks. This work was based on metallurgical models that were 
first developed by Taylor (Taylor 1938), and which, with modifica-
tions, are still widely applied (Tóth et al. 1997). Lister and co-workers 
used a standard Taylor-Bishop-Hill (TBH) formulation to study the de-
velopment of CPO in quartz and calcite rocks (Fig. 1.3a) (Lister et al. 
1978; Lister and Paterson 1979; Lister & Hobbs 1980; Lister 1982). 
Other groups have since extended this work to a broader range of min-
erals and to allow refinements of the TBH scheme such as the relaxed-
constraints (Ord 1988) and self-consistent approaches (Wenk et al. 
1989a, 1989b; Canova 1994; Takeshita et al. 1999). Their work was 
able to demonstrate that, even though many minerals do not fulfil the 
requirement for the strict application of the Taylor model (due to the 
limited number of slip systems available) many of the key features of 
natural textures could be accounted for. 

An alternative approach recognises that in some minerals, such as 
trigonal symmetry quartz at low temperatures, only one slip system 
may be readily activated. This necessitates incorporation of intra- and 
intergranular strain heterogeneity in simulations (Etchecopar 1977; 
Etchecopar and Vasseur 1987; Zhang et al. 1993, 1994a, 1996; Wilson 
& Zhang 1996; Wilson et al. 1996; Zhang and Wilson 1997a,b). These 
simulations can reproduce the behaviour of, for example, ice and low 
temperature quartz. Grain boundary sliding was shown to enhance tex-
ture development in model materials that allowed sliding interfaces be-
tween grains deforming with one slip system (Zhang et al. 1994b). The 
model of Ribe (1989) has been extended to simulate texture develop-
ment in quartz when grain boundary sliding is the dominant deforma-
tion mechanism (Casey and McGrew 1999). 

Under a wide range of crustal conditions, rocks deforming by crys-
talline plasticity are also modifying their microstructure as a result of 
dynamic recrystallisation processes (Urai et al. 1986; Hirth & Tullis 
1992). Jessell drew upon experiments on cold worked copper (Kallend 
and Huang 1984) to support the assumption that the level of stored 
work is orientation dependent, and that the low crystal symmetry of the 
rock forming minerals would result in a larger anisotropy of stored 
work than is present in metals (Jessell 1988a,b; Jessell & Lister 1990). 
He developed a hybrid scheme that combined the Taylor code of Lister 
with a Monte Carlo simulation that simulated the evolution of textures 
in quartz polycrystals by iterating between small increments of lattice 
rotations and grain boundary migration and subgrain formation (Fig. 
1.3a-b).  
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Fig. 1.3. Simulations of crystallographic preferred c-axes orientations in quartzite. (a) 
Classical Taylor calculation for simple shear up to a shear strain of three (Lister 
1981). (b) Combination of a Taylor calculation for lattice reorientation and a Monte 
Carlo model for dynamic recrystallisation at relatively low temperature, after Jessell 
and Lister (1990). Shear strain (top to the right) is three. Stereoplots show orienta-
tions of c-axes. Dot size is proportional to grain size in upper plot. (c) Same as (b), but 
for a relatively high temperature with higher grain boundary mobility 

The recrystallisation processes in these simulations were driven by a 
simple stored work term for each element in the Monte Carlo simula-
tion, as well as the more normal boundary-energy derived neighbour 
relations (Anderson et al. 1984; Weaire & Rivier 1984). These simula-
tions show that a good correspondence with natural textures could be 
explained by the coupling of lattice rotations and dynamic recrystallisa-
tion. Comparable hybrid lattice rotation/recrystallisation schemes have 
recently been developed that replace the Taylor-Bishop-Hill scheme 
entirely with Finite Element codes capable of heterogeneous intra-
crystalline deformation (Radhakrishnan, et al. 1998; Raabe and Becker 
2000; Bate 2001). Another approach to simulating the effects on tex-
ture of dynamic recrystallisation in rocks has been to build in a grain 
size weighting to simulate the changes in grain size that may result 
from dynamic recrystallisation driven by orientation dependent stored 
work terms (Takeshita et al. 1999). 

This example highlights the importance of considering multiple and 
coupled processes in simulations. The coupled action of several proc-
esses is at the heart of the formation of microstructures, and therefore 
micro-gauges such as palaeo-stress indicators (Twiss 1977; Kohlstedt 
and Weathers 1980). However, the nature of coupling is often difficult 
to determine and numerical simulations that treat coupled processes are 
still in their infancy (Etchecopar & Vasseur 1987, Jessell & Lister 
1990, Jessell et al. 2001; 2005). 

Texture development is classically attributed to result from move-
ment of dislocations (e.g. Wenk 1985). However, other deformation 
processes, such as dissolution-precipitation creep (Rutter 1976) may 
hypothetically also affect textures (Hippert 1994; Stallard & Shelley 
1995; den Brok 1996). Recently, Bons & den Brok (2000) explored 
this possibility with a numerical simulation. They showed that reaction-
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controlled dissolution-precipitation creep, coupled with grain rotation 
can also lead to strong lattice-preferred orientation, similar to those de-
scribed above. Their simulation used a constant stress approach, the 
opposite to the more commonly used constant strain rate or Taylor ap-
proach, and which may over-estimate the strain rate heterogeneity and 
rotation rates of grains.  

  
 

 

Fig. 1.4. Two-dimensional simulations of crystal growth. (a) Isotropic growth simu-
lation of crystals in a sequentially opening crack as used by Urai et al. (1991). Grain 
boundaries are perpendicular to the growth front. (b) The FACET growth simulation 
of Zhang and Adams (2002) for growth of a number of seeds into an open fluid-filled 
crack. All grain surfaces in contact with the fluid are facets. (c) Vein Growth simula-
tion of Bons (2001) for growth of a number of seeds into an open fluid-filled crack. 
Grain surfaces in contact with the fluid can have any crystallographic orientation, 
each with its own growth rate. Slow orientations become facets. (d) Fibrous fringes 
developed adjacent to a rigid object, simulated by Koehn et al. (2000) with Fringe 
Growth, an adapted version of Vein Growth 
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1.1.2 Simulation of crystal growth in veins 

The second example is that of crystals growing side-by-side on the sur-
face of a crack, which are constrained in their growth by their neigh-
bours (Durney and Ramsay 1973; Bons 2000; Oliver and Bons 2001; 
Passchier and Trouw 2005; also see Ch. 3.6). This growth competition 
was already studied by Taber (1916) and Mügge (1928). They had to 
use pen, paper and ruler to model the progressive shape of crystals that 
impinge on each other. Over 80 years later, Urai et al. (1991) essen-
tially used the same model and simulation technique, but using a com-
puter drawing program instead of pen and paper (Fig. 1.4a). Zhang 
and Adams (2002) implemented the same basic model in the computer 
program FACET. This program makes it possible to quickly simulate 
competitive growth of large numbers of facetted crystals (Fig. 1.4b). 
However, a simulation by FACET could in principle be done by hand 
with pen and paper (although it would be an extremely cumbersome 
and time-consuming task!). Bons (2001) developed a slightly different 
model for competitive growth with the program Vein Growth. (Hilgers 
et al. 2001; Nollet 2005). Non-rational crystal surfaces are allowed in 
this model and a continuous growth function is assigned to a “mineral”, 
describing the growth velocity as a function of crystal surface orienta-
tion relative to crystal lattice orientation of the crystal (Fig. 1.4c). 
Koehn et al. (2000, 2001) took the model of Bons (2001) a step fur-
ther and used it to simulate the formation of fibrous fringes at pyrite 
crystals, involving a complex opening history of the available space for 
crystals to grow in (Fig. 1.4d). Such a simulation would be virtually 
impossible without a computer. 

1.1.3 Simulation of rigid objects 

The third example is that of rotating porphyroblasts and porphyro-
clasts. It is generally accepted that equant, relatively rigid porphyro-
blasts (e.g. garnets) or porphyroclasts (e.g. feldspar crystals) rotate rela-
tive to their matrix during non-coaxial deformation, leading to 
structures such as spiral inclusion trails and delta-clasts, respectively 
(Ghosh and Ramberg 1976; Schoneveld 1977; Ferguson 1979; 
Passchier and Simpson 1986; Hanmer and Passchier 1991). Since 
Ghosh and Ramberg (1976), the popular model for this rotation behav-
iour is that of Jeffery (1922) for a rigid elliptical inclusion in a viscous 
matrix. This model was widely accepted until recently, even though 
observations on natural microstructures often seem to contradict it 
(Pennacchioni 2000; ten Grotenhuis et al. 2002). The analytical model 
of Jeffery (1922) could be used to determine the rotation rate and finite 
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rotation of an object during deformation or after a certain amount of 
deformation. With the advent of computer-based simulations, it also 
became possible to simulate the evolution of structures, like wings, 
around the rigid objects (Fig. 1.5). Using the full potential of comput-
ers, a number of authors have investigated the effects of various effects 
that may influence the process, such as slip between porphyroblast/-
clast and matrix, localisation of deformation, non-linear behaviour of 
the matrix, etc. (Etchecopar and Malavieille 1987; Bjørnerud 1989; 
Bjørnerud and Zhang 1994, 1995; Bons et al. 1997; Kenkmann and 
Dresen 1998; Pennacchioni et al. 2000; Tenczer et al. 2001; Schmid 
and Podladchikov 2005; see also sections 3.8 and 4.7).  

 
Fig. 1.5. (a) δ-clast (~1 mm in size) of camphor in an octachloropropane matrix cre-
ated in an in-situ ring-shear experiment by ten Brink (1996). (b-d) Numerical simula-
tion of the developement of a delta-clast using an analytical solution for simple-shear 
flow around a rigid cylinder, as was used by Passchier et al. (1993) 

The recent date of publication in most of the examples cited above 
shows that the full implementation of computers in the simulation of 
microstructures is only really beginning and actually lagging behind 
some other disciplines in earth sciences, such as large-scale geophysical 
modelling and hydro-geology. However, this book will show that this 
field of geology is rapidly catching up and numerical simulations are 
being developed and implemented for a wide variety of microstruc-
tures and microstructural processes. 

1.2 Why numerical simulation of microstructures? 

For geologists there are three aspects of geological processes in nature 
that hamper their experimental investigation: 

1. time scale, 
2. length scale, and 
3. boundary conditions (pressure, temperature). 
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Therefore, geologists can usually not reproduce the same conditions in 
the laboratory as those that apply to nature (Fig. 1.6). Geological proc-
esses can be extremely slow relative to human time scales. For example, 
a pressure fringe system (see Ch. 3.6) may take tens of millions of 
years to develop (Mueller et al., 2000). Ductile deformation strain rates 
in nature are in the order of 10-12 s-1 or slower. Experiments, on the 
other hand, cannot take longer than a few days to weeks at the most, 
meaning that strain rates have to be about 10-8 s-1 or faster. Therefore 
there is normally a discrepancy of four orders or more between natural 
and experimental rates for ductile deformation (Fig 1.6b). For brittle 
deformation, with time scales in the order of seconds this is of course 
less of an issue.  

 
 

 

              
achieve a shear strain of one, which is weeks at the most in the laboratory, but at least 
hundreds of thousands of years in nature. Grey band represents natural conditions 

Length scales of geological systems reach up to the 100-1000 km 
scale (e.g. the San Andreas Fault or mantle convection), while labora-
tory samples are normally restricted to the 1-10 cm scale at the most. 
This often means that processes that involve a range of scales, espe-
cially those much larger than the grain scale, are difficult to simulate in 
laboratory experiments. 

Crustal boundary conditions, such as pressure and temperature are 
more easily achieved in the laboratory, where pressures up to about one 
GPa and temperatures well over a 1000°C can be reached for deformation 
experiments in equipment like the Paterson gas apparatus or a Grigg’s rig. 

Fig. 1.6. Comparison between natural and experimental conditions (Paterson’s/ 
Grigg’s rig) of ductile rock deformation. (a) Temperature versus confining pres-
sure and (b) temperature versus strain rate. Scale on the right shows time to 
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Even higher pressures can be reached in, for example, a diamond-anvil 
cell, but at the cost of accuracy in the application of deformation or the 
measurement of differential stresses.  

To circumvent the problem of slow natural strain rates, many ex-
perimentalists increase both strain rate and temperature. For example, 
to simulate quartz deformation in the middle crust, one usually per-
forms experiments on quartz at temperatures above 800°C. This may 
be permissible for pure quartz, but one runs into problems when one 
wants to study the behaviour of, for example, a quartz + mica rock at 
greenschist facies conditions. Increasing the temperature would change 
the metamorphic conditions and such a rock would melt above ~750°. 
This inherent problem in the study of rocks is one of the reasons to do 
numerical simulations. Numerical simulations are not constrained in 
time, temperature, pressure or any other parameter, and can just as eas-
ily be applied to experimental conditions as to natural conditions. If the 
simulation of deformation and metamorphic processes in real rocks 
under natural conditions cannot be done in the laboratory, one has to 
resort to numerical simulations. 

1.3 Time and length scaling, resolution 

In any numerical simulation, we need to start with a conceptual model 
of how a particular process behaves, translate that model into a series of 
mathematical equations, and then define how the model space is going 
to be divided up. For the simulation of microstructural evolution, this 
model space will typically consist of one, two or three spatial dimen-
sions plus the dimension of time. The spatial and temporal discretisa-
tions need to be sufficiently fine to capture the detail of the process that 
is being simulated. Geological processes cover an enormous range of 
time and spatial scales, from 10-9 s and 10-9 m for atomic scale processes 
such as diffusion and glide of individual dislocations, up to 1015 s and 
106 m for global geodynamic processes such as mantle convection, 
thus it is unfortunately necessary to limit these scales to a particular 
range, in order to make the problem tractable. At any given scale, the 
boundary conditions for the experiment must be derived from the 
study of larger scale problems and the fundamental properties must 
be derived from the study of smaller scale processes (fig. 1.7). The 
limitations to this approach can be seen when the material properties 
that are used as inputs to the large-scale simulations vary as a function 
of time, and conversely when the boundary conditions that control 
the long term evolution of the small scale structures vary. One of the 
great challenges for numerical simulation over the next 10 years is to 
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develop methodologies where we can account for not only the cou-
pling of processes, but also of the coupling between scales, so that the 
truly dynamic nature of geological processes can be investigated. For 
example we cannot understand grain size evolution in rocks if we do 
not include subgrain evolution models, which in turn depend on our 
understanding of multiple dislocation interactions. Similarly we cannot 
understand lower crustal and mantle rheologies if we do not understand 
under what conditions (or if) a material will localise strain, and how 
quickly it responds to changes in boundary conditions. Multi-scale 
numerical simulations, while technically extremely challenging, pro-
vide a methodology for understanding these systems (Zbib and Diaz de 
la Rubia, 2002; Cordier, 2005). 

 

Fig. 1.7. Range of time and spatial scales of geological numerical simulations, from 
the atom and dislocation scale, via microstructures (the principal subject of this 
book) all the way up to the scale of the crust and mantle 

1.4 Numerical opportunities and challenges 

We should not underestimate the technical difficulties in performing nu-
merical simulations, or properly validating them. Apart from having ana-
lytical solutions for a few cases with simple boundary conditions and geo-
metries, for single processes such as diffusion, validation of numerical 
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simulations remains problematic. In large scale geodynamic simulations 
this is being addressed by performing controlled experiments using a 
variety of different codes (Buiter et al., 2006) and we look forward to a 
future where ‘competitor’ codes exist to Elle, so similar comparisons 
can be made. These will however only test the numerical correctness of 
the code, not the assumptions in the underlying conceptual models, and 
for that the most promising avenue for research is the performance of 
integrated numerical and in-situ experiments. For example, Bons et al. 
(2001) performed in-situ experiments of grain growth in octachloro-
propane and compared the results with numerical simulations of anisot-
ropic grain growth. In-situ experiments can now also be carried out in-
side an electron microscope and first steps have been made towards in-
situ experiments in synchrotrons, providing challenging new opportu-
nities to callibrate and test numerical simulations (e.g. Piazolo et al. 
2004; Schmidt et al. 2004) 

 In-situ experiments are still limited in their ability to run under a 
wide range of boundary conditions, and this is one of the reasons why 
numerical simulations of rock deformation offers an important parallel 
methodology: although numerical simulations have other limitations, 
they can often be performed over a wide range of boundary condi-
tions, including non-equilibrium behaviour (Aharonov and Sparks, 
1999; Raabe and Becker, 2000; Jessell et al., 2005). If properly cali-
brated, simulations, in particular those that investigate coupled proc-
esses and which incorporate a geometric and topological description of 
the microstructure (Ford et al., 2002), allow a more complete scaling to 
natural conditions, since each individual process can be individually 
scaled, and the coupling that controls mechanical behaviour is a direct 
outcome of the simulations. 

One of the fundamental couplings in the microdynamic evolution in 
rocks is that between mechanical and mineralogical-chemical processes. 
Whereas many simulations exist of the microstructural evolution as a 
result of mechanical processes (Ch. 1.1), few have so far undertaken to 
simulate the evolution of a “thin section picture” by metamorphic 
processes (Foster 1999; Park et al. 2003). This is despite the huge pro-
gress that has been made in thermodynamic modelling of mineral reac-
tions, with programs such as THERMOCALC (Powell and Holland 
1985; Powell et al. 1998) and PERPLEX (Connolly 1990). One of the 
main challenges ahead is to combine such thermodynamic and minera-
logical/crystallographic models with mechanical models to be finally 
able to simulate the evolution of rocks during tectonic-metamorphic 
events. 

First approaches in this direction include mechanical-chemical cou-
pling during pressure-solution processes (Ghoussoub and Leroy, 2001; 
Ford et al., 2002; Koehn et al., 2003; 2006, Ch. 3.12), reactions and 
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fracturing (Jamtveit et al., 2000; Malthe-Sørenssen et al., 2006) and 
mineral phase transitions that include large volume changes (Ch. 3.13). 
One of the main challenges in these systems is their non-linearity in 
time. Different processes act on very different time scales so that the 
program itself has to choose model steps for the coupling. For example 
we may have to deform a potential rock for a long time to build up 
stresses that are high enough for a phase transition to start, but once the 
transition proceeds it may happen very quickly. Therefore the initial 
time steps should be relatively large until the transition starts and be-
come very small during the transition. The differences in time can eas-
ily span several orders of magnitude. 

As our understanding of the relationship between the processes of 
rock deformation and spatial and temporal patterns improves, so does 
our ability to interpret these patterns in terms of the prior evolution of 
the system. Structural geologists have traditionally relied heavily on 
micro-gauges to interpret the strain, and sometimes the stress conditions 
at the time of definition (Passchier and Trouw, 1996). As in the engi-
neering sciences, we are now able to apply our understanding to inves-
tigations of other characteristics of minerals and rocks such as surface 
energy and palaeo-rheology, so that we can test our laboratory-based 
determinations against natural examples (Kenis et al., 2005). At the 
same time as developing these new tools, we need to continue to apply 
all of our currently available tools to the study of major tectonic struc-
tures such as active faults and volcanoes, so that we continue to im-
prove our ability to predict the behaviour of specific natural hazards. 
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2 Numerical methods 

2.1 Introduction 

A model is a way to describe and usually simplify some process(es) or 
phenomenon one tries to understand. This can be constructed in words, 
as a physical object (e.g. a model of the Alps made of plaster), but usu-
ally in a mathematical way (by a set of equations). Sometimes, the 
equations and the system we want to apply them on (together the 
“model”) are relatively simple and the equations can be solved on the 
back of an envelope. In that case there is an analytical solution. In 
many cases, however, the model is too complex to solve all the equa-
tions on a piece of paper, and we have to resort to computers to solve 
the equations.  

Microstructures are typically complex structures and it is almost al-
ways impossible to solve the equations analytically when the goal is to 
obtain local information, rather than bulk statistics. Microdynamic 
simulation therefore employs a whole variety of numerical methods, 
which are methods that use a computer to solve equations. In this chap-
ter, the main numerical methods that are used for microdynamic simu-
lation are presented. These methods are not specific to microdynamic 
simulation, but are employed in all fields of science. Here, we focus 
specifically on those methods that are used in the next chapters for the 
simulation of a variety of microdynamic processes. Those readers al-
ready acquainted with numerical methods can skip this chapter, and go 
straight to the next chapters. 

All (numerical) models share some basic ingredients that can be 
grouped into four categories: 

2.1.1 Data Structure 

We use the term Data Structure here to mean the way the system to be 
simulated is described. For microdynamic models, which typically aim 
to simulate a granular aggregate, the two basic frameworks are: 

  Lattice data structures, where the system is mapped on a lattice, like 
the pixels in a digital image. A lattice can be square, which is nu-
merically the simplest case and is easily displayed on a screen, which 
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has square pixels (Fig. 2.1a). Other lattices are also possible, such as 
triangular or hexagonal lattices (Fig. 2.1b). The resolution of the 
model is directly related to the density of the lattice. Potts models, 
Cellular Automata, Lattice-Spring models and Phase Field models are 
all based on lattice frameworks. 

  Element data structures, where the system is described by elements. 
Such elements can be points, line segments, or polygons (Fig. 2.1c). 
The advantage of using elements is that one usually needs far fewer 
elements to describe a system accurately than lattice nodes in a lattice 
framework. Finite Element models and boundary models typically 
use elements to describe a system. 

 

 
Fig. 2.1. Examples of different lattice types. (a) Regular square grid. (b) Regular tri-
angular grid where each triangle has the same size and shape. (c) Grid with triangular 
elements, where each triangle has a different size and shape. With such a grid one can 
also define polygonal elements, like the one shaded grey. Such grids are commonly 
used for Finite Element models 

There are many ways in which a system can be described by elements, 
even if one uses the same basic element shape, such as triangles only (Fig. 
2.1c). The requirement for the shape of elements for practically all numeri-
cal methods are: 

● The elements should be as equidimensional as possible. Elements 
with a very large length/width ration are to be avoided. 

● The elements are preferably convex. 
● Sharp points and corners should be avoided. 

Figure 2.2 illustrates two classical ways of dividing a system into 
elements. The first is the Delaunay triangulation, which divides a sys-
tem into triangles. The system is first described by nodes (points in 
space) that define the boundaries of the system and the shape of ob-
jects or regions (e.g. grains), or that are (randomly) distributed 
through the system (Fig. 2.2a). The Delaunay triangulation connects 
all these nodes by triangular elements. This means that the more nodes 
there are, the smaller the elements will be. The first step is to define 
circles that go through three nodes only and which contain no other 
nodes. The three nodes through which such a circle goes define one 
triangular element. This is repeated until the whole system is covered 
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by triangles (Fig. 2.2b). The advantage of this technique is that it fa-
vours equidimensional triangles over pointed ones, although some 
pointed triangles may still occur, depending on the distribution of the 
nodes. One would rarely have to write code to do such a Delaunay tri-
angulation, as free software for this is available in the Public Domain. 
Such software usually allows the user to define the minimum angle of 
corners and the minimum/maximum size of triangles. These require-
ments are then met by adding or deleting nodes. 

 

 
Fig. 2.2. (a) A system, with two rectangular regions shown in grey, which is to be di-
vided into elements. The regions and the boundaries are defined by nodes (small cir-
cles). For a Delaunay triangulation, one defines triangles that go through 3 nodes and 
that contain no other nodes (large circle, for example). The three nodes then define one 
triangle. (b) Result of a Delaunay triangulation. The edges of the triangles coincide 
with the boundaries of the grey regions. (c) A Voronoi network is created by drawing 
line segments perpendicular to the Delaunay segments (dashed lines), exactly half-
way between nodes. (d) The resulting Voronoi network 

Delaunay triangles are geometrically linked to Voronoi networks. One 
can draw lines perpendicular to the Delaunay segments, exactly halfway 
between nodes (Fig. 2.2c). These segments then define a network of poly-
gons, which is called a Voronoi network (Fig. 2.2d). The Voronoi poly-
gons have some special properties: 

● Each Voronoi polygon contains only one single node. 
● Any point within a Voronoi polygon is closer to the one node in that 

polygon than to any other node in the system. 
● Voronoi polygons are always convex. 
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If the nodes by which the Voronoi network is defined have a regular dis-
tribution, then the Voronoi polygons will be approximately equidimen-
sional and similar in size.  

2.1.2 Variables and parameters 

Within a given framework, variables describe the system. Independent 
variables define the base of the system. Such variables are for example 
the length scale (size) of the system, or variables such as temperature or 
pressure if these are given as constant values. Dependent variables or 
state variables describe the state the system is in. As the model evolves, 
the state variables change. If the model describes the deformation of a 
grain, the state variables that describe the shape of the grain and the 
stress state evolve over time. Other state variables that may be involved 
in such a model could be the lattice orientation and dislocation density. 

Almost any model will also use certain parameters that do not change 
as the model evolves. Such parameters are, for example, the Boltzmann 
constant, or material properties such as the Young’s modulus or lattice 
parameters. 

2.1.3 Equations 

The variables and parameters define the system in the chosen frame-
work. For something to happen in the model, equations are needed. 
The equations can change the state variables. There are two main types 
of equations: 

● Path-independent equations change state variables independently of 
the current state of those variables. For example, a flow law that cal-
culates strain rate as a function of differential stress always gives the 
same strain rate for a given stress, irrespective of the current strain 
rate.  

● Path-dependent equations or evolution equations change state vari-
ables based on the current state of those variables. If evolution of a 
state variable over time (t) is modelled, such evolution equations 
typically have the form State(t+∆t) = State(t) + function·∆t. Kinematic 
equations are a special type of evolution equations that change the 
position of something in the system, like the position of a particle or 
a boundary. 
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2.1.4 Boundary conditions 

Normally, no model can do without boundary conditions. Typically, 
these are the values of some state variables at the physical boundaries 
of the model. For example, ductile deformation of a block of material 
requires the stresses or velocities at at least part of the surface of the 
block to be specified. Choosing the boundary conditions is by no 
means trivial, because they can play a significant role in the outcome of 
a simulation. An example was given by Bons et al. (1997) for the simu-
lation of the rotation of a rigid clast in a viscous matrix that undergoes 
simple shear. The simple shear boundary conditions can be applied by 
letting the top of the model move to the right and the bottom to the left 
by a fixed rate. These are velocity boundary conditions, which then de-
termine the stress needed to achieve the shearing. Alternatively, one 
could set the stresses at the boundaries and then calculate the resulting 
velocities. Although both simulate identical bulk simple shear, the ef-
fect on the object in the middle of the model turned out to be slightly 
different.  

Boundary conditions must be carefully chosen and must be clearly 
stated in any reporting of modelling. This may seem obvious, but un-
fortunately this is not always the case. To really understand the bound-
ary conditions, it is necessary to be thoroughly acquainted with the 
model that one uses. Using ready-made models as a “black box” can 
easily lead to erroneous results, if the boundary conditions and under-
lying assumptions are unknown to the user.  

2 Numerical methods
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2.2 Lattice data structures: Monte Carlo, Ising, Potts, etc. 

2.2.1 Introduction to Monte Carlo Principle 

Monte Carlo models or stochastic models are models that involve prob-
abilities. Deterministic equations of the type a=F(b) will always give 
the same value of a for a given value of b. If chance comes into play: 
a=P(b), the value of a can vary, depending on the probability function 
P(b). Such equations would be suitable to simulate, for example, va-
cancy diffusion in a lattice. Each vacancy has a certain probability per 
time unit to jump to a neighbouring lattice site. If there are six such 
neighbouring sites, one could role a dice each time the vacancy jumps 
to determine to which of the six positions the vacancy will jump. 
Brownian motion of a small particle can be simulated in a similar way. 
Figure 2.3 shows the path of a particle that jumps a unit distance in a 
random direction each time step. 

 
Fig. 2.3. Example of a Monte Carlo simulation for 100 steps of Brownian motion of 
a particle. Each time step, the particle jumped a unit distance in a random direction 

Some classical Monte Carlo models are presented in the following 
sections. The ones presented here have in common the fact that the sys-
tem to be modelled is divided up into small particles, typically on a lat-
tice. Each lattice site has one or more state variables, such as magnetic 
spin or lattice orientation. The state variables can have a limited range 
of values. Rules are set up that determine the probability that a state 
variable changes or “flips” from one value to another. The “Monte 
Carlo” principle comes in at the stage where the dice are rolled to de-
termine whether this change actually occurs for that lattice site. This 
step is repeated over and over again for all lattice sites and the system 
slowly evolves. 
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2.2.2 The Ising model 

The first Monte Carlo model we will introduce here is the Ising model. 
It is one of the simplest Monte Carlo models, but already shows the rich 
behaviour that such models can exhibit. Potts models and Cellular 
Automata that are discussed next are essentially more complex varia-
tions of the Ising model. The Ising model is therefore a good example 
of the principles that all these models share. 

The Ising model was developed to model magnetisation of materials. 
The magnetisation state of a particle within a volume of material de-
pends on the spin of electrons within that particle. In a fully magnetised 
magnet, all spins will be the same. The magnet can have its positive 
pole either on one side or the other. This spin can therefore be de-
scribed as having two states, say either “-1” or “+1”. In a homogene-
ously magnetised material, all particles will have spin state -1 or all 
have spin state +1. If the magnet is heated, magnetisation is lost at a 
certain temperature, the Curie temperature. At that temperature some 
particles will have variable spin states between -1 and +1. The Ising 
model was developed to simulate what happens around TCurie. 

 

 
Fig. 2.4. (a) Regions in the magnetised material have either a positive or negative 
spin. (b) The regions are mapped as zeros and ones onto a square lattice, where zero 
stands for a negative spin, and one for a positive spin. (c) The map is easily dis-
played on the computer screen, where the spin states are represented by either black 
or white 

The Ising model is a lattice model, as the material that is modelled is 
mapped onto a lattice (Fig. 2.4). In its simplest form this is a square lat-
tice or grid. Each node in the lattice represents one small particle of ma-
terial and all these particles have the same size. An advantage of such a 
square grid is that is easily displayed on a computer screen, where each 
lattice site can be represented by one screen pixel. As each lattice site can 
have only one of two states (-1 or +1), each node in the lattice can also 
only have one of two states. In a numerical simulation, one would 
probably choose “0” (representing -1) and “1” (representing +1), in 
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which case only one bit would be needed to store the spin state of one 
lattice site. 

The spin state of lattice sites can vary over time. Since only two states 
are possible, this means that lattice sites may switch their state from -1 
to +1, or vice versa. Evolution equations are therefore needed to model 
the evolution of magnetisation over time. In the Ising model these evo-
lution equations are based on the state of the local neighbourhood of a 
lattice site, not on long-range effects or on its history. The spin (S) of a 
lattice site, at time t+  t, is a function of its own spin and those of the 
neighbouring lattice sites at time t. In the Ising model, the function is a 
probability function, which provides the probability that a lattice site 
flips its state from one to the other in a certain time step. This probabil-
ity (Pflip) is a function of the difference (  E) between the local energy 
state before and after a switch in spin.  

The local energy state (Eh) around lattice site h is a function of all 
energy states of J pairs of lattice sites: 

Eh = ζ ije
j=1

J

∑ , (2.1) 

where e is the energy state of two neighbouring lattice sites and ζij is 
the so-called “Hamiltonian” defined as: 

ζij = 0 when Si = Sj, and (2.2a) 

ζij = e when Si  Sj. (2.2b) 

 
 

 
Fig. 2.5 Types of neighbouring schemes to calculate the probability that the lattice 
point in the middle will flip to the opposite state. (a) The Von Neumann scheme only 
takes the four nearest neighbours into account (6 in 3D). (b) The Moore scheme also 
takes the diagonal neighbours into account, with a different weighting to account for 
their distance (26 in 3D) 

∆

∆
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This means that pairs of lattice sites with the same spin have zero en-
ergy and pairs with opposite spins have energy e. Which neighbours 
are taken into account depends on the lattice type. In a 2-dimensional 
square lattice, two basic types of neighbouring are normally used. The 
simplest is “Von Neumann neighbouring” that only takes into account 
the four immediate neighbours (Fig 2.5a). “Moore neighbouring” takes 
into account 8 neighbours (Fig 2.5b), whereby a geometric factor 
needs to be introduced for the difference in distance between direct 
neighbours and oblique neighbours: 

 

Eh = ζ ije( )
direct

j=1

4

∑ + 1

2
ζ ije( )

oblique
j=1

4

∑ . (2.3) 

Various schemes can, of course, be designed to also include lattice sites 
further away than the immediate neighbours.  

The probability, Pflip, that a lattice site switches its state is now given 
by the following evolution equation: 

 

Pflip = P0  if  E   0, (2.4a) 

 

Pflip = P0 exp
−c∆E

kT  if  E > 0. (2.4b) 

Here k is Boltzmann’s constant, T is the absolute temperate and c a rate 
constant (Fig. 2.6). This means that P0 is the probability that a switch in 
state occurs if that switch achieves a reduction in local energy. P0 can 
be seen as the frequency at which a lattice site attempts a switch in state 
within a certain period of time, the time step in the model. If the switch 
increases the energy, a switch may still occur, but the probability re-
duces with the gain in energy. The probability is also temperature de-
pendent: a switch that increases the local energy state is more likely to 
occur at high temperature than at low temperature. The rate constant c 
bundles several parameters that scale the model in space and time. The 
complexity of the actual scaling of the Ising model is unfortunately be-
yond the scope of this chapter. 

The Ising model is a Monte Carlo type model, because of the sto-
chastic nature of the evolution equation (Eq. 2.4). Equation 2.4 defines 
the probability that a switch in spin of a lattice site would occur, but it 
does not tell whether it will occur. A random number generator is used 
to obtain a value Q between zero and one. If Q>Pflip, no switch in spin 
occurs, and the spin of the lattice site is switched to the opposite state if 
Q  Pflip. 

 
 

∆

 ∆
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Fig. 2.6 Graph of the probability (P) that a flip will occur as a function of the energy 
change (∆E, with e=1) such a flip would produce 

An example of a 2-dimensional implementation of the Ising model is 
shown in Fig. 2.7, using a 200 x 200 square lattice with fully wrapping 
boundaries. Pixels in the image are coloured black and white to repre-
sent the two possible spin states. Lattice sites are randomly chosen and 
their  E is calculated using Moore neighbouring with e=1 (Eq. 2.3). 
This means that the maximum energy gain or loss is ±(4 + 4/ 2). A sec-
ond random number is then used to determine whether the lattice site 
will change its spin (Eq. 2.4). P0 is set to 0.1 and c/kT in Eq. 2.4 are 
lumped together in one unscaled “temperature” parameter, 1/T*. On 
average, each lattice site is selected once every time step.  

Figure 2.7 shows the evolution, starting with randomised spins, of 
the spin distribution in 3 stages for different values of T*, as well as the 
percentage of lattice sites in one spin state (black). Clusters of same-
spin lattice sites quickly form below the Curie temperature (T*=0.1). 
These clusters grow, until eventually all lattice sites have the same spin: 
the magnetisation is complete and frozen-in. At or above the Curie 
temperature (close to T*=1.8), clusters form as well, but keep on evolv-
ing. No spin state ever wins over the other, as their fractions fluctuate 
around 50%: the material does not get magnetised. Clusters have highly 
irregular fractal shapes around the Curie temperature. 

 
 

∆
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Fig. 2.7 Example of an Ising model, using a 200x200 square grid with fully wrapping 
boundaries. (a) Simulation at a temperature of T*=0.1, well below the Curie tempera-
ture. In the end, all lattice points will have the same value. (b) Simulation at a tem-
perature of T*=1.8, well above the Curie temperature. Lattice points keep on flipping 
from black to white and vice versa, and the material never becomes fully magnetised. 
(c) Graph of the percentage of black pixels in the model as a function of time. Each 
lattice point is treated on average once every time step 

2.2.3 Potts models 

The Ising model described above allows only two possible states (spin 
is -1 or +1) for each lattice site. Clearly, the number (q) of possible 
states is not limited to two. Models where the number of possible states 
is larger than two (q>2) are called “q-state Potts models”, or simply 
“Potts models”. The basic Ising model is therefore a special q=2 case of 
a Potts model, designed to model magnetisation. Because of their sim-
plicity, Potts models are very popular and useful models. They are par-
ticularly well suited to model granular aggregates and have therefore 
been extensively used for the simulation of static grain growth in crys-
talline aggregates. 

A q>2 state Potts model works essentially the same way as the 2-state 
Ising model, with the only exception that additional rules must be de-
fined to what other state one lattice site can switch its state. The typical 
choice would be that one lattice site can only switch to the state of one 
of its neighbours. This still leaves open two options for the switch: 

● the lattice site may switch to the state of a randomly selected neigh-
bour (an additional Monte Carlo step), 

● or it may switch only to the energetically most favourable other state. 
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In either case, the decision to actually switch the state of the lattice site 
is still dependent on some energy-change dependent probability Pflip.  

In static grain growth, individual grains grow or shrink to reduce the 
total surface energy of the grain boundaries. If surface energy per area 
of grain boundary is a constant, the surface energy can only be re-
duced by reducing the total surface of grain boundaries. Figure 2.8 shows 
an example of a 255-state Potts model for grain growth. The model is 
2-dimensional and uses a square lattice. Grains are represented by con-
tinuous clusters of lattice sites that have the same integer value between 
0 and 255. The model uses Moore-neighbouring to calculate the en-
ergy state before and after a possible switch. All grain boundaries have 
the same energy, represented by the parameter e = 1 in Eq. 2.1. At each 
time step, all lattice sites are selected randomly and on average once. A 
selected site may switch to the state of one of its four direct neighbours, 
according to Eqs. 2.3 and 2.4, using P0=0.1 and T*=0.5. A random 
number is used to select which of the four neighbour states is consid-
ered for a possible switch.  

 

 
Fig. 2.8 A 255-state Potts model of static grain growth in a grain aggregate with fully 
wrapping boundaries. Notice that the square grid produces a prevalence of vertical, 
horizontal and diagonal grain boundaries 

The main advantage of Potts models is their relative numerical sim-
plicity. They are very easy to code and the rules to determine the prob-
abilities that a switch of state may occur are separate from the rest of 
the model. This means that one can easily take the source code of a 
working Potts model and essentially only modify those routines that 
define the evolution equation (determining Pflip, and the possible state 
switches) to change the model for any desired purpose. Another advan-
tage is that a 3-dimensional model is in essence no more complicated 
than a 2-dimensional one. The main difference between the two lies in 
the number of neighbours that need to be taken into account in the 
evolution equation.  

Potts models are, however, not universally used, as they also have 
some serious drawbacks: 
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● The biggest problem with Potts models is that they are based on 
regular lattices or grids. Grids normally have equal sized 
square/cubic or triangular/tetrahedral elements. The example of grain 
growth (Fig. 2.8) shows that a square grid tends to favour horizontal, 
vertical and diagonal grain boundaries. Grain boundaries in this 
model can only move by discrete steps, defined by the grid type. 
This problem can, but only to some extent, be circumvented by em-
ploying more elaborate evolution equations that involve neighbours 
further away than the nearest ones.  

● Potts models are not very efficient when high resolution is required. 
To get a decent resolution, one may want to use a 1000 x 1000 grid 
in two dimensions (106 lattice sites). In three dimensions this is 
equivalent to 109 lattice sites, which is still a large number for current 
computers to deal with. In case of grain growth simulations, most lat-
tice sites lie inside grains, not neighbouring a boundary. These lattice 
sites do nothing, except using up memory space and computing 
time, although this can be avoided by storing and updating the na-
ture of each lattice site. This problem increases with higher resolu-
tion, where the ratio of grain boundary lattice sites to grain interior 
lattice sites increases. 

● State variables in a Potts model can only have q discrete values. If q 
is large this may not be a problem, but for some applications a con-
tinuous range of possible states is imperative. 

Summarising, Potts models can be very useful to simulate certain 
processes in crystalline aggregates, because of their numerical simplic-
ity and ease of extension to the third dimension. They are, however, 
limited in their applicability and more demanding scientific questions 
and problems may often require more powerful methods, such as Finite 
Element modelling or Front-Tracking. 

2.2.4 Cellular Automata 

Cellular Automata are a class of numerical models that include Potts 
models. In Cellular Automata the system is again divided up into parti-
cles, which typically lie on a regular grid. Each lattice site would have 
one or more state variables that change according to certain evolution 
equations, which typically involve a stochastic (Monte Carlo) compo-
nent. The difference with Potts models is that evolution equations in 
Cellular Automata are not as restricted. In a Potts model, one lattice site 
can only switch its state to another one according to an equation that 
takes into account the local neighbourhood. This restriction is dropped 
in the case of Cellular Automata. One change in the model may involve 
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many, if not all lattice sites in the model. Potts models thus form a sub-
class of Cellular Automata.  

One example of a Cellular Automaton is the classical forest fire model 
(Fig. 2.9) (Bak et al. 1990; Malamud and Turcotte 1999). The model is de-
signed to simulate the dynamics of forest fires. It is a 2-state model, where 
nodes on a grid can have only two states: being a tree or not. Trees are 
“planted” by randomly selecting a grid node and then deciding, by some 
stochastic rule, whether the state of the node should become “tree”. Forests 
are connected clusters of “tree-nodes”. This evolution rule alone would 
lead to the whole grid becoming covered with trees in time. However, a 
second rule is employed to burn trees. By another stochastic rule, matches 
are occasionally thrown on the grid. If a match happens to land on a grid 
node with a tree, not only the tree burns, but also the whole forest to which 
this tree belongs. Burning trees is implemented as reverting the state of a 
node from “tree” to “not tree”. Although the rules are extremely simple, 
the behaviour of the system is extremely complex and the resulting statis-
tics bear strong similarities with the Ising model near the critical Curie 
temperature. 

 
 

 
Fig. 2.9 Example of the forest fire model at the moment of a fire (a) and one time step 
afterwards (b). Grey pixels represent trees, black pixels burning trees and white areas 
with no trees. All trees connected (Moore neighbouring) in one cluster burn if a match 
lands on one of the trees. In the large fire in (a) 2038 trees burn. Model size is 
200x200. Each time step one tree is planted on a randomly selected lattice node. Each 
time step, the probability of throwing a match on a random lattice points is 1%. (c) 
Forest density (percentage of sites covered by trees) as a function of time 

2.2.5 Lattice-Gas and Lattice-Boltzmann method 

One of the most important and widely used classes of Cellular Auto-
mata is the Lattice-Gas method. A common example is the modelling 
of a fluid (which is traditionally called a Lattice-Gas model) in which, 
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as with the Potts models and forest fire model, a discrete grid is used. 
Each site on the grid is characterized by a number of states that are 
changed by a given update rule each “time step”, where the rule deter-
mines how the state of a site changes based on its neighbours. This 
method is, like all Cellular Automata, very efficient for computers since 
one or a small number of bits are enough to store the state of a single 
site in the lattice. In the case of fluids each lattice site represents a small 
part of the fluid. In order to be consistent the models normally con-
serve momentum and mass. Particles in the fluid are now either present 
or absent on lattice sites. Initially particles will be given a velocity in a 
desired direction or initial velocities are chosen randomly. How parti-
cles travel through the lattice depends on their velocities and on colli-
sions with other particles or boundaries (for example rough walls of a 
crack).  

 
Fig. 2.10 The figure shows an example of a Lattice-Gas model with a triangular lat-
tice (a). Lattice sites are given as small black circles whereas fluid particles are large 
grey circles. Unit vectors of particle movements are given as arrows. Numbers on lat-
tice sites mark the number of approaching particles. If these numbers are greater than 
one, a collision occurs. (b) In case of a two-particle collision, two choices of scatter-
ing of particles are possible on a triangular lattice. (c) In case of a three-particle colli-
sion, particles are simply scattered to the free sites 

As an example we will describe the so-called FHP (Frisch, Hasslacher 
and Pomeau) rule for a Lattice-Gas (Frisch et al. 1986). The FHP Lat-
tice-Gas model uses a triangular 2-dimensional grid as basis (Fig. 2.10). 
Each particle has six possible states that describe its six possible neigh-
bours, which are either there or absent. The update rules for states are 
performed in two steps that handle collisions and transport. If three 
particles collide at a given site they scatter in opposite directions. If two 
particles collide they scatter sideways in two possible directions. These 
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two directions are chosen randomly. After collisions are handled, parti-
cles that have not collided move one step further depending on their 
given velocities (Fig. 2.10).  

Even though the applied rules for Lattice-Gas models seem very simple, 
it can be shown that they can lead to the full Navier-Stokes equation where 
the particular rule of a Lattice-Gas model determines the viscosity of the 
fluid (for a full derivation see Gershenfeld 1999). In Fig. 2.11 we present 
two examples of a simple FHP Lattice-Gas model. It is included in Elle so 
that the reader can reproduce the examples (see Appendix B). A large vari-
ety of numerical experiments can be performed using Lattice-Gas models. 
These include two- and three-dimensional flow problems with complex 
geometries, as well as multiphase flow problems, problems of diffusion 
and even coupled reaction-diffusion problems (Rothman and Zaleski 
1994).  

 

Fig. 2.11 Example of a Lattice-Gas model using a triangular lattice and simple FHP 
rules (Frisch et al. 1986). Example of diffusion after (a) 1, (b) 100 and (c) 1000 time 
steps and a triangular lattice with 46000 nodes. An initial low (dark) density Gaus-
sian distribution of fluid particles is set in the background whereas a number of re-
gions (which could be grains) have a high density of particles (bright). Diffusion of 
the particles eventually leads to an equal distribution of the particles over the whole 
model (  EXPERIMENT 1). (d) Example of fluid flow through a porous medium 
(in 2-dimensions) where fluid is introduced on the left hand side and can leave on the 
right hand side. The upper and lower walls are fixed and repel fluid particles. Grey re-
gions are solid grains. In the pore space in between brightness reflects particle density 
(pressure) from high on the left to low on the right. This simulation used 11500 
nodes (  EXPERIMENT 2) 
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An alternative numerical method for the solution of the Navier-
Stokes equation is the Lattice-Boltzmann method. It is related to Lat-
tice-Gas methods but uses a solution scheme that is similar to Finite Dif-
ferences (see Sect. 2.4). As with the Lattice-Gas approach, space is rep-
resented by a discrete lattice. Variables in the approach are called 
population variables that evolve in discrete time steps. The basic Lat-
tice-Boltzmann equation can be written as 

 

Ni x + ci ,t +1( ) = Ni x,t( )+ ∆ i N x,t( )[ ] , (2.5) 

where Ni is a population on a lattice site, x the lattice site, x+ci the new 
lattice site, t the time,  i the Boltzmann collision operator and N the 
population b-vector (Rothman and Zaleski 1994). Equation 2.5 and the 
equation to derive the Boltzmann collision operator are the basis for the 
so-called Lattice-Boltzmann method. They are explained in detailed in 
Rothman and Zaleski (1994, page 1432 and appendix C). A simple 
version of the Lattice-Boltzmann method uses a linearised collision op-
erator where the simplest form is  

 

Ni x + ci ,t +1( ) = Ni x,t( )+ ωδij N j x,t( )− N j
0( ) x,t( )( )

j

∑ , (2.6) 

where ω is a parameter that determines viscosity of the fluid, δij is the 
Kronecker delta (which together define the collision operator) and 
Nj

(0)(x,t) pseudo-equilibrium populations (Rothman and Zaleski 1994, 
Appendix C). Note the similarity to conventional explicit Finite Differ-
ence methods (Sect. 2.4).  
 
 
 

∆
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Symbols used in Chap. 2.2 

Arbitrary variables 
Rate constant 

E Energy state of lattice site 
e Energy contribution arising from the difference in state between two 

neighbouring lattice sites in Ising and Potts models 
F() Arbitrary function 
h Index of lattice site 
J Number of neighbours of a lattice site 
k Boltzmann’s constant = 1.3806503·10-23 m2 kg s-2 K-1 
N Population b-vector in a Lattice-Boltzmann model 
Ni Population on site i in a Lattice-Boltzmann model 
P() Probability function 
Pflip Probability to switch from one state to another 
P0 Probability that a switch in state occurs if that switch achieves a re-

duction in local energy 
Q Random number ranging from zero to one 
q Number of possible states of a lattice site in a Potts model 
S Spin 
TCurie Curie temperature [K] 
1/T* Unscaled temperature parameter (=c/kT) 
 i Boltzmann collision operator 

δij Kronecker delta 
ζij Hamiltonian in Ising and Potts models 
ω Parameter determining the viscosity of a fluid in a Lattice-Boltzmann 

model 
 

a, b

c 

∆
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2.3 Boundary models 

In the previous sections, the system to be simulated was mapped onto a 
lattice or grid. Each site on the lattice represented a small part of the 
system. For many models, this is a suitable way to describe the system, 
but there are some drawbacks. The first is the resolution, which is de-
termined by the number of lattice sites. To make an accurate map of a 
granular aggregate with complex grain shapes, one needs a very large 
lattice. This can use up too much memory space and/or the calculation 
time becomes inhibitive. A second problem is that boundaries between 
phase regions (e.g. grains) themselves do not really exist. In the Potts 
model, a grain boundary is only implicitly defined as locations where 
lattice sites with different values are found next to each other. The posi-
tion of the boundary is inferred, but it is not really there in the model. 
This is a problem when the boundaries themselves are important for the 
process that is simulated. 

One well-known example of a system where the boundaries between 
regions are more important than the regions themselves is a foam (such 
as in the head of a beer). The regions themselves, the bubbles, are filled 
with gas and have no strength at all. The whole evolution of the foam 
is determined by the thin liquid walls between the bubbles. The surface 
tension strives to straighten the walls, which leads to a gradual increase 
of the average bubble size. Some bubbles shrink and eventually disap-
pear, while others grow. The growth or shrinkage of a bubble is possi-
ble by the diffusion of gas through the bubble walls, driven by pres-
sure differences between the bubbles as a result of the surface tension 
of the walls. A lattice model can and has been used to simulate this 
process, but since everything happens at the bubble walls, it is often 
considered to be more precise to describe the foam by the boundaries. 
The bubbles are then inferred as the regions enclosed by these bounda-
ries, but do not play a major role in the process themselves. The evolu-
tion of the foam can be followed by tracking what happens at the 
boundaries or “fronts”, which is why such models are called “bound-
ary-tracking models”, “Front-Tracking models”, or simply “boundary 
models”. 

Boundary models typically describe the boundaries by nodes (points 
in space), connected by boundary segments (Fig. 2.12). The simplest 
segments are just straight lines connecting two nodes, but the segments 
can also be more complex curved lines (e.g. using Bézier curves). The 
advantage of curves is that fewer nodes are needed for an accurate de-
scription of a complex boundary. A disadvantage is that the mathemat-
ics become more complex. All boundary models in this book use 
straight boundary segments between nodes. An accurate description of 
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the shape of a region can be achieved with relatively few boundary 
nodes, compared to the number of lattice sites in a lattice (Fig. 2.12).  

 

 
Fig. 2.12 (a) A region, like a grain, can be described accurately with only a few nodes 
that are linked by curved boundary segments, for example with Bézier curves. (b) 
More nodes, here 23, are needed to accurately describe the same region when the seg-
ments are simply straight lines. (c) A lattice with 10x10 points cannot accurately de-
scribe the shape of the region at all. A lattice with at least about 100x100=10000 
points would be needed to describe the shape of the region reasonably well 

The progressive evolution of a system is modelled by applying evo-
lution equations to either the nodes or segments. These equations will: 

● change the position of the boundary by changing the positions of 
nodes and segments. This is typically done by an equation that calcu-
lates the velocity of the boundary nodes or segments.  

● calculate the rate of change of the state variables. These can be the 
properties of the boundaries, such as the film width in a foam, or 
grain boundary fluid composition in a granular aggregate. These can 
also be related to the regions enclosed by the boundaries. 

Once the rate of change of position (velocity) and of the state vari-
ables are calculated, they are typically integrated over a small time in-
crement and then applied to the model.  

Many schemes can be used to calculate and apply the evolution 
equations, such as Finite Difference and Finite Element schemes that 
are introduced below, or schemes that involve some Monte-Carlo step. 
Here we give one example of the latter, since it illustrates well how 
Front-Tracking is usually modelled in Elle (Ch. 3.5). 

Static grain growth is a process in granular aggregates where a re-
duction in surface energy drives an increase in average grain size. It is 
similar to coarsening of a foam or froth, and the resulting texture looks 
the same: a foam texture. Since the process is completely driven by the 
boundaries, it makes sense to use a boundary model. Here we take a 
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model where the boundaries are defined by nodes that link straight 
segments. In the two-dimensional example model, each node is linked 
to two or three other nodes. A curved boundary will straighten to re-
duce the total surface energy, which is proportional to the total bound-
ary length (area in 3D). The velocity (v) of a point on a circular 
boundary is determined by the mobility (m) and the surface energy per 
unit length (γ) of the boundary and the radius of curvature (R): 

v = ∂R

∂t
= −mγ

R
∆R ≈ −mγ

R

⎛ 
⎝ 
⎜ 

⎞  
⎠  
⎟  ∆t  (2.7) 

(when  t is very small). The velocity is directed towards the centre of 
curvature and always reduces R. 
 
 

 
Fig. 2.13 (a) The velocity (v) of one node (the black one) is a function of the ra-
dius (R) of curvature. R can be determined by constructing a circle through the node 
and its two neighbours. Two additional topological routines are needed for the 
simulation of grain growth. (b) When two nodes approach each other, a neigh-
bour switch needs to be carried out. Grains A and B were originally neighbours, 
but not any more after the switch. (c) When three nodes of a small three-sided 
grain approach each other, they merge into one, which means the small grain has 
disappeared 

One step in the simulation involves randomly picking one of the 
nodes in the model. The local radius of curvature is calculated by fit-
ting a circle through the node and its two neighbours (Fig. 2.13a). 
This gives both R and the direction towards the local centre of curva-
ture. The position of the node is then updated by applying Eq. 2.7 for 
a small time increment. If the node is a triple junction where three 
boundaries meet, three movement vectors are calculated and simply 
summed. Three additional routines must be added to the model: 

 

∆

2 Numerical methods



36  

● Inserting or removing nodes to keep the average distance between 
nodes the same. If this is not done, one may change the “effective” 
time increment; 

● Carry out neighbour switches when two triple junction nodes con-
verge (Fig. 2.13b); 

● Converting three converging triple junction nodes into one, which 
effectively removes a small three-sided grain (Fig. 2.13c). 
 
 

 

Fig. 2.14 Simulation of grain growth in an isotropic granular aggregate after 100, 
5000 and at 50000 time steps. Node displacements were calculated with Eq. 2.7. Dis-
tance between the nodes was kept between 0.5·10-3 and 1.1·10-3 times the model size. 
Model boundaries are wrapping, so that a grain touching the top or left boundary con-
tinue on the other side, as illustrated with the two shaded grains 

This simple model (Fig. 2.14) efficiently and accurately simulates 
ideal grain growth in isotropic granular aggregates, where the surface 
energy is not a function of the orientation of a boundary relative to the 
crystallographic lattice orientation of the grains on either side of the 
boundary. A more complex boundary model for anisotropic surface 
energy and other driving forces for grain-boundary movement is de-
scribed in Chaps. 3.5-7. 

 

 
Symbols used in Chap. 2.3 

m Mobility [m s-1 Pa-1] 
R Radius of curvature [m] 
v Velocity [m s-1] 
γ Surface energy per unit area of grain boundary [J m-2] 
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2.4 Finite Difference method 

2.4.1 Principles 

The Finite Difference (FD) method is one of the most powerful and 
popular numerical modelling methods (e.g. Press et al. 1992; Gershen-
feld 1999). It is ideal for problems such as large-scale flow through a 
porous medium or aquifer, or cooling of a dyke that intruded into 
cooler rocks. In both systems the models themselves do not change 
their geometry, but variables such as fluid fluxes, chemical composi-
tion of fluid and temperature vary in space and time. A fixed grid can 
be used to describe the system. These values are mapped onto this grid, 
and the FD method can be used to calculate how these values evolve 
over time and in space. 

The FD method is based on the principle that any complex function 
(f(x)) can be approximated with a simple linear function for a small in-
crement of the independent variable (x), which could for example be 
space or time. Mathematically this can be described as: 

f(x +∆x ) ≈ f(x ) + df

dx

⎛ 
⎝ 
⎜ 

⎞  
⎠  
⎟  ∆x    (when  x ↓ 0). (2.8) 

In the FD method, a system to be modelled is mapped onto some 
grid or lattice. Values of the state variables (e.g. temperature) are only 
recorded at the grid nodes. The values are assumed to vary linearly be-
tween these nodes. It is clear that the spacing between these nodes must 
be small enough to describe the real system accurately enough: Eq. 2.8 
must be satisfied. Time-dependent changes to the system, like cooling 
of a dyke, are calculated in small increments, again assuming that 
changes are linear for small enough increments of time. Ideally, a sys-
tem would be described by an extremely large number of nodes and all 
time increments should approach zero. However, limited computer 
memory and calculation time constraints mean that the user must find a 
compromise between accuracy on the one hand, and computing time 
and memory use on the other hand.  

∆

  
  

An example could be: cos(α+ ∆ α) ≈  cos(α) - sin(α)· ∆ α. If α=45°, the 
error is only 0.0001 for ∆ α = 1°, and 0.0026 for ∆ α = 5° (Fig 2.15). This 
linear approximation is extremely useful, because linear functions are very 
easy to solve.  
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df

dx
≈

f(x +∆x ) − f(x )

∆x
. (2.9) 

This is called the “forward” approximation of the derivative (Fig. 
2.16). Two other possibilities are the “backward” and “central” ap-
proximations, respectively (Fig. 2.16): 

 

df

dx
≈

f(x ) − f(x−∆x )

∆x
 (backward), (2.10a) 

 

df

dx
≈

f(x +∆x ) − f(x−∆x )

2∆x
 (central). (2.10b) 

Often one is also interested in a second derivative of the function of in-
terest (e.g. when Fick’s second law is applied for diffusion). The second 
derivative of a function, of which the values are know at discrete incre-
ments x, can be approximated in a similar way as the first derivative: 

Fig. 2.15 Example of a smooth curve, in this case y(x) = cos(x). The value of 
y(x+ ∆ x) can be approximated from the value of y(x) and the local gradient 

In Eq. 2.8 we used the derivative of f(x) to approximately predict the 
value of f(x + ∆ x) after adding a small increment of ∆ x. In many cases, how-
ever, both f(x) and f(x + ∆x) are known, but not the derivative of the function. 
The derivative can easily be obtained from Eq. 2.8: 

∆
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∂ 2 f

∂x 2
=

∂ ∂f

∂x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

∂x
≈

f(x +∆x ) − f(x )

∆x

⎛ 

⎝ 
⎜ 

⎞  

⎠  
⎟  −

f(x ) − f(x−∆x )

∆x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

∆x

=
f(x +∆x ) − 2 f(x ) + f(x−∆x )

∆x( )2
.

 (2.11) 

 
 

 

2.4.2 Explicit Finite Difference method 

One big advantage of the FD method is that it can deal very well with 
partial differential equations, such as for example: 

 

∂y

∂t
= c

∂ 2y

∂x 2
. (2.12) 

Here y is some state variable that can vary over time (e.g. temperature), 
c is a rate constant (a physical parameter, for example heat conductiv-
ity) and x an independent variable to describe space in one dimension. 
Equation 2.12 could describe heat flow next to a cooling dyke (y is 
temperature), or changes in trace element concentration during diffu-
sion (y is concentration).  

We will use a model for a cooling magmatic dyke as an example of  
how the FD method can be employed for a process (cooling) that can be  

Fig. 2.16 To determine the local gradient at one point (x) on a lattice, one can use 
the difference with the next point (x+∆ x; forward method), the previous point 

∆ x; backward method), or the points on both sides (x-∆ x and x+∆ x; central 
method). Note that the latter is closest to the true gradient at point x 
(x-
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described with a partial differential equation like Eq. 2.12. As usual with 
models, we will start with some assumptions (Fig. 2.17): 

● The dyke intrudes as an infinite plate of width 2w. This has the 
advantage that the model can be one-dimensional, with temperature 
only varying perpendicular to the dyke. This direction we will call 
the x-axis. Because of the symmetry of the system, we only need to 
model half of the system, putting x = 0 m in the middle of the dyke. 

● The dyke intrudes instantaneously, so it has a constant temperature 
(Tdyke) at the time of intrusion (t = 0 s), at which we start the simulation.  

● The wall rock into which the dyke intrudes has a constant tempera-
ture (Twall) at the time of intrusion. 

● For simplicity, we will assume that heat conductivity is a constant and is 
the same for the dyke as for the wall rock. We will also neglect factors 
such as latent heat of crystallisation, etc.. This means that we only need 
one rate constant in Eq. 2.12, namely the heat conductivity (κ). 

 

 
Fig. 2.17 Set-up for the one-dimensional Finite Difference model to simulate the 
cooling of a dyke that intrudes at a temperature Tdyke 

To calculate the temperature of a node after a small time increment 
 t, we must use Eq. (2.12) for heat conductivity: 

 

∂T

∂t
= κ ∂ 2T

∂x 2
. (2.13) 

In the FD model, the system at t = 0 s can now be described by N nodes, 
lying on the x-axis with a spacing ∆ x. All nodes that lie within the dyke 
(xi ≤  w) have Tdyke, and all others have Twall. Here we use i as an index for 
the i-th node. 

∆
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We use the assumption that temperature varies linearly with time (Eq. 
2.8), if our time increment  t is small enough: 

 

Ti
t +∆t ≈ Ti

t + ∂Ti

∂t

⎛ 
⎝ 
⎜ 

⎞  
⎠  
⎟  ⋅ ∆t = Ti

t + κ ∂ 2Ti

∂x 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅ ∆t . (2.14) 

The way the second derivative of temperature to x can be calculated 
was already provided in Eq. 2.11. Inserting Eq. 2.11 into 2.14 gives: 

€ 

Ti
t +∆t ≈ Ti

t + κ∆t

∆x( )2

⎛ 

⎝ 
⎜ 
⎜ 

⎞  

⎠  
⎟  
⎟  Ti+1

t − 2Ti
t + Ti−1

t( ). (2.15) 

 

 
Fig. 2.18 Scheme showing which nodes contribute to the calculation of the state of 
node i at position xi and time step tj+1, for the explicit method (a), the implicit method 
(b), and the combined Crank-Nicholson scheme (c) 

The great advantage of Eq. 2.15 is that we can calculate the tempera-
ture 
one time increment we can thus update all the temperatures of the 
nodes, and then continue onto the next time increment. This method is 
called the “explicit” method. One big advantage of this method is that it 
is simple. To calculate the new value of a state variable, like T in our 
example, we only need to take into account the current values of a lim-
ited number of neighbouring nodes in our FD-grid (Fig. 2.18a). Of 
course there are also disadvantages. Remember that Eq. 2.15 is only an 
approximation. This means that a small error is made every time in-
crement. These errors add up, which is all right if they balance on av-
erage. If, however, these small errors are always on one side of the cor-
rect solution, the model will progressively deviate further and further 
from the true solution. This is illustrated in fig. (2.19) where an explicit 
method is used to calculate the path of a particle that should move in a 
circle. If the particle moves clockwise with a velocity of v0 on a circle 
with radius 1, its velocity (v) is described by: 

∆

of node i at time t+∆t, using only known temperatures at time t. For 
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v(x ) = ∂x

∂t
= v0y  and 

€ 

v(y ) = ∂y

∂t
= −v0x . (2.16) 

 

 
Fig. 2.19 A circular orbit of a particle simulated with the explicit forward Finite Dif-
ference method. Each time step a small error is made, which adds up in a systematic 
way 

 

xt +∆t ≈ xt + ∂x

∂t

⎛ 
⎝ 
⎜ 

⎞  
⎠  
⎟  ∆t = xt + v0yt∆t  (2.17) 

and yt +∆t ≈ yt + ∂y

∂t

⎛ 
⎝ 
⎜ 

⎞  
⎠  
⎟  ∆t = yt − v0xt∆t . (2.17) 

 

rt = xt
2 + yt

2{ }
1
2 , and (2.18) 

 

rt +∆t = xt +∆t( )2 + yt +∆t( )2{ }
1
2

= xt + v0yt∆t( )2 + yt − v0xt∆t( )2{ }
1
2

. (2.19) 

Using the explicit FD method, we can use Eq. 2.8 to approximate the 
position (xt +∆ t,yt + ∆ t) of the particle after a small time increment ∆ t, using 
the current position of the particle (xt,yt): 

  

Using this scheme, the particle will slowly move away from the centre 
of rotation, no matter how small we make ∆ t. This can be seen if we cal-
culate the distance of the particle before (rt) and after a time increment ∆ t 
(rt + ∆ t): 
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Rearranging Eq. 2.19 and inserting 2.18 then gives: 

 

rt +∆t = xt
2 + yt

2( )+ v0∆t( )2
xt

2 + yt
2( ){ }

1
2

= rt
2 1+ v0∆t( )2( ){ }

1
2

rt +∆t > rt .

 (2.20) 

 
Fig. 2.20 Example of an explicit Finite Difference model to simulate the cooling of a 
22 m wide dyke (infinite plate) with an initial temperature of 750 °C that intruded 
into a wall rock at 250 °C. Only one half of the system was modelled with 25 nodes, 
with a 2 m spacing. Heat conductivity was assumed equal in both dyke and wall rock 
at 10-6 m2/s. Boundary conditions are: T1=T2 and T25=250 °C. The temperature dis-
tribution is shown after 250 and 2500 days of cooling for three different time steps: 
(a) 10 days, (b) 20 days, and (c) 25 days. In the first two cases, the parameter K (Eq. 
2.21) is less than 1/2, and both solutions are practically the same. K is 0.54 with a 
time step of 25 days, and the solution very quickly deteriorates and oscillates wildly 

A second possible problematic aspect of the explicit method is the 
possibility of oscillation: the calculation does not converge towards the 
right solution but cycles wildly around it. Whether the explicit calcula-
tion as used in Eq. 2.15 is stable, depends on the conductivity constant, 
and the time and length resolution. These can be grouped together in 
one parameter K defined as: 

K = κ∆t

∆x( )2
Ti

t +∆t ≈ Ti
t + K Ti+1

t − 2Ti
t + Ti−1

t( ). (2.21) 

 

 

  

Interestingly, there is a critical value for K, above which the solution 
starts to oscillate. K should always be chosen below 1/2 to avoid oscilla-
tion (Fig. 2.20). This means that the choices of 

  

∆ t, 

 

∆ x are not completely 
free, and not independent of the conductivity constant. In some cases this 
can be a major problem. If a very high spatial resolution is needed, 

  

∆ x 
must be very small. This implies that 

 

∆ t must also be set at a small value, 
which means that many time steps must be calculated, leading to a large 
calculation time. 
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Since the state of a node after one time increment is only a function 
of the current state of that node and its nearest neighbours, it may take 
a long time for the effect of a perturbation to propagate through the 
system. The 100th node away from the dyke surface in our example 
only “notices” the temperature perturbation caused by the dyke after 
100 time steps. If we would double the spatial resolution, the 100th 
node would only be half as far away from the dyke surface, but would 
still only “notice” the dyke after 100 time steps. We see that the time 
needed for a perturbation to propagate a given distance is a function of 
the spatial resolution of the simulation. This is clearly not satisfactory in 
some cases.  

Equation 2.15 can easily be solved for almost all nodes in the model, 
because the equation only uses data that are already known. There are 
two exceptions, namely the first and last node (number i=1 and i=N). 
For those two nodes, Eq. 2.15 reads: 

 

T1
t +∆t ≈ T1

t + κ∆t

∆x( )2

⎛ 

⎝ 
⎜ 
⎜ 

⎞  

⎠  
⎟  
⎟  T2

t − 2T1
t + T0

t( ) , (2.22a) 

 

TN
t +∆t ≈ TN

t + κ∆t

∆x( )2

⎛ 

⎝ 
⎜ 
⎜ 

⎞  

⎠  
⎟  
⎟  TN +1

t − 2TN
t + TN−1

t( ). (2.22b) 

The problem is that node “0” and node “N+1” do not exist. These 
two nodes lie just outside the inevitable boundaries of the system. For 
these boundaries one must make exceptions, or special rules. These are 
normally called the “boundary conditions”. In the example of the cool-
ing dyke (Fig. 2.20), the following boundary conditions were chosen: 

  T1 = T2. This means that the temperature gradient in the middle of the 
dyke is zero. This is correct if the system is symmetric, as is the case 
here. 

  TN = Twall. This means that the temperature remains constant at the 
node furthest away from the dyke. Strictly speaking, a point infi-
nitely far away from the dyke should still sense a slight rise in tem-
perature. However, if node N is far away enough, this boundary 
condition will not alter the solution much. 

Since the boundary conditions already determine the values for the 
first and last node, the explicit FD calculation is only applied to nodes 2 
through to N-1, for which all information is available. 

● 

● 
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2.4.3 Implicit Finite Difference method 

Some of the problems inherent to the explicit method can be avoided 
with the “implicit” method. The explicit method calculates the state of a 
node after a time increment completely from available data for the cur-
rent state. This is different in the implicit method, where information is 
used from both the current state and the state after the time increment 
(Fig. 2.18b). Instead of Eq. 2.15, the implicit method uses: 

Ti
t +∆t ≈ Ti

t + κ∆t

∆x( )2

⎛ 

⎝ 
⎜ 
⎜ 

⎞  

⎠  
⎟  
⎟  Ti+1

t +∆t − 2Ti
t +∆t + Ti−1

t +∆t( ) , (2.23a) 

Ti
t +∆t ≈ Ti

t + K Ti+1
t +∆t − 2Ti

t +∆t + Ti−1
t +∆t( ) . (2.23b) 

 

T2
t ≈ −KT1

t +∆t + (1+ 2K)T2
t +∆t − KT3

t +∆t

T3
t ≈ −KT2

t +∆t + (1+ 2K)T3
t +∆t − KT4

t +∆t

...

TN−2
t ≈ −KTN−3

t +∆t + (1+ 2K)TN−2
t +∆t − KTN−1

t +∆t

TN−1
t ≈ −KTN−2

t +∆t + (1+ 2K)TN−1
t +∆t − KTN

t +∆t

 (2.24) 

The set of equations can be rewritten in the form of a matrix multi-
plication (using the boundary conditions described before: T1=T2 and 
TN=Twall): 

  

 

T2
t

T3
t

M

TN−1
t + KTwall

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=

1+ K −K

−K 1+ 2K −K

O

−K 1+ 2K

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

T2
t +∆t

T3
t +∆t

M

TN−1
t +∆t

 

 

 
 
 
 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

 (2.25) 

 

This is a vector-matrix multiplication of the type:  

 

  

  

At first it may seem odd to calculate the second spatial derivative of 
temperature at time t+

  

∆ t. We cannot straightforwardly solve Eq. 2.23, be-
cause the values we want to calculate are on the right side of the equation 
as well. Still the equation can be solved, but only simultaneously for all 
nodes in one step. If we have N nodes, Eq. 2.23 can be written N times. 
This gives us a set of N linear equations with N+2 unknowns (T1

t +

  

∆t
 

through to TN+1
t +

  

∆t
). The “+2” comes from the non-existent nodes on the 

left and right side of the model. If we use the boundary conditions to pro-
vide the values for T1 and TN, we are left with N-2 linear equations and N-2 
unknowns, which means we can solve for all the unknowns. The set of 
equations looks like this: 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

 

⎛

⎝

⎜
⎜
⎜
⎜
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Ai = B ijC j  (2.26) 

where the vector Ai contains the data already known at time t, and 
which includes the boundary conditions. The vector Cj contains the 
unknown values (Ti

t+∆t) we want to determine. The tensor Bij converts 
the two vectors into each other. Because of the similarity of this tensor 
with the stiffness matrix in linear elasticity, it is sometimes also called 
the stiffness matrix. All (...) we now need to do to find the unknown 
temperatures (vector Cj) at time t+  t is to invert matrix Bij to get: 

 

Ci = B ij
−1A j . (2.27) 

Although the inversion of matrix Bij may look daunting, many stan-
dard recipes exist to perform the calculation.  

One major advantage of the implicit method is that all nodes are used 
together in the calculation. This means that a point that is m nodes away 
from a perturbation is immediately included in the calculations, and not 
only after m steps as in the explicit method. 

 

 
Fig. 2.21 Example of the different Finite Difference methods to predict the value of 
some function of time. To predict the value at time t+∆t, the explicit method uses the 
gradient (g) at time t, whereas the implicit method uses the gradient at time t+∆t. Nei-
ther gives the correct solution. The Crank-Nicholson method combines the two 
methods, which usually improves the estimate 

∆
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2.4.4 The Crank-Nicholson scheme 

Both the explicit and implicit methods are imperfect. Their disadvan-
tages are illustrated in fig. 2.21. The explicit method uses the gradient 
(gt) at time t and extrapolates forward for a small time increment. The 
implicit method, on the other hand, uses the gradient (gt+∆t) at time t+∆t 
for this extrapolation. One way of getting the best of both methods is to 
use both. This is the so-called Crank-Nicholson scheme, which com-
bines Eqs. 2.15 and 2.23 into: 

 

Ti
t +∆t ≈ Ti

t + κ∆t

∆x( )2

⎛ 

⎝ 
⎜ 
⎜ 

⎞  

⎠  
⎟  
⎟  

Ti+1
t +∆t − 2Ti

t +∆t + Ti−1
t +∆t( )+ Ti+1

t − 2Ti
t + Ti−1

t( )
2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
. (2.28) 

In many cases, the Crank Nicholson scheme will give a better esti-
mate of the true value after a time increment than the implicit or the 
explicit method.  

2.4.5 Final remarks on the Finite Difference method 

Two main FD methods (explicit and implicit) were introduced above, 
together with one variation, namely the Crank-Nicholson method, 
which combines both methods. There are various other possibilities to 
reach the best estimate for the value of a state variable after an incre-
ment in the calculation (typically an increment in time). Iterative meth-
ods use one estimate to improve the next one, iterating towards an op-
timised solution. Monte Carlo methods are also possible, where a 
random number generator randomly selects grid-nodes to update them 
one by one. The choice of method depends on the problem at hand, as 
well as on possible numerical limitations and constraints, such as com-
putation time.  

In the end, the user must make a sensible choice from the available 
options. The choice will usually be a compromise in resolution, sophis-
tication of the calculations, computer memory use and computation 
time. Whatever choice is made, it is important that the user knows and 
understands the method they are using, and ensures it is appropriate for 
the problem under consideration. At all times, the model should be 
checked and compared with analytical solutions, where available, and 
tested for stability. 

Boundary conditions are a critical part of any model, including FD 
models. Although some boundary conditions are always needed to 
constrain the solution, boundary conditions can also become an obsta-
cle or dominate the solution. Boundary conditions should therefore be 
considered very carefully and even avoided where possible. In some 

2 Numerical methods



48   

cases, boundaries (and thus boundary conditions) can be avoided by 
using wrapping boundaries.  

Another way of avoiding too much interference from boundaries is 
to move boundaries away from the area in interest. However this en-
larges the model and increases the number of nodes, if node spacing or 
resolution is kept constant. Often, increasing the node spacing, or re-
ducing the resolution, is not permitted because the complexity of the 
solution in the area of interest. Moving the boundaries away would 
then result in an increase in memory use and calculation time. There 
are two ways to solve this problem. 

The first solution that can sometimes be employed is using symmetries 
in the system (Fig 2.22a,b). In the example of the cooling dyke this was al-
ready used. Rather than modelling both sides of the dyke, which should 
both be the same, only one side was modelled. This allows to either double 
the resolution, while maintaining the same use of memory space and com-
putation time, or keep the same resolution, and halve memory use and 
computation time.  

 

 
Fig. 2.22 Choosing the optimal grid and boundary conditions. (a) Case with a radial 
symmetric area of interest in the middle. (b) Because of the symmetry, only one quar-
ter of the system needs to be modelled. (c) Variable grid spacing can optimise resolu-
tion in the area of interest 

The second, and more powerful solution is to vary resolution, which 
means varying the spacing between grid nodes (Fig. 2.22c). This way, 
a high resolution can be achieved in areas where complexity is ex-
pected, while other areas are covered by only a sparse grid. Typically, 
the resolution will be lowest at the boundaries, away from the area of 
interest. Varying the spacing between nodes, of course necessitates 
some changes to the equations provided before. These are however 
minor and obvious. For example, Eqs. 2.9 and 2.11 become (for the 
forward calculation): 
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df

dx

⎛ 
⎝ 
⎜ 

⎞  
⎠  
⎟  

i

≈ fi+1 − fi

xi+1 − xi

, (2.29) 

 

∂ 2 f

∂x 2

⎛ 

⎝ 
⎜ 

⎞  

⎠  
⎟  

i

=
∂ ∂f

∂x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

i

∂x
≈

fi+1 − fi

xi+1 − xi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

fi − fi−1

xi − xi−1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
2

xi+1 − xi−1( )
. 

(2.30) 

It should be noted, that choosing a high resolution in parts of the 
system, does have consequences for the choice of time increment, be-
cause the requirement that K<1/2 (Eq. 2.21) must hold everywhere in 
the system. This means that the acceptable time increment size is deter-
mined by the smallest grid spacing within a model.  

 
 

Symbols used in Chap. 2.4 

Vector containing known values at all nodes 
Tensor relating known and unknown values at all nodes 
Vector containing unknown values at all nodes 

c Rate constant 
f() Arbitrary function 
g Gradient 
Κ Stability parameter (κ∆t/(∆x)2) 
N Number of nodes 
r Distance from origin of a particle [m] 
Tdyke Intrusion temperature of dyke [K] 
Twall Temperature of host rock in which dyke intrudes [K] 
v Velocity [m s-1] 
w Width of a dyke [m] 
x Arbitrary independent variable, in particular position in space 
y Arbitrary dependent variable, or y-coordinate in 2D space 
α Angle 

κ Heat conductivity [m2 s-1] 

 

Ai 

Bij 

Cj 
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2.5 Finite Element method 

The FE method is based on the following principles: 

1. The system to be modelled is divided into a mesh of contiguous 
(non-overlapping) elements of finite size, for example triangles, 
hexagons or polygons of arbitrary shape. The elements are defined 
by nodes, which usually lie on the corners of the elements, but can 
also lie within the elements. These nodes have two functions: (a) they 
define the shape of the elements and (b) they store the values of the 
state variables.  

2. We assume that the state variables of interest anywhere in the system 
can be approximated by certain functions. Such functions can be 
simple linear functions, but can also be complex non-linear func-
tions. 

3. We solve all functions for all nodes in the FE-mesh, taking into ac-
count (a) all the state- and kinematic equations, (b) the continuity 
conditions between the elements, and (c) the boundary conditions. 

Since the FE-method is widely used to model solid-state deforma-
tion, we will use that application to illustrate the method. Imagine a de-
forming viscous material. We may be interested in the velocity of mate-
rial points within that material, resulting from the application of stresses 
at the surface of the material. In the FE method, we are only interested 
in the values of the state variables at the nodes. Within the element, the 
state variables, e.g. velocity in our example, can be described with an 
unknown function u(x,y) = κ(x,y)(f). The velocity is a function of position 
(x,y) and the “forces” acting on the system (f). These forces can be true 
forces, but can also include other factors that may determine the veloc-
ity. Now consider one element with a number of nodes in the material. 
At the i-th node, the velocity will be κi(f). We usually cannot know the 

The Finite Difference method has one major drawback, in that it is not 
well suited for irregular grids, and that it heavily relies on the assumption 
that functions can be linearised for small increments. Imagine a model for 
a deforming piece of rock. At the start we could map the rock onto a regu-
lar rectangular grid. However, we may want to keep the grid nodes fixed to 
particles within that rock. This means that the grid deforms along with the 
rock, and is no longer rectangular after the first deformation increment. In 
this case, the Finite Element (FE) method is more suitable than the Finite 
Difference method. The FE method is the standard method for modelling 
deforming materials, and is widely used in engineering and studies of rock 
deformation (Zienkiewicz 1977; Owen & Hinton 1980; Gershenfeld 1999; 
Knabner & Angermann 2000).
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true function (κ), but we can assume a trial function (k) that should ap-
proximate the true function as much as possible at all nodes: 

 

κ( f ) − k( f )( )∑
i

2
↓0. (2.31) 

Using the assumed function (k), we can now write for each node i 
one or more equations of the type: 

 

ki ⋅ ui = fi . (2.32) 

This function relates the state variable(s) (ui, e.g. velocity) to the 
force (fi, e.g. stress) through an assumed function (ki, e.g. a linear func-
tion). If we do this for all nodes, and use the boundary conditions, we 
get a set of equations: 

 

K ij ⋅ ui = f j . (2.33) 

Kij is a matrix, the size of which is determined by the number of 
nodes in the mesh. Eq. 2.33 looks like the equation that relates elastic 
strain to stress. Kij is therefore sometimes called the “stiffness matrix” in 
analogy to the stiffness matrix for elastic strain. In Eq. 2.33, ui is un-
known. To solve for ui, we must invert Kij, to get: 

ui = K ij
−1 ⋅ f j . (2.34) 

 

 
Fig. 2.23 A simple system of three infinite horizontal viscous discs under a vertical 
stress. The system can be modelled with three 1-dimensional elements and four 
nodes (black dots) 
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This is all very abstract, and it may be helpful to use a very simple il-
lustrative example. Take a pile of three infinite homogeneous viscous 
discs, each having a viscosity ηi and thickness hi (Fig. 2.23). This sys-
tem can be modelled with a one-dimensional Finite Element mesh with 
only four nodes placed at the boundaries between the discs. We want to 
know how fast the discs will thicken or thin when a stress σ is applied 
to the pile. If we take tension to be positive, we can use the viscous 
flow law as a path-independent equation that relates stretching (posi-
tive) to stress (σ): 

 

∂h

h∂t
= σ

η
ui − ui −1 = xi − xi −1

ηi

σ , (2.35) 

where xi is the position (height) of the i-th node. 
With three elements, we have four nodes, but can only write three 

equations. We need to add a boundary condition. A useful one might 
be that the base of the plate does not move: u0 = 0. Let us now write out 
the three equations in full: 

 

u1 − u0 = x1 − x0

η1

σ

u2 − u1 = x2 − x1

η2

σ

u3 − u2 = x3 − x2

η3

σ

1 ⋅ u1 + 0 ⋅ u2 + 0 ⋅ u3 = x1 − x0

η1

σ

−1 ⋅ u1 +1 ⋅ u2 + 0 ⋅ u3 = x2 − x1

η2

σ

0 ⋅ u1 −1 ⋅ u2 +1 ⋅ u3 = x3 − x2

η3

σ

 (2.36) 

This equation is of the type of Eq. 2.33 (

 

Kij ⋅ ui = f j ), with: 

 

ui =
u1

u2

u3

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞  

⎠  

⎟  
⎟  ⎟  

, 

 

Kij =
1 0 0

−1 1 0

0 −1 1

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞  

⎠  

⎟  
⎟  ⎟  

, and 

 

f j =
x1 − x0( )σ /η1

x2 − x1( )σ /η2

x3 − x2( )σ /η3

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

.  (2.34) 

Notice that the “force vector” (fj) is completely known. If we can in-
vert Kij to Kij

-1, we can solve the velocity vector ui, using Eq. 2.34 (ui = 
Kij

-1·fj). The solution is: 

 

u1

u2

u3

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞  

⎠  

⎟  
⎟  ⎟  

=
1 0 0

1 1 0

1 1 1

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 
⋅

x1 − x0( )σ /η1

x2 − x1( )σ /η2

x3 − x2( )σ /η3

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

. (2.35) 

The example is of course trivial, but all Finite Element models work ba-
sically the same way. There is always a vector of unknowns to be calcu-
lated (u), a vector with known “forces” (f) and a “stiffness matrix” (K) 

⇔

⇔
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that needs to be inverted. Table 2.1 lists what u and f can be for differ-
ent processes. The inversion of K becomes non-trivial when there are 
many nodes, and the matrix becomes huge. Finding the solution can 
than become very time-consuming, especially if an exact solution is 
needed.  

 

Table 2.1 Example of the governing equations, unknown variables and “forces” for 
processes that can be modelled well with the Finite Element method 

Process Governing equation Unknown variables (u) “force” (f) 
Deformation Viscous flow law or 

Hooke’s law 
Velocity or  
displacement 

Stress 

Conductivity Fourier’s law Temperature Temperature 
gradient 

Diffusion Fick’s law Concentration Concentration 
gradient 

 
 

Symbols used in Chap. 2.5 

“Forces” acting on the system 
Thickness of element i [m] 
The “stiffness matrix” 
Trial or assumed function relating state variables to “forces” acting on the 
system 

u State variable, such as velocity 
η Viscosity [Pa s] 
ηi Viscosity of element i [pa s] 
κ() True function relating state variables to “forces” acting on the system 
σ Stress [Pa] 

 

hi 

Kij 

k() 

f 
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2.6 Phase Field modelling 

Phase Field (PF) modelling is a lattice-based method that is increasingly 
used to simulate processes such as crystal growth from a melt or un-
mixing of a mixed material into two daughter materials. Although the 
concept and programming of PF-models is relatively simple, the 
mathematics behind it can sometimes be complex. Here, we will only 
briefly introduce the very basics of PF-modelling, with a simple exam-
ple. A short but illuminating description of the basics of PF-modelling 
can be found in Biben (2005). The book by Emmerich (2003) gives a 
thorough overview of PF-modelling, but is only suitable for the ad-
vanced reader.  

The boundary between phases (e.g. mineral grains, or crystal versus 
melt) is sharp in most modelling techniques. In a q-state Potts model, a 
point on a lattice has only one of q possible states; for example 1, 2, or 
3. There are no points on the lattice that have an intermediate value, 
such as 2.7. Similarly, polygons in a Front-Tracking model enclose a 
region with certain properties. The boundary with the next polygon is a 
sharp line in 2D, or plane in 3D. Such models thus give a very precise 
position of a phase boundary. PF-modelling instead uses fuzzy 
boundaries instead. The price to pay for using a PF-model is giving up 
a bit of resolution in the position of phase boundaries, but in return 
many possibilities to model processes open up. 

In PF-models the variable θ identifies what phase is present at a point 
in the system. θ can be a scalar if the phase is isotropic. In a simple bi-
nary system of, for example, melt with solid, one could define θ = -1 as 
melt and θ = +1 as solid. θ can be mapped on a lattice, where each lat-
tice point has a certain value of θ. A boundary between solid and melt 
would be where θ goes from -1 to +1. The main point of PF-models is 
that θ can have any value, not only -1 or +1, but anything in between 
as well. This means that a point in the system can have θ = -0.5, which 
would mean mostly melt, but not completely. Decreasing θ would 
make the point more melt than solid (= melting), whereas increasing θ 
would make the point more solid (crystallisation). This shows that the 
process of melting or crystallisation can be simulated by changing θ. 
All one needs to find are the right equations for for each point 

ttice. 
For the model it may be all right to have θ = -1/2, but it is not realis-

tic: the material is either solid or melt, not something in between. To 
force θ towards either -1 or +1, one can design a free energy (W) func-
tion, that relates W to θ. There are some standard W(θ) functions, such as 
the Landau-Ginzburg and Kobayashi functions:  

on the la
∂θ/ ∂t
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Landau-Ginzburg: 

 

W(θ ) = 1

4
1−θ 2( )2

, (2.36) 

Kobayashi: W(θ ) = θ 4

4
− 1

2
− m

3
⎛ 
⎝ 

⎞ 
⎠ θ

3 + 1

4
− m

2
⎛ 
⎝ 

⎞ 
⎠ θ

2 . (2.37) 

An elegant example of a PF-model for crystal growth from a melt 
can be found in Biben (2005). The simple code provided by Biben 
(2005) simulates the growth of a crystal from its melt. The model uses 
Kobayashi’s energy function with an additional surface energy func-
tion. The growth rate of the crystal is determined by the difference be-
tween equilibrium melting temperature and actual temperature, as well 
as by the rate at which the latent heat of crystallisation can diffuse away 
from the growth front. The shape of the crystal is determined by its 
symmetry and the latent heat. Depending on the setting of the latent 
heat, one can get all crystal shapes from dendritic to facetted, and with 
any desired symmetry (Fig. 2.24).  

 
Symbols used in Chap. 2.6 

m Variable defining difference in minima in the Kobayashi equation 

  Free energy 
θ Phase variable 

 

Any evolution equation that calculates 

  

∂θ/

  

∂ t will try to minimise W(θ), 
that is, will try to minimise the total free energy of the system. Tempera-
ture and pressure are other possible factors that may play a role in the cal-
culation of ∂θ/ ∂ t for each lattice node in the system. Once the evolution 
equation(s) have been designed, they can be applied for small time steps, 
using Finite Difference or Finite Element schemes.  

  

The Landau-Ginzburg equation is symmetric around θ = 0 and has min-
ima at θ = -1 and θ = +1. These functions energetically favour particular 
values of θ, here -1 and +1, that represent the pure phases. Kobayashi’s 
equation has minima at θ = 0 and θ = +1. The factor m determines the rela-
tive height of the minima. m<0 makes the minimum at θ = 0 smaller than 
at θ = +1. This would make the state represented by θ = 0 energetically 
more favourable than that represented by θ = +1. If melt is represented by 
θ = 0 and solid by θ = +1, melting would occur when m<0 and crystallisa-
tion when m>0.

w
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Fig. 2.24 Phase Field simulation of a crystal grown from a melt, using the code of 
Biben (2005). (a) Dendritic crystal with a 6-fold symmetry. Enlargement of the edge 
of the crystal shows that the boundary is actually fuzzy, because states between “crys-
tal” and “melt” are allowed. (b) Crystal produced with the same settings, except that 
it has a 3-fold symmetry. (c) Crystal with a 5-fold symmetry and lower latent heat.  

EXPERIMENT 3 

  P. D. Bons et al.



   57 

2.7 Molecular and Dislocation Dynamics 

Molecular Dynamics simulation techniques are used to model the 
interactions of molecules or atoms. Materials are discretised into actual 
molecules or atoms that are represented by discrete particles in Molecu-
lar Dynamics (MD) simulations. Alternatively, materials are treated as a 
continuum, but contain discrete dislocation line segments in Dislocation 
Dynamics (DD) simulations, which are treated in the next section. 
These simulation techniques are very powerful since they give an un-
derstanding of the behaviour of materials based on microphysical laws. 
However, the disadvantage lies in the very small size of single mole-
cules or dislocations so that only very small volumes of materials can 
be modelled. MD-simulations can produce grain-sizes on the nano-
meter scale and very short time scales in the range of nano-seconds. 
DD-simulations may treat larger systems so that the interactions of a set 
of dislocations can be studied (scale of several micrometers in three 
dimensions). However, in order to study the plasticity of polycrystal-
line rocks, interactions of dislocations with grain-boundaries become 
important so that larger scales are necessary. Some DD-simulations 
reach that scale but the resolution is still low, especially in 3D. In most 
cases different models have to be used at different scales and the in-
formation from a more precise model at the small scale has to be passed 
up to the simpler model at the larger scale (short review in Baskes 
1999).  

2.7.1 Molecular Dynamics 

In Molecular Dynamics simulations, material is modelled on the mo-
lecular level by a multi-particle approach. The motion of molecules or 
atoms is expressed by Newton’s law of motion. Particles move accord-
ing to forces acting from neighbouring atoms or molecules. These 
forces are calculated using inter-atomic potentials, for example the 
Embedded Atom Method, EAM (Ercolessi and Adams 1994; Mishin et 
al. 1999), the Johnson pair potential (Johnson 1964) for Fe, or the 
Lennard-Jones pair potential.  

Atoms have a lowest-energy equilibrium distance with respect to 
each. If they are closer together than the equilibrium distance they re-
pel each other, and if they are further apart from each other they attract 
their neighbours. The Lennard-Jones pair potential (U(r)) for example 
has the form (Merimaa et al. 2000): 
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U r( ) = e
r0

r

⎛ 
⎝ 
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⎞ 
⎠ 
⎟ 

12

− r0

r

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

6⎛ 

⎝ 
⎜ ⎜ 

⎞  

⎠  
⎟  ⎟  , (2.39) 

where r is the inter-atomic distance, r  defines the equilibrium distance 
(re), where re =  21/6r  and e changes the value of the potential, which is 
especially important at the equilibrium distance. Figure 2.25 illustrates 
the Lennard-Jones pair potential where e and r  have the value 1.0 and 
the equilibrium distance is 1.122.  

 

 
Fig. 2.25 Lennard-Jones pair potential with an equilibrium distance of 1.122 (r  =1, 
e=1) using Eq. 2.39. U(r) is the potential and r the distance between atoms. Repulsive 
forces reach infinity whereas attractive forces go asymptotically to zero with distance 

The Lennard-Jones potential is symmetric and thus leads to hexago-
nal packing of particles (Fig. 2.26a). Atoms in natural materials vibrate 
if the temperature is not at absolute zero. In Molecular Dynamics mod-
els, initial velocities of atoms depend on the temperature and are often 
applied using the Maxwell-Boltzmann distribution. The direction of 
these initial velocities may be chosen from a random distribution. 
These velocities resemble thermal fluctuations and can lead to phase-
transitions since fluctuations normally increase with increasing tem-
perature. If the fluctuations are larger than the attracting forces that 
structure the material, a solid will first become a fluid and then a gas 
(Fig. 2.26). If the fluid is compressed it may structure again and be-
come a solid.  

Molecular Dynamics simulations are used to study a wide variety of 
natural processes including phase transitions (Kuznetsov et al. 2001), 
dislocations (Chrzan and Erdonmez 2001; Chang et al. 2002), fracture 
propagation (Guo et al. 2003, Li et al. 2004), stress-corrosion cracking 

0

0

0

0
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(Li et al. 2002), grain boundary sliding and grain boundary diffusion 
creep (Haslam et al. 2003).  

 

 
Fig. 2.26 Phase transitions in Molecular Dynamics models, schematic drawing. (a) 
Solid with low thermal fluctuations at low temperature, hexagonal structure. (b) 
Phase transition from solid to fluid due to higher thermal fluctuations at medium 
temperature. (c) Phase transition from fluid to gas due to very high thermal fluctua-
tions at high temperature. (d) Pressure can lead to a phase transition from fluid to 
solid when the fluid is forced to structure and thermal fluctuations are damped 

2.7.2 Modelling of dislocations  

In order to understand microphysical laws of the flow of rocks in the 
crust of the Earth one has to study the movement of dislocations. Mod-
elling the deformation of materials based on discrete dislocations allows 
us to further understand macroscopic aspects of material plasticity. Dis-
locations are either modelled using Molecular Dynamics approaches 
(Osetsky et al. 2000), by Front-Tracking methods that are then often 
called Dislocation Dynamics (codes) (Brown 1967; Kubin and Canova 
1990; Kubin et al. 1992; Devincre and Condat 1992; Schwarz 1999; 
Von Blanckenhagen et al. 2004; Mohles 2004), by Phase Field ap-
proaches (Khachaturyan 2000; Wang et al. 2001) or Level Set methods 
(Xiang et al. 2003). The different methods are explained in detail in the 
following sections. Recent comparison between the discrete Molecular 
Dynamics approach to model dislocations and the classical Front-
Tracking continuum approach Dislocation Dynamics show similar re-
sults (Chrzan and Erdonmez 2001). 

One way of modelling dislocations is using Molecular Dynamics as 
described above, where discrete particles represent single atoms or 
molecules. Dislocations can be implemented in Molecular Dynamics 
simulations by displacing a row of atoms according to a displacement 
field due to external deformation (Fig. 2.27). Dislocations may also 
develop in these models at crack tips (Zhou et al. 1997) where shear 
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stresses are high so that rows of atoms slip. Figure 2.27 illustrates dislo-
cations that develop at tilt boundaries in stressed crystals. Large parts of 
the crystal relax stresses and deformation is localized in the tilt bound-
ary by the inclusion of extra rows of atoms that are bounded by dislo-
cations. The main problem in Molecular Dynamics is the very small 
temporal and spatial scale so that complex interactions of dislocations 
in polycrystalline solids are difficult to model. However, Molecular 
Dynamics offers the possibility to model interactions of tangling and 
annihilating dislocations and interactions of dislocations and grain 
boundaries. 

 
Fig. 2.27 Molecular Dynamics simulation of dislocations in a symmetric tilt bound-
ary. Sketch after Merimaa et al. (2000). Large arrows mark the tilted lattice direction 

Dislocation Dynamics is an alternative tha can be used to model dis-
locations. It is based on the calculation of forces on single dislocations 
using Front-Tracking methods (Fig. 2.28). The deforming material is 
treated as a linear elastic continuum with dislocations as line defects. 
The dislocations can then be represented as nodes connected by straight 
or curved line segments. The stress acting on a dislocation is a function 
of the bulk stress due to deformation and the local stress caused by the 
dislocation itself and possibly an obstacle stress (Foreman and Makin 
1966; Brown 1967; Bacon et al. 1973; Kubin et al. 1992; Rhee et al. 
1998; Zbib et al. 1998; Schwarz 1999; Ghoniem et al. 2000; Devincre 
et al. 2001; Von Blanckenhagen et al. 2004; Mohles 2004). The force 
on a line segment and node of the dislocation can be calculated using 
the Peach-Koehler formula (Hirth and Lothe 1982). Different ap-
proaches exist to calculate the stress tensor at a point within the mod-
elled crystal due to a given dislocation line (Devincre and Condat 
1992, Eq. 2.40; Xiang et al. 2003). In addition to the force due to in-
teractions of dislocations, a virtual force due to line tension may be in-
troduced (Devincre and Condat 1992) because the dislocation segments 
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may grow in length and the elastic energy of finite segments depends 
partly on the length of the segment. The line tension force is short-
ranged in contrast to long-range elastic interactions of different disloca-
tion segments. One problem in determining the stress field at a disloca-
tion is that most calculations are based on linear elasticity theory but 
linear elasticity is thought to break down close to the dislocation itself 
(Hirth and Lothe 1982).  

Dislocation movement is a function of the Peach-Koehler force and 
can be calculated using a viscous drag law or a mobility tensor. The 
Peach-Koehler force (f) on a dislocation is given by 

 

f = σ totb ×ξ , (2.40) 

where σ tot is the sum of the stresses (bulk stress, self stress, etc.), b the 
Burgers vector and ξ a tangent to the dislocation line (Xiang et al. 
2003). The velocity (v) of a dislocation is simply 

 

v = M ⋅ f , (2.41) 

where M is the mobility tensor.  
Early Dislocation Dynamics simulations focused on the slip of single 

dislocations on their slip planes and their interaction with obstacles (Fore-
man and Makin 1966; Bacon 1967; Bacon et al. 1973). More advanced 3D 
models discretise dislocations into straight edge and screw segments (Fig. 
2.28a, Kubin and Canova 1990; Kubin et al. 1992; Devincre and Condat 
1992; Devincre et al. 2001) whereas the latest models include dislocations 
with mixed character (Fig. 2.28b,c, Zbib et al. 1998; Rhee et al. 1998; 
Schwarz 1999; Ghoniem et al. 2000). The problem with Front-Tracking 
methods is the complexity of the geometry of dislocations in 3D when dis-
locations meet and tangle and reach grain-boundaries (Fig. 2.28c). There-
fore the calculations are time consuming and need a number of special 
rules for topology changes when dislocations meet. Some of these rules 
can be included from Molecular Dynamics studies of dislocation interac-
tions.  

The third approach uses a Phase Field method where density functions 
are used to model three dimensional dislocation arrays (Khachaturyan 
2000; Wang et al. 2001, 2003; Hu et al. 2004). These models are based on 
the Phase Field micro-elasticity theory (PFM). The method allows the 
tracking of the movement of dislocations of arbitrary orientation without 
the need to track single dislocation lines. The number of phase fields that 
are needed to describe the system is given by the number of slip systems in 
the crystal. Dislocation loops are expressed as thin platelets that represent 
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slipped parts of the crystal and are bordered by the dislocations themselves 
(for a detailed description see Wang et al. 2003). Phase Field approaches 
are described in Chap. 2.6. A fourth relatively new approach uses a Level 
Set method to solve problems with multiple interacting dislocations. This 
method is also based on linear elasticity and self-stress of dislocations and, 
like the Phase Field approach, does not need to discretise single disloca-
tions. It is supposed to be more accurate than the Phase Field approaches 
that use some contributions of energy that are normally not present. For a 
review of different methods and a detailed description of the Level Set 
method see Xiang et al. (2003).  

 

 
Fig. 2.28 Front-Tracking approach for dislocation modelling. Dislocations are discre-
tised into nodes connected by straight line-segments (Front-Tracking). (a) Discretisa-
tion on a square lattice where the Burgers vector is parallel to a lattice direction. Dis-
location loop (grey part of crystal has slipped) is discretised into screw (parallel to 
Burgers vector) and edge (perpendicular to Burgers vector) type dislocations. (b) 
Front-Tracking approach with mixed dislocations. Dislocation loop is split up into 
nodes connected by straight segments. (c) Three-dimensional Front-Tracking ap-
proach. Arrows mark Burgers vectors that lie in the slip planes. Nodes where disloca-
tions meet need special rules 
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Symbols used in Chap. 2.7 

b Burgers vector [m] 
e Scaling parameter for the Lennard-Jones potential 
f Peach-Koehler force [N] 
M Mobility tensor of dislocation 
r Distance between atoms [Å] 
re Equilibrium distance between atoms [Å] 
r  Distance between atoms at which the Lennard-Jones potential is zero [Å] 
U Potential 
v Velocity [m s-1] 
ξ Tangent to dislocation line 
σtot Sum of stresses acting on a dislocation [Pa] 
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2.8 Lattice-Spring models 

Lattice-Spring models (also called lattice, spring network or discrete 
element models) are in principal closely related to Molecular Dynamics 
models (section 2.7). They are also based on atomic models of materi-
als but the basic units in Lattice-Spring models may represent larger 
volumes of heterogeneities in rocks, namely subgrains, grains or clus-
ters of grains (Flekkoy et al. 2002). These discrete units are connected 
by rheological elements, where the spring is one of the simplest ones 
(Fig. 2.29). Coarse lattices may be used to model continuum systems 
and they are also a close relative to the common Finite Element method 
(section 2.5). We will first describe Lattice-Spring models in general, 
then address normal force models that use triangular lattices, introduce 
angular forces, beams and discrete element models with contact forces, 
illustrate the average stress tensor and finally introduce the possibilities 
to model fractures using Lattice-Spring models. An example of the lat-
ter can be found in  EXPERIMENT 4.  

 
Fig. 2.29 One-dimensional linear-elastic spring as a rheological element. Displace-
ment (u) of node 1 along x is proportional to a spring constant and the applied force. 
Node 2 is fixed in space. Strain in this simple case is dl divided by the initial length 
of the spring. The length of the displacement vector u is equivalent to dl 

The basic idea of a Lattice-Spring model is that the strain energy in a 
unit cell of the lattice is equivalent to its continuum in the same volume 
V of a rock (Ecell=Econtinuum). The elastic energy of a Lattice-Spring 
model is the sum of energies of single bonds in contrast to a volume in-
tegral in the continuum model. The relation 

 

Ecell = 1

2
F ⋅ u( ) b( )

b

b

∑  (2.42) 
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gives the elastic energy for a Lattice-Spring Model where b denotes the 
b-th spring, the sum is over all springs, F is the force on spring b and u 
the displacement of spring b (Ostoja-Starzewski et al. 1996) and  

 

Econtinuum = 1

2
σ ⋅ε

V

∫ dV  (2.43) 

is the elastic energy for the corresponding continuum with V the vol-
ume, σ the stress, ε the strain and dV volume change. If the model is re-
stricted to linear elastic springs and uniform strain fields these two en-
ergies can be used to compare spring constants to different parts of the 
stiffness tensor of the continuum descriptions (see Ostoja-Starzewski et 
al. 1996; Flekkoy et al. 2002) and Lattice-Spring models can be 
mapped onto continuum descriptions (comparison with Finite Element 
models).  

2.8.1 Normal Force model 

Triangular lattices have hexagonal unit cells that are connected by six 
springs to their neighbours (Fig. 2.30). They can be used to model in-
plane elasticity in two-dimensions. The corresponding constitutive law 
is  

 

σ ij = Cijklεkl ,    i,j,k,l = 1,2, (2.44) 

where σij is the stress tensor, Cijkl the stiffness tensor and εkl the strain 
tensor. If only normal forces along springs are considered in the trian-
gular lattice, central forces on a spring can be described by 

 

Fi = kbni
bn j

bu j , (2.45) 

where Fi is the applied force, kb the spring constant of spring b, ni
b and 

nj
b unit vectors along force and displacement directions of spring b and 

uj the displacement vector (Ostoja-Starzewski 2002). If all springs are 
of unit length, the area of the unit cell is 

 

V = 2 3l2 and the stiffness 
tensor can be related to the spring network by  

 

Cijkl = 1

2 3
kbni

bn j
b

b=1

6

∑ nk
bnl

b  (2.46) 

For a detailed analysis see Ostoja-Starzewski et al. (1996) and Ostoja-
Starzewski (2002). If the spring constants are the same, Eq. 2.46 shows 
that 
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C1111 = C2222 = 9

8 3
k , and (2.47a) 

 

C1122 = C2211 = C1212 = 3

8 3
k , (2.47b) 

so that the modelled continuum is isotropic and there is only one inde-
pendent elastic modulus (k). In order to vary the Poisson’s ratio, angu-
lar springs are needed. Angular springs and varying spring constants in 
different directions allow the modelling of a real planar anisotropy with 
six independent parameters. 

 
 

 
Fig. 2.30 Triangular Lattice-Spring model with hexagonal unit cells. Each cell is 
connected with six possible neighbours by rheological elements, for example linear 
elastic springs 

2.8.2 Normal and Angular Force models 

In order to apply angular forces, angle changes between neighbouring 
springs in a unit cell are considered. In this case the network consists of 
six normal springs and six angular springs per unit element (Fig. 2.31). 
Normal springs are represented by a spring constant k and change their 
length (l), whereas angular springs have a spring constant α and de-
form by changing the angle between two neighbouring normal springs 
(Fig. 2.31b,c). If the symmetry of the initial cell is kept this configura-
tion gives six independent constants (k(1),k(2),k(3),α(1),α(2),α(3)), 
since k(1) = k(4), k(2) = k(5), k(3) = k(6), α(1) = α(4), α(2) = α(5) and 
α(3) = α(6). The elastic energy (Eb) of an angular spring (b) is then 
 
 

  P. D. Bons et al.



     67 

 

E b = 1

2
α (b ) ∆χ 2

, (2.48) 

where α(b)is the angular spring constant of spring b and ∆χ the change 
in angle between the two normal springs that are connected by the an-
gular spring.  

 
Fig. 2.31 (a) Springs in a hexagonal unit cell of a network with angular and normal 
springs. (α) and (k) denote spring constants of angular and normal springs. (b) Nor-
mal springs change their length parallel to the spring. (c) Angular springs change the 
angle between two neighbouring normal springs 

If we assume that all normal spring constants have one value and all the 
angular spring constants another value, then the material is isotropic and is 
described by two elastic constants. The spring constants and the stiffness 
matrix are related by the following equations (Ostoja-Starzewski 2002): 

 

C1111 = C2222 = 1

2 3

9

4
k + 1

l2
α

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ , (2.49a) 

 

C1122 = C2211 = 1

2 3

3

4
k − 9

4l2
α

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ , (2.49b) 

 

C1212 = 1

2 3

3

4
k + 9

4l2
α

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ . (2.49c) 

Such a model has planar bulk modulus (κ) and shear modulus (

 

µ) of  

 

κ = 1

2 3

3

2
k

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ , 

 

µ = 1

2 3

3

4
k + 9

4l2
α

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ , (2.50) 
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and a Poisson’s ratio (v) that can vary between 1/3 and -1: 

 

v =
1− 3α

kl2

3− 3α
kl2

. (2.51) 

These models are also referred to as the Kirkwood (Kirkwood 1939) 
and Keating model (Keating 1966), where the Keating model uses a 
different calculation of the energy stored in angular bonds.  

2.8.3 Elastic Beam models 

In a beam model unit cells in the lattice are connected by beams that 
have a normal force, a shear force and also a bending moment (Fig. 
2.32). These so-called micropolar media are described by fields of 
force-stresses and moment-stresses so that rotations of network nodes 
are considered (these are not considered in the angular/normal force 
models). If a beam between site i and j is considered, each lattice site 
contains three degrees of freedom, the two displacement vectors 
(ux

i,uy
i) and a bending angle θ i. The beam has a cross section Aij and a 

length lij. Between sites i and j the normal (aij), shear (bij) and bending 
(cij) flexibilities of the beam are (D’Addetta et al., 2001) 

 

aij = l ij

Eb Aij
,    

 

bij = l ij

Gb Aij
    and    

 

c ij = l ij 3

EbI ij
,  (2.52) 

where 

 

Eb  is the Young’s modulus, 

 

Gb  the shear modulus of the beam 
and Iij is the moment of inertia of the beam for flexion. Between sites i 
and j there is a longitudinal force acting at site i of  

 

Fb,x
i = 1

aij
ux

j − ux
i( ) , (2.53) 

a shear force of  

 

Fb,y
i = β ij uy

j − uy
i( )− β ij l ij

2
θ i +θ j( ) , (2.54) 

and a flexural torque at site i  

 

Mb,z
i = β ij l ij

2
uy

i − uy
i + l ijθ ij( )+δ ij l ij 2

θ j −θ i( ) , (2.55) 
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where β ij = 1/(bij + 1/12ciij) and δ ij = β ij(bij/cij + 1/3) (D’Addetta et al. 
2001).   

 

 
Fig. 2.32 (a) Unit cell connected to neighbours by elastic beams. These beams carry 
normal and shear forces as well as a torque. The displayed unit cell is deformed. (b) 
Beam between node i and j. Node i has three degrees of freedom, two displacement 
vectors and a bending angle 

Beam networks can be used in ordered lattices (for example the tri-
angular lattice) but they may also be used in random lattices with for 
example a variation in the size of the basic units (D’Addetta et al. 
2001). A review of beam networks and mapping onto continuum de-
scriptions is given in Ostoja-Starzewski (2002).  

2.8.4 Discrete Element models with contact forces 

Classical Discrete Element models are used to model granular aggre-
gates. In this case contact forces are considered between different parti-
cles that may be circular or polygonal shaped (Cundall and Strack 
1979; Bathurst and Rothenburg 1988). These forces may be normal or 
shear forces as well as contact moments (Kuhl et al. 2001; Mühlhaus et 
al. 2001). There are strong similarities between the Lattice-Spring and 
Beam models and the Discrete Element models with contact forces. In 
real granular media the contact forces are only compressive so that the 
material has no real cohesion in contrast to Lattice-Spring or Beam 
models. However, the introduction of a yield criterion and cohesion in 
a Discrete Element model is straightforward (Mühlhaus et al. 2001), 
which leads to descriptions where the Lattice-Spring or Beam models 
and the Contact Force models are basically identical. In addition, con-
tact forces and moments may not only be elastic, but may contain a 
viscous part so that a real time-scale is introduced in the model. The 
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simplest models use circular or spherical particles with normal (fN
c) and 

tangential (fT
c) contact forces following the lines of Hertz (1881) 

fN
c nc( ) = kN ∆lN

c , and fT
c nc( ) = kT ∆lT

c , (2.56) 

 

f c nc( ) = fN
cnc + fT

c . (2.57) 

 

 
Fig. 2.33 Contact forces (fc) between a particle i and its neighbour j. fN

c and fT
c are 

normal and tangential force respectively 

In Fig. 2.33 it becomes obvious that the normal contact force may be 
identical to a normal spring in the Lattice-Spring model and the tan-
gential contact force can be mapped on an angular spring. Beam nor-
mal and shear forces are similar to normal and tangential contact forces 
and the beam moment can be compared to the contact moments of dis-
crete particles. Quite often the total contact forces and moments are the 
sum of an elastic and viscous part, which introduces normal, tangential 
and rotational viscosities in addition to the elastic stiffnesses. The vis-
cous part introduces a real time and length scale. These viscosities may 
have a real physical significance for visco-elastic contacts or in fast 
granular flow.  

For quasi-static problems the significance of the viscosities is purely 
numerical (Mühlhaus et al. 2001). The average macroscopic stress ten-
sor within a Discrete Element model is determined by a principle of 
virtual work. It is assumed that the overall macroscopic virtual work 

    

where n
c
 is a unit vector pointing from a particle to its neighbour, kN and kT 

are the normal and tangential contact stiffness respectively and 

 

∆ lN
c
 and 

∆ lT
c
 the normal and tangential contact displacement respectively (Kuhl et 

al. 2001). The contact force (f
c
) is made up of the normal and tangential 

force (Fig. 2.33)  
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and the virtual work of the granular assembly are equivalent (Kuhl 
et al. 2001). The discrete macroscopic stress tensor has the following 
form 

 

σ = 1

V
f c ⊗ l c[ ]

c ∈V

∑ , (2.58) 

where 

 

σ  is the stress tensor, V a representative volume, c the contacts 
within this volume, fc the contact forces and lc a unit vector pointing 
from a particle to its neighbour (Kuhl et al. 2001). In order to attain a 
continuous form of the stress tensor this discrete form of the stress ten-
sor can be transformed into an integral form if a large enough repre-
sentative volume (V) is chosen (see Kuhl et al. 2001 and D’Addetta et 
al. 2001 and references therein for a complete description). Moments 
of beams or contact moments of particles are generally not taken into 
account when the stress tensor is calculated.  

The Poisson ratio (ν) of a Discrete Particle model with normal and 
tangential contact forces is (Kuhl et al. 2001) 

 

v = kN − kT

4kN + kT

, (2.59) 

where kN and kT are the contact stiffness. The Poisson’s ratio can thus 
vary from -1 to 1/4.  

2.8.5 Fracturing or failure  

Springs in a Lattice-Spring model may break by different failure crite-
ria that range from a critical energy to a critical force/strain that is 
reached within the spring. Normally, springs break under tension, 
which has to be specified when a critical energy criterion is used. The 
spring is simply removed from the lattice once it reaches the critical 
value. The lattice units may still have a compressive component, but 
the cohesion is lost when failure occurs. It can be shown that spring 
failure criteria lead to macroscopic Griffith scaling of fracture strength 
with crack length under tension if pre-existing cracks are present in the 
model (Jagota and Bennison 1995). However, the initial fracture length 
is always given by the actual length of the springs used and thus the 
resolution of the model. This means that if the failure criterion is fixed 
to represent the correct critical energy release rate for long cracks, the 
model behaves as if it was filled initially with micro-cracks of the size 
of single springs. Therefore different criteria may be used for fracture 
development at internal boundaries (around a fracture or hole) and 
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within the rest of the lattice. One may also add a quenched noise to the 
breaking strengths of springs in order to model a heterogeneous solid. 
This will, however, alter the rheological behaviour of the solid and the 
localization of fractures.  

 

 
Fig. 2.34 Failure criterion for a discrete element model after Mühlhaus et al. (2001). 
Failure is either tensile expressed by the tensile strength fT or by shear determined by 
the angle of friction φ and the tensile strength. Once the material fails under tension 
the cohesion is lost 

Yield criteria can also be used in Discrete Element models with con-
tact forces. In this case a critical tensile strength may be reached for the 
normal force component and a Mohr-Coulomb friction law is used for 
the tangential force component. In addition, the particle contact mo-
ment may be added (see Mühlhaus et al. 2001). Once the tensile 
strength of the normal component is reached and a tensile fracture oc-
curs at the contact, the initial yield and tensile force are put to zero 
(Fig. 2.34). Contacts loose cohesion if 

 

Fneff ≤ fT , (2.60) 

and slip if  

 

Fs ≥ tanφFneff , (2.61) 

where Fneff is the effective normal force that depends on the normal 
force at the contact and the contact moment (Mühlhaus et al. 2001), fT 
is the tensile strength, Fs the shear force at the contact and φ Coulomb’s 
angle of friction.  
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Symbols used in Chap. 2.8 

Α Cross section of beam [m
2
] 

a
ij
 Normal flexibility of beam between sites i and j [m N

-1
] 

b Spring index number 

b
ij
 Shear flexibility of beam between sites i and j [m N

-1
] 

Cijkl Stiffness tensor [Pa] 

c
ij
 Bending flexibility of beam between sites i and j [m N

-1
] 

E Young’s modulus [Pa] 

Ecell Strain energy of a cell [J] 

Econtinuum Strain energy of a continuum [J] 

F Force on a spring [N] 

Fneff Effective normal force on a contact [N] 

FS Shear force on a contact [N] 

fN
c
, fT

c
 Normal and tangential contact forces acting on particles [N] 

f
c
 Contact forces acting on particles [N] 

fT Tensile strength [Pa] 

G Shear modulus of beam [Pa] 

I
ij
 Moment of inertia of a beam for flexion [m

4
] 

k Spring constant [Pa] 

kN, kT Normal and tangential contact stiffness [Pa] 

lN
c
, lT

c
 Normal and tangential contact displacement [m] 

l Spring length [m] 

M Flexural torque on a beam [Pa] 

n unit vector 

u Displacement (vector) of a node [m] 

V Volume [m
3
] 

α Spring constant of angular spring [Pa] 

β ij
 Auxiliary variable used in Eqs. 2.54 and 2.55 [N m

-1
] 

δ ij
 Auxiliary variable used in Eq. 2.55 [N m

-1
] 

ε, εkl Strain tensor 

θ Bending angle of a beam [rad] 

κ Bulk modulus [Pa] 

 

µ  Shear modulus [Pa] 

v Poisson’s ratio 

σ , σij Stress tensor [Pa] 

φ Coulomb’s angle of friction [rad] 

χ Angle between two normal springs that are connected by a normal 
spring [rad] 

 

∆

2 Numerical methods



3 Microprocess Simulations 

Editors: Daniel Koehn, Mark W. Jessell and Paul D. Bons 

This chapter describes a range of microdynamic processes that have 
been implemented in the software Elle or related codes. The first sec-
tion describes the software Elle, which is the main software used in this 
book. The Elle software is included on the CD. 

Each subsequent section deals with a single process that may affect 
the microstructure of rocks, for example, grain growth or viscous de-
formation. Each section describes the process, how it can and has been 
modelled and finally it shows an example of how it is implemented in 
Elle. Most of the examples given in this and the next chapter can be 
run from the Data Structure files and scripts on the CD (Appendix B). 
The reader is encouraged to first run these examples to achieve the 
same results as presented in the figures in this chapter. Next, the reader 
can start to change some of the input-parameters to get acquainted with 
the code that simulates each particular process. 

The reader is referred to Appendix H for a number of miscellaneous 
processes and utilities that are useful or necessary to carry out simula-
tions with Elle, such as changing the distances to nodes, or reformatting 
the Data Structure to make it suitable for certain modules. 



3.1 Introduction to Elle 

3.1.1 The Elle Project 

This chapter describes the principal components of the Elle simulation 
platform, together with a description of several different microstruc-
tural processes that have been simulated using this system. Finally we 
describe a few processes, which have been simulated using other sys-
tems, as equivalent Elle processes are not currently available and the 
fundamental data structures are sufficiently close to the Elle Data Struc-
ture to allow integration into the system in the future.  

The example processes described in this chapter should not be taken 
to represent either the definitive simulations for a specific process, as 
we are refining them continuously, nor should they be taken to be an 
exhaustive list of all possible processes, as several processes (such as 
twinning) have not been considered at all at the time of writing. For the 
latest version of Elle go to http://www.microstructure.info/elle. 

The aim of the Elle Project is to develop a generalised framework for 
the numerical simulation of the evolution of rock microstructures dur-
ing deformation and metamorphism. This framework consists of four 
components (Fig. 3.1.1): 

1. A numerical description of a 2D microstructure, also known as the 
Data Structure, which allows us to describe the geometrical distribu-
tion of physical and chemical properties. 

2. Base Libraries that handle low-level interactions with the microstruc-
ture, which allow us to interrogate and modify this microstructure. 

3. Precompiled Elle binaries (Processes and Utilities), which use the 
Base Libraries to calculate local driving forces and the resulting 
changes in microstructure to simulate the activity of individual mi-
crostructural processes, and Utilities functions that help us to create 
or modify the microstructure in non-physical ways. 

4. A series of text files including an Elle File that stores the complete 
microstructure, together with various Experiment Scripts that de-
scribe the boundary conditions and global activity of individual 
processes for a single microstructural experiment, together with the 
controls on how the microstructure is graphically displayed. 

Lynn Evans, Mark W. Jessell, Paul D. Bons and Daniel Koehn  
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At the simplest level a user can create a new microstructure, then run 
precompiled Elle binaries and change parameters in existing processes. 
At the next level of sophistication a user can use small scripts as control 
programs to run experiments with coupled processes. Finally a user can 
program or add their own processes or change existing processes and 
link them with the Base Libraries. Elle is written in C and C++ with small 
Fortran parts in order to link Elle with the Finite Element code named 
“Basil” (Ch. 3.8), which is written predominantly in Fortran.  

In this project we had to choose between defining a Data Structure 
that was ideally suited to one specific process, and one that was suffi-
ciently general that it could be adopted to simulate a whole range of 
physical and chemical problems. Since we intended to solve problems 
where there was a coupling between processes, we have opted for the 
second choice. 

 

 
Fig. 3.1.1 The Elle simulation Framework, showing the interactions between differ-
ent components 

3.1.2 The Elle Data Structure 

The Elle Data Structure provides the framework for describing the dis-
tribution of physical and chemical properties in a 2D microstructure. 
The three fundamental elements of the Elle Data Structure, shown in 
Fig. 3.1.2, are: 

1. Boundary Nodes or ‘bnodes’ - the nodes which define the local posi-
tion of grain or phase boundaries; 

2. Grains or ‘flynns’ - the polygons defined by bnodes enclose whole 
grains or subgrains, and may be nested to represent subgrains; 

3. Unconnected Nodes or ‘unodes’ - the interior nodes that define 
chemical and physical properties within grains. 

L. Evans et al.
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All other elements within the Elle Data Structure, such as triangula-
tions, are calculated from these basic elements, and are not stored in the 
Elle File. The list of physical and chemical properties that may be as-
signed to these elements is continually growing but includes attributes 
such as mineralogy, chemical concentration, lattice orientation, the 
stress and strain states, temperature, and dislocation density. The 
boundaries of the model are cyclic, to remove edge effects. 

Microstructural processes in Elle either modify the position of a 
bnode or unode, or change the value of an attribute of a bnode, unode 
or flynn. Unodes are material points, and thus only move in response 
to deformation, whereas bnodes simply define the limit of a single 
phase and thus may migrate through the material.  

Boundary Nodes (bnodes) 

Bnodes define the local position of a grain or phase boundary and pos-
sess two primary attributes, namely their (x,y) location, with an origin 
in the lower left, and their connectivity to other bnodes. We assume 
that a maximum of three phases may meet at a point, which means that 
all bnodes either have two or three connected neighbours (Fig. 3.1.2). 
This restriction was enforced to simplify the topological checks that 
have to be applied following bnode movement, but can be reasonably 
justified in micro-structural terms by the paucity of four-way boundary 
junctions seen in nature due to the high surface energy states that arise 
for this case (Anderson et al., 1984).  

Secondary attributes, such as grain boundary width, the chemical 
composition of a grain boundary fluid, and the local stress state may 
also be stored with each bnode. The values of these properties at any 
point along a grain boundary between bnodes may only be estimated 
by interpolation, so that the spacing of the bnodes provides a funda-
mental limit to the spatial resolution of the model. If bnodes are closely 
spaced the resolution is higher and the calculation will be more accu-
rate, but the calculation time will increase. If bnode spacing is increased 
the calculation time will decrease, but the solution will become less ac-
curate. The bnode-spacing during an experiment is kept within a fixed 
range so that the spatial resolution does not vary much within the mod-
elled domain. As new bnodes are removed or created by the program, 
intermediate attributes are interpolated from the two neighbouring 
bnodes. Note that the bnode-spacing can be easily changed in Elle even 
during a simulation. It is always useful to perform runs with different 
resolutions in order to reach an optimal bnode spacing for accuracy 
and calculation time.  
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Fig. 3.1.2 Basic Elle Data Structure. A partial microstructure showing the three basic 
elements. bnodes (shaded circles) connected by straight boundary segments define 
grains or ‘flynns’. Bnodes and flynns can posses any number of physical or chemical 
properties. unodes (squares) provide information on the distribution of physical and 
chemical properties within grains 

Two types of secondary checks need to be made as a result of bnode 
motion. The first type is a topological check, to make sure that a mov-
ing bnode has not crossed another grain boundary. If it has, a local re-
adjustment of the topology of the grain boundary network needs to be 
made. The second type is related to bnode spacing, to ensure that the 
bnode spacing has not locally become too large, in which case a new 
bnode with interpolated properties is added; or too small, in which case 
a bnode is removed and the properties of neighbouring bnodes are ad-
justed accordingly. 

Grains (flynns) 

The term “flynn” is used to refer to any polygonal domain in Elle. 
These flynns are non-overlapping and as a complete set are space-
filling (Fig. 3.1.3a). Flynns represent closed polygons of material with 
similar properties, and the limits of a flynn are defined by a list of 
bnodes. These flynns may have spatially uniform properties (such as 
mineralogy), in which case the property is stored with the flynn, or 
spatially varying properties (such as temperature), in which case the 
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properties can be stored at the unode level. The flynns may be ar-
ranged in a two-level hierarchy, with a polygonal grain structure at the 
highest level of this hierarchy and grains divided into subgrains or sub-
flynns at the second level (Fig. 3.1.3b).  

We chose not to simply call these polygons grains for two reasons, 
firstly, the hierarchical system allows them to define subgrain areas, 
and secondly they may also represent non-crystalline materials such as 
melt pockets and voids. If required, the polygonal flynn network can 
be temporarily triangulated using a Delaunay triangulation routine 
(Section 2.1.1) using the bnodes to limit the triangulations, so that the 
triangles do not cut grain boundaries (we use the code described in 
Shewchuk 2002). This Delaunay triangulation may be used by the Fi-
nite Element deformation programs Basil and OOF that are linked to 
Elle. Using the Delaunay triangulation we can also specify a minimum in-
ternal angle for the triangles (i.e. no “flat” triangles). Decreasing the mini-
mum angle constraint allows flatter triangles, which stops Triangle creating 
many smaller higher quality triangles. It is this and increasing the maxi-
mum area constraint, which allows fewer, larger triangles and reduces the 
total number of elements, thus decreasing the calculation time. 

Unconnected Nodes (unodes) 

Unodes provide a finer resolution of physical and chemical properties then 
may be defined at the flynn level. Unodes always posses an (x,y) position 
attribute in addition to a wide range of other physical or chemical attrib-
utes depending on the experiment. Unodes may be uniformly or ran-
domly distributed through the microstructure, depending on the needs of 
the experiment. If unodes are used as connected particles they can be used 
to model elastic or visco-elastic deformations and they can change their 
volume, state and dissolve or precipitate. For these models, the Elle 
boundaries may be connected to the unodes so that Elle polygons deform 
with the particle lattice. Unode sites may also be used as grids for Cellular 
Automata in which case they may be partly connected to the Elle polygons 
and can be used for example for subgrain growth simulations using a Potts 
model (Ch. 2.4). When information needs to be transferred between 
unodes and bnodes, special, temporary, unodes are placed within the lat-
tice immediately adjacent to each bnode. 

Each unode represents the properties in its local area; however there 
are three additional techniques of temporarily dividing up a single 
grain, as shown in Fig. 3.1.3. For the sake of clarity, in this figure only 
one grain (z) is shown with its unodes, although normally all grains 
would posses them. The three unode-based subdivisions of a grain are 
Delaunay Triangulations, Voronoi Tessellations, and as Circular Re-
gions of Interest.  

3.1 Introduction to Elle
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Fig. 3.1.3 Different ways of achieving a fine spatial resolution within grains. (a) A 2D 
microstructure described by bnodes, which in turn define closed polygonal bounda-
ries. Note that the Elle Data Structure allows for cyclic boundaries, so that grains x & 
y are in fact parts of the same grain. unodes are shown only within grain z for clarity, 
and are shaded according to some property. (b) Hierarchical division of grain z into 
subgrains, each with uniform properties, ignoring unode values. (c) Enlargement of 
grain z, showing distribution of unodes. (d) Delaunay triangulation of grain z based 
on unode distribution only, each triangle within this grain now has properties based 
on an interpolation of the values of its three apical unodes. (e) Voronoi tessellation of 
grain z, based on unode distribution, Voronoi cells have uniform properties based on 
central unode value. (f) Overlapping circular regions of interest around unodes, for 5 
of the unodes in grain z, one of which is shaded to show distribution of attribute 
within circular region. The value at any specific location is the weighted sum of val-
ues within each region of interest that overlaps that location 

Delaunay Triangulations 

Just as a triangulation may be made using bnodes, we can construct a 
triangulation that additionally takes into account the distribution of 
unodes within a grain (Fig. 3.1.3d). Triangle properties will need to be 
interpolated from their apical unodes, and after a micro-process calcu-
lation is completed, these values then need to be mapped back onto the 
unodes to be stored.  

L. Evans et al.
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Voronoi Tessellations 

Voronoi Tessellations are calculated using the same code, which gener-
ates the triangulations, and it produces a polygonal network of cells 
with the property that each point within a cell is closer to the central 
unode than any other unode (Fig. 3.1.3e). In this case the properties 
are assumed to be uniform within a Voronoi Cell and are taken directly 
from the central unode. 

Circular Regions of Interest (ROI) 

The circular regions of interest around a unode provide a simple 
method of estimating the value of a property at an arbitrary (x,y) loca-
tion (Fig. 3.1.3f). Each region of interest (ROI) is assumed to have a 
cosine-shaped bell weighting factor that decays away from the unode. 
To calculate the value at a particular location, we sum the products of 
each weighting factor and the unode value. This is only valid if the 
unodes are evenly spaced and the ROI chosen so that the sum of the 
weights is similar at any point.  

3.1.3 Base Libraries 

The Base Libraries provide the low-level programming tools needed to 
define a microstructural process, but they do not define processes in 
their own right. Detailed information, including the source code, is 
provided on the CDROM associated with this book or at http://www. 
microstructure.info/doxygen. The principal Libraries used in Elle are: 

1. libelle: This library handles access to the Elle Data Structure, includ-
ing reading and writing Elle Data Files, and reading and modifying 
the attributes of specific elements of the Data Structure. 

2. Libclip: This library handles specialised clipping algorithms used in 
handling flynns. It is based on the General Polygon Clipper library 
developed by Alan Murta (http://www.cs.man.ac.uk/~toby/alan/ 
software/). 

3. Libmatrix: This library handles simple matrix operations. 
4. libplot_x, libplot_wx: These libraries handle the display of Elle 

microstructures using the X/Motif and wxWidgets libraries 
respectively (http://www.wxwidgets.org). 

5. libps: This library handles writing of Postscript files. 

3.1 Introduction to Elle
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3.1.4 Precompiled Binaries 

There are two types of precompiled binaries available in the Elle sys-
tem, ‘Processes’ that aim to reproduce some or all of the behaviour as-
sociated with a single microstructural process, and ‘Utilities’ that mod-
ify an Elle File in non-physically based ways. The majority of this 
chapter deals with Elle processes, and a short description of various 
Elle Utilities is given in Appendix H. 

3.1.5 The Elle Data File 

An Elle Data File is a text file that contains a complete description of an 
Elle file at a given instant in time. A description of the format of an 
Elle Data File is given in Appendix J.  

3.1.6 Experiment Scripts 

An Elle experiment consists of the calculation of the interaction of a set 
of locally-defined driving forces and micro-processes, calculated for 
small time steps, which is intended to simulate the behaviour of a rock 
at the grain scale for a given set of boundary conditions. Elle experi-
ments are controlled by experiment scripts, which together with a start-
ing Elle File, define a single Elle experiment. This experiment script 
controls the evolution of extrinsic variables, such as temperature, de-
fines boundary conditions, deformation histories and determines which 
micro-processes will be involved by controlling the order and rate of 
execution of individual process algorithms (Fig. 3.1.4). Existing code 
may be used as a micro-process e.g. the non-linear viscous deformation 
program Basil (Barr and Houseman 1996). Conversion Utilities may be 
needed to translate the Elle data structure into the appropriate input 
format for the algorithm and incorporate the output back into the data 
structure. 

One of the fundamental assumptions of the Elle system is that if we 
use small time steps we can approximate a set of synchronous processes 
by calculating their effects sequentially (this approach is known as Op-
erator Splitting). One loop through all the processes thus represents a 
single experimental time step. In order to satisfy the numerical con-
straints of a particular numerical method, certain processes may need to 
define a shorter time step, and that the sum of these shorter steps then 
equals the overall experiment time step. It has been suggested that the 
order in which the process is calculated could lead to significant 
changes in the microstructural evolution; however in any tests we have 
performed so far, this has not been the case. If significant divergences 
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in solutions did occur, it would simply suggest that the experimental 
time step was too large, which can of course be a problem in any nu-
merical scheme. 

 

 
Fig. 3.1.4 The initial microstructure is defined by the user, and a central control script 
determines which processes will be applied to the microstructure. Different micro-
processes may alter the microstructure depending on different driving forces. An 
analysis module can be included to save statistical data 

3.1.7 Microprocess Simulation 

The following sections describe the algorithms, which we have used to 
simulate microprocesses in rocks. These sections have been grouped 
according to how the Data Model is affected: 

1. The processes described in Sections 3.2 to 3.4 describe those proc-
esses that simply change the values of bnodes, unodes or flynns, but 
not their position or topology.  

2. Sections 3.5 to 3.7 describe those processes that additionally change 
the positions of bnodes and hence flynns. These processes may lead 
to the creation or removal of grains. This includes the codes Vein 
Growth and Fringe Growth, which are not currently part of the Elle 
platform. 

3. Sections 3.8 to 3.10 are those processes directly associated with poly-
crystalline deformation. This includes DiffForm, which is not 
currently part of the Elle platform. 

4. Sections 3.11 to 3.13 describe the implementation of discrete codes 
within Elle. 
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3.2 Garnet - biotite cation exchange  

3.2.1 Phenomenological observation 

Cation exchange reaction between two crystalline phases refers to the 
process of repartitioning of the cations that constitute the two phases. In 
metamorphic rocks, the process generally involves (1) volume diffu-
sion within crystalline phases that participate in the exchange reaction, 
(2) diffusion along the grain boundaries, and (3) chemical exchange 
between the reaction-participating crystalline phases and the grain 
boundaries that are in contact with these crystalline phases. 

The garnet-biotite exchange reaction involves Fe/Mg exchange be-
tween garnet and biotite (Fe-garnet + Mg-biotite ⇔ Mg-garnet + Fe-
biotite). Since the partitioning of the cations is temperature-dependent, 
the element distribution in garnet and biotite can be used as a geother-
mometer. The garnet-biotite geothermometry is widely used by meta-
morphic petrologists because garnet and biotite are both common in 
pelitic schists over a wide range of pressures and temperatures (Spear 
1993 and references therein). 

3.2.2 Natural example 

The most common evidence for the cation exchange reaction between 
garnet and biotite occurs in high-grade rocks equilibrated during peak 
metamorphism (e.g. Ehlers et al., 1994). During cooling, garnets in 
high grade rocks tend to develop diffusion zoning, or zoning patterns 
modified by diffusion process due to the faster diffusion rates at high 
temperature condition. On the other hand, garnets in low-grade rocks 
tend to develop growth zoning during prograde metamorphism due to 
the changes in partitioning behaviour of Fe/Mg ions during the garnet-
forming net transfer reactions.  

When high-grade rocks are subjected to cooling, zonation patterns in 
garnet start to develop in order to reequilibrate to the new P-T condi-
tions, while zonation in biotites develops more quickly, but is also 
quickly removed due to its faster diffusion rates. While for geother-
mometry, one normally uses only garnets and biotites that are in con-
tact, in this section we explore the role of grain boundary diffusion in 
modifying zonation patterns. The degree of zonation development by 
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diffusive modification during exchange reactions is also known to be 
closely related to grain size and cooling rates (Spear 1993). 

 

 

Fig. 3.2.1 Textures and phases present in the model rock. Five sub-processes for the 
Fe/Mg exchange reaction are also indicated (Vol.: volume, GB.: grain boundary) 

 

 
Fig. 3.2.2 Schematic one-dimensional representation of concentration changes in 
cations resulting from the five sub-processes for the Fe/Mg exchange reaction (Vol.: 
volume, GB.: grain boundary) 

 Y. Park et al.
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3.2.3 Inferred processes 

Five sub-processes operate together to achieve these types of exchange 
reactions (Fig. 3.2.1); (1) volume diffusion within garnets, (2) cation 
exchange between a garnet and its grain boundaries, (3) grain-
boundary diffusion, (4) cation exchange between a biotite and its grain 
boundaries, and (5) volume diffusion within biotites. The schematic 
concentration changes during the five sub-processes are shown in (Fig. 
3.2.2). 

3.2.4 Driving forces, controls and governing equations 

The garnet-biotite exchange reaction is driven by instabilities due to 
disequilibrium in chemical free energy. Therefore, the fundamental 
approach when building the reaction model is to decide the direction of 
the exchange reaction (e.g. Fe loss or gain in garnet) after a change in 
temperature. This can be done by calculating the equilibrium state of 
the Gibbs free energy within the system. For this study we assume that 
Fe and Mg diffusion constants are equal, so that we can just consider 
the behaviour of one Fe as being representative. The next step is to 
compare the current energy state in the model with the equilibrium 
state and allow the reaction to progress in the direction that lowers the 
Gibbs free energy. Since only the rims of the garnet and biotite grains 
participate in the exchange reaction, only the volume of the marginal 
parts should be considered when calculating the energy state in the 
model. This is similar to the concept of “effective bulk composition” as 
discussed in Stüwe (1997). 

Another approach to determining the direction of the exchange reac-
tion is to compare the local value of the distribution coefficient (KD) 
with a reference equilibrium value, where  

 

KD =
Mg / Fe( )garnet

Mg / Fe( )biotite
. (3.2.1) 

Although it is fundamentally possible to obtain the value of KD for a 
given P-T condition by performing thermodynamic calculations, there 
are uncertainties related to thermodynamic database and thermody-
namic models. For this reason, the experimentally estimated KD is 
widely used for geothermometry (e.g. Ferry and Spear 1978). Ferry 
and Spear (1978) presented their results with the equation  

 

ln KD = −2109

T
+ 0.782 , (3.2.2) 
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where T is temperature in Kelvin. In our model, we also used the ex-
perimentally estimated KD as a reference for equilibrium when deciding 
the direction of the exchange reaction. 

Once the direction of reaction progress is thermodynamically deter-
mined, the rate of the overall exchange reaction is controlled by the 
rates of five sub-processes (stated earlier). Among the five sub-
processes, there are three diffusion-related processes. The calculation of 
concentration changes can be made with diffusion equations (described 
later; Park et al., 2003). The rate of the other two sub-processes related 
to cation exchange process between garnet/biotite crystal and grain 
boundary may be expressed as the relation that the rate is proportional 
to concentration difference as generally known in reaction kinetics 
(e.g. Martin and Doherty 1976). The temperature dependence of KD 
and diffusivities (D) (Hoffman and Giletti 1974; Cygan and Lasaga 
1985) in our model is shown in Fig. 3.2.3. 

 
Fig. 3.2.3 Temperature dependence of diffusivities (D) and KD in the model 

3.2.5 Possible and actual simulation techniques 

Finite Difference calculations have been performed to investigate the 
effects of various parameters (e.g. grain size and cooling histories) on 
the development of zonation patterns, and these calculations have pro-
duced geologically meaningful results (e.g., Spear 1991; Ehlers et al., 
1994; Powell and White 1995). In these calculations, volume diffusion 
within a garnet crystal is usually assumed to be the rate-controlling 
process (i.e. volume diffusion in biotite and grain-boundary diffusion 
are assumed to occur at much faster rates). These models fail to show 
the effects of grain-boundary diffusion because of the intrinsic assump-
tions of the rate-controlling process. For example, the geometry of 
phase distribution and the distance between reactant and product phases 
are not considered in these models. To include the effects of geometric 
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features, we need a model with a data structure which records grain 
boundaries (a ‘digitized’ map of a thin section image). 

When performing Finite Difference calculations in a model with 
grain-boundary data structure, there is a problem related to computa-
tional time if the model maintains a constant node density per unit 
length. For example, if we want to have nodal spacing of 1 nm for 10 
nm wide grain boundaries, we have to have 106 nodes for 1 mm grains 
in one dimension (1 mm divided by 1 nm). For two-dimensional calcu-
lations, 1012 nodes are necessary, and 1018 nodes are necessary in three 
dimensions. To overcome this problem, we adopted a hybrid data 
structure, which consists of (1) grain boundary nodes by which a 
grain-boundary segment is defined (bnodes) and (2) uniformly distrib-
uted nodes within grains (unodes). By having special nodes that allow 
chemical communication between a grain boundary node and a within-
grain node, the number of nodes can be greatly reduced to the level at 
which the computation time becomes reasonable. 

The summary texture of our model rock is shown in Fig. 3.2.1. 
Three phases are assumed to be present in our model rock; (1) garnet, 
(2) biotite, and (3) a non-reacting phase, such as quartz. Quartz forms 
polycrystalline aggregates with grain boundaries. The grain boundaries 
become pathways for the diffusion of Mg and Fe. We also assumed that 
there is no migration of grain and phase boundaries. Thus, no net 
transfer reaction involving phase-boundary migration occurs in our 
model. 

For the determination of the direction of the reaction, we chose to 
use the experimentally determined KD values as a reference. We com-
pared the experimentally determined KD with the observed KD in the 
model, and then we started to change the Fe/Mg ratio in garnet toward 
the value of the experimentally determined KD. Since only the grain 
margins are directly involved during the exchange reaction, we only 
considered the compositions of the rims of garnet and biotite grains 
when we evaluated the KD in the model. The use of experimentally de-
termined KD (Ferry and Spear 1978) seems to be working for the ex-
change reaction, but a more general method would calculate the sum of 
the Gibbs free energies of the phases present in the model and compare 
this with the energy state at thermodynamic equilibrium. The calcula-
tion of the Gibbs free energy is more general because this method al-
lows the prediction of the net transfer reactions. 

To model the overall exchange reaction, we considered sub-
processes (Fig. 3.2.1). The whole process of the exchange reaction is 
performed by repeating the five sub-processes in series. Calculations of 
flux at nodal points are made by diffusion equations (described later; 
Park et al., 2003). For the chemical exchange between garnet/biotite 
crystal and grain boundary, the finite changes in concentration are 
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proportional to the concentration difference. There is no experimen-
tally determined value for the proportionality constant so we chose a 
value based on the assumption that the rate of interfacial chemical ex-
change is faster than the volume diffusion within garnet and biotite. 

3.2.6 Implementation in Elle 

This model for cation exchange involves three processes: diffusion 
along grain boundaries, lattice diffusion within grains and cation ex-
change between the boundaries and grains. The Elle process elle_gbdiff 
is used to calculate the grain boundary diffusion, while the latter two 
processes were both implemented in elle_exchange. For diffusion cal-
culations, we used data structures (bnodes and unodes) that hold in-
formation about positions and concentrations (Fig. 3.2.4).  

 

 

Fig. 3.2.4 Data structure of the model. (a) bnode structure for defining grains. (b) 
type-2 bnode (top) and type-3 bnode (bottom). (c) unodes within grains. (d) special 
unodes at grain margins (filled circle: type-2 bnode, filled triangle: type-3 bnode, 
open square: unode, filled square: special unode) 

Grain boundary diffusion in Elle uses a Finite Difference scheme to 
calculate the changes in concentration at the bnodes when there is a 
flux along the two or three segments attached to each node. The trans-
fer rate into a triple bnode, O, is the sum of the quantities from three 
neighboring bnodes (A, B, and C; Fig. 3.2.5): 

 

qOA = −AD
CO − CA

XA

⋅ dt , (3.2.3) 

 

qOB = −AD
CO − CB

XB

⋅ dt , (3.2.4) 

 Y. Park et al.
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qOC = −AD
CO − CC

XC

⋅ dt , (3.2.5) 

where q, A, D, C and X respectively represent moles transferred, area of 
grain boundary section, diffusivity, concentration and length of a grain 
boundary segment. Note that the area of grain boundary section (A) is 
equal to the quantity, grain-boundary width (WGB) multiplied by the 
thickness (tSAMPLE) of the two dimensional Elle data structure, or 
WGB·tSAMPLE. The total moles transferred (Q) is therefore given by  

 

Q = qOA + qOB + qOC   

 

= −(WGB tSAMPLE)D
CO − CA

XA

+ CO − CB

XB

+ CO − CC

XC

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅ dt . (3.2.6) 

Then, the total molar transfer rate becomes  

 

dQ

dt
= −(WGB tSAMPLE)D

CO − CA

XA

+ CO − CB

XB

+ CO − CC

XC

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ . (3.2.7) 

 
Fig. 3.2.5 Diffusion calculations (a) at grain boundaries, (b) within grain. See text for 
detail 

The rate of change in concentration is the molar transfer rate divided 
by the volume occupied by the node O. The volume occupied by the 
node O can be approximated to be half the sum of the segments be-
tween the node O and its neighbours (A, B, C). Thus, the volume be-
comes  

 

tSAMPLE
1

2
XAWA( )+ 1

2
XBWB( )+ 1

2
XCWC( )⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ ,. (3.2.8) 

and the change in concentration with time at each bnode is given by 
the equation 
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dC

dt
= tSAMPLE

−1 1

2
XAWA( )+ 1

2
XBWB( )+ 1

2
XCWC( )⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ 
−1

dQ

dt
. (3.2.9) 

Volume Diffusion in elle_exchange uses the unode data structures to 
record the chemical concentrations within a crystal. Most of the unodes 
in a grain are evenly distributed with a two dimensional hexagonal 
close-packed structure. Special nodes are also made within a grain near 
the boundary nodes for chemical communication between grain and 
grain boundary. The evenly distributed unodes and special unodes are 
triangulated for the Finite Difference diffusion calculation of the flux 
between the regions represented by each unode. For this implementa-
tion, the unode area is constructed by connecting the center of gravity 
points of neighboring triangles (Fig. 3.2.5b). The flux into unode O 
from the neighboring regions (A, B, C, D, E and F; Fig. 3.2.5b) can be 
expressed with the series of equations 

qOA = −AA D
CO − CA

XA

⋅ dt , …  qOF = −AF D
CO − CF

XF

⋅ dt , (3.2.10) 

Chemical exchange between a grain boundary and a grain is mod-
elled in elle_exchange using the bnodes and coincident special unodes. 
The rate of exchange is assumed to be proportional to the concentra-
tion difference and for both biotite and garnet we used an arbitrary 
value (1.0) for the constant, which allowed sufficiently fast reactions 
within a run time. 

3.2.7 Example Elle Run: garnet-biotite cation exchange 

We present the results from two types of experiments; (1) isothermal ex-
periments with different matrix grain sizes, and (2) a cooling experiment. 

For the isothermal experiments, we have defined a model size of 
1cm × 1cm and varied the grain size in the phase that does not par-
ticipate in the exchange reaction, the quartz matrix. Two different 
matrix grain sizes (square grains with sides of 0.25 cm and 0.05 cm) 
were chosen to see the effect of matrix grain size on the rate of the 
exchange reaction. The initial compositions for garnet and biotite are 
assumed to be 0.8 and 0.6 (in Fe mole fraction), respectively. Since 

   

where q, A, D, C and X respectively represent moles transferred, area of 
flux section, diffusivity, concentration and distance between two unodes 
(Fig. 3.2.5b). In a similar manner to grain boundary diffusion, Q and dQ/dt 
can be estimated using the material transferred from neighboring unodes. 
Then, ∂Q/ ∂  can be estimated by dividing ∂Q/ ∂  by the volume occupied 
by unode O. 

 Y. Park et al.
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these compositions are disequilibrium compositions at the experimental 
temperature condition (600°C), garnet and biotite start to exchange 
cations to approach the equilibrium KD value. The results (Fig. 3.2.6 
and 3.2.7) show that the rate of the ion exchange reaction is enhanced 
as the grain size in the matrix phase decreases. Since the density of 
grain boundary area per unit volume increases as grain size decreases, 
the amount of ion transportation by diffusion will be greater for the 
sample with smaller matrix grain size. 

For cooling experiments, zonation development is simulated while 
reducing the temperature from 750 °C to 450 °C at a rate equivalent to 
10 °C per Ma. We defined the starting compositions of garnet as 0.8 
and biotite as 0.54 in Fe mole fraction. Much of the changes in zona-
tion pattern in garnet occur within the first 15 Ma period due to high 
temperature conditions at the earlier stages (Fig. 3.2.8a-b). Sluggish 
changes in zonation pattern occur during the late stages of the experi-
ment due to slower diffusion rates after cooling (Fig. 3.2.8b-c). Under 
these conditions the contact between one of the biotites and the garnet 
has had little impact on the overall garnet zonation pattern, as grain 
boundary diffusion is quite rapid. 

 

 
Fig. 3.2.6 Results from an isothermal experiment with matrix grain size of 0.25cm. 
(a) Initial condition and (b) after 50 Ma. The biotite grain is on the left, the garnet 
grain on the right. The CLUT (colour lookup table) of C(Fe) is optimized to highlight 
the garnet composition.  EXPERIMENT 5 
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Fig. 3.2.7 Results from an isothermal experiment with matrix grain size of 0.05cm. 
(a) Initial condition and (b) after 50 Ma. The biotite grain is on the left, the garnet 
grain on the right. Same CLUT and scale as Fig. 3.2.6.  EXPERIMENT 5 
 

 
Fig. 3.2.8 Results from a cooling experiment. (a) Initial condition, (b) after 15 Ma 
and (c) after 25 Ma. The garnet grain is the large hexagonal grain near the middle of 
the model. Same CLUT and scale as Fig. 3.2.6.  EXPERIMENT 5 

 

Symbols used in Chap. 3.2 

A Cross-sectional area of grain boundary [m2] 
C Concentration [mol m-3] 
D Diffusion coefficient [m2 s-1] 
K  Distribution coefficient [] 
Q Total material transferred into a bnode or unode [mol s-1] 
q Material transferred through one boundary segment [mol s-1] 
tSAMPLE Thickness of sample in 2D Elle data structure [m] 
WGB Width of grain boundary [m] 
X Length of a grain boundary segment or distance between adjacent 

Unodes [m] 
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3.3 Subgrain growth Potts model 

3.3.1 Phenomenological observations 

In rocks deforming by crystal plastic mechanisms, a substructure of 
subgrain walls and linear defects (dislocations) develops (for formation 
of subgrains see Chap. 3.4). Subgrains are regions within a grain that 
have misorientation angles of less than 10-15° of their lattice orienta-
tion with those of the neighbouring subgrains (the misorientation angle 
is the angular mismatch of lattices on either side of the boundaries). 
This substructure is essentially made of high stacking-fault energy dis-
location arrays and subgrains of various boundary types. During ther-
mal activation such a substructure evolves with time. The evolution of 
subgrains consists of two processes: (a) progressive decrease in crystal 
lattice distortions within subgrains and (b) progressive increase of the 
average subgrain area and with that decrease of subgrain boundary 
length. Here, we are predominately concerned with process (b) the in-
crease of average subgrain area. 

Substructures are useful as indicators of deformation mechanisms 
(e.g. Urai et al., 1986, Trimby et al., 1998) and palaeo-stress levels in 
the lithosphere. In addition, the potential of subgrain misorientations as 
useful indicators of finite strain has recently been put forward by Pen-
nock et al. (2005). Moreover, dislocation substructures play an impor-
tant control on the mechanical properties of materials.  

3.3.2 Natural examples and experiments 

It is not easy to demonstrate the activity of subgrain growth in resultant 
microstructures in rocks because in most cases the characteristics of the 
initial substructure are unknown. Therefore it is largely by inference 
that we know that substructure evolution has taken place in natural 
samples, assuming that the system aims to attain a reduction in its en-
ergy state. This will be achieved if the overall length of subgrain 
boundaries is decreased, which in turn provides the thermodynamic 
driving force for subgrain growth.  

Sandra Piazolo and Mark W. Jessell 
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In contrast, growth of subgrains can be and has been observed in 
experiments in which pre-deformed polycrystals are statically heated 
and the substructure is monitored before and after heating (Figs. 3.3.1 
and 3.3.2). 

 

 
Fig. 3.3.1 Subgrain growth as observed during static heating of an experimentally de-
formed salt polycrystal. Figure illustrates two EBSD maps taken at a time interval of 
1.5 hrs at 430 °C. (a) Before heating. (b) After heating. In each map the same area is 
shown; and the difference in misorientation in the central grain from one chosen crys-
tallographic orientation (marked with a star) is given from white (0°) to black (25°); 
thick black, white, thin grey lines signify grain boundaries at >10°, 5-10°, 3-5° 
misorientation, respectively. Note the overall decrease in the number of subgrains 
present as well as the decrease in lattice distortion within individual subgrains. Note 
also that the high angle grain boundaries (black) move. Field of view is 400 m 

 

Fig. 3.3.2 Subgrain growth as observed during static heating of an experimentally de-
formed Mg-alloy polycrystal. Figure illustrates two EBSD maps taken at a time in-
terval of 0.5 hrs at 330 °C. (a) Before heating. (b) After heating. In each map the same 
area is shown; in each the difference in misorientation from one chosen crystallo-
graphic orientation (marked with a star) is given from white (0°) to black (15°); black 
lines signify grain boundaries > 10° misorientation. Field of view is 1200  White 
arrows point to areas where the subgrain boundary sharpened and/or moved during 
heating 

S. Piazolo and M. W. Jessell 
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3.3.3 Inferred processes 

The stored energy of a subgrain-structured material is large and is low-
ered by the process of subgrain growth during heat treatment. This 
subgrain growth leads to a reduction in the total area of low angle 
boundaries in the material. In addition, during thermal activation anni-
hilation of dislocations of different signs takes place within subgrains, 
which decreases the total stored energy of the system and decreases the 
local crystal lattice distortion. 

When considering the process of subgrain growth, i.e. the increase in 
average subgrain area and decrease in total subgrain boundary length, the 
movement of subgrain boundaries is of major importance. This movement 
may take place by the diffusion of single or possibly groups of atoms from 
one subgrain to an adjacent grain, by the rotation and shuffling of atoms 
from one lattice to the other, or perhaps by piecemeal movement of clus-
ters of atoms (Gottstein and Shvindlerman 1999). However at the grain 
scale these processes are indistinguishable. The motion of one or groups of 
atoms from one subgrain to another results in the migration of the bound-
ary in the opposite direction to the atom or cluster motion.  

3.3.4 Driving forces, controls and governing equations 

The driving force for general boundary migration in rocks may be a 
product of deformation induced dislocation density contrasts, the result 
of chemical potential gradients, or the inherent surface energy of the 
boundaries themselves (Urai et al., 1986), the bulk elastic distortion of 
the lattice (Kamb 1959), and even an imposed magnetic field (Hum-
phreys and Hatherley 1995). The driving force for migration is the en-
ergy reduction resulting from its motion, and will in fact in rocks al-
ways be the result of more than one driving force, since all crystals 
contain defects, and all grain boundaries have an inherent boundary 
energy. The rate at which a boundary migrates is both a function of 
this driving force, and the mobility of the boundary, which is an inher-
ent property of a material (but one that varies according to tempera-
ture, the presence or absence of fluids, the nature of the boundary, and 
the impurity content of both the subgrains and the boundary). Note 
that the general driving forces and controls for subgrain boundaries are 
very similar to those of grain boundaries; however the driving forces 
are typically smaller and the relative importance of surface energies in-
creases as the grain size reduces. At present the actual mobilities for 
mineral subgrain boundaries are not well known at all. In all cases the 
prediction of the velocity of the boundary (v) can be considered in 
terms of a fundamental material property: the grain boundary mobility 
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m (in units of m/Js); and a driving force (F) acting on an area of grain 
boundary A (m2) 

 

v = mF

A
 (3.3.1) 

3.3.5 Possible and actual simulation techniques 

Subgrain growth has been modelled using two main modelling tech-
niques: 

1. Discrete schemes mapped onto regular grids, where local changes in 
subgrain boundary position occur as a result of individual grid 
points switching their orientation, based on energy changes associ-
ated with the local distribution of orientations. Here, the most com-
mon model types include Potts (e.g. Holm et al., 2004) and Cellular 
Automata Models (e.g. Raabe 2002). 

2. Continuous schemes mapped onto regular grids, where the local 
change in orientation property is a function of the properties of the 
whole system; here, the most common modelling type is the Phase 
Field Model (Radhakrishnan et al., 2001). 

3.3.6 Implementation in Elle 

In Elle the growth of subgrains is modelled using a kinetic Monte Carlo 
model. The program steps through all the unodes of one grain and runs 
through 6 main algorithm steps (Mehnert and Klimanek 1996). These 
are:  

1. Randomly pick a crystallographic orientation Si of one of the 6 
neighbours for grid site i.  

2. Calculate the energy Ei according to Eq. 3.3.2 (see below). 
3. Pick a new orientation Sj from one of the neighbours.  
4. Calculate the energy of the site with orientation Sj.  
5. Flip the grid site i to orientation Sj with a probability P according to 

Eq. 3.3.3 (see below). 
6. Repeat steps 1–5. 

The equation to determine the energy, E, is 

 

Ei = −J δ −1( )
j=1

nn

∑ , (3.3.2) 
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where J is the energy factor, nn the number of neighbours and δ is 
the Kronecker delta. The number of neighbours is 6 if we are using a 
hexagonal unconnected grid. The probability (P) is defined as 

 

P = exp
−∆E

kT

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  for  E > 0 and   

 

P =1 for   E   0,  
(3.3.3) 

where E = Enew - Eold , hence the energy difference due to the change in 
crystallographic orientation, k the Boltzmann constant and T the system 
temperature. For simplicity, in our simulations, J =1 and kT=1.  

At present two subgrain growth models are used: 

1. Algorithm Subgrain growth I – isotropic energy. The algorithm as 
described above is used for this model; the calculation of the energy 
does not consider subtle differences in misorientation. If the misori-
entation between the spin and the neighbouring site is the same the 
energy is 0, if it is above the critical misorientation φm is 1.  

2. Algorithm Subgrain growth II – anisotropic energy. Here, the algo-
rithm as described is modified where the energy differs with misori-
entation φ between neighbouring grid points following the linear re-
lationship of the following form 

 

E = E
φ

φm

. 
(3.3.4) 

This equation is only valid for misorientations below a critical value of 
misorientation φm at which and above which the boundary has its maxi-
mum surface energy.  

3.3.7 Example Elle Runs 

Subgrain growth – isotropic energy function: In the first example (Fig. 
3.3.3), a simple subgrain growth experiment has been performed by 
taking an input file with a highly strained grain of NaCl derived from 
EBSD measurements, which exhibit high grain lattice distortions. We 
let the substructure of the grains evolve while the grain boundaries re-
main stable. The driving force is the reduction of energy where the en-
ergy below the critical misorientation (between adjacent subgrains) φm 
of 15° is isotropic.  

∆

∆  

∆
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Fig. 3.3.3 Example run showing isotropic surface energy driven subgrain growth. 
Greyscale scheme shows relative misorientation from one crystallographic orienta-
tion (marked as black star) in greyscale; black lines signify grain boundaries with 
>15° misorientation; (a-c) results at model time steps 1500, 2500, 6000 (modified 
after Piazolo et al., 2004).  EXPERIMENT 6 

 
Subgrain growth – anisotropic energy function: In this simulation (Fig. 
3.3.4) we take into account the anisotropy of surface energy and mo-
bility of subgrain boundaries. The input microstructure is the same as 
for section 3.3.4, however the calculation of the energy state differs as 
now the energy between data points below the critical misorientation φm 
of 10° is taken to be anisotropic (see above for details). It can be seen 
that in this case more subgrains remain at the end of the simulation, as 
the anisotropy has the effect of slowing down the microstructure evolu-
tion. 

 

 
Fig. 3.3.4 Example run showing anisotropic surface energy driven subgrain growth. 
Greyscale scheme shows relative misorientation from one crystallographic orienta-
tion (marked as black star) in greyscale; black lines signify grain boundaries with 
>10° misorientation; (a-c) results at model time steps 1500, 2500, 6000 (modified 
after Piazolo et al., 2004).  EXPERIMENT 6 
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Symbols used in Chap. 3.3 

A Area of grain boundary [m2] 
E Energy of a lattice site [J] 
F Driving force [N] 
φ Lattice misorientation between neighbouring lattice sites [°] 
φm Critical lattice misorientation between neighbouring lattice sites [°] 
J Energy factor [J] 
k Boltzmann’s constant = 1.3806503·10-23 [J K-1] 
m Grain boundary mobility [m3 s-1 N-1] 
nn Number of neighbours of a lattice site 
P Probability 
v Velocity of a boundary [m s-1] 
S Crystallographic orientation of a lattice site [°] 

 



3.4 Nucleation and subgrain formation 

Sandra Piazolo and Mark W. Jessell 

3.4.1 Phenomenological observations  

Nucleation refers to the appearance of new grains within a polycrystal-
line mono- or polymineralic material. Two main types of nucleation 
need to be distinguished. There is (a) the nucleation of a strain-free 
grain within a matrix of deformed, highly strained grains and (b) the 
nucleation of a new mineral phase in a polymineralic rock during 
changing pressure, temperature and fluid conditions. Nucleation of 
type (a) is commonly referred to as dynamic recrystallisation in metal-
lurgy (e.g. Gottstein and Shvindlerman 1999). Here, we will only con-
sider case (a) i.e. nucleation in a strained monomineralic material. Ex-
perimentally the evidence for such strain-free grains is widespread (Fig. 
3.4.1) (e.g. Humphreys and Hatherley 1995).  
 

 
Fig. 3.4.1 Time series during static heating of an experimentally pre-deformed Mg-
alloy. Time intervals 10 min from top left to bottom right. Different greyscales repre-
sent different crystallographic orientations. The grain encircled in white depicts a 
new, strain free grain that apparently nucleated during heating 
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The presence of subgrains, i.e. areas which are bound by boundaries 
with less than 10°-15° misorientation, is commonly observed in de-
formed crystalline materials (Fig. 3.4.2a), with increasing strain the 
density of subgrain boundaries is often observed to increase (e.g. 
Trimby et al., 1998). In geology, such subgrains are commonly recog-
nised with a transmitted-light microscope by their undulose extinction 
(Fig. 3.4.2b).  

 

 
Fig. 3.4.2 Subgrain structure seen in experimentally deformed salt. (a) Figure illus-
trates the difference in misorientation from one chosen crystallographic orientation 
(marked with a cross) from white (0°) to black (15°). Field of view is 250 m, black 
lines signify grain boundaries at >10° misorientation. (b) Micrograph showing typi-
cal undulose extinction signifying the presence of subgrains. Sample from a feldspar 
in a deformed meta-psammite from Central Dronning Maud Land, Antarctica; 
crossed nicols 

3.4.2 Natural examples 

In many natural examples e.g. albite, quartz and calcite it has been sug-
gested that subgrains show distinct discontinuous stages during and 
after deformation where the dislocation structure in a subgrain is 
cleared out producing relatively strain- and dislocation–free grains 
(Figs. 3.4.3) (e.g. Urai et al., 1986; ter Heege et al., 2002).  

The formation of subgrains is commonly observed during solid state 
deformation of crystalline materials (Fig. 3.4.4). The orientation of 
subgrain boundaries is often crystallographically controlled. Subgrain 
boundaries in quartz are commonly parallel or perpendicular to the 
crystallographic c-axis of the original grain (Lloyd et al., 1992; Stöck-
ert et al., 1999). Another well-known example are subgrain boundaries 
in olivine which develop sub-parallel to (100) (Lallemant 1985). 

S. Piazolo and M. W. Jessell 
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Fig. 3.4.3 Micrograph of showing 2 relatively defect-free small grains (arrows) within 
a grain with significant undulose extinction. These feldspar grains are interpreted as 
having nucleated during deformation. Sample from a deformed meta-psammite from 
Central Dronning Maud Land, Antarctica; crossed nicols 

 
 

 

Fig. 3.4.4 Micrographs showing an example of a microstructure commonly inter-
preted to originate from progressive subgrain formation. (a) and (b) are taken under 
different rotations with respect to the cross-polarized light. Note that the two sub-
grains still show some internal deformation (undulose extinction) and are at the same 
time distinguished by a slightly different orientation from the mother grain (marked 
as “M”). Sample from a deformed meta-psammite from Central Dronning Maud 
Land, Antarctica 
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3.4.3 Inferred processes 

There are two main models that have been put forward to explain the 
appearance of new, substructure-free grains:  

1. Nucleation in the classical sense (Burke and Turnbull 1952); in this 
situation, nucleation is accomplished by random atomic fluctuations 
leading to the formation of a small crystallite with surrounding mo-
bile grain boundaries.  

2. Growth from precursor cells. Cells with considerably lower disloca-
tion density than their neighbouring cells may already pre-exist or 
may form by recovery. At elevated temperature some of these cells 
may form mobile boundaries and grow rapidly to form larger, essen-
tially substructure-free grains (Doherty et al., 1997) (Fig. 3.4.5). 

 

 
Fig. 3.4.5 Schematic illustration of the mechanism of recrystallisation by nucleation 
from precursor cells (Humphreys and Hatherly 1995; Doherty et al., 1997; Gottstein 
and Shvindlermann 1999). (a) Recrystallisation nucleus with growth potential in a 
deformed aggregate (modified after Gottstein and Svindlermann 1999). (b) Sche-
matic illustration how the process recrystallisation by nucleation is modelled. A 
grain with a high strain energy (i.e. high dislocation density) is envisaged as a group 
of small cells. The higher the strain energy the higher the probability that one of these 
cells has a significantly lower strain energy than its neighbours. Such a cell then acts 
as a nucleus whose boundaries may rapidly sweep through its neighbours. Eventually 
a new grain develops with low internal energy and high angle grain boundaries 

 
During deformation, dislocations are generated, move and may be 

stored in a crystal. Dislocations do not occur in thermodynamic equi-
librium and therefore these linear lattice defects also have a driving 
force that allows them to move to lower the energy of the system. One 
way to minimize the free energy is a rearrangement of dislocations in 
low energy dislocation structures such as planes of dislocations forming 
regular arrays, resulting in subgrain boundaries (also called low-angle 
grain boundaries). The character of these arrays depends on the types 
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of dislocation involved (Humphreys and Hatherley 1995). A schematic 
diagram of the formation of a subgrain boundary is shown in Fig. 
3.4.6.  

 

 

Fig. 3.4.6 Schematic diagram illustrating the formation of subgrain boundaries by ar-
rangement of dislocations into regular arrays / low angle boundaries (modified after 
Passchier and Trouw 2005) 

3.4.4 Driving forces, controls and governing equations 

For both models cited above, the nucleus must fulfil two main charac-
teristics: (a) its size must be above a critical radius so that there is a net 
driving force to grow rather than to contract, and (b) its grain bounda-
ries must be mobile to allow observable growth of the nucleus. 

The critical radius Rcr at which there is a positive driving force for 
growth depends on the stored energy difference between the nucleus 
and the surrounding grains, minus the driving force to shrink the nu-
cleus by grain boundary area reduction.  

Neglecting dislocation spacing and core energy effects, the driving 
stress (σstored) for grain boundary migration driven by differences be-
tween the stored energy inside and outside the nucleus is given by: 

 

σ stored = Eρ ∆ρ . (3.4.1) 

Here Eρ is the energy per unit length of dislocation and  ρ is the differ-
ence in free dislocation density between nucleus and surrounding 
grains (e.g. Humphreys and Hatherley 1995; Gottstein and Svindler-
mann 1999). For a spherical grain nucleus, the driving stress (σsurface) 
for grain boundary area reduction due to the grain boundary curvature 
effect is  

 

σ surface = −2γ
R

, 
(3.4.2) 

∆
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where γ is the grain boundary energy and R the radius of the grain, cell 
or nucleus. Therefore, the resultant critical radius Rcr, below which a 
nucleus will shrink and above which it will grow, is  

 

σ stored +σ surface = 0 Rcr = 2γ
Eρ ∆ρ

 (3.4.3) 

For typical metals at reasonable deformations, the critical nucleus size 
for recrystallisation is on the m scale, so atomic fluctuations are insuf-
ficient to provide critical nuclei in any realistic timeframe. Therefore, a 
number of theories propose that nuclei arise from the recovered sub-
grain structure, in particular from abnormal growth of certain sub-
grains as stated above. In a more general sense though, the possibility 
that a strain-free nucleus satisfies the prerequisites (as stated in section 
3.3.3) increases with increasing dislocation density (Kocks 1985).  

An increase in the internal stresses, that is increase in the number of 
crystal point and line defects within a cell, provide the local driving 
force for rearrangement of dislocations into dislocation arrays/subgrain 
walls (Kocks 1985). These internal stresses are proportional to the dis-
location density within the cell. Accordingly, a cell with a high disloca-
tion density has a larger driving force to develop subgrain boundaries 
than a cell with low dislocation density.  

3.4.5 Possible and actual simulation techniques 

Nucleation has been modelled using the two main groups of tech-
niques, which are:  

  Discrete schemes mapped onto regular grids where a local change in 
orientation occurs as a result of individual grid points switching their 
orientation, as a function of the local distribution of orientations. 
These include Potts and Cellular Automata Models (see references in 
Doherty et al., 1997).   
Continuous schemes mapped onto regular grids; here the local 
change in orientation is a function of the properties of the whole sys-
tem. One of the main modelling techniques is the Phase Field Model, 
where a stochastic law represents nucleation, where the nucleation 
rates are matched to the rate of formation of nuclei in the material 
(e.g. Simmons et al., 2000). 

Subgrain formation has been modelled using (a) a Monte Carlo, 
Potts or Cellular Automata model, and (b) a Front-Tracking method 
(Piazolo et al., 2002), where new subgrain boundaries are added to the 

 

µ
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network of grain boundaries. The probabilistic law for this addition of 
subgrain boundaries is assumed to be a function of the dislocation den-
sity or local misorientation gradients. The positioning of the boundary 
may be chosen to be a function of crystallography, the local distribu-
tion of dislocations or local misorientation gradients. 

3.4.6 Implementation in Elle 

elle_angle_rx  

The discontinuous nucleation and growth of relatively strain- and dis-
location-free grains, which develop from highly strained subgrains is 
based on two apparently distinct steps: (1) initial formation of the new 
grain and (2) its growth. During process (1) the dislocation structure in 
an “old” subgrain is cleared out and the new grain exhibits a low dislo-
cation density (Fig. 3.4.3b).  

In simulations the critical threshold value τnucl for the probability of 
nucleation of a certain mineral species at a specific temperature is cal-
culated from a user-defined base nucleation threshold value τ0 specific 
to a mineral species 

 

τ nucl = 1000τ 0

T +1000
 (3.4.4) 

where T is the absolute temperature. If the stored energy derived from 
the 
a nucleus, which fulfils the requirements for recrystallisation by nuclea-
tion, is present in a polygon. The dislocation density of the newly nu-
cleated grain is set to a specified low dislocation density value (e.g. 1010 

m-2) and the crystallographic orientation of the new grain is randomly 
picked. This randomly picked orientation must satisfy the condition 
that the boundaries at all sides of the grain of the recrystallised grains 
are high-angle and hence mobile boundaries. This prerequisite satisfies 
the fact that a new nucleus will only be able to grow if at least some of 
its boundaries are high angle boundaries (Fig. 3.4.5). In simulations all 
subgrain boundaries must be high angle boundaries to allow the “suc-
cessful” nucleation of the grain, as the position of the subgrain bounda-
ries does not change due to computational limitations.  

dislocation density of a subgrain Estored > τnucl there is a probability that
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elle_split  

A discontinuous development of subgrain boundaries is modelled in 
Elle as the repeated “splitting” of a “parent” polygon (grain) into two 
smaller “daughter” polygons i.e. subgrains. The driving force for sub-
grain formation is the total strain energy per unit area, which depends 
on the dislocation density of the polygon. The driving force Estored for 
subgrain formation is calculated according to 

 

Estored = ρEρ ρscale  (3.4.5) 

where ρ is the dislocation density, Eρ the energy per dislocation, and 
ρscale a dislocation density scaling factor. If > τnucl (the energy 
threshold value for splitting of a polygon), the grain has a possibility of 
“splitting” into subgrains. The probability for “splitting” increases with 
increasing   . The new subgrain boundaries can be chosen to be pref-
erentially parallel or perpendicular to the crystallographic c-axis of the 
“parent” grain when quartz is modelled. No orientation change is im-
posed as a result of the initial formation of a subgrain.  

3.4.7 Example Elle Run  

In this example, we show the effect of the nucleation process in Elle 
(Fig. 3.4.7). The initial microstructure is a highly deformed polycrystal 
with locally high dislocation densities present in subgrains. During the 
nucleation process, some of these subgrains with high dislocation den-
sity evolve into new grains, characterized by low dislocation density 
and high-angle boundaries towards their surrounding subgrains. 

 

Fig. 3.4.7 Example of the nucleation process as modelled in Elle. (a) Before nuclea-
tion, different greyscales depict different crystallographic orientations; dark lines are 
low angle boundaries, light grey are high angle boundaries; (b) After nucleation of 
two new nuclei (shown with arrows) – shown in “new” different greyscale to their 
neighbours – hence exhibit a different crystallographic orientation. (c) Same stage as 
in (b) but this time dislocation density is shown (white is high, black is low density) 

 

Estored

Estored
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In the second example, we show the subgrain formation process in Elle 
(Fig. 3.4.8). The initial microstructure is a highly deformed polycrystal 
with locally high dislocation densities present in subgrains and grains. 
During the subgrain formation process, one grain is “split” into several 
subgrains, which are characterized by low-angle boundaries to their sub-
grain neighbours and a boundary orientation that is parallel or perpendicu-
lar to the c-axis of the initial grain. 

 

 

Fig. 3.4.8 Diagram illustrating the subgrain formation process in a polycrystalline 
quartzite as modelled in Elle. (a) Before subgrain formation; different greyscales de-
pict different crystallographic orientation; dark lines are low angle boundaries, light 
grey lines are high angle boundaries. (b) State after subgrain formation; arrow points 
to area where new grain boundaries were formed; note that these are all roughly paral-
lel since they are modelled as being crystallographically controlled 

Symbols used in Chap. 3.4 

Eρ Energy per dislocation [J m-1] 
Estored Stored energy (density) due to free dislocations in a nucleus relative to 

its neighbours [J m-3] 
γ Grain boundary energy [J m-2] 
R Radius of a grain [m] 
Rcr Critical radius for a nucleating grain [m] 
 ρ Difference in free dislocation density between nucleus and surrounding 

grains [m m-3] 
ρ Dislocation density [m m-3] 
ρscale Dislocation density scaling factor 
σsurface Driving force for grain boundary area reduction [Pa] 
σstored driving stress for grain boundary migration due to differences in stored 

energy [Pa] 
τ0 Base threshold for the probability of nucleation of a grain [J m-3 K] 
τnucl Temperature-dependent threshold for the probability of nucleation of a 

grain  [J m-3] 

∆



3.5 Grain boundary migration 

3.5.1 Phenomenological observations 

Grain boundary migration refers to the movement of the boundary 
separating two grains, relative to the material that makes up those 
grains. This definition therefore excludes boundary motion inherited 
from deformation of the entire system. Although recrystallisation had 
been identified by the beginning of the 20th century, recrystallisation 
and grain growth had not clearly been distinguished as separate proc-
esses. The work of Carpenter and Elam (1920) and Altherthum (1922) 
established that stored energy provided the driving force for recrystalli-
sation and grain boundary energy that for grain growth by grain 
boundary migration. This is shown by the (German) terminology for 
these processes used by Altherthum - Bearbeitungsrekristallisation 
([cold-] work recrystallisation) and Oberflächenrekristallisation (sur-
face [tension] recrystallisation).  

In 1898 Stead had proposed that grain growth occurred by grain ro-
tation and coalescence, and although Ewing and Rosenhain (1900) pre-
sented convincing evidence that the mechanism was one of boundary 
migration, Stead’s idea was periodically revived until the work of Car-
penter and Elam (1920) finally settled the matter in favour of bound-
ary migration. Observations of grain boundary migration were one of 
the earliest forms of in-situ studies of microstructural evolution 
(McCrone and Chen 1949) and proved conclusively the general nature 
of the process, although even today the exact atomic scale processes 
involved remain the subject of debate.  

3.5.2 Natural examples 

The most commonly cited evidence for grain boundary migration in 
rocks is the presence of lobate boundaries (Fig. 3.5.1a), which indicate 
an internal energy driving force: recrystallisation. In fact a foam tex-
ture (all boundaries smoothly curved, triple junctions which form 120° 
inter-boundary angles) is also evidence for grain boundary migration 
and it indicates grain boundary energy controlled grain boundary mi-
gration, as the grain boundaries move to minimize their total length. 

Paul D. Bons, Mark W. Jessell and Jens Becker 
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This leads to grain growth: the average increase in grain size as a func-
tion of time. 

Another class of indicators is the formation of orientation families 
that are isolated (in 2D) sets of grains with the same crystallographic 
orientation, which were once part of the same grain, but have been iso-
lated by grain boundary migration. (Fig. 3.5.1a, and see Urai et al., 
1986).  

Finally a new class of indicators has recently been described by 
Reinecke et al. (2000), Holness and Watt (2001), Jessell et al. (2003) 
and Nakamura et al. (2005) that relies on the change in chemistry, dis-
location density levels, or impurity content behind a migrating bound-
ary (Fig. 3.5.1b). 

 
 

 
Fig. 3.5.1 Natural examples interpreted to demonstrate the past migration of grain 
boundaries. (a) Recrystallised quartz vein from Yudnamutana, South Australia, in 
cross-polarised light. Grains have serrated or lobate grain boundaries (white arrow). 
The black arrows show an orientation family: three grains that share the same lattice 
orientation and are interpreted to have derived from a single grain that has split into 
three by boundary migration. (b) Thermoluminescence image of growth bands in 
quartzite resulting from inclusion of water into the quartz lattice during grain bound-
ary migration (Sample courtesy of M. Holness) 

3.5.3 Inferred processes 

The movement of grain boundaries may take place by the diffusion of 
single atoms from one grain across the boundary to the other grain 
through a supporting medium such as a fluid film, by the rotation and 
shuffling of atoms from one lattice to the other, or perhaps by piece-
meal movement of clusters of atoms (Gottstein and Shvindlerman 
1999). However, at the grain scale these processes are indistinguish-
able. This motion results in the migration of the boundary in the oppo-
site direction to that of the atom or cluster motion. 

  P. D. Bons et al.
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3.5.4 Driving forces, controls and governing equations 

There are various driving forces for grain boundary migration in 
rocks, such as of deformation induced dislocation density contrasts and 
surface energy of the boundaries themselves (see Chap. 3.3.4). The 
driving force for migration is the free energy reduction resulting from 
its motion, and will in fact in rocks always be the result of more than 
one driving force, since all crystals contain defects, and all grain 
boundaries have an inherent boundary energy. The rate at which a 
boundary migrates is both a function of this driving force, and the mo-
bility of the boundary, which is an inherent property of a material (but 
which varies according to temperature, the presence or absence of flu-
ids, the nature of the boundary, and the impurity content of both the 
grains and the boundary). Subgrain boundaries may also migrate, 
however the driving forces are typically smaller. The actual mobilities 
for most mineral grain boundaries are, unfortunately, poorly known 
and values have to be estimated. In all cases the prediction of the veloc-
ity of the boundary (v) at position p can be considered in terms of a 
fundamental material property: the grain boundary mobility (m, in 
units of m/Js); and a driving stress (σgbm), which is the driving force per 
unit area of grain boundary 

 

v = dp

dt
= σ gbmm  ⇔ 

 

σ gbm = v

m
. (3.5.1) 

3.5.5 Possible and actual simulation techniques 

There have been a plethora of numerical simulation studies of grain 
boundary migration in engineering materials, mostly focusing on grain 
growth, and recrystallisation subsequent to deformation. The investiga-
tion of the grain growth phenomenon has in particular seen the appli-
cation of a wide range of simulation techniques, in both 2D and 3D. 
These schemes can broadly be grouped into three classes: 

1. Discrete schemes mapped onto regular grids, in which local changes 
in grain boundary position occur as a result of individual grid points 
switching their orientations, as a function of the local distribution of 
orientations. These include: Potts Models (Anderson et al., 1984; 
Kunaver and Kolar 1998) and Cellular Automata (Davies and Hong 
1998).  

2. Continuous schemes mapped onto regular grids, where the local 
change in orientation property is a function of the properties of the 
whole system, such as Phase Field techniques (Fan and Chen 1997; 
Le Bouar et al., 1998).  
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3. Discontinuous schemes mapped onto arbitrary networks. These 
schemes include Vertex Models (Soares et al., 1985; Bons and Urai 
1992; Cleri 2000), Front-Tracking models (Wakai et al., 2000) and 
Finite Element techniques (Cocks and Gill 1996).  

3.5.6 Implementation in Elle 

In Elle, grain boundary migration is driven by the integrated Gibbs 
free energy reduction resulting from movement of the boundary. 
Components of the free energy can be the grain boundary surface en-
ergy, contrasts in notional defect energy across boundaries, or chemical 
energies related to phase changes. Grain boundary migration is simu-
lated by calculating the driving force for boundary node movement, 
based on the orientation, length and properties of the grain boundary 
segments to which the node is attached, as well as the properties of the 
grains bounded by these segments. 

Regardless of the driving force (fgbm, positive in the direction of 
movement), the basic equation to describe grain boundary motion (Fig. 
3.5.2) is the equality that relates the rate of work done (dW/dt) or the 
rate change of free energy change (-dE/dt) to that applied force and the 
rate of change of position (dp/dt=v) of the boundary:  

 

fgbm = −dE

dp
fgbmv = −dE

dt
= dW

dt
. (3.5.2) 

 

 
Fig. 3.5.2 Magnification of a moving grain boundary in Elle. The boundary is defined 
by a series of boundary nodes. The displacement ( p) of a boundary node located at (p) 
is calculated by examining the forces on the boundary segments that adjoin that node. 
Because only one node is moved at a time, boundary segments pivot around the 
nodes neighbouring the moving node. The displacement here is exaggerated for clar-
ity. In reality absolute displacements per time increment should only be a small frac-
tion of the average distance between nodes 

In order to predict the direction and magnitude of boundary migra-
tion we need to understand the local gradient in energy (dE/dp), i.e. we 
need to know how E changes as a function of position p. In the Elle 
implementation, where only one node is moved at a time, we can de-
scribe E(p) contours that describe the energy state for any hypothetical 
local position p to which the node could be moved (Fig. 3.5.3a).  

 

⇔
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We can simplify the problem if we assume, for very small   p, that E(p) 
is a linear function of x- and y-coordinates of p. In that case we can 
calculate the function E(x,y) by calculating the total free energy for at 
least three positions around the current node position and making a lin-
ear fit through these three points (Fig. 3.5.3b). In the current Elle im-
plementation the linear dependence of E on x and y is calculated from 
four trial positions at a very small distance s from the current node po-
sition (Fig. 3.5.3c). Essentially this means that the central Finite Differ-
ence method is employed. 

It should be stressed that any hypothetical free energy “source” can 
be incorporated in the energy equation. This routine is therefore not re-
stricted to particular types of boundary migration, but applies equally 
well to metamorphic reactions as to deformation-induced grain bound-
ary migration.  

 
Fig. 3.5.3 The energy variation around a grain boundary node. (a) Hypothetical com-
plex function of the energy function around a moving node. The arrow shows the path 
down the energy gradient that the node would follow if the neighbouring nodes 
would remain fixed. (b) At a finer scale we can simplify this function to a linear ap-
proximation that allows us to define the function based on only three trial locations 
(black dots) around the original boundary node location. (c) The current Elle imple-
mentation actually uses four trial positions at distance s from the original node loca-
tion to calculate local gradients in the energy function in the x- and y-direction. (d) 
Definition of the angles αi between segments joined at the moving node and the 
movement direction v 

∆
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The direction u of maximum energy dissipation is easily calculated 
once the linear function E(x,y) is known. The node under consideration 
will move in the given direction u with a velocity v.  

The rate of energy dissipation is equal to the sum of the rates of 
work done by each individual segment joined at the moving node. The 
work (Wi) for segment i is proportional to the normal force acting on 
the node and the normal component of the velocity of the moving 
node (Eq. 3.5.1). Let us now define Li as the length of the ith segment, 
and αi as the angle between the vector to segment i and the movement 
direction (Fig. 3.5.3d), and σ n

i being the normal stress acting on the 
segment. We can now write  

 

dWi

dt
∑ = 1

2
Li σ i

n v sin(α i∑ ) . (3.5.3) 

The factor 1/2 comes from the fact that only one side of the segment is 
moved, and the average velocity along each segment is thus only half 
the velocity of the moving node. From Eq. 3.5.1 it follows that 

 

σ i
n =

v sin(α i)

mi

dWi

dt
∑ =

Li
1
2

v
2
sin2(α i)

mi
∑ . (3.5.4) 

We use Eq. 3.5.2 to describe the total work done by moving a node: 

 

dW

dt

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

node

= fgbmv = −dE

du
v. (3.5.5) 

 
Inserting Eq. 3.5.3 into 3.5.5 finally gives us an expression for the ve-
locity v of the in the direction u: 

 

dW

dt

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

node

= dW

dt

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

i
∑ −dE

du
v = 1

2

Li v
2

sin2 α i( )
mi

∑ , (3.5.6) 

 

v =
−2 dE / du( )

Li sin2(α i)

mi
∑

. 
(3.5.7) 

Equation 3.5.7 only contains variables that can be determined from 
the current state of the moving node and its surroundings. The final 
displacement of a node is calculated by simple linear integration of v 
over a small time increment (  t), assuming that the velocity does not 
change during that time increment 

⇔

⇔

⇔

∆
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pt +∆t = pt + v∆t . (3.5.8) 

Scaling and accuracy 

When using this implementation (and most others!), the user should be 
aware that the above equations are only approximations. Strictly speak-
ing, they only hold when   t approaches zero. Furthermore, they only 
truly hold when node movement is perpendicular to the boundary 
segments, which would be on a straight boundary. Where three 
boundaries meet at a triple point, this is far from being the case. At all 
times, the user should carefully consider the settings for a simulation. 
These depend on several factors: 

 the desired accuracy of the simulation; 

 the values of the physical parameters of the processes and materials 
involved in the simulation (like grain boundary surface energy and 
mobility); 

 practical constraints, such as available computer memory and dura-
tion of a simulation. 

Whe grain boundary migration is driven by surface energy only, one 
can define a dimensionless parameter S to scale a simulation. S is de-
fined as: 

 

S = γ m∆t

∆x( )2
 (3.5.9) 

Simulations run with the same value of S produce the same result. For 
example, doubling the grain boundary mobility, while halving the sur-
face energy makes no difference for the final result of the simulation. 
The use of the scaling parameter can be illustrated with a simulation of 
the shrinking of a single circular grain in an infinite matrix. For the 
ideal case that the surface energy is constant, the analytical solution for 
the area (A(t)) of the grain as a function of time is: 

 

A t( ) = A0 − 2πmγ t  (3.5.10) 

∆

● 

● 

● 

The user cannot just arbitrarily vary settings. The choice of the simulation 
“box” defines the size scale, while the choice of the time step (

  

∆ t) defines 
the time scale. The choice of the node distance (

 

∆ x) relative to the box 
size defines the spatial resultion of a simulation. Because the units of sur-
face energy, mobility and strain energy also contain time and length, these 
units must be scaled according to the choice of ∆ x and ∆ t.  
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This is a linear function and suitable to test the accuracy of the simula-
tion. The case was simulated with a unit 1×1 model area, a unit time 
step, a unit surface energy and a grain boundary mobility of 10-6. With 
these settings, a starting grain with an area of 0.18 should shrink in 
about 30,000 time steps (Fig. 3.5.4). Two settings for the node distance 
were used for the simulations:  x=0.005 and 0.003. Using Eq. (3.5.9) 
we obtain scaling parameters of S=0.004 and 0.011, respectively. The 
simulations show a shrinkage rate that is slightly higher than the ana-
lytical solution (Fig. 3.5.4). The simulation with S=0.004 systematically 
overestimates the node shrinkage rate by about 2%, and the one with 
S=0.011 more than 5%.  

We see that increasing the spatial resolution (  x=0.003 instead of 
0.005) actually decreases the accuracy of the node movement calcula-
tions, if the time step is kept the same. This is because incremental dis-
placements of the nodes during one time step (Eq. 3.5.8) must be small 
relative to the node distances. 

 

Fig. 3.5.4. Comparison between the analytical solution of the shrinking of an isolated 
circular grain and the numericl simulation with two different settings for the node 
distance, equivalent to a value of S = 0.004 and S = 0.011  

The scaling factor S can be used to determine the accuracy of a 
simulation. Any combination of settings with S=0.004 will result in the 
same ~2% error in the shrinkage rate. If the time step would be reduced 
by a factor 10, reducing S to 0.0004, the simulation would be about 
0.1% off the analytical solution. However, the simulation would take 
300,000 time steps! 

Let us suppose we want to simulate a quartz grain with an area of 20 
mm2 in a model area of 10×10 mm. The surface energy of quartz is 
about 0.5 J/m2, and the grain boundary mobility about 10-15 m2s/kg. 
Now suppose that we want a spatial resolution, defined by the node 

∆

∆
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distance, of 10 m (10-5 m). What would be the maximum duration of 
one time step that would give a satisfactory accuracy (say <2%, and 
therefore S=0.004) in the simulation? This can be determined by reor-
dering Eq. (3.5.9): 

 

∆t =
S ∆x( )2

γ m
∆t =

0.004 10−5( )2

0.5 ⋅10−15
= 800 s.  

The time step must be less than 800 s (13 min) for the desired accuracy 
in shrinkage rate of the grain. If one is satisfied with a 100 µm spatial 
resolution, one can increase the time step by a factor of one hundred to 
80000 s, or 22 hours.  

Increasing the spatial resultion (reducing node distance) by a factor 
of 10 increases the number of nodes by the same factor and the num-
ber of time steps by a factor of a hundred. This means RAM use is in-
creased by a factor of 10 and the time a simulation takes by a factor of 
1000. Memory use and duration of a simulation put practical con-
straints on the accuracy and spatial resolution of simulations. Every 
time, the user should find a compromise between spatial resolution 
(node distance), time resolution (  t), calculation time, and memory use. 
The user should always ensure that the outcome of a simulation is not 
(significantly) dependent on choice of node distance or  t. 

3.5.7 Example Elle Run: Grain growth 

Grain boundaries in a grain aggregate have a surface energy typically 
in the order of 0.1 - 1 J/m2 (Urai et al., 1986 and refs therein). If we 
take a two-dimensional view of the problem, grain boundaries can mi-
grate to achieve a local minimum surface energy configuration, given 
by straight boundaries and equal 120° angle intersections. Since the 
two cannot be achieved simultaneously, smoothly curved grain 
boundaries develop that meet at approximately 120°. This balance is 
very similar to the growth of bubbles in a foam (Glazier et al., 1987) 
and the result is a grain aggregate that resembles a foam and is there-
fore termed a foam texture. Larger than average, concave outward and 
many-sided grains on average grow, while smaller, convex and fewer-
sided grains shrink and eventually disappear. Grain growth results, as 
the average grain size must increase as the total volume of grains re-
mains the same, but their number decreases. Readers are referred to 
Smith (1964), Weaire and Rivier (1984), Anderson (1988) and Evans 
et al. (2001) for reviews on the topic. Grain growth is an important 
process in metamorphic rocks, and can for instance, modify or in some 

 

∆

∆
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cases completely obliterate an existing deformation microstructure 
(Bons and Urai 1992; Bons et al., 2001).  

 

 
Fig. 3.5.5 (a-c) Example of a grain boundary migration experiment showing the evo-
lution of grain boundary geometry driven by boundary energy reduction (“grain 
growth”) in an originally foliated material at t=0, 20000 and 40000. (d) The succes-
sive positions of all grain boundaries at each time step during this time interval are 
shown in shades of grey that vary cyclically with time. White areas have never been 
swept by grain boundaries.  EXPERIMENT 7 

In this example (Fig. 3.5.5) we performed a simple grain growth ex-
periment by taking an input file with a microstructure far from equilib-
rium in terms of grain shapes and evolve the grain boundaries by de-
fining a boundary energy term, which provides the driving force for 
grain boundary migration.  

  P. D. Bons et al.
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3.5.8 Alternative implementations in Elle 

The node movement routine that is implemented in Elle and that is de-
scribed above is versatile: almost any driving force for grain boundary 
migration can be incorporated. The routine also deals well with vari-
able mobilities of individual segments. Other implementations have 
been used in the past and may be useful for specific cases. 

One way to model surface-energy driven grain boundary migration 
(grain growth) was already described in Chap. 2.3. Here a circle is fit-
ted to the moving node and its two neighbours. The boundary velocity 
is inversely proportional to the radius of that circle, in ideal isotropic 
grain growth. The simple routine is implemented in Elle (elle_gg), but 
restricted to isotropic grain growth. For example, it cannot deal with 
surface energies or mobilities that are a function of the orientation of a 
surface relative to the crystallographic orientation of the adjacent 
grains. 

Bons et al. (2001) and Piazolo et al. (2002) employed another rou-
tine (elle_gbm). This one is “in the same spirit” as the one described in 
section 3.5.6, but simpler. It does not calculate the gradient in the en-
ergy as a function of the position of a node around its original position. 
Instead, it takes four trial displacements at a small distance (s) from the 
original positions. First one displacement is chosen in a random direc-
tion, and then three others at 90° to each other. The displacement pro-
ducing the maximum energy dissipation is chosen as the movement di-
rection and the gradient in that direction determines the driving force 
and hence velocity of the node. Clearly, each individual node dis-
placement is not exactly in the right direction, but on average nodes 
move in the right direction. In general, the grain boundary migration 
implementation described in this chapther is preferred over the other 
routines. 
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Symbols used in Chap. 3.5 

E(p) Free energy state of a grain boundary (node) at position p [J] 
fgbm General driving force to move a grain boundary (node) [N] 
Li Length of a boundary segment linking a node and its ith neighbour [m] 
m Grain boundary mobility [m2 s kg-1, or m s kg-1 in 2D] 
p (∆p) Position (change in position) [m] 
s Small distance between trial position and original position of a node 

[m] 
S Dimensionless scaling factor 
u Direction of movement of a node, equal to the direction of maximum 

energy dissipation 
v Velocity of a grain boundary (node) [m s-1] 
W Work done as a result of moving a grain boundary (node) [J] 
αi Angle between normal vector to the ith boundary segment and the 

movement direction of a node 
γ Grain boudary surface energy [J m-2 = kg s-2, or J m-1 = kg m s-2 in 2D] 
∆t Time step in a simulation [s] 
 ∆x User-defined distance between nodes [m] 
σgbm Driving stress (force per unit area of grain boundary) for grain boundary 

migration [Pa] 
σ 

i Normal stress acting on the ith boundary segment [Pa] n
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3.6 Vein microstructures  

3.6.1 Phenomenological Observations 

Veins are mineral aggregates that grew by precipitation from a fluid in 
space created by dilatation of the host rock, such as the opening of a 
crack. Veins can have a variety of internal microstructures, ranging 
from equant blocky to extremely fibrous crystals, depending on factors 
such as the vein growth mechanism and conditions of growth (see 
Oliver and Bons, 2001, for a recent review of the topic). The micro-
structure is of particular interest for tectonic studies, since the shape and 
orientation of crystals often provide indications of the dynamic condi-
tions during vein formation, such as stretching direction or type of de-
formation (e.g. Durney and Ramsay 1973).  

The shape and arrangement of crystals inside a vein depends on a 
range of factors: 

1. Spatial constraints. In some veins, crystals grow into an open, fluid-
filled space, only constrained in their growth by their neighbours. In 
other veins, crystals grow into a narrow crack and are also con-
strained in their growth by the width and shape of the crack.  

2. Crystal habit is a straightforward factor controlling the shape of 
grains, with naturally fibrous asbestos forming different microstruc-
tures than prismatic quartz under otherwise similar conditions. 

3. The transport of dissolved components (the nutrients) towards the 
vein may also play a role in forming the microstructure. 

Attempts have been made to numerically simulate vein microstruc-
tures in order to better understand their formation. Front-Tracking is 
one appropriate approach, since the growth of crystals in a vein in-
volves the progressive movement of the crystal surfaces, usually into a 
fluid-filled space. The 2D model Vein Growth (Bons 2001) for growth 
of a row of crystals growing into a crack uses Front-Tracking, as does 
the model Fringe Growth (Koehn et al., 2000) that was derived from it. 
These two codes have not yet been incorporated into the Elle system, 
but are described here as they are currently the only codes available for 
crystal growth in constrained spaces. These models have been applied 
to address the following questions: 

Paul D. Bons and Daniel Koehn 
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1. What is the shape of vein crystals that grow into a repeatedly open-
ing crack-seal vein? Factors that play a role are mineral habit, crack 
opening distance and direction, opening frequency relative to min-
eral growth rate, and crack roughness (Hilgers et al., 2001). 

2. How do complex fibre patterns in pressure fringes develop (Koehn 
et al., 2000)? 

3. Why do some films of zeolites at first develop a crystallographic pre-
ferred orientation with the fastest growing direction oblique to the 
substrate (Bons and Bons 2003)? 

3.6.2 Modeling of vein microstructures 

In the model Vein Growth of Bons (2001) crystals are represented by 
polygons that are defined by nodes that are linked by straight seg-
ments. Movement of nodes changes the shape of the polygons, and 
hence the shape of the crystals. Growth of crystals is thus modelled by 
moving nodes.  

The program models the growth of a row of crystals into a fluid-
filled crack. Crystals stop growing when they reach the other side of 
the crack. However, the crack can open repeatedly to simulate the 
crack-seal process of Ramsay (1980). Rock, vein and fluid-filled crack 
are modelled with a raster where 0 (black) stands for rock and 255 
(white) for vein or fluid. Opening of the crack is simulated by shifting 
all “rock” sites on the lower side of the crack by a given number of lat-
tice points down and to the left or right (Fig. 3.6.1). 

There are three types of nodes (Fig. 3.6.1): 

1. Active nodes lie on crystal surfaces in contact with fluid. Moving 
these nodes in the direction of the fluid-filled crack simulates growth 
of vein crystals 

2. Temporarily deactivated nodes. Once an active node moves onto a 
“wall rock” site on the bitmap, it is temporarily deactivated. If after a 
crack opening event the node is not on the wall-rock area anymore, 
it will be activated again to continue growth of the crystals. 

3. Permanently deactivated nodes. Nodes on boundaries between crys-
tals never move again, unless they are still on the fluid crystal inter-
face. 

To simulate growth of the crystals into the fluid-filled crack, rules have 
to be set that determine the direction and velocity by which nodes or 
boundary segments move.  

 P. D. Bons and D. Koehn 
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Fig. 3.6.1 Solid rock and crack (fluid or vein crystals) are defined by a bitmap. Vein 
crystals are described by nodes that define polygons. There are three types of nodes: 
black ones inside the vein or wall rock, which do not move any more, grey ones de-
fine the growth front of the vein and can move, while white ones are temporarily 
locked nodes that have reached the other side of the crack and cannot move until the 
crack opens again. (a) Situation where the vein crystals have all reached the other side 
of the crack as they moved onto a grey site on the bitmap. (b) After opening the crack 
3 pixels down and 2 to the right (arrow) all locked nodes become mobile again 

 
Fig. 3.6.2 (a) In Vein Growth, displacements of boundary segments are perpendicular 
to the segments. Nodes are positioned at the end of the displacement vectors. If seg-
ments become to short, a node is removed, while a node is added (dark extra node) 
when a segment is too long (b) Scheme for the movement of triple-junction node be-
tween two crystals and the fluid. Both crystals can grow outward according to the 
scheme shown in (a). The new position of the triple junction is on the new intersec-
tion between the two crystals 

In Vein Growth, the displacements of all nodes are calculated for a 
small time increment (Fig. 3.6.2). Positions are then updated by apply-
ing the displacements to all nodes. Vein Growth calculates the growth 
rate of a segment as a function of the orientation of that segment and 
the lattice orientation, represented by a single “c-axis”. Users can de-
sign their own functions, to create the desired crystal habit (Fig. 3.6.3). 
In Vein Growth, displacements are calculated for the middle of each 
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segment, and new node positions are at the end of these segments. This 
effectively means that each node is shifted half a segment length each 
time step.  

A special routine is used to move nodes at triple points between two 
crystals and the open crack (Fig. 3.6.2b). Here both crystals are al-
lowed to grow outwards. The new triple point node position is where 
the two boundaries intersect. The result is a small dimple at the triple 
points, which is also observed in natural growth fronts. Models that 
only consider the growth of crystal facets, like the program FACET of 
Zhang and Adams (2002), do not incorporate this effect. However, the 
routine used by Vein Growth is only an approximation of what really 
happens at triple points. A proper routine should take into account the 
surface energies of the crystal-crystal and crystal-fluid surfaces, and 
diffusional effects in the fluid. 

 
 

 
Fig. 3.6.3 Relationship between growth rate and angle (α) between the c-axis and a 
boundary segment. This function produces a prismatic crystal habit 

Vein Growth and the spin-off Fringe Growth have been successfully 
applied to a variety of problems, as listed in the introduction. Some ex-
amples of their application are shown in Fig. 3.6.4. However, much 
could be improved in the modelling of veins. Although Vein Growth 
appears to correctly model the user-defined habit of crystals, Nollet et 
al. (2005) pointed out that the angle between the facets can deviate 
slightly from the true angle. They therefore suggested to develop a hy-
brid model, combining the approach of FACET (Zhang and Adams, 
2002), which always gives correct angles between facets, and that of 
Vein Growth, which can cope with space constraints in a narrow crack. 

Another remaining problem is that the models are so far purely kine-
matic as far as the creation of space for growth is concerned. The 
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sequence of opening events of the fracture (Fig. 3.6.4b) or relative off-
set and rotation of object and fringes (Fig. 3.6.4c) are given at the start 
of a simulation. An improvement would be if a model would be com-
bined with, for example, a Finite Element model to calculate the 
stresses and displacements, as well as failure of a healed crack. Such a 
model has not been developed yet. 

  
 

 
Fig. 3.6.4 Simulations of vein growth. (a) Growth of a “prismatic” mineral into an 
open crack in four stages. (b) Growth of the same mineral in a crack-seal vein with 
many oblique opening events. Shading in both simulations is according to c-axis 
orientation, from black (horizontal c-axis) to white (vertical c-axis). (c) Two stages of 
the simulation of the formation of a pressure fringe during dextral simple shear 



3.7 Melt processes during grain growth 

3.7.1 Phenomenological observations 

Melt processes, especially those that lead to the existence of a three dimen-
sional melt network, are of fundamental importance for melt migration and 
segregation, which is important in the upper mantle and the lower crust of 
the earth (McKenzie 1984; Scott and Stevenson, 1986; Sleep, 1988; 
Laporte et al., 1997; Rabinowicz et al., 2001; Wark et al., 2003). Further-
more, melt distribution and redistribution is a key factor in geological 
processes such as flow of partially molten (poly)-crystalline aggregates 
and the homogenization of partial melts by chemical diffusion (Cooper et 
al., 1984; Laporte et al., 1995). Many properties of systems with small 
amounts of melt depend on the distribution of the liquid phases at the grain 
scale. The same fundamental considerations also apply to the evolution of 
solid-state two-phase systems, and the code described here can equally 
well be applied to such phenomena as Ostwald ripening. 

3.7.2 Natural examples 

In high temperature experiments that were performed with major rock-
forming minerals such as dunite + mafic or ultramafic melt (Waff and 
Bulau 1979; Hirth and Kohlstedt 1995; Faul 1997; Cmíral et al., 1998) 
or quartz + felsic melt (Jurewicz and Watson 1984; Laporte 1994; 
Laporte and Watson 1995) apparent disequilibrium features were de-
scribed that deviated from the predicted regular melt geometry:  

1. fully wetted grain boundaries and melt lenses on grain boundaries, 
2. strongly distorted, melt-filled triple junctions, 
3. large, multigrain-bounded, melt pools. 

These disequilibrium features where shown to have a potentially large 
impact on the porosity–permeability function of partially molten rocks, es-
pecially at low melt-fraction such as considered in the upper mantle (Faul 
1997; 2001). It has been recognized that variations in grain size and crystal 
lattice–controlled surface-energy anisotropy modifies the actual liquid dis-
tribution in natural aggregates (e.g. Waff and Faul 1992; Laporte and Wat-
son 1995; Jung and Waff 1998; Wark et al., 2003). The frequent observa-
tion of straight crystal facets of grains in contact with melt supports the 

Jens Becker and Paul D. Bons 
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latter explanation for non-equilibrium melt geometries (Waff and Faul 
1992; Hirth and Kohlstedt 1995; Jung and Waff 1998; Faul 1997). Al-
though quartz is considered to be more isotropic than olivine, all the above 
mentioned non-equilibrium features were observed in quartz + melt sys-
tems as well (e.g. Laporte 1994). 

3.7.3 Analogue modeling 

In-situ experiments using analogue materials (for example using nor-
camphor and ethanol as substitutes for quartz and melt) have been per-
formed to study the dynamic development of grain-boundary struc-
tures and melt segregation under deformation with a continuous 
observation of the experiment (Park and Means 1996; Bauer et al., 
2000; Rosenberg and Handy 2000; Walte et al., 2003). Walte et al. 
(2003) found that all previously observed disequilibrium structures can 
develop due to the collapse of small grains during coarsening of the 
whole aggregate.  

3.7.4 Driving forces 

It is beyond the scope of this book to give a detailed view of how melt 
is produced within, or transported into, natural rocks. With driving 
forces we here mean forces that will influence the shape of the melt 
filled pockets within a rock and the redistribution of melt within a rock 
on the grain scale. These forces can be parameterized in the following 
way:  

1. The permeability of the rock is a measure of how quickly melt can 
be redistributed to accommodate changes of the grain fabric (e.g. 
grain growth). 

2. The surface energies of the melt and the surrounding grains influ-
ence the shape of the melt pocket and, to some extend, the way melt 
is redistributed within the grain fabric.  

3. Although the melt fraction is not directly responsible for the shape of 
melt pockets it is important to know whether the melt fraction is 
fixed, if melt migrates into the rock (melt fraction increases) or is 
transported out of the rock or crystallizes (melt fraction decreases).  

In the implementation that is presented here, we assume that the 
communication between melt pockets by diffusion is infinitely fast, so 
that only surface energy effects need to be considered. 

 J. Becker and P. D. Bons 
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3.7.5 Possible and actual techniques 

Numerous theoretical predictions on the geometries and thresholds of 
melt pockets have been made (e.g. Laporte et al., 1997). These mainly 
geometrical evaluations do not involve the process of melt redistribu-
tion and hence fail to predict disequilibrium features that can fre-
quently be observed in natural high-temperature experiments and ana-
logue modelling.  

High-temperature experiments, as have been performed, amongst 
others, by Waff and Bulau (1979), Hirth and Kohlstedt (1995), and 
Faul (1997) with natural rocks (or powders thereof) do not allow a full 
control (or measurement) of all involved parameters and also fall short 
of showing the processes involved, as they only show snapshots of the 
grain fabric at the time of quenching. In contrast, analogue models do 
show the processes involved and allow a certain control on the grain 
fabric and the parameters involved.  

Numerical models allow a full control of all involved parameters, a 
continuous observation of the simulation and precise analysis of every 
stage of the simulation. However, some of the values for the necessary 
parameters, for example for surface energies, are far from being well 
studied.  

3.7.6 Implementation in Elle 

The implementation in Elle (elle_melt) uses flynns and bnodes to map 
the distribution of solid grains and melt. Each flynn can either be 
“solid” or “melt”, and boundary segments therefore either represent 
solid-solid boundaries or solid-melt boundaries, each with an appropri-
ate surface energy assigned to it. By setting the ratio between solid-
solid (γss) and solid-melt (γsm) surface energy, the user can set any de-
sired wetting angle (ω), using: 

 

ω = 2arccos
γ ss

2γ sm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . (3.7.1) 

The node movement is carried out according to the principles de-
scribed in Chap. 3.5. The driving force for node movement has two 
components: 

1. A component that moves the node in the direction to reduce the local 
total surface energy. 

2. A component that moves the node in the direction to achieve the de-
sired melt fraction. The magnitude of this force increases with in-
creasing difference between actual and desired melt fraction.  
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The melt fraction can be set to remain constant, or to in-
crease/decrease at a constant rate. This melt fraction is simply the 
summed area of all “melt-flynns” divided by the total model area. This 
means that melt can effectively move freely through the model, imply-
ing full connectivity along melt channels or, alternatively, relatively 
fast melt diffusion along solid-solid grain boundaries. 

3.7.7 Example in Elle 

The example shown below has a solid-solid to solid-liquid surface en-
ergy ratio such that the wetting angle is 10° at equilibrium. The melt 
fraction is fixed at 2%. The starting microstructure (Fig. 3.7.1a) already 
shows some disequilibrium features, so that not all melt pockets have 
wetting angles of exactly 10°. However during the start of the simula-
tion these melt pockets quickly adjust to an equilibrium shape (convex 
triangle, E-shape). This behaviour was predicted by Laporte et al. 
(1997) for <60° wetting angles in a static system when grains have 
similar sizes.  

Continuous grain growth due to a reduction of the overall surface 
energy of the aggregate disturbs the equilibrium wetting angles. This 
becomes obvious when small grains completely collapse. When the 
grains reach a certain critical size the total energy of their surfaces is 
relatively high because they have a very high surface curvature. There-
fore they will dissolve or melt with increasing velocity. Decreasing 
their size just increases their surface curvature so once this processes 
starts they will collapse completely in a relatively short time (relative to 
grain boundary movements of the other grains). During the collapse, 
melt pockets are distorted and surrounding grains bulge towards the 
disappearing grain. The final collapse of the small grain leaves rela-
tively large melt pockets (disequilibrium shape, D-shape). These dise-
quilibrium structures disappear slowly (relative to their appearance) 
while the surrounding grains adjust their shape. Finally, melt pockets 
reappear that show the equilibrium shape and corresponding wetting 
angles. 

The wetting angles of the melt pockets was initially set to 10° (indi-
rectly through the ratio of surface energies), but later fluctuates. Espe-
cially during the formation of D-shaped melt pockets and the accom-
panying redistribution of melt, the E-shaped melt pockets display 
pronounced changes of their wetting angles. After destruction of a D-
shaped melt pocket the wetting angles of the remaining melt pockets 
tend to adjust again to 10°. This is in contrast to what was predicted 
from e.g. Laporte et al. (1997). It appears that the wetting angle cannot 
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be treated as a constant parameter at short time scales. This also implies 
that the mean curvature of solid-liquid interfaces is not constant. 

 

 
Fig. 3.7.1 Evolution in four stages (each 10 000 steps) of a grain aggregate with 2% 
melt in four stages. Equilibrium wetting angle was set at 10°.  EXPERIMENT 8 

 
 

Symbols used in Chap. 3.7 

γss, γsm Surface energy of solid-solid and solid-melt boundaries [J m-2] 
ω Wetting angle 

 



3.8 Basil: stress and deformation in a viscous 
material 

3.8.1 Introduction 

In this chapter we focus on the representation of creep processes that 
may be described in terms of 2D plane-strain viscous flow fields. For 
this purpose Elle may call on the Basil program, which computes inter-
nal stress-distribution, pressure, creep strain-rates, and displacement 
rates for a prescribed set of internal forces and boundary tractions, and 
an arbitrary internal distribution of creep strength. Basil assumes a con-
stitutive law that can be cast in terms of an incompressible, possibly 
non-linear, viscous constitutive law.  

The program Basil is a general-purpose finite deformation calcula-
tion package that is adapted to the solution of two distinct types of vis-
cous flow problems: (a) viscous deformation of a 2D sheet in plane-
strain, and (b) viscous deformation of a 2D sheet in thin sheet mode (in 
which the stress normal to the plane of calculation is externally set). In 
the context of Elle only the first of these functions is relevant, so we re-
strict our attention here to a description of how the plane-strain viscous 
flow problem is formulated. If viscous creep is the only active defor-
mation process, Basil may be used independently to compute finite de-
formation fields using the methods described below. It has been ap-
plied to a range of geophysical problems, from thin-sheet 
representations of continental collision (Houseman and England 1996; 
Neil and Houseman 1997; Davis et al., 1997) to plane-strain represen-
tations of lithospheric (Houseman and Molnar 1997) or crustal-scale 
instability (Jull and Kelemen 2001), evolution of convergent orogenic 
belts (Houseman et al., 2000; Molnar and Houseman 2004; Billen and 
Houseman 2004), subduction of oceanic lithosphere (Houseman and 
Gubbins 1997), the development of shear zones (Barr and Houseman 
1996; Grasemann and Stüwe 2001), and the evolution of grain scale 
microstructure (Bons et al., 1997; Piazolo and Passchier 2002). Because 
Basil works with dimensionless variables, the scale of the problem is 
arbitrary. Internal deformation and material properties, however, are 
assumed piecewise continuous i.e., discontinuities are permitted on sur-
faces (lines in 2D) that coincide with element boundaries.  

Greg Houseman, Terence Barr and Lynn Evans 
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In the present context, Basil is used within Elle to calculate the vis-
cous strain rates and the associated stress field (including pressure) for 
typical applications that focus on grain-scale processes. The stress field 
is used in an Elle process (elle_tbh) to model the development of crys-
tallographic preferred orientation and could also be used to compute 
the effects of grain boundary sliding and dissolution/precipitation. In 
general, the deformation is assumed to be continuous, but the material 
properties may be heterogeneous. We allow for piecewise continuous 
distributions of the material properties, meaning that properties are 
homogeneous within regions, but may jump at discontinuities. Such 
discontinuities can, for example, be grain boundaries that separate dif-
ferent mineral or rock types. The distribution of material properties is 
defined by arrays that may change with time as the calculation pro-
gresses. Although some processes in the Elle package permit anisot-
ropy, the viscous deformation fields computed by Basil assume an iso-
tropic constitutive relation (resistance to deformation is independent of 
the orientation or sign of the deviatoric stress field). 

Our focus here is on the computation of finite deformation: strains 
that are large compared to the instantaneous elastic deformation that 
accompanies any stress field. We assume that elastic deformation is pre-
sent also, but we only compute the viscous strain. The two components 
of strain are strictly separable if the stress-field is independent of time. 
In more general cases the interaction between elastic and viscous strains 
is small and the elastic strain can often be ignored. At any time we 
solve the general stress balance equations, by using the Finite Element 
method, to compute a flow field. We use these computed displacement 
rates to advect the material properties of the medium by time stepping, 
deforming the external boundaries and modifying the internal distribu-
tion of material properties at each step as we integrate forward in time. 
In the context of Elle, Basil is generally called upon to compute an in-
stantaneous stress field and corresponding viscous flow field. The Elle 
program manages the time integration, including updating the medium 
properties (as described in section 3.1), and incorporating other micro-
structural processes as required. 

In this section we firstly describe the assumptions and methods used 
in Basil , with results illustrated by examples of the viscous deforma-
tion of a relatively soft matrix around a harder porphyroblast, the 
whole exposed to a general shear. Secondly we describe how Basil is 
integrated into the Elle project, allowing the effects of viscous creep to 
be integrated through time concurrently with any of the other processes 
that are implemented in the Elle project. 
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3.8.2 Formulation and assumptions 

The inertia terms are neglected in the balance of momentum for a vis-
cous creeping fluid, so conservation of momentum in two dimensions 
requires a simple balance between internal stress in the continuous me-
dium and the body force, which we assume here is provided by the 
gravity vector of amplitude g and direction defined by the dimension-
less unit vector e acting on the specified density distribution ρ: 

 

∂σαβ

∂xβ
+ ρgeα = 0,

 
(3.8.1) 

with summation over the index β. The total stress components σαβ are 
defined in terms of deviatoric stress ταβ and pressure p: 

 

σαβ = pδαβ + ταβ , (3.8.2) 

where δαβ = 1 if α = β, or else = 0. 
Our flow field is described in terms of the velocity components (u,v) 

in the (x,y) plane. We assume that flow is incompressible, so: 

 

∇ ⋅ u = ∂u

∂x
+ ∂v

∂y
= 0.

 (3.8.3) 

We also assume a constitutive law that relates deviatoric stress τij to 
strain-rate 

 

˙ ε ij , where the dot above the strain symbol indicates the time 
derivative: 

 

ταβ = 2η ˙ ε αβ =η ∂uα

∂xβ
+

∂uβ

∂xα

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ . 

(3.8.4) 

The symbol η denotes viscosity, which in general may be spatially 
variable, and specifically may depend on the magnitude of deviatoric 
stress, as is found experimentally for deformation of silicates. Such a 
relation, though non-linear, must be independent of any choice of ref-
erence frame, so it is formulated in terms of the second invariants of 
the deviatoric stress Θ and strain-rate 

 

˙ E , where 

 

˙ E = ˙ ε αβ ˙ ε αβ ; Θ = ταβ ταβ ; and Θ = B ˙ E 
1

n( ) , (3.8.5) 

where B and n are material constants, which again may be spatially 
variable. The stress versus strain-rate exponent n for some silicate mate-
rials is about 3. B is referred to as the strength coefficient. The viscosity 
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that is consistent with uniaxial experiments in which the strain-rate is 
observed to vary as the n-th power of the stress-difference is given by: 

 

η = B

2
˙ E 

1

n
−1

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
, 

(3.8.6) 

so B is simply proportional to viscosity for a linear material (when n = 
1).  

Within Basil we use dimensionless variables: distance is rendered di-
mensionless by a characteristic length L, time by a characteristic time 
T0, strain-rate by 1/T0, velocity by L/T0, density by a characteristic den-
sity ρ0, and viscosity by a characteristic viscosity η0. Stress components 
are non-dimensionalised by the factor η0/T0. If n ≠ 1, we choose η0 = 
(B/2)T0

(1-1/n), consistent with Eq. 3.8.6. In dimensionless variables (de-
noted by ) Eq. 3.8.1 becomes: 

 

∂ ′ σ αβ

∂ ′ x β
+ gρ0LT0

η0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ′ ρ eα = 0.

 
(3.8.7) 

If deformation is driven by an imposed boundary velocity U0, we 
generally assume T0 = L/U0, if driven by an imposed strain-rate ε0, we 
generally assume T0 = 1/ε0. Equation 3.8.7 then includes the single di-
mensionless parameter F, which is a measure of the relative importance 
of gravitational stress to internal viscous stress: 

 

 

F = gρ0LT0

η0

,
  (3.8.8a) 

 

F = 2gρ0LT0

1
n

B0

if n ≠1.
 

(3.8.8b) 

If the boundaries are passive, and the body force drives the flow, we 
may define T0 = η0/(gρ0L), so F = 1. The choice of how to define T0 is 
left to the user, but must of course be consistent with the definition of 
boundary conditions, the specified value of F, and the other physical 
constants. For many small-scale deformation problems, F is negligible 
and is set to zero because L«η0/(gρ0T0), representing the situation in 
which body force is negligible compared to internal viscous stress 
when the material is forced to deform by externally imposed tractions 
or displacement rates. 

To complete the specification of the problem, the distribution of 
forces (specified usually in terms of traction vectors or stress compo-
nents) or of displacement rates on the boundary of the region is re-
quired. This requirement is discussed further in the next section. 

′
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3.8.3 Numerical method 

To obtain a numerical solution for the flow field using the Finite Ele-
ment method, the solution region in the x-y plane is discretised into tri-
angular area segments or elements. Each triangular element is associ-
ated with three vertex nodes and three midpoint nodes (halfway 
between the three pairs of vertex nodes). The set of nodal velocities 
and pressures defines a solution everywhere, because we define the in-
terpolated velocity and pressure fields within each element: 

 

uα x,y( ) = uαk

k=1

6

∑ Nk x,y( ); p x,y( ) = p j

j=1

3

∑ L j x,y( ),
 

(3.8.9) 

where Lj(x,y) is the linear interpolation function which varies linearly 
in the (x,y) plane from one on vertex node j to zero on the other two 
vertex nodes, and Nk(x,y) is the quadratic interpolation function which 
is one on node k and zero on the other five nodes. 

The Finite Element method relies on a “weak” implementation of the 
dimensionless governing Eqs. 3.8.7 and 3.8.3, which are replaced by 
weighted integrals as follows. We use the Galerkin formulation in 
which the integral weighting functions of node i, Ni(x,y) and Li(x,y) are 
precisely the interpolation functions defined in Eq. 3.8.9: 

 

Ni

∂σαβ

∂xβΩ
∫ dΩ = −F Niρeα

Ω
∫ dΩ,

 
(3.8.10) 

and 

 

Li

∂uβ

∂xβΩ
∫ dΩ = 0,

 
(3.8.11) 

where summation over β is implicit in Eqs. 3.8.8 and 3.8.9, and the 
primes (′) are henceforth omitted from dimensionless variables. We use 
Li instead of Ni for interpolation of pressures (Eq. 3.8.9) and for 
weighting function (Eq. 3.8.11) so that all terms in the system are rep-
resented with a consistent order of accuracy. This usage ensures nu-
merical stability and symmetry of the resulting matrix. This formula-
tion of the method was adapted from that of Yamada et al. (1975), as 
described by Huebner (1975). 

Integrating Eq. 3.8.10 by parts gives: 

 

∂Ni

∂xβ
σαβ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

Ω
∫ dΩ = Ninβσαβ( )

∂Ω
∫ dl + F Niρeα( )

Ω
∫ dΩ.

 
(3.8.12) 



144 

The terms on the right of Eq. 3.8.12 represent the effects of the sur-
face tractions Tα = nβσαβ on the perimeter of the solution region, and 
the scaled body forces acting everywhere within the medium on the 
dimensionless density distribution ρ. Substituting Eqs. 3.8.1, 3.8.2 and 
3.8.4 gives: 

 

η ∂Ni

∂xβ

∂uα

∂xβ
+

∂uβ

∂xα

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

Ω
∫ dΩ+ ∂Ni

∂xβ
p

⎛ 

⎝ 
⎜ ⎜ 

⎞  

⎠  
⎟  ⎟  

Ω
∫ dΩ = NiTα( )

∂Ω
∫ dl + F Niρeα( )

Ω
∫ dΩ.

 (3.8.13) 

Substituting Eq. 3.8.9, a set of discretised equations is obtained for x 
and y components of the momentum equation (Eq. 3.8.13), and for the 
continuity equation (Eq. 3.8.11). Equations are obtained for each of 
the nodal values ui and vi (from the momentum equation), and for each 
of the vertex pressure values (from the continuity equation) in each 
element. For the same node i, equations from different elements are 
summed in a process referred to as matrix assembly, to generate a com-
plete matrix equation: 

 

K1 K4 K7

K4T K2 K8

K7T K8T 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

 

 

 
 
 

u

v

p

 

 

 
 
 

⎤  

⎦  

⎥  
⎥  
⎥  

=
a

b

0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
.

 

(3.8.14) 

The numerical superscripts on the component matrices in Eq. 3.8.14 
are simply labels, except that T denotes matrix transpose. The elements 
of the component matrices of Eq. 3.8.14 are: 

  

 

Kij
1 = η 2

∂Ni

∂x

∂N j

∂x
+ ∂Ni

∂y

∂N j

∂y

⎛ 

⎝ 
⎜ 

⎞  

⎠  
⎟  

Ω
∫ dΩ,

 (3.8.15a) 

 

Kij
2 = η ∂Ni

∂x

∂N j

∂x
+ 2

∂Ni

∂y

∂N j

∂y

⎛ 

⎝ 
⎜ 

⎞  

⎠  
⎟  

Ω
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ai = NiTx( )
∂Ω
∫ dl + Niρgx( )

Ω
∫ dΩ,

 (3.8.15f) 

 

bi = NiTy( )
∂Ω
∫ dl + Niρgy( )

Ω
∫ dΩ.

 (3.8.15g) 

The area integrals in Eq. 3.8.15 are computed using Gaussian quad-
rature with seven integration points. Dimensionless material properties 
such as viscosity coefficient η (or B in Eq. 3.8.6) and density ρ are de-
fined at the seven Gaussian integration points in each triangular ele-
ment to facilitate the computation of the integrals in Eq. 3.8.15, which 
are then simply expressed as a weighted sum of the integrand sampled 
at those seven points. The resulting integrals are exact if the integrand 
is quadratic, consistent with the order of approximation of the interpo-
lation functions. For any node that is internal to the solution region, the 
contributions from the surface traction integrals on neighbouring ele-
ments cancel out. The traction integrals in ai and bi (Eq. 3.8.15f,g) are 
therefore only required on external boundaries.  

Thus, we require for the solution of the problem that each of the two 
components of surface traction is specified everywhere on the bound-
ary. A subset of these conditions may however be replaced by pre-
scribed boundary velocity components (ui = U0). In that case the ii en-
try of the matrix K1 (or K2) is replaced with a number A which is at 
least 8 orders of magnitude greater than typical matrix entries, and the 
i-th entry of a (or b) (Eq. 3.8.14) is replaced with AU0. In that case the 
corresponding surface traction component is not required, and the ve-
locity condition will be satisfied when the matrix equation is solved. 

If we require spatially periodic solutions (the solution repeats with 
period λ in the x-direction for example), we must ensure continuity of 
both traction and displacement-rate components on the two corre-
sponding boundaries. The boundary integrals in Eqs. 3.8.15f,g for the 
periodic boundary nodes are now unknown, however, so we incorpo-
rate the additional unknowns in a modified system of equations that en-
sures continuity of traction and displacement rates: 
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(3.8.16) 

The vectors dx and dy comprise the set of unknown nodal traction 
components on the periodic boundary nodes (the first integrals in Eq. 
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3.815f,g), and the bottom row of the modified matrix equation (Eq. 
3.8.16) ensures continuity of velocity components, with Kp generally 
zero except for +1 in position p and -1 in position q, with p and q be-
ing the corresponding node numbers on the two parts of the periodic 
boundary. 

One further complication arises with boundary conditions: if the 
normal component of traction is nowhere specified on the external 
boundary, the resulting pressure field is undetermined to within an ar-
bitrary additive constant. The pressure field in the solution returned by 
the conjugate gradient solver then includes an arbitrary unconstrained 
constant, which in practice is removed by subtracting the mean pres-
sure from the pressure field. 

Following assembly of the matrix, Eq. 3.8.14 (or Eq. 3.8.16) is 
solved by use of the pre-conditioned conjugate gradient algorithm. The 
matrix is naturally sparse, with non-zero elements occurring at irregular 
intervals in each row, so only the non-zero elements and their associ-
ated column numbers are stored. The method of conjugate gradients is 
well adapted to this form of matrix storage and solution is relatively ef-
ficient. Basic preconditioning of the matrix is applied by use of a di-
agonal preconditioning matrix, which is (for Eq. 3.8.14): 
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(3.8.17) 

Conjugate gradients rely on iteration to converge to a solution. We 
test for convergence by measuring the norm of the residual vector at 
each iteration, and cease iterations once the mean square residual is suf-
ficiently small. Typically convergence requires many fewer conjugate 
gradient iterations than the theoretical requirement of the number of 
degrees of freedom. 

For non-linear materials (n≠1 in Eq. 3.8.6) the matrix entries (Eq. 
3.8.15a-e) depend on the solution vector, so a second layer of iterations is 
required. Starting with an initial estimate of the solution field {ui, vi, pi} the 
matrix entries are computed using Eqs. 3.8.15 and 3.8.5-6. In each itera-
tive step the matrix equation is solved and the matrix entries are then re-
computed based on the new solution. Convergence of the non-linear itera-
tions is attained when successive solutions differ by a sufficiently small 
amount as judged by the mean square norm of the difference between the 
two solutions, relative to the mean square norm of the solution. 

G. Houseman et al.



3.8 Basil: stress and deformation in a viscous material      147 

The solution method described so far provides the instantaneous so-
lution for two components of the velocity field and the pressure field. 
To advance the solution from one time level to the next, Basil moves 
the individual vertex nodes according to: 

 

dXα

dt
= uα . (3.8.18) 

We use a two-step predictor-corrector method in which the first step 
uses the velocity field at time level n to advance the coordinates from 
time level n to level n+1, in order to compute a trial solution at time 
level n+1. In the correction step, the average of the velocity field at 
level n and the trial velocity field at level n+1 are used to advance Xα 
from level n to the corrected Xα at level n+1. At that point the trial ve-
locity field provides a relatively accurate initial estimate for the cor-
rected velocity field at level n+1. Material properties (density, viscos-
ity) are transported with the deforming mesh, with minor corrections to 
account for advection of properties at midpoint nodes (which must re-
main midpoints in an updated triangular mesh). 

The preceding formulation can be applied to any triangular mesh. 
Routines within Basil can generate simple regular triangular meshes 
based on either equilateral triangles with hexagonal symmetry, or on 
right angle triangles obtained by subdivision of rectangles. Irregular 
geometry however requires more flexibility, and we have found that 
the program Triangle (Shewchuk, 1996) provides the flexibility to 
generate a triangular mesh that preserves defined boundaries, for ex-
ample those of a clast or crystal whose properties differ from the back-
ground material. The Triangle algorithm ensures by subdivision of 
boundary segments that all triangles in the resulting mesh have an area 
less than a specified maximum. The resulting mesh is irregular but rela-
tively homogeneous, comprising approximately equidimensional trian-
gles whose areas are less than, but close to, the specified maximum 
area. Construction of such a mesh requires an input poly file (Shewchuk 
2005) that provides Basil with the information necessary to define the 
grain and external boundary shape, specified in the form of boundary 
polygon coordinates and grain numbers. 

3.8.4 Porphyroblast example solution 

The following example of a Basil application describes a model prob-
lem of a single hard inclusion in a softer matrix to which simple shear 
boundary conditions are applied. Bons et al. (1997), Tenczer et al. 
(2001) and Biermeier et al. (2001) have described such models.  
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The porphyroblast in Fig. 3.8.1 is represented by a circular disc that 
has an effective viscosity 100 times greater than that of the surrounding 
matrix, and both the porphyroblast and surrounding matrix are as-
sumed to have a constant Newtonian viscosity; i.e. a stress exponent of 
n = 1. The top and bottom boundaries have applied tangential veloci-
ties of equal magnitude but opposite sign, and normal velocities set to 
zero. Periodicity is assumed in the x-direction in an effort to simulate a 
laboratory ring shear apparatus, in which the deforming material occu-
pies an annular region with boundaries only on the inside and outside 
perimeters (e.g., Piazolo and Passchier 2002). The traction and velocity 
components are required within the solution to be equal at correspond-
ing points on the two side boundaries. 

 
 

 
Fig. 3.8.1 Time-zero deformation calculation of a relatively rigid circular porphyro-
clast in a matrix undergoing 2D dextral simple shear. Six frames show: (a) viscosity 
variation (the light region has 100 times greater viscosity than the dark matrix), (b) x-
component of velocity, (c) y-component of velocity, (d) the maximum shear strain 
rate in the x-y plane, (e) the maximum principal deviatoric stress, and (f) the pressure. 
(a-c) show the full solution region whereas (d-f) show a 3x zoom of the central region. 
This image is produced using the Sybil program, specifically designed for the graphi-
cal display of Basil solutions.  EXPERIMENT 9 
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The effect of the relatively rigid inclusion in this calculation is to 
introduce a perturbation to the velocity field which is small compared 
to the overall shear flow, but clearly resolved in the vertical component 
(Fig. 3.8.1c), and showing the clockwise rotation of the inclusion (uy > 
0 on the left, uy < 0 on the right). The pressure field shows a clear dipo-
lar signal outside the strong inclusion (Fig. 3.8.1f), with increased 
compression (p < 0) to the upper left and lower right and dilatation (p 
> 0) in the other two quadrants. The discontinuity at the perimeter of 
the inclusion is cleanly represented in the calculation, but interpolation 
of the final pressure solution produces some noise on the contours in 
the vicinity of the discontinuity in Fig. 3.8.1f. The maximum shear 
strain rates (Fig. 3.8.1d) and the maximum principal deviatoric stress 
show maxima (found at about twice the radius of the strong inclusion) 
that are clearly aligned with the lobes of maxima and minima in the 
pressure field. These frames also show the relatively small strain-rates 
and relatively large deviatoric stress within the inclusion.  

3.8.5 Implementation in Elle: Growth and deformation of a 
porphyroblast 

Flexibility in the representation of different physical processes is opti-
mised by the modular structure of the Elle project and the external rou-
tines on which it depends. Within Elle an experiment cycle is defined 
by successive calls to program modules. For example: elle2poly → 
Basil → basil2ell → reposition → elle_expand defines an experiment in 
which Elle calls Basil to calculate the stress field and instantaneous de-
formation rates, then updates the spatial coordinates of the mesh defin-
ing the grain boundary structure (reposition), then executes a porphy-
roblast-growth procedure (elle_expand), and repeats this sequence at 
every time step. Data structures are transferred from Elle to Basil using 
the module elle2poly, which reads an Elle data file and creates a poly 
file for input to Basil (for examples, see Appendix B), specifying ge-
ometry and physical parameters. Similarly basil2elle is used to return 
velocity, strain-rate, and stress fields to Elle. The Elle microstructure, 
comprising a 2D network of grains and their associated boundaries and 
material properties, is periodic in both x and y directions. Grain 
boundaries are defined by a set of grain boundary nodes (bnodes). 
Within grains, variation in material properties may be defined on a set 
of Lagrangian marker points (unodes) regularly or randomly distrib-
uted in the 2D plane. These are used to track material properties as the 
deformation progresses. Within Basil, grains are clipped to a unit cell 
by creating temporary bnodes and segments on the external boundary 
of this cell. The Basil input file constructed by elle2poly therefore must 
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specify all of the grain boundary segments, together with viscosity coef-
ficient (η or B, Eq. 3.8.6). The viscosity coefficient and stress versus 
strain-rate exponent n may be constant within a grain or may have a 
variation defined by values attached to the unodes.  

Elle uses the Basil velocity field to update the grain boundary node 
(bnode) positions and to obtain interpolated stress and/or strain-rate 
components at all required bnode and unode locations. The data re-
quired by Elle depend on the specific application and are specified by 
keywords in the input Elle file. These data potentially include the com-
ponents of the strain-rate or stress tensors and their invariants. Attrib-
utes at grain boundary nodes (bnodes) are obtained directly from the 
corresponding Basil vertex node positions while attributes at internal 
nodes (unodes) are interpolated from the Basil solution. The local stress 
states and strain tensors may then be used in other processes such as the 
calculation of crystallographic rotation and work hardening.  

 

 
Fig. 3.8.2 Growth of a porphyroblast in a crystalline matrix: (a) the initial micro-
structure contains a grain (dark grey) with a viscosity defined to be 5 times that of the 
surrounding matrix. Arrow shows the site where a porphyroblast nucleates (b) and (c) 
show the structure after elapsed dimensionless times of 1 and 3 (50 and 150 dimen-
sionless time steps of length 0.02). The harder region has grown, while the grains in 
the matrix have deformed in simple shear. Mechanical boundary conditions are the 
same as for Fig. 3.8.1.  EXPERIMENT 9 

In the example shown in Fig. 3.8.2 we use Elle and Basil to study the 
growth of a porphyroblast in a crystalline matrix that is subject to sim-
ple shear. The 2D square domain of unit dimensionless length shows a 
crystalline matrix with irregular grain size, (viscosity coefficient 1, rep-
resenting quartz), surrounding a small grain of harder material (viscos-
ity coefficient 5, representing garnet). We assume Newtonian constant 
viscosity (stress exponent n = 1) in both materials. During each time 
step, Elle simulates an increment of porphyroblast growth, simply rep-
resented in the elle_expand process by moving the grain boundary 
nodes of the porphyroblast outward at a dimensionless velocity of 
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7.5·10-2 in a direction that is radial to the local curvature of the bound-
ary (the constant rate is used in this example for simplicity, but crystal 
growth should generally be driven by processes which take into ac-
count the local grain boundary energy and chemistry, e.g. Sect. 4.1). 
Additional bnodes are added to the growing porphyroblast by interpo-
lation and removed from the matrix grains where they are overgrown 
by the porphyroblast. The elongation and rounding of the porphyro-
blast evident in Fig. 3.8.2.b is the outcome of the competing processes 
of porphyroblast growth, grain rotation and inhomogeneous simple 
shear. The grain boundaries of the background matrix are distorted by 
the shearing of the matrix but otherwise are not affected by the por-
phyroblast growth. 

The crystalline matrix within Elle is defined by the set of bnodes on 
the boundaries of the polygonal grains. Each time Basil is called, it 
constructs a mesh that includes the Elle grain boundary nodes and 
grain boundaries (Fig. 3.8.3a). In this calculation porphyroblast growth 
is affecting only the boundaries of the garnet grain. The other grain 
boundaries in the matrix simply act as material tracers in the deforma-
tion field. Because the solution is periodic in the x-direction, nodes that 
exit the unit cell on the left boundary reappear immediately on the 
right, and vice versa. Thus the unit cell can be used to show the full so-
lution at any time even though a finite strain of 3 is developed in the 
crystalline matrix by the end of the experiment (Fig. 3.8.2c). In princi-
ple, measurements of the grain geometry should constrain the relative 
rates of shear strain and grain growth, if the apparent viscosity contrast 
between the two minerals is known. In experiments however, one 
could turn this statement around and use measured rates of shear and 
porphyroblast growth to constrain the apparent viscosity contrast be-
tween the two minerals.  

In the example described above, the Finite Element mesh was con-
structed using the grain boundary nodes to constrain the triangulation 
as illustrated in Fig. 3.8.3a. There is a limit, however, to the strain that 
can be obtained with this method of mesh construction. Problems arise 
as the matrix grains become long and narrow and the Triangle routine 
attempts to create triangles that are too many and too small. Available 
memory is used up or the triangles may be too quickly collapsed in re-
gions of high strain-rate, halting the calculation. We have therefore also 
implemented an alternative re-meshing strategy, which allows us to 
simulate higher strain by mapping the Elle node data onto a regular 
Basil mesh at each step (Fig. 3.8.3b). This re-meshing strategy requires 
that viscosity values from the Elle data file are mapped appropriately to 
the Finite Element mesh constructed by Basil, and it requires that solu-
tion parameters (displacement rates, stress components, etc.) required at 
Elle bnodes are obtained by interpolation from the regular Basil grid. 
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These interpolations may introduce some additional inaccuracy (com-
pared to the method of Fig. 3.8.3.a), but this method is more robust 
when the grains are highly elongated.  

 

 
Fig. 3.8.3 Examples of the two methods of superimposing a Finite Element mesh on 
top of a grain boundary structure: (a) Finite Element mesh created by Basil using the 
Triangle program: the grain boundary nodes and segments defined in the Elle file 
(black) are preserved in the Basil computational mesh (grey). (b) Regular Finite Ele-
ment mesh created by Basil (grey), using interpolated properties from the grain 
boundary nodes and segments defined in the Elle file (black) 

 
Fig. 3.8.4 Rotation of a porphyroblast (medium grey: viscosity 50ηo) surrounded by 
a weak layer of crystals (dark grey: viscosity 0.5ηo) embedded in a matrix (light grey: 
viscosity ηo) undergoing simple shear. As the deformation proceeds, the grains in the 
matrix and the soft layer become elongated while the hard central region rotates but 
retains its shape. The total finite shear strain is: (a) 0, (b) 2, and (c) 5. Boundary con-
ditions are as in Fig. 3.8.1.  EXPERIMENT 9 

In a final example we show a dynamic shear experiment in which a 
constant volume porphyroblast is embedded in a matrix that undergoes 
a large simple shear strain (Fig. 3.8.4). In this case the viscosity of the 
porphyroblast is 50 times that of the background matrix, and a layer of 
grains whose viscosities are half that of the matrix surrounds the por-
phyroblast, and mechanical boundary conditions are the same as those 
specified for Fig. 3.8.1. With no growth of the porphyroblast in this 
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experiment, the Elle cycle is simply elle2poly → Basil → basil2elle → 
reposition. The strong porphyroblast rotates at a rate of approximately 
0.4 radians per unit time in this experiment, but undergoes little defor-
mation while the background matrix is sheared to a total finite strain of 
5. In this experiment we used the re-meshing method of Fig. 3.8.3b to 
continue the calculation to these large strains. The relatively weak (dark 
grey) grains are thinned and quickly distorted into a narrow band on 
which shear strain is concentrated. 

3.8.6 Conclusions 

In this section we have summarised the computation method used by 
the Basil program to solve general viscous flow problems in 2D plane-
strain, as represented by a simple Stokes-type formulation of the mo-
mentum balance equations for incompressible flow of a very viscous 
fluid. The program is formulated using dimensionless variables based 
on a time and length scale chosen by the user. Arbitrary distributions of 
body force and material strength may be designated within the frame-
work of a Newtonian or power-law viscosity. The Basil program may 
be used independently for 2D deformation experiments, or included 
within the Elle time step cycle to compute the deformation fields at 
very large strain or the interaction of deformation with other micro-
structural processes, such as grain growth. 
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Symbols used in Chap. 3.8 

 Load vectors which include the known boundary conditions 
Indices 
Strength coefficient (material constant) 
Set of unknown nodal traction components on periodic boundaries 
Direction of gravity vector 
Strain rate tensor, imposed strain rate 
Second invariant of the strain rate tensor 
Dimensionless parameter that is a measure of the relative importance 
of gravitational to internal viscous stress 
Gravitational accelleration 
Components of the stiffness matrix 
Characteristic length 

 Linear interpolation function for vertex node j in the (x,y) plane 
Stress exponent (material constant) 

 Quadratic interpolation function for vertex node k in the (x,y) plane 
Components of the diagonal preconditioning matrix 
Vector of pressure values at each vertex node 
Density, characteristic density 
Stress 
Characteristic time 
Second invariant of the deviatoric stress tensor 
Deviatoric stress tensor 
Vectors of velocities in x and y directions at each node 
Imposed boundary velocity 
Viscosity [Pa s] 
Position vector of a vertex node 

 Area of a finite element 
 

a, b 

α, β 
B 
dx, dy 

e 
˙ ε ij , ε � 
˙ E  
F 

g 

K 

L 

Lj(x,y) 

n 

Nk(x,y) 

P 

p 

ρ, ρ0 
σ 
T  

Θ 
τij 
u, v 

U0 

η 

Xα 

0
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3.9 A hybrid FEM/Taylor Bishop Hill method 

Mark W. Jessell 

3.9.1 Introduction 

It is commonly observed that there is a pattern of preferred orientation of 
crystal lattice orientations in rocks (Fig. 3.9.1). Although many theories 
have been put forward to explain these patterns, they have long been ac-
cepted to be at least in part due to the reorientation of the lattice during de-
formation (Jessell and Lister 1990). The change in lattice orientation of 
part or all of a grain can result from both intra-crystalline and inter-
crystalline processes including dislocation glide, twinning, kinking, grain 
rotation, subgrain formation and grain boundary migration. 
 

 
Fig. 3.9.1 Quartz mylonite from the Corvatsch mylonite, SE Switzerland. Grey tones 
represent c-axis orientations as measured by the CIP system, showing the develop-
ment of a domainal fabric where two different domains each with a strong c-axis pre-
ferred orientation. The inset figure in the top right hand corner provides the represen-
tation of grey tones as a function of orientation, as displayed on a lower hemisphere 
equal-area stereogram. Scale bar is 1mm. Fromr R. Heilbronner, (2000). Measured by 
Christian Pauli 

In this section we describe a hybrid Finite Element Model/Taylor-
Bishop-Hill approach to predict the change in orientations resulting from 
deformation by dislocation glide in single-phase rocks. A different ap-
proach was taken by Bons and den Brok (2000), who used homogeneous 
stress instead of homogeneous strain rate to model lattice reorientations 
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due to dissolution-precipitation creep, but that code is not currently avail-
able in the Elle system. 

3.9.2 Models of Lattice Rotation during Deformation 

The numerical basis for most theories of lattice rotation induced by dis-
location glide was the paper by Taylor (1938) and subsequently 
reformulated by Bishop and Hill (1951). Taylor’s original model relies 
on the assumption of kinematic compatibility (often referred to as the 
homogeneous strain assumption), which assumes that in a deforming 
polycrystal, all grains deform equally and homogeneously, regardless 
of their lattice orientation (Fig. 3.9.2a,b). The full set of assumptions 
for the ‘Full Constraint’ Taylor-Bishop-Hill (TBH) calculation is: 

1. Dislocation glide is the only active deformation mechanism.  
2. Strain is homogeneous at all scales.  
3. Each grain has at least 5 independent slip systems (i.e. no slip system 

is capable of reproducing the strain achieved by any other system, 
also known as the von Mises criterion). 

4. The minimum work necessary is carried out by the crystal to achieve 
the pre-defined strain 

5. Each slip system has a defined Critical Resolved Shear Stress (CRSS) 
value: this is the shear stress (resolved in the direction of the slip vec-
tor and in the slip plane) necessary to induce dislocations to move in 
this plane. Below this value the dislocations do not move at all 
(hence the term crystalline plasticity, because they are assumed to 
behave as perfectly plastic materials).  

6. The activity on any one slip system results in a small increment of 
simple shear parallel to the slip plane, in the direction of the slip vec-
tor. Until the entire strain increment can be achieved for a grain, no 
deformation takes place at all, so the stress gradually increases until 
the CRSS threshold is surpassed on just enough slip systems to allow 
the specific strain to take place. Once this state is achieved, the work 
term can be calculated as the products of the small strains achieved 
by each slip system and the imposed stress.  

The assumptions of homogeneous strain and 5 independent slip sys-
tems demonstrably do not hold for engineering materials such as met-
als, let alone rocks and minerals, since most important rock forming 
minerals have low crystal symmetry, and hence high plastic anisotropy. 
As a consequence, a number of modified ‘Relaxed Constraint’ (Fig. 
3.9.2c, Van Houtte 1988) or ‘Self-Consistent’ models have been de-
veloped (Fig. 3.9.2d, Hutchinson 1970) that try to address this problem 
by, in the first case, allowing strain heterogeneity in certain spatial 

. 
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directions, or in the second case, by embedding each grain in an uni-
form medium that has properties representing the average of the whole 
polycrystal. If sufficient computer power is available, these simplifying 
assumptions can be avoided by performing full Crystal Plastic Finite 
Element Methods (Fig. 3.9.2e, Gotoh and Ishise 1978; Bacroixt and 
Gilorminit 1995) or Fast Fourier Transform Methods (Fig. 3.9.2f, Le-
bensohn 2001) that take in account the full spatial distribution of 
grains, and the local variations in both stress and strain state, and allow 
intra-grain heterogeneity of lattice orientations within grains. 

 

 

Fig. 3.9.2 Various forms of dislocation glide controlled lattice rotation models. (a) 
Starting grain configuration. Shading reflects lattice orientation. (b) Grain configura-
tion resulting from Full Constraint Taylor model: all grains have the same internal 
strain, and uniform internal lattice orientations. (c) Grain configuration resulting 
from Relaxed Constraint Taylor model: all grains share some strain components, but 
grain boundary mismatches are allowed in other orientations. All grains have uni-
form internal lattice orientations. (d) Grain configuration resulting from Self-
Consistent model: all grains can deform freely, within a uniform matrix reflecting the 
ensemble of the system. All grains have uniform internal lattice orientations. (e) 
Grain configuration resulting from Crystal Plastic Finite Element model: all grains 
can deform freely, with smoothly varying stress, strain and lattice orientations within 
and across grains. (f) Grain configuration resulting from Fast Fourier Transform 
model: all grains, which are discretised into a regular grid, can deform freely, with 
smoothly varying stress, strain and lattice orientations. In this model grain bounda-
ries are inferred by sharp changes in lattice orientation. (g) Grain configuration result-
ing from hybrid Finite Element-Taylor: all grains can deform freely, with smoothly 
varying stress, strain and lattice orientations within and across grains, however a sin-
gle lattice orientation is mapped back to each grain (or subgrain) 
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3.9.3 Implementation in Elle 

In this section we have used a Full Constraint Taylor code (using the 
code described in Lister et al., 1978) coupled to the Finite Element 
code Basil to perform lattice reorientation calculations that allow local 
variations in stress and strain. However the lattice reorientation calcula-
tion is mapped back onto the whole grain or subgrain (Fig. 3.9.2g). 
These calculations are a simplification of a full Crystal-Plastic Finite 
Element Method calculation, and have the advantage that they are con-
siderably faster to run. 

The coupling of the Basil FEM calculation with the Taylor calcula-
tion can be carried out at the grain scale, or at the subgrain scale, de-
pending on the input model. In order to simplify the explanation we 
will assume that each grain starts with a uniform lattice orientation. The 
calculation cycle then consists of: 

1. Assignment of uniform viscosities to all grains for the first calcula-
tion step. 

2. Basil FEM calculation for the deformation of polycrystals. The out-
put of the FEM calculation is the displacement field (homogeneous 
only for the first time step), which is used to change the positions of 
grain boundary nodes (and hence grain boundaries). 

3. Calculation of average strain tensor for each grain. 
4. Calculation of lattice rotations using strict Taylor method (using 

elle_tbh) for each grain separately, using local strain tensor, each 
grain’s unique lattice orientation, but the same CRSS model for each 
grain. The output of the calculation is the new lattice orientation for 
each grain, together with the work done to achieve the applied de-
formation for each grain. 

5. The work term for each grain is then used in elle_viscosity to define 
the new viscosity of each grain for the next FEM calculation. In this 
way grains that are poorly oriented for slip with respect to the avail-
able slip systems will deform at a lower rate in the following time 
step. 

6. Cycle through steps 2-5. 

In this cycle no attempt is made to directly account for work hardening, 
or recovery; as these effects can be added using separate processes. Con-
versely the work term for each grain, as calculated by the TBH code and 
this could be used as the basis for predicting dislocation densities. If Step 5 
is ignored, the calculation reverts to a strict Taylor calculation, albeit with 
the laborious inclusion of a redundant FEM calculation. 

M W. Jessell . 
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1. Crystal symmetry and slip system definition for the given mineral 
(constant for all flynns of that mineral type). 

2. CRSS for each slip system (plane + direction) that may be activated 
which are constant for constant temperature and strain rate experi-
ments (ignoring work hardening, recovery and recrystallisation is-
sues!). 

3. The initial lattice orientation of each flynn as 3 Euler angles (unique 
to each flynn). 

There are three main limitations to the calculation as implemented: 

1. When linked to Basil this model still assumes isotropic mechanical 
behaviour, when in fact crystals deform anisotropically (for example 
a natural mica grain can only really deform by sliding on its basal 
plane under most conditions, hence it cannot generally achieve the 
homogeneous strains necessary to satisfy the TBH theory). 

2. The strains from applying a plane stress to an arbitrarily oriented 
crystal will not generally be plane strain. In a 2D world we simply 
ignore the out of plane stresses.  

3. TBH theory does not take into account lattice reorientations due to 
rigid body rotations (for example a rotating but not internally de-
forming porphyroblast). 

3.9.4 Example Elle Run 

In this example we couple a TBH calculation with the Basil FEM code 
to simulate deformation of a quartz polycrystal (see appendix B,  ex-
periment 10, for parameters used), and base the updated viscosities on 
the work term calculated by the TBH code (Fig. 3.9.3). In this way 
grains which are able to deform by glide on slip systems with low Criti-
cal Resolved Shear Stress will deform more rapidly than grains which 
only have ‘hard’ slip systems available. 

The model inputs required to perform this calculation are: 
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Fig. 3.9.3 Simple coupled TBH-FEM calculation. (a) Lattice orientations at t=0 and 
t=50, grey scale is a function of only the Alpha Euler angle. Notice that by t=50 many 
of the grains share a similar orientation. (b) Instantaneous viscosities at t=0 and t=50 
(bright=high viscosity) (c) c-axes stereograms at t=0 and t=30, the latter equivalent 
to a shear strain of 1.5.  EXPERIMENT 10 

M W. Jessell . 



3.10 Diffusion creep 

3.10.1 Phenomenological observation 

Diffusion creep is deformation accomplished by diffusion of vacancies, 
atoms or ions in response to stress. Net flux of material from high- to 
low-stress interfaces of individual grains causes them to change shape, 
and macroscopic strain results. This can be thought of as dissolution at 
high-stress interfaces and precipitation at lower stress interfaces to give 
overgrowths (metallurgists would not necessarily use the same words). 
Pressure solution or dissolution-precipitation creep is a term used for 
diffusion creep when diffusion is mediated by water in pores or H2O in 
interfaces (where it may not have the properties of bulk water). 

 

 
Fig. 3.10.1 Pressure-solved quartz grains in (a) Plane-polarised light and (b) cathodo-
luminescence (Barker and Kopp 1991). (c) Oolites showing dissolution and over-
growth. (d) Denuded zones and overgrowths due to diffusion creep in Mg-0.5%Zr 
(Squires et al., 1963) 

 

John Wheeler and Judy Ford 
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3.10.2 Natural examples 

Diffusion creep is not particularly straightforward to identify in resul-
tant microstructures because, for example, a “clean” overgrowth on a 
clean crystal may not be recognizable, and an interface along which 
dissolution has occurred may look no different to another. However, 
when pre-existing marker shapes are available, obvious microstructures 
result (e.g. Fig. 3.10.1c). Here the spherical shape of an oolite is trun-
cated along two sides. Overgrowths are recognizable as being free of 
insoluble inclusions. Conversely those inclusions have been concen-
trated along other boundaries. Overgrowths are easily recognizable 
around objects of different composition, e.g. pressure shadows around 
pyrite. Where inclusions are not present, chemical differences may 
characterize overgrowths (Misch 1970), or microstructures may indi-
cate indentation of one quartz grain into another without any sign of 
crystal plasticity (Fig. 3.10.1a,b). Overgrowths may be of different 
mineralogy to the dissolving mineral(s) in which case the deformation 
mechanism is called “incongruent pressure solution” (Beach 1979; Bro-
die 1995). 

3.10.3 Inferred processes 

Overgrowths on certain interfaces, and the increased abundance of in-
soluble residue particles along others, imply mass transport. Atoms, 
ions or vacancies must be generated at some interfaces, move by diffu-
sion and then become incorporated into lattices at other interfaces. Dif-
fusion pathways include lattices and the interfaces themselves. 

3.10.4 Driving forces, controls and governing equations  

Diffusion creep is driven by stress. The current form of diffusion creep 
theory was first put forward for lattice diffusion in metals (Nabarro 
1948). He showed that at interfaces subject to high normal stress (σ1), 
there would be a lower concentration of vacancies than at those inter-
faces with low normal stress (σ3). Hence vacancies would diffuse from 
σ3 to σ1 interfaces, which in macroscopic terms is equivalent to a flux 
of atoms from σ1 to σ3 interfaces. In either description, dissolution re-
sults at σ1 interfaces and precipitation at σ3 interfaces. It is important to 
note that it is not the stress inside a grain that drives diffusion; it is only 
the “boundary conditions” of different vacancy concentration that do 
this, which, in turn, result from the differences in normal stress on dif-
ferent interfaces. Because interfaces play a key role as sources and sinks 
of vacancies, the strain rate is grain size dependent, in fact  

 J. Wheeler and J. Ford 
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˙ e a−2, (3.10.1) 

where a is grain size. It is salutary to note that Nabarro first proposed 
this mechanism 15 years before experimental verification was made 
(Fig. 3.10.1d) (Squires et al., 1963). Coble (1963) proposed a theory 
where the driving force was similar but diffusion was along interfaces, 
resulting in: 

 

˙ e a−3, (3.10.2) 

but strain rate is linear in stress, as in the lattice diffusion mechanism. In 
geology, it was long recognised that dissolution could occur so as to al-
low grains to approach each other, but there were arguments about 
how this was accomplished. In one model dissolution was proposed to 
occur just at the grain/grain/water triple junction in a porous rock, but 
not along the interface itself (Bathurst 1958). Others (de Boer 1977; 
Weyl 1959) proposed that the high normal stress elevated the concen-
tration of the dissolved material within the interface, and that prompted 
diffusion along the interface. The fundamental controlling equation is 
(e.g. Eq. 8 in Paterson 1973): 

 

µ = F+σ nV , (3.10.3) 

where σn is the normal stress across the interface, F is the molar Helm-
holtz free energy of the solid, V is the molar volume of the solid, and  
is the chemical potential of the solid material in an adjacent “phase” in 
which it can dissolve. We use the quotation marks because the “phase” 
is, in fact, the interface region, which may have a rather complex struc-
ture involving pockets of water and narrower regions, possibly with 
H2O present but with properties different to those of bulk water. This 
equation can be approximated as  

 

µ = µ0+σ nV , (3.10.4) 

where 0 is the chemical potential at zero pressure. This is the form used 
by many authors, not always making it clear that it is an approxima-
tion. If we postulate the diffusing material is an ideal solution with con-
centration c then from (3.10.4) we have 

 

c = c0 exp
σ nV

RT

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ , (3.10.5) 

which is very similar to Nabarro’s expression for the vacancy fraction 
(φ) at an interface with pressure P: 

 

µ
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φ = φ0 exp − PV

RT

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ . (3.10.6) 

So, although presented quite differently, the fundamental mathematics 
of diffusion creep is much the same according to materials scientists or 
geologists. 

In many works the mathematical framework has been used in conjunc-
tion with some idealized regular geometry to deduce a flow law for diffu-
sion creep. The details of grain-scale behaviour are not necessarily mod-
elled in detail. However models based on simple tessellated 
microstructures (e.g. rectangular or hexagonal grains) do not capture the 
rich behaviour of more complex and realistic microstructures. 

How, then, is a grain scale model of diffusion creep to be con-
structed? From now on we will focus on interface diffusion creep. The 
evolution of general interface networks has been addressed by 
Hazzledine and Schneibel (1993), though they only address one time 
increment of evolution. Other models (Ford et al., 2002; Pan and 
Cocks 1993) simulate long-term evolution. In outline the models share 
these features: 

Along an interface segment, diffusive fluxes are driven by gradients 
in chemical potential  

 

C = −wL
∂µ
∂x

, (3.10.7) 

where C is the current (flux × interface width) in mol/m/s, w is the no-
tional interface width, L is the Onsager diffusion coefficient and x is 
position along the boundary. 

The growth or dissolution rate is governed by the gradient in C. 
Imagine a growing boundary: the material added (for example as 
overgrowths) must be supplied by the diffusive current, so this current 
varies with position. If r is the precipitation rate in mol/m2/s then mass 
conservation dictates 

 

r = − ∂C

∂x
. (3.10.8) 

Note that r is simply linked to the divergence speed (u) of the two 
grains 

r=u/V, (3.10.9) 

but now let us assume the grains are rigid (a reasonable approximation) 
in which case their relative motion must be equivalent to a relative ve-
locity plus a rotation about some reference point. This means that u has 

 J. Wheeler and J. Ford
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to be constant or a linear function of position. In other words incre-
mental overgrowths must be of constant width or wedge-shaped but 
cannot have more complex shapes because that would imply the grains 
have deformed internally. Combine Eqs. 3.10.4 and 3.10.7-9 to get 

 

u = wLV 2 ∂2σ n

∂x 2
. (3.10.10) 

Since u is linear in x, σn is at most cubic in x. If there is no relative rota-
tion of grains around an interface then u is fixed and σn is quadratic in 
x. If there is no growth or dissolution, σn may be constant, but can still 
be linear in x, in which case there will be a (constant) diffusive flux 
along the boundary. 

Equation 3.10.10 implies that each straight boundary segment will 
support a stress specified by a maximum of four parameters. Grain 
movements can be completely specified by two velocities and one an-
gular velocity per grain. Table 3.10.1 (simplified from Ford et al., 
2002) indicates how we can build up the system of equations that con-
strains those unknowns. Some equations relate to the number ng of 
grains, some to the number ngb of interfaces, some to the number nt of 
triple junctions and some to the number ns of interface intersections 
with the edge of the model. The letter in each box indicates the appro-
priate part of this section. We omit double junctions for simplicity. 

There are a number of constraints at triple junctions. Since they have 
no volume, the net diffusive current (sum of the three C values, with 
signs adjusted appropriately) into a triple junction must be zero. This 
gives rise to one constraint per triple junction. 

Equation 3.10.8 implies that σn must be a smooth function of posi-
tion, otherwise infinite fluxes will result. This implies that the three σn 

values predicted from the cubic form on each of the three boundaries 
must, at a triple junction where they meet, be equal. This gives two 
constraints per triple junction. 

Accelerations and angular accelerations must be negligible for each 
grain. Zero net force gives two constraints per grain and zero net 
torque an additional one. 

The growth speed u at an interface can be expressed in terms of the 
relative velocity and angular velocity of the two grains (and, being lin-
ear, is completely specified by two parameters). However, according to 
Eq. 3.10.10, those two parameters are also functions of the stress coef-
ficients on the boundary. We thus obtain two more equations per 
boundary, which we call “growth rate geometric compatibility”. 

Any model must have boundary conditions: for example, if the sys-
tem is chemically closed we may dictate that the diffusive current is 
zero at each place where an interface intersects the edge of the model, 
giving ns constraints.  
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Summing up it appears that the number of unknowns does not match 
the number of equations. However, network topology tells us that  

3nt+ns = 2ngb, (3.10.11) 

from which it follows that the number of equations equals number of 
unknowns and the system has a unique solution. 

This gives us the stresses and velocities at a given time, but not the 
positions of the new interfaces. These are non-unique because there is 
no physics (in the models cited above) that tells us where the new 
boundary should be. It seems reasonable to draw it along the middle of 
the overgrowth or dissolution zone. This gives rise to a geometric 
problem at triple junctions – new boundaries do not generally meet at a 
point, a problem recognised by Pan and Cocks (1993) and Ford et al. 
(2002), though dealt with in slightly different ways by those authors. 

 

Table 3.10.1. Number of equations versus number of unknowns in interface diffu-
sion creep model. 

Unknowns  Equations  
Stress coefficients (d) 4ngb Mass conservation at 

triple junctions  
nt 

Grain velocities (d) 3ng Stress continuity at tri-
ple junctions  

2nt 

  Force and torque bal-
ance  

3ng 

  Growth rate geometric 
compatibility  

2ngb 

  Boundary conditions  ns 
TOTAL 4ngb+3ng TOTAL 3nt+3ng+2ngb+ns 

3.10.5 Possible simulation techniques 

The set of equations described above can be cast as  

Ax = b,  (3.10.12) 

where x is the vector of unknowns (stress coefficients and velocities), b 
is a vector of knowns (boundary condition forces, etc.) and A is a ma-
trix expressing the structure of the equations. The system is then solved 
by inverting the (quite large) matrix A. This is what is done in the 
DiffForm program based on the work of Ford et al. (2002). The gov-
erning equations can also be expressed in the form of a variational 
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principle (Cocks et al., 1999; Pan and Cocks 1993) which has advan-
tages in setting up the numerical solution although ultimately manipu-
lation of large matrices is again required for numerical solution (Eq. 26 
in Pan and Cocks 1993). 

3.10.6 Implementation in DiffForm 

At each time step the matrix A is constructed from the governing equa-
tions and the network geometry. Its structure is somewhat different de-
pending on the types of boundary conditions (which include constant 
velocity, constant stress and zero flux in various combinations). The 
matrix is then inverted. Refinements of the numerical technique lead to 
considerable improvements in speed (Ford et al., 2004). The new inter-
faces are drawn using a best-fit solution to the triple junction problem 
mentioned above. The process is then repeated for the next time step. 
Neighbour swapping is a natural part of diffusion creep, and this is im-
plemented. DiffForm, written in C, produces text files as output. A 
separate package, DiffView (written in Matlab), displays output as pic-
tures in a variety of formats. At present this code has not been inte-
grated with the Elle system. 

3.10.7 Simple example and description of input parameters 

Figure 3.10.2a shows a model interface network with a large grain in 
the middle. Figures 3.10.2b-c show the network after a given time in-
terval and then the same time increment later. Boundary conditions are: 
constant velocity at top; sides constrained to remain vertical; zero diffu-
sive flux into or out of model at boundaries. Figures 3.10.2e-f show 
the outlines of the original grains (which we refer to as “ghosts”) dis-
placed in accordance with actual grain movements. Ghosts appear to 
overlap where there has been dissolution. Apparent gaps between 
ghosts are sites where overgrowth has occurred (in the actual micro-
structure porosity is zero at all times). In such situations the ghost out-
line might be visible, e.g. between clouded original and clean over-
growth mineral. Figures 3.10.2e-f show significant grain rotations, 
especially the two just above the large grain. Such rotations are not at 
all obvious in the interface maps (Fig. 3.10.2b-c), and they may be far 
from obvious in actual microstructures. Complex over-
growth/dissolution patterns are likely, but DiffForm cannot currently 
display overgrowth patterns. Figure 3.10.2d shows a 3D diagram of the 
stress system. The x- and y-axes represent the actual microstructure, and 
the z-axis is the normal component of stress. Since this is only relevant 
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along the interfaces, it is displaced as a shaded “fence” along each in-
terface. Commonly the stresses show parabolic patterns, in accordance 
with a constant dissolution/overgrowth rate along an interface segment. 
However the stress patterns around the rotating grains are cubic, also as 
required by Eq. 3.10.10. The fences are shaded darker according to 
dissolution rate, so many have constant shade, but the rotating inter-
faces show varying shades. The fences running “east-west” are under 
positive stress. 

 

 
Fig. 3.10.2 Simulation of interface diffusion creep in a microstructure with grains of 
irregular shapes. (a-c) Three stages in the vertical shortening of a grain aggregate. (d) 
“Fence” diagram showing the normal stresses on the interfaces. (e-f) Outlines of the 
original grain shapes to illustrate sites of dissolution (overlaps) and precipitation 
(gaps) 
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Symbols used in Chap. 3.10 

A Matrix to express structure of equations [various units] 
a Grain size [m] 
b Vector of knowns (boundary condition forces, etc.) 
c, c0 Concentration in solution; concentration at zero normal stress  

[mol m-3] 
C Current (flux × interface width) [mol m-1 s-1] 

 

˙ e  Strain rate [s-1] 
F Molar Helmholtz free energy of the solid [J mol-1] 
φ, φ 0 Vacancy fraction; vacancy fraction at zero pressure [] 
L Onsager diffusion coefficient [mol2 J-1 m-1 s-1] 

 

µ ,

 

µ 0  Chemical potential of a solid in an adjacent “phase” in which it can dis-
solve; chemical potential at zero pressure [J mol-1] 

ng, ngb,  Number of grains and of of interfaces [] 
nt, ns Number of of triple junctions and of interface intersections with the edge 

of the model [] 
r Precipitation rate [mol m-2 s-1] 
σn Normal stress across an interface [Pa] 
σ , σ3 Highest and lowest normal stress, respectively [Pa] 
u Divergence speed of two grains [m s-1] 
V Molar volume of the solid [mol m-3] 
w Notional interface width [m] 
x Vector of unknowns (stress coefficients and velocities) 

 



3.11 Fracturing 

Daniel Koehn  

3.11.1 Phenomenological observations 

Fractures are discontinuous surfaces that form in a material while it 
breaks and looses its cohesion. Fractures can occur on all scales ranging 
from micro-cracks with sizes of a few nanometres up to kilometres. 
Large-scale fractures in geology are termed joints, or faults if dis-
placement has taken place along the fracture plane. Fractures may open 
and leave voids where new material can precipitate or they may show 
displacement. They are therefore also classified into extension and 
shear fractures. Micro-cracks are generally classified into mode I, mode 
II and mode III fractures (Pollard and Segall 1987; Scholz 2002) (Fig. 
3.11.1). Only Mode I and II fractures will be considered here since 
these are the fracture modes possible in two dimensions. Mode I frac-
tures are extensional and open perpendicular to a maximum tensile 
stress. Mode II fractures open with an angle towards the maximum 
compressive stress and accommodate strain by shear displacement.  

 

 
Fig. 3.11.1. The three failure modes I, II and III 

Fracture propagation is a highly non-linear and complex process. 
The initiation of a fracture causes stress concentrations at the fracture 
tip, which then in turn will provoke the failure of material so that the 
fracture will propagate. This is especially critical for mode I or exten-
sion fractures (Griffith 1920; Jaeger and Cook 1976). The stress at the 
fracture tip increases with the length of the fracture so that fracture 
propagation and final failure of a material under tensile stress may be a 
runaway process. Fractures that propagate by themselves may propa-
gate as fast as the speed of sound. They are therefore developing in-
stantaneously within a geological context and do not consume time. 
Fractures that propagate very fast may become unstable once they 
travel as fast as seismic waves. In that case the fracture tip may split, 
which slows down further propagation.  
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The properties of the host material are very important for the 
propagation of fractures. Fracturing of material is mainly thought to be 
a plastic process. This means that the fracture process itself is time-
independent but it needs a critical yield stress in order to be initiated. A 
material with uniform properties (such as elastic constants and failure 
strength) will break in a brittle manner so that most fractures develop 
instantaneously once a yield stress is reached and the whole material 
will loose its strength. A material with non-uniform properties may, 
however, break in a ductile manner where small fractures develop once 
a yield stress is reached but the material as a whole does not fail. An in-
crease in stress is needed to deform the material further. 

 

 
Fig. 3.11.2 (a) joints in slate, pencil for scale (b) veins and a shear fracture (or fault), 
coin for scale 

. 
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3.11.2 Natural examples 

Brittle deformation that involves fracturing of rocks represents one of 
the main deformation mechanisms in the upper crust of the Earth. Frac-
tures may also be found much deeper within the Earth depending on 
strain rates of deformation, fluid pressure and local volume changes. A 
wide range of evidence for fracture processes can be found in natural 
systems (Fig. 3.11.2).  

Near the surface of the Earth fractures are expressed in the form of 
joints and faults. Joints are mainly thin and relatively long discontinui-
ties (Fig. 3.11.2a) without a displacement in contrast to faults. Deeper 
within the Earth, fractures are often healed. Extension fractures may 
then be preserved in the form of veins or dykes (Fig. 3.11.2b). 

3.11.3 Inferred processes 

Fractures develop because of local tensile or shear stresses. These 
stresses may be induced by external boundary conditions such as de-
formation or local changes due to volume expansion or contraction as 
well as fluid pressure gradients. Nucleation of fractures depends on the 
local boundary conditions and on the material properties of a rock 
sample. The propagation of fractures also depends strongly on the 
boundary conditions. External deformation may lead to a runaway 
process of fracture propagation especially when the material is under 
tension. Internal boundary conditions such as the expansion of material 
will drive the propagation of sub-critical fractures that grow while the 
material is expanding or contracting. Hydrofractures that develop due 
to high fluid pressure gradients will also tend to grow at least partly 
sub-critical because fluid pressures often drain once fractures develop 
due to an increase in void volume or an increase in permeability (Flek-
køy et al., 2002). 

3.11.4 Driving forces, controls and governing equations 

The driving force for fracture propagation is a local tensile or shear stress 
that exceeds a critical value. The local fracturing process is normally time 
independent in a geological context because it takes place very quickly. 
However, fracturing on a large scale may become time dependent if the 
system is very non-uniform, so that local fractures develop at a range of 
critical stresses. Fracturing is also partly time-dependent when the process 
that leads to the critical stress is time-dependent and fracturing releases lo-
cal stresses. 
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One of the basic theories for fracture development was defined by 
Griffith (Griffith 1920; Jaeger and Cock 1976). Stress concentrations at 
the tips of an elliptical hole with a length 2l and a radius of curvature ρ 
are 

 

σ loc = σ 2
l

ρ
, (3.11.1) 

where σloc is the local stress at the tip and σ  the external stress (for 
example an applied tension). If the curvature of the ellipse in Eq. 
3.11.1 becomes very small, which it should for a thin crack, the stress 
will go towards infinity. Griffith used an energy balance between 
elastic energy due to the stress concentrations and surface energies at 
the crack tip, which also become very high if the curvature is small. 
This results in a critical micro-crack size for a material. These so called 
Griffith-cracks are thought to exist in most materials and are used to 
explain their low tensile strength. Griffith theory leads to the following 
two criteria for brittle failure: 

 

σ1 = T0  , if 

 

3σ1 +σ 2( ) > 0, and (3.11.2a) 

 

σ1 −σ 2( )2 + 8T0 σ1 +σ 2( ) = 0 , if 

 

3σ1 +σ 2( ) < 0, (3.11.2b) 

where T0 is the tensile strength, σ1 (principal normal stress) is larger than 
σ2 and compressive stress is negative. The first criterion explains the 
development of mode I cracks based on a local tensile stress (Eq. 
3.11.2a). The second criterion marks the development of shear frac-
tures (mode II) as a function of the differential stress, the mean stress 
and a tensile strength (Eq. 3.11.2b). 

A second concept of brittle failure is the Navier-Coulomb shear fail-
ure criterion (Price and Cosgrove 1990) that is based on a friction coef-
ficient and a cohesion: 

 

τ = C0 − µσ n , (3.11.3) 

where τ is the critical shear stress, C0 the cohesion, σn the normal stress 
(compression again negative) and  the friction coefficient. Shear 
strength increases with decreasing normal stress expressed by the fric-
tion coefficient. In the tensile failure regime the Navier-Coulomb crite-
ria results in unrealistically high breaking-strengths (because the tensile 
strength is as high as the cohesion). Therefore a combination of the 
Griffith and the Navier-Coulomb criteria is thought to represent a real-
istic failure criterion spanning both tensile and compressive regimes of 
failure. The combined Navier-Coulomb Griffith failure curve predicts 
the angle that a fracture will have with respect to the principal stresses. 

µ

D Koehn . 
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Tensile extension fractures will develop parallel to the main compres-
sive stress. Shear fractures will develop with an angle of less than 45° 
with respect to the main compressive stress. So called hybrid shear frac-
tures may develop in a small regime between extension and shear frac-
tures. Shear fractures will always have the possibility to develop to ei-
ther side of the main compressive stress direction and therefore form 
conjugate sets. 

3.11.5 Possible and actual simulation techniques 

Brittle deformation can be modelled using continuum models, discrete 
element models and Cellular Automata. In the continuum applications 
different formulations can be used. One is the use of the Navier-
Coulomb failure criteria, which gives the orientation and location of 
faults. These models are also referred to as Micro-plane models (Kuhl 
et al., 2001). Once a fault develops, elements in the continuum model 
are said to have failed and their properties are modified accordingly. 
Another approach is a Lagrangian Particle Finite Element Method 
where the position of a finite number of material points is traced 
within, for example, a Finite Element mesh (Mühlhaus et al., 2001). In 
this case large-scale flow and high deformation can be achieved with-
out having to re-mesh. 

The widest range of research using numerical simulations on fracture 
processes has been performed using discrete element models. Fractur-
ing itself is a process that produces discrete materials so that continuum 
theory breaks down, at least partly. Therefore it is useful to perform 
numerical simulations with materials that can become discontinuous. In 
these models, particles are connected with each other by springs, with 
only normal forces or angular and normal forces, or by elastic beams 
that can bend. In two dimensions a hexagonal arrangement of particles 
connected with normal springs produces linear elasticity properties on a 
larger scale. If the lattice is not hexagonal or if it is a three-dimensional 
lattice, a normal force model only produces linear elasticity when more 
than the nearest neighbours are connected. Therefore a square lattice 
needs connections to four direct neighbours as well as to the next four 
neighbours in order to show no large-scale anisotropy. The same ap-
plies for models with particles that have no uniform size. In addition to 
normal force models, beam models or models with angular springs 
produce linear elasticity for different lattices and variations in particle 
sizes. Failure is then represented by the breaking of beams or springs so 
that the tensile strength is locally lost, and only the repulsive interac-
tions between particles remain. In order to model granular materials 
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particles can also be modelled with contact forces that are only repul-
sive or represent friction (Vermeer et al., 2001). 

Cellular Automata can also be used to model fracture processes. An 
example is the use of Diffusion-Limited Aggregation (DLA) models 
that can be used to model dielectric breakdown, which has scaling simi-
larities to fractures (Meakin 1998). 

Which model one uses depends strongly on the scale of observation 
and the aims.  

 

 
Fig. 3.11.3 Merging of the Elle topology and the Lattice-Spring model with a trian-
gular lattice. (a) Grain number seven is surrounded by six neighbouring grains. Dark 
grey particles lie totally within grains whereas the light grey particles lie along grain 
boundaries. Elle flynn boundaries and bnodes are drawn in black. (b) spring lattice of 
grain number 7. Particles are connected by six springs with their neighbours. Broken 
lines are springs across grain boundaries whereas through-going lines lie within the 
grain. Grain boundary springs and internal springs of different grains may have dif-
ferent elastic properties 

3.11.6 Implementation in Elle 

Currently a Lattice-Spring model called Latte is implemented in Elle. It 
is a normal force model with a hexagonal grid, based on the work of 
Malthe-Sørenssen et al. (1998b). Linear elastic behaviour and fractur-
ing can be simulated with the full description of the strain and stress 
field. The initial microstructure can be read from an Elle file and the 
grain boundaries can be translated into the particle code. Particles that 
lie within one grain can then have different properties than those of 
other grains and grain boundaries may also be different (Fig. 3.11.3a). 
Studies with these kinds of particle models have been able to reproduce 
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the scaling behaviour and statistics of experimental and natural fracture 
patterns (Walmann et al., 1996; Malthe-Sørenssen et al., 1998a,b, 
1999) and more complex systems (Jamtveit et al., 2000; Flekkøy et al., 
2002; Koehn et al., 2003a,b, 2005; Koehn and Arnold 2003). 

In the model particles are connected with their direct neighbours via lin-
ear elastic springs (Fig. 3.11.3b). The force acting on a particle from a 
neighbour is proportional to the extension or compression of a connecting 
spring. Compressive stresses in the model are defined as being negative 
and tensile stresses positive. An over-relaxation algorithm is used to solve 
the equilibrium configuration of particles. A relaxation threshold deter-
mines the accuracy of the solution. Particles are in an equilibrium position 
once all forces acting on particle centres cancel out. If a particle is not in 
equilibrium it is moved towards equilibrium depending on the resulting 
force on the particle. In order to attain an effective solution particles are 
moved an over-relaxation step beyond their equilibrium position (Allen 
1954). Note that a hexagonal spring lattice with only normal force interac-
tions always has a Poisson ratio of 0.3333.  

Initially the Elle deformation box is filled with particles. Particles 
along boundaries are defined to be stationary perpendicular to bounda-
ries, but they may move parallel to a boundary. In order to apply a de-
formation, walls are moved inwards or outwards respectively. Then a 
relaxation algorithm resolves the new equilibrium position of particles 
within the box. Once the equilibrium defined by the relaxation thresh-
old is reached the tensile stress felt by all springs are checked. If the lo-
cal tensile stress of a spring exceeds its tensile strength, the spring may 
break. Once all springs are checked for breaking potential, the spring 
that is most likely to break (the one that most oversteps its tensile 
strength) will do so and a new relaxation cycle will start. This means 
that springs only break one at a time. Once all springs are stable and are 
not breaking a new deformation step can be applied. Fracturing in this 
case is highly non-linear. The whole lattice may fail at once after a de-
formation step. Note that the model’s boundary particles are not al-
lowed to fail in the current version. Broken particles still retain a repul-
sive force so that they build up forces once they are pushed into each 
other. Large-scale deformation of the lattice is achieved not only by 
moving outer walls but also by moving all particles assuming a per-
fectly homogeneous deformation of the lattice. After this deformation 
average the relaxation starts. The deformation average speeds up the 
relaxation and gets rid of artificial gradients in the model. 

Latte is build up by two main classes, the particle and the lattice class 
(lattice.cc, lattice.h, particle.cc and particle.h). More classes are used for 
the phase transformations described in Chaps. 3.12 and 3.13 
(base_phase.cc, base_phase.h, phase_lattice.cc, phase_lattice.h, 
min_trans_lattice.cc, min_trans_lattice.h, heat_lattice.cc, heat_lattice.h) 
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that inherit the lattice class. The user does not have to be concerned 
with these classes directly but calls initialization and run functions in 
the lattice class (for fracturing) from a normal Elle process file (ex-
periment.cc) that is used like a script. The explanation of how to use 
the script and the different functions is described in detail in Appendix 
G. Functions are basically separated into initialization functions that 
give different flynns, single particles or defined layers in the model dif-
ferent properties and run functions that define the proposed deforma-
tion or internal changes and dump statistics to plot, for example, stress-
strain curves. A few examples where values can be changed from the 
interface are given below and in the interface. 

3.11.7 Example Elle Runs  

Example 1: fracturing 

This example illustrates fractures that develop in a rock that is subject 
to a small amount of uniaxial shortening followed by a pure shear de-
formation. The initial microstructure of the specimen consists of grains 
that have different Young’s moduli drawn from a Gaussian distribu-
tion. Spring constants of all particles also have a distribution of 
strengths. Grain boundaries are assumed to fracture more easily and 
their fracture toughness is on average 50% of the fracture toughness of 
intra-granular bonds. An example with a 400 particle wide lattice is 
shown in Fig. 3.11.4. Progressive deformation leads to the develop-
ment of small local fractures whose location is partly dependent on the 
initial noise in the system. These then develop into larger-scale conju-
gate shear fractures. Figure 3.11.4a and c show particles that have bro-
ken bonds as dark lines. The corresponding stress fields are shown in 
Fig. 3.11.4b and d where dark is relatively low mean stress and light 
relatively high stress. Fractures release the stress and grow as conjugate 
shear fractures with extensional parts. They nucleate in Fig. 3.11.4a as 
a function of the differential and mean stress between grains and the 
noise on breaking thresholds. The underlying microstructure of Elle is 
shown in Fig. 3.11.4b. The initial small-scale fractures grow in length 
and connect to become larger fracture sets in Fig. 3.11.4c. 

D Koehn . 



3.11 Fracturing      179 

 
Fig. 3.11.4 Fracture patterns during pure shear deformation of a polycrystalline solid. 
(a) and (c) show fracture patterns (dark are particles with broken bonds) and (b) and 
(d) show the mean stress corresponding to a) and c). The grain boundaries are shown 
in b) Grains have initially different Young’s moduli picked from a Gaussian distribu-
tion. Black is relatively low and white relatively high stress. The original lattice is 
400 particles wide. a) and b) are time step 10 whereas c) and d) are time step 20. 

 EXPERIMENT 4 

Example 2: fracture boudinage 

This example illustrates the development of fracture boudinage in a 
layer with a higher Young’s modulus than the surrounding matrix. The 
underlying lattice has no clusters of particles that define grains. All par-
ticles between given maximum and minimum y-coordinates are defined 
as part of the competent layer and have different assigned elastic prop-
erties than the matrix particles. The springs have a distribution of 
breaking strengths drawn from a Gaussian distribution with a mean of 
2.0 (corresponding to a mean Young’s modulus of for example 20 
GPa in a scaled model) and a deviation of 1.2. The applied deforma-
tion is pure shear with vertical shortening and horizontal extension.  
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Fig. 3.11.5 Fracture boudinage in a competent layer embedded in a less competent 
matrix. The competent layer has a higher Young’s modulus than the matrix (factor of 
10). Breaking strengths of bonds have a Gaussian variation with a mean of 2.0 and a 
deviation of 1.2 (a) Stage 10 shows the initial configuration with the competent layer 
in the middle. First fractures develop in the competent layer. (b) Stage 20 shows the 
successive development of fractures in the competent layer, minor fractures in the ma-
trix (light grey shows small fractures). (c) Stage 30 shows the amalgamation of frac-
tures in the competent layer into two distinct mode I fractures (black shows fracture 
clusters, light greys small fractures). (d-f) show stage 40. (d) Mean stress in the com-
petent layer and matrix. Two well-developed fractures in the competent layer are 
opening and produce stress in the weak matrix. Stress field between the two fractures 
shows “bone-type” geometry. (e) Differential stress in the competent layer. Stresses 
are relaxed around the large fractures. At the fracture tips stresses are high in the ma-
trix. (f) Corresponding fracture pattern. Two distinct fractures developed in the mid-
dle, two additional fractures start to develop at the layer-matrix interface. (g-i) show 
stage 90, four well-developed fractures are present in the competent layer with a well-
defined spacing. (g) Mean stress, (h) differential stress and (i) fracture pattern. 

 EXPERIMENT 11 

Figure 3.11.5 shows the progressive development of the fracture pat-
tern and the differential and mean stress at different stages. The initial 
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geometry of the setup is shown in Fig. 3.11.5a where the brighter areas 
in the competent layer represent stresses around small fractures. The 
relatively wide distribution of breaking strengths leads to the develop-
ment of numerous small-scale fractures that later on develop into larger 
macroscopic fractures. Successive fracture patterns are shown in Fig. 
3.11.5b,c,f and i where small fractures are light grey and large frac-
tures black. In Fig. 3.11.5c two distinct macroscopic fractures devel-
oped out of the initial fracture nuclei. In Fig. 3.11.5i four distinct frac-
tures developed and show a regular final spacing. The mean stress 
corresponding to Fig. 3.11.5f and i are shown in Fig. 3.11.5d and g re-
spectively and the differential stress in Fig. 3.11.5e and h. Darker areas 
in the stress field represents low stress and light colour high stress. The 
most instructive stress field is represented by the mean stress in Fig. 
3.11.5g. The stress is low between two neighbouring fractures in the 
middle of the competent layer. In contrast, at the interface between this 
layer and the matrix, the stress is still high due to shear forces that are 
transmitted from the adjacent matrix. This will lead to progressive de-
velopment of more fractures at a higher strain. These additional frac-
tures will nucleate at the layer-matrix interface, where stresses are high. 
The stress in the adjacent matrix is highest at the fracture tips of the 
fractures in the competent layer where extensional strain in the compe-
tent layer is concentrated and fractures are slowly opening.  

  
 

Symbols used in Chap. 3.11 

C0 Cohesion [Pa] 
l Half length of an elliptical hole [m] 
Τ0 Tensile strength [Pa] 

 Friction coefficient 

ρ Radius of curvature of the tip of an elliptical hole [m] 

σloc Local stress [Pa]  

σ1, σ2 Maximum and minimum principal stress, respectively [Pa, with compres-
sive stress negative] 

σn Normal stress [Pa] 

τ Critical shear stress [Pa] 

 

µ



3.12 Fluid solid reactions 

Daniel Koehn  

3.12.1 Phenomenological observations 

Reactions between solids and fluids are very common in the Earth’s crust. 
This chapter is mainly concerned with the reaction between a single-phase 
solid and a pure fluid that only contains solvents of that solid. Therefore 
we are mainly dealing with structures that develop during the so-called 
dissolution-precipitation creep or pervasive pressure solution transfer 
(Paterson 1973; Rutter 1976; Revil 2001). During dissolution-precipitation 
creep material dissolves at regions of high stresses, is transported along the 
fluid and precipitates at sites of low stresses. These driving forces will lead 
to a viscous or plastic deformation of the solid and the grains will become 
shorter in the direction of largest compressive stresses (dissolution) and 
elongate in areas of low stresses (precipitation). This scenario is described 
in detail in Chap. 3.10. In this chapter we are mainly dealing with small-
scale structures and large scale roughening during dissolution-precipitation 
processes.  

Dissolution-precipitation creep produces a range of typical structures 
at various scales. At the small scale (grain-size and smaller) two differ-
ent reactive sites exist along grains, the confined grain boundaries and 
the free surfaces that are open to pore space. Three different models 
exist for the structure of grain boundaries during dissolution-
precipitation creep ranging from a thin-film model where the grain 
boundary is flat and has a continuous fluid phase between grain, to an 
island channel model where solid-solid contacts make up islands to a 
grain boundary model that is more or less a combination of the first 
two (den Brok 1998; Alcantar et al., 2003). In the grain-boundary 
model a thin-film exists in between islands and channels develop in ar-
eas where small micro-cracks run into the crystals. Recent experiments 
and models show however that solid-solid contacts are relatively unsta-
ble so that the island-channel model develops into a grain-boundary 
model. The grain-boundary model may then become flat due to sur-
face energy effects and develop into a thin film model. Impurities of 
crystals including micro-cracks will however induce new roughness so 
that a thin film model can develop into a grain-boundary model 
(Koehn et al., 2006). Therefore a characteristic more or less rough 
grain-boundary structure will probably exist depending on time scales 
and impurities of the involved crystals.  
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Large-scale structures during dissolution-precipitation creep are so 
called stylolites that are rough surfaces that are up to several meters 
long. They typically show a roughness on different scales. 

 
 

 

Fig. 3.12.1 Two natural examples of rough structures that develop during solid-fluid 
interactions. (a) Dissolution grooves, looking onto a liquid-crystal surface of a 
stressed crystal. The crystal surface is oriented parallel to the main, vertical compres-
sive stress. (b) Rough surface of a stylolite, with roughness on multiple scales. The 
stylolite surface is oriented perpendicular to the main, vertical compressive stress. 
Courtesy of Francois Renard 

 

3.12.2 Natural examples 

Figure 3.12.1 shows two ‘natural’ examples of structures that develop 
during dissolution-precipitation creep. Figure 1a shows grooves that 
develop on free surfaces of stressed salt crystals. These grooves start 
with a well-defined characteristic wavelength. However, with time the 
wavelength increases and finally flat crystal surface remains (Koehn et 
al., 2004). Figure 3.12.1b shows a stylolite with a roughness that has 
wavelengths on several scales. Stylolites are thought to be self-affine so 
that they have characteristic scaling properties that are independent of 
the size of the system within a certain range of scales (Schmittbuhl et 
al., 2004; Renard et al., 2004). They have self-affine and not self-
similar properties since they scale differently in the direction along the 
stylolite versus the direction perpendicular to it.  
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3.12.3 Inferred processes 

Dissolution-precipitation creep is at least governed by three processes: 
the dissolution of material, the transport of material and the precipita-
tion of material. Dissolution and precipitation of material may be con-
trolled by similar rate laws. However this is not always the case. Trans-
port of material may be by diffusion through a fluid phase or by 
advection with a moving fluid. As long as the system is not flushed 
with new fluid, transport will probably be via diffusion. Diffusion and 
reaction equations do not have to have the same scaling properties with 
time. Diffusion is often assumed to be the limiting process when the 
system size increases, since diffusion of material scales with the square 
root of time whereas reactions often scale linearly with time.  

3.12.4 Driving forces, controls and governing equations 

The driving forces for dissolution-precipitation creep depend on the 
processes involved. Diffusion is driven by chemical gradients within 
the fluid. Reactions are driven by the concentration of dissolved matter 
within the fluid, the surface and elastic energy of the solid and the 
normal stress on the fluid-solid interface. We will not deal with diffu-
sion in this section, only with reactions. Diffusion is described in 
Chaps. 3.2, 3.10 and 3.13.  

The chemical potential of a non-hydrostatically stressed solid in con-
tact with a fluid can be described by a Gibbs’ type equation of the form 
(Gibbs 1906; Paterson 1973) 

∆µ = ∆Hs +Vs∆σ n , (3.12.1) 

The chemical potential (Eq. 3.12.1) is related to the equilibrium con-
stant (Keq) of a reaction by the following expression 

  

where 

  

∆ � is the change in the chemical potential, 

  

∆ HS is the change in 
Helmholtz free energy of the solid, Vs is the molecular volume of the solid 
and 

 

∆ σn the change in the normal stress on the surface. The Helmholtz 
free energy contains the elastic and the surface energy. The effect of the 
normal stress is about three orders of magnitude larger than the effect of 
the elastic energy. The surface energy scales with the size of the system so 
that it becomes important when the system size is small. Dissolution of 
material in a grain boundary that has a thin-film structure will be con-
trolled by the normal stress of Eq. 3.12.1 (see also Chap. 3.10). The elastic 
and surface energies become important at free crystal surfaces, at rough 
surfaces or when no fluid pressure and thus no normal stress gradients ex-
ist along the surface.  
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∆µ = RT ln
Keq
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where T is the temperature, R is the universal gas constant and K0 is the 
equilibrium constant for the unstressed solid (Renard et al., 1999). Eqs. 
3.12.1 and 3.12.2 lead to 
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The equilibrium constant can be related to the concentration of dis-
solved matter in the solution by the expression (Alkattan et al., 1997) 

 

Keq = aNaClcNaCl( )2
, (3.12.4) 

for NaCl, where aNaCl is the activity coefficient of sodium chloride in 
the solution, which is dependent on temperature and cNaCl is the solubil-
ity of sodium chloride at a given temperature. For quartz, Eq. 3.12.4 
reads 

 

Keq = aquartzcquartz , (3.12.5) 

because there is only one species in the fluid in contrast to two ions for 
NaCl. The dissolution rate can be determined by a general first order 
rate law from Transition State Theory (TST, Lasaga 1998) 

 

Dr = krVs 1− cA
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where Dr is the rate at which the surface will dissolve (or grow if 
growth is governed by the same linear rate law), kr is a rate constant 
depending on temperature (can also be expressed by an Arrhenius 
law), cA is the concentration of solute A in the fluid and 

 

cA
eq  the equilib-

rium concentration of solute A in the fluid. Combining Eqs. 3.12.3-4 
and 3.12.6 leads to 
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 (3.12.7) 
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for NaCl where 

 

cA
i  is the initial equilibrium concentration of the fluid 

at a given temperature in an unstressed system. Eq. 3.12.7 also holds 
for quartz if the square root of the second parenthesis is taken out of 
the equation (see Eq. 3.12.5 in comparison with Eq. 3.12.4). Equilib-
rium is reached when Dr becomes zero, which happens when the term 
in the second parenthesis becomes one.  

3.12.5 Possible and actual simulation techniques 

Dissolution-precipitation creep has been modelled using a number of 
different continuum approaches (e.g. Ch. 3.10; Renard et al., 1999). 
These approaches use continuum formulations. Structuring of solid 
fluid interfaces at free surfaces and even in confined films has been 
studied recently using linear stability analysis as well as Finite Element 
approaches and Phase Fields (Yang and Srolovitz 1993; Norris and 
Vemula 1998; Goussoub and Leroy 2001; Kassner et al., 2001). 
Groove development in solid liquid systems and other interfaces is a 
common problem in Physics and Material Sciences. This phenomenon 
is often called the ATG-instability (Asaro-Tiller-Grinfeld) if it develops 
so-called anti-cracks and is important in thin-film overgrowths. 

Structuring of solid-liquid interfaces as well as the development of 
stylolites can also be studied using Cellular Automata or discrete ele-
ment models.  

3.12.6 Implementation in Elle 

In Elle the discrete element code Latte described in Chap. 3.11 is used 
for solid-liquid reactions. Latte is a Lattice-Spring code where discrete 
elements are connected with each other via linear elastic springs. In the 
Lattice-Spring code rows of particles can be defined to be in contact 
with a fluid, these particle then act as the fluid-solid interface. In order 
to account for the fluid pressure on the solid a force is added to inter-
face particles. This force is oriented perpendicular to the fluid-solid in-
terface and can change if the fluid pressure changes. In order to calcu-
late the reaction rates of particles along the interface according to Eq. 
3.12.7 we need the normal stress at the interface, the concentration of 
dissolved material in the fluid at a given time step and the Helmholtz 
free energy. Helmholtz free energy is a function of the elastic energy 
of single particles and the surface energy along the interface. The elas-
tic energy (Eel) can be calculated from the strain tensor (εij) following 
Landau and Lifshitz (1959). 

3.12 Fluid solid reactions
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where λ1 and λ2 are the Lamé constants. The surface energy for a parti-
cle is calculated using the curvature of the interface. The curvature is a 
function of how many springs of a single particle are open to the fluid. 
The surface energy for a single particle is 

 

γ i = γ surf
1

rsurf

Vs, (3.12.9) 

where γsurf is the interfacial free energy between the solid and the fluid 
and rsurf is the local radius of curvature of the surface. The curvature 
drives dissolution in the rate law if it is convex towards the fluid and 
precipitation if it is concave. In order to account for long-range effects, 
the surface energy of the particle plus its right and left neighbours 
along the interface are averaged and added to the surface energy of the 
particle. The averaged surface energy along the interface then scales 
with 1/distance from the initial particle since the radius of the surface 
curvature increases (Eq. 3.12.9). This is done in sequential steps for 20 
neighbours, by which time the long-range effects become very small 
compared to the surface energy of the particle itself.  

In order to dissolve single particles along the interface, Eqs. 3.12.8-9 
are used to calculate the Helmholtz free energy (Eel +γι) change relative 
to an unstressed straight interface and are used in Eq. 3.12.7 in addition 
to the fluid pressure (fluid pressure change is always relative to zero 
fluid pressure) and the concentration of dissolved material in the fluid 
to get a dissolution rate. We can then determine how many particles 
(Np) will dissolve in the direction perpendicular to an interface in a 
given time step (dt) according to 

 

N p = Dr
1

ri

dt 1−
Nspi

6
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⎟  , (3.12.10) 

where ri is the radius of a particle i and 

 

Nspi
 is the number of springs 

that are still attached to a particle (not in contact with the fluid). Only 
one particle is dissolved during one internal time step of the dissolution 
routine. The particle that can dissolve the most is dissolved and the in-
ternal time step used is the amount of time that it took to dissolve that 
particle. Two different approaches are now taken. In the first approach 
only one particle is dissolved at a time step. In the second approach the 
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internal time step is used to calculate how many particles will dissolve 
during a time step and the particles change their mass accordingly.  

3.12.7 Example Elle Runs  

We show two examples of fluid-solid interactions. The first example 
shows dissolution of a stressed crystal at its free surface whereas the 
second example shows the development of a stylolite from an initially 
smooth dissolution surface. Both examples show the formation of a 
roughness. The first example shows the development of a roughness in 
the form of grooves on the crystal surface out of an initial perturbation. 
This roughening is initially controlled by the perturbation but it devel-
ops progressively into a pattern that shows grooves on a relatively flat 
surface. These grooves have a well-defined wavelength or distance be-
tween them. This distance can be represented analytically as the devel-
opment of an ATG-instability (Srolovitz 1989). The second type of 
roughness also develops on a flat surface and is initiated by a perturba-
tion. In this case two crystals are pressed together. The roughness pro-
gressively grows on a wide range of scales in contrast to the grooves of 
the ATG-instability that have a well-defined length scale.  

 

 
Fig. 3.12.2 Initial setup for the simulation of grooves on free surfaces of stressed crys-
tals. The crystal is stressed vertically. All particles in contact with the fluid can dis-
solve as a function of elastic energy of particles and surface energy of the interface 
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Fig. 3.12.3 Development of grooves and anti-cracks on the free surface of a stressed 
crystal. Horizontal resolution of the lattice is 100 particles. Fluid is on the right hand-
side, the interface is marked by darker particles. (a) Initial setup of the model. A 
quenched noise is induced by a Gaussian variation of dissolution constants of parti-
cles in order to initiate the instability. (b) and (c) show the development of an initial 
roughness that depends on the quenched noise. In (c) the amplitude of the roughness 
starts to become large enough to induce the instability. (d) Development of three 
well-defined grooves with a clear spacing out of the initial random roughening. (e) 
Grooves become deeper and grow into anti-cracks. Coarsening processes lead to the 
deepening of the two lower grooves whereas the upper one is slowing down. (f) Dif-
ferential stress field at the tip of an anti-crack.  EXPERIMENT 12 

Example 1: Growth of grooves and anti-cracks during 
dissolution 

The first example of fluid-solid interactions shows the dissolution of 
the free surface of a stressed crystal in contact with fluid (Fig. 3.12.2).  

The crystal is thought to be immersed in a large fluid volume so that 
the concentration in the fluid does not change. In the simulation the 
crystal is in contact with the fluid on its right hand side (Fig. 3.12.2). 
The fluid pressure is kept constant so that pattern formation along the 
interface of the crystal and the fluid is governed by gradients in elastic 
and surface energy. These energies are contained within the Helmholtz 
free energy (Eq. 3.12.1). Dissolution constants of the crystals have a 
Gaussian distribution with a variation of 0.3. This variation will pro-
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duce an initial small scale roughening when the crystal dissolves (Fig. 
3.12.3a-b).  

The interface roughness increases elastic energy concentrations that 
drive dissolution. Surface energy will smooth the interface. The effect 
of the surface energy scales with the size of the system so that small-
scale roughness disappears faster than larger scale roughness. Because 
of this scaling the roughness has to develop a critical size where elastic 
energy concentrations are larger than the effects of the surface energy. 
Once this size is reached stable grooves start to grow on the interface 
that have a well-defined wavelength. The interface between the 
grooves becomes increasingly smooth so that the final picture has great 
similarity to grooves that can be found on stressed crystals of salt in 
experiments (Fig. 3.12.1b). If the virtual experiment lasts longer these 
grooves develop into anti-cracks that run into the crystal perpendicular 
to the main compressive stress. The anti-cracks represent the ATG-
instability. Note however that there are serious doubts in the literature 
that the solid behaves linear-elastic at the tip of anti-cracks (Grinfeld 
1991). Since the presented model assumes linear elasticity the results 
concerning anti-cracks should be taken with great care. Differential 
stress concentrations at the anti-crack tip are shown in Fig. 3.12.3f.  

 

 
Fig. 3.12.4 Setup for the simulation of stylolite roughening. Two solids are pressed 
together vertically (see arrows). The crystals dissolve as a function of elastic and sur-
face energies as well as normal stress 

3.12 Fluid solid reactions
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Example 2: Stylolite roughening 

Example 2 shows the development of stylolites from flat dissolution 
surfaces. In this simulation two crystals are pushed together where par-
ticles can dissolve along the interface between the two crystals (Fig. 
3.12.4).  

 

 
Fig. 3.12.5 Numerical simulation of stylolite formation in a lattice that is 200 parti-
cles wide. Roughness after (a) 200 time steps, (b) 500 time steps, (c) 1100 time steps 
and (d) 3500 time steps. (e) and (f) show mature stylolites (41000 time steps) in a lat-
tice that is 800 particles wide. (e) Initial noise is a Gaussian distribution of dissolu-
tion constants, and (f) a bimodal distribution with about 3 percent of particles that 
dissolve slower.  EXPERIMENT 13 

We assume that the solid can only dissolve (and not re-precipitate) 
and the concentration in the fluid is kept constant assuming that the 
system is constantly flushed with fluid. Dissolution is now a function of 

D Koehn . 
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elastic and surface energies as well as normal stress on the interface. 
The dissolution constants of particles have a Gaussian distribution 
(quenched noise) with a variation of 0.3. Figure 3.12.5a-d shows the 
development of a rough interface in a 200 particle wide lattice whereas 
Figs. 3.12.5e-d show two mature stylolites in an 800 particle wide lat-
tice with two different kinds of noise. The quenched noise in the disso-
lution constants enhances the roughening whereas elastic and surface 
energies tend to smoothen the interface.  

 
 

Symbols used in Chap. 3.12 

c Solubility at a given temperature [mol/m3] 
ceq Equilibrium concentration [mol m-3] 
ci Initial equilibrium concentration in an unstressed system [mol m-3] 
Dr Dissolution/precipitation rate [m/s] 
Eel Elastic energy [J mol-1] 
 Hs Change in Helmholtz free energy of the solid [J mol-1] 

Keq (K0) Equilibrium constant of a reaction (for the unstressed solid) 
kr Rate constant [mol s-1 m-2] 

 

Nspi
 Number of springs that are attached to particle i 

Np Number of particles that will dissolve in a given time step 
R Universal gas constant [8.3144 J mol-1 K-1] 
ri Radius of particle i [m] 
rsurf Local radius of curvature of a surface [m] 
Vs Molecular volume of the solid [m3 mol-1] 
α Activity coefficient of dissolved solid in a solution 

γ     Interfacial free energy between solid and fluid [J m-2] 

γi Surface energy of a single particle [J mol-1] 
 µ Change in chemical potential [J mol-1] 
 σn Change in normal stress on a surface [Pa] 

εij Strain tensor  

λ1, λ2 Lamé constants [Pa] 

∆

∆
∆

3.12 Fluid solid reactions



3.13 Solid-solid phase transitions and heat 
conduction 

3.13.1 Phenomenological observations 

This chapter is written from the particular perspective of the olivine to 
spinel reaction in the transition-zone of the mantle, and is therefore con-
cerned with polymorphic solid-solid phase-transitions under high pressure 
conditions in general, but with a certain emphasis on the properties of this 
reaction. The reaction is exothermal so that heat is released, which again 
influences the reaction. Therefore we are also including the description of 
heat conduction and its relation to the phase change in this chapter.  

The kinetics of pressure-induced transitions have not been studied as 
extensively as the kinetics of temperature induced transformations, 
mainly because of technical difficulties in high-pressure experiments.  

In contrast to cation exchange reactions, which additionally include 
large-scale diffusion between separate domains of a rock, polymorphic re-
actions are characterized by different structures of the same chemical 
compound. The olivine-spinel reaction is reconstructive in nature, involv-
ing breaking of bonds and building new structures within the crystal struc-
ture, which leads to large activation energies and a relative sluggishness of 
the reaction. Other polymorphic reactions (as for instance the transition 
from high to low quartz) rather involve a bending of bonds, thus having 
lower activation energies and larger transformation velocities. While the 
latter type is usually realized in temperature-driven transitions, the former, 
high-energy type is in generally related to pressure-driven transitions, and 
is the domain of high-pressure physics. A second difference between high 
and low pressure transitions is the role of strain energies, which can be 
usually neglected for temperature driven reactions. 

The commonly proposed mechanism for the phase transition is that 
of nucleation and growth, in which spinel crystals nucleate on grain 
boundaries and grow into the olivine phase. The kinetics is controlled 
by diffusion of oxygen atoms across the surface, yet diffusion is re-
stricted to the olivine-spinel surface and doesn’t require large-scale dif-
fusion. A particular topotactic relationship of the phases (i.e. the de-
pendence on the orientation of the host) is not required by such a 
mechanism. 

Till Sachau and Daniel Koehn  
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The olivine structure can be described as a hexagonal close-packed 
array of oxygen atoms, while spinel has a cubic close packing of the 
oxygen atoms. Cations have the same coordination in both minerals. 
This is unusual in high-pressure transitions, and it leads to a large vol-
ume-decrease of 8 percent due to the transition.  

The progressive volume decrease during the transition combined 
with different velocities for grain boundary migration leads to a com-
plicated interplay between the overall and local stress fields and conse-
quently with the pressure driven transformation. This interplay leads - 
with certain limits - to a self-controlled process. The reaction occurs far 
from equilibrium, which is true under mantle conditions as well as in 
experiments. Under these conditions one cannot expect the resulting 
grain boundaries to have a smooth surface, but to have a very rough, 
fractal-like topography (Nordmeier 1999). Such structures have been 
observed in experiments with germanates (see Fig. 3.13.1, Riggs and 
Green 2001) where the structures have a size on the scale of several 

m. 
 

 
Fig. 3.13.1 Output of a simulation (a) in comparison with experimental results (b). 
The experimental results were obtained in germanates, using a Griggs apparatus 
(Riggs and Green 2001; reproduced with kind permission of Elsevier). The simula-
tion-run applies the above-described system, including latent heat release, and is 
based on an activation energy of 450 kJ. Despite the application of different types of 
deformation - uniaxial compression in (a) and shearing in (b) - similar patterns de-
velop. Spinel is black and olivine grey in (a), whereas the high-pressure phase is light 
grey in (b) 

3.13.2 Natural examples 

General examples 

Polymorphic phase transitions are common in metamorphic rocks of 
the crust as well as in the mantle. Examples range from the high/low 
quartz to the aragonite/calcite transition and the Al2SiO5 polymorphs. 

T. Sachau and D. Koehn 
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However, natural examples of purely pressure driven transitions are 
rare in the research area of a common field geologist. Examples for ac-
cessible pure high-pressure polymorphs are the numerous varieties of 
carbon in the form of graphite, fullerenes or mantle-derived diamonds. 
In the vicinity of meteorite impacts, stishovite forms as a high-pressure 
variety of quartz. 

High-pressure transformations in the mantle 

The mantle has major density discontinuities at 400 km and 670 km, 
which are observed by transitions in calculated seismic velocities. These 
discontinuities divide the mantle into upper mantle, transition zone and 
lower mantle and could be due to abrupt changes in composition, but 
are generally assumed to be the result of high-pressure phase transitions 
in the constituent minerals of a uniform-composition mantle.  

Petrological studies have shown that the upper mantle is mostly com-
posed of Mg-rich olivine, which will be transformed in the given 
depth-range from the hexagonal close-packed array of oxygen-atoms 
to the cubic close-packed structure of spinel, thus providing a structural 
phase-transformation, which involves just the diffusion of an oxygen-
atom from one site to another and involves a large increase in density 
at the 400 km discontinuity. 

Strong evidence for the important role of the phase-transition is 
given by the occurrence of deep-seated earthquakes in the mentioned 
depth-range, which cannot be explained by simple brittle failure, but 
could develop due the changing mechanical properties of the mantle 
material and the dynamics of the phase-change.  

3.13.3 Driving forces, equations describing the system 

A sufficient pressure is a necessary condition, however the driving 
force for the phase transition and hence the rate of reaction is the 
change in Gibbs free energy before and after the phase transition. This 
again depends on the change of elastic and surface energies as well as 
the volume decrease due to the transition. Thus the interplay between 
local reaction rates plays a vital role for the structure of the phase 
boundaries at a specific point in time and space. The following equa-
tions were derived for the stochastic behaviour of a given system, and 
not for grain boundary structures in particular. The equations for time-
independent growth and nucleation where originally derived by John-
son and Mehl (1939), Avrami (1939, 1940, 1941) and Turnbull 
(1956). 
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The Gibbs free energy is composed of two different contributions: 
the volume change of the phase and the change in free Helmholtz en-
ergy, where the latter is made up of the elastic energies and the surface 
energies within the system, thus the basic relation is (Shimizu 1992) 

∆G = σ∆v + ∆f , (3.13.1) 

In addition, in the context of pressure-induced reactions, some ener-
gies may be released while others will be absorbed, which will expand 
Eq. 3.13.1 to 

 

∆G = σ∆V + ED + ES + EPM +γNP , (3.13.2) 

where ED is the strain energy introduced by high pressure, EPM is the 
strain energy created by the phase mismatch, γNP is the surface energy 
created by the new phase and ES is the energy of heterogeneity (i.e. the 
energy of grain surfaces, point defects and others). 

An important feature for the direction of pure grain boundary mi-
gration is the dependence of grain boundary reactions on the normal 
stress on the grain boundary (σn), which is (Gibbs 1906) 

 

∆G = σ n∆V + ∆f , (3.13.3) 

A rate for a reaction is in principal the probability of a single or a 
number of molecules to change from one state to another. Assuming 
the growth rate to be time independent, which is generally the case un-
less growth is controlled by diffusion, the following kinetic laws can be 
derived. 

For grain growth, the net rate (Y) can be calculated by the difference 
of the positive and the negative rates. With respect to the positive and 
negative energy contributions this gives (Sung 1976) 

 

Y =Y0T exp
− Q+ ED + ES( )

RT

⎛ 

⎝ 
⎜ 

⎞  

⎠  
⎟  −exp

− Q − ∆G − EPM −γNP( )
RT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
, (3.13.4) 

where Y0 is a pre-exponential factor, Q is the activation energy and R is 
the universal gas constant. 

In case of nucleation, the rate (N) has to include a second activation 
energy  Qhom , which is controlled by the surface and the strain energy 
of a nucleus smaller than a specific critical radius. A negative rate does 
not exist, since the nucleus is considered to form spontaneously. There-
fore the nucleation rate is  

where 

 

∆ G is the Gibbs free energy decrease, σ is the mean stress, 

 

∆ V the 
volume change due to the transition and ∆ f is the change in free Helmholtz 
energy of the system, which is commonly defined as the change in elastic 
and surface energies (Langbein 1999). 

∆

T. Sachau and D. Koehn



3.13 Solid-solid phase transitions and heat conduction      199 

 

N= N0Texp
−∆G

RT

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ exp

−∆Qhom

kT

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ . (3.13.5) 

In case of spherical nucleation, 

 

∆Qhom  is defined as 

 

∆Qhom =
16π γNP( )3

3 ∆Gv + Eε( )2
, (3.13.6) 

where ρ is again the surface energy and Eε is the strain energy of the 
nucleus. A standard-simplification is to ignore Eε in the calculation. For 
a more complete review see e.g. Shekar and Rajan (2000). 

3.13.4 Possible simulation techniques 

Phase transitions 

Various methods to simulate grain growth or molecular growth exist, 
though most are based on more or less purely probabilistic techniques 
(Monte Carlo methods), applying a probability to every particle to re-
act. These models are purely interested in the shape of the evolving 
structures due to a single process, and do not (usually) involve a physi-
cally meaningful scaling in time or space. However, scaling in time and 
space are necessary in order to couple independent processes, which is 
necessary in order to study the full dynamics of a pressure driven phase 
transition. In the current context various techniques were tested - ran-
dom techniques as well as non-random techniques - though for the 
sake of simplicity the following section is concerned with non-
probabilistic number techniques only.  

Heat conduction 

The basic formula for heat-flow is the parabolic differential Fourier-
equation, which can be solved by finite differencing. To solve the 
problem of heat conduction, several techniques can be applied, in par-
ticular finite differencing and Finite Element approaches. Relaxation-
methods, as used for the stress-relaxation in Latte, can also be applied.  

3.13.5 Implementation in Elle 

The implementation is based on the discrete element code Latte, which 
is described in detail in Chap. 3.11. Discrete elements are referred to as 
“particles” that map to unodes in the Elle data structure. The code uses 
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an underlying triangular lattice of linear elastic springs to allow the cal-
culation of stress and strain tensors for every node, based on the nor-
mal stresses of the connecting springs. An additional rectangular lattice 
in the background allows the calculation of thermal conduction due to 
latent heat release. In the simulations particles are treated as independ-
ent kinetic subsystems, which allow the application of the mentioned 
stochastic kinetic laws. This setting treats the interaction of particles due 
to volume change and changing rheological properties. 

The process, as implemented in Latte, aims to combine probabilistic 
techniques – in order to include chaotic, self-controlled grain growth – 
as well as non-random elements, to provide physical reliability. 

Modelling grain-growth as a single process involves basically two 
steps within Latte: the calculation of the actual Gibbs free energy, com-
bined with an internal phase-transition of particles sitting on grain 
boundaries and a subsequent calculation of the new energy state of the 
concerned particles. This allows the calculation of the difference in free 
energy, which can be used to calculate a growth-rate. This step is per-
formed for each side of a hexagonal particle – using the normal stress 
in the affected direction – and thus allows the calculation of the time it 
takes to overgrow a complete particle.  

Time steps are set dynamically, by calculating the transformation 
time for the fastest reacting particle, which will define the new t. Parti-
cles, which are not completely transformed in the given time step are 
partially transformed. In that respect the method is similar to phase 
fields.  

Nucleation of spinel grains is not included in the current release of 
Latte. 

Normal stresses on the grain boundary, as used in the context of 
grain boundary migration, can be calculated the following way (Ranalli 
1995): 

 

σ n =
1

2
σ11 +σ 22( )+

1

2
σ11 −σ 22( )cos 2Θ( )+σ12sin 2Θ( ), (3.13.7) 

where 

 

Θ is the angle of the grain-boundary relative to the principal 
stress.  

Positive and negative contributions to the elastic energy change can 
be approximated by subdividing the total strain into a spherical and a 
deviatoric component by 

 

Es =
K eii( )2

2
, (3.13.8) 
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and  

 

Ed = µ eijeij( ) , (3.13.9) 

where Es is the energy of dilatation, Ed the energy of distortion (Saada 
1993). 

The expansion/contraction of the molar volume due to temperature 
has to be included into the calculation of the stress tensor under the ex-
treme conditions of the olivine→spinel phase change, where the expan-
sion coefficient κ can be calculated as  

 

κ T( )= a + bT +cT −2 , (3.13.10) 

where a, b and c are parameters given by Akaogie (1989) and the ac-
tual molar volume by 

 

V = V0 × exp

κ T( )dT
298

T

∫
⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
. 

(3.13.11) 

In order to solve the heat-flow equation, Latte uses a Finite Differ-
ence technique based on a square lattice. The solution is derived using 
an ADI (Alternating Direct Implicit) algorithm. The heat-flow solution 
is an extra class within Latte that needs an (primitive) interface to 
communicate with the triangular elastic lattice. Currently it can solve 
matrices for a single heat-capacity and heat-conductivity, thus neglect-
ing differing parameters for different materials. The great advantage of 
using unified parameters is the considerably accelerated computation 
time, since the matrices have to be solved only once instead of having 
to be solved for every single vector. 

A general difficulty in the Finite Difference-approach is how to handle 
deformation of the underlying lattice. In many well-known Finite Differ-
ence methods the solution is based on a fixed spacing in the x- and y-
directions, in which case the system of equations cannot be solved for 
varying parameters. One of the strengths of the ADI-method, beside its 
stability for every ∆ t, ∆ x, ∆ y, is its solvability in spite of changing posi-
tions of lattice-boundaries. 

      

During an ADI-run every time-step is split into two equal parts. In the 
first part, which means integrating from k

 

∆ t to (k+1/2) ∆ t, x is taken to be 
implicit while y is treated explicitly. In a second step, from (k+1/2) ∆ t to 
(k+1) ∆ t, the method is made explicit in x and implicit in y. In matrix form, 
Douglas and Peaceman (1955) proposed 
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a( ) I + B1( ) ˜ u n+1/ 2 = I − B2( )un +
k

2
f n+1/ 2 x − sweep( ),

b( ) I + B2( )un+1 = I − B1( ) ˜ u n+1 +
k

2
f n+1/ 2 y − sweep( ),

 (3.13.12) 

where f is a source term and will be ignored. This algorithm can be 
economized into a form, in which B1 does not appear explicitly 
(Wachspresse and Habetler 1960). The terms ‘explicit’ and ‘implicit’ in 
the context of numerical mathematics refer to different schemes of the 
finite differencing (Chapt. 2.4, and e.g. Press et al., 1992). 

Beside the advantage of being solvable for different spacing in x and 
y, the ADI method only involves solving a number of equations that 
are essentially tridiagonal and therefore computationally inexpensive.  

Diffusion in the 2-dimensional case is generally governed by a para-
bolic partial differential equation of the form 

 

∂u

∂t
=

∂
∂x

D
∂u

∂x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ +

∂
∂y

D
∂u

∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , (3.13.13) 

where D is the diffusion coefficient and u may be for example 
concentration or temperature.  

Application to thermal conduction yields the classical Fourier-
equation  

 

ρc
∂T

∂t
=

∂
∂x

k
∂T

∂x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ +

∂
∂y

k
∂T

∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + ˙ f , (3.13.14) 

with ρ the density, c the specific heat and k the heat diffusivity. 

 

˙ f  is the 
remainder of the Taylor expansion and represents a source term, which 
can be ignored if no constant heat-sources exist, leading to a Laplace-
term (Hering et al., 1992). Implicit finite differencing (i.e. approximat-
ing infinite terms by Finite Differences, compare e.g. Press et al., 1992) 
of Eq. 3.13.2 with 

€ 

˙ f = 0 now yields: 

 

ρc
Ti,k

n+1 − Ti,k
n

∆t
= k

Ti+1, j
n+1 − 2Ti, j

n+t +Ti−1, j
n+1

∆x( )2
+

Ti, j+1
n+1 − 2Ti, j

n+1 +Ti, j−1
n+1

∆y( )2
.. (3.13.15) 

In Eq. 3.13.15, n is the time-step, while j and k represent the spatial 
mesh. Transformed to the ADI-method, this gives 

 

Tj,k
n+1/ 2 = α δx

2Tj,k
n+1/ 2( )+α δy

2Tj,k
n( )+Tj,k

n , and (3.13.16a) 

 

Tj,k
n+1 = α δx

2Tj,k
n+1/ 2( )+α δy

2Tj,k
n+1( )+Tj,k

n+1/ 2. (3.13.16b) 
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Including the definitions 

 

α =
k∆t

2ρc ∆x( )2
; β =

k∆t

2ρc ∆y( )2

x = k∆x; y = j∆y;k, j =1,2,3,…

δx
2Tj,k

n = Tj+1,k
n+1 − 2Tj, k

n+1 +Tj−1,k
n+1 ; δy

2Tj,k
n = Tj,k+1

n+1 − 2Tj, k
n+1 +Tj,k−1

n+1

 
(3.13.17) 

this idea expands to matrix-equations of the following type 
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0 ... ... ... ... ...
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and 
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−β 1+ 2β −β 0 ... 0
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(3.13.19) 

These matrices are tridiagonal (i.e. they have non-zero elements only 
on the diagonal plus/minus one row) and can be solved by applying 
the Gauss-algorithm (compare e.g. Gershenfeld 1999; Press et al., 
1992) or by an algorithm optimized for matrices of that form.  

One can also solve it for the total system instead of solving it for sin-
gle vectors, which is probably the easiest and – more important – fast-
est method, by simply uniting the temperature-vectors to a matrix. 

Such an algorithm cannot be solved without the assumption of 
boundary conditions (i.e. setting boundary nodes to certain independ-
ently defined values), due to the missing parameters in the edges of the 
matrices. The boundary condition can be set for instance according to a 
Dirichlet condition, which governs the temperature of boundary nodes 
as a function of time. In case of the algorithm as implemented in Latte, 
T as a boundary condition is currently kept constant at a reasonable 
temperature (for instance 1000 K). 
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3.13.6 Examples 

Heat conduction 

An example for a combined phase-change and heat-flow experiment is 
given in its own chapter (Chapt. 4.5). In Fig. 3.13.2 a simple example 
is shown in case where four grains were initially at1500 K, and the sur-
rounding grains at 1000 K. Boundary conditions were set at 1000 K 
and the system was let to cool to this temperature. Note that the condi-
tions for the deformation and the temperature-distribution are extreme 
and serve only to visualize the concept, although they are based on re-
alistic physical properties for olivine. The size of the box is set to 1 
mm, the time-step to 0.1 s. 

 

 
Fig. 3.13.2 Heat conduction under vertical shortening of the material. Boundaries and 
grains are initially at 1000 K (dark grey), except for four grains that started at 1500 K 
(light grey). The size of the model is 1 mm, time step  t = 0.1 s, the heat capacity c = 
1005 J/(kg K), the density is 4.2·103 kg/m3 and the thermal diffusivity is 1·10-6 m2/s. 
These are typical values for olivine 

Phase Transition  

This example illustrates the developing structures during a high pres-
sure phase transition including latent heat release. Figure 3.13.3 shows 
the growing spinel in a matrix of olivine where spinel is black. Shading 
in the olivine matrix indicates the differential stress. The main compres-
sive stress is vertical. The growing aggregates have an elongation paral-
lel to the main compressive stress. On their sides little anti-crack like 
structures grow perpendicular to the main compressive stress.  

 

T. Sachau and D. Koehn
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Fig. 3.13.3 Simulation of spinel growth in an olivine matrix. Spinel is black and oli-
vine grey. Differential stresses are shown as grey scales in the olivine matrix 
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Symbols used in Chap. 3.13 

B Coefficient matrix 
c Specific heat [J kg-1 K-1] 
D Diffusion coefficient [m2 s-1] 
ED Strain energy introduced by high pressure [J mol-1] 
Ed Energy of dilatation [J mol-1] 
EPM Strain energy created by phase mismatch [J mol-1] 
ES Energy of heterogeneity [J mol-1] 
Eε Strain energy of nucleus [J mol-1] 
Es Energy of distortion [J mol-1] 
e Strain tensor 

 

˙ f  Remainder of Taylor expansion series in Eq. 3.13.14 

Change in Helmholtz energy of the system [J mol-1] 
Change in Gibbs free energy [J mol-1] 
Activation energy associated with homogeneous nucleation [J mol-1] 
Free energy change due to volume change 

K Bulk modulus [Pa] 
i,j Spatial mesh indices 
k Heat diffusivity [m2 s-1] 
l1, l2, l3 Parameters used in Eq. 3.13.10 
N, N0 Nucleation rate; associated pre-exponential factor [m-3 s-1] 
Q Activation energy [J m-3] 
s Source term in Eq. 3.13.12  

 

˜ u , u temperature vector (in y and x respectively)  
V, V0 Molar volume; associated pre-exponential factor in Eq. 3.13.11 
 V Volume change due to phase transition [m3 mol-1] 

Y, Y0 Net rate for grain boundary migration [m s-1], and pre-exponential factor 
α, β, δ Mathematical variable 

γNP Surface energy created by new phase [J m-2] 

Θ Angle between grain boundary and principal stress 

κ Expansion coefficient for phase change.  
µ Shear modulus [Pa] 
ρ Density [kg m-3] 

σ, σ  Mean stress [Pa], Normal stress acting on grain boundary [Pa] 

∆ f 
∆ G 
∆ Qhom

∆ Gv 

∆

n
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4 Case studies and coupling of processes 

This chapter with eight authored sections presents a selection of possible 
application of microdynamic simulation to address geological questions. 
The various processes that have been introduced in the previous chapter 
were used, sometimes with minor additions or modifications. Because 
processes in rocks never operate in isolation, the reader will see that the 
various authors in this chapter have combined two or more processes to 
simulate the microstructural development under investigation. As such the 
authors have fully taken advantage of the possibility of the Elle software to 
couple processes. 

 

Editors: Mark W. Jessell, Daniel Koehn and Paul D. Bons 



4.1 Grain shapes and sizes during static grain 
coarsening in salt 

4.1.1 Anisotropic grain growth 

Grain boundary energy anisotropy (the anisotropy of grain boundary en-
ergy (γ) as a function of grain boundary-lattice orientation) plays a demon-
strable role in determining grain shapes in salt (NaCl) polycrystals under-
going grain growth (Fig. 4.1.1). The influence this anisotropy has on grain-
growth kinetics (Rohrer 2005), and the nature of the grain boundary net-
works that develop have been investigated using the Elle grain boundary 
migration module.  

 
 

 

Fig. 4.1.1 Grain growth in salt (NaCl). Reflected light image of a polished and 
etched surface of a sample of compacted polycrystalline salt showing the growth 
of new euhedral grains (Schenk 2004) 

 

Mark W. Jessell, Janos L. Urai and Oliver Schenk 
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4.1.2 Implementation in Elle 

This experiment uses the code described in (Bons et al., 2001) to simulate 
boundary energy driven grain growth in a material with an anisotropic 
boundary energy. Unfortunately, the actual anisotropy of grain boundary 
energy for NaCl is not known, so instead we draw upon data from other 
face-centred cubic (fcc) systems, which are isostructural with NaCl (such 
as MgO) for some help. In these simulations we ignore any independent 
anisotropy of grain boundary mobility, so that the patterns of anisotropy 
could in fact be equally well interpreted in terms of the mobility term. The 
anisotropy patterns for some isostructural fcc systems have been calculated 
experimentally (Saylor et al., 2000) and from first principles (Braun et al., 
1997). The two approaches give similar patterns and magnitudes of anisot-
ropy. For the experimental results, the maximum of the best-fit surface en-
ergy function is at (111) and the minimum is at (100). The relative surface 
energies of the low index planes are γ(110)/γ(100) = 1.040±0.008 and 
γ(111)/γ(100) = 1.072±0.010 (Fig. 4.1.2). 

 

 

Fig. 4.1.2 The variation of normalised interfacial energy for MgO at 1400ºC, de-
rived from thermal groove data (Saylor et al., 2000) 

In order to reduce the complexity of the system, we have only consid-
ered a single-axis model for boundary energy variations, and have used the 
range of anisotropies along the (100)-(111) plane, which is in any case dis-
plays the greatest anisotropy variation (Fig. 4.1.3) 

M. W. Jessell et al.
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Fig. 4.1.3 Variations in normalised boundary energy as a function of the angle of 
the boundary with the 100-axis, for the six experimental runs 

An initially randomly oriented aggregate consisting of 315 grains (and 
hence an average grain area of 3.17 x 10

-3
 (the entire model has unit area) 

with a foam texture, was allowed to grow for between 100,000 and 
300,000 time steps (this may take several hours). Experiment A, which has 
an isotropic surface energy distribution, produces a foam texture with tri-
ple junction angles of about 120°. At a first glance, the microstructure in 
the other experiments looks like a foam texture, but most triple junction 
angles are in fact far from 120 degrees (Fig. 4.1.4).  

 

 

Fig. 4.1.4 Experiment F. (a) Time step 0, shading reflect lattice orientation. (b) 
Time step 100,000. Most triple junction angles reflect surface energy anisotropy 
by being far from 120 degrees.  EXPERIMENT 15 
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The rate of grain growth in all experiments with a surface energy anisot-
ropy is vastly decreased relative to an identical experiment where surface 
energies were assumed to be isotropic (A), and experiments with a high 
boundary energy anisotropy quickly reach an apparently stagnant grain 
size (Fig. 4.1.5). After a considerable time in the experiments with higher 
surface energy anisotropies, a second phase of grain growth commences, 
dominated by the exaggerated growth of just one or two grains (Fig. 4.1.6). 

  

 

Fig. 4.1.5 Evolution of average grain area as a function of time, for a range of 
boundary energy anisotropies. Note the extended period of slow grain growth that 
occurs at higher anisotropies 

 

Fig. 4.1.6 Experiment C. (a) Time step 0, colours reflect lattice orientation (b) 
Time step 200,000.  EXPERIMENT 15 
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4.1.3 Discussion 

These experiments demonstrate that increasing boundary energy anisot-
ropy initially modifies the effective grain boundary mobilities. For iso-
tropic grain growth, the rate of grain area increase is linear with time. 
However, for the non-anisotropic cases the rate of growth undergoes a 
three stage evolution, with an initial period of rapid growth, followed by a 
period of slower growth whose length increases with increasing anisot-
ropy, and finally a second period of rapid growth, which shows a similar 
rate of grain area increase as the isotropic case. This three-stage behaviour 
renders predictions of growth rate in natural polycrystals extremely diffi-
cult, and can considerably extend the predicted time needed to modify the 
grain size of a sample. 

As the anisotropy increases, the final rapid grain growth stage is in fact 
a period of exaggerated grain growth, where only a few grains are increas-
ing in size, and the ‘matrix’ grains remain effectively frozen. 

Perhaps surprisingly, even with high anisotropies (and this has been 
confirmed with even more extreme models than those presented here) the 
grain shapes themselves are still relatively isotropic, and there is no evi-
dence for the macroscopic faceting seen in Fig. 4.1.1. It appears that to get 
macroscopically facetted grains you need the boundary shape to be domi-
nated by the surface energy anisotropy of the growing grain. 

We can imagine two principal explanations for this: 

1. Dislocations or impurities in the matrix grains reduce the boundary ani-
sotropy, but the growing, and hence clean, grain retains its anisotropic 
properties. In this case we would not expect faceting in pure systems, 
and it would also be suppressed when grain boundaries between two 
growing merge (as appears to be the case for the impinging grains at the 
top right of Fig. 4.1.1) 

2. There is an inherent asymmetry in the dissolution and precipitation 
processes at the atomic scale, such that the dissolution process is iso-
tropic, but the precipitation processes is anisotropic. Evidence for this 
comes from resorption microstructures in partial melts, which are typi-
cally rounded, in comparison to the euhedral crystal forms of crystallis-
ing grains (Lowenstern 1995). 

Clearly these simulations themselves are unable to resolve the real 
causes for faceting in salt polycrystals undergoing grain growth, however 
they do demonstrate that we need to go beyond the simple inference that 
boundary energy anisotropy is in itself sufficient to cause this effect. 
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4.1.4 Conclusions 

1. Anisotropic boundary energies can considerably slow down the rate of 
grain growth, and materials with anisotropic boundary energies can un-
dergo a three-stage growth behaviour. 

2. Boundary energy anisotropies cannot in themselves produce macro-
scopically facetted grains during grain growth, and an asymmetry of 
anisotropies across grain boundaries is suggested. 

 

M. W. Jessell et al.



4.2 Dynamic recrystallisation and crystalline 
plasticity  

Sandra Piazolo  

4.2.1 Introduction 

Dynamic recrystallisation occurs within a polycrystalline material during 
solid state deformation. Through dynamic recrystallisation a crystalline 
aggregate lowers its free energy by establishment of an array of grain 
boundaries in new material positions (Means 1983) and formation and/or 
migration of grain boundaries (Vernon 1981). Dynamic recrystallisation is 
characterized by a number of concurrent processes that act upon the poly-
crystalline material. As such it is useful to use a numerical simulations sys-
tem that allows simulation of concurrent micro-scale processes.  

The study of the effect of dynamic recrystallisation on the microstruc-
ture is of major interest to the metals industry to intelligently gear process-
ing techniques towards desired microstructures, but also for geologists to 
interpret the microstructures seen in geological samples. Microstructural 
characteristics induced by dynamic recrystallisation are used to evaluate 
the dominance of different processes active at the grain scale (e.g. Doherty 
et al., 1997; Urai et al., 1986; Hirth and Tullis 1992). In order to interpret 
microstructures that developed during dynamic recrystallisation, it is vital 
to know how they form. Questions to be answered involve the way and ex-
tent at which specific processes and combinations of processes affect the 
microstructure and the rheology of a rock during progressive deformation.  

In this study I am particularly interested in the effect of the variable 
dominance of grain boundary migration, subgrain formation, rotational re-
crystallisation, and nucleation of new grains from strained grains on the 
microstructural development of a polycrystalline aggregate.  

4.2.2 Theoretical background and implementation in Elle 

In the model presented here, I simulate dynamic recrystallisation during 
plane strain simple shear deformation of a polycrystal, involving crystal 
lattice rotation, formation of subgrains, recrystallisation by nucleation, re-
crystallisation by subgrain rotation (also called rotational recrystallisation), 
grain boundary migration and recovery. Figure 4.2.1 shows a schematic 
flow diagram of the Elle modeling system used in the simulations of dy-
namic recrystallisation. In the following, the theoretical background and 
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implementation in Elle is briefly summarized. For more details, such as the 
complete list of parameters used and reasoning behind those the reader is 
referred to Piazolo (2001) and Piazolo et al. (2002). 

 

 

Fig. 4.2.1 Schematic flow diagram of the dynamic recrystallisation model. In the 
white boxes, processes (upper part of box) are given which have no true driving 
force (e.g. calculation of viscosity). The parameters used for their calculations are 
shown in the lower part of box. Grey boxes signify processes (top of box) with 
driving forces (lower part of box) (modified from Piazolo 2001) 

Basil - Viscous Deformation 

The plane strain simple shear deformation is modelled by the two-
dimensional Finite Element code Basil (Barr and Houseman 1992, 1996, 
1999; see Chapt. 3.8) that can solve for linear and non-linear rheologies by 
the constitutive laws. In simulations presented here, a plane strain ap-
proximation with cyclic boundaries was used to simulate simple shear de-
formation. The material properties were chosen to be Newtonian viscous 
and the strain per time step is 0.05. Runs were performed up to a finite 
simple shear strain of two.  

. 
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elle_tbh - lattice rotation and dislocation density calculation 

Lattice rotation of grains and subgrains and accumulation of dislocations 
within these are two phenomena arising from dislocation glide during 
progressive deformation. Rotation of the crystal lattice is required to ac-
commodate an arbitrary deformation because deformation by slip is pos-
sible only along a limited number of slip systems. The resistance to dis-
location movement increases as dislocation pile-ups or tangles form, and 
additional stress is needed to further move dislocations. The crystal is 
said to “work-harden” (Kocks 1976, 1985; Mecking and Kocks 1981; 
Barber 1985).  

The routine that models the lattice rotations and the accumulation of dis-
locations consists of two parts. The first part is the calculation of the crys-
tal lattice rotation and the associated work using the Taylor-Bishop Hill-
calculation method (for details see Chap. 3.9; Taylor 1938; Bishop and 
Hill 1951a, 1951b; Lister and Paterson 1979) and the second part is the 
calculation of the accumulation of dislocations. The amount of accumu-
lated dislocations is calculated by using the work term from the elle_tbh 
calculation. Theory (Argon 1970; Kohlstedt and Weathers 1980) and ob-
servations of experiments (e.g. Durham et al., 1977; Beemann and 
Kohlstedt 1988; De Bresser 1996) suggest a general positive correlation 
between dislocation density and differential stress. Therefore, the disloca-
tion density at time step t, ρ(t), of a flynn undergoing work is calculated ac-
cording to the following equation 

  

ρ(t ) = aρ(t−1) + bW , (4.2.1) 

where ρ(t-1) corresponds to the previous dislocation density of the flynn and 
the dimensionless parameter W is the calculated work for deformation of 
the flynn according to the Taylor-Bishop-Hill code. a and b are chosen to 
be 0.4 and 0.7, respectively. The sum of the constants a and b is chosen to 
be larger than unity to ensure that there is an increase of dislocation den-
sity with progressive deformation. 

elle_split - subgrain formation 

Subgrain formation is simulated as described in section 3.4, where the new 
subgrain boundaries are chosen to be preferentially parallel or perpendicu-
lar to the crystallographic c-axis of the parent grain. The threshold disloca-
tion energy density Esg for subgrain formation is calculated according to 

  

Esg = ρEρ ρscale , (4.2.2) 
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where Eρ the energy of dislocations and ρscale the dislocation density scal-

ing factor. If Esg > τsplit (energy threshold value for splitting of a polygon), 

the grain has a probability to “split” into subgrains. The probability for 

“splitting” increases with increasing Esg. τsplit is chosen to be 2.4·10
5
 J/m

2
 

(Gottstein and Shvindlermann 1999). 

elle_nucl_xx – recrystallisation by nucleation 

The theoretical background and general implementation of this process is 
described in Chap. 3.4. For a nucleus to be successful, i.e. to develop into a 
grain, the total free energy must decrease during expansion of the nucleus. 
For this (a) a critical nucleus size has to be exceeded, (b) there must be an 
instability of the microstructure, like differences in dislocation density, and 
(c) the boundary must be a mobile, high angle grain boundary (Gottstein 
and Mecking 1985) on at least one side of the nucleus.  

The driving force for recrystallisation by nucleation is the strain energy 
of the grain or subgrain, Esg (Eq. 4.2.2). The critical threshold value τ nucl 
of a specific mineral species at a specific temperature is calculated from a 
base nucleation threshold value τ0 specific to a mineral species 

  

τ nucl = τ 0

0.001T +1
, (4.2.3) 

where T is the temperature. If Eγ > τnucl there is a certain probability that a 
nucleus which fulfils the three requirements for recrystallisation by nuclea-
tion is present in a polygon. In simulations τ0= 4.8·10

5
 JK/m

2
. 

elle_angle_rx - Rotational Recrystallisation 

A subgrain undergoes recrystallisation by rotation if all of its subgrain/low 
angle boundaries develop into grain/high angle boundaries.  

For each time step, the routine calculates the misorientation angle be-
tween adjacent polygons. If a polygon is completely surrounded by high 
angle boundaries the subgrain is promoted to grain status, without changes 
to any other attributes e.g. dislocation density or crystallographic orienta-
tion. In the model, the critical misorientation angle between a high and low 
angle boundary was 10° according to values given for quartz (e.g. White 
1979; Lloyd et al., 1992; Trimby et al., 1998).  

′

S Piazolo . 
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elle_gbm – grain boundary migration 

Grain boundary migration occurs due to the difference in stored internal 
strain energy and in chemical potential due to curvature between adjacent 
grains.  

In the model grain boundary migration is simulated according to Chap. 
3.5. The following two driving forces are taken into account:  

1. change in surface energy and  
2. change in strain energy stored in adjacent polygons. 

In the model the surface energy is a function of the c-axis misorientation 
angle between two adjacent grains or subgrains. The influence of the c-
axis misorientation angle is chosen so that the calculated surface energy of 
a specific boundary is zero at a c-axis misorientation angle of 0°, 0.1 × sur-
face energy EΓ at 10° and 0.99 × EΓ at 20° and above. EΓ is chosen to be 
7·10

-2 
Jm

-2
 according to measurements of surface energies provided by 

Urai et al. (1986), Gottstein and Shvindlermann (1999) and Stöckert and 
Dyster (2000).  

elle_recovery – recovery of dislocations 

Thermodynamically unfavourable lattice defects are removed during re-
covery. This process is simulated by a reduction of the dislocation density 
of each grain or subgrain per time step according to  

  

ρ(t ) = Rrecoveryρ(t−1), (4.2.4) 

where Rrecovery is a temperature dependent recovery factor. In our model (at 

T = 450 °C) Rrecovery is 0.94. 

elle_viscosity - viscosity calculation 

The rheology of the polycrystal is assumed to be viscous. In the model, it 
is assumed that the activation energy required to overcome an obstacle in 
the crystal lattice is the rate-limiting factor for the deformation of the ma-
terial and therefore the viscosity (η) is related directly to the square root of 
the dislocation density (Argon 1970; Frost and Ashby 1983): 

  

η =η0 + vρ1/ 2 , (4.2.5) 

where η0 is a base viscosity specific to the mineral species and v a mineral-
specific parameter (set to one in all applications of this routine in this 
book). η0 is chosen to be 3.15·10

18
 Pa s assuring that the viscosities in our 

simulations correspond to the range of viscosities suggested for greenschist 
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to amphibolite facies conditions (e.g. Carter and Tsenn 1987; Clark and 
Royden 2000).  

4.2.3 Experimental Runs 

To investigate the effect of the relative rates of the different microscale 
processes active during dynamic recrystallisation experiments were per-
formed in which one parameter was varied. The grain boundary mobility 
(Mgb) was chosen to be either 1·10

-12
, 20·10

-12
 or 40·10

-12
 m

2
s

-1
J

-1
. The in-

terested reader is referred to Piazolo (2001) and Piazolo et al. (2002) for 
further simulations the energy threshold value for recrystallisation by nu-
cleation was also varied. Two different starting microstructures were used: 
one fine-grained and one-coarse grained aggregate (Fig. 4.2.2). Figure 
4.2.3 shows the development of the microstructure in simple shear strain 
intervals of 0.25, showing both the grains as well as their dislocations den-
sities. Movies of the experiments are provided on the CD and a variety of 
image sequences of developing microstructures during progressive defor-
mation are provided on 

www.uni-mainz.de/FB/Geo/Geologie/tecto/elle_movies.  
 

 

Fig. 4.2.2 Starting microstructures where only high angle boundaries are shown; 
(a) coarse grained, (b) fine grained (modified from Piazolo 2001) 

4.2.4 Results 

Simulated microstructures (Fig. 4.2.3) correspond to microstructures that 
are commonly attributed to dynamic recrystallisation (e.g. Poirier and 
Nicolas 1975; Guillopé and Poirier 1979; FitzGerald et al., 1983; Hirth and 
Tullis 1992; Takeshita et al., 1999). These can be divided in those that de-
velop in initially coarse-grained aggregates and those in initially fine-grained 

S Piazolo . 
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aggregates. In initially coarse-grained aggregates, the following features are 
seen:  

● bimodal grain size distribution, where large, strongly elongated grains 

that are surrounded by small grains remain even at a strain of 2 (Fig. 

4.2.4a),  

● small recrystallised grains develop predominately at the rim of large, old 

grains (Fig. 4.2.4a),  

● strong shape fabrics develop (Fig. 4.2.3)  

● and domains of similarly oriented grains are observed at low recrystalli-

sation rates and low grain boundary mobility (Fig. 4.2.4b).  

In contrast, a uni-modal grain-size distribution develops (Fig. 4.2.4c) and 
the grain shape fabric is weaker (Fig. 4.2.3) in initially fine-grained aggre-
gates.  

If we analyse results in terms of increasing grain boundary mobility, 
then the following can be observed: the irregularity of grain boundaries in-
creases (Fig. 4.2.3), the mean grain size increases, the grain size of recrys-
tallised grains increases, the aspect ratios decreases, the overall dislocation 
density decreases, the distribution of dislocations becomes more homoge-
neous, the total amount of recrystallised grains (that is grains that are 
formed by recrystallisation by nucleation and rotational recrystallisation) 
decreases with increasing grain boundary mobility and the total length of 
both high and low angle boundaries decreases with increasing grain 
boundary mobility (see Piazolo (2001) and Piazolo et al. (2002) for a quan-
titative analysis). 

 

Table 4.2.1. Settings and abbreviations for simulations 

Grain boundary mobility Mgb [m
2
s

-1
J

-1
] Coarse-grained Fine-grained 

1·10
-12

 cg1-1 fg1-1 

20·10
-12

 cg1-2 fg1-2 

40·10
-12

 cg1-3 fg1-3 
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Fig. 4.2.3 Results of the 6 simulation runs. Different grey colours signify different 
grains, dark boundaries low angle boundaries and light grey coloured boundaries 
high angle boundaries. For the nomenclature of simulation runs refer to Table 
4.2.1 (modified from Piazolo 2001).  EXPERIMENT 16 

 

Fig. 4.2.4 Selected simulated microstructures. (a) High-angle grain boundaries in 

an initially coarse grained aggregate (cg1-1) showing a bimodal grain size distri-

bution due to recrystallised grains at rims of large grains (core and mantle struc-

tures; arrows). (b) Crystallographic orientation in grey scales in the same simula-

tion. Note clusters of similarly oriented recrystallised grains; different shading of 

grain boundaries signify different misorientation angles (dark < 10°, light > 10°). 

(c) High-angle grain boundaries in an initially fine-grained aggregate (fg1-1). 

Scale bars given assume a unit cell width of 1 cm. Shear strain is two. Modified 

from Piazolo (2001) 

S Piazolo . 
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4.2.5 Discussion 

The fabric development is significantly influenced by its initial grain size 
in the simulations. A strong shape fabrics and a bimodal gain size distribu-
tion develops in simulations of initially coarse-grained aggregates, whereas 
the shape fabric is weaker and the grain size distribution is uni-modal in 
initially fine-grained aggregates (Fig. 4.2.3). In addition, the recrystallised 
grain size in initially coarse-grained aggregates is larger than the recrystal-
lised grain size in the fine-grained counterpart.  

My results show that a change in the parameter value such as grain 
boundary mobility is sufficient to produce microstructures that are com-
monly interpreted to be the result of the strong dominance of one single 
process. The same processes operate in each of the simulations. The im-
portant difference between the different simulations is that the relative 
rates of the simulated processes vary due to the change in the value of 
grain boundary mobility. Although all processes are active and have some 
effect on the microstructure at all times, the rate at which one process af-
fects the microstructure may be significantly higher than that of the other 
processes. Accordingly, changes in parameters that are related to different 
conditions with respect to e.g. temperature, strain rate and fluid activity re-
sult in differences in developing microstructures caused by different rela-
tive rates of concurrent processes. Once it is know how the absolute and 
relative rates of concurrent processes vary with parameters such as tem-
perature, stress, strain rate, finite strain, fluid absence/presence and mineral 
species, we can use the resultant microstructures to interpret conditions 
prevailing during the deformation of the rock analysed.  

4.2.6 Discussion of technique 

Numerical simulations 

The general correspondence of results of the simulations with microstruc-
tures observed in rocks suggests that the method of discretisation of a 
complex system of interacting, concurrent processes to a set of successive 
processes active in small time and length intervals is indeed a valid nu-
merical technique. In addition, algorithms describing the effect of an indi-
vidual process on a microstructure seem to be a good approximation to ef-
fects of the corresponding process active in nature and values of 
parameters seem to be in the range of physical values.  

Nevertheless, the model can and should be improved significantly. Main 
improvements that could be envisaged for the current Elle system are: 
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1. Multiscale modelling: e.g. linking of the Potts model for subgrain 
growth and formation with the boundary model of subgrain formation. 

2. More rigorous calculation and bookkeeping of the types of dislocations 
that are generated, recovered and used in subgrain formation (disloca-
tion simulations). This would give better constraints on the types of 
subgrain walls forming and their crystallographic orientation. 

3. Extension of simulations to finite shear strains of 20 or higher. 

4.2.7 Conclusions 

Numerical simulations of microstructures that undergo progressive dy-
namic recrystallisation show that different values of grain boundary mobil-
ity result in microstructures that resemble those observed in natural exam-
ples and in experimentally deformed samples, if deformed at low versus 
high temperature or low versus high fluid content.  

A microstructure develops due to the effect of a number of concurrent 
processes. There is no switch between different processes at different con-
ditions, but a change in relative rates at which the different processes affect 
the resulting microstructure. Combining numerical simulations, experi-
mental data and observations in natural examples, the relationship of mi-
crostructures and conditions during their formation can be established. 
Once this is done, the geologist can interpret observed microstructures in 
terms of the interaction and dominance of different processes and with this 
understanding derive conditions of deformation. The latter use will be sig-
nificantly enhanced by extending the numerical simulation presented here 
to multiscale modelling taking into account local variations in dislocation 
densities and types of dislocations that are generated, removed and moved 
within a grain and subgrain. 

 

Symbols used in Chap. 4.2 

Esg Threshold dislocation energy density to start subgrain formation [J m-3] 

EΓ Surface energy of high angle grain boundary [J m
-2

] 

Eρ Energy of dislocation [J m
-1

] 

v Mineral-specific parameter [Pa s m] 

η, η0 Viscosity; base viscosity at zero dislocation density [Pa s] 

Mgb Grain boundary mobility [m
3
 J

 -1
 s

 -1
] 

Rrecovery Recovery factor 

ρ ρscale Dislocation density [m m
-3

], Dislocation density scaling factor 

τsplit Energy threshold for splitting of a polygon [J m
-3

] 

τnucl, τ0 Energy threshold for nucletion [J K m
-3

]; 

W Work done to deform a polygon [J m
-3

]  

,

S Piazolo . 



4.3 Localisation of deformation 

4.3.1 Introduction 

The localization of deformation in geological materials is a widely studied 
phenomenon at all scales, from the formation of deformation bands within 
single grains, up to crustal-scale shear zones (White et al., 1980; Poirier 
1980; Hobbs et al., 1986). There is widespread evidence (in the form of 
faults, shear zones, fold hinges, etc.) that localization plays a major role in 
determining the mechanical response of rocks, and results in tectonically 
and economically important structures. At each scale, and sometimes for 
each material, there is considerable speculation as to which processes 
dominate the observed localization behaviour. In the mantle, localization 
of deformation is necessarily much harder to document. It may, however, 
play a major role in controlling continental and mantle dynamics and the 
observable seismic anisotropies (Ellis et al., 2001; McNamara et al., 2001). 
The purpose of this section is to demonstrate a simple simulation scheme 
capable of investigating spatial and temporal patterns of instantaneous and 
cumulative localization of deformation at the grain scale, using a two-
dimensional numerical modelling scheme.  

4.3.2 Implementation in Elle 

We simulate a simple system in which three processes are active. We 
stress that these are not supposed to accurately represent the detailed be-
haviour of any single deformation process, but rather act as proxies for 
three classes of processes, namely a grain-size and strain dependant rheol-
ogy, a process that increases the grain size, and a process that reduces the 
grain size (see Jessell et al. (2005) for a complete set of the experimental 
parameters). The three processes are: 

1. We use the non-linear viscous Finite Element code Basil (Barr and 
Houseman 1996; see Chap. 3.8) to calculate the change in shape result-
ing from the application of a uniform translation of the upper surface of 
the model with respect to the lower surface, thus simulating bulk dextral 
simple shear. (Fig. 4.3.1b) 
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Fig. 4.3.1 The effect of individually applying the three processes to the same ini-
tial microstructure. (a) The starting microstructure, showing a foam texture with 
smoothly curved grain boundaries (individual nodes not shown). (b) Grey grain 
boundaries show the effect of deforming this microstructure with the Finite Ele-
ment code Basil, to a bulk dextral simple shear of 0.05, the deformation applied 
during one time step of the experiments described in this paper. The model im-
poses wrapping vertical boundaries, so with further strain the small grain in the 
top-right of the model would re-appear on the top-left hand side. (c) Grey grain 
boundaries show the effect of several steps of the grain size reduction process, re-
sulting in the production of several new high angle boundaries. (d) Grey grain 
boundaries show the effect of several steps of grain boundary migration, driven by 
boundary curvature reduction (commonly known as grain growth). The grain in 
the top right hand corner is visibly smaller than in the starting microstructure, and 
with further application of this process on its own, this grain would disappear 
(thus increasing the average grain size of the whole system) 

2. There are several processes that could result in a decrease in grain size 
in a rock including fracturing, twinning, kinking, metamorphic re-
equilibration and rotation recrystallisation, all of which are replaced in 
these experiments by a single process that inserts an approximately 
straight high angle grain boundary in a grain (Fig. 4.3.1c and see Chap. 
3.4). 

M. Jessell6       et al.
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3. We have used a simple Front-Tracking algorithm which calculates the 
new positions of the boundary nodes resulting from a minimization of 
local grain boundary curvature to describe a generic grain size increase 
process (Fig. 4.3.1d and see Chap. 3.6). Although this type of algorithm 
quite well describes normal grain growth (Maurice 2001) it is obviously 
a simplification of the more general case during deformation when in-
tercrystalline defect energy contrasts and/or surface energy contrasts 
may provide a larger and more complexly distributed driving force (Urai 
et al., 1986; Bons et al., 2001).  

 
A single experiment consists of defining a starting microstructure, then 

cycling this microstructure through the three processes, so that the micro-
structure is slightly modified by each process in turn. In this sequence of 
experiments we chose to change only two parameters. The first of the two 
parameters is the stress exponent (n in Eq. 3.8.6) of the grain size depend-
ent flow law, which could have values of 1 or 3. The second variable is the 
activation or non-activation of the Grain Size Reduction and Grain Size 
Increase processes. We thus define four Experiments A, B, C and D (Table 
4.3.1). 

Table 4.3.1 Characteristics of the four experiments described in this section 

 Stress ex-

ponent = 1 

Stress ex-

ponent = 3 

Without grain-size modifying processes A B 

With grain-size modifying processes C D 

4.3.3 Experimental Results 

These four simple experiments demonstrate a range of behaviours (Fig. 
4.3.2), a monotonic evolution for Experiments A and B versus a more 
complex path for Experiments C & D. As one might expect, in these ex-
periments, the more non-linear the system, either in terms of the rheology 
or the process coupling, the more complex the behaviour.  

The localization behaviour observed for experiment D is time depend-
ent, with a slow progression towards a broad zone of high strain (Fig. 
4.3.3). In contrast the location of the zone of instantaneous high strain rate 
is narrower and varies more quickly. These instantaneous high strain rate 
zones are mostly associated with either grain boundaries (as demonstrated 
in Jessell et al., 2005) or trains of fine-grained material. As these bounda-
ries migrate, and as new high angle boundaries form, these zones of 
localization shift accordingly. 

7 
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Fig. 4.3.2 Maps of the average first principal strain rate for each grain during time 
step 50 for each of the four experiments. The shading in each map is proportional 
to grain averaged strain rate, overlaid by the grain boundary network as white 
lines. The same look up table is used for all four maps. (a) Experiment A, showing 
a relatively homogeneous strain rate distribution, with a concentration of deforma-
tion in the small grain in the top-right. (b) Experiment B, showing a relatively 
homogeneous strain rate distribution, but with a concentration of deformation in 
the small grain in the top-right. (c) Experiment C, showing several subtle narrow 
horizontal zones of higher strain rate, which coincide with zones of finer grained 
material. (d) Experiment D, showing a broad sub-horizontal zone of high strain 
rate, which is in turn divided into narrow intense zones of deformation. These nar-
row zones coincide with zones of finer grained material. Bright pixels reflect high 
strain rates, dark pixels reflect low strain rates.  EXPERIMENT 17 
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Fig. 4.3.3 Maps of the average finite first principal strain for each grain during 
time step 50 for each of the four experiments. The shading in each map is propor-
tional to accumulated strain, overlaid by the grain boundary network as white 
lines. The same look up table is used for all four maps. (a) Experiment A, showing 
a relatively homogeneous strain distribution, with a concentration of deformation 
in the small grain in the top-right. (b) Experiment B, showing a relatively homo-
geneous strain distribution, but with a concentration of deformation in the small 
grain in the top-right. (c) Experiment C, showing a broad zone of higher strain. (d) 
Experiment D, showing a broad sub-horizontal zone of high strain. Notice that the 
high strain rate zones in Fig. 4.3.2d are not all high finite strain zones in this fig-
ure, and that the zone of bulk finite strain is much more clearly defined that the 
equivalent instantaneous high strain rate zone. Bright pixels reflect high bulk 
strain, dark pixels reflect low bulk strain.  EXPERIMENT 17 
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4.3.4 Conclusions 

1. Numerical simulations of coupled mechanical and microstructural evo-
lution during dynamic recrystallisation display two length and time 
scales of deformation localization behaviour. There is no significant 
large-scale localization of deformation unless the grain size modifying 
processes are active and there is a non-linear relationship between grain 
size and rheology. 

2. The intense zone of localization is neither temporally nor spatially sta-
ble, but leaves behind a broader zone of high finite strain. 

0      M. Jessell et al.



4.4 Reactions and fracturing 

Daniel Koehn  

4.4.1 Overview of phenomenon 

Reactions in the Earth are often associated with the development of frac-
tures. Most of these reaction-related fractures form due to a volume reduc-
tion or volume increase during the reaction. Fractures often enhance the 
permeability of a rock so that fluids that may speed up reactions can pene-
trate into otherwise closed systems (Jamtveit et al., 2000). This may lead to 
a feedback where infiltrating fluids lead to further reaction with volume 
change, which will then initiate new fractures, enhance permeability and 
so on. In addition to mineral reactions, volume change may also be initi-
ated during cooling or loss of water (Fig. 4.4.1).  

 

 

Fig. 4.4.1 (a) Mud cracks in dehydrating sediments. Picture from Namibia, cour-
tesy Cees W. Passchier. (b) Exfoliation cleavage in a basalt, near Kirn, Germany. 
(c) Extension veins around a reaction vein in retrograde Ultramafics from an 
ophiolite in the Liguride Units near Bonasola, Italy 
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A natural example of a mineral reaction that leads to volume change and 
fracturing is the reaction of stishovite to normal quartz. If the stishovite 
(the high pressure phase of quartz) forms inclusions in a garnet and the 
pressure is then released (for example during uplift) the stishovite may go 
through a phase-change to normal quartz with an increase in volume. This 
increase can lead to fracturing of the surrounding garnet. Another example 
of the combination of reactions and fracturing is the development of stylo-
lites (dissolution seams, see Chapt. 3.12) and associated fractures or veins 
that form perpendicular to the stylolite. Natural examples of fracturing dur-
ing loss of water or cooling processes are shrinkage cracks in drying muds 
or exfoliation cleavage in basalts (Fig. 4.4.1).  

4.4.2 Implementation in Elle 

In order to implement the combination of reactions that dissolve material 
or change the volume of phases in Elle we use two different approaches. 
The basis for the simulations is the Elle Latte fracture code described in 
detail in Chap. 3.11. It handles the initiation and propagation of fracture 
once the local breaking strength is exceeded. The reactions or volume 
change processes are handled by the following rules: in the case of ex-
panding inclusions and shrinkage patterns we change the volume of parti-
cles using a linear rate law independent of local stress or other factors. 
Each given time step the volume of a number of particles within certain 
grains or the volume of each particle in the simulation is changed. After-
wards the stress field is determined and bonds may break. Once all possi-
ble bonds are broken a new volume change is induced. The second ap-
proach treats the dissolution of material into a fluid along an interface 
coupled with fracturing of the solid. The dissolution routine is identical to 
the one described in Chap. 3.12. Each time a particle is dissolved or the 
lattice is stressed a new stress distribution is determined and bonds can 
possibly break. Examples of three processes (expanding inclusions, 
shrinkage patterns and stylolites in combination with fractures) are given 
below.  

4.4.3 Experimental runs 

Example 1: Expanding inclusions 

In this example single grains expand and develop fracture patterns around 
them. Two examples are shown in Fig. 4.4.2. The underlying microstruc-
ture is a polycrystal where grain-boundaries break more easily (with half 
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the failure limit). One or several grains are set to expand. The grains ex-
pand by an increase in the radius of all particles within the specified 
grains. During each time step the specified grains expand by a given 
amount, the elastic stresses are calculated, and springs may fracture. The 
fracture pattern in this case grows subcritically and depends on the expan-
sion rate of the expanding grains.  

 

 

Fig. 4.4.2 Fracture patterns around expanding grains. (a) Fracture pattern around 
an expanding grain, and (b) corresponding mean stress field. Dark is low stress 
and light is high stress. (c) large fractures around the expanding grain reach the 
boundaries of the model. Fractures nucleate at corners of the expanding grain. (d) 
Fracture pattern, and (e) mean stress around seven expanding grains. Resolution in 
the models is 100 particles (a-c) and 400 particles across (d-e).  EXPERIMENT 18 

Figures 4.4.2a-c show the fracture pattern and stress field in a simula-
tion that is 100 particles wide with a linear distribution of breaking 
strengths of springs. The initial grains are shown in the background. Figure 
4.4.2a shows the fracture pattern around the expanding grain after 10 time 
steps. Fractures develop around the expanding grain and grow into the ma-
trix from corners where stresses concentrate. The corresponding stress 
field is shown in Fig. 4.4.2b where dark shades represent lower stresses 
and light shades higher stresses. The stress field has a flower structure and 
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is strongly influenced by the developing fractures. The fractures partly 
separate stressed from unstressed regions and this gradient is probably re-
sponsible for the development of the fractures themselves. Figure 4.4.2c 
shows the fracture pattern after 20 time steps. The fractures have now 
reached the border of the model. Note that due to the low resolution of the 
model the underlying lattice is now visible, which means that it partly con-
trols the direction of the fractures. Figures 4.4.2d-e show the fractures and 
mean stress around seven expanding grains in a model that is 400 particles 
across. The fracture pattern is more dispersed since the underlying noise in 
breaking strengths is drawn from a Gaussian distribution and has a much 
wider variation than that shown in Figs. 4.4.2a-c. The stress fields are 
similar to the low-resolution model. Expanding grains where the fractures 
are not yet well developed show a circular stress field, whereas the stress 
around grains where larger fractures have developed show a more flower 
like geometry similar to the stress field in Fig. 4.4.2b. 

 

 

Fig. 4.4.3 Fracture patterns that develop due to a reduction in volume. Particles in 
the model shrink by a constant amount. (a) large shrinkage crack in a 200 particle 
wide lattice. Progressive shrinkage patterns in a 800 particle wide lattice after (a) 
100, (b) 200 and (c) 300 time steps. The fractures are interconnected in (d) so that 
the model is fragmented and the fractures open to accommodate any further area 
reduction.  EXPERIMENT 19 
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Example 2: Shrinkage patterns 

In this example all particles in the model shrink. This simulation mimics 
for example the development of mud-cracks in shrinking sediments. An 
initial Gaussian distribution of breaking strengths is used. Grain bounda-
ries have lower breaking strengths and thus fracture easier. Figure 4.4.3 
shows fracture patterns that develop during the shrinkage process. Figure 
4.4.3 shows a 200 particle wide lattice with a large curved fracture that has 
opened significantly. Fractures are shown in dark shades. The fractures 
show no preferred orientation with respect to the boundaries of the model 
or underlying lattice directions. Figures 4.4.3b-d show the development of 
fracture in a shrinking 800 particle wide model. Fractures nucleate at rela-
tively random locations but start to grow and organize into a well-defined 
network with a regular spacing. The whole network is finished in Fig. 
4.4.3d where darker colours indicate fractures that are opening to accom-
modate the strain due to the shrinking process. Polygons that are sur-
rounded by fractures have four to six edges.  

 

Example 3: Stylolites and cracks 

The two following examples show the development of two stylolites and 
cracks (Fig. 4.4.4). The initial setup is similar to the example of stylolite 
development given in Chap. 3.12, where a horizontal row of particles is 
dissolved at the beginning. The surrounding particles are defined as inter-
faces and can react with the fluid. Depending on the speed of the reaction, 
stresses may build up in the solid and fractures develop.  

In the example shown in Figs. 4.4.4a-b the model is compacted verti-
cally and stretched by a much smaller amount horizontally. Dissolution is 
slow so that stresses start to build up in the solid. This leads to the devel-
opment of conjugate shear fractures around the very slowly growing stylo-
lite. In the example shown in Figs. 4.4.4c-f the compaction is again verti-
cal but the box is also extended by a significant amount horizontally. 
Dissolution is faster than in the first example so that the dissolution of the 
solid can relax the compressive stress and the stylolite grows and develops 
a roughness. However the growing stylolite cannot relax tensile stresses 
due to the horizontal shortening component so that extensional fractures 
develop that are oriented perpendicular to the stylolite. These fractures de-
velop a well-defined spacing.  
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Fig. 4.4.4 Stylolite and fracture development. (a-b) Two stages of the develop-
ment of shear fractures around a stylolite where dissolution is so slow that high 
differential stresses can build up. These induce the development of conjugate 
shear fractures. (c-f) Four stages in the development of extension fractures per-
pendicular to the stylolite. In this example the dissolution at the stylolite reduces 
the compressive stress but cannot reduce the extension component parallel to the 
dissolving interface. Therefore tensile stresses build up that lead to the develop-
ment of extension fractures with a well-defined spacing 
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4.5 Combined phase transition and heat 
diffusion 

Till Sachau and Daniel Koehn  

4.5.1 Introduction 

The algorithms to simulate olivine-spinel phase transformations and to 
simulate heat-conduction are included in the Latte process of Elle, and are 
already described in Chap. 3.13. We discuss a combination of these proc-
esses below. 

Most phase-transitions involve the release or consumption of heat-
energy. At the same time the transition depends on the local temperature. 
Therefore the role of the latent heat release during a transition on the rate 
of the reaction itself becomes important and leads to a certain self-control 
of the transformation.  

The influence of temperature on reaction-rates is frequently discussed in 
the context of the proposed rapid olivine-spinel transition in subducted 
oceanic lithosphere. This transition is one important idea to explain deep-
seated earthquakes in the upper mantle along the Wadati-Benioff zone. 
The assumption is that relatively cool former lithosphere enters the stabil-
ity-field of spinel, and will thus lead to a rapid transition and an equally 
rapid loss of volume of the material. 

In the context of this chapter a different approach is used: by applying 
the idea of a temperature-driven reaction directly on evolving grain-
surfaces of newly-formed spinel-grains. What can be expected is a certain 
smoothing of grain-surfaces compared to algorithms that do not involve la-
tent-heat release, since the heat halo around transformed material will in-
crease local reaction-rates. As a side effect, the reaction is now controlled 
by a time-dependent parameter, the heat flow, and not only by time-
independent elastic and surface energies. In addition to the direct influence 
on reaction-rates, the temperature also influences several parameters of a 
material, e.g. the viscosity and the volume, which can be included into the 
overall algorithm. In the current state of the program only the change of 
the molar volume is taken into account. 

Apparently the influence of heat energy on surface structures of a new 
phase depends on the coordination of the velocity of heat-conduction and 
the rate of the reaction. If thermal equilibrium is reached prior to a signifi-
cant continuation of the reaction the effect will be minor. For this reason 
the activation energy of the reaction, which controls the velocity of the 
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transition, plays an important role in simulations. In case of the olivine-
spinel reaction previous work offers a relatively broad band of supposed 
activation energies, ranging from 300 to 450 kJ. 

4.5.2 Implementation 

The algorithms involved are already discussed in the chapters of the par-
ticular processes (Chaps. 3.11 to 3.13) and shall not be repeated here. The 
general law for the release of latent heat energy (�Q), depending on the 
volume change �V is 

  

∆Q = ∆HT, pequ
+ ∆∫ V ′ P ,T( )d ′ P . (4.5.1) 

In the current context, the above formula is ignored and Q just replaced 
by H, the difference in enthalpy between the two phases, which is as-
sumed to be 39050 ± 2620 J/mol (Akaogie 1989). The temperature differ-
ence before and after the transition is calculated on the basis of the molar 
heat capacity (Cm, J/molK)  

  

Cm = a + bT −0.5 +cT −2 + dT −3 ,  (4.5.2) 

  

∆Q = NCm T1 − T2( ) , (4.5.3) 

where a, b, c and d are parameters given for instance by Akaogie et al. 
(1989), N is the number of moles involved and T1, T2 are the temperature 
before and after a transition. 

4.5.3 Example runs 

Two experiments of growing spinel grains (black) and the associated tem-
perature fields are shown in Fig. 4.5.1. The two experiments lead to a 
complex pattern of the distribution of heat-energy, due to the fact that 
many overlapping small-scale fields exist (in particular Fig. 4.5.1b). The 
difference between the two experiments is the activation energy, which 
was either 450 kJ (Fig. 4.5.1a-b), or 380 kJ (Fig. 4.5.1c-d). 

As a result, the evolving grain boundaries of the spinel phase look less 
uneven in Fig. 4.5.1c due to a narrow temperature halo in comparison to 
Fig. 4.5.1a. As a second observation, particularly Fig. 4.5.1d displays an 
increasing narrowing of the temperature halo with ongoing transformation, 
caused by an acceleration of the reaction rate as a result of rising differen-
tial stresses.  
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Fig. 4.5.1 (a) Two stages of growth of spinel (black) within olivine (grey). Time 1 
is after 35 and time 2 after 68 steps. (b) Associated temperature distribution, with 
brightest area at 1025 K. The high activation energy (450 kJ) leads to a sluggish 
phase transition. (c) Same phase transition with an activation energy of 380 kJ, 
which increases the reaction rate. (d) Associated temperature distribution with 
brightest area now at 1200 K, despite constant heat loss at the boundaries that are 
held at the same constant temperature of 1000 K as in (b) 
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Symbols used in Chap. 4.5 

a,b,c,d Parameters used in Eq. 4.5.2 

Cm Molar heat capacity [Jmol
-1

K
-1

] 

�H Enthalpy-difference between two phases [J mol-
1
] 

N Number of moles 

P’ Derivative of pressure [Pa] 

�Q Heat energy [J mol-
1
] 

T1, T2 Temperature before and after a phase transition [K] 

�V Volume difference between two phases [m
3
 mol

-1
] 
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4.6 Visco-elastic and brittle deformation 

Daniel Koehn and Till Sachau 

4.6.1 Overview of phenomenon 

Rocks that are deformed in the upper part of the Earth’s crust may behave 
in a visco-elastic or brittle manner depending on strain rates, temperature 
and material properties. A rock that behaves in a brittle manner fractures 
once a failure strength is reached, whereas a rock that behaves in a viscous 
manner flows like a fluid as a function of time. Elastic strain as a function 
of elastic material parameters is recoverable. Whether or not a visco-elastic 
rock flows or reaches failure and fractures depends on the interplay be-
tween build up of elastic stress and release of this stress through ductile 
flow of the material. This behaviour is obvious near the brittle-ductile tran-
sition but can be found throughout the crust in rocks that contain minerals 
or layers with different material constants. An example is given in Fig. 
4.6.1 where a more brittle layer in a mainly ductile matrix is both fractured 
and folded. 

 

 

Fig. 4.6.1 Visco-elastic deformation in a rock sample from Namibia, courtesy 
Cees W. Passchier. Width of view is about 20 cm. The dark layer behaves in a 
more viscous manner than the white matrix and can build up elastic stresses so 
that it fractures and breaks apart. Even though the dark layer is fractured it still 
behaves in a viscous manner and is folded. Fractures also extend into the white 
matrix 

Other examples for visco-elastic deformation include most boudin-types 
where layers are fractured and then neck during subsequent viscous behav-
iour. Another example are porphyroclasts that are fractured internally 
within a matrix that flows.  
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4.6.2 Implementation in Elle 

The implementation in Elle is based on the spring-network Latte described 
in Chapt. 3.11. When the spring-network deforms visco-elastically the 
springs will change their length depending on the stress. This operation re-
duces the deviatoric stresses on a node, but doesn’t affect the mean stress. 
In contrast to an elastic relaxation, which occurs immediately, viscous de-
formation depends not only on the stress but also on time. Therefore we 
calculate the viscous deformation after an applied elastic deformation for a 
given time.  

As a basic assumption we extend the discrete-element lattice from a 
network of circles or spheres to a network of ellipses, where the ellipses 
are circular in the initial, undeformed state. Every ellipse is defined by its 
two main axes, which will rotate and change length due to the actual 
stress-tensor in direction of (in case of normal stresses) or perpendicular to 
(in case of shear stress) the axes. This will lead to a rotation and deforma-
tion of the particles that define the spring network.  

The normal stress (σn) and the shear-stress (σs) can be calculated via: 

  

σ n = 1

2
(σ xx +σ yy ) + 1

2
(σ xx −σ yy ) cos(2φ) +σ xy cos(2φ)  (4.6.1) 

and  

  

τ = 1

2
(σ xx −σ yy ) sin(2φ) +σ xy cos(2φ) , (4.6.2) 

where σxx and σyy are the stress in the x- and y-direction and φ the angle be-
tween the x-axis and the long axis of the ellipse. Subtraction of the mean 
stress from σn gives the deviatoric normal stress. 

During the elastic relaxation spring-lengths and repulsion parameters for 
a particular node are constantly adapted to the shape and orientation of the 
superimposed particle. In a following version the spring-model may be re-
placed by beams in order to include elastic micro-rotations as well. 

A Newtonian law of viscosity was used, where the differential stress 
(�σ) is linearly related to the strain rate (

  

˙ ε ) through the viscosity (η): 

  

σ = 2η ˙ ε . Integration with respect to time, assuming that the differential 
stress remains constant, allows the calculation of the strain increment �ε 
after a time increment �t in any desired direction: 

  

σ∆t

2η
= ∆ε . (4.6.3) 
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By using differential stresses, the area of the particle remains constant dur-
ing the viscous deformation step so that shear stresses are released and the 
pressure remains. Of course this formulation can only be an approach to 
the real strain increment, since the stress itself cannot be regarded as a 
time-independent constant. For the high viscosities of geomaterials, and 
for sufficiently small time steps, this can be neglected. If needed, the for-
mulation can be tested or improved with an adapted Romberg-scheme al-
gorithm, which allows the extrapolation to �t→0. 
 

 

Fig. 4.6.2 Fracturing of a layer that has a viscosity that is 10 times that of the ma-
trix. The harder layer develops two to three distinct open fractures. Images show-
ing the Young’s moduli of particles after (a) 0, (b) 100, and (c) 200 time steps. (d) 
Differential-stress state after 100 time steps, showing stress concentration (dark) at 
fracture tips and stress release next to these.  EXPERIMENT 20 
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4.6.3 Experimental runs 

Simulation 1: Fracturing and necking of boudins 

In the first simulation, we place a horizontal layer within a weaker matrix. 
All particles have a Gaussian distribution of Young’s moduli. The layer in 
the centre has a Young’s modulus that is on average 10 times that of the 
matrix and a viscosity that is also 10 times that of the matrix. Breaking 
strengths of all springs have a linear distribution. The initial lattice has a 
resolution of 100 particles in the x-direction. Deformation is pure shear 
with a vertical compression and a horizontal extension.  

Figure 4.6.2a shows the initial setup before deformation. Grey scales 
show the Young’s moduli of single particles. The dark particles have a 
lower Young’s modulus than brighter particles. Figures 4.6.2b-c show the 
layer after 100 and 200 steps. Two to three distinct fractures develop in the 
layer. The layer necks around the fractures. Figure 4.6.2d shows the differ-
ential stress in the layer and adjacent matrix. Stresses concentrate at frac-
ture tips (dark) and are released next to the fracture (bright).  

Simulation 2: Rotation of boudins 

The second simulation (Fig. 4.6.3) shows the deformation of a layer in a 
visco-elastic matrix where the layer has a viscosity that is 5 times that of 
the matrix. The layer with the higher viscosity fractures and develops 
boudins that show some necking, rotation and folding. The initial shape of 
the deformed box was a square, and deformation is pure shear with a verti-
cal compression. The hard layer fractures relatively early during the ex-
periment because it is fixed at the right and left hand side of the deforming 
box and concentrates tensile stresses. After fracturing stresses are concen-
trated at the contact of the fractured hard layer and the weaker matrix (see 
also fig. 4.6.2d). This stress concentration leads to necking of the hard 
layer near fractures. If the fractures are not horizontal in the hard layer but 
curve or have an angle towards the main compressive stress and the hard 
layer is folded.  
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Fig. 4.6.3 Fracturing of a layer that has a viscosity that is 5 times that of the ma-
trix. The matrix flows whereas the layer fractures, shows rotation of small boudins 
and folding. The initial box shape before deformation was square 

Simulation 3: Fracturing of a hard grain in a viscous matrix 

Figure 4.6.4 shows a grain that has a viscosity that is 10 times that of the 
surrounding matrix. The deformation is pure shear with vertical compres-
sion and horizontal extension. The model was initially square. Brightness 
represent the distribution of the mean stress where bright represents a high 
compressive stress and dark a low compressive or tensile stress. The more 
viscous grain fractures internally whereas the matrix flows around it with-
out fracturing.  
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Fig. 4.6.4 Deformation of a more viscous grain (10x) in a less viscous matrix. The 
matrix flows around the grain whereas the grain itself deforms mainly by the de-
velopment of internal fractures. Brightness represents the mean stress from com-
pressive (dark) to extensional (bright).  EXPERIMENT 20 

 

Symbols used in Chap. 4.6 

ε Strain 

  

˙ ε  Strain rate [sec
-1

] 

η Viscosity [Pa s] 

σN Normal stress [Pa] 

σs Shear stress [Pa] 

   Differential stress [Pa] 

τ Deviatoric stress tensor [Pa] 

φ Angle between x-axis and long axis of ellipse [deg] 

 

∆σ
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4.7 Strain localisation and rigid-object 
kinematics 

Scott E. Johnson 

4.7.1 Introduction 

The kinematic behaviour of rigid particles in flowing viscous fluids is a 
fundamental problem in various branches of science and mathematics. In 
the Earth sciences, there are several primary areas of interest. For example, 
we are interested in how the bulk viscosity of flowing materials, such as 
magma, changes when rigid particles are introduced. Early investigations 
along these lines include that of Einstein (1906), in which he considered 
spherical particles. Einstein’s work, and that of Roscoe (1952), form the 
basis of what we generally now know as the Roscoe-Einstein equation in 
which the viscosity of a fluid/particle system is expressed in terms of the 
fluid or particle fraction. Another area where this is important in the Earth 
sciences involves the rotational behaviour of rigid particles in deforming 
rocks. Jeffery (1922) published the seminal work on the topic, deriving the 
equations of motion for rigid triaxial ellipsoids in a homogeneous, iso-
tropic, Newtonian viscous fluid. Jeffery’s work has formed the basis of 
numerous theoretical, analogue and numerical investigations of rigid ob-
ject kinematics in deforming rocks (e.g., Gay 1968; Rosenfeld 1970; 
Ghosh and Ramberg 1976; Willis 1977; Ferguson 1979; Fernandez et al., 
1983; Passchier 1987; Fernandez and Laporte 1991; Ildefonse and Manck-
telow 1993; Jezek 1994; Tikoff and Teysier 1994; Masuda et al., 1995; ten 
Brink and Passchier 1995; Arbaret et al., 2001; Marques and Coelho 2001, 
2003; ten Grotenhuis et al., 2002; Mancktelow et al., 2002; Samanta et al., 
2002; Stallard et al., 2002; Biermeier and Stüwe 2003; Ceriani et al., 2003; 
Ghosh et al., 2003; Schmidt and Podladchikov 2005). 

Some observations in naturally deformed rocks are not well described 
by the equations of Jeffery (1922). For example, Pennacchioni et al. 
(2001), ten Grotenhuis et al. (2002), Mancktelow et al. (2002) and Ceriani 
et al. (2003) noted that elongate mineral grains in very-high strain rocks 
(mylonites) are typically oriented with long axes oblique to the mylonitic 
foliation, which at very high strains is assumed to track the flow plane. 
These objects appear to align in a stable position in the flow that is not 
predicted by Jeffery’s equations, and which conflicts with analogue and 
numerical models of rigid objects in homogeneous viscous media (e.g. 
Ghosh and Ramberg 1976). Ildefonse and Mancktelow (1993), Mancktelow 
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et al. (2002) and Ceriani et al. (2003) conducted analogue experiments in 
viscous media, but used soap to lubricate the surfaces of the rigid objects. 
Their results suggest that strain localization and slip at the object interface 
may provide an explanation for the oblique stable positions of elongate 
particles. Ten Grotenhuis et al. (2002) conducted analogue experiments of 
rigid objects in a Mohr Coulomb material (tapioca pearls), and their results 
suggest that, in addition to slip at the object interface, slip along discrete 
shear zones in the matrix away from the object may promote the develop-
ment of oblique stable positions of elongate particles. 

In addition to the above studies in mylonites, a large number of papers 
over the past 15 years have used inclusion-trail orientation data to argue 
that metamorphic porphyroblasts have undergone little or no rotation dur-
ing deformation relative to one another and a fixed external reference 
frame (Fig. 4.7.1). 

 

 

Fig. 4.7.1 Photomicrograph of staurolite porphyroblasts in a matrix of muscovite, 
biotite, quartz and plagioclase. The staurolite grains have trails of inclusions that 
represent a foliation present at the time of their growth. These trails are highly 
oblique to the matrix foliation, which raises the question of the kinematic behav-
iour of the porphyroblasts during deformation. Plane light, long axis of photomi-
crograph 5.9 mm 
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These studies have shown that the statistical peaks of the data remain 
consistently oriented over areas ranging in size from outcrop-scale folds 
(e.g. Steinhardt 1989; Jung et al., 1999) to tens or hundreds of square 
kilometres (e.g., Fyson 1980; Johnson 1992; Aerden 1995; Ilg and Karl-
strom 2000). Such consistency in inclusion-trail orientation across large 
areas seems counter intuitive, given the highly heterogeneous distribution 
of strain in deforming orogens. Although these data are impressive, the 
spread in the data from individual samples is commonly 40 degrees or 
more (Johnson et al., 2006), and this has been attributed either to primary 
heterogeneity in foliation orientation prior to porphyroblast growth (e.g., 
Bell et al., 1992), or to differential rotation of porphyroblasts relative to 
one another during deformation (e.g., Passchier et al., 1992, Johnson et al., 
2006). Johnson (1990) suggested that the boundaries of porphyroblasts in 
deforming mid-crustal rocks may be partially lined by phases that are rela-
tively weak in shear, such as phyllosilicates and fluids, and that these 
phases may allow strain localization at the object interface leading to 
kinematic behaviour that is not fully predicted by the equations of motion 
derived by Jeffery (1922). 

In this contribution, we show how numerical modelling can be used to 
simulate the effects of “slip” at the interface of a rigid particle and a vis-
cous medium. Although we have results from a variety of object shapes 
and aspect ratios, we focus here on sub-circular objects owing to the ease 
with which the physics of their kinematic behaviour can be understood. 

4.7.2 Numerical experiments 

Description of the model 

To establish and keep track of the evolving model geometry, we used the 
Elle microstructure simulation system (Jessell et al., 2001; Jessell and 
Bons 2002).  

The physical model is shown in Fig. 4.7.2. A central, hard inclusion is 
intended to simulate a garnet porphyroblast. This grain is surrounded 
above and below by “caps” that are intended to simulate material that is 
relatively weak in shear, such as micas with or without thin fluid layers. 
The surrounding polygonal framework is intended to simulate a back-
ground matrix with a homogenous, isotropic viscosity structure. The ma-
trix and central inclusion are assigned constant viscosities, whereas the 
viscosity of the caps was varied from one experiment to another (Fig. 
4.7.2).  

49
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Fig. 4.7.2 Diagram showing the starting physical model at top, the final state for 
three experiments with different cap viscosities, and the deformed Lagrangian grid 
for each experiment. All three experiments were conducted under right-lateral 
simple shear to a shear strain of 1.0. Under these conditions, an inclusion with ax-
ial ratio of 1.0 is expected to rotate at half the bulk shear strain rate giving a total 
rotation of 28˚ for a bulk shear strain of 1.0 

To evaluate the effect of relatively low-viscosity caps above and below 
a porphyroblast, we deformed the starting geometry under constant veloc-
ity boundary conditions of right lateral simple shear to a total shear strain 
of 1.0. The vertical boundaries in the model are cyclic, so grains that dis-
appear off the upper-right part of the model, for example, reappear at the 
upper-left. The mechanical equations were solved using Basil, a 2D veloc-
ity based formulation that employs a Finite Element solution for incom-
pressible, linear or nonlinear viscous flow (Barr and Houseman 1996; see 
Chap. 3.8). The Elle boundary nodes are used for triangulating the Finite 
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Element grid, and each element responds to applied velocity or stress 
boundary conditions by the following constitutive relation (see Eq. 3.8.4): 

  

τ xy = 2η ˙ ε xy = B ˙ E 
1−n

n ∂u

∂y
+ ∂v

∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , (4.7.1) 

where τ is the deviatoric stress, 

  

˙ ε  is the shear strain rate, and u and v are 
the velocity components in the x- and y-directions, respectively. The vis-
cosity is given by η, which is defined as follows: 

  

η = 1

2
B ˙ E 

1−n

n , (4.7.2) 

where 

  

˙ E  is the square root of the second invariant of the strain rate tensor 
(the “effective strain rate”). The stress exponent n determines the power-
law relation between deviatoric shear stress and shear strain rate, and B is a 
pre-exponential material-dependent constant. For the purposes of this pa-
per, n was set to unity, resulting in a linear viscous constitutive relation. It 
was already shown by Bons et al. (1997) that varying the matrix stress ex-
ponent (up to n = 5) has little effect on the rotation of a circular object. 

4.7.3 Results 

Figures 4.7.2 and 4.7.3 show the results of three experiments with viscos-
ity ratios of 1, 5 and 25 between the matrix and caps. In experiments with 
the viscosity ratio equal to 1, the rigid inclusion rotates at a rate one half of 
the bulk shear strain rate, and the total rotation of the central inclusion is 
27° for a shear strain of 1.0, which is approximately that predicted by 
Jeffery (1922) for an object of aspect ratio 1. In these experiments, the dis-
tribution of the y-velocity component, vorticity and maximum deviatoric 
shear stress are symmetrical about the central inclusion (Fig. 4.7.3). 

In experiments with viscosity the ratio equal to 5, the inclusion rotates 
only 12 degrees for a shear strain of 1.0, less than half that predicted by 
Jeffery (1922). In addition, a downward component of velocity develops 
on the left side of the inclusion, and an upward component develops on the 
right side (Fig. 4.7.3). This corresponds with a sharp decrease in deviatoric 
shear stress along the top and bottom of the inclusion. Interestingly, this 
degree of localization along the caps nearly balances the effect of the in-
clusion on the bulk strain, indicated by the nearly straight edges of the de-
formed grid (Fig. 4.7.2). 

In experiments with the viscosity ratio equal to 25, the inclusion rotates 
-7.5°, against the bulk sense of rotation in the monoclinic flow. The de-
formed grid shows that strain localization in the caps has caused marked 
thinning of the central part of the grid owing to the increased strain rates 
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(Fig. 4.7.2). The y-velocity component is strongly developed on either side 
of the inclusion, and the deviatoric shear stress is sharply reduced above 
and below the inclusion (Fig. 4.7.3).  

 

 

Fig. 4.7.3 Contour plots of the y-velocity component, vorticity and deviatoric 
shear stress for the three experiments with different viscosity caps. Note that stress 
and velocity are non-dimenionalised; see Chap. 3.8). Total shear strain in each is 
1.0. The deformed microstructure from Fig. 4.7.2 has been overlain on the contour 
plots.  EXPERIMENT 21 

4.7.4 Discussion 

A rigid inclusion embedded in a homogeneous, isotropic, viscous fluid un-
dergoing steady-state, monoclinic flow will rotate at a rate determined by 
the shear strain rate, vorticity, object aspect ratio, and original orientation 
of the object long axis relative to the shear plane (Jeffery 1922; Ghosh and 
Ramberg 1976). In the simple shear experiments performed above, the 
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vorticity is equal to the shear strain rate, and the particle aspect ratio is ap-
proximately one. Thus, the rate of inclusion rotation would depend entirely 
on the shear strain rate. However, in a non-homogeneous material like that 
investigated here, in which the viscosity of the matrix along a portion of 
the inclusion interface is low relative to the rest of the matrix, the rate of 
rotation will be determined by the balance of traction on the inclusion sur-
face, which will vary as a function of the variable viscosity structure. 

Rotation of the inclusion is caused by shear traction at the particle inter-
face, which effectively drags the particle causing it to rotate in the direc-
tion of flow. Low viscosity caps around a particle carry less stress than the 
surrounding, higher viscosity matrix. At the same time, the presence of the 
caps causes a deflection of the flow leading to opposite and enhanced ver-
tical velocity components along the sides of the particle. Because the vis-
cosity of the matrix either side of the particle is higher than the viscosity of 
the caps, the vertical velocity components lead to a traction that competes 
with that along the cap-particle interfaces. With increasing viscosity con-
tract between the caps and matrix, the y-velocity component either side of 
the inclusion grows in magnitude, and the antithetic traction progressively 
increases relative to the synthetic traction, diminishing the synthetic rota-
tion of the inclusion. At a viscosity contract of 25, the antithetic traction is 
clearly stronger than the synthetic traction, causing antithetic rotation of 
the particle against the bulk flow. 
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4.8 Transient strain-rate partitioning during 
porphyroblast growth 

Wesley G. Groome and Scott E. Johnson 

4.8.1 Overview 

Changing mineralogy during metamorphism can significantly affect the 
strength of mid-crustal rocks, and by extension the strength of relatively 
large volumes of the middle crust. The growth of relatively strong porphy-
roblasts during prograde metamorphism is a common phenomenon in 
metapelitic rocks and the increasing abundance of effectively rigid porphy-
roblasts in rocks of these bulk compositions can markedly increase their 
strength relative to surrounding rocks. The localization of metamorphic 
strengthening reactions in a stratigraphic succession leads to changes in the 
strain-rate partitioning within the layer undergoing the reaction and the 
stratigraphic succession as a whole. Changes in strain-rate partitioning dur-
ing porphyroblast growth can cause further metamorphic reactions in high 
strain-rate zones, which can in turn lead to additional strain-rate partition-
ing, causing a feedback between metamorphic reaction and strain-rate par-
titioning (e.g. Bell and Hayward 1991, Bell et al., 2004). This feedback 
can cause strain-rate partitioning on the orogen scale, which can in turn 
cause metamorphism in other parts of the crust (e.g. Bell et al., 2004), af-
fect the exhumation of high-grade metamorphic rocks (e.g. Jamieson et al., 
2002), and potentially alter the topography of an orogen. In this contribu-
tion, we explore the evolving strain-rate partitioning behaviour within a 
layered succession during porphyroblast growth, and explore the feedback 
between strain-rate partitioning around effectively rigid porphyroblasts and 
metamorphic reactions. 

4.8.2 Theoretical background and natural example 

The strength of a polymineralic rock is largely a function of the strength, 
volume fraction and distribution of the constitutive minerals (e.g. Burg and 
Wilson 1987; Jordan 1988; Handy 1990; Tullis et al., 1991; Ji and Zhao 
1993; Bons and Urai 1994; Goodwin and Tikoff 2001; Ji and Xia 2002; 
Treagus 2002; Johnson et al., 2004). The growth of large, effectively rigid 
grains (porphyroblasts) during prograde metamorphism can cause pelitic 



layers to strengthen relative to un-metamorphosed pelitic layers and poten-
tially relative to interlayered lithologies that have not experienced porphy-
roblast growth (e.g. Groome and Johnson 2006). If porphyroblast abun-
dance is high enough in the pelitic layer, it may become stronger than 
interlayered units and lead to an overall strengthening of large crustal vol-
umes. 

In un-metamorphosed turbidite sequences, psammite layers consist pre-
dominantly of quartz and feldspar, and pelite layers consist predominantly 
of phyllosilicates, quartz and feldspar. The predominance of relatively 
weak phyllosilicates in un-metamorphosed pelite units makes them weaker 
than interlayered psammite units during layer-parallel shearing at low to 
intermediate temperatures (e.g. Shea and Kronenberg 1993; Treagus 
1999). However, during prograde metamorphism of pelitic rocks, the rela-
tive abundance of phyllosilicates can decrease due to the increased abun-
dance of effectively rigid porphyroblasts, which leads to changes in the 
relative strengths of pelitic and psammitic rocks. 

 

 

Fig. 4.8.1 Field photograph from Mt. Washington, New Hampshire, showing re-
fracted foliation at the contact between metapsammite and metapelite. The bed-
ding-foliation angle in the metapelite layer is larger than the bedding-foliation an-
gle in the metapsammite layer, suggesting that the metapelite had a higher 
effective viscosity than the metapsammite (Eq. 4.8.1) 

The White Mountains region in the northern New England Appalachi-
ans records evidence for the strengthening of pelitic layers relative to 
psammitic layers during prograde metamorphism. During prograde meta-
morphism and deformation, large andalusite grains grew in the pelitic lay-
ers, making them stronger than the psammitic layers. Andalusite grains are 
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up to 25 cm long and constitute up to 25-30% by volume of the pelitic 
layers (e.g. Wall 1988; Eusden et al., 1996). By using the foliation re-
fraction technique of Treagus (1999) to estimate effective viscosity con-
trasts between adjacent rock types, we determined that the pelitic layers 
were approximately 2 to 3 times more viscous than the interlayered por-
phyroblast-free psammitic layers (Groome and Johnson 2006). The use 
of foliation refraction angles to estimate effective viscosity contrasts is 
based on the relationship: 

  

tanθa

tanθb

= ηa

ηb

, (4.8.1) 

where subscripts a and b refer to two distinct lithologies, θ is the angle be-
tween bedding and foliation in a given bed and η is the effective viscosity 
of a given bed (Treagus 1999, fig. 4.8.1). This method allows for the esti-
mation of relative viscosity contrasts between contrasting lithologies, but 
does not allow for the estimation of absolute viscosity values. 

Using our field example from the New England Appalachians as a con-
straint on the strength contrast between pelitic and psammitic bulk compo-
sitions in amphibolite-facies meta-turbidites, we present a model of the 
evolving viscosity contrast between layers undergoing porphyroblast 
growth and layers without porphyroblasts. This changing viscosity contrast 
leads to changes in strain-rate partitioning between model pelitic layers 
and model psammitic layers as the pelitic layers strengthen during porphy-
roblast growth. Our models consist of a two layer system with contrasting 
viscosities (Fig. 4.8.2). The lower layer has a viscosity 2.5 times that of the 
upper layer, which is consistent with estimated viscosity contrasts between 
un-metamorphosed pelitic and psammitic bulk compositions (e.g. Treagus 
1999). Isolated, fine grains within the model pelite layer were selected to 
be porphyroblasts, with viscosities two orders of magnitude greater than 
the surrounding matrix, making the porphyroblasts effectively rigid. These 
porphyroblasts were allowed to grow, resulting in an increase in the vol-
ume fraction of rigid porphyroblasts with each time step, which caused the 
viscosity structure of the model to change.  

4.8.3 Implementation in Elle  

In the experiment presented here, we use the following routines in se-
quence: 1) Finite Element deformation in Basil, 2) grain growth using 
elle_gg, and 3) porphyroblast growth using elle_pblast. The implementa-
tion of each process is briefly summarized below. 

 



2

 

Fig. 4.8.2 Model topologies used in this paper at various porphyroblast abun-
dances (0.5%, 3%, 4.5% and 10%). Porphyroblast abundances were calculated by 
dividing the area covered by porphyroblast by the area of the pelite layer (i.e. the 
area of the psammite layer is not included). The porphyroblasts are the darkest 
grains in each frame 

Basil: Viscous deformation 

Basil is a two-dimensional viscous Finite Element code that can solve for 
linear and non-linear incompressible viscous deformation (Chapt. 3.8 and 
4.8). In our experiments we used a linear viscous rheology (stress exponent 
n = 1 in Eqs. 4.7.1-2). The experiments presented here use a plane strain 
approximation with cyclic boundaries to simulate simple shear deforma-
tion (see Chap. 3.8 for full discussion of Basil implementation). The mod-
els discussed below were deformed a very small increment in Basil (one 
deformation time step) in order to examine the evolving viscosity structure 
of the layered sequence and the corresponding evolving shear-strain-rate 
partitioning. Two models were deformed to shear strains of approximately 
1.5 (a porphyroblast-free model and a model with a porphyroblast volume 
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fraction of approximately 18%) to illustrate the difference in strain-rate 
partitioning as porphyroblast abundance increased in one layer. 

elle_gg: Grain growth 

The grain growth routine used for the experiments presented here calcu-
lates the grain boundary energy of each grain based on the grain boundary 
curvature such that high angle grain boundaries have high grain boundary 
energies (see Chap. 3.6). The driving force for grain growth is the energy 
required to minimize the grain boundary curvature. The lowest energy con-
figuration in Elle is grains with 120° triple junctions. The rate of grain 
growth is governed by the equation: 

  

R = EM , (4.8.2) 

where R is the rate of grain growth, E is the driving energy (proportional to 
the curvature of the grain boundary) and M is the grain boundary mobility.  

elle_pblast: Porphyroblast growth 

The porphyroblast growth routine used in these experiments allows se-
lected grains to grow relative to the surrounding grains. The growth rate of 
the porphyroblasts is fast relative to surrounding grains and is not gov-
erned by surface energy driving forces, as in elle_gg. The number of por-
phyroblast growth stages per time step is adjustable in the input code such 
that porphyroblasts can grow at varying rates relative to the rate of defor-
mation. The growing porphyroblasts obey the same governing equations as 
in the grain growth routine, and will attempt to form circular grains as they 
get larger. In these experiments, the porphyroblasts are assigned a viscos-
ity two orders of magnitude higher than the surrounding grains, making 
them effectively rigid. 

4.8.4 Experiments and discussion 

Description of the model 

The experiments shown here have porphyroblasts growing in the pelitic 
layer without deformation, and are referred to as static growth models. 
Porphyroblast abundance in the pelitic layer ranges from 0% in the initial 
geometry to ~18% in the final geometry. In addition, the two end-member 
geometries were deformed in simple shear to shear strains of approxi-
mately 1.5 to illustrate the change in strain partitioning as porphyroblast 
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abundance increases. Figure 4.8.2 shows the geometry used at four stages 
of porphyroblast abundance (0.5%, 3%, 4.5% and 10% porphyroblast in 
the pelitic layer). The pelite layer has an assigned dimensionless viscosity 
of 1.0 (B in Eqs. 4.7.1-2) and the psammite layer has an assigned dimen-
sionless viscosity of 2.5, giving a psammite to pelite viscosity ratio of 2.5, 
which is consistent with estimated viscosity contrasts using field data (e.g. 
Treagus 1999). The porphyroblasts in the model have an assigned dimen-
sionless viscosity of 100, making them effectively rigid objects in the vis-
cous model. Porphyroblasts in the initial stage were placed in the matrix by 
hand and were distributed through the pelite layer. Porphyroblast abun-
dance at each stage was estimated by dividing the area covered by 
porphyroblast by the total area of the pelitic layer alone (i.e. the psammitic 
layer was not included in the calculation of porphyroblast abundance). 

The viscosity of the system was calculated using a Gaussian integration 
across the x-dimension of the model to obtain an integrated viscosity for 
each y-value in the geometry. The bulk viscosity of the pelitic layer was 
calculated by integrating the area under the viscosity profile from the bed-
ding contact to the top of the model. A single Basil deformation step was 
conducted for each model to obtain a shear-strain-rate contour map for 
each stage of porphyroblast growth (via Eq. 4.7.1), which provides the ba-
sis for the viscosity calculation. 

Results 

Figure 4.8.3 shows the evolving viscosity structure and strain-rate parti-
tioning in our layered system as the porphyroblast abundance increases in 
the pelitic layer. The starting geometry, with no porphyroblasts, has a uni-
form viscosity structure through the pelitic layer, and strain rate is uni-
formly partitioned into the pelitic layer. As porphyroblast growth occurs, 
however, the viscosity structure and strain-rate partitioning through the pe-
litic layer becomes less regular. High viscosity regions correspond to areas 
that have high porphyroblast abundance, whereas low viscosity regions 
correspond to porphyroblast-free areas. As porphyroblast abundance in-
creases, the shear-strain-rate partitions around porphyroblasts within the 
pelitic layer, in addition to larger-scale partitioning into porphyroblast-free 
psammitic layers. Figure 4.8.4 shows the evolving viscosity structure of 
just the pelitic layer as porphyroblast abundance increases from 0.5% to 
18%. High viscosity spikes in the viscosity structure correspond to areas in 
the geometry where porphyroblast abundance is high, whereas low viscos-
ity spikes correspond to areas in the geometry where porphyroblast abun-
dance is low. The low viscosity spikes in the pelitic layer correspond with 
zones of high shear-strain-rate. 
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Fig. 4.8.3 Contour maps of shear strain rate and plots showing the viscosity struc-
ture and shear strain rate distribution of the model for five stages of porphyroblast 
growth (0%, 1%, 4.5%, 10% and 18%). Note how the shear strain rate increases in 
the psammitic layer as porphyroblast abundance increases, corresponding to an in-
crease in the bulk viscosity of the pelitic layer. The grain boundary topologies for 
each stage are overlain on the strain-rate maps.  EXPERIMENT 14 
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Fig. 4.8.4 Plot of the evolving viscosity structure of the pelitic layer as porphyro-
blast abundance increases from 0% to 18%. The location of the starting pelite vis-
cosity and the psammite viscosity are indicated 

The changing bulk viscosity of the model pelite layer as porphyroblast 
abundance increases is shown in Fig. 4.8.5. The trend of increasing viscos-
ity in our model falls between two end-member theoretical bounding con-
ditions describing the strength of poly-phase materials: the Voigt Bound 
and the Reuss Bound. The Voigt Bound assumes that the strain rate for 
each phase (and the bulk strain) is the same and that the bulk strength (σc) 
of a polyphase material increases linearly with increasing volume fraction 
(Vs) of the strong phase (σs) (e.g. Ji and Xia 2002): 

  

σ c = Vsσ s + (1−Vs)σ w , (4.8.3) 

where σw is the strength of the weak matrix phase. The Reuss Bound as-
sumes that all phases are subjected to a constant differential stress and that 
the bulk strain rate (

  

˙ ε c ) is a function of the strain rate in each phase (

  

˙ ε s, ˙ ε w ) 
(e.g. Ji and Xia 2002): 

  

˙ ε c = Vs ˙ ε s + (1−Vs) ˙ ε w . (4.8.4) 

Most treatments of the rheology of natural polyphase materials assume 
that natural rheologic trends fall between the two theoretical end-members 
(e.g. Ji and Xia 2002), which is consistent with the experiments presented 
here. 
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Two geometries were deformed in simple shear to bulk strains of ap-
proximately 1.5 to illustrate the difference between strain partitioning in a 
porphyroblast-free layered system and a porphyroblastic layered system. In 
the absence of porphyroblasts, the pelitic layer in our model has a viscosity 
0.4 times that of the psammitic layer. Strain is partitioned in this model 
such that the pelitic layer records a shear strain of approximately 2.1 and 
the psammitic layer records a shear strain of approximately 0.8, consistent 
with the viscosity contrast between the two layers (Fig. 4.8.6). A second 
geometry, with approximately 18% porphyroblast in the pelitic layer, was 
deformed to a similar bulk strain. 

 

 

Fig. 4.8.5 Graph of the changing viscosity of the pelitic layer as porphyroblast 
abundance increases. The theoretical Voigt and Reuss bounds are also shown with 
the viscosity values used in this model as parameters. Note that the trend line for 
this experiment lies between the two theoretical bounds. All viscosities are nor-
malized to the porphyroblast-free pelite layer. Also shown are the values of the 
psammite layer and a layer consisting of 100% porphyroblast (Pblast) 
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In this model, strain is not partitioned as significantly between the two 
layers, with the pelite layer recording a shear strain of approximately 1.6 
and the psammite layer recording a shear strain of approximately 1.4 (Fig. 
4.8.6), because with approximately 18% porphyroblast the pelitic layer has 
a bulk viscosity similar to the psammitic layer (Fig. 4.8.5). Furthermore, in 
the pelitic layer, shear-strain-rates are not uniformly distributed through 
the layer, but instead partition around the porphyroblasts. 

4.8.5 Conclusions 

Porphyroblast growth during metamorphism will strengthen the rock if the 
product porphyroblasts are stronger than the reactant phases. Within the 
layer experiencing porphyroblast growth, the strain rate distribution will 
become more heterogeneous as porphyroblast abundance increases and 
strain is partitioned into ever decreasing rock volumes around the porphy-
roblasts (Fig. 4.8.6; e.g. Bell and Hayward 1991). This increasing strain 
rate partitioning around the porphyroblasts leads to the development of 
high strain rate gradients along the margins of the porphyroblasts. In na-
ture, this may allow for grain boundaries to dilate along the margins of the 
porphyroblasts, which will provide pathways for fluids in the rock that can 
enhance metamorphic reaction rates (e.g. Etheridge et al., 1983). If the 
rock is relatively anhydrous, as expected in the lower crust, the opening of 
grain boundaries will allow for fluids to catalyze retrograde metamorphic 
reactions, as reported from the Sesia Zone in the Swiss Alps (e.g. Rubie 
1986; Brodie and Rutter 1985; Koons et al., 1987; Freuh-Green 1994). 
However, if the rock is hydrous, as would be expected during the prograde 
metamorphism of pelitic rocks in the middle crust, the opening of grain 
boundaries may allow for fluids to leave the immediate reaction site, thus 
allowing dehydration to progress (e.g. Etheridge et al., 1983).  

High strain rates in grains along the margins of porphyroblasts may in-
crease dislocation densities in grains undergoing intracrystalline deforma-
tion (e.g. Bell and Hayward 1991). As dislocation densities increase, the 
free energy available for metamorphic reactions is increased which will 
enhance the metamorphic reaction rate if the pressure-temperature condi-
tions are overstepped (e.g. Porter and Easterling 1992). In nature, this may 
lead to rapid reaction rates if a reaction is overstepped and porphyroblasts 
begin to nucleate (e.g. Bell and Hayward 1991). Once a porphyroblast nu-
cleates and begins to grow, the increasing strain rates in the surrounding 
grains will add strain energy to the system, which can lower the energy 
barrier for further progress of metamorphism.  

W. G. Groome and S. E. Johnson
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As a rock strengthens during porphyroblast growth, strain rates will be 
partitioned out of the regions undergoing porphyroblast growth. The parti-
tioning of high strain rates into surrounding crustal volumes may catalyze 
metamorphic reactions in parts of the crust that are not undergoing meta-
morphism (e.g. Bell at al. 2004). If the rocks in these crustal volumes are 
in disequilibrium with respect to the ambient pressure and temperature 
conditions, the strain energy added to these rocks as they begin to deform 
may be enough to overcome the energy barrier for nucleation and growth. 
If this energy barrier is overcome, metamorphic reactions will occur, po-
tentially strengthening these crustal volumes and leading to further strain 
rate partitioning into other parts of the crust (Groome et al., 2006). In this 
way a feedback relation between porphyroblast growth and strain-rate par-
titioning can develop and metamorphic reactions can occur over large 
crustal volumes in a relatively short period of time. 
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Fig. 4.8.6 Top: Shear strain rate contour maps for the porphyroblast-free simple 
shear deformation experiment. Note the homogeneous shear strain rate in each 
layer and the bulk strain rate partitioning into the pelitic layer. Middle: Shear 
strain rate contour maps for the 18% porphyroblast simple shear deformation ex-
periment. Note strain rate partitioning within the pelitic layer with high strain rate 
zones around the porphyroblasts. Also, the strain rate is higher in the psammitic 
layer than in the porphyroblast-free experiment. Bottom: Close-up images of the 
shear strain rate distribution around porphyroblasts showing high and low shear 
strain rate zones. The image on the left has had the grain topology removed for 
simplification. The location of strain-assisted reaction between two porphyroblasts 
is indicated. See text for discussion 

W. G. Groome and S. E. Johnson
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Appendices 

  

A  Installing Elle  

B  Examples experiments 

C  The Elle graphical user interface 

D  Different ways to run an Elle experiment 

E  How to create multiple-process experiments 

F  Sybil, the Basil post-processor  

G  How to use elle_latte 

H  Miscellaneous processes and utilities 

I  How to create an Elle file 

J  The Elle file format 

 

These Appendices describe the steps necessary to run arbitrary single-

processes or multi-process Elle experiments. Currently Elle runs under 

Windows and Linux, and as the code is continuously being updated, both 

to fix bugs and add features, it is recommended that you visit the Elle 

web site to download the latest releases of the Elle platform 

(http://www.microstructure.info/elle); however the description here ap-

plies specifically to the code released on the CD which accompanies this 

book.  

 

In the appendices we use the following formats to distinguish menu 

items, programs and files: 

 File/Open Menu item 

 Program Name of software or modules 

 File  Name of a file or URL 

 

READERS WHO ONLY WISH TO RUN THE EXAMPLE EX-

PERIMENTS DESCRIBED IN THIS BOOK SHOULD INITIALLY 

REFER TO APPENDICES A, B & C. 

●

●

●



Appendix A Installing Elle  

Mark W. Jessell 

A.1 Windows 

To install the Elle platform on your Windows computer, open the CD and 

double click on the ElleWinSetup icon. There are two installation levels 

for the platform: User and Developer.  

1. Users are those people who wish to run or modify example experiments, 

and who will have access to the high-level executables, scripts and input 

files. 

2. Developers are those people who wish to alter the codes to describe new 

processes, who will have also have a complete GCC compiler, a simple 

Linux-like environment (MSys) and the complete Elle source code in-

stalled on their system. The Linux-like environment runs under Win-

dows and does not interfere with the normal operation of the operating 

system. If you choose this option, you can recompile the Elle platform at 

any time by opening an MSys shell, then change to the directory elle 

and type in ./install.win wx > debug.txt&  

For both Users and Developers, Sybil, the graphics postprocessor for the 

Basil Finite Element program, will also be installed at this stage, which 

uses an Open Source X Windows system, running under Cygwin. 
After successful installation, all example experiments (Appendix B) are 

copied over to your harddisk, so you will not need the CD again after in-
stallation. On your harddisk a folder elle/ is created containing the follow-
ing files and folders: 

• elle/, a folder containing all code and other elle-related material 

• experiments/, a folder containing all examples of Appendix B 

• extras/, a folder containg some colour maps, elle input files, etc. 

• COPYING.txt, a general public licence 

• LICENCE.txt, the Elle licence 

• Internet shortcut, a link to the Elle website 

• unins000.exe & unins00.dat, files to un-install Elle 
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A.1.1. Installing Basil and Sybil 

Basil - The Finite Element deformation program, Basil, will be installed 

with the Elle binaries when you run ElleWinSetup.exe. 

 

Sybil - This is an X11 application -(Appendix F). For instructions on how 

to install this program, which requires the Cygwin system to also be in-

stalled on your PC, please go to the Elle Website (http://www. 

microstructure.info/elle) and select the menu “Sybil”. If you already have 

Cygwin installed, or once you have it installed, you may install Sybil by 

running SybSetup.exe. The Experiment Launcher expects sybil.exe and 

sybilps.exe to be on the same drive as Cygwin and in the directory 

DRIVE:\cygwin\home\sybil\. If you install it in a different location, you 

will have to edit sybil.bat and sybilps.bat in the binwx directory of the Elle 

installation. 

 

If you have a firewall or something similar installed under Windows, you 

have to allow Cygwin access to the internet. Internally it uses the network 

(a so-called loopback-device) to send messages. This is safe to do, as no 

data will be downloaded to your computer or sent to the internet. 

A.2 Linux 

To install the Elle platform on your Linux computer (for both Users and 

Developers): 

1. open the CD; 

2. copy the directory called elle to your hard disk; 

3. open up a shell window, and then change to the directory elle 

type in ./install.sh wx > debug.txt& 

This will compile the complete Elle platform on your computer (and the 

Basil Finite Element package), assuming that all the correct libraries have 

been installed on your system.  

To install Elle you will require the following libraries to be installed 

• WXWidgets installed using the --with-gtk option (http://www.wxwidgets. 

org and comes with all standard Linux distributions). 

• GTK+ (http://www.gtk.org and comes with all standard Linux distribu-

tions) 

• GCC with Fortran (comes with all standard Linux distributions)  

. 
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If the compilation does not run to completion (you do not get a directory 

created called binwx full of files), you should check the debug.txt to see 

what the errors are, and refer to the Installation Forum at the Elle Website: 

http://www.microstructure.info/elle. 

A.2.1. Installing Basil and Sybil 

Pre-built binaries can be found at the Elle website, www.microstructure. 

info/Elle. Contact basil@earthsci.unimelb.edu.au or one of the authors if 

you are unable to find an appropriate package. 

Sybil (Appendix F) uses X11 and Motif libraries and you may need to 

install the Motif libraries on your system. These are available on the web 

e.g www.lesstif.org or www.openmotif.org. These applications do not 

need to be installed in a particular location but your environment variable 

BASILPATH should be set such that $BASILPATH/bin is the location of 

the binaries (Basil, Sybil and sybilps) and $BASILPATH/bin should be 

added to your $PATH variable. 

 

 



Appendix B Example experiments  

Edited by Mark W. Jessell 

After installation, all experiment files are found within the 

elle/experiments directory on your hard disk. This is necessary, because 

Elle cannot write output files onto the CD. The input files for the experi-

ments described in this Appendix (see Table B.1), for example Experiment 

3, are contained in a directory whose name starts with experiment_03… 

Where there are more than one set of input files for an experiment, there 

will be a series of subdirectories, e.g. a, b, c etc. To launch an example ex-

periment without modification, use the Experiment Launcher, 

(elle/elle/binwx/experiment_launcher.exe under Windows). 

The Experiment Launcher 

The Experiment Launcher is a simple program that allows you to launch 

any of the example experiments in this Appendix. Once started up, the 

Launcher offers you a single menu: the File menu, and two panels the Ex-

periments panel, the Utilities panel. The Experiment panel and its sub-

menus list all the experiments in this Appendix. To run a particular exam-

ple, select it from the Experiment panel and you will be provided with a 

brief overview of the experiment. If you wish to start the experiment, sim-

ply click on the Go! button. 

 

Single-Process Experiments: If a single-process was started, an Elle win-

dow will open up showing the starting microstructure. To enact the ex-

periment select Run→Run from within the Elle Window. See Appendix C 

for details on the graphical user interface for single processes. 

Important: to kill a single process experiment under windows, use the 

task manager (in Windows press CTRL-ALT-DEL), rather than clicking 

on the x-icon, as otherwise the calculation will continue in the back-

ground! 

 

Multi-Process Experiments: If a multi-process was started, the experiment 

will be started automatically in the background, and to view any of the 

output Elle files, select showelle from the Utilities panel of the Launcher, 

and load in the desired file. See Appendix C for details on the graphical 

user interface for showelle. All output files will be created in the same  
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directory as the experiment, and have a naming convention described in 

Appendix E. 

Important: to kill a multi-process experiment under windows, select the 

command-line window and type CTRL-C. 

 

Starting Single Processes or Utilities: The Experiment Launcher may also 

be used to launch utilities such as showelle, without any input file pre-

loaded.  

 

The duration of individual experiments is highly variable and denoted with 

icons for “fast” ( ), “medium” ( ), “slow” ( ), to “very slow” 

( ). 

Table B.1. List of example experiments, and the sections in the book that describe 

them in more detail. 

Experiment 

number 

Section in 

book 

Title  

1 2.2 Diffusion
 *

 

2 2.2 Fluid flow in a porous medium
*
 

3 2.6 Crystal growth from melt 

4 3.12 Fracturing in granular aggregates
*
 

5 3.2 Cation exchange reactions 

6 3.3 Subgrain growth 

7 3.5 Grain growth 

8 3.7 Evolution of a partial melt 

9 3.8 Rigid porphyroblast growing in a deforming matrix 

10 3.9 Lattice rotations 

11 3.11 Boudinage
*
 

12 3.12 Dissolution grooves
*
 

13 3.12 Stylolites
*
 

14 4.8 Strain-rate partitioning during porphyroblast growth 

15 4.1 Anisotropic grain growth 

16 4.2 Dynamic recrystallisation 

17 4.3 Deformation localisation 

18 4.4 Expanding inclusions
*
 

19 4.5 Mud cracks
*
 

20 4.6 Visco-elastic deformation and fractures
*
 

21 4.7 Strain localization and rigid object kinematics 
*
 Note: Experiments that use elle_latte will not show the starting microstructure until the 

experiment is actually started (with run→run). The stage number shown on the display 

does not necessarily equal the number of time steps. Also note that elle_latte experiments 

cannot be re-run. 

 

. W. Jessell
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Although we have done our best to test and debug these examples, there 

may still be some bugs. If you encounter problems, please check the Elle 

website (http://microstructure.info/elle). 

Experiment 1 - Diffusion  

In this example we demonstrate diffusion through a fluid trapped in a 

granular medium using a simple Lattice-Gas automaton that uses the FHP 

rules as its basis and is mapped on a triangular grid (see Chap. 2.2). The 

algorithm is included in elle_latte. These experiments look “noisy” be-

cause we are looking at very small areas of material. Hence the random 

fluctuations are much more evident than in larger-scale types of models, 

such as those that use Finite Difference calculations. 

   

Execution: In order to run one of these experiments, start up the Experi-

ment Launcher and select the appropriate experiment from the Experi-

ments menu. On most computers you can use the higher-resolution files 

since the algorithm is relatively fast. Possible sub-experiments, which sim-

ply vary the density of unodes are: 

a   diffusion in a system with 2850 particles  

b  diffusion in a system with 11500 particles  

c  diffusion in a system with 46000 particles  

Once the file is loaded, select Run from the Run menu of the Elle window 

to watch the system evolve. 

Fig. B1. Modelling diffusion with a Lattice-Gas automaton (experiment b). Time 

steps are (a) 1, (b) 10, (c) 40. High concentration is bright and low concentration 

black  

Interface: These files will each load their appropriate preferences file 

automatically. The resulting plots show you the concentration of fluid  
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particles per unode. Unodes that are part of a grain, and which are there-

fore not permeable, have a concentration of 6 to visualize the pore space.  

 

Examples: Figure B1 shows plots of an example run that illustrates how 

diffusion can be modelled with a Lattice-Gas automaton. The input file is 

res100.elle. Plotted are the concentrations of fluid particles where the 

background is dark, and the brightness increses with concentration of fluid 

particles (U_DENSITY). The initial configuration is of four regions with a 

high concentration embedded in a background with a zero concentration. 

 

Functions and parameters for users wishing to use the Experiment In-

terface to modify parameters: In the initialization function (Experi-

ment::Init(), case 12) the following functions contain parameters that can 

be changed: 

• SetFluidLatticeGasRandom(0.005): This function is used to set ran-

domly distributed fluid particles in the background. The input variable 

specifies the concentration of fluid particles in the whole Elle box where 

0.005 is 0.5%.  

• SetFluidLatticeGasRandomGrain(0.7,j*10): This function specifies the 

fluid particle concentration in a specific grain. The first input value de-

termines the fluid concentration (0.7 is 70%) and the second variable the 

specific grain (in this case a loop where every tenth grain is chosen).  

• SetWallsLatticeGas(j*5): This function is used for the creation of poros-

ity in the 2d fluid flow. All grains (j*5) are set to be impermeable so that 

a complex permeability structure evolves. 

In the run function (Experiment::Run(), case 12) the following functions 

contain parameters that can be changed:  

• UpdateFluidLatticeGas(): simply does a Lattice-Gas step where parti-

cles are transported and collisions are handled.  

• InsertFluidLatticeGas(0.03, 0.9): inserts fluid particles at the left hand 

side of the box, every lattice particle with x position smaller than 0.03 

becomes each time step a fluid concentration of 90 percent (second in-

put value, 0.9).  

• RemoveFluidLatticeGas(0.97): removes all fluid particles from lattice 

particles with an x position that is larger than 0.97.  
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Experiment 2 - Fluid flow in a porous medium  

In this example we demonstrate fluid flow in porous medium using a sim-

ple Lattice-Gas automata that uses the FHP rules as basis and is mapped on 

a triangular grid (see Chap. 2.2). The algorithm is included in elle_latte. 

Execution: In order to run one of these experiments, start up the Experi-

ment Launcher and select the appropriate experiment from the Experi-

ments menu. On most computers you can use the higher-resolution files 

since the algorithm is relatively fast. Possible sub-experiments, which sim-

ply vary the density of unodes are: 

a fluid flow in a system with 2850 particles  

b fluid flow in a system with 11500 particles  

c fluid flow in a system with 46000 particles  

Once the file is loaded, select Run from the Run menu of the Elle window 

to watch the system evolve. It is a good idea to start with experiment a, as 

this gives a detailed expression of how the system behaves. 

 

 

Fig. B2. Simulation of fluid flow through a porous medium. Fluid comes in at the 

left hand side and exits at the right hand side. Background is black, wall rock is 

white and fluid particles are bright. (a) Unodes are shown assmall hexagons 

whose brightness is a function of concentration. (b) Concentrations are interpo-

lated between unodes when the option triangulate unodes is turned on in the 

Graphics→Preferences→Unode menu 

Interface: These files will each load their appropriate preferences file 

automatically. The resulting plots show you the concentration of fluid par-

ticles per unode. Unodes that are part of a grain, and which are therefore 

not permeable, have a concentration of 6 to visualize the pore space.  
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Examples: This example is shown in Fig. B2. Here 2D porous flow is 

modelled with a Lattice-Gas automaton. The input file is res50.elle (ex-

periment a) with a low resolution. Particle concentration on the left bound-

ary is kept constant, while all particles reaching the right boundary of the 

system are removed. This effectively models fluid that is injected from the 

left hand side and that can escape on the right hand side of the model.  

 

Functions and parameters for users wishing to use the Experiment In-

terface to modify parameters: In the initialization function (Experi-

ment::Init(), case 13) the following functions contain parameters that can 

be changed: 

• SetFluidLatticeGasRandom(0.005): This function is used to set ran-

domly distributed fluid particles in the background. The input variable 

specifies the concentration of fluid particles in the whole Elle box where 

0.005 is 0.5%.  

• SetFluidLatticeGasRandomGrain(0.7,j*10): This function specifies the 

fluid particle concentration in a specific grain. The first input value de-

termines the fluid concentration (0.7 is 70%) and the second variable the 

specific grain (in this case a loop where every tenth grain is chosen).  

• SetWallsLatticeGas(j*5): This function is used for the creation of poros-

ity in the 2d fluid flow. All grains (j*5) are set to be impermeable so that 

a complex permeability structure evolves. 

In the run function (Experiment::Run(), case 13): the following functions 

contain parameters that can be changed:  

• UpdateFluidLatticeGas(): simply does a Lattice-Gas step where parti-

cles are transported and collisions are handled.  

• InsertFluidLatticeGas(0.03, 0.9): inserts fluid particles at the left hand 

side of the box. Each time step every lattice particle with an x coordinate 

smaller than 0.03 gets a fluid concentration of 90% (second input value, 

0.9).  

• RemoveFluidLatticeGas(0.97): removes all fluid particles from lattice 

particles with an x position that is larger than 0.97.  

Experiment 3 - Crystal growth from melt  

This example illustrates the growth of a single crystal from a melt, using a 

Phase Field approach. The background of the software (from Biben 2005) 
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is explained in Chap. 2. In the following examples we can vary the crystal 

symmetry and the latent heat of crystallisation. 

 

Execution: In order to run one of these experiments, start up the Experi-

ment Launcher and select the appropriate experiment from the Experi-

ments menu. Possible sub-experiments, which vary the crystal symmetry 

6-fold or (the physically extremely rare!) 5-fold symmetry; or the latent 

heat, are: 

a  6-fold symmetry, relatively high latent heat  

b   5-fold symmetry, relatively high latent heat  

c  6-fold symmetry, relatively low latent heat  

d  5-fold symmetry, relatively low latent heat  

 

Interface: These files will each load their appropriate preferences file 

automatically. Once the file is loaded, select Run from the Run menu of 

the Elle window to watch the system evolve. You can either display the 

concentration (CONC_A) of the unodes (the default) or the temperature 

(U-ATTRIB-A). In order to speed up the experiment, only every 10-th 

time step is displayed. 

 

Fig. B3. Phase Field simulation of the growth of a crystal from a melt after 2000 

time steps. (a) Shape of crystal (CONC_A) and (b) temperature (U_ATTRIB_A) 

field. The simulation shown is based on experiment a, but the Anisotropy was 

changed to achieve an unusual 7-fold symmetry (Select Run->Run Options then 

edit the Anisotropy field in the UserData area) 

 

Functions and parameters for users wishing to modify runtime parame-

ters: The default userdata settings for elle_phasefield are shown below: 

• userdata[0]  default= 0 (reset unode values if we want to create a seed 

  crystal from a file that has no seed already defined) 

• userdata[1]  default = 1.8 (high latent heat) or 0.18 (low latent heat) 

• userdata[2]  default = 0.01 (interfacial width) 
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• userdata[3]  default = 0.02 (modulation of the interfacial width) 

• userdata[4]  default = 1.57 (orientation of the anisotropy axis) 

• userdata[5]  default = 6.0 (6-fold symmetry) or 5.0 (5-fold symmetry) 

• userdata[6]  default= 0.9  

• userdata[7]  default = 10  

   (where m(T)=ALPHA/PI*atan(GAMMA*(TEQ-T))) 

Experiment 4 - Fracturing in granular aggregates  

This example illustrates the development of fractures in a granular aggre-

gate during compaction and pure shear deformation. The background of 

the software is explained in Chap. 3.12 and is based on a Lattice-Spring 

model (Chap. 2.8).  

 

Execution: In order to run one of these experiments, start up the Experi-

ment Launcher and select the appropriate experiment from the Experi-

ments menu. On most computers you should use the lower-resolution files 

since the algorithm is relatively slow. Possible sub-experiments, which 

simply vary the density of unodes are: 

a  2850 particles   

b  11500 particles  

c  46000 particles  

Once the file is loaded, select Run from the Run menu of the Elle window 

to watch the system evolve.  

 

Interface: These files will each load their appropriate preferences file 

automatically, and only the unodes will be visible. You can now choose to 

view the Young’s moduli (U_YOUNGSMODULUS) of different grains, 

the fractures (U_FRACTURES), the mean stress (U_MEAN_STRESS), or 

the differential stress (U_DIFFSTRESS, default). In order to view frac-

tures select Graphics->Preferences then click on the Unodes tab and se-

lect and set Clamp color between -1.0 and 0.0 to limit the display range. 

Unodes with fractured bonds will be blue and unfractured unodes red. Dif-

ferential and mean stress should be scaled during a run, normal values are: 

differential stress 0.0 to 0.01 and mean stress - 0.01 to 0.01 (negative is 

compression).  

 

Examples: Figure B3 (a) to (d) shows the four different plotting options. 

Figure B3a shows the distribution of Young’s moduli of different grains 
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where dark grey is high Young’s modulus (range 0.0 to 1.7). Figure B3b 

shows the first fractures after 7 Elle steps where dark are fractured parti-

cles (range is –1.0 to 0.0). Figure B3c shows the differential stress where 

dark is high and light colour low stress (range 0 to 0.02) of stage 7 and Fig. 

B3d shows the mean stress of the same stage where dark is high stress 

(range –0.01 to 0.005, negative is high compressive stress). Figure B3e 

shows an example with 5 steps of uniaxial deformation followed by 15 

steps of pure shear deformation whereas Fig. B3f shows an example with 

15 steps of uniaxial deformation followed by 5 steps of pure shear defor-

mation. Plots show again the differential stress (range 0-0.035). The sec-

ond example that has experienced a longer uniaxial compression builds up 

more compressive stress and therefore develops more pronounced shear 

fractures whereas the first example shows a combination of extension and 

shear fractures. Comparing Fig. B3a and B3b one can also see that regions 

with high Young’s moduli are fracturing first.  

 

 

Fig. B3. Examples of fracture development in granular aggregates. (a) to (d) plot-

ting options showing different unode attributes (a) U_YOUNGSMODULUS: 

Young’s moduli of grains, (b) U_FRACTURES: fractured particles, (c) 

U_DIFFSTRESS differential stress and (d) UMEAN_STRESS: mean stress. (e) 

Differential stress after 5 stages of uniaxial compaction followed by 15 steps of 

pure shear deformation. (f) Differential stress after 15 stages of uniaxial compac-

tion followed by 5 steps of pure shear deformation 
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Functions and parameters for users wishing to use the Experiment In-

terface to modify parameters: Parameters used in the example are:  

• SetPhase(0.0,0.0,2.0,1.2),  

• SetGaussianSpringDistribution(1.0,0.5),  

• MakeGrainBoundaries(1.0,0.5),  

• DeformLattice(0.001,1), and  

• DeformLatticePureShear(0.001,1).  

 

In the initialization function (Experiment::Init(), case 1) the fol-

lowing functions contain parameters that can be changed:  

• SetPhase(0.0,0.0,2.0,1.2) is used to set a distribution on breaking 

strengths of springs. The breaking strengths will be distributed randomly 

between original strength - 0.6 * original strength and original strength 

+0.6 * original strength (0.6 is value 1.2/2 in function). The whole dis-

tribution will be multiplied by 2.0 (first value in function). Note that 

both values in the function change the behaviour of the model since the 

breaking strength is a function of the weakest bonds.  

• SetGaussianSpringDistribution(1.0,0.5): This function is used to set a 

distribution on the Young’s moduli of grains. In this case the distribu-

tion is Gaussian with a mean value 1.0 and a standard deviation of 0.5 

(smaller values make the distribution narrower and larger values make 

the distribution wider). Grains are picked randomly.  

• MakeGrainBoundaries(1.0,0.5): This function gives the grain bounda-

ries different properties, in this case 1.0 means that the elastic properties 

are not changed and 0.5 that the breaking strength of grain boundary 

springs is on average half that of intragrain springs (This does not affect 

the distributions that were set before).  

• SetFracturePlot(50,1) simply means that we make an extra plot after 50 

fractures formed. This is useful in order to view the dynamics of the 

very non-linear fracture process. Note however that if you call this func-

tion your Elle stages will be non-linear with time and do not necessarily 

show the real time steps anymore.  

In the run function (Experiment::Run(), case 1) the following functions 

contain parameters that can be changed:  

• if (experiment_time <5) means that the program is applying 5 steps of 

uniaxial compression and starts with pure shear deformation afterwards.  

• DeformLattice(0.001,1): This function is used to apply uniaxial com-

pression with a vertical strain of 0.l percent per step. The value 1 means 
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that a picture is taken after the deformation was applied and the lattice 

relaxed.  

• DeformLatticePureShear(0.001,1): This function is used to apply pure 

shear deformation that is conserving the area of the box. The value 

0.001 means vertical strain is 0.1 percent and 1 means a picture is taken 

after a deformation step.  

Experiment 5 - Cation exchange reactions 

This section gives details for running the cation exchange reactions be-

tween garnet and biotite that are described in Chap. 3.2 and illustrated in 

Fig. 3.2.6-8. 

 

Execution: In order to run these experiments, start up the Experiment 

Launcher and select the experiment from the Experiments Menu. The 

subexperiments are: 

a  isothermal experiment with large matrix grain size  

b  isothermal experiment with small matrix grain size  

c  cooling experiment  

In practice, a shell script (or batch file in Windows) calls the appropriate 

Elle routines and requires an Elle input file containing a description of the 

initial microstructure. To start a simulation, select the desired experiment 

and select Go. Contrary to the previous experiment, you will now not get a 

new window with the model, but a console window with scrolling lines.  

 

Interface: As these are multiprocess experiments, the easiest way to moni-

tor the progress is to view the generated Elle files with showelle. (select 

showelle from the utilities box on the Experiment Laucher window) A 

preferences file, defaults.zip, will be read by showelle so that the look up 

table is optimised to show Fe concentration variation in the garnet as for 

Fig. 3.2.8. 

 

Processes: These experiments combine two Elle processes, elle_exchange 

(processes/exchange) and elle_gbdiff (processes/gbdiff). The exchange 

process simulates lattice diffusion within the grains and cation exchange 

between the boundary and lattice, and the second process calculates diffu-

sion along the boundaries. 
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Examples: The initial file for experiment 5a has one garnet grain and one 

biotite grain in a matrix of large grains providing few pathways for grain 

boundary diffusion (see Fig. B4a). In experiment 5b, the matrix consists of 

smaller grains with more pathways for diffusion between the biotite and 

garnet (Fig. B4b). In experiments 5a and 5b, the initial Fe mole fraction is 

0.8 for the garnet and 0.6 for the biotite and the bnodes are set to 0.05. The 

temperature is a constant 600 °C. Experiment 5c is a cooling experiment 

for a microstructure that includes a large garnet and several biotite grains. 

The initial compositions for the garnet and biotite are assumed to be 0.8 

and 0.54 (in Fe mole fraction), respectively. Since these compositions are 

disequilibrium compositions in the experimental temperature range, garnet 

and biotite start to exchange cations to approach the equilibrium KD value. 

There is little change in zonation in the latter part of the experiment as dif-

fusion slows with decreasing temperature (Fig. B4c). 

 

Fig. B4. (a) Results from an isothermal experiment with matrix grain size of 

0.25cm. The biotite grain is on the left, the garnet grain on the right. (b) Same ex-

periment, but with a small grain size. (c) Results from a cooling experiment. The 

garnet grain is the large hexagonal grain near the middle of the model. The CLUT 

(colour lookup table) of Fe molar fraction is optimized to highlight the garnet 

composition 

Functions and Parameters for users wishing to modify parameters in the 

Shelle script: Details are given for experiment 5c but the parameters used 

and naming conventions apply to all the subexperiments. exp5c.elle is the 

initial elle file in which one grain (grain 84) is garnet, six grains are mica 

(25, 49, 54, 56, 90, 129) and the matrix is quartz. The unodes in the garnet 

have an Fe mole fraction of 0.8 and the unodes in the mica have an Fe 

mole fraction of 0.54. The bnodes have a constant initial Fe concentration 

of 0.05. The elle file also sets the initial temperature to 750
°
C. 
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exp5c.shelle/bat is a batch file generated using the Shelle Script Genera-

tor, shelle24.html, to set the following parameters which control the 

elle_experiment: 

1. Experiment Name exp_5_out, the base for naming saved output files 

2. Elle Input File exp5c.elle, the initial microstructure 

3. Last Time 600, the number of iterations for the experiment loop 

4. Save Interval 100, output files from all processes will be saved every 

100 iterations 

with the following processes turned on: 

1. Grain Boundary Diffusion [20] Stages 500 Kappa 2.0e-9 

2. Exchange Reaction [23] Stages 500. Kappa 30.90528. Temperature in-

crement -0.5 

3. The saved output file has the process list LIST= "20 23" 

The parameter, Kappa, is the pre-exponential factor used to calculate the 
diffusion coefficient D(T) using the Arrhenius equation D(T) = 
Kappa*exp(-Ea/(RT)). In this code the activation energy for diffusion (Ea) 
has been set to 239 kJ/mole. 

All processes in the list are called once per TIMESTEP, i.e. at the end of 

this experiment, the exchange process will have performed a total of 

30,000 stages and the temperature will have dropped from 750 to 450
 °
C. 

Experiment 6 - Subgrain growth  

This example illustrates the process of subgrain growth resulting from two 

different conceptual models, using a Potts Model approach. The back-

ground of the software is explained in Chap. 3.3.  

 

Execution: In order to run one of these experiments, start up the Experi-

ment Launcher and select the appropriate experiment from the Experi-

ments menu. There are two possible sub-experiments: isotropic and ani-

sotropic: 

a  isotropic  

b  anisotropic  

 

Interface: These files will each load their appropriate preferences file 

automatically. Once the file is loaded, select Run from the Run menu of 
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the Elle window to watch the system evolve. You can either display any of 

the three EULER orientations of the unodes.  

 

Examples: In the first example (Fig. B5) a simple subgrain growth ex-

periment has been performed by taking an input file with a highly strained 

grain of NaCl derived from EBSD measurements, which exhibit high grain 

lattice distortions. We let the substructure of the grains evolve while the 

grain boundaries remain stable. The driving force is the reduction of en-

ergy where the energy below the critical misorientation (between adjacent 

subgrains) of 15° is isotropic.  

 

Fig. B5. Example run showing isotropic surface energy driven subgrain growth. 

Greyscale scheme shows relative misorientation from one crystallographic orien-

tation (marked as black star) in greyscale; black lines signify grain boundaries 

with >15° misorientation; (a-d) results at model time steps 1500, 2500, 4000, 

6000 (modified after Piazolo et al., 2004) 

Example Elle Run: Subgrain growth – anisotropic In this simulation 

(Fig. B6) we take into account the anisotropy of surface energy and mobil-

ity of subgrain boundaries. The input microstructure is the same as for sec-

tion 3.3.4, however the calculation of the energy state differs as now the 

energy between data points below the critical misorientation of 10° is 

taken to be anisotropic (see above for details). It can be seen that in this 

case more subgrains remain at the end of the simulation, as the anisotropy 

has the effect of slowing down the microstructure evolution. 

Fig. B6. Example run showing anisotropic surface energy driven subgrain growth. 

Greyscale scheme shows relative misorientation from one crystallographic orien-

tation (marked as black star) in Greyscale; black lines signify grain boundaries 

with >10° misorientation; (a-d) results at model time steps 0, 20, 40, 60 
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Functions and parameters for users wishing to modify runtime parame-

ters: This is a process simulates subgrain growth using a Potts model. It 

only used the unodes in the grains themselves, no migration of 

flynn_boundaries is taken into account. The user can vary 2 parameters: 

1. userdata[0] = max_angle gives the angle at which the maximum energy 

is reached (e.g. 15° for salt) 

2. userdata[1] = slope. A value of slope=1 signifies that all energies are the 

same, while another value allows differences in energy according to 

misorientation. Slope=2 signifies that the energy changes linearly, as a 

fraction of the max_angle. This means that at a misorientation of 10 and 

max_angle is 15, the energy is 10/15=0.66667. The energy reaches unity 

when misorient is equal or larger than max-angle. Slope=3 signifies a 

Shockley equation change between 0 and max_angle misorientation, 

with: 

  

energy = orient

max_angle

⎛ 

⎝ 
⎜ 

 

 
 1− ln

orient

max_angle

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 

 
 

⎞ 

⎠ 
⎟  

If the value for slope is not 1, 2, 3 it is set by default to 1. For example: 

elle_sub_gg -u 15 3 means that the max_angle is 15 (here the energy is 

1), and the Shockley equation is used to calculate the energy. 

Experiment 7 - Grain growth  

The grain growth example shows how the grain size in a grain aggregate 

increases by grain boundary migration that is solely driven by grain 

boundary surface energy (see Section 3.5). It also illustrates how a non-

equilibrium microstructure evolves towards a foam texture. 

 

Execution: In order to run one of these experiments, start up the Experi-

ment Launcher and select the appropriate experiment from the Experi-

ments menu. There are two possible sub-experiments, the first simply 

shows the current position of the grain boundaries, while the second tracks 

past positions so that the parts of grains previously swept by grain bounda-

ries can be seen: 

 a  without boundary tracking (Fig. B7)  

 b   with boundary tracking (Fig. B8)  

 

⎛

⎝
⎜

⎞

⎠
⎟



312  

Interface: These files will each load their appropriate preferences file 

automatically. Once the file is loaded, select Run from the Run menu of 

the Elle window to watch the system evolve.  

 

 

Fig. B7. Example of a grain growth experiment. (a) Originally foliated aggregate 

at t=0, and (b) at t=40000 time steps  

 

Fig. B8. The successive positions of all grain boundaries at each time step during 

this time interval are shown in shades of grey that vary cyclically with time. White 

areas have never been swept by grain boundaries 

Examples: In this example (Fig. B7) we will perform a simple grain 

growth experiment by taking an input file with a microstructure far from 

equilibrium in terms of grain shapes and evolve the grain boundaries by 

defining a boundary energy term, which provides the driving force for 

grain boundary migration. The example can also be seen in Chap. 3.5 (Fig. 

3.5.4). Figure B8 is the same experiment, but the past positions of grain 

boundaries are displayed. This way one can see which parts of the grains 

have been swept by grain boundaries at least once (Jessell et al., 2003). 
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Experiment 8 - Evolution of a partial melt 

These experiments show how melt pockets evolve for different melt-

crystal boundary energies. The example experiment has a solid-solid to 

solid-liquid surface energy ratio such that the wetting angle is 10°, 60° or 

120° at equilibrium. The melt fraction is fixed at 2%. The starting micro-

structure already shows some disequilibrium features, but most melt pock-

ets have wetting angles of around 10°. During the start of the simulation 

these melt pockets quickly adjust to an equilibrium shape depending on the 

wetting angle. This behaviour was predicted by Laporte et al. (1997) for 

<60° wetting angles in a static system when grains have similar sizes.  

 

Execution: In order to run one of these experiments, start up the Experi-

ment Launcher and select the appropriate experiment from the Experi-

ments menu. There are three possible sub-experiments, with varying wet-

ting angles for the same starting microstructure: 

 a  10° wetting angle  

 b   60° wetting angle  

 c   120° wetting angle  

 

Interface: These files will each load their appropriate preferences file 

automatically. Once the file is loaded, select Run from the Run menu of 

the Elle window to watch the system evolve. Red areas are melt, blue are 

crystal. Sometimes two melt pockets may merge, and a boundary will be 

seen between these pockets, however this does not have any physical sig-

nificance in our calculations. The image is updated only every 10 

timesteps. Note that the simulations take rather a long time.  

 

Example: The example provided here (c) has a solid-solid to solid-liquid 

surface energy ratio such that the wetting angle is 120° at equilibrium (Fig. 

B9). The melt fraction is fixed at 2%. The starting microstructure is far 

from equilibrium for a 10° wetting angle. However, during the start of the 

simulation these melt pockets quickly adjust to an equilibrium shape (con-

vex triangles). This behaviour was predicted by Laporte et al. (1997) for 

<60° wetting angles in a static system when grains have similar sizes.  
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Fig. B9. Three stages from experiment c, where melt is black. (a) The starting 

melt pocket shape is strongly out of equilibrium for a 120° wetting angle. (b) after 

1000 and (c) after 5000 steps of boundary movement. Notice the rapid change in 

melt pocket shape in the first 1000 steps and no visible difference in the next 4000 

steps 

Experiment 9 - Rigid porphyroblast growing 
 

This section describes how to run the Basil program in conjunction with 

the Elle software using the specific examples shown in Figs. 3.8.1, 3.8.2 

and 3.8.4. We model the development of grain growth during simple shear 

deformation and a relatively hard porphyroblast rotating within a relatively 

weak mantle deformed to high strains under simple shear deformation. 

 

Execution: In order to run one of these experiments, start up the Experi-

ment Launcher and select the appropriate experiment from the Experi-

ments Menu. The three experiments in this section are: 

a Rigid grain in a deforming matrix  

b Grain growing in a deforming matrix with viscosity contrast  

c High strain experiment with soft mantle  

Experiments b and c will take several hours to run and you can either use 

showelle (see Appendix C) or Sybil (see Appendix F) to follow the evolu-

tion of the sample. Only Sybil can be used to view experiment a. This ex-

periment should only take a few minutes and Sybil will open automatically 

if found on your system. 

In practice, a shell script (or batch file in Windows) is run, which calls 

Basil and requires an input file containing the parameters needed to run 

Basil, including boundary conditions. For examples b and c, the script also 

in a deforming matrix  
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calls the appropriate Elle routines and requires an Elle input file containing 

a description of the initial microstructure (grains, subgrains, etc.).  

 

Fig. B10. Experiment 9b in which a central growing grain, with viscosity 5 times 

that of the matrix, resists deformation. (a) Initial microstructure. (b) After a strain 

of 1 and 750 growth steps. (c) After a strain of 3 and 2250 growth steps 

Examples: In example a, we use Basil to calculate the velocity around a 

rigid, circular object in a soft matrix that is subject to simple shear. 

In the example shown in Fig. B10, we use Elle and Basil to study the 

growth of a porphyroblast in a crystalline matrix that is subject to simple 

shear. The 2D square domain of unit dimensionless length shows a crystal-

line matrix with irregular grain size surrounding a small grain of harder 

material (viscosity coefficient 5, representing garnet). We assume Newto-

nian constant viscosity (stress exponent n=1) in both materials. 

 

Fig. B11. Experiment 9c. Rotation of a porphyroblast (medium grey: viscosity 

50ηo) surrounded by a weak layer of crystals (dark grey: viscosity 0.5ηo) embed-

ded in a matrix (light grey: viscosity ηo) undergoing simple shear. The total finite 

strain is: (a) 0, (b) 2, and (c) 5. Boundary conditions are as described for Experi-

ment 9b but bnode data is mapped onto a regular Basil mesh 

In the final example, we show a dynamic shear experiment in which a 

constant volume porphyroblast that is embedded in a matrix that undergoes 

a large simple shear strain (Fig. B11). In this case the viscosity of the 
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porphyroblast is 50 times that of the background matrix. A layer of grains 

whose viscosities are half that of the matrix surrounds the porphyroblast 

and the mechanical boundary conditions are the same as those for Fig. B11 

but there is no grain growth.  

 

Functions and Parameters for users wishing to modify parameters in the 

Shelle script: The Elle shell script file, exp9b.shelle/bat, is generated using 

the web page shelle24.html, to set the following parameters that control the 

Elle experiment: 

1. Experiment Name exp9b_out, the base for naming saved output files 

2. Elle Input File exp9b.elle, the Elle input file containing the initial mi-

crostructure 

3. Last Time 150, the number of time steps for the experiment loop 

4. Save Interval 50, output files from all processes will be saved every 50 

time steps with the following processes turned on: 

5. Basil [1 2 3] 

6. Basil Input File exp9b.in 

7. Reposition [13]  

8. Expand [19], Expand Speed 1, Expand Growth Stages 15, Expand Max 

Area 0 

9. The saved output file has the process list: LIST= "1 2 3 13 19" 

The first three processes in the list are elle2poly (1), Basil (2), basil2elle 

(3) and are an immutable group included when Basil is turned on. Reposi-

tion (13) puts the bnodes back into a unit cell and is normally called after 

any deformation process (e.g. Basil, OOF, Manuel). The last process in the 

list is elle_expand (19) (performed by the routine in the code proc-

esses/pblast/expand.elle.cc) and results in growth of any grains with a non-

zero EXPAND attribute set in the Elle input file. Expand Area is turned off 

but allows the growth rate to decline exponentially as the grain expands. 

All processes in the list are called once per time step (the size of which is 

set by Basil), but the Expand process requires a finer discretisation in time 

than that required by Basil, in order to limit the distance a bnode can move 

in one stage, and thereby avoid instabilities and topological problems due 

to overstepping. The Expand process is therefore implemented using a 

number (15 in this example) of sequential Growth Stages in each Basil 

time step (0.02 in the example, as described below). The rate at which a 

grain boundary moves in the Expand process is the default value of 10
-4

 

distance unit per growth stage (0.075 dimensionless velocity units in this 

example). This rate can be modified by a multiplicative factor set in the 

Expand Speed line (1 in this example). 
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Elle input file parameters: The Elle input file, exp9b.elle, contains the ini-

tial microstructure which includes a grain (grain number 25) with the 

EXPAND attribute set and a viscosity constant 5 times that of the matrix. 

 

Basil input file parameters: In the Basil input file, exp9b.in, the following 

parameters can be changed to vary the time step and simple shear bound-

ary conditions: 

• STEPSIZE IDT0=50 

• STOP      KEXIT=500 TEXIT=0.02 

• SAVE      KSAVE=50 TSAVE=0.02 

TEXIT is the dimensionless time level for the Basil run. It may be var-

ied but keep TSAVE=TEXIT for the Elle experiment so that the Basil so-

lutions will contain two records, t=0 and t=TEXIT. IDT0 controls the in-

ternal time step for the Basil calculations and should be set so that 1/IDT0 

<= TSAVE, e.g. if TEXIT and TSAVE are set to 0.01 then set IDT0 to 

100. 

To change the strain rate for this problem, keep the y-component of the 

velocity, UY, set to zero and vary the x-component of the velocity, UX, for 

the top (Y=YMAX ) and bottom (Y=YMIN) boundaries: 

ON Y = YMIN : UX = -0.5 

ON Y = YMIN : UY = 0.0 

ON Y = YMAX : UX = 0.5 

ON Y = YMAX : UY = 0.0 

 

Displaying output: The output of experiment a can be viewed using Sybil. 

To reproduce Fig. B10(a), open a terminal or command window, change to 

the experiment directory, run Sybil and open exp9a.log from the File 

menu.  

The output from b and c can be viewed using the auxiliary program, 

showelle.  The graphics preferences will be loaded from the defaults.zip in 

the corresponding directory when an Elle file is opened.  

Experiment 10 - Lattice rotations 

This section gives details for running the lattice rotation during deforma-

tion experiment that is described in section 4.3.  
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Execution: In order to run one of these experiments ( ), start up the Ex-

periment Launcher and select the appropriate experiment from the Ex-

periments menu.  

As this is a multi-process experiment, it will start automatically and you 

can either use showelle to view the microstructural evolution (see Appen-

dix C) or Sybil (see appendix F) to follow the stress/strain evolution of the 

sample. 

In practice, a shell script (or batch file in Windows) is run, which calls 

the appropriate Elle and Basil routines, and requires an Elle input file con-

taining a description of the initial microstructure (grains, subgrains, etc.) 

and a Basil input file containing the parameters needed to run Basil, in-

cluding boundary conditions.  

 

Interface: As these are multi-process experiments, they will start auto-

matically and you can either use showelle to view the microstructural evo-

lution (see Appendix C) or Sybil (see appendix F) to follow the 

stress/strain evolution of the sample. 

To reproduce Fig. B12a-b, use showelle to open any Elle file generated 

by this experiment. The Postscript format orientation plots for each Elle 

file may be saved by selecting Save→Orientation Plots from the Graph-

ics menu. 

 

Example: In this example (Fig. B12) we couple a TBH calculation with 

the Basil FEM code to simulate deformation of a quartz polycrystal, and 

base the updated viscosities on the work term calculated by the TBH code. 

In this way grains which are able to deform by glide on slip systems with 

low Critical Resolved Shear Stress will deform more rapidly than grains 

which only have ‘hard’ slip systems available. 

 

Processes: This experiment combines three processes: 

1. Basil- non-linear viscous flow 

2. ell_tbh- Taylor-Bishop-Hill lattice reorientation calculations 

3. elle_viscosity- resetting of each grains viscosity value 

 

Functions and parameters for users wishing to modify parameters in the 

Shelle Script: exp10.elle is the initial elle file that consists of a simple 

foam texture with 121 grains. The initial viscosities of all grains is set to 1. 

exp10.shelle/bat is a batch file generated using Shelle24.html to set the fol-

lowing parameters which control the Elle experiment: 

1. Experiment Name tbh, the base for naming saved output files 
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2. Elle Input File exp10.elle, the initial microstructure 

3. Last Time 30, the number of iterations for the experiment loop 

4. Save Interval 1, output files from all processes will be saved every itera-

tion with the following processes [and their process id] turned on: 

5. Basil [7 1 2 3 13] The file exp10.in controls the Basil code, in this se-

ries of experiments you can change the stress exponent by altering the 

value SE on line 10 (this is initially set to 1). The initial time step in-

cludes a randomisation [7] of all crystallographic orientations. 

6. elle_tbh [4] Calculation of lattice rotations and work term 

7. elle_viscosity [16] ViscosityMode 0 (viscosity is based on work term 

calculated by TBH code) 

8. The saved output file has the process list LIST= "LIST="7 1 2 3 13 4 

16"" 

 

Fig. B12. Simple coupled TBH-FEM calculation. (a) Lattice orientations at t=0 

and t=50, grey scale a function of only the Alpha Euler angle. Notice that by t=50 

many of the grains share a similar orientation. (b) Instantaneous viscosities at t=0 

and t=50 (bright=high viscosity) (c) c-axes stereograms at t=0 and t=50, the latter 

equivalent to a shear strain of 1.5 
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Functions and parameters for users wishing to modify parameters in the 

Shelle Script: exp10.elle is the initial elle file that consists of a simple 

foam texture with 121 grains. The initial viscosities of all grains is set to 1. 

exp10.shelle/bat is a batch file generated using Shelle24.html to set the fol-

lowing parameters which control the Elle experiment: 

9. Experiment Name tbh, the base for naming saved output files 

10. Elle Input File exp10.elle, the initial microstructure 

11. Last Time 30, the number of iterations for the experiment loop 

12. Save Interval 1, output files from all processes will be saved every it-

eration with the following processes [and their process id] turned on: 

13. Basil [7 1 2 3 13] The file exp10.in controls the Basil code, in this se-

ries of experiments you can change the stress exponent by altering the 

value SE on line 10 (this is initially set to 1). The initial time step in-

cludes a randomisation [7] of all crystallographic orientations. 

14. elle_tbh [4] Calculation of lattice rotations and work term 

15. elle_viscosity [16] ViscosityMode 0 (viscosity is based on work term 

calculated by TBH code) 

16. The saved output file has the process list LIST= "LIST="7 1 2 3 13 4 

16"" 

All processes in the list are called once per time step.  

 

quartz.crss This file defines the relative Critical Resolved Shear Stress val-

ues for different slip systems. In the example used here they were defined 

as: 

1 5.00 5 ∞ 9 9.50 

2 11.00 6 9.50 10 15.00 

3 6.00 7 9.50 11 15.00 

4 ∞ 8 9.50  

where the slip system id numbers, which are defined in quartz.xl are: 

1 BASAL A 6 (2-1-1 1) C+A2 10 RHOMB A 

2 PRISM C 7 (2-1-1 1) C+A3 11 RHOMB -A 

3 PRISM A 8 (2-1-1 1) -C-A2 12 RHOMB C+A 

4 PRISM C+A 9 (2-1-1 1) -C-A3 13 RHOMB -C-A 

5 PRISM -C-A   
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Experiment 11 - Boudinage  

This example illustrates the development of boudinage in a granular ag-

gregate during compaction and pure shear deformation. The background of 

the software is explained in Chap. 3.11 and is based on a Lattice-Spring 

model (Chap. 2.8). 

 

Execution: In order to run one of these experiments, start up the Experi-

ment Launcher and select the appropriate experiment from the Experi-

ments menu. On most computers you should use the lower-resolution files 

since the algorithm is relatively slow. Possible sub-experiments, which 

simply vary the density of unodes are: 

a   2850 particles   

b  11500 particles   

c  46000 particles   

Once the file is loaded, select Run from the Run menu of the Elle win-

dow to watch the system evolve. 

 

 

Fig. B13. Fracture development in two competent layers (Young’s modulus is 10 

times that of the matrix). (a) Initial setup plotting the Young’s moduli. (b-e) frac-

ture pattern after (b) 10 steps, (c) 20 steps, (d) 30 steps and (e) 40 steps. (f) Final 

fractures or larger damage zones in the thicker layer (plotting Young’s moduli) 
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Interface:  These files will each load their appropriate preferences file 

automatically, and only the unodes will be visible. You can now choose to 

view the Young’s moduli of different grains, the fractures and the differen-

tial and mean stress. In order to view fractures, choose values between -1.0 

and 0.0, unodes with fractured bonds will be blue and unfractured unodes 

red. Differential and mean stress should be scaled during a run, normal 

values are: differential stress 0.0 to 0.01 and mean stress - 0.01 to 0.01 

(negative is compression).  

 

Examples Figure B13a and B13f show the initial and final geometry with 

Young’s modulus as parameter. Figure B13b-e show the fracture patterns 

during 40 stages (fractured particles are dark, set fractures to -1 and 0.0). It 

can be seen that lattice geometry does have an influence on the fracture 

patterns. The thick layer develops a fracture spacing where two fracture 

clusters dominate and start to open.  

Functions and parameters for users wishing to use the Experiment In-

terface to modify parameters The parameters used in the example are: 

• SetGaussianStrengthDistribution(2.0,0.8),  

• WeakenAll(0.1,1.0,1.0,  

• WeakenHorizontalParticleLayer(0.9,0.92,10.0,1.0,1.0),  

• WeakenHorizontalParticleLayer(0.2,0.6,10.0,1.0,1.0),  

• DeformLatticePureShear(0.001,1).  

In the initialization function (Experiment::Init(), case 2) the following 

functions contain parameters that can be changed:  

• SetGaussianStrengthDistribution(2.0,0.8) This function is used to set a 

Gaussian distribution on breaking strengths of all springs. Mean of the 

distribution is 2.0 and the standard deviation 0.8. The breaking strength 

of the material is dependent on the lowest breaking strengths of springs 

so that a variation of the standard deviation will affect the breaking 

strength of the whole material.  

• WeakenAll(0.1,1.0,1.0) This function changes the Young’s modulus, 

viscosity or breaking strength of all particles. In this case the material 

made softer.  

• WeakenHorizontalParticleLayer(0.2,0.6,10.0,1.0, 1.0) This function in-

serts a horizontal layer of particles that may have different Young’s 

modulus, viscosity and breaking strength than the surrounding matrix. 

All particles between x = 0.2 and x = 0.6 are part of the layer. In this ex-

ample the layer has a Young’s modulus that is 10 times that of the sur-

rounding matrix.  
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• SetFracturePlot(50,1) This function just specifies that a plot is made af-

ter 50 bonds are broken. In that case Elle stages may not necessarily rep-

resent time steps.  

In the run function (Experiment::Run(), case 2) the following function 

contain parameters that can be changed: 

• DeformLatticePureShear(0.001,1) Deform the lattice by pure shear 

deformation with a vertical strain of 0.001.  

Experiment 12 - Dissolution grooves  

This example illustrates the development of dissolution grooves at a 

stressed crystal-solute interface. The background of the software is ex-

plained in Chap. 3.12 and is based on a Lattice-Spring model (Chap. 2.8).  

 

Execution: In order to run one of these experiments, start up the Experi-

ment Launcher and select the appropriate experiment from the Experi-

ments menu. On most computers you should use a medium-resolution file 

since the algorithm is relatively fast. Possible sub-experiments, which sim-

ply vary the density of unodes are: 

a  2850 particles   

b  11500 particles   

c  46000 particles   

Once the file is loaded, select Run from the Run menu of the Elle window 

to watch the system evolve. 

 

 

Fig. B14. Development of grooves on a crystal surface after (a) 2, (b) 15, (c) 30 

and (d) 49 stages. Fluid is black and solid grey. The initial roughness that devel-

ops due to the heterogeneous dissolution develops into cusp instabilities with a 

well-defined wavelength 
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Interface: These files will each load their appropriate preferences file 

automatically, and only the unodes will be visible. You can now choose to 

view the different phases (from –1 to 1; where the fluid is –1, the interface 

0 and the solid 1) or the stress. Differential and mean stress should be 

scaled during a run, normal values are: differential stress 0.0 to 0.01 and 

mean stress - 0.01 to 0.01 (negative is compression).  

 

Examples Figure B14 shows the development of grooves on a crystal sur-

face. Input file is res200.elle. Parameters used are the ones given above. 

The solid in Fig. B14 is grey and the fluid black. The figure shows the 

roughening of the surface (Fig. B14b) and development of cusps after 30 

stages (Fig. B14c), which have developed a well-defined wavelength after 

49 stages (Fig. B14d). 

Functions and parameters for users wishing to use the Experiment In-

terface to modify parameters: In the initialization function (Experi-

ment::Init(), case 6) the following functions contain parameters that can be 

changed: 

• SetPhase(0.0,0.0,500.0,0.8) This function makes the lattice unbreakable 

since fractures are not wanted in the dissolution processes (at least in 

this example).  

• SetGaussianRateDistribution(2.0,0.3) Set a Gaussian distribution on rate 

constants in order to induce the roughening. Mean is 2.0 and standard 

deviation 0.3.  

• WeakenAll(8.0,1.0,1.0) Multiply spring constants by 8.  

• Set_Mineral_Parameters(1) Mineral is quartz (set molecular volume and 

surface free energy) 

• Set_Absolute_Box_Size(0.0001) x dimension of the simulation box is 

0.0001 m.  

• Set_Time(6000.0,4) time of one deformation step is 6000 years.  

• DissolveXRow(0.95,1.1) Dissolve particles between x = 0.95 and x = 1.1.  

• In the run function (Experiment::Run(), case 6) the following functions 

contain parameters that can be changed: 

• DeformLattice(0.002,1) Deform the lattice by uniaxial vertical compres-

sion with confined walls on the sides and a vertical strain of 0.002.  

• Dissolution_Strain(20) Dissolve as a function of elastic and surface en-

ergies and plot a picture after 20 particles have dissolved.  
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Experiment 13 - Stylolites  

This example illustrates the development of stylolites at a stressed crystal-

solute interface. The background of the software is explained in Chap. 3.12 

and is based on a Lattice-Spring model (Chap. 2.8).  

 

Execution: In order to run one of these experiments, start up the Experi-

ment Launcher and select the appropriate experiment from the Experi-

ments menu. On most computers you should use the low-resolution files 

since the algorithm is relatively slow. Possible sub-experiments, which 

simply vary the density of unodes are: 

a  2850 particles   

b  11500 particles   

c  46000 particles  

Once the file is loaded, select Run from the Run menu of the Elle window 

to watch the system evolve. 

 

Interface: These files will each load their appropriate preferences file 

automatically, and only the unodes will be visible. You should now choose 

to view the phases, where –1 is the fluid, 0 the interface and 1 the solid.  

 

Examples Figure B15 illustrates an example of stylolite development in a 

lattice that has a horizontal resolution of 100 particles. Parameters in the 

functions are the same as above. The initially flat surface roughens during 

progressive dissolution due to the heterogeneities in dissolution constants. 

The absolute size of the box is large (0.1 m horizontally) so that surface 

energy is rather low and elastic effects dominate. Therefore some rela-

tively steep structures develop that are comparable with the characteristic 

stylolite “teeth”. 

Figure B16 illustrates roughening of a stylolite with the same properties 

as the stylolite shown in Fig. B15 except for the dimension of the box, 

which is only 1 mm horizontally. Therefore surface energy effects are 

more pronounced so that the structures appear more rounded.  
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Fig. B15. Development of the roughness of a stylolite. Stages are (a) 500, (b) 

1000, (c) 1500, (d) 2000, (e) 2500 and (f) 3000. The horizontal dimension of the 

box is 0.1 m  

 

Fig. B16. Development of the roughness of a stylolite where the horizontal dimen-

sion (1 mm) of the box is two orders of magnitude smaller than that of Fig. 13.1. 

Stages are (a) 500, (b) 1000, (c) 1500, (d) 2000, (e) 2500 and (f) 3000  
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Functions and parameters for users wishing to use the Experiment In-

terface to modify parameters: In the initialization function (Experi-

ment::Init(), case 7) the following functions contain parameters that can be 

changed: 

• SetPhase(0.0,0.0,500.0,0.8) As in the groove case this turns fracturing 

off.  

• SetGaussianRateDistribution(2.0,0.5) Set a Gaussian distribution on dis-

solution constants, 2.0 is mean of the distribution and 0.5 the standard 

deviation.  

• Set_Rate_Two_Phase(0.05,0.6,1.0) Set a bimodal distribution on the 

dissolution constants of particles. 5% of all particles dissolve a factor 

0.6 slower than the rest.  

• WeakenAll(4.0,1.0,1.0) Multiply the spring constants by 4.  

• Set_Mineral_Parameters(1) Mineral is quartz (set molecular volume and 

surface free energy) 

• Set_Absolute_Box_Size(0.1) x dimension of box is 0.1 m.  

• Set_Time(40.0,4) One time step represents 40 years.  

• DissolveYRow(0.49,0.5, true) Dissolve a row of particles in the centre 

between y = 0.49 and y = 0.5.True means that the dissolved particles are 

removed from the picture.  

In the run function (Experiment::Run(), case 7) the following functions 

contain parameters that can be changed: 

• DeformLatticeNewAverage2side(0.00005,1) Deform the lattice by 

pushing upper and lower crystal together.  

• Dissolution_StylosII(100000,0,0,0,1) Dissolve as a function of stress 

and elastic and surface energy.  

Experiment 14 - Strain-rate partitioning during 
porphyroblasts growth 

This section explores the evolving strain-rate partitioning behaviour within 

a layered succession during porphyroblast growth, and explore the feed-

back between strain-rate partitioning around effectively rigid porphyro-

blasts and metamorphic reactions, as described in section 4.8.  

 

Execution: In order to run one of these experiments, start up the Experi-

ment Launcher and select the appropriate experiment from the Experi-

ments menu.  
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Possible sub-experiments are: 

a  porphyroblast growth, no deformation   

b  deformation, but no porphyroblast growth  

c  porphyroblast growth, with deformation  

As these are multi-process experiments, they will start automatically and 

you can either use showelle to view the microstructural evolution (see Ap-

pendix C) or Sybil (see appendix F) to follow the stress/strain evolution of 

the sample. 

 

Fig. B17. Porphyroblast growth without deformation (Experiment a) 

Examples: These examples compare porphyroblast with and without de-

formation, and deformation with and without porphyroblasts. The first ex-

periment simply shows the growth from small nuclei of a set of porphyro-

blasts (Fig. B17). In the following two experiments (Fig. B18), two 

geometries were deformed in simple shear to bulk strains of approximately 

1.5 to illustrate the difference between strain partitioning in a porphyro-

blast-free layered system and a porphyroblastic layered system. In the ab-

sence of porphyroblasts, the pelitic layer in our model has a viscosity 0.4 

times that of the psammitic layer. Strain is partitioned in this model such 

that the pelitic layer records a shear strain of approximately 2.1 and the 

psammitic layer records a shear strain of approximately 0.8, consistent 

with the viscosity contrast between the two layers. A second geometry, 

with approximately 18% porphyroblast in the pelitic layer, was deformed 

to a similar bulk strain. 
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Fig. B18. Top: Shear strain rate contour maps for the porphyroblast-free simple 

shear deformation experiment b. Note the homogeneous shear strain rate in each 

layer and the bulk strain rate partitioning into the pelitic layer. Middle: Shear 

strain rate contour maps for the 18% porphyroblast simple shear deformation ex-

periment c. Note strain rate partitioning within the pelitic layer with high strain 

rate zones around the porphyroblasts. Also, the strain rate is higher in the psam-

mitic layer than in the porphyroblast-free experiment. Bottom: Close-up images of 

the shear strain rate distribution around porphyroblasts showing high and low 

shear strain rate zones. The image on the left has had the grain topology removed 

for simplification. The location of strain-assisted reaction between two porphyro-

blasts is indicated 
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Interface: Strain-rate maps and viscosity profiles are created using Sybil, 

and the evolving topology can be viewed using showelle. 

To reproduce strain-rate maps, open any solution file generated by the 

shelle script in Sybil. In Sybil, select contour →  strain →  msst. To repro-

duce the figures used in Chap. 4.8, set the options to "min = 0, max = 2. " 

To produce viscosity profiles through the model, open any solution in 

Sybil. In Sybil, select profile →  2-D →  stress →  visc. Set the lower limit 

to 0 and the upper limit to 1 (in the Y-direction) to generate a profile 

through both layers in the model. To generate a profile through just the 

upper pelite layer, set the limits to min=0.5, max=1.0.  Set the minimum 

scale value to 0 and the maximum value to 2 (note the scale is log10 of the 

viscosity). 

 

Processes: This is a multi-stage experiment using the following processes: 

1. Basil: The models in Chap. 4.8 use linear viscous flow 

2. elle_gg: curvature-driven grain boundary migration 

3. elle_pblast: selected grains grow as porphyroblasts. To reproduce the 

syn-deformation growth experiments in Chap. 4.8, the following pa-

rameters are used in the shelle script: Lasttime=030, Timestep=001, 

GGstages=003 (Process [18]), PblastStages=015 (Process [8]), SaveIn-

terval=1, List= "1 2 3 8 18 13". 

 

Modifying the Shelle Script: A single deformation step is modelled using 

a .shelle script with the following parameters: 

• Startfile = the name of the porphyroblast growth stage you want to de-

form,  

• Time = 0,  

• LastTime = 1,  

• GGStages = 0,  

• Saveinterval = 1,  

• SaveAll = 13,  

• Basinfile = exp14b.in,  

• Processes: "1 2 3 13" 

Experiment 15 - Anisotropic grain growth 

This section gives details for running the anisotropic grain growth experi-

ments that are described in section 4.1. Be warned that these experiments 
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each take several hours to run; overnight experiments often prove to be the 

least disruptive. 

 

Processes: This experiment use only the elle_gbm process, in its earlier 

version, see Chap. 3.5 for details. 

 

Execution: In order to run one of these experiments, start up the Experi-

ment Launcher and select the appropriate experiment from the Experi-

ments menu. Possible sub-experiments, which simply vary the amount of 

anisotropy are: 

a  No boundary anisotropy   

b  10% Anisotropy   

c  20% Anisotropy   

d  30% Anisotropy   

e  40% Anisotropy  

f  50% Anisotropy   

Once the file is loaded, select Run from the Run menu of the Elle win-

dow to watch the system evolve. 

 

Interface: As this is a single process experiment, the easiest way to moni-

tor the progress is to view the generated Elle files directly in elle_gbm. In 

addition, every 1000 time steps an Elle file will be saved.  

 

Example: An initially randomly oriented aggregate consisting of 315 

grains (and hence an average grain area of 3.17·10
-3

 (the entire model has 

unit area) with a foam texture, was allowed to grow for between 100,000 

and 300,000 time steps (this may take several hours). Experiment a, which 

has an isotropic surface energy distribution, produces a foam texture with 

triple junction angles of about 120°. At a first glance, the microstructure in 

the other experiments looks like a foam texture, but most triple junction 

angles are in fact far from 120 degrees (Fig. B19).  

The rate of grain growth in all experiments with a surface energy anisot-

ropy is vastly decreased relative to an identical experiment where surface 

energies were assumed to be isotropic (A), and experiments with a high 

boundary energy anisotropy quickly reach an apparently stagnant grain 

size. After a considerable time in the experiments with higher surface en-

ergy anisotropies, a second phase of grain growth commences, dominated 

by the exaggerated growth of just one or two grains (Fig. B20). 
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Fig. B19. Experiment F. (a) Time step 0, shading reflect lattice orientation. (b) 

Time step 100,000. Most triple junction angles reflect surface energy anisotropy 

by being far from 120 degrees 

 

Fig. B20. Experiment C. (a) Time step 0, shading reflects lattice orientation (b) 

Time step 200,000 

Experiment 16 - Dynamic recrystallisation   

In the model presented here, we can simulate dynamic recrystallisation 

during plane strain simple shear deformation of a polycrystal, involving 

crystal lattice rotation, formation of subgrains, recrystallisation by nuclea-

tion, recrystallisation by subgrain rotation (also called rotational recrystal-

lisation), grain boundary migration and recovery (see Section 4.2 for more 

details, but the complete list of parameters used and reasoning behind 

those the reader is referred to Piazolo (2001) and Piazolo et al. (2002). 

Three coarse-grained starting microstructure files and three fine-grained 
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files are provided, each at three different grain boundary mobilities (1·10
-12

 

20·10
-12

 and 40·10
-12

). 

 

Execution: In order to run one of these experiments, start up the Experi-

ment Launcher and select the appropriate experiment from the Experi-

ments menu. Possible sub-experiments are: 

a  fine grained with low mobility   

b  fine grained with medium mobility   

c  fine grained with high mobility   

d  coarse grained with low mobility  

e  coarse grained with medium mobility  

f  coarse grained with high mobility   

As these are multi-process experiments, they will start automatically and 

you can either use showelle to view the microstructural evolution (see Ap-

pendix C) or Sybil (see appendix F) to follow the stress/strain evolution of 

the sample. 

 

Interface: In practice, a shell script (or batch file in Windows) is run, 

which calls the appropriate Elle and Basil routines, and requires an Elle in-

put file containing a description of the initial microstructure (grains, sub-

grains, etc.) and a Basil input file containing the parameters needed to run 

Basil, including boundary conditions.  

 

Examples: To investigate the effect of the relative rates of the different 

microscale processes active during dynamic recrystallisation experiments 

were performed in which one parameter was varied. The grain boundary 

mobility (GBMob) was chosen to be 1·10
-12

, 20·10
-12

 or 40·10
-12

 m
2
s

-1
J

-1
. 

The interested reader is referred to Piazolo (2001) and Piazolo et al. (2002) 

for further simulations the energy threshold value for recrystallisation by 

nucleation was also varied. Two different starting microstructures were 

used: one fine-grained and one-coarse grained aggregate Figure B21 shows 

the development of the microstructure in simple shear at a shear srain of 

0.25 and 2, showing both the grains as well as their dislocations densities. 

A variety of image sequences of developing microstructures during pro-

gressive deformation are provided at  

 www.uni-mainz.de/FB/Geo/Geologie/tecto/elle_movies.  
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Fig. B21. Results of the 6 simulation runs. Different grey colours signify different 

grains, dark boundaries low angle boundaries and light grey coloured boundaries 

high angle boundaries. For the naming of simulation runs refer to Table 4.2.1 

(modified from Piazolo 2001) 

 

 

M  . W. Jessell



Appendix B Example experiments      335 

 

Processes: This experiment combines several processes: 

1. Basil- non-linear viscous flow 

2. elle_split- creation of new subgrain boundaries  

3. elle_gbm- curvature and defect energy driven grain boundary migration 

4. elle_tbh- calculates lattice rotations 

5. elle_nucl_xx- nucleation of new grains 

6. elle_angle_rx- nucleation of new grains by rotation recrystallisation 

7. elle_recovery- reduction in defect energies within grains 

8. elle_viscosity- resetting of each grains viscosity value 

Experiment 17 - Deformation localisation 

This section gives details for running the deformation localisation experi-

ment which is described in section 3.9. As this experiment depends on 

probabilistic calculations, no two experiments will run the same, and its 

long-term evolution may be quite different from that shown in the figures. 

 

Execution: In order to run one of these experiments, start up the Experi-

ment Launcher and select the appropriate experiment from the Experi-

ments menu. The three experiments in this section are: 

a Stress Exponent of 1, no Grain Size Modifying Processes  

b Stress Exponent of 3, no Grain Size Modifying Processes  

c Stress Exponent of 1, with Grain Size Modifying Processes  

d Stress Exponent of 3, with Grain Size Modifying Processes  

As these are multi-process experiments, they will start automatically and 

you can either use showelle to view the microstructural evolution (see Ap-

pendix C) or Sybil (see appendix F) to follow the stress/strain evolution of 

the sample. 

 In practice, a shell script (or batch file in Windows) is run, which calls 

the appropriate Elle and Basil routines, and requires an Elle input file con-

taining a description of the initial microstructure (grains, subgrains, etc.) 

and a Basil input file containing the parameters needed to run Basil, in-

cluding boundary conditions.  

 

Examples: We simulate a simple system in which three processes are ac-

tive. We stress that these are not supposed to accurately represent the de-

tailed behaviour of any single deformation process, but rather act as prox-

ies for three classes of processes, namely a grain-size and strain dependant 
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rheology, a process that increases the grain size, and a process that reduces 

the grain size (see Jessell et al. (2005) for a complete set of the experimen-

tal parameters).  

Fig. B22. Maps of the average finite first principal strain for each grain during 

time step 50 for each of the four experiments. The shading in each map is propor-

tional to accumulated strain, overlaid by the grain boundary network as white 

lines. The same look up table is used for all four maps. (a) Experiment A, showing 

a relatively homogeneous strain distribution, with a concentration of deformation 

in the small grain in the top-right. (b) Experiment B, showing a relatively homo-

geneous strain distribution, but with a concentration of deformation in the small 

grain in the top-right. (c) Experiment C, showing a broad zone of higher strain. (d) 

Experiment D, showing a broad sub-horizontal zone of high strain. Notice that the 

high strain rate zones in Fig. 4.3.2d are not all high finite strain zones in this fig-

ure, and that the zone of bulk finite strain is much more clearly defined than the 

equivalent instantaneous high strain rate zone 
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A single experiment consists of defining a starting microstructure, then 

cycling this microstructure through the three processes, so that the micro-

structure is slightly modified by each process in turn. In this sequence of 

experiments we chose to change only two parameters. The first of the two 

parameters is the stress exponent of the grain size dependent flow law, 

which could have values of 1 or 3. The second variable is the activation or 

non-activation of the Grain Size Reduction and Grain Size Increase proc-

esses. We thus define four Experiments A, B, C and D (Table 4.3.1). 

These four simple experiments demonstrate a range of behaviours (Fig. 

B22), a monotonic evolution for Experiments A and B versus a more com-

plex path for Experiments C & D. As one might expect, in these experi-

ments, the more non-linear the system, either in terms of the rheology or 

the process coupling, the more complex the behaviour. 

 

Processes: This experiment combines four processes: 

1. Basil- non-linear viscous flow 

2. elle_split- creation of new high angle grain boundaries  

3. elle_gg- curvature driven grain boundary migration and  

4. elle_viscosity- resetting of each grains viscosity value 

 

Functions and parameters for users wishing to modify parameters in the 

Shelle Script: exp17.elle, the initial elle file that consists of a simple foam 

texture with 16 grains. The initial viscosity of all grains is set to 1. 

exp17.shelle/bat is a batch file generated using Shelle24.html to set the fol-

lowing parameters which control the Elle_experiment: 

1. Experiment Name exp_17a, the base for naming saved output files 

2. Elle Input File loca.elle, the initial microstructure 

3. Last Time 100, the number of iterations for the experiment loop 

4. Save Interval 5, output files from all processes will be saved every fifth 

iteration with the following processes [and their process id] turned on: 

5. Basil [1 2 3 13] The file exp17.in controls the Basil code, in this series 

of experiments you can change the stress exponent by altering the value 

SE on line 10 (this is initially set to 3 in experiments (b) and (d)). 

6. elle_split [5] SplitMode 1 (split probability is based on bulk strain of 

each grain) 

7. elle_gg [18] GGStages 010  

8. elle_viscosity [16] ViscosityMode 1 (viscosity is based on grain area 

and bulk strain of each grain)  
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9. The saved output file has the process list LIST= "1 2 3 13 5 18 16" to 

modify this experiment to run without grain size modifying processes, 

change this to LIST= "1 2 3 13 16".  

All processes in the list are called once per time step. 

Experiment 18 - Expanding inclusions 

This example illustrates single grains expanding in a brittle matrix. The 

background of the software is explained in Chap. 4.4.3 and is based on a 

Lattice-Spring model (Chap. 2.8).  

 

Execution: In order to run one of these experiments, start up the Experi-

ment Launcher and select the appropriate experiment from the Experi-

ments menu. On most computers you should use the medium-resolution 

files since the algorithm is relatively slow. Possible sub-experiments, 

which simply vary the density of unodes are: 

a  2850 particles   

b  11500 particles   

c  46000 particles   

Once the file is loaded, select Run from the Run menu of the Elle win-

dow to watch the system evolve. 

 

Interface: These files will each load their appropriate preferences file 

automatically, and only the unodes will be visible. You can now choose to 

view the Young’s moduli of different grains, the fractures and the differen-

tial and mean stress. In order to view fractures choose values between -1.0 

and 0.0, unodes with fractured bonds will be blue and unfractured unodes 

red. Differential and mean stress should be scaled during a run, normal 

values are: differential stress 0.0 to 0.01 and mean stress - 0.01 to 0.01 

(negative is compression).  

 

Example Figure B23 shows the fracture pattern around the inclusion after 

15 and 30 steps, as well as the mean and differential stress. Values for 

mean stress range from -0.03 to 0.005 and values for differential stress 

range from 0 to 0.03. Figure (d) shows the fracture pattern after 30 steps 

and figure (e) and (f) the corresponding mean and differential stress using 

the same values.  

The example shows the fracture and stress pattern around an expanding 

grain or inclusion. Input file is res100.elle.  
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Fig. B23. Expanding inclusions, associated fracture and stress patterns. (a) Frac-

ture pattern after 15 steps. (b) Mean stress after 15 steps, ranging from -0.03 

(bright?) to 0.005 (dark). (c) Differential stress after 15 steps, ranging from 0 

(dark) to 0.03 (bright). (d) Fracture pattern after 30 steps, fractured particles are 

dark. (e) Mean stress after 30 steps and (f) differential stress after 30 steps. Mean 

stress values are from –0.008 to 0.0001 and differential stress values from 0.0 to 

0.02 

Functions and parameters for users wishing to use the Experiment In-

terface to modify parameters In the initialization function (Experi-

ment::Init(), case 3) the following functions contain parameters that can be 

changed: 

• SetPhase(0.0,0.0,0.8,1.2) Set a linear distribution on breaking strength 

of single bonds. Mean is 0.8 times the default value. Distribution will be 

from default value ± 0.6 times default value.  

• SetFracturePlot(20,1) Plot a picture after 20 particles are fractured.  

In the run function (Experiment::Run(), case 3) the following functions 

contain parameters that can be changed: 

• ShrinkGrain(5,-0.002,1) Shrink grain number 5 by the amount -0.002 

times area of grain and plot a picture.  
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Experiment 19 - Mud cracks  

This example illustrates the development of shrinkage cracks in a brittle 

medium. The background of the software is explained in Chap. 4.4.3 and is 

based on a Lattice-Spring model (Chap. 2.8).  

 

Execution: In order to run one of these experiments, start up the Experi-

ment Launcher and select the appropriate experiment from the Experi-

ments menu. As input file you should use a rather low-resolution file un-

less you have a very fast computer (a & b work fine, c is ok, d becomes 

problematic and e takes a long time even on a fast computer), c gives good 

results in reasonable time (several hours). Possible sub-experiments, which 

simply vary the density of unodes are : 

a  2850 particles   

b  11500 particles  

c  46000 particles   

Once the file is loaded, select Run from the Run menu of the Elle win-

dow to watch the system evolve. 

 

Interface: These files will each load their appropriate preferences file 

automatically, and only the unodes will be visible. You can now choose to 

view the Young’s moduli of different grains, the fractures and the differen-

tial and mean stress. In order to view fractures, choose values between -1.0 

and 0.0, unodes with fractured bonds will be blue and unfractured unodes 

red. Differential and mean stress should be scaled during a run, normal 

values are: differential stress 0.0 to 0.01 and mean stress - 0.01 to 0.01 

(negative is compression).  

 

Examples: Several stages in the development of a mud crack are shown in 

Fig. B24. After nucleation, the crack propagates through the whole model 

(Fig. B24a-c), when a regular spacing develops. This spacing subsequently 

decreases (Fig. B24d-f ). The typically hexagonal fracture pattern develops 

that is well known from mud-cracks or columnar basalts.  
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Fig. B24. Mud cracks after stages (a) 10, (b) 50, (c) 100, (d) 150, (e) 200 and (f) 

240. Cracks develop a regular spacing with a hexagonal symmetry 

The example in Fig. B 19.1 shows the progressive development of frac-

tures in a shrinking layer (for example mud-cracks). The input file is 

res200.elle.  

 

Functions and parameters for users wishing to use the Experiment In-

terface to modify parameters In the initialization function (Experi-

ment::Init(), case 4) the following functions contain parameters that can be 

changed: 

• WeakenAll(2.0,1,1.0) Change spring constants of all springs (multiply 

by 2) 

• SetPhase(0.0,0.0,1.0,1.0) Set a linear distribution on breaking strength 

of single bonds. 

• SetFracturePlot(20,1) Make a plot after 20 bonds are fractured 

In the run function (Experiment::Run(), case 4) the following functions 

contain parameters that can be changed: 

• ShrinkBox(0.001,1,1) Shrink all particles in the box by the amount 

0.001 times area.  
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Experiment 20 - Visco-elastic deformation and fractures 

This example illustrates the development of structures in visco-elastic ma-

terials. The background of the software is explained in Chap. 4.6 and is 

based on a Lattice-Spring model (Chap. 2.8).  

 

Execution: In order to run one of these experiments, start up the Experi-

ment Launcher and select the appropriate experiment from the Experi-

ments menu. As input file you should use a rather low resolution file un-

less you have a very fast computer (a & b work fine, c is ok, d becomes 

problematic and e takes a long time even on a fast computer), c gives good 

results in reasonable time (several hours). Two sets of possible sub-

experiments, which simply vary the density of unodes are provided for the 

case of a single brittle grain in a viscous matrix, and for a brittle layer in a 

viscous matrix: 

a  brittle grain 2850 particles   

b  brittle grain 11500 particles   

c  brittle grain 46000 particles   

d  brittle layer 2850 particles   

e  brittle layer 11500 particles   

f  brittle layer 46000 particles   

Once the file is loaded, select Run from the Run menu of the Elle win-

dow to watch the system evolve. Visco-elastic deformation takes longer to 

calculate than purely elastic deformation!  

 

Interface: These files will each load their appropriate preferences file 

automatically, and only the unodes will be visible. You can now choose to 

view the Young’s moduli of different grains, the fractures and the differen-

tial and mean stress. In order to view fractures, choose values between -1.0 

and 0.0, unodes with fractured bonds will be blue and unfractured unodes 

red. Differential and mean stress should be scaled during a run, normal 

values are: differential stress 0.0 to 0.01 and mean stress - 0.01 to 0.01 

(negative is compression).  
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Fig. B25. Viscoelastic deformation of a hard grain in a more viscous matrix. Plot 

shows the mean stress (values -0.04 to 0.01) where light colour is high compres-

sive stress (negative in this case) and dark colour low compressive stress. The hard 

grain is deforming by internal fractures that are opening whereas the viscous ma-

trix flows around it without fracturing  

Examples: The first example of visco-elastic deformation and fracturing is 

illustrated in Fig. B25 where a hard grain is embedded in a weaker matrix. 

The input file is res100.elle.  

During the simulation the hard grain fractures whereas the matrix flows 

around the hard grain without fracturing. Plotted is the mean stress where 

light colour is large compressive stress and dark colour low compressive 

stress. Fractures in the hard grain open and may be filled in nature with 

vein material.  

   

Fig. B26. Viscoelastic deformation leading to the formation of rotating and fold-

ing boudins. Steps are (a) 20, (b) 80, (c) 120 and (d) 180 
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Figure B26 shows the progressive deformation of the matrix and the 
layer. The more competent layer fractures and folds during extension. 
Small flanking folds develop and the boudins are slightly rotating and 
necking. In the end some of the larger fractures are opening between 
boudins.  

 

Functions and parameters for users wishing to use the Experiment In-

terface to modify parameters The parameters for the brittle grain example 

are:  

• SetWallBoundaries(1,1.0),  

• SetPhase(0.0,0.0,0.2,1.2),  

• WeakenAll(0.8,1.1,1.0),  

• WeakenGrain(7,10,10,1),  

• DeformLatticePureShear(0.001,1),  

• ViscousRelax(1,1e11). 

The parameters for the brittle layer example are:  

• SetWallBoundaries(1,1.0),  

• SetPhase(0.0,0.0,1.0,0.6),  

• WeakenAll(0.1,1.1,1.0),  

• WeakenHorizontalParticleLayer(0.47,0.52,5.0,5.0,1),  

• DeformLatticePureShear(0.001,1),  

• ViscousRelax(1,1e11).  

In the initialization function (Experiment::Init(), case 5) the following 

functions contain parameters that can be changed: 

• SetWallBoundaries(1,1.0) Set external boundary walls that repel parti-

cles. 1 means leave the particle walls and 1.0 is the repulsion constant of 

the walls.  

• SetPhase(0.0,0.0,0.2,1.2) Set a linear distribution on breaking strength 

of bonds. Mean multiplied by 0.2 and 1.2 is the size of the distribution.  

• WeakenAll(0.8,1.1,1.0) Change elastic constants of all particles (multi-

ply by 0.8) 

• WeakenGrain(7,10,10,1) Change elastic constant, viscosity and break-

ing strength of grain number 7. First number behind the grain number is 

the elastic constant (times 10), second number the viscosity (times 10) 

and last number the breaking strength (no change, times 1).  

• WeakenHorizontalParticleLayer(0.47,0.52,20.0, 20.0,1.0) Define a hori-

zontal layer between y = 0.47 and y is 0.52 with an elastic constant that 

is 20 times higher than the matrix, a viscosity that is 20 times higher and 

a remaining breaking strength (times 1.0).  
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• SetFracturePlot(50,1) Make a plot after 50 fractures developed.  

In the run function (Experiment::Run(), case 5) the following functions 

contain parameters that can be changed: 

• DeformLatticePureShear(0.001,1) Deform the lattice by pure shear de-

formation with a vertical strain component of 0.001 and plot a picture (1 

is plot). 

• ViscousRelax(1,1e11) Use the viscous relaxation routine, 1 is plot a pic-

ture and 1e11 the viscous time for one deformation step (in seconds). 

With the above strain this leads to a strain rate of 10
-12

.  

Experiment 21 - Strain localisation and rigid object 
kinematics 

This section gives details for running one of the deformation experiments 
involving porphyroblasts with deformable mica caps described in section 
4.7.2. 

 

Execution: In order to run one of these experiments, start up the Experi-

ment Launcher and select the appropriate experiment from the Experi-

ments menu. Possible sub-experiments, which simply vary the relative 

viscosity of the mica caps are: 

a  viscosity ratio 1   

b  viscosity ratio 5  

c  viscosity ratio 25   

As these are multi-process experiments, they will start automatically and 

you can either use showelle to view the microstructural evolution (see Ap-

pendix C) or Sybil (see appendix F) to follow the stress/strain evolution of 

the sample. 

 

Interface: The easiest way to monitor the progress is to view the newly 

generated Elle files with showelle. Alternatively, the velocity, mechanical 

quantities and file geometry can all be viewed in Sybil. To view only the 

grain geometry in Fig. 4.7.3, use showelle to open any Elle file generated 

by this experiment. 

To reproduce the velocity, vorticity or deviatoric shear stress plots in 

Fig. 4.7.3, use Sybil to open any solution file generated by this experiment, 

then select Contour and the appropriate quantity from the Graphics 

menu, and click the box to use the maximum and minimum range of data 



346  

values. To overlay the grain geometry on your plot, choose Elle from the 

XYPlot menu, and select the Elle file that corresponds to the solution to 

have plotted. To view the Lagrangian mesh for the experiments, go to 

XYPlot, the LGMesh and choose elements. 

 

Examples: The physical model is shown in Fig. 4.7.2. A central, hard inclu-

sion is intended to simulate a garnet porphyroblast. This grain is surrounded 

above and below by “caps” that are intended to simulate material that is rela-

tively weak in shear, such as micas with or without thin fluid layers. The 

surrounding polygonal framework is intended to simulate a background ma-

trix with a homogenous, isotropic viscosity structure. The matrix and central 

inclusion are assigned constant viscosities, whereas the relative viscosity of 

the caps was varied from one experiment to another (Fig. B27). 

 

Fig. B27. Contour plots of the y-velocity component, vorticity and deviatoric 

shear stress for the three experiments with different viscosity caps. Total shear 

strain in each is 1.0. The deformed microstructure from Fig. 4.7.2 has been over-

lain on the contour plots 
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Processes: This experiment uses only Basil- a Finite Element formulation 

for linear or non-linear viscous flow. 

 

Functions and parameters for users wishing to modify parameters in the 

Shelle Script: exp21.elle is the initial elle file that consists of a simple 

foam texture with a semi-circular grain in the centre. The default viscosi-

ties of all matrix grains is set to 10, the viscosity of the larger central grain 

is set to 1000, and the viscosity of the lubricating caps is set to 10, 2 and 

0.4 in experiments (a), (b) and (c) respectively. 

exp21.shelle/bat is a batch file generated using Shelle24.html to set the fol-

lowing parameters which control the Elle_experiment: 

1. Experiment Name exp21_out, the base for naming saved output files 

2. Elle Input File exp21.elle, the initial microstructure 

3. Last Time 30, the number of iterations for the experiment loop 

4. Save Interval 1, output files from all processes will be saved every itera-

tion with the following processes [and their process id] turned on: 

5. Basil [1 2 3 13] The file exp21.in controls the Basil code, and in this se-

ries of experiments you can change the stress exponent by altering the 

value SE on line 10. The experiments in section 4.7.2 were run with 

SE=1, or a linear viscous rheology. 

6. The saved output file has the process list LIST= "1 2 3 13". All proc-

esses in the list are called once per time step. 

 



Appendix C The Elle graphical user interface 

Jens Becker 

C.1 Introduction 

A graphical user interface has been developed to simplify the usage of the 

Elle platform. In the following, a short introduction to the usage of this 

graphical user interface (GUI) is given. However, users vaguely familiar 

with computers in general will have no problems to use it since it follows 

standard, menu-driven applications. Upon program start-up (either a proc-

ess or a utility), the main application window displays a menu bar at the 

top and a status bar at the bottom of the main application window. In the 

main bar, the name of the process currently used is displayed.  

 

 

Fig. C1. Main window at program start-up (no file is loaded). The Run and 

Graphics menus are disabled as long as no input file is loaded 

Start-up procedure: When an Elle utility or process starts up or a new 

Elle file is loaded from the GUI, you may pass additional information. If 

you are in a command line system such as Linux or Msys, you can use the 

userdata to transfer extra control parameters (see Appendix D). If however 

a zip file with the same name as the Elle file or defaults.zip is found in the 

same directory as the Elle file, this file is loaded, the userdata information 

is taken from userdata.txt within that zip file. This zip file also includes 

three other files that control: the graphical appearance of the microstructure 
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(dsettings.txt); the colour look up table (cmap.txt) and the run options 

(runopts.txt), which are also loaded at the same time. Whenever an Elle 

file is saved using the Save menu item from the GUI, a zip file containing 

all four of these files is also created. 

C.2 The status bar 

The status bar is divided into three fields (Fig. C1). The first field has two 

functions: during an experiment it displays the stage numbers or indicates 

whether there was an error. While there is no experiment running, it dis-

plays various status messages. The second field displays the name of the 

file currently loaded (or the message “No File Open” if no file is loaded). 

The third field displays the coordinates of the mouse pointer (in Elle units, 

which range from 0 to 1, the origin being in the lower left corner).  

C.3 The menu-bar 

The menu bar has 5 entries, File, Run, Graphics, Data and Help. Upon 

program start-up and during an experiment, the Run and Graphics menus 

are disabled to prevent the user from making potentially harmful changes 

of the simulation while it is running. In the File menu, you can choose to 

load and save Elle files as well as quit the program. Of particular impor-

tance is the entry “Show Log”. This opens another window where logging 

output of the Elle simulations package is displayed, where error messages 

will be stored. 

C.3.1 The File Menu 

1. Open: Open an Elle file 

2. Save: Save an Elle file and a preferences zip file containing all the cur-

rent graphical and runtime options 

3. Show Log: Open a window showing he debugging information 

4. Exit: Quit the Elle process 
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C.3.2 The Run Menu 

1. Run: Run an Elle process or update the graphics if a new file has been 

loaded in showelle. The process runs the specified number of time steps 

each time Run is selected, using the just modified microstructure as the 

starting point. 

2. Rerun: Restarts an Elle process using the initial microstructure defined 

in the Elle file. 

3. Run Options: Opens the Run Options Dialogue  

C.3.3 The Graphics Menu 

1. Preferences: Opens the Graphics Preferences Dialogue  

2. Zoom: Opens the Zooming Window  

3. Always Overlay: Displays each new image on top of the previous ones, 

without clearing screen first 

4. Save: Opens a submenu where you can choose between saving the cur-

rently displayed Elle file as a bitmap, saving all Elle files in a certain di-

rectory as bitmaps, or saving a stereoplot of the three principal axes of 

each grain (if defined) 

5.  Redraw: Simply redraws the current Elle file 

C.3.4 The Data Menu 

1. Flynns: Open the flynn Data Window  

2. Bnodes: Open the bnodes Data Window  

3. Unodes: Open the unodes Data Window  

C.3.5 The Help Menu 

1. About: Acknowledgements 

2. Help: Not yet implemented 

C.4 The Run Options dialog 

The Run Options Dialog is used to control important settings of the simu-

lations.  
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Fig. C2. The Run Options dialog. This dialog is used to control important settings 

of the simulation 

Stages: Enter the number of time steps (stages) the simulation should run. 

Save interval: Enter the frequency of saving out Elle files. If set to 10, a 

file will be saved every 10
th

 time step. 

Save file root: The filename of the saved files. Each file will begin with 

the filename (e.g. growth, see Fig. C2) followed by the stage number and 

the ending elle. A complete filename of a single process run therefore 

looks like this: growth1200.elle. 

Save pics root: Next to the Elle file (which is a regular ASCII-text file), 

pictures in various formats can also be saved during the simulation. Enter 

the root filename of the pictures here.  

Display frequency: Only update the Elle window every x-th stage.  

Switch distance: Adjust the spacing between nodes. 

Speed up: Setting this option to anything else than 1 will speed up (or 

slow down in case of values <1) the simulation. If the speed up is set to 1 

and the node would move a distance of 0.25, a speed up of 2 would cause 

the node to move a distance of 0.5, a speedup of 10 would cause a move-

ment of 2.5 etc. Use with caution since large node movements frequently 

cause topology problems. 

Save log file: During the simulation, the logging messages can be saved 

out to a new file or appended to an old one. Several log-levels are avail-

able: quiet will only show the most important messages medium will show 

some debugging information full will show a lot of information. This is 

only useful for debugging. 

User Data: Any input data read from the command line or via an associ-

ated zip file. 
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C.5 The Preferences Window 

The preferences window can be opened from the Graphics menu. It will 

open as a book with tabs for flynns, bnodes, unodes etc. It is possible to 

load and save the settings made in the preferences dialog by using the load 

and save buttons. Apply applies all the settings to the current microstruc-

ture but does not close the preferences window. Ok applies all the changes 

and closes the preferences window. Cancel does not apply the current 

changes (nor does it reset changes already made to default values) and 

closes the window. 

C.5.1 Flynn Preferences 

 

 

Fig. C3. Preferences page of flynn settings 

Show Numbers: Shows the flynns numbers.  

List of attributes: The flynn attributes are shown here. Chose one of them 

to colour the flynns accordingly.  

Color single flynn: Give the number of a flynn and it’s colour that should 

be marked. The colour will be displayed during runs so it is possible to 

(visually) mark a flynn during a simulation. 

Reset single flynn: Reset the colour of a flynn again to its normal state 

(according to its attributes). Asks for the flynn number to be reset. 

Clamp color between: Limits the range of the colour look up table to the 

lower and upper values defined to the right of this check box. 
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C.5.2 Boundaries Preferences 

 

Fig. C4. Preferences page of boundary settings 

Line-color: The line colour and its size can be changed. The current col-

our and size are shown in the box next to the button. 

Line width: The line width can be adjusted using the text field.  

List of attributes: It can be chosen in which way the boundaries are dis-

played. If the rainbow option is chosen, the colour of the boundaries will 

change according to the current colour map. The frequency of colour 

changes can be adjusted (see below). 

Change line color every xth stage: This adjust how often the line colour 

changes if the rainbow option is chosen. A value of 10 for example indi-

cates that the line colour will change every 10 time steps. This option only 

has an effect if the rainbow option is chosen, and only makes sense if “Al-

ways Overlay” is turned on in the graphics menu. 

Clamp color between: Limits the range of the colour look up table to the 

lower and upper values defined to the right of this check box. 
 

C.5.3 Bnode Preferences 

D-Node and T-Node color: The colour of double and triple nodes can be 

changed independently, the size of nodes is the same for both. The respec-

tive colours of double and triple nodes and their sizes are shown in the 

boxes.  

Show Node numbers: If checked this will display all the node numbers in 

the main window. This is only useful during zooming as there are (usually) 

far too many nodes so the node numbers cannot be read.  
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List of attributes: As with flynns and boundaries, the attributes chosen 

here will be used to colour the nodes. 

Clamp color between: Limits the range of the colour look up table to the 

lower and upper values defined to the right of this check box. 
 

 

Fig. C5. Preferences page of bnodes settings 

C.5.4 Unode Preferences 

 

Fig. C6. Preferences page of unodes settings 

Unode size: Adjust the size of the unodes here. This will simply draw 

every unode with the given size, there is no triangulation or recalculation 

of unode values! 

List of attributes: As with the other pages, the attributes can be chosen 

here that is used to colour the unodes. 
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Triangulate Unodes: This will display the unodes as a continuous image, 

rather than showing each unode separately. 

Only draw unodes with values between: This will only colour values 

within the given range. If you select an attribute other than “none” or “lo-

cation”, the min and max values of this attribute will be shown in the two 

text fields. 

Do NOT draw unodes with values between: The two fields (draw 

unodes and NOT draw unodes) can be combined. The following is impor-

tant to know to get exact results and not to misinterpret the display: unodes 

that have the values that were entered in the boxes WILL be displayed 

(unodes with values equal to max or min). 

Clamp color between: Limits the range of the colour look up table to the 

lower and upper values defined to the right of this check box. 

C.5.5 The colour map 

 

Fig. C7. Preferences page of colour settings 

In the colour map window, the colours used to display attributes can be 

adjusted. The upper text box expects a percentage. An input of 0 will 

change the colour for the lowest value, an input of 100 will change the 

highest value. It is not necessary to know the min and max values of the at-

tribute.  

Default: The colours can be reset to the original by pressing the default 

button. 

Save/Load cmap: The colour map can be saved or loaded for later reuse. 

The file saved will be a regular text file with 256 colours. See below for an 

example file of default.cmap: 
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Colormap for Elle-files... Please do not edit 
 0 0255 1 
 1 0254 0 
 [...] 
 [...] 
 [...] 
 254 0 1 0
 255 0 0 1
 

The first number indicates the number of the colour, the next are RGB val-

ues of the colour.  

Flynns/BNodes/Unodes: If the user wants to change a specific colour 

value, he has to know the min and max values of the attributes. These 

might (or better most certainly will) have changed during a simulation. 

These three drop-down lists can be used to choose an attribute, the min and 

max values of this attribute will be calculated and displayed. The lower 

text box can be used to enter a specific value at which the colour will be 

changed. 

C.6 The zooming window 

Once the zooming window is opened, you have a few options to choose 

from: zooming in and out of the structure, moving the structure, stop 

zooming entirely, get info on bnodes and unodes, number all bnodes. 

 

 

Fig. C8. The zooming window. For explanation of the buttons see text 
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Zoom into the view. Zooming will always use upper left corner 

as the the origin. 

 

Zoom out of the view. 

 

Stop zooming. The screen is redrawn to its full size. 

 

Get info on bnodes. With this tool, bnodes can be chosen (by 

clicking on them in the canvas. The pointer to do so changes to 

black so you might have a hard time seeing it when no flynn-

colours are displayed!) and information about the values of the 

current bnode are displayed. If you click to far away from a 

node, the window displays the message No Hit!. If there are no 

bnode-attributes defined, the window will say so EVEN IF 

YOU HIT A BNODE! 

 

Get info on unodes. Same as above, only for unodes. 

 

Labels all the flynns and bnodes. Since there might be a lot of 

bnodes, this only makes sense if the zoom is large. 

Another feature of the zoom is that you can zoom in on any area you are 

interested in and start your simulation. During the simulation, the canvas 

will only show the area you have zoomed in. It is possible to change the 

viewing area of the zoom and/or to stop zooming entirely during the simu-

lation.  

C.7 The data-windows 

The table windows will open if the respective menu under Data is chosen. 

They will display either flynn, bnode or unode attributes, if there are any 

defined. The values can be changed by simply clicking on the cell: a small 

box will pop-up and ask for the new value.  

It is not possible to change the numbers of flynns, bnodes or unodes or 

the location of bnodes and unodes. It is also not possible to insert or delete 

flynns or bnodes or unodes from the file. If you click on the row-labels, the 

respective flynn, bnode or unode will be highlighted. Clicking on a row of 

a previously selected item will deselect it. 
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Fig. C9. Example of a data window (here bnode-data are displayed). If no attrib-

utes for nodes or flynns have been set, the window will not show anything. This is 

a feature, not a bug! 

 

 
Save all data as text file. The floppy disk icon lets you save all 

the data. 

 
Save selected data as text file. This icon lets you only save the 

selected data. 

 

Change multiple values. If more than one point should be 

changed, it is possible to mark the respective area by clicking 

on the icon. You will then be able to mark an area in the canvas 

by drawing a polygon around the area you want to change. Note 

that only flynns, bnodes or unodes that are completely within 

the polygon will be highlighted and hence changed. The area 

that is marked can not have more than 1000 vertices. The last 

vertex is set by double-clicking on the desired position (left-

double-click). 

 
If multiple entries are selected (using the polygon tool described 

above) you can simultaneously change all of their values with 

this tool. If you have lots of flynns or nodes highlighted you 

may not see some of them. In that case, either scroll down until 
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you find one, click on the desired cell and change the value for 

all of them or press this icon: a message box will appear asking 

you for the new value. 

 
Deselect Rows. You can deselect the rows by clicking on this 

icon. 

 

J. Becker



Appendix D  Different ways to run an Elle 
experiment 

Mark W. Jessell 

At a minimum, an Elle experiment consists of a single input file (an Elle 

file) that describes the starting microstructure, and a single Elle processes, 

that describes the effect of a single process on that microstructure. Single-

process experiment may be run in graphics mode, with continual update of 

the microstructure visualisation. Multi-process experiments must always 

be run via a shell script (called a batch script on the Windows platform), 

and the results of the experiment may be followed by opening output files 

using the showelle microstructure display tool.  

D.1 Via the Experiment Launcher 

The Experiment Launcher is a simple program that allows you to launch 

any of the example experiments in this Appendix. Once started up, the 

Launcher offers a single menu and two panels: the File menu, the Ex-
amples panel and the Utilities panel. The Experiment panel and its 
submenus list all the experiments in this Appendix. To run a particular 
example, select it from the Experiment menu and you will be provided 
with a brief overview of the experiment. If you wish to start the experi-
ment, simply click on the Go! button. 

Single-Process Experiments If a single-process was started, an Elle 

window will open up showing the starting microstructure. To enact the ex-

periment select Run→Run from within the Elle Window. See Appendix C 

for details on graphical user interface for single processes. 

Multi-Process Experiments If a multi-process was started, the experi-

mented will be started automatically in the background, and to view any of 

the output Elle files, select showelle from the Utilities menu of the 

Launcher, and load in the desired file. See Appendix C for details on 

graphical user interface for showelle. All output files will be created in the 

same directory as the experiment, and have a naming convention described 

in Appendix E. 

Starting Utilities The Experiment Launcher may also be used to launch 

utilities such as showelle, without any input file pre-loaded.  
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D.2 Direct launching of experiments 

Single-Process Experiments To run a single-process experiment, double 

click on the icon for the particular process (e.g. elle_gg), go to the File 

menu and Open an Elle file (e.g. exp3.elle) If there is a zip file with the 

same suffix as the Elle file in the same directory (e.g. exp3.zip) it will be 

loaded at this time, and it will define the experimental conditions and the 

graphical display properties of the experiment. To run the experiment, 

simply select Run from the Run menu. The graphical display will then be 

updated each time step, or less frequently, depending on the display op-

tions. A complete description of the Elle graphical interface, which is 

common to all processes, may be found in Appendix C. 

 

Multi-Process Experiments To run a multi-process experiment, double 

click on the batch file (e.g. exp4.bat for windows) and a window will open 

up giving some runtime debugging information. Any output files will be 

saved in the same directory as the batch file, and the Elle files may be 

viewed by starting showelle, loading the Elle file. If there is a zip file con-

taining the graphics preferences called defaults.zip, this will be loaded 

automatically. A web page to create new shell scripts/batch files is de-

scribed in Appendix E. If Basil was used in the experiment, and its post-

processor Sybil was installed, detailed information on the stress and strain 

state within the microstructure may also be displayed (see Appendix F). 

D.3 Developer mode (Windows and Linux) 

In addition to the GUI based modes described above, Windows and Linux 

Developers may also run Elle experiments from the command line. In 

Windows, you need to start up MSys, which will provide a shell, and in 

Linux, you need to open a new shell window. 

 

Single-Process Experiments To run a single-process experiment, one 

command line call is needed with options specifying information such as 

the number of steps to be simulated, the input and output file and the simu-

lation mode. 

 

. 
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Synopsis: process_name [-cefhinsuv] 

Options: 

f the next argument will set the frequency for saving the Elle data dur-

ing a run; i.e. 10 will mean that the data is saved after every 10
th

 stage 

h help, list the valid options 

i the next argument will be the filename of an Elle input data file 

n no display (run without the graphical display) 

s the number of stages to run (default 20) 

u may be followed by up to 9 numbers which allow the user to vary pa-

rameters defined for a particular process e.g. elle_gbdiff interprets the 

first value as the diffusion rate. 

v the boundary velocity (only used by elle_manuel) 

These are the only options, which can currently be changed at runtime 

when executing in batch mode. 

 

An example of calling an Elle process:  
elle_pblast –i start.elle –s 25 –f 25 –n 

will run elle_pblast in batch mode (no display), reading the input file 

start.elle, processing 25 stages then saving the result. Only one file is saved 

as it is set to save every 25
th

 stage. The options set by the command line 

will override the runtime and userdada setting read from a zip file (see 

App. D.2). 

 

Multi-Process Experiments To run a multi-process experiment, change to 

the directory which contains the batch file and execute the batch file di-

rectly: ./exp4.shelle. 

Any output files will be saved in the same directory as the batch file, 

and the Elle files may be viewed by starting showelle, loading the Elle file. 

If there is a zip file containing the graphics preferences, this can be manu-

ally loaded by selecting Preferences from the Graphics menu, then click-

ing on the Load button. A web page to create new shell scripts/batch files 

is described in Appendix E. If Basil was used in the experiment, detailed 

information on the stress and strain state within the microstructure may 

also be displayed using the Sybil post-processor (see Appendix F). 

 



Appendix E How to create multiple-process 
experiments 

Lynn Evans 

E.1 Shelle scripts/batch scripts 

Running multiple processes requires the use of a control script, which we 

call a Shelle Script, this is in fact a shell script for under Linux and MSys, 

and a Batch Script under Windows, which defines the behaviour of the ex-

perimental run (Fig. E1): 

 

 

Fig. E1.  Elle control module controls the way in which processes are executed 

and data is stored 

We have simplified the task of creating these control scripts by devel-

oping a GUI that allows the user to specify the steps and parameters re-

quired for their simulation then generate and run the control program. 

Once created, it is possible for the user to write or edit the resulting text 

file that is a shell script similar to elle/examples/init/control.template. All 
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the controlling variables, e.g. STAGES, LASTTIME, are set in the first 

section above the line that looks something like:  
LIST=“1 2 3 13 4 16 15” 

LIST specifies the processes in the order in which they will be executed. 

This line may be edited if different processes are desired. If DEBUG is set 

to echo, the program will write the command line to the screen rather than 

running it. This is useful for checking that the program calling order and 

parameters are correct. 

To run a simulation in the background type:  
NOHUP CONTROLFILE >& DUMPFILE & 

where controlfile is the name of the file created by the shelle script genera-

tor and dumpfile is the output redirected from the screen and stderr. The 

dumpfile can be deleted if the simulation runs successfully. 

E.2 Shelle: An Elle Shell Script Generator (v1.24) 

In order to run more than one process, it is necessary to create a shell script 

that will call each process in turn, taking into account all the file names 

and formats needed to ensure a smooth transfer of information. 

The Elle implementation page contains a link to a web page that lets you 

fill in a form that then automatically generates the appropriate shell script. 

It currently allows you to create a shell script for any combination of the 

processes listed in this manual. 

E.2.1 How to use the Shelle Script Generator  

Select the Shelle Script Generator from the Utilities section of the Elle 

Experiment Launcher and click on Go. Alternatively, start up a JavaScript 

compatible web browser (not as scary as it sounds, any Firefox browser or 

any Internet Explorer version from 3.0 will do) and select the Shell script 

generator: 

• http://www.microstructure.info/elle/shelle.html  

• or elle/utilitities/shelle/shellev24.html.  

You will be presented with a form like Fig. E2. 

. 
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Fig. E2. The shelle script generator 
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To activate a process, click on the check box to the left of its name, and 

fill in the appropriate information in the subsequent fields. Then click on 

Create Shelle for Linux, and Windows Developers using MSys, or Create 

Batch for Windows Users and a new window will appear that contains the 

generated shell script. 

 

 

Fig. E3. Output of the shelle script generator (Shell Script) 

If you like what you see, you can save this shell script by using the 

File→Save As menu from the browser window, remembering to change 

the save as type to Plain Text (txt). If you don’t like what you see, go back 

to the input form window, click on reset and try again. 

In order to actually use this script under Linux or using Windows De-

velopers using Msys you will have to change its privileges to executable: if 

the shell script is called myshell.txt, type in 
  chmod +x myshelle.txt  

in the same directory as the file (or use your file manager to access the 

Permissions section of the file properties and set Exec). 

L Evans . 
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E.2.2 Notes on the Shelle Script  

a) File name convention: Output elle files resulting from using this shelle 

script will be of the form Experiment_Name.xxx.yy.elle where xxx is the 

time step and yy is the process code (shown above in square brackets), as 

follows: 

00 = input file 

01 = following initial randomisation of crystal axis orientations 

03 = following a BASIL step 

04 = following a TBH step 

05 = following a Subgrain Split step 

06 = following a GBM step 

08 = following a Porphyroblast growth step 

09 = following an OOF step 

10 = following a Nucleation/Rotation Recrystallisation step 

11 = following a Misorientation/ Rotation Recrystallisation step 

12 = following a Recovery calculation step 

13 = following a Repositioning step 

15 = following an Angle check step 

16 = following a Viscosity calculation step 

17 = following a Merge calculation step 

18 = following a Grain Growth step 

19 = following an Expand step 

20 = following a Grain Boundary Diffusion step 

21 = following a Lattice Diffusion step 

22 = following a Homogeneous Simple Shear step 

99 = following a User Defined Process step 

b) Randomise Orientations: When checked, this option randomises the lat-

tice orientations of any quartz grains, which have not already been defined, 

one time only, at the start of the experiment. 

c) Save Orientation Plots: When checked, at the save interval frequency, 

c-, a- and r- axis pole figures of quartz grains will be saved out as post-

script files with the naming convention ellefilename_ax.ps . 

d) Reposition Simple Shear Experiment: This normalises the elle space to a 

square after each BASIL deformation step.  

e) Widen narrow vertices: Angle check to removes narrow vertices from 

flynns to make triangulation better. 

f) Merge calculation: Removes very small grains. 
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g) Statistics: Simply outputs information to file. 

h) Save updated Postscript file: If this option is turned on, a postscript file 

of the current Elle microstructure called tmp.ps is created (using show-

elle.in defaults), if you use ghostview with the “watch file” option enabled, 

the window will update with the new file each save step. 

E.2.3 Debugging Shell Scripts  

It is advisable to test the shell script without actually running the processes 

first. To do this use your favourite text editor to remove just the first # 

from the third line, which reads #DEBUG=echo #for debugging, so it 

reads DEBUG=echo #for debugging. If you run the script now it will go 

through the motions of the script without actually doing anything. If the re-

sults look good, cross your fingers, put the # back and run the script. 

 

L Evans . 



Appendix F Sybil - The Basil post-processor 

Lynn Evans, Terence Barr and Greg Houseman 

F.1 Introduction 

Sybil is the graphical post-processor for the Basil Finite Element code, and 

is a stand-alone program that reads in Basil solution files (which will be 

found in a directory called FD.sols within the directory containing the Elle 

experiment. It can also overlay grain boundary maps from Elle files. 

 

Windows To start Sybil from Windows, first start up the Experiment 

Launcher and then select Sybil from the Utilities Menu. 

Linux To start up Sybil, type ./sybil in the same directory as your ex-

periment. You will then be presented with a blank window, with a series of 

menus at the top 

 

 

Fig. F1. Sybil window at start-up 

You can use the various Menu Options, that are outlined below, to dis-

play the stress and strain state of the microstructure at different stages of 

the experiment. 
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Fig. F2. Sybil window showing strain state in a microstructure 

F.2 Menu Options 

F.2.1 File 

1. Open: opens a file, either Solution: to open a solution file, or Log: to 

open and execute a previously saved log file 

2. Save: writes a file, either Log: to write a log file that recreates the cur-

rent drawing, or Log+Postscript: to write the log file, and then cause 

sybilps to execute and write a postscript file of the current drawing. 

3. Exit: terminates execution of Sybil, after checking. 

F.2.2 Record 

1. Current: selects the solution record for subsequent drawing, Next: se-

lects the next record in the current file, Previous: selects the previous 

record in the current file, Last: selects the last record in the current file, 

Specify: type input number of solution record (1 is the first record and 

the value of max in the info line at the bottom of the window is the last 

record) 

2. Reference: selects the solution record to define an initial geometry rela-

tive to which subsequent deformations are measured, First: uses the 

first record of the current file, Specify: uses the record number you 

identify, as above. 

. 
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F.2.3 XYPlot 

1. Mesh: creates an X-Y plot of the Finite Element mesh, either elements: 

outline of all elements in the mesh element+num: outline as above plus 

element numbers of some elements boundary: external mesh boundary 

only viscosity: shows regions with anomalous viscosity 

2. Deform: draws deformation indicators relative to a previously saved 

reference record (see Record→Reference above), ellp: draws finite de-

formation ellipses for a subset of triangles tria: draws the subset of tri-

angles used for the ellipse calculations trel: draws ellipses and triangles, 

as specified by two preceding options.  

3. Bounding box: draws a rectangular box around the current plotting 

area, excluding margins.  

4. LGMesh: draws the Lagrangian mesh that may be used by Basil to 

track deformation, elements: draws the entire Lagrangian mesh bound-

ary: draws the boundary only  

5. StrainMark: draws any strain markers defined by Basil to track internal 

deformation  

6. Elle: Draws the grain boundary network defined in an Elle File 

F.2.4 Profile  

1. 1_D: constructs a 1-D profile of selected parameters between 2 points 

on the x-y plane. After selecting a quantity to profile from the lists be-

low, input of the x-y coordinates of the two profile endpoints is re-

quested. Min and Max values on the profile are then shown and, the user 

must input values for the Min and Max on the vertical axis of the profile 

plot. Default values are the min and max values of the function on the 

first call, and scale is preserved for subsequent profile plots. Velocity: 

select from the following parameters: Ux: x-component of velocity, Uy: 

y component of velocity, Ur: radial component of velocity (relative to 

local origin), Uth: tangential component of velocity. Strain: select from 

the following quantities related to strain-rate: edxx: the xx-component of 

strain-rate, edyy: the yy-component of strain-rate, edzz: the zz-

component of strain-rate, edxy: the xy-component of strain-rate, psr1: 

maximum principal strain-rate in x-y plane, psr2: minimum principal 

strain-rate in x-y plane, msst: maximum shear strain-rate in the x-y 

plane, cang: orientation of principal compressional axis,, tang: orienta-

tion of principal extensional axis, sang: orientation of direction of 

maximum shear, dblc: parameter that indicates type of faulting, vort: 

vertical component of vorticity, ed2i: 2nd invariant of the strain-rate 
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tensor, vota: ratio of vorticity to shear strain-rate. Stress: select from the 

following quantities related to stress, taud: direction of maximum de-

viatoric stress, taum: maximum deviatoric shear stress, taxx: the xx 

component of deviatoric stress, tayy: the yy-component of deviatoric 

stress, tazz: the zz-component of deviatoric stress, taxy: the xy-

component of deviatoric stress, tau1: maximum principal deviatoric 

stress, tau2: minimum principal deviatoric stress, sixx: the xx-

component of total stress, siyy: the yy-component of total stress, sizz: 

the zz-component of total stress, sig1: maximum principal total stress, 

sig2: minimum principal total stress, thdi: thermal dissipation function 

(stress*strain-rate), pres: the pressure field, brit: parameter indicating 

type of faulting, bri2: parameter indicating type of faulting, visc: effec-

tive viscosity parameter, Thickness: layer thickness in the z-direction, 

Density: density parameter. 

2. 2_D: constructs a horizontal or vertical profile of selected quantities in-

tegrated in the orthogonal direction. The same set of parameters can be 

profiled, as listed above for 1_D. After choosing the quantity to be pro-

filed, choose whether an x-direction, or a y-direction profile is required, 

and input the upper and lower limits of the orthogonal integra- tion vari-

able. E.g. To show how the integral of Ux.dy varies as a function of x, 

choose the x-direction profile and the two limits are the extreme values 

of y for the integration. Avoid integrating outside the solution region if 

meaningful results are required. Input of vertical axis limits is then re-

quested, as for 1_D profile. 

3. Mark: is used to draw a line in the current cell showing the path of the 

1-D profile in the x-y plane. The profile path can be plotted over a pre-

viously drawn contour plot of the variable that is to be plotted, in order 

to show where the profile has come from, and to check correlation with 

features in the 2D plane. After entering the coordinates of the 2 end-

points, use preview to check position of the profile that can then be 

amended as necessary. The Mark command can be used also for draw-

ing any additional lines required on a Sybil drawing, regardless of 

whether a profile plot is required. 

F.2.5 Arrow 

1. Velocity: constructs an arrow plot, consisting of equally spaced arrow 

heads, whose direction is parallel to the velocity field and whose length 

is proportional to the magnitude of the velocity. The spacing of arrows 

can be set under Options→Plot→mp and np (refer ‘Options’ below). 

L Evans et al.. 



      375 

2. Strain: constructs an arrow plot, consisting of equally spaced crosses, 

whose orientation indicates the directions of the principal axes of strain-

rate. For direction-only plots all crosses are the same size, for magnitude 

plots, the length of each arm is proportional to the magnitude of the 

principal axis. Options are: pstm: Principal strain-rate magnitudes, pstd: 

Principal strain-rate directions only, mssr: planes and magnitudes of 

maximum shear strain-rate, msft: direction of strike-slip faulting planes,  

3. Stress: constructs an arrow plot as for Strain (see above), but with mag-

nitudes proportional to the relevant stress quantity. Options are: taum: 

principal deviatoric stress magnitudes, taud: principal deviatoric stress, 

directions only, sigd: principal stress (total), directions only, sigm: prin-

cipal stress (total) magnitudes. 

F.2.6 Contour 

The Contour command is used to display 2-D quantities using a graphi-

cal display in which areas are coloured according to the value of the physi-

cal parameter being displayed, or equally spaced contours of this physical 

parameter are drawn, or both. The same set of physical parameters listed 

above under Profile→1_D is available for contouring. After choosing the 

parameter to be contoured, the user is asked to confirm or enter a set of pa-

rameters that affect the display. Shown at the top left are the actual mini-

mum and maximum values of the quantity to be contoured. The two values 

at the top right, entered by the user, determine the mapping of colour to 

number. With the default colour scale, blue is mapped to the minimum, 

and magenta to the maximum. Contours, if present, are chosen in equal in-

crements of ‘Step’ above and below ‘Level’. A maximum number of con- 

tours is also available. The number labelled scale is only used to multiply 

the labels that appear on the colour scale. The settings are preserved for 

successive calls to ‘Contour’ so that the default setting usually is to keep 

the same scales as for the preceding plot. Various default parameters af-

fecting the display may be set using the Options command (see below).  

F.2.7 Locate 

The Locate command is used to specify which of the current drawing 

cells is active, as follows: 

1. Next: Move to the next cell, either the cell to the right, or if already at 

the right limit of the page, the left most cell of the next row. 

2. Prev: Move to the previous cell. 
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3. Specify: Increment or decrement the row or column number of the cur-

rent cell address using the buttons provided in order to move directly to 

a particular cell.  

F.2.8 Options 

1. Label: is used to add labels to the plot as follows: 

2. Edit: enter a string to be drawn on the plot. Then click with the left 

mouse button at the point on the drawing where the lower left corner of 

the string is to be located. The same string can be added to the plot as 

many times as required and the string can be edited at any time in the 

labelling step. 

3. Font: choose one of the 2 fonts (Helvetica, Symbol) and 5 or 6 font 

sizes (8, 10, 12, 14, 18, 24) that are provided as options.  

4. Colour: choose one of the 8 standard colours to be used in subsequent 

drawing and labelling operations. 

5. Line: choose solid, dashed, or dotted line for subsequent drawing opera-

tions. 

6. Rescale: On making the first plot, the scale is set automatically so that 

the entire solution region will appear within the plotting cell, including a 

small margin on each side. Subsequent plots are drawn at the same 

scale, with the origin shifted to the new drawing cell. The scale will be 

automatically reset for the next plot, only if this option is first selected. 

Judicious choice of cell numbers and margin widths may be necessary 

to obtain a particular scale. 

7. Delete: deletes previous drawings from the screen. Note that the first 

option is also available at any time by locating the cursor within the cur-

rent cell and pressing the middle button of the mouse. 

8. Current cell: only deletes contents of one cell 

9. All Cells: deletes contents of all cells 

10. Plot: requests input of certain options and parameters that affect the 

visual display, as follows: nx3: determines the number of interpolation 

points to be used in contouring and other operations. A number in the 

order of 100 is recommended. Greater numbers will improve the resolu-

tion of the plot, but will require more time to plot. mp, np: in construct-

ing arrow plots (see above) an arrow is situated at every (mp)th interpo-

lation point in the x-direction and every (np)th interpolation point in the 

y-direction. The size of the maximum arrow is equal to the distance be-

tween arrows. Numbers of 4 or 8 are recommended. Note that if nx3 is 

doubled, mp and np should be doubled to preserve the same arrow 

spacing. profile_pts: the number of sample points to take along a 
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given profile, stipple: if > 0, stippling is added to contour plots in speci-

fied regions, with reference to the Level parameter (see Contour above): 

stipple = 1 → stipple if below Level, stipple = 2 → stipple if above 

Level, stipple = 3 → stipple if abs value above Level, stipple = 4 → 

stipple if abs value below level. solution_rot: This parameter should be 

a number between 1 and 3, to rotate the solution by quanta of 90 degrees 

anticlockwise. The rotation is done immediately that the solution is in-

put, and any reference to x and y- coordinates then applies to the solu-

tion as displayed in its new reference frame. dble: Causes most area 

plots to be displayed twice, with a horizontal offset equal to the width of 

the solution region. This option is only used for solutions with periodic-

ity in the x-direction. label: causes all automatic labelling to be switched 

on or off. This option does not affect any labels added manually, as 

above. flip: causes the x-axis to be reversed on the display. Contour 

Options: either or both of the following may be selected. Lines: contour 

lines are added to all contour plots. Shading: shading by colour is added 

to all contour plots. Bar: the colour bar for contour plots may be verti-

cal, to the right of the plot, or horizontal, underneath the plot, or may be 

omitted. Tics: ticks on profile plots may be internal to the plot, external, 

centred, or omitted.  

11. Verbose: outputs numbers (lots of them) to standard out, from profiles, 

contour plots, arrow plots and strain-marker plots, in order that other ex-

ternal processing may be applied to these data. This option should only 

be turned on temporarily to extract a particular data set and is not yet 

implemented uniformly. 

12. Mark Cell: shows the current plotting cell by a line drawn around its 

perimeter. This boundary line does not appear on the postscript plot. 
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Appendix G How to use Elle_Latte 

Till Sachau and Daniel Koehn  

G.1 Introduction 

Elle_Latte (simply called Latte in this appendix) is a Lattice-Spring code 

that is included in Elle. Latte is written as a separate process that uses Elle 

functions and the Elle data set.  

Latte is build up by three main classes, the particle class, the lattice class 

(lattice.cc, lattice.h, particle.cc and particle.h) and the experiment class 

(experiment.cc, experiment.h). A third basic class that inherits the lattice 

class is used as a base class for phase transformations (base_phase.cc, 

base_phase.h). This base phase class is inherited by the classes 

phase_lattice for fluid-solid reactions (phase_lattice.cc, phase_lattice.h) 

and min_trans_lattice for solid-solid phase transformations 

(min_trans_lattice.cc, min_trans.h). In addition a third class is used for 

heat diffusion (heat_lattice.cc, heat_lattice.h) and a class that includes the 

grain growth process (graingrowth.cc and graingrowth.h).  

The User does not have to be concerned with these classes directly as 

we have developed a graphical interface where the user can choose one of 

the processes that is included in the experiment class and can change pa-

rameters without having to recompile.  

Functions are basically separated into initialization functions that give 

different flynns, single particles or defined layers different properties, and 

run functions that define the proposed deformation or internal changes and 

dump statistics to plot for example stress-strain curves. The user can run an 

experiment in two possible ways: a) use the interface to select the desired 

process and its parameters or b) change parameters in the experiment.cc 

class, recompile and select the process when calling Latte using the -u 

command.  
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G.2 The experiment interface for Windows and Linux 
users 

G.2.1 Introduction  

As an attempt to simplify the handling of Latte and to avoid users to get 

into the Latte source code and recompile it every time to adapt it to their 

needs, a simple graphical user interface (GUI) has been developed. This 

GUI is not linked to the Latte-executable itself, but calls it as an external 

process. Thus it is designed as a graphical editor for a preference-file that 

Latte can read and execute. The examples given in the book can be started 

either from this interface or, alternatively, directly from the command-line. 

Functions that can be controlled from the interface are described by a sim-

ple tool-tip, while the mouse-pointer moves over a particular button. 
As an alternative to run Latte directly from this window, the preference 

file in the generated zip-archive can be accessed from Latte by starting it 

directly from the command-line with 
./latte_elle -u 0 -i inputfilename

The inputfilename is identical to the name of the zip-archive, apart from 

the file-ending, which will be ‘.zip’ instead of ‘.elle’. 

G.2.2 Installation notes  

The interface is linked with wxWidgets - even though Elle/Latte can be in-

stalled using lesstif instead – therefore the Wx-package has to be installed 

on the system in order to use the interface.  

On start-up the program needs to read an xml-file, called lattestart.xrc, 

containing mainly graphical information about the GUI. This file will be 

looked up in the directory, where the interface was started, and, if not 

found there, in the directories given by the ‘PATH’ variable (on *nix sys-

tems). Thus, if the executable will be copied to another location, either the 

xrc-file has to be copied to this location too, or the bin directory of the Elle 

package has to be included in the mentioned variable. 

 

 and . . 
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Fig. G1. Interface-window on program start-up. Different functionalities can be 

accessed via tabs. In the open ‘file’-tab, the necessary settings for a single simula-

tion can be done 

G.2.3 The main-window 

The main window uses tabs, which give access to different basic function-

alities of the interface. The following description is thus subdivided ac-

cording to those tabs. The Start, Cancel and OK buttons are related to the 

Latte-executable itself and can be accessed from every tab. 

G.2.4 The ‘Files’ tab 

Latte can be almost entirely controlled with the Files tab alone. Users can 

navigate to a working directory, where the input-file is located, and also 

edit and/or import preference-files from already existing zip-archives. The 

name of the created archive will be the same as the name of the input-file, 

except for the file ending. 

To prepare the execution of Latte, two things have to be done: first an 

input-file has to be chosen by clicking the Choose start-file button, and 

browsing to an Elle file. Clicking Create new pref-file gives the opportu-

nity to choose one of several predefined samples, which will set the prefer-

ence file to useful default values, or, after importing a pref-file from a 
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zip-archive, this can be edited with Edit existing pref-file. Start run will 

execute Latte.  

The Save-interval spin box (in the Misc settings tab) allows to control 

how many pictures will be saved to disc. Output of the running simulation 

is displayed in the Stdout tab.  

User-defined notes for a preference file will be displayed in the Notes 

tab, and can be edited there. They will be saved in the archive on finishing 

the interface. 

 

 

Fig. G2. The ‘New File’-window will set up a basic preference-file after choosing 

an example. The buttons will open other windows, which allow the refinement of 

the settings 

G.2.5 The New file and the Edit file window 

After having chosen to create a new preference-file, the dialogue on top of 

Fig. A16 will appear. It displays several predefined examples, which have 

been discussed in the book, and will give acceptable default-values. These 

settings, however, can be tweaked using the buttons on the right-hand side, 

which give control over the important functions and their parameters. 

T Sachau D Koehn  and . . 
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From this step on, the functionality of the New file and the Edit file win-

dow is identical. The edited variables will be saved, if the OK button is 

clicked in one of these windows. 

 

 

Fig. G3. General, non-run-function-settings for a Latte-run 

The Edit settings button will pop up a window, which allows the ad-

justment of basic properties of the lattice or the discrete elements. These 

settings range from basic distributions on several variables to settings con-

cerning the number of the produced output-files. 

 

 

Fig. G4. General run functions and the style of deformation 

Similarly the run-functions dialogue covers functions, which are called 

during every single loop of the program and control the deformation be-

haviour. It consists of tabs for the deformation style, the dissolution and 

for shrinkage of either all particles of the system or single grains.  

The deformation style tab gives control over the movement of the sys-

tem-walls. Compaction: stands for unilateral compression, pressing the 

Elle_Latte
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upper wall of the system down without moving the remaining walls. Pure 

shear: Pushes the top wall down and extends the systems on the right-

wall-side. Bilateral compaction: Compresses the system by moving the 

top and bottom wall. Used in stylolite-simulations. 

In addition it is possible to combine two deformation-types at a time or 

using different deformation-types at different time-steps using the Extra 

settings button. The user may also chose to have a visco-elastic lattice via 

a checkbox, and the viscosity can be entered in a text-field. 

On the tab Dissolution, stylolite dissolution and dissolution strain can 

be applied. Please have a look for the corresponding function-descriptions 

and chapters. The same advice can be given for the Shrink tab, which al-

lows the shrinkage of grains and/or the total system. 

 

 

Fig. G5. The statistic options 

G.2.6 The Statistics window 

From the statistics window it is possible to enable the output of a file con-

taining statistics. Note that these functions will be called every time the 

runtime-functions have been finished. See the list of functions in the ap-

pendix for details of the given functions.  
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G.2.7 Remaining tabs 

The ‘Info’ tab: This includes a simple text control, where a description of 

the preference-file may be entered and saved. If importing a preference-file 

from a different zip-archive, this will be read and displayed. 

The ‘Misc settings’ tab: The most important function of this tab, is the 

possibility to tell the interface where to look for the Latte-executable. If no 

distinct path to an executable is given, the current working directory will 

be the default, if the program finds it there. If there is still none, the pro-

gram will have a look into the users ‘PATH’-variable (on unix/linux), and, 

finally, it will try to find it two levels up in the file-hierarchy in the ‘bin’ 

directory. In addition, one can define in this tab after how many time steps 

an elle-file will be saved to the hard drive.  

The ‘Stdout’ tab: Displays the standard-output of latte, which would be 

displayed on the command-line if started from there. (This doesn’t display 

error-messages, if the program hangs! If you’re developing and testing 

your own routines, don’t start Latte from here, but use a shell). Unfortu-

nately, the displayed output is not always synchronized with what really 

happens in latte (this seems to be an wxWidgets issue for which, however, 

the author didn’t find a workaround). It is possible to save this output to a 

user-defined text-file. 

The ‘Make movie’ tab: This is an attempt to provide a more or less 

convenient way of shooting movies from the Elle files produced by a run 

of latte. The usage is straightforward: choose the first and the last file of 

the sequence you want to shoot a film of, select a name for it and hit the 

start-button. 

The interface-program relies on some external executables. Firstly it has 

to find showelleps on your system, which is in the bin/binx/’binwx direc-

tory within the Elle location. It is most advisable - not only for this particu-

lar purpose - to integrate this directory into your ‘PATH’-variable anyway. 

Alternatively, the program will be looked up in the current working direc-

tory itself, and finally – if there is still no success  – it tries to find the bin-

directory relative to the working-directory (two levels up in the file hierar-

chy). To convert the generated postscript-files into an animated gif-file, the 

‘imagemagick’-package is needed – this should be found without prob-

lems, if installed on the system. 

The ‘Convert movie’ tab: If you’re not interested in the animated gif, 

which was created by Make movie, you can convert it into avi or mpeg, 

which will consume much less space on your hard drive and thus load 

much faster - and back to gif, if needed.  

Elle_Latte
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As usual an external program is needed, in this case mencoder, which is 

in turn part of the mplayer-package. If installed on your system, there 

shouldn’t be any difficulties to use it from within the interface. 

G.3 The command line interface for Windows and Linux 
developers 

A switch command is used in the initialization and the run routine in the 

experiment class to define processes. When the experiment is called the -u 

command followed by an Integer calls the right process: 
./elle_tte -i file.elle -u 1 

for example, calls a simple fracture experiment.  

The following processes are included in Latte as examples:  

-u 1   fracturing of a granular aggregate,  

-u 2   fracture boudinage of horizontal layers,  

-u 3   fractures around expanding grains,  

-u 4   shrinkage cracks,  

-u 5   visco-elastic deformation and fracturing,  

-u 6   dissolution grooves,  

-u 7   stylolite roughening,  

-u 8   combine grain growth and fracturing,  

-u 9   solid-solid phase changes under stress,  

-u 10 heat diffusion,  

-u 11 grain growth,  

-u 12 Lattice-Gas example diffusion,  

-u 13 Lattice-Gas example 2d fluid flow.  

Parameters in functions and basic functions for processes can be 

changed within the experiment class. The file experiment.cc starts with a 

number of header calls followed by a constructor (Experi-

ment::Experiment()). After the constructor the function Experiment::Init() 

is used to initialize the different processes. Within this function the Elle 

file is called, desired lattices are build and initial geometrical configura-

tions are applied to the data set (statistical distributions, layering etc.). The 

initialization function is called if the Run button in the Elle interface is 

chosen at the beginning and also if the ReRun button is chosen. Please 

note that a rebuilding of some lattices with the ReRun command may not 

be possible, especially if the microstructure is already deformed.  

The run functions are then executed in another switch call in the func-

tion Experiment::Run().  

T Sachau D Koehn  and . . 
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In this function the user can similar to the init function change parame-

ters in existing functions or add new functions for different processes. Ba-

sically all functions that are included in the lattice, phase_base, 

phase_lattice, min_trans_lattice and graingrowth classes can be called 

within the experiment class. 
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Appendix H Miscellaneous processes 
 

Mark Jessell 

H.1 Introduction 

In addition to the processes already documented in this chapter, we have 
also developed a number of other processes that are briefly described here 
for the sake of completeness, and because they may act as template for 
those wishing to develop their own codes. We also describe the functional-
ity of the utility codes, which are not meant to represent specific geological 
processes, but instead perform useful conversion functions. 

H.2 elle_gbdiff 

This code performs a Finite Difference grain boundary diffusion calcula-

tion for a uniform-width grain boundary network and constant diffusivity. 

The code is currently set to diffuse the bnode property CONC_A, but 

could be easily modified.  

H.3 elle_diff 

This code performs a Finite Difference lattice diffusion calculation, which 

ignores the grain boundary network, and assumes constant diffusivity. The 

code is currently set to diffuse the flynn property CONC_A, but could be 

easily modified. This code performs a similar function to the lattice diffu-

sion part of the elle_exchange code, except that it is not limited to intra-

granular diffusion. 

H.4 elle_met 

This is a prototype code derived from the elle_melt code that attempts to 

simulate polyphase solid-state metamorphic reactions. It uses a standalone 

and utilities
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array of thermodynamic data derived, for example from the Perplex code 

(http://www.perplex.ethz.ch), to simulate reactions of the type A+B=C+D. 

H.5 elle_recovery 

This code performs a simple time-based recovery of the flynn 

DISLOCDEN attribute (dislocation density) that allows the gradual decay 

of this property. 

H.6 elle_viscosity 

This code assigns each flynn a viscosity as a function of its properties (e.g. 

grain size and/or dislocation density). This code is typically rewritten for 

each new type of experiment. 

H.7 elle_expand & elle_pblast 

These two codes force any grains with their flynn attribute EXPAND set to 

1 to slowly grow, consuming their matrix. 

H.8 elle_manuel 

This code applies a homogeneous simple shear to the entire microstructure. 

H.9 reposition 

This utility code transforms the deformed Elle microstructure from a Fi-

nite Element or elle_manuel calculation so that all nodes lie within the 

original bounding box. This is possible because Elle models have cyclic 

boundaries. 

. 
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H.10 tidy 

This utility code transforms the Elle microstructure in a number of differ-

ent ways, including changing the bnode spacing, adding or removing 

unodes, randomising Euler angles of all grains etc. To modify an Elle file, 

you can use the tidy utility with the following user data settings, accessible 

from the Run Options Window: 

• User Data 1 Change default node spacing. Input value wil be the new 

switch distance. Setting the value to 0 keeps the current switch distance. 

• User Data 2 Set to anything but 0 to randomise the Euler angles. 

• User Data 3 If the value set here is equal to F_ATTRIB_A of a Flynn, 

this Flynn will get the mineral attribute “MICA”. All other Flynns will 

be assigned the mineral attribute “QUARTZ”. Set to zero to not use this 

function. 

• User Data 4 Setting the input to anything other than zero reorients the 

C-axis (Euler angle) of “MICA”-Flynns to become parallel to the long 

axis of the Flynn. 

• User Data 5 Add or delete unodes from file. Any valy smaller than zero 

will delete all unodes, while values bigger than zero determine the num-

ber of unodes. 

• User Data 6 Set the unode pattern: 0 = hexagonal array; 1 = square ar-

ray; 2 = random; 3=semi_random. 

• User Data 7 If “User Data 6” was set to 3 (semi random), it defines the 

number of unodes per cell, otherwise set to 0. 

H.11 elle2poly, basil2elle, elle2oof, goof2elle 

These utility codes transforms the Elle microstructure into a format that the 

Finite Element codes Basil (elle2poly) and OOF (elle2oof) can understand, 

and similarly transforms the outputs from Basil (basil2elle) and OOF 

(goof2elle) back into the Elle format. 

H.12 ppm2elle  

This utility code takes a binary format ppm format raster image and trans-

forms it into an Elle format file. For this to work the microstructure in the 

ppm file must consist of grains with completely uniform colours, with no 

lines demarking grain boundaries, and island grains completely within 

other grains are not allowed. 
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H.13 ebsd2elle, elle2ebsd 

This utility code ebsd2elle takes the Euler angle information that describes 

the crystallographic orientations in an HKL format EBSD image and maps 

it onto the unodes of an Elle file. The grain boundary network information 

needs to be transferred as a separate step using ppm2elle. elle2ebsd maps 

the unode Euler angle information onto a regular grid and writes a file in 

HKL-format. 

H.14 plotaxes 

The utility code creates an equal angle upper hemisphere postscript plot of 

the c- a- and r- axes of the quartz grains in an Elle file. 
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Appendix I How to Create an Elle file 

Mark W. Jessell 

We can create an arbitrary geometry Elle input file from any rectangular 

binary raster image. Any rectangular bounding box will be mapped to a 

square, so generally a square image is a good place to start, with dimen-

sions of around 100x100 pixels. Each patch of pixels with a unique colour 

will be considered to be a single grain, so in order to minimise the number 

of individual grains, you should limit the number of different colours that 

appear in the image. Do not draw the grain boundaries, only the grains. In 

this example we use the Open Source drawing package gimp 

(http://www.gimp.org) to create the image, but any raster or vector pack-

age that can output a raster image (ppm-format) could also be used. We as-

sume that there is a pre-existing raster that you want to modify, but you 

could equally start from a blank screen.  

The example we use was actually created by saving out an existing Elle 

microstructure as a graphics file, with no grain boundaries displayed (this 

is important as otherwise the grain boundaries would be considered to be a 

different grain). 

 

1. Start up gimp by typing in gimp (Linux) or click on the appropriate icon 

(Windows). 

2. Select Open from the File menu and load the image foam.ppm (found 

in the ...elle/extras/ppm_files directory). 

 

 
 

3. Use the Pencil tool  to modify your microstructure, using a different 

colour for each neighbouring grain. Grains can wrap around horizontal 

and vertical boundaries, but: 
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Don’t make island grains (i.e. grains com-

pletely surrounded other grains) 

Don’t make any single grain larger than about 

30% of the length of the box (be careful with 

the wrapping resulting in grains being bigger 

than they appear). 

 
4. Save the image by right-clicking in the image window and select Save 

as, and call you file any_name_you_like.ppm. 

5. Quit from gimp. 

6. Open up the Experiment Launcher and select and run ppm2elle. 

7. Load up the ppm-format file you just created, which will be converted 

as it is loaded and then save the file as a new Elle-format file. 

8. Next, go back to the Experiment Launcher and select and run tidy. Load 

the new Elle file, and go to Run→Run Options and change “Stages” to 

1 and the UserData field 1 to 0.01, and change all the other Userdata 

values to 0.0. Now select Run→Run. This has changed the bnode spac-

ing to 0.01 Elle units. 

9. Save out the new Elle file. 

10. When the normal Elle window appears, open the Elle file you created 

in the previous steps and then go to Run→Run Options and change 

“Stages” to 100. Finally select Run→Run and you will see the new mi-

crostructure evolve through 100 time steps. 

 

You will now have an Elle file that describes the geometry and topology 

of your microstructure, but will not have any specific physical or chemical 

attributes set as yet. See Appendix J to see how to add attributes with a text 

editor. Before you use the new data file for a simulation, it is often advis-

able to run ten or more steps of grain growth (step 10). This way you can 

see that the microstructure has no hidden problems and unwanted small 

(one or more pixel) grains are removed. 

 

 

. 



Appendix J The Elle file format 

Mark W. Jessell 

The Elle File is a text file that describes the general experimental condi-

tions, followed by a description of the geometric, physical and chemical 

characteristics of the specimen, i.e. its microstructure. The file can be 

modified with any simple text editor, or even a word processor, as long as 

it is saved out again as a text file. If you have created a new microstructure 

using ppm2elle, you may add lists of new flynn, bnode or unode attributes 

at the end of the file (the order of the parameter blocks is not important). 

Often you will simply want to set default values, perhaps defining a few 

elements as having non-default values.  

J.1 Example Elle file 

# Created by test_unodes: elle version 2.3.2  Fri Jun  8 13:38:25 
2001 
# LINES THAT START WITH A # ARE COMMENTS 
 
# THE OPTIONS BLOCK DEFINES GLOBAL PARAMETERS 
 
OPTIONS 
SwitchDistance 2.50000000e-02 
MaxNodeSeparation 5.50000000e-02 
MinNodeSeparation 2.50000000e-02 
SpeedUp 1.0 
CellBoundingBox 0.00000000e+00 0.00000000e+00 
                1.00000000e+00 0.00000000e+00  
                1.00000000e+00 1.00000000e+00  
                0.00000000e+00 1.00000000e+00  
SimpleShearOffset 0.00000000e+00 
CumulativeSimpleShear 0.00000000e+00 
Timestep 3.15000000e+07 
UnitLength 1.00000000e-02 
Temperature 2.50000000e+01 
Pressure 1.00000000e+00 
MassIncrement 0.00000000e+00 
 
#THE NEXT BLOCK DEFINES THE POLYGONAL STRUCTURES: THE FIRST NUMBER IS 
THE ID <E.G. 3>, THE SECOND THE NUMBER OF NODES THAT DEFINE THE 
POLYGON <E.G. 23>, ANS FOLLOWED BY AN ANTICLOCKWISE LIST OF NODE IDS 
E.G. <133 272 140 ETC.> 
 
FLYNNS 
3 23 133 272 140 146 112 174 87 15 147 150 211 129 17 39 62 94 119 20 
13 8 72 135 7 
7 36 21 76 31 29 73 107 279 302 166 280 167 30 224 156 209 27 131 25 

16 77 132 2 0 141 4 121 1 10 86 122 155 227 22 3 37 105 
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11 24 20 119 94 62 39 17 33 165 34 48 49 162 51 50 88 36 38 56 78 29 
31 76 21 142 
#etc. 

 
#THE NEXT BLOCKS DEFINE FLYNN PAAMETERS SO TAHT FOR EXAMPLE, AN 
EXPAND PARAMETER IS DEFINED FOR THESE FLYNNS, THE DEFAULT VALUE IS 1 
AND THE FLYNN WITH ID 17 IS SET TO 1 
 
EXPAND 
Default 1 
17 0 
DISLOCDEN 
Default 0.00000000e+00 
MINERAL 
Default QUARTZ 
EULER_3 
Default 0.00000000e+00 0.00000000e+00 0.00000000e+00 
 
#THE LOCATION BLOCK DEFINES THE LOCATION OF BOUNDARY NODES. THE FIRST 
NUMBER IS THE BNODE ID, THE SECOND IS X, THE THIRD IS Y 
 
LOCATION 
0 0.7157127300 0.0004124800 
1 0.5647232500 0.9642747600 
2 0.7517333600 0.9709875600 
3 0.4205657800 0.7458517000 
4 0.6626872400 0.9829956900 
272 0.1584355500 0.7560001600 
279 0.5814173200 0.6308649800 
280 0.6592591400 0.6547707300 
284 0.5687853700 0.4511538400 
289 0.1280806400 0.3809446100 
293 0.2484257500 0.1165237400 
302 0.6079290500 0.6402233800 
#etc. 

 
#NEXT COMES BNODE PROPERTIES 
CONC_A 
Default 0.00000000e+00 
29 4.0 
 
#THE NEXT BLOCK DEFINES THE POSITION OF UNCONNECTED NODES. THE FIRST 
NUMBER IS THE UNODE ID, THE SECOND IS X, THE THIRD IS Y 
 
UNODES  
0 0.000000 0.008660 
1 0.020000 0.008660 
2 0.040000 0.008660 
3 0.060000 0.008660 
4 0.080000 0.008660 
5 0.100000 0.008660 
6 0.120000 0.008660 
#etc. 

 
#NEXT COMES UNODE PROPERTIES 
U_CONC_A 
Default 1 

0 1.2 
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J.2 Elle file blocks 

The file format consists of a series of 7 sets of data blocks:  

 

The OPTIONS Block - This defines the general experimental conditions: 

SwitchDistance The distance between triple nodes before they are 
switched 

MaxNodeSeparation The maximum distance between double nodes before a 
new node is inserted 

MinNodeSeparation The minimum distance between double nodes before 
they are merged  

SpeedUp Arbitrary rate multiplyer for some processes  
CellBoundingBox Bottom Left, Bottom Right, Top Right and Top Left 

coordinates of bounding Box  
SimpleShearOffset Used to determine the Bounding box shape for simple 

shear deformation experiments 
CumulativeSimpleShear Used to determine the Bounding box shape for 

simple shear deformation experiments 
Timestep Single timestep in seconds 
UnitLength Real World width of unit bounding box 
Temperature Temperature in Kelvin 
Pressure Pressure 
MassIncrement Used to add mass to grian boundaries for validation 

tests 

 

The FLYNNS Block - The next block defines the polygonal grain struc-
tures: the first number is the id <e.g. 3>, the second the number of nodes 
that define the polygon <e.g. 23>, followed by an anticlockwise list of 
node ids e.g. <133 272 140 etc.> All flynns will be defined here. The 
bnode ids refer to the ids found in the Bnode Block. 

FLYNNS 
3 23 133 272 140 146 112 174 87 15 147 150 211 129 17 39 62 94 119 20 
13 8 72 135 7 
7 36 21 76 31 29 73 107 279 302 166 280 167 30 224 156 209 27 131 25 
16 77 132 2 0 141 4 121 1 10 86 122 155 227 22 3 37 105 
11 24 20 119 94 62 39 17 33 165 34 48 49 162 51 50 88 36 38 56 78 29 
31 76 21 142 
17 25 50 123 110 204 164 158 64 53 67 115 128 85 68 24 91 180 40 23 
185 182 284 96 38 36 88 
#etc. 

#etc. 

#etc. 

The FLYNN Parameters Block(s) - The next set of blocks define flynn 

parameters so that, for example, an EXPAND parameter is defined for 

these flynns, the default value is 1 and the flynn with id 17 is set to 0. You 

can only define parameters that the Elle system recognises, however three 

dummy parameters are provided.  
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Each defined parameter consists of its name, followed by a Default 
value definition, followed by the list of flynns that do not have the default 
value and their values. All FYLNN parameters are optional, and all defini-
tions apart from the default value are optional, if a parameter is defined as 
being present. In the example below all flynns would have a value for 
EXPAND of 1, expect flynn number 17, which has a value of 0.  

EXPAND 
Default 1 
17 0 
DISLOCDEN 
Default 0.00000000e+00 
3 21.9 
17 23.32 
MINERAL 
Default QUARTZ 
EULER_3 
Default 0.00000000e+00 0.00000000e+00 0.00000000e+00 

 

The current list of valid flynn parameters is: 

  F_ATTRIB_I, F_ATTRIB_J, F_ATTRIB_K (dummy integer attributes 

to be assigned by the user) 

  MINERAL (Currently, valid keywords are QUARTZ, FELDSPAR, 

MICA, GARNET, CALCITE, MINERAL_A, MINERAL_B, 

MINERAL_C) 

  EXPAND (toggles grain expansion for elle_pblast and elle_expand) 

  COLOUR (this attribute will become redundant, a number in the range 

8-63) 

  ENERGY (Arbitrary volume energy term) 

  VISCOSITY (Viscosity term) 

  S_EXPONENT (Stress exponent for power-law viscosity) 

  DISLOCDEN (dislocation density ) 

  F_ATTRIB_A, F_ATTRIB_B, F_ATTRIB_C (dummy floating point 

attributes to be assigned by the user) 

  CAXIS (polar coordinates of c-axis orientation) 

  EULER_3 (Euler space coordinates of lattice orientations) 

  FLYNN_STRAIN (current strain state as calculated by Basil [followed 

by at least one of E_XX, E_XY, E_YY, E_YX, E_ZZ, F_INCR_S, 

F_BULK_S] ) 

The BNODES Block - The location block defines the location of 

boundary nodes. The first number it the bnode id, the second is x, the third 

is y coordinate. 
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LOCATION 
0 0.7157127300 0.0004124800 
1 0.5647232500 0.9642747600 
2 0.7517333600 0.9709875600 
3 0.4205657800 0.7458517000 
4 0.6626872400 0.9829956900 
5 0.0854129600 0.0134190800 
255 0.1195778800 0.1301631600 
272 0.1584355500 0.7560001600 
279 0.5814173200 0.6308649800 
280 0.6592591400 0.6547707300 
284 0.5687853700 0.4511538400 
289 0.1280806400 0.3809446100 
293 0.2484257500 0.1165237400 
302 0.6079290500 0.6402233800 
#etc. 

#etc. 

#etc. 

 

The BNODES Parameters Block(s) - The same logic applies as for 

flynn parameters. 

CONC_A 
Default 0.00000000e+00 

29 4.0 

The current list of valid bnode parameters is: 

  N_ATTRIB_A, N_ATTRIB_B, N_ATTRIB_C (user assigned node 

attributes) 

  VELOCITY VEL_X VEL_Y (the velocities in the x and y directions) 

  STRESS The local stress state as calculated using Basil. [TAU_XX 

TAU_YY TAU_ZZ TAU_XY TAU_1 PRESSURE] (at least one) 

  CONC_A (a dummy concentration attribute) 

  STRAIN (the local strain state as calculated using Basil [INCR_S 

BULK_S]; at least one) 

The UNODES Block - The next block defines the position of uncon-

nected nodes. The first number it the unode id, the second is x, the third is 

y coordinate. This block and the unodes parameter blocks are optional.  

UNODES  
0 0.000000 0.008660 
1 0.020000 0.008660 
2 0.040000 0.008660 
3 0.060000 0.008660 
4 0.080000 0.008660 
5 0.100000 0.008660 
6 0.120000 0.008660 
7 0.140000 0.008660 
#etc. 

#etc. 

#etc. 
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The UNODES Parameters Block(s) - The same logic applies as for 

flynn and bnode parameters. 

U_CONC_A 
Default 1 
0 1.2 

The current list of valid unode parameters is: 

  U_CONC_A (Attribute used to store chemical concentration) 

  U_ATTRIB_A, U_ATTRIB_B, U_ATTRIB_C (user assigned unode at-

tributes) 

  U_STRAIN START_S_X START_S_Y PREV_S_X PREV_S_Y 

CURR_S_X CURR_S_Y (the x,y coordinates for the starting position, 

the position before the last increment of strain and the current position) 

  U_CAXIS (Polar coordinates of c-axis orientation) 

  U_EULER_3 (Euler space coordinates of lattice orientations) 

  U_ENERGY (Arbitrary volume energy term) 

  U_VISCOSITY (Viscosity term) 

  U_DISLOCDEN (dislocation density) 
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